

Build Your Own Blocks

Brian Harvey

Jens Mönig

SNAP! Reference Manual
6.2

2

Table of Contents

I. Blocks, Scripts, and Sprites 5
Hat Blocks and Command Blocks 6

A. Sprites and Parallelism .. 8
Costumes and Sounds 8
Inter-Sprite Communication with Broadcast 9

B. Nesting Sprites: Anchors and Parts 10
C. Reporter Blocks and Expressions .. 10
D. Predicates and Conditional Evaluation 12
E. Variables ... 13

Global Variables 14
Script Variables 15
Renaming variables 15
Transient variables 16

F. Debugging .. 17
The pause button 17
Breakpoints: the pause all block 17
Visible stepping 18

G. Hyperblocks ... 18
H. Etcetera .. 21

II. Saving and Loading Projects and Media 25
A. Local Storage ... 25
B. Creating a Cloud Account .. 25
C. Saving to the Cloud ... 26
D. Loading Saved Projects .. 26
E. Private and Public Projects .. 27

III. Building a Block ... 28
A. Simple Blocks ... 28

Custom Blocks with Inputs 30
Editing Block Properties 31

B. Recursion ... 31
C. Block Libraries ... 32
D. Custom blocks and Visible Stepping 33

IV. First class lists ... 34
A. The list Block ... 34
B. Lists of Lists .. 35
C. Functional and Imperative List Programming 36
D. Higher Order List Operations and Rings 37
E. Table View vs. List View .. 39

Comma-Separated Values 41
Multi-dimensional lists and JSON 42

V. Typed Inputs ... 43
A. Scratch’s Type Notation .. 43
B. The Snap! Input Type Dialog ... 43

Procedure Types 44
Pulldown inputs 45
Input variants 47
Prototype Hints 48
Title Text and Symbols 48

VI. Procedures as Data .. 49
A. Call and Run ... 49

Call/Run with inputs 49
Variables in Ring Slots 50

B. Writing Higher Order Procedures 50
Recursive Calls to Multiple-Input Blocks 52

C. Formal Parameters ... 53
D. Procedures as Data ... 54
E. Special Forms .. 55

Special Forms in Scratch 56

VII. Object Oriented Programming with Sprites ... 57
A. First Class Sprites .. 57
B. Permanent and Temporary Clones 58
C. Sending Messages to Sprites ... 58

Polymorphism 59
D. Local State in Sprites: Variables and Attributes 60
E. Prototyping: Parents and Children 60
F. Inheritance by Delegation ... 61
G. List of attributes ... 62
H. First Class Costumes and Sounds 63

Media Computation with Costumes 63
Media Computation with Sounds 66

VIII. OOP with Procedures 69
A. Local State with Script Variables 69
B. Messages and Dispatch Procedures 70
C. Inheritance via Delegation .. 71
D. An Implementation of Prototyping OOP 72

IX. The Outside World .. 75
A. The World Wide Web ... 75
B. Hardware Devices .. 76
C. Date and Time .. 76

X. Continuations .. 77
A. Continuation Passing Style .. 78
B. Call/Run w/Continuation ... 81

Nonlocal exit 83
XI. User Interface Elements 85
A. Tool Bar Features .. 85

The Snap!		Logo Menu 85
The File Menu 86
The Cloud Menu 101
The Settings Menu 102
Visible Stepping Controls 105
Stage Resizing Buttons 105
Project Control Buttons 105

B. The Palette Area .. 106
Buttons in the Palette 106
Context Menus for Palette Blocks 106
Context Menu for the Palette Background 107
Palette Resizing 107

C. The Scripting Area ... 108
Sprite Appearance and Behavior Controls 108
Scripting Area Tabs 108
Scripts and Blocks Within Scripts 108
Scripting Area Background Context Menu 110
Controls in the Costumes Tab 112
The Paint Editor 113
Controls in the Sounds Tab 115

D. Keyboard Editing ... 115
Starting and stopping the keyboard editor 115
Navigating in the keyboard editor 116
Editing a script 116
Running the selected script 117

E. Controls on the Stage .. 118
F. The Sprite Corral and Sprite Creation Buttons 119
G. Preloading a Project when Starting Snap! 120
H. Mirror Sites .. 121

3

Appendix A. Snap! color library 122
Crayons and Colors 122
More about Colors: Fair Hues and Shades 123
Perceptual Spaces: HSL and HSV 125
tl;dr 126
Subappendix: Geeky details on fair hue 127
Subappendix: Geeky details on colors 128

Appendix B. APL features .. 129
Boolean values 131
Scalar functions 131
Mixed functions 132
Higher order functions 138

 Index ……………………………………………………. 140

Copyright © 2020 Jens Mönig and Brian Harvey.

 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

4

Acknowledgements

We have been extremely lucky in our mentors. Jens cut his teeth in the company of the Smalltalk pioneers:
Alan Kay, Dan Ingalls, and the rest of the gang who invented personal computing and object oriented
programming in the great days of Xerox PARC. He worked with John Maloney, of the MIT Scratch Team,
who developed the Morphic graphics framework that’s still at the heart of Snap!.

The brilliant design of Scratch, from the Lifelong Kindergarten Group at the MIT Media Lab, is crucial to
Snap!. Our earlier version, BYOB, was a direct modification of the Scratch source code. Snap! is a
complete rewrite, but its code structure and its user interface remain deeply indebted to Scratch. And
the Scratch Team, who could have seen us as rivals, have been entirely supportive and welcoming to us.

Brian grew up at the MIT and Stanford Artificial Intelligence Labs, learning from Lisp inventor John
McCarthy, Scheme inventors Gerald J. Sussman and Guy Steele, and the authors of the world’s best computer
science book, Structure and Interpretation of Computer Programs, Hal Abelson and Gerald J. Sussman with Julie
Sussman, among many other heroes of computer science. (Brian was also lucky enough, while in high school, to
meet Kenneth Iverson, the inventor of APL.)

In the glory days of the MIT Logo Lab, we used to say, “Logo is Lisp disguised as BASIC.” Now, with its
first class procedures, lexical scope, and first class continuations, Snap! is Scheme disguised as Scratch.

Four people have made such massive contributions to the implementation of Snap! that we have officially
declared them members of the team: Michael Ball and Bernat Romagosa, in addition to contributions
throughout the project, have primary responsibility for the web site and cloud storage. Joan Guillén i Pelegay
has contributed very careful and wise analysis of outstanding issues, including help in taming the management
of translations to non-English languages. Jadga Hügle, has energetically contributed to online mini-courses
about Snap! and leading workshops for kids and for adults. Jens, Jadga, and Bernat are paid to work on Snap! by
SAP, which also supports our computing needs.

We have been fortunate to get to know an amazing group of brilliant middle school(!) and high school students
through the Scratch Advanced Topics forum, several of whom (since grown up) have contributed code to Snap!:
Kartik Chandra, Nathan Dinsmore, Connor Hudson, Ian Reynolds, and Dylan Servilla. Many more have
contributed ideas and alpha-testing bug reports. UC Berkeley students who’ve contributed code include Achal
Dave. Kyle Hotchkiss, Ivan Motyashov, and Yuan Yuan. Contributors of translations are too numerous to list
here, but they’re in the “About…” box in Snap!	 itself.

This material is based upon work supported in part by the National Science Foundation under Grants No.
1138596, 1143566, and 1441075; and in part by MioSoft, Arduino.org, SAP, and YC Research. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation or other funders.

5

Snap! Reference Manual
Version 6.2

Snap! (formerly BYOB) is an extended reimplementation of Scratch (http://scratch.mit.edu) that allows you to
Build Your Own Blocks. It also features first class lists, first class procedures, first class sprites, first class
costumes, first class sounds, and first class continuations. These added capabilities make it suitable for a serious
introduction to computer science for high school or college students.

In this manual we sometimes make reference to Scratch, e.g., to explain how some Snap!	 feature extends
something familiar in Scratch. It’s very helpful to have some experience with Scratch before reading this
manual, but not essential.

To run Snap!, open a browser window and connect to http://snap.berkeley.edu/run. The Snap! community
web site at http://snap.berkeley.edu is not part of this manual’s scope.

I. Blocks, Scripts, and Sprites

This section describes the Snap! features inherited from Scratch; experienced Scratch users can skip to
subsection B.

Snap! is a programming language—a notation in which you can tell a computer what you want it to do.
Unlike most programming languages, though, Snap! is a visual language; instead of writing a program using the
keyboard, the Snap! programmer uses the same drag-and-drop interface familiar to computer users.

Start Snap!. You should see the following arrangement of regions in the window:

(The proportions of these areas may be different, depending on the size and shape of your browser window.)

A Snap! program consists of one or more scripts, each of which is made of blocks. Here’s a typical script:

6

The five blocks that make up this script have three different colors, corresponding to three of the eight palettes in
which blocks can be found. The palette area at the left edge of the window shows one palette at a time, chosen
with the eight buttons just above the palette area. In this script, the gold blocks are from the Control palette; the
green block is from the Pen palette; and the blue blocks are from the Motion palette. A script is assembled by
dragging blocks from a palette into the scripting area in the middle part of the window. Blocks snap together
(hence the name Snap! for the language) when you drag a block so that its indentation is near the tab of the one
above it:

The white horizontal line is a signal that if you let go of the green block it will snap into the tab of the gold one.

Hat Blocks and Command Blocks
At the top of the script is a hat block, which indicates when the script should be carried out. Hat block names

typically start with the word “when”; in the square-drawing example on page 4, the script should be run when
the green flag near the right end of the Snap! 	tool bar is clicked. (The Snap! tool bar is part of the Snap! window,
not the same as the browser’s or operating system’s menu bar.) A script isn’t required to have a hat block, but if
not, then the script will be run only if the user clicks on the script itself. A script can’t have more than one hat
block, and the hat block can be used only at the top of the script; its distinctive shape is meant to remind you of
that.1

The other blocks in our example script are command blocks. Each command block corresponds to an action
that Snap! already knows how to carry out. For example, the block tells the sprite (the
arrowhead shape on the stage at the right end of the window) to move ten steps (a step is a very small unit of
distance) in the direction in which the arrowhead is pointing. We’ll see shortly that there can be more than one
sprite, and that each sprite has its own scripts. Also, a sprite doesn’t have to look like an arrowhead, but can
have any picture as a costume. The shape of the move block is meant to remind you of a Lego™ brick; a script is
a stack of blocks. (The word “block” denotes both the graphical shape on the screen and the procedure, the
action, that the block carries out.)

The number 10 in the move block above is called an input to the block. By clicking on the white oval, you can
type any number in place of the 10. The sample script on the previous page uses 100 as the input value. We’ll
see later that inputs can have non-oval shapes that accept values other than numbers. We’ll also see that you
can compute input values, instead of typing a particular value into the oval. A block can have more than one
input slot. For example, the glide block located about halfway down the Motion palette has three inputs.

1 One of the hat blocks, the generic “when anything” block , is subtly different from the others. When the stop
sign is clicked, this block no longer tests whether the condition in its hexagonal input slot is true, so the script beneath it will not run,
until some other script in the project runs (because, for example, you click the green flag). When generic when blocks are disabled, the
stop sign will be square instead of octagonal.

7

Most command blocks have that brick shape, but some, like the repeat block in the sample script, are C-shaped.
Most C-shaped blocks are found in the Control palette. The slot inside the C shape is a special kind of input slot
that accepts a script as the input.

In the sample script

C-shaped blocks can be put in a script in two ways. If you see a white line and let go, the block will be inserted
into the script like any command block:

But if you see an orange halo and let go, the block will wrap around the haloed blocks:

The halo will always extend from the cursor position to the bottom of the script:

If you want only some of those blocks, after wrapping you can grab the first block you don’t want wrapped, pull
it down, and snap it under the C-shaped block.

For “E-shaped” blocks with more than one C-shaped slot, only the first slot will wrap around existing blocks in a
script, and only if that C-shaped slot is empty before wrapping. (You can fill the other slots by dragging blocks
into the desired slot.)

the repeat block has two inputs:
the number 4 and the script

8

Sprites and Parallelism
Just below the stage is the “new sprite” button . Click the button to add a new sprite to the stage. The

new sprite will appear in a random position on the stage, with a random color, but always facing to the right.

Each sprite has its own scripts. To see the scripts for a particular sprite in the scripting area, click on the
picture of that sprite in the sprite corral in the bottom right corner of the window. Try putting one of the
following scripts in each sprite’s scripting area:

When you click the green flag, you should see one sprite rotate while the other moves back and forth. This
experiment illustrates the way different scripts can run in parallel. The turning and the moving happen
together. Parallelism can be seen with multiple scripts of a single sprite also. Try this example:

When you press the space key, the sprite should move forever in a circle, because the move and turn blocks are
run in parallel. (To stop the program, click the red stop sign at the right end of the tool bar.)

 Costumes and Sounds
To change the appearance of a sprite, paint or import a new costume for it. To paint a costume, click on the
Costumes tab above the scripting area, and click the paint button . The Paint Editor that appears is
explained on page 113. There are three ways to import a costume. First select the desired sprite in the
sprite corral. Then, one way is to click on the file icon in the tool bar, then choose the “Costumes…”menu
item. You will see a list of costumes from the public media library, and can choose one. The second way, for a
costume stored on your own computer, is to click on the file icon and choose the “Import…” menu item. You
can then select a file in any picture format (PNG, JPEG, etc.) supported by your browser. The third way is
quicker if the file you want is visible on the desktop: Just drag the file onto the Snap! window. In any of these
cases, the scripting area will be replaced by something like this:

9

Just above this part of the window is a set of three tabs: Scripts, Costumes, and Sounds. You’ll see that the
Costumes tab is now selected. In this view, the sprite’s wardrobe, you can choose whether the sprite should wear
its Turtle costume or its Alonzo costume. (Alonzo, the Snap! mascot, is named after Alonzo Church, a
mathematician who invented the idea of procedures as data, the most important way in which Snap! is different
from Scratch.) You can give a sprite as many costumes as you like, and then choose which it will wear either by
clicking in its wardrobe or by using the or block in a script. (Every
costume has a number as well as a name. The next costume block selects the next costume by number; after
the highest-numbered costume it switches to costume 1. The Turtle, costume 0, is never chosen by next
costume.) The Turtle costume is the only one that changes color to match a change in the sprite’s pen color.
Protip: switches to the previous costume, wrapping like next costume.

In addition to its costumes, a sprite can have sounds; the equivalent for sounds of the sprite’s wardrobe is called
its jukebox. Sound files can be imported in any format (WAV, OGG, MP3, etc.) supported by your browser.
Two blocks accomplish the task of playing sounds. If you would like a script to continue running while the
sound is playing, use the block . In contrast, you can use the
block to wait for the sound's completion before continuing the rest of the script.

 Inter-Sprite Communication with Broadcast
Earlier we saw an example of two sprites moving at the same time. In a more interesting program, though, the

sprites on stage will interact to tell a story, play a game, etc. Often one sprite will have to tell another sprite to run
a script. Here’s a simple example:

In the block, the word “bark” is just an arbitrary name I made up. When you click
on the downward arrowhead in that input slot, one of the choices (the only choice, the first time) is “new,” which
then prompts you to enter a name for the new broadcast. When this block is run, the chosen message is sent to
every sprite, which is why the block is called “broadcast.” In this program, though, only one sprite has a script to
run when that broadcast is sent, namely the dog. Because the boy’s script uses broadcast and wait rather than
just broadcast, the boy doesn’t go on to his next say block until the dog’s script finishes. That’s why the two
sprites take turns talking, instead of both talking at once.

Notice, by the way, that the say block’s first input slot is rectangular rather than oval. This means the input
can be any text string, not only a number. In the text input slots, a space character is shown as a brown dot, so
that you can count the number of spaces between words, and in particular you can tell the difference between
an empty slot and one containing spaces. The brown dots are not shown on the stage when the block is run.

The stage has its own scripting area. It can be selected by clicking on the Stage icon at the left of the sprite
corral. Unlike a sprite, though, the stage can’t move. Instead of costumes, it has backgrounds: pictures that fill the
entire stage area. The sprites appear in front of the current background. In a complicated project, it’s often
convenient to use a script in the stage’s scripting area as the overall director of the action.

10

In Section VII, “Object-Oriented Programming with Sprites,” you’ll see how to send a message to a specific
sprite using the tell and ask blocks, rather than to all sprites as broadcast does.

B. Nesting Sprites: Anchors and Parts
Sometimes it’s desirable to make a sort of “super-sprite” composed of pieces that can move together but can also
be separately articulated. The classic example is a person’s body made up of a torso, limbs, and a head. Snap!
allows one sprite to be designated as the anchor of the combined shape, with other sprites as its parts. To set up
sprite nesting, drag the sprite corral icon of a part sprite onto the stage display (not the sprite corral icon!) of the
desired anchor sprite.

Sprite nesting is shown in the sprite corral icons of both anchors and parts:

In this illustration, it is desired to animate Alonzo’s arm. (The arm has been colored green in this picture to
make the relationship of the two sprites clearer, but in a real project they’d be the same color, probably.) Sprite,
representing Alonzo’s body, is the anchor; Sprite(2) is the arm. The icon for the anchor shows small images of
up to three attached parts at the bottom. The icon for each part shows a small image of the anchor in its top left
corner, and a synchronous/dangling rotation flag in the top right corner. In its initial, synchronous setting, as shown
above, it means that the when the anchor sprite rotates, the part sprite also rotates as well as revolving around
the anchor. When clicked, it changes from a circular arrow to a straight arrow, and indicates that when the
anchor sprite rotates, the part sprite revolves around it, but does not rotate, keeping its original orientation.
(The part can also be rotated separately, using its turn blocks.) Any change in the position or size of the anchor
is always extended to its parts.

Top: turning the part: the green arm. Bottom: turning the anchor, with the arm synchronous (left) and dangling (right).

C. Reporter Blocks and Expressions

So far, we’ve used two kinds of blocks: hat blocks and command blocks. Another kind is the reporter block,
which has an oval shape: . It’s called a “reporter” because when it’s run, instead of carrying out an
action, it reports a value that can be used as an input to another block. If you drag a reporter into the scripting
area by itself and click on it, the value it reports will appear in a speech balloon next to the block:

11

When you drag a reporter block over another block’s input slot, a white “halo” appears around that input slot,
analogous to the white line that appears when snapping command blocks together:

Don’t drop the input over a red halo:

That’s used for a purpose explained on page 52.

Here’s a simple script that uses a reporter block:

Here the x position reporter provides the first input to the say block. (The sprite’s X position is its horizontal
position, how far left (negative values) or right (positive values) it is compared to the center of the stage.
Similarly, the Y position is measured vertically, in steps above (positive) or below (negative) the center.)

You can do arithmetic using reporters in the Operators palette:

The round block rounds 35.3905… to 35, and the + block adds 100 to that. (By the way, the round block is in
the Operators palette, just like +, but in this script it’s a lighter color with black lettering because Snap! alternates
light and dark versions of the palette colors when a block is nested inside another block from the same palette:

This aid to readability is called zebra coloring.) A reporter block with its inputs, maybe including other reporter
blocks, such as , is called an expression.

12

D. Predicates and Conditional Evaluation
Most reporters report either a number, like , or a text string, like . A predicate is a

special kind of reporter that always reports true or false. Predicates have a hexagonal shape:

The special shape is a reminder that predicates don’t generally make sense in an input slot of blocks that are
expecting a number or text. You wouldn’t say , although (as you can see from the
picture) Snap! lets you do it if you really want. Instead, you normally use predicates in special hexagonal input
slots like this one:

The C-shaped if block runs its input script if (and only if) the expression in its hexagonal input reports true.

A really useful block in animations runs its input script repeatedly until a predicate is satisfied:

If, while working on a project, you want to omit temporarily some commands in a script, but you don’t want to
forget where they belong, you can say

Sometimes you want to take the same action whether some condition is true or false, but with a different input
value. For this purpose you can use the reporter if block:

The technical term for a true or false value is a “Boolean” value; it has a capital B because it’s named after a
person, George Boole, who developed the mathematical theory of Boolean values. Don’t get confused; a
hexagonal block is a predicate, but the value it reports is a Boolean.

Another quibble about vocabulary: Many programming languages reserve the name “procedure” for
Commands (that carry out an action) and use the name “function” for Reporters and Predicates. In this
manual, a procedure is any computational capability, including those that report values and those that don’t.
Commands, Reporters, and Predicates are all procedures. The words “a Procedure type” are shorthand for
“Command type, Reporter type, or Predicate type.”

If you want to put a constant Boolean value in a hexagonal slot instead of a predicate-based expression, hover
the mouse over the block and click on the control that appears:

13

E. Variables
Try this script:

The input to the move block is an orange oval. To get it there, drag the orange oval that’s part of the for block:

The orange oval is a variable: a symbol that represents a value. (I took this screenshot before changing the
second number input to the for block from the default 10 to 200, and before dragging in a turn block.) For runs
its script input repeatedly, just like repeat, but before each repetition it sets the variable i to a number starting
with its first numeric input, adding 1 for each repetition, until it reaches the second numeric input. In this case,
there will be 200 repetitions, first with i=1, then with i=2, then 3, and so on until i=200 for the final repetition.
The result is that each move draws a longer and longer line segment, and that’s why the picture you see is a kind
of spiral. (If you try again with a turn of 90 degrees instead of 92, you’ll see why this picture is called a
“squiral.”)

The variable i is created by the for block, and it can only be used in the script inside the block’s C-slot. (By the
way, if you don’t like the name i, you can change it by clicking on the orange oval without dragging it, which
will pop up a dialog window in which you can enter a different name:

“I” isn’t a very descriptive name; you might prefer “length” to indicate its purpose in the script. “I” is traditional
because mathematicians tend to use letters between i and n to represent integer values, but in programming
languages we don’t have to restrict ourselves to single-letter variable names.)

14

 Global Variables
You can create variables “by hand” that aren’t limited to being used within a single block. At the top of the
Variables palette, click the “Make a variable” button:

This will bring up a dialog window in which you can give your variable a name:

The dialog also gives you a choice to make the variable available to all sprites (which is almost always what you
want) or to make it visible only in the current sprite. You’d do that if you’re going to give several sprites
individual variables with the same name, so that you can share a script between sprites (by dragging it from the
current sprite’s scripting area to the picture of another sprite in the sprite corral), and the different sprites will do
slightly different things when running that script because each has a different value for that variable name.

If you give your variable the name “name” then the Variables palette will look like this:

There’s now a “Delete a variable” button, and there’s an orange oval with the variable name in it, just like the
orange oval in the for block. You can drag the variable into any script in the scripting area. Next to the oval is
a checkbox, initially checked. When it’s checked, you’ll also see a variable watcher on the stage:

15

When you give the variable a value, the orange box in its watcher will display the value.

How do you give it a value? You use the set block:

Note that you don’t drag the variable’s oval into the set block! You click on the downarrow in the first input
slot, and you get a menu of all the available variable names.

If you do choose “For this sprite only” when creating a variable, its block in the palette looks like this:
 The location-pin icon is a bit of a pun on a sprite-local variable. It’s shown only in the palette.

 Script Variables
In the name example above, our project is going to carry on an interaction with the user, and we want to
remember their name throughout the project. That’s a good example of a situation in which a global variable
(the kind you make with the “Make a variable” button) is appropriate. Another common example is a variable
called “score” in a game project. But sometimes you only need a variable temporarily, during the running of a
particular script. In that case you can use the script variables block to make the variable:

As in the for block, you can click on an orange oval in the script variables block without dragging to change its
name. You can also make more than one temporary variable by clicking on the right arrow at the end of the
block to add another variable oval:

 Renaming variables
There are several reasons why you might want to change the name of a variable:

1. It has a default name, such as the “a” in script variables or the “i” in for.
2. It conflicts with another name, such as a global variable, that you want to use in the same script.
3. You just decide a different name would be more self-documenting.

In the first and third case, you probably want to change the name everywhere it appears in that script, or even
in all scripts. In the second case, if you’ve already used both variables in the script before realizing that they
have the same name, you’ll want to look at each instance separately to decide which ones to rename. Both of
these operations are possible by right-clicking or control-clicking on a variable oval.

16

If you right-click on an orange oval in a context in which the variable is used, then you are able to rename just
that one orange oval:

If you right-click on the place where the variable is defined (a script variables block, the orange oval for a global
variable in the Variables palette, or an orange oval that’s built into a block such as the “i” in for), then you are
given two renaming options, “rename” and “rename all.” If you choose “rename,” then the name is changed
only in that one orange oval, as in the previous case:

But if you choose “rename all,” then the name will be changed throughout the scope of the variable (the script
for a script variable, or everywhere for a global variable):

 Transient variables
So far we’ve talked about variables with numeric values, or with short text strings such as someone’s name. But
there’s no limit to the amount of information you can put in a variable; in Chapter IV you’ll see how to use lists
to collect many values in one data structure, and in Chapter VIII you’ll see how to read information from web
sites. When you use these capabilities, your project may take up a lot of memory in the computer. If you get
close to the amount of memory available to Snap!, then it may become impossible to save your project. (Extra
space is needed to convert from Snap! ’s internal representation to the form in which projects are exported or
saved.) If your program reads a lot of data from the outside world that will still be available when you use it
next, you might want to have values containing a lot of data removed from memory before saving the project.
To do this, right-click or control-click on the orange oval in the Variables palette, to see this menu:

You already know about the rename options, and help… displays a help screen about variables in general.
Here we’re interested in the check box next to transient. If you check it, this variable’s value will not be saved
when you save your project. Of course, you’ll have to ensure that when your project is loaded, it recreates the
needed value and sets the variable to it.

17

F. Debugging

Snap! provides several tools to help you debug a program. They center around the idea of pausing the running of
a script partway through, so that you can examine the values of variables.

 The pause button
The simplest way to pause a program is manually, by clicking the pause button in the top right corner of
the window. While the program is paused, you can run other scripts by clicking on them, show variables on
stage with the checkbox next to the variable in the Variables palette or with the show variable block, and do all
the other things you can generally do, including modifying the paused scripts by adding or removing blocks.
The button changes shape to and clicking it again resumes the paused scripts.

 Breakpoints: the pause all block
The pause button is great if your program seems to be in an infinite loop, but more often you’ll want to set a
breakpoint, a particular point in a script at which you want to pause. The block, near the bottom of
the Control palette, can be inserted in a script to pause when it is run. So, for example, if your program is
getting an error message in a particular block, you could use pause all just before that block to look at the values
of variables just before the error happens.

The pause all block turns bright cyan while paused. Also, during the pause, you can right-click on a running
script and the menu that appears will give you the option to show watchers for temporary variables of the script:

But what if the block with the error is run many times in a loop, and it only errors when a particular condition
is true—say, the value of some variable is negative, which shouldn’t ever happen. In the iteration library (see
page 26 for more about how to use libraries) is a breakpoint block that lets you set a conditional breakpoint, and
automatically display the relevant variables before pausing. Here’s a sample use of it:

(In this contrived example, variable zot comes from outside the script but is relevant to its behavior.) When you
continue (with the pause button), the temporary variable watchers are removed by this breakpoint block before
resuming the script. The breakpoint block isn’t magic; you could alternatively just put a pause all inside an if.1

1 The hide variable and show variable blocks can also be used to hide and show primitives in the palette. The pulldown menu doesn’t
include primitive blocks, but there’s a generally useful technique to give a block input values it wasn’t expecting using run or call:

In order to use a block as an input this way, you must explicitly put a ring around it, by right-clicking on it and choosing ringify. More
about rings in Chapter VI.

18

 Visible stepping
Sometimes you’re not exactly sure where the error is, or you don’t understand how the program got there. To
understand better, you’d like to watch the program as it runs, at human speed rather than at computer speed.
You can do this by clicking the visible stepping button (), before running a script or while the script is paused.
The button will light up () and a speed control slider will appear in the toolbar. When you start
or continue the script, its blocks and input slots will light up cyan one at a time:

In this simple example, the inputs to the blocks are constant values, but if an input were a more complicated
expression involving several reporter blocks, each of those would light up as they are called. Note that the input
to a block is evaluated before the block itself is called, so, for example, the 100 lights up before the move.

The speed of stepping is controlled by the slider. If you move the slider all the way to the left, the speed is
zero, the pause button turns into a step button , and the script takes a single step each time you push it.
The name for this is single stepping.

If several scripts that are visible in the scripting area are running at the same time, all of them are stepped in
parallel. However, consider the case of two repeat loops with different numbers of blocks. While not stepping,
each script goes through a complete cycle of its loop in each display cycle, despite the difference in the length of
a cycle. In order to ensure that the visible result of a program on the stage is the same when stepped as when
not stepped, the shorter script will wait at the bottom of its loop for the longer script to catch up.

When we talk about custom blocks in Chapter III, we’ll have more to say about visible stepping as it affects
those blocks.

G. Hyperblocks
A scalar is anything other than a list. The name comes from mathematics, where it means a magnitude without
direction, as opposed to a vector, which points toward somewhere. A scalar function is one whose domain and
range are scalars, so all the arithmetic operations are scalar functions, but so are the text ones such as letter and
the Boolean ones such as not.

The major new feature in Snap! 6.0 is that the domain and range of most scalar function blocks is extended to
multi-dimensional lists, with the underlying scalar function applied termwise:

. . .

19

(Lists are explained in detail in Section IV, page 34.) Mathematicians, note in the last example above that the
result is just a termwise application of the underlying function (7×3, 8×5, etc.), not matrix multiplication. For a
dyadic (two-input) function, if the lengths don’t agree, the length of the result (in each dimension) is the length of
the shorter input:

However, if the number of dimensions differs in the two inputs, then the number of dimensions in the result agrees
with the higher-dimensional input; the lower-dimensional one is used repeatedly in the missing dimension(s):

(7×6. 8×10, 1×20, 40×6, 20×10, etc.). In particular, a scalar input is paired with every scalar in the other input:

One important motivation for this feature is how it simplifies and speeds up media computation, as in this
shifting of the Alonzo costume to be bluer:

Each pixel of the result has ¾ of its original red and green, and three times its original blue (with its
transparency unchanged). By putting some sliders on the stage, you can play with colors dynamically:

There are a few naturally scalar functions that have already had specific meanings when applied to lists and
therefore are not hyperblocks: = and identical to (because they compare entire structures, not just scalars,
always reporting a single Boolean result), and and or (because they don’t evaluate their second input at all if the
first input determines the result), join (because it converts non-scalar (and other non-text) inputs to text string
form), and is a (type) (because it applies to its input as a whole). Blocks whose inputs are “natively” lists, such as

20

and , are never hyperblocks. The item of block has a special set of rules, designed to
preserve its pre-hyperblock meaning and also provide a useful behavior when given a list as its first (index) input:

1. If the index is a number, then item of reports the indicated top-level item of the list input; that item
may be a sublist, in which case the entire sublist is reported:

2. If the index is a list of numbers (no sublists), then item of reports a list of the indicated top-level items

(rows, in a matrix):

3. If the index is a one-item list whose item is a list of numbers, then item of reports a list of the indicated
lowest-level item slices (columns, in a matrix); this is often useful with databases in spreadsheet format:

4. If the index is a more-than-one-item list of lists of numbers, then item of reports an array of only those
scalars whose position in the list input matches the index input in all dimensions, with the lowest-level
dimension first and the top-level dimension last:

5. If a list of list of numbers includes an empty sublist, then all items are chosen along that dimension:

The idea of extending the domain and range of scalar functions to include arrays comes from the language
APL. (All the great programming languages are based on mathematical ideas. Our primary ancestors are
Smalltalk, based on models, and Lisp, based on lambda calculus. Prolog, a great language not (so far)
influencing Snap!, is based on logic. And APL, now joining our family, is based on linear algebra, which studies
vectors and matrices. Those other programming languages are based on the weaknesses of computer hardware.)
Hyperblocks are not the whole story about APL, which also has mixed-domain functions and higher order
functions. Some of what’s missing is provided in the APL library.

21

H. Etcetera
This manual doesn’t explain every block in detail. There are many more motion blocks, sound blocks, costume
and graphics effects blocks, and so on. You can learn what they all do by experimentation, and also by reading
the “help screens” that you can get by right-clicking or control-clicking a block and selecting “help…” from the
menu that appears. If you forget what palette (color) a block is, but you remember at least part of its name, type
control-F and enter the name in the text block that appears in the palette area.

Here are the primitive blocks that don’t exist in Scratch:

 reports a new costume consisting of everything that’s drawn on the stage by any sprite. Right-
clicking the block in the scripting area gives the option to change it to if vector logging is
enabled. See page 103.

Print characters in the given point size on the stage, at the sprite’s position and
in its direction. The sprite moves to the end of the text. (Right, that’s not

always what you want, but you can save the sprite’s position before using it, and sometimes you need to know
how big the text turned out to be, in turtle steps.) If the pen is down, the text will be underlined.

 See page 6. See page 17.

Reporter version of the if/else primitive command block. Only one of the two
branches is evaluated, depending on the value of the first input.

Looping block like repeat but with an index variable.

Extended mouse interaction events, sensing clicking, dragging,
hovering, etc. The “stopped” option triggers when all scripts
are stopped, as with the stop button; it is useful for robots
whose hardware interface must be told to turn off motors. A
when I am stopped script can run only for a limited time.

 Like broadcast, but to a single sprite or the stage.

 See page 75. reports the value of a graphics effect.

 Constant true or false value. See page 12.

runs only this script
until finished.

22

 Create a primitive using JavaScript.

The at block lets you examine the screen pixel directly behind the rotation center of
a sprite, the mouse, or an arbitrary (x,y) coordinate pair dropped onto the second
menu slot. The first four items of the left menu let you examine the color visible at
the position. The “sprites” option reports a list of all sprites, including this one, any
point of which overlaps this sprite’s rotation center (behind or in front).

 Checks the data type of a value.

Turn the text into a list, using the second input as the delimiter
between items. The default delimiter, indicated by the brown dot in
the input slot, is a single space character. “Letter” puts each character
of the text in its own list item. “Word” puts each word in an item.
(Words are separated by any number of consecutive space, tab,
carriage return, or newline characters.) “Line” is a newline character
(0xa); “tab” is a tab character (0x9); “cr” is a carriage return (0xd).
“Csv” and “json” split formatted text into lists of lists; see page 41.

Get or set selected
global flags.

23

The script input to for each can refer to an
item of the list either by leaving an input slot
empty, as in map, or with the item variable.

First class list blocks (see Section IV, page 34):

Numbers from will count
up or down.

First class procedure blocks (see Section VI, page 49):

First class continuation blocks (see Section X, page 77):

First class sprite, costume, and sound blocks (see Section VII, page 57):

24

These aren’t new blocks but they have a new feature:

These accept two-item (x,y) lists as input, and have extended menus:

“Center” means the center of the stage, the point at coordinates (0,0). “Direction” is in the point in direction
sense, the direction that would leave this sprite pointing toward another sprite, the mouse, or the center.

The stop block has two extra menu choices. Stop this block is used
inside the definition of a custom block to stop just this invocation of
this custom block and continue the script that called it. Stop all but
this script is good at the end of a game to stop all the game pieces
from moving around, but keep running this script to provide the user’s
final score. The last two menu choices add a tab at the bottom of the
block because the current script can continue after it.

The new “pen trails” option is true if the sprite is touching any drawn or
stamped ink on the stage. Also, touching will not detect hidden sprites,
but a hidden sprite can use it to detect visible sprites.

The video block has a snap option that takes a snapshot and reports it as a
costume.

The “neg” option is a monadic negation operator, equivalent to .
“lg” is log2.

Blocks only for the Stage:

 name changed to clarify
that it’s different from

25

II. Saving and Loading Projects and Media

After you’ve created a project, you’ll want to save it, so that you can have access to it the next time you use Snap!.
There are two ways to do that. You can save a project on your own computer, or you can save it at the Snap!
web site. The advantage of saving on the net is that you have access to your project even if you are using a
different computer, or a mobile device such as a tablet or smartphone. The advantage of saving on your
computer is that you have access to the saved project while on an airplane or otherwise not on the net. Also,
cloud projects are limited in size, but you can have all the costumes and sounds you like if you save locally. This
is why we have multiple ways to save.

In either case, if you choose “Save as…” from the File menu. You’ll see something like this:

(If you are not logged in to your Snap! cloud account, Computer will be the only usable option.) The text box at
the bottom right of the Save dialog allows you to enter project notes that are saved with the project.

A. Local Storage

Click on Computer and Snap!’s Save Project dialog window will be replaced by your operating system’s standard
save window. If your project has a name, that name will be the default filename if you don’t give a different
name. Another, equivalent way to save to disk is to choose “Export project” from the File menu.

B. Creating a Cloud Account
The other possibility is to save your project “in the cloud,” at the Snap! web site. In order to do this, you need an
account with us. Click on the Cloud button () in the Tool Bar. Choose the
“Signup…” option. This will show you a window that looks like the picture at the right.

You must choose a user name that will identify you on the web site, such as Jens or bh. If
you’re a Scratch user, you can use your Scratch name for Snap! too. If you’re a kid, don’t
pick a user name that includes your family name, but first names or initials are okay. Don’t
pick something you’d be embarrassed to have other users (or your parents) see! If the name
you want is already taken, you’ll have to choose another one. You must also supply a
password.

We ask for your month and year of birth; we use this information only to decide whether
to ask for your own email address or your parent’s email address. (If you’re a kid, you

26

shouldn’t sign up for anything on the net, not even Snap!, without your parent’s knowledge.) We do not store
your birthdate information on our server; it is used on your own computer only during this initial signup. We
do not ask for your exact birthdate, even for this one-time purpose, because that’s an important piece of
personally identifiable information.

When you click OK, an email will be sent to the email address you gave, asking you to verify (by clicking a
link) that it’s really your email address. We keep your email address on file so that, if you forget your password,
we can send you a password-reset link. We will also email you if your account is suspended for violation of the
Terms of Service. We do not use your address for any other purpose. You will never receive marketing emails
of any kind through this site, neither from us nor from third parties. If, nevertheless, you are worried about
providing this information, do a web search for “temporary email.”

Finally, you must read and agree to the Terms of Service. A quick summary: Don’t interfere with anyone
else’s use of the web site, and don’t put copyrighted media or personally identifiable information in projects that
you share with other users. And we’re not responsible if something goes wrong. (Not that we expect anything to
go wrong; since Snap!		runs in JavaScript in your browser, it is strongly isolated from the rest of your computer.
But the lawyers make us say this.)

C. Saving to the Cloud
Once you’ve created your account, you can log into it using the “Login…” option from the Cloud menu:

Use the user name and password that you set up earlier. If you check the “Stay signed in” box, then you will be
logged in automatically the next time you run Snap! from the same browser on the same computer. Check the
box if you’re using your own computer and you don’t share it with siblings. Don’t check the box if you’re using a
public computer at the library, at school, etc.

Once logged in, you can choose the “Cloud” option in the “Save Project” dialog shown on page 25. You
enter a project name, and optionally project notes; your project will be saved online and can be loaded from
anywhere with net access. The project notes will be visible to other users if you publish your project.

D. Loading Saved Projects

Once you’ve saved a project, you want to be able to load it back into Snap!. There are two ways to do this:

1. If you saved the project in your online Snap! account, choose the “Open…” option from the File menu.
Choose the “Cloud” button, then select your project from the list in the big text box and click OK, or choose
the “Computer” button to open an operating system open dialog. (A third button, “Examples,” lets you choose
from example projects that we provide. You can see what each of these projects is about by clicking on it and
reading its project notes.)

27

2. If you saved the project as an XML file on your computer, choose “Import…” from the File menu. This will
give you an ordinary browser file-open window, in which you can navigate to the file as you would in other
software. Alternatively, find the XML file on your desktop, and just drag it onto the Snap! window.

The second technique above also allows you to import media (costumes and sounds) into a project. Just
choose “Import…” and then select a picture or sound file instead of an XML file.

If your project on the cloud is missing, empty, or otherwise broken: In the “Open…” box, enter
your project name, then push the “Recover” button. Do this right away, because we save only the version before
the most recent, and the latest before today. So don’t keep saving bad versions; “Recover” right away.

Snap! can also import projects created in BYOB 3.0, or in Scratch 1.4 or (with some effort; see our web site) 2.0.
Almost all such projects work correctly in Snap!, apart from a small number of incompatible blocks. BYOB 3.1
projects that don’t use first class sprites work, too.

If you saved projects in an earlier version of Snap! using the “Browser” option, then a Browser button will be shown in the Open

dialog to allow you to retrieve those projects. But you can save them only with the Computer and Cloud options.

E. Private and Public Projects
By default, a project you save in the cloud is private; only you can see it. There are two ways to make a project
available to others. If you share a project, you can give your friends a project URL (in your browser’s URL bar
after you open the project) they can use to read it. If you publish a project, it will appear on the Snap! web site,
and the whole world can see it. In any case, nobody other than you can ever overwrite your project; if others
ask to save it, they get their own copy in their own account.

28

III. Building a Block

The first version of Snap! was called BYOB, for “Build Your Own Blocks.” This was the first and is still the
most important capability we added to Scratch. (The name was changed because a few teachers have no sense
of humor. ☹ You pick your battles.) Scratch 2.0 and later also has a partial custom block capability.

A. Simple Blocks
In every palette, at or near the bottom, is a button labeled “Make a block.” Also, floating near the top of the

palette is a plus sign.

Clicking either one will display a dialog window in which you choose the block’s name, shape, and
palette/color. You also decide whether the block will be available to all sprites, or only to the current sprite and
its children. Note: You can also enter the “Make a block” dialog by right-click/control-click on the script area
background and then choose “Make a block” from the menu that appears.

In this dialog box, you can choose the block's palette, shape, and name. With one exception, there is one color
per palette, e.g., all Motion blocks are blue. But the Variables palette includes the orange variable-related
blocks and the red list-related blocks. Both colors are available, along with an “Other” option that makes grey
blocks in the Variables palette for blocks that don’t fit any category.

There are three block shapes, following a convention that should be familiar to Scratch users: The jigsaw-
puzzle-piece shaped blocks are Commands, and don’t report a value. The oval blocks are Reporters, and the

29

hexagonal blocks are Predicates, which is the technical term for reporters that report Boolean (true or false)
values.

Suppose you want to make a block named “square” that draws a square. You would choose Motion,
Command, and type “square” into the name field. When you click OK, you enter the Block Editor. This
works just like making a script in the sprite’s scripting area, except that the “hat” block at the top, instead of
saying something like “when I am clicked,” has a picture of the block you’re building. This hat block is called the
prototype of your custom block.1 You drag blocks under the hat to program your custom block, then click OK:

Your block appears at the bottom of the Motion palette. Here’s the block and the result of using it:

1 This use of the word “prototype” is unrelated to the prototyping object oriented programming discussed later.

30

 Custom Blocks with Inputs

But suppose you want to be able to draw squares of different sizes. Control-click or right-click on the block,
choose “edit,” and the Block Editor will open. Notice the plus signs before and after the word square in the
prototype block. If you hover the mouse over one, it lights up:

Click on the plus on the right. You will then see the “input name” dialog:

Type in the name “size” and click OK. There are other options in this dialog; you can choose “title text” if
you want to add words to the block name, so it can have text after an input slot, like the “move () steps” block.
Or you can select a more extensive dialog with a lot of options about your input name. But we’ll leave that for
later. When you click OK, the new input appears in the block prototype:

You can now drag the orange variable down into the script, then click okay:

31

Your block now appears in the Motion palette with an input box:

You can draw any size square by entering the length of its side in the box and running the block as usual, by
double-clicking it or by putting it in a script.

 Editing Block Properties
What if you change your mind about a block’s color (palette) or shape (command, reporter, predicate)? If you

click in the hat block at the top that holds the prototype, but not in the prototype itself, you’ll see a window in
which you can change the color, and sometimes the shape, namely, if the block is not used in any script, whether
in a scripting area or in another custom block. (This includes a one-block script consisting of a copy of the new
block pulled out of the palette into the scripting area, seeing which made you realize it’s the wrong category.
Just delete that copy (drag it back to the palette) and then change the category.)

If you right-click/control-click the hat block, you get this menu:

“Script pic” exports a picture of the script. (Many of the illustrations in this manual were made that way.)
“Translations” opens a window in which you can specify how your block should be translated if the user chooses
a language other than the one in which you are programming. “Block variables” lets you create a variant of
script variables for this block: A script variable is created when a block is called, and it disappears when that call
finishes. What if you want a variable that’s local to this block, as a script variable is, but doesn’t disappear
between invocations? That’s a block variable. If the definition of a block includes a block variable, then every
time that (custom) block is dragged from the palette into a script, the block variable is created. Every time that
copy of the block is called, it uses the same block variable, which preserves its value between calls. Other copies
of the block have their own block variables. “Edit” does the same thing as regular clicking, as described in the
previous paragraph.

B. Recursion
Since the new custom block appears in its palette as soon as you start editing it, you can write recursive blocks

(blocks that call themselves) by dragging the block into its own definition:

(If you added inputs to the block since opening the editor, click Apply before finding the block in the palette.)

32

If recursion is new to you, here are a few brief hints: It’s crucial that the recursion have a base case, that is,
some small(est) case that the block can handle without using recursion. In this example, it’s the case depth=0,
for which the block does nothing at all, because of the enclosing if. Without a base case, the recursion would
run forever, calling itself over and over.

Don’t try to trace the exact sequence of steps that the computer follows in a recursive program. Instead,
imagine that inside the computer there are many small people, and if Theresa is drawing a tree of size 100,
depth 6, she hires Tom to make a tree of size 70, depth 5, and later hires Theo to make another tree of size 70,
depth 5. Tom in turn hires Tammy and Tallulah, and so on. Each little person has his or her own local
variables size and depth, each with different values.

You can also write recursive reporters, like this block to compute the factorial function:

Note the use of the report block. When a reporter block uses this block, the reporter finishes its work and
reports the value given; any further blocks in the script are not evaluated. Thus, the if else block in the script
above could have been just an if, with the second report block below it instead of inside it, and the result would
be the same, because when the first report is seen in the base case, that finishes the block invocation, and the
second report is ignored. There is also a stop this block block that has a similar purpose, ending the block
invocation early, for command blocks. (By contrast, the stop this script block stops not only the current block
invocation, but also the entire toplevel script that called it.)

Here’s a slightly more compact way to write the factorial function:

For more on recursion, see Thinking Recursively by Eric Roberts. (The original edition is ISBN
978-0471816522; a more recent Thinking Recursively in Java is ISBN 978-0471701460.)

C. Block Libraries
When you save a project (see Section II above), any custom blocks you’ve made are saved with it. But

sometimes you’d like to save a collection of blocks that you expect to be useful in more than one project.
Perhaps your blocks implement a particular data structure (a stack, or a dictionary, etc.), or they’re the
framework for building a multilevel game. Such a collection of blocks is called a block library.

33

To create a block library, choose “Export blocks…” from the File menu. You then see a window like this:

The window shows all of your global custom blocks. You can uncheck some of the checkboxes to select exactly
which blocks you want to include in your library. (You can right-click or control-click on the export window for
a menu that lets you check or uncheck all the boxes at once.) Then press OK. An XML file containing the
blocks will appear in your Downloads location.

To import a block library, use the “Import…” command in the File menu, or just drag the XML file into the
Snap! window.

Several block libraries are included with Snap!; for details about them, see page 89.

D. Custom blocks and Visible Stepping
Visible stepping normally treats a call to a custom block as a single step. If you want to see stepping inside a
custom block you must take these steps in order:

1. Turn on Visible Stepping.
2. Select “Edit” in the context menu(s) of the block(s) you want to examine.
3. Then start the program.

The Block Editor windows you open in step 2 do not have true editing capability. You can tell because there is
only one “OK” button at the bottom, not the usual three buttons. Use the button to close these windows when
done stepping.

34

IV. First class lists

A data type is first class in a programming language if data of that type can be
● the value of a variable
● an input to a procedure
● the value returned by a procedure
● a member of a data aggregate
● anonymous (not named)

In Scratch, numbers and text strings are first class. You can put a number in a variable, use one as the input to
a block, call a reporter that reports a number, or put a number into a list.

But Scratch’s lists are not first class. You create one using the “Make a list” button, which requires that you
give the list a name. You can’t put the list into a variable, into an input slot of a block, or into a list item—you
can’t have lists of lists. None of the Scratch reporters reports a list value. (You can use a reduction of the list
into a text string as input to other blocks, but this loses the list structure; the input is just a text string, not a data
aggregate.)

A fundamental design principle in Snap! is that all data should be first class. If it’s in the language, then
we should be able to use it fully and freely. We believe that this principle avoids the need for many special-case
tools, which can instead be written by Snap! users themselves.

Note that it’s a data type that’s first class, not an individual value. Don’t think, for example, that some lists are
first class, while others aren’t. In Snap!, lists are first class, period.

A. The list Block

At the heart of providing first class lists is the ability to make an “anonymous” list—to make a list without
simultaneously giving it a name. The list reporter block does that.

At the right end of the block are two left-and-right arrowheads. Clicking on these changes the number of inputs
to list, i.e., the number of elements in the list you are building. Shift-clicking changes by three at a time.

35

You can use this block as input to many other blocks:

Snap! does not have a “Make a list” button like the one in Scratch. If you want a global “named list,” make a
global variable and use the set block to put a list into the variable.

B. Lists of Lists
Lists can be inserted as elements in larger lists. We can easily create ad hoc structures as needed:

Notice that this list is presented in a different format from the “She Loves You” list above. A two-dimensional
list is called a table and is by default shown in table view. We’ll have more to say about this later.

We can also build any classic computer science data structure out of lists of lists, by defining constructors (blocks
to make an instance of the structure), selectors (blocks to pull out a piece of the structure), and mutators (blocks to
change the contents of the structure) as needed. Here we create binary trees with selectors that check for input
of the correct data type; only one selector is shown but the ones for left and right children are analogous.

36

C. Functional and Imperative List Programming
 There are two ways to create a list inside a program. Scratch users will be familiar with the imperative
programming style, which is based on a set of command blocks that modify a list:

As an example, here are two blocks that take a list of numbers as input, and report a new list containing only the
even numbers from the original list:1

 or

In this script, we first create a temporary variable, then put an empty list in it, then go through the items of the
input list using the add … to (result) block to modify the result list, adding one item at a time, and finally
report the result.

Functional programming is a different approach that is becoming important in “real world” programming
because of parallelism, i.e., the fact that different processors can be manipulating the same data at the same
time. This makes the use of mutation (changing the value associated with a variable, or the items of a list)
problematic because with parallelism it’s impossible to know the exact sequence of events, so the result of
mutation may not be what the programmer expected. Even without parallelism, though, functional
programming is sometimes a simpler and more effective technique, especially when dealing with recursively
defined data structures. It uses reporter blocks, not command blocks, to build up a list value:

1 Note to users of earlier versions: From the beginning, there has been a tension in our work between the desire to provide tools such
as for (used in this example) and the higher order functions introduced on the next page as primitives, to be used as easily as other
primitives, and the desire to show how readily such tools can be implemented in Snap! itself. This is one instance of our general
pedagogic understanding that learners should both use abstractions and be permitted to see beneath the abstraction barrier. Until
now, we have used the uneasy compromise of a library of tools written in Snap! and easily, but not easily enough, loaded into a project.
By not loading the tools, users or teachers could explore how to program them. In 5.0 we made them true primitives, partly because
that’s what some of us wanted all along and partly because of the increasing importance of fast performance as we explore “big data”
and media computation. But this is not the end of the story for us. In a later version, after we get the design firmed up, we intend to
introduce “hybrid” primitives, implemented in high speed Javascript but with an “Edit” option that will open, not the primitive
implementation, but the version written in Snap!. The trick is to ensure that this can be done without dramatically slowing users’
projects.

37

In a functional program, we often use recursion to construct a list, one item at a time. The in front of block
makes a list that has one item added to the front of an existing list, without changing the value of the original list. A
nonempty list is processed by dividing it into its first item (item 1 of) and all the rest of the items (all but first
of), which are handled through a recursive call:

Snap! uses two different internal representations of lists, one (dynamic array) for imperative programming and
the other (linked list) for functional programming. Each representation makes the corresponding built-in list
blocks (commands or reporters, respectively) most efficient. It’s possible to mix styles in the same program, but
if the same list is used both ways, the program will run more slowly because it converts from one representation to
the other repeatedly. (The item () of [] block doesn’t change the representation.) You don’t have to know the
details of the internal representations, but it’s worthwhile to use each list in a consistent way.

D. Higher Order List Operations and Rings
There’s an even easier way to select the even numbers from a list:

The keep block takes a Predicate expression as its first input, and a list as its second input. It reports a list
containing those elements of the input list for which the predicate returns true. Notice two things about the
predicate input: First, it has a grey ring around it. Second, the mod block has an empty input. Keep puts each
item of its input list, one at a time, into that empty input before evaluating the predicate. (The empty input is
supposed to remind you of the “box” notation for variables in elementary school: ☐+3=7.) The grey ring is
part of the keep block as it appears in the palette:

What the ring means is that this input is a block (a predicate block, in this case, because the interior of the ring is
a hexagon), rather than the value reported by that block. Here’s the difference:

Evaluating the = block without a ring reports true or false; evaluating the block with a ring reports the block
itself. This allows keep to evaluate the = predicate repeatedly, once for each list item. A block that takes
another block as input is called a higher order block (or higher order procedure, or higher order function).

38

	Snap! provides four higher order function blocks for operating on lists:

	

You’ve already seen keep. Find first is similar, but it reports just the first item that satisfies the predicate, not a
list of all the matching items. It’s equivalent to but faster because it
stops looking as soon as it finds a match. If there are no matching items, it returns (not the empty list
because a list of lists is more common than a list of Booleans, so the empty list could be a value matching a
predicate).

These examples use small lists, to fit the page, but the higher order blocks work for any size list.

An empty gray ring represents the identity function, which just reports its input. Leaving the ring in map empty is
“the most concise way to make a copy of a list.

The third higher order block, combine, computes a single result from all the items of a list, using a two-input
reporter as its second input. In practice, there are only a few blocks you’ll ever use with combine:

These blocks take the sum of the list items, take their product, string them into one word, combine them into a
sentence (with spaces between items), see if all items of a list of Booleans are true, or see if any of the items is true.

()
()

map

()
()

keep

()

combine

 Map takes a Reporter block and a list as inputs. It reports a new list in which each
item is the value reported by the Reporter block as applied to one item from the
input list. That’s a mouthful, but an example will make its meaning clear:

By the way, we’ve been using arithmetic examples, but the list items can be of any
type, and any reporter can be used. We’ll make the plurals of some words:

39

Why + but not −? It only makes sense to combine list items using an associative function: one that doesn’t care in
what order the items are combined (left to right or right to left). (2+3)+4 = 2+(3+4), but (2−3)−4 ≠ 2−(3−4).

The functions map, keep, and find first have an advanced mode with rarely-used features: If their function
input is given explicit input names (by clicking the arrowhead at the right end of the gray ring; see page 53),
then it will be called for each list item with three inputs: the item’s value (as usual), the item’s position in the input
list (its index), and the entire input list. No more than three input names can be used in this context.

E. Table View vs. List View
We mentioned earlier that there are two ways of representing lists visually. For one-dimensional lists (lists whose
items are not themselves lists) the visual differences are small:

For one-dimensional lists, it’s not really the appearance that’s important. What matters is that the list view allows
very versatile direct manipulation of the list through the picture: you can edit the individual items, you can
delete items by clicking the tiny buttons next to each item, and you can add new items at the end by clicking the
tiny plus sign in the lower left corner. (You can just barely see that the item deletion buttons have minus signs in
them.) Even if you have several watchers for the same list, all of them will be updated when you change
anything. On the other hand, this versatility comes at an efficiency cost; a list view watcher for a long list would
be way too slow. As a partial workaround, the list view can only contain 100 items at a time; the downward-
pointing arrowhead opens a menu in which you can choose which 100 to display.

40

By contrast, because it doesn’t allow direct editing, the table view watcher can hold thousands of items and still
scroll through them efficiently. The table view has flatter graphics for the items to remind you that they’re not
clickable to edit the values.

Right-clicking on a list watcher (in either form) gives you the option to switch to the other form. The right-
click menu also offers an open in dialog… option that opens an offstage table view watcher, because the watchers
can take up a lot of stage space that may make it hard to see what your program is actually doing. Once the
offstage dialog box is open, you can close the stage watcher. There’s an OK button on the offstage dialog to
close it if you want. Or you can right-click it to make another offstage watcher, which is useful if you want to
watch two parts of the list at once by having each watcher scrolled to a different place.

Table view is the default if the list has more than 100 items, or if the first item of the list is a list, in which case
it makes a very different-looking two-dimensional picture:

In this format, the column of red items has been replaced by a spreadsheet-looking display. For short, wide
lists, this display makes the content of the list very clear. A vertical display, with much of the space taken up by
the “machinery” at the bottom of each sublist, would make it hard to show all the text at once. (The pedagogic
cost is that the structure is no longer explicit; we can’t tell just by looking that this is a list of row-lists, rather than
a list of column-lists or a primitive two-dimensional array type. But you can choose list view to see the
structure.)

Beyond such simple cases, in which every item of the main list is a list of the same length, it’s important to keep
in mind that the design of table view has to satisfy two goals, not always in agreement: (1) a visually compelling
display of two-dimensional arrays, and (2) highly efficient display generation, so that Snap! can handle very large
lists, since “big data” is an important topic of study. To meet the first goal perfectly in the case of “ragged right”
arrays in which sublists can have different lengths, Snap! would scan the entire list to find the maximum width
before displaying anything, but that would violate the second goal.

Snap! uses the simplest possible compromise between the two goals: It examines only the first ten items of the
list to decide on the format. If none of those are a list, or they’re all lists of one item, and the overall length is no
more than 100, list view is used. If the any of first ten items is a list, then table view is used, and the number of
columns in the table is equal to the largest number of items among the first ten items (sublists) of the main list.

Table views open with standard values for the width and height of a cell, regardless of the actual data. You
can change these values by dragging the column letters or row numbers. Each column has its own width, but
changing the height of a row changes the height for all rows. (This distinction is based not on the semantics of
rows vs. columns, but on the fact that a constant row height makes scrolling through a large list more efficient.)
Shift-dragging a column label will change the width of all columns.

41

If you tried out the adjustments in the previous paragraph, you may have noticed that a column letter turns
into a number when you hover over it. Labeling rows and columns differently makes cell references such as
“cell 4B” unambiguous; you don’t have to have a convention about whether to say the row first or the column
first. (“Cell B4” is the same as “cell 4B.”) On the other hand, to extract a value from column B in your
program, you have to say item 2 of, not item B of. So it’s useful to be able to find out a column number by
hovering over its letter.

Any value that can appear in a program can be displayed in a table cell:

This display shows that the standard cell dimensions may not be enough for large value images. By expanding
the entire speech balloon and then the second column and all the rows, we can make the result fit:

But we make an exception for cases in which the value in a cell is a list (so that the entire table is three-
dimensional). Because lists are visually very big, we don’t try to fit the entire value in a cell:

Even if you expand the size of the cells, Snap! will not display sublists of sublists in table view. There are two
ways to see these inner sublists: You can switch to list view, or you can double-click on a list icon in the table to
open a dialog box showing just that sub-sub-list in table view.

One last detail: If the first item of a list is a list (so table view is used), but a later item isn’t a list, that later item
will be displayed on a red background, like an item of a single-column list:

So, in particular, if only the first item is a list, the display will look almost like a one-column display.

 Comma-Separated Values
Spreadsheet and database programs generally offer the option to export their data as CSV (comma-separated
values lists. You can import these files into Snap! and turn them into tables (lists of lists), and you can export
tables in CSV format. Snap! recognizes as CSV file by the extension .csv in its filename.

42

A CSV file has one line per table row, with the fields separated by commas within a row:
John,Lennon,rhythm guitar
Paul,McCartney,bass guitar
George,Harrison,lead guitar
Ringo,Starr,drums

Here’s what the corresponding table looks like:

Here’s how to read a spreadsheet into Snap!:

1. Make a variable with a watcher on stage:
2. Right-click on the watcher and choose the “import” option. (If the variable’s value is already a list, be sure to
click on the outside border of the watcher; there is a different menu if you click on the list itself.) Select the file
with your csv data.

3. There is no 3; that’s it! Snap! will notice that the name of the file you’re importing is something.csv and will
turn the text into a list of lists automatically.

Or, even easier, just drag and drop the file from your desktop onto the Snap! window, and Snap! will
automatically create a variable named after the file and import the data into it.

If you actually want to import the raw CSV data into a variable, either change the file extension to .txt before
loading it, or choose “raw data” instead of “import” in the watcher menu.

If you want to export a list, put a variable watcher containing the list on the stage, right-click its border, and
choose “Export.” (Don’t right-click an item instead of the border; that gives a different menu.)

 Multi-dimensional lists and JSON
CSV format is easy to read, but works only for one- or two-dimensional lists. If you have a list of lists of lists,
Snap! will instead export your list as a JSON (JavaScript Object Notation) file. I modified my list:

and then exported again, getting this file:

[["John","Lennon","rhythm guitar"],[["James","Paul"],"McCartney","bass
guitar"],["George","Harrison","lead guitar"],["Ringo","Starr","drums"]]

You can also import lists, including tables, from a .json file. (And you can import plain text from a .txt file.)
Drag and drop works for these formats also.

table view list view

43

V. Typed Inputs

A. Scratch’s Type Notation
Scratch block inputs come in two types: Text-or-number type and Number type. The former is indicated by a
rectangular box, the latter by a rounded box: . A third Scratch type, Boolean (true/false),
can be used in certain Control blocks with hexagonal slots.

The Snap! types are an expanded collection including Procedure, List, and Object types. Note that, with the
exception of Procedure types, all of the input type shapes are just reminders to the user of what the block
expects; they are not enforced by the language.

B. The Snap! Input Type Dialog
In the Block Editor input name dialog, there is a right-facing arrowhead after the “Input name” option:

Clicking that arrowhead opens the “long” input name dialog:

There are twelve input type shapes, plus three mutually exclusive categories, listed in addition to the basic
choice between title text and an input name. The default type, the one you get if you don’t choose anything

44

else, is “Any,” meaning that this input slot is meant to accept any value of any type. If the size input in your
block should be an oval-shaped numeric slot rather than a generic rectangle, click “Number.”

The arrangement of the input types is systematic. As the pictures on this and the next page show, each row of
types is a category, and parts of each column form a category. Understanding the arrangement will make it a
little easier to find the type you want.

The second row of input types contains the ones found in Scratch: Number, Any, and Boolean. (The reason
these are in the second row rather than the first will become clear when we look at the column arrangement.)
The first row contains the new Snap! types other than procedures: Object, Text, and List. The last two rows are
the types related to procedures, discussed more fully below.

The List type is used for first class lists, discussed in Section IV above. The red rectangles inside the input slot
are meant to resemble the appearance of lists as Snap! displays them on the stage: each element in a red
rectangle.

The Object type is for sprites, costumes, sounds, and similar data types.

The Text type is really just a variant form of the Any type, using a shape that suggests a text input.1

 Procedure Types

Although the procedure types are discussed more fully later, they are the key to understanding the column
arrangement in the input types. Like Scratch, Snap! has three block shapes: jigsaw-piece for command blocks,
oval for reporters, and hexagonal for predicates. (A predicate is a reporter that always reports true or false.) In
Snap! these blocks are first class data; an input to a block can be of Command type, Reporter type, or Predicate
type. Each of these types is directly below the type of value that that kind of block reports, except for
Commands, which don’t report a value at all. Thus, oval Reporters are related to the Any type, while
hexagonal Predicates are related to the Boolean (true or false) type.

1 In Scratch, every block that takes a Text-type input has a default value that makes the rectangles for text wider than tall. The blocks
that aren’t specifically about text either are of Number type or have no default value, so those rectangles are taller than wide. At first
some of us thought that Text was a separate type that always had a wide input slot; it turns out that this isn’t true in Scratch (delete the
default text and the rectangle narrows), but we thought it a good idea anyway, so we allow Text-shaped boxes even for empty input
slots. (This is why Text comes just above Any in the input type selection box.)

45

The unevaluated procedure types in the fourth row are explained in Section VI.E below. In one handwavy
sentence, they combine the meaning of the procedure types with the appearance of the reported value types two
rows higher. (Of course, this isn’t quite right for the C-shaped command input type, since commands don’t
report values. But you’ll see later that it’s true in spirit.)

 Pulldown inputs
Certain primitive blocks have pulldown inputs, either read-only, like the input to the touching block:

“(indicated by the input slot being the same (cyan, in this case) color as the body of the block), or writeable, like
the input to the point in direction block:

(indicated by the white input slot), which means that the user can enter an arbitrary input instead of using the
pulldown menu.

Custom blocks can also have such inputs. This is an experimental feature, and the user interface is likely to
change! To make a pulldown input, open the long form input dialog and control-click/right-click in the dark
grey area. You will see this menu:

46

Click the read-only checkbox if you want a read-only pulldown input. Then control-click/right-click again and
choose options… to get this dialog box:

Each line in the text box represents one menu item. If the line does not contain any of the characters =~{}
then the text is both what’s shown in the menu and the value of the input if that entry is chosen.

If the line contains an equal sign =, then the text to the left of the equal sign is shown in the menu, and the text
to the right is what appears in the input slot if that entry is chosen, and is also the value of the input as seen by
the procedure.

If the line consists of a tilde ~, then it represents a separator (a horizontal line) in the menu, used to divide long
menus into visible categories. There should be nothing else on the line. This separator is not choosable, so
there is no input value corresponding to it.

If the line ends with the two characters equal sign and open brace ={, then it represents a submenu. The text
before the equal sign is a name for the submenu, and will be displayed in the menu with an arrowhead ► at the
end of the line. This line is not clickable, but hovering the mouse over it displays the submenu next to the
original menu. A line containing a close brace } ends the submenu; nothing else should be on that line.
Submenus may be nested to arbitrary depth.

47

It is also possible to get the special menus used in some primitive blocks, by choosing from the menu submenu:
broadcast messages, sprites and stage, costumes, sounds, variables that can be set in this scope, the play note
piano keyboard, or the point in direction 360° dial. Finally, you can make the input box accept more than one
line of text (that is, text including a newline character) from the special submenu, either “multi-line” for regular
text or “code” for monospace-font computer code.

 Input variants
We now turn to the three mutually exclusive options that come below the type array.

The “Single input” option: In Scratch all inputs are in this category. There is one input slot in the block as it
appears in its palette. If a single input is of type Any, Number, Text, or Boolean, then you can specify a default
value that will be shown in that slot in the palette, like the “10” in the move (10) steps block. In the prototype
block at the top of the script in the Block editor, an input with name “size” and default value 10 looks like this:

The “Multiple inputs” option: The list block introduced earlier accepts any number of inputs to specify the
items of the new list. To allow this, Snap! introduces the arrowhead notation (!") that expands and contracts
the block, adding and removing input slots. Custom blocks made by the Snap! user have that capability, too. If
you choose the “Multiple inputs” button, then arrowheads will appear after the input slot in the block. More or
fewer slots (as few as zero) may be used. When the block runs, all of the values in all of the slots for this input
name are collected into a list, and the value of the input as seen inside the script is that list of values:

 "

The ellipsis (…) in the orange input slot name box in the prototype indicates a multiple or variadic input.

The third category, “Upvar - make internal variable visible to caller,” isn’t really an input at all, but rather a
sort of output from the block to its user. It appears as an orange variable oval in the block, rather than as an
input slot. Here’s an example; the uparrow (↑) in the prototype indicates this kind of internal variable name:

The variable i (in the block on the right above) can be dragged from the for block into the blocks used in its C-
shaped command slot. Also, by clicking on the orange i, the user can change the name of the variable as seen in
the calling script (although the name hasn’t changed inside the block’s definition). This kind of variable is called
an upvar for short, because it is passed upward from the custom block to the script that uses it.

Note about the example: for is a primitive block, but it doesn’t need to be. You’re about to see how it can be
written in Snap!. Just give it a different name to avoid confusion, such as my for as above.

➜

48

 Prototype Hints
We have noted three notations that can appear in an input slot in the prototype to remind you of what kind of

input this is. Here is the complete list of such notations:

= default value … multiple input ↑ upvar # number
λ procedure types ⫶ list ? Boolean object

 Title Text and Symbols
Some primitive blocks have symbols as part of the block name: Custom
blocks can use symbols too. In the Block Editor, click the plus sign in the prototype at the
point where you want to insert the symbol. Then click the title text picture below the text
box that’s expecting an input slot name. The dialog will then change to look like this:

The important part to notice is the arrowhead that has appeared at the right end of the text
box. Click it to see the menu at the left.

Choose one of the symbols. The result will look kind of ugly in the prototype:

but the actual block will have the symbol you want:

The available symbols are, pretty much, the ones that are used in Snap! icons.

But I’d like the arrow symbol bigger, and yellow, so I edit its name:

This says to make the symbol 1.5 times as big as the letters in the block text, using a color with red-green-blue
values of 255-255-150 (each between 0 and 255). Here’s the result:

The size and color controls can also be used with text: $foo-8-255-120-0 will make a huge orange “foo.”

Note the last entry in the symbol menu: “new line.” This can be used in a block with many inputs to control
where the text continues on another line, instead of letting Snap! choose the line break itself.

49

VI. Procedures as Data

A. Call and Run
In the for block example above, the input named action has been declared as type “Command (C-shaped)”;

that’s why the finished block is C-shaped. But how does the block actually tell Snap! to carry out the commands
inside the C-slot? Here is a simple version of the block script:

This is simplified because it assumes, without checking, that the ending value is greater than the starting value; if
not, the block should (depending on the designer’s purposes) either not run at all, or change the variable by −1
for each repetition instead of by 1.

The important part of this script is the run block near the end. This is a Snap! built-in command block that
takes a Command-type value (a script) as its input, and carries out its instructions. (In this example, the value of
the input is the script that the user puts in the C-slot of the my for block.) There is a similar call
reporter block for invoking a Reporter or Predicate block. The call and run blocks are at the heart of Snap!’s first
class procedure feature; they allow scripts and blocks to be used as data—in this example, as an input to a
block—and eventually carried out under control of the user’s program.

Here’s another example, this time using a Reporter-type input in a map block (see page 38):

Here we are calling the Reporter “multiply by 10” three times, once with each item of the given list as its input,
and collecting the results as a list. (The reported list will always be the same length as the input list.) Note that
the multiplication block has two inputs, but here we have specified a particular value for one of them (10), so the
call block knows to use the input value given to it just to fill the other (empty) input slot in the multiplication
block. In the my map definition, the input function is declared to be type Reporter, and data is of type List.

 Call/Run with inputs
The call block (like the run block) has a right arrowhead at the end; clicking on it adds the phrase “with inputs”

and then a slot into which an input can be inserted:

50

If the left arrowhead is used to remove the last input slot, the “with inputs” disappears also. The right
arrowhead can be clicked as many times as needed for the number of inputs required by the reporter block
being called.

If the number of inputs given to call (not counting the Reporter-type input that comes first) is the same as the
number of empty input slots, then the empty slots are filled from left to right with the given input values. If call
is given exactly one input, then every empty input slot of the called block is filled with the same value:

If the number of inputs provided is neither one nor the number of empty slots, then there is no automatic filling
of empty slots. (Instead you must use explicit parameters in the ring, as discussed in subsection C below.)

An even more important thing to notice about these examples is the ring around the Reporter-type input slots
in call and map above. This notation indicates that the block itself, not the number or other value that the block
would report when called, is the input. If you want to use a block itself in a non-Reporter-type (e.g., Any-type)
input slot, you can enclose it explicitly in a ring, found at the top of the Operators palette.

As a shortcut, if you right-click or control-click on a block (such as the + block in this example), one of the
choices in the menu that appears is “ringify” and/or “unringify.” The ring indicating a Reporter-type or
Predicate-type input slot is essentially the same idea for reporters as the C-shaped input slot with which you’re
already familiar; with a C-shaped slot, it’s the script you put in the slot that becomes the input to the C-shaped
block.

There are three ring shapes. All are oval on the outside, indicating that the ring reports a value, the block or
script inside it, but the inside shapes are command, reporter, or predicate, indicating what kind of block or script
is expected. Sometimes you want to put something more complicated than a single reporter inside a reporter
ring; if so, you can use a script, but the script must report a value, as in a custom reporter definition.

 Variables in Ring Slots

Note that the run block in the definition of the my for block (page 49) doesn’t have a ring around its input
variable action. When you drag a variable into a ringed input slot, you generally do want to use the value of the
variable, which will be the block or script you’re trying to run or call, rather than the orange variable reporter
itself. So Snap! automatically removes the ring in this case. If you ever do want to use the variable block itself,
rather than the value of the variable, as a Procedure-type input, you can drag the variable into the input slot,
then control-click or right-click it and choose “ringify” from the menu that appears. (Similarly, if you ever want
to call a function that will report a block to use as the input, such as item 1 of applied to a list of blocks, you can
choose “unringify” from the menu. Almost all the time, though, Snap! does what you mean without help.)

B. Writing Higher Order Procedures
A higher order procedure is one that takes another procedure as an input, or that reports a procedure. In this

document, the word “procedure” encompasses scripts, individual blocks, and nested reporters. (Unless specified
otherwise, “reporter” includes predicates. When the word is capitalized inside a sentence, it means specifically
oval-shaped blocks. So, “nested reporters” includes predicates, but “a Reporter-type input” doesn’t.)

Although an Any-type input slot (what you get if you use the small input-name dialog box) will accept a
procedure input, it doesn’t automatically ring the input as described above. So the declaration of Procedure-
type inputs makes the use of your custom higher order block much more convenient.

51

Why would you want a block to take a procedure as input? This is actually not an obscure thing to do; the
primitive conditional and looping blocks (the C-shaped ones in the Control palette) take a script as input. Users
just don’t usually think about it in those terms! We could write the repeat block as a custom block this way, if
Snap! didn’t already have one:

The lambda (λ) next to action in the prototype indicates that this is a C-shaped block, and that the script
enclosed by the C when the block is used is the input named action in the body of the script. The only way to
make sense of the variable action is to understand that its value is a script.

To declare an input to be Procedure-type, open the input name dialog as usual, and click on the arrowhead:

“Then, in the long dialog, choose the appropriate Procedure type. The third row of input types has a ring in the
shape of each block type (jigsaw for Commands, oval for Reporters, and hexagonal for Predicates). In practice,
though, in the case of Commands it’s more common to choose the C-shaped slot on the fourth row, because this
“container” for command scripts is familiar to Scratch users. Technically the C-shaped slot is an unevaluated
procedure type, something discussed in Section E below. The two Command-related input types (inline and C-
shaped) are connected by the fact that if a variable, an item (#) of [list] block, or a custom Reporter block is
dropped onto a C-shaped slot, it turns into an inline slot, as in the repeater block’s recursive call above. (Other
built-in Reporters can’t report scripts, so they aren’t accepted in a C-shaped slot.)

52

Why would you ever choose an inline Command slot rather than a C shape? Other than the run block
discussed below, the only case I can think of is something like the C/C++/Java for loop, which actually has three
command script inputs (and one predicate input), only one of which is the “featured” loop body:

Okay, now that we have procedures as inputs to our blocks, how do we use them? We use the blocks run (for
commands) and call (for reporters). The run block’s script input is an inline ring, not C-shaped, because we
anticipate that it will be rare to use a specific, literal script as the input. Instead, the input will generally be a
variable whose value is a script.

The run and call blocks have arrowheads at the end that can be used to open slots for inputs to the called
procedures. How does Snap! know where to use those inputs? If the called procedure (block or script) has empty
input slots, Snap! “does the right thing.” This has several possible meanings:

1. If the number of empty slots is exactly equal to the number of inputs provided, then Snap! fills the empty slots
from left to right:

2. If exactly one input is provided, Snap! will fill any number of empty slots with it:

3. Otherwise, Snap! won’t fill any slots, because the user’s intention is unclear.

If the user wants to override these rules, the solution is to use a ring with explicit input names that can be put
into the given block or script to indicate how inputs are to be used. This will be discussed more fully below.
 Recursive Calls to Multiple-Input Blocks

A relatively rare situation not yet considered here is the case of a recursive block that has a variable number of
inputs. Let’s say the user of your project calls your block with five inputs one time, and 87 inputs another time.
How do you write the recursive call to your block when you don’t know how many inputs to give it? The
answer is that you collect the inputs in a list (recall that, when you declare an input name to represent a variable
number of inputs, your block sees those inputs as a list of values in the first place), and then, in the recursive call,
you drop that input list onto the arrowheads that indicate a variable-input slot, rather than onto the input slot:

53

Note that the halo you see while dragging onto the arrowheads is red instead of white, and covers the input slot
as well as the arrowheads. And when you drop the expression onto the arrowheads, the words “input list:” are
added to the block text and the arrowheads disappear (in this invocation only) to remind you that the list
represents all of the multiple inputs, not just a single input. The items in the list are taken individually as inputs to
the script. Since numbers is a list of numbers, each individual item is a number, just what sizes wants. This
block will take any number of numbers as inputs, and will make the sprite grow and shrink accordingly:

The user of this block calls it with any number of individual numbers as inputs. But inside the definition of the
block, all of those numbers form a list that has a single input name, numbers. This recursive definition first
checks to make sure there are any inputs at all. If so, it processes the first input (item 1 of the list), then it wants
to make a recursive call with all but the first number. But sizes doesn’t take a list as input; it takes numbers as
inputs! So this would be wrong:

C. Formal Parameters
The rings around Procedure-type inputs have an arrowhead at the right. Clicking the arrowhead allows you

to give the inputs to a block or script explicit names, instead of using empty input slots as we’ve done until now.

The names #1, #2, etc. are provided by default, but you can change a name by clicking on its orange oval in
the input names list. Be careful not to drag the oval when clicking; that’s how you use the input inside the ring.
The names of the input variables are called the formal parameters of the encapsulated procedure.

Here’s a simple but contrived example using explicit names to control which input goes where inside the ring:

Here we just want to put one of the inputs into two different slots. If we left all three slots empty, Snap! would
not fill any of them, because the number of inputs provided (2) would not match the number of empty slots (3).

54

Here is a more realistic, much more advanced example:

This is the definition of a block that takes any number of lists, and reports the list of all possible combinations of
one item from each list. The important part for this discussion is that near the bottom there are two nested calls
to map, the higher order function that applies an input function to each item of an input list. In the inner block,
the function being mapped is in front of, and that block takes two inputs. The second, the empty List-type slot,
will get its value in each call from an item of the inner map’s list input. But there is no way for the outer map to
communicate values to empty slots of the in front of block. We must give an explicit name, newitem, to the
value that the outer map is giving to the inner one, then drag that variable into the in front of block.

By the way, once the called block provides names for its inputs, Snap! will not automatically fill empty slots, on
the theory that the user has taken control. In fact, that’s another reason you might want to name the inputs
explicitly: to stop Snap! from filling a slot that should really remain empty.

D. Procedures as Data
Here’s an example of a situation in which a procedure must be explicitly marked as data by pulling a ring from

the Operators palette and putting the procedure (block or script) inside it:

Here, we are making a list of procedures. But the list block accepts inputs of any type, so its input slots are not
ringed. We must say explicitly that we want the block itself as the input, rather than whatever value would result
from evaluating the block.

55

Besides the list block in the example above, other blocks into which you may want to put procedures are set
(to set the value of a variable to a procedure), say and think (to display a procedure to the user), and report (for
a reporter that reports a procedure):

E. Special Forms
The primitive if else block has two C-shaped command slots and chooses one or the other depending on a

Boolean test. Because Scratch doesn’t emphasize functional programming, it lacks a corresponding reporter
block to choose between two expressions. Snap!	 has one, but we could write our own:

Our block works for these simple examples, but if we try to use it in writing a recursive operator, it’ll fail:

The problem is that when any block is called, all of its inputs are computed (evaluated) before the block itself
runs. The block itself knows only the values of its inputs, not what expressions were used to compute them. In
particular, all of the inputs to our if then else block are evaluated first thing. That means that even in the base
case, factorial will try to call itself recursively, causing an infinite loop. We need our if then else block to be
able to select only one of the two alternatives to be evaluated.

We have a mechanism to allow that: declare the then and else inputs to be of type Reporter rather than type
Any. Then, when calling the block, those inputs will be enclosed in a ring so that the expressions themselves,
rather than their values, become the inputs:

In this version, the program works, with no infinite loop. But we’ve paid a heavy price: this reporter-if is no
longer as intuitively obvious as the Scratch command-if. You have to know about procedures as data, about
rings, and about a trick to get a constant value in a ringed slot. (The id block implements the identity function,

56

which reports its input. We need it because rings take only reporters as input, not numbers.) What we’d like is a
reporter-if that behaves like this one, delaying the evaluation of its inputs, but looks like our first version, which was
easy to use except that it didn’t work.

Such blocks are indeed possible. A block that seems to take a simple expression as input, but delays the
evaluation of that input by wrapping an “invisible ring” around it (and, if necessary, an id-like transformation of
constant data into constant functions) is called a special form. To turn our if block into a special form, we edit the
block’s prototype, declaring the inputs yes and no to be of type “Any (unevaluated)” instead of type Reporter.
The script for the block is still that of the second version, including the use of call to evaluate either yes or no
but not both. But the slots appear as white Any-type rectangles, not Reporter-type rings, and the factorial
block will look like our first attempt.

In a special form’s prototype, the unevaluated input slot(s) are indicated by a lambda (λ) next to the input
name, just as if they were declared as Procedure type. They are Procedure type, really; they’re just disguised to
the user of the block.

Special forms trade off implementor sophistication for user sophistication. That is, you have to understand all
about procedures as data to make sense of the special form implementation of my if then else. But any
experienced Scratch programmer can use my if then else without thinking at all about how it works internally.

 Special Forms in Scratch

Special forms are actually not a new invention in Snap!. Many of Scratch’s conditional and looping blocks are
really special forms. The hexagonal input slot in the if block is a straightforward Boolean value, because the
value can be computed once, before the if block makes its decision about whether or not to run its action input.
But the forever if, repeat until, and wait until blocks’ inputs can’t be Booleans; they have to be of type “Boolean
(unevaluated),” so that Scratch can evaluate them over and over again. Since Scratch doesn’t have custom
C-shaped blocks, it can afford to handwave away the distinction between evaluated and unevaluated Booleans,
but Snap! can’t. The pedagogic value of special forms is proven by the fact that no Scratcher ever notices that
there’s anything strange about the way in which the hexagonal inputs in the Control blocks are evaluated.

Also, the C-shaped slot familiar to Scratch users is an unevaluated procedure type; you don’t have to use a ring
to keep the commands in the C-slot from being run before the C-shaped block is run. Those commands
themselves, not the result of running them, are the input to the C-shaped Control block. (This is taken for
granted by Scratch users, especially because Scratchers don’t think of the contents of a C-slot as an input at all.)
This is why it makes sense that “C-shaped” is on the fourth row of types in the long form input dialog, with
other unevaluated types.

57

VII. Object Oriented Programming with Sprites

Object oriented programming is a style based around the abstraction object: a collection of data and methods
(procedures, which from our point of view are just more data) that you interact with by sending it a message (just
a name, maybe in the form of a text string, and perhaps additional inputs). The object responds to the message
by carrying out a method, which may or may not report a value back to the asker. Some people emphasize the
data hiding aspect of OOP (because each object has local variables that other objects can access only by sending
request messages to the owning object) while others emphasize the simulation aspect (in which each object
abstractly represents something in the world, and the interactions of objects in the program model real
interactions of real people or things). Data hiding is important for large multi-programmer industrial projects,
but for Snap! users it’s the simulation aspect that’s important. Our approach is therefore less restrictive than that
of some other OOP languages; we give objects easy access to each others’ data and methods.

Technically, object oriented programming rests on three legs: (1) Message passing: There is a notation by which
any object can send a message to another object. (2) Local state: Each object can remember the important past
history of the computation it has performed. (“Important” means that it need not remember every message it
has handled, but only the lasting effects of those messages that will affect later computation.) (3) Inheritance: It
would be impractical if each individual object had to contain methods, many of them identical to those of other
objects, for all of the messages it can accept. Instead, we need a way to say that this new object is just like that
old object except for a few differences, so that only those differences need be programmed explicitly.

A. First Class Sprites

Like Scratch, Snap! comes with things that are natural objects: its sprites. Each sprite can own local variables;
each sprite has its own scripts (methods). A Scratch animation is plainly a simulation of the interaction of
characters in a play. There are two ways in which Scratch sprites are less versatile than the objects of an OOP
language. First, Scratch message passing is weak in three respects: Messages can only be broadcast, not
addressed to an individual sprite; messages can’t take inputs; and methods can’t return values to their caller.
Second, and more basic, in the OOP paradigm objects are data; they can be the value of a variable, an element
of a list, and so on, but that’s not the case for Scratch sprites.

Snap! sprites are first class data. They can be created and deleted by a script, stored in a variable or list, and
sent messages individually. The children of a sprite can inherit sprite-local variables, methods (sprite-local
procedures), and other attributes (e.g., x position).

The fundamental means by which programs get access to sprites is the my reporter block. It has a dropdown-
menu input slot that, when clicked, gives access to all the sprites, plus the stage. reports a single
sprite, the one asking the question. reports a list of all sprites other than the one asking the
question. reports a list of all sprites that are near the one asking—the ones that are candidates for
having collided with this one, for example. The my block has many other options, discussed below. If you know
the name of a particular sprite, the object reporter will report the sprite itself.

An object or list of objects reported by my or object can be used as input to any block that accepts any input
type, such as set’s second input. If you say an object, the resulting speech balloon will contain a smaller image
of the object’s costume or (for the stage) background.

58

B. Permanent and Temporary Clones
The block is used to create and report an instance (a clone) of any sprite.
(There is also a command version, for historical reasons.) There are two different kinds of situations in which
clones are used. One is that you’ve made an example sprite and, when you start the project, you want a fairly
large number of essentially identical sprites that behave like the example. (Hereafter we’ll call the example
sprite the “parent” and the others the “children.”) Once the game or animation is over, you don’t need the
copies any more. (As we’ll see, “copies” is the wrong word because the parent and the children share a lot of
properties. That’s why we use the word “clones” to describe the children rather than “copies.”) These are
temporary clones. They are automatically deleted when the user presses either the green flag or the red stop sign.
In Scratch 2.0 and later, all clones are temporary.

The other kind of situation is what happens when you want specializations of sprites. For example, let’s say
you have a sprite named Dog. It has certain behaviors, such as running up to a person who comes near it. Now
you decide that the family in your story really likes dogs, so they adopt a lot of them. Some are cocker spaniels,
who wag their tails when they see you. Others are rottweilers, who growl at you when they see you. So you
make a clone of Dog, perhaps rename it Cocker Spaniel, and give it a new costume and a script for what to do
when someone gets near. You make another clone of Dog, perhaps rename it Rottweiler, and give it a new
costume, etc. Then you make three clones of Cocker Spaniel (so there are four altogether) and two clones of
Rottweiler. Maybe you hide the Dog sprite after all this, since it’s no breed in particular. Each dog has its own
position, special behaviors, and so on. You want to save all of these dogs in the project. These are permanent
clones. In BYOB 3.1, the predecessor to Snap!, all clones are permanent.

One advantage of temporary clones is that they don’t slow down Snap!	 even when you have a lot of them. (If
you’re curious, one reason is that permanent clones appear in the sprite corral, where their pictures have to be
updated to reflect the clone’s current costume, direction, and so on.) We have tried to anticipate your needs, as
follows: When you make a clone in a script, using the block, it is “born”
temporary. But when you make a clone from the user interface, for example by right-clicking on a sprite and
choosing “clone,” it is born permanent. The reason this makes sense is that you don’t create 100 kinds of dogs
automatically. Each kind has many different characteristics, programmed by hand. But when your project is
running, it might create 100 rottweilers, and those will be identical unless you change them in the program.

You can change a temporary sprite to permanent by right-clicking it and choosing “edit.” (It’s called “edit”
rather than, say, “permanent” because it also shifts the scripting area to reflect that sprite, as if you’d pressed its
button in the sprite corral.) You can change a permanent sprite to temporary by right-clicking it and choosing
“release.”

C. Sending Messages to Sprites
The messages that a sprite accepts are the blocks in its palettes, including both all-sprites and this-sprite-only
blocks. (For custom blocks, the corresponding methods are the scripts as seen in the Block Editor.

The way to send a message to a sprite (or the stage) is with the tell block (for command messages) or the ask
block (for reporter messages).

59

A small point to note in the examples above: most of the primitive blocks’ dropdown menus include an empty
entry at the top, which can be selected for use in higher order procedures like the for each and map examples.
Each of the sprites in my neighbors or my other sprites is used to fill the blank space in turn.

By the way, if you want a list of all the sprites, including this sprite, you can use either of these:

Tell and ask wait until the other sprite has carried out its method before this sprite’s script continues. (That
has to be the case for ask, since we want to do something with the value it reports.) So tell is analogous to
broadcast and wait. Sometimes the other sprite’s method may take a long time, or may even be a forever loop,
so you want the originating script to continue without waiting. For this purpose we have the launch block:

Launch is analogous to broadcast without the “wait.”

Snap!	 4.1, following BYOB 3.1, used an extension of the of block to provide access to other sprites’ methods.
That interface was designed back when we were trying hard to avoid adding new primitive blocks; it allowed us
to write ask and tell as tool procedures in Snap!	 itself. That technique still works, but is deprecated, because
nobody understood it, and now we have the more straightforward primitives.

 Polymorphism
Suppose you have a Dog sprite with two clones CockerSpaniel and PitBull. In the Dog sprite you define this
method (“For this sprite only” block):

Note the location (map-pin) symbol before the block’s name. The symbol is not part of the block title; it’s a
visual reminder that this is a sprite-local block. Sprite-local variables are similarly marked.

But you don’t define greet as friend or greet as enemy in Dog. Each kind of dog has a different behavior.
Here’s what a CockerSpaniel does:

 And here’s what a PitBull does:

60

 Greet is defined in the Dog sprite. If Fido is a particular cocker spaniel, and you ask Fido to greet someone,
Fido inherits the greet method from Dog, but Dog itself couldn’t actually run that method, because Dog doesn’t
have greet as friend or greet as enemy. And perhaps only individual dogs such as Fido have friend? methods.
Even though the greet method is defined in the Dog sprite, when it’s running it remembers what specific dog
sprite called it, so it knows which greet as friend to use. Dog’s greet block is called a polymorphic method,
because it means different things to different dogs, even though they all share the same script.

D. Local State in Sprites: Variables and Attributes
A sprite’s memory of its own past history takes two main forms. It has variables, created explicitly by the user
with the “Make a variable” button; it also has attributes, the qualities every sprite has automatically, such as
position, direction, and pen color. Each variable can be examined using its own orange oval block; there is one
set block to modify all variables. Attributes, however, have a less uniform programming interface in Scratch:

● A sprite’s direction can be examined with the direction block, and modified with the point in direction block. It can also be
modified less directly using the blocks turn, point towards, and if on edge, bounce.

● There is no way for a script to examine a sprite’s pen color, but there are blocks set pen color to <color>, set pen color to

<number>, and change pen color to modify it.

● A sprite’s name can be neither examined nor modified by scripts; it can be modified by typing a new name directly into the
box that displays the name, above the scripting area.

The block, if any, that examines a variable or attribute is called its getter; a block (there may be more than one, as
in the direction example above) that modifies a variable or attribute is called a setter.

In Snap! we allow virtually all attributes to be examined. But instead of
adding dozens of reporters, we use a more uniform interface for attributes:
The my block’s menu (in Sensing; see page 62) includes many of the
attributes of a sprite. It serves as a general getter for those attributes, e.g.,
my [anchor] to find the sprite, if any, to which this sprite is attached in a
nesting arrangement (see page 10). Similarly, the same set block used to
set variable values allows setting some sprite attributes.

E. Prototyping: Parents and Children
Most current OOP languages use a class/instance approach to creating objects. A class is a particular kind of object,
and an instance is an actual object of that type. For example, there might be a Dog class, and several instances
Fido, Spot, and Runt. The class typically specifies the methods shared by all dogs (RollOver, SitUpAndBeg,
Fetch, and so on), and the instances contain data such as species, color, and friendliness. Snap! uses a different
approach called prototyping, in which there is no distinction between classes and instances. Prototyping is better
suited to an experimental, tinkering style of work: You make a single dog sprite, with both methods (blocks) and
data (variables); you can actually watch it and interact with it on the stage; and when you like it, you use it as the
prototype from which to clone other dogs. If you later discover a bug in the behavior of dogs, you can edit a
method in the parent, and all of the children will automatically share the new version of the method block.
Experienced class/instance programmers may find prototyping strange at first, but it is actually a more
expressive system, because you can easily simulate a class/instance hierarchy by hiding the prototype sprite!

61

Prototyping is also a better fit with the Scratch design principle that everything in a project should be concrete
and visible on the stage; in class/instance OOP the programming process begins with an abstract, invisible
entity, the class, that must be designed before any concrete objects can be made.1

There are three ways to make a child sprite. If you control-click or right-click on a sprite in the “sprite corral”
at the bottom right corner of the window, you get a menu that includes “clone” as one of the choices. There is
an a new clone of block in the Control palette that creates and reports a child sprite. And sprites have a
“parent” attribute that can be set, like any attribute, thereby changing the parent of an existing sprite.

F. Inheritance by Delegation
A clone inherits properties of its parent. “Properties” include scripts, custom blocks, variables, named lists,
system attributes, costumes, and sounds. Each individual property can be shared between parent and child, or
not shared (with a separate one in the child). The getter block for a shared property, in the child’s palette, is
displayed in a lighter color; separate properties of the child are displayed in the traditional colors.

When a new clone is created, by default it shares only its methods, wardrobe, and jukebox with its parent. All
other properties are copied to the clone, but not shared. (One exception is that a new permanent clone is given a
random position. Another is that temporary clones share the scripts in their parent’s scripting area. A third is that
sprite-local variables that the parent creates after cloning are shared with its children.) If the value of a shared
property is changed in the parent, then the children see the new value. If the value of a shared property is
changed in the child, then the sharing link is broken, and a new private version is created in that child. (This is
the mechanism by which a child chooses not to share a property with its parent.) “Changed” in this context
means using the set or change block for a variable, editing a block in the Block Editor, editing a costume or
sound, or inserting, deleting, or reordering costumes or sounds. To change a property from unshared to shared,
the child uses the inherit command block. The pulldown menu in the block lists all the things this sprite can
inherit from its parent (which might be nothing, if this sprite has no parent) and is not already inheriting. But
that would prevent telling a child to inherit, so if the inherit block is inside a ring, its pulldown menu includes all
the things a child could inherit from this sprite. Right-clicking on the scripting area of a permanent clone gives
a menu option to share the entire collection of scripts from its parent, as a temporary clone does.

1 Some languages popular in the “real world” today, such as JavaScript, claim to use prototyping, but their object system is much more
complicated than what we are describing (we’re guessing it’s because they were designed by people too familiar with class/instance
programming); that has, in some circles, given prototyping a bad name. Our prototyping design comes from Object Logo, and before
that, from Henry Lieberman. [Lieberman, H., Using Prototypical Objects to Implement Shared Behavior in Object-Oriented
Systems, First Conference on Object-Oriented Programming Languages, Systems, and Applications [OOPSLA-86], ACM SigCHI,
Portland, OR, September, 1986. Also in Object-Oriented Computing, Gerald Peterson, Ed., IEEE Computer Society Press, 1987.]

62

The rules are full of details, but the basic idea is simple: Parents can change their children, but children can’t
directly change their parents. That’s what you’d expect from the word “inherit”: the influence just goes in one
direction. When a child changes some property, it’s declaring independence from its parent (with respect to that
one property). What if you really want the child to be able to make a change in the parent (and therefore in
itself and all its siblings)? Remember that in this system any object can tell any other object to do something:

When a sprite gets a message for which it doesn’t have a corresponding block, the message is delegated to that
sprite’s parent. When a sprite does have the corresponding block, then the message is not delegated. If the
script that implements a delegated message refers to my (self), it means the child to which the message was
originally sent, not the parent to which the message was delegated.
G. List of attributes
At the right is a picture of the dropdown menu of attributes in the my block. Several of
these are not real attributes, but things related to attributes:

● self: this sprite
● neighbors: a list of nearby sprites
● other sprites: a list of all sprites except myself
● stage: the stage, which is first-class, like a sprite
● clones: a list of my temporary clones
● other clones: a list of my temporary siblings
● parts: a list of sprites whose anchor attribute is this sprite
● children: a list of all my clones, temporary and permanent

The others are individual attributes:
● anchor: the sprite of which I am a (nested) part
● parent: the sprite of which I am a clone
● temporary?: am I a temporary clone?
● name: my name (same as parent’s name if I’m temporary)
● costumes: a list of the sprite’s costumes
● sounds: a list of the sprite’s sounds
● dangling?: True if I am a part and not in synchronous orbit
● draggable?: True if the user can move me with the mouse
● width, height, left, right, top, bottom: The width or height of my costume

as seen right now, or the left, etc., edge of my bounding box, taking rotation
into account.

● rotation x, rotation y: when reading with my, the same as x position,
y position. When set, changes the sprite’s rotation center without moving the
sprite, like dragging the rotation center in the paint editor.

● center x, center y: the x and y position of the center of my
 bounding box, rounded off–the geometric center of the costume.

63

H. First Class Costumes and Sounds
Costumes and sounds don’t have methods, as sprites do; you can’t ask them to do things. But they are first class:
you can make a list of them, put them in variables, use them as input to a procedure, and so on. My [costumes]
and my [sounds] report lists of them.

 Media Computation with Costumes
The components of a costume are its name, width, height, and pixels. The block gives
access to these components using its left menu. From its right menu you can choose the current costume, the
Turtle costume, or any costume in the sprite’s wardrobe. Since costumes are first class, you can also drop an
expression whose value is a costume on that second input slot. (Due to a misfeature, even though you can select
Turtle in the right menu, the block reports 0 for its width and height, and an empty string for the other
components.) The costume’s width and height are in its standard orientation, regardless of the sprite’s current
direction. (This is different from the sprite’s width and height, reported by the my block.)

But the really interesting part of a costume is its bitmap, a list of pixels. (A pixel, short for “picture element,”
represents one dot on your display.) Each pixel is itself a list of four items, the red, green, and blue components
of its color (in the range 0-255) and what is standardly called its “transparency” but should be called its opacity,
also in the range 0-255, in which 0 means that the pixel is invisible and 255 means that it’s fully opaque: you
can’t see anything from a rearward layer at that point on the stage. (Costume pixels typically have an opacity of
0 only for points inside the bounding box of the costume but not actually part of the costume; points in the
interior of a costume typically have an opacity of 255. Intermediate values appear mainly at the edge of a
costume, or at sharp boundaries between colors inside the costume, where they are used to reduce “jaggies”: the
stairstep-like shape of a diagonal line displayed on an array of discrete rectangular screen coordinates. Note that
the opacity of a sprite pixel is determined by combining the costume’s opacity with the sprite’s ghost effect. (The
latter really is a measure of transparency: 0 means opaque and 100 means invisible.)

The bitmap is a one-dimensional list of pixels, not an array of height rows of width pixels each. That’s why the
pixel list has to be combined with the dimensions to produce a costume. This choice partly reflects the way
bitmaps are stored in the computer’s hardware and operating system, but also makes it easy to produce
transformations of a costume with map:

In this simplest possible transformation, the red value of all the pixels have been changed to a constant 150.
Colors that were red in the original (such as the logo printed on the t-shirt) become closer to black (the other
color components being near zero); the blue jeans become purple (blue plus red); perhaps counterintuitively, the
white t-shirt, which has the maximum value for all three color components, loses some of its red and becomes
cyan, the color opposite red on the color wheel. In reading the code, note that the function that is the first input
to map is applied to a single pixel, whose first item is its red component. Also note that this process works only
on bitmap costumes; if you call pixels of on a vector costume (one with “svg” in the corner of its picture), it will
be converted to pixels first.

64

One important point to see here is that a bitmap (list of pixels) is not, by itself, a costume. The new costume
block creates a costume by combining a bitmap, a width, and a height. But, as in the example above, switch to
costume will accept a bitmap as input and will automatically use the width and height of the current costume.
Note that there’s no name input; costumes computed in this way are all named costume. Note also that the use
of switch to costume does not add the computed costume to the sprite’s wardrobe; to do that, say

Here’s a more interesting example of color manipulation:

Each color value is constrained to be 0, 80, 160, or 240. This gives the picture a more cartoonish look.
Alternatively, you can do the computation taking advantage of hyperblocks:

Here’s one way to exchange red and green values:

It’s the list that determines the rearrangement of colors: green➔red, red➔green, and the other
two unchanged. That list is inside another list because otherwise it would be selecting rows of the pixel array,
and we want to select columns. We use pixels of costume current rather than costume apple because the latter
is always a red apple, so this little program would get stuck turning it green, instead of alternating colors.

The stretch block takes a costume as its first input, either by selecting a costume from the menu or by
dropping a costume-valued expression such as onto it. The other two inputs are
percents of the original width and height, as advertised, so you can make fun house mirror versions of costumes:

The resulting costumes can be used with switch to costume and so on.

Finally, you can use pictures from your computer’s camera in your projects using these blocks:

Using the video on block turns on the camera and displays what it sees on the stage, regardless of the inputs
given. The camera remains on until you click the red stop button, your program runs the stop all block, or you
turn it off explicitly with the block. The video image on the stage is partly ghosted, to an
extent determined by the set video transparency block, whose input really is transparency and not opacity.

65

(Small numbers make the video more visible.) By default, the video image is mirrored, like the selfie camera on
your cell phone: When you raise your left hand, your image raises its right hand. You can control this
mirroring with the block.

The video snap on block then takes a still picture from the camera, and trims it to fit on the selected sprite.
(Video snap on stage means to use the entire stage-sized rectangle.) For example, here’s a camera snapshot
trimmed to fit Alonzo:

The “Video Capture” project in the Examples collection repeatedly takes such trimmed snapshots and has the
Alonzo sprite use the current snapshot as its costume, so it looks like this:

(The picture above was actually taken with transparency set to 50, to make the background more visible for
printing.) Because the sprite is always still in the place where the snapshot was taken, its costume exactly fits in
with the rest of the full-stage video. If you were to add a move 100 steps block after the switch to costume,
you’d see something like this:

This time, the sprite’s costume was captured at one position, and then the sprite is shown at a different position.
(You probably wouldn’t want to do this, but perhaps it’s helpful for explanatory purposes.)

66

What you would want to do is push the sprite around the stage:

(Really these should be Jens’s picture; it’s his project. But he’s vacationing. ☺) Video motion compares two
snapshots a moment apart, looking only at the part within the given trim (here myself, meaning the current
sprite, not the person looking into the camera), to detect a difference between them. It reports a number,
measuring the number of pixels through which some part of the picture has moved. Video direction also
compares two snapshots to detect motion, but what it reports is the direction (in the point in direction sense) of
the motion. So the script above moves the sprite in the direction in which it’s being pushed, but only if a
significant amount of motion is found; otherwise the sprite would jiggle around too much. And yes, you can run
the second script without the first to push a balloon around the stage.

Media Computation with Sounds
The starting point for computation with sound is the microphone block. It starts by recording a
brief burst of sound from your microphone. (How brief? On my computer, 0.010667 seconds,
but you’ll see shortly how to find out or control the sample size on your computer.)

Just as the pixel is the smallest piece of a picture, the sample is the smallest piece of a sound. It
says here: that on my computer, 48,000 samples are recorded per
second, so each sample is 1/48,000 of a second. The value of a sample is between -1 and 1, and
represents the sound pressure on the microphone—how hard the air is pushing—at that instant.
(You can skip the next page or so if you know about Fourier analysis.) Here’s a picture of 400 samples:

In this graph, the x axis represents the time at which each sample was measured; the y axis measures the value of
the sample at that time. The first obvious thing about this graph is that it has a lot of ups and downs. The most
basic up-and-down function is the sine wave:

67

Every periodic function (more or less, any sample that sounds like music rather than sounding like static) is
composed of a sum of sine waves of different frequencies.

Look back at the graph of our sampled sound. There is a green dot every seven samples. There’s nothing
magic about the number seven; I tried different values until I found one that looked right. What “right” means
is that, for the first few dots at least, they coincide almost perfectly with the high points and low points of the
graph. Near the middle (horizontally) of the graph, the green dots don’t seem anywhere near the high and low
points, but if you find the very lowest point of the graph, about 2/3 of the way along, the dots start lining up
almost perfectly again.

The red graph above shows two cycles of a sine wave. One cycle goes up, then down, then up again. The
amount of time taken for one cycle is the period of the sine function. If the green dots match both ups and downs
in the captured sound, then two dots—14 samples, or 14/48000 of a second—represent the period. The first
cycle and a half of the graph looks like it could be a pure sine wave, but after that, the tops and bottoms don’t
line up, and there are peculiar little jiggles, such as the one before the fifth green dot. This happens because sine
waves of different periods are added together.

It turns out to be more useful to measure the reciprocal of the period, in our case, 48000/14 or about 3429 cycles
per second. Another name for “cycles per second” is “Hertz,” abbreviated Hz, so our sound has a component at
3249 Hz. As a musical note, that’s about an A (a little flat), four octaves above middle C. (Don’t worry too
much about the note being a little off; remember that the 14-sample period was just eyeballed and is unlikely to
be exactly right.)

Four octaves above middle C is really high! That would be a shrill-sounding note. But remember that a
complex waveform is the sum of multiple sine waves at different frequency. Here’s a different up-and-down
regularity:

It’s not obvious, but in the left part of the graph, the signal is more above the x axis than below it. Toward the
right, it seems to be more below than above the axis. At the very right it looks like it might be climbing again.

The period of the red sine wave is 340 samples, or 340/48000 second. That’s a frequency of about 141 Hz,
about D below middle C. Again, this is measuring by eyeball, but likely to be close to the right frequency.

All this eyeballing doesn’t seem very scientific. Can’t we just get the computer to find all the relevant
frequencies? Yes, we can, using a mathematical technique called Fourier analysis. (Jean-Baptiste Joseph Fourier,
1768–1830, made many contributions to mathematics and physics, but is best known for working out the nature
of periodic functions as a sum of sine waves.) Luckily we don’t have to do the math; the microphone block will
do it for us, if we ask for microphone spectrum:

68

These are frequency spectra from (samples of) three different songs. The most obvious thing about these graphs
is that their overall slope is downward; the loudest frequency is the lowest frequency. That’s typical of music.

The next thing to notice is that there’s a regularity in the spacing of spikes in the graph. This is partly just an
artifact; the frequency (horizontal) axis isn’t continuous. There are a finite number of “buckets” (default: 512),
and all the frequencies within a bucket contribute to the amplitude (vertical axis) of that bucket. The spectrum
is a list of that many amplitudes. But the patterns of alternating rising and falling values are real; the frequencies
that are multiples of the main note being sampled will have higher amplitude than other frequencies.

Samples and spectrum are the two most detailed representations of a sound. But the microphone block has
other, simpler options also:

volume the instantaneous volume when the block is called
note the MIDI note number (as in play note) of the main note heard
frequency the frequency in Hz of the main note heard
sample rate the number of samples being collected per second
resolution the size of the array in which data are collected (typically 512, must be a power of 2)

The block for sounds that corresponds to new picture for pictures is
Its first input is a list of samples, and its second input specifies how many samples occupy one second.

69

VIII. OOP with Procedures

The idea of object oriented programming is often taught in a way that makes it seem as if a special object
oriented programming language is necessary. In fact, any language with first class procedures and lexical scope
allows objects to be implemented explicitly; this is a useful exercise to help demystify objects.

The central idea of this implementation is that an object is represented as a dispatch procedure that takes a
message as input and reports the corresponding method. In this section we start with a stripped-down example
to show how local state works, and build up to full implementations of class/instance and prototyping OOP.

A. Local State with Script Variables

This script implements an object class, a type of object, namely the counter class. In this first simplified version
there is only one method, so no explicit message passing is necessary. When the make a counter block is called,
it reports a procedure, the ringed script inside its body. That procedure implements a specific counter object,
an instance of the counter class. When invoked, a counter instance increases and reports its count variable. Each
counter has its own local count:

This example will repay careful study, because it isn’t obvious why each instance has a separate count. From

the point of view of the make a counter procedure, each invocation causes a new count variable to be created.
Usually such script variables are temporary, going out of existence when the script ends. But this one is special,
because make a counter returns another script that makes reference to the count variable, so it remains active.

70

(The script variables block makes variables local to a script. It can be used in a sprite’s script area or in the
Block Editor. Script variables can be “exported” by being used in a reported procedure, as here.)

In this approach to OOP, we are representing both classes and instances as procedures. The make a counter
block represents the class, while each instance is represented by a nameless script created each time make a

counter is called. The script variables created inside the make a counter block but outside the ring are instance
variables, belonging to a particular counter.

B. Messages and Dispatch Procedures
In the simplified class above, there is only one method, and so there are no messages; you just call the instance

to carry out its one method. Here is a more refined version that uses message passing:

Again, the make a counter block represents the counter class, and again the script creates a local variable count
each time it is invoked. The large outer ring represents an instance. It is a dispatch procedure: it takes a message
(just a text word) as input, and it reports a method. The two smaller rings are the methods. The top one is the
next method; the bottom one is the reset method. The latter requires an input, named value.

In the earlier version, calling the instance did the entire job. In this version, calling the instance gives access to
a method, which must then be called to finish the job. We can provide a block to do both procedure calls in one:

The ask block has two required inputs: an object and a message. It also accepts optional additional inputs,
which Snap! puts in a list; that list is named args inside the block. Ask has two nested call blocks. The inner one
calls the object, i.e., the dispatch procedure. The dispatch procedure always takes exactly one input, namely the
message. It reports a method, which may take any number of inputs; note that this is the situation in which we
drop a list of values onto the arrowheads of a multiple input (in the outer call block). Note also that this is one
of the rare cases in which we must unringify the inner call block, whose value when called gives the method.

71

C. Inheritance via Delegation
So, our objects now have local state variables and message passing. What about inheritance? We can provide

that capability using the technique of delegation. Each instance of the child class contains an instance of the
parent class, and simply passes on the messages it doesn’t want to specialize:

This script implements the buzzer class, which is a child of counter. Instead of having a count (a number) as a
local state variable, each buzzer has a counter (an object) as a local state variable. The class specializes the next
method, reporting what the counter reports unless that result is divisible by 7, in which case it reports “buzz.”
(Yeah, it should also check for a digit 7 in the number, but this code is complicated enough already.) If the
message is anything other than next, though, such as reset, then the buzzer simply invokes its counter’s
dispatch procedure. So the counter handles any message that the buzzer doesn’t handle explicitly. (Note that in
the non-next case we call the counter, not ask it something, because we want to report a method, not the value
that the message reports.) So, if we ask a buzzer to reset to a value divisible by 7, it will end up reporting that
number, not “buzz.”

72

D. An Implementation of Prototyping OOP
In the class/instance system above, it is necessary to design the complete behavior of a class before you can

make any instances of the class. This is okay for top-down design, but not great for experimentation. Here we
sketch the implementation of a prototyping OOP system: You make an object, tinker with it, make clones of it,
and keep tinkering. Any changes you make in the parent are inherited by its children. In effect, that first object
is both the class and an instance of the class. In the implementation below, children share properties (methods
and local variables) of their parent unless and until a child changes a property, at which point that child gets a
private copy. (If a child wants to change something for its entire family, it must ask the parent to do it.)

Because we want to be able to create and delete properties dynamically, we won’t use Snap! variables to hold
an object’s variables or methods. Instead, each object has two tables, called methods and data, each of which is
an association list: a list of two-item lists, in which each of the latter contains a key and a corresponding value. We
provide a lookup procedure to locate the key-value pair corresponding to a given key in a given table.

There are also commands to insert and delete entries:

As in the class/instance version, an object is represented as a dispatch procedure that takes a message as its
input and reports the corresponding method. When an object gets a message, it will first look for that keyword
in its methods table. If it’s found, the corresponding value is the method we want. If not, the object looks in its
data table. If a value is found there, what the object returns is not that value, but rather a reporter method that,
when called, will report the value. This means that what an object returns is always a method.

73

If the object has neither a method nor a datum with the desired name, but it does have a parent, then the
parent (that is, the parent’s dispatch procedure) is invoked with the message as its input. Eventually, either a
match is found, or an object with no parent is found; the latter case is an error, meaning that the user has sent
the object a message not in its repertoire.
Messages can take any number of inputs, as in the class/instance system, but in the prototyping version, every

method automatically gets the object to which the message was originally sent as an extra first input. We must
do this so that if a method is found in the parent (or grandparent, etc.) of the original recipient, and that method
refers to a variable or method, it will use the child’s variable or method if the child has its own version.

The clone of block below takes an object as its input and makes a child object. It should be considered as an
internal part of the implementation; the preferred way to make a child of an object is to send that object a clone
message.

74

Every object is created with predefined methods for set, method, delete-var, delete-method, and clone. It has
one predefined variable, parent. Objects without a parent are created by calling new object:

As before, we provide procedures to call an object’s dispatch procedure and then call the method. But in this
version, we provide the desired object as the first method input. We provide one procedure for Command
methods and one for Reporter methods:

(Remember that the “Input list:” variant of the run and call blocks is made by dragging the input expression
over the arrowheads rather than over the input slot.)

The script below demonstrates how this prototyping system can be used to make counters. We start with one
prototype counter, called counter1. We count this counter up a few times, then create a child counter2 and
give it its own count variable, but not its own total variable. The next method always sets counter1’s total
variable, which therefore keeps count of the total number of times that any counter is incremented. Running
this script should [say] and (think) the following lists:

[1 1] [2 2] [3 3] [4 4] (1 5) (2 6) (3 7) [5 8] [6 9] [7 10] [8 11]

75

IX. The Outside World

The facilities discussed so far are fine for projects that take place entirely on your computer’s screen. But you
may want to write programs that interact with physical devices (sensors or robots) or with the World Wide Web.
For these purposes Snap! provides a single primitive block:

This might not seem like enough, but in fact it can be used to build the desired capabilities.

A. The World Wide Web
The input to the url block is the URL (Uniform Resource Locator) of a web page. The block reports the body
of the Web server’s response (minus HTTP header), without interpretation. This means that in most cases the
response is a description of the page in HTML (HyperText Markup Language) notation. Often, especially for
commercial web sites, the actual information you’re trying to find on the page is actually at another URL
included in the reported HTML. The Web page is typically a very long text string, and so the primitive split
block is useful to get the text in a manageable form, namely, as a list of lines:

The second input to split is the character to be used to separate the text string into a list of lines, or one of a set
of common cases (such as line, which separates on carriage return and/or newline characters.

This might be a good place for a reminder that list-view watchers scroll through only 100 items at a time. The
downarrow near the bottom right corner of the speech balloon in the picture presents a menu of hundred-item
ranges. (This may seem unnecessary, since the scroll bar should allow for any number of items, but doing it this
way makes Snap! much faster.) In table view, the entire list is included.

76

If you include a protocol name in the input to the url block (such as http:// or https://), that protocol will be
used. If not, the block first tries HTTPS and then, if that fails, HTTP.

A security restriction in JavaScript limits the ability of one web site to initiate communication with another site.
There is an official workaround for this limitation called the CORS protocol (Cross-Origin Resource Sharing),
but the target site has to allow snap.berkeley.edu explicitly, and of course most don’t. To get around this
problem, you can use third-party sites (“cors proxies”) that are not limited by JavaScript and that forward your
requests.

B. Hardware Devices

Another JavaScript security restriction prevents Snap! from having direct access to devices connected to your
computer, such as sensors and robots. (Mobile devices such as smartphones may also have useful devices built
in, such as accelerometers and GPS receivers.) The url block is also used to interface Snap! with these external
capabilities.

The idea is that you run a separate program that both interfaces with the device and provides a local HTTP
server that Snap! can use to make requests to the device. Unlike Snap! itself, these programs have access to anything on
your computer, so you have to trust the author of the software! Our web site, snap.berkeley.edu, provides links to
drivers for several devices, including, at this writing, the Lego NXT, Finch, Hummingbird, and Parallax S2
robots; the Nintendo Wiimote and Leap Motion sensors, the Arduino microcomputer, and Super-Awesome
Sylvia’s Water Color Bot. The same server technique can be used for access to third party software libraries,
such as the speech synthesis package linked on our web site.

Most of these packages require some expertise to install; the links are to source code repositories. This
situation will improve with time.

C. Date and Time
The current block in the Sensing palette can be used to find out the current date or time. Each call to this block
reports one component of the date or time, so you will probably combine several calls, like this:

for Americans, or like this:

for Europeans.

77

X. Continuations

Blocks are usually used within a script. The continuation of a block within a particular script is the part of the
computation that remains to be completed after the block does its job. A continuation can be represented as a
ringed script. Continuations are always part of the interpretation of any program in any language, but usually
these continuations are implicit in the data structures of the language interpreter or compiler. Making
continuations explicit is an advanced but versatile programming technique that allows users to create control
structures such as nonlocal exit and multithreading.

In the simplest case, the continuation of a command block may just be the part of the script after the block.
For example, in the script

the continuation of the move 100 steps block is

But some situations are more complicated. For example, what is the continuation of move 100 steps in the
following script?

That’s a trick question; the move block is run four times, and it has a different continuation each time. The first
time, its continuation is

Note that there is no repeat 3 block in the actual script, but the continuation has to represent the fact that there
are three more times through the loop to go. The fourth time, the continuation is just

What counts is not what’s physically below the block in the script, but what computational work remains to be
done.

(This is a situation in which visible code may be a little misleading. We have to put a repeat 3 block in the picture of the
continuation, but the actual continuation is made from the evaluator’s internal bookkeeping of where it’s up to in a script. So it’s really
the original script plus some extra information. But the pictures here do correctly represent what work the process still has left to do.)

78

When a block is used inside a custom block, its continuation may include parts of more than one script. For
example, if we make a custom square block

and then use that block in a script:

then the continuation of the first use of move 100 steps is

in which part comes from inside the square block and part comes from the call to square. Nevertheless,
ordinarily when we display a continuation we show only the part within the current script.

The continuation of a command block, as we’ve seen, is a simple script with no input slots. But the
continuation of a reporter block has to do something with the value reported by the block, so it takes that value as
input. For example, in the script

the continuation of the 3+4 block is

Of course the name result in that picture is arbitrary; any name could be used, or no name at all by using the
empty-slot notation for input substitution.

A. Continuation Passing Style

Like all programming languages, Snap! evaluates compositions of nested reporters from the inside out. For
example, in the expression Snap! first adds 4 and 5, then multiplies 3 by that sum. This often
means that the order in which the operations are done is backwards from the order in which they appear in the
expression: When reading the above expression you say “times” before you say “plus.” In English, instead of
saying “three times four plus five,” which actually makes the order of operations ambiguous, you could say,
“take the sum of four and five, and then take the product of three and that sum.” This sounds more awkward,
but it has the virtue of putting the operations in the order in which they’re actually performed.

79

That may seem like overkill in a simple expression, but suppose you’re trying to convey the expression

to a friend over the phone. If you say “factorial of three times factorial of two plus two plus five” you might
mean any of these:

Wouldn’t it be better to say, “Add two and two, take the factorial of that, add five to that, multiply three by that,
and take the factorial of the result”? We can do a similar reordering of an expression if we first define versions
of all the reporters that take their continuation as an explicit input. In the following picture, notice that the new
blocks are commands, not reporters.

We can check that these blocks give the results we want:

80

The original expression can now be represented as

If you read this top to bottom, don’t you get “Add two and two, take the factorial of that, add five to that,
multiply three by that, and take the factorial of the result”? Just what we wanted! This way of working, in
which every block is a command that takes a continuation as one of its inputs, is called continuation-passing style
(CPS). Okay, it looks horrible, but it has subtle virtues. One of them is that each script is just one block long
(with the rest of the work buried in the continuation given to that one block), so each block doesn’t have to
remember what else to do—in the vocabulary of this section, the (implicit) continuation of each block is empty.
Instead of the usual picture of recursion, with a bunch of little people all waiting for each other, with CPS what
happens is that each little person hands off the problem to the next one and goes to the beach, so there’s only
one active little person at a time. In this example, we start with Alfred, an add specialist, who computes the
value 4 and then hands off the rest of the problem to Francine, a factorial specialist. She computes the value
24, then hands the problem off to Anne, another add specialist, who computes 29. And so on, until finally Sam,
a say specialist, says the value 2.107757298379527×10132, which is a very large number!

Go back to the definitions of these blocks. The ones, such as add, that correspond to primitive reporters are
simple; they just call the reporter and then call their continuation with its result. But the definition of factorial
is more interesting. It doesn’t just call our original factorial reporter and send the result to its continuation.
CPS is used inside factorial too! It says, “See if my input is zero. Send the (true or false) result to if. If the
result is true, then call my continuation with the value 1. Otherwise, subtract 1 from my input. Send the result
of that to factorial, with a continuation that multiplies the smaller number’s factorial by my original input.
Finally, call my continuation with the product.” You can use CPS to unwind even the most complicated
branched recursions.

By the way, I cheated a bit above. The if/else block should also use CPS; it should take one true/false input
and two continuations. It will go to one or the other continuation depending on the value of its input. But in fact
the C-shaped blocks (or E-shaped, like if/else) are really using CPS in the first place, because they implicitly
wrap rings around the sub-scripts within their branches. See if you can make an explicitly CPS if/else block.

81

B. Call/Run w/Continuation
To use explicit continuation passing style, we had to define special versions of all the reporters, add and so on.

Snap! provides a primitive mechanism for capturing continuations when we need to, without using continuation
passing throughout a project.

Here’s the classic example. We want to write a recursive block that takes a list of numbers as input, and
reports the product of all the numbers:

But we can improve the efficiency of this block, in the case of a list that includes a zero; as soon as we see the
zero, we know that the entire product is zero.

But this is not as efficient as it might seem. Consider, as an example, the list 1,2,3,0,4,5. We find the zero on
the third recursive call (the fourth call altogether), as the first item of the sublist 0,4,5. What is the continuation
of the report 0 block? It’s

Even though we already know that result is zero, we’re going to do three unnecessary multiplications while
unwinding the recursive calls.

We can improve upon this by capturing the continuation of the top-level call to product:

82

The block takes as its input a one-input script, as shown in the product example. It
calls that script with the continuation of the call-with-continuation block itself as its input. In this case, that
continuation is

reporting to whichever script called product. If the input list doesn’t include a zero, then nothing is ever done
with that continuation, and this version works just like the original product. But if the input list is 1,2,3,0,4,5,
then three recursive calls are made, the zero is seen, and product-helper runs the continuation, with an input of 0.
The continuation immediately reports that 0 to the caller of product, without unwinding all the recursive calls
and without the unnecessary multiplications.

I could have written product a little more simply using a Reporter ring instead of a Command ring:

but it’s customary to use a script to represent the input to call w/continuation because very often that input takes
the form

so that the continuation is saved permanently and can be called from anywhere in the project. That’s why the
input slot in call w/continuation has a Command ring rather than a Reporter ring.

First class continuations are an experimental feature in Snap!	 and there are many known limitations in it. One
is that the display of reporter continuations shows only the single block in which the call w/continuation is an
input.

83

 Nonlocal exit

Many programming languages have a break command that can be used inside a looping construct such as
repeat to end the repetition early. Using first class continuations, we can generalize this mechanism to allow
nonlocal exit even within a block called from inside a loop, or through several levels of nested loops:

The upvar break has as its value a continuation that can be called from anywhere in the program to jump
immediately to whatever comes after the catch block in its script. Here’s an example with two nested
invocations of catch, with the upvar renamed in the outer one:

As shown, this will say 1, then 2, then 3, then exit both nested catches and think “Hmm.” If in the run block
the variable break is used instead of outer, then the script will say 1, 2, 3, and “Hello!” before thinking “Hmm.”

There are corresponding catch and throw blocks for reporters. The catch block is a reporter that takes an
expression as input instead of a C-shaped slot. But the throw block is a command; it doesn’t report a value to its
own continuation, but instead reports a value (which it takes as an additional input, in addition to the catch tag)
to the corresponding catch block’s continuation:

Without the throw, the inner call reports 5, the + block reports 8, so the catch block reports 8, and the × block
reports 80. With the throw, the inner call doesn’t report at all, and neither does the + block. The throw block’s
input of 20 becomes the value reported by the catch block, and the × block multiplies 10 and 20.

84

Creating a Thread System

Snap! can be running several scripts at once, within a single sprite and across many sprites. If you only have
one computer, how can it do many things at once? The answer is that only one is actually running at any
moment, but Snap! switches its attention from one script to another frequently. At the bottom of every looping
block (repeat, repeat until, forever), there is an implicit “yield” command, which remembers where the current
script is up to, and switches to some other script, each in turn. At the end of every script is an implicit “end
thread” command (a thread is the technical term for the process of running a script), which switches to another
script without remembering the old one.

Since this all happens automatically, there is generally no need for the user to think about threads. But, just to
show that this, too, is not magic, here is an implementation of a simple thread system. It uses a global variable
named tasks that initially contains an empty list. Each use of the C-shaped thread block adds a continuation
(the ringed script) to the list. The yield block uses run w/continuation to create a continuation for a partly done
thread, adds it to the task list, and then runs the first waiting task. The end thread block (which is automatically
added at the end of every thread’s script by the thread block) just runs the next waiting task.

Here is a sample script using the thread system.
One thread says numbers; the other says letters.
The number thread yields after every prime
number, while the letter thread yields after every
vowel. So the sequence of speech balloons is
1,2,a,3,b,c,d,e,4,5,f,g,h,i,6,7,j,k,l,m,n,o,8,9,10,11,
p,q,r,s,t,u,12,13,v,w,x,y,z,14,15,16,17,18,…30.

If we wanted this to behave exactly like Snap!’s own
threads, we’d define new versions of repeat and so
on that run yield after each repetition.

85

XI. User Interface Elements

In this section we describe in detail the various buttons, menus, and other clickable elements of the Snap! user
interface. Here again is the map of the Snap!	 window:

A. Tool Bar Features
Holding down the Shift key while clicking on any of the menu buttons gives access to an extended menu with
options, shown in red, that are experimental or for use by the developers. We’re not listing those extra options
here because they change frequently and you shouldn’t rely on them. But they’re not secrets.

 The Snap!		Logo Menu
The Snap!		logo at the left end of the tool bar is clickable. It shows a menu of options about Snap!	 itself:

The About option displays information about Snap!		itself, including version numbers for the source modules,
the implementors, and the license (AGPL: you can do anything with it except create proprietary versions,
basically).

86

The Reference manual option downloads a copy of the latest revision of this manual in PDF format.

The Snap! website option opens a browser window pointing to snap.berkeley.edu, the web site for Snap!.

The Download source option opens a browser window displaying the Github repository of the source files for
Snap!. At the bottom of the page are links to download the latest official release. Or you can navigate around
the site to find the current development version. You can read the code to learn how Snap!		is implemented, host
a copy on your own computer (this is one way to keep working while on an airplane), or make a modified
version with customized features. (However, access to cloud accounts is limited to the official version hosted at
Berkeley.)

 The File Menu
The file icon shows a menu mostly about saving and loading projects:

The Project notes option opens a window in which you can type notes about the project: How to use it, what
it does, whose project you modified to create it, if any, what other sources of ideas you used, or any other
information about the project. This text is saved with the project, and is useful if you share it with other users.

The New option starts a new, empty project. Any project you were working on before disappears, so you are
asked to confirm that this is really what you want. (It disappears only from the current working Snap!		window;
you should save the current project, if you want to keep it, before using New.)

Note the ^N at the end of the line. This indicates that you can type control-N as a shortcut for this menu item.
Alas, this is not the case in every browser. Some Mac browsers require command-N (⌘N) instead, while others
open a new browser window instead of a new project. You’ll have to experiment. In general, the keyboard
shortcuts in Snap!		are the standard ones you expect in other software.

The Open… option shows a project open dialog box in which you can choose a project to open:

In this dialog, the three large buttons at the left select a source of projects: Cloud means your Snap!		account’s
cloud storage. Examples means a collection of sample projects we provide. Computer is for projects saved on
your own computer; when you click it, this dialog is replaced with your computer’s system dialog for opening

87

files. The text box to the right of those buttons is an alphabetical listing of projects from that source; selecting a
project by clicking shows its thumbnail (a picture of the stage when it was saved) and its project notes at the
right.

The search bar at the top can be used to find a project by name or text in the project notes. So in this example:

I was looking for my ice cream projects and typed “crea” in the search bar, then wondered why “ferris”
matched. But then when I clicked on ferris I saw this:

My search matched the word “recreate” in the project notes.

The six buttons at the bottom select an action to perform on the selected project. In the top row, Recover looks
in your cloud account for older versions of the chosen project. If your project is damaged, don’t keep
saving broken versions! Use Recover first thing. You will see a list of saved versions; choose one to open
it. Typically, you’ll see the most recent version before the last save, and the newest version saved before today.
Then come buttons Share/Unshare and Publish/Unpublish. The labelling of the buttons depends on your
project’s publication status. If a project is neither shared nor published (the ones in lightface type in the project
list), it is private and nobody can see it except you, its owner. If it is shared (boldface in the project list), then
when you open it you’ll see a URL like this one:
https://snap.berkeley.edu/snapsource/snap.html#present:Username=bh&ProjectName=count%20change

but with your username and project name. (“%20” in the project name represents a space, which can’t be part
of a URL.) Anyone who knows this URL can see your project. Finally, if your project is published (bold italic
in the list), then your project is shown on the Snap!		web site for all the world to see. (In all of these cases, you are
the only one who can write to (save) your project. If another user saves it, a separate copy will be saved in that
user’s account. Projects remember the history of who created the original version and any other “remix”
versions along the way.

In the second row, the first button, Open, loads the project into Snap!		and closes the dialog box. The next
button (if Cloud is the source) is Delete, and if clicked it deletes the selected project. Finally, the Cancel button

88

closes the dialog box without opening a project. (It does not undo any sharing, unsharing, or deletion you’ve
done.)

Back to the File menu, the Save menu option saves the project to the same source and same name that was
used when opening the project. (If you opened another user’s shared project or an example project, the project
will be saved to your own cloud account. You must be logged in to save to the cloud.)

The Save as… menu option opens a dialog box in which you can specify where to save the project:

This is much like the Open dialog, except for the horizontal text box at the top, into which you type a name for
the project. You can also publish, unpublish, share, unshare, and delete projects from here. There is no
Recover button.

The Import… menu option is for bringing some external resource into the current project, or it can load an
entirely separate project, from your local disk. You can import costumes (any picture format that your browser
supports), sounds (again, any format supported by your browser), and block libraries or sprites (XML format,
previously exported from Snap!		itself). Imported costumes and sounds will belong to the currently selected sprite;
imported blocks are global (for all sprites). Using the Import option is equivalent to dragging the file from your
desktop onto the Snap!		window.

Depending on your browser, the Export project… option either directly saves to your disk or opens a new
browser tab containing your complete project in XML notation (a plain text format). You can then use the
browser’s Save feature to save the project as an XML file, which should be named something.xml so that
Snap!	will recognize it as a project when you later drag it onto a Snap!	window. This is an alternative to saving the
project to your cloud account: keeping it on your own computer. It is equivalent to choosing Computer from
the Save dialog described earlier.

The Export blocks… option is used to create a block library. It presents a list of all the global (for all sprites)
blocks in your project, and lets you select which to export. It then opens a browser tab with those blocks in
XML format, or stores directly to your local disk, as with the Export project option. Block libraries can be
imported with the Import option or by dragging the file onto the Snap!	window. This option is shown only if you
have defined custom blocks.

The Unused blocks… option presents a listing of all the global blocks in your project that aren’t used
anywhere, and offers to delete them. As with Export blocks, you can choose a subset to delete with checkboxes.
This option is shown only if you have defined custom blocks.

89

The Export summary… option creates a web page, in HTML, with all of the information about your project:
its name, its project notes, a picture of what’s on its stage, definitions of global blocks, and then per-sprite
information: name, wardrobe (list of costumes), and local variables and block definitions. The page can be
converted to PDF by the browser; it’s intended to meet the documentation requirements of the Advanced
Placement Computer Science Principles create task.

The Libraries… option presents a menu of useful, optional block libraries:

When you click on the one-line description of a library, you are shown the actual blocks in the library and a
longer explanation of its purpose. You can browse the libraries to find one that will satisfy your needs.

The libraries and their contents may change, but as of this writing the list library has these blocks:

Reverse reports a list with the items of the input list in reverse order. Remove
duplicates from reports a list in which no two items are equal. The sort block
takes a list and a two-input comparison predicate, such as <, and reports a list with
the items sorted according to that comparison. The assoc block is for looking up a
key in an association list: a list of two-item lists. In each two-item list, the first is a key
and the second is a value. The inputs are a key and an association list; the block
reports the first key-value pair whose key is equal to the input key.

For each item is a variant of the primitive version that provides a # variable
containing the position in the input list of the currently considered item. Multimap

is a version of map that allows multiple list inputs, in which case the mapping function must take as many inputs
as there are lists; it will be called with all the first items, all the second items, and so on. Zip takes any number of
lists as inputs; it reports a list of lists: all the first items, all the second items, and so on. The no-name identity
function reports its input.

The variadic library has these blocks:

These are versions of the associative operators +. ×, and, and or that take any number of
inputs instead of exactly two inputs. As with any variadic input, you can also drop a list of
values onto the arrowheads instead of providing the inputs one at a time.

The menu is divided into four broad categories. The first is,
broadly, utilities: Blocks that might well be primitives if we
didn’t have a thing about minimizing primitive blocks that could
readily be implemented in Snap! code. They might be useful in
all kinds of projects.

The second category is blocks related to media computation:
ones that help in dealing with costumes and sounds (a/k/a Jens
libraries). There is some overlap with “big data” libraries, for
dealing with large lists of lists.

The third category is, roughly, specific to non-media applications
(a/k/a Brian libraries). Three of them are imports from other
programming languages: words and sentences from Logo, array
functions from APL, and streams from Scheme. Most of the
others are to meet the needs of the BJC curriculum.

The fourth category is libraries to support special hardware.

90

The iteration library has these blocks:

Catch and throw provide a nonlocal exit facility. You can drag the tag from a
catch block to a throw inside its C-slot, and the throw will then jump directly out to
the matching catch without doing anything in between.

If do and pause all is for setting a breakpoint while debugging code. The idea is to
put show variable blocks for local variables in the C-slot; the watchers will be deleted
when the user continues from the pause.

Ignore is used when you need to call a reporter but you don’t care about the value it
reports. (For example, you are writing a script to time how long the reporter takes.)

The cascade blocks take an initial value and call a function repeatedly on that value,
f(f(f(f…(x)))).

The compose block takes two functions and reports the function f(g(x)).

The first three repeat blocks are variants of the primitive repeat until block, giving
all four combinations of whether the first test happens before or after the first
repetition, and whether the condition must be true or false to continue repeating.
The last repeat block is like the repeat primitive, but makes the number of
repetitions so far available to the repeated script. The next two blocks are variations
on for: the first allows an explicit step instead of using ±1, and the second allows any
values, not just numbers; inside the script you say

replacing the grey block in the picture with an expression to give the next desired value for the loop index. Pipe
allows reordering a nested composition with a left-to-right one:

The stream library has these blocks:
Streams are a special kind of list whose items are not computed
until they are needed. This makes certain computations more
efficient, and also allows the creation of lists with infinitely
many items, such as a list of all the positive integers. The first
five blocks are stream versions of the list blocks in front of,
item 1 of, all but first of, map, and keep. Show stream takes
a stream and a number as inputs, and reports an ordinary list
of the first n items of the stream. Stream is like the primitive
list; it makes a finite stream from explicit items. Sieve is an
example block that takes as input the stream of integers

starting with 2 and reports the stream of all the prime numbers. Stream with numbers from is like the numbers
from block for lists, except that there is no endpoint; it reports an infinite stream of numbers.

91

The word and sentence library has these blocks:

This library has the goal of recreating the Logo approach to handling text: A text
isn’t best viewed as a string of characters, but rather as a sentence, made of words, each
of which is a string of letters. With a few specialized exceptions, this is why people put
text into computers: The text is sentences of natural (i.e., human) language, and the
emphasis is on words as constitutive of sentences. You barely notice the letters of the
words, and you don’t notice the spaces between them at all, unless you’re
proofreading. (Even then: Proofreading is difficult, because you see what you expect
to see, what will make the text make sense, rather than the misspelling in front of
your eyes.) Internally, Logo stores a sentence as a list of words, and a word as a
string of letters.

Inexplicably, the designers of Scratch chose to abandon that tradition, and to focus
on the representation of text as a string of characters. The one vestige of the Logo
tradition from which Scratch developed is the block named letter (1) of (world),
rather than character (1) of (world). Snap!		inherits its text handling from Scratch.

In Logo, the visual representation of a sentence (a list of words) looks like a natural
language sentence: a string of words with spaces between them. In Snap!, the visual

representation of a list looks nothing at all like natural language. On the other hand, representing a sentence as
a string means that the program must continually re-parse the text on every operation, looking for spaces,
treating multiple consecutive spaces as one, and so on. Also, it’s more convenient to treat a sentence as a list of
words rather than a string of words because in the former case you can use the higher order functions map,
keep, and combine on them.This library attempts to be agnostic as to the internal representation of sentences.
The sentence selectors accept any combination of lists and strings; there are two sentence constructors, one to
make a string (join words) and one to make a list (sentence).

The selector names come from Logo, and should be self-explanatory. However, because in a block language
you don’t have to type the block name, instead of the terse butfirst or the cryptic bf we spell out “all but first
of” and include “word” or “sentence” to indicate the intended domain. There’s no first letter of block because
letter 1 of serves that need. Join words (the sentence-as-string constructor) is like the primitive join except that
it puts a space in the reported value between each of the inputs. Sentence (the List-colored sentence-as-list
constructor) accepts any number of inputs, which can be words, sentences-as-lists, or sentences-as-strings. (If
inputs are lists of lists, only one level of flattening is done.) Sentence reports a list of words; there will be no
empty words or words containing spaces. The four blocks with right-arrows in their names convert back and
forth between text strings (words or sentences) and lists. (Splitting a word into a list of letters is unusual unless
you’re a linguist investigating orthography.) Printable takes a list (including a deep list) of words as input and
reports a text string in which parentheses are used to show the structure, as in Lisp/Scheme.

The text costume library has only one block:

It reports a costume that can be used with the switch to costume block to make
a button:

92

The bar charts library has these blocks:
Bar chart takes a table (typically from a CSV data set) as
input and reports a summary of the table grouped by the
field in the specified column number. The remaining
three inputs are used only if the field values are numbers,
in which case they can be grouped into buckets (e.g.,
decades, centuries, etc.). Those inputs specify the smallest
and largest values of interest and, most importantly, the
width of a bucket (10 for decades, 100 for centuries). If
the field isn't numeric, leave these three inputs empty or
set them to zero. Each string value of the field is its own
bucket, and they appear sorted alphabetically.

Bar chart reports a new table with three columns. The first column contains the bucket name or smallest
number. The second column contains a nonnegative integer that says how many records in the input table fall
into this bucket. The third column is a subtable containing the actual records from the original table that fall
into the bucket. Plot bar chart takes the table reported by bar chart and graphs it on the stage, with axes
labelled appropriately. The remaining blocks are helpers for those.

If your buckets aren't of constant width, or you want to group by some function of more than one field, load the
"Frequency Distribution Analysis" library instead.

The multiple-branch conditional library has these blocks:

The catch and throw blocks duplicate ones in the iteration library, and are
included because they are used to implement the others. The cases block sets up
a multi-branch conditional, similar to cond in Lisp or switch in C-family
languages. The first branch is built into the cases block; it consists of a Boolean
test in the first hexagonal slot and an action script, in the C-slot, to be run if the
test reports true. The remaining branches go in the variadic hexagonal input at
the end; each branch consists of an else if block, which includes the Boolean test
and the corresponding action script, except possibly for the last branch, which can
use the unconditional else block. As in other languages, once a branch succeeds,
no other branches are tested.

93

The web services library has these blocks:
The first block is a generalization of the primitive url block,
allowing more control over the various options in web
requests: GET, POST, PUT, and DELETE, and fine
control over the content of the message sent to the server.
Current location reports your latitude and longitude.
Listify takes some text in JSON format (see page 42) and

converts it to a structured list. Value at key looks up a key-value pair in a (listified) JSON dictionary. The
key:value: block is just a constructor for an abstract data type used with the other blocks.

The colors library has these blocks:

It is intended as a more powerful replacement for the primitive set pen
block, including HSL color specification as a better alternative to the HSV
that Snap! inherits from JavaScript; a “fair hue” scale that compensates for
the eye’s grouping a wide range of light frequencies as green while labelling
mere slivers as orange or yellow; the X11/CSS standard color names; RGB
in hexadecimal; a linear color scale (as in the old days) based on fair hues
and including shades (darker colors) and grayscale. It also includes a
selected set of 100 “crayons,” explained further on the next page.

Here is the normal hue scale, for reference:

Here is the fair hue scale:

(Besides equalizing the space for each spectral color, brown has been
promoted to an official color. Magenta isn’t a spectral color either!)

Here is the linear color scale:

(The picture is wider so that spectral colors line up with the fair hue scale.)

And here are the 100 crayons:

The four blocks whose pictures start with are meant for users: set pen

to, set pen to crayon, change pen by, and the pen reporter. The ones starting with ✐ are internal helpers. The
ones with neither decoration are inherited from other libraries.

Set pen color to R:G:B: and to H:S:V: are commands to set the pen color; RGB color and HSV color report the
pen color. The two JavaScript-supported color space representations are RGB (red-green-blue), in which each
color intensity is a number between 0 and 255, and HSV (hue-saturation-value), in which each dimension is a
fraction between 0 and 1. The reporters report three-item lists.

94

Set pen to crayon provides the equivalent of a box of 100 crayons. They are divided into color groups, so the
menu in the set pen to crayon input slot has submenus, as shown below. The colors are chosen so that starting
from crayon 0, change crayon by 10 rotates through an interesting, basic set of ten colors:

Using change crayon by 5 instead gives ten more colors, for a total of 20:

 (Why didn’t we use the colors of
the 100-crayon Crayola™ box? A
few reasons, one of which is that
some Crayola colors aren’t
representable on RGB screens.
Some year when you have nothing
else to do, look up “color space” on
Wikipedia. Also “crayon.” Oh,
it’s deliberate that change crayon
by 5 doesn’t include white, since
that’s the usual stage background
color. White is crayon 14.) Note
that crayon 43 is “Variables”; all
the block colors are included. See
Appendix A (page 122) for more
information.

The error catching library has these blocks:

The safely try block allows you to handle errors that happen when your program is run
within the program, instead of stopping the script with a red halo and an obscure error
message. The block runs the script in its first C-slot. If it finishes without an error,
nothing else happens. But if an error happens, the code in the second C-slot is run. While
that second script is running, the variable contains the text of the error message
that would have been displayed if you weren’t catching the error. The error block is sort
of the opposite: it lets your program generate an error message, which will be displayed with
a red halo unless it is caught by safely try. The let block is used in implementing the
library; it’s like a script variables followed by a set.

95

The system getter/setter library has these blocks:

The purpose of this library is to allow program access to the settings controlled by
user interface elements, such as the settings menu. The setting block reports
a setting; the set flag block sets yes-or-no options that have checkboxes in the user
interface, while the set value block controls settings with numeric or text values,
such as project name.

Certain settings are ordinarily remembered on a per-user basis, such as the “zoom blocks” value. But when
these settings are changed by this library, the change is in effect only while the project using the library is
loaded. No permanent changes are made.

The infinite precision integer library has these blocks:

The USE BIGNUMS block takes a Boolean input, to turn the infinite precision
feature on or off. When on, all of the arithmetic operators are redefined to accept
and report integers of any number of digits (limited only by the memory of your
computer) and, in fact, the entire Scheme numeric tower, with exact rationals and
with complex numbers. The Scheme number block has a list of functions
applicable to Scheme numbers, including subtype predicates such as rational? and
infinite?, and selectors such as numerator and real-part.

The ! block computes the factorial function, useful to test whether bignums are turned on. Without bignums:

With bignums:

The 375-digit value of 200! isn’t readable on this page, but if you shift-right-click on the block and choose
“script pic with result,” you can open the resulting picture in a browser window and scroll through it. (These
values end with a bunch of zero digits. That’s not roundoff error; the prime factors of 100! and 200! include
many copies of 2 and 5.) The block with no name is a way to enter things like 3/4 and 4+7i into numeric input
slots by converting the slot to Any type.

96

The speech synthesis library has these blocks:

This library interfaces with a capability in up-to-date browsers, so it might
not work for you. It works best if the accent matches the text!

The pixels library has one block:

Costumes are first class data in Snap!. Most of the processing of costume data is done by primitive
blocks in the Looks category. (See page 63.) This library provides snap, which takes a picture
using your computer’s camera and reports it as a costume.

The animation library has these blocks:
Despite the name, this isn’t only about graphics;
you can animate the values of a variable, or
anything else that’s expressed numerically.

The central idea of this library is an easing function,
a reporter whose domain and range are real
numbers between 0 and 1 inclusive. The function
represents what fraction of the “distance” (in
quotes because it might be any numeric value,
such as temperature in a simulation of weather)
from here to there should be covered in what
fraction of the time. A linear easing function
means steady progression. A quadratic easing

function means starting slowly and accelerating. (Note that, since it’s a requirement that f (0)=0 and f (1)=1,
there is only one linear easing function, f (x)=x, and similarly for other categories.) The block
reports some of the common easing functions.

The two Motion blocks in this library animate a sprite. Glide always animates the sprite’s motion. Animate’s
first pulldown menu input allows you to animate horizontal or vertical motion, but will also animate the sprite’s
direction or size. The animate block in Control lets you animate any numeric quantity with any easing
function. The getter and setter inputs are best explained by example:

is equivalent to

The other eight blocks in the library are helpers for these four.

97

The sound manipulation library includes these blocks:

This library takes a sound, one that you record or one
from our collection of sounds, and manipulates it by
systematically changing the intensity of the samples in
the sound and by changing the sampling rate at which
the sound is reproduced. Many of the blocks are helpers
for the plot sound block, used to plot the waveform of a
sound. The play sound (primitive) block plays a sound.
__ Hz for reports a sine wave as a list of samples.

The bigger data library includes these experimental blocks:

They are the same as the corresponding blocks in the list utilities library, but
using a partial compilation technique to allow some use cases to run very fast,
even on extremely large lists. Only primitive functions can be used in the
function input slots. Save your project before experimenting with these. Blocks
starting with the lightning bolt symbol in other libraries are also partially
compiled for speed.

The frequency distribution analysis library has these blocks:

This is a collection of tools for analyzing large
data sets and plotting histograms of how often
some value is found in some column of the table
holding the data.

For more information go here:
http://tinyurl.com/jens-data

98

The world map library has these blocks:

Using any of the command blocks puts a map on the screen, in a layer
in front of the stage’s background but behind the pen trails layer (which
is in turn behind all the sprites). The first block asks your browser for
your current physical location, for which you may be asked to give
permission. The next two blocks get and set the map’s zoom amount;
the default zoom of 10 fits from San Francisco not quite down to Palo
Alto on the screen. A zoom of 1 fits almost the entire world. A zoom of
3 fits the United States; a zoom of 5 fits Germany. The zoom can be
changed in half steps, i.e., 5.5 is different from 5, but 5.25 isn’t.

The next five blocks concern the conversion between stage coordinates
(pixels) and Earth coordinates (latitude and longitude). The change by x:
y: block shifts the map relative to the stage. The distance to block
measures the map distance (in meters) between two sprites. The three
reporters with current in their names find your actual location, again
supposing that geolocation is enabled on your device. Update redraws
the map; as costume reports the visible section of the map as a
costume. Set style allows things like satellite pictures.

The variables library has these blocks:

These blocks allow a program to perform the same operation as the
button, making global, sprite local, or script variables, but allowing the program to
compute the variable name(s). It can also set and find the values of these variables, show
and hide their stage watchers, delete them, and find out if they already exist.

The parallelization library contains these blocks:

The two do in parallel blocks take any number of scripts as inputs. Those scripts will be run
in parallel, like ordinary independent scripts in the scripting area. The and wait version
waits until all of those scripts have finished before continuing the script below the block.

The string processing library provides these blocks:

All of these could be written in Snap! itself, but these are
implemented using the corresponding JavaScript library
functions directly, so they run fast. They can be used, for
example, in scraping data from a web site. The
command use case-independent comparisons applies
only to this library.

99

The LEAP Motion library has these blocks:

The LEAP Motion controller is a piece of hardware that senses the position of
the user’s hands, modeling the angles of each knuckle. It’s one of many external
devices that Snap! can support. Generally, to use a device with Snap!, you must
download and install a separate controller program. That’s true for the LEAP
too, but that controller is installed as part of setting up the device, so all that’s
needed is the block library to go with it.

The Hummingbird library provides these blocks:

The blocks are intended for use with the Hummingbird robotics kit
and for the micro:bit controller.

100

Back to the file menu: The Costumes… option opens a browser into the costume library:

You can import a single costume by clicking it and then clicking the Import button. Alternatively, you can
import more than one costume by double-clicking each one, and then clicking Cancel when done. Notice that
some costumes are tagged with “svg” in this picture; those are vector-format costumes that are not (yet, coming
soon) editable within Snap!.

If you have the stage selected in the sprite corral, rather than a sprite, the Costumes… option changes to a
Backgrounds… option, with different choices in the browser:

The costume and background libraries include both bitmap (go jagged if enlarged) and vector (enlarge
smoothly) images. Thanks to Scratch 2.0/3.0 for most of these images! Some older browsers refuse to import a
vector image, but instead convert it to bitmap.

101

The Sounds… option opens the third kind of media browser:

The Play buttons can be used to preview the sounds.

 The Cloud Menu
shows a menu of options relating to your Snap! cloud account. If you are not logged The cloud icon

in, you see the outline icon and get this menu:

Choose Login… if you have a Snap!		account and remember your password. Choose Signup… if you don’t have
an account. Choose Reset Password… if you’ve forgotten your password or just want to change it. You will
then get an email, at the address you gave when you created your account, with a new temporary password.
Use that password to log in, then you can choose your own password, as shown below. Choose Resend
Verification Email… if you have just created a Snap!		account but can’t find the email we sent you with the link to
verify that it’s really your email. (If you still can’t find it, check your spam folder.)

If you are already logged in, you’ll see the solid icon and get this menu:

Logout is obvious, but has the additional benefit of showing you who’s logged in. Change password… will ask
for your old password (the temporary one if you’re resetting your password) and the new password you want,
entered twice because it doesn’t echo.

102

 The Settings Menu
shows a menu of Snap!	options, either for the current project or for you permanently, The settings icon

depending on the option:

The Language… option lets you see the Snap!		user interface (blocks and messages) in a language other than
English. (Note: Translations have been provided by Snap!		users. If your native language is missing, send us an
email!)

The Zoom blocks... option lets you change the size of blocks, both in the palettes and in scripts. The standard
size is 1.0 units. The main purpose of this option is to let you take very high-resolution pictures of scripts for use
on posters. It can also be used to improve readability when projecting onto a screen while lecturing, but bear in
mind that it doesn’t make the palette or script areas any wider, so your computer’s command-option-+ feature
may be more practical. Note that a zoom of 2 is gigantic! Don’t even try 10.

The Stage size… option lets you set the size of the full-size stage in pixels. If the stage is in half-size or double-
size (presentation mode), the stage size values don’t change; they always reflect the full-size stage.

The Microphone resolution… option sets the buffer size used by the microphone block in Settings.
“Resolution” is an accurate name if you are getting frequency domain samples; the more samples, the narrower
the range of frequencies in each sample. In the time domain, the buffer size determines the length of time over
which samples are collected.

The remaining options let you turn various features on and off. There are three groups of checkboxes. The
first is for temporary settings not saved in your project nor in your user preferences.

Input sliders provides an alternate way to put values in numeric input slots; if you click in such a slot, a slider
appears that you can control with the mouse:

The range of the slider will be from 25 less than the input’s current value to 25 more than
the current value. If you want to make a bigger change than that, you can slide the slider
all the way to either end, then click on the input slot again, getting a new slider with a new
center point. But you won’t want to use this technique to change the input value from 10
to 1000, and it doesn’t work at all for non-integer input ranges. This feature was
implemented because software keyboard input on phones and tablets didn’t work at all in
the beginning, and still doesn’t on Android devices, so sliders provide a workaround. It

103

has since found another use in providing “lively” response to input changes; if Input sliders is checked,
reopening the settings menu will show an additional option called Execute on slider change. If this option is also
checked, then changing a slider in the scripting area automatically runs the script in which that input appears.
The project live-tree in the Examples collection shows how this can be used; it features a fractal tree custom
block with several inputs, and you can see how each input affects the picture by moving a slider.

Turbo mode makes many projects run much faster, at the cost of not keeping the stage display up to date.
(Snap!		ordinarily spends most of its time drawing sprites and updating variable watchers, rather than actually
carrying out the instructions in your scripts.) So turbo mode isn’t a good idea for a project with glide blocks or
one in which the user interacts with animated characters, but it’s great for drawing a complicated fractal, or
computing the first million digits of 𝜋, so that you don’t need to see anything until the final result. While in
turbo mode, the button that normally shows a green flag instead shows a green lightning bolt. (But when ⚑
clicked hat blocks still activate when the button is clicked.)

Visible stepping enables the slowed-down script evaluation described in Chapter I. Checking this option is
equivalent to clicking the footprint button above the scripting area. You don’t want this on except when you’re
actively debugging, because even the fastest setting of the slider is still slowed a lot.

Log pen vectors tells Snap!		to remember lines drawn by sprites as exact vectors, rather than remember only the
pixels that the drawing leaves on the stage. This remembered vector picture can be used in two ways: First,
right-clicking on a pen trails block gives an option to relabel it into a pen vectors block which, when run,
reports the logged lines as a vector (svg) costume. Second, right-clicking on the stage when there are logged
vectors shows an extra option, svg…, that exports a picture of the stage in vector format. Only lines are logged,
not color regions made with the fill block.

The next group of four are user preference options, preserved when you load a new project. Long form input
dialog, if checked, means that whenever a custom block input name is created or edited, you immediately see
the version of the input name dialog that includes the type options, default value setting, etc., instead of the short
form with just the name and the choice between input name and title text. The default (unchecked) setting is
definitely best for beginners, but more experienced Snap!		programmers may find it more convenient always to
see the long form.

Plain prototype labels eliminates the plus signs between words in the Block Editor prototype block. This
makes it harder to add an input to a custom block; you have to hover the mouse where the plus sign would have
been, until a single plus sign appears temporarily for you to click on. It’s intended for people making pictures of
scripts in the block editor for use in documentation, such as this manual. You probably won’t need it otherwise.

Clicking sound causes a really annoying sound effect whenever one block snaps next to another in a script.
Certain very young children, and our colleague Dan Garcia, like this, but if you are such a child you should
bear in mind that driving your parents or teachers crazy will result in you not being allowed to use Snap!. It
might, however, be useful for visually impaired users.

Flat design changes the “skin” of the Snap!		window to a really hideous design with white and pale-grey
background, rectangular rather than rounded buttons, and monochrome blocks (rather than the shaded,
somewhat 3D-looking normal blocks). The monochrome blocks are the reason for the “flat” in the name of this
option. The only thing to be said for this option is that, because of the white background, it may blend in better
with the rest of a web page when a Snap!	 project is run in a frame in a larger page.

104

The final group of settings change the way Snap!	 interprets your program; they are saved with the project, so
anyone who runs your project will experience the same behavior. Thread safe scripts changes the way Snap!
responds when an event (clicking the green flag, say) starts a script, and then, while the script is still running, the
same event happens again. Ordinarily, the running process stops where it is, ignoring the remaining commands
in the script, and the entire script starts again from the top. This behavior is inherited from Scratch, and some
converted Scratch projects depend on it; that’s why it’s the default. It’s also sometimes the right thing, especially
in projects that play music in response to mouse clicks or keystrokes. If a note is still playing but you ask for
another one, you want the new one to start right then, not later after the old process finishes. But if your script
makes several changes to a database and is interrupted in the middle, the result may be that the database is
inconsistent. When you select Thread safe scripts, the same event happening again in the middle of running a
script is simply ignored. (This is arguably still not the right thing; the event should be remembered and the
script run again as soon as it finishes. We’ll probably get around to adding that choice eventually.) Keyboard
events (when __ key pressed) are always thread-safe.

Flat line ends affects the drawing of thick lines (large pen width). Usually the ends are rounded, which looks
best when turning corners. With this option selected, the ends are flat. It’s useful for drawing a brick wall or
filling a rectangle.

Codification support enables a feature that can translate a Snap!		project to a text-based (rather than block-
based) programming language. The feature doesn’t know about any particular other language; instead, you can
provide a translation for each primitive block using these special blocks:

Using these primitive blocks, you can build a block library to translate into any programming language. Watch
for such libraries to be added to our library collection (or contribute one). To see some examples, open the
project “Codification” in the Examples project list. Edit the blocks map to Smalltalk, map to JavaScript, etc.,
to see examples of how to provide translations for blocks.

Hyper blocks support enables the use of vector and matrix inputs in what are normally scalar (non-list) input

slots:

For more information on this feature, see Section I.G, page 18.

105

 Visible Stepping Controls
After the menu buttons you’ll see the project name. After that comes the footprint button used to turn
on visible stepping and, when it’s on, the slider to control the speed of stepping.

 Stage Resizing Buttons
Still in the tool bar, but above the left edge of the stage, are two buttons that change the size of the stage. The
first is the shrink/grow button. Normally it looks like this: Clicking the button displays the stage at half-
normal size horizontally and vertically (so it takes up ¼ of its usual area). When the stage is half size the button
looks like this: and clicking it returns the stage to normal size. The main reason you’d want a half size
stage is during the development process, when you’re assembling scripts with wide input expressions and the
normal scripting area isn’t wide enough to show the complete script. You’d typically then switch back to
normal size to try out the project. The next presentation mode button normally looks like this: Clicking
the button makes the stage double size in both dimensions and eliminates most of the other user interface
elements (the palette, the scripting area, the sprite corral, and most of the tool bar). When you open a shared
project using a link someone has sent you, the project starts in presentation mode. While in presentation mode,
the button looks like this: Clicking it returns to normal (project development) mode.

 Project Control Buttons
Above the right edge of the stage are three buttons that control the running of the project.

Technically, the green flag is no more a project control than anything else that can trigger a hat block:
typing on the keyboard or clicking on a sprite. But it’s a convention that clicking the flag should start the action
of the project from the beginning. It’s only a convention; some projects have no flag-controlled scripts at all, but
respond to keyboard controls instead. Clicking the green flag also deletes temporary clones. Shift-clicking the
button enters Turbo mode, and the button then looks like a lightning bolt: Shift-clicking again turns
Turbo mode off.

Scripts can simulate clicking the green flag by broadcasting the special message
__shout__go__ (two underscores in each of the three positions shown). If you forget where
the underscores go, shift-click on the block’s input slot to see a green flag in the menu.

The pause button suspends running all scripts. If clicked while scripts are running, the button changes
shape to become a play button: Clicking it while in this form resumes the suspended scripts. There is
also a pause all block in the Control palette that can be inserted in a script to suspend all scripts; this provides
the essence of a breakpoint debugging capability. The use of the pause button is slightly different in visible
stepping mode, described in Chapter I.

The stop button stops all scripts, like the stop all block. It does not prevent a script from starting again
in response to a click or keystroke; the user interface is always active. There is one exception: generic when
blocks will not fire until some non-generic event starts a script. The stop button also deletes all
temporary clones.

106

B. The Palette Area
At the top of the palette area are the eight buttons that select which palette (which block category) is shown:
Motion, Looks, Sound, Pen, Control, Sensing, Operators, and Variables (which also includes the List and Other
blocks). There are no menus behind these buttons.

 Buttons in the Palette
Under the eight palette selector buttons, at the top of the actual palette, are two semi-transparent buttons. The
first is the search button, which is equivalent to typing control-F: It replaces the palette with a search bar
into which you can type part of the title text of the block you’re trying to find. To leave this search mode, click
one of the eight palette selectors, or type the Escape key.

The other button is equivalent to the “Make a block” button, except that the dialog window that it opens
has the current palette (color) preselected.

 Context Menus for Palette Blocks
Most elements of the Snap!		display can be control-clicked/right-clicked to show a context menu, with items relevant
to that element. If you control-click/right-click a primitive block in the palette, you see this menu:

The help… option displays a box with documentation about the block. Here’s an example:

The hide option removes that block from the palette. (This option is available only when clicking the block in
the palette itself, not in a script.) The purpose of the option is to allow teachers to present students with a
simplified Snap!		with some features effectively removed. The hiddenness of primitives is saved with each project,
so students can load a shared project and see just the desired blocks.

If you control-click/right-click a custom (user-defined) block in the palette, you see this menu:

107

The help… option for a custom block displays the comment, if any, attached to the custom block’s hat block in
the Block Editor. Here is an example of a block with a comment and its help display:

If the help text includes a URL, it is clickable and will open the page in a new tab.
The delete block definition… option asks for confirmation, then deletes the custom block and removes it from

any scripts in which it appears. (The result of this removal may not leave a sensible script; it’s best to find and
correct such scripts before deleting a block.) Note that there is no option to hide a custom block.

The duplicate block definition… option makes a copy of the block and opens that copy in the Block Editor.
Since you can’t have two custom blocks with the same title text and input types, the copy is created with “(2)”
(or a higher number if necessary) at the end of the block prototype.

The export block definition… option writes a file in your browser’s downloads directory containing the
definition of this block and any other custom blocks that this block invokes, directly or indirectly. So the
resulting file can be loaded later without the risk of seeing red Obsolete! blocks because of missing dependencies.

The edit… option opens a Block Editor with the definition of the custom block.

 Context Menu for the Palette Background
Right-click/control-click on the grey background of the palette area shows this menu:

The find blocks… option does the same thing as the magnifying-glass button. The hide primitives option hides
all of the primitives in that palette. The show primitives option, which is in the menu only if some primitives of
this palette are hidden, unhides all of them.

 Palette Resizing

At the right end of the palette area, just to the left of the scripting area, is a resizing
handle that can be dragged rightward to increase the width of the palette area. This is
useful if you write custom blocks with very long names. You can’t reduce the width of
the palette below its standard value.

108

C. The Scripting Area

The scripting area is the middle vertical region of the Snap!	window, containing scripts and also some controls for
the appearance and behavior of a sprite. There is always a current sprite, whose scripts are shown in the scripting
area. A dark grey rounded rectangle in the sprite corral shows which sprite (or the stage) is current. Note that
it’s only the visible display of the scripting area that is “current” for a sprite; all scripts of all sprites may be
running at the same time. Clicking on a sprite thumbnail in the sprite corral makes it current. The stage itself
can be selected as current, in which case the appearance is different, with some primitives not shown.

 Sprite Appearance and Behavior Controls
At the top of the scripting area are a picture of the sprite and some controls for it:

Note that the sprite picture reflects its rotation, if any. There are three things that can be controlled here:

1. The three circular buttons in a column at the left control the sprite’s rotation behavior. Sprite costumes are
designed to be right-side-up when the sprite is facing toward the right (direction = 90). If the topmost button is
lit, the default as shown in the picture above, then the sprite’s costume rotates as the sprite changes direction. If
the middle button is selected, then the costume is reversed left-right when the sprite’s direction is roughly
leftward (direction between 180 and 359, or equivalently, between -180 and -1). If the bottom button is
selected, the costume’s orientation does not change regardless of the sprite’s direction.

2. The sprite’s name can be changed in the text box that, in this picture, says “Sprite.”

3. Finally, if the draggable checkbox is checked, then the user can move the sprite on the stage by clicking and
dragging it. The common use of this feature is in game projects, in which some sprites are meant to be under
the player’s control but others are not.

 Scripting Area Tabs
Just below the sprite controls are three tabs that determine what is shown in the scripting area:

 Scripts and Blocks Within Scripts

Most of what’s described in this section also applies to blocks and scripts in a Block Editor.

Clicking on a script (which includes a single unattached block) runs it. If the script starts with a hat block,
clicking on the script runs it even if the event in the hat block doesn’t happen. (This is a useful debugging
technique when you have a dozen sprites and they each have five scripts with green-flag hat blocks, and you
want to know what a single one of those scripts does.) The script will have a green “halo” around it while it’s
running. If the script is shared with clones, then while it has the green halo it will also have a count of how
many instances of the script are running. Clicking a script with such a halo stops the script. (If the script includes
a warp block, which might be inside a custom block used in the script, then Snap!		may not respond immediately
to clicks.)

109

If a script is shown with a red halo, that means that an error was caught in that script, such as using a list where
a number was needed, or vice versa. Clicking the script will turn off the halo.

If any blocks have been dragged into the scripting area, then in its top right corner you’ll see an undo
and/or redo button that can be used to undo or redo block and script drops. When you undo a drop into
an input slot, whatever used to be in the slot is restored. The redo button appears once you’ve used undo.

The third button starts keyboard editing mode (Section D, page 115).

Control-click/right-clicking a primitive block within a script shows a menu like this one:

The help… option shows the help screen for the block, just as in the palette. The other options appear only
when a block is right-clicked/control-clicked in the scripting area.

Not every primitive block has a relabel… option. When present, it allows the block to be replaced by another,
similar block, keeping the input expressions in place. For example, here’s what happens when you choose
relabel… for an arithmetic operator:

Note that the inputs to the existing – block are displayed in the menu of alternatives also. Click a block in the
menu to choose it, or click outside the menu to keep the original block.

The duplicate option makes a copy of the entire script starting from the selected block. The copy is attached to
the mouse, and you can drag it to another script (or even to another Block Editor window), even though you are
no longer holding down the mouse button. Click the mouse to drop the script copy.

The block picture underneath the word duplicate is another duplication option, but it duplicates only the
selected block, not everything under it in the script. Note that if the selected block is a C-shaped control block,
the script inside its C-shaped slot is included. If the block is at the end of its script, this option does not appear.

The delete option deletes the selected block from the script.

The script pic… option opens a new browser tab containing a picture of the entire script, not just from the
selected block to the end, or, in some browsers, saves the picture directly. In the first case, you can use the
browser’s Save feature to put the picture in a file. This is a super useful feature if you happen to be writing a
Snap!		manual! (If you have a Retina display, consider turning off Retina support before making script pictures; if
not, they end up huge.)

110

If the script does not start with a hat block, or you clicked on a reporter, then there’s one more option: ringify
(and, if there is already a grey ring around the block or script, unringify). Ringify surrounds the block (reporter)
or the entire script (command) with a grey ring, meaning that the block(s) inside the ring are themselves data, as
an input to a higher order procedure, rather than something to be evaluated within the script. See Section VI,
Procedures as Data.

Clicking a custom block in a script gives a similar but different menu:

The relabel… option for custom blocks shows a menu of other same-shape custom blocks with the same inputs.
At present you can’t relabel a custom block to a primitive block or vice versa. The two options at the bottom,
for custom blocks only, are the same as in the palette.

If a reporter block is in the scripting area, possibly with inputs included, but not itself serving as input to another
block, then the menu is a little different again:

What’s new here is the result pic… option. It’s like script pic… but it includes in the picture a speech balloon
with the result of calling the block.

Broadcast and broadcast and wait blocks in the scripting area have an additional option: receivers…. When
clicked, it causes a momentary (be looking for it when you click!) halo around the picture in the sprite corral of
those sprites that have a when I receive hat block for the same message. Similarly, when I receive blocks have a
senders… option that light up the sprite corral icons of sprites that broadcast the same message.

 Scripting Area Background Context Menu
Control-click/shift-click on the grey striped background of the scripting area gives this menu:

111

The undrop option is a sort of “undo” feature for the common case of dropping a block somewhere other than
where you meant it to go. It remembers all the dragging and dropping you’ve done in this sprite’s scripting area
(that is, other sprites have their own separate drop memory), and undoes the most recent, returning the block to
its former position, and restoring the previous value in the relevant input slot, if any. Once you’ve undropped
something, the redrop option appears, and allows you to repeat the operation you just undid. These menu
options are equivalent to the and buttons described earlier.

The clean up option rearranges the position of scripts so that they are in a single column, with the same left
margin, and with uniform spacing between scripts. This is a good idea if you can’t read your own project!

The add comment option puts a comment box, like the picture to the right, in the
scripting area. It’s attached to the mouse, as with duplicating scripts, so you position the
mouse where you want the comment and click to release it. You can then edit the text
in the comment as desired.

You can drag the bottom right corner of the comment box to resize it. Clicking the arrowhead at the top left
changes the box to a single-line compact form, as below, so that you can have a number of collapsed comments
in the scripting area and just expand one of them when you want to read it in full.

If you drag a comment over a block in a script, the comment will be attached to the block with a yellow line:

Comments have their own context menu, with obvious meanings:

Back to the options in the menu for the background of the scripting area:

The scripts pic… option saves, or opens a new browser tab with, a picture of all scripts in the scripting area,
just as they appear, but without the grey striped background. Note that “all scripts in the scripting area” means
just the top-level scripts of the current sprite, not other sprites’ scripts or custom block definitions.

Finally, the make a block… option does the same thing as the “Make a block” button in the palettes. It’s a
shortcut so that you don’t have to keep scrolling down the palette if you make a lot of blocks.

112

 Controls in the Costumes Tab
If you click on the word “Costumes” under the sprite controls, you’ll see something like this:

The Turtle costume is always present in every sprite; it is costume number 0. Other costumes can be painted
within Snap!		or imported from files or other browser tabs if your browser supports that. Clicking on a costume
selects it; that is, the sprite will look like the selected costume. Clicking on the paint brush icon opens the
Paint Editor, in which you can create a new costume. Clicking on the camera icon opens a window in
which you see what your computer’s camera is seeing, and you can take a picture (which will be the full size of
the stage unless you shrink it in the Paint Editor). This works only if you give Snap!		permission to use the
camera, and maybe only if you opened Snap!		in secure (HTTPS) mode, and then only if your browser loves you.

 Brian’s bedroom when he’s staying at Paul’s house.

Control-clicking/right-clicking on the turtle picture gives this menu:

In this menu, you choose the turtle’s rotation point, which is also the point from which the turtle draws lines. The
two pictures below show what the stage looks like after drawing a square in each mode; tip (otherwise known as
“Jens mode”) is on the left in the pictures below, middle (“Brian mode”) on the right:

113

As you see, “tip” means the front tip of the arrowhead; “middle” is not the middle of the shaded region, but
actually the middle of the four vertices, the concave one. (If the shape were a simple isosceles triangle instead of
a fancier arrowhead, it would mean the midpoint of the back edge.) The advantage of tip mode is that the
sprite is less likely to obscure the drawing. The advantage of middle mode is that the rotation point of a sprite is
rarely at a tip, and students are perhaps less likely to be confused about just what will happen if you ask the
turtle to turn 90 degrees from the position shown. (It’s also the traditional rotation point of the Logo turtle,
which originated this style of drawing.)

Costumes other than the turtle have a different context menu:

The edit option opens the Paint Editor on this costume. The rename option opens a dialog box in which you
can rename the costume. (A costume’s initial name comes from the file from which it was imported, if any, or is
something like costume5.) Duplicate makes a copy of the costume, in the same sprite. (Presumably you’d do
that because you intend to edit one of the copies.) Delete is obvious. The export option opens a new browser
tab with a picture of the costume. You can then save it to a file, or select a different sprite in the Snap!	 tab,
return to the picture tab, and drag the costume onto the Snap!		tab to copy the costume to another sprite.

You can drag costumes up and down in the Costumes tab in order to renumber them, so that next costume
will behave as you prefer.

 The Paint Editor
Here is a picture of a Paint Editor window:

114

If you’ve used any painting program, most of this will be familiar to you. Currently, costumes you import can
be edited only if they are in a bitmap format (png, jpeg, gif, etc.). There is a vector editor, but it works only for
creating a costume, not editing an imported vector (svg) picture. Unlike the case of the Block Editor, only one
Paint Editor window can be open at a time.

The ten square buttons in two rows of five near the top left of the window are the tools. The top row, from left
to right, are the paintbrush tool, the outlined rectangle tool, the outlined ellipse tool, the eraser tool, and the
rotation point tool. The bottom row tools are the line drawing tool, the solid rectangle tool, the solid ellipse
tool, the floodfill tool, and the eyedropper tool. Below the tools is a row of four buttons that immediately change
the picture. The first two change its overall size; the next two flip the picture around horizontally or vertically.
Below these are a color palette, a greyscale tape, and larger buttons for black, white, and transparent paint.
Below these is a solid bar displaying the currently selected color. Below that is a picture of a line showing the
brush width for painting and drawing, and below that, you can set the width either with a slider or by typing a
number (in pixels) into the text box. Finally, the checkbox constrains the line tool to draw horizontally or
vertically, the rectangle tools to draw squares, and the ellipse tools to draw circles. You can get the same effect
temporarily by holding down the shift key, which makes a check appear in the box as long as you hold it down.
(But the Caps Lock key doesn’t affect it.)

You can correct errors with the undo button, which removes the last thing you drew, or the clear button,
which erases the entire picture. (Note, it does not revert to what the costume looked like before you started
editing it! If that’s what you want, click the Cancel button at the bottom of the editor.) When you’re finished
editing, to keep your changes, click OK.

Note that the ellipse tools work more intuitively than ones in other software you may have used. Instead of
dragging between opposite corners of the rectangle circumscribing the ellipse you want, so that the endpoints of
your dragging have no obvious connection to the actual shape, in Snap!		you start at the center of the ellipse you
want and drag out to the edge. When you let go of the button, the mouse cursor will be on the curve. If you
drag out from the center at 45 degrees to the axes, the resulting curve will be a circle; if you drag more
horizontally or vertically, the ellipse will be more eccentric. (Of course if you want an exact circle you can hold
down the shift key or check the checkbox.) The rectangle tools, though, work the way you expect: You start at
one corner of the desired rectangle and drag to the opposite corner.

Using the eyedropper tool, you can click anywhere in the Snap!		window, even outside the Paint Editor, and the
tool will select the color at the mouse cursor for use in the Paint Editor. You can only do this once, because the
Paint Editor automatically selects the paintbrush when you choose a color. (Of course you can click on the
eyedropper tool button again.)

The only other non-obvious tool is the rotation point tool. It shows in the Paint Editor where the sprite’s
current rotation center is (the point around which it turns when you use a turn block); if you click or drag in the
picture, the rotation point will move where you click. (You’d want to do this, for example, if you want a
character to be able to wave its arm, so you use two sprites connected together. You want the rotation point of
the arm sprite to be at the end where it joins the body, so it remains attached to the shoulder while waving.)

115

The vector editor’s controls are much like those in the bitmap editor. One point of difference is that the
bitmap editor has two buttons for solid and outline rectangles, and similarly for ellipses, but in the vector
editor there is always an edge color and a fill color, even if the latter is “transparent paint,” and so only one
button per shape is needed. Since each shape that you draw is a separate layer (like sprites on the stage), there
are controls to move the selected shape up (frontward) or down (rearward) relative to other shapes. There is a
selection tool to drag out a rectangular area and select all the shapes within that area.

 Controls in the Sounds Tab
There is no Sound Editor in Snap!, and also no current sound the way there’s a current costume for each sprite.
(The sprite always has an appearance unless hidden, but it doesn’t sing unless explicitly asked.) So the context
menu for sounds has only rename, delete, and export options, and it has a clickable button labeled Play or
Stop as appropriate. There is a sound recorder, which appears if you click the red record button ():

The first, round button starts recording. The second, square button stops recording. The third, triangular
button plays back a recorded sound. If you don’t like the result, click the round button again to re-record.
When you’re satisfied, push the Save button. If you need a sound editor, consider the free (both senses)
http://audacity.sourceforge.net.

D. Keyboard Editing
An ongoing area of research is how to make visual programming languages usable by people with visual or
motoric disabilities. As a first step in this direction, we provide a keyboard editor, so that you can create and
edit scripts without tracking the mouse. So far, not every user interface element is controllable by keyboard, and
we haven’t even begun providing output support, such as interfacing with a speech synthesizer. This is an area in
which we know we have a long way to go! But it’s a start. The keyboard editor may also be useful to anyone
who can type faster than they can drag blocks.

 Starting and stopping the keyboard editor
There are three ways to start the keyboard editor. Shift-clicking anywhere in the scripting area will start the
editor at that point: either editing an existing script or, if you shift-click on the background of the scripting area,

116

editing a new script at the mouse position. Alternatively, typing shift-enter will start the editor on an existing
script, and you can use the tab key to switch to another script. Or you can click the keyboard button at the top
of the scripting area.

When the script editor is running, its position is represented by a blinking white bar:

To leave the keyboard editor, type the escape key, or just click on the background of the scripting area.

 Navigating in the keyboard editor
To move to a different script, type the tab key. Shift-tab to move through the scripts in reverse order.

A script is a vertical stack of command blocks. A command block may have input slots, and each input slot
may have a reporter block in it; the reporter may itself have input slots that may have other reporters. You can
navigate through a script quickly by using the up arrow and down arrow keys to move between command
blocks. Once you find the command block that you want to edit, the left and right arrow keys move between
editable items within that command. (Left and right arrow when there are no more editable items within the
current command block will move up or down to another command block, respectively.) Here is a sequence of
pictures showing the results of repeated right arrow keys starting from the position shown above:

You can rearrange scripts within the scripting area from the keyboard. Typing shift-arrow keys (left, right,
up, or down) will move the current script. If you move it onto another script, the two won’t snap together; the
one you’re moving will overlap the one already there. This means that you can move across another script to
get to a free space.

 Editing a script
Note that the keyboard editor focus, the point shown as a white bar or halo, is either between two command blocks
or on an input slot. The editing keys do somewhat different things in each of those two cases.

The backspace key deletes a block. If the focus is between two commands, the one before (above) the blinking
bar is deleted. If the focus is on an input slot, the reporter in that slot is deleted. (If that input slot has a default
value, it will appear in the slot.) If the focus is on a variadic input (one that can change the number of inputs by
clicking on arrowheads), then one input slot is deleted. (When you right-arrow into a variadic input, the focus
first covers the entire thing, including the arrowheads; another right-arrow focuses on the first slot within that
input group. The focus is “on the variadic input” when it covers the entire thing.)

117

The enter key does nothing if the focus is between commands, or on a reporter. If the focus is on a variadic
input, the enter key adds one more input slot. If the focus is on a white input slot (one that doesn’t have a
reporter in it), then the enter key selects that input slot for editing; that is, you can type into it, just as if you’d
clicked on the input slot. (Of course, if the focus is on an input slot containing a reporter, you can use the
backspace key to delete that reporter, and then use the enter key to type a value into it.) When you finish typing
the value, type the enter key again to accept it and return to navigation, or the escape key if you decide not to
change the value already in the slot.

The space key is used to see a menu of possibilities for the input slot in focus. It does nothing unless the focus
is on a single input slot. If the focus is on a slot with a pulldown menu of options, then the space key shows that
menu. (If it’s a block-colored slot, meaning that only the choices in the menu can be used, the enter key will do
the same thing. But if it’s a white slot with a menu, such as in the turn blocks, then enter lets you type a value,
while space shows the menu.) Otherwise, the space key shows a menu of variables available at this point in the
script. In either case, use the up and down arrow keys to navigate the menu, use the enter key to accept the
highlighted entry, or use the escape key to leave the menu without choosing an option.

Typing any other character key (not special keys on fancy keyboards that do something other than
generating a character) activates the block search palette. This palette, which is also
accessible by typing control-F or command-F outside the keyboard editor, or by
clicking the search button floating at the top of the palette, has a text entry field at the
top, followed by blocks whose title text includes what you type. The character key you
typed to start the block search palette is entered into the text field, so you start with a
palette of blocks containing that character. Within the palette, blocks whose titles start
with the text you type come first, then blocks in which a word of the title starts with the
text you type, and finally blocks in which the text appears inside a word of the title.
Once you have typed enough text to see the block you want, use the arrow keys to navigate to that block in the
palette, then enter to insert that block, or escape to leave the block search palette without inserting the block.
(When not in the keyboard editor, instead of navigating with the arrow keys, you drag the block you want into
the script, as you would from any other palette.)

If you type an arithmetic operator (+-*/) or comparison operator (<=>) into the block search text box,
you can type an arbitrarily complicated expression, and a collection of arithmetic operator blocks will be
constructed to match:

As the example shows, you can also use parentheses for grouping, and non-numeric operands are treated as
variables or primitive functions. (A variable name entered in this way may or may not already exist in the script.
Only round and the ones in the pulldown menu of the sqrt block can be used as function names.)

 Running the selected script
Type control-shift-enter to run the script with the editor focus, like clicking the script.

118

E. Controls on the Stage

The stage is the area in the top right of the Snap!		window in which sprites move.

Most sprites can be moved by clicking and dragging them. (If you have unchecked the draggable checkbox for
a sprite, then dragging it has no effect.) Control-clicking/right-clicking a sprite shows this context menu:

The duplicate option makes another sprite with the same scripts, same costumes, etc., as this sprite. The new
sprite starts at a randomly chosen position different from the original, so you can see quickly which is which.
The new sprite is selected: It becomes the current sprite, the one shown in the scripting area. The clone option
makes a permanent clone of this sprite and selects it.

The delete option deletes the sprite. It’s not just hidden; it’s gone for good. The edit option selects the sprite.
It doesn’t actually change anything about the sprite, despite the name; it’s just that making changes in the
scripting area will change this sprite.

The move option shows a “move handle” inside the sprite (the diagonal striped square in the middle):

You can ordinarily just grab and move the sprite without this option, but there are two reasons you might need
it: First, it works even if the “draggable” checkbox above the scripting area is unchecked. Second, it works for
part sprites relative to their anchor; ordinarily, dragging a part moves the entire nested sprite.

The rotate option displays a rotation menu:

You can choose one of the four compass directions in the lower part (the same as in the point in direction block)
or use the mouse to rotate the handle on the dial in 15° increments.

The pivot option shows a crosshair inside the sprite:

119

You can click and drag the crosshair anywhere onstage to set the costume’s pivot point. (If you move it outside
the sprite, then turning the sprite will revolve as well as rotate it around the pivot.) When done, click on the
stage not on the crosshair. Note that, unlike moving the pivot point in the Paint Editor, this technique does not
visibly move the sprite on the stage. Instead, the values of x position and y position will change.

The edit option makes this the selected sprite, highlighting it in the sprite corral and showing its scripting area.
If the sprite was a temporary clone, it becomes permanent.

The export… option saves, or opens a new browser tab containing, the XML text representation of the sprite.
(Not just its costume, but all of its costumes, scripts, local variables and blocks, and other properties.) You can
save this tab into a file on your computer, and later import the sprite into another project. (In some browsers,
the sprite is directly saved into a file.)

Control-clicking/right-clicking on the stage background (that is, anywhere on the stage except on a sprite)
shows the stage’s own context menu:

The stage’s edit option selects the stage, so the stage’s scripts and backgrounds are seen in the scripting area.
Note that when the stage is selected, some blocks, especially the Motion ones, are not in the palette area because
the stage can’t move.

 The show all option makes all sprites visible, both in the sense of the show block and by bringing the sprite
onstage if it has moved past the edge of the stage.

 The pic… option saves, or opens a browser tab with, a picture of everything on the stage: its background, lines
drawn with the pen, and any visible sprites. What you see is what you get. (If you want a picture of just the
background, select the stage, open its costumes tab, control-click/right-click on a background, and export it.)

The pen trails option creates a new costume for the currently selected sprite consisting of all lines drawn on
the stage by the pen of any sprite. The costume’s rotation center will be the current position of the sprite.

F. The Sprite Corral and Sprite Creation Buttons

Between the stage and the sprite corral at the bottom right of the Snap!		window is a dark grey bar containing
three buttons. These are used to create a new sprite. The first button makes a sprite with just the turtle
costume, with a randomly chosen position and pen color. (If you hold down the Shift key while clicking, the
new sprite’s direction will also be random.) The second button makes a sprite and opens the Paint Editor
so that you can make your own costume for it. (Of course you could click the first button and then click the
paint button in its costumes tab; this paint button is a shortcut for all that.) Similarly, the third button
uses your camera, if possible, to make a costume for the new sprite.

In the sprite corral, you click on a sprite’s “thumbnail” picture to select that sprite (to make it the one whose
scripts, costumes, etc. are shown in the scripting area). You can drag sprite thumbnails (but not the stage one) to
reorder them; this has no special effect on your project, but lets you put related ones next to each other, for
example. Double-clicking a thumbnail flashes a halo around the actual sprite on the stage.

120

You can right-click/control-click a sprite’s thumbnail to get this context menu:

The show option makes the sprite visible, if it was hidden, and also brings it onto the stage, if it had moved past
the stage boundary. The next three options are the same as in the context menu of the actual sprite on the
stage, discussed above.

The parent… option displays a menu of all other sprites, showing which if any is this sprite’s parent, and
allowing you to choose another sprite (replacing any existing parent). The release option is shown only if this
sprite is a (permanent, or it wouldn’t be in the sprite corral) clone; it changes the sprite to a temporary clone.
(The name is supposed to mean that the sprite is released from the corral.) The export… option exports the
sprite, like the same option on the stage.

The context menu for the stage thumbnail has only one option, pic…, which takes a picture of everything on
the stage, just like the same option in the context menu of the stage background.

G. Preloading a Project when Starting Snap!

There are several ways to include a pointer to a project in the URL when starting Snap!		in order to load a
project automatically. You can think of such a URL as just running the project rather than as running Snap!,
especially if the URL says to start in presentation mode and click the green flag. The general form is

http://snap.berkeley.edu/run#verb:project&flag&flag…

The “verb” above can be any of open, run, cloud, present, or dl. The last three are for shared projects
in the Snap!		cloud; the first two are for projects that have been exported and made available anywhere on the
Internet.

Here’s an example that loads a project stored at the Snap!		web site (not the Snap!		cloud!):

http://snap.berkeley.edu/run#open:http://snap.berkeley.edu/snapsource/Examples/vee.xml

The project file will be opened, and Snap!		will start in edit mode (with the program visible). Using #run:
instead of #open: will start in presentation mode (with only the stage visible) and will “start” the project by
clicking the green flag. (“Start” is in quotation marks because there is no guarantee that the project includes any
scripts triggered by the green flag. Some projects are started by typing on the keyboard or by clicking a sprite.)

If the verb is run, then you can also use any subset of the following flags:

&editMode Start in edit mode, not presentation mode.
&noRun Don’t click the green flag.
&hideControls Don’t show the row of buttons above the stage (edit mode, green flag, pause, stop).
&lang=fr Set language to (in this example) French.
&noExitWarning When closing the window or loading a different URL, don’t show the browser
 “are you sure you want to leave this page” message.

121

The last of these flags is intended for use on a web page in which a Snap!		window is embedded.

Here’s an example that loads a shared (public) project from the Snap!		cloud:

http://snap.berkeley.edu/run#present:Username=jens&ProjectName=tree%20animation

(Note that “Username” and “ProjectName” are TitleCased, even though the flags such as “noRun” are
camelCased. Note also that a space in the project name must be represented in Unicode as %20.) The verb
present behaves like run: it ordinarily starts the project in presentation mode, but its behavior can be
modified with the same four flags as for run. The verb cloud (yes, we know it’s not a verb in its ordinary use)
behaves like open except that it loads from the Snap!		cloud rather than from the Internet in general. The verb
dl (short for “download”) does not start Snap!		but just downloads a cloud-saved project to your computer as an
.xml file. This is useful for debugging; sometimes a defective project that Snap!		won’t run can be downloaded,
edited, and then re-saved to the cloud.

H. Mirror Sites

If the site snap.berkeley.edu is ever unavailable, you can load Snap!		at any of the following mirror sites:

● http://bjc.edc.org/snapsource/snap.html

● http://media.mit.edu/~harveyb/snap

● http://cs10.org/snap

122

 Appendix A. Snap! color library

Your computer monitor can display millions of colors, but you probably can’t distinguish that many. For
example, here’s red 57, green 180, blue 200: And here’s red 57, green 182, blue 200: You might be
able to tell them apart if you see them side by side: … but maybe not even then.

Color space—the collection of all possible colors—is three-dimensional, but there are many ways to choose the
dimensions. RGB (red-green-blue), the one most commonly used, matches the way TVs and displays produce
color. Behind every dot on the screen are three tiny lights: a red one, a green one, and a blue one. But if you
want to print colors on paper, your printer probably uses a different set of three colors: CMY (cyan-magenta-
yellow). You may have seen the abbreviation CMYK, which represents the common technique of adding black
ink to the collection. (Mixing cyan, magenta, and yellow in equal amounts is supposed to result in black ink, but
typically it comes out a not-very-intense gray instead.) Other systems that try to mimic human perception are
HSL (hue-saturation-lightness) and HSV (hue-saturation-value).

If you are a color professional—a printer, a web designer, a graphic designer, an artist—then you need to
understand all this. It can also be interesting to learn about. For example, there are colors that you can see but
your computer display can’t generate. If that intrigues you, look up color theory in Wikipedia.

 Crayons and Colors
But if you just want some colors in your project, we provide a simple, one-dimensional subset of the available
colors. Two subsets, actually: crayons and colors. Here’s the difference:

The first row shows 100 distinct colors. They have names; this is pumpkin, and this is denim. You’re
supposed to think of them as a big box of 100 crayons. They’re arranged in families: grays, pinks, reds, browns,
oranges, etc. But they’re not ordered within a family; you’d be unlikely to say “next crayon” in a project. (But

look at the crayon spiral on page 126.) Instead, you’d think “I want this to look like a really old-fashioned photo” and so
you’d find sepia as crayon number 33. You don’t have to memorize the numbers! You can find them in a
menu with a submenu for each family.

123

The crayon numbers are chosen so that skipping by 10 gives a box of ten crayons:

Alternatively, skipping by 5 gives a still-sensible set of twenty crayons:

The Snap! block colors (Motion blue, Looks purple, etc.) are included among the crayons.

The set of colors is arranged so that each color is visually near each of its neighbors. Bright and dark colors
alternate for each family. Color numbers range from 0 to 99, like crayon numbers, but you can use fractional
numbers to get as tiny a step as you like:

(“As tiny as you like” isn’t quite true because in the end, your color has to be rounded to integer RGB values for display.)

That’s all you have to know about colors! Crayons for specific interesting ones, colors for gradual transformation
from one color to the next. But there’s a bit more to say, if you’re interested. If not, stop here. (But look at the
samples of the different scales on page 126.)

Both of these scales include the range of shades of gray, from black to white. Since black is the initial pen color, and black isn’t a hue, Scratch and
Snap! users would try to use SET COLOR to escape from black, and it wouldn’t work. By including black in the same scale as other colors, we
eliminate the Black Hole problem if people use only the recommended color scales.

 More about Colors: Fair Hues and Shades
Several of the three-dimensional arrangements of colors use the concept of “hue,” which more or less means
where a color would appear in a rainbow (magenta, at the right, is a long story):

These are called “spectral” colors, after the “spectrum” of rainbow colors. But these colors aren’t equally
distributed. There’s an awful lot of green, hardly any yellow, and just a sliver of orange. And no brown at all.

And this is already a handwave, because the range of colors that can be generated by RGB monitors doesn’t include the true spectral
colors. See Spectral color in Wikipedia for all the gory details.

This isn’t a problem with the physics of rainbows. It’s in the human eye and the human brain that certain
ranges of frequency of light waves are lumped together as named colors. The eye is just “tuned” to recognize a
wide range of colors as green. (See Rods and Cones.) And different human cultures give names to different color
ranges. Nevertheless, in old Scratch projects, you’d say change pen color by 1 and it’d take forever to
reach a color that wasn’t green.

For color professionals, there are good reasons to want to work with the physical rainbow hue layout. But for
amateurs using a simplified, one-dimensional color model, there’s no reason not to use a more programmer-
friendly hue scale:

In this scale, each of the seven rainbow colors and brown get an equal share. (Red’s looks
too small, but that’s because it’s split between the two ends: hue 0 is pure red, brownish
reds are to its right, and purplish reds are wrapped around to the right end.) We call this
scale “fair hue” because each color family gets a fair share of the total hue range. (By the
way, you were probably taught “… green, blue, indigo, violet” in school, but it turns out that color names were different
in Isaac Newton’s day, and the color he called “blue” is more like modern cyan, while his “indigo” is more like modern
blue. See Wikipedia Indigo.)

124

Our color scale is based on fair hues, adding a range of grays from black (color 0) to white (color 14) and also
adding shades of the hue colors. (In color terminology, a shade is a darker version of a color; a lighter version is
called a tint.) Why do we add shades but not tints? Partly because I find shades more exciting. A shade of red

can be dark candy apple red or maroon , but a tint is just some kind of pink . This admitted
prejudice is supported by an objective fact: Most projects are made on a white background, so dark colors stand
out better than light ones.

So, in our color scale, colors 0 to 14 are kinds of gray; the remaining colors go through the fair hues, but
alternating full-strength colors with shades.

This chart shows how the color scales discussed so far are related. Note that all scales range from 0 to 100; the
fair hues scale has been compressed in the chart so that similar colors line up vertically. (Its dimensions are
different because it doesn’t include the grays at the left. Since there are eight color families, the pure, named
spectral colors are at multiples of 100/8=12.5, starting with red=0.)

White is crayon 14 and color 14. This value was deliberately chosen not to be a multiple of 5 so that the every-
fifth-crayon and every-tenth-crayon selections don’t include it, so that all of the crayons in those smaller boxes
are visible against a white stage background.

Among purples, the official spectral violet (crayon and color 90) is the end of the
spectrum. Magenta, brighter than violet, isn’t a pure spectral color at all. (In the
picture at the left, the top part is the spectrum of white light spread out through a
prism; the middle part is a photograph of a rainbow, and the bottom part is a digital
simulation of a rainbow.) Magenta is a mixture of red and blue. (attribution: Wikipedia
user Andys. CC BY-SA.)

The light gray at color 10 is slightly different from crayon 10 just because of roundoff in computing crayon
values. Color 90 is different from crayon 90 because in the purple family the darker color comes first; color and
crayon 95 are the same. Otherwise, the colors, crayons, and (scaled) fair hues all agree at multiples of ten.
These multiple-of-ten positions are the standard RGB primary and secondary colors, e.g., the yellow at color 50
is (255, 255, 0) in RGB. (Gray, brown, and orange don’t have such well-defined RGB settings.)

The colors at odd multiples of five are generally darker shades than the corresponding crayons. The latter are
often official named shades, e.g., teal, crayon 65, is a half-intensity shade of cyan. The odd-five colors, though,
are often darker, since the usable color range in a given family has this as its darkest representative. The pink at
color 15, though, is quite different from crayon 15, because the former is a pure tint of red, whereas the crayon,
to get a more interesting pink, has a little magenta mixed in. Colors at multiples of five are looked up in a table;
other color values are determined by linear interpolation in RGB space. (Crayons are of course all found by table
lookup.)

crayons by 10
crayons by 5
crayons
fair hues
colors
colors by 5
colors by 10

125

 Perceptual Spaces: HSL and HSV
RGB is the right way to think about colors if you’re building or programming a display monitor; CMYK is the
right way if you’re building or programming a color printer. But neither of those coordinate
systems is very intuitive if you’re trying to understand what color you see if, for example, you mix
37% red light, 52% green, and 11% blue. The hue scale is one dimension of most attempts at a
perceptual scale. The square at the right has pale blues along the top edge, dark blues along the
right edge, various shades of gray toward the left, black at the bottom, and pure spectral blue in the
top right corner. Although no other point in the square is pure blue, you can tell at a glance that no other
spectral color is mixed with the blue.

Aside from hue, the other two dimensions of a color space have to represent how much white and/or black is
mixed with the spectral color. (Bear in mind that “mixing black” is a metaphor when it comes to monitors.

There really is black paint, but there’s no such thing as black light.)
One such space, HSV, has one dimension for the amount of color
(vs. white), called saturation, and one for the amount of black,
imaginatively called value. HSV stands for Hue-Saturation-Value.
(I don’t know why they couldn’t think of a more descriptive name.)
The value is actually measured backward from this description; that
is, if value is 0, the color is pure black; if value is 100, then a
saturation of 0 means all white, no spectral color; a saturation of

100 means no white at all. In the square in the previous paragraph, the x axis is the saturation and the y axis is
the value. The entire bottom edge is black, but only the top left corner is white. HSV is the traditional color
space used in Scratch and Snap!. Set pen color set the hue; set pen shade set the value. There was
originally no Pen block to set the saturation, but there’s a set brightness effect Looks block to control
the saturation of the sprite’s costume. (I speculate that the Scratch designers, like me, thought tints were less
vivid than shades against a white background.)

But if you’re looking at colors on a computer display, HSV isn’t really a good match for human perception.
Intuitively, black and white should be treated symmetrically. This is the HSL (hue-saturation-lightness) color
space. Saturation is a measure of the grayness or dullness of a color (how close it comes to being on a
black-and-white scale) and lightness measures spectralness with pure white at one end, pure black at
the other end, and full spectral color in the middle. The saturation number is actually the opposite
of grayness: 0 means pure gray, and 100 means pure spectral color, provided that the lightness is 50,
midway between black and white. Colors with lightness other than 50 have some black and/or white mixed in,
but saturation 100 means that the color is as fully saturated as it can be, given the amount of white or black
needed to achieve that lightness. Saturation less than 100 means that both white and black are mixed with the
spectral color. (Such mixtures are called tones of the spectral color. Perceptually, colors with saturation 100%
don’t look gray: but colors with saturation 75% do:

Note that HSV and HSL both have a dimension called “saturation,” but they’re not the same thing! In HSV,
“saturation” means non-whiteness, whereas in HSL it means non-grayness (vividness).

attribution: Wikipedia user SharkD, CC BY-SA 3.0

126

Although traditional Scratch and Snap! use HSV in programs, they use HSL in the
color picker. The horizontal axis is hue (fair hue, in this version) and the vertical axis
is lightness, the scale with black at one end and white at the other end. It would make
no sense to have only the bottom half of this selector (HSV Value) or only the top half
(HSV Saturation). And, given that you can only fit two dimensions on a flat screen, it
makes sense to pick HSL saturation (vividness) as the one to keep at 100%. (In this fair-hue picker, some colors appear
twice: “spectral” (50% lightness) browns as shades (≈33% lightness) of red or orange, and shades of those browns.)

Software that isn’t primarily about colors (so, not including Photoshop, for example) typically use HSV or HSL,
with web-based software more likely to use HSV because that’s what’s built into the JavaScript programming
language provided by browsers. But if the goal is to model human color perception, neither of these color
spaces is satisfactory, because they assume that all full-intensity spectral colors are equally bright. But if you’re
like most people, you see spectral yellow as much brighter than spectral blue . There are better perceptual
color spaces with names like L*u*v* and L*a*b* that are based on research with human subjects to determine
true visual brightness. Wikipedia explains all this and more at HSL and HSV, where they recommend ditching
both of these simplistic color spaces. ☺

 tl;dr
For normal people, Snap! provides three simple, one-dimensional scales: crayons for specific interesting colors,
colors for a continuum of high-contrast colors with a range of hues and shading, and fair hues for a continuum
without shading. For color nerds, it provides three-dimensional color spaces RGB, HSL, HSV, and fair-hue
variants of the latter two. We recommend “fair HSL” for zeroing in on a desired color.

Colors, no grays. All colors. Just grays.

Fair hues. Crayons.

127

Subappendix: Geeky details on fair hue

The left graph shows that, unsurprisingly, all of the brown fair hues make essentially no progress in real hue, with the orange-brown
section actually a little retrograde, since browns are really shades of orange and so the real hues overlap between fair browns and fair
oranges. Green makes up some of the distance, because there are too many green real hues and part of the goal of the fair hue scale is
to squeeze that part of the hue spectrum. But much of the catching up happens very quickly, between pure magenta at fair hue 93.75
and the start of the purple-red section at fair hue 97. This abrupt change is unfortunate, but the alternatives involve either stealing
space from red or stealing space from purple (which has to include both spectral violet and RGB magenta). The graph has
discontinuous derivative at the table-lookup points, of which there are two in each color range, one at the pure-named-RGB colors at
multiples of 12.5, and the other roughly halfway to the next color range, except for the purple range, which has lookup points at 87.5
(approximate spectral violet), 93.75 (RGB magenta), and 97 (turning point toward the red family). (In the color picker, blue captures cyan
and purple space in dark shades. This, too, is an artifact of human vision.)

The right graph shows the HSV saturation and value for all the fair hues. Saturation is at 100%, as it should be in a hue scale, except
for a very slight drop in part of the browns. (Browns are shades of orange, not tints, so one would expect full saturation, except that
some of the browns are actually mixtures with related hues.) But value, also as expected, falls substantially in the browns, to a low of
about 56% (halfway to black) for the “pure” brown at 45° (fair hue 12.5). But the curve is smooth, without inflection points other than
that minimum-value pure brown.

“Fair saturation” and “fair value” are by definition 100% for the entire range of fair hues. This means that in the browns, the real
saturation and value are the product (in percent) of the innate shading of the specific brown fair hue and the user’s fair
saturation/value setting. When the user’s previous color setting was in a real scale and the new setting is in a fair scale, the program
assumes that the previous saturation and value were entirely user-determined; when the previous color setting was in a brown fair hue
and the new setting is also in a fair scale, the program remembers the user’s intention from the previous setting. (Internal calculations
are based on HSV, even though we recommend HSL to users, because HSV comes to us directly from the JavaScript color
management implementation.) This is why the set pen block includes options for “fair saturation” and so on.

For the extra-geeky, here are the exact table lookup points (fair hue, [0,100]):

and here are the RGB settings at those points:

128

Subappendix: Geeky details on colors
Here is a picture of integer color numbers, but remember that color numbers are continuous.
(As usual, “continuous” values are ultimately converted to integer RGB colors, so there’s really some
granularity.) Colors 0-14 are continuously varying grayscale, from 0=black to 14=white. Colors
14+ε to 20 are linearly varying shades of pink, with RGB Red at color 20.

Beyond that point, in each color family, the multiple of ten color number in the middle is the
RGB standard color of that family, in which each component is either 255 or 0. (Exceptions
are brown, which is of course darker than any of those colors; orange, with its green
component half-strength: [255, 127, 0]; and violet, discussed below.) The following multiple of
five is the darkest color in that family, although not necessarily the same hue as the multiple of
ten color. Colors between the multiple of ten and the following multiple of five are shades of
colors entirely within the family. Colors in the four before the multiple of ten are mixtures of
this family and the one before it. So, for example, in the green family, we have

55 Darkest yellow.
(55, 60) shades of yellow-green mixtures. As the color number increases, both the hue and the lightness (or value, depending on your
 religion) increase, so we get brighter and greener colors.
60 Canonical green, [0, 255, 0], whose W3C color name is “lime,” not “green.”
(60, 65) Shades of green. No cyan mixed in.
65 Darkest green.
(65,70) Shades of green-cyan mixtures.

In the color chart, all the dark colors look a lot like black, but they’re quite different. Here are the darkest colors in each family.

Darkest yellow doesn’t look entirely yellow. You might see it as greenish or brownish. As it turns out, the
darkest color that really looks yellow is hardly dark at all. This color was hand-tweaked to look neither
green nor brown to me, but ymmv.

In some families, the center+5 crayon is an important named darker version of the center color: In the red
family, [0, 128, 0] is “maroon.” In the cyan family, [0, 128, 128] is “teal.” An early version of the color
scale used these named shades as the center+5 color also. But on this page we use the word “darkest”
advisedly: You can’t find a darker shade of this family anywhere in the color scale, but you can find lighter
shades. Teal is color number 73.1, (70 + 5 ∙ !""!!"#

!""!!"
), because darkest cyan, color 75, is [0, 50, 50]. The

color number for maroon is left as an exercise for the reader.

The purple family is different from the others, because it has to include both spectral violet and extraspectral RGB magenta. Violet is
usually given as [128, 0, 255], but that’s much brighter than the violet in an actual spectrum (see page 3). We use [80, 0, 90], a value
hand-tweaked to look as much as possible like the violet in rainbow photos, as color 90. (Crayon 90 is [128, 0, 255].) Magenta, [255, 0,
255], is color 95. This means that the colors get brighter, not darker, between 90 and 95. The darkest violet is actually color 87.5, so it’s
bluer than standard violet, but still plainly a purple and not a blue. It’s [39,0,76]. It’s not hand-tweaked; it’s a linear interpolation
between darkest blue, [0, 0, 64], and the violet at color 90. I determined by experiment that color 87.5 is the darkest one that’s still
unambiguously purple. (According to Wikipedia, “violet” names only the spectral color, while “purple” is the name of the whole color
family.)

Here are the reference points for color numbers that are multiples of five, except for item 4, which is used for color 14, not color 15:

The very pale three-input list blocks are
for color numbers that are odd multiples
of five, generally the “darkest” members
of each color family. (The block colors
were adjusted in Photoshop; don’t ask
how to get blocks this color in Snap!.)

129

Appendix B. APL features

The book A Programming Language was published by mathematician Kenneth E. Iverson in 1962. He wanted a
formal language that would look like what mathematicians write on chalkboards. The then-unnamed language
would later take its name from the first letters of the words in the book’s title. It was little-known until 1964,
when a formal description of the just-announced IBM System/360 in the IBM Systems Journal used APL
notation. (Around the same time, Iverson’s associate Adin Falkoff gave a talk on APL to a New York Association for Computing
Machinery chapter, with an excited 14-year-old Brian Harvey in the audience.) But it wasn’t until 1966 that the first public
implementation of the language for the System/360 was published by IBM. (It was called “APL\360” because
the normal slash character / represents the “reduce” operator in APL, while backslash is “expand.”)

The crucial idea behind APL is that mathematicians think about collections of numbers, one-dimensional
vectors and two-dimensional matrices, as valid objects in themselves, what computer scientists later learned to call
“first class data.” A mathematician who wants to add two vectors writes v1 + v2, not “for i = 1 to length(v1),
result[i]=v1[i]+v2[i].” Same for a programmer using APL.

There are three kinds of function in APL: scalar functions, mixed functions, and operators. A scalar function is
one whose natural domain is individual numbers or text characters. A mixed function is one whose domain
includes arrays (vectors, matrices, or higher-dimensional collections). In Snap!, scalar functions are generally
found in the green Operators palette, while mixed functions are in the red Lists section. The third category,
confusingly for Snap! users, is called operators in APL, but corresponds to what we call higher order functions:
functions whose domain includes functions.

Snap! hyperblocks are scalar functions that behave like APL scalar functions: they can be called with arrays as
inputs, and the underlying function is applied to each number in the arrays. (If the function is monadic, meaning
that it takes one input, then there’s no complexity to this idea. Take the square root of an array, and you are
taking the square root of each number in the array. If the function is dyadic, taking two inputs, then the two
arrays must have the same shape. Snap! is more forgiving than APL; if the arrays don’t agree in number of
dimensions, called the rank of the array, the lower-rank array is matched repeatedly with subsets of the higher-
rank one; if they don’t agree in length along one dimension, the result has the shorter length and some of the
numbers in the longer-length array are ignored. An exception in both languages is that if one of the two inputs
is a scalar, then it is matched with every number in the other array input.)

As explained in Section I.G, this termwise extension of scalar functions is the only APL-like feature built into
Snap! itself, other than an extension of the item block to address multiple dimensions. The APL library extends
the implementation of APL features to include a few missing scalar functions and several missing mixed
functions and operators.

Programming in APL really is very different in style from programming in other languages, even Snap!. This
appendix can’t hope to be a complete reference for APL, let alone a tutorial. If you’re interested, find one of
those in a library or a (probably used) bookstore, read it, and do the exercises. Sorry to sound like a teacher, but
the notation is sufficiently weird as to take a lot of practice before you start to think in APL.

A note on versions: There is a widely standardized APL2, several idiosyncratic extensions, and a successor
language named J. The latter uses plain ASCII characters, unlike the ones with APL in their names, which use
the mathematician’s character set, with Greek letters, typestyles (boldface and/or italics in books; underlined,
upper case, or lower case in APL) as loose type declarations, and symbols not part of anyone’s alphabet, such as

130

⌊ for floor and ⌈ for ceiling. To use the original APL, you needed expensive special computer terminals. (This
was before you could download fonts in software. Today the more unusual APL characters are in Unicode at
U+2336 to U+2395.) The character set was probably the main reason APL didn’t take over the world. APL2
has a lot to recommend it for Snap! users, mainly because it moves from the original APL idea that all arrays
must be uniform in dimension, and the elements of arrays must be numbers or single text characters, to our idea
that a list can be an element of another list, and that such elements don’t all have to have the same dimensions.
Nevertheless, its mechanism for allowing both old-style APL arrays and more general “nested arrays” is
complicated and hard for an APL beginner (probably all but two or three Snap! users) to understand. So we are
starting with the original APL. If it turns out to be wildly popular, we may decide later to include APL2
features.

Here are some of the guiding ideas in the design of the APL library:

Goal: Enable interested Snap! users to learn the feel and style of APL programming. It’s really
worth the effort. For example, we didn’t hyperize the = block because Snap! users expect it to give a single yes-
or-no answer about the equality of two complete structures, whatever their types and shapes. In APL, = is a
scalar function; it compares two numbers or two characters. How could APL users live without the ability to ask
if two structures are equal? Because in APL you can say ∧/,a=b to get that answer. Reading from right to left,
a=b reports an array of Booleans (represented in APL as 0 for False, 1 for True); the comma operator turns the
shape of the array into a simple vector; and ∧/ means “reduce with and”; “reduce” is our combine function.
That six-character program is much less effort than the equivalent

in Snap!. Note in passing that if you wanted to know how many corresponding elements of the two arrays are
equal, you’d just use +/ instead of ∧/. Note also that our APLish blocks are a little verbose, because they include
up to three notations for the function: the usual Snap! name (e.g., flatten), the name APL programmers use when
talking about it (ravel), and, in yellow type, the symbol used in actual APL code (,). We’re not consistent about
it; it didn’t seem necessary to spell out combine (reduce) in naming that block. And LCM (and) is different even
though it has two names; it turns out that if you represent Boolean values as 0 and 1, then the algorithm to
compute the least common multiple of two integers computes the and function if the two inputs happen to be
Boolean. Including the APL symbols serves two purposes: the two or three Snap! users who’ve actually
programmed in APL will be sure what function they’re using, but more importantly, the ones who are reading
an APL tutorial while building programs in Snap! will find the block that matches the APL they’re reading.

Goal: Bring the best and most general APL ideas into “mainstream” Snap! programming style.
Media computation, in particular, becomes much simpler when scalar functions can be applied to an entire
picture or sound. Yes, map provides essentially the same capability, but the notation gets complicated if you
want to map over columns rather than rows. Also, Snap! lists are fundamentally one-dimensional, but real data
often have more dimensions. A Snap! programmer has to be thinking all the time about the convention that we
represent a matrix as a list of rows, each of which is a list of individual cells. That is, row 23 of a spreadsheet is
item 23 of spreadsheet, but column 23 is map (item 23 of _) over spreadsheet. APL treats rows and columns
more symmetrically.

Non-goal: Allow programs written originally in APL to run in Snap! essentially unchanged. For
example, in APL the atomic text unit is a single character, and strings of characters are lists. We treat a text

131

string as scalar, and that isn’t going to change. Because APL programmers rarely use conditionals, instead
computing functions involving arrays of Boolean values to achieve the same effect, the notation they do have for
conditionals is primitive (in the sense of Paleolithic, not in the sense of built in). We’re not changing ours.

Non-goal: Emulate the terse APL syntax. It’s too bad, in a way; as noted above, the terseness of
expressing a computation affects APL programmers’ sense of what’s difficult and what isn’t. But you can’t say
“terse” and “block language” in the same sentence. Our whole raison d’être is to make it possible to build a
program without having to memorize the syntax or the names of functions, and to allow those names to be long
enough to be self-documenting. And APL’s syntax has its own issues, of which the biggest is that it’s hard to use
functions with more than two inputs; because most mathematical dyadic functions use infix notation (the
function symbol between the two inputs), the notion of “left argument” and “right argument” is universal in
APL documentation. The thing people most complain about really doesn’t turn out to be a problem: there is no
operator precedence, like the multiplication-before-addition rule in normal arithmetic notation. Function
grouping is strictly right to left, so 2×3+4 means two times seven, not six plus four. That takes some getting
used to, but it really doesn’t take long if you immerse yourself in APL. The reason is that there are too many
infix operators for people to memorize a precedence table. But in any case, block notation eliminates the
problem, especially with Snap!’s zebra coloring. You can see the grouping from which block is inside which
other block’s input slot. Another problem with APL’s syntax is that it bends over backward not to have reserved
words, as opposed to Fortran, its main competition back then. So the dyadic ○ “circular functions” function
uses the left argument to select a trig function. 1○x is sin(x), 2○x is cos(x), and so on. ‾1○x is arcsin(x). What’s
0○x? Glad you asked; it’s 1− 𝑥!.

 Boolean values
Snap! uses distinct Boolean values true and false that are different from other data types. APL uses 1 and 0,
respectively. The APL style of programming depends heavily on doing arithmetic on Booleans, although their
conditionals insist on only 0 or 1 in a Boolean input slot, not other numbers. Snap! arithmetic functions treat false
as 0 and true as 1, so our APL library tries to report Snap! Boolean values from predicate functions.

 Scalar functions

These are the scalar functions in the APL library. Most of them are straightforward to figure out. The scalar =
block provides an APL-style version of = (and other exceptions) as a hyperblock that extends termwise to arrays.
Join, the only non-predicate non-hyper scalar primitive, has its own scalar join block. 7 deal 52 reports a
random vector of seven numbers from 1 to 52 with no repetitions, as in dealing a hand of cards. Signum of a
number reports 1 if the number is positive, 0 if it’s zero, or -1 if it’s negative. Roll 6 reports a random roll of a
six-sided die. To roll 8 dice, use , which would look much more pleasant
as ?8⍴6. But perhaps our version is more instantly readable by someone who didn’t grow up with APL. All the
library functions have help messages available.

132

 Mixed functions
Mixed functions include lists in their natural domain or range. That is, one or both of its inputs must be a list, or
it always reports a list. Sometimes both inputs are naturally lists; sometimes one input of a dyadic mixed
function is naturally a scalar, and the function treats a list in that input slot as an implicit map, as for scalar
functions. This means you have to learn the rule for each mixed function individually.

The shape of function takes any input and reports a vector of the maximum size of the structure along each
dimension. For a vector, it returns a list of length 1 containing the length of the input. For a matrix, it returns a
two-item list of the number of rows and number of columns of the input. And so on for higher dimensions. If
the input isn’t a list at all, then it has zero dimensions, and shape of reports an empty vector.

Rank of isn’t an actual APL primitive, but the composition ⍴⍴ (shape of shape of a structure), which reports the
number of dimensions of the structure (the length of its shape vector), is too useful to omit. (It’s very easy to type
the same character twice on the APL keyboard, but less easy to drag blocks together.)

Reshape, the dyadic version of the shape function, takes a shape vector (such as shape might report) on the left
and any structure on the right. It ignores the shape of the right input, stringing the atomic elements into a
vector in row-major order (that is, all of the first row left to right, then all of the second row, etc.). It then
reports an array with the shape specified by the first input containing the items of the second:

If the right input has more atomic elements than are required by the left-input shape vector, the excess are
ignored without reporting an error. If the right input has too few atomic elements, the process of filling the
reported array starts again from the first element. This is most useful in the specific case of an atomic right
input, which produces an array of any desired shape all of whose atomic elements are equal. But other cases are
sometimes useful too:

ID ← {(⍵,⍵)⍴1,⍵⍴0}

133

Flatten takes an arbitrary structure as input and reports a vector of its atomic elements in row-major order.
Lispians call this flattening the structure, but APLers call it “ravel” because of the metaphor of pulling on a ball
of yarn, so what they really mean is “unravel.” (But the snarky sound of that is uncalled-for, because a more
advanced version that we might implement someday is more like raveling.) One APL idiom is to apply this to a
scalar in order to turn it into a one-element vector, but we can’t use it that way because you can’t type a scalar
value into the List-type input slot.

Catenate is like our primitive append, with two differences: First, if either input is a scalar, it is treated like a
one-item vector. Second, if the two inputs are of different rank, the catenate function is recursively mapped
over the higher-rank input:

Catenate vertically is similar, but it adds new rows instead of adding new columns.

Integers (I think that’s what it stands for, although APLers just say “iota”) takes a positive integer input and
reports a vector of the integers from 1 to the input. This is an example of a function classed as “mixed” not
because of its domain but because of its range. The difference between this block and the primitive numbers
from block is in its treatment of lists as inputs. Numbers from is a hyperblock, applying itself to each item of its
input list:

Iota has a special meaning for list inputs: The input must be a shape vector; the result is an array with that
shape in which each item is a list of the indices of the cell along each dimension. A picture is worth 103 words,
but Snap! isn’t so good at displaying arrays with more than two dimensions, so here we reduce each cell’s index
list to a string:

Dyadic iota is like the index of primitive except for its handling of multi-dimensional arrays.
It looks only for atomic elements, so a vector in the second input doesn’t mean to search for
that vector as a row of a matrix, which is what it means to index of, but rather to look
separately for each item of the vector, and report a list of the locations of each item. If the
first input is a multi-dimensional array, then the location of an item is a vector with the
indices along each row.

134

In this example, the 4 is in the second row, second column. (This is actually an extension of APL iota, which is
more like a hyperized index of.) Generalizing, if the rank of the second input is less than the rank of the first
input by two or more, then iota looks for the entire second input in the first input. The reported position is a
vector whose length is equal to the difference between the two ranks. If the rank of the second input is one less
than the rank of the first, the reported value is a scalar, the index of the entire second input in the first.

Why the strange design decision to report length+1 when something isn’t found, instead of a more obvious flag
value such as 0 or false? Here’s why:

Note that code has 27 items, not 26. The asterisk at the end is the ciphertext is the translation of all non-
alphabet characters (spaces and the apostrophe in “doesn’t”). This is a silly example, because it makes up a
random cipher every time it’s called, and it doesn’t report the cipher, so the recipient can’t decipher the
message. And you wouldn’t want to make the spaces in the message so obvious. But despite being silly, the
example shows the benefit of reporting length+1 as the position of items not found.

The contained in block is like a hyperized contains with the input order reversed. It reports an array of
Booleans the same shape as the left input. The shape of the right input doesn’t matter; the block looks only for
atomic elements.

However, if the two ranks are equal, then the block is hyperized; each item of the second
input is located in the first input. As the next example shows, only the first instance of each
item is found (e.g., the 1 in position 2, not the 1 in position 4); if an item does not occur in
the left input, what is reported is one more than the length of the left input (here, 8).

135

The blocks grade up and grade down are used for sorting data. Given an array as input, it reports a vector of
the indices in which the items (the rows, if a matrix) should be rearranged in order to be sorted. This will be
clearer with an example:

The result from grade up tells us that item 3 of foo comes first in sorted order, then item 4, then 2, then 1.
When we actually select items of foo based on this ordering, we get the desired sorted version. The result
reported by grade down is almost the reverse of that from grade up, but not quite, if there are equal items in the
list. (The sort is stable, so if there are equal items, then whichever comes first in the input list will also be first in
the sorted list.)

Why this two-step process? Why not just have a sort primitive in APL? One answer is that in a database
application you might want to sort one array based on the order of another array:

This is the list of employees of a small company. (Taken from Structure and Interpretation of Computer Programs by Abelson and Sussman. Creative

Commons licensed.) Each of the smaller lists contains a person's name, job title, and yearly salary. We would like to sort
the employees’ names in big-to-small order of salary. First we extract column 3 of the database, the salaries:

136

Then we use grade down to get the reordering indices:

At this point we could use the index vector to sort the salaries:

But what we actually want is a list of names, sorted by salary:

By taking the index vector from grade down of column 3 and telling item to apply it to column 1, we get what
we set out to find. As usual the code is more elegant in APL: database[⍒database[;3];1].

In case you’ve forgotten, would select the third row of the database; we need
the extra list wrapper to select by columns rather than by rows.

Select (take) or select all but (drop) the first (n>0) or last (n<0) |n| items from a vector, or rows from a matrix.
Alternatively, if the left input is a two-item vector, select rows with the first item and columns with the second.

137

The compress block selects a subset of its right input based on the Boolean values in its left input, which must
be a vector of Booleans whose length equals the length of the array (the number of rows, for a matrix) in the
right input. The block reports an array of the same rank as the right input, but containing only those rows
whose corresponding Boolean value is true. The columns version ⌿ is the same but selecting columns rather
than selecting rows.

A word about the possibly confusing names of these blocks: There are two ways to think about what they do.
Take the standard / version, to avoid talking about both at once. One way to think about it is that it selects
some of the rows. The other way is that it shortens the columns. For Lispians, which includes you since you’ve
learned about keep, the natural way to think about / is that it keeps some of the rows. Since we represent a
matrix as a list of rows, that also fits with how this function is implemented. (Read the code; you’ll find a keep
inside.) But APL people think about it the other way, so when you read APL documentation, / is described as
operating on the last dimension (the columns), while ⌿ is described as operating on rows. We were more than a
month into this project before I understood all this. You get long block names so it won’t take you a month!

Don’t confuse this block with the reduce block, whose APL symbol is also a slash. In that block, what comes to
the left of the slash is a dyadic combining function; it’s the APL equivalent of combine. This block is more
nearly equivalent to keep. But keep takes a predicate function as input, and calls the function for each item of
the second input. With compress, the predicate function, if any, has already been called on all the items of the
right input in parallel, resulting in a vector of Boolean values. This is a typical APL move; since hyperblocks are
equivalent to an implicit map, it’s easy to make the vector of Booleans, because any scalar function, including
predicates, can be applied to a list instead of to a scalar. The reason both blocks use the / character is that both
of them reduce the size of the input array, although in different ways.

The reverse row order, reverse column order, and transpose blocks form a group: the group of reflections of a
matrix. The APL symbols are all a circle with a line through it; the lines are the different axes of reflection. So
the reverse row order block reverses which row is where; the reverse column order block reverses which column
is where; and the transpose block turns rows into columns and vice versa:

138

Except for reverse, these work only on full arrays, not ragged-right lists of lists, because the result of the other
two would be an array in which some rows had “holes”: items 1 and 3 exist, but not item 2. We don’t have a
representation for that. (In APL, all arrays are full, so it’s even more restrictive.)

 Higher order functions

The final category of function is operators—APL higher order functions. APL has no explicit map function,
because the hyperblock capability serves much the same need. But APL2 did add an explicit map, which we
might get around to adding to the library next time around. Its symbol is ¨ (diaeresis or umlaut).

The APL equivalent of keep is compress, but it’s not a higher order function. You create a vector of Booleans
(0s and 1s, in APL) before applying the function to the array you want to compress.

But APL does have a higher order version of combine:

The reduce block works just like combine, taking a dyadic function and a list. The / version translates each row
to a single value; the ⌿ version translates each column to a single value. That’s the only way to think about it
from the perspective of combining individual elements: you are adding up, or whatever the function is, the
numbers in a single row (/) or in a single column (⌿). But APLers think of a matrix as made up of vectors, either
row vectors or column vectors. And if you think of what these blocks do as adding vectors, rather than adding
individual numbers, it’s clear that in

the vector (10, 26, 42) is the sum of column vectors (1, 5, 9)+(2, 6, 10)+(3, 7, 11)+(4, 8, 12). In pre-6.0 Snap!, we’d get
the same result this way:

mapping over the rows of the matrix, applying combine to each row. Combining rows, reducing column vectors.

139

The outer product block takes two arrays (vectors, typically) and a dyadic scalar function as inputs. It reports
an array whose rank is the sum of the ranks of the inputs (so, typically a matrix), in which each item is the result
of applying the function to an atomic element of each array. The third element of the second row of the result is
the value reported by the function with the second element of the left input and the third element of the right
“input. (The APL symbol ◦. is pronounced “jot dot.”) The way to think about this block is “multiplication
table” from elementary school:

The inner product block takes two matrices and two operations as input. The number of columns in the left
matrix must equal the number of rows in the right matrix. When the two operations are + and ×, this is the
matrix multiplication familiar to mathematicians:

But other operations can be used. One common inner product is ∨.∧ (“or dot and”) applied to Boolean matrices,
to find rows and columns that have corresponding items in common.

The printable block isn’t an APL function; it’s an aid to exploring APL-in-Snap!. It transforms arrays to a
compact representation that still makes the structure clear:

Experts will recognize this as the Lisp representation of list structure.

140

Index

! block · 95
variable · 89
#1 · 53

A

a new clone of block · 61
A Programming Language · 129
Abelson, Hal · 4
About option · 85
add comment option · 111
Advanced Placement Computer Science Principles · 89
AGPL · 85
all but first blocks · 91
all but first of block · 37
all but first of stream block · 90
all but last blocks · 91
all of block · 89
Alonzo · 9, 19
anchor · 10
anchor (in my block) · 62
animate block · 96
animation · 12
animation library · 96
anonymous list · 34
Any (unevaluated) type · 56
any of block · 89
Any type · 44
APL · 4, 20, 129
APL character set · 130
APL library · 129
APL2 · 130
APL\360 · 129
Arduino · 76
arithmetic · 11
array, dynamic · 37
arrow, upward-pointing · 47
arrowheads · 34, 47, 53
ask block · 70
assoc block · 89
association list · 72
associative function · 39
at block · 22
attribute · 60
attributes, list of · 62

B

background blocks · 24
Backgrounds… option · 100
backspace key (keyboard editor) · 116
Ball, Michael · 4
bar chart block · 92

bar charts library · 92
base case · 32
bigger data library · 97
BIGNUMS block · 95
binary tree · 35
bitmap · 63, 100
bjc.edc.org · 121
Black Hole problem · 123
block · 6; command · 6; C-shaped · 7; hat · 6; predicate · 12;
reporter · 10; sprite-local · 59

block colors · 123
Block Editor · 29, 30, 43
block library · 33, 88
block picture option · 109
block shapes · 28, 44
block variable · 31
block with no name · 95
blocks, color of · 28
Boole, George · 12
Boolean · 12
Boolean (unevaluated) type · 56
Boolean constant · 12
box of ten crayons · 123
box of twenty crayons · 123
break command · 83
breakpoint · 17, 105
broadcast · 21
broadcast and wait block · 110
broadcast and wait block · 9
broadcast block · 57, 110
brown dot · 9
Build Your Own Blocks · 28
button: pause · 17; recover · 27; visible stepping · 18

C

C programming language · 52
call block · 49, 52
call w/continuation block · 81
camera icon · 112
Cancel button · 114
carriage return character · 22
cascade blocks · 90
case-independent comparisons block · 98
cases block · 92
catch block · 83, 90
catenate block · 133
catenate vertically block · 133
center of the stage · 24
center x (in my block) · 62
center y (in my block) · 62
Chandra, Kartik · 4
Change password… option · 101
change pen block · 93

141

child class · 71
children (in my block) · 62
Church, Alonzo · 9
class · 69
class/instance · 60
clean up option · 111
clear button · 114
clicking on a script · 108
Clicking sound option · 103
clone: permanent · 58; temporary · 58
clone of block · 73
clones (in my block) · 62
cloud (startup option) · 120
Cloud button · 25, 86
cloud icon · 101
cloud storage · 25
CMY · 122
CMYK · 122
codification support option · 104
color chart · 128
color library · 122
color nerds · 126
color numbers · 123
color of blocks · 28
color palette · 114
color picker · 126
color scales · 124
color space · 122
color theory · 122
colors library · 93
combine block · 38
combine block (APL) · 138
command block · 6
comment box · 111
compose block · 90
compress block · 137
Computer Science Principles · 89
cond in Lisp · 92
conditional library: multiple-branch · 92
constant functions · 55
constructors · 35
contained in block · 134
context menu · 106
context menu for the palette background · 107
context menus for palette blocks · 106
continuation · 77
continuation passing style · 78
Control palette · 7
controls in the Costumes tab · 112
controls in the Sounds tab · 115
controls on the stage · 118
control-shift-enter (keyboard editor) · 117
copy of a list · 38
CORS · 76
cors proxies · 76
costume · 6, 8
costume from text block · 91
costumes (in my block) · 62
Costumes tab · 9, 112

costumes, first class · 63
Costumes… option · 100
counter class · 69
CPS · 80
crayons · 122
create var block · 98
Cross-Origin Resource Sharing · 76
crossproduct · 54
cs10.org · 121
C-shaped block · 7, 51
C-shaped slot · 56
CSV (comma-separated values) · 41
CSV format · 22
current block · 76
current date or time · 76
current location block · 93
current sprite · 108
custom block in a script · 110
cyan · 124

D

dangling rotation · 10
dangling? (in my block) · 62
dark candy apple red · 124
data hiding · 57
data structure · 35
data table · 72
data type · 22, 43
date · 76
Dave, Achal · 4
deal block · 131
Debugging · 17, 105
default value · 47
delegation · 71
Delete a variable · 14
delete block definition… option · 107
delete option · 109, 113, 118
delete var block · 98
denim · 122
design principle · 34, 61
devices · 75, 76
dialog, input name · 30
Dinsmore, Nathan · 4
direction to block · 24
dispatch procedure · 69, 70, 72
distance to block · 24
dl (startup option) · 120
do in parallel block · 98
does var exist block · 98
down arrow (keyboard editor) · 116
Download source option · 86
draggable checkbox · 108, 118
dragging onto the arrowheads · 53
drop block · 136
duplicate option · 109, 113, 118
dynamic array · 37

142

E

easing block · 96
easing function · 96
edge color · 115
edit option · 113, 118, 119
edit… option · 107
editMode (startup option) · 120
effect block · 21
ellipse tool · 114
ellipsis · 47
else block · 92
else if block · 92
empty input slots, filling · 50, 52, 54
enter key (keyboard editor) · 117
equality of complete structures · 130
eraser tool · 114
error block · 94
error catching library · 94
escape key (keyboard editor) · 116
Examples button · 86
Execute on slider change option · 103
export block definition… option · 107
Export blocks… option · 88
export option · 113, 119
Export project… option · 88, 89
export… option · 120
expression · 11
eyedropper tool · 114

F

factorial · 32, 55
factorial · 95
fair HSL · 126
fair hue · 93, 126, 127
fair hue table · 127
fair saturation · 127
fair value · 127
Falkoff, Adin · 129
false block · 21
file icon menu · 86
fill color · 115
Finch · 76
find blocks… option · 107
find first · 38
first class data · 129
first class data type · 34
first class procedures · 49
first class sprites · 57
first word block · 91
flag, green · 6
Flat design option · 103
flat line ends option · 104
flatten block · 133
floodfill tool, · 114
focus (keyboard editor) · 116

footprint button · 105
for block · 13, 21, 47, 49, 90
for each block · 23
For this sprite only · 15
formal parameters · 53
frequency distribution analysis library · 97
function, associative · 39
function, higher order · 37, 129
function, mixed · 129, 132
function, scalar · 18, 129
functional programming style · 36

G

generic hat block · 6
generic when · 6
getter · 60
getter/setter library · 95
glide block · 103
global variable · 14, 15
go to block · 24
grade down block · 135
grade up block · 135
graphics effect · 21
gray · 123, 124
green flag · 6
green flag button · 105
green halo · 108
Guillén i Pelegay, Joan · 4

H

halo · 11, 108; red · 53
hat block · 6, 29; generic · 6
help… option · 106, 109
help… option for custom block · 107
hexagonal blocks · 29, 44
hexagonal shape · 12
hide and show primitives · 17
hide option · 106
hide primitives option · 107
hide var block · 98
hide variable block · 17
hideControls (startup option) · 120
higher order function · 37, 54, 129, 138
higher order procedure · 50
hint · 48
histogram · 97
Hotchkiss. Kyle · 4
HSL · 122, 125
HSL color · 93
HSV · 122, 125
HSV block · 93
HTML (HyperText Markup Language) · 75
HTTP · 76
HTTPS · 76, 112
Hudson, Connor · 4

143

hue · 123
Huegle, Jadga · 4
Hummingbird · 76
Hummingbird library · 99
Hyperblocks · 18, 129
Hz for block · 97

I

IBM System/360 · 129
ice cream · 87
icons in title text · 48
id block · 55
identity function · 55
if block · 12
if do and pause all block · 90
if else block · 55
if else reporter block · 21
ignore block · 90
imperative programming style · 36
Import… option · 88
in front of block · 37
in front of stream block · 90
index of block (APL) · 133
index variable · 21
indigo · 123
infinite precision integer library · 95
Ingalls, Dan · 4
inherit block · 61
inheritance · 57, 71
inner product block · 139
input · 6
input list · 52, 53
input name · 53
input name dialog · 30, 43
Input sliders option · 102
input-type shapes · 43
instance · 69
integers block · 133
interaction · 15
internal variable · 47
iota block · 133
is _ a _ ? block · 22
is flag block · 22
item 1 of block · 37
item 1 of stream block · 90
item block · 129
item of block · 20
iteration library · 90
Iverson, Kenneth E. · 4, 129

J

jaggies · 63
Java programming language · 52
JavaScript · 22, 126
jigsaw-piece blocks · 28, 44

JSON (JavaScript Object Notation) file · 42
JSON format · 22
jukebox · 9

K

Kay, Alan · 4
key:value: block · 93
keyboard: piano · 24
keyboard editing button · 109
keyboard editor · 115
keyboard shortcuts · 86
key-value pair · 72

L

L*a*b* · 126
L*u*v* · 126
lambda · 51
lang= (startup option) · 120
Language… option · 102
last blocks · 91
layout, window · 5
Leap Motion · 76
LEAP Motion library · 99
left arrow (keyboard editor) · 116
Lego NXT · 76
length of text block · 24
let block · 94
letter (1) of (world) block · 91
lexical scope · 69
Libraries… option · 89
library: block · 33
license · 85
Lieberman, Henry · 61
Lifelong Kindergarten Group · 4
lightness · 125
line break in block · 48
line drawing tool · 114
linked list · 37
Lisp · 20
list ➔ sentence block · 91
list ➔ word block · 91
list block · 34
list copy · 38
list library · 89
list of procedures · 54
List type · 44
list view · 39
list, linked · 37
list, multi-dimensional · 18
listify block · 93
lists of lists · 35
little people · 32, 80
loading saved projects · 26
local state · 57
location-pin · 15

144

Login… option · 101
Logo tradition · 91
Logout option · 101
Long form input dialog option · 103
long input name dialog · 43

M

magenta · 123, 124
Make a block · 28
Make a block button · 106
make a block… option · 111
Make a list · 34
Make a variable · 14
make internal variable visible · 47
Maloney, John · 4
map block · 49
map library · 98
map over stream block · 90
map to code block · 104
map-pin symbol · 59
maroon · 124
Massachusetts Institute of Technology · 4
mathematicians · 129
matrices · 129
matrix multiplication · 139
McCarthy, John · 4
media computation · 19, 130
Media Lab · 4
media.mit.edu · 121
memory · 16
message · 57
message passing · 57, 70
method · 57, 59, 70
methods table · 72
micro:bit · 99
microphone · 66
microphone block · 66
middle option · 112
mirror sites · 121
MIT Artificial Intelligence Lab · 4
MIT Media Lab · 4
mixed function · 129, 132
monadic negation operator · 24
Morphic · 4
Motyashov, Ivan · 4
move option · 118
multiple input · 47
multiple-branch conditional library · 92
multiplication table · 139
multiplication, matrix · 139
mutation · 36
mutators · 35
my block · 57, 60

N

name: input · 53
name (in my block) · 62
name box · 108
negation operator · 24
neighbors (in my block) · 62
nested calls · 54
Nesting Sprites · 10
new costume block · 64
new line character · 48
New option · 86
new sound block · 68
new sprite button · 8
newline character · 22
Nintendo · 76
noExitWarning (startup option) · 120
nonlocal exit · 83
normal people · 126
noRun (startup option) · 120
Number type · 44
numbers from block · 23

O

object block · 57
Object Logo · 61
object oriented programming · 57, 69
Object type · 44
objects, building explicitly · 69
Obsolete! blocks · 107
of block · 24
of costume block · 63
open (startup option) · 120
Open… option · 86
operator (APL) · 129, 138
orange oval · 13
other clones (in my block) · 62
other sprites (in my block) · 62
outer product block · 139
outlined ellipse tool · 114
outlined rectangle tool · 114
oval blocks · 28, 44

P

paint brush icon · 112
Paint Editor · 112
Paint Editor window · 113
paintbrush tool · 114
Paleolithic · 131
palette · 6
palette area · 106
palette background · 107
Parallax S2 · 76
parallelism · 8, 36
parallelization library · 98

145

parent (in my block) · 62
parent attribute · 61
parent class · 71
parent… option · 120
partial compilation · 97
parts (in my block) · 62
parts (of nested sprite) · 10
pause all block · 17, 105
pause button · 17, 105
pen block · 93
pen down? block · 22
pen trails block · 21
pen trails option · 119
pen vectors block · 21
permanent clone · 58, 120
physical devices · 75
piano keyboard · 24
pic… option · 119, 120
pink · 124
pivot option · 118
pixel · 63
pixel, screen · 22
pixels library · 96
Plain prototype labels option · 103
play block · 97
play sound block · 9
playing sounds · 9
plot bar chart block · 92
plot sound block · 97
point towards block · 24
points as inputs · 24
polymorphism · 59
position block · 98
Predicate block · 12
preloading a project · 120
present (startup option) · 120
presentation mode button · 105
primitive block within a script · 109
printable block · 91, 139
procedure · 12, 50
Procedure type · 56
procedures as data · 9
product block · 89
project control buttons · 105
Project notes option · 86
Prolog · 20
prototype · 29
prototype hint · 48
prototyping · 60, 72
pulldown input · 45
pumpkin · 122
purple · 124

R

rainbow · 123
rank · 129
rank of block · 132

ravel block · 130
read-only pulldown input · 45
receivers… option · 110
recover button · 27
rectangle tool · 114
recursion · 31
recursive call · 52
recursive operator · 55
red halo · 52, 53, 109
redo button · 109
redrop option · 111
reduce block · 137, 138
Reference manual option · 86
relabel… option · 109, 110
release option · 120
remove duplicates from block · 89
rename option · 113
renaming variables · 15
repeat block · 7, 51
repeat blocks · 90
repeat until block · 12
report block · 32
Reporter block · 10
reporter if block · 12
reporter if else block · 21
reporters, recursive · 32
Reset Password… option · 101
reshape block · 132
reverse block · 89, 137
reverse columns block · 137
Reynolds, Ian · 4
RGB · 122
RGB block · 93
right arrow (keyboard editor) · 116
ring, gray · 37, 50, 52
ringify · 50
ringify option · 110
Roberts, Eric · 32
robots · 75, 76
rods and cones · 123
roll block · 131
Romagosa, Bernat · 4
rotation buttons · 108
rotation point tool · 114
rotation x (in my block) · 62
rotation y (in my block) · 62
run (startup option) · 120
run block · 49, 52
run w/continuation · 83

S

safely try block · 94
sample · 66
saturation · 125
Save as… option · 88
Save option · 88
save your project in the cloud · 25

146

scalar = block · 131
scalar function · 18, 129, 131
scalar join block · 131
Scheme · 4
Scheme number block · 95
scope: lexical · 69
Scratch · 5, 9, 28, 34, 35, 36, 43
Scratch Team · 4
screen pixel · 22
script · 5
script pic · 31
script pic… option · 109
script variables block · 15, 70
scripting area · 6, 108
scripting area background context menu · 110
scripts pic… option · 111
search bar · 87
search button · 106
secrets · 85
select block · 137
selectors · 35
self (in my block) · 62
send block · 21
senders… option · 110
sensors · 75
sentence ➔ list block · 91
sentence library · 91
separator: menu · 46
sepia · 122
Servilla, Dylan · 4
set block · 15
set flag block · 22, 95
set pen block · 93, 122
set pen color blocks · 93
set pen to crayon block · 93, 94, 122
set value block · 95
set var block · 98
setter · 60
setting block · 95
settings icon · 102
shade · 124
shape of block · 132
shapes of blocks · 28
shift-arrow keys (keyboard editor) · 116
Shift-click (keyboard editor) · 115
shift-clicking · 85
shift-enter (keyboard editor) · 116
Shift-tab (keyboard editor) · 116
shortcut · 111, 119
shortcuts: keyboard · 86
show all option · 119
show option · 120
show primitives option · 107
show stream block · 90
show var block · 98
show variable block · 17
shown? block · 22
shrink/grow button · 105
sieve block · 90

signum block · 131
Signup… option · 101
simulation · 57
sine wave · 67
Single input · 47
single stepping · 18
slider: stepping speed · 18
Smalltalk · 20
snap block · 96
Snap!		logo menu · 85
Snap!		manual · 109
Snap! program · 5
Snap! website option · 86
snap.berkeley.edu · 86
solid ellipse tool · 114
solid rectangle tool · 114
sophistication · 56
sort block · 89
sound · 66
sound manipulation library · 97
sounds (in my block) · 62
sounds, first class · 63
Sounds… option · 101
source files for Snap! · 86
space key (keyboard editor) · 117
speak block · 96
special form · 56
spectral colors · 123
speech synthesis library · 96
split block · 22, 75
spreadsheet · 130
sprite · 6, 57
sprite appearance and behavior controls · 108
sprite corral · 8, 119
sprite creation buttons · 119
sprite nesting · 10
sprite-local block · 59
sprite-local variable · 14, 15
squiral · 13
stack of blocks · 6
stage · 6, 57
stage (in my block) · 62
stage blocks · 24
Stage resizing buttons · 105
Stage size… option · 102
Stanford Artificial Intelligence Lab · 4
starting Snap! · 120
Steele, Guy · 4
stop all block · 105
stop block · 24
stop block block · 32
stop button · 105
stop script block · 32
stop sign · 8
stop sign, square · 6
Stream block · 90
stream library · 90
Stream with numbers from block · 90
stretch block · 64

147

string processing library · 98
Structure and Interpretation of Computer Programs · 4
submenu · 46
substring block · 98
sum block · 89
Super-Awesome Sylvia · 76
Sussman, Gerald J. · 4
Sussman, Julie · 4
switch in C · 92
symbols in title text · 48
synchronous rotation · 10
system getter/setter library · 95

T

tab character · 22
tab key (keyboard editor) · 116
table · 139
table view · 39
take block · 136
teal · 124
temporary clone · 58, 119
Terms of Service · 26
termwise extension · 129
text costume library · 91
text input · 9
Text type · 44
text-based language · 104
Thinking Recursively · 32
thread · 84
thread block · 84
Thread safe scripts option · 104
throw block · 90
thumbnail · 108
time · 76
tint · 124
tip option · 112
title text · 30
to block · 24
tool bar · 6
tool bar features · 85
touching block · 24
transient variable · 16
translation · 102
translations option · 31
transparency · 63
transparent paint · 115
transpose block · 137
true block · 21
Turbo mode option · 103
Turtle costume · 9, 112
turtle’s rotation point · 112
two-item (x,y) lists · 24
type · 22

U

undo button · 109, 114
undrop option · 111
unevaluated procedure types · 45
unevaluated type · 56
Unicode · 130
Uniform Resource Locator · 75
unringify · 50, 70
unringify option · 110
Unused blocks… option · 88
up arrow (keyboard editor) · 116
upvar · 47
upward-pointing arrow · 47
url block · 75, 93
USE BIGNUMS block · 95
use case-independent comparisons block · 98
user interface elements · 85
user name · 25

V

value · 125
value at key block · 93
var block · 98
variable · 13, 60; block · 31; global · 14; renaming · 15; script-local ·

15; sprite-local · 14, 15; transient · 16
variable watcher · 14
variable-input slot · 52
variables in ring slots · 50
variables library · 98
variadic input · 34, 47
variadic library · 89
vector · 100
vector editor · 115
vectors · 129
video on block · 64
violet · 124
visible stepping · 33, 105
visible stepping button · 18
visible stepping option · 103
visual representation of a sentence · 91

W

wardrobe · 9
warp block · 108
watcher · 15
Water Color Bot · 76
web services library · 93
when I am block · 21
when, generic · 6
white · 124
white background · 124
whitespace · 22
Wiimote · 76
window layout · 5

148

with inputs · 50
word ➔ list block · 91
word and sentence library · 91
world map library · 98
World Wide Web · 75
write block · 21
writeable pulldown inputs · 45

X

X position · 11
X11/CSS color names · 93
Xerox PARC · 4

Y

Y position · 11
yield block · 84
Yuan, Yuan · 4

Z

zebra coloring · 11
Zoom blocks... option · 102

