SECOND EDITION

Arnaud Lauret

Foreword by Kin Lane

/ll MANNING

! DEFINE | | DEVELOP —8m TEST .—», DEPLOY ‘—». PROVIDE/CONSUME
t Modi‘c\/ J

This book focuses on the Design stage of the API lifecycle. It doesn’t cover business or IT strategies
for creating an API, defining its objectives, or desired business or IT outcomes. The book also excludes
implementation code, architecture, tests, and deployment concerns, such as API developer portal
resources like documentation. However, it explains how other stages can use the work and artifacts

created during Design.

Natural language Programming language Standard AP .. To facilitate desion
(shave) ""-: (POST /statuses) deseription aco'rma{ s and next stages
'_____(’\\ 5. E ’." ? "?____
| DEFINE] (:7 DESIGN [: h_D_E!E‘_’O_P_;‘
v ' _____
Identify Design the Deseribe the Envich the |___'_F_E_SI__-_|"\
the AP [programming [F89 programming AP design 1_ DEPLOY |
capabilities interface interface artifacts T PROVIDEY
- - 4_CONSIME
DESIGN LAYERS
The s{:ages/:ac{:ivi{:ies L A versatile AP| design that does the vight job j A
we'll 40 though Final deliverable
|; An AP[design that is usev-—friendly and interoperable \ and supporting
L {ools and artifacts
Lo e C An API deslgn H\a{ Covmdevs Lons{:\ram{',s '
¢ (context, seturity, efficienty, a-?_’? _________ J
The perspe c{ives backward—com\aahbnln{:y, and e%'l:ehsnbulrlzy) API desih LA\
we'll eonsider [A veasoned and ontinuously improving AP| design protess toolbox Reuse atross APls

This book’s methodology breaks down the design process in a step-by-step, layered approach to address one
main problem at a time, facilitating learning and execution.

Praise for the first edition

Stop scouring the internet for information, it's in this book! A great resource for all skill levels on
designing a Web API.

—Shayn Cornwell, Senior Software Consultant at XeroOne Systems LLC

Answers nagging and complicated questions with a simple philosophy, and never tries to hide
anything from you. A fantastic introduction to the field.

—Bridger Howell, Software Engineer at Social Finance

A strong, structured, and well documented resource the community lacked.

—George Onofrei, Web Developer at DevEx Solutions

A journey from novice to professional for developing Web APIs that are robust, friendly, and easy to
consume.

—Mohammad Ali Bazzi, Lead Software Architect at Seek

A must-read for API programmers and architects.

—Sanjeev Kumar Jaiswal, Lead Security Engineer at Gainsight

Finally, a systematic approach to API design.

—TJavier Collado, Backend Engineer at Constructor.io

1The Design
of Web APIs,
Second Ldition

ARNAUD LAURET
FOREWORD BY KIN LLANE

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2025 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The authors and publisher have made every effort to ensure that the information in this book
was correct at press time. The authors and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

/I/I Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical editor: Jeremy Glassenberg
PO Box 761 Review editor: Aleksandar Dragosavljevi¢
Shelter Island, NY 11964 and Kishor Rit

Production editor: Andy Marinkovich
Copy editor: Tiffany Taylor
Proofreader: Jason Everett

Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

ISBN: 9781633438149
Printed in the United States of America

www.manning.com

To all API designers: it’s dangerous to go alone! Take this.

contents

Joreword xxvii

preface xxix

acknowledgments — xxxi

about this book xxxiii

about the author xxxvii

about the cover illustration xxxviit

What is API design? 1
1.1 Whatisaweb API? 2

A web API is a remote interface for applications 2 = A web API uses
the HT'TP protocol 3 = A web API is an interface to an
implementation 4 = A web API is an interface for others 5

1.2 Why does the design of any API matter? 6

What if a terrible APl was a kitchen appliance? 6 = Poor web APl
design affects developers and architecture 7 = Poor web API design
puts security and infrastructure at risk 8 = Poor web API design
affects end-user and third-party experiences 9 = Taking care of
design unleashes the power of APIs 9

1.3 When to design web APIs? 10

Any new API must be designed 10 = Any modification of any
existing API must be designed 11 = Design happens between
choosing to create an API and coding it 11

viii CONTENTS

1.4 Who designs web APIs? 12
The three profiles needed to design an API 13 = The stakeholders
influencing API design 13

1.5 How do we design web APIs? 14

1.6 Designing APIs step by step 15
Identifying the API capabilities 15 = Designing the programming
interface 15 = Describing the programming interface 16
Enriching API design artifacts 16

1.7 Designing APIs layer by layer 16

Designing a versatile API that does the right job 16 = Designing a
user-friendly and interoperable API 17 = Integrating constraints
in an API design 17 = Using a reasoned and continuously
improving design process 18

PART 1 FUNDAMENTALS OF API DESIGN ..ccveeeecerccesceencees 21

Identifying API capabilities 23

2.1 An overview of identifying API capabilities 24
Starting with the output of the Define stage 25 = Analyzing what
users need to achieve 26 = Identifying versatile operations to
achieve use cases 26 = Keeping programming interface design
concerns for later 27 = Clarifying the subject matter and
input 27

2.2 Introducing the API Capabilities Canvas 28
How does the API Capabilities Canvas work? 29 = Tools to use
along with the API Capabilities Canvas 30

2.3 Walking the nominal paths 31

Identifying users 32 = Listing use cases 32 = Decomposing use
cases in steps 33 = Determining inputs and success outcomes 33
Spotting missing elements with sources and usages 34 = Analyzing
the spotted elements 34

2.4 Walking the alternative and failure paths 35

Analyzing failures for each step 36 = Adding alternative
branches on each use case 37 = Analyzing the alternative users
and use cases 38

2.5 Refining steps to identify operations 38

Differentiating steps and operations 38 = Identifying unique and
versatile operations 39

CONTENTS

2.6 Focusing on the proper needs 40

Staying within the Define stage’s needs scope 40 = Focusing on
the proper perspectives 41 = Asking why to investigate any
problem 41

2.7 Avoiding integrating too specific consumers’
perspective 41
Avoiding mapping consumers’ Ul 42 = Avoiding integrating
consumers’ business logic 42

2.8 Avoiding exposing the provider’s perspective 43

Avoiding exposing the provider’s data organization 43 = Avoiding
exposing the provider’s business logic 44 = Avoiding exposing the
provider’s software architecture 45

Observing operations from the REST angle 49

3.1 An overview of programming interface design 50

Introducing the basics of the HI'I'P protocol 51 = Introducing the
basics of REST APIs 52 = Contrasting REST with non-HTTP-
compliant web APIs 53 = How do we design a REST programming
interface? 53 = Why not discuss HI'TP and REST when
identifying capabilities? 54

3.2 Observing the API Capabilities Canvas from
the REST angle 55
Reorganizing and expanding the API capabilities canvas 56
How to observe operations from the REST angle 57

3.3 Identifying resources and their relations 58

What is a resource? 58 = Identifying an operation’s resource 58
Tweaking an operation’s description to identify resource 59
Identifying resource relations 60 = Using patterns and recipes

to identify resources and relations 60

3.4 Identifying resource actions 61

What is an action, and how can it be identified? 61 = Listing an
action’s inputs 62 = Dealing with the operation’s resource when
listing an action’s inputs 63 = Listing an action’s outpuls 64
Dealing with contradictory successes and failures when listing
outputs 65

Representing operations with HTTP 69
4.1 Representing operations with HTTP 70

What an operation looks like with HT'TP 71 = How to represent
operations with HI'TP 72

4.2

4.3

4.4

4.5

CONTENTS

Representing resources with paths 73

What is a resource path? 73 = Designing meaningful resource
paths 74 = Targeting specific elements with path parameters 74
Showing resource relationships with a hierarchy 75 = Representing
lists and their elements 76

Representing actions with HTTP methods 77

Determining which HI'TP methods to use 77 = Choosing HI'TP
methods to represent actions 78 = Representing search, read,

and delete actions 78 = Representing update actions 79
Representing create actions 79 = Mapping typical operations

to HT'TP 80

Choosing input data locations in HTTP requests 80

Where to put input data in an HT'TP request 80 = An overview of input

data natures 81 = Choosing a location for resource identifiers 82
Choosing a location for resource representations 82 = Choosing a
location for resource modifiers 83 = Hesitating between resowrce
identifiers and modifiers 83 = Choosing input data locations for
typical operations 84

Representing output types with HTTP statuses 84

What is an HT'TP status? 84 = Choosing HTTP statuses
Jor outputs 85 = Choosing successful HI'TP statuses for read
operations 86 = Choosing successful HT'TP statuses for
delete operations 86 = Choosing successful HT'TP statuses for
update operations 87 = Choosing successful HT'TP statuses
for search operations 87 = Choosing successful HI'TP
statuses for create operations 87 = Choosing error HI'T'P
statuses 87 = Ensuring exhaustive error-handling 88
Choosing HTTP statuses for typical operations 89

4.6 Choosing output locations in HTTP responses 90

Where to put data in an HTTP response 90 = Filling the output
data gaps 90 = Choosing output locations 91 = Choosing
output data locations for typical operations 92

4.7 Representing a “do” operation with HTTP 92

Using an action resource 93 = Turning the action into a business
concept 93 = Focusing on the result 94

4.8 Using the REST architectural style principles for

API design 94

Introducing the REST architectural style 94 = Applying REST
principles to API design 95 = Debates about what is (or is not)
REST 96

CONTENTS

Modeling data 99

5.1 An overview of data modeling 100

Which data are we modeling? 102 = Introducing the [SON
portable data format 103 = Modeling data 104

5.2 Designing theoretical resource data models 105

Determining a resource’s structure 105 = Choosing an object
resource’s properties 106 = Choosing a property name and
type 107 = Indicating required properties 107 = Listing
and modeling properties efficiently 108

5.3 Designing inputs and outputs data models 108

Designing a read operation’s inputs and success outputs 108
Designing a search operation’s inputs and success outputs 109
Designing a create operation’s inputs and success outputs 111
Designing an update operation’s inputs and success outputs 112
Designing a delete operation’s inputs and success outputs 113
Designing a temporary error data model 113

5.4 Streamlining input and output data modeling 113

Designing and using the complete, summarized, minimal,

and identifier models 114 = Designing and using the creation,
replacement, and modification models 115 = Modeling data
Jfor “do” operations 116 = Differentiating similarly named
elements 116

5.5 Using data to ensure completeness and proper focus 117

Spotting missing elements by analyzing input sowrces and output
usages 117 = Ensuring complete business error-handling 117
Focusing on the proper elements 118

Describing HTTP operations with OpenAPI 122
6.1 Overview of describing the programming interface 123

Introducing the OpenAPI Specification 124 = Using OpenAPI
during design 125 = Introducing the YAML format 126
Contrasting an OpenAPI document with our API spreadsheet 127
Describing the programming interface while designing it 128

6.2 Authoring OpenAPI documents 129

Introducing the specification-first and code-first approaches 129
Contrasting the specification-first and code-first approaches 130
Picking an OpenAPI editor 131 = Choosing an OpenAPI
version 132 = Choosing between [SON and YAML 132

6.3 Describing HTTP operations with OpenAPI 132

CONTENTS

6.4 Describing resource paths 133
Initiating an OpenAPI document 134 = Describing a path 135
Describing a path with path parameters 135

6.5 Describing operations 136

6.6 Describing operation inputs 138
Describing query parameters and other non-body parameters 138
Describing request bodies 139

6.7 Describing operation output HTTP status codes 140
Describing an output case type with an HT'TP status 141
Dealing with outputs sharing the same HTTP status code 142

6.8 Describing operation output contents 142

Describing response bodies 143 = Dealing with responses without
bodies 144 = Describing response headers 144

Describing data with JSON Schema in OpenAPI 148
7.1 An overview of describing data 149

Introducing J[SON Schema 149 = Contrasting OpenAPI and
JSON Schema with our API spreadsheet 150 = Describing data
while designing it 151
7.2 Authoring a JSON Schema data model in OpenAPI 152
7.3 Adding complete resource data models to the OpenAPI
document 152
Choosing a location for the resource model in the OpenAPI
document 152 = Initiating the resource model description 153
7.4 Describing complete resource data models

with JSON Schema 153

Describing an object 154 = Adding properties to an object 154
Describing an atomic property 155 = Describing an object
property 157 = Describing an array property 158 = Stating
which properties are required 158

7.5 Describing operation input and output data 160
7.6 Describing operation non-body data 161

Describing non-body request parameters with inline schemas 161
Tweaking non-atomic parameter serialization 162 = Describing
response headers with inline schemas 162

7.7 Describing operation body data 163

Using references to resource models in response bodies 163
Deriving the complete resowrce model to create other reusable

CONTENTS xiii

models 165 = Using references to resource models in request
bodies 167 = Mixing inline schema and reference 167

PART 2 USER-FRIENDLY, INTEROPERABLE API DESIGN ...173

Designing user-friendly, interoperable data 175

8.1 The user-friendliness and interoperability layer
of API design 176

Overview of the APl user experience 177 = Which users’ experiences
matter tous? 177 = How API design user-friendliness and
interoperability affect UX 178

8.2 What makes data user-friendly and interoperable? 179

User-friendly data meets user needs 179 = User-friendly data helps
us find and interpret information 179 = User-friendly data limits
consumers’ work 180 = User-friendly data is consistent 180
Interoperable data is consistent and standard 181

8.3 When and how to design user-friendly, interoperable

data 181

Which data must be user-friendly and interoperable? 182 = When
to address user-friendly, interoperable data 182 = How to design
user-friendly, interoperable data 183

8.4 Selecting and crafting ready-to-use data 183

Choosing simple and meaningful but useful data 184

Adding supporting data to ease and secure interpretation 185
Adding processed data to reduce consumer effort 185 = Choosing
well-known or standard resource identifiers 185 = Choosing well-
known or standard data 186

8.5 Choosing user-friendly, interoperable atomic types

and formats 186

Considering formatting numbers as strings 187 = Managing
non-human-readable codes 187 = Managing dates and
times 188

8.6 Organizing data 189

Grouping data with objects 189 = Grouping data with
arrays 191 = Sorting data in arrays and objects 192

8.7 Choosing data granularity and scope 192

Considering relevance, not size 192 = Embedding lists in a
resource model 193 = Modeling embedded resources 194

CONTENTS

8.8 Designing user-friendly names 195

When to design user-friendly names 195 = Designing simple,
clearly organized, concise names 195 = Learning by fixing non-
user-friendly names 196

8.9 Aiming for consistency and standardization 197

Seeking local, domain, or global standardization 197 = Using
well-known or standard identifiers consistently 198 = Defining a
naming pattern for identifiers 198 = Naming, typing, and
structuring consistently 199

Designing user-friendly, interoperable operations 203

9.1

9.2

9.3

9.4

9.5

9.6

What makes operations user-friendly and
interoperable? 204
User-friendly operations expose clear capabilities that meet the
needs 204 = User-friendly operations use user-friendly data and

are helpful 204 = User-friendly, interoperable operations are
consistent and standard 205

When and how to design user-friendly, interoperable
operations 205

When to take user-friendly, interoperable operations into
consideration 206 = How to design user-friendly, interoperable
operations 206

Designing easy-to-understand, guessable operations 207

Combining meaningful resource paths and HT'TP compliance 208
Creating predictable resource paths 208 = Crafting short but
accurate resource paths 209

Requesting easy-to-provide inputs 210
Using typical and HTTP-compliant input locations 210
Mapping inputs to outputs 212 = Requesting well-known

or standard data 212 = Minimizing inputs with default and
server-processed data 213

Returning ready-to-use successful responses 214

Choosing adequate HTTP status and HTTP-compliant data
locations 214 = Returning sufficiently informative data 215

Filtering, sorting, and paginating lists 216
Designing guessable filters that map retwrned data 216
Designing flexible filters 217 = Enabling free search and complex
logic with a q filter 217 = Minimizing filters 218 = Enabling

sort with helpful defaults 218 = Paginating lists 218
Returning filter, sort, and pagination metadata 219

CONTENTS

9.7 Adapting request and response data 220

Handling different data formats 220 = Translating data and
adapting to locale 222 = Tweaking returned data 222

9.8 Handling consumer errors gracefully 223

Limiting consumer errors 223 = Using adequate HT'TP
status codes 224 = Providing informative, problem-solving
feedback 224 = Returning machine-readable feedback 225
Returning an exhaustive list of errors 225 = Using
standards 226

9.9 Avoiding hiding multiple capabilities in a single
operation 227
Reconsidering request and response data granularity 227
Reconsidering an operation’s purpose 228
9.10 Aiming for consistency and standardization 228

Using standardized data consistently 229 = Adopting
standardized behavior consistently 229 = Offering standardized
Sfeatures consistently 230

Designing user-friendly, interoperable operation flows 235
10.1 What makes an operation flow user-friendly
and interoperable? 236

Using user-friendly, interoperable elements 236 = Being designed
as a whole 236 = Being concise and flexible 237 = Meeting user
needs within the flow 237 = Being helpful across operations 238
Aiming for consistency and standardization 238

10.2 When and how to optimize flows 238

When to consider flow optimization 239 = How to optimize
Sflows 239

10.3 Designing concise, error-limiting, flexible flows 240

Introducing the money-transfer use case 240 = Uncovering
operation flow problems 241 = Calling read and search
operations once 242 = Enhancing operations with use-case-specific
Sfeatures 242 = Adding use-case-specific operations 243
Combining operations into a use-case-specific operation 243
Adding use-case-specific output data 244 = Avoiding constraining
consumer flow 245

10.4 Designing flexible data-saving flows 246

Introducing the “Open an account” use case 246
Understanding how data-saving constrains consumer flow 247
Enabling partial data-saving 247 = Carefully aggregating saving

xvi CONTENTS

operations 248 = Smoothing validation and separating it from
completion 249 = Enabling full and partial data-saving
flows 249 = Redirecting the consumer to the finalized

resource 250

Designing user-friendly, interoperable APIs 253

11.1 What makes an API user-friendly and interoperable? 254

Having a clear purpose that meets focused needs 254 = Enabling
discovery and navigation 255 = How to create user-friendly,
interoperable APIs 255

11.2 Creating one or multiple APIs 255

When to discuss API granularity 256 = Identifying independent
sets of operations 256 = Keeping in mind that sub-APlIs can be
related 257

11.3 Clarifying the API’s purpose with its name 258
When to choose an AP name 258 = Choosing an AP name 258
Adding the API name to the API base path 258

11.4 Enabling interoperable API browsing with HTTP
and hypermedia APIs 259

Listing a resource’s operations with the OPTIONS HT'TP
method 260 = Providing pagination, formats, and resources
links with the Link header 260 = Using hypermedia formats for
relations and actions 261 = Using content negotiation to select
hypermedia or plain J[SON format 262 = Ensuring that subject
maller data is always available 262 = Considering browsing
capabilities 263

PART 3 CONSTRAINED API DESIGN ..ceeevcercecerceccscescecesee 207

Designing a secure API 269
12.1 Overview of API security 270

What happens during an API call? 270 = Uncovering design-
related API security problems 272

12.2 When and how to handle security during design 273

When to consider security during API design 273 = How API
design contributes to API security 274

12.3 Exposing only the necessary data and operations 275

What are sensitive operations and data? 275 = Challenging
sensitive and non-sensitive data and operations 276 = Modifying

12.4

12.5

12.6

12.7

12.8

12.9

12.10

CONTENTS xvii

data to make it less sensitive or non-sensitive 276 = Splitting an
operation to separate concerns 277 Separating sensitive
operations in dedicated APIs 277

Ensuring that implemented operations behave according
to context 278
Describing who sees or does what 278 = Describing what list or
search operations return 279 = Describing how inputs narrow
access 279 = Describing all expected implementation checks and
behaviors 280 = Narrowing access by design 280

Ensuring data integrity 281

Corrupting data with regular API calls 281 = Correctly
implementing HT'TP methods 282 = Preventing request
replay 282 = Enabling and enforcing conditional
updates 283

Avoiding protocol- or architecture-based security
problems 284

What may not be secured on an API call over HI'TPS 284
Dealing with sensitive search parameters 285 = Dealing with
sensitiveresource IDs 286 = Integrating data encryption or signing
in the design 286

Limiting consumer access with scopes 287

Limiting access to an operation with a scope 287 = Measuring the
importance of scopes and their design 288

Designing scopes 289

Creating operation-based scopes 289 = Creating resource-,
concept-, or use-case-based scopes 290 = Creating scopes for read
or write operations 291 = Creating end-user- or consumer-based
scopes 291 = Tweaking operation behavior with scopes 292
Deciding which scope types to use 292

Describing scopes with OpenAPI 292
Defining scopes 292 = Using scopes 293

Erroring securely 294

Handling token-related errors 294 = Handling missing scopes or

permissions 294 = Avoiding disclosing implementation details on
server errors 295 = Providing implementation details in response

descriptions in OpenAPI 296 = Enforcing expected error data with
JSON Schema 297

xXviil

CONTENTS

Designing an efficient API 302

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

An overview of API efficiency 303

How an API can be inefficient 303 = When to be concerned
about efficiency 304 = How design contributes to APl
efficiency 305

Optimizing the design only when necessary 305
Ensuring HT'TP configuration efficiency 305 = Limiting APl

usage with rate-limiting 306 = Enhancing response with rate-
limiting headers 307 = Finding the true root cause 307

Focusing on user needs and user-friendliness
to be efficient 307

What we’ve learned so far 308 = Analyzing an inefficient
flow 308 = Optimizing each operation 309 = Rethinking
the flow 310

Enabling caching and conditional readings 311

An overview of caching and conditional readings 311 = Not
letting consumers decide how to cache 312 = Defining caching
policies based on data and context 312 = Returning cache
directives 313 = Retrieving data only when modified 314

Optimizing data volume 314

Enabling resource model selection 315 = Toggling the return of
updated or created resources 316 = Enabling field selection 316
Centralizing redundant data in dedicated operations 317
Considering a partial update over total replacement 317
Contrasting J[SON Merge Patch and JSON Paich for array

updates 318

Optimizing pagination 319
Optimizing page size imits 319 = Choosing cursor- or index-based
pagination 320

Processing multiple elements with bulk or batch
operations 320

Designing bulk operation requests 321 = Optimizing bulk
operation requests 322 = Clarifying a bulk operation error
policy 322 = Designing a mixed response 323 = Designing
an all-or-nothing response 324 = Optimizing bulk request
responses 324 = Partitioning access to bulk operations 325

Considering a separate optimized API 325

CONTENTS xix

Adapting the API design to the context 330

14.1 Integrating context into the API design 331

How context can affect the design of an AP 332 = Seeking
constraints and limitations during design 333 = Challenging
constraints and limitations 333 = Making trade-offs 334

14.2 Dealing with consumer and provider constraints 334

Working around consumer HTTP method limitations 334
Accommodating consumers who are used to different data
Jormats 335 = Managing planned interruptions 336
Ensuring data and URL compatibility 336 = Implementing
partial updates 337

14.3 Handling data and files 337

Collecting data and files in a flow 338 = Sending data and files
with a single call 338 = Retrieving data and files with a single
call 340 = Describing files with OpenAPI 340 = Describing
mixed data and files with OpenAPI 341

14.4 Providing efficient file management features 343

Returning file data only when necessary 343 = Enabling partial
downloads and uploads 343 = Preventing unnecessary uploads 344

14.5 Delegating file downloads and uploads 345

Downloading files from another system 345 = Uploading files to
another system 346

14.6 Notifying consumers about provider-sourced events with a
webhook 347

What is a webhook, and why should we consider using one? 347
Webhooks should be optional 348 = Designing a webhook
operation 348 = Using a standard event format 348
Choosing event data granularity 349 = Designing a secure
webhook 350 = Defining the expected webhook behavior 351
Dealing with webhook failures 351 = Describing a webhook
with OpenAPI 352

14.7 Handling long operations 353

Starting a long operation and monitoring its status with
polling 353 = Using a callback API to avoid polling 354
Describing a callback with OpenAPI 354 = Choosing an
execution mode with the Prefer header 356

14.8 Considering other API types 356

Introducing REST API alternatives 356 = When lo select
an API type 357

CONTENTS

Modifying an API 361

15.1

15.2

15.3

15.4

15.5

15.6

15.7

An overview of API modification concerns 362

What can happen when modifying an API? 363 = Uncovering
API design modification concerns 363 = How to design API
modifications 364

Identifying breaking changes and ensuring backward

compatibility 365

Modifying output data 365 = Modifying input data 367
Modifying resource paths 370 = Modifying operations or their
HTTP methods 370 = Modifying HI'TP statuses 371
Modifying operation flows 371 = Being aware of the invisible
contract 372 = Preventing unintended modifications 372

Identifying security-breaking changes and preventing

breaches 373

Assigning a version to an API 373

Differentiating interface and implementation versioning 374
Choosing an API version identifier 375 = How the API version
can be represented in a request 376 = Choosing how to represent the
API version in a request 377 = When to choose an API version
scheme and representation 377 = Avoiding sub-API-level
versioning 377

Carefully breaking and versioning an API 378

Listing consumers and their types 379 = Checking whether
consumers use what we break 379 = Determining whether it’s
possible to expose multiple API versions 379 = Complying with the
API versioning policy 380 = Balancing effects and benefits of
breaking changes 380 = Accumulating trade-offs or breaking
regularly 380

Creating extensible API designs 381

Designing a user-friendly, interoperable REST API that does
thejob 381 = Learning from past decisions 382 = Using
extensible design patterns 383 = Providing deprecation runtime
information 384

Describing the design modifications with OpenAPI 384

Indicating the API version 384 = Deprecating elements 385
Adding a changelog 386

CONTENTS xxi

PART 4 SCALED AND SIMPLIFIED API DESIGN ..cceeeeceeeeeee 393

Facilitating API design decision-making 395
16.1 Making design decisions confidently and
consistently 396

Ensuring that it’s the right time to make a decision 397
Evaluating the scope of the decision 397 = Deciding based on
trusted past decisions 397 = Deciding based on trusted external
sources 398 = Backing decisions with reasoning and sowrced
information 398 = Explaining out loud 398

16.2 Researching solutions to API design questions 399

Where to research solutions to design questions 399 = Searching and
considering 400 = Using an architectural decision record format 400

16.3 What are API design guidelines? 402
Houw design guidelines can help us 402 = How API design guidelines relate
to API governance 403 = When do we need design guidelines? 403
16.4 What to put in user-friendly API design guidelines 403

Lusting principles and rules 404 = Providing actionable
recipes 404 = Providing ready-to-use artifacts and tools 405
Helping with the API design process 405 = Adding
implementation or architecture considerations 405

16.5 How to build API design guidelines 406

Starting with basic API design guidelines 406 = Considering
existing APIs 407 = Expanding the guidelines when new questions
arise 407 = Ensuring that each rule brings value 408

Carefully modifying API design guidelines 408

Optimizing an OpenAPI document 411
17.1 An overview of OpenAPI document optimization 412
17.2 Defining consistent data models 413

Reusing schemas 413 = Defining subschemas 414 = Targeting
part of a schema with a deep reference 414 = Overriding
descriptions when using a $ref 415 = Creating unique
read-and-write models 416 = Defining a complete schema

Jrom its summary 418 = Considering schema optimizations 419

17.3 Defining consistent parameters 419

Using path-level parameters 419 = Reusing paramelers 420
Defining reusable groups of query parameters 421

17.4 Defining consistent request bodies 422

xxii CONTENTS

17.5 Defining consistent responses 423

Reusing response headers 423 = Reusing responses 424

17.6 Ensuring cross-API consistency with external shared
components 426

Defining a library of reusable components 426 = Using a shared
component in an APl 427 = Ensure that library files are editable
independently 427

17.7 Enhancing API design guidelines 428

Automating API design guidelines 432
18.1 What API linting is and how it can help us 433

Detecting API design and OpenAPI authoring problems 434
Applying guidelines seamlessly and concentrating on user
needs 435

18.2 Using an API linter to automate API design
guidelines 435

Developing linting rules to automate guidelines 435 = Using our
automated guidelines while designing APIs 436 = Choosing an
API linter 436

18.3 Introducing Spectral 437

Linting an OpenAPI document with Spectral CLI 437 = How
Spectral lints an OpenAPI document 438 = Editing Spectral
rulesels 438

18.4 Deciding what API linting rules verify 439

Using our guidelines to create only needed rules 439 = Finding
small problems to solve 440 = Simplifying rules with shared
OpenAPI components 441 = Ensuring appropriate granularity
with a concise name and description 441

18.5 Targeting elements to check in the OpenAPI
documents 442

Starting rule development by targeting the proper elements 442
Targeting any element in the OpenAPI document 443 = Dealing
with references to local or shared components 445 = Creating a
library to target typical elements 445

18.6 Checking element values 447

Performing basic checks on values and keys 447 = Ensuring that
an element is defined 448 = Ensuring that an element is not
defined 449 = Checking references 450 = Checking partial
JSON schemas 451 = Performing cross-element checks 452

CONTENTS xxiii

18.7 Returning helpful feedback when problems
are detected 454

Stating the importance or nature of a problem with a severity 455
Returning problem-solving message 456 = Splitting rules due to
severily or message concerns 457

18.8 Organizing rules 457
18.9 Using our automated guidelines when designing APIs 458

Importing and tweaking the guidelines ruleset 458 = Ignoring
certain problems 459

Enriching API design artifacts 463
19.1 Crafting an API design reference kit 464

What an API design reference kit can contain 465 = Using the kit
to design the API 466 = Using the kit to develop the API 466
Using the kit to test the APl 466 = Using the kit to deploy the
API 466 = Using the kit to provide and consume the APl 467
What we already have and what we may want to add 467

19.2 Providing an overview of the API design with

OpenAPI 468

Adding links to other artifacts and describing the APl 468
Organizing operations around concepts and use cases 469
Describing use cases 470

19.3 Enhancing the precision of data models with JSON
Schema 471
Describing a number or element size range 471 = Describing a
value with pattern, enum, and default 472

19.4 Providing examples to illustrate data and operations 473

Adding property examples with [SON Schema 474 = Adding
examples of parameters, request and response bodies, and headers
with OpenAPI 475 = Authoring accurate and realistic
examples 475 = Sharing OpenAPI examples across

operations 476 = Connecting examples to each other 477

19.5 Enhancing and adapting artifacts for implementers 478
Embedding implementation notes in artifacts 478 = Enhancing or
adapting OpenAPI for code generation 479

19.6 Considering API mocking or prototyping during
API design 479

Creating a basic mock with OpenAPI 480 = Favoring an early
prototype over a complex mock during design 480

XXiv CONTENTS

19.7 Considering creating functional API tests during
API design 480

Clarifying logic 481 = Smoothing collaboration 481
Designing standard APIs 481

appendix Solutions to the exercises 485

ndex 523

Joreword

The discipline of web API design has been maturing for well over a decade, and each
edition of The Design of Web APIs by Arnaud Lauret provides a milestone marker for
this collective API journey. To help you properly absorb and apply what you are about
to read, you need to understand that the seeds of the specifications and techniques
put forth by Arnaud in this book emerged between 2010 and 2015, when he began to
help properly document this movement in character as the API Handyman. There is
nobody better to learn API design from than Arnaud Lauret, and no better time to be
implementing it.

I personally watched Arnaud dissect HTTP, OpenAPI, JSON Schema, and the
other essential building blocks of the API economy between 2015 and 2019. As the
API Handyman, he went deep down the API design rabbit hole and returned with the
first edition of The Design of Web APIs. Now Arnaud has done it again, aligning his
expertise in the pragmatic real-world design of the digital resources and capabilities
that are shaping the global business landscape with what enterprises need to tame the
API sprawl they face in 2025.

It does not matter if your teams are producing internal, partner, or public APIs.
Your engineering teams are likely both design-first and code-first when it comes to
delivering web APIs. The Design of Web APIs in 2025 is your guide to modernizing your
digital supply chain, factory floor, and distribution channels. Most traffic on the World
Wide Web is web API traffic, and this is the ubiquitous approach to defining digital
resources and capabilities and delivering modern web, desktop, mobile, device, and
now artificial intelligence application experiences. The second edition of The Design of

XXV

FOREWORD

Web APIs is your handbook not just to design APIs but also to lay a solid foundation for
the governance of those APIs at scale across teams.

There are two types of enterprise organizations today: those investing in ensuring
that their product and engineering teams have the skills they need to design, develop,
deliver, and sustain modern web APIs; and those outsourcing the heart of their busi-
nesses to cloud software vendors. The Design of Web APIs is the book you need to equip
both your product and engineering teams to deliver consistent and standardized web
APIs at scale. This book will help your teams master the most common standardized
aspects of web APIs and will equip them with the skills they need to design and deliver
the parts of your operations that are unique and proprietary to the way your enter-
prise does business.

I have been working exclusively with web APIs since 2010, and Arnaud—the API
Handyman—and 7he Design of Web APIs are always my go-to for the API design knowl-
edge I need to produce APIs and support my customers in producing the hundreds or
thousands of APIs they need to conduct business each day. Without proper design of
web APIs, each new application or integration inside or outside the enterprise becomes
exponentially more expensive and time-consuming to make happen—increasing the
total cost of ownership for every API. If you are just starting your business and are
looking for guidance to make your business supply chain, factory floor, and distribu-
tion channels efficient, or you’ve been in business for many years and would like to
get a handle on API sprawl, The Design of Web APIs has the answers you are looking for.

—KIN LANE, The API Evangelist

preface

My career has spanned more than two decades, mostly in finance, and during that
time I have worked on connecting software across networks using technologies like
FTP, Sun RPC, CORBA, Java RMI, SOAP, and web APIs. I have complained about terri-
ble internal and third-party APIs (web services, RPC, etc.) and created awful ones
myself. I've witnessed how flawed API design causes confusion, prolonged develop-
ment, brittle code, rising technical debt, wasted resources, production crashes, and
security breaches.

As technology evolved, connecting software became easier, especially with web
APIs. The rise of “as a service” products and successful public APIs like Twilio and
Stripe in the 2010s raised expectations for API design and developer experience;
sending SMS messages and money with simple code was a game-changer. It trans-
formed my approach to software and API design: why, I wondered, couldn’t I always
have such a fantastic experience? However, even after the API hype started, many pri-
vate and public web APIs were neglected, just as their predecessors had been. They
were often seen as mere technical plumbing, and well-meaning creators often fell into
common traps that I also encountered.

Attending my first API conference (API Days Paris in late 2014) made me want to
share all I had learned. I created my API Handyman blog, began speaking at confer-
ences, and wrote the first edition of The Design of Web APIs, published in 2019. I origi-
nally intended to explore web API design with REST, GraphQL, and gRPC, but the
book became too lengthy and complex. To teach design principles, I chose to focus
on REST APIs, as they are widely used and rooted in solid principles; this helped me

XXVii

XXViii

PREFACE

address key design issues like meeting needs, usability, security, performance, and
modifications, which apply to all APIs.

In 2025, the first edition of this book is still relevant. Web APIs remain vital across
all industries and are essential for distributed systems, web apps, mobile apps, cars,
kitchen appliances, other applications, and Al. REST APIs are still the most com-
monly used. And the numerous API design reviews, workshops, training sessions, and
API analyses I've conducted make it clear that API design still needs to be taught.
Many, including Al, struggle to understand what designing an API entails and how to
create effective APIs.

So, I quickly agreed to work on a second edition when asked. Since the first edi-
tion, I've gained valuable insights and wanted to include my new and revised knowl-
edge in the book. The first edition can be compared to Terminator and the second to
Terminator 2: Judgment Day: bigger and better. The core story remains (teaching web
API design and focusing on REST APIs, not saving us from Skynet), butit’s a complete
rewrite with more depth and tons of new content. For example, it features an API
design process that ties the book together, emphasizes the importance of communica-
tion with other stakeholders, highlights interoperability as part of usability, simplifies
design decisions, discusses building guidelines and their automation, and includes 70
exercises to reinforce key concepts. My past self would have avoided many problems if
I’d had this book to use as a resource; I hope you find it useful, too!

acknowledgments

Writing this second edition was even more challenging than the first; I wouldn’t have
achieved such a great book alone. I want to thank everyone who made this odyssey
possible.

First and foremost, I want to thank my wife, Cinzia, and my daughter, Elisabetta.
You have always supported me and encouraged me. I love you so much.

Next, I want to thank everyone at Manning Publications, starting with my editor,
Mike Stephens; thank you for believing in the book’s first and second editions. To my
development editor, Marina Michaels: thank you for your help, support, and feed-
back. Thanks also to my technical editor, Jeremy Glassenberg, for his invaluable feed-
back. And thank you to all the Manning production folks—production manager
Aleksandar Dragosavljevi¢, production editor Andy Marinkovich, graphics supervisor
Azra Dedic, copyeditor Tiffany Taylor, proofreader Jason Everett, typesetter Dennis
Dalinnik, and cover designer Marija Tudor—for their efforts in getting this book
ready for publication.

Thank you to all the reviewers for their invaluable and detailed feedback: Adam
Horémpoli, A] Bhandal, Akinwale Habib, Alceu Rodrigues de Freitas Junior, Amol
Gote, Andrei Tarutin, Andres Sacco, Ashwini Gupta, Asif Iqbal, Becky Huett, Dileep
Kumar Pandiya, Elias Rangel, Emmanouil Chardalas, Ernesto Cardenas Cangahuala,
Gabriele Bassi, Harini Shankar, Jeremy Caney, José Alberto Reyes Quevedo,
Kalyanasundharam Ramachandran, Kristina Kasanicova, Lakshminarayanan A. S, Lov
Lalwani, Malik Novruzov, Mihaela Barbu, Mikhail Malev, Mwiza Kumwenda, Naga
Rishyendar Panguluri, Nakul Pandey, Nghia To, Palak Mathur, Richard Meinsen,

XXix

ACKNOWLEDGMENTS

Saidaiah Yechuri, Salahuddin Zaki, Shantanu Kumar, Sridhar Rao Muthineni, Sumit
Bhatnagar, Tede Morgado, Walter Alexander Mata Lopez, Werner Nindl, and Zorodzayi
Mukuya. Your input helped make this a better book.

Thank you to everyone who provided invaluable encouragement and feedback at
various stages. A very special merci beaucoup to Joyce Stack for her feedback on the
early manuscript of the second edition. Also, thanks to all readers of the first edition,
especially Isabelle Reusa and Mehdi Medjaoui, who field-tested and reviewed the early
manuscript.

Finally, thanks to all the API practitioners I have met; I learned a lot from you.
Thanks to Mike Amundsen, Kin Lane, and Mehdi Medjaoui (again) for their encour-
agement and help when I started the API Handyman blog in 2015 and after. A special
thanks to Ivan Goncharov, who, in 2017, forwarded an email from Manning Publica-
tions seeking an author for an API book that later became The Design of Web APIs. This
book wouldn’t exist without all of you.

about this book

The Design of Web APIs, Second Edition was written to help you design new web APIs or
modify existing APIs so that they do the right job; are versatile, secure, and efficient;
address contextual constraints; and facilitate future changes. To do so, this book
uncovers all aspects of API design and equips you with the mindset, processes, and
tools to efficiently do your job in the long run and at scale, working on many APIs and
with other API designers.

Who should read this book?

The Design of Web APIs, Second Edition, is, obviously, for anyone who directly designs
web APIs, but also for people involved in their creation and use. They could be develop-
ers, business analysts, technical writers (involved in the creation of server applications,
microservices, and backends for mobile applications or websites), tech leads, archi-
tects, API governance experts (working at scale on many APIs), or API product owners
(who want to ensure the best possible developer experience). Additionally, developers
using APIs, QA engineers testing APIs, technical writers documenting APIs, and secu-
rity experts requesting modifications may be interested in understanding how APIs
should be designed so they can give constructive feedback to their API providers.

How this book is organized: A roadmap

This book has 4 parts, 19 chapters, and an appendix. Chapter 1 is an introduction to the
entire book. It establishes a shared understanding of web APIs and web API design and
outlines the design process and practices we’ll learn in the following chapters.

xxxii ABOUT THIS BOOK

Part 1 teaches the fundamentals of designing a versatile API that does the
right job:

Chapter 2 explains how to identify the capabilities an API must offer to meet
the requirements exhaustively and adequately.
Chapter 3 introduces REST APIs and teaches how to observe API capabilities to
identify the elements needed to design a REST API: resources, their relations,
and their operations.
Chapter 4 explores how to represent operations with HTTP, including resource
path design, choosing HTTP methods and HTTP statuses, and selecting loca-
tions for data in HTTP requests and responses. It also discusses the REST archi-
tectural style and its benefits for API design.
Chapter 5 discusses modeling data, including resources, path parameters,
query parameters, and request and response headers and bodies.
Chapter 6 shows how to describe HTTP operations using the OpenAPI
Specification.
Chapter 7 explains how to describe data in OpenAPI documents with JSON
Schema.

Part 2 focuses on designing user-friendly, interoperable APIs that developers can use
quickly and seamlessly without complex thinking and coding. It covers these con-
cerns at the data, operation, sequence of operations, and API levels, with one chap-
ter for each:

Chapter 8 introduces the concepts of user-friendliness and interoperability for
APIs and then focuses on data. It explains how to choose, define, type, orga-
nize, and name data so that it is ready to use, consistent, and standard.

Chapter 9 explains how to make operations clear and guessable; have easy-to-
provide inputs and ready-to-use outputs; enable pagination, filtering, and sort-
ing; and handle errors gracefully.

Chapter 10 shows how to design concise, error-limiting, flexible sequences of
operations.

Chapter 11 discusses creating one or multiple APIs, naming APIs, and enabling
API browsing with HTTP and hypermedia.

Part 3 explains how security, efficiency, data, architecture, business, and modification
concerns can constrain our ideal user-friendly, interoperable design that does the
right job:
Chapter 12 covers designing secure APIs, including data sensitivity, secure oper-
ation behavior, data integrity, and controlling access with scopes.
Chapter 13 focuses on efficient API design that doesn’t bother end users or
negatively impact infrastructure. It discusses data volume optimization, cach-
ing, processing multiple elements, and considering separate optimized APIs.

ABOUT THIS BOOK xxxiii

Chapter 14 explores how data, architecture, and business affect our design. It
discusses handling files, long operations, webhooks, and types of APIs other
than REST.

Chapter 15 discusses modifying an API, including how not to break consumers,
versioning, and extensible design.

Part 4 aims to make our API designer job easier and more sustainable in the long term
and at scale, when we’re working on many APIs with colleagues:

Chapter 16 explains how to make design decisions confidently and create user-
friendly API design guidelines.

Chapter 17 discusses optimizing OpenAPI documents for consistency and sim-
plified authoring, including defining reusable elements shared across APIs.
Chapter 18 describes automating guidelines to ensure consistency and free our
minds of details. It illustrates this with Spectral, an API linter.

Chapter 19 discusses enhancing the API design artifacts we’ve created to build a
design reference kit that streamlines our work, ensures accurate implementa-
tion, and supports the following steps of the API lifecycle.

The online appendix contains the solutions to the exercises in the book. I encourage
you to solve them before reading their solutions, which include detailed explanations,
references to relevant sections, and additional comments. It is available in the ePDF,
ePUB, and liveBook versions of the book, as well as via download on the book product
page at www.manning.com/books/the-design-of-web-apis-second-edition.

This book should be read from cover to cover, in order. Each new chapter expands
on what has been learned in previous ones. But after you finish chapters 1-7, you can
jump to any chapter that covers a topic you urgently need to investigate.

About the code

This book contains many examples of source code, both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

You’ll find detailed examples of OpenAPI and JSON Schema in chapters 6, 7, and
11-19. Chapter 18 also contains examples of Spectral rules; you’ll need Node]S and
Spectral version 6 to run them.

You can copy the listings’ source code from the liveBook (online) version of this
book at https://livebook.manning.com/book/the-design-of-web-apis-second-edition.
The complete code for the examples in the book is available for download from the
Manning website at www.manning.com/books/the-design-of-web-apis-second-edition
and in this book’s repository, available at https://github.com/arno-di-loreto/design
-of-web-apis-2e. Both contain the following:

An example of the API Capabilities Canvas from chapter 2 in Google Sheet (via
alink), Excel, and Open Document formats

https://livebook.manning.com/book/the-design-of-web-apis-second-edition
http://www.manning.com/books/the-design-of-web-apis-second-edition
https://github.com/arno-di-loreto/design-of-web-apis-2e
https://github.com/arno-di-loreto/design-of-web-apis-2e
https://github.com/arno-di-loreto/design-of-web-apis-2e
https://www.manning.com/books/the-design-of-web-apis-second-edition

XXXIV

ABOUT THIS BOOK

All OpenAPI, JSON Schema, and Spectral code listings with complete com-
ments and full versions of elements that are truncated in the book

Spectral and OpenAPI files and magic npm run <section number> commands to
quickly run the Spectral rules in each section of chapter 18

liveBook discussion forum

Purchase of The Design of Web APIs, Second Edition includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s exclusive discussion features,
you can attach comments to the book globally or to specific sections or paragraphs.
It’s a snap to make notes for yourself, ask and answer technical questions, and receive
help from the author and other users. To access the forum, go to https://livebook
.manning.com/book/the-design-of-web-apis-second-edition/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website for as long as the book is in print.

Other online resources

If you want to learn more about API design and beyond, I recommend doing the
following:

Subscribe to the API Developer Weekly newsletter at https://apideveloperweekly
.com.

Read posts by Kin Lane, the API Evangelist, at https://apievangelist.com.

Read my API Handyman blog at https://apihandyman.io.

https://livebook.manning.com/book/the-design-of-web-apis-second-edition/discussion
https://livebook.manning.com/book/the-design-of-web-apis-second-edition/discussion
https://livebook.manning.com/book/the-design-of-web-apis-second-edition/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
https://apideveloperweekly.com
https://apideveloperweekly.com
https://apideveloperweekly.com
https://apievangelist.com
https://apihandyman.io

about the author

ARNAUD LAURET is a French software architect and tech enthu-
siast with over two decades of experience. He has spent most of
his career in finance, connecting systems in various ways,
including web APIs. Currently, he is involved in API tooling and
works as an API Industry Researcher at Postman. For the last
decade, he has focused on web APIs—designing, building, and
analyzing APIs, and guiding others in these areas while investigat-
ing the tools, practices, and challenges shaping the API world
across industries. He shares his knowledge on the API Handy-
man blog and at conferences worldwide. Passionate about human-centered design, he
strives to create systems that provide excellent experiences for everyone involved,
from those who build and run them to end users.

about the cover illustration

The figure on the cover of The Design of Web APIs, Second Edition is captioned “Girl
from Drni§, Dalmatia, Croatia.” The illustration is taken from a reproduction of an
album of Croatian traditional costumes from the mid-nineteenth century by Nikola
Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The
illustrations were obtained from a helpful librarian at the Ethnographic Museum in
Split, itself situated in the Roman core of the medieval center of the town: the ruins of
Emperor Diocletian’s retirement palace from around AD 304. The book includes
finely colored illustrations of figures from different regions of Croatia, accompanied
by descriptions of the costumes and of everyday life.

In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

What s API design?

This chapter covers

What are web APIs?

Why web API design matters
When to design web APIs
Who designs web APIs

How to design web APIs

Think about your past experiences with web APIs. Have you struggled with cryptic or
inconsistent naming and typing, poor data organization, or missing data or opera-
tions? Spent hours debugging a failed call that returned a vague “Bad Request”? Have
you dealt with crashes due to data being removed in API responses? Maybe end users
complained about slow performance, only for you to find an API call returning an
entire database table. Or worse, have you discovered an API exposed sensitive data
inappropriately? The root cause is often the same: poor API design.

The design of any web API is crucial, whether it is used by thousands of third
parties or a few internal developers. Poorly designed APIs can negatively affect
developers’ productivity, an I'T system’s performance and integrity, end users’ expe-
rience, and an organization’s revenue. Well-designed APIs give developers and IT

1.1

111

E

CHAPTER 1 What is API design?

systems superpowers and make end users happy, helping individuals, teams, depart-
ments, or organizations achieve their IT-system-dependent goals faster and more effi-
ciently. In this book, we’ll introduce you to techniques and tools that will help you
design web APIs that developers will love to use.

What is a web API?

Our interconnected world relies heavily on web APIs (application programming inter-
faces), which enable communication between applications over a network. They are
essential for websites, mobile applications, and IT systems with different software com-
ponents working together. Web APIs can provide simple programmatic access to any
server application with a few lines of code, enabling the remote triggering of any
action the application can perform: for example, reading or updating a customer’s
address, getting a server’s health information, sending an SMS, or detecting kittens in
a video. APIs don’t require knowledge of the underlying code and logic; as long as
they are authorized to (API security is discussed in section 12.1), anyone can use
them, not just their creators. This section clarifies what a web API is in the context of
this book by discussing four key aspects. A web API is

A remote interface for applications
An HTTP protocol-based interface
An interface to an implementation
An interface we create for others

A web API is a remote interface for applications

A web API enables one application (server, backend, or provider) to expose functions
or operations that other applications (clients or consumers) can use, call, or con-
sume remotely over a network. Figure 1.1 illustrates typical scenarios with the ficti-
tious SOCNET social network (replace with your favorite one).

To share a message on SOCNET, a user of its mobile application takes a photo, types a
message, and taps the Share button. The mobile application then calls the “Share” oper-
ation of SOCNET’s backend web API, sending the message and photo over the internet.
The backend detects friends in the photo and stores the message by invoking internal
server applications via their web API over the local network. Other users can view the
shared message via the SOCNET application or website, which calls the “Timeline” oper-
ation. SOCNET also has a Health Check server application that runs in the cloud, regu-
larly calling the “Timeline” operation to ensure that everything functions correctly.

This example shows that we can retrieve, send, or process data via a web API. How-
ever, web APIs can also affect the real world beyond data. For example, a web API call
can hail a taxi or turn a smart lightbulb on or off.

NOTE A web API enables communication between mobile or web applica-
tions and their backends and between server applications (typically in micro-
service or similar distributed architectures). A web API can provide multiple

112

1.1 Whatis a web API? 3

operations. Multiple applications can access the same web API. An applica-
tion that provides a web API can also consume others. An application con-
suming an API may or may not have end users.

— [nternet
000 == @) \ nebuorkd < B> (O hths//sot net
< SOCNET ;)= SOCNET =
CEON B I . i (A A) | | Trmdes
------------------- P #AP|
I Hello! | SQCN ET --- Server #design
o 3 e gl #4P] b

——

: r. A
X AT 4 \ 4
Clne(n{ aﬂ,hca){w“ ILodal ne{warlk;/ | E o cerer J aH‘J\ cheek
Consumer- applications NEE e
APl calls {
Web AP ---- :

™ Client application

with no end user

Figure 1.1 The SOCNET web API exposed by the backend has operations that can be called by any kind
of application over the internet. The Friends and Messages internal applications also expose web APIs
that can be called over the local network.

A web API uses the HTTP protocol

When an application calls a web API, it uses HTTP (Hypertext Transfer Protocol), the
same thing a web browser uses to retrieve an HTML page of a website; that’s the origin of
the “web” in web APIs. Figure 1.2 shows a call to the “Share” operation of the SOCNET
web API to illustrate what it looks like; we’ll keep the details for section 3.1.

POST /statuses | WTTP | <Q----- What to do and the
/staruses i:li assotiated data
{

' Shave g Timeline
| SOCNET batkend I
B
..... How the protessing went
and resuH:ing ata

Can YYou shave
this, please?

"message": "Hello!",

(2

201 Created

{

midn: "12345",

HTTP

} o vesponse

Figure 1.2 When calling a web API, the consumer sends an HTTP request indicating what to do and
the needed data. Once the request is processed, the server returns an HTTP response indicating how
the processing went and the resulting data.

CHAPTER 1 What is API design?

When using an HTTP-based API, the consumer sends a request containing informa-
tion that describes the action to be performed and the associated data needed to exe-
cute the action. The server returns a response indicating whether the processing went
well and the resulting data. Different types of web APIs exist, such as REST, SOAP,
GraphQL, and gRPC (no worries if those names mean nothing to you); they use
HTTP differently. The figure illustrates a typical REST API call, the type of API we
focus on in this book.

@ NOTE This book focuses on REST APIs because they are the most commonly

113

used type of web API and rely on solid architectural principles (discussed in
section 4.8). These principles can benefit any type of web (and non-web) API.
Additionally, many design principles of this book apply to other APIs. How-
ever, a REST API is not always the adapted solution; alternatives will be briefly
discussed in section 14.8.

A web APl is an interface to an implementation

The term Web APIis often used to refer to an application that exposes an API, but it rep-
resents only part of the application. A web API is an interface to an implementation and
(ideally) conceals implementation details. As shown in figure 1.3, an application provid-
ing a web API can be compared to a restaurant and its consumers to the customers.

@ NOTE The term API consumer, or consumer, can refer to an application con-

suming the API, the developers who create it, and their organization. Simi-
larly, the term API provider, or provider, refers to the application exposing the
API, the developers who create it, and their organization.

order dish RESIAERﬁN_T ______ _.
-t -

CUSTOMERS AITPERSO 1 ! tooks dish KITCHEN \
A sevves dish ; l——————_(_—?)—————’

Only i {':e aet with Onl {:l:. interfac What ha I ns behind

. hzhehinéhca:e N is 5isi'iz|:r) the scen‘zens hidden

M,."” v: vequest “\bo do f:'L
sometl iNg ouamaaay | - — — - —— - — - =)" Q———
tode | CONSUMER o T |
DEVELOPERS |——8>] APPLICATIONS _l Dheet thing IMPLEMENTATION _:
tuens] 0 T T T T o —m— T ————
CONSUMERS/CLIENTS ity PROVIDER APPLICATION/SERVER

Figure 1.3 In a restaurant, we interact only with the waitperson without knowing what’s happening in the
kitchen. An API acts similarly, hiding what’s happening in the implementation.

The API is the waitperson who takes our order and delivers it to us. The implementa-
tion represents everything that occurs in the kitchen. When we order our dish, we

114

cccccccccan,

1.1 Whatis a web API? 5

only interact with the waitperson and don’t need to know who is in the kitchen, the
recipe, the ingredients, how the dish is cooked, or even if it’s cooked there.

SOCNET mobile application developers blissfully ignore API implementation
details when coding the API call to the “Share” operation triggered by the Share but-
ton’s tap. They don’t need to know if microservices are used under the hood, which
database is used, how the data is organized in it, or how friends are identified in the
photo. They only need to code an HTTP call (which all programming languages sup-
port) and send the relevant data (a message and an optional photo). The SOCNET
backend API implementation handles the rest.

NOTE This book focuses on the design of web API interfaces (what is visible
to consumers) and doesn’t discuss their implementation (how they are
architected and coded). This book’s API design principles are applicable
regardless of the architecture and programming language chosen for the
implementation. However, what happens in the implementation may influ-
ence the design of an API (see section 14.1).

A web API is an interface for others

Web APIs can be used by others in addition to their creators; they foster seamless col-
laboration within an organization and with external users. As shown in figure 1.4, the
SOCNET mobile and web teams use the API created by the backend team. To deliver
a robust face-detection feature, the Friends API team uses the Face Detection API
from the Image Processing as a Service (IPaaS) company (for which they pay a sub-
scription). Additionally, SOCNET has set up a Search API for selected partners (will-
ing to pay for access to more data).

WHO CONSUMES | THENIT [AND ALSO
THE API? ISA.. AN ..

Only the provider Peivate APl | Internal API

Seleted third parties | Partner AP

H E%‘Ee\mal AP'
é An\/one* Publie AP

(3 Anyone vespecting the tonditions of use)

Publie API
Fate Detect.

: WHERE IS THE | THEN [T
: AP| EXPOSED? [IS AN ..

Lotal network,
s | inteal 4P

SOCNET
whea._| | L Internet | External AP

...

Figure 1.4 The terms internal, external, private, partner, and public APl may need to be disambiguated so
everyone involved understands each other.

1.2

1.2.1

CHAPTER 1 What is API design?

The APIs involved here represent three levels of API openness or closeness: private
(Backend and Friends APIs), partner (Search API), and public (Face Detection API).
Internal and external may be used to qualify private and partner/public APIs, respectively.
These terms may also indicate that an API is exposed on a local network or the internet.

Most web APIs are private, and hundreds of millions exist because any company
with an IT system must connect its different applications. A private API may be used
by several teams in the organization or only by the team that created it. Even APIs cre-
ated for our team are used by “others”: newcomers, those who didn’t design them, or
our six-month-older self.

Many organizations use partner or public APIs from commercial or open source
software or “as-a-service” companies. These APIs are present in any domain or sector,
such as payroll, retail, financial services, logistics, telecommunications, project man-
agement, software development, cloud infrastructure, or Al. Even not-so-digital com-
panies and government agencies are offering partner or public APIs. Whatever we
need, there’s an API for that.

Why does the design of any API matter?

What APIs can do, what they look like, and their behavior, and hence their design, can
have terrible consequences or invaluable benefits for API consumers, their end users,
and the API providers. To explain why the design of any private, partner, or public API
matters, this section first illustrates fundamental API design flaws using an analogy to
better realize how absurd APIs can be. Then we return to the software world to describe
some consequences of poorly designed APIs and some benefits of well-designed APIs
using quotes from internal or external users of the SOCNET APIs.

What if a terrible API was a kitchen appliance?

Transposing the flaws we may find in APIs to an everyday object can help us and others
realize how absurd the design of our APIs can be and why. The Kitchen Radar in figure
1.5 has an interface that doesn’t help us determine what it is or how to operate it. Press-
ing the MAG. button appears to start it, but it stops when we release the button.

6lass doov =------|E

Dotw handle ------ ———.

P2} Control panel
(interface)

-1---- Push butbn
(needs o be held)

- ,T(ead user manval before first "si-’_l

Y

Figure 1.5 The cryptically named Kitchen Radar has an unclear purpose and a complicated
user interface that is cumbersome to use.

1.2 Why does the design of any API matter? 7

According to the user manual shown in figure 1.6, the Kitchen Radar is named “Radar”
for historical reasons; its actual purpose is to heat food. Holding the MAG. button turns
on a magnetron, heating food with microwaves. To adjust the heating power, users
repeatedly hold the button for a duration specified in the “Heating power cheat sheet”
and then release it for the same duration until they feel it is enough.

— KITCHEN RADAR
RADAR USER MANUAL

HEATING POWER THE KITCHEN RADAR'S HISTORY
O CHEAT SHEET In the [940s, as he was working near an

active vadar, Percy Spenter vealized that a
POWER |[DURATION| | chotolate candy bar had melted in his

@ Pt food in the cavity.

potket. He discovered that the vadio
Full Hold

mitvowaves genevated by the vadar’s
Medium | s magnetron could heat matkr by extiting
water molecules. Afer a few experiments, he

e Press and hold the "MAQ” butbn to turn the
magv\e{:ron on; velease it to turn it O‘FF Tuwen it on

and off for equal durations modulates the heating Low Ils eveated a new type of oven that heats food
power (see theat sheet for options). Thaw 13s faster than 9as or electrie ovens.
o Enjoy your food when it's cooked enough. Page 2

Figure 1.6 The Kitchen Radar’s user manual clarifies its purpose and explains (poorly) how to operate it but
doesn’t make it easier to use.

1.2.2

The Kitchen Radar is a microwave oven that offers a frustrating user experience. Its
main flaw is that it fails to address user needs; people want to heat food, not turn on a
magnetron. The user manual doesn’t make it userfriendly. The inside-out interface
forces users to become magnetron experts and time themselves pushing and releasing
the cryptic MAG. button. There are also potential reliability and safety concerns regard-
ing the magnetron and circuitry when turned on and off at an erratic speed. Finally, we
can wonder whether people would buy or use such a terrible product unless forced to.

We all agree that this appliance is absurd. Yet I've encountered private, partner,
and public APIs whose designs resemble the Kitchen Radar. Such poorly designed
APIs affect API consumers, their end users, and API providers.

Poor web API design affects developers and architecture

The design of APIs can make the work of application developers who consume them
impossible or more complicated than it should be, possibly resulting in code and over-
all software architecture that are complex and brittle. If SOCNET neglected the
design of its APIs, developers of applications consuming them might say

“I can’t list friends of friends!”
“What contains the sts property?”

1.2.3

CHAPTER 1 What is API design?

“Why don’t createdat and fromDate use the same date-time format?”
“Identifying friends requires a userId, but storing a message requires a user-
name! Can’t we use the same user ID in all operations?”

“The ‘List friends’ operation is useless; to get useful data, I must call the ‘Read
friend’ operation for each friend!”

“The HTTP response indicates a success, but its data contains an error!”

“How can I know what’s wrong with my API call if I only get an ‘Invalid request’
error message?”

“Are you sure about the mobile and web applications taking care of friend iden-
tification with the Face Detection API before sharing a message with photos?”

Due to poor API design, developers will waste time deciphering cryptic operations, data,
and errors or face unnerving problems due to inconsistencies or wrong HTTP usage.
Incorrect or missing data or operations complicate code, possibly making it impossible
to develop a desired feature. An API that exposes inner workings leads to error-prone
and duplicated code across consumers and tight coupling between client and server,
necessitating risky updates whenever what should have been inner logic changes.
Missed milestones, fewer features, frequent bugs, increased technical debt, and revenue
loss: poorly designed APIs affecting developers can cost an organization a lot.

Poor web API design puts security and infrastructure at risk

The design of an API can make it unsecured and can make an infrastructure unreli-
able and costly, as pointed out in the following feedback from consuming application
developers:

“Is it normal for user A to read the direct messages of user B?”

“As I handle friend detection, I could send false identification information
when sharing a message with a photo!”

“Sometimes, calling the ‘Timeline’ operation takes ages.”

“Sometimes, the ‘“Timeline’ operation’s response is a Java stack trace indicating
an out-of-memory error. I guess it’s because it returns all user messages; an
active user can have thousands.”

Exposing inner workings increases the risk of corrupting data or processes if an essen-
tial API operation call is missed or the wrong data is sent. Unclear definitions of secu-
rity rules during design can lead to an unsecured implementation that grants access to
data that consumers or end users shouldn’t access. Leaking infrastructure informa-
tion simplifies hackers’ work. API security problems can harm people and our organi-
zation, possibly leading to its bankruptcy.

NOTE Web APIs typically restrict access to authorized consumers, often allow-
ing only a subset of operations (call “Search” message but not “List direct”
message). Even if an operation is permitted, the end user’s privileges can
limit execution or affect responses (“List direct” message returns only the end

124

125

1.2 Why does the design of any API matter? 9

user’s messages). This book focuses on design-related security problems; see
section 12.1 for more details.

Large data volumes—due, for example, to the absence of pagination in an operation
design—can cause slow responses, server application crashes, or high cloud infrastruc-
ture egress fees (what cloud providers charge for transferring data). API design can
also lead to inefficient use of server resources or third-party APIs, raising infrastruc-
ture costs or blocking the system because limits are reached.

Poor web API design affects end-user and third-party experiences

The design of an API can affect the end users of our application powered by our pri-
vate APIs or third parties consuming our partner or public APIs, as illustrated by the
following feedback:

“The application crashes when showing the timeline of very active users!”

“How can I help the end user fix the problem if the API error message is just
‘Invalid request’?”

“Can’t we find a way to reduce the number of steps end users have to take to
send a message in the mobile or web application?”

“The application crashes when calling the ‘Timeline’ operation since the last
API update!”

“Send $10 to a friend, and they’ll receive $1,000!”

“I'm fed up! I cancel my subscription to the Search API.”

The design of an API can affect end-user experience with unexpected crashes,
unhelpful error messages, or complex or inflexible UI flows. Careless, non-backward-
compatible modifications made to the design of existing APIs can cause unexpected
errors (because sts has been renamed status) or, worse, silent behavior changes
(turning dollars into cents when sending money to a friend). If end users are cus-
tomers, they may switch to our competitors. If end users are internal, these prob-
lems will complicate their work and affect our customers. Developers potentially
interested in our public or partner API may pass by or quickly cancel their subscrip-
tions because of our API’s complexity or unreliability. Less customers means less rev-
enue for the organization.

Taking care of design unleashes the power of APIs
Taking care of API design not only prevents the problems described in the previous

sections but also unleashes the true potential of web APIs. The following feedback
from internal and external users of SOCNET’s well-designed APIs illustrates this:

“The Search API provides exactly the operations and data I need!”

“It’s amazing! I was able to guess how the API works without reading the docs!”
“I realized I could reuse many pieces of code when using different APIs!”

“I developed the new SOCNET application for smart refrigerators in no time!”

10

1.3

13.1

CHAPTER 1 What is API design?

“I quickly aggregated different APIs into my server application!”

“The API’s clever error handling helped us enhance the user experience!”
“We’re far more responsive because we stopped returning all data on the
timeline!”

“We quickly improved the subscription funnel thanks to the API flexibility!”
“Three partner integrations were done this week; it’s a new record!”

“We replaced our in-house face-detection system with a third-party API without
affecting our existing applications!”

Well-designed APIs give developers superpowers, improve their productivity, and help
an organization achieve its goals faster. That’s because these APIs meet user needs,
hide inner workings, and are user-friendly. They are also interoperable, facilitating
data exchange and connection between systems; their operations and data are easy to
use together. These APIs also foster the creation of modular, decoupled systems that
are easy to evolve, simplifying developers’ work even further.

Well-designed APIs significantly enhance the overall experience for end users by
contributing to efficiency and ease of use within applications. Their flexibility also
enables improving client applications, especially the UI, without modifying the API.

In the case of a partner or public API, a good design that can be used instinctively
without reading documentation contributes to an invaluable “Whoa!” effect and a
faster time to value (the time necessary to create something meaningful for a con-
sumer). All this increases acquisition and retention.

NOTE Well-designed private, partner, and public APIs help organizations gen-
erate more value by increasing developer productivity, making systems more
modular and efficient, reducing the time to value, and contributing to out-
standing user experience. However, don’t worry if your existing APIs look like
the Kitchen Radar! It’s never too late to fix them; reading this book will help.

When to design web APIs?

Should we design all APIs? Should modifications to APIs also be designed? When is
the best time to design an API? It’s essential to consider API design

When creating any new API
When modifying any API
After deciding on an API creation and before its implementation

Any new API must be designed

You’ll often see the question, “Should we focus only on designing partner or public
APIs, given that they are more visible than private ones?” The answer must be a firm
“No!” Ignoring private API design leads to the problems highlighted in section 1.2,
affecting developments, IT systems, and the entire organization. Additionally, it will
undermine future partner and public API initiatives.

132

&

133

1.3 When to design web APIs? 11

You will create more private APIs for your team than for others and far fewer for
partners or public use. Designing many private APIs helps build invaluable skills via
practice. Although it’s possible to start from scratch with partner and public APIs, it
may be risky; this book can help but won’t work miracles. Partner and public APIs
often rely on existing private APIs; neglecting these can lead to challenges. A public
or partner API implementation may conceal a private API mess (like renaming sts to
status). However, addressing deeper problems such as data, operations, security
gaps, Oor missing pagination causing out-of-memory errors will likely necessitate
changes to existing APIs, which may affect current consumers.

Designing private APIs facilitates creating partner and public APIs, even enabling
instant transitions in some cases. In 2002, Jeff Bezos, then-CEO of Amazon, required
all teams to communicate through “service interfaces” (they weren’t called APIs then)
designed with external use in mind, allowing customer access anytime after creation.
This strategy was key to Amazon’s success.

CAUTION Amazon’s instant private-to-public switch is ideal but extreme, with
deep architectural and organizational implications, and can be challenging
for many organizations. One valid alternative is to create partner or public
API facades on solid but less polished private API building blocks (see sec-
tion 13.8).

Any modification of any existing APl must be designed

API design doesn’t only matter on creation; section 1.2.4 showed that carelessly modi-
fying an existing API design can cause unexpected crashes or more fatal silent prob-
lems. It’s essential to design any modification to, ideally, not introduce non-backward-
compatible changes or to introduce them knowingly after carefully considering the
consequences (see section 15.1). For example, a crash due to renaming sts to status
can be avoided if we can synchronize updated consumers and API deployment.

Not everyone has the luxury of starting from a blank page. APIs may already exist
and may not be as well-designed as they should be. The goal is not to shame what
has been done before but to ensure that increases in API design technical debt are
stopped. New APIs can use a new design mindset partly inspired by existing APIs (see
section 16.5.2). However, rebuilding every existing APl is often pointless unless it gen-
erates enough value to cover the update. Still, nothing prevents us from following new
design principles learned in this book when modifying preexisting APIs.

NOTE This book also teaches how to create an extensible API design that
reduces the risk of non-backward-compatible changes (section 15.6).

Design happens between choosing to create an API and coding it

API design, the book’s focus, differs from API development (coding, implementation)
or deciding to create an API for a specific purpose; it happens between them, as illus-
trated in figure 1.7. The figure shows a typical API lifecycle, which isn’t strictly linear
and applies to any software creation methodology (agile or waterfall, for example). It

12

Create — — <= - |
\-'| DEFINE DESIGN DEVELOP |—-P| TEST '—.l DEPLOY -—D| PROVIDE/CONSMMEJ
-

CHAPTER 1 What is API design?

outlines the stages or activities an API undergoes from inception to consumption but
oversimplifies reality; activities can occur in parallel and involve back-and-forth inter-
actions. Depending on our role in the organization, we may participate in various
stages, wearing caps other than those of API designers.

/&‘q"e{_\ --------

- —_—— - — o ——— ——_‘— -—— e = ——— -

Figure 1.7 API design is an iterative activity distinct from deciding to create an APl and implementing it.

14

Someone identifies the need for an API, such as creating a Search API to monetize
SOCNET platform content or developing a microservice for friend identification in
images and videos (Define). An API designer (that’s us) then designs a web API
meeting these needs (Design). Developers code an application that exposes this
API, which may start with an incomplete design (Develop). Throughout develop-
ment, developers, QA engineers, and security experts verify that the API functions
correctly and is secure (Test). An incomplete API can be deployed for testing or pro-
duction, often involving exposure on an API gateway for securitization, consumption,
and monitoring (Deploy). Once the final or incomplete API is deployed, consumers
can use it, and it may be published to an API catalog or developer portal to make it vis-
ible (Provide/Consume).

API design is iterative. Questions and discoveries can require revisiting needs
from the Define stage. Development, tests, and early consumption may help refine
the API design. Once it’s in production, new needs may arise, necessitating API
design modifications.

NOTE This book focuses on the Design stage of the API lifecycle. It doesn’t
cover business or IT strategies for creating an API, defining its objectives, or
desired business or IT outcomes. The book also excludes implementation
code, architecture, tests, and deployment concerns, such as API developer
portal resources like documentation. However, it explains how other stages
can use the work and artifacts created during Design (section 19.1).

Who designs web APIs?

Once someone decides that an API needs to be created or modified, “we” can start
working on the design. But who is “we”? It’s you, but maybe with some help. This sec-
tion discusses the profiles needed to design an API and briefly lists the stakeholders
who can influence API design.

14.1

14.2

1.4 Who designs web APIs? 13

The three profiles needed to design an API

Designing an API requires the following roles around the table; they can be one or
different people:

API designer
Subject matter expert
IT system expert

API designers can have various backgrounds. I've worked with, advised, and trained
API designers with various profiles and experience in their fields, including develop-
ers, tech leads, architects, business analysts, tech writers, QA engineers, product man-
agers, and product owners. The key for API designers is the ability, in the worst
scenarios, to interpret vague user needs from the Define stage of the API lifecycle and
address complex related subject matters (or fields, domains, business domains, top-
ics) handled by obscure IT systems (where the API will run). The goal is to transform
this complexity into an implementable HT'TP-based API that meets user needs, con-
ceals inner workings, and is user-friendly, interoperable, etc. (all that makes an API
awesome, as seen in section 1.2). That’s what this book will teach you.

APIs cover countless fields like banking, logistics, customer relationship manage-
ment (CRM), product catalogs, and cloud infrastructure. With experience, you may
become a subject matter expert (SME) in some fields, facilitating your API designer
work. However, not being an SME is not a problem; as an API designer, you can effec-
tively interview SMEs to gather information important to design an AP

This book covers essential software concerns for designing web APIs. For instance,
some design patterns may drain smartphone batteries, whereas others enhance sys-
tems interoperability. However, this knowledge won’t make you an expert in all the
IT systems of our vast world’s organizations. For instance, if you work at SOCNET,
you may not know that the application responsible for detecting faces takes a min-
ute to identify people in a 10-second video; this should be considered when design-
ing the SOCNET backend API. Your API design skills will help you gather such
information from developers, tech leads, and architects of systems you’re not an
expert on.

The stakeholders influencing API design

Some stakeholders directly or indirectly influence the design of an API. In addition to
SMEs and IT experts whose information will shape the design of the API, we can add

People in charge of the Define stage
Consumers

Security experts

Peers

As an API designer, you’ll discuss the design with the people who define the user
needs and with consumers to ensure that the API design matches the (initially vague)

14

1.5

! (eontext, security, e“itiend\/, SO (] /
The perpectives backward—compatibiity, and extensblity) Al
we'll eonsider toolbox

CHAPTER 1 What is API design?

expectations. Security experts and peers may make recommendations to improve your
design. You’ll know how to integrate, adapt, or refuse all stakeholders’ requests and
feedback for the greater good of the API and your organization to design an API that
satisfies all parties involved. Typically, you’ll integrate security feedback without much
discussion but carefully consider consumers’ requests, which may lead to a highly spe-
cific API usable by only one of them.

NOTE The designer, SME, and IT expert profiles and collaboration with vari-
ous stakeholders, including users, are similar to what we see when creating
any application. The software design methodologies, tips, and tricks you know
may help you design APIs.

How do we design web APIs?

Designing APIs mirrors any design process; it involves analyzing requirements and
creating a blueprint for the final product. Figure 1.8 illustrates this book’s methodol-
ogy within the API lifecycle, breaking down the design process step by step while using
a layered approach to address one main problem at a time. Similarly to the API lifecy-
cle, don’t view this as a strict linear waterfall; the activities and perspectives occur in
parallel, with optional steps and back-and-forths within the Design stage and other
lifecycle stages. Section 1.6 guides us through the design process, and section 1.7 sum-
marizes the design layers.

Natural language Programming language Standard AP .. To facilitate desion
(shave) ""-., (POST / S{:?‘Euses) deseription <Fo'rma‘{', ',"— and next stages
: E ': : 75 - :\' il |
i DESIGN & DEVELOP
g Sy
lden{if\/ Design the Destribe the Envich the |___I_?-_S_T__—_I"’\
the AP| 8> programming B programming APl design I_ l_)EfL_O‘ﬁ _T
capabilities interface interface artifacts : T PROVIDE/
A== _CONSUME |
) DECIGN LAYERS — —
The stages/ackiitie| |__ A versatile AP| design that does the vight job B Y
Final delivevable

'l g0 though
we'll o 9 |; An AP| design that is user—friendly and interoperable \ and supporting
tools and artifacts
eIl C> Ah AP' desigh that tonsiders tonstraints !

[A veasoned and ontinuously improving AP| design protess- Reuse atvoss AP[s

Figure 1.8 This step-by-step and layered approach aims to help us design APIs in various contexts and
facilitate our learning.

1.6 Designing APIs step by step 15

E. NOTE Many software design and development methodologies can be applied
j to API design. Consider this book a toolbox; once you've learned its princi-
ples, adapt them to your context.

1.6 Designing APIs step by step

As we saw in figure 1.8, the Design stage starts once user needs or requirements are
identified in the Define stage of the API lifecycle and is composed of four steps or
activities:

Identifying the API capabilities
Designing the programming interface
Describing the programming interface
Enriching API design artifacts

1.6.1 Identifying the API capabilities

As API designers, our primary task is to analyze user needs and identify the required
API capabilities to address them (discussed in chapter 2). User needs can range from
broad objectives like “Social network” or “Database as a service” to specific intents
such as “Enabling tagging friends in a photo on mobile and web.” Artifacts describing
these needs can vary from brief sticky notes or tickets to detailed documents, includ-
ing, for example, user experience research for public APIs. We express API capabili-
ties in a stakeholder-friendly natural language like English or French. Capabilities
encompass use cases, such as “Sharing a status,” which involves steps like “Upload mes-
sage’s photos” and “Send the status.” We’ll identify the API operation needed for
these steps, like “Upload a photo” and “Share a message.” Operations can apply to
multiple use cases; for example, the “Changing user profile photo” could need the
“Upload a photo” operation.

1.6.2 Designing the programming interface

We design the programming interface that represents the identified API capabilities.
This book focuses on REST APIs, but the choice of API type should align with capabil-
ities and context (section 14.8). We will prepare for our REST API design by identify-
ing key concepts or business objects, such as User and Status (chapter 3). We’ll
convert natural language operations into HTTP operations, like turning “Share a mes-
sage” into POST /statuses (chapter 4). Additionally, we will model the input and out-
put data for operations (chapter 5): for example, determining that a Status includes a
message of type string.

E/ NOTE Although this book focuses on REST APIs, many of its teachings can
—4 be applied to other types of APIs. We typically need to identify key concepts
or model data when designing any API.

16

1.6.3

1.64

1.7

1.7.1

CHAPTER 1 What is API design?

Describing the programming interface

Using a standard API specification format, we can efficiently describe the program-
ming interface HTTP operations (chapter 6) and their data (chapter 7) in a blueprint
document while we design them. Doing so has numerous benefits, including generat-
ing implementation code (Develop) or facilitating the connecting of the dots between
the initial user needs and API capabilities in natural language and the resulting pro-
gramming interface for all stakeholders (Design).

Enriching API design artifacts

The document listing capabilities and the API blueprint belong to the API design ref-
erence kit. This kit fully describes the API and is used during design and in the follow-
ing stage of the API lifecycle, particularly to implement and test the API. In parallel
with previous steps, we may consider enhancing the API blueprint with more detailed
information (the Status message is 140 characters long, for example) or adding new
artifacts to the kit (an API mock that simulates the yet-to-be-developed API, for exam-
ple). Such enrichments help to describe the API design better and facilitate discus-
sions and thinking (chapter 19).

Designing APIs layer by layer
As illustrated in figure 1.8, we’ll split designing APIs into four layers to address one
main problem at a time:

A versatile API design that does the right job

An API design that is user-friendly and interoperable

An API design that considers constraints

A reasoned and continuously improving API design process

Designing a versatile API that does the right job

Our first goal is not only to design an API that meets the needs identified in the
Design stage of the API lifecycle but also to conceal its inner workings and ensure
that the API is usable in different contexts (chapter 2). A well-designed API typically
reflects a business domain, independent of the applications consuming it, although
specific APIs may sometimes be required (see section 13.8). The SOCNET backend
API is designed to allow the website and mobile application to deliver expected
social network features, despite differing Uls, without burdening developers with
face-detection algorithms or microservices architecture. SOCNET can also build a
new smart refrigerator application without modifying the API. Similarly, SOCNET
designs the Search partner API without knowing the types of applications that will
use it.

172

173

1.7 Designing APIs layer by layer 17

Designing a user-friendly and interoperable API

In addition to doing the right job and being versatile, we must ensure that our API is
user-friendly and interoperable; this affects data (chapter 8), operations (chapter 9),
sequences of operations (chapter 10), and the entire API (chapter 11). Using the
SOCNET APIs can be challenging if data pieces are labeled with cryptic names like
sts and someCrypticJargonThatMeansStatus instead of clear and easily understood
terms like status. An error message like “Invalid request” is insufficient; we need to
provide actionable error feedback. If the Friends and Message APIs use different user
IDs (username versus internal numerical ID), that compromises interoperability. The
same applies if a backend API’s “List friends” operation requires a username but the
Send Message function needs a numerical ID.

Integrating constraints in an API design

If we focus only on ensuring that our API design is effective, user-friendly, and interop-
erable, we may end up with a non-implementable, failure-prone, or, worse, dangerous
API design. Designing an API requires integrating constraints dictated by security, effi-
ciency, context, and modification-related concerns.

API security in the context of API design covers sensitive data management (like per-
sonal and banking information) and access controls (chapter 12). For instance, in sec-
tion 1.2.3, a developer using the SOCNET backend API found that user A’s direct
messages were accessible when they were logged in as user B. This common API security
flaw often arises because “who can see what” is not clearly defined during API design.

An APT’s design affects its efficiency (chapter 13). An inefficient API may be slow,
consume excessive server resources, or drain smartphone batteries. For example, in
section 1.2.2, developers reported the “Timeline” operation being slow and returning
an out-of-memory error (it also affects end users). This is often due to attempting to
return all data in a single call, which an appropriate design can prevent.

We may need to adapt API design to its specific context, including the subject mat-
ter, provider, consumer habits, and limitations (chapter 14). For instance, in section
1.4.1, we discovered that identifying friends in a video takes 1 minute for every 10 sec-
onds of footage. This makes the identification process longer than the 100 millisec-
onds maximum SOCNET that allows for efficient API calls. Instead of a typical one-
call design, a long operation is required, initiating a job with the first call, monitoring
status with a second call, and retrieving results with a third call (section 14.7).

API design must ensure extensibility to facilitate future changes and carefully con-
sider non-backward-compatible modifications that could break consumers (chapter 15).
Following developer feedback from section 1.2.2, SOCNET renamed sts to status,
which in section 1.2.4 led to crashes in unmodified applications due to missing
expected data. Assessing the effect of this modification could have prevented the
problem by SOCNET either deciding not to perform the modification or handling
consumer updates better.

18

1.74

CHAPTER 1 What is API design?

Using a reasoned and continuously improving design process

We must find ways to simplify our API designer’s life and enhance our efficiency.
Designing APIs involves numerous decisions, such as selecting names, data types, and
pagination parameters, many of which recur consistently. Although we may not have
all the answers, some choices can affect subsequent designs, and mistakes can happen.
For instance, if we choose frombDate over from date, we must remain consistent
within and across APIs, but typos like froMbate may still occur. There are various pagi-
nation methods and ways to design them; which one should we adopt? Establishing a
clear decision-making process is vital for guiding our research and ensuring confi-
dent, consistent choices (section 16.1). We can create and continuously enrich an API
design toolbox with API design guidelines (section 16.3), ready-to-use design compo-
nents (section 17.6), and automated guidelines (chapter 18). Such a toolbox can help
us seamlessly and consistently apply the correct naming conventions and pagination
without the need to remember everything. The API design toolbox elements can
enrich the API design reference kit.

NOTE Al will likely become a vital asset in our API design toolbox. You'll find
very few tips in this book, because it’s not The Design of Web APIs with Al. The
book focuses on core principles essential for humans and Al. Understanding
the API design process and principles before depending on Al is crucial, as Al
can produce wrong, inaccurate, or incomplete responses. By mastering API
design from this book, you’ll better see when and how to integrate Al in your
design process, guide Al with essential information to enhance its response
quality, and finally ensure that the resulting API does the job, is user-friendly
and interoperable, and integrates all security-, efficiency-, context-, and modi-
fication-related constraints.

Summary

Web application programming interfaces (web APIs) are software interfaces
that allow communication between applications over a network using the
HTTP protocol.

Web APIs enable communication between mobile or web applications and their
backends and between server applications, can expose multiple operations, and
can be consumed by multiple applications.

Different types of web APIs exist; they use the HT'TP protocol differently. This
book focuses on REST APIs.

A web APl is an interface to an implementation and ideally conceals implemen-
tation details.

A web API can be used by internal applications and developers (private API),
selected partners (partner API), or anyone (public API). A private API can be
exposed on the internet.

Summary 19

Consider API design because it can positively or negatively affect developer pro-
ductivity, security, infrastructure efficiency, costs, end-user experience, and an
organization’s revenue.

Design APIs that meet user needs, are usable in different contexts, hide inner
workings, and are user-friendly, interoperable, and efficient.

Design any new private, partner, or public API or modification of an API.
Design an API after deciding why to create it and before its implementation.
Design private APIs to build skills via practice and design partner or public APIs
more easily.

Carefully consider API modifications to prevent unexpected crashes or silent
behavior modifications.

Design APIs collaboratively and iteratively.

Use your or your colleague’s SME and IT expertise when designing an API.
Discuss the design with the people who define the user needs and with consum-
ers to ensure that the API design matches expectations.

Integrate, adapt, or refuse stakeholders’ requests and feedback to design an
API that satisfies all parties involved.

Analyze user needs, and identify the required API capabilities to address them.
Design the programming interface that represents the identified API capabilities.
Align the choice of API type with capabilities and context.

Build an API design reference kit starting with an API capabilities list and stan-
dard API description to support the design process and the following stages of
the API lifecycle; enrich it according to your needs.

Consider security, efficiency, context (subject matter, provider, or consumer),
backward compatibility, and extensibility when designing an APIL.

Establish a clear decision-making process for guiding research and ensuring
confident and consistent API design choices.

Create and continuously enrich an API design toolbox with API design guide-
lines, automated guidelines, and ready-to-use design components.

Part 1

Fundamentals
of API design

Endamental web API design skills include identifying capabilities that meet
user needs, representing capabilities in an HTTP interface, and describing the
interface in a blueprint. For example, suppose the “Define stage” output is
“SOCNET API”: we must clarify the expected capabilities to avoid creating a
design that doesn’t meet user needs. Once we agree with stakeholders on capa-
bilities like “Sharing a status” and “List friends,” we can design a REST API inter-
face with operations such as poST /statuses and GET /friends, which requires
understanding REST API principles and HTTP. Discussing the design with stake-
holders requires a formal description of the API. Using a standard API descrip-
tion format instead of a wiki page is recommended for streamlining discussions.
It will also facilitate accurate implementation.

To teach these fundamentals of web API design, the first part of this book
focuses on the first layer of API design: designing a versatile API that does the
rightjob (section 1.7.1). We go through the essential steps of the API design pro-
cess (section 1.6): identifying API capabilities, and designing and describing the
programming interface. Chapter 2 discusses identifying API capabilities that
meet user needs from the Define stage of the API lifecycle. Chapter 3 introduces
REST APIs and HTTP and discusses how to examine capabilities to spot ele-
ments required to design a REST API. Chapter 4 starts the programming inter-
face design, showing how to represent capabilities with HTTP operations, and

22

PART 1 Fundamentals of API design

chapter 5 ends it by looking at data modeling. Chapter 6 explains how to describe
HTTP operations using the OpenAPI format, and chapter 7 discusses data description
via JSON Schema in OpenAPI.

Identifying
API capabilities

This chapter covers

= Analyzing use cases
= |dentifying unique and versatile operations
= Ensuring alignment with user needs

= Avoiding integrating overly specific consumer
requirements

= Avoiding exposing the provider’s inner workings

API design begins by analyzing users’ needs and identifying the API capabilities
required to fulfill them. Identifying the appropriate API capabilities is crucial. As
seen in section 1.2, an API with incorrect capabilities can make developing applica-
tions that consume it complex or impossible, wasting time and resources and
potentially jeopardizing the API provider, even when the faulty API is private.
We’ll describe capabilities using plain English or any other natural language
rather than programming interface language. This is because form follows func-
tion, a design principle that applies to buildings, kitchen appliances, applications,
and APIs. An effective API design requires analyzing users’ use cases and identify-
ing the generic operations to fulfill them and yet-to-be-discovered use cases before
choosing the appropriate programming representations and data modeling. This

23

CHAPTER 2 Identifying API capabilities

simplifies discussions, streamlines the design process, and avoids creating complex or
incomplete APIs that don’t meet user needs.

This chapter starts with an overview of the identification of API capabilities and
when it happens in the API lifecycle and design process. Then we present the API
Capabilities Canvas, the methodology this chapter uses to subsequently illustrate the
necessary steps to effectively and accurately identify an API’s capabilities while avoid-

ing common pitfalls.

An overview of identifying API capabilities

As shown in the API lifecycle (figure 2.1) and in the microwave oven and SOCNET
backend API examples (figure 2.2), our first task when designing an API is to analyze
user needs from the Define stage to identify the necessary capabilities to address them
(section 1.6.1). To simplify our work and learning, we focus on the “versatile API that
does the right job” layer, addressing consumer needs, concealing inner workings, and
ensuring usability in various contexts (section 1.7.1).

[terate, vefine,

-Natural language .- Keep programming langquage for next step

validate b (send a message) (POST /stakus) R
-—_———— v 7 —_———— \
I DEFINE 4 / DESIGN ,-h_D_E\iEI_—O_P N
Y 1 e 2
I [Design the Deseribe the Envich the AP| Il By ;‘
| \ programming programming [AP| design desie_n :' DEPLOY r
| ! . . . veb kit | '=Z-L \
| A : mfer‘cate m{er&te ar{:ncac{:s : I— P_RO—VI—D E—/—’
i ﬁ?s';e ~ — 4_CONSUME !

H o e ——— Y\ here -

Vague or precise { LESIENES APl meets needs +
needs deseviption | L A versatile AP[design that does the vight job -t-- c:’nfeals :rer worlfings
with oy{:ional f . is usable in various

supporting | |; An AP| design that is user—friendly and interoperable i eontexts
docme"{-:s _____ / An API design that ¢onsiders tonstraints { Keep other
I (tontext, security, efficiency, AN i»- tonterns
What tonsumers can backward—tompatibility, and extensibility) APdig for later
ac:;::: i;frzzr;::e LA veasoned and continuously improving AP| design protess tollbox "'E

Figure 2.1 We analyze the needs from the Define stage of the API lifecycle to identify the versatile API
capabilities that meet them and other unknown needs. We’ll iterate with the Define and Design stages
stakeholders.

The API capabilities we seek are use cases and operations. Use cases are like recipes,
and operations are their generic ingredients. The API will expose the operations to
consumers, enabling them to achieve existing and new use cases. We describe these
capabilities in plain English or other natural languages (“Send a message”), leaving the
programming language (POST /status) for the “Design the programming interface”

211

3 |m\7|emen£a{:|on ----- D: maghefron

2.1 An overview of identifying API capabilities 25

Diffevent

.............................. Lo B

same tapa

Microwave V.
OveN Touct GET /timeline GET /messages
POST /status POST /message:

______ MicrowAVE
OVEN

Tuen

_— - -

TIME Not what users need
T : on an C.'M.___] SOCNET backend ::"Il)e:lia wbeu ejﬁh
- - e iy i Databa
In next step, we'll design the "1 T WATTS 3 Read/ '"S"’C '"b : *
471 - } el il
:«:{;u: 1Tr Enable new use cases
e o~ e, [b
i - : : Versa{:-le
i | OPERATIONS | Heat food at a given power for a given time | Get timeline, Send a message, ... operations
pa=| _}
[s
"t'es i | USE CASES Cook a Bake a chotolate cake| |(Check friends'| [Send a message |
vozen dish L. Heat chocolate activities 1o a friend Specifie
Usevs’ I Heat at - R Afid :592?... CUL[) tistlast |1 List friends e
needs 3. Mix messages 2. Seleet one
& Heat at .. 3. Send message

Figure 2.2 API capabilities are use cases and the operations needed to achieve them. We describe them
in plain English and keep programming interface concerns for the next stage because form follows function.

step (see section 3.1). We’ll iteratively discuss and clarify the subject matter and input
and validate our findings with the stakeholders of the Define and Design stages to
ensure alignment.

Contrasting a microwave oven and API, this section provides an overview of API
capabilities identification, during which we’ll

Use the output of the Define stage

Analyze what users need to achieve

Identify versatile operations to achieve use cases

Keep programming interface design concerns for later
Clarify the subject matter and input

Starting with the output of the Define stage

We will analyze user needs to identify API capabilities but not determine the API’s
global purpose. This occurs during the Define stage of the API lifecycle and addresses
strategic, product, and IT systems architecture concerns (section 1.3.3). Our input is
the output from the Define stage, which describes user needs or problems to solve
with more or fewer details.

API design input often fits on a sticky note, especially for a private API. It may
range from vague descriptions (“Social network,” “Online shopping,” or “Database as
a service”) to precise ones (“Tracking order status on customer mobile and customer
care applications”). Such brief input requires us to investigate users and their use

26

212

E

2.1.3

CHAPTER 2 Identifying API capabilities

cases from scratch. The input may be more complete, typically for a partner or public
API. It may include user experience research, personas, or use cases. We may need to
refine the provided use case, as the descriptions may be high-level and not give all the
details we need to spot all capabilities.

NOTE APIs may also be created based on nonfunctional requirements. For
instance, a server application typically offers a health check API. Such a “tech-
nical” API is no different from a “business” API (like “Social Network” or
“Database as a service”) and must also be designed using the principles of this
book.

Analyzing what users need to achieve

When identifying API capabilities, we focus on the use cases users need to achieve, not
the inner workings. We’ll look at them in section 14.1.

What do microwave oven users want? They don’t want to turn the magnetron on
and off, which is the implementation’s job. Although it’s possible to cook frozen meals
or bake cakes by turning the magnetron on and off, doing so requires considerable
effort and can lead to half-frozen dishes, burned cakes, and damaged appliances (sec-
tion 1.2). Users want to “Cook a frozen dish” or “Bake a chocolate cake”; these use
cases can involve one or multiple steps. Cooking a frozen dish requires heating at a
specified power for a set time. Baking a chocolate cake includes several steps: heating
a mixture of chocolate, butter, and milk; incorporating eggs, sugar, and flour; mixing;
and then reheating.

Users in the API context may refer to the consumers or their end users (if any). For
the SOCNET backend API, users don’t want to read from the MSG database table. They
want to “Check friends’ activities” or “Send a message to a friend.” Checking friends’
activities requires listing their last messages. Sending a message involves listing friends,
selecting one, and sending the message.

Knowing users is vital for accurately identifying API capabilities. For instance,
unlike people using a microwave oven, people building microwave ovens or radars
want to turn magnetrons on and off, not bake cakes. Database API users need to
access specific tables.

NOTE Identifying users and analyzing their use cases can be tricky. To avoid
missing anything and to streamline the analysis, see section 2.2. Also, see sec-
tion 2.8 to discover how inner workings can surface in API capabilities and
jeopardize an APIL

Identifying versatile operations to achieve use cases

We use case steps to identify API operations that meet user needs. Although steps may
be specific, operations are versatile (usable in various contexts). For example, the
microwave can handle heating steps for “Cook a frozen dish” or “Bake a chocolate
cake” use cases with the operation “Heat food at a given power and time.” This opera-
tion also supports new cases like “Prepare hot chocolate.” Strictly mapping operations

214

215

=

2.1 An overview of identifying API capabilities 27

to specific steps, like “Heat chocolate, butter, and milk,” complicates the interface and
hinders new cases. Achieving new use cases would require many specific operations,
such as “Heat milk and chocolate.” The interface doesn’t intend to cover all use-case
steps; for instance, we let users mix ingredients when baking a chocolate cake because
itisn’t the microwave’s role.

The SOCNET backend API's “Get timeline” operation allows users to “Check
friends’ activities.” Operations like “List friends,” “Upload media,” and “Send a mes-
sage” enable the “Send a message to a friend” use case, although it’s up to users to
choose whom to message. A specific operation like “Send a message to friends at Paris
Olympics Games” fulfilling a “Contact friends at Paris Olympics Games” use case is
unnecessary; generic operations for listing friends (with an “at event” filter) and mes-
saging will suffice for contacting friends at any event.

NOTE Identifying unique and versatile operations is essential to make an API
usable in various contexts; check section 2.5. The same goes for fulfilling
users’ needs without being too specific; see section 2.7.

Keeping programming interface design concerns for later

When identifying capabilities, we focus on what consumers can do with the API, not
its appearance, because form follows function. We describe capabilities in a natural
language, such as English or French, rather than in an API programming language, to
avoid complicating discussions and creating an API with incorrect capabilities.

Different designs may offer the same capabilities; a microwave may use power and
duration knobs or a touchscreen with time and watts sliders. What truly matters now is
that users want to “heat food at a given power and time,” not whether they will use
“power” or “watts” and “time” or “duration” knobs or sliders to achieve it. The SOC-
NET backend REST API’s “Send a message” operation could be POST /status, POST
/messages, Or POST /message, among other options (section 3.1 explains this). Debat-
ing these options distracts from user needs and wastes subject matter experts’ time.
Also, not all stakeholders understand API language, which complicates discussions
and leaves doubts about whether the capabilities meet user needs.

NOTE Another reason we avoid the API programming language is the “Con-
sider constraints” API design layer (section 1.7.3). To-be-discovered con-
straints could require us to adapt the API design (section 14.1) or even lead
us to use a type of API other than REST (section 14.8).

Clarifying the subject matter and input

Identifying API capabilities requires questioning, rephrasing, and resolving contradic-
tions in subject matter- and input-related discussions and documents.

It’s premature to argue over POST /messages versus POST /message (we discuss this
in section 9.3.2), but clarifying the subject matter is crucial. If stakeholders, including
us, interchangeably say “Sharing a status” and “Sending a message,” we must clarify: Is

28

22

E

CHAPTER 2 Identifying API capabilities

status a message? Is it a private message? This is where our or our colleagues’ expertise
comes in (section 1.4.1).

We must collaborate with the Define stage stakeholders to align capabilities with
their expectations. However, although we focus on Design rather than Define, our
role isn’t simply to accept every input uncritically. We must discuss unclear or imprac-
tical requirements. For example, an input such as “Create a Social Network API” is
vague; does it involve content moderation? Similarly, “Create an operation that returns
all user data, posts, and private messages” combines unrelated elements, risking perfor-
mance problems (see section 13.1). Requesting more details uncovers the actual expec-
tations and ensures that we design the appropriate API (see section 2.6.3).

This need for clarification emphasizes the importance of using a natural language
that all stakeholders understand, like English, instead of an API language (section 2.1.4).
In addition to streamlining discussions, natural language helps refine terms and build a
common vocabulary, contributing to capability identification (if you're familiar with the
domain-driven design methodology, that’s the “ubiquitous language”).

NOTE API design, particularly identifying capabilities, is often collaborative
and iterative, even for experienced designers. The iterative process described
in this chapter (see section 2.2) helps refine information into a comprehen-
sive and accurate list of capabilities that all parties can agree on. Additionally,
refer to section 2.6 to stay aligned with inputs and clarify obscure topics.

Introducing the API Capabilities Canvas

Now that we have a general idea, we can explore the steps to take and pitfalls to
avoid to achieve the API capabilities identification concretely. The rest of this chap-
ter illustrates this with the API Capabilities Canvas, a methodology and document I
developed from years of software and API design experience. I didn’t create any-
thing entirely new with this canvas; many API designers, analysts, developers, and
tech leads use similar processes to analyze user needs. However, the API Capabilities
Canvas consolidates all necessary knowledge to identify API capabilities thoroughly.
Experienced designers will find fresh insights and connections with their practice,
and newcomers will learn to identify capabilities effectively. Consider the canvas a
toolbox adaptable to your needs. With experience, you may not even need it for sim-
ple cases, like a small private API used only by yourself; you can process everything
in your head. This section looks at how the API Capabilities Canvas works and dis-
cusses related tools.

NOTE Identifying capabilities is essential when creating or modifying an API;
the API Capabilities Canvas can be used in both situations. However, modifi-
cations require more caution as we can break consumers; see section 15.1.

221

2.2 Introducing the API Capabilities Canvas

How does the API Capabilities Canvas work?

29

The API Capabilities Canvas template (figure 2.3) and sample (figure 2.4) show that
we decompose the user needs determined in the Define stage of the API lifecycle into

small steps in two passes (nominal paths first, then alternative and failure paths), iden-

tify unique operations for all steps, and ensure focus on the proper needs.

 Who are
gﬂne usevs?

"'Ma"(mg the nominal paths "‘

Walking the alternative

and failure paths

................................

H'OW do

What is needed
to athieve
this step?

N
H
iWheve does it
i tome from?

What hayyens
if the step
suteeeds?

How is

it used?

l

Whatis
the unique ;
and genevic ;
o?era{ion to 'f

athieve H

this step?

Figure 2.3 We walk through all use cases' nominal, alternative, and failure paths. Then we refine steps
to identify unique operations. Finally, we ensure that capabilities fulfill expected users' needs without
being too consumer-specific or exposing inner workings.

USER

USE CASE

STEP

INPUT

SUCCESS

FAILURE

OPERATION

Ehd users

B
pooducs

Searth for
Yrodud',s to buy

Ca’halog, m{:ers

Products

matehing filters | £

No yrodud:

oun

Seaveh for products

-

Add a ondud:
to the cart

Seleeted \W‘odutf

Product

into.

Produet
doesn't exist

Add a odud‘, to
the car‘,'l:r

Cheek out

Cart

User gets an

order

Empty cart

Create an order

3 e

Sa

e

Catalog

admins

Fill
ca{alog

Look for similar
y\rcduc{',s

Catalos,
thavaceteristies

No Froduc{:

oun

Produtts
m&‘tﬁhihg
tharacteristies

Seavreh for produtts

\ o=
ee”

Figure 2.4 Different steps may share the same unique operation.

To exhaustively analyze user needs, we identify users (USER column); describe their
use cases (USE CASE column); and list steps to achieve the use cases (STEP column),
inputs to execute each step (INPUT column), outcomes and outputs when the step is
successful (SUCCESS column), and context, outcomes, and outputs or errors when it
fails (FAILURE column).

30

222

CHAPTER 2 Identifying API capabilities

NOTE The input from the Define stage may include user and user case defi-
nitions (section 2.1.1). However, we’ll likely need to investigate this input fur-
ther to fill gaps, add additional information, and identify the needed API
capabilities.

We proceed in two passes to separate concerns and simplify the decomposition pro-
cess. We analyze the nominal, ideal, or happy paths in the first pass. They are the most
common and straightforward use cases and sub-paths of steps that lead to successful
completion (section 2.3). In the second pass, we investigate alternative sub-paths and
use cases and the failures set aside during the first pass (section 2.4). We check each
input source, outcome usage, and how to fix failures (second pass only) to ensure that
nothing is missed.

To ensure that our API is versatile, we map each step to a unique, context-agnostic
operation (OPERATION column). Different steps may share the same operation (see
section 2.5).

Ultimately, we ensure that we stay within the Define stage’s needs scope and check
all elements contribute to fulfilling the proper needs (see section 2.6). We especially
don’t want to integrate overly specific consumer needs (see section 2.7) or expose
inner workings (see section 2.8).

NOTE Identifying API capabilities correctly requires trial and error. Even
experienced designers rely on an iterative process and need feedback. Find-
ing the right level of detail can be tricky in the beginning, but keep going; it
takes practice.

Tools to use along with the API Capabilities Canvas

You can draw and fill the API Capabilities Canvas on a virtual or physical whiteboard.
However, a physical whiteboard may fall short for bigger APIs or when modifying mul-
tiple elements, and you’ll likely need to rewrite everything in a digital document at
some point.

A good-old spreadsheet is my go-to for a digital API Capabilities Canvas; examples
can be found on my website (https://apihandyman.io/the-design-of-web-apis). You
can screen-share during API design workshops. Adding or moving elements is easy,
and the searching and filtering features are helpful. Pivot tables provide an overview
of unique operations and their use, as illustrated in figure 2.5.

It can be helpful to model step flows with diagrams for complex use cases with
optional subbranches and loops. Diagram-as-code tools like PlantUML and Mermaid]S
allow for easy creation and modification of diagrams.

https://apihandyman.io/the-design-of-web-apis

Betkr

view on

o\?e!ra{:io

into

2.3 Walking the nominal paths 31
f"'7- """"""" Data is veorganized around operations.
OPERATION INPUT SUCCESS FAILURE STEP USE CASE | USER
Add a produet to Produet Product Add a product | B
the ot Selected product| | I dosont exist | to the cork | products | End veers
Create an order Cart l::;:rge{;s | Empty cart | Cheek out E:Z uets | Erd users
! Produtts No product | Seaveh for Bu
Searth ‘("OV' ProdIAC{',S Ca‘(:a|og. ‘FII{EY‘S ma’tﬂ'\iha 1ci|{:ers ‘FOMV\FJ ‘W‘Oduﬂ‘{'} to bu‘/ PV';IdlAC‘{',S End usevs
Produtts " 3
Catalo No product 8 Look for similar | Fill Catal
Search for 7"°d“d"s characteristies 'F:w‘\, ’ :::f ahtlr:gri skies szodutfs ca{:alog adminzs

Figure 2.5 A pivoted API Capabilities Canvas where data is reorganized around operations

2.3

Walking the nominal paths

We start identifying API capabilities by analyzing the nominal paths, which are the
ideal and successful paths of the most common use cases. We keep alternative use
cases, sub-paths, and failures for section 2.4. Treating nominal and other paths sepa-
rately simplifies analysis and provides a quick overview of API capabilities for stake-

holder discussions. As illustrated in figure 2.6, we use a subset of the API Capabilities

Canvas from section 2.2. It focuses on

Identifying who does what and how (users, use cases, steps)

Identifying steps’ inputs and successful outcomes

Spotting missing elements

USER USE CASE STEP INPUT SUCCESS
! Who are What do Howdo i[iWhat is needed | What happens |
i the users? they do? they do it? i to achieve if the step i
f ili this step? suteeeds?

1 Inputs

and

suttess outtomes

.E Wheve does it

tome from? it used?
. Missing elements i

How is

Figure 2.6 When walking the nominal path, we focus on the ideal and successful paths of
the most common use cases. We wonder who (users) does what (use cases) and how (steps).

We also identify steps' inputs and successful outcomes to spot missing elements.

In this section, we’ll learn how to walk the nominal paths using a sticky note indicating
“Online Shopping” as input.

32

23.1

E

232

CHAPTER 2 Identifying API capabilities

Identifying users

Walking the nominal paths starts by investigating who the users are, what they do, and
how they do it, as shown in figure 2.7. This section discusses users, section 2.3.2 dis-
cusses use cases, and section 2.3.3 discusses steps.

USER USE CASE STEP INPUT SUCCESS
End users Buy products |Add a produet

to the cart
Who are What d fow do ©
the users? they do? Chetk out they do i{?,

Figure 2.7 Identifying users ensures exhaustively listing use cases. Breaking down
use cases into steps will help us identify all operations.

Identifying users is essential for framing areas to cover and identify all use cases.
Users, also called profiles, include consumers (applications, developers, organizations)
and application end users. Although end users don’t directly use the API, their needs
shape its capabilities. We can either list all users and focus on significant ones or start
with a shortlist of key users and revisit identification in the second pass (section 2.4.3).
We can use the 80/20 Pareto principle to identify significant users, targeting the 20%
of users who provide 80% of use cases or business value. Exact numbers don’t matter;
we seek key elements that cover the most ground. In our “Online Shopping” example,
the key users are those shopping online through the mobile application or website
(that consumes the API); these applications and their developers can also be seen as
users. We may keep administrators and corporate end users for the second pass.

NOTE The API Capabilities Canvas also helps spot missing users; see section
2.3.6. Identifying users, profiles, or roles also has important implications
regarding security; see section 12.1.

Listing use cases

Once we know the users and select the key ones, we can list what they do and hence
their use case or the high-level actions, processes, and flows they perform. Using the
80/20 rule and subject matter knowledge, we can prioritize the 20% of use cases that
address 80% of a user’s needs. Again, these are not actual numbers; a single use case
may give a good idea of what the APIs need to provide. We reserve the other users and
use cases for the second pass (section 2.4.3). During workshops with subject matter
experts (SMEs) unfamiliar with the methodology, you can encourage them to select a
familiar use case for practice. In our case, what do most end users of an “Online Shop-
ping” application do? As seen in section 2.1.2, these users likely don’t want to select *
from product—that is, read the product table in the database. They “Buy products.”
They can also “Manage their delivery preferences.” Use cases can be more specific,
like “Buy birthday presents.”

233

234

2.3 Walking the nominal paths 33

NOTE Use prioritization methods that work for you and the context. We can
pick the top five use cases, regardless of users. The idea is to cover the most
ground with minimal effort and quickly get an overview of the API’s main
capabilities.

Decomposing use cases in steps

Stopping at the use-case level risks missing capabilities; it is crucial to decompose the
use case into steps. How do the end users buy products? They repeatedly “Add a prod-
uct to the cart” and then “Check out.” These are the two steps of the use case. Manag-
ing delivery preferences can be done with “View delivery preference” and “Update
delivery preferences.”

Don’t rush the process and think about generic operations; we’ll work on this in
section 2.5. Keep step descriptions as said by the people participating in this or as they
come to your mind. For example, to “Buy Christmas presents,” users may “Add a gift
to Santa’s basket” and then “Check out.” Although we likely already see that the first
step is similar to “Add a product to the cart,” we keep its original description.

TIP We can work iteratively to avoid analyzing unneeded areas. The user and
use-case levels (without steps) can provide an initial overview of API capabili-
ties, which can help get stakeholders’ first confirmation that we’re aligned.
Then we can break down use cases into steps to identify accurate capabilities.
We can proceed similarly with the second pass (section 2.4).

Determining inputs and success outcomes

We determine inputs and success outcomes for each step, keeping failures for later
(section 2.4). Inputs are the information or business concepts necessary to achieve
the step. Success outcomes indicate what happens when the step executes smoothly.
They describe inputs’ states after the step, what has been created or done, or an event.
These elements are viewed from the users’ perspective and remain coarse-grained; for
instance, we don’t need to detail a product’s properties (discussed in section 5.1).
What do end users need to add a product to the cart? As shown in figure 2.8, they
need a product and a cart. And what happens when a product is added to the cart?
The success outcome description states, “Product added to cart.” Similarly, for “Check
out,” the input is a cart, and the successful outcome is “User gets an order.” When
viewing delivery preferences, we need a “User” and get “Delivery preferences” in return.

|Wka’c is needed? What haﬂ?engg

USER USE CASE STEP INPUT SUCCESS
End users Buy products |Add a product [Product, cart Product added o
to the cart the cart
Checek out Cart User gets an order

Figure 2.8 Inputs and success outcomes are essential for understanding user needs,
identifying and designing operations, and spotting missing elements.

34

2.3.5

E

2.3.6

CHAPTER 2 Identifying API capabilities

Updating these preferences requires “Modified delivery preferences” as input; the
success outcome is “Delivery preferences are updated.”

Spotting missing elements with sources and usages

Analyzing input sources and success outcome usages reveals missing steps, use cases,
or users. Inputs can be user-known, API-managed, or from prior steps. Success out-
comes may also serve as inputs for other steps. Figure 2.9 illustrates this for the “Buy
products” steps.

USER USE CASE STEP INPUT SUCCESS

End users Buy products | Seareh Whevre does How it
A8 produets to buy|fit come from? i{o:ls;d?

Add a product [Product (Search | Produet added
to the eart products to buy) to the cart
cart (APD (Cheek oub)

Cheek out Cart (APD User aets an
order (Manage
orders)

Manage orders

Figure 2.9 Investigating the “Buy products” step’s input sources and success
outcome usages allows us to spot a missed step and use case.

For the “Add a product to the cart” step, we check where the cart and the product
come from. The API manages the cart (users don’t provide it or get it from another
step). Users search for products before adding them to the cart; we missed an essen-
tial step. But it’s fixed by adding the “Search for products to buy” step at the begin-
ning of the “Buy product” use case. The successful outcome of “Add a product to the
cart” is “Product added to the cart.” It’s useful for the “Check out” step, but there’s
nothing new here.

We proceed similarly with the “Check out” step. It needs a cart that is managed by
the API. When a “User gets an order,” they may want to check its status, modify or can-
cel it, and even do that with all their orders. We have uncovered a new area to investi-
gate: “Manage orders,” which we added to the use case list for the end users.

NOTE Some elements we spot may not be in the initial scope defined in the
input; remember to validate with stakeholders whether the new aspects
should be included in the API.

Analyzing the spotted elements

To investigate the newly identified elements, we proceed as before (identifying use
cases, decomposing them in steps, and spotting missing elements). Figure 2.10 illus-
trates this analysis for the “Search products to buy” step. We identified a new step, use
case, and user.

24

2.4 Walking the alternative and failure paths 35
USER USE CASE STEP INPUT SUCCESS
End B ducts | Seaveh products| Catalog (API, | Products
nd usevs uy produ By P i La‘:a?og) matching Silters
filters (User) ~[(Add a product to
the cart, Check
prod. details)
Cheek a produtt|Selected produtt product inf:
detailed ‘:mco (Searth products {'n{‘ (l;dd :L‘,m;w: b
the cart)
What
|
: " \ ¢ happens? :
Catal
admne. | Fill the catalog Wheve doss €@ [fow s
it come from? it used?

Figure 2.10 Investigating the “Search for products to buy” step’s input
source and success outcome helps us spot new elements.

We identified the step’s inputs and success outcomes. Users need a catalog of prod-
ucts to search for products and would benefit from search filters (details aren’t
needed at this stage). In return, they get the “Products matching filters.”

We analyzed input sources and the use of success outcomes to spot missing ele-
ments. End users provide filter values, and the API manages the catalog. However, cat-
alog administrators “fill the catalog” with products. We identified a new type of user
and one of their use cases. When end users get the “Products matching filters,” they
may add products to their cart or check the product’s detailed information before-
hand. We added this step to the “Buy products” use case after the search step.

Walking the alternative and failure paths

Focusing only on the nominal paths would result in an incomplete API design. Once
we have walked them, we must explore the alternative (less common) and failure
paths. As shown in figure 2.11, we continue using the API Capabilities Canvas intro-
duced in section 2.2 and will

Describe failures for each step
Add alternative branches on use cases
Add alternative users and use cases

We continue working with the “Online Shopping” example from section 2.3. We inves-
tigate failures for each step of the “Buy products” use case, add its alternative and fail-
ure branches, and then step back to see how to identify and analyze other alternative
use cases.

36

24.1

CHAPTER 2 Identifying API capabilities

USER USE CASE STEP INPUT SUCCESS FAILURE
T P
| doif .2 in case of
"""""""" failwe? ¢

______________________ . How is ::

it used?

Who ave
the users? they do? .

Figure 2.11 To complete the analysis, we investigate the alternative users, use cases, and
branches set aside during the first pass and analyze what happens when the steps fail.

Analyzing failures for each step

Analyzing failures helps spot missing steps, use cases, or users and is essential for creat-
ing a user-friendly API (section 9.8) and developing the implementation (section
19.1.3). For each step, we list potential failures, errors, or problems from the user’s
perspective and explain why they occur and how to fix them. Missing or invalid inputs,
data states, or business controls can cause failures. Figure 2.12 illustrates this analysis
for the steps of the “Buy products” use case; the FAILURE column is filled, and a new
step is identified.

USER | USE cAsE STEP INPUT FAILURE
B usrs | Buy products [{2oreh redets o | s ofibewed s Moy g
Check a praduct | Produet) Product o't exisk (Search prodcts f by
fﬁed; Y\?{:odul‘.{: to f;:guc’c, T Produtt doesn't exist (Seareh products to buy)
Chetk out Cart Cart is empty (Add a product to the cart)

product is unavailable (Remove unavailable product
from eart)

Remove unavailable | Produet, E

product from eart | cart

I ——
Product not in eart (No fix)

Figure 2.12 Investigating the failures of the “Buy products” steps, their causes, and how to fix them
helps identify a new step.

What problems can occur when searching for products? No product can be found due
to users providing filters with no corresponding product in the catalog or the catalog
being empty. As a fix, end users may search again with different filters, or administra-
tors may “Fill the catalog” (as identified in section 2.3.5).

24.2

2.4 Walking the alternative and failure paths 37

What can go wrong if “Check a product details info” is executed without a prior
search? No product details may be found because the requested product may not exist
in the catalog. To fix that, users can “Search products to buy” to find products existing
in the catalog and try again.

“Check out” can fail if the cart is empty, which can be fixed with “Add a product to
the cart.” The cart may also contain an unavailable product; the user can “Remove
unavailable product from cart” to fix this. It’s a new step we add after “Check out.”

As we did for other steps, we investigate what is needed to achieve it and what hap-
pens in case of success and failure. Users need the cart managed by the API and the
product indicated in the failure of “Check out.” On success, the product is removed
from the cart. It fails if a user tries to remove a product not in the cart; there’s no fix.

Adding alternative branches on each use case

We must explore other user actions within use cases to ensure comprehensive API
capabilities. We can identify alternative paths by examining potential events before or
after the identified steps. We can also add elements previously set aside to streamline
the nominal pass. We analyze new steps as usual, similar to how we have decomposed
and analyzed use cases. This section briefly explores alternative paths. Use your knowl-
edge to fill in gaps by listing steps, identifying inputs and their sources, and noting
success and failure outcomes and fixes. Figure 2.13 shows the completed “Buy prod-
ucts” use case with steps of an alternative branch.

USER USE CASE STEP What 2 INPUT | SUCCESS | FAILURE
End users |Buy products [Seaveh products to buy UALAAEE)
Chetk a Frodud’{: detailed info vee “os .es
Add a product to the cart
Bus:ms? Veriby cart content | - T
..: as usual Remove unwanted produet from cart . 'E
Chetk out .ee ver
Remove unavailable ?rodud‘, p\rom tart ves “os .o

Figure 2.13 Asking “What if ...” helps identify a non-nominal branch in the “Buy products”
use case.

What if a user changes their mind about a product on “Check out?” They need to
“Remove unwanted product from cart” (step of an alternative branch). To do so, they
need the cart and the product (its input), which can be obtained with “Verify cart con-
tent” (new step spotted with input source). Other examples of alternative branches
could be “What if a user doesn’t have an address defined for delivery?” and “What if
the price of a product in the cart has changed?”

38

24.3

2.5

25.1

CHAPTER 2 Identifying API capabilities

“What if?” is not always needed. Thanks to our subject matter expertise, we may
know that users usually “Verify cart content” before “Check out” and may “Remove
unwanted product from cart” afterward. We may have omitted this alternative branch
to streamline the nominal pass on the “Buy products” use case.

Analyzing the alternative users and use cases

To ensure API capabilities’ exhaustivity, we must list (if we haven’t already) and ana-
lyze the alternative or secondary use cases and users we set aside for the first pass (sec-
tion 2.3). During our first pass, we may not have covered the “Manage delivery
preferences” use case. Alternative use cases can be edge cases that rarely happen or
specific use cases dealing with problems, such as “Notify a problem with an order” or
“Be notified when a product is back in stock.” Alternative users, for our example,
could be catalog administrators or corporate end users. Whatever their nature, we
analyze them like the other users and use cases, including checking with stakeholders
if they are to be covered by the APL

CAUTION We prioritized nominal elements to get a quick overview and sim-
plify our work, analyzing one aspect at a time. However, we must not neglect
alternatives. For example, administrators may be less prominent than regular
users, but the system may not work if their use cases are not fulfilled.

Refining steps to identify operations

After analyzing use cases, we identify versatile operations for all steps; different steps
may share the same operations. As seen in section 2.1.3, these context-agnostic opera-
tions can be used in various situations, enabling consumers to address new use cases.
We aim to grasp the fundamentals of the API’s subject matter, which is essential for
creating a reusable, user-friendly API. We will use these operations to design the pro-
gramming interface (see section 2.1). Using the “Online Shopping” example and API
Capabilities Canvas, this section clarifies the distinction between steps and operations,
showing how to refine steps to find operations.

Differentiating steps and operations

Differentiating steps from functions or operations is essential to creating a reusable
and user-friendly API design. An API bloated with duplicates or highly specific opera-
tions is difficult to use and reuse.

If we turn each step into an API operation as identified, we’ll end up with many
similar ones. For example, in the “Buy products” use case, the “Remove unwanted
product from cart” and “Remove unavailable product from cart” steps are very similar.
Aunique “Remove product from cart” operation can fulfill them. Similarly, the “Add a
product to the cart” step of “Buy Product” resembles “Add a birthday present to cart”
for the “Buy a birthday present” use case.

Many steps won’t have lookalikes and need a specific operation. However, we
still need to differentiate them from the operations that fulfill them to make these

25.2

2.5 Refining steps to identify operations 39
operations usable in other yetunknown contexts. For example, we can’t use the
“Search products to buy” step as an operation as it is specific to the “Buy products” use
case. A context-agnostic “Search for products” operation can fulfill it and is reusable
in other situations we may encounter long after API deployment like creating a
birthday wishlist.

Identifying unique and versatile operations

As shown in figure 2.14, for each step, we look for similar steps in the API Capabilities
Canvas and determine their true intent by using their description, inputs, and success
outcomes to describe a unique, context-agnostic operation fulfilling them. Figure 2.15
shows the operations for two “Online Shopping” use-case steps. Steps marked with the
same letter are similar and share the same operations. This example includes the
unanalyzed “Fill catalog” use case from section 2.3.6, which involves searching for sim-
ilar products, verifying their details, and adding them if they are not duplicates.

USER [USE CASE FAILURE OPERATION

Repeat For eah ? il i SN — i
Sheer;ili{::ufa:?eva{ion t- { Similar s{:eys? """"" lTrue in{enm -2
T I i 1

Unique and context—
35nos‘(:ic o?era{:ion

Figure 2.14 Checking whether there are similar steps or digging to find each step’s true intent allows us
to identify unique and context-agnostic operations.

useR Juse case| STEP INPUT SUCCESS OPERATION
End Bu\/d {56 Search products o buy | Catalog, filters Produets matehing filters |...| Seaveh for products
usevrs produt
P S:ﬁhei \::c:;iut{: Seleeted F\rodud{: Product info. ée{; \ﬂrodud: details
Add a product Seleeted product, . Add a product
Lo +he ‘Zat{u d:re{f ed produc Product is in tart Lo the \Za\,;
Verify eart content Cart Produtts in cart List products in tart
@il B |ttt et rerond b | Rem prod o ek
Check out Cart Order Chetk out
Srec::ﬁffuf\f:::liglre{ t(ah:é/ailaHe produtt, f;:ﬁuc{: vemoved from < | Rem. prod. From tart
fj’calos Fi!éal q Look for similar products| Catalog, filters | Product matehing filters Seavch for products
mins tatalog
B ZEIF ei:{lmdu&' Found ?\rodut{: Produet info. ée{ \W‘odutf details
Add P\roduc{: to Ca{:a|og Produet, ca£a|05 Product is in La{alog +| Add Y"°d to ca{:alog

Figure 2.15 We identified unique and versatile operations for each step of the “Buy products” and “Fill
catalog” use cases. Three operations appear in more than one step.

40

2.6

2.6.1

—

CHAPTER 2 Identifying API capabilities

The “Search products to buy” step is similar to the “Look for similar products” step of
the “Fill catalog” use case (operation A). Their descriptions resemble each other
(“Search products ...” and “Look for ... products”), and they share the same inputs
(Catalog, filters) and success outcomes (Products matching filters). Their true intent
is to “Search for products”; we use it as their unique and context-agnostic operation
description.

The same goes for “Check a product detailed info” and “Verify if product is dif-
ferent” (B). They have the same fundamental intent and operation, “Get product
details.” The “Verify cart content” step has no similar steps. Its description is spe-
cific and doesn’t clearly express the actual intent. We can find it by looking at the
success outcome; it returns the list of “Products in cart.” Its operation is “List prod-
ucts in cart.”

As with A and B, “Remove unwanted product from cart” and “Remove unavailable
product from cart” (C) are similar. We can remove the context-specific “unwanted”
and “unavailable” qualifiers from their descriptions to get their operation: “Remove
product from cart.”

The “Check out” and “Add a product to the cart” steps have no similar steps, and
their descriptions are context-agnostic; we can keep them for their operation.

NOTE The same operation can be used in various steps of a use case and
across different use cases and users.

Focusing on the proper needs

Although we seek API capabilities that meet user needs from the Define stage, we can
be off track. To ensure the API’s accuracy and versatility, we must carefully filter, trans-
form, or accept the elements we add to the API Capabilities Canvas (users, use cases,
steps, inputs, outcomes, operations). This section discusses staying within the scope
identified during the Define stage, focusing on the proper perspectives, and using the
“Why?” question.

Staying within the Define stage’s needs scope

We must stay within the scope of the requirements clearly or vaguely defined during
the Define stage (section 2.1.1). To do so, we can request confirmation from the
stakeholders of the Define stage. To streamline discussions, we can also evaluate
whether what we find is within the scope of the input subject matter(s) and verify the
usage of outcomes.

When user needs are unclear or coarse-grained, we can request confirmation from
the stakeholders of the Define stage before investigating new areas related to the ini-
tial user needs we uncover or think of. For instance, does “Online Shopping” cover
the administration of the product catalog?

Elements unrelated to the user needs’ subject matter(s) are highly questionable.
For instance, “Check end user bank account balance” looks distantly related to “Online
shopping,” so maybe we shouldn’t include it in the scope of the API. Still, it can be

2.6.2

&

2.6.3

2.7

2.7 Awoiding integrating too specific consumers’ perspective 41

OK; our analysis may uncover initially unidentified subject matters not explicitly iden-
tified in our input. It’s up to SMEs and the stakeholders of the Define stage to decide.
Verifying outcomes usage can help streamline decisions; it is a direct follow-up to
looking for missing elements (section 2.3.5). We can likely remove any steps whose
outcomes are useless to users and are not inputs for other steps. For example, if the
“Buy products” use case has a “List product suppliers” step, and users do not use this
information, and it is not an input for another step, we should remove it.

TIP Take an iterative approach. Validate the nominal list of users and use
cases before further investigation (section 2.3); proceed similarly with the
alternatives (section 2.4). Confirm newly identified topics before investigating
them (section 2.3.5).

Focusing on the proper perspectives

Although we design an API to fulfill consumer needs, integrating needs specific to a
consumer or integrating more generic needs in a way specific to a consumer leads to
less versatile and reusable APIs. It’s up to us and SMEs to balance all consumers’ needs
by staying focused on the subject matter(s). Section 2.7 illustrates typical overly spe-
cific consumer-needs situations.

Our expertise in the subject matter, software architecture, or existing implementa-
tion may lead us to expose inner workings that are not the consumer’s business. Helped
by SMEs, architects, tech leads, or implementation developers, we must ensure that we
do not expose the provider’s perspective. Section 2.8 shows typical examples.

NOTE We’ll see in section 14.1 that sometimes we must adapt our design to
provider and consumer habits and limitations.

Asking why to investigate any problem

“Why?” is a powerful question that helps us better understand the user needs and
investigate potential problems. For example, why should users deactivate their addresses
when updating them? Because a user can have only one active address in the database,
which is not the consumer’s business but the provider’s (see section 2.8.2). Asking why
several times can help us get to the root of any problem and identify unnecessary ele-
ments or proper capabilities.

Avoiding integrating too specific consumers’

perspective

Although we design an API from the consumers’ perspective, we must be careful not
to be too specific, or the resulting API may be usable by only one or a few consumers
or may not be reusable in other contexts. This section uses the “Online Shopping”
example to illustrate how we can be too consumer-specific by

Mapping our API design to consumers’ user interface (UI)
Integrating consumers’ business logic

42

2.7.1

2.7.2

CHAPTER 2 Identifying API capabilities

Avoiding mapping consumers’ Ul

Designing an API based on an existing or wireframe UI can be helpful. Still, we must
be careful not to create use-case step flows representing specific UI flows instead of
context-agnostic subject matter flows. Ul-specific flows make APIs hard to reuse in
other contexts, such as a modified UI or another application. Typically, optimizing a
UI flow to gain more customers could be hindered because it requires revising the
API, adding development costs and delays. Modifying the API and the UI can be
impossible because other applications rely on this specific API call flow.

Like the UI it is based on, the “Create a user account” use case (see figure 2.16)
comprises four steps/operations: “Save the user’s email,” “Save the user’s first name
and last name,” “Save the user’s address,” and “Validate the new user.” Four Ul screens
to create a user account may make sense. But for an API, that means four calls, mak-
ing the use-case flow unnecessarily complex. Also, if the screen order changes, can we
change the step order to match it? Additionally, not executing the final step could
result in incomplete user accounts.

(Ul -specifie)

)

O USER ACCOUNT Save the user’s email
o0—e—e—o

Save the user’s fivst name and last name

Eral] Quse pccounr || Creste a wer , Ci2 00
—0—0—0 ateoun Save the user’s addvess
‘o Validatel Validate the new user

Figure 2.16 Ul-specific flows are less reusable and flexible than context-agnostic flows.

Instead, a single “Create new user” subject-matter-focused step/operation is easily
usable by any consumer (server application or UI). They are free to divide the infor-
mation gathering into several steps. But ultimately, they will make a single API call to
create a user account.

CAUTION If a use case’s flow mentions fine-grained information or can’t
stand a Ul flow modification, that’s a sign of a too-specific consumer perspec-
tive. We must replace it with a generic, context-agnostic flow focusing on the
subject matter. See section 10.3 for designing flexible flows and section 10.4
for flexible flows that save data.

Avoiding integrating consumers’ business logic

Consumers may try to delegate a specific job to the API, leading to tight coupling and
reduced reusability.

For example, an application using our “Online Shopping” example needs to show
a weather forecast pictogram based on the user’s address, leading to a “Get user’s

2.8

281

2.8 Avoiding exposing the provider’s perspective 43

weather forecast” use case. We, and SMEs, can consider this highly specific to this
application and unrelated to our primary subject matter, so we won’t include it in
our “Online Shopping” capabilities. Still, weather-forecastrelated features may
make sense. For instance, the “Search for products” operation could have a filter to

” o«

get products related to a weather condition like “winter,” “summer,” or “rain.” It
would be up to the consumers to provide the conditions they think are interesting

to their end users.

CAUTION An element (user, use case, step, input, outcomes, operation, or,
later, data model) implying integrating concerns, business logic, or process-
ing unrelated to or distantly related to the subject matter may be a sign of a
too-specific consumer perspective. In case of doubt, check with an SME. Dis-
tantly related subject matters may also indicate that we need different APIs to
fulfill all user needs; see section 11.2.

Avoiding exposing the provider’s perspective

APIs reflecting the provider’s perspective expose the inner workings that consumers
shouldn’t be bothered with. They are hard to understand and use and can harm the
underlying systems. This section uses the “Online Shopping” example to illustrate
three common ways of doing so:

Exposing data organization
Delegating business logic
Exposing software architecture

Avoiding exposing the provider’s data organization

An API design can mirror the underlying data organization (tables, databases), dis-
tancing it from the fundamental subject matter and making it complex. At the API
level, consumers should view data (such as a customer or product) as cohesive busi-
ness concept units; the implementation must manage data complexity. Figure 2.17
illustrates how data organization can affect or not affect a use case for retrieving cus-
tomer information.

The first example has two steps/operations, “Read CUSD” and “Read CUSA,” map-
ping the customer data organization in two CUSD (customer data) and CUSA (cus-
tomer address) tables. We hope they understand that CUSD and CUSA are customer
data; it’s up to the consumer to aggregate the data retrieved with the two operations
to get all customer data.

The second example is similar. It replaces the cryptic names with more meaningful
ones: “Read customer data” and “Read customer address.” However, consumers still
have to aggregate data from the two operations.

The third example doesn’t expose the data organization and focuses on the sub-
ject matter with a single step/operation: “Read custom information.” The implemen-
tation manages data aggregation, and the consumers get the needed data easily.

44

&

282

CHAPTER 2 Identifying API capabilities

£ CASE STEP/OPERATION STEP/OPERATION STEP/OPERATION
USE CAS (Provider’s perspective) | (Still provider’s perspective) [(Consumers’ perspective)
A e tase imPlyi =~
re{‘:‘:lem; s \/mhe?‘ Read CUSD Read ¢ustomer data E‘icié c:ét::ev
intormation Read CUSA Read tustomer address

Consumers aggvega’ce data Consumers get the da{:a they need

Implementation veturns vaw data _I'

————— ;—--_—__
Database j

Figure 2.17 Exposing database structure through an APl makes it complicated to
understand and use.

CAUTION Table names present in step or operation names or steps that indi-
cate how data is structured may be a sign of the provider’s perspective.

Avoiding exposing the provider’s business logic

An API design can mirror internal business logic, making it hard to use and poten-
tially leading to underlying data and system corruption. Figure 2.18 illustrates this
with an API relying on a system where older addresses are kept for security purposes; a

customer’s address is the one with an “active” status.

USE CASE Proniers rameine) Coent cometioe
" , | List eustomer’s addvesses
M°d"p‘§33r¢e‘:§‘i°"\ﬂ) Update address status Update tustomer’s addvess
Add new addvess

Addvess 2

attive

Addvess |

inactive

—— e - = ———

Myda{e
addvess s{:a{:us

—_——— = —

ad
lzddr::l

API

Implementation manages |
business |05|£ |

Figure 2.18 Delegating business logic to consumers can lead to system and data corruption.

2.8 Avoiding exposing the provider’s perspective 45

Modifying a customer’s address from the provider’s perspective takes three steps. Users
“List customer’s addresses” to get the active one, “Update address status” to make this
address inactive, and finally, “Add new address” with an active status. Going through
these steps and data manipulation is complex, but more critical problems exist.

These steps will be executed by an uncontrolled consumer (developed by a third
party, for example) or in an unsecured environment (a browser, for instance). Due to
unexpected crashes, errors in code, or malicious intent, consumers may stop at the
second step or add a new address without deactivating the active one, leading to data
integrity problems. When thought of from the consumer’s perspective, the use case
has a single step, “Update customer’s address,” which ensures that the implementa-
tion we control manages the business logic securely and preserves data integrity.

WARNING If incorrect API steps or operation executions can compromise

‘; underlying data and systems integrity, we trust API consumers with business
logic. It’s solely the implementation’s responsibility to handle such logic. For
more secure API design considerations, see section 12.1.

2.8.3 Avoiding exposing the provider’s software architecture

APIs enable building systems from various software pieces, but exposing the composi-
tion of an API’s system can lead to complex and less performant APIs. Figure 2.19
illustrates this problem with an API relying on a system composed of two microservices
(or small server applications). One handles most of the products’ data, and the other
manages their prices.

STEPS STEPS
USE CASES (Provider’s pevspective) (Consumers’ perspective)
Seaveh for produtts (without prices)
Buy products Search for produtts (with prices)
Get product price (for each product)

.. . . .

Product |
Produet 2

Product | (whith intludes price 1)
Produtt 2 (which includes price 2)

: Implementation orthestrates

mitrosevvites \

Micvroservites ’

Figure 2.19 Exposing underlying system architecture can make APIs complicated to
understand and use.

46

&

CHAPTER 2 Identifying API capabilities

Conway’s law

Conway’s law states that any organization’s system design will mirror its communi-
cation structure. This adage, first published in April 1968 in Datamation magazine,
applies to APIs. They are influenced by the organization’s communication structure
and how it exchanges and processes data across its applications.

When buying products from the provider’s perspective, users “Search for products”
and loop on all products to “Get product price.” A product without a price is irrele-
vant from the subject matter perspective of our API, so users will always do this incon-
venient sequence, which also has performance concerns we’ll discuss in section 13.1.

There can be excellent reasons for such an architecture, but that’s none of the
consumer’s business, and it splits an API’s business concept across operations. A single
“Search for products” whose implementation handles getting their data, including
their price, is preferable.

CAUTION If application names appear in steps or operations or retrieving
data requires complex sequences, it’s probably a sign of the provider’s per-
spective. It’s up to the API implementation to deal with the complexity of dif-
ferent applications handling a business concept.

Summary
Analyze the user needs from the Define stage to identify API capabilities, which
are the use cases the API must cover and the operations needed to achieve them.
Describe API capabilities in natural language (“Send a message”) instead of
API language (POST /status) to ensure accurate identification and stream-
line discussions.
Clarify subject-matter vocabulary variations or uncertainty to identify the cor-
rect API capabilities (“Are A and B the same thing?”).
Confirm with Define stage stakeholders that the found capabilities meet their
expectations, and request clarification or challenge their inputs when necessary.
List all users and their use cases to ensure that all capabilities are identified.
Streamline use case analysis by focusing on nominal paths: the most common
and successful cases. Save alternative use cases and failures for a second pass.
Decompose use cases in steps to ensure exhaustive API capabilities.
Identify the steps’ source of inputs and success outcomes’ usage to uncover
missing steps, use cases, or users.
Analyze alternative use cases, paths, and failures for exhaustive API capabilities.
List potential failures, errors, or problems from the user’s perspective, and
explain why they occur and how to fix them to identify missed elements.

Discover alternative paths by examining potential events before or after the
identified steps (“What if?”).

Exercises 47

Use steps’ description, inputs, and success outcomes to identify similar ones (if
any), and describe a unique, context-agnostic operation fulfilling them.
Challenge elements distantly related to the user needs’ subject matter(s) and
those whose outcomes aren’t used.

Refrain from mapping use case flows to UI flows or integrating consumer-specific
business logic; this makes an API less reusable and flexible.

Refrain from exposing data organization, trusting consumers with business logic,
or exposing software architecture; these make an API complex and can harm
the underlying system.

Exercises

This section contains exercises to help you practice some key skills in this chapter.
You’ll find the solutions in the online appendix (https://mng.bz/260N). I encourage
you to solve them and read their solutions, which include detailed explanations, refer-
ences to relevant sections, and additional comments.

Exercise 2.1

You’re designing an API for an HR tool that manages time-off requests. List at least
three potential users for this API (think about your experience taking time off, and
remember that there are different types of users). Then choose which user you would
prioritize for analyzing use cases, and imagine the use case you would analyze first.
Briefly explain your reasoning.

Exercise 2.2

You're designing an API for a customer relationship management (CRM) tool for
sales teams. Can you explain what’s wrong and why with the following list of use cases
for the sales representative user? Bonus question: what action could you take with
what’s wrong?

Prepare a customer meeting

Follow up on sales lead

Verify data synchronization processes

Identity and reach out to customers at risk of churn
Track ongoing deals

Exercise 2.3

You’re designing an API for a food delivery service and listing the steps for the “Place
an order” use case for the “Customer” user. Investigate each step’s input and success-
ful outcome to find the missing step in the following list:

Search restaurant
Add dish to order
Pay order

https://mng.bz/260N

48

CHAPTER 2 Identifying API capabilities

Exercise 2.4

You're designing an event management API. Your analysis reveals that event organiz-
ers can create events and offer event tickets, and customers can book tickets for an
event. Using their description, inputs, and success outcomes, identify unique and ver-
satile operations for the following use-case steps:

(Create an event) Verify if the event already exists
(Create an event) Create the event

(Book a ticket for an event) Search for available events
(Book a ticket for an event) Add tickets to order
(Book a ticket for an event) Pay order

(Offer event tickets) Add tickets to gift

(Offer event tickets) Validate gift

Exercise 2.5

You’'re designing an API for a library management system. What’s wrong with the fol-
lowing steps describing the “Return a borrowed book” use case? How do you fix the
problem?

Search for the borrowing record based on book ID
Update the borrowing record to indicate the book has been returned
Remove the borrowing record reference from the user’s account

Observing operations
Jrom the REST angle

This chapter covers

The basics of HTTP and REST APIs
Identifying resources and their relations

Identifying resources' actions and their inputs
and outputs

Now that we have analyzed users’ needs and identified the API capabilities required
to fulfill them, especially the operations, we can start turning their plain English
(or any other language) descriptions into the programming interface. In the context
of this book, this means designing a REST web API. It requires knowing the basics of
HTTP and REST APIs, which the sample without explanation in section 1.1.2 didn’t
teach us. We still have no clue how an operation like “Send a message” can be
turned into a POST /status, POST /message, or POST /messages HTTP request.
Additionally, designing such a programming interface covers different aspects we
must know and separate to simplify our learning and work while ensuring that our
API design is accurate and versatile.

This chapter examines the “Design the programming interface” step of the API
design process by explaining the basics of HTTP and REST APIs and how to design a
REST API. Then we focus on our first task within this step: observing the operations

49

50

3.1

-

r—-— -~ ~-~---

CHAPTER 3 Observing operations from the REST angle

we identified from the REST perspective. This consists of identifying the business con-
cepts with which the API deals, called resources in REST APIs, how they relate, the
actions that apply to them, and their inputs and outputs.

An overview of programming interface design

As shown in figure 3.1, we now enter the second step of the API design process,
“Design the programming interface” (section 1.6.2). This step aims to design the
REST API that represents the operations we described in plain English or any other
natural language during the identification of API capabilities (section 2.1). We con-
tinue to focus on the “versatile API that does the right job” layer, addressing con-
sumer needs, concealing inner workings, and ensuring usability in various contexts
(section 1.7.1).

.- Turn “Send a message” into “POST /status”

(among other things) e

_——— e — ,

DEFINE | DESIGN ,h_D_E!EI__o_P_;\
| =T o=

: dentify | | e e | | Deseribe thel |Envich the po_ TET -y
Needs :‘ =Pr the A inzer ate programming (—8% AP| design I EEE‘.—_OZ ird
\ ﬁ.lax; interface artifacts N PROVIDE) /—(

S , - 4_CONSUME |

T DECIEN LAYERS AP[meets needs +

Operations deseribed ‘
in natural language

A versatile AP| design that does the vight job

(“Send a message") ‘

An AP[design that is user—friendly and interoperable j

We assume a REST
APl is needed, but ;'

An API design that tonsiders tonstraints »
(eontext, seeurity, eﬁitiency, a_?_’\.

backward-compatibility, and extensibility)

API type depends |

on tontext - u veasoned and continuously improving AP| design process

APl desion
toolbox

--- conteals inner workings

+ is usable in vavious

tontexts
' Keep other

»- tonterns

i for later

Figure 3.1 We design the REST programming interface based on the capabilities identified during the needs
analysis. We focus on designing a versatile API that does the right job.

CAUTION We assume that a REST API suits our needs, but this API type may
not be the most adapted option in our context; section 14.8 discusses typical
alternatives and when to select an API type.

This section explains the basics of the HI'TP protocol and REST APIs. We then pro-
vide an overview of how to design a REST programming interface and explain why we
didn’t discuss these concerns when identifying capabilities.

3.11

3.1 An overview of programming interface design 51

Introducing the basics of the HTTP protocol

As mentioned in section 1.1.2, REST APIs are web APIs that use Hypertext Transfer
Protocol (HTTP), like web browsers. HTTP is a synchronous request-response proto-
col that enables interaction with resources via standardized methods. A resource can
be anything and can be represented in requests or responses in various formats, such
as HTML, videos, or PDFs. HTTP methods allow retrieving (GET) and sending (POST)
resources, among other basic interactions. HI'TP enables communication between
clients and servers, independent of technologies and implementations. Figure 3.2
shows we can retrieve my blog posts using a web browser or the curl command by pro-
viding the https://apihandyman.io/blog URL.

HTTP ... Path iden{:ifying

method s vesourte ----- Can Yyou give me the

/blog vesourte, please?

HTTP client .
(browser, ewrl (<) [> [https://apihandyman.io/blog] GET /blog
tommand line,...)
[- o AP HANDYMAN = E{IE'P-: o
4 H ure, here
Overcoming AP| design doubts il it sl : —
r J e apihandyman.io
. ——

TERMINAL {Why do we need AP[auidelives | e
»> curl https://apihandyman.io/blog 2 b1 ?

HTMI Resource 10V ing .. .</Hl i
N tontent --- < . FOvercoming </ HTTP server
<H1>Overcoming ...</Hl> <Hl>Why do we ...</Hl> (statie, WordPress, ...)

</HIML>

Figure 3.2 A browser or curl command loads a web page by sending an HTTP request containing a
standard method and a path identifying the page. The server returns with an HTTP response confirming that

the

page is found and its content.

Both tools (clients) send a GET /blog HTTP request to the apihandyman.io server. The
GET method requests a resource, and the /blog path identifies it. The server responds
with a 200 OK success status indicating that the resource is found, and returns the HTML
code for the requested page. The browser parses this HTML, retrieving additional
resources like JS, CSS, or images it references with the same mechanism. The curl
https://apihandyman.io command outputs the returned HTML directly.

Listing 3.1 Retrieving a web page in Python

import requests
page = requests.get ("https://apihandyman.io/blog")
print (page.text)

HTTP can be used in any programming language. Listing 3.1 shows a Python script
acting like the example curl command. A Swift, Kotlin, or Java mobile application
can send the same HTTP request. Whether the server is a WordPress PHP application
or a static server, it will return the same HTTP response.

https://apihandyman.io/blog

52

3.1.2

CHAPTER 3 Observing operations from the REST angle

Introducing the basics of REST APIs

REST APIs can be used by applications with or without end users (section 1.1.1) and
built in any technology, as any programming language supports HT'TP (section 3.1.1).
For now, we’ll consider REST APIs as web APIs that extensively use HTTP and respect
its semantics, although we’ll see they’re more than that in section 4.8. Figure 3.3
shows a call to the “Online Shopping” API made by a mobile application and the curl
command-line tool to “Search for products.”

HTTP method---,

000 == @)
&

SHOPPING

Can
/pro

Path identifying

‘.‘ resourée ----- .
N H

Zou give me the

utts vesourte,

Client
application Cowboy Bebop HT TP Web AP

[
e

status Sw{e:, h,ere
it
200 OK W

[

server
[

.........

Patlabor

e
.

. "id": 12345,
> curl https://api.shp.ng/products "name": "Cowboy Bebop,
[lltypell : IIBDII

--- Resourte tontent

{ ’
nidn: 12345,] c. HTTP vesponse

Figure 3.3 How a client application calls a REST API is identical to when a web browser loads an
HTML page.

The application sends a GET /products HTTP request to the API server, which
responds with a 200 Ok status and the product list, regardless of how data is stored and
read. From an HTTP perspective, this REST API call is similar to the blog example in
section 3.1.1. However, the resource represents a business entity or concept (“prod-
ucts”) related to “Online Shopping” instead of a web resource like HTML or CSS files,
and the client gets structured data instead of HTML. The curl command line, a web
application, a smart refrigerator application, or any application or program speaking
HTTP can perform the same REST API call.

@ NOTE The data is in JSON format, but that doesn’t matter now. Section 5.1.2

discusses this format, and section 9.7 demonstrates using other formats, such
as XML and CSV.

The resource and method model may look familiar to those accustomed to object-
oriented programming (OOP). An HTTP resource can be compared to an object or
class, and the HTTP methods to the methods of an object or class. However, unlike
OOP, HTTP is limited to standardized methods.

3.1 An overview of programming interface design 53

3.1.3 Contrasting REST with non-HTTP-compliant web APIs

Although all web APIs use HTTP, not all web APIs respect HTTP semantics like REST

APIs. Figure 3.4 contrasts deleting a nonexistent product with a REST and non-HTTP-
compliant web API.

REST API Mon—HTTP—ComFIi&h{ web Afl_l
Respects HTTP semanties eTTTTTTIIT e Uses GET HTTP
HTTP reques{: _y me‘u‘od (read) {',o
“Delete product 123" DELETE /products/123 GET /deleteProduct/123 delete
I HTTP vesponse ‘ 404 NOT FOUND 200 OK <Jr==msmsmmmmmnemmmmconstonecs Returns an error
“The Yrod"d-‘ doesn't exist” { "error": "Not found" } vith an OK
HTTP status

Figure 3.4 Some web APIs don’t respect HTTP semantics. Their creator may wrongly call them “REST”
simply because they use HTTP.

®

3.14

A REST API respecting HI'TP semantics allows a client application to send a DELETE
/products/123 request to delete a specific product resource. If the product doesn’t
exist, the server responds with 404 Not Found, similar to a nonexistent web page request.
Conversely, an API ignoring HTTP semantics may use GET /deleteProduct/123 and
return 200 oK with a “Not Found” error message, misusing the GET method for deletion
and signaling an error with a success code, contrary to HTTP standards.

WARNING It may make sense for some web APIs to not use the HTTP proto-
col extensively and to use it as a transport layer. Still, it’s best to stay within the
protocol’s definition to be interoperable and user friendly (see section 9.1.3).

How do we design a REST programming interface?

Designing a REST programming interface efficiently and accurately requires separat-
ing concerns, as illustrated in figure 3.5. We observe the operations found when iden-
tifying API capabilities (“Search for products”) from the REST angle (see sections 3.2
and following). We identify resources (“Catalog”), their relations (“Catalog contains
Product resources”), the actions that apply to them (“Search”), their inputs, and suc-
cess and error outputs.

Using identified elements, we represent operations with HTTP (see section 4.1). We
design paths representing resources (/products for “Catalog”), choose standard HTTP
methods to represent actions (GET for “Search”), pick HTTP status codes to indicate
success or failure, and locate inputs and outputs data in requests and responses.

Ultimately, we design fine-grained data models (see section 5.1). We design the
data of resources, operation inputs, and outputs. We identify, name, and type each
piece of data (a product has a category of type string) and organize them in objects
or arrays.

54

CHAPTER 3 Observing operations from the REST angle

.) AP| Capabilities
Seareh for products Identify the AP| capabilities :1 caiias)

L1 T 11
r

Design the programming interface

Other vesourte

tontains
°9)
’ Sueeess and
/[evvor outputs

Observe operations
from a REST angle

AC{ion

m /other-path /path
Represent operations
with HTTP HTTP request D HTTP responses

Data locations, METHOD STATUSES .
Data locations,

(
price: float Input data /Output data
, } e Model data

category: st
Choose data, names, {yyes, and organization

Figure 3.5 To efficiently and accurately design the programming interface representing the API
capabilities, we observe the operations information of the API Capabilities Canvas from the REST angle,
represent identified elements with HTTP, and, finally, model data.

3.1.5 Why not discuss HTTP and REST when identifying capabilities?

With experience, it may become evident that “Search the catalog” can translate to
GET /products. However, we must always remember section 2.1.4: avoid discussing
REST or HTTP when identifying API capabilities. Experience does not exempt us
from assessing user needs to determine whether REST is suitable or whether another
API type is required. We still face discussions around using /products, /product, or
/catalog and deciding on appropriate HTTP statuses. This can complicate conver-
sations with subject matter experts (SMEs), shifting focus from user needs and sub-
ject matter.

Our experience with the resource and standard methods model can bias our
thinking, leading to flawed designs that do not meet user needs. Early attempts to
identify HTTP representations can slow us down and increase error risks. For exam-
ple, when designing an API for a library guided by our HTTP knowledge, we may
focus only on the “Books” and “Book” resources with methods like GET /books
(“search for books”) and GET /books/{bookId} (“read a book”). However, does
DELETE /books/{bookId} (“delete a book”) make sense? Do these operations accom-
modate a library’s multiple book copies and handle the borrowing process? Speaking
of the borrowing process, how do we represent it with HT'TP? It’s more an action than a
business concept (discussed in section 4.7). Identifying all capabilities without thinking

3.2 Observing the API Capabilities Canvas from the REST angle

55

about HTTP and REST will help us meet user needs and be exhaustive and will pro-

vide us with information to help us overcome such challenges.

&

3.2

NOTE We avoid burdening SMEs with REST and HTTP concerns. However,
their subject-matter expertise is essential for identifying resources (business

concepts) and modeling data when designing the programming interface.

the REST angle

The rest of this chapter focuses on observing the API Capabilities Canvas (section 2.2)
from the REST angle to spot the REST elements needed to represent operations with
HTTP (covered in section 4.1).
We use the API Capabilities Canvas in figure 3.6 to learn how to perform this task.
It contains a subset of elements from chapter 2’s “Online Shopping” example, repre-

Observing the API Capabilities Canvas from

senting the five most typical API operations: searching, reading, creating, updating,
and deleting things. These are often called CRUD operations; CRUD stands for cre-

ate, read (also applies to search), update, and delete.

0

S

USER | USE CASE STEP INPUT SUCCESS FAILURE OPERATION
End B Seaveh fo 1 Produtts No product
s | B | oot T by | Coten Bt |Preducte o Brodet | oah for products
odu Selected product | Product Produet
heck g produet | SeltedProckeh | ottt | e et | et proct detals
Catal Fil [Look for similar | Catal A
‘admin:ﬁ ca’calog Fro‘:ikuf{;.: lar charaz vistics ,\I‘::A"‘,J‘)ducb ma{d\ing Search for wrodud‘,s
characteristies
Kemﬁeigoducf Found produtt E\ri‘.iu& E::i?i{exir(: Get product details
Add a product | Product, eatalon | Productis | Vg Prodet [Add 5 product to
to the catalog in catalog g eak) | the catalog
Modify product | Selected product, | Producet is i
in-CO» ¥ prod mij:ci:d E\v;co ¢ “Fda‘&d S::i? i{:exir(: Modrc\/ 2 Frodutt ?
Remove a product " wet i e Remove a produet
from the Z;{:alog LA f:::v:j * S:egn'itexii ‘F:om Ehe ‘Z;{al‘;g

Figure 3.6 This API Capabilities Canvas showcases the five typical APl operations: searching for elements
and creating, reading, updating, and deleting an element (CRUD).

This section reorganizes the canvas’s information around operations and expands it

to save findings. Then we provide an overview of how to observe operations from the

REST angle to uncover what we seek.

56

3.2.1

CHAPTER 3 Observing operations from the REST angle

Reorganizing and expanding the API capabilities canvas

To observe operations from the REST angle, we can reorganize the API Capabilities
Canvas around operations and expand it to save our findings. Currently, the canvas is
organized by use cases, with the same operation appearing in multiple steps, compli-

cating our task. A spreadsheet can simplify reorganization. As shown in figure 3.7, we
can create a pivot table with OPERATION as the main column, followed by INPUT,
SUCCESS, FAILURE, STEP, USE CASE, and USER (check https://apihandyman.io/
the-design-of-web-apis/ for an example document). Alternatively, we can filter by
OPERATION to select steps for a specific operation. Avoid sorting by operations to
maintain the order of use-case steps.

OPERATION INPUT SUCCESS | FAILURE STEP | USE CASE| useR
Add a product 4o Productis [Weomd produet 1add 5 product | Fill Catal
the cxtalog Product catalen |\ Cobalog | 3;3"'19 o[the Eotalog | catalog | admine
! Seareh for products | Cataloa, filters PNA"#’S . No product |Seareh for B“V End users
> matching filters | foun products to buy |products | 7"
Catalos, Noproduct | Produels 11 o for imiar | Fil Catalog
Q chavacteristies [foun Eharactaviskics | Produets catalog | admins
| [Get product detals | Selected produet | Peduct e AU i E:Zd“ﬂf‘ End users
Produet Product Verify if product| Fill Catal
., Found product info. doesn't exist [is dide\ren‘l catalog admiv:s
i Seletted produtt, | Produet is Produet Modi‘c voduet | Fill Catal
@ity prodet |GEEATEY | s [deembent [T |obiog | e
Remove a product Product is Product Remove a produet| Fill Catal
'#Fm the vatalog | Sclected produet |\ 2Ch S dovint exist | fvom the catalog | catalog | admine’

Figure 3.7 Pivoting the API Capabilities Canvas to group information around operations simplifies our
work. CRUD stands for create, read, update, and delete.

We’ll save resource- and operation-related findings in the Operations and Resources
tables in figure 3.8; we can add them as new sheets in our API spreadsheet. We can
copy the OPERATION column of the pivot table to start filling the Operations sheet
with the unique names we defined during API capabilities identification.

Creating a pivot table

To create a pivot table in Google Spreadsheet or Excel, select all cells in the sheet
containing the capabilities. In the Insert menu, choose Pivot Table. Then insert it into
a new sheet. Add the columns starting with OPERATION in lines (or rows) in your
desired order. Finally, uncheck all the “totals” check boxes.

https://apihandyman.io/the-design-of-web-apis/
https://apihandyman.io/the-design-of-web-apis/
https://apihandyman.io/the-design-of-web-apis/

3.2 Observing the API Capabilities Canvas from the REST angle 57
OPERATION RESOURCE [ACTION| INPUT [it ot RESOURCE | RELATION

Add a product to the catalog

Seavch for products 7S
Get product details !
Modi‘c‘/ a Produ&{ -

PRI Ovevrations
Remove a product from the catalog

Figure 3.8 We expand the API Capabilities Canvas with the Operations and Resources tables to keep track

of our findings.

As shown in figure 3.9, our input is the output of the API capabilities identification:
the API Capabilities Canvas in our case. Going through each operation’s information,
we identify resources (or business concepts) manipulated by the operations and how

they are related (section 3.3), which actions apply to them, and their inputs and out-

puts (section 3.4). SMEs can significantly contribute to observing operations from the

REST angle; this task only requires using plain language and relies on subject matter
expertise and vocabulary. Once done, we can move to the next task of programming
the interface design, representing these elements with HTTP (see section 4.1).

2
'denﬁ-‘y velations

3.2.2 How to observe operations from the REST angle
OPERATION INPUT SUCCESS FAILURE
Search for | Catalos, Produtts No product
products | filtevs matehing filtevs Loun
Products
C&‘(‘,&I No Fvoduﬁ'{: m aﬂhih
thara:%eris{:ia found charat{:gvi <t CS}
AP Capabilities

nvas

RESOURCE | RELATION
Ca‘f:alog Contains many
ondut{is

‘Lis{: in?u{:s? List actions |Lis+, ou{:yu{s?

Observe operations

from the REST angle

|
- Iden{:i«c\/ vesourtes

’ Products iw‘a
(s

uegess)

A

90—

OUTPUT
OPERATION | RES. | ACTION | INPUT Destription Ty Data
?::;ﬁr{.fw Catalog | Searth | Filters Ezg::%so;&{thg Suecess E:r‘:iud-’s

Figure 3.9 Using the operations information from the API Capabilities Canvas, we identify resources, their
relations, and the actions that apply to them with their input and outputs.

58

3.3

331

3.3.2

CHAPTER 3 Observing operations from the REST angle

Identifying resources and their relations

The observation of the API Capabilities Canvas from the REST angle starts with identi-
fying resources manipulated by operations and how they are related (see section 3.2.2).
This section first discusses what a resource is. Then we demonstrate how to identify
resources and their relations using the five typical CRUD operations from section 3.2.1.
Finally, we uncover patterns and recipes to simplify this task.

What is a resource?

In sections 3.1.1 and 3.1.2, we introduced the concept of resources when discussing
HTTP and REST. In HTTP, a resource is virtually anything, such as an HTML file or
an image, represented by a path (/blog or /thumbnails/blade-runner.jpg, for exam-
ple). It can be manipulated with standard HTTP methods (such as GET or posT) and
hence operations.

The same is true for a REST API, but before being represented by a path (we keep
this for section 4.2.2), a resource is a high-level business concept or entity related to
the API’s subject matter. It has a noun or short description using domain terminology.
A resource can exist independently and be manipulated alone. It differs from its prop-
erties, the small data pieces that compose it (see section 5.1). Typically, a resource is a
class in object-oriented programming.

In our “Online Shopping” example, the “Product” is a key subject matter concept
that appeared often when we identified the API capabilities (see section 2.1): this is a
resource. Conversely, the “name” of the product is a piece of information belonging
to it that can’t exist independently. A counter-example is the product’s price. It is a
product property, but our analysis may reveal that we must also treat prices as resources
to track their evolution over time.

Identifying an operation’s resource

As shown in figure 3.10, we use an operation’s description, input, success, and failure
to identify the resource it manipulates. The operation’s resource is often the target of

| (Prvoted) API Capabilities Canvas

OPERATION INPUT SUCCESS FAILURE OPERATION RESOURCE

Get product details | Selected product | Product info. S::f:'itexi " Get product details| Product
Modify a product | Produet

. Selected product,| Product is Produet
M°d'£7 aproduct | Cieed T updated doesn't exist RESOURCE | RELATION

--- P\rodud‘,

Main verb ay\?hes {:o- Only meh‘{:th

Figure 3.10 We use description, input, success, and failure to identify the resource manipulated by
an operation.

Found product | Product info [frodict

3.3 Identifying resources and their relations 59

its description’s main verb. In “Modify a product,” the verb “modify” applies to “prod-
uct.” We can assume the resource is “Product.” Looking at this operation’s input, suc-
cess, and failure confirm it; they all focus on the concept of “Product.” Similarly, in
“Get product details,” the verb “get” applies to “product details,” and the inputs, suc-
cess, and failure focus on “Product.” Both operations manipulate the same resource.

E/ NOTE An operation manipulates only one resource, and a resource can be
= manipulated by different operations.

3.3.3 Tweaking an operation’s description to identify resource

Shortening (figure 3.11) or expanding (figure 3.12) descriptions sometimes helps
better identify an operation’s resource. Shortening operation descriptions aids in
identifying resources. For “Add a product to the catalog,” we may hesitate between the
“Product” and “Catalog” resources. We can simplify the description to “Add to the cat-
alog,” concluding that the resource is “Catalog.” Additionally, although both “Prod-
uct” and “Catalog” are mentioned as input, success or failure relates to whether the

((Pivoted) AP| Capabilties Canias |

OPERATION RESOURCE

LT C&n be reyhrased “add {‘p " Add a ondut‘l‘, {'9 ml o9

{ the catalog
i [oeraTioN et | siccess | _paue Rererta Prisiet | Produet
L Add a product to Product is |W5on9 produc

the catalog Product, catalog ‘mr B atab; I:cc.a%)o{: added

Remove a produtt Product i Produet '—
."-%:om vzhe Z;{:abg Selected product r:moved . d:esn'{: exist RESOURCE | RELATION
! Catalog
“e- Can be vephrased “Remove a ” Product

Figure 3.11 We can shorten the description to identify an operation’s resource.

(Puoted) AP Capabiltes Canvas

OPERATION | RESOURCE
OPERATION INPUT SUCCESS | FAILURE
ks No rroduct liearch for products | Catalog
Searth for products Catalog, filters [Products | No produe
:
Produc{:s
Catal Noproduct [0\ RESOURCE | RELATION
L f.harazze\-is{:ics found Hven c{;gri shied Cotalos

.....
...........

Figure 3.12 We can expand the description to identify an operation’s resource.

60

3.34

3.3.5

CHAPTER 3 Observing operations from the REST angle

product is added to the catalog, confirming that the main concept the operation deals
with is “Catalog.” Similarly, we can condense “Remove a product from the catalog” to
“Remove a product,” indicating that this operation manipulates a “Product,” as con-
firmed by the input and outcomes that focus solely on “Product.”

Alternatively, we can expand the operation’s description to identify its resource.
For example, “Search for products” requires “Catalog” and “Filters” or “Characteris-
tics.” We can expand its description to “Search for products matching filters or charac-
teristics in the catalog” and shorten it to “Search in the catalog.” “Catalog” is the
resource we search for, just like in the previous two operations.

NOTE If tweaking the description doesn’t help determine the resource’s
identity, it may be because we’re dealing with a nested or hierarchical resource.
For example, if an operation is “Add a new product to a merchant’s catalog,”
we can shorten it to “Add to the merchant’s catalog,” but not “Add to cata-
log.” The resource is “merchant’s catalog,” not just “catalog.”

Identifying resource relations

Once we’ve analyzed all operations and determined their resources, we can identify
their relations using our subject-matter knowledge and the API Capabilities Canvas
information. We can also look for relations when adding a new resource to our list.
Note that resources may not have relations, depending on the subject matter.

As shown in figure 3.13, from the “Online Shopping” subject matter perspective,
it’s pretty evident that a “Catalog” (of products) contains many elements of type
“Product,” and a “Product” belongs to a “Catalog.” In the API Capabilities Canvas, the
“Search for products” and “Add a product to the catalog” operations and “Products
matching filters” and “Product is in catalog” successes confirm this relationship.

[Subject-matkr knowledse | [Prvoted) API Capabilities Canvas

m OPERATION SUCCESS RESOURCE | RELATION

A Add a product +o the catal Produtt is in catalo Ca{:alog Contains man
eontains many : ¢ i - 9 products !
Seareh for Products Products matching filters Produet | Belongs to the

... catalog

Subject—mattr knowledae is confirmed by AP| Capabilities Canvas

Figure 3.13 We can use subject-matter knowledge and the API Capabilities Canvas to identify resource
relations.

Using patterns and recipes to identify resources and relations

Analyzing descriptions and using inputs and outcomes are fundamental for identify-
ing resources and their relations. Still, we’ve discovered recipes applicable whenever
we encounter typical patterns, such as CRUD operations.

3.4

34.1

3.4 Identifying resource actions 61

NOTE Throughout the design process, recognizing typical patterns and
applying proven recipes facilitates the design work, helps us be more confi-
dent in our design decisions, and contributes to creating excellent APIs. See
section 16.1 to learn more about streamlining API decision-making.

The resource is the element when reading, updating, or deleting an element. The
resource is the element’s container when creating or adding an element to a con-
tainer or when listing or searching for elements belonging to a container. How we
describe relations between resources may depend on the subject-matter terminology,
but we’ll usually end with “X belongs to Y” or “Y contains X” relations.

CAUTION Identifying resources and their relations is similar to defining
classes or tables. Use your preferred methods, but avoid being influenced by
preexisting code or databases (see section 2.8).

Identifying resource actions

Consumers interact with resources through standardized HTTP methods when using
a REST API. As seen in section 3.1.4, we need to identify the specific action an opera-
tion applies to the resource we identified in section 3.3 to be able to choose the
appropriate HTTP method representing it (section 4.3). In the process, we’ll list the
action’s inputs and outputs, for which we’ll select locations in HTTP requests (sec-
tion 4.4) and responses (section 4.6). We’ll model the input and output data in sec-
tion 5.1. This section explains what an action is and how to identify it, and lists its
inputs and outputs.

What is an action, and how can it be identified?

Each operation applies an action to its resource, described by the main verb from the
operation’s description. This verb is the same one we used to identify the resource
(see section 3.3.2), which is why we can simultaneously identify an operation’s
resource and action. Figure 3.14 shows the enhanced operation descriptions we used
when identifying resources, allowing us to connect the two tasks.

OPERATIONS RESOURCES | ACTIONS
Add a product o the catalog Catalog Add
Seaveh for products (in the eatalog) | Catalog Seareh
Get product details Produet Get
Modify a product Produet Modify
Remove a produtt from the catalog Product ReZSie_J Figure 3.14 We use the operation

.
Veoaona .
v
H

The main verb is the action”

description’s main verb to identify
the action.

62

&

3.4.2

E

CHAPTER 3 Observing operations from the REST angle

In “Add (a product) to the catalog,” the main verb is “Add”; it is the action applied to
the “Catalog” resource by this operation. Similarly, with “Search (for products) in the
catalog,” the main verb/action is “Search.” The same goes for the three other opera-
tions: “Get product details,” “Modify a product,” and “Remove a product (from the
catalog).” Their actions are, respectively, “Get,” “Modify,” and “Remove.”

CAUTION Don’t jump ahead when identifying actions (especially once you’ve
learned to map them to HTTP methods in section 4.3). Use raw verbs from
operation descriptions, and avoid replacing them with CRUD verbs or HTTP
methods.

Listing an action’s inputs

Each operation’s action inputs merge the inputs of all steps using the operation. We
describe them in a context-agnostic way to avoid duplicates, as when identifying oper-
ations in section 2.5.2.

When different steps use an operation, we merge inputs, as shown in figure 3.15.
Two steps use the “Get product details” operation, whose inputs are “Selected prod-
uct” and “Found product.” They both identify a specific product found with “Search
for products,” regardless of its use. We discuss with SMEs what they usually use to iden-
tify a particular product; it’s a “Product reference.” We add it to the action’s inputs.

| Pivoted) API Capabilities Canvas |

OPERATION [INPUT (sourte) STEP OPERATION | RESOURCE | ACTION | INPUT

t product | Seleeted produet | Cheek a produet et product Produet + odu
LRt | G e | detaied ol A ’ Get [Prodct

Found product Verify if produet]
(Search for prod.) |is dideven{

Figure 3.15 We can merge multiple context-specific step inputs into a unique, context-agnostic
action input.

NOTE Naming can be difficult; if there are uncertainties, we can revise our
choices during detailed data modeling. Section 8.8 covers the art of naming,
and section 8.9.2 discusses selecting identifiers.

The task is more straightforward when the operation’s action is used on a single step,
as shown in figure 3.16. Similar to the previous example, both “Modify a product” and
“Remove a product from the catalog” expect a “Selected product,” so we add a “Prod-
uct reference” to their action’s inputs. Modifying a product also requires “Modified
information,” which we can make more explicit with the “Modified product informa-

tion” description at the action level.

3.4 Identifying resource actions 63

[(Pivoted) API Capabilities Canvas |

OPERATION INPUT STEP OPERATION | RESOURCE | ACTION INPUT i‘
. Seleeted produet, Modify produtt Modify a . Product veference
Modrcy a product mij_fé': 4 r: 5 et gy Y Produt produc Product Modrg\/ Mod. prod. inbo.
Remove a Yrodut{: Seleeted duct Remove a Produu‘_ Remove a Product R Product ¥
from the Ca{akg elet produt: Lrom the ¢ a‘(:alog yrodut{: Lrom.. rodut emove rodult reterente

Figure 3.16 No merging is needed when a single step uses the operation, but we may improve
descriptions.

@ NOTE Remember, we don’t need all the details at that stage; we’ll look into
fine-grained data, such as what goes into “Product information” when model-
ing data (section 5.1). For input parameters and output data related to pagi-
nation or filtering, it’s not a problem if we miss them now; later, we’ll work on

API design efficiency to ensure that we don’t miss them (section 13.1).

3.4.3 Dealing with the operation’s resource when listing
an action’s inputs

The action inputs usually exclude the operation’s resource, but exceptions may exist.
They may help us spot elements we missed during the needs analysis.

Figure 3.17 shows that the “Add a product to the catalog” operation has a “Prod-
uct” input, which we turn into “Product information” in the action inputs to avoid
confusion with the product resource. The “Catalog” operation input source is the API;
it’s the operation’s resource. If there are multiple catalogs, we add a “Catalog refer-
ence” to the action inputs to identify the catalog to work with and investigate a new
use case, “Manage catalogs.” If there’s only one catalog, we don’t add it to the action’s
input. After discussing this with SMEs, we decided to keep the one catalog option.

AP| Capabilities J....._ . R
Canvas “*~“Manage Catalog” use
(Pivoted) AP| Capabilties Canvas - case bo analyze
OPERATION INPUT (source) OPERATION | RESOURCE | ACTION INPUT INPUT
Add a produet | Product (user), Add a produet . Product info.
to the cobalog | catalog (APD | |bo the vatalog | CTe8 | Add | Produetinbo [} (TR
“Catalog” is provided by the APl and is the o‘;eva{;ion's vesourte Sinale More +han
“Catalog” one “Catalog”

Figure 3.17 We can uncover a new use case when including the operation resource in the inputs.

Figure 3.18 shows the “Search for products” operation in two steps: “Search for prod-
uct to buy” and “Look for similar products.” It also has the “Catalog” input, but we

64 CHAPTER 3 Observing operations from the REST angle

excluded it because it is the operation resource with only one catalog. After discussing
this with SMEs, we merged “Filters” and “Characteristics” as “Filters,” both of which
are search criteria that allow users to find specific products.

(Pivoted) AP| Capabilities Canvas |

OPERATION | INPUT (source) STEP OPERATION | RESOURCE | ACTION | INPUT
Searth for |Cataloa (APD, Seareh for Seavch £ .
products ﬁ'.l{er:ﬁ(uir) products to bu\/ ?:ogud:sw Catalog Search |Filters

C&‘(‘AI (API), Look cor similar
charaz%e\ris{ics (usev) Produc{:s

Figure 3.18 We merge the inputs of the different steps and exclude the operation resource from
the action’s inputs.

@ NOTE Listing an action’s inputs may reveal inputs with different names that
are the same. If unsure, keep them separate, and reevaluate during data
modeling.

3.4.4 Listing an action’s outputs

For each operation’s action, we build a single output list containing all successes
and failures. Each case has a description, type (success or error), and data (if any).
As for inputs, we merge elements from different steps and describe them in a context-
agnostic way.

Figure 3.19 shows that “Get product details” is used in the steps “Check a product
detailed info” and “Verify if product is different,” with the same success and failure
outcomes. The success outcome is “Product information,” added to the actions out-
puts list with the description “Product found,” type “Success,” and data “Product infor-
mation.” The failure outcome is “Product doesn’t exist,” added to the list with the
description “Product not found,” type “Error,” and no data.

I(Pivo’ced) AP| Capabilities Canvaﬂ

OPERATION | SUCCESS | FAILURE STEP RESOURCE OUTPUT
Product [Product Check a product AcTio Dewriptin _ Toee _ Data
Get product | info. doesn't exist | detailed info. Product found | Suteess | Product
details Product |Product Verify if product Product info
'm‘co‘ doesn't exist [is different (63J‘5) Produet not -Cound Evror
Mevrged into a .single Mergecj intoasmgle T et
suttess output ervor output Deseviptions tan be vephrased

Figure 3.19 We merge different steps' outcomes and rephrase descriptions when listing the action’s
outputs.

3.4.5

3.4 Identifying resource actions 65

CAUTION Mixing apples and oranges is often a problem. An operation return-
ing heterogeneous content, particularly in lists, often indicates incorrect
operation or data identification. For example, if an operation returns “Books”
and “Toothbrushes,” these could be grouped as “Products.” If it returns
“Products” and “Providers,” it may need to be separated into two operations.
However, a product detail with a provider summary makes sense. Refer to sec-
tion 8.7 for more information.

We proceed similarly for “Add a product to the catalog,” “Modify a product,” and
“Remove a product from catalog” operations, all of which are used by a single step
(figure 3.20). The “Add” action’s outputs are “Product added to the catalog” (Success,
no data) and “Wrong product information” (Error, no data). The “Modify” action’s
outputs are “Product modified” (Success, no data) and “Product not found” (Error,
no data). The “Remove” action’s outputs are “Product removed” (Success, no data)
and “Product not found” (Error, no data).

| Pivoted API Capabilities Canvas |

RESOURCE OUTPUTS
OPERATION| SUCCESS | FAILURE STEP (ACTION) Destripion Type Daka
Add ; Add ; {P;oﬁ;t{ :&?ed Success
a Fro uet is | Wrong . a produtt Catalog e tatalog
;:d:‘:tai{':s in ca{alog Yrodud: info. | 4o the ca{alog (Add) Wion 3 pro duct Evvor
information
Modi£ a Product is Pvrodu)d:) Mfdi£y Fvoduc{: Produet Product modified | Suceess
produe updated doesn't exist | info. (Modi (,‘Y) No product fourd Evvor
Remove a . Ii Product ved | Success
voduct from| Productis | Produet [Remove a product e G LRSS
moved doesn’t exist | from the eatalo
he catalog | T oesn't ex v e tatalog (Remove) |\, product found | Ervor

Figure 3.20 No merge is necessary when a single step uses the operation.

Dealing with contradictory successes and failures
when listing outputs

Defining success or error for an API operation must be independent of the use case
and consumer. It relies on the operation’s nature, input and output data, and subject
matter. When calling the API, the consumer will interpret the response as success or
error according to its specific context.

In the “Search for products” operation shown in figure 3.21, the success and fail-
ure outcomes of the two steps contradict each other. Finding products to buy is a suc-
cess, and finding none is an error. However, looking for similar products to avoid
duplicates in the catalog is the opposite.

66

CHAPTER 3 Observing operations from the REST angle

(Pivoted) AP| Capabilties Canvas

RESOURCE OUTPUT

OPERATION | SUCCESS | FAILURE STEP GACTION) | Desrpton | Tye Dota

Products [No product | Search for Products matchi Products

m{éh' Aou{_ m '"5Suc 'out
Sez(;th {-fw (:if{ﬂs"‘ﬁ e ?rodut{:s to buy (Ca{:abg) filters found €5 | info.
produc Products — Search No vroducts

No product matehi Look for similar o produtt Suctess

ound L::f: cT,gvi shies products matehing filters

.............. Y_-.-....___.-' ‘s_..’.._-'
ln{evyre&‘{:ion of an o?eva{ion ou{:?u{: may deyend on tontext Con{:ex{:—agnos‘l:ic ou{:\?u{: f\/yes

Figure 3.21 We must turn consumer-context-specific steps' outcomes into context-agnostic
operation/action outputs.

We add both “Product matching filters found” (with “Products information” data)
and “No products matching filters” (with no data) to the action outputs. Then we
choose their type from a context-agnostic perspective. We set the “Product matching
filters found” type to “Success” because that is how search operations usually behave.
We can find both options for “No products matching filters” when looking at other
APIs. Still, we choose “Success” because that’s the most common and user-friendly
option (discussed further in section 9.8). For now, that’s a pattern to remember:
search and list operations do not error when they find nothing.

NOTE Design decisions, such as making a search operation that finds noth-
ing successful, should be applied consistently to all future designs to make
our APIs userdriendly. Check section 16.3 to discover how defining API
design guidelines can help you achieve consistent designs.

Similarly, suppose that reading a product returns product information indicating an
empty stock. In a use case where an end user wishes to buy it, this can be interpreted
as a failure. However, it’s a success in another use case where an admin wishes to verify
that this product is no longer available. In both cases, the operation success output is
the product information.

Summary
HTTP is a synchronous, request-response protocol that enables interactions
with resources through standardized HTTP methods.
An HTTP resource can be anything, such as an HTML file or data in any format.
REST APIs use HTTP extensively and respect its semantics.
To design a REST API, observe operations from the API Capabilities Canvas
from the REST perspective, represent the identified elements with HTTP, and
model data.
Observe operations from the REST perspective to identify resources, actions,
inputs, and outputs, continuing with plain languages like English.

Exercises 67

The five typical API operations are searching for elements and creating, read-
ing, updating, and deleting an element, also called CRUD operations.

A resource is a standalone business concept distinct from properties.

An operation uses a single resource, which several operations can use.

The resource is the target of the main verb in the operation description.

When creating/adding and listing/searching elements, the resource is the con-
tainer of the elements; when reading/updating/deleting, the resource is the
individual element within the container.

An action is the main verb that applies to the resource manipulated by an
operation.

An action inputs list merges the inputs of the steps using it; use context-agnostic
descriptions to avoid duplicates.

The operation’s resource should be removed from the action’s input list unless
multiple instances exist.

An action’s outputs list merges the success and failure of the steps using it. Each
output has a description, type (success or error), and optional data.

Choose an action’s output type from a context-agnostic perspective. Consumers
may interpret success and error differently based on their context.

Exercises

This section contains exercises to help you practice some key skills in this chapter.
You'll find the solutions in the online appendix (https://mng.bz/260N). I encourage
you to solve them and read their solutions, which include detailed explanations, refer-
ences to relevant sections, and additional comments.

Exercise 3.1

You're designing an API for an online course platform where teachers and students
interact in various ways. Following are descriptions of some of the platform’s opera-
tions for teachers. For each, identify the resources, relations, and actions.

Set up a new course offering, including a syllabus, difficulty level, and a list of
topics to cover.

Look for available courses by topic or difficulty level.

Verify information about a course, including syllabus and topics.

Modify a course difficulty level, syllabus, or topics.

Exercise 3.2

You’'re designing an Air Travel API and have identified the following operations and
step inputs. What is the resource, and what are the actual operation inputs for each
operation?

Operation: Search for flights. Step inputs: airport, destination, flights, depar-
ture date.

https://mng.bz/260N

68

CHAPTER 3 Observing operations from the REST angle

Operation: Search for flights. Step inputs: date, airline, flights.
Operation: Book a flight. Step inputs: flight, date, passenger, flights.

Exercise 3.3

You’re designing an API for a fitness and wellness application. By identifying and
analyzing the following operation outputs, can you spot and explain what’s wrong
and why?

View meal plan logs and sleep logs

Search for trainers

List workout history and nutrition advice logs

Get today’s dashboard (today’s workouts and meals and last night’s sleep logs
summary)

Exercise 3.4

You're designing an API for a library system and have found that steps of different use
cases using the “Read a book” operation have contradicting success and failure out-
comes. What should be the operation’s success output?

The step fails if a reader discovers the book has been borrowed.

The step is a success when a librarian can confirm a book has been borrowed.

Representing operations
with HT'TP

This chapter covers

Designing paths for resources

Mapping typical actions to HTTP methods
Representing successes and failures with
HTTP status codes

Choosing data locations in HTTP requests
and responses

Representing “do” operations with HTTP
Using the REST architectural style

After reviewing the API Capabilities Canvas from a REST perspective and identify-
ing resources, actions, inputs, and outputs, we can translate “Send a message” into
a POST /messages Or POST /message request. However, challenges can arise in rep-
resenting the resource (“message”) with a path (/messages or /message) and map-
ping the freely defined action “Send” to standard HTTP methods like posT. These
examples reveal only a few aspects of a request; more considerations are needed for
accurately mapping all the identified elements to HTTP requests and responses.
Additionally, not all operations fit neatly in typical create, search, read, update, and

69

70

4.1

CHAPTER 4 Representing operations with HT'TP

delete categories; some are simply verbs, such as “like.” These verb-based “do” opera-
tions can complicate HTTP representation.

We’ll break the work into steps to overcome these challenges for easier execution
and learning. We’ll dive into HTTP and look at common practices to understand our
decisions. This will help us identify patterns and recipes that are applicable to typical
operations to streamline design. While doing this, we may fill gaps in our analysis, as
it’s expected to overlook some data or error cases in previous steps. We’ll learn
enough to discuss the origin of REST APIs: the REST architectural style. Its principles
are essential for creating REST APIs and can also be used for other types of web APIs
and remote APIs.

This chapter first outlines how to represent operations with HTTP, detailing the
resulting HTTP request and response and the steps taken to achieve them. We then
explore each step in depth. The chapter also covers representing “do” operations with
HTTP. Finally, we introduce the REST architectural style and how to use its principles
in API design.

Representing operations with HTTP

As shown in the zoomed API lifecycle (section 1.6) in figure 4.1, we continue design-
ing the programming interface, as discussed in section 3.1.4. After observing the API
Capabilities Canvas operations from the REST angle (section 3.2), we can represent

r DESIGN , B

: T
lden‘(:r(:\/ Design the programming interface RE|§|
the AP
Ca a_? IE&! /product, {
|||P'{:|es > :!ee price: float . u
4 ere category: string
Observe operations Represent operations
from a REST angle vith HTTP Model data
eN— | L
also
———— \\here
/ DESIEN LAYERS AP| meets needs +
‘ A versatile AP| design that does the vight ‘)ob -1-- conteals inner workings
. + is usable in vavious
[A APl design that i wser—friendly and interoperable Y contexts
An AP de5|5h that Consndevs tonstraints :: Kee? other
(eontext, secwn{:y, |C|en£ Yo a_?_ ™ ::~ tonterns
backward—aom\:ahbnln{:\/, and exﬁnsnbuhf\/) API desugn E: Lor later
l‘éreasoned AV\d Con{iv\uously im\?rovmg AP' desngh protess ',"

Figure 4.1 After identifying API capabilities, including operations, we observed them from the REST angle.
We identified resources, actions, inputs, and outputs that we can now represent with HTTP.

411

4.1 Representing operations with HTTP 71

the identified resources, actions, inputs, and outputs shown in figure 4.2 with HTTP.
This section provides an overview of the final HTTP representation of an operation
and what we focus on in this chapter. The next step, modeling data, is discussed in sec-
tion 5.1. We continue to focus on the “versatile API that does the right job” layer,
addressing consumer needs, concealing inner workings, and ensuring usability in var-
ious contexts (section 1.7.1).

Capabilites identified [nformation eollected when observing the opevation capabilities from the REST angle

by ana|‘/z“m3 reeds e aama e et eececen e e
</‘ ------
OPERATION |RESOURCE| ACTION INPUT S— AIAT —
fj iha ‘;:ET': + P [T Produtt added to the catalog | Success| Product info.
¢ 3 Wrong product information Evror
Sea;ch {_f‘* Conbins coner | Fiton Produtts matehing filkers found | Sueeess | Produets info.
s many No Frodut{:s maﬁhing FiH‘,evrs Suceess
o P Od'ﬂ +. (“ w d W ult into.
3::&5: det Get | Produtt veferente FOCuER Toun Suetess | Product ink
No Frodud‘. found Evvor
Modify a m Modit Product veferente, Produet modified Suecess
?vodut — Y Modified Frodut{: info No pro duet found i
Remove a product Produtt vemoved Suecess
om Remove | Product veferente
rom dhe catdog No produet found Evvor

Figure 4.2 When observing the operations in the API Capabilities Canvas of the Online Shopping API from
the REST angle, we identified resources, the actions that apply to them, and their inputs and outputs.

What an operation looks like with HTTP

Before discussing how to represent operations with HTTP, we look at the final result
and how an application uses it. Figure 4.3 shows a possible HTTP representation of
the “Search for products in the catalog” operation of the Online Shopping API. This
operation accepts search filters and returns the products matching them.

The mobile application searches for Blu-ray (BD) products by sending a GET
/products?type=BD HTTP request to the API server. The GET HTTP method rep-
resents “search,” and the /products path is the “catalog of products.” The type=BDis a
query parameter used as a search filter. The HTTP response has a 200 OK status,
which indicates that no problems were encountered. The response body contains the
list of products matching the filters.

72

4.1.2

CHAPTER 4 Representing operations with HT'TP

Path vepresenting “(the catalog of) products”

2777

HTTP method vepresenting “Seareh”.

1"+~ Query pavameter vepresentin
Y lter 3

a
—————
000 = @) a seach\

& SHoPPING

GET /products?type=BD

Suecessful
HT:TP status

/

--=-2200 OK

Searth produtts

Online Shoﬂ?ing AP'

The application calls the

“Seareh for products”
operation with searth

....................................

i nian: 12345,

filters ---- evs: BD ! "name": "Cowboy Bebop",!
;: HayssE sk d ----- Resyonse bod\/ Con{:aining
Vo H the produtts ma{ﬂ\‘mg
,:] a : the filters

Figure 4.3 The mobile application searches the catalog for BD products. The API server returns the
products with type BD.

How to represent operations with HTTP

When observing the operations from the REST angle, we identified resources, actions
that apply to them, and their inputs and outputs. Figure 4.4 shows how we’ll represent
them with HTTP.

RESOURCE RELATION PATH _{Represent vesources with ?aﬂ»sq We temporarily use the spreadsheet
Catalog Contains many products [/products or easier leavning; we'll discover a
S 2 eter format |a+,ev:.
............. No data modeling yet ----=-==+~.._ §
— o +
HTTP INPUT OUTPUT 4 Y
CUEEAT LS G Sl METHOD DZ. Lotation Deseription Type Status Data Lotation
?::;ﬁtkfw Catalog | Seaveh | GET | Filters|que E‘Ir,‘c’g::}fcz;‘;u““ﬁ Sueeess [200 0K i":f“ds bod
Choose input 4 Choose output
e —— Choose standard HTTP locations
standard HT TP methods status codes for outputs

Figure 4.4 We focus on paths, HTTP methods, HTTP statuses, and the locations of input and output data
in HTTP requests and responses.

We start with the HTTP request, representing the resource (“Catalog with many prod-
ucts”) with a path (/products). We select an HTTP method (GeT) for the action
(“Search”) and choose the appropriate locations for each piece of input data (query
for “Filters”). Next, we address the HTTP responses, choosing status codes represent-
ing the output types and descriptions (200 oK for the successful “Products matching
filters found”) and locations for output data (body for “Products info”).

4.2

421

==

4.2 Representing resources with paths 73

Modeling the detailed data of elements such as “Filters” input (products can be fil-
tered by type, price, etc.) and “Products info” output (a product as an ID, name, price,
etc.) is done in the next step (see section 5.1). We temporarily store our findings in
our API spreadsheet to separate learning concerns; we will discover a more suitable
format when describing the programming interface (see section 6.1).

The following sections detail this process for the five typical operations of the
Online Shopping API and teach recipes that will help us streamline representing
operations with HTTP and use HTTP correctly.

NOTE Although it’s not our focus yet, the recipes will help us proceed simi-
larly across operations and APIs, making them interoperable and user-
friendly (see section 1.7.2). For HTTP-related questions not covered in this
book, refer to the documentation (starting with RFC 9110, www.rfc-editor.org/
rfc/rfc9110.html); it may even help you find solutions to design web APIs.
See section 16.1 for searching design solutions.

Representing resources with paths

As seen in section 3.1.2, REST APIs rely on resources (such as the catalog business con-
cept) identified by a path (/products, for example). This section first explains the
basics of resource paths. Then, using the catalog and “Product” resources of the Online
Shopping API identified in section 3.3.2, we cover the following considerations:

Designing meaningful resource paths

Targeting specific elements with path parameters
Materializing the relations between resources
Representing lists and their elements

What is a resource path?

The resource path in https://api.server.com/path is /path, identifying a unique
resource. Two resources can’t share the same path on a web API or HTTP server, simi-
lar to files on a filesystem. However, different paths may lead to the same resource.

NOTE We’ll discuss other path elements that may precede the actual resource
path (/shopping/v1/path). Section 11.3.3 covers the API name (shopping),
and section 15.4.3 discusses its version (v1).

Although a path identifies a resource, it doesn’t reflect the underlying data or its orga-
nization. For instance, the /something path doesn’t correspond to the /something
filesystem folder or something database table. Remember the provider’s perspective
in section 2.8.

A path (/this/is/a/path) can have segments (this, is, a, path) separated by
slashes (/). It may include path parameters denoted by curly braces (/segment/
{someParameter}) or prefixed with a colon (/segments/:someParameter) in API doc-
umentation or code. Path parameters are filled with values (/segment/123abc) in an

https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9110.html
https://www.rfc-editor.org/rfc/rfc9110.html

74

4.2.3

CHAPTER 4 Representing operations with HT'TP

HTTP request. Multiple path parameters can appear anywhere in the path, inside seg-
ments, and combined with characters (/{a}/{b}-{c}12/{d}text{e}).

TIP A resource path with a trailing slash, such as /path/, can cause routing
bugs at the implementation code or network infrastructure levels, leading to
hours of debugging. Use /path instead.

Designing meaningful resource paths

Our first concern when designing paths is to ensure that they best represent the
resources. Figure 4.5 shows different paths uniquely identifying the “Catalog” resource;
some choices are more meaningful than others.

RESOURCE PATH
A eolleetion Random Abbreviation | Resourte name | Resourte tontent
of yroduc{:s
Gin] | (o] (eaceicg] | (proucre]
Unique but ‘vl\o{ meaning|ful Unique am‘i meaningful

Figure 4.5 From a REST perspective, a path only needs to be unique. However,
we should ensure that our paths mean something to our API users.

We can randomly choose /xyz for the “Catalog” resource path; it can uniquely iden-
tify a resource. However, it’s not evident that it represents a catalog. It’s best to call a
spade a spade; /catalog is a good option that is unique and meaningful. Abbreviated
names are common in programming, but /cat is less clear than /catalog. A name
based on the resource’s content works, too. Because a catalog is a list or collection of
products, we can also consider the /products path. Before deciding, we’ll discuss pos-
sible paths for the “Product” resources the catalog contains.

CAUTION Users won’t easily understand cryptic or abbreviated names; we
may not even remember their meaning six months later. See section 8.8 to
learn the art of naming.

Targeting specific elements with path parameters

Some resources can’t be uniquely identified by name, as shown by the “Product”
resource paths in figure 4.6. This section discusses the first three paths, and section 4.2.4
covers the others, focusing on the “Catalog” and “Product” relationship.

The /product path is meaningful but can’t uniquely identify a product. During
our REST angle analysis, we found that all operations using the “Product” resource
require a unique product reference input (see figure 4.2 in section 4.1). We can use it
as a path parameter, giving /{Product reference} (/123456).

4.2 Representing resources with paths 75

PATH
RESOURCE (12345b is 3 {Produck vefevencel path parameter) UNIQUE |MEANINGFUL [HERARCHICAL
E'" Resourte name X v n/a
A s'mgle 1
-'.': Resouree identifier X X n/a J s
é. Resourte name and identifier v J A :-:
A single , ;:
: |dentifier and parent name v v X ::
in the § Parent name and identifier v Jv v :':
| |
collection W Resourte type and identifier |/ v v

/{Product reference} | may eollide with |/{Supplier reference} -

Figure 4.6 The “Product” resource path requires a unique resource identifier path parameter. Multiple
segments can show the relationship between “Catalog” and “Product” resources.

4.2.4

Although unique, /{Product reference} lacks meaning, and a future /{Supplier
reference} could conflict with it (/123456 versus /123456); even noncolliding IDs
would complicate implementation. Combining the resource name and reference
solves this problem. The /product-123456 path suggests, “I'm the unique product
123456.” However, we should explicitly show the relationship between “Catalog” and

“Product” resources.

NOTE A resource identifier is an ID, reference, or code that appears in all the
resource operations; add it to the resource path to ensure unique identifica-
tion. The {Product reference} name is temporary; we’ll specify the actual
path parameter name when modeling data (see section 5.3.1). Section 8.4.4
covers resource identifier selection, and section 9.3.3 discusses using multiple
identifiers and path parameters for a resource path.

Showing resource relationships with a hierarchy

By taking advantage of HTTP paths’ hierarchical nature, we can indicate the relation-
ship between different resources in a path, making our paths more meaningful. In
/parent/child, the parent contains one or more children, and the child is an ele-
ment of a parent.

The last three paths in figure 4.6 try to materialize that a product is an element of
the Catalog. The /{Product reference}/catalog (/123456/catalog) path could be
read as “Product 123456 belongs to the catalog,” but its hierarchy is reversed (child
comes before parent). The /catalog/{pProduct reference} (/catalog/123456) path
fixes this, saying, “The catalog contains product 123456.” We can also use /products/

76

E

4.2.5

=

CHAPTER 4 Representing operations with HT'TP

{Product reference} (/products/123456), which states, “Product 123456 belongs to
the list of products.”

NOTE The last segment of a hierarchical path defines its fundamental mean-
ing; /w/h/a/t/e/v/e/r/products refers to products. Segments before the
last one influence interpretation; /merchants/{merchant id}/products/
{product reference} represents a specific product in a merchant’s catalog. A
nonhierarchical path, such as /products/merchant/{product reference}/
{merchant id}, is more complicated to interpret, especially at runtime
(/products/merchant/123/456). Section 9.3 further discusses path structure,
hierarchy, length, and number of path parameters.

Now that we have different options for the catalog and its products, we can decide
which paths to choose.

Representing lists and their elements

All of the previous catalog and product path combinations are valid from a REST per-
spective. However, the common approach for a list or collection resource with ele-
ments is to use an /elements path for the collection and /elements/{element
resource identifier} for child elements, as shown in figure 4.7. Such paths are
meaningful and establish resource relationships. Consumers can simply concatenate
the element ID to the collection path to form the element path, like when working
with a filesystem. A singular collection noun is also valid (/element and /element/
{identifier}).

RESOURCE RELATION paTH (I the st of ‘;;odud:s
Collettion +-vvuvemeern- b4 Catalog Contains many produtts | /products
Element of collettion ---{> Produet | Belongs 4o the catalog | /products, {product reference}

Type of element in Elemeh{
eollection udenh(:ner

Figure 4.7 A list is represented by a noun that indicates its element type (usually plural, but can also
be singular). The element identifier is added to the list path, forming the element path. This pattern is
widely adopted in REST APls.

“Catalog” is a collection resource containing “Product” resources, so we represent
them as /products and /products/{Product reference}. These paths uniquely iden-
tify each resource (thanks to the product reference path parameter for the product),
describe the relationship between the two (thanks to being hierarchical), and are
meaningful (each clearly states what the resource is).

NOTE Although it’s not our focus yet, this pattern or recipe makes our API
user-friendly by simplifying its use and making it look like all the others. Read

4.3

4.3.1

4.3 Representing actions with HTTP methods 77

section 9.3 to learn more about user{riendly paths. We also streamline our
work by using a reasoned, established practice. See section 16.1 to learn more.

Representing actions with HTTP methods

As seen in section 3.1.2, REST APIs represent operations with standardized HTTP
methods applied on resource paths (GET /products, for example). This section intro-
duces the HTTP methods that are commonly used and then illustrates how to choose
one for each operation’s action identified in section 3.4.1. Finally, we generalize these
learnings with recipes for choosing an HTTP method for the five typical operations
(create, read, search, update, and delete).

Determining which HTTP methods to use

REST APIs use five HTTP methods to represent actions: POST, GET, PUT, PATCH, and
DELETE. Figure 4.8 summarizes their meaning and usage.

HTTP METHOD | MEANING (HRTTP) | MEANING (CRUD) ACTION EXAMPLE
Create G Create, add, start, save, send
POST
Protess non— m Do, exetute
GET Read @ Read, get, seavch, filter, select, retrieve, show, download
Replace (1) Replate, modify, update, change, edit
From the
PUT Create e Create, add, start, save, send CLonsumer
vspective,
Upsert w Create if not present, update otherwise [both allows
partial update
PATCH Update (1] Replace, modify, update, change, edit
DELETE Delete (D) Delete, cancel, ¢lose, finish, stop

Figure 4.8 Refer to this mapping when in doubt about choosing an HTTP method for an action. CRUD
stands for create, read, update, delete.

posT usually represents a creation (C of CRUD), adding an element to the targeted
” “save,” and “send.” How-
ever, its real meaning is broader. It means “process according to resource’s significa-
tion” and can be a fallback when no other method works.

GET reads the resource (R of CRUD). Use it for actions such as “read,” “get,”
” “select,

pUT is for resource replacement or update (U of CRUD), creation (C of CRUD),
and upsert, which updates an existing resource or creates a new resource if one
doesn’t already exist (CU of CRUD). Use it for actions like “modify,” “update,”

” «

resource. Use it for actions such as “create,” “add,” “start,

” « 9«

“search,” “filter, retrieve,” “show,” and “download.”

“change,” “replace,” and “edit,” or the same actions as POST for creation.
PATCH also updates a resource (U of CRUD) and can be used for the same update

actions as PUT. PATCH is generally used for partial updates (modifying a subset of

78

4.3.2

4.3.3

CHAPTER 4 Representing operations with HT'TP

resource data); however, from the consumer perspective, a partial update can be
performed with either puT or paTcH. With puT, all of the resource data containing
the few needed modifications is sent; with PATCH, only the modified data is sent (see
section 5.3.4).

DELETE represents a deletion (D of CRUD). Use it for actions such as “delete,”
“cancel,” “close,” “finish,” and “stop.”

NOTE What actually happens internally when processing an HTTP request
depends on subject matter and implementation choices. A DELETE /something
request can hard- or soft-delete data by updating a flag. Likewise, POST or PUT
/something can also trigger data deletion. However, the implementation must
comply with the “idempotent” or “safe” nature of HIT'TP methods. No worries if
these terms are unfamiliar; we’ll discuss these concerns in section 12.5.2.

Choosing HTTP methods to represent actions

We must select the HTTP methods that best represent resource actions. However, an
HTTP method can be defined only once for each resource. Conflicts are rare and
usually indicate a wrong resource or operation identification; reevaluate them in
such cases.

Figure 4.9 shows the HTTP methods for the five typical REST API operations of
the Online Shopping example (we designed the resource paths in section 4.2). The
following sections explain these results from simple to complex cases. In practice,
you’ll work on one resource after another, which helps detect HTTP method conflicts.

OPERATION RESOURCE | ACTION | HTTP METHOD RESOURCE PATH
Add a produet to the catalog Add POST
Catalog /products
Search for products Searth GET
Get product details Get GET
Modify a product Produet Modify | PUT or PATCH /products/{Product reference}
LR:{TaT:; a produet from the Remove DELETE

Figure 4.9 We added the action and HTTP method mapping to the operation table of the API spreadsheet.

Representing search, read, and delete actions

The “Catalog” resource has a “Search” action, but it’s fundamentally a “Read” action
we can map to the GET HTTP method. To “Search for products,” consumers send a
GET /products HTTP request.

The “Product” resource has a “Get” action, which we can easily map to the GET
HTTP method. To “Get product details,” consumers send a GET /products/{Product
reference} HTTP request.

e

4.3.4

4.3.5

E

4.3 Representing actions with HTTP methods 79

The “Product” resource has a “Remove” action of type “Delete,” so we choose the
DELETE HTTP method. To “Remove a product from the catalog,” consumers send a
DELETE /products/{Product reference} HTTP request.

NOTE Without refining the use-case steps in section 2.5.2, we would have
“Search for products” and “Look for similar products” operations, leading to
“Search” and “Look” actions. This results in conflicting GET methods on the
“Catalog” resource and makes us realize we can merge these two operations.

Representing update actions

The “Modify a product” operation of the “Product” resource has a “Modify” action,
which is an update; we can map it to PUT or PATCH /products/{Product reference}.
At this learning stage, PUT and PATCH can be used interchangeably. I recommend
choosing PUT as it fits most cases and is simpler to implement. It is possible to have
both methods defined. We’ll keep both to demonstrate the five usual HTTP methods.

NOTE Later sections will show other perspectives and help us make a reasoned
choice between pUT and pATCH. Section 5.3.4 covers basic data formats, sec-
tion 13.5 discusses efficiency concerns and advanced data formats, section 14.2.5
covers implementation questions, and section 12.5.1 discusses expected imple-
mentation behavior.

Representing create actions

The “Catalog” resource has an “Add” action to add a product. It’s a creation we can
represent with POST or pUT. Using POST /products creates a product and returns the
reference usable with GET /products/{Product reference}. A PUT /products would
replace the entire catalog, which is not what we want. We must use PUT /products/
{Product reference} to create a single product with pUT.

Choosing the pUT option requires combining “Add a product to the catalog”
and “Modify a product” into “Adding or modifying a product” and allowing the
consumer to provide the product reference. Creating a resource based on user-
provided IDs works with predefined and globally unique IDs, such as book ISBNs.
However, if the reference is a random number, it’s better to use POST /products
and let the system generate the reference to avoid errors from colliding IDs. At this
stage of learning, I recommend choosing PoST for creations; it’s the most com-
monly used pattern.

NOTE Learning more about resource IDs (section 8.4.4) and the HTTP-
induced implementation behavior for posT and pUT (section 12.5.2) will help
you decide between the two for creation operations.

80

4.3.6

4.4

44.1

A

—

CHAPTER 4 Representing operations with HT'TP

Mapping typical operations to HTTP

We’ve uncovered new patterns and recipes that apply whenever we need to map one
of the typical create, search, read, update, or delete operations to HTTP.

Given that /elements represents a list or collection of elements and /elements/
{element identifier} represents one of its elements, the five typical REST API oper-
ations can be mapped to HTTP as follows:

Create an element—pOST /elements (default choice at this stage) or /pUT
/elements/{element identifier}

Lust or search for elements—GET /elements

Read an element—GET /elements/{element identifier}

Update an element—puT (default choice at this stage) or PATCH /elements/
{element identifier}

Delete an element—DELETE /elements/{element identifier}

Choosing input data locations in HTTP requests

After choosing a path and an HTTP method, we can decide on the locations of inputs
in the HTTP request. This section discusses possible locations for data in an HTTP
request and explains how to choose locations based on the nature of the input data
when designing an API. We also generalize what we learn in recipes that are applica-
ble to the five typical operations (create, read, search, update, and delete).

NOTE See section 5.1 for data modeling. Section 9.4.1 discusses the effect of
input data location on usability, and section 12.6 covers security considerations.

Where to put input data in an HTTP request

This section explains the possible data locations in an HTTP request from a pure
HTTP perspective. As shown in figure 4.10, these locations are the path, query param-
eters, and header fields and the body, which only specific methods support.

Loc | Path) Head
[Path Parame‘cev'- | [QT:ery parameter| VT \va\raam{e ter yaﬁ:‘erzer E.Iae Ider Body

VvV GET v v v X
METHOD /path/{input}?input=value
Input: value e--s-semsmemeememnecnnan Header field POST v v v v
S S S - PUT v v v v
::{ "input": "value" PATCH v v v v
. S : DELETE v v v X

Figure 4.10 An HTTP request can contain data in path parameters, query parameters and header fields
as well as the body, which is only available for POST, PUT, and PATCH.

4.4.2

&

4.4 Choosing input data locations in HTTP requests 81

HTTP doesn’t explicitly define path parameters; as seen in section 4.2.1, path
parameters are located in the resource path on the first line of the HTTP request.
Their value can be anything that fits in a (usually short) string. For example, the path
/resources/{Resource identifier}/sub-resources/{Sub-resource identifier}
could become /resources/12/sub-resources/ab in an HTTP request.

The resource’s path can be completed with query parameters containing nonhier-
archical data; their order doesn’t matter. They participate in resource identification.
They’re after a ? in name=value format, separated by & for multiple parameters. Names
can be chosen freely, with values fitting in strings like path parameters. For example,
/resources?a=1&b=no&c=true is equivalent to /resources?c=true&b=no&a=1 and con-
tains three query parameters: a, b, and c, using number, string, or Boolean values.

Header fields come after the first line and contain metadata about the request,
such as its origin, content, security, or cache concerns. Over 200 standard headers are
defined (see the IANA HTTP Field Registry at www.iana.org/assignments/http-fields/
http-fields.xhtml). Their format is name: value. Standard headers will usually meet
our needs, but we’ll discuss using custom ones in later chapters. As for query and path
parameters, the value fits in a string; for example, Content-length: 345 shows the
request body size in bytes.

The request body follows the headers and is used in posT, PUT, and PATCH but not
GET or DELETE. It can contain text or binary data, such as HTML, JSON, XML, or
images. The body is a “representation” of the resource to create or update. The server
may not store it exactly as sent; it can be converted for storage in an SQL database, for
example. The representation concept is further discussed in section 9.7.

An overview of input data natures

The HTTP method and the data’s nature influence the input data’s location. We can
categorize inputs into

Resource identifiers—Data identifying the resource the operation interacts with
(product reference)

Resource representations—Resource data to create or update (product informa-
tion and modified product information)

Resource modifiers—Parameters tweaking the data (filters)

The following sections discuss the nature and location of the input data for the typical
operations of the Online Shopping example shown in Figure 4.11. In the field, you’ll
work on one resource at a time, like HTTP methods.

NOTE We’ll learn more about the “why” behind these results in section 9.4.1,
which compares all location possibilities and their effects on API usability.

http://www.iana.org/assignments/http-fields/http-fields.xhtml
http://www.iana.org/assignments/http-fields/http-fields.xhtml
http://www.iana.org/assignments/http-fields/http-fields.xhtml

82

CHAPTER 4 Representing operations with HT'TP

OPERATION RESOURCE | ACTION | HTTP METHOD Deseviption [NPUT Lotation
Add a product to the catalog Add POST Produtt information 5:;3:::{;3{-.0,. body
Catalog
Searth for products Searth GET Filters query
Get product details Get GET Produtt vefevente)/ Path
—{Resourte identifier|
Product veferente path
Modify a product Modify | PUT o PATCH I
i Produet all « Modified \ﬂroduc{: info 5:‘75:::::{‘3{:39“ body

ove a product from the

Ga Remove DELETE Product vefevence |Resourte identifier| | path

Rem
[2

Lotation is influenced by HTTP method and inyu{‘, data nature “'"-..-________________________--.---‘ ---------- ‘

Figure 4.11 We added the input data location to the operations table of the API spreadsheet based on HTTP
methods and the nature of the input data (resource identifiers, representations, or modifiers).

4.4.3

=

4.4.4

Choosing a location for resource identifiers

The three operations of the “Product” resource (GET, PUT or PATCH, and DELETE
/products/{product reference}) share the same “Product reference” input already
identified as a resource identifier and path parameter (section 4.2). Still, we’ll investi-
gate it again to learn about data location in HTTP requests for REST APIs.

This input cannot be a header because it doesn’t match any of IANA’s 200 stan-
dard headers. It shouldn’t be in the body, as GET or DELETE cannot have a body. Only
pUT (or PATCH) allows body input, but it identifies rather than represents the resource
to update. Hence, the input may be a path (/products/{product references}) or a
query parameter (/products?reference={product reference}).

Both are valid for HTTP because the concatenation of path and query parame-
ters identifies a resource. However, the pattern /products and /products/{Product
reference} is most common from an API perspective. It shows a hierarchy, with the
last segment indicating the resource we interact with. In contrast, /products?ref -
erence={product reference} lacks hierarchy and can be confusing: /products sug-
gests either a list or a single element.

NOTE A resource identifier contributes to identifying the operation’s resource;
it goes in a path parameter. If it doesn’t assist in identification, it becomes a
resource modifier; refer to section 4.4.6 for an example.

Choosing a location for resource representations

We need “Modified product information” to modify a product (pUT or paTCH). This
isn’t a header, as it doesn’t match standard headers; nor is it a path parameter,
because it doesn’t identify the resource. This leaves the query parameter and body.
Although we could stringify the data for a query parameter (which may cause problems;

&

4.4.5

&

4.4.6

4.4 Choosing input data locations in HTTP requests 83

see section 14.2.4), it must be in the body according to HTTP because it represents
the resource’s new state. This also applies to the production information needed to
add a product to the catalog (posT).

NOTE Following HTTP terminology, we can qualify the data needed to create
or update a resource as a resource representation. It goes in the request body.

Choosing a location for resource modifiers

To search for products (GET /products), consumers can provide “Filters” to get a subset
of all products. Because the HTTP method is GET, a request body isn’t allowed, and such
input doesn’t fit in a standard HTTP header. This leaves path and query parameters
as options. For example, with filters like “type” and “description,” we could use
/products/{type}/{description} (path parameters) or /products?type={type}s&
description={description} (query parameters).

According to HTTP, nonhierarchical data like type and description best suits query
parameters, not hierarchical paths. Also, including them in the path makes them
mandatory. Consumers can only search for products matching a type and description,
excluding retrieving all products, products matching a specific type, or products
matching a description.

We can achieve the same conclusion from another perspective. Although GET
/products, GET /products?type=book&description=design and GET /products/
book/design access different HTTP resources because path and query participate in
resource identification, they target the same API resource (the “Catalog” entity).
Therefore, type and description shouldn’t be part of the catalog path; they should be
query parameters.

The type and description filter inputs modify response data but don’t change its
nature; the operation still returns products, making the filters resource modifiers. If
an input enables the return of the products in XML instead of JSON, the needed
parameter also acts as a resource modifier. However, it fits in a standard Accept HTTP
header (covered in section 9.7).

NOTE Resource modifiers tweak data, but the returned business entity is the
same. They are included in query parameters unless they fit standard HTTP
headers.

Hesitating between resource identifiers and modifiers

The difference between a resource identifier (path parameter) and a resource modi-
fier (query parameter) isn’t always clear, which can lead to unnecessary operations. To
decide whether an element is a resource identifier or modifier, we can check the oper-
ation behavior without this input or revisit consumer needs and capabilities.

A resource identifier in one context can act as a modifier in another. For instance,
a “Category reference” may identify a category when reading it (path parameter). Or

84

4.4.7

4.5

4.5.1

CHAPTER 4 Representing operations with HT'TP

it can be a resource modifier (query parameter) to filter product searches because it
isn’t needed for catalog identification. Products can still be searched without it.

We can argue that a category is a clear entity in our API, making GET /categories/
{category reference}/products useful alongside GET /products. But is “Searching
for a category’s products” an identified capability? Also, aren’t we mapping the UI?
A category page displaying products doesn’t necessitate a specific operation (sec-
tion 2.7.1). A versatile GET /products with necessary filters suffices (see section 9.6
for more about searching, sorting, and paginating lists). This may differ for GeT
/suppliers/{supplier reference}/products, where the “Supplier’s products”
resource may fundamentally differ from products that users purchase, reflecting a dif-
ferent perspective on product data. However, this operation makes sense only if it’s an
identified capability.

CAUTION Return to consumer needs and capabilities before creating opera-
tions derived from newly discovered possible paths. Otherwise, you risk com-
plicating the API with unnecessary operations.

Choosing input data locations for typical operations

We’ve uncovered new patterns and recipes that are applicable any time we need to
identify input locations of the typical create, search, read, update, and delete opera-
tions to HTTP:

The data needed to create or update a resource is the resource representation
and goes in the body.

The resource identifiers participating in the operation’s resource identification
go in path parameters.

The resource modifiers that tweak the returned data go in query parameters
unless they fit in a standard HTTP header.

Representing output types with HTTP statuses

We’re done with the HTTP request after designing resource paths and selecting
HTTP methods and input locations. We can proceed to HTTP responses, starting
with statuses. This section explains HTTP statuses and how to choose them for the
success and error outputs discussed in section 3.4.4. We discuss how to ensure com-
prehensive error-handling. Finally, we summarize our findings in recipes for the five
typical operations.

What is an HTTP status?

An HTTP response’s status indicates the outcome of an HTTP request. You likely
already know the status 404 Not Found, which appears when you access a nonexistent
web page. An HTTP status has a three-digit code (404) and a descriptive reason (Not
Found), as shown in figure 4.12.

E

4.5.2

4.5 Representing output types with HTTP statuses 85

HTTP statu
__________ CLASS | SIGNIFICATION MAIN VALUE
404 Not Found
D D 2XX [Sueeess 200 OK
Code Reason < 4XX Evvor (client) 400 Bad request
il SXX Evvor () |500 Int 1s E
ClaSS 4XX rror (serveyr. nterna erver rror

Figure 4.12 An HTTP status has a numeric code and human-readable reason. The class system
allows for easily identifying whether the code signifies a success or an error and who is at fault.

The codes ranging from 100 to 599 are grouped in five classes: 1XX to 5Xx, each with a
specific meaning. We’ll focus on 2xx (success), 4xx (client error), and 5xx (server
error), which most APIs use:

2xX class codes 200 to 299 indicate that the server has successfully processed
the request.

4xx class codes 400 to 499 indicate client/consumer errors. The server can’t
process requests due to problems such as unparsable data, unhandled HTTP
methods, missing properties, business logic checks, or insufficient rights.

5xx class codes 500 to 599 indicate server/implementation errors caused by unex-
pected problems (a bugged implementation throwing a null pointer exception
or an inaccessible database server, for example) or planned unavailability.

The class system simplifies interpreting unknown code. Even if you don’t know the
413 HTTP status code, its 4xx class indicates that it’s a consumer error.

NOTE Some APIs also use 3xx (redirection); section 10.4.7 uses it for operations
flow optimization and section 14.5.1 for file uploads. The 1xx (Informational)
class is uncommon and can also be used for file uploads (section 14.4.3).

Choosing HTTP statuses for outputs

We can proceed operation by operation to choose the HTTP statuses best represent-
ing each output listed in section 3.4.4, using what we discover from one to the next. At
this stage, selecting an HTTP status code depends on the following:

The type of output: success (2xX) or error (4XX, 5XX)
In case of error, who caused it: consumer (4xx) or provider (5xX)
The HTTP method of the request

This book showcases commonly used HTTP statuses in REST APIs, covering most
cases. The HTTP methods documentation may provide recommendations (see the
IANA HTTP Method Registry at www.iana.org/assignments/http-methods/http
-methods.xhtml). For more codes, refer to the JANA HTTP Status Code Registry
(www.iana.org/assignments/http-status-codes/http-status-codes.xhtml). Use caution

http://www.iana.org/assignments/http-methods/http-methods.xhtml
http://www.iana.org/assignments/http-methods/http-methods.xhtml
http://www.iana.org/assignments/http-methods/http-methods.xhtml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml

86 CHAPTER 4 Representing operations with HT'TP

when using unusual codes not referenced in this book; they could surprise users.
When in doubt, use the x00 main value of a class.

“ WARNING HTTP classes facilitate interpretation, but don’t use unassigned
codes to create custom statuses. Doing so will only cause compatibility prob-
lems and confusion; see section 9.5.1.

In the following sections, we’ll treat successes (2xx) and then errors (4XxX or 5XX) to
facilitate learning. In reality, proceed operation by operation and output by output.

4.5.3 Choosing successful HTTP statuses for read operations

Figure 4.13 shows the five typical operations of the Online Shopping example and
their success outputs with corresponding HTTP statuses from the 2xx (success) class.
This section and the following ones explain the results for each typical operation.

HTTP OUTPUT

OPERATION | RES. | ACTION leThop| Dewoiphion Ty Data HTTP stabus
fadarahet| ey | paa | rosy | ot abded (| (Mol | 201 createa

ETZ?::&:::&MM Suecess | Produtts info| 200 OK
Searth ‘Fovr Cahﬂo g h

9 eave GET

j:ta!i:oduc{: Product ée{i GET Product found Sueeess | Produet info. | 200 oK
g:].:j:i 2 Produc{: Modi‘c‘/ EP’ZTI‘I';-I P\’Oduﬂ{ modi-cied Suetess M'“' P 200 OK
emove a
voduet from [Product| Remove | DELETE | Product vemoved |Suecess 204 No Content
E)se catalog

Figure 4.13 We added the HTTP status corresponding to each successful output and spotted
missing output data in the process.

Consumers can “Get product details” by sending a GET /products/{Product reference}
HTTP request. We could look at each 2xx code documentation to find the best one to
represent this success. However, it is faster to check the GeT HI'TP method documen-
tation, which says a GET request usually returns a 200 OK response.

4.5.4 Choosing successful HTTP statuses for delete operations

The “Remove a product from the catalog” operation uses the DELETE HTTP method,
whose documentation gives three options: 200 OK, 202 Accepted, and 204 No Content.
We can use 200 oK if the action has been executed and the response contains data

4.5.5

4.5.6

4.5.7

4.5.8

4.5 Representing output types with HTTP statuses 87

describing its status. We can use 202 Accepted if the action will likely succeed but has
not yet been executed. 204 No Content is similar to 200 0k, but the response contains
no data. For our case, where deletion is instantaneous and doesn’t return data, 204 No
content is the best option. Read section 14.7.1 to see 202 Accepted in action.

Choosing successful HTTP statuses for update operations

The “Modify a product” operation uses PUT or PATCH methods. Navigating the docu-
mentation, we found that the HTTP status options are the same as those for DELETE.
As the update is instantaneous, we have to choose between 200 ok and 204 No Content.
The output description, which says “Product modified,” isn’t clear about returning
data (200) or not (204). Both options are OK; we choose the most common one, 200
(section 13.5 discusses the pros and cons of these options). That means we need to
add output data; see section 4.6.2.

Choosing successful HTTP statuses for search operations

Based on what we’ve seen with GET and DELETE, “Search for products” (GET /prod-
ucts) can return 200 oK when “Products matching filters found” and 204 No Content
when “No products matching filters.” We can also use 200 ok for both; we choose this
option because it is the most commonly used and enables having the same behavior
when finding products or not (see section 9.6 for a detailed explanation).

Choosing successful HTTP statuses for create operations

Following the posT HTTP method documentation, “Add a product to the catalog”
(POST /products) returns 201 Created as we create a resource. It is the same if we use
PUT /products/{product reference}, which allows the consumer to differentiate
between an update (200 0K) and a creation (201 Created).

The HTTP documentation reveals a missing piece: a creation should return the
information of the created resource or at least minimal data so that it can be retrieved
later. Section 4.6.2 shows how to detect and fill such a gap.

Choosing error HTTP statuses

Section 4.5.1 taught us that error HTTP statuses fall into two classes: 4xx (client) and
5xX (server); determining who is responsible for the error allows us to identify the cor-
rect one. As shown in figure 4.14, we identified two errors across all operations of the
Online Shopping example: “No product found” and “Wrong product information.”

The “No product found” error is caused by a consumer providing the wrong prod-
uct reference, resulting in a 4xx HTTP status class. Based on our web browsing experi-
ence and the HTTP documentation, 404 Not Found is the relevant code to indicate
that the /products/{Product reference} resource doesn’t exist. It’s important not to
confound 404 and 204 No Content. In this case, returning a 204 without data would be
incorrect, meaning the product exists but has no data.

88

4.5.9

E

CHAPTER 4 Representing operations with HT'TP

WTTP INPUT OUTPUT
OPERATION RES ACTION METHOD Dese. Lotation Destvif‘(’,ion ‘T‘ge HTTP status
Pha o | s | o |7t | e | S | e s s
?::;ﬁré" Catalog | Searth | GET | Filters| query
g:taﬁyd“‘:{ Product| Get GET P"Ed path |No product found [Evvor [404 Not Found
vef.
; Prod.
Q/Ir:ji 2 Produet Modi‘(:\/ EEC: r:c’_ path
e No produet found| Eevor | 404 Not Found
od.
prod. body
"\‘FO
Remove a
sduct from | Product | Remove | DELETE PYEd' path |No product found [Evror | 404 Not Found
ihe Ca{:alog vet.

Figure 4.14 We added the HTTP status corresponding to each error output.

The “Wrong product information” error occurs when a consumer provides incorrect
or incomplete data while adding a product, resulting in a 4xx HTTP status class. The
IANA list contains several options discussed in section 9.8. At this stage of our learn-
ing, we can use the most common one: 400 Bad Request.

Ensuring exhaustive error-handling

Errors found during the needs analysis may not be exhaustive; this is normal as the
focus is on business needs. Choosing HTTP statuses is the perfect moment to identify
and fill the gaps. Figure 4.15 shows what we can detect at this stage of our learning;
we’ll learn to discover more gaps throughout the book.

Some operations expecting inputs are missing errors related to improper and miss-
ing inputs: 400 Bad Request. This is the case for “Search for products” and its “Filters”
and “Modify a product” and its “Modified product information.” We can check that
any operation with path parameters has a “Resource not found” error and 404 Not
Found; we aren’t missing any errors here.

All operations must have an unexpected server error output returning 500 Internal
Server Error. Such errors can arise from implementation problems, such as accessing
a null value in Java (java.lang.NullPointerException), or infrastructure problems,
such as an inaccessible database server or full storage.

NOTE We’ll discover more error cases when discussing user-friendly errors (sec-
tion 9.8), security (section 12.10), and planned interruptions (section 14.2.3).

4.5.10

4.5 Representing output types with HTTP statuses

89

HTTP INPUT OUTPUT
OPERATION RES. ACTION METHOD| Desc. Lotation Deseription Type HTTP status
. Wron
e T e
&:;ﬁtfw Catalog | Searth GET | Filters | query | Wrong filters Evvror |400 Bad Request
j:tar?d"& Produtt| Get GET P"Ed' path |No product found| Evror |204 Not Found
vek.
dif Prod.
yer:.c ? Product | Modify iﬁc}’; vef. | P2® | No product found| Evvor | 204 Not Found
Mod.
F‘?d' i ‘::{“::5 a\z :fud: Evror |400 Bad Request
info mat
Remove a Prod
odud: vom | Product | Remove | DELETE V‘E | path No product found | Evvor |404 Not Found
he eatalog Lt
Al operations Unexpected server gy o | 500 Internal
ervror Server Error

Figure 4.15 Analyzing inputs helps to identify errors missed during the needs analysis. Additionally,

all operations need a 500 error.

Choosing HTTP statuses for typical operations

We’ve uncovered new patterns and recipes that are applicable any time we choose the
HTTP status codes representing the outputs of the typical create, search, read,
update, and delete operations and that can help us detect gaps:

Choosing HTTP statuses for successful outputs:

— A successful creation returns 201 Created.

— A successful read returns 200 OK.

— A successful search returns 200 OK.

— A successful update returns 200 ok when the updated resource is returned

and 204 No Content when it’s not.

— A successful delete returns 204 No Content if no status data is returned and
200 OK if status data is returned.

Choosing HTTP statuses for error outputs and spotting missing errors:

— An operation expecting input query or body data must handle missing or
invalid data errors and return 400 Bad Request.

— An operation whose resource path contains one or more path parameters

must handle resource not found errors and return 404 Not Found.

— Each operation must handle unexpected server errors and return 500

Internal Server Error.

90

E

4.6

4.6.1

4.6.2

CHAPTER 4 Representing operations with HT'TP

NOTE We’ll discover more options throughout the book, especially when dis-
cussing user-friendly errors (section 9.8), security (section 12.10), and long
operations (section 14.7).

Choosing output locations in HTTP responses

Our last task is determining the locations of output data in the HTTP response, which
affects data modeling (section 5.1). This section covers data locations in HTTP
responses, filling output data gaps with HTTP, and choosing locations for data identi-
fied in section 3.4.4. Finally, we generalize these learnings in recipes that are applica-
ble to the typical API operations.

Where to put data in an HTTP response

Figure 4.16 shows that an HTTP response has a structure similar to an HTTP request,
starting with the HTTP status in the first line instead of a method and path. Headers,
an empty line, and the body follow. The headers and body have the same characteris-
tics as in the HTTP request (section 4.4.1). Headers are formatted as name: value, and
standard headers from the JANA Header Field Registry (www.iana.org/assignments/
http-fields/http-fields.xhtml) usually suffice; we’ll discuss using custom ones in later
chapters. The body can include any data.

CODE REASON

Output: value ----- Header field
i "output": "value" H

H : Figure 4.16 There are only two locations for
""""""""""""""""""""""""" - data in an HTTP response: headers and body.

Filling the output data gaps

As seen in section 4.4, we may have missed some output elements when listing them in
section 3.4.4, and HTTP can help us fill the gaps (see figure 4.17 for the final output
list). The “Add a product to the catalog” operation uses POST, whose documentation
recommends returning the representation/data of the created resource or minimal
information (the product reference) to retrieve it later (with “Get product details”). It
also uses 201 Created, which requires the response to contain the URL of the created
resource in a Location header, which allows for later retrieval with a GET {created
resource URL} even when no data is returned.

We chose to return 200 ok (with data) instead of 204 No Content (without data) on
the “Modify a product” operation, so we should add the updated product data as out-
put. Similarly, for the “No products matching filters” 200 ok output of “Search for
products,” we must return data like “Empty products list.”

http://www.iana.org/assignments/http-fields/http-fields.xhtml
http://www.iana.org/assignments/http-fields/http-fields.xhtml
http://www.iana.org/assignments/http-fields/http-fields.xhtml

4.6.3

4.6 Choosing output locations in HTTP responses 91

HTTP status codes can hint at what is happening but often fall short in case of
errors. Thus the HTTP documentation recommends returning “Error information”
data on all errors (see section 9.8 for more on errors).

Choosing output locations

Once we have an exhaustive output data list, we choose data locations (header or
body) similarly to the way we did for input data in section 4.4. Figure 4.17 shows the
final HTTP representation of the typical operations in the Online Shopping example,
including output data locations.

HTTP INPUT OUTPUT
OPERAT'ON RES ACT'ON METHOD Desc. Loca‘(:ion DeSCViP{ion T\/\?e Status* Da‘ca Lotation
Product
zf‘:“t afa‘fed Sueeess [201 k0| PO
T S O Ol i e
i Jooaeet | Brvor | a00 | R oy
Ejzg:f%w”fduhi“ﬁ Success| 200 E’:c‘:fi“‘ts body
Empt:
55:23 {_for Catalog | Searth GET | Filters| query ﬁ :{:‘;::‘; cé':'lsters Sueeess | 200 rro‘;.}_{; body
into.
Wrong filters Evvor | 400 Evror body
into.
Produet
et product Prod Product ford | St | 200 | ™ | bocty
A .fs Produet | Get GET ¢ " | path E
vet. No produet found [Evvor | 404 .mh:w body
Przd path Produet modified | Suecess [200 E:Ej"ct body
vet.
x:jﬁ 2 Product | Modify l;XTT C‘I,{Y] No produtt found | Eveor | 404 E}:w body
prod. body [y, voduet Evrvor
info. in ::aaii:nu Bvvor 400 | jpfo. body
Remove a d Produtt vemoved | Suttess| 204
vodutt from |Product| Remove |DELETE P? " | path E
he catalog MR No produet found | Evvor | 404 ihr:w body
All operations ?V'fo’;?“{ed server Evror | 500 Ez:“ body

Status* 200 OK, 201 Created, 204 No Content, 400 Bad Request,
404 Not Found, 500 Internal Server Error

Figure 4.17 This is the finalized operations table of the API spreadsheet, completed with all output data
and its locations.

92

4.6.4

E

4.7

CHAPTER 4 Representing operations with HT'TP

The “Product information” returned on creating, reading, or updating a product, as
well as the “Products information” and “Empty products list,” are unfit for standard
headers. They are representations of the resource the operation interacts with, so, as
the HTTP documentation says, they go in the response body (as done in the request).
HTTP also recommends putting “Error information” in the body. Strictly following
the 201 Created status documentation, we return the “Product URL” of the “Add a
product to the catalog” operation as a standard Location header.

Choosing output data locations for typical operations

We’ve uncovered new patterns and recipes that are applicable any time we need to
identify output locations of the typical create, search, read, update, and delete opera-
tions in HTTP:

A successful “read” operation (GET) returns the requested resource in the body.
A successful “search” operation (GET) returns found elements or an empty list
in the body.

A successful “create” operation (POST or PUT) returns the created resource in
the body and its URL in a standard Location header.

A successful “update” operation (PUT or PATCH) returns the modified resource
in the body.

A successful “delete” operation (DELETE) returns nothing.

Errors return error data in the body.

NOTE Section 13.5.2 discusses tweaking the return of created or modified
resources for network efficiency concerns.

Representing a “do” operation with HTTP

Not all operations fit the typical create, search, read, update, and delete operations.
For instance, mapping the “Check out” step of the “Buy products” use case (see sec-
tion 2.3.1) to an HTTP operation is not straightforward. The challenge is figuring out
the resource and the corresponding HTTP method.

As shown in figure 4.18, this section examines three ways to handle such a “do” or
non-CRUD operation:

Using an action resource
Turning the action into a busines concept
Focusing on the action’s result.

4.7.1

4.7.2

4.7 Representing a “do” operation with HTTP 93

[operATION RESOURCE ACTION | HTTP METHOD AND PATH
Check out eart Cart's thetkout | Attion vesourte | Chetk out | POST /check-out
Create a checkout (from cart) | Checkouts _Adjm to Create | POST /checkouts
business toneept
Create an order (from cart) | Ovders [Action’s vesult as Create | POST /orders
busi Lonce?{:

Figure 4.18 To represent a “do” action, we can create an action resource, turn the action into a
business concept, or focus on the action’s result.

Using an action resource

The posT HTTP method signifies “Process according to resource’s signification” (sec-
tion 4.3.1). A “do” operation can be represented by POST /do, where /do is the action
resource path. The request body may contain data needed to execute the action, and
the response body may include resulting data and input data. When it makes sense,
the path should reflect the relationship between the action resource and a business
concept resource, similar to the relation between a method and a class.

We can represent the “Check out” operation with a POST /check-out (or POST
/carts/{Cart identifier}/check-out if multiple carts exist). It takes no input and
returns 201 Created with the created order information (body) and URL (Location
header, /orders/123456, for example).

Creating something is not mandatory; we can use action resources for volatile pro-
cessing, such as summing two numbers with a POST /sum that expects two numbers in
its body and returns 200 ok with the result.

NOTE Action resources are often misclassified as non-REST. Section “3.1
Resources” of RFC 9110 (HTTP semantics) states, “HTTP does not limit the
nature of a resource; it merely defines an interface for interaction.” Thus, a
resource can be a business concept, process, or action. Therefore, POST /do is
valid in a REST API. However, although I keep action resources in my tool-
box, I usually turn them into noun-based resources in my API designs for
greater possibilities, as detailed in the following section.

Turning the action into a business concept

If it makes sense from a subject matter perspective, we can turn an action resource
into a business concept by nominalizing its verb. Doing so also allows us to add more
features than just “do.”

We can consider “Checkouts” (“check out” nominalization) as an essential busi-
ness concept independent from the cart (though it uses the cart under the hood).
POST /checkouts takes no data and returns checkoutrelated data (including an order
reference) along with the /checkouts/{Checkout ID} URL to retrieve it later (“Get

94

E

4.7.3

4.8

481

CHAPTER 4 Representing operations with HT'TP

checkout details” operation). Also, we can “Search for checkouts (with filters)” with
GET /checkouts.

If you struggle to find a noun for a verb, try adding a suffix such as -ing, -ance, -ence,
-ment, -tion, or -sion to the verb. For instance, “do” will become “doings,” and “execute”
will become “executions.”

NOTE Turning an action into a business concept is perfect for handling long
processes or operations, as covered in section 14.7.

Focusing on the result

If the action is not interesting from a subject matter perspective, we can work directly
with its result and create a resource based on it. We might decide that the resulting
“Order” is the crucial business concept and so represent the “Check out” operation
with POST /orders (“Create an order from the cart”). This would return the created
order (body) along with its URL (Location header, /orders/{Order reference}).

Using the REST architectural style principles
for API design

To simplify learning, we’ve considered REST APIs as mapping capabilities to HTTP.
However, reducing them to just that overlooks key principles. REST APIs are based on
the REST architectural style, offering a foundation for efficient, scalable, and reliable
remote API-based systems. This section introduces the REST architectural style, its
core principles, and their importance in API design. We also discuss the often sterile
debates that may arise in REST discussions.

Introducing the REST architectural style

Designing a web API involves working on a distributed system composed of software
communicating over a network. A mobile application and its backend, microservices
working together, and the internet are distributed systems.

The REST architectural style enables building distributed systems that are effi-
cient (fast network communication and request processing), scalable (capable of
handling more and more requests), reliable (resistant to failure), simple, portable
(reusable), and modifiable. Roy Fielding developed it in his 2000 dissertation,
“Architectural Styles and the Design of Network-based Software Architectures,”
while working on HTTP 1.1. A REST software architecture needs to conform to the
six following constraints:

Client/server separation—Clients and servers must have separate and balanced
responsibilities.

Statelessness—Requests contain all necessary information; no client context (ses-
sion) is stored between them.

Cache—Responses to requests specify whether they can be reused and for how
long (to avoid repeating the same call)

482

4.8 Using the REST architectural style principles for API design 95

Layered system—Clients only see and interact with servers and are unaware of the
underlying infrastructure.

Uniform interface—Interactions are performed via the manipulation of resources
through representations of their state/data with standard methods (this is the ori-
gin of the REST acronym: representational state transfer) and the help of meta-
data, enabling representation interpretation and knowing resource capabilities.
Code on demand (optional)—A server can transfer executable code to the client
(JavaScript, for example).

More about the REST architectural style

Fielding’'s dissertation is available at www.ics.uci.edu/~fielding/pubs/dissertation/
top.htm. REST is defined in chapter 5. It gives no guidance on APIs and API design.

The world has evolved, and REST has been used, misused, and abused since 2000.
“Reflections on the REST Architectural Style and ‘Principled Design of the Modern
Web Architecture,”” by Fielding et al., https://dl.acm.org/doi/10.1145/3106237
.3121282, describes the history, evolution, and shortcomings of REST as well as
several architectural styles derived from it.

Applying REST principles to API design

This book has already used or uncovered some REST constraints and will continue to
do so. Note that you can use these principles for other types of remote APIs.

Section 2.6 discusses the provider and consumer perspectives, which are related to
the client/server separation constraint. This constraint is an essential foundation for
usability (section 8.1), security (section 12.1), and extensible designs (section 15.6).

The statelessness constraint is hidden behind the context-agnostic operation of sec-
tion 2.5.2. Section 10.4 shows an example of a stateless API call flow that can support
execution across different sessions.

Section 13.4 discusses enabling cache and conditional requests related to the cache
constraint. Section 1.1.3 mentions that consumers are only aware of the API, which is
the first layer of the system; it is an example of the layered system constraint.

In this chapter, we represented API capabilities with resources and HTTP meth-
ods, following the wuniform interface constraint. The importance and benefits of this
approach will be better understood when we discuss the interoperability of operations
in section 9.10.

The code-on-demand constraint is mainly used in HTML and JavaScript apps but not
often in REST APIs. Section 10.3 uses its spirit by providing flexible data and opera-
tion and data, enabling API call flow optimization.

https://dl.acm.org/doi/10.1145/3106237.3121282
https://dl.acm.org/doi/10.1145/3106237.3121282
https://dl.acm.org/doi/10.1145/3106237.3121282
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

96

4.8.3

E

CHAPTER 4 Representing operations with HT'TP

Debates about what is (or is not) REST

The “What is or is not REST/RESTful?” question has sparked many heated and sterile
debates that are often unrelated to REST or due to misunderstanding of REST and
HTTP. Some people argue that “PoST /do is not RESTful because /do is an action, not
a resource.” Using an action resource is valid for HTTP, so it is valid for REST APIs.
Similarly, others declare, “A collection must have a plural (or singular noun) in a
REST APL” But naming conventions do not determine whether an API is RESTful.

This book has your back to help you understand the principles, apply them seam-
lessly, know when to make trade-offs, and evaluate the consequences of following only
some principles. Beyond helping you create robust APIs, this will help you assess what
to do with preexisting so-called RESTful APIs that don’t follow REST principles and
barely use HTTP correctly. The focus must be not on shaming or engaging in sterile
debates about the past but rather on recognizing the need for evolution in practice,
addressing critical components, and discontinuing actions that may negatively affect
our systems, users, and organizations.

NOTE Section 16.1 shows how to find reasoned solutions backed with sourced
information (like this book) and reduce the risk of endless arguing over the
same questions.

Summary

A resource path must uniquely identify each resource (using path parameters

when needed: /resources/{identifier}), clearly state the resource, and indi-

cate any parent-child relations (/parent/child).

A collection (list) resource path indicates the element it contains (/elements,

for example), and its children’s resources concatenate their unique identifier

and parent’s path (/elements/{identifier}).

The five typical REST API operations are searching for elements and creating,

reading, updating, and deleting an element (CRUD).

— Map searching for elements to GET /elements.

— Map creating an element to POST /elements or /PUT /elements/{element
reference}.

— Map reading an element to GET /elements/{element identifier}.

— Map updating an element to PUT or PATCH /elements/{element identifier}.

— Map deleting an element to DELETE /elements/{element identifier}.

The data needed to create or update a resource is the resource representation

that goes in the body.

The resource identifiers participating in identifying the operation’s resource go

in path parameters.

Exercises 97

The resource modifiers (such as search filters or resource identifiers that don’t
identify the operation’s resources) go in query parameters unless they fit a stan-
dard HTTP header.

Only standard HTTP headers defined in the IANA registry should be used (at
this stage).

The success of an operation is represented by a 2xx class HTTP status code, an
error caused by the consumers by 4xx, and an error caused by the provider by s5xx.
A successful creation returns 201 Created; other operations may return 200 OK
if data is returned (search, read, update) or 204 No Content otherwise (delete).
Operations with input data (query, body) must handle invalid input with 400
Bad Request.

Operations using resource path with path parameter(s) must handle a not
found resource error with 404 Not Found.

All operations must handle unexpected server errors with 500 Internal Server
Error.

Output data goes in the response body unless it fits in a standard header
defined in the IANA registry.

A “do” non-CRUD operation can be mapped to POST /do (action resource),
/doings (nominalization of action), or /results (resource based on result).
The latter two are preferred.

An API adhering to the REST architecture style is efficient, scalable, reliable, sim-
ple, portable, and modifiable. It must respect the client/server separation, state-
lessness, cache, uniform interface, and optional code-on-demand constraints.

Exercises

This section contains exercises to help you practice some key skills in this chapter.
You’ll find the solutions in the online appendix (https://mng.bz/260N). I encourage
you to solve them and read their solutions, which include detailed explanations, refer-

ences to relevant sections, and additional comments.

Exercise 4.1

Following is a list of calls to a library API and the context in which they occur. Analyze

each call to fix the resource path, path parameters, and query parameters if needed.

Read a book’s review: GET /books/12345/reviews?reviewId=678

List a borrower’s books: GET /books/borrowers/7890

Search for available books written in English: GET /books/available/en
Get book information: GET /book/12345

Search for science fiction authors: GET /genres/science-fiction/author

https://mng.bz/260N

CHAPTER 4 Representing operations with HT'TP

Exercise 4.2

You’re designing an event ticket booking API. For each of the following operations and
their inputs, indicate the HTTP method and the location of each piece of input data.
Search for events. Inputs: event type, date range.
Book a ticket. Inputs: event, number of seats, attendee information.
Modify a booking. Input: booking, new number of seats, attendee information.
Cancel a booking. Input: booking.

Fetch a user’s bookings. Input: user, event type, date range.

Exercise 4.3

Following are scenarios describing API responses for a restaurant reservation system.
Each is paired with an HTTP status code. Based on the HTTP statuses mentioned in
this chapter, fix the HTTP status codes if needed or indicate alternatives.

404: A client searches for available tables, but no tables match the date, time, or
party size.

200: A new reservation is successfully created in the system.

500: A client tries to update reservation details using an invalid reservation ID.
204: A client successfully cancels an existing reservation.

455: A client submits a reservation request with an impossible date or negative
party size.

Exercise 4.4

In an API managing magazine subscriptions, creating a new subscription operation
instantly returns the created subscription data in the response body with a 200 ox sta-
tus. How would you modify this based on what you learned from this chapter?

Exercise 4.5

You need a “translate text to language” operation in a translation APIL. It takes input
text and the target language for translation. Which HTTP method and resource path
can you use to represent it?

Modeling data

This chapter covers

Designing resource data models

Designing operations data from resource models
Spotting missing capabilities with data
Completing business errors

Ensuring a versatile API that meets consumer
needs

After giving an HTTP representation to operations and locating coarse-grained
input and output data in HTTP requests and responses, such as “Product informa-
tion” in the response body of “Read a product,” we can model the data. This
implies deciding that a product is an object with a required product reference
(integer), category (string), price (float), and optional keywords (array of strings).
Additionally, the “Product reference” path parameter will be an integer, and we will
break down the “Filters” of “Search for products” into “category” and “keywords.”
Data modeling involves selecting data, names, types, and organizations in
objects or arrays, which can be error-prone. It’s easy to end with incomplete and
inconsistent input and output models. It can also be laborious, especially when
wasting time in arguments such as available versus isAvailable at the wrong

99

100

5.1

CHAPTER 5 Modeling data

moment. Our goal is to efficiently model versatile data that meets consumer needs.
Although this is a good first draft, we will refine our design later to avoid managing
too many concerns at once; user-friendliness, security, performance, and implementa-
tion constraints are crucial in data modeling and will be addressed in later chapters.

This chapter starts by clarifying which data we model and provides an overview of
how we’ll model it, inspired by the JSON portable data format. Then, using the
Online Shopping example from previous chapters, we demonstrate how to model
resources and derive them into operations inputs and outputs, building new recipes
along the way. We also show how to use the models to ensure capability completeness
and exhaustive business error listings and make sure our API is versatile and meets
consumer needs.

An overview of data modeling

As shown in the zoomed API lifecycle (section 1.6) in figure 5.1, we continue design-
ing the programming interface, as discussed in section 3.1.4. After observing the API
Capabilities Canvas operations from the REST angle (section 3.2), we have repre-
sented the identified resources, actions, inputs, and outputs; figure 5.2 shows the
identified resources and their paths, and figure 5.3 lists the operations and their
HTTP representations. We now enter the third step, which consists of modeling previ-
ously identified input and output data. We continue to focus on the “versatile API that

DESIgN

Identify
the AP

Capa-
bilities| [gy

Design the programming interface

price: float
category: string

“Searth for
\ﬂroducﬁ"

=5
Observe operations Ei’aeﬁf’[‘#_;\’"aﬂ”s Model data

h
eve DESIGN LAYERS\ AP| meets needs +
A vevsatile AP/ design that does the right Job 3~ -- tonteals inner workings

+ is usable in vavious

L An API design that is user—friendly and interoperable ;‘ N contexts
An AP| design that considers constraints - E: Keep other
(eontext, seewrity, e“idiency, 1-“-[‘ 3~ tonterns
backward—compatibility, and extensibility) b\ /] Lo later

AP| design
toolbox

. PR

.,

l(-i% asoned and tontinuously improving AP| design process

Figure 5.1 Once we have represented operations with HTTP, including choosing data locations in HTTP
requests and responses, we can work on data modeling.

5.1 An overview of data modeling

101

does the right job” layer, addressing consumer needs, concealing inner workings, and
ensuring usability in various contexts (section 1.7.1). This section clarifies which data
we model, introduces the JSON data format we must consider when designing data,
and outlines how to model data.

RESOURCE RELATION PATH
Catalog Contains many produets | /products Figure 5.2 We’ll model the
data of th f th
Produet Belongs to the ¢atalog | /products/{product reference} O:Iian: Sh :pr:iz(;ug(:;(:)l .. ¢
HTTP INPUT OUTPUT
OPERATION RES. ACTION METHOD Dese. Lotation Descriy'(:ion TYPE Status* Data Lotation
Produet
. boad;
E:"f:at afa‘fed Suetess [201 o i
[

{A;od ‘{i:hae Zl‘ir:: Catalog Add POST E}Zd body ¢ 699 E‘;{Eu&' header
W voduet Evror
in‘(:::'\s‘a?{ionu Brvor | 400 info. Lo
Eﬁj::t'cso‘:;ahihs Suctess | 200 !?‘:iud:s body

Empt
?::;ﬁlc\ {-fw Catalog | Searth GET | Filters| query i‘:{_“;‘?f;ﬁs&rs Suetess| 200 ?:{:il{,s body
1 .
Wrong filters Evvor | 400 E\rror body
5 into.
£ product Prod Product found Suetess [200 !Zn:iuc{: body
g:faﬁ:o vt Produet| QGet GET r‘: " | path Eve
vex: No product found | Evror | 404 i“v:r body
PrEd. path Produtt modified | Suecess [200 !:":iuct body
vef.

Modifya o pet| Modify | EUT No product found | Evvor | 204 | EF | boa

?voduc rodué odity PATCH | Mod. o produ oun ol info. oay

prod. | PO [Wyong product Evvor

info. iwcov?na‘i‘,ion Bvvor | 400 info. L2
Remove a Prod Product vemoved | Suetess| 204
vodutt from |Produtt| Remove |DELETE r(: " | path E
he ¢atalog ver No produet found [Evevor | 404 .mr:W body

All operations Unexpected sevver] Ereop [oo | Brror | ay
evror info. J

Status* 200 OK, 201 Created, 204 No Content, 400 Bad Request,

404 Not Found, 500 Internal Server Error

Figure 5.3 We’ll model the data of the input and output of the Online Shopping example’s operations.

102

511

METHOD /path/{input }?input=valuesl}-

Input: value p-==m=ssecemmmmmmecaaaeas .. ‘JQuery pavameter| -

""""""""""""""""""""""" g} {feder ad)..# [

CHAPTER 5 Modeling data

Which data are we modeling?

We’ll model the data for which we identified locations in HTTP requests (section 4.4.1)
and responses (section 4.6.1). This data is what we put in the path parameters, query
parameters, header fields, and bodies shown in figure 5.4; figure 5.5 shows examples.

o S '| Path parameter I

HTTP vesponse

CODE REASON
Output: value

A “vepresentation”

a resourte
]

.

"input": "value"

Figure 5.4 We model all HTTP request and response data (path parameters, query parameters, headers,
and bodies).

rﬂée{: produtt details” HTTP rea\ueﬂ .---{ Path parameter “Add a produet” HT TP vesponse l

GET /products/12345 J-====--~c.__. B4 201 Created

et _flocation: /products/12345

“Search for products” HTTP vequest l [>"l Header field}-.. (T :-,

) - "productReference": 12345,}

GET /products?category=BD&keywords=anime et "name": "Cowboy Bebop", H
bl 5 : "category": "BD", ;

Input data “aregory i

A N (m—m —m e ———— -
';ﬁ' Implementation transforms data TRV (A

. A vepresentation of the product vesource
0:r5aniza‘{:iov\, models, formats may be diffevent

Figure 5.5 The data we model is the data exchanged between the consumer and the provider; it may differ
from the underlying data stored in the database.

Path parameters appear in HTTP request paths and are resource identifiers pinpoint-
ing a unique resource; an example is the 12345 product reference necessary to get a
product’s details. Query parameters are resource modifiers that may appear at the
end of the path after a » and separated by & in the name=value form. The category
and keywords product search filters are examples.

HTTP header fields contain metadata about requests and responses. For instance,
the Location header indicates the created product URL when a product is added to
the catalog.

HTTP request and response bodies contain a representation of a resource’s
desired or current state. For example, when we add a product to the catalog, the
request body represents the product to create, and the response body represents
the created product.

&

5.1.2

5.1 An overview of data modeling 103

CAUTION Careful data modeling is crucial for public, partner, and private
APIs. Poor design can have severe consequences, as noted in section 1.2.
When modeling data for a web API, focus on the data exchanged from a sub-
ject matter perspective rather than on storage. Names, types, and organiza-
tions may differ between an API and the database; implementation handles
data transformation. It’s acceptable for API data to resemble database data,
but we must meet consumer needs without carelessly exposing the provider’s
data structure (see section 2.8).

Introducing the JSON portable data format

HTTP supports any textual or binary data format in request and response bodies,
such as HTML and images. The most common format for web APIs is JSON (Java-
Script Object Notation, www.json.org), which is valued for its human readability and
ease of processing in browsers that support JavaScript (typically compared to XML).
Although JSON is based on JavaScript, it is programming language-independent and
can be used in Java or Python, for example. It is also popular for data storage and con-
figuration files.

NOTE It’s a common oversight to limit REST APIs to JSON. Thanks to HTTP,
REST APIs can use any format, such as XML, CSV, or images, if that suits our
needs. The same REST API operation can even accept and return various
data formats. For more about this, including XML and CSV samples, see sec-
tion 9.7.1.

As shown in figure 5.6, JSON describes atomic values (strings, numbers, Booleans),
ordered arrays, and unordered objects. Arrays are delimited by brackets ([1) and sep-
arated by commas (,). Objects use curly braces ({}) with properties separated by com-
mas. A property key is a quoted string ("price") and is separated from its value by a
colon (:). Values can be strings ("Cowboy Bebop"), numbers (49.99), Booleans
(false), objects, arrays, or null to indicate that a value is not set.

K.ey Vallue

12345 (Mo vl T v v _
level can | "PrOduCtReference’: 12345, Q----- --- Nun?ber (integer)
" be ot any {"‘l\’e "name": "Cowboy Bebop", Qoo === String
L "keywords": ["anime", ...], <---1 AW&‘/ (ean eontain any ‘(‘-‘/YEJ
[npricen: n49.ggn, Qremmreeeesssseeegees Number (Roat)
{ "igProductUnavailable": false, <J]-=- Boolean
"productReference": 12345, nsuppliert: { Qeeeseeeseeeessseseas - Object

"name": "Cowboy Bebop" "supplierCode": "SUNR",

3 "name": "Sunrise"

- Avvay } }

Figure 5.6 To ensure that all consumers can understand our data, we use the JSON portable data format.
It handles Boolean, number, string, array, and object data types.

http://www.json.org

104

CHAPTER 5 Modeling data

@ NOTE JSON is a possible format for representing resource data in bodies; we

5.1.3

may use others. But we model data with JSON in mind to ensure maximum
compatibility between providers and consumers. This includes path, query,
and header parameters, which we’ll typically map to atomic values.

Modeling data

As shown in figure 5.7, we go through three steps when modeling data. First we design
theoretical resource models that encompass all potential business concept data. We
define names, data types, and data structures. The “Product” resource is an object
with properties like productReference (an integer) and supplier (an object).

Design ' Devive them into o"ev‘a{:ions Ensure Com‘?le{‘,eness
vesourte models inFu{s and ou{\?u{:s «) and Proper fotus
Mar\agmp

suﬂ?'iers'

NAME TYPE NAME TYPE use tases and AP[Capabilities

productReference | integer preductReferer: trtegex steps IC;inv'AS
2
supplier object [®{supplier object Sourcet

. ‘@g— Supplier phone
* {_/\ W Dimensions
RESOURCE |RELATION | PATH OPERATION INPUT OUTPUT
Product Modify a product | ... |Mod. prod. info.|body| +++

Figure 5.7 We use theoretical resource models to design inputs and outputs. We ensure that data meets
consumer needs without exposing inner workings; we especially check input sources for gaps in capabilities.

Then we derive the theoretical model of a resource into inputs and outputs for the
resource operations, selecting all or a subset of the model elements. When adding a
product, the request body must not contain the product reference generated by
the server.

NOTE Using resource models as a base for inputs and outputs simplifies our
work and ensures data consistency, which is essential for creating user-
friendly APIs (section 8.9). This also applies to other types of APIs. However,
action resources may require a different approach (section 5.4.3).

Finally, we analyze data models to ensure that our API design meets consumer needs
without exposing inner workings. For example, users need product dimensions, but
the resource lacks them. The supplier’s phone number may be in our database, but it
doesn’t need to be included in the “Product” resource. If adding a product requires a
supplier code that consumers can’t provide, we must add supplier-related elements in
our API Capabilities Canvas to fill the gap.

5.2

5.2.1

&

5.2 Designing theoretical resource data models 105

NOTE We temporarily store findings in our API spreadsheet to separate learn-
ing concerns; we’ll find a better format for describing the programming inter-
face data in section 7.1. Our focus is on the “versatile API that does the job”
layer; however, data modeling will also address user-friendliness and interop-
erability (section 8.2), performance (section 13.1), security (section 12.1),
and implementation constraints (section 14.1).

Designing theoretical resource data models

We’'re designing a REST API that relies on interacting with resources that we con-
sider business concepts (section 3.3.1). Excluding HTTP headers metadata, all oper-
ation input and output relates to resource or concept data. Request and response
bodies represent the resource, such as a product to create or its summary during
searches. Path parameters, often IDs like a product reference, are part of the resource,
whereas query parameters, such as search filters, originate from the resource data.
Thus, our first task in data modeling is creating theoretical resource data models
encompassing all potential data for the business concepts before actual inputs or out-
puts for any operations. This approach streamlines modeling and minimizes errors
and inconsistencies, ensuring that our API meets consumer needs and is easy to use
(section 8.9).

This section uses the Online Shopping example resources to discuss determining a
resource’s structure, choosing properties, their names and types, and whether they
are essential. Finally, we explain how to achieve all this efficiently and are reminded of
our current objective, which we may lose sight of when modeling data.

Determining a resource’s structure

All elements we design must be any portable type introduced in section 5.1.2, including
resource models. For simplicity at this stage of our learning, we will model a collection
resource as an array and an individual resource as an object. As shown in figure 5.8,
“Product” is an element of “Catalog,” so the Product model is of type object, and “Cata-
log” is a collection or list of “Product” and thus is an array of Product.

RESOURCE RELATION PATH RESOURCE MODEL
Cataloy Contains many products | /products array of Product

Product Belongs to the eataloy | /products/{product reference}|product (cbject)

Figure 5.8 “Catalog” contains many products; it is an array. “Product” is an object.

NOTE We’ll learn that collection or individual resource data must always be
encapsulated in an object to enable us to add list metadata (section 9.6.7) or
propose an extensible design (section 15.6.3).

106

5.2.2

CHAPTER 5 Modeling data

Choosing an object resource’s properties

Designing a resource model requires identifying the properties representing the
business concept, including a resource identifier. If our resource has relationships
with other resources, we may include some of their data. Our expertise and input
from subject matter experts (SMEs) guide us. We may also rely on existing or wire-
framed Ul, implementation code, or databases, which are often the only available
documentation.

CAUTION As discussed in section 2.6, we must ensure that the resulting mod-
els meet consumer needs, make sense to consumers, and remain unbiased
(especially when relying on the UI, code, or database). Section 5.5.3 will
revisit these concerns in the data context.

Figure 5.9 shows the result of our discussions with SMEs about “What goes into a Prod-
uct?” This section focuses on a few chosen elements; the following sections discuss the
name, type, and required columns.

‘ Product vesourte mode—ll

NAME TYPE |REQ| DESCRIPTION | [
productReference integer * |Unique identifier "productReference": 12345,
name string * "name": "Cowboy Bebop",
"description": "An amazing ...",
description string "keywords": ["anime", ...],
keywords Ziiiggof : cat.:egfry" : "BD",
price": 49.99,
category string * "dateAdded": "1997-18-09",
price float % | Price in USD "isProductUnavailable": false,
n 1 n.
dateAdded string * m’MM_DD f:ﬁg;iiz&oée ", SUNR",
isProductUnavailable |boolean Temp. S et o
supplier cbject *) J

NAME TYPE |REQ DESCRIPTION
supplierCode string * | Unique identifier
name string *

Figure 5.9 The “Product” resource theoretical model contains all the information necessary to describe
a product in the context of the API.

The “Product” resource theoretical model contains the product reference resource
identifier and data representing the product, such as a name and price. We included
the code and name from the related supplier resource (seen in section 5.1.3); accord-
ing to the SME, a product’s supplier name is essential for a product. The supplier

5.2 Designing theoretical resource data models 107

code can be used to read the related supplier resource for more information. Alterna-
tively, we could include only the supplier code if the supplier name is nonessential.

@ NOTE Section 8.4.4 discusses the wise selection of resource identifiers. Sec-
tion 8.7 covers determining how much data from related resources to include
in a resource, which also affects efficiency, covered in section 13.1.

5.2.3 Choosing a property name and type

Once we have identified some data, we can name and type it. For now, we choose the
first meaningful names that pop into the discussion without thinking much about
them. We write them like variable names in code. For instance, the reference uniquely
identifying a product is productReference, product_reference, or any other casing
variation, depending on our preferences. Be consistent across the entire API (and
even other APIs); don’t have product_reference and isProductAvailable.

We select portable types appropriate for the data (see section 5.1.2). The product
model in figure 5.9 showcases all the portable data types. productReference is an inte-
ger, name is a string, price is a float, and isProductAvailable is a Boolean. Not all
resource properties are atomic values; the keywords property is an array of string,
and supplier is an object with its own properties.

We may provide an optional description to capture additional information that the
combination of resource name, property name, type, and format can’t convey. For
instance, the product’s price is expressed in US dollars. As there is no specific porta-
ble date type, dateAdded is a string whose description indicates a YYYy-MM-DD format.

E; NOTE See section 8.5 for more information about atomic data types and

j formats (including date formats). Section 8.8 covers the art of choosing
names. Section 8.9 discusses the significance of consistency (in particular,
we’ll learn that resource identifiers should use specific naming patterns to
be easily identifiable).

5.2.4 Indicating required properties

In a theoretical resource model, the required flag (the Req. column in figure 5.9)
indicates properties essential for the concept. This is mainly a subject-matter question,
but we can also consider what consumers must provide as input and what the API
implementation always returns as output; this is how we’ll interpret this flag when
modeling input and output data. A product doesn’t make sense without a product-
Reference, name, Or price but can exist without a description or keywords. We must
also set this flag for deeper elements; for example, the supplier object must have a
supplierCode property. It’s not because the supplier property objectis required that
all of its properties are required; it could also have an optional description.

E/ NOTE The required flag provides essential information for implementing
—4 and consuming the API. It indicates what the implementation always returns
and what consumers must provide, which can affect user experience (see

108

5.25

5.3

53.1

—

CHAPTER 5 Modeling data

section 9.4.4). If unsure of the value at that stage, you can define it when
modeling inputs and outputs.

Listing and modeling properties efficiently

Listing and modeling resource data and data in general is not always easy. We need to
identify the concept’s data, organize it in objects or arrays, name it, type it, and decide
whether it’s essential (required). Trying to tackle all concerns simultaneously is the
surest way to waste everyone’s time and end up with a low-quality result. Typically, it’s
not the time to argue about isAvailable versus isProductAvailable. What matters is
identifying that “Product” needs a property indicating its availability.

To streamline the design process, you can proceed as follows:

List the concept elements using the first names or descriptions that come to
mind without worrying about details (final names or types).

Group those belonging to a subconcept to create subobjects.

For each element, choose a type, tweak the name into a variable name, and
determine whether it’s required.

If necessary, reiterate with deeper objects (such as the supplier object of
a product).

Evaluate each element, and remove any that don’t make sense.

NOTE Our current focus is on representing concepts and meeting consumer
needs (the “versatile API that does the job” layer). This may result in subopti-
mal data that does not consider all usability, efficiency, or security aspects,
which is normal, even for experienced designers. The following design layers
will fix it; see section 5.1.3.

Designing inputs and outputs data models

After designing theoretical resource models, we can efficiently create inputs and out-
puts for each API operation by selecting the necessary elements from the theoretical
models according to the context. This section provides practice in modeling inputs
and successful outputs for typical create, read, search, update, and delete operations,
which will help us discover recipes to streamline the process. Although this chapter
focuses on successful outputs, we will also draft a temporary error model.

NOTE Section 5.4 summarizes and generalizes the insights gained from this
section to streamline our work. Section 5.4.3 covers “do” operations modeling
using these insights.

Designing a read operation’s inputs and success outputs

Figure 5.10 shows that the “Get product details” (GET /products/{product reference})
operation has a “Product reference” input and a “Product information” success output.
Because the operation reads the “Product” resource and returns “Product information,”

(@

5.3 Designing inputs and outputs data models 109

it can return a representation containing all data of the theoretical “Product” resource
model (see figure 5.9).

TIP Model an operation’s output data before the input because, in most
cases, each input data is identical to part of the output.

T .

OPERATION [RES METHOD| Dese. Lotation Type Data Lotation Type

g:_taﬁ‘;oaud" Produet| - | CET f:c’d path |integer | Enfud body | Product
" | d
/products/ {Product reference} ----------- . R:\:hed j°| /-JA ‘:«a\/s retume
" mode Product vesourte mﬂ[__
—— -
Product .. |/products/{productReference} 4 productReference | integer *

Figure 5.10 The operation output is the Product resource model; required properties are always
returned. The productReference path parameter is based on the productReference property.

&

5.3.2

In the current context, each property’s required flag shows whether it is returned.
For example, the name property is required, so it is returned for all products, whereas
the nonrequired description property may not be returned.

NOTE Identifying always-present and sometimes-absent properties in API
responses aids in implementation and testing. Knowing what data is returned
and when is essential for consumers. See section 19.1 for information about
how API design assists in the API lifecycle.

The “product reference” path parameter identifies the “Product” resource as the
productReference from the Product model. Thus, we set the path parameter type to
integer and rename it to /products/{productReference}. Although {product-
Reference} is a placeholder replaced by actual values in API calls, it’s visible in the
documentation; using the same name aids consumers in connecting data pieces easily
(more on user-friendly data in section 8.2).

Designing a search operation’s inputs and success outputs

The “Search for products” operation (GET /products) reads the “Catalog” resource,
an array of Product. It returns either “Products information” or “Empty products
information.” Both can be an array of Product; one has Product elements, and the
other is empty. However, figure 5.11 shows that the operation returns an array of
ProductSummary, a subset of the Product model.

110

CHAPTER 5 Modeling data

A subset of the Product vesourte model array of
ProductSummar
NAME TYPE |REQ [i
productReference integer * “.‘ :" { o . 12
B B "productReference": " 45",
: *] :
name string ' : "name": "Cowboy Bebop",
desertpttorn trte—— . Product < "keywords": ["anime"]
S |Summary| Ty YW : R
keywords array of :" é "category": "BD",
string : H "porice": "49.99",
category string * ‘:- (N F
) ! { } “Produtts info.”
price float ol I JSON example
deteidded das |]
Produasdes e e s ,: 0 “Evn\?{: Woduﬁ{s info.”
epbios . i JSON example

Figure 5.11 The ProductSummary model is a subset of the Product model containing essential
information describing a product in the context of a list.

The ProductSummary model provides an overview of the product and fits our needs. It
includes properties like productReference, name, category, keywords, and price but
excludes others we consider less interesting in this context, like dateAdded. Consum-
ers can use the returned product reference to get more data for a specific product
with GET /products/{productReference}. Returning the complete “Product” resource
data is also possible if it meets consumer needs.

CAUTION Putting insufficient or too much data in lists can affect API effi-
ciency, leading to many API calls to read each element or high data volumes;
see section 13.1.

The “Search for products” operation features a “Filters” input to retrieve a subset of
all products. Filter options vary based on user needs and data available in API models.
We can have keywords and category filter query parameters that align with the
ProductSummary model properties; an example request is GET /products?keywords=
anime, fantasy&category=BD. To filter by availability, we must add the ispProduct-
Available property to the returned model. Filtering by the product’s origin country
is impossible because it’s missing from the Product model. But we can add an origin
property to Product and ProductSummary to allow filtering by origin.

NOTE Section 7.6.2 shows other options for array serialization in query
parameters. Section 9.6 covers other filtering options, such as ranges; it also
includes sorting and paginating lists. Having input and output consistent
with each other is not an obligation. However, it’s crucial for usability; see
section 9.4.2.

5.3.3

5.3 Designing inputs and outputs data models 111

Designing a create operation’s inputs and success outputs

The “Add a product to the catalog” operation (POST /products) has a single input,
“Product information,” and returns “Product information” and “Product URL” when
a product is successfully created. The “Product information” output is the created
product’s data. We can use the product theoretical model, as when reading a product.
However, we may need to return less data for performance reasons (section 13.1); we
can return a ProductMinimal model, an object containing the productReference
property identifying the created product.

The “Product URL” goes in a standard HTTP header (section 4.6.2); its model
doesn’t derive from the product model. Following HTTP, we define a Location header
with a string type, /products/12345, for example (/products/{productReference}).

As shown in figure 5.12, although they have the same name, the “Product informa-
tion” input differs from the output. It is the essential data to create a product, a subset
of the product output model without implementation-managed properties. After
discussions with SMEs and the implementation team, we conclude that the product-
Creation model includes all Product properties except productReference, dateAdded,
and supplier name. The implementation generates the first two and determines the
third based on suppliercCode. In this creation context, each property’s required flag
shows whether it must be provided. For example, a name is mandatory for creating a
product, but a description is optional.

o=
0

NAME TYPE

A subset of the Product vesourte mode|l RE' “"Mus{: be provided

.
o

e e —— oo 'Z\‘-ge,w_waw:' {
name string * _E :: "name": "Cowboy Bebop",
I' : n 1 1 n. n 1 n
e B : : description": "An amazing ...",
: ! "keywords": ["anime", ...],
keywords array of “J|Product |/ .
o string Jlcreation|* "category": "BD",
- " { i | "price": "49.99",
category string ! ! | "isProductUnavailable": false,
price float * : :: "supplier": {
Cateidded: I x __'-rw_waw; "supplierCode": "SUNR"
isProductUnavailable boolean :" :.‘ }} JSON example
supplier object * |/ *
NAME TYPE REQ. == Determined by the server
supplierdode string s ' from the supplier code
——. At
= ing

Figure 5.12 To model the data participating in product creation, we start with the complete model and
remove the data managed by the server.

112

5.34

CHAPTER 5 Modeling data

NOTE Knowing the required data for an operation is crucial for proper
implementation. It also influences the user experience; more required data
makes the operation more complex. Refer to section 9.4 for guidance on
requiring minimal elements.

Designing an update operation’s inputs and success outputs

The “Modity a product” operation (PUT or PATCH /products/{productReference})
has two inputs, “Product reference” and “Modified product information,” and returns
“Product information” when the product is successfully updated. The returned “Prod-
uct information” is the new state of the “Product” resource; thus, its data is the Product
theoretical model, the same as when reading or adding a product. The “Product refer-
ence” path parameter is the same as when reading a product, as both operations share
the same resource.

Figure 5.13 contrasts the “Modified product information” input in pPuT and PATCH
requests updating a product’s price and description. With PUT /products/{product-
Reference}, the input contains all properties necessary to replace entirely; hence, we
re-create the product identified by the path. So, we need a model identical to Product -
Creation used when adding a product (POST /product). We can rename the creation
model ProductCreationOrReplacement to have a unique model. If we use PATCH
/products/{productReference}, which only needs the modified data to be sent, we
can have a ProductModification model that is similar to ProductCreation, but all
properties are optional.

Same model as Produet Creation data model Same model as Produet Creation data model
but everything is optional
We vpdate 12345 | PUT /products/12345 PATCH /products/12345
produtt’s deseription | { {
and ‘"?Le ,." "name": "Cowboy Bebop",
e "description": "A fantastic ...", "description": "A fantastic ...",

"keywords": ["anime", ...I],

"category": "BD",
-------- "price": "59.99", "price": "59.99"
"isProductUnavailable": false,

"supplier": {
"supplierCode": "SUNR"
} Body tontains everything needed to i v +h
} \reylaZe/ ve—ctveate the en?:ivre vesourte } Boa\lmiﬁ?ﬁz‘sdm the

Figure 5.13 The model for PUT matches product creation. Modifying two properties requires sending all
data. The model for PATCH is similar, but all properties are optional; consumers send only modified data.

Some data may be restricted from updates for subject-matter-related reasons. For
example, a product’s supplier may be defined on creation and cannot be modified

e

5.3.5

5.3.6

5.4

5.4 Streamlining input and output data modeling 113

afterward. To limit what can be updated, the input data model may be a subset of the
one used for creation.

NOTE Section 9.8.1 will show that the implementation should accept modifi-
cation and complete models as PUT input, ignoring extra properties to pre-
vent unnecessary errors. The pATCH strategy employed is JSON Merge Patch
(RFC 7396), the most common option, whereas JSON Patch (RFC 6902) is a
less-used alternative; section 138.5.7 contrasts them.

Designing a delete operation’s inputs and success outputs

The “Remove a product from the catalog” operation (DELETE /products/{product
reference}) has a single input, “Product reference,” and no outputs. We’'re in the same
situation as with GET, PUT, and PATCH /products/{product reference}. This operation
manipulates a “Product” resource, so we end with DELETE /products/{product-
Reference}, where the {productReference} path parameter maps the product-
Reference property of the theoretical “Product” resource.

Designing a temporary error data model

This chapter focuses on success output modeling, but we can design a temporary sim-
ple data model for all error outputs (4xx and 5xx) of all operations. The Error model
in figure 5.14 is an object with a required message property, a string, conveying
explicit, human-readable information about the problem. We’ll enhance it in sec-
tion 9.8 when we discuss errors in depth.

Temporary Error modeﬂ { JSON example
NAME TYPE RER. "message": "The product type is missing"
message |string * !

Figure 5.14 To be exhaustive about output data modeling, we design a simplistic and
generic error model that we will enhance later.

Streamlining input and output data modeling

Having designed all the resource models and operations’ inputs and success outputs,
we can identify seven models to streamline the design for CRUD and “do” operations:
complete, summarized, minimal, identifier, creation, replacement, and modification.
Figure 5.15 illustrates their application. This section discusses designing and using
these models and how to streamline property listing and modeling. It also highlights
the risks related to similarly named elements.

114 CHAPTER 5 Modeling data
OPERATION PATH QUERY [REQUEST BODY | RESPONSE BODY
Create vesourte | POST /resources Creation Complete, Minimal
Searth vesourtes |GET /resources Breraelig::l;; L;{: S‘:afnf:::r;e
Read vesourte [GET /resources/{resourceId}
RC?J:{C:E ::Z::::::’ PUT /resources/{resourceld} et Re ‘If;z:::f’ Complete
entitier
Partial ves. update| pATCH /resources/ {resource1d} Modification
Delete vesourte |DELETE /resources/{resourceId}
Action vesourte |POST /do Creation Complete
Figure 5.15 The typical API operations use typical data models.
5.4.1 Designing and using the complete, summarized, minimal,

and identifier models

Figure 5.16 shows we can derive the complete model to design the summarized, mini-
mal, and identifier models. A complete (or theoretical) resource model, such as product,
should be designed first, as it is the source for the other models. Remember the guid-
ance from section 5.2.5 to model data efficiently. It contains all possible business con-
cept properties, including a resource identifier. We can use it as a successful output
body for create, read, search (in a list), and update operations.

[pama |
DATA DATA DATA DATA
Properties

Resource ID making 3 |Resource ID Resource ID Res. ID (value)
Business |Main meaning’ W Tvain s Mertrr

concept s " Y

properties |Secondary | {___.- Seeendery Secendary Secormdary
Output for searth, eveate, vead, Output for search, Output for eveate; Path parameter

embedded in other vesourte; embedded in other vesource
we ¢an also break it down
into query parameters

and update; we ean also break it
down into query parameters

Figure 5.16 Starting from the complete data model, we can designh summarized (essential information),
minimal (only the resource identifier property), and identifier (only the resource identifier value) models.

A summarized model, such as ProductSummary, contains a subset of the data from the
complete resource model, including resource identifiers and “main” properties represent-
ing a meaningful summary. We can use it as an output of search operations (in a list).
On search operations, we can use the properties of the complete or summarized
model we use in the list as a base for query parameters, as in GET /products?keywords
=anime, fantasy&category=BD. A minimal model, such as ProductMinimal, is a subset

5.4 Streamlining input and output data modeling

of the complete or summarized models, containing only the resource identifier. We can
use it as an output for a create operation (discussed in section 13.5.2).

The summarized and minimal models can also be embedded in other resources. For

models.

example, an Order may contain a list of products whose elements are one of these

54.2

An identifier model is the type of resource identifier of the complete data model. We
can use it as a path parameter (/products/{productReference}).

models

Designing and using the creation, replacement, and modification

Figure 5.17 shows how we can derive the complete model to design the creation,
replacement, and modification models. A creation model, such as ProductCreation,
contains all the properties needed to create a resource and goes in the body input of a

“Create resource” operation. It is a subset of the complete model that excludes data

managed by the implementation, such as the resource unique identifier (product-
Reference) or creation date (dateAdded).

Reylacement

When not all

pro erties are
[Replacement | [Modificationk | [Modibication | ”“L;igtoi‘cfﬂ
DATA [pam

Resource id.

—

Business
concept

properties

Handled by server

Provided by
consumer

Hendted—by—seirrey

Provided by
consumer

| *All data is optional

DATA

Resouree—id—

Hordted—by—server

Modifiable
after creation

S

after—ereaticn—

Provided by consumer

. PSP

N\
£

Figure 5.17 Starting from the complete model, we can design the creation, replacement, and modification
of input data models that contain only consumer-managed data.

A replacement model, such as productReplacement, is the body input for an “Update

resource” operation using pUT. It’s usually the same model as the creation model
(ProductCreationOrReplacement).

A modification model, such as ProductModification, is the body input for an
“Update resource” operation using PATCH. It’s usually a copy of the creation model,
where all properties are nonrequired (section 13.5.7 discusses a less common alterna-
tive). If some properties are not modifiable after creation, replacement and modifica-
tion models can be a subset of the properties consumers can provide on creation.

116

543

544

CHAPTER 5 Modeling data

Modeling data for “do” operations

In section 4.7, we learned about representing “do” or non-CRUD operations using the
REST model. We fundamentally defined two options: creating a business concept
resource or an action resource. This section discusses how to model their data based
on previous sections.

Choosing the business concept option and creating an “Executions” or “Results”
resource means “do” is represented by a create operation (POST /executions Or POST
/results). Model the operation resources’ complete models, and derive them as
input and output, as for a regular creation. Design the “Results” resource like any
other business concept. The process for “Executions” is similar; the complete model
includes all “do” input and output data (the numbers to sum and their total, for exam-
ple) along with a resource identifier. The input is a creation model with only the nec-
essary data for the action (the numbers to sum).

Using an action resource means having a PoST /do that behaves like a function.
The input body can contain all necessary data (numbers to sum), and the output pro-
vides the result (the sum). However, I suggest designing the output model like “Execu-
tions” resources without the identifier; returning all input and output data lets
consumers understand the result’s source.

Differentiating similarly named elements

Similarly named resources, inputs, or outputs may be different concepts or require
different data models depending on the context. Distinguishing them is essential for
designing an API that meets consumer needs.

In section 5.3.3, we realized “Product information” was both an input and output
for the “Add a product to the catalog” operation, but with different modeling. Thanks
to the typical models in section 5.4, we can seamlessly differentiate elements between
inputs and outputs and across operations that manipulate the same resource.

After identifying and modeling concepts, we must avoid using them blindly, partic-
ularly resources that can distract us, given the resource-driven nature of REST APIs.
Similar terms can represent different concepts depending on context. For instance,
the “Product” resource in catalog operations differs from the “Product” concept in a
cart. Adding to a cart involves referencing the productReference and quantity, which
differs from adding a product to the catalog. Therefore, we should differentiate these
by naming them “Catalog Product” and “Cart Item” and modeling them appropri-
ately. We can combine data when necessary: for example, listing cart items output may
include catalogProductSummary data in the CartItemSummary.

NOTE What seems like a unique business concept is often several concepts
adapted to specific contexts. Always consult SMEs to determine whether
seemingly identical concepts are truly the same; rename them with a suffix,
prefix, or more precise term. As a last resort, fine-grained modeling can
reveal nondifferentiation problems by showing unrelated data. When concepts

5.5.1

5.5.2

5.5 Using data to ensure completeness and proper focus 117

are related, use typical models from section 5.4 or their elements to compose
new models.

Using data to ensure completeness and proper focus

Now that we have investigated consumer needs in depth using data modeling, we have
a solid draft of our programming interface design. However, we must review the
design for completeness and accuracy before moving forward. This review involves

Spotting missing elements by analyzing input sources and output usages
Ensuring complete business error-handling
Focusing on the proper elements

This section examines these tasks, using the Online Shopping programming interface
data as an example.

Spotting missing elements by analyzing input sources
and output usages

We must check whether consumers can provide requested inputs and what they do
with outputs to identify missing use cases, steps, and operations and ensure that our
design meets all the user needs. This is similar to what we did with steps’ inputs and
outcomes in section 2.3.5.

The fine-grained input source check can reveal new API parts that were previously
unknown during the needs analysis. For instance, to “Add a product to the catalog,”
consumers must provide a category, which can also be used as a filter when searching
for products. However, consumers can’t invent this value. After discussing this with
SMEs, we realize that a “Select a category” step needs to be added to the “Fill the cata-
log” and “Search for products to buy” use cases. Without this, it’s impossible to add
any products to the catalog.

We probably spotted all the use cases and steps during the needs analysis by investi-
gating output usage. However, we can do a quick second pass. For example, we can
consider what end users may do with the supplier information returned with prod-
ucts. We may add this as a filter to “Search products,” but if we decide the supplier
property is irrelevant for end users, we can remove this information. However, catalog
administrators need it. We may need to separate end users and admin operations; see
section 12.3.4.

Ensuring complete business error-handling

Now that we have a detailed view of all inputs, we can double-check with SMEs about
what possible business errors can occur, especially in creation and modification opera-
tions. At this stage of our learning, we focus on exhaustively identifying these errors,
which is essential for correctly implementing the API. This information is also crucial
for consumers who need to know the behavior of operations to code their applications.

In most cases, the newly identified errors should be refinements of those already
detected during the needs analysis. For instance, “You can’t add a product with a price

118

5.5.3

CHAPTER 5 Modeling data

that is negative or above 100,000” refines “Wrong product information.” We can also
add specific newly detected error cases to the description of the 400 error cases. We
must also check whether errors affect the use cases identified during capabilities iden-
tification (adding new branches, operations, etc.), although that should be rare.

NOTE Section 9.8 thoroughly discusses handling errors, including data
modeling and limiting their occurrence. We’ll add more errors as we cover
new concerns, typically security (section 12.10) or planned unavailability
(section 14.2.3).

Focusing on the proper elements

We must ensure that any piece of data aligns with consumer needs, is versatile, doesn’t
expose the provider’s perspective, and isn’t too consumer-specific, as we did with capa-
bilities in section 2.6. We must also ensure that consumers can send the data they want
and get the data they need to achieve their goals in the context of the use cases identi-
fied during the needs analysis. For example, the “Product” resource data model
returned by “Get product details” may miss data about the size of the product, which
is crucial for consumers but not used elsewhere in the APIL.

In addition, we must be sure the data is versatile and fits in new contexts.
Although the available wireframe of the first application using the API doesn’t show
a description field, we add it to the Product model because it’s essential informa-
tion for a product from a subject matter perspective. An application will likely need
it sooner or later.

Next, we must ensure that the names, types, and data organization do not expose
the provider’s perspective, which would expose the data organization or business logic
(there’s less risk of software architecture problems here). For instance, if the price
description says, “Add 10% on Fridays between 4 pm and 7 pm,” it would be better to
find a way to avoid consumers having to deal with that. Section 8.4 will show us how to
craft ready-to-use data.

Finally, we must be sure the data isn’t tainted by an overly specific consumer per-
spective by checking that it doesn’t mimic existing UI and isn’t specialized for one
consumer. A typical Ul influence would be to group the description and keywords
properties under a summary object in the product model because that’s how informa-
tion is presented on the existing website. But from a pure data perspective, agnostic of
the context, this organization doesn’t make any sense.

Summary

To improve compatibility between providers and consumers, all data should be
modeled using JSON portable data types (strings, numbers, Booleans, arrays,
and objects).

Design data models for resources (business concepts), and derive them into
inputs and outputs for each API operation.

Exercises 119

= To design models, list properties without worrying about details (final names or
types), reorganize and filter them, and finally, choose the name, type, and
required status.

= Typical data models used as input or output for CRUD and “do” operations
include complete, summarized, minimal, identifier, creation, replacement, and
modification.

= The complete (or theoretical) model contains all business concept properties,
including a resource identifier. Design it first; it is the source for the other mod-
els. Use it for create, read, search (list), or update operations.

= The summarized model is a subset of the complete model, including the
resource identifier and properties representing a meaningful summary. Use it
as output for search operations (list).

= The minimal model is a subset of the complete model containing only the
resource identifier. Use it as output for create operations.

= The identifier model is the type of the resource identifier of the complete data
model. Use it for path parameters.

= The creation model is a subset of the complete model that excludes data man-
aged by the implementation. Use it as input for create operations.

= The replacement model is usually the same as the creation model. Use it as
input for update operations using PUT.

= The modification model is usually a copy of the creation model where all prop-
erties are nonrequired. Use it as input for update operation using PATCH.

= Investigate data sources and usages to spot missing use cases or steps.

= Identify all business errors by using input data.

= Ensure that data is versatile, aligned with consumer needs, and free of unwanted
providers or consumer influence that is too specific.

Exercises

This section contains exercises to help you practice some key skills in this chapter.
You’ll find the solutions in the online appendix (https://mng.bz/260N). I encourage
you to solve them and read their solutions, which include detailed explanations, refer-
ences to relevant sections, and additional comments.

Exercise 5.1

Analyze the response data for the “Read movie information” (listing 5.1) and “Search
for movies” (listing 5.2) operations of an API for a movie streaming service, and fix
them based on the lessons learned in this chapter.

Listing 5.1 Sample response for the “Read movie information” operation

{
nidgn. "ZFqoFq",
"title": "Ghost In The Shell",

https://mng.bz/260N

120

CHAPTER 5 Modeling data

"releaseYear": "1995",
"duration": "83",
"director": "Mamoru Oshii",
"music": "Kenji Kawai",
"language": "ja"

Listing 5.2 Sample response for the "Search for movies" operation

"title": "Ghost In The Shell",
"language": "ja",

"stars": 5,

"music": "Kenji Kawai"

Exercise 5.2

An API for a recipe-sharing platform allows users to search for recipes, read recipes,
and save new recipes. Listing 5.3 shows an example of a request body used to save a
new recipe (POST /recipes). Explain what’s wrong with the requested data.

Listing 5.3 Sample request body for saving a recipe

{

uidu: "67890" ,

"title": "Quiche Lorraine",

"description": "A traditional French savory tart.",
"creationDate": "2024-11-14T15:00:00Z",
"ingredients": [

id: "shortcrust pastry", quantity: "200g" },
id: "egg", quantity: "3"},

id: "cream", quantity: "200ml" },

id: "diced bacon", guantity: "150g"},

id: "grated cheese", quantity: "50g"},

id: "salt"},

id: "pepper"}

e e L e

1,

"instructions": [
"Preheat oven to 180°C",
"Mix ingredients",
"Pour into pastry",
"Bake for 35 minutes."

Exercise 5.3

A fitness-tracking smartwatch application allows users to view the duration and type of
a workout. The GET /workouts/{workoutId} API operation it uses returns the data
shown in listing 5.4. Indicate whether each field should be kept or removed and why.

Exercises 121

Listing 5.4 Sample "read workout" response

{

"id": "abcdl234",

"type": "running",

"duration": { "value": 45, unit: "minute" }
"distance": { "value": 8, unit: "km" }
"date": "2024-11-13T08:12:342Z",
"lastDbSync": "2024-11-14T12:00:00Z"

Exercise 5.4

The “Get car details” operation of an API for a car rental service can be used in two
use cases: a customer renting a car and a mechanic checking a car for maintenance.
Based on the sample data from a GET /cars/{carId} call in listing 5.5, can you verify
whether the operation suits both? If not, explain how to fix this API design.

Listing 5.5 Data returned when getting car details
{

"carId": "12345",

"make": "Volkswagen",

"model": "Golf",

"rentalPricePerDay": 50,

"features": ["air conditioning", "GPS", "automatic transmission"],
"maxPeople": 5,

"maxLuggage": 3,

"mileage": 80000,

"yvearOfManufacture": 2018,
"currentCondition": "No issues reported",
"engineType": "1.4L TSI Turbocharged",
"fuelType": "Petrol",

"transmission": "Manual",
"chassisNumber": "WVWZZZ1JZOW123456",
"lastInspectionDate": "2024-01-15",
"nextInspectionDue": "2024-07-15",
"tireCondition": "80% tread remaining",
"brakeCondition": "Good",
"batteryStatus": "Fully charged"

Describing H1T'T'P
operations with OpenAPI

This chapter covers

= |ntroduction to the OpenAPIl Specification

= Describing resource paths

= Describing HTTP operations

= Describing HTTP operations’ inputs and outputs

Our API designer’s job could be considered done. We have designed a versatile
REST API exposing capabilities that meet the needs identified in the Define stage
of the API lifecycle. But we described the programming interface using a spread-
sheet; it could also have been a word processor document or a wiki page. These for-
mats are not made for this task; authoring and maintaining such documents can be
complex and error-prone. A more efficient way is to use an API specification, a
standard format for describing APIs. The OpenAPI Specification is the most com-
mon for REST APIs, simplifying design, reducing errors, and facilitating discus-
sions while enabling more than just describing APIs and benefiting the rest of the
API lifecycle.

After introducing OpenAPI, this chapter shows how the “Describe the program-
ming interface” step of the API design process parallels “Design the programming
interface.” Then we discuss how to author OpenAPI documents and provide an

122

6.1

6.1 Overview of describing the programming interface 123

overview of the steps to create an OpenAPI document describing the HTTP opera-
tions as we design them. We also go through these steps to describe the API’s resources
and operations and their inputs and outputs. The following chapter describes data
models as we design them.

Overview of describing the programming interface

Figure 6.1 shows that we are entering the third step of the API design process outlined
in section 1.6, “Describe the programming interface,” which parallels “Design the pro-
gramming interface” (section 3.1). Describing HTTP operations and data models in a
spreadsheet was temporary; we can use an API description format like OpenAPI when
we start HTTP discussions. This format is an essential part of our API design toolbox;
it helps streamline our work and discussions, helping us across all layers of API design.
However, this chapter and the following focus on the basics so we can design a versa-
tile API that does the job; we’ll thoroughly discuss other layers in parts 2, 3, and 4 of
this book (section 1.7).

Using a spreadsheet for deseribing ... m Pavallels programming
GET /messages was temporary “.‘ ave oo interface design -~

[P

A
Desi?n'{:he
programming
intertate
AN

|

|

: | ldenti«(:y
I | Needs -1~ =B the AP
|

|

|

Pro
in

%ra"m\'mg

ertace

G " provipes ¥

- = - 4 CONSE
OpenAP| helps DESIGN LA\{ERN‘
working on ... t A versatile AP| design that does the vight ")ob

OpenAP| ill also { L An API design that is user—friendly and interoperable o

tontribute to ":; An API design that considers constraints ! We add the

(eontext, secwi{:‘/, etTitienty,
- OpenAP|
APl d pe '
{:oollf::? " Spee.

backward—compatibility, and ex{:ev\\/sibili{y)
&reasoncd and eontinuously improving AP| design process £ owr toolbox

Figure 6.1 Using a spreadsheet to describe our REST API was only to simplify our learning. We can describe
the programming interface with OpenAPI once we start to design it.

This section explores the OpenAPI Specification format we add to our API design
toolbox and its usage. We introduce the YAML data format we’ll use for writing
OpenAPI documents and contrast an OpenAPI document with information from our
API spreadsheet. Finally, we outline the steps to create the OpenAPI document for
our API design and relate them to the tasks performed when designing the program-
ming interface.

124

6.1.1

@

CHAPTER 6 Describing HTTP operations with OpenAPI

Introducing the OpenAPI Specification

The OpenAPI Specification (www.openapis.org) is an open source format for describ-
ing REST (ish) APIs. An OpenAPI document contains data about an API’s resource
paths, HTTP operations, inputs, outputs, and data models. Data models are defined
using the JSON Schema format, discussed in section 7.1. OpenAPI can be used in
many scenarios across the API lifecycle.

The OpenAPI Specification vs. Swagger and the rest of the world

The OpenAPI Specification (formerly the Swagger Specification) originated from the
Swagger open source tools for generating APl documentation and SDKs (Software
Development Kit). In 2015, the Swagger 2.0 specification was donated to the
OpenAPI Initiative under the Linux Foundation, evolving into OpenAPI with versions
3.0 in 2017 and 3.1 in 2021. The brand “Swagger” is owned by SmartBear; most
non-SmartBear open source tools have been renamed from “Swagger-something” to
“OpenAPl-something” or are likely outdated if not.

Alternative REST(ish) API specifications like WADL, RAML, and API Blueprint exist, but
OpenAPI is now the industry standard, with most tools supporting it. Whatever type
of API you work on, there is likely an API specification to use: for example, WSDL for
SOAP, GraphQL Schema for GraphQL, Protocol Buffers for gRPC, and AsyncAPI for
asynchronous APIs.

The OpenAPI Specification is predominantly used for API documentation; an exam-
ple is shown in figure 6.2. Generating such documentation from our API spreadsheet
is possible. But no commercial or open source API documentation solution can inter-
pret our spreadsheet, whereas most REST API documentation tools understand the
OpenAPI format.

However, OpenAPI has many uses throughout the API lifecycle beyond documen-
tation. OpenAPI documents can be created via design tools, generated from code or
network traffic, and used for testing, design, security checks, and application and
infrastructure generation and configuration. OpenAPI is a standard that helps with all
these tasks and serves as a bridge between tasks and tools. For example, an OpenAPI
document created during design can be used to generate code during development,
create tests, configure an API gateway during deployment, publish documentation
when providing the API, and generate consumer code.

TIP You’'ll find plenty of OpenAPI-compatible tools on the official OpenAPI
Tooling website (https://tools.openapis.org) or by searching the web for
“what you want to do OpenAPI”.

http://www.openapis.org
https://tools.openapis.org

6.1.2

6.1 Overview of describing the programming interface 125

1> [Sh{:bs:/ /some.sevver/ api—dots/ get—produtt-details “

68‘{: ?Yodué‘t de’cails E;ET /products/ {productReference—}l
Parameters

Response samples

@ Path parameter productReference (integer)

Responses
200 Produtt found Content {:\/Pe: afvlida{ion/")son
Eprodu(cszReference (integer): Unique identifier { "productReference": 0,
name Yihg "name" : "string" ,
— keywords (array of strings) "keywords": [
— category (string) "string™

1,
"category": "string",
"price": O,

— price (number): Price in USD
— dateAdded (stringdate)

| isProductUnavailable (boolean): Temp. unavailable ndatendded": "2024-12-07",
— supplier (object) "supplier": {
suppliercCode (string) "supplierCodg" : "string",
"name": "string"

name (string) }

ANA N ocodust Loed

Figure 6.2 An API documentation tool can render an OpenAPIl document and show information similar
to our API spreadsheet, but in a more user-friendly way.

Using OpenAPI during design

During the design process, an OpenAPI document can be written, created via a design
tool, or generated from an implementation (discussed in section 6.2). However,
regardless of how it was created, an OpenAPI document simplifies describing the pro-
gramming interface, helps our thinking, and facilitates discussions with stakeholders.

An OpenAPI document speeds up describing the programming interface and
reduces oversights and errors. It provides a structure that can guide us when describ-
ing the programming interface. And it offers mechanisms to limit the repetition of
information, such as defining data models once and reusing them in different places.
Programs called linters can analyze it to seek design errors (discussed in section 18.1).

API documentation tools render OpenAPI documents in a way that makes it easy
for API designers, subject matter experts (SMEs), and developers to understand oper-
ations and data without needing to understand OpenAPI syntax. Creating API mocks
(or simulators) from OpenAPI documents is simple. Making calls to an as-yet-undevel-
oped API can be enlightening for an API designer. An API mock can help consumer
teams draft proof-of-concept applications and catch design problems (discussed in
section 18.10).

126

6.1.3

CHAPTER 6 Describing HTTP operations with OpenAPI

Introducing the YAML form

at

OpenAPI documents can be in either JSON or YAML format. All OpenAPI snippets in
this book will be in YAML (we’ll discuss why in section 6.2.5). If you need to become
familiar with YAML, here’s a brief introduction; for more information, visit http://

yaml.org.

YAML (YAML Ain’t Markup Language) is a human-friendly data serialization for-
mat and a cousin of JSON (introduced in section 5.1.2). As shown in figure 6.3, simi-
larly to JSON, YAML can describe atomic values (strings, numbers, or Booleans),
objects containing unordered key/value pairs, and arrays or lists containing ordered
values. But the two formats represent them slightly differently:

JSON encloses property names in double quotes (" "); YAML usually omits

them (unless they are

numbers).

JSON encloses strings in double quotes (" "); YAML usually omits them (unless
they only contain numbers or contain YAML-reserved or special characters).

In JSON, commas (,) separate elements; YAML uses newlines.

JSON’s object’s curly braces ({}) and commas (,) are replaced by newlines and

indentation in YAML.

JSON’s array brackets ([1) and commas (,) are replaced by newlines and

dashes (-) in YAML.

Unlike J[SON, YAML allows comments beginning with a hash mark (#).

—{yam}—

a-string: value 3
a-number: 123 ettt o.. Atomic ____| -
a-boolean: true } '> values
an-object: .
a-property: value [IO R .
another-property: value § Object I
an-array:
- item-1-property-1: one }
item-1-property-2: 1 i [o .o |
- item-2-property-1: two i A\rra\/
item-2-property-2: 2}
This is a comment &----=-=-=f---- Comment

.

Lemmmmmahag

.

P e

"a-string":
"a-number" :

"value",
123,

¢ "a-boolean": true,

'
Ny

"an-object" :

"a-property":
"another-property" :

b

"an-array":

[

{ "item-1-property-1":
"item-1-property-2":
{ "item-2-property-1":
"item-2-property-2":

JSON

"value",

"value"

"one",

"tW(’D" s
2}

Figure 6.3 YADML is a cousin of JSON with additional features, such as commenting.

Converting one format to another is easy, but comments will be lost when

YAML to JSON.

converting

http://yaml.org
http://yaml.org
http://yaml.org

6.1 Overview of describing the programming interface 127

6.1.4 Contrasting an OpenAPI document with our API spreadsheet
We collected information on resources, operations, inputs, outputs, and data models
in our API spreadsheet. The same information can be described in an OpenAPI docu-
ment, as shown in figure 6.4. This section connects the dots between the two formats;
we’ll discuss the details in this chapter and the next one.
I OpenAP Syeaiﬁica’cionj """""""
—l‘l OpenAP| document I—I E
openapi: 3.1.0 :
APl “spreadsheet” :
info: H
titlg: Online Shopping ::
RESOURCE PATH version: "1.0" i-
Catalog .. | /products ¢Q-=-=---------1 ?
OPERATION | - [4TTP METHOD (oerations)
Search for products | .. cer |77 i sumary: Search for products } :
INPUT NAME | TYPE Data models
Dese. Lotation or sthemas

category|string

Filters| query
i responses:
OUTPUT i "200":

Deseripkion Stabws Dats Lotabion]N 7T i description: Products matchingifilters
e ! g content: ':
Produets 500 List of N H application/json: i
:Cna{:t—hing product SES7 : schema : . \
ilters Summaries type: array H
items: :

H type: cbject ;
NAME TYPE e Lot i properties: N
H roductReference:;
productReference |integer .E P type: number i
- H name: '
name string H type: string

Figure 6.4 All of the REST API information we put in our custom API spreadsheet can be described in a
standard way with an OpenAPI document.

The Resource table of our spreadsheet describes resources, such as “Catalog.” The
OpenAPI document holds this information within the /products path under the
paths key. The Operation table of the spreadsheet has information about the “Search
of products” operation (“Catalog” resource), which uses the Ger HI'TP method. The
OpenAPI document describes this operation with the get property inside /products.
The document describes the inputs and outputs stored in our spreadsheet’s operation
table under parameters and responses. Finally, the fine-grained data models we put

128

6.1.5

&

CHAPTER 6 Describing HTTP operations with OpenAPI

in the spreadsheet are described in the schema properties in OpenAPI. These schema
properties use the JSON Schema format; see section 7.1.

Describing the programming interface while designing it

As shown in figure 6.5, we designed the programming interface in three steps: observ-
ing operations from the REST angle (section 3.2), representing operations with HTTP
(section 4.1), and modeling the operations’ input and output data (section 5.1). We can
start using the OpenAPI format when dealing with HTTP after identifying REST ele-
ments to turn into HTTP elements.

Design the programming interface

IEE! /products
“Search for — i .
products” —=»| | name: string
!
Observe operations Ré\?resen{: oreva{:ion§
from a REST angle|~ [with HTTP e
| T
[Deseribe HTTP operstions [eseribe data] Optimize OpenAPI
openapi: 3.1.0 openapi: 3.1.0 openapi: 3.1.0
;.x;u.:hs g schema B éér}lponents :
/products: m ... schemas: ...
get: properties: parameters: ...
R name: responses: ...
type: string

Deseribe the programming interface

Figure 6.5 We design and describe the programming interface in parallel.

CAUTION We must not use OpenAPI during the needs analysis before the
“Design the programming interface” stage. At that point, we need to identify
API capabilities, and focusing on REST and HTTP would lead to a poor API
(section 2.1.4).

We can create the OpenAPI document in three steps. The first two steps parallel the
“Design the programming interface” stage. We describe the HTTP operations as we
design them (this chapter). Then we describe data as we model it (see section 7.1).
At that point, we’ll have a solid formal API description, which may contain duplica-
tion and could be better. However, it’s essential to separate concerns, first focusing
on the API design and then optimizing the OpenAPI code as a third step (section 17.1),
typically defining schemas, parameters, and responses shared by different opera-
tions. With experience, you’ll be able to seamlessly use some of these advanced

&

6.2

6.2.1

6.2 Authoring OpenAPI documents 129

OpenAPI features when describing HTTP operations and data, which will speed up
the authoring.

NOTE This book aims to demonstrate what you need most to design APIs.
For more on OpenAPI, see the documentation at https://spec.openapis.org/
or visit my OpenAPI Map at https://openapi-map.apihandyman.io/.

Authoring OpenAPI documents

Before describing the API, we must first discuss how to author OpenAPI documents in
the context of API design. This section discusses two approaches to authoring OpenAPI
documents: independent of implementation or generated from it. We also cover how
to choose an approach and briefly mention OpenAPI editors and OpenAPI’s version
and format options.

Introducing the specification-first and code-first approaches

When designing a web API, we can create an independent OpenAPI document or
generate one from the implementation. This book focuses on the former, but it’s
good to know both approaches to select one. This section introduces them and clari-
fies related terms; the next contrasts them.

Creating an OpenAPI document independently from the implementation using
an OpenAPI editor (see section 6.2.3) is known as a specification-first approach. It is
often confused with the design-first approach we’re learning in this book, which
involves designing the API (analyzing the problem, considering user experience, and
integrating constraints) before coding the implementation. Specification-first can be
used in a design-first approach.

Most REST API development frameworks enable the generation of OpenAPI docu-
ments from the code directly or via a library. Using this possibility during design is
known as the code-first approach. It requires only coding the controllers and data mod-
els, not the business logic. Code-first is often opposed to design-first but is compatible
with it.

The term code-first may also describe directly coding the API based on the output of
the “Define” stage (see section 1.6.1). I usually don’t recommend it, as not designing
an API can have dire consequences (see section 1.2). A quick proof of concept may
make sense, but be aware that once an API is consumed, it’s hard to change it (see sec-
tion 15.1).

TIP If you need to retro-document an existing API, adding an OpenAPI
library to the implementation is a quick and simple way to achieve it. You
won’t get 100% exhaustive documentation, but you’ll see all operations and
their input and successful output data.

https://spec.openapis.org/
https://openapi-map.apihandyman.io/

130

CHAPTER 6 Describing HTTP operations with OpenAPI

6.2.2 Contrasting the specification-first and code-first approaches
When designing APIs, we can use specification-first and code-first approaches. How-
ever, there are pros and cons to consider before making a decision adapted to the
context, as shown in figure 6.6.
TOPIC APPROACH SPECIFICATION-FIRST CODE-FIRST
@ The OpenAAP| document is an @ The implementation de facto exposes
independent source of truth the expected AP
PROS @ The imylemcnﬁa{ion and OPEHAPI
INDEPENDENT document ave always in syne
VS. SYNCED
@ The implementation may be out @ Unexpected APl modifications may
CONS of sync with the OpenAP happen
document
@ Easy and independent OpenAP| @ Easy in—implementation tode editing
EDITIN 6 PROS edi{:ing (for develo?ers)
EXPERIENCE CONS @ Complex in—implementation tode
edi{:ing (for non—develoyers)
@ Lesser visk of provider
perspective
PROS @ Move accurate and complete
DESIGN AND OPENAPI OpenAP| document
QUALITY @ Higher visk of provider
perspective
CONS @ Less aceurate and complete
OpenAP| document
@ Avoid too—early development
PROS)
DEVELOPMENT stack cheice
STACK CONS @ Maybe too—early stack choice

Figure 6.6 When deciding between specification-first and code-first approaches, it’s essential to check the
pros and cons of each approach in the context in which you work.

The specification-first approach makes the OpenAPI document an independent
source of truth for checking whether the implementation exposes the expected API.
If the implementation offers extra operations, an API gateway based on this document
won’t expose them. Conversely, the code-first approach keeps the OpenAPI document
aligned with the implementation, which is convenient. Yet without monitoring, the
implementation may change unnoticed after initial development, lacking an indepen-
dent description of the expected APIL

6.2.3

6.2 Authoring OpenAPI documents 131

OpenAPl is easier to learn than a development framework and requires no setup.
Editors may even hide it behind a GUI. Code-first mixes documentation with code;
API designers with coding skills may find it convenient, whereas those without may
find it complex. Generating OpenAPI from code may involve compiling and deploy-
ing the application to modify it, which may be a problem in production unless you're
used to constantly pushing in production.

Frameworks can generate OpenAPI from code using framework-native annota-
tions, which is convenient. But some frameworks may not support all OpenAPI fea-
tures, leading to less detailed or optimized OpenAPI documents (for example, path
descriptions or responses defined once and shared across operations). However, this
may be fine in some cases. OpenAPI-specific annotations or a complex OpenAPI gen-
eration configuration may be required to fill the gap.

The code-first approach de facto requires working with implementation code,
which risks exposing inner workings, but we’ve learned to avoid this (see section 2.8).
It also requires choosing a development stack early. Although we often stick to a stack
that’s already used, it may not be the most adapted one to implement the API; we’ll
discuss factors affecting this choice in section 14.8.

NOTE I usually recommend the specification-first approach, as it provides an
easily editable source of truth. However, consider the context when choosing;
if mixed implementation and documentation is not a problem, OpenAPI
code quality is not a priority, and the implementation cannot evolve silently,
the code-first approach may be suitable. Either way, you can switch between
approaches at any time.

In this book, we’ll use the specification-first approach to discover the main features of
OpenAPI that support our learning of API design and to equip you to make specifica-
tion-first versus code-first and OpenAPI-tooling-related decisions.

Picking an OpenAPI editor

As we use the specification-first approach, we need an OpenAPI editor. Many open
source and commercial editors have basic syntax validation and rendering features.
For extensive daily use, I recommend using editors that offer a GUI and hide the
OpenAPI code. Search engines and the official OpenAPI Tooling website (https://
tools.openapis.org/) can help you find one.

In the context of this book, you should use an OpenAPI editor that displays the
code and renders side by side. The open source Swagger Editor Next (https://editor
-next.swagger.io/) supports OpenAPI up to 3.1 and requires no account creation or
installation. You can also run it on your machine (https://github.com/swagger-api/
swagger-editor/tree/next). Note that https://editor.swagger.io/ hosts the previous
version, which supports OpenAPI up to 3.0; it will likely be updated one day.

https://tools.openapis.org/
https://tools.openapis.org/
https://tools.openapis.org/
https://editor-next.swagger.io/
https://editor-next.swagger.io/
https://editor-next.swagger.io/
https://github.com/swagger-api/swagger-editor/tree/next
https://github.com/swagger-api/swagger-editor/tree/next
https://github.com/swagger-api/swagger-editor/tree/next
https://editor.swagger.io/

132

6.24

6.2.5

6.3

CHAPTER 6 Describing HTTP operations with OpenAPI

Choosing an OpenAPI version

Three versions of OpenAPI are available: 2.0, 3.0, and 3.1. This section briefly discusses
which one to use (or avoid). You can find a detailed comparison of the three versions in
my “OpenAPI does what Swagger don’t” (grammatical error intended) presentation on
my blog at https://apihandyman.io/openapi-does-what-swagger-dont/.

OpenAPI 2.0 (Swagger 2.0) is still widely used due to its age. But I recommend
using the more recent versions, OpenAPI 3.0 and 3.1; they have many improvements
covering document structure, security, documentation, and API and data modeling.
They allow using JSON Schema for any data model and provide new features like
callbacks and webhooks. Version 2.0 support decreases over time as tools are created
or updated.

Ideally, use OpenAPI 3.1, but not all tools may support it yet. Using version 3.0,
supported by most tools, is OK unless you need 3.1-specific features. The gap between
3.0 and 3.1 is minimal. The 3.1 enhancements are the support of a more recent ver-
sion of JSON Schema and webhooks (discussed in section 14.6).

In this book, we won’t consider version 2.0 at all. We’ll use version 3.1, and I'll
warn about potential 3.0 backward incompatibility when relevant.

NOTE Converting OpenAPI 2.0 to 3.0 or 3.1 is simple, as no information is
lost during the conversion (check https://tools.openapis.org to find tools).
However, migrating an existing ecosystem requires ensuring that all tools
using OpenAPI documents are compatible with the chosen version, which
should be the case unless they are custom-made.

Choosing between JSON and YAML

OpenAPI documents can be in YAML or JSON format. If you don’t have a specific
requirement, it’s a matter of preference. We’ll use YAML in this book. I prefer it over
JSON for writing and reading OpenAPI documents because fewer brackets and quotes
make it more straightforward for humans. I also like YAML because it can be com-
mented on (although comments are lost when converting to JSON). However, block
YAML indentation problems can be bothersome.

TIP Indentation or spacing problems may not be obvious; if an editor says,
“Property X is not authorized,” it likely indicates an indentation problem at
or near the “X” level.

Describing HTTP operations with OpenAPI

The rest of this chapter focuses on describing HTTP operations with OpenAPI. As
we’ve seen in section 6.1.5, it happens in parallel with representing operations with
HTTP.

As shown in figure 6.7, we describe operations following the steps used while
designing them (section 4.1). We add resource paths, HTTP methods, inputs,

https://apihandyman.io/openapi-does-what-swagger-dont/
https://tools.openapis.org

6.4 Describing resource paths 133

HTTP status codes in responses, and outputs in each response. The final document
gives an overview of the API capabilities in their HTTP representation, which is
helpful for discussion.

Design the programming interface

Observe operations Represent operat;
Leom a REZT angle with HTTP amlee Model data
heve
Deseribe HTTP operations Destribe data %imiu OPenAPL\

Destribe the programming interface

openapi: 3.1.0

3 — paths:
HTTP request ” g%ggzpases /products:
Data locations, get:

P Data locationsg

Figure 6.7 We describe HTTP operations with OpenAPI as we design them.

We continue using the “Online Shopping” resources and operations shown in fig-
ures 6.8 and 6.9. These typical REST API elements allow for a good overview of the
OpenAPI Specification format possibilities for describing HTTP operations.

RESOURCE RELATION PATH
Cataloy Contains many produets | /products
Produet Belongs to the tatalog | /products/{productReference}

Figure 6.8 We can use OpenAPI to describe the HTTP representation of resources
instead of the resource table of the API spreadsheet.

Describing resource paths

We can initiate our OpenAPI document when we design resource paths (see section
4.2.2). In this section, we create a minimal OpenAPI document and then learn how to
describe basic resource paths and resource paths holding path parameters. We work
with the “Catalog” and “Product” resources from figure 6.8.

134

6.4.1

CHAPTER 6 Describing HTTP operations with OpenAPI

OPERATION | RES. | ACTION M‘E-EOPD Des,:{PuZoSLa{ion Destription TzlseTZf{i* Data Lotation
Product added | ¢, |00 i |poay
ﬂj‘m ‘z:‘,’c‘i‘l‘:; Catalog | Add [posT E‘:c‘;d body to the catalog E;{ﬁ“"‘ header
wiord Fomet | Brvor [00| F - [boy
it Eaf 78 Saess | 200 i oy
ff:;ﬁr{_f" Catalog | Searth | GET |Filters| query ﬁmﬁ;‘ﬁhw Sueeess [200 &'Z,‘;ﬁk body
info.
Wrong filters Evvor | 400 5*:‘_’" body

Produet found Suetess | 200 Product body

Get product Prod. info.
! Produet | Get GET path
details - vef. No produet found [Evvor | 204 E‘r:w body
P\rEd path Product modified | Suceess | 200 !?F:(-iud: body
vek.
\fﬂoﬂi P |Product| Modify [D o) No produet found | Evvor | 204 [BYo" | poay
prod | PO (Wiong product Ervor
info. in orv?‘a\‘,(:ion Brvor | 400 into. body
Remove a Product vemoved | Suctess| 204
vodutt from |Produet | Remove | DELETE P‘"Ed' path Z
he catalog et No product found | Evvor | 404 inr:?\r body
All opevations l:r'fot\’e‘&d server! Evvor | 500 E\r:’v body

Ststws* 200 OK, 201 Created, 204 No Content, 400 Bad Request,
404 Not Found, 500 Internal Server Error

Figure 6.9 We can use OpenAPI to describe the HTTP representation of operations instead of the
operation table of the API spreadsheet.

Initiating an OpenAPI document

The following listing shows a minimal OpenAPI document with three entries: openapi,
info, and paths.

Listing 6.1 A minimal OpenAPl document

openapi: 3.1.0 <+— OpenAPI version used in the document
info: <+— API’s metadata
title: Online Shopping <+—— API’s name
version: "1.0" <—— API’s version

paths: {} <—— Empty paths needed to make the document valid

6.4.2

6.4.3

6.4 Describing resource paths 135

The openapi field indicates the version of OpenAPI used. Its value is 3.1.0 because
we chose to use OpenAPI version 3.1 in section 6.2.4. If we had used version 3.0, it
would be 3.0.3. Note that parsers ignore the third segment of the version number, so
3.0.0 would work the same.

The info object contains general information about the API, such as its name
(title) and version (surrounded by quotes to ensure that it’s interpreted as a
string). We’ll discuss API names in section 11.3.2 and versioning in section 15.4. We’ll
learn more about the info object and other data to put in it in section 19.2.

The paths object will hold our Online Shopping API resource paths. This property
is mandatory to make the document syntactically valid, so we add two curly braces, {},
representing an empty object, to avoid problems. We can now add the resource paths
as we design them.

Describing a path

To describe a resource path in an OpenAPI document, add it as a key under paths,
with its value as a Path Item object containing its name. Let’s add the “Catalog” resource
as /products (a list of products).

Listing 6.2 Resource paths

openapi: 3.1.0

info:
title: Online Shopping
version: "1.0" Catalog
resource path
paths:
/products: 4J Short description
summary: Catalog of the resource

To add the “Catalog” resource path, we remove {} (which indicated an empty paths
object) and add /products as a key under paths. Then we add the name “Catalog” in
natural language as a summary property.

TIP The summary property is optional but strongly recommended; it bridges
the OpenAPI document and API Capabilities Canvas information and helps
anyone, including your future self, understand the path.

Describing a path with path parameters

Adding a path with one or more path parameters is similar but requires describing the
path parameters. For example, the “Product” resource path is /products/{product-
Reference} (a product of the list of products); it contains the productReference path
parameter. Adding this path to our document will trigger an error that requires defin-
ing productReference. The next listing shows the solution.

136

6.5

CHAPTER 6 Describing HTTP operations with OpenAPI

Listing 6.3 Path parameters

- Product resource
paths: path containing a
ce path parameter

/products/{productReference}:

Path-level
summary: Product arameters list
parameters: P

- name: productReference Path parameter name
in: path (same as in path)
required: true
schema: {} Path parameter location

Needed to make the parameter
definition valid

We must declare the path parameter in the parameters list of the path. This property
holds path-level parameters that apply to all operations under the path. We’ll discuss
the importance of this list when discussing OpenAPI document optimizations in sec-
tion 17.3.1. The parameter object describing the productReference path parameter
has four properties: name, in, required, and schema.

The name matches the one used in the path (minus the brackets {}). The in prop-
erty indicates its location in the HTTP request (path). We’ll discover other locations
in section 6.6.1.

The required property indicates whether a parameter is optional or not. Setting it
to true for any path parameter is mandatory in OpenAPI. Making an API call without
it wouldn’t make sense.

We set the schema property value to an empty object ({} to avoid any parsing prob-
lems. We’ll return to it when we describe data (section 7.1).

If the resource path has multiple path parameters, define them similarly by adding
elements to the parameters list. Most GUI editors add path parameters when typing
the path.

TIP It’s not mandatory to use final code-like names for path parameters. You
can use a path parameter name that has not yet been designed, such as
product reference, and update it later to productReference when working
on fine-grained data modeling.

Describing operations

We can add operations to resource paths when we choose the HTTP methods repre-
senting them (see section 4.3.2). Each HTTP method is a key in the path item object
of the operation’s resource, with its value being an operation object containing the
operation’s name.

As shown in figure 6.10, we identified five operations. We represented them with
standard HTTP methods to manipulate resources: two for “Catalog” (posST and GET
/products) and three for “Product” (GET, PUT/PATCH, and DELETE /products/{product -
Reference}). Let’s start with POST /products.

6.5 Describing operations 137

OPERATION RESOURCE | ACTION |HTTP METHOD
Add a product to the catalog Catalog Add |posST
Search for products Cstalog Searth |GET
Get product details Product Get |GET Figure 6.10 We add
Modi‘(:y a product Produet Modiﬁy PUT or PATCH operations to the OpenAPI
Remove a product from the catalog [Product Remove |DELETE :l::il:r:.ll::':’v:‘:leetr;‘g:.()OSIng

To add an operation to an OpenAPI document, add the HTTP method in lowercase
as a key under the resource’s path. Then, just like at the path level, add the opera-
tion’s human-readable name as a summary property. Listing 6.4 shows the “Catalog”
resource represented by the /products path with the post HITP method added. The
post operation’s summary is set to Add a product to the catalog.

Listing 6.4 HTTP methods

paths:

/products: QJ Operation’s
summary: Catalog HTTP method
post:

summary: Add a product to the catalog <—— Operation’s name

TIP The summary property is optional but strongly recommended; it bridges
the OpenAPI document and API Capabilities Canvas information and helps
anyone, including your future self, understand the path and HTTP operation
couple.

Adding all the other operations we’ve identified is done similarly. You’ll note that we
use the put HTTP method for the “Modify a product” operation; we could also have
used the patch method.

Listing 6.5 Defining all operations

paths:

/products:
summary: Catalog
post:
summary: Add a product to the catalog
get:

summary: Search for products
/products/{productReference}:
summary: Product
parameters:
get:
summary: Get product details

138

6.6

6.6.1

CHAPTER 6 Describing HTTP operations with OpenAPI

put:
summary: Modify a product
delete:
summary: Remove a product from the catalog

Describing operation inputs

We can add the operation inputs to the OpenAPI document when we choose their
locations in the HTTP request (see section 4.4). As shown in figure 6.11, we have iden-
tified four possible locations for data in an HTTP request: headers, path parameters,
query parameters, or body. From the OpenAPI standpoint, we can group the headers,
path parameters, and query parameters as “non-body parameters.”

IP"“‘ Para'“efil @ery ?arame'(:e\rl rHeader field \

Veccooooen. decccececacacboccccaacccnan -t

loceccaa

\Y/ V
METHOD /path/{input}?input=value
Input: value poemommmmmomamomeoeoeoacaaaany -

;'{' - i STy Figure 6.11 In OpenAPI, input
P ninputn: "value) data is organized into body and
\ H non-body data (headers, path,
and query parameters).

We already described path parameters in section 6.4.3. Now we’ll learn how to
describe the other non-body request parameters and then work on request bodies,
focusing on the operations and information highlighted in figure 6.12.

HTTP INPUTS
OPERATION | RES. | ACTION |, oo Deenpbin e
ﬁd iti mi'ff: Catalog | Add | POST |Product info body
Search for _
produtts Catalog [Search | GET | Filters (name, category, keywords, q) [query

Figure 6.12 We add operation inputs to the OpenAPI document when choosing their
locations in the HTTP request.

Describing query parameters and other non-body parameters

In OpenAPlI, all non-body parameters go into the parameters list in the operation or
path object. As shown in figure 6.12, during data modeling, we identified a fuzzy “fil-
ters” query parameter for the “search for products” operation, which we refined into
multiple parameters, such as category and keywords. We could have worked with “fil-
ters,” but this section uses the two fine-grained parameters to demonstrate how to
define multiple parameters in an operation.

6.6.2

6.6 Describing operation inputs 139

Listing 6.6 Non-body parameters

E')a'\;_hs . Operation’s)
parameters list

/products:
summary: Catalog
Parameter’s name
get: .
summary: Search for products <FJ Parameter’s location
parameters: .
- name: keywords No required property
in: query means the parameter
is optional.

—> schema: {}

- name: category
in: query
required: false Parameter’s location

L~ schema: {}

* Parameter’s name

Explicitly makes the
Needed to make the parameter optional
parameter definition valid

This listing shows the GET /products operation with two query parameters added to
the parameters list. It has the same structure as the parameters list seen when adding
the path parameter of the /products/{productReference} path in section 6.4.3.
Each has a name (keywords and category) and an in property indicating that they are
in the query.

We’ll address the optional versus required question in section 9.4.4. But to demon-
strate OpenAPI, the document describes both parameters as optional in two ways:

= The keyword parameter doesn’t have a required property.
= The category parameter has the required property explicitly set to false.

As we did for the path parameter, we added an empty schema object property to make
the parameters syntactically valid. That’s another place we’ll describe data (section 7.1).

TIP You can temporarily describe multiple and not-yet-clearly identified
parameters with a single parameter (such as filters) and later replace them
with the final ones (like name, keywords, categories, and gq) when working
on data modeling.

The parameter object describes all input data in an HTTP request, except the request
body, with in set to query, path, or header. We can define parameters at the path or
operation level. Path-level parameters apply to all operations under the path (dis-
cussed further in section 17.3.1).

Describing request bodies

We saw in section 4.4.1 that request bodies are used on the HTTP methods posT, pUT,
or pATCH. In OpenAPI, request bodies are defined in the requestBody property of the

140 CHAPTER 6 Describing HTTP operations with OpenAPI

operation. In our “Online Shopping” example, two operations are using an input
parameter of type body: “Add a product to the catalog” (POST /products) and “Mod-
ify a product” (PUT /products/{productReference}). Let’s describe the first; you can
proceed similarly for the second.

Listing 6.7 Request body

paths:

/products:
summary: Catalog Operation’s
post: request body
summary: Add a product to the catalog
requestBody: <P_J Requ?stbody%
description: Product info description
content:
application/json: <+—— Body’s media type
schema: {}
Needed to make the
body definition valid

This is the POST /products operation in which we added a requestBody property. Its
value is a Request Body object containing the description and content properties.

+<- TIP The description property is optional but strongly recommended; it

@ bridges the OpenAPI document and API Capabilities Canvas information and
helps anyone, including your future self, understand what goes in the request
body.

Similarly to the summary and name properties previously used, the description prop-
erty holds this input’s human-readable name from the operation table of the API
Capabilities Canvas (see figure 6.12).

The content property is a Content object that describes the body’s content. It’s
optional, but filling it with minimal data makes the request body visible in OpenAPI
documentation tools. It also allows us to mark where we’ll need to define data, as we
did in parameters.

We must provide the request body data format using a media type. Here, we’ll arbi-
trarily use application/json, which says the body is in JSON. We’ll discuss other
options in section 9.7.1.

As we did for the non-body parameters, we added an empty schema object prop-
erty. That’s yet another place where we’ll describe data (section 7.1).

@ NOTE Section 14.3 covers file uploads and downloads, and how to describe
binary content with OpenAPI.

6.7 Describing operation output HTTP status codes

We can add information about the operation’s responses when we choose HTTP sta-
tuses to describe output types (see section 4.5). This section focuses on the “Add a

6.7 Describing operation output HTTP status codes 141

product” (POST /products) and “Search for products” (GET /products) operations
shown in figure 6.13. You can proceed similarly for the other operations.

OPERATION | REC. | ACTION ME:ESD Des':{PuliScahon Deseviption ToyI:eTz‘g-{i* Data Lotation
Product added | ¢y | o it [osy
fa et oty | ada | oo [P | oy [t e el T [
ivxr::za‘z:f"‘t Evvor | 400 E’:"' body
R fanat) st 200 | P9 oy
?::;tt{fw Catalog | Seaveh | GET [Filters|query ﬁ:&;?f;ﬁs{m Suetess | 200 F:'%ﬂ{s body
Wrong filters Evvor | 400 Ef:’" body
All operations grnre;yec{:ed sever| Eveor | 500 E,r:,r pody

Statw* 200 OK, 201 Created, 400 Bad Request, 500 Internal Server Error

Figure 6.13 We add responses to the OpenAPIl document when choosing their HTTP statuses.

6.7.1 Describing an output case type with an HTTP status
In OpenAPI, the outputs of an operation are described in the responses property. As
shown in figure 6.13, we use 201 Created to represent the success output for the “Add
a product to the catalog” operation and 400 Bad Request for the “Wrong product
information” error output. All operations must handle an unexpected server error
with a 500 Internal Server Error. Let’s add them to our document.
Listing 6.8 HTTP status
o Operation’s
paths: possible
/products: responses
summary: Catalog
.. Output HTTP status
post: code (created)
summary: Add a product to the catalog
cee Output HTTP status
responses: <+ code (bad request)
n201n:
description: Product added to the catalog
Subject-matter- "400": Output HTTP
oriented output description: Wrong product information status code
description "500": (server error)

description: Unexpected server error

142

6.7.2

6.8

CHAPTER 6 Describing HTTP operations with OpenAPI

We add the responses property to the POST /product operation object, with HTTP
status codes as keys (surrounded by quotes, "201", to make them syntactically valid
YAML keys). Each HTTP status value is a Response object with a description property
containing a human-readable description of the response.

TIP The description property is optional but strongly recommended; it
bridges the OpenAPI document and API Capabilities Canvas information and
helps anyone, including your future self, understand the meaning of any
HTTP status code.

Dealing with outputs sharing the same HTTP status code

Different output cases can share HTTP status codes in an operation. However, having
duplicated keys in YAML or JSON is impossible. As shown in figure 6.13, the “Search
for products” operation uses 200 ok for two different output cases. Recall from section
5.3.2 that in both cases, the operation returns a list of product summaries: one filled
with the product found and the other empty. Let’s see how to handle this duplication.

CAUTION When outputs of an operation share the same HTTP status, they
usually have similar data types. If not, there may be an operation or data type
identification problem. You may use a common parent data type or split the
operation to solve this problem.

As shown in listing 6.9, we merge the two outputs into a single response object under
the "200" key in the operation’s responses. We join the two descriptions into the
description property.

Listing 6.9 Merging descriptions

paths:
/products:
summary: Catalog

get:

summary: Search for products
o HTTP status code
responses: can appear only
"2 00" ; once
description: Products matching filters found or Mergedoutput
no products matching filters descriptions
"400":
description: Wrong filters
"500":

description: Unexpected server error

Describing operation output contents

We can describe the operation output data or content when identifying the data loca-
tion (see section 4.6). This section shows how to describe response bodies, handle

6.8 Describing operation output contents 143

responses without bodies, and work with response headers. We focus on two opera-
tions: POST /products and DELETE /products/{productReference}, using the infor-
mation in figure 6.14. You can proceed similarly for the other operations.

HTTP INPUTS OUTPUTS
OPERATION | RES. ACTION IMETHOD Dese. Lotation Deseription Type Status* Data Lotation
Product
I:og:d{ a{;ia‘lie‘i Suteess| 201 info. it
fd2 ‘;;ﬁrj: Catolog | Add | posT [PRd | oy [4538 froduct | ader
nio e | B oo | FET [moay
Remove a Product vemoved | Suecess| 204
vodutt from |Product| Remove | DELETE P\r\gd, path 3
he Cafalog rex No product found | Bvvor | 404 i"\r\:w body
All opevations Unexpetted server| Ervor | 500 | Brror [1g dy
error info.

Statws* 200 OK, 201 Created, 400 Bad Request, 500 Internal Server Error

Figure 6.14 We add output data to the OpenAPI document when choosing their locations in the HTTP
response.

6.8.1 Describing response bodies

In OpenAPI, describing the response data is done similarly to describing the request
body data (see section 6.6.2), but we handle the human-readable description differently.

Listing 6.10 Response bodies

paths:
/products:
summary: Catalog

post: Data to be

summary: Add a product to the catalog returned on
C “201 Created"
responses:
n201":
description: Product added to the catalog The response
content: body.s media
application/json: type is JSON.
schema:
description: Product info. <—— Data description
"400":

description: Wrong product information Pata to be returnﬁd on
content: 4 400 Bad Request

application/json: <’T The response body’s
schema: media type is JSON.

144

e

CHAPTER 6 Describing HTTP operations with OpenAPI

description: Error info.
500" : Data to be returned
on "500 Internal

description: Unexpected server error "
Server Error

content:
application/json: The response body’s
schema: media type is JSON.

description: Error info.

We add a content property on each response object of the POST /products operation.
As we did for the request body in section 6.6.2, we take for granted that we have JSON
data, so we add the application/json media type. We’ll discuss other options in sec-
tion 9.7.1.

Unlike in the request body, the schema has a description property set with the value
from the API Capabilities Canvas (see figure 6.14). That keeps the human-readable data
description separate from the response description, as done in the API Capabilities Can-
vas. We’ll discuss describing data in the schema property in section 7.1.

NOTE Section 14.3 covers file uploads and downloads and how to describe
binary content with OpenAPI.

6.8.2 Dealing with responses without bodies

6.8.3

Some output may contain no response bodies. That is the case for the 204 No Content
response of DELETE /products/{productReference}. It doesn’t need a content prop-
erty, as seen in the following listing. However, the 404 Not Found response does.

Listing 6.11 Response without a body

paths:
/products/{productReference}:
summary: Product

delete:

summary: Remove a product from the catalog
responses:
"204":
description: Product removed Nofata'sreu"ned"
on "204 No Content".
"404":
description: No product found
content: i Data is returned on
application/json: "404 Not Found"
schema:

description: Error info.

Describing response headers

In OpenAPI, the response headers are defined in the headers map of the “Response”
object. The only operation using a response header is “Add a product to the catalog.”
When a product is successfully added, it returns the newly created product’s URL in a

Summary 145

Location standard HTTP header (see section 4.5.3). The next listing demonstrates
how to describe this header.

Listing 6.12 Response header

paths:
/products:

summary: Catalog

post:

summary: Add a product to the catalog Response
. header map
responses:
"201": Header name
description: Product added to the catalog
headers: J Header description
Location: o
description: Product URL The header is
required: true always returned.
schema: {} Needed to make the
content: ... parameter definition valid

We add a headers map to the 201 Response object in the responses of POST /products.
The header’s name, Location, becomes a key in this map. Its value is a Header object,

which is a Parameter object minus the name and in properties. It contains the description
we put in the operations table of the API Capabilities Canvas. We set the required flag
to true for parameters to indicate that they will always be returned. As we do for all

data, we add an empty schema object (see section 7.1).

Summary

An API specification is a data format describing APIs; it can be used across the
API lifecycle. The OpenAPI Specification, formerly the Swagger Specification,
is the industry standard for REST APIs.

During design, an OpenAPI document simplifies describing the programming
interface, helps our thinking, and facilitates stakeholder discussions.

The specification-first approach is usually recommended for authoring OpenAPI
documents, but the code-first approach may be used depending on context.
An OpenAPI document can be filled in parallel with HTTP operation design
and data modeling. It can be initiated when designing the resource paths.
Resource paths (/products, for instance) are keys in the paths object.

A path parameter must be defined in the path-level parameters list of its path.
Its required flag must be set to true.

The HTTP method representing an operation goes under its resource path as a
key in lowercase (post, for instance).

146 CHAPTER 6 Describing HTTP operations with OpenAPI

= An operation’s header or query parameter goes into the operation’s parameters
list, and the request body is described in requestBody.

= The in property of a parameter indicates its location in the request (path,
query, header).

= A mandatory parameter has its required property set to true, an optional one
doesn’t have this property, or it is set to false.

= Filling the content property allows a requestBody to be visible in API docu-
mentation tools.

= The schema properties mark the locations where fine-grained data will be
described.

= An operation’s output HTTP status code is a key under the responses property
of the operation.

= Merge descriptions of outputs sharing the same status code only if they return
the same data type or have a common parent. Otherwise, consider splitting the
operation.

= A response’s header is defined in headers, and its body goes into content.

= Use summary or description to keep a human-readable description of ele-
ments, connecting to the API Capabilities Canvas, so anyone (including your
later self) can understand the meaning of all HTTP elements.

Exercises

This section contains exercises to help you practice some key skills in this chapter.
You'll find the solutions in the online appendix. I encourage you to solve them and
read their solutions, which include detailed explanations, references to relevant sec-
tions, and additional comments.

Exercise 6.1

Fix the book resource path definition in listing 6.13.

Listing 6.13 A resource path definition to fix

paths:
/books/{bookReference} :
summary: A book
parameters:
- name: bookId
in: path
schema: {}

Exercise 6.2

You are designing an API for an online teaching system. Describe the resource path
representing a specific course offered by a specific instructor.

Exercises 147

Exercise 6.3

You are designing an API for a hiking application. Describe the inputs of the opera-
tion that retrieves the list of segments in a specific trail and allows users to filter seg-
ments by difficulty.

Exercise 6.4

Fix the description of the “Get hotel details” operation shown in listing 6.14.

Listing 6.14 Operation with errors

paths:
/hotels/{hotelId}:
summary: An hotel
get:
summary: Get hotel details
responses:
"200":
description: Hotel details successfully retrieved
content:
schema: {}

Exercise 6.5

You are designing an API for a travel agency system. Describe the inputs and outputs
of an operation that adds a new destination to a specific travel package and returns
the created destination.

Describing data

with [SON Schema
in OpenAPI

This chapter covers

Using JSON in OpenAPI

Describing resource data

Describing request parameter data
Describing request and response body data
Describing response header data

Once we have described the HTTP operations with OpenAPI, we can move on to the
next step and describe their data. Describing data models in a spreadsheet, word pro-
cessor document, or wiki page is technically possible. However, although we used a
spreadsheet for learning purposes, we must not use such formats for the same rea-
sons they are not suitable for describing HTTP operations: they are not made for this
task, authoring and maintaining such documents can be complex and error-prone,
and their use is limited to reading them. Instead, we continue using OpenAPI, which
uses another standard called [SON Schema to describe data.

This chapter introduces the JSON Schema format and provides an overview of
how to describe data while designing it. We briefly discuss JSON Schema authoring
in the context of OpenAPI. Then we explain how to describe resource data models
with JSON Schema in an OpenAPI document and use them as inputs and outputs
for operations.

148

7.1

711

d

==

7.1 An overview of describing data 149

An overview of describing data

Figure 7.1 shows that we’re still in the “Describe the programming interface” step
introduced in section 6.1, which parallels “Design the programming interface” (sec-
tion 3.1). We continue replacing our spreadsheet for describing the programming
interface. After describing HTTP operations with OpenAPI (section 6.3), we describe
data models with the JSON Schema format, which OpenAPI uses under the hood.

Using a spreadsheet for destribing .. We Parallels programming
data models was temporary Y)?re .--- intecface design -~ S,
e % ere ,’ —————
DEFINE | n DESIGN..... | o7 DEVELDY _;\
! i i .
N1 || ety | [Pergte] (erbe T o te LG
Needs :— =P the API o?,ehcace 'mgemcate AP design I DEPLOY r|
| Capa- REST artifacts g g -+
OpenAP| | PROVIDE/
L _:‘ blll{',les AP| ,L _ '|_C_0f‘iSLiM_E_|
OpenAP| + JSON DESIaN LAYERN‘
n +
chhema helps =" t A versatile AP[design that does the vight job e
wof\r'(ing on . also
: _ An AP| design that is user—friendly and interoperable
They will also j:
contribute to - An AP design that tonsiders constraints We add the
tontext, secun{:\/. efficienty,
'- backward-tompatibility, and extensibility) JSON
Sehema
U veasoned and Lon‘(:inuousl\/ im?ro‘ling AP' design Protess 4o our ﬁoolbo%

Figure 7.1 Using a spreadsheet for the data models of our APl was only to simplify our learning. We can
describe data models with JSON Schema in our OpenAPI document once we start designing them.

This section introduces J[SON Schema and its use in OpenAPI, contrasts an OpenAPI
document with the API spreadsheet to highlight JSON Schema usage, and discusses
when and how to describe data models when designing an APL

NOTE Remember that using spreadsheets for data modeling was temporary;
we separated concerns to facilitate learning. After reading this chapter, you
can use OpenAPI and J[SON Schema directly for modeling.

Introducing JSON Schema

When introducing the OpenAPI Specification format in section 6.1.1, we briefly stated
that OpenAPI uses another format to describe data: JSON Schema. It is a format inde-
pendent of OpenAPI, aiming to validate and annotate JSON (or YAML) data.

A JSON Schema document (called a schema or J[SON schema) can validate that [SON
data is an object with a required amount property (a number greater than 0) and an
optional currency property (a string with value UsD or EUR). The schema can also

150

CHAPTER 7 Describing data with J[SON Schema in OpenAPI

contain additional information that is not used for validation. For example, the
schema can describe the currency property as a “standard ISO 4217 currency code”
(such standard codes are discussed in section 8.4.5).

An OpenAPI document uses JSON schemas to describe and document data. But
JSON Schema contributes to all areas where OpenAPI is used: design, documenta-
tion, mocking, and testing, for example (see section 6.1.1). It can also be used inde-
pendently of OpenAPI to validate application JSON/YAML configuration files or
generate user interfaces with validation checks, for example.

NOTE This book focuses on the essentials of JSON Schema in the context of
OpenAPI and API design. Visit https://json-schema.org/ for resources, learn-
ing materials, examples, and reference documentation.

7.1.2 Contrasting OpenAPI and JSON Schema with our API spreadsheet

Figure 7.2 No need for the API spreadsheet when modeling data; we can use JSON Schema in our OpenAPI

As a reminder of section 6.1.4, which overviews the “Describe the programming inter-
face” stage of API design, figure 7.2 contrasts the information we gathered in the API

| JSON Sehema I

AP “spreadsheet”

[OpenPl Specifieation |+ »

OpenAP| vdof.mmem?l

openapi: 3.1.0

info:
title: Online Shopping
version: "1.0"

RESOURCE PATH
Ca{:a|05 /products <Yy--
OPERATION

RTTP METHOD| . | rgci i iimmememememmssmm e (operations)

document instead.

Searth for products GET _Bummary: Search for products |
iparameters: :
INPUT NAME TYPE %3 """""""" 1 _ - name: category ! Dahé:‘“:"l
i - in: e H or sthemas
Dese. Lotation category|string lnFu:{s Scher?al:ry - 5 ".,:,
Filters| query (I type: string Jfpeereer :
s mmmeccccccccccer e ctcccssecccctcccnna | P pp——
::responses: .:
OUTPUT IR : "280 hoo 5 . '-‘f B
DEchiF{ion Status Data Lotation]™ E Cgii;ﬁg%lon' Lieseaibleldd julee lng:.: SAETas
Produets List of : application/json: i
Ea{:ﬂhing .. | 200 Yvodu(i{: body H schema: S H
ilters summaries type: array Voo
L items: I
: type: cbject P
NAME TYPE | o Qe i properties: LS
- : productReference:;”
productReference |integer ; type: number |
: H name : 1
name string i type: string

https://json-schema.org/

7.13

7.1 An overview of describing data 151

spreadsheet with an OpenAPI document. It connects the dots between the two for-
mats and highlights the element this chapter covers.

In the previous chapter, we used the resource and operation tables of the API
spreadsheet to put their content under the paths property of the OpenAPI document
(section 6.3). We added schema properties set to {} to mark data model locations. The
schema properties are now filled with JSON schemas containing the same information
as the table we used when modeling data in “Design the programming interface.”

Describing data while designing it

As shown in figure 7.3, we can describe API data in our OpenAPI document when we
start to model it (section 5.1). We follow the same steps: we describe complete
resource models and derive them into other typical models, or pick bits of them to
describe the operation’s input and output data.

Design the programming interface

Observe operations Represent operations
Lrom a REZT angle with HTTP Model data

ﬁ)escribe HTTP oyera{ion:l—-leestribe data Optimize OyenAPﬂ

Deseribe the programming interface

e eeeeeneen S ave Y

openapi: 3.1.0

schema :

{name: type} type: array
items:

We destribe
vesource models ... inputs and outputs

type: object

Figure 7.3 We describe data using OpenAPI and JSON Schema while modeling it. We proceed
with the same steps: modeling the resources and deriving them.

In this chapter, we continue working on the “Online Shopping” OpenAPI example docu-
ment initiated in the previous chapter. We use the models we previously designed for this
example (section 5.1) to learn how to describe data with JSON Schema in OpenAPI. We
will not describe all the API data, but you’ll learn all you need to fill the gaps.

NOTE To avoid being polluted by pure OpenAPI and JSON Schema con-
cerns, we’ll only use essential OpenAPI and JSON Schema features to achieve
our task. Afterward, we’ll optimize our OpenAPI document (section 17.1)
and enrich it with more details, such as numerical ranges and string lengths
(section 18.3).

152

7.2

7.3

731

CHAPTER 7 Describing data with J[SON Schema in OpenAPI

Authoring a JSON Schema data model in OpenAPI

Once you've found your way to authoring OpenAPI documents (see section 6.2),
authoring JSON Schema data models follows the same path. Your OpenAPI editor will
support JSON Schema, as OpenAPI requires it. But we need to discuss using JSON ver-
sus YAML and JSON Schema versus OpenAPI versions.

When JSON Schema is used independently, schemas must be in JSON format. But
you can author them in YAML and convert them to JSON. For example, that’s how the
OpenAPI Specification’s JSON schema is managed in its GitHub repository (https://
github.com/OAI/OpenAPI-Specification/tree/dev/src/schemas/validation). When
JSON Schema is used in a YAML OpenAPI document, schemas can be in either JSON
or YAML format, but if using JSON, the schemas must also be in JSON format.

OpenAPI 3.0 and 3.1 use different versions of JSON Schema (“draft 5” and “2020-12,”
respectively). Unless advanced features are used, schemas usually look the same in these
two versions. See the release notes available at https://json-schema.org/specification for
more information about the differences. The main concern is that tools supporting
OpenAPI may not support all (advanced) features of the JSON Schema version used.

In this book, we use OpenAPI 3.1 (see section 6.2.4). Therefore, we use version
“2020-12” of JSON Schema. Our OpenAPI document is in YAML, so our JSON sche-
mas are in YAML (see section 6.2.5). Unless stated otherwise, the features used are
compatible with JSON Schema “draft 5” used in OpenAPI 3.0.

Adding complete resource data models to the OpenAPI
document

The first thing we did when modeling data was to design the theoretical or complete
resource models containing all of a resource’s data (see section 5.2). This section initi-
ates the description of these models, using the Product resource model as an exam-
ple. But first, we discuss where to place this model in the OpenAPI document.

Choosing a location for the resource model in the OpenAPI
document

In section 6.4.3, we learned about the schema properties that hold operation data
descriptions. However, we should define the theoretical or complete resource models
in another place, components.schemas, which makes them agnostic of their use and
reusable across operations.

Having resources described independently of operations allows us to design them
independently, as we did in section 5.2. It also gives a better view of the API subject
matter when the OpenAPI document is visualized via an API documentation tool,
which can be helpful when discussing and validating the design.

When working on data modeling, we realized that different operations return
the “Product” complete model (see section 5.4). So, defining schemas once and
using them anywhere is helpful (we’ll see how to use them in section 7.7.1). It

https://github.com/OAI/OpenAPI-Specification/tree/dev/src/schemas/validation
https://github.com/OAI/OpenAPI-Specification/tree/dev/src/schemas/validation
https://github.com/OAI/OpenAPI-Specification/tree/dev/src/schemas/validation
https://json-schema.org/specification

&

7.3.2

)

E

74

7.4 Describing complete resource data models with JSON Schema

153

ensures a certain level of consistency and speeds up and secures authoring by reduc-

ing copying and pasting.

NOTE We’ll discuss reusable and consistent schemas in greater depth in sec-
tion 17.2 when we optimize the OpenAPI document. Consistent design, espe-
cially consistent data that is identical or similar, is essential to make an API
easy to use. See section 8.1 for more.

Initiating the resource model description

As shown in listing 7.1, we add the components property, which holds reusable ele-
ments such as schemas, as well as parameters or responses (discussed in section 17.1

when optimizing the document). It contains a schemas property, which holds reusable

JSON schemas. It is a map of Schema objects, each identified by a key. In our example,
we define a Product schema, which is empty for now ({}). We’ll fill it with the JSON

schema of the “Product” resource in section 7.4.

NOTE No explicit naming conventions exist for model names in components
.schemas; my_model and myModel are acceptable, but PascalCase (MyModel) is
the most used convention, likely because it aligns with class naming in object-
oriented programming. Model names appear only in documentation, not in
API data exchanges.

Listing 7.1 Reusable schema

openapi: 3.1.0 Where to define

reusable elements
info:

Map of reusable
paths: ... JSON schemas
components : Rgusable schema identifier
schemas : with an empty JSON
product: {} Schema value

TIP The info, paths, and components properties can be in any order. How-
ever, I recommend sticking to this order as this is how most OpenAPI docu-
ments are ordered. People looking at raw OpenAPI documents are first
interested in general information (info), the operations of the API (paths),
and then the data models and other reusable elements (components).

Describing complete resource data models
with JSON Schema

This section demonstrates the basics of JSON Schema, including describing typical data
types (object, array, and atomic) and stating whether a property is required in an object.
We turn the spreadsheet data for the “Product” resource shown in figure 7.4 into a JSON
schema under components. schemas . Product. Although this section groups elements by

types to teach JSON Schema, you’ll describe them as you design them in the field.

154

CHAPTER 7 Describing data with J[SON Schema in OpenAPI

NAME TYPE |REQ| DESCRIPTION | [
productReference integer * |Unique identifier "productReference": 12345,
name e * "name": "Cowboy Bebop",
— : "description": "An amazing ...",
description string "keywords": ["anime", ...],
array of "category": "BD",
keywords -
string "price": 49.99,
category string * "dateAdded": "1997-18-09",
price float % | Price in USD "isProductUnavailable": false,
"supplier": {
dateAdded string * m_MM_DD n suppliercode ". WgUNR" ,
isProductUnavailable |boolean Temp- unavailable S e e
supplier object * }} JSON example

NAME TYPE |RER DESCRIPTION
supplierCode string * | Unique identifier
name string *

Figure 7.4 We’ll reproduce (and replace) the “Product” resource complete model tables with a JSON
schema.

e

74.1

NOTE As we said in section 5.1.3, the data models we created could be better.
Our focus is on the “versatile API that does the job” layer; we’ll later address
user-friendliness and interoperability (section 8.2), performance (section 13.1),
security (section 12.1), and implementation constraints (section 14.1).

Describing an object

In section 5.2, we designed the “Product” resource as an object, which is reflected in
the following JSON schema.

Listing 7.2 Object type
The value of “Product”
<)J is a JSON schema.

The JSON schema
describes an object.

Product:
type: object

In the OpenAPI document, under components.schemas.Product, we add type and
set its value to object. This JSON schema says, “This is an object,” without describing
its properties. Such a minimal schema could be helpful when you want to initiate and
use a resource data model, leaving the fine-grained details for later.

74.2

74.3

7.4 Describing complete resource data models with JSON Schema 155

Adding properties to an object
The “Product” resource isn’t empty; it contains various properties. Listing 7.3 shows
how to initiate their description: add the properties property, a map in which keys
are the properties’ names and values are their JSON schemas. We temporarily set its
value to {} for syntax. We’ll add properties in the following sections.
Listing 7.3 Properties map
Product:
c . obiect Map of JSON schemas
ype: objec describing the
properties: {} object’s properties
Describing an atomic property
To describe each property of an object, we add its name as a key under properties
whose value is its JSON schema. We start with the product’s atomic properties (not
arrays or objects), shown in figure 7.5. The Required column is grayed out; we’ll dis-
cuss it in section 7.4.6.
NAME TYPE |REQ.| DESCRIPTION {
productReference integer | * |Unique identifier "productReference": 12345,
name string * "name": "Cowboy Bebop",
— - "description": "An amazing ...",
description string "category": "ED",
category string * "price": 49.99,
price float % |Peice in USD "dateAdded": "1997-18-09",
"isProductUnavailable": false
- YYYY-mm-DD <
dateAdded string | fomat r::]JS ON example
isProductUnavailable [boolean Temp. unavailable

Figure 7.5 We’ll add the atomic properties of the “Product” resource to the Product schema without

caring that they are required or optional.

We design the productReference property as an integer and describe it as a “Unique
identifier.” The following listing shows the corresponding JSON schema. We add the
productReference name as a key under properties, set its type to integer, and add
the “Unique identifier” description.

156

CHAPTER 7 Describing data with JSON Schema in OpenAPI

Listing 7.4 A property of an object

The key is the property
name, and the value is

Product : a JSON schema.
type: object
properties: This property
productReference: <lAJisanim;ege,-.
type: integer
description: Unique identifier <—— An optional description

All the other atomic properties can be added similarly. Not all properties have a
description; for example, category doesn’t have one.

Listing 7.5 Properties of different types

Product:
type: object
properties:
productReference:
type: integer
description: Unique identifier

description:
type: strin .
P g The category property is a
category: . o .
. string and has no description.
type: string
price:

Use the number type

type: number
P to represent a float.

description: Price in USD

dateAdded:
type: string Additional format information can
format: date be provided in properties of type
isProductUnavailable: string, integer, and number.

type: boolean
description: Temporarily unavailable

We map our usual programming language type names to the four atomic types defined
by JSON Schema: string, integer, number, and Boolean. For example, category: "BD"
is a string, productReference: 12345 iS an integer, price: 49.99 is a (float) number,
and isProductUnavailable: false is a Boolean.

The dateadded property is designed as a “string” in a “YYYY-MM-DD” format but can
be described formally with JSON Schema as a string with a date format (1997-18-09).
Other typical values for the JSON Schema format are related to date and time: time
(13:08:23+00:00), date-time (1997-18-09T13:08:23+00:00), and duration (P3D, 3
days), discussed in section 8.5.3. Consult https://www.learnjsonschema.com/2020-12/
format-annotation/format to discover other available options for J[SON Schema’s
format. OpenAPI also defines custom format values like int32 and intée4 for the

https://www.learnjsonschema.com/2020-12/format-annotation/format
https://www.learnjsonschema.com/2020-12/format-annotation/format
https://www.learnjsonschema.com/2020-12/format-annotation/format

7.4 Describing complete resource data models with JSON Schema 157

integer type and float and double for number; see https://spec.openapis.org/oas/
v3.1.0#data-types.

E/ NOTE We’ll learn to describe numerical ranges, string length, and enumera-
— tion with JSON Schema in section 18.3.

7.4.4 Describing an object property

Adding an object property is also done by adding its name as a key under properties,
the value of which is its JSON schema. The “Product” resource has a supplier object
property, shown in figure 7.6. It is an object with supplierCode and name properties
of type string, and suppliercCode is a “Unique identifier.” We’ll address the required
flag in section 7.4.6.

NAME TYPE [REQ.| DESCRIPTION {
supplier object * "supplier": {
J "supplierCode": "SUNR",
"name": "Sunrise"
C NAME TYPE |REQ| DESCRIPTION }
supplierCode |string # | Unique identifier } JSON example
name string *

Figure 7.6 We’ll add an object property and its properties without caring that they are required or optional.

Listing 7.6 shows the corresponding JSON schema. We add the supplier property, set
its type to object, and add its properties map. Each sub-property name is a key in
the properties map, and each contains yet another JSON schema. Both have a type
set to string. The supplierCode property also has a description.

Listing 7.6 An inner object

Product:

type: object
properties: The supplier property
.. is an object (like the
supplier: Product schema).
type: object
properties: This object has
supplierCode: two properties.
type: string
description: Unique identifier
name:

type: string

@ NOTE What we did is exactly how we started to describe this property’s par-
ent object. With J[SON Schema, each element is a JSON schema regardless of

https://spec.openapis.org/oas/v3.1.0#data-types
https://spec.openapis.org/oas/v3.1.0#data-types
https://spec.openapis.org/oas/v3.1.0#data-types

158

74.5

CHAPTER 7 Describing data with J[SON Schema in OpenAPI

the level in the data model. Alternatively, we could have defined a dedicated
model; section 7.7.4 shows how to do this.

Describing an array property

Adding an array or list property also requires putting its name as a key under proper-
ties, the value of which is its JSON schema; it has an array type and an items prop-
erty that defines the JSON schema of its elements. As shown in figure 7.7, we designed
the Product’s keywords property as an array of string; it could also have been a 1ist

of string.
NAME TYPE (REQ.| DESCRIPTION {
"keywords": ["anime", ...]
keywords array of)
string JSON e%am?|e

Figure 7.7 We’ll add an array property to the Product schema without caring if it’s required or optional.

Listing 7.7 shows the corresponding JSON schema. We add the keywords property
name as a key under the product’s properties. We set its type to array and add an
items property containing the JSON schema of the array elements. We set the value of
items to the type: string schema.

Listing 7.7 An array of strings

The keywords property

Product:

is an array.
type: object
properties: . .
The items property contains the
...)
Keywords : JSON Schema of the array’s
elements.
type: array
items:

The keywords property is

type: strin X
P e an array of string.

We can describe arrays with other types of elements, such as objects, by putting the
appropriate JSON schema under items.

@ NOTE We’ll learn to describe array size with JSON Schema in section 18.3.

7.4.6

Stating which properties are required

Add its name to the required list to indicate that an object’s property is required.
When an object is used as input, the consumer must provide the required properties;
and when an object is used as output, the API must return the properties. Other prop-
erties are optional and may be absent. Figure 7.8 shows which properties we chose to
mark as required when designing the “Product” resource in section 5.2.

7.4 Describing complete resource data models with JSON Schema 159

NAME RE’| [{ {

productReference * "productReference": ..., "productReference": ...,

N — * "name"f .:” "mame": ...,
"description": ...,

description "keywords": ...,

keywords "category": ..., "category": ...,
"price": ..., "price": ...,

category * "daterdded": ..., "dateAdded": ...,

price * "isProductUnavailable": ...,
"supplier": { "supplier": {

enAd *

Cle = "supplierCode": ..., "supplierCode": ...,

isProductUnavailable "name": ... "hame" :

supplier *

SIS) JSON example } JSON example

} (all properties) | J } (only vequived properties) | |

NAME RER.
supplierCode *

name *

Figure 7.8 We’ll indicate which properties of the “Product” resource are required.

Listing 7.8 shows the corresponding JSON schema. We add a required list at the root
level schema and in the supplier property schema, which are objects. In the supplier
object, all properties are required, so all keys of properties are present in required.
At the root level, not all properties are required. The description, keywords, and
isProductUnavailable property names are optional because they are absent from the
required list.

Listing 7.8 Required properties

Product :
type: object
required:
- productReference
- name
- category
- price
- dateAdded
properties:
productReference:
name:
description:
keywords:
category: ... Nonrequired properties
price: ... are absent from the
dateAdded: ... required list.
isProductUnavailable:

The object’s
required properties

160

7.5

CHAPTER 7 Describing data with J[SON Schema in OpenAPI

supplier:
rpe: oeees The diects
~ supplierCode required properties
- name
properties:
supplierCode:
name:

We separated indicating the required statuses from describing the properties for
learning purposes. You can either describe all data and then fill in the required lists
on each object or add the property name to the required list when adding it to the
schema. GUI editors often allow us to mark a required property with a check box at

the property level.

TIP The type, required, and properties properties can be in any order.
However, I recommend sticking to this order, which is the most common and
facilitates reading. The properties block can be long and can hide type and

required if they are placed after it.

Describing operation input and output data

Once we have designed (section 5.2) and described the resource model (section 7.4),
we can move on to the next step: describing the operation input and output data as
we design it (sections 5.3 and 5.7). We’ll fill in the schema properties we added to the
OpenAPI document when describing HT'TP operations (section 6.1).

Although you’ll describe all these elements as you design them in the field, here
we’ll learn to describe operation input and output data depending on its locations:
non-body data (section 7.6) and body data (7.7). As shown in figure 7.9, body data
goes in request or response bodies, and non-body data goes in all other locations

(path, query parameters, and request and response header fields).

g: ‘ Path Farame{:eTI laaerl Farame{:er] IReTﬁs{: header ﬁ% |Resmse header ﬁeﬁ‘

becean eee

Non—body data
)

METHOD /path/{input}?input=value
Input: valueJ=---=--=esu--

...

| HTTP vequest i

In OpenAPI, non-body and body data of HTTP requests and responses are not defined in the same

HTTP vesponse

Figure 7.9
location, but all use JSON Schema.

7.6

&

7.6 Describing operation non-body data 161

Describing operation non-body data

This section demonstrates how to describe non-body data (parameters, query parame-
ters, and request and response header fields) using copied or ad hoc inline schemas:
JSON schemas put directly under a schema property.

NOTE In addition to inline schemas, section 7.7 demonstrates how to describe
body data using references to reusable schemas and mixing references and
inline schemas. All options apply to the body or non-body data.

7.6.1 Describing non-body request parameters with inline schemas

In an OpenAPI document, the non-body input parameters are described in the
parameters list at the path or operation level. The JSON schema describing their data
model goes in the schema property.

Listing 7.9 Inline parameter schema
paths:

/products/{productReference}:
summary: Product

parameters: <—— Path-level parameters list
- name: productReference
in: path
required: true
schema:
type: integer <+
components: The parameter’s inline
schemas: schema is copied and pasted
Product : from the corresponding
type: object property of the Product
properties: reusable schema.
productReference:
type: integer <+

Often, a parameter matches a property of the manipulated resource. We copied the
producfs productReference propergrrnodelto deﬂgn the productReference paﬂl
parameter in section 5.3. We proceed similarly with OpenAPI in listing 7.9: the schema
of the productReference path parameter in the /products/{productReference} path
is a copy of the JSON schema of the productReference property of the Product reus-
able schema. This technique applies to any parameter regardless of location (in) and
level (path or operation); we could proceed similarly for the category query parameter.

NOTE We’ll learn how to limit information duplication when optimizing the
OpenAPI document. Section 17.2.3 explains how to use deep references to
reuse part of data models. A parameter may be used across different opera-
tions; section 17.3.2 shows how to define reusable parameters.

162 CHAPTER 7 Describing data with JSON Schema in OpenAPI

7.6.2 Tweaking non-atomic parameter serialization

Query parameters are not always atomic values; for instance, it’s common to have an
array of strings, which is the case for the keywords search filter. The OpenAPI Specifi-
cation allows us to describe how such a non-atomic value is serialized in the URL. In
the following listing, we proceed as in the previous section, copying the parameter
schema from the corresponding property in the product schema. Additionally, we
explicitly indicate how to serialize the parameter’s array value.

Listing 7.10 Array query parameter serialization

paths:

/products:
get:
summary: Search for products 0 ion-level
parameters: peraﬂon-eYe
parameters list
- name: keywords
in: query
style: form Controls object or
explode: false array serialization
schema:
type: array
items:
type: string
components: e e
schemas : The para!metel.r s inline
schema is copied and pasted
Product: .
from the corresponding
o , property of the Product
properties:
reusable schema.
keywords:
type: array
items:
type: string

By default, an array of atomics is represented as multiple query parameters with the
same name: keywords=animeskeywords=space. Here, we set the parameter style to
form (which is its default value) and explode to false (the default is true) to have a
single query parameter and comma-separated values (CSV): keywords=anime, space.

@ NOTE Section 17.3.3 will show how to use these options to serialize an object.
Consult https://spec.openapis.org/oas/v3.1.0#style-examples to discover all
possible options for style and explode and their effect on arrays and objects.

7.6.3 Describing response headers with inline schemas

In an OpenAPI document, response header fields are defined in the response’s headers
map. The JSON schema describing their data model goes in the schema property.

https://spec.openapis.org/oas/v3.1.0#style-examples

e

7.7.1

7.7 Describing operation body data 163

Some non-body data schemas can’t be copied from a predefined resource, such as
the Location header of the POST /products operation (URL of the created resource;
see sections 4.6.2 and 4.6.3). It needs an ad hoc schema. We describe it ad hoc with
the type: string JSON schema instead of copying it.

Listing 7.11 Inline response header schema

paths:
/products:
post:
responses:
"201":
headers:

Location:
description: Product URL

required: true Ad hoc i.nline schema
schema: not copied from a

type: string resource schema

NOTE OpenAPI allows us to define reusable response headers. We’ll discuss
this when optimizing the OpenAPI document in section 17.5.1.

Describing operation body data

This section demonstrates how to describe request and response body data using ref-
erences to reusable schemas defined under components . schemas instead of inline sche-
mas. We explain and demonstrate the use of schema references, illustrate resource
schema derivation, and show how to mix inline schemas and references.

NOTE In addition to references to schemas, section 7.6 demonstrates how to
describe non-body data using inline schemas. All options apply to the body or
non-body data. Section 14.3 discusses binary data.

Using references to resource models in response bodies

In OpenAPI, operation responses are defined in the responses map; keys are HTTP
status codes and values Response objects. The JSON schema of each is specified in con-
tent.application/json.schema (see sections 6.7 and 6.8).

Whatever its location, a JSON schema can either be an inline schema (see section
7.6) or a reference using a $ref property that targets a schema using a_JSON pointer. It
is a standard independent of JSON Schema and OpenAPI indicating the location of a
value in a JSON (or YAML) document (see https://datatracker.ietf.org/doc/html/
rfc6901 for more information).

The Product schema under components.schemas (see section 7.3) represents the
“Product” resource model that different operations return: for example, “Add a product
to the catalog” and “Get product details” (see section 5.3). Instead of copying and pasting
the schema in both operations’ responses, we can reference it, as shown in listing 7.12.

https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc6901

164 CHAPTER 7 Describing data with JSON Schema in OpenAPI

@ NOTE Referencing schemas avoids duplication and unwanted variations; if
we need to modify the schema, we only need to do it in one place. We’ll thor-
oughly discuss the benefits and advanced use of references when optimizing

the OpenAPI document in section 17.2.

Listing 7.12 References to reusable schemas

paths:
/products:
post:
responses:
"201":
content:
application/json:

schema:
Sref: "#/components/schemas/Product"

/products/ {productReference}:

get:
responses:
"200":
content :
application/json:
schema:
Sref: "#/components/schemas/Product"
components:
schemas:
Product:

<

Reference to the Product
schema defined under
components.schemas

In the schema of the successful 2xx responses of POST /products and GET /products/
{productReference}, we added s$ref properties. They share the same JSON Pointer

value, #/components/schemas/Product, indicating the location of the actual JSON

schema. It’s enclosed in double quotes (") because the dash (#) marks comments

in YAML.

The dash (#) is the document’s root. The following segments (components, schemas,
and Product) separated by slashes (/) represent properties in the document. This

means the schema is in components . schemas.Product

@ NOTE We can do the same for error responses: define a unique Error J[SON
schema (see section 5.3.6) under components.schemas and reference it in all
4xX and 5XX response schema properties using the #/components/schemas/

Error JSON pointer. Many error responses are similar; OpenAPI allows us to

7.7.2

7.7 Describing operation body data 165

define them once and use them in multiple places. We’ll discuss this when
optimizing the OpenAPI document in section 17.5.

Deriving the complete resource model to create other
reusable models

We learned to design models derived from a complete resource model in sections 5.3
and 5.4. For instance, we created a “Product Creation or Replacement” model that is
used as a request body of the “Add a product to the catalog” and “Modify a product”
operations by stripping the Product model of the properties managed by the imple-
mentation in the context of creation and replacement (see figure 7.10).

IA subset of the Product resourte mom

NAME TYPE |RER.
S e ey * | N
name string * i | "name": "Cowboy Bebop",

AR \ : "description": "An amazing ...",
description string : —— i vkeywords": ["anime", ...1,
keywords array of) Creraa:iuocnOr q "category": "BD",

Sty [Replacement |t | o jcen. 49.99
. * : i ’ i
catedory string i | "isProductUnavailable": false,
price float ' i "supplier": {
Cateidded 3oty w | ! "supplierCode": "SUNR"
isProductUnavailable |boolean f }} JSON example
supplier object * j "
NAME TYPE [REQ
supplierCode string *
. N
IIame LJ_J.J.JB_

Figure 7.10 We’ll derive the Product model into the ProductCreationOrReplacement model.

As shown in listings 7.13 and 7.14, to derive the Product model in the OpenAPI docu-
ment, we add a ProductCreationOrReplacement schema under components.schemas,
copy and paste the content of the pProduct schema into it, and remove the unneces-
saqlproperﬁes(productReference,dateAdded,and.supplier.name)ffonlproper—
ties and required.

Listing 7.13 Product schema

components:

schemas: Reusable
Product schema

Product:
type: object

166 CHAPTER 7 Describing data with JSON Schema in OpenAPI

required:
- productReference
- name
- category
- price
- supplier
properties:
productReference: ... <
name:
description:
keywords:
category:
price:
dateAdded: ... <+ Properties managed by
isProductUnavailable: ... the implementation in
supplier: creation or replacement
type: object contexts
required:
- supplierCode
- name
properties:
supplierCode:
name: ... <

Listing 7.14 ProductCreateOrReplace schema

components :
scﬁi:;iét o J !’roductCreationOrReplacement
ProductCreationOrReplacement : is a copy of the Product schema.
type: object

required: <

- name
- category

- price
- supplier
properties: <+
name:

Implementation-managed
description: ... properties have been
keywords: ... removed from the
category: ... required lists and the
price: ... properties maps.
isProductUnavailable:
supplier:
type: object
required: <+
- supplierCode
properties: <+
supplierCode:

CAUTION Copying and pasting may cause variations in the long run, but it’s
simpler at this stage. We may replace these schemas with a single read-and-write
schema when optimizing the OpenAPI document (section 17.2).

7.7.3

7.74

7.7 Describing operation body data 167

Using references to resource models in request bodies

In OpenAPI, an operation request body is defined in requestBody. Its JSON schema is
specified in content .application/json.schema (see section 6.6.2)

Similarly to what we did with response body schemas (section 7.7.1), we can avoid
copying and pasting schemas used in different operations’ request bodies with refer-
ences. Listing 7.15 demonstrates the use of a reference to the ProductCreationOr-
Replacement (added in section 7.7.2) in the request bodies of the POST /products and
PUT /products/{productReference} operations. In both schema properties, we add a
Sref properqfwhosevahJeis#/components/schemas/ProductCreationOrReplacement
It targets the ProductCreationOrReplacement reusable schema in components. schemas.

Listing 7.15 References to reusable schemas

paths:

/products:
post:
requestBody:
content:
application/json:
schema:
Sref: "#/components/schemas
<linearrow/>/ProductCreationOrReplacement" <+
/products/{productReference}:
put:
requestBody:
content : A reference to the
application/json: gr;detCreatlon-
schema : rReplacement
R schema located under
Sref: "#/components/schemas components.schemas
<linearrow/>/ProductCreationOrReplacement" <+ P .
components:
schemas:
ProductCreationOrReplacement: ... <+

Mixing inline schema and reference

A JSON schema can be inline or referenced, allowing both approaches to be mixed.
As shown in figure 7.11, we designed the ProductSummary model as a subset of the
product model. We used it in the list of products that “Search for products” returns
(see section 5.3.2). We can use a mixed approach for this response’s schema in the
OpenAPI document.

In listing 7.16, and as done in section 7.7.2, we add the ProductSummary schema in
components . schemas and copy, paste, and adapt the Product schema. Then, as shown

168

CHAPTER 7 Describing data with JSON Schema in OpenAPI

A subset of the Product vesourte model array of
ProductSummar
NAME TYPE [RER. [24
productReference integer * } { {

- * H B "productReference": "12345",
name str%ng :: — ; "name": "Cowboy Bebop",
deseriptiom———[Sstrins— 7 |summary ~ "keywords": ["anime", ...],
keywords array of h é "category": "BD",

string : H "price": 49.99,
category string * 3 s}

! { } “Products info.”
price float *) | JSON example
dercefdded S f
+obreduettnovatable— tbootean— : “Em\?{g vodutts info.”
Sl = b ect— i] JSO exAMﬂe

L J .

Figure 7.11 The ProductSummary model is a subset of the Product model for lists.

in listing 7.17, in the 200 response of the GET /products operation schema, we define
an inline schema of type array whose items are a reference ($ref) to this schema

(#/components/schemas/Product Summary).

Listing 7.16 ProductSummary schema

components:
schemas:
Product: ... The ProductSummary reusable
R :j schema is the summarized
ProductSummary: version of the Product schema.
type: object
required:
- productReference
- name
- category
- price
properties:
productReference:
name:
description:
category:
price:

Listing 7.17 Inline schema and reference

paths:
/products:

get:

&

Summary 169

responses:
"200":
content:
application/json: Inline array
schema: <}J schema

type: array

items: The array elements schema is a
$ref: "#/components/schemas reference to the ProductSummary
<linearrow/>/ProductSummary" reusable schema.

Similarly, when describing the pProduct model, we could have defined a Supplier-
Summary schema under components. schemas and referenced it in the supplier prop-
erty instead of defining an inline schema, as illustrated in the following listing. We
could use this model in the response to “Search for suppliers.”

Listing 7.18 Reference in a reusable schema

components :

schemas:
Product:
type: object

properties:
S Uses a reference to
supplier: another schema
Sref: "#/components/schemas/SupplierSummary"

SupplierSummary: < Targeted schema
type: object

required:

properties:
supplierCode:
name:

CAUTION Splitting resource models into smaller models can be helpful to
avoid duplication and limit the risk of inconsistency. However, don’t try to
optimize models too much in this first pass; focus on describing the API and
not on OpenAPI concerns. We’ll optimize the OpenAPI file and learn new
techniques in the third step of “Describing the programming interface,”
including considering how to split models; refer to section 17.1.

Summary

JSON Schema is an independent format that OpenAPI uses to describe data.
= Describe data with JSON schemas in OpenAPI while designing it after adding
HTTP operations.
= Describe resource models as reusable schemas under components.schemas for
better API subject matter view and reusability across operations.
= JSON schemas typically start with a type definition (object, array, string,

number, integer, Or Boolean).

170

CHAPTER 7 Describing data with J[SON Schema in OpenAPI

= An object has a properties map with property names as keys and their J[SON
schemas as values.

= The required list of an object contains its required properties’ names.

= The items property of an array contains the JSON schema of its elements.

= Operations input and output data JSON schemas go into the schema properties
added when describing the HTTP operations.

= A reusable schema defined in components . schemas.Name can be referenced with
a $ref property whose value is a #/components/schemas/Name J[SON Pointer.

= Use reference to reusable schemas to avoid duplication and unwanted varia-
tions in request and response bodies.

= Describe resource model derivations as reusable schemas under components
.schemas.

= The value of a schema property can be an inline schema, a reference ($ref) toa
schema, or a mix of both options.

Exercises

This section contains exercises to help you practice some key skills in this chapter.
You’ll find the solutions in the online appendix (https://mng.bz/260N). I encourage
you to solve them and read their solutions, which include detailed explanations, refer-
ences to relevant sections, and additional comments.

Exercise 7.1

You're designing an API for a pixel-art device comprising a “screen” composed of
36-by-36 luminous squares. A screen has an id (scoo1, for example) and a matrix of
pixels (array of array). Each pixel has an rgb array ([10, 23, 45], for example), a
brightness percentage between 0 and 1 (0.3, for example), and an on flag. All proper-
ties are required except the brightness. Describe the corresponding Screen, Pixels,
and pixel reusable schemas with OpenAPI.

Exercise 7.2

You’re designing an API for a music streaming service. Use OpenAPI to describe the
following sample API call.

Listing 7.19 Sample call

GET /artists/pink-floyd/albums?releaseYear=1969

200 OK
Content-Type: application/json
[
{
"id": "A890",
"name": "More",
"mainArtist": {

https://mng.bz/260N

Exercises

"id": "pink-floyd",
"name": "Pink Floyd"

b

"releaseYear": 1969,

"comment": "Movie soundtrack"
nidn: "AT789M" ,
"name": "Ummagumma",

"mainArtist": {
"id": "pink-floyd",
"name": "Pink Floyd"

b

"releaseYear": 1969

Exercise 7.3

171

You’re working on an API for a recruitment platform. Given the following sample of
job offer JSON data, describe the “Create a job offer” and “Update (replace) a job
offer” operations with OpenAPI.

Listing 7.20 Job offer sample data

{

"reference": "xz789",

"created": "2024-12-08",

"title": "Technical book author",
"description": "Writing technical books"

Part 2

User-friendly,
interoperable API design

Designing a reusable API that does the right job is already an outstanding
achievement. However, we can enhance our design so developers and their con-
suming applications can use our API quickly and seamlessly without complex
thinking and coding. This will increase developers’ productivity and make them
feel as though they have superpowers. For instance, it could be unnerving that
with the SOCNET API, adding a friend requires a user ID, whereas sending a mes-
sage to a friend requires a friend ID, although they represent the same concept: a
user. We must also ensure that our design contributes to building an outstanding
end-user experience; for instance, we don’t want end users to face an unhelpful
error message like “Can’t create the account.” The icing on the cake is that hand-
ling all these concerns increases the reusability and flexibility of our APL

This part of the book focuses on the second layer of API design: designing a
user-friendly, interoperable API (section 1.7.2). We dive into these concerns
for each level we must consider. Chapter 8 introduces the concepts of user-
friendliness and interoperability and then focuses on data: choosing, naming, typ-
ing, and organizing data, as well as ensuring its consistency and standardization.
Chapter 9 discusses operations, diving into creating easy-to-provide inputs and
ready-to-use outputs, filtering and pagination, handling various data formats, and
erroring. Chapter 10 discusses flows or sequences of operations and how to make
them concise, error-limiting, and flexible. Chapter 11 looks at the API as a whole:
naming, sizing, and splitting it, as well as adding browsing or discovery features.

Designing user-friendly,
interoperable data

This chapter covers

Designing ready-to-use data

Choosing atomic data types and formats
Organizing data in objects and arrays
Choosing data granularity

Designing names

Designing consistent and standard data

Imagine a washing machine that shows “EC 50400” when it’s started. You must con-
sult the manual to decode this as the end-of-cycle time in seconds from 00:00. Even
knowing this, you must do the math to get meaningful information. A clear mes-
sage like “Washing ends at 2:35 pm” would be more useful. Although this washing
machine fulfills its users’ needs (washing clothes and indicating when it’s done), it
is not easy to understand and use: it’s not user-friendly.

Now, imagine that the washing machine uses pictograms for washing programs,
like a bucket with two lines underneath for delicate cycles. These pictograms help
users select the right program from clothing labels. If your machine lacks them,
you can still refer to the meaning of the pictograms on the label for an appropriate
setting. I never remember their meaning, so I take a photo of the pictograms with

175

176

8.1

CHAPTER 8 Designing user-friendly, interoperable data

my iPhone, swipe up the photo, and tap “Look up Laundry Care” to get their mean-
ings. Although not always userfriendly, these universal symbols, defined by the ISO
3758 standard, ensure interoperability in the laundry world.

It’s the same in the API world; meeting user needs is a good start, but an API
design must also be user-friendly and interoperable. Unhelpful data like {"ec":
50400} and nonstandard formats such as {"endofCycle": "2-35"} lead to questions,
errors, complicated coding, and lengthy development. User-friendly, interoperable
API design helps create straightforward APIs that developers and their applications
can use easily and intuitively and can even love.

This chapter introduces the second layer of API design covered by part 2 of this
book, focusing on user-friendliness and interoperability. We then explore these
aspects from a data perspective, explaining what makes data user-friendly and interop-
erable and when to address these features. We demonstrate how to create ready-to-use
data, choose suitable atomic data types and formats, organize data effectively, deter-
mine data granularity, and craft user-friendly names. Finally, this chapter highlights
the importance of data consistency and standardization in this context.

The user-friendliness and interoperability layer
of API design

As illustrated in figure 8.1, we're done with the first layer of API design. We have
designed and described a versatile API that does the right job. It exposes the capabili-
ties meeting the needs identified in the Define stage of the API lifecycle and can han-
dle other scenarios; we’ll cover the last step of the design process, “Enrich the API

- N
_____ oy
| DEFINE | DESIGN ,®_DEVELOP _;\
- | pem===
: : lden{ify F?:S\I'?;v‘nﬂ\:s prosyamming Envich the I___I_Ef_-';_—_;\
: Needs :— =Pr the AP in%evr(-‘ate inzerface AP design 3 DEPLOY T,
! | Capa- artifacts N P—RO:\/IT) & -+
L o _'|‘_ blll‘hes i el o _ _|_C_0riS|£M—E_|
DESaN LAVER N v
gozd vtar{, oo A versatile AP| design that does the vight job 0 hae\rree to this later
Easy 4o = An AP design that is user—-friendl\/ and interoperable
sy to -
understand and use An AP| design that considers constraints
+ easy tonnettion (eontext, seeurity, e“iciency, a‘Y_’\
between systems backward-ctompatibility, and extensibility) Pd'g
u veasoned and conti Iy improving AP| design protess -{:oolbox

Figure 8.1 Designing a versatile API that does the job is a good start, but we must ensure that it’s user-
friendly and interoperable.

811

8.1.2

8.1 The userfriendliness and interoperability layer of API design 177

design artifacts,” in section 19.1. We will now work on the second layer, ensuring that
our API design is user-friendly and interoperable (section 1.7.2). A user-friendly API is
easy to understand and use. An interoperable API enables systems to work together
efficiently without complex processing or coding.

To introduce user-friendliness and interoperability in the context of API design,
this section discusses API user experience and clarifies which users’ experiences we’re
interested in. Then we explain how API design user-friendliness and interoperability
affect user experience.

Overview of the API user experience

User experience (UX) refers to a user’s overall perception and interaction with products
or systems like washing machines, microwave ovens, websites, mobile applications,
command-line interfaces, and APIs. Beyond design, various factors affect the UX of
APIs, from how we find and use them to their reliability.

To send an SMS from an application, we search for “SMS API” or “best SMS API”
on a search engine to find SMS API providers with good reviews. Finding interactive
documentation that allows us to understand the API and make API calls in seconds on
the developer portal is an excellent start. Retrieving credentials for our application
and coding the API calls swiftly is even better. If the pricing and terms and conditions
are clear and look OK, we happily input our credit card details. Seeing our users
always receive their SMSs quickly is the ultimate satisfaction.

Hiccups can ruin the experience, stopping or preventing us from using the API
and making us look for alternatives. The API may not fulfill our needs; some countries
we target may not be listed in the terms and conditions. The pricing model may be
costly. Navigating the developer portal and retrieving credentials can be difficult. API
security may not match our standards. Using the API and coding calls may be chal-
lenging, leading to complex and costly development. The API may be unreliable;
SMSs may take too long to arrive, annoying end users.

The API UX is not only for public or partner APIs; it also matters for private APIs.
They often come with portals that are more basic and less self-service, but this is not a
problem. The big problem is that we likely can’t switch to alternatives if our private
APIs are complicated, require complex and long coding, or are unreliable and affect
our end users.

Which users’ experiences matter to us?

The main users of APIs are developers of applications consuming them, which is why
API UX is often called developer experience (DX). However, not just typical developers
use APIs; business analysts may use them in spreadsheets, and QA engineers test them
via API clients. With AI’s rise, applications using APIs can also be seen as users. Deci-
sion-makers like architects, SMEs, and business analysts may explore APIs on devel-
oper portals to find the ones that meet their needs. Finally, although end users don’t
directly engage with APIs, they expect a quick, seamless experience with applications
that use them. API design can significantly affect all these users.

178 CHAPTER 8 Designing user-friendly, interoperable data

NOTE In this book, developer, consumer developer, and consumer refer to anyone

@ directly interacting with an API, whatever their actual profile and objectives
(coding an application using an API, using this via a client, or analyzing it for
decisions).

8.1.3 How API design user-friendliness and interoperability affect UX

Even if it exposes the right capabilities, a non-user-friendly or non-interoperable API
design can negatively affect developers’ and end users’ experiences, influencing the
decision to use the API, as shown in figure 8.2. If an SMS API’s documentation out-
lines a complex six-step operations flow for sending an SMS, we won’t choose it unless
it’s a private API that we’re forced to use. Such complexity is unnecessary for a simple
action. Additionally, it may require significant UI refactoring, complicating our appli-
cation and frustrating end users. Similarly, if sending an SMS requires a cryptic POST
/%2501 operation that returns a noncompliant and thus noninteroperable 200 ok with
an unclear error message for missing data, we’ll avoid it.

[won't chose any of these uless ['m forced to - - g What's BhisT | love this! Where do [sign?
DOCUMENTATION |, DOCUMENTATION Yo POST /messages
How 4o send an SMS? How o send ansmgz | |4, { v el

Q Gl operstion A 'g O Gl operation A - Hr'ﬁ,e.l;ia e e
@ Call operation B . CIMESSAGE Y

© Cill aerston ¢ helal & One step, that's beber! 200 OK w[: 400 Bad Request
6 Call operation D A g sheps ser {"error": "Missing
© Cill opevation E bodan ,Sfb o Pimber”
10 Call opevation F j——/ N 1€ e an orvar? :] }

Figure 8.2 The design of an APl may affect the developer and user experiences, making decision-makers
think twice before choosing it (if they have a choice).

In contrast, an API with an operation like POST /messages that returns 400 Bad
Request with a clear message like {"error": "Missing phone number"} will catch our
eye. We’ll quickly integrate such a user-friendly, interoperable API, helping us provide
end users with a simple UI and clear error feedback.

@ NOTE A user-friendly, interoperable design enables efficient development
and can enhance UX. Remember the consequences of terrible API design
(section 1.2). User-friendliness and interoperability matter at all levels
when designing an API: data (the rest of this chapter’s focus, starting with
section 8.2), operations (section 9.1), operations flows (section 10.1), and

APIs (section 11.1).

8.2

821

822

8.2 What makes data user-friendly and interoperable? 179

What makes data user-friendly and interoperable?

User-friendly, interoperable data is essential to enable efficient development, but what
are the characteristics of such data? Regardless of the context, whether it is a resource
path, a path parameter, a query parameter, a header, a request body, or a successful or
error response body, user-friendly data meets user needs, helps find and interpret
information, limits consumers’ work, and is consistent. Interoperable data is consis-
tent, too, but also standard. This section uses a Car Rental API as an example.

User-friendly data meets user needs

Although meeting user needs alone is not sufficient on its own, it fosters the design of
user-friendly data. Suppose we create a Car Rental API for third parties. Our API users
need information about vehicles that are available in a shop. But that doesn’t mean we
should include vehicles’ data in the shop’s data; doing so will complicate and blur the
meaning of our data. We likely identified a “Search for vehicles” operation that will
return this data. We’re used to referring to a shop’s location as a “Business area refer-
ence” when using our internal jargon. However, we should use “Shop location”
instead, which makes more sense in this API’s context and related needs. This doesn’t
mean we can’t use our jargon; it may suit another API with different needs.

NOTE Remember from section 2.1.2 that focusing on users’ needs was our
guide when identifying API capabilities. It also helps name and shape user-
friendly data by forcing us to look at our usual capabilities and data from an
outside-in perspective. Before making existing APIs more user-friendly, ensure
that they meet user needs.

User-friendly data helps us find and interpret information

User-friendly data helps developers find and interpret information. As shown in fig-
ure 8.3, it’s difficult for developers to understand that shop location data is available
or find it when using cryptically named and scattered 1a (latitude) and 1o (longitude)
properties; renaming them latitude and longitude helps, but data is still lost among
other elements. On the other hand, an explicitly named location object grouping
latitude and longitude properties is easy to find and interpret.

{ { {
"lan: 12, "atitude": 12, "location": {
... .. "latitude": 12
"lov: 34, "longitude": 34, } "longitude": 34,
} ... } ... 3 t .
T }
Hard o see that a lotation is hidden in all Properly typed, organized, and named
the available data or find its data data is easier to find and understand

Figure 8.3 User-friendly data helps find and interpret information easily and limits
consumers’ work.

180

8.2.3

E

824

E

CHAPTER 8 Designing user-friendly, interoperable data

User-friendly data limits consumers’ work

User-friendly data limits consumers’ work and helps them achieve their objectives
more efficiently. As shown in figure 8.4, we can add a ready-to-use address alongside
geographic coordinates to eliminate the need for consumers to perform reverse geo-
coding. Once done, we might consider removing the geographic coordinates now
that we have the address, because the address may suffice for our needs.

Consumer must "location": { "location": { 4
veverse—ggotode "latitude": 12 matitude": 12 Consu{v;‘e\rs j;—ec{ly use
toordinates "longitude": 34, "longitude": 34, e dddress
, "address": { "street": "API street", ... }

1

Figure 8.4 Adding the address prevents consumers from reverse-geocoding the coordinates.

NOTE Crafting user-friendly data can uncover previously unknown needs or
make us reevaluate API capabilities. Modifying data will require us to ensure
that there’s no gap in our design, as we did when first modeling it (section 5.5).

User-friendly data is consistent

User-friendly data is consistent, which makes it intuitive and allows developers to rely
on their experience to understand and use it quickly. As shown in figure 8.5, suppose
we represent the location of a car with a "place": ["34° 0' 0", "12° 0' 0"] array
where the values are the longitude and latitude in degrees, minutes, and seconds,
respectively, instead of decimal degrees. Information will be harder to find, and we’ll
confuse users. Users will instinctively know how to identify and use location data if we
use a similar name, location or lastLocation, and the same format and units for all
locations.

{ | Cav da{a' ,+*777717 - Similar name "F{ """"""" ~A Shop data
“iplacen: | "lastLocation": { "wlocation': {
1780 Q' 0o", "latitude": 56 }'. e Same da{la ___,____J"'latitude": 12
nggo o1 Qn "longitude": 78,3 stueture {"longitude": 34,
... Diffevent feom | - - e
} sho?’s location 1 }

Figure 8.5 Different, intuitive, and interoperable representations of a location

NOTE An intuitive API design gives developers superpowers, allowing them
to guess available data and operations. This creates an invaluable “wow” effect
during use.

8.2.5

8.3

==

8.3 When and how to design user-friendly, interoperable data 181

Interoperable data is consistent and standard

Interoperability is essential for APIs, allowing systems to collaborate efficiently without
complex processing or coding and easing developers’ work. An API operation’s inter-
operable data can be easily used as input for other operations of the same or other
APIs. Moreover, any consuming application can easily provide or use interoperable
data. Achieving interoperability involves using custom (or local), domain-specific, or
generic standards.

Figure 8.6 illustrates the consistent use of an object with latitude, longitude, and
address properties to represent a location across data models. This enhances our
data’s local interoperability. Adopting a local standard is beneficial, but we should use
existing domain-specific or generic standards whenever possible to avoid reinventing
the wheel and improve interoperability. Instead of inventing our geographic point
representations, we can use GeoJSON’s Geometry object as defined by RFC 7946 (see
https://geojson.org/). We can replace latitude and longitude with an object that
includes a "type": "Point" string and a "coordinates": [12, 34] array in decimal
degrees. Although not overly user-friendly (I never remember which item is the lati-
tude or longitude in the coordinates array), this standardized data simplifies the shar-
ing and interpretation of coordinates.

{
{ . { . Shep data "location": {

"lastLocation": { "location": { "coordinatesi {. . .ooiireeees,)
"latitude": 56 "latitude": 12 i"type": "Point", :
"longitude": 78, "longitude": 34, i"coordinates": [12, 34]}
"address": {...} "address": {...} /

1, }, "address": { ... }

} } }
Lotal/eustom standavd data Standard GeodSON Geometry object

Figure 8.6 Using custom or local standards or actual standards makes data interoperable.

NOTE Interoperable standards may overlook userdfriendliness or may need
to sacrifice it for efficiency. Section 8.9.1 explores user-friendliness and
interoperability.

When and how to design user-friendly,

interoperable data

Now that we’ve seen what makes data user-friendly and interoperable, we can clarify
which data needs to be user-friendly and interoperable, when to address these con-
cerns, and how to design such data.

https://geojson.org/

182

8.3.1

CHAPTER 8 Designing user-friendly, interoperable data

Which data must be user-friendly and interoperable?
We must ensure that any of the API’s pieces of data are user-friendly and interopera-
ble, including
Resource paths
Resource data models
Operation inputs (headers, path parameters, query parameters, bodies)
Operation outputs (headers, bodies)
Operation errors (headers, bodies)

@ NOTE This chapter focuses on the resource theoretical or complete models

83.2

designed in section 5.2 to explain principles we’ll use to design resource paths
and operation inputs, outputs, and errors when working on user-friendly,
interoperable operations (section 9.1).

When to address user-friendly, interoperable data

As shown in figure 8.7, we address user-friendly, interoperable data via a secondary pass
through our data modeling (section 5.1) to keep the design process efficient; to a lesser
extent, we’ll also revisit HT'TP representations to enhance paths and path parameters,
but we’ll discuss this when working on operations (section 9.1). For instance, we don’t
waste time discussing longitude versus 1ng or debating about GeoJ]SON when initially
modeling the “Car Rental Shop” resource; identifying that coordinates are needed is suf-
ficient. There will probably be some back and forth between fulfilling user needs and
being user-friendly and interoperable, as working on these aspects may raise questions
and new ideas, such as when we add an address to the shop location data (section 8.2.3).

~ N

r—=—=-= (- ——=

: DEFINE | DESIGN gl

DEVELOP T,

Destribe the

Froz:amming
in r‘FaLe

Design the »

Pro%:ammins
interface

lden{ify
the AP

W
Capa=
bili";es

Envich the
AP design
actifacts

=
;
;
;
;
>
“w
o
h
3
3
[~ nd
s
-
&
5
g
a

when working on operations Y

A versatile AP[that {
does the right job)
An APl that is user—‘(:riendl\/ o ‘ Shops /shops { . _
and interoperable Search tor id: string
tar vent,al location: {}
An APl that eonsiders shoFs }
tonstraints .
’ - Observe operations Represent operations
A veasoned and tontinuousl pe .
|_improving API desiqL'mcesZ from a REST angle with HTTP

Figure 8.7 Once we have modeled versatile data that does the job, we can revisit it to ensure that it’s user-
friendly and interoperable.

8.3.3

=

8.4 Selecting and crafting ready-to-use data 183

NOTE The initial data modeling will require less and less rework to become
user-friendly and interoperable, thanks to experience and the help of API
design guidelines we’ll craft to facilitate our work (section 16.3).

How to design user-friendly, interoperable data

As summarized in figure 8.8, to design user-friendly, interoperable data, we ensure
that the selected data is ready to use without thinking or processing by verifying that
we chose the correct data (“Business area reference” versus “Location”) and enhanc-
ing it (the reverse-geocoded address addition). Then we work on types and organiza-
tion to make data easy to interpret and find (the location object). Afterward, we
reconsider data granularity to keep only relevant data (should we include all available
cars in the rental shop resource?). Ultimately, we craft easy-to-understand names that
describe the data appropriately (1 versus location versus place). We must always
ensure that we are making consistent design decisions and aim for standardization
(location name and Geo]JSON format). The rest of this chapter explores these con-
cerns using a new example: a Banking API.

' Ready to use ' Type and oraanization [Names |
CONCEPT T NAME]

CAR RENTAL SHOP

Business avea vef. vs. Lotation

Reverse—geotoded address

"location": {
"latitude":

"longitude":

} Lotation objet{l instead
} of separate properties

12
34,

}

cars: [..]
Embed available
tavs in shop?

location

1 vs. locationvs. place

Consisﬁehcy
RESOURCE NAME TYPE {
Car Rental Shop |location Location "type": "Point",
Car lastLocation| Location (Ceae L R e
1 GeoJSON standard

Figure 8.8 How to design user-friendly, interoperable data

8.4

E

NOTE This chapter focuses on userfriendly, interoperable data; however,
data modeling must also address meeting user needs (section 5.1), perfor-
mance (section 13.1), security (section 12.1), and implementation constraints
(section 14.1).

Selecting and crafting ready-to-use data

Our first concern when modeling data is selecting the data that fulfills the identified
needs (section 5.1). But afterward, we must check whether the data is ready to use as
individual pieces and as a whole so that users can use or provide it directly without

184

84.1

=

CHAPTER 8 Designing user-friendly, interoperable data

thinking or processing. In the process, we may discover gaps in our needs analysis or
exposure of internal workings. This process involves

Selecting simple yet effective data
Enhancing data with supporting or processed data
Using well-known or standard data

This section discusses these concerns by modeling a Bank Account resource model for
a Banking API, illustrated in figure 8.9. This Banking API proposes typical retail or
personal banking capabilities, such as listing bank accounts, checking an account bal-
ance, and transferring money.

BANK ACCOUNT
Seleet data - DATA VALUE
-2 Balance vs. Balances
Add supporting data ---- T Balance curventy | UD vs. USD (nternal Code vs. [SO42IT) <F---- “ii;fi!:ﬁ"&!l:’
i Sake to spend Use well-known or
Add processed data- [|Jentifier [BAN vs. Account Number vs [D - standard [Ds

Figure 8.9 Designing ready-to-use data for the Bank Account model

Choosing simple and meaningful but useful data

The same information can be present in different forms in the system(s) behind an
API. We must select simple and meaningful ones so consumers can easily understand
and use them. But we must also ensure that the data is not too simplistic.

Because providing the amount of money an account holds was a requirement, we
included the balances in the initial data modeling of the Bank Account model. Bank
accounts have multiple balances due to various calculation methods in banking systems.

A Bank account model with all balances offers versatility for advanced use cases.
However, it increases complexity, requiring consumers to decide which balance to use
according to the use case. Instead, we can pick the most commonly used balance in
banking websites or applications. It’s simpler but reduces the possibilities.

We aim for simplicity but must consider the targeted users’ needs and related API
capabilities when choosing an option. A single balance makes sense if no use cases
involve multiple balance types or the users are non-experts. However, if different types
of balances are necessary or we target banking experts, we can keep all balances. Also,
if the balances are a crucial concept, we may have missed balance-related capabilities
or resources during the needs analysis. If they are accessible by other means, we could
remove the balances from the Bank Account model; and why not keep the most com-
mon one? That will please both expert and non-expert users.

NOTE Remember not to overemphasize simplicity when working on user-
friendliness; always confront optimizations to identified needs and capabilities.

84.2

84.3

8.4.4

8.4 Selecting and crafting ready-to-use data 185

Adding supporting data to ease and secure interpretation

Interpreting a piece of information may require unnecessary speculation or guess-
work. Adding supporting data enhances comprehension, reduces errors, and facili-
tates developers’ work.

The Bank Account model balance is an amount. It can be 123, for instance, but 123
what? If a European bank provides the API, it’s probably €123 (123 Euros). However,
not all European countries use this currency, and even those that do may propose
accounts with currencies other than the Euro. Adding the balance currency makes
interpreting the balance easy and accurate. Also, if we keep multiple balances, we can
add a default flag to the most common one so non-expert consumers can choose it
without thinking.

Adding processed data to reduce consumer effort

Picking relevant raw information is not always enough to make data user-friendly.
Adding processed data can be more effective and may even replace the initially
selected raw data.

One of the Banking API requirements is to help users evaluate how much money
they can spend. To do so, during the first pass of data modeling, we added approved
overdraft information (active flag and amount) along with the balance. The “over-
draft facility” is a service allowing account owners to overdraw up to a specific
amount without fees (which is common in France). However, evaluating how much
end users can spend requires the consumer to add together the overdraft facility
amount and the balance if the overdraft facility is active (active flag and amount),
along with the balance.

Including a safe-to-spend amount simplifies the consumer’s job. We can also
reevaluate whether balance and overdraft information is necessary with this new addi-
tion. Depending on our API’s purpose and target audience, a super-simplified Bank
Account model may make sense.

NOTE Remember the provider’s perspective (section 5.5.3). Supporting data
and processed data prevent consumers from implementing our business rules
and making mistakes due to a lack of knowledge or incomplete data. Should
the overdraft amount be added to or subtracted from the balance? And what
if determining an accurate safe-to-spend amount requires considering known
but unprocessed transactions?

Choosing well-known or standard resource identifiers

Resource identifiers, discussed in section 4.2.3, uniquely identify resources but also con-
nect data from different systems and end users to systems. Choosing well-known or stan-
dard identifiers for API interoperability and intuitiveness is crucial whenever possible.
As shown in figure 8.10, we have three identifiers for a bank account: ID, account
number, and IBAN (International Bank Account Number). The internal ID (a686783e-
d699-421b-965b-4£039d5c6adc) is complex and only known by the subsystem that

186

8.4.5

8.5

CHAPTER 8 Designing user-friendly, interoperable data

manages bank accounts, so we can set it aside. The account number (3333333) is a better
option. It is well-known across all of our systems and by end users. It is also easily remem-
bered by developers in test environments. The IBAN (FR7611111222220000333333320)
is a longer but standard version of the account number and is understood worldwide.

BANK ACCOUNT
DATA VALUE
|dentifier a686783e-d699-421b-965b-4£039d5c6adcgd--= Interal [D
3333333 === Well-known ateount number
FR7611111222220000333333320 ---- Standard [BAN

Figure 8.10 The three possible identifiers for a bank account

We can use the well-known account number as a bank account identifier for internal
use. It makes it easy for our subsystems to find relevant information. However, when
external systems use our API, they may struggle to connect their data to ours if we
don’t adopt the IBAN standard identifiers.

NOTE I recommend selecting standard identifiers unless there are compel-
ling reasons not to do so (such as security concerns; see section 12.1). Note
that picking one as a resource identifier doesn’t prevent us from having both
the account number and the IBAN as regular data in our model.

Choosing well-known or standard data

Interoperability and intuitiveness are crucial for more than just resource identifiers.
Each piece of data should be well-known or standardized whenever possible. For
instance, the balance we chose from the possible balances in section 8.4.1 is well-known.
Also, although we have user-friendly internal currency codes (EU for the Euro and up for
the US dollar) that are known by all internal systems, it is better to use internationally
recognized ISO 4217 currency codes (EUR, USD) for the balance currency.

NOTE Identifiers and other data can be local, widely known across systems,
internationally recognized, or a standard. The larger the audience, the better.
However, no worries if standards don’t exist; we can still achieve interoperabil-
ity with shared information. Using only locally known data is fine if all else fails.

Choosing user-friendly, interoperable atomic types
and formats

In section 5.1.2, we learned about the basic portable atomic data types: string, number,
and boolean. Booleans are de facto user-friendly and interoperable as long as they are
correctly named. On the other hand, strings and numbers can cause hiccups. As
shown in figure 8.11 and discussed in this section, we need to

8.5.1

8.5.2

8.5 Choosing user-friendly, interoperable atomic types and formats 187

Consider formatting numbers as strings
Avoid non-human-readable code when possible
Use human-readable date and time formats

R L
Balance ne1,234.5" Unnecessarily formatted numerie data 1234.5
Atcount number 1234567 Numerie tode missing formatting "0001234567"
Account type 1 or "xbt" Cryptic code "checking"
Creation date 409228260 Non—human—veadable date "1982-12-20"

Figure 8.11 Contrasting non-user-friendly and user-friendly data types and formats

Considering formatting numbers as strings

We should always carefully consider formatting numbers as strings. Numbers that con-
sumers can use in calculations must not be formatted. However, numeric references
or codes may benefit from string formatting.

Representing a bank account balance with a formatted string like "€1,234.5" may
seem like a good idea; it avoids adding the balance currency to our model and makes
it ready to use in a UL Butit’s not a good idea. Consumers must parse it to extract the
value for calculations and currency. Also, the chosen format may not be suitable for all
end users; in France, a Ul should show "1 234,5 €. Instead of such a formatted
string, it’s better to use a plain number (1234 .5) and add a supporting currency in a
separate property (section 8.4.2).

NOTE The consumer’s locale typically defines how to format an amount of
money or a date for the end user to read. It’s usually up to the consumer to
format raw data appropriately. However, an API may sometimes need to take
the locale into consideration. Check section 9.7.2 for an example.

An account number like 1234567 is a number, but it needs leading zeros ("0001234567")
to reach a certain length so that it’s a proper account number. Remembering this
length is challenging even for banking industry veterans like me. Thus, offering a for-
matted string instead of a bare number is helpful.

Managing non-human-readable codes

We should avoid using non-human-readable codes such as 1 or xyz in our API data.
They make interpreting data complex, if not impossible, if you don’t have a dictionary
that explains them.

As shown in figure 8.12, in our system, a bank account type is a nonintuitive value
like 1 or 7 (in another case, it could be "xbt" or "tvp"). These values are not self-
explanatory and may be confusing to interpret. Another option could be abbreviated

188

E

8.5.3

&

CHAPTER 8 Designing user-friendly, interoperable data

codes such as ¢ and s, which experts might guess stood for “checking” and “savings.”
Clear labeling is essential for universal understanding. Thus, we should use plain
English words like "checking" and "savings" instead of cryptic code values. Such
human-readable alphabetical codes are typically what we would put in an enumera-
tion when coding.

BANK ACCOUNT
DATA [NON-HUMAN-READABLE | RUMAN-READABLE
1 bt checking Figure 8.12 Contrasting non-human-
Tyye - readable and human-readable bank
i EVE Savings account type codes

In some cases, it’s impossible to replace non-human-readable codes with human-
readable ones because they are used across multiple systems. To address this, we can
apply what we learned from section 8.4.2 and add a human-readable label next to the
code to help developers understand the data or show it to end users. For example, we
can use "typeLabel": "savings" nextto "type": 7 or have a type object with a code
and a label. Such labels may be shown to end users.

NOTE Dictionaries of code and values or labels can be retrieved via dedicated
operations; see section 13.5.4.

Managing dates and times

API data uses timestamps (number) or the ISO 8601 standard (string) for dates and
times. A bank transaction date, such as December 20, 1982, 10:31 a.m., can be shown
as 409228260 (Unix timestamp) or 1982-12-20T10:31:00Z (ISO 8601). Any program-
ming language supports both formats. However, I recommend ISO 8601 over time-
stamps for its readability, clarity, and flexibility in representing dates and times, with
or without time and time zones.

An ISO 8601 string such as 1982-12-20T10:31:00Z (date-time string format in
JSON Schema) offers a human-readable date and time format: Yyvy-MM-DD for year,
month, day; T as a time separator; HH:MM: Ss for hour, minutes, seconds; and z for the
UTC time zone. If we just need a date without time precision, we can use 1982-12-20
(date string format in JSON Schema). In contrast, interpreting or modifying Unix
time, which uses the number of seconds since the Unix epoch (January 1, 1970), is
more challenging for humans. Developers can’t easily determine the date 409228260
from API logs, create a date input, or modify the day or hour for a test API call via an
API client. It’s unclear whether a timestamp is a date or a date and time. As a result,
I've seen many APIs that mix timestamps for date times and ISO 8601 for dates, which
makes their design inconsistent.

CAUTION A timestamp’s units may vary depending on the context. Clarifying
the units used is essential, as there’s a risk of inconsistency and confusion.

8.6

8.6.1

8.6 Organizing data 189

For example, Unix time and Python’s time.time () are in seconds, whereas
JavaScript’s Date.now() is in milliseconds. 1704067200 can be 2024-12-
31T00:00:00% (seconds) or 1970-01-20T17:01:07.2002 (milliseconds).

An ISO 8601 date-time string can also indicate the time-zone offset: 1982-12-20T11:
31:00+01:00 is the same date and time as 1982-12-20T10:31:00%, but in CET (Cen-
tral European Time), which is one hour ahead of UTC (+01:00). Timestamps are
UTC only and don’t support time zones. However, sticking to the UTC time zone is
recommended because it is not affected by daylight savings time; if the clock shift hap-
pens at 2:00 a.m., 1:30 a.m. could be before or after the shift. But if there are specific
requirements, we can use time-zone offsets. For example, in our banking API, we may
need it for audit or regulation reasons for bank account transaction dates.

TIP ISO 8601 also defines a format for durations. For instance,
P2Y3M5DT11H30MSS represents 2 years, 3 months, 5 days, 11 hours, 30 minutes,
and 5 seconds.

Organizing data

You would probably struggle to use a video game controller if its direction buttons
were randomly scattered; it’s the same with data. Developers will understand and use
data easily if it’s well organized. As contrasted in figure 8.13 and explained in this sec-
tion, data is easier to find and process if it is

Grouped
Hierarchized
Sorted

Grouping data with objects

Objects group data into smaller sets, highlighting the existence of subconcepts and
their relations and making data easier to understand, use, and browse. The overdraft
facility data in the Bank Account model data example in figure 8.13 is hard to find due
to the separate overdraft facility Boolean flag and limit amount. The limit
could be something unrelated to overdraft facility. Even experts might struggle to
make the connection.

In figure 8.14, we rename limit to overdraft facility limit to make the rela-
tion between properties prominent. But it’s still inefficient, as developers must review
all the data to find both properties. Ordering the properties so they’re close to each
other can address this. However, the concept of an independent overdraft facility
needs to be clarified. And what if there are 10 or more overdraft facility xxx prop-
erties? It will be better to group them under an overdraft facility object with an
active flag (holding the original overdraft facility value) and its 1imit amount.
This way, developers can easily view the business concept and data and benefit from
this organization in their code. They can also open/close the object in a J[SON viewer
to visualize the data better.

190

CHAPTER 8 Designing user-friendly, interoperable data

Flat and unorganized data 9———j ———l Grouped, hievarchized, and sorted da@—
{ {.-
~A(>roverdratt facility®: true . "iban": "FR7611111222220000333333320",
: "date value balance": 2501, ¢ | «'number": "00003333333", tant
\ "number": "00003333333", : "safe to spend": { dt\"?" h’m
: "value-date balance date": "2024-01-28" |} "amount": 1800, SZIBEIR
: "type": "checking", "currency": "EUR "
: "egected balmcg": 2600, ')
: "iban": "FR7611111222220000333333320" "type": "checking",
t- Crlimite: 100 "name": "Mr. and Ms. Forger",
H "expected balance date": "2024-01-29", "balances": [.
¥I>> "balance currency": "EUR ", H
H "name": "Mr. and Ms. Forger", "default": true, ;
: "safe to spend": 1800, "type": "value-date", i
: "creation date": "1982-12-20", "balance" : :
H "default balance": "value-date" "amount": 2501, :
H "currency": "EUR "i Similar items
\ , 7 ave grouped in
el "date": "2024-01-28", ; arrays
* Randomly placed 1, :
Nt datg i Relsted data i (3
av n tyrou?ed "type": "expected“ , :
and use Y position -=-=---- g 056 ‘E
or in ob‘)ed‘,s ------- s] } K
i | {moverdraft facility": {
i]t mactive": true,
Pl mlimien: {
- -~ "amount": 100,
H "currency", "EUR"
“icreation date": "1982-12-20"

Figure 8.13 Organized data is easier to understand and use.

Statteved overdraft fatili{y data

"overdraft

Group with

similar names

Gr
posi

"limit": 100,

facility": true,

"overdraft facility": true,

"overdraft facility limit": 100,

Oroanized overdraft fatility data

{
6v°i;? 118" "overdraft facility": {
D)8 "active": true, 4
"limit": 100 7

v R

WE by

on }

"overdraft facility": true,
"overdraft facility limit": 100,

[

Ob\)ec'bs tan be o\?ehed/ tlosed -
in JSON viewer

Figure 8.14 We can group data by name or position or in objects.

Business concepts can be more generic. The limit, value-date balance, expected
balance, and safe to spend are all amounts in a specific currency indicated by the
balance currency property. It’s easy to connect a currency with the balances based on
their names, but it’s less evident for the other two. To fix this, we can turn each

8.6.2

——{Scattered balances data |

8.6 Organizing data 191

numeric value into an object with amount and currency properties (see figure 8.13).
Doing so allows developers to quickly understand and use each value independently
of top-level data. We can use the same formats in different places, which makes our
data more interoperable.

CAUTION Avoid over-organizing data into unnecessary sub-objects, as this can
complicate interpretation and usability. Each sub-object should represent a
business concept and ideally be reusable. Avoid mapping the Ul organization
(section 2.7.1).

Grouping data with arrays

Grouping similar objects into an array can simplify data browsing in code or a
JSON viewer. It also helps materialize sub-business concepts, making them easier to
understand.

As shown in figure 8.15, the Bank Account model has two balances described with
different properties, and the default balance property indicates the default one. We
can organize the balance data into value-date balance and expected balance object,
as we learned in section 8.6.1. We also replace the default-balance string root prop-
erty with a default Boolean flag in the value-date balance. Then, because they are
both balances, we can group them in a balances array and add a type ("value-date"
or "expected"). The fact that an account has multiple balances is more explicit and
makes it easier for developers to view them or browse them in code.

) r—‘ﬁganir.ed balances d@—'—
{ ﬁrou\’ in an {
"value-date balance": 2501, arvay balances: [
ivalue-date balance date": "2024{ "default": t}:_ue’d
||type": n "va ue_ ate"
- nvalue- 1 ",
speceea vancen: o0, | “gipgnimmeen (|| T
! amount" :
000 "bal ", !
"expected balance date": "2024—J ?aiggit"-{zwl "currency": "EUR"
"balance currency": "EUR", "currency": "EUR" "date": "2024-01-28",
"default balance": "value-date'™ "éate“: 12024-01-28" %'
"t ": mn t d"
"expected balance": { "bZE_):nce" :e>{cpec ©
"balance": { "amount": 2600,
6",“‘, in ob‘)ec{:s > "amount": 2600, "currency": "EUR"
"currency": "EUR"
G "date": "2024-01-29",
"date": "2024-01-29",) aven 7 A N
} Lo rrays tan be
| 1 Geeeee . opened/¢tlosed
} in JSON viewer

Figure 8.15 Different properties representing the same type of data may be grouped into an array.

(@

TIP Use a values array to replace properties named valuel, value2, ...,
and valueN, such as replacing linel to line4 with a lines array in an
Address model.

192

8.6.3

8.7

8.7.1

CHAPTER 8 Designing user-friendly, interoperable data

Sorting data in arrays and objects

Sorting data in arrays and objects makes it easier to browse and manipulate. Sorting in
an array can make data more straightforward for processing or rendering in a UL
However, we can’t formally describe the array order in [SON Schema. Instead, we rely
on the description field to specify the sorting for implementers (see section 19.5.1).
For instance, we can state “sort the array by balance type: value-date and then
expected” in the description of the balances array. This allows consumers to display
the list without worrying about sorting it.

An object’s property order doesn’t affect code or applications but does affect
viewed data and documentation. To make it easier for developers to find data, related
data should be placed next to each other, and essential data should be placed first in
the properties map of [SON schemas (and in implementations). For example, in the
Bank Account model in Figure 8.13, the iban and number references are near each
other and come first, followed by safe to spend.

Choosing data granularity and scope

After organizing the model data, we must ensure that we have only the necessary data
and that we stay within the model’s scope. A data model bloated with unnecessary ele-
ments or a mishmash of concepts that should live independently is not user-friendly.
This section discusses

Ensuring the relevance of each piece of data
Embedding lists in resources
Modeling embedded resources

Considering relevance, not size

We must question not the number of properties and depth of a data model but rather
the relevance of each element. Smaller models are more user-friendly, but randomly
removing properties to achieve size reduction can hinder meeting user requirements.
Also, specialized smaller models lack versatility compared to larger, generic models. At
this stage, model size and depth must be driven by subject matter, API capabilities,
and context (section 13.5 covers size and performance). We can remove unnecessary
elements to create user-friendly models by ensuring that we satisfy current and future
user needs (see section 8.2.1). We do this when modeling data by focusing on the
proper elements (section 5.5.3).

Suppose our Bank Account model has 30 properties and a maximum depth of 3.
Although we can’t compare it to other models, we know that it represents only a frac-
tion of all bank account information and can be considered “relatively small.” But
whether it has 20 or 100 properties and a depth of 3 or 10, we must investigate the
purpose of each element, as illustrated in figure 8.16.

The iban, number, type, and name properties are essential to represent a bank
account. The safe to spend property is essential to know how much money can be

8.7.2

8.7 Choosing data granularity and scope 193

"iban": "FR7611111222220000333333320",3-|-- Essential to vepresent
"number" : "00003333333", -| abank ateount
-~ "safe to spend": { :
"amount": 1800, K
"currency": "EUR" K

Py,

Essential to meet needs

-~ ’ .
"type": "current", ‘; ’
"name": "Mr. and Ms. Forger",.
Unnecessary =======" > "creation date": "1982-12-20", o

} o Bank Actount

Figure 8.16 Each piece of data must be relevant.

spent and meet users’ needs. However, according to our SMEs, creation date is
unnecessary and not helpful in manipulating bank accounts beyond our initial need.
We can simplify the model and reduce distraction by removing it.

Embedding lists in a resource model

When lists are embedded in a data model, we must consider their nature, relationship
with the resource, and potential size, as illustrated in figure 8.17. Large arrays may
necessitate separate resource models and operations for filtering and pagination so
consumers can easily manipulate them (section 9.6).

{

"iban": "FR7611111222220000333333320",

List with a few elements; essential g0 .
iw("ovma{:ion «(:o\r an attount ~°°" D balances": [...] ’o

Embedded list vesourte vequiring ---- "transactions": [...]
A\) ? e Bank Actoun{:

«ciltering, sov{:ina, Pagina{:ion
Figure 8.17 We shouldn’t embed lists requiring filtering or pagination.

The balances array (see section 8.4.1) presents no problems because it’s a small set
comprising the current balance of each type, and it doesn’t require filtering and pagi-
nation. We didn’t identify balances as an actual resource, although we could do so
depending on our needs. If we need historical account balance data via a dedicated
operation, we could still keep this specific subset in the Bank Account model, as it’s
only the current balances, and a balance is essential information for an account. How-
ever, we may also reconsider the need for an array of balances and only keep the one
value that makes the most sense based on our needs.

A list of all transactions directly embedded in the Bank Account model is more
questionable. From a practical perspective, there can be thousands of transactions
that require filtering and pagination. We should maintain the transactions separately

194

8.7.3

&

CHAPTER 8 Designing user-friendly, interoperable data

and create dedicated operations for ease of use. From a subject matter perspective,
transactions are a standalone concept in banking. We may have missed something
during the needs analysis if they have not been identified as resources. We could con-
sider embedding a subset of the most recent transactions affecting the safe to spend
value; however, such a model would look more like a Safe to Spend Report than a
Bank Account model.

Modeling embedded resources

When embedding another resource (list or individual element) in the model of a
resource, we should choose the appropriate model (ID, summarized, or complete; see
section 5.4) depending on what’s needed and to facilitate using data, as illustrated in
figure 8.18.

CAUTION Providing insufficient information about related resources directly
affects API efficiency and the end-user experience; see section 13.1.

{ Bank Attount

cees
"name" :

"‘1:11'meer" 8

> "owners":

"00003333333",

"Mr. and Ms. Forger",

[

D, summary, o § ::;d:: 12345, ... 1
tomplete vesourte? . id": 56789, .
Necemee JD "overdaft facility": {"id": "oD123", ... }

Figure 8.18 Adapt embedded resource models to needs, ensuring that consumers
must not systematically read them.

Suppose that account owners and the overdraft facility are identified resources having
their own life, and we need their data in the Bank Account model (owners and over-
draft facility properties). An overdraft facility ID may be enough if we just need to
know that a bank account is linked to an overdraft facility and we don’t need the
details when working on a bank account (thanks to the safe to spend value we added
in section 8.4.3). Owner IDs won’t be enough for owners because we need more infor-
mation for bank advisors, such as owner names; consumers will systematically need to
make additional API calls to read each owner after reading the account. A Summarized
owner model meets our needs.

NOTE To choose between using just an ID and a more complete model for
embedded resources, evaluate whether consumers must read them systemati-
cally with the resource. If so, they likely form a cohesive whole. Embed at least
a summarized model, or a complete model if more data is needed. If not, the
resources are just related, and an ID is enough. A list of IDs may often be
meaningless; include at least a summary, or consider removing the list.

8.8

88.1

8.8.2

8.8 Designing user-friendly names 195

Designing user-friendly names

Choosing names that everyone can easily read and understand is essential to creating
a user-friendly API. Representing the overdraft facility active with the unread-
able ACTBLNDFPRTFTBKACC oOr jargonesque deficitProtectionActive can make the
API harder to understand and use. Designing user-friendly names is challenging
and must be done at the right moment. This section discusses when to design user-
friendly names and explains and illustrates the principles we can use to create
names that are

Simple
Clearly organized
Concise

When to design user-friendly names

To design our API efficiently, we must differentiate between identifying concepts with
correct names and designing user-friendly names. This requires a deep understanding
of data types, formats, and organization. Choosing user-friendly names should be our
final task.

During the first design pass (section 5.1), our primary goal was to design an API
that fulfilled user needs and correctly represented the subject matter. At this stage,
when adding a property indicating that the overdraft facility is active to the Bank
Account model, we must call it what we first named it: overdraft facility active.
It’s sufficient to identify this concept correctly from a subject matter perspective.

Discussing overdraftFacility versus overdraftFacilityBln versus odFacActive
slows us down in achieving the first version of the design that does the job and that we
can discuss with stakeholders. Additionally, we may need more information to make
decisions. Names are affected by type, format, and context, which we explore thor-
oughly in this second pass of API design. For instance, the overdraftFacilityBln
property may be not a Boolean but a string enumeration with an active, suspended,
or ended value (see section 8.5). We can also rename it active when organizing the
overdraft facility data in an object (section 8.6). Finally, it would be a shame to waste
time on a piece of data we don’t keep (section 8.7).

Designing simple, clearly organized, concise hames

After agreeing on a concept and giving it a temporary name, we can represent it with
a user-friendly name that is simple, clearly organized, and as short as possible. This
section lists the principles we can use, and the next section illustrates them.

We must use simple language that everyone can understand, avoiding jargon. But at
the same time, we must ensure that we don’t sacrifice meaning for the sake of simplicity.

Names with multiple words benefit from proper casing and sorting to aid under-
standing. Casing examples include using camel (someProperty) or snake case (some_
property) for property names and pascal case for reusable [SON Schema models in

196

8.8.3

P

CHAPTER 8 Designing user-friendly, interoperable data

OpenAPI (someModel). Also, similar to organizing paths (section 4.2), we must arrange
words in a meaningful hierarchy from parent/broad/left to children/specific/right.
Aim for brevity, and consider the necessity of each word. Ideally, we should keep
names to three words or fewer, but not at the expense of meaning (remember the
number of properties from section 8.7.1). Context can help, and we can ditch prefixes
and suffixes indicating the parent model, parent concept, or type. Also, if a word
doesn’t affect understanding, we can remove it. Avoid abbreviations whenever possi-
ble, but well-known abbreviations and acronyms are OK. We may discover grouping

optimizations by refining names, even after designing a well-organized data structure
(see section 8.6).

Learning by fixing non-user-friendly names

Figure 8.19 shows a poorly designed Bank Account data model sample. Property names
like ACTBLNDFPRTFTBKACC and LMTDFPRTFTBKACC are hard to understand without

proper documentation, even for experts. Let’s use the principles listed in section 8.8.2
to fix them.

" ACTBLNDFPRTFTBKACC
Separate words with camel case
actBlnDf PrtFtBKAcCc

BAhk Account samyletl'ﬁ

"ACTBLNDFPRTFTBKACC" : true, Rename
"ILMTDFPRTFTBKACC": 100

Remove untommon abbreviations
activeBlnDeficitProtectionFeatureBankAccount
+ Left—to-vight hievarthy

bankAccountDeficitProtectionFeatureActiveBln

Remove {,\/Fe suffix

bankAccountDeficitProtectionFeatureActive

"overdraftFacility": true,
"overdraftFacilityLimit": 100

} {
Group (‘.'<‘Jx.ferdraftFacility" : |

"active": true,
"limit": 100

Remove uhnecessa!r\/ words

bankAccountDeficitProtection

Remove pavent prefix
deficitProtection
* Use appropriate votabulary
} .. overdraftFacility

Figure 8.19 Fixing non-user-friendly names in the Bank Account model

Reading ACTBLNDFPRTFTBKACC is complicated. We can use camel case, actB1nDfPrt-
FtBkAcc, which helps by showing distinct words, but the words are abbreviated and
not meaningful. Replacing our specific abbreviations but keeping commonly used
ones, such as bln for boolean, gives a more readable activeBlnDeficitProtection-
FeatureBankAccount. Unfortunately, understanding is not facilitated by words that
are randomly ordered without hierarchy. Sorting them from parent to child gives
bankAccountDeficitProtectionFeatureActiveBln.

&

8.9.1

=

8.9 Aiming for consistency and standardization 197

Reading such a long name is difficult; we must shorten it. The property’s true
value is a Boolean, so the B1ln suffix is unnecessary. Active is redundant with the Bool-
ean type; we can also remove it. We can also challenge Feature; the name is still
understandable without it. The same goes for the bankAccount prefix; there’s no need
to state that we’re in a “Bank Account model.”

That leaves deficitProtection, our jargon for what most people call an “over-
draft facility.” Using the more familiar term, we end with "overdraftFacility":
true, which clearly indicates whether the feature is active on the bank account.

We transform LMTDFPRTFTBKACC into overdraftFacilityLimit with the same rea-
soning. Both properties have a prefix representing the same business concept. As seen
in section 8.6.1, we can group them in an overdraftFacility object property with
active (reusing the word we got rid of earlier) and limit properties.

NOTE Casing preferences vary. We used camel case (overdraftFacility),
which is typical of Java and JavaScript, but we could also have used snake case
(overdraft_facility), which is typical of Python. Consumers can easily
adapt, so choose based on your preference, but be consistent (section 8.9).

Aiming for consistency and standardization

To ensure that our API is user-friendly and interoperable, we must make consistent
decisions and aim for standardization. Data that looks like other data or matches stan-
dards favors intuitiveness and interoperability. This is tricky because it applies at any
level: which data we select; its organization, types, formats, and names; and the stan-
dards we use. Every decision we or others have made previously may affect our and
others’ API design now or later. For example, if the first date we model is named
whateverDate and uses ISO 8601, we better stick to this format for any date property
we model afterward. This section illustrates these concerns by revisiting elements of
our Banking API example in light of them.

NOTE Being consistent and creating or using the proper standards can be
difficult. Check out section 16.1 to discover how to overcome this.

Seeking local, domain, or global standardization

Data must at least be consistent within the API. But it’s best to be consistent with other
APIs in the organization, domain or industry, and even the rest of the world. Seek con-
sistency at the most extensive possible spectrum, but no worries if that’s only local con-
sistency. Check whether a ready-to-use standard exists, reuse preexisting data models
as is, or adapt them. If no local or broader standard is applicable, reuse the same pat-
terns when choosing types, formats, organizations, and names.

Before designing data models for our Banking API, we didn’t look for preexisting
material. Our team or organization may already have designed a Bank Account model
for other purposes, in which case we could reuse it. Also, the banking industry’s
renowned ISO 20022 standard offers data models for several banking use cases; we

198

8.9.2

8.9.3

CHAPTER 8 Designing user-friendly, interoperable data

should investigate it. However, in both cases, we must be sure this preexisting material
actually fits our needs. Being interoperable but not fulfilling user needs is not an
option. If nothing exists, we can start inventing our own model, but we can also use
preexisting patterns or standards in our data models.

CAUTION Be careful when using organization or standard data models. Ensure
that they fulfill your requirements. Also carefully consider their complexity;
standards are not always designed to be user-friendly for non-experts.

Using well-known or standard identifiers consistently

We saw in section 8.4.4 that we should use well-known or standard identifiers. We must
be sure to use the same identifier when the same resource is used in various contexts.
Figure 8.20 contrasts options for identifying a bank account in different models.

DATA Consistent and
——— aeaa Inconsistent Consistent interoperable
Bark Account | identifier [BAN
ou QCCouw{: ID "
Money Transfer = aceount [D [BAN
destination | atcount number

Figure 8.20 We must use the same identifier for the account across models.

If we choose the IBAN for the Bank Account model and ID and number, respectively,
for a Money Transfer source and destination, we're inconsistent within and across
models. Choosing the ID for all uses makes our design consistent, but the ID is only
known in a small part of our system. Choosing the IBAN is a better option that makes
our design consistent and interoperable with any banking and, most likely, non-banking
APIs worldwide.

A money transfer needs an ID, too. There’s no standard for that. If there’s a well-
known identifier shared across our system, we can use it. If not, no worries; not all
identifiers have to be well-known or standard, but always check if any are available.

Defining a naming pattern for identifiers

It’s essential to define a naming pattern that helps developers identify the identifiers of
resources and whether there are related resources. As shown in figure 8.21, naming the
account identifier iban implies that it’s an IBAN but not necessarily the bank account’s
unique identifier. But using a generic name such as accountId causes a problem, too,
because the IBAN is essential data. We keep both iban and accountId to strike a bal-
ance. However, adding accountOwnerId may complicate the resource identifier search.
Therefore, we opt for the even more generic name id to resolve the problem.

These decisions have consequences. Any resource identifier must be named id
within the resource and resourceNameId elsewhere. If this identifier is essential and
meaningful data, it may be present twice within the resource as the id and another

8.9.4

8.9 Aiming for consistency and standardization 199

{ { {
"iban": || "accountId": ... "accountId": ... nige:
e wiban": ... "iban": ... "iban":
} "ownerId": ... "ownerId":
Wheve is the vesource identifier? [BAN is move than an [D } J }

Which “id” is the

Acumnf Owner

vesourte identifier? ;
"ownerRef": ... "ownerId": ...)l nign.
}
Inconsistent names Consistent names Consistent, easy—to—spot names

Figure 8.21 Inconsistent versus consistent and user-friendly resource identifier names

property. For instance, the “Account Owner” resource has an id whose value is the
owner reference, but no ownerrReference. This information is only interesting as the
owner’s unique identifier.

Naming, typing, and structuring consistently

As shown in figure 8.22, consistency and standardization are a concern for any aspect
of data, not just resource identifiers. The account number needs to be formatted with
leading zeros (see section 8.5.1), and we must format it this way everywhere. The bank
account creation date is an ISO 8601 string (see section 8.5.3) named created,
whereas the execution date of a money transfer is an executionbDate UNIX time. We
must use the same type and naming pattern to be interoperable and consistent. The
account balance is an object with a value and an ISO 4217 currency property (see sec-
tion 8.6.1); the money transfer’s amount must be structured similarly.

[ntonsistent naming pattern { e __,l"c""SiS{;e"{ strueture
S| iramount": 12, &LYeeeeemeet Inconsistent type
--------- [neonsistent Lormat
Fralue 33045
i"currency: "EUR"Q"‘H. o
ourreney: TR d . Ressable Amourk "A0OUDE" s {..coo_oenn- .
n . n. n = = wo | T eusable fimount ...__ | - :"Va'lue "eo12 ’ :
vmbern: 000123450 dota model [rrcurvencyr | reurd
} ¥--+-Models ave consistent--- "accountNurber” : "00012345",

with eath other nexecuted": "2024-02-06T10:23:452"

Figure 8.22 Bank Account model and inconsistent versus consistent and interoperable Money
Transfer models

CAUTION When a decision is made, it creates a precedent that establishes a
pattern to be applied consistently in the future. Building design guidelines
helps you design consistently; see section 16.3.

200

CHAPTER 8 Designing user-friendly, interoperable data

Summary

Besides fulfilling their needs, users expect an API to be user-friendly: easy to
understand and enjoyable to use.

Design plays a crucial role in attracting or repelling users, making their work
easier or more complex. It can even be a source of joy.

To facilitate API usage, data must be user-friendly and simple, clear, helpful,
intuitive, and interoperable regardless of the context, whether that is a resource
path, path parameter, query parameter, header, request body, or success or
error response body.

For an efficient design process, treat user-friendliness via a distinct second data-
modeling pass after ensuring that the identified data fulfills user needs.

Ensure that the data is ready to use. Select simple yet effective data, enhance it
with supporting or processed data, and use well-known or standard data.

Don’t format numbers that can be used in calculations as strings; consumers
would have to parse them. However, numeric references or codes may benefit
from string formatting.

Avoid using non-human-readable codes such as 1 and xyz in API data whenever
possible; they are challenging to understand. If using them is unavoidable, add
human-readable labels.

Use the ISO 8601 standard to represent dates and times to facilitate readability.
Use its time precision only when necessary to prevent dealing with time-zone
complexity.

Organized data is easier to understand and process. Group properties that are
shared by concepts in objects (typically, conceptThis and conceptThat), and
group similar elements in arrays (commonly, iteml to itemN). Sort arrays for eas-
ier manipulation, and sort object properties to make it easier to find information.
Smaller data models are easier to understand and process, but don’t question
the number of properties and structure depth; rather, consider their relevance.
Consider using a resource identifier or a summarized or complete model when
embedding a resource into another, to provide sufficient but useful data.

Avoid embedding large arrays into a resource. They require search and pagina-
tion features that are only accessible via dedicated operations.

For an efficient design process, identify concepts during the first design pass
and choose user-friendly names only after typing, formatting, and organizing
the data.

To design easy-to-understand names, use simple language casing to separate
words; arrange words hierarchically; remove parent prefixes, type suffixes, and
unnecessary words; and aim for three words max (but not at the expense of
meaning).

Check whether standard or preexisting models can be used; doing so fosters
interoperability.

Exercises 201

= Seeck consistency and interoperability across a broad range, ideally aligning with
global standards or industry practices, while carefully considering complexity
and ensuring that you meet all requirements. Local-only consistency can also be
sufficient.

Exercises

This section contains exercises to help you practice some key skills in this chapter.
You’ll find the solutions in the online appendix (https://mng.bz/260N). I encourage
you to solve them and read their solutions, which include detailed explanations, refer-
ences to relevant sections, and additional comments.

Exercise 8.1

Listing 8.1 shows partial flight resource data used by a flight comparator. Based on this
chapter’s teachings, how could this data be completed or improved to be user-friendly
and interoperable? Hint: use an actual flight comparator as a virtual SME.

Listing 8.1 Flight data

{

flight: {
"number": "AF1234",
"departureAirport": 12345,
"departureTime": 1733063400,
"arrivalAirport": 67890,
"endTime": 1733073000,

b

"class": 56,

"price": {
"base": 150,
"taxes": "50.00",
"discount": 0.1

Exercise 8.2

Listing 8.2 shows an artist’s complete resource data for an audio streaming service.
Are there any elements that should be removed, and why?

Listing 8.2 Artist data

{
"idv: 12345,
"name": "Maaya Sakamoto",
"bio": "Maaya Sakamoto started ...",
"genres": ["anime", "j-pop"],
"albums" : [
{ "id": 54, "name": "Grapefruit", ... }

1,

https://mng.bz/260N

202

CHAPTER 8 Designing user-friendly, interoperable data

"tracks": [
{ "id": 54, "name": "Feel Myself", ... }

Exercise 8.3

Listing 8.3 shows the data for a “Book” resource in an API for a library. List the prob-
lems in naming and organization that make this data non-user-friendly, and fix the
data based on what you learned in this chapter.

Listing 8.3 Book data

{

"bookReference": "B12345",
"title": "The Eternal Champion",
"authorCode": "A123",

"name": "Michael Moorcock",
"published year": 1970,
"authDob": "1939-12-18",

"ctry": "GBR",

"genre": "Fantasy"

Designing user-friendly,
interoperable operations

This chapter covers

Designing easy-to-use requests and responses
Filtering, sorting, and paginating lists

Handling multiple data formats

Erroring gracefully

Avoiding hiding capabilities

Standardizing operations

Imagine a Shopping API whose “Create order” (POST /orders) operation returns 400
Bad Request without further explanation for any error, such as a typo in a property
name (gantity instead of quantity), an invalid product reference, or an unavailable
product. Developers will have difficulty figuring out the problem in their code, or
end users may face an unhelpful “Impossible to validate order” message.

And it’s not only error-handling that can be problematic. Despite a valid pur-
pose, an operation’s HTTP representation, requested and returned data, and
behavior can increase development time, code complexity, and error risk, and
can even affect end users. Designing user-friendly, interoperable operations pre-
vents these problems, making developers more efficient and leading them to love
the APL

203

204

9.1

E

9.1.1

9.1.2

CHAPTER 9 Designing user-friendly, interoperable operations

This chapter provides an overview of what makes an operation user-friendly and
interoperable, and when and how to take these aspects into consideration. Then we
explain how to design easy-to-understand and guessable operations, request easy-to-
provide inputs, and return ready-to-use, successful outputs. We show how to design
flexible operations that adapt data to consumer needs. Subsequently, the chapter
dives into error-handling, illustrates how a design can hide capabilities, and discusses
how to aim for consistency and standardization.

What makes operations user-friendly
and interoperable?

API operations must be user-friendly and interoperable to enable efficient develop-
ment and ensure an excellent end-user experience. This section illustrates how opera-
tions can be user-friendly and interoperable by

Meeting user needs
Exposing clear capabilities
Using user-friendly data
Being helpful

Being consistent

Being standard

NOTE User-friendliness and interoperability matter for public, partner, and
private APIs (section 8.1).

User-friendly operations expose clear capabilities
that meet the needs

As for data, meeting user needs fosters the design of user-friendly operations that con-
sumers will easily understand. Suppose we create a car rental API (as in section 8.2)
dealing with car rental shops, the cars they own, and renting them. Identifying capa-
bilities that meet user needs will likely end with “Rent a car” and not “Implement a
new deal,” an unclear jargon that doesn’t fit in this context. However, beyond meeting
user needs, capabilities must be clearly visible through the API’s operations. For exam-
ple, although it’s possible to add a car to a rental shop by updating the shop, we likely
need a dedicated “Add a car to a shop” operation.

User-friendly operations use user-friendly data and are helpful

To be user-friendly, an operation must request and return data that is also user-friendly
(section 8.2). We must apply what we learned to all the operation data, including
resource paths, path parameters, request headers, query parameters, request bodies,
response headers, and response bodies. If our initial HTTP representation of “Search
cars” is GET /shops/{shopId}/cars, we may wonder if we can simplify it to GET /cars,
which requests no parameters. However, that brings us back to the needs analysis:
“Should we search cars across all shops?” How we organize data in requests is also

9.1.3

E

9.2

9.2 When and how to design user-friendly, interoperable operations 205

essential. For example, “Rent a car” input data must be in the request body and not
randomly split between the body, headers, and query parameters.

Operation behavior and data must be helpful and facilitate consumers’ work.
“Search cars” should only return available cars by default and should be able to filter
on a specific type of vehicle. If startDate and endDate are missing when calling “Rent
a car,” the error feedback should explicitly state that these two required properties are
missing instead of returning an empty 400 Bad Request HTTP status without any other
information, which would likely affect the end user’s experience (section 8.1.3). Once
the rented car is used, if the distance is tracked, indicating the remaining distance (in
miles or kilometers) allowed by the contract when using “Get car rental information”
would be an excellent addition.

User-friendly, interoperable operations are consistent
and standard

Just as with data (section 8.9), consistency and standardization make operations user-
friendly and interoperable. Developers can guess which operations exist and how they
behave based on their knowledge of the subject matter and HTTP and their experi-
ence with this or other APIs. If GET /shops returns the list of car rental shops, users
can guess that POST /shops allows for creating a new shop and GET /shops/ {shopId}
returns all shop details. A nonintuitive design might include GET /shops (plural resource
name) and GET /shop/{shopId} (singular resource name); developers couldn’t build
the second resource path from the first. With consistent requests and responses,
developers can guess which data is needed to rent a car by looking at the response
“Get car rental information.”

Using well-known or standard elements and behaviors is key at the operation level.
If the AP is private, developers expect the car ID used in the /cars/{car1d} path not
only to be used across the API's operations but also to be the well-known ID shared
between all internal systems. Developers also expect the API to comply with HTTP; for
instance, a GET /cars/1234 must read a car, not delete it, and return a 404 Not Found
HTTP status if the car 1234 doesn’t exist.

NOTE Consistency and standardization make APIs highly intuitive, simplify
coding, and guarantee an invaluable “wow” effect. Developers will feel like
they have superpowers.

When and how to design user-friendly, interoperable

operations

Now that we’ve seen what makes operations user-friendly and interoperable, we can
discuss when to take these concerns into consideration and how to design such
operations.

206

9.21

CHAPTER 9 Designing user-friendly, interoperable operations

When to take user-friendly, interoperable operations into
consideration

As shown in figure 9.1, we’re still working on the user-friendly, interoperable layer, a
second pass through our initial versatile API design that does the job. Don’t waste
time wondering whether GET /shops/ {shopId}/cars can be optimized into GET /cars
when first representing the “Search cars” operation with HT'TP; keep it for this second
pass. We can simultaneously work on data and operation user-friendliness and
interoperability because they are intimately linked. As we said for data in section 8.3,
there will probably be some back and forth between meeting user needs and being
userHfriendly and interoperable, as with the GET /cars optimization (section 9.1.2).

~ N
- an = r_ —-_—— -
| DEFINE 1| DESIEN , #_DEVELOP ™
! : : I ety
T 1 || dentity | [Dosnthe | [Peiee el B the LG
Needs [~j— —B the API interfate in?:er‘paCe AP design , DEPLOY ,
' S ~ gl
! ki artifoct * Provipe; ¥
- — 1 _CONSUME _y

A versatile at
does the rigH: job

An AP[that is user—£riend|\/

“Searth for m

ear vental

id: string

and interoperable

location: {}

|

An APl that eonsiders
tonstraints

shops”

A veasoned and Lon{‘.inuoush/
improving AP| design protess

Represent o‘?eva‘(:ions.

Observe operations
with HTTP

from a REST angle

Figure 9.1 Once we have designed versatile operations that do the job, we can revisit them to ensure that
they’re user-friendly and interoperable. We’ll rework the HTTP representations and input and output data
modeling.

E

9.2.2

NOTE The initial operations design will require less and less rework to
become user-friendly and interoperable, thanks to experience and the help
of API design guidelines that we’ll craft to facilitate our work (section 16.3).

How to design user-friendly, interoperable operations

Although identifying API capabilities gave us a solid foundation to create user-friendly
operations by meeting user needs (“Rent a car” versus “Implement a new deal”), we
need to go further. Figure 9.2 summarizes how to create user-friendly operations
based on what we saw in section 9.1.

We craft easy-to-understand and guessable operations by working on paths and
HTTP methods (GET /shops and GET /shops/{shopId} or GET /shop/{shopid}). We

9.3

9.3 Designing easy-to-understand, guessable operations 207

Easy to understand and guessable oFera{:ion)_ IEasy to provide input (lﬁady o use successful vesponse
OPERATION | HTTP REPRESENTATION INPUT | DESCRIPTION |LOCATION
List shops GET /shops carld | Hesdn ::allovlvecli" : "1000'
et h f Well-known ID |Body) remaining": 536
et shop info.| SEF—shep/ tsheptdt .
P\ G /ehope (shopra) | LstartDste Body Adding processed data

Flexible operation 200 5D REQUEST Granularity and scope
GET /cars?type=minivan How TO ADD A CAR?
Filter cars by type "error": "Missing startDate and endDate" Wpdate shop or
Add a car to a shop

l Consistency '

OPERATION INPUT OUTPUT

Rent a car CarRentalCreate | CarRental

/cars/{Well-known car ID}
Interoperable identifier

Get car vental CarRental

Figure 9.2 Consistent, interoperable, user-friendly operations with appropriate granularity, HTTP
representations, input, and output and helpful error-handling are easily used by anyone and any system.

ensure that the inputs are easy to provide (“Rent a car” input location, well-known car’s
ID). We also ensure that successful responses are ready to use (“Remaining allowed dis-
tance”). We enhance operations with features to make them flexible (filtering on a spe-
cific type when searching cars). We handle errors gracefully and help consumers fix
them (indicating that the required startDate and endDate are missing when renting a
car). We reconsider operation granularity and scope to ensure clear capabilities (adding
a car via the shop’s update or a dedicated operation). At all times, we ensure that we are
making consistent design decisions and aim for standardization (similar data in “Rent a
car” and “Get car rental information” and well-known car ID). The rest of this chapter
dives into all these concerns using the Banking API introduced in the previous chapter.

NOTE This chapter focuses on user-friendly, interoperable operations. How-
ever, operation design must also address meeting user needs (section 5.1),
performance (section 13.1), security (section 12.1), and implementation con-
straints (section 14.1).

Designing easy-to-understand, guessable operations
User-friendly operations should be immediately understandable based on their path
and HTTP method and should even be guessable without being seen. We can achieve
this by

Combining meaningful resource paths and HTTP compliance

Creating predictable resource paths

Crafting short but accurate resource paths

208

9.3.1

9.3.2

CHAPTER 9 Designing user-friendly, interoperable operations

Combining meaningful resource paths and HTTP compliance

We have learned to design meaningful paths and use appropriate HTTP methods
when representing operations with HTTP (section 4.1). This is a good start to make
operations easy to understand and guessable. A path like /accounts is easily under-
stood as the “list of accounts,” whereas a less user-friendly /act path can be confusing.
Users can also easily understand the /accounts/{accountId}/transactions hierar-
chical path as “account’s transactions.” Thanks to the appropriate use of standard
HTTP methods, if the /customers path represents the bank’s customers, users can
guess that GET /customers allows them to “List or search for customers” and POST
/customers means “Add or create a customer.” Although meaningful and readable,
options like POST /add-customer or POST /delete-customers are less guessable.

CAUTION Although there are other HTTP methods (see www.iana.org/
assignments/http-methods/http-methods.xhtml), only use POST, GET, PUT, PATCH,
and DELETE to avoid surprising developers, their libraries, and their HTTP inter-
mediaries with obscure methods (we’ll add opTIONS to the list in section 11.4.1).
Also, it’s essential to respect the meaning and inherent behavior of these HTTP
methods; don’t modify data with a GET, for example. The implementation must

comply with the methods’ “idempotent” or “safe” nature. Don’t worry if these
terms are unfamiliar; we’ll discuss these concerns in section 12.5.2.

Creating predictable resource paths

A path must be hierarchical and strictly organized to be predictable. Each level must
have a specific purpose.

Resource paths must behave like hierarchical file system paths. Using /accounts
(plural) and /account/{accountId} (singular) doesn’t make any sense. A parent direc-
tory doesn’t change when we access one of its files. Users intuitively append an account
identifier to /accounts to read a specific account (GET /accounts/{accountId}). Simi-
larly, users who know that an account has transactions append transactions to the
path to call GET /accounts/{accountId}/transactions. This works only when the
child has its parent as root (/path/to/parent and /path/to/parent/child). As seen in
section 4.2.5, using singular resource nouns is OK; just be consistent and use singular
everywhere (/account, /account/{accountId}, /account/{accountId}/transaction).

Avoid randomly structured paths; each path segment must have an actual purpose.
Although readable and hierarchical, paths such as /savings/accounts/{accountId}
and /checking/accounts/{accountId} are puzzling, especially when compared to
/customers/{customerId}.