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Preface

This book arose out of a third-year module in graph theory given at the
University of Birmingham over the three years 1996-9, and again in 2001. This
module was designed to be accessible to a large number of students (the prereg-
uisites are minimal), but still to present some challenging material.

The course centres around the famous ‘four-colour conjecture’, that every
map can be coloured with four colours, subject to the usual convention that no
two adjacent countries may be coloured the same. From its first appearance in
mathematical folklore in the 1850s, until its eventual solution in the 1970s, this
apparently simple problem has frustrated generations of mathematicians, both
professional and amateur.

The book begins with a discussion of the early approaches of Kempe and Tait
in the 1870s and 1880s, hefore revealing the flaws in their arguments, and then
describing some of the ways in which the methods were refined, the problems
axiomatised, and the conjectures generalized. In the course of this, we present
several of the finest gems of the subject: Heawood’s bound for map-colouring
on a surface with holes, Kuratowski’s theorem characterising which graphs (or
maps) can be drawn on a surface without holes, and Vizing’s theorem on the
minimum number of colours needed to colour the edges of a graph. The final
part of the book aims to provide some insight into the methods which eventually
cracked the four-colour problem.

Much of the material in this book was covered in a single course of about 20
lectures, although some extra material has been added for completeness, and to
facilitate a personal selection of topics. If students have met graphs before, then
Chapter 2 can be largely omitted. If the aim is to study the four-colour theorem
itself in some depth, then Chapters 7 and 8 are somewhat tangential and can
also be omitted. On the other hand, a more general graph theory course can be
made by picking a somewhat broader mix of topics from all the chapters.

I am grateful to the many students who took my course for their help in
removing errors and in stimulating me to better exposition. In particular I would
like to thank Tamar Watts, Stuart Underwood, Kate Stowe, Clare Robinson,
Richard Barraclough and Alan Barclay for their meticulous attention which
uncovered a number of errors. Thanks go also to my colleagues, especially Chris
Parker and Tony Gardiner, for their constructive criticism and helpful sugges-
tions, as well as to the anonymous referees, who made many useful comments
which I believe have led to significant improvements. Needless to say, I take the
blame for all the errors which remain. Finally, thanks to Elizabeth Johnston,
Ruth Walker, and everybody else at Oxford University Press who helped trans-
form my lecture notes into this book.
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Part 1

Graphs, maps and the
four-colour problem






1
Introduction

1.1 Preliminaries

In this book, we will study graph theory with particular reference to colouring
problems. Perhaps the most famous graph theory problem is the four-colour
conjecture (4CC), first stated by Guthrie in 1852, widely publicized by Cayley
in 1878, but only solved in 1976 with computer assistance (so now we can call it
the four-colour theorem, or 4CT). We will study this and related problems.

First, we state the four-colour problem. This can be expressed in a variety of
different ways, and we start with a rather informal version, before giving a more
mathematically precise version later on. A map consists of countries bounded
by simple closed curves, and we say that two countries are adjacent if they
have a common border which contains at least a segment of a curve, not just a
finite collection of isolated points. We wish to colour the countries so that any
two adjacent countries have different colours. The problem is, how many colours
do you need in order to be able to colour all maps in this way? In order that
the problem should have an answer, we need to make a few restrictions on what
constitutes a map. For example, each country must be connected, or else there
is no bound on the number of colours which might be required.

The outside region of the map is also considered a country, although this
makes only a technical difference to anything. By considering the map in Fig. 1.1,
we see that four colours are certainly necessary, as each of the four countries
labelled A, B, C, D is adjacent to each of the other three.

Q

Fig. 1.1 A map which is not 3-colourable.
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1.2 History of the four-colour problem

It is worth noting that, despite many assertions to the contrary, there is no
evidence of this question being raised by map-makers before it was raised by
mathematicians. After the f{irst recorded statement of the problem/conjecture
by Francis Guthrie in 1852 (communicated by his brother Frederick to Augustus
De Morgan, and recounted in a letter from De Morgan to Hamilton on 23rd
October), it remained in some obscurity until Cayley drew attention to the pro-
blem again in 1878, in the Proceedings of the London Mathematical Society. It
was then that mathematicians realized the problem had not yet been solved, and
some effort was put into its solution. At this point, it was generally thought that
the problem was not seriously hard, and would soon be solved.

Kempe provided a clever argument in 1879 which purported to prove that
four colours were sufficient. It took some 10 years before the error was detected,
by Heawood, who then patched up the proof to show that five colours were
suflicient. (Heawood continued publishing occasional papers on the four-colour
problem until 1949!) The problem remained open, then, to determine whether
four colours were enough, or whether there was some map which required five
colours. It was only at this stage that mathematicians began to feel that perhaps
the problem was harder than was at first thought.

Progress was slow. The two main ingredients in the eventual proof by Appel,
Haken and Koch [4,5] in 1976 were ‘reducibility’ and ‘discharging’, which we
explain in Chapter 9. The concept of reducibility was introduced formally in
1913 by Birkhoff [12], who managed to prove that many configurations were
reducible. Essentially this means that the configuration can be reduced to a
smaller case, which by induction we can assume to be 4-colourable.

The idea of discharging is due to Heesch, who really came quite close to
proving the four-colour theorem, and should he given more credit than he nor-
mally is for his part. (Ore, whose very influential book [37] on the four-colour
theorem was published in 1967, was apparently unaware of the work of Heesch.)
Essentially, one uses a kind of conservation law to show that if a graph glob-
ally fails to satisfy the four-colour theorem then there is some local obstruction.
Thus, ‘discharging’ produces a long list of these local obstructions, or ‘unavoid-
able configurations’ as they are called—that is, every graph (or at least every
minimal counterexample to the four-colour theorem) must contain at least one
of these configurations. Then each of these unavoidable configurations should
be proved reducible. This then provides an inductive proof of the four-colour
theorem.

The first proof used a very complicated discharging algorithm, devised by
hand, which produced an unavoidable set of 1936 configurations, each of which
was then proved irreducible, using a computer. It then turned out that 102 of
these configurations were redundant, so the number required for the proof was
just 1834. Later, this number was reduced still further, to 1482. A more recent
simplification of the proof by Robertson, Sanders, Seymour and Thomas [42)
used an unavoidable set of only 633 configurations.
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More details of the history of the problem can be found in the books by
Barnette [7], Fritsch and Fritsch [23] and Biggs, Lloyd and Wilson [10]. The
latter includes the original papers of Cayley and Kempe, as well as large parts
of Heawood’s paper, and other relevant papers up to 1936.

Exercises

Exercise 1.1 Find a map which cannot be coloured with three colours, but does
not have four mutually adjacent regions.

Exercise 1.2 (The empire problem) Consider the problem of colouring a map
of empires, in such a way that all the countries in a given empire are coloured
with the same colour. Construct a map of n empires which requires n colours.
(Each empire may consist of as many countries as you like.)



2
Basic graph theory

2.1 Some definitions

Before we get onto the real subject matter of the book, we revise the basic
definitions of graph theory. It is unfortunate that even the most basic of these
definitions is not entirely standardized, to the extent that not everyone agrees
even on the meaning of the word ‘graph’. Thus, you need to be aware of possible
differences in meaning when comparing with other sources.

Definition 2.1 A pseudograph G consists of a set V(G) of vertices and a
set E(G) of edges, such that each edge is incident with two (not necessarily
distinct) vertices. The edge is then said to join these two vertices, which are
called the endpoints of the edge, and are said to be adjacent. T'wo edges are
adjacent if they have an endpoint in common. An edge which joins a vertex to
itself is called a loop, while two edges which join the same pair of vertices are
called parallel, or multiple edges. A pseudograph with no loops is called a
multigraph, and a multigraph with no multiples edges is called a graph.

[Warning: some authors use the term ‘graph’ in place of our ‘pseudograph’
or ‘multigraph’, and in place of our ‘graph’ use ‘simple graph’ or ‘strict graph’.
To make matters worse, some people use ‘multigraph’ to mean what we call a
‘pseudograph’. Vertices are sometimes called ‘points’ or ‘nodes’, while edges are
sometimes called ‘lines’ or ‘arcs’.]

A graph is usually drawn with enlarged dots for the vertices, and straight
lines (or sometimes curves) for edges, in such a way that a vertex and an edge
are incident if and only if they meet in the diagram. We illustrate these concepts
in Figs 2.1 and 2.2. We sometimes draw edges of a graph crossing each other, as
in Fig. 2.3(a). This has no significance in graph theory.

Definition 2.2 A subgraph consists of a subset of the vertices and a subset
of the edges, with the property that for every edge in the subgraph, both its
endpoints are in the subgraph. A spanning subgraph is one which contains all
the vertices. The induced subgraph of G on a set W of vertices consists of W
together with all the edges of G which join vertices in W. {This induced subgraph
is also called the subgraph generated by W.)

See Fig. 2.3 for an example of a graph G, together with a spanning subgraph
and an induced subgraph. In a graph, as opposed to a multigraph or pseudograph,
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parallel

edges
¢ ® a vertex

an edge

a loop

Fig. 2.1 The basic concepts.

(a) F (b) E (C) E

Fig. 2.2 Some examples. (a) A pseudograph, (b) a multigraph and (c) a graph.

(a) X (b) I ] (c) Y

Fig. 2.3 A graph and some subgraphs. (a) A graph G, (b) a spanning subgraph and
(¢) an induced subgraph.

each edge is determined by its endpoints, and we shall often write uv for the edge
joining the vertices u and v.

Definition 2.3 A walk of length n is a sequence viejvses « - - vy, Uy 11 Of Ver-
tices and edges such that each is incident to the next. It is closed if it ends up
at the same place it started (i.e. if v1 = vp11), and open otherwise.

A trail is a walk in which all edges are distinct. A circuit is a non-trivial
closed trail, that is, a closed trail with at least one edge.

A path is a trail in which all the vertices are distinct (except possibly v and
Un11). A cycle is a circuit which does not contain a vertex twice (except at the
beginning and end).
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Some authors omit the vertices in this definition, as they are determined by
the edges (except in the trivial case of a walk in which all the edges go between
the same two vertices). Note that on a graph, as opposed to a pseudograph or
multigraph, the edges are determined by their endpoints, so a walk is completely
specified by the sequence of vertices. Thus, we often write vivs -+ - Upvp+1 as an
abbreviation for the walk viejvaes - - vpepvpy1 in a graph. For example, in the
graph shown in Fig. 2.4, we have an open walk abcbeg, a closed walk abcbegda,
an open trail abcebad, a closed trail or circuit abceba fhgda, and a cycle abcegda.
Again, you should be aware that the terms used by various authors for these
concepts vary widely, and the same word may have different meanings in different
books.

Definition 2.4 Two vertices are said to be connected if there is a walk from
one to the other.

Thus, in Fig. 2.5, the vertex v is connected to w, but not to z. It is intuitively
obvious from such a picture that all the vertices connected to v are connected to
each other. Similarly, if v is not connected to x, then v is not connected to any
vertex which is connected to x. This is expressed mathematically by saying that
connectedness is an equivalence relation on the vertices, which we now prove
formally.

@ >

g h

Fig. 2.4 A graph to illustrate Definition 2.3.

Fig. 2.5 Connectedness.
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Lemma 2.5 If u, v, and w are vertices in a graph (or pseudograph or multi-
graph), then

1. u is connected to u;

2. if u is connected to v then v is connected to u;

3. if u is connected to v and v is connected to w, then u is connected to w.

Proof

1. The walk u connects u with itself.

2. If uejvieqvs - - - e,v is a walk from u to v, then ve,, - - - voesvi e u is a walk from
v to u.

3. If uejviesvs -« e,v is a walk from u to v, and vfiw; fows -« frpw is a walk

from v to w, then ueyviegvy - - - e v frwy fows - - - fw is a walk from u to wD

Thus, the vertices are partitioned into equivalence classes under this equiv-
alence relation. There are no edges between a vertex v in one equivalence class
and a vertex z in another, because otherwise v and x would be connected, which
contradicts the assumption that they are in different equivalence classes. So we
can obtain all the edges by looking at one equivalence class at a time.

Definition 2.6 The induced subgraph on such an equivalence class is called
a connected component or just component of the graph. A graph is con-
nected if there is just one equivalence class, that is, if every pair of vertices is
connected.

For example, the graph in Fig. 2.5 has just two components, illustrated in
Fig. 2.6.

Definition 2.7 A tree is a connected graph with no cycles. A forest is a graph
with no cycles.

Examples are given in Fig. 2.7. The following characterization of trees will be
needed at one point later on (in the proof of Theorem 8.19), but is not essential
to the main theme of the book.

Lemma 2.8 Let G be a connected graph with p vertices. Then, G is a tree if
and only if G has p — 1 edges.

Proof First, suppose that G is a tree with p vertices. We prove by induction
on p that G has p — 1 edges. The induction starts with the trivial graph, with

(a) v (b) =

Fig. 2.6 Components. (a) One component and (b) the other component.
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(a) ° (b) °
‘\/./ .\/‘ |

Fig. 2.7 Trees and forests. (a) A tree and (b) a forest.

one vertex and no edges. Now suppose p > 1, so that G has at least one edge (for
otherwise G is not connected), and remove an edge from G. This disconnects G
into two pieces, for otherwise G would have a circuit, which is a contradiction.
Both pieces are trees, because they are connected and have no cycles. If they have
k and [ vertices, then by induction they have £ — 1 and [ — 1 edges, respectively,
so the total number of edges in G is

k-4 (-1 +1=(ktl) 1
:p—l

as required.

Conversely, suppose that GG is not a tree. Then we can remove an edge from
a circuit of G, and the resulting graph is still connected. Now continue removing
edges in this way until there are no circuits left. At this point, the graph is a
tree with p vertices, so has p — 1 edges. Therefore G has strictly more than p—1
edges. O

Definition 2.9 The degree (or valence or valency) of a vertex is the number
of edges which are incident to it. (In a pseudograph, we usually count a loop
twice.) The degree of a vertex v will be denoted d(v).

Notation We denote by d(G) the average degree of the vertices of G. The
minimum degree of the vertices of G is denoted §(G), and the maximum degree

by A(G).

Definition 2.10 A graph is complete if every pair of vertices is adjacent. A
graph (or multigraph) is bipartite if the vertices can be partitioned into two
sets X and 'Y such that all the edges join a vertex in X to a vertex inY . A graph
is complete bipartite if it contains all possible edges from a vertex in X to a
vertex in Y.

The complete graph on n vertices is usually denoted K,,, while the complete
bipartite graph on two sets of m and n vertices is denoted K, ,,. Figure 2.8(a)
shows K4 and Fig. 2.8(c) shows K3 5.
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Fig. 2.8 Some more graphs. (a) A complete graph, (b) a bipartite graph and (c) a com-
plete bipartite graph.

G H

Fig. 2.9 A planar graph G and a plane graph H isomorphic to G.

Definition 2.11 Two graphs (or pseudographs or multigraphs) G and H are
isomorphic if there is a one-to-one correspondence between the vertices, and a
one-to-one correspondence between the edges, which preserves incidence. In other
words, if the edge e in G corresponds to the edge f in H, then the endpoints of
e correspond to the endpoints of f. A graph (or pseudograph or multigraph) is
plane if it is drawn in the plane with no two edges crossing each other, and is
planar if it is isomorphic to a plane graph (or pseudograph or multigraph).

In Fig. 2.9, GG is a planar graph, on the vertices labelled 1,2,3,4, and H is a
plane graph isomorphic to G, on the vertices labelled a, b, ¢, d. An isomorphism
is given by the map taking 1 to a, 2 to b, 3 to ¢, and 4 to d. Another pair of
isomorphic graphs is shown in Fig. 2.12.

2.2 Maps

In order to study the four-colour problem mathematically, it is first necessary to
provide precise definitions of all the concepts involved. There are several ways
of doing this, and as you might by now expect, there is little agreement about
which is best. For our purposes, we shall consider a map M as consisting of
a planar pseudograph G(A), called the underlying (pseudo)graph of M,
together with an embedding of M in the plane. By an embedding, we mean a
drawing in which the edges do not cross.

In reality, this concept of map is still too general. When we think of drawing
a map, with the lines (edges) corresponding to boundaries between countries, we



12 Basic graph theory

only need to put vertices where three or more regions meet at a point. Vertices
of degree 0 or 1 do not occur, and vertices of degree 2 can be eliminated. Thus,
we may assume if we like that every vertex of G{M) has degree at least 3. Unless
otherwise specified, we shall make this assumption throughout. For technical
reasons, when we consider the colouring of maps, we consider the exterior region
of the plane to be one of the countries which needs to be coloured.

There are [urther simplifications we can make. For example, if G(M) has a
loop, then this loop divides the plane into an inside and an outside (note that
there may be edges of the graph inside the loop!). On both the inside and the
outside of the loop there is only one country which has this loop as a boundary
edge. So if we can 4-colour the part of the map inside the loop, and the part of
the map outside the loop, separately, then we can 4-colour the whole map. (All
we have to do is ensure that the two countries bounded by the loop are coloured
different colours—if they are both coloured red, say, then recolour red as green
and green as red inside the loop.) Thus, we may assume that G(M) has no loops,
so is a multigraph rather than a general pseudograph.

Similarly, if G(M) has two parallel edges, then these edges form a closed curve
in the plane, and again divide the plane into an inside and an outside. This time
we may have two (not necessarily distinct) colours inside, bounded by these
edges, and two colours (or one colour) outside. Again, since we have four colours
available, we can arrange that the four or fewer colours used by the countries
adjacent to one or other of our two edges, are distinct. Thus, we may assume that
G(M) has no parallel edges, so is genuinely a graph rather than a multigraph.

We may also assume that G(M) is connected. For if not, we remove one
component C and colour the map which remains. We now only need to colour
the map corresponding to C, and ensure that the colour of the outside country
matches the colour of the country of M it came from. As usual, this may be
achieved by changing the colours in one of the two maps we are putting together.

Note also that in any sensible map, no country has a boundary with itself. If
it did, then removing an edge from this boundary would disconnect the graph.
Conversely, if removing an edge from G(M) would disconnect the graph, then the
two countries in M on either side of this edge can be connected without crossing
any boundaries. In other words, they were already one and the same country.
Thus, we can exclude this case also. {An edge of a connected graph G whose
removal disconnects G is called a bridge.)

It follows that for the purposes of considering the four-colour problem, and
many similar problems, we may assume that G(M) is a connected plane graph
(no loops or parallel edges) with no bridges and no vertices of degree less than 3.
A map M with this property is called a standard map. We shall often assume
our maps are standard, without necessarily saying so explicitly each time.

2.3 Duality

You may have come across the idea of duality of regular polyhedra, in which
you join up the midpoints of adjacent faces of one polyhedron to obtain the
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dual polyhedron. Doing this a second time gets you back to a smaller version
of the original polyhedron. In this duality, a cube is dual to an octahedron, a
tetrahedron is self-dual, and a dodecahedron is dual to an icosahedron.

A similar procedure can be performed on any polyhedron whatsoever, that
is, any solid figure whose surface is made out of polygons. Indeed, with a little
stretch of the imagination this procedure can be generalized to any connected
map, or plane pseudograph. Thus given a map M, you draw a vertex of D(M)
in the interior of each region of M (including the exterior region), and join them
by edges, one edge of D{M) crossing each edge of M. The new map (or plane
pseudograph) D(M) is called the dual of M. See Fig. 2.10 for an example. Notice
that, at least in this example, D(D(M)) is isomorphic to M.

Remark If we try to generalize to non-connected maps, then the dual is no
longer well-defined. Moreover, it is obvious that the dual of any (connected or
non-connected) map is always connected, so in this case D(D(M)) cannot be
isomorphic to M.

We now ask, how do the properties of D(Af) relate to the properties of M?
We have already seen that if M has p vertices, ¢ edges and r faces, then D(A])
has r vertices and ¢ edges. To show that D(M) really is a ‘dual’ to M, it is
necessary to show that D(D(M)) is isomorphic to M, and in particular that
D(M) has p faces.

To see this, note that a vertex v of degree d in M is surrounded by d regions,
each adjacent to two others. Thus, in D{M) we obtain a cycle of vertices, bound-
ing a region which contains v and (because M is connected) no other vertex of
M. Moreover, every region of D(M) has edges of M extending into it, so contains
at least one vertex of M. So in constructing D(D(M)), we might as well take
the vertices to be the vertices of M, and similarly for the edges (see Fig. 2.11).

This means that a vertex of degree d in M corresponds to a region with d
sides in D(M), and vice versa. In particular, a vertex of degree 1 corresponds to

(a) (b)

Fig. 2.10 Duality. (a) A map M and {b) M with its dual.
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(2) (b)

Fig. 2.11 Correspondence between vertices and faces. (a}) A vertex in M, (b) the
corresponding region in D{M), (c) a region in D(M) and (d) the corresponding vertex
in D(D(M)).

a loop with nothing in its interior. More generally, any loop in M corresponds to
a bridge in the dual D{M). Similarly, a pair of parallel edges in M corresponds
to a pair of edges in D{M) whose removal disconnects D(M).

We can think of the dual graph of a map as consisting of vertices representing
the capital cities of all the countries, and edges representing roads between these
cities, one road crossing each segment of border between two adjacent countries.
The dual graph gives us an easier way to give the four-colour problem a pre-
cise mathematical form. Rather than colouring the countries, we can consider
colouring the capital cities—this is of course equivalent, since the capital cities
are in one-to-one correspondence with the countries themselves. The condition
that no two adjacent countries should have the same colour now translates into
saying that two capital cities connected by a direct road should not have the
same colour. Equivalently, we are trying to colour the vertices of D(M) in such
a way that adjacent vertices have different colours.

Now it is clear that we need to ignore loops, as it is impossible to colour a
vertex differently from itself. Also, if two vertices are adjacent, then it does not
matter how many edges there are joining them. Thus we can simplify multiple
edges to single edges. In other words, we might as well restrict to graphs. It is
also clear that if we can prove the four-colour conjecture for connected graphs,
then we can prove it for all graphs.

The concept of duality can be applied more generally, to any plane connected
psuedograph. Notice that a given planar graph can in general be embedded in the
plane in many different ways, and of course the four-colour conjecture does not
depend on the particular planar embedding used. However, the interpretation
of the graph as the dual graph of a map may bhe completely different.

To put this another way, different plane embeddings of a planar graph G may
give different dual graphs D(G). In other words, we can have isomorphic graphs
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Fig. 2.12 Two isomorphic graphs with non-isomorphic duals.

with non-isomorphic duals {see Fig. 2.12). Here, the outer face of the first graph
has five edges, so the dual graph has a vertex of degree 5. On the other hand,
all faces of the second graph have three or four edges, so all vertices of the dual
graph have degree 3 or 4. Therefore the two dual graphs cannot be isomorphic.

2.4 Euler circuits

Euler (pronounced ‘oiler’) was a famous eighteenth century Swiss mathemati-
cian. He is generally credited with ‘inventing’ graph theory in his paper on the
Kénigsberg Bridge problem in 1736, although he did not draw any graphs, or
use the word ‘graph’. Indeed, the use of the word graph in this context only goes
back to Sylvester in 1878.

Simply described, the problem is whether it was possible to walk around the
city of Konigsberg, crossing each of the seven bridges exactly once, and arrive
back at one’s starting point. Figure 2.13 gives a schematic representation of the
bridges over the River Pregel at that date. A process of trial and error will soon
convince you that no such walk is possible. Euler’s contribution was to produce
a rigorous proof of this, and to generalize it to a criterion for deciding, given any
arrangement for bridges, whether such a walk exists. He proved the necessity of
his condition, but did not apparently see the need to prove sufficiency.

The idea is to label the four land areas (the two islands and the two banks of
the river) with the letters, A, B, C, D. Then, except at the beginning and the end
of the walk, every time you enter and leave one of the areas A, B, C, D, you do so
by crossing one bridge to enter, and another bridge to leave. So you use up two
bridges at a time, and therefore you use an even number of bridges altogether.
Unfortunately, each of the four areas A, B, C, D has an odd number of bridges to
it, so the walk is impossible. Indeed, the starting point is no different from any
of the others: you use one bridge to leave initially, then two for each time you
return and leave again, and finally one more bridge to return for the last time.
So, again there should be an even number of bridges from that point.

We can express this in the language of graph theory by replacing the land
areas by vertices, and the bridges between them by edges. In this way we obtain
a multigraph, as in Fig. 2.14. Corresponding to the fact that each area A,B,C,D
has an odd number of bridges to it, is the fact that each of the vertices of the
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D

Fig. 2.13 The Konigsberg bridges.

D

Fig. 2.14 The multigraph of the Konigsberg bridges.

multigraph has odd degree. The walk that we are looking for is a circuit which
uses each edge exactly once. Such a circuit in any multigraph is now called
an Euler circuit. The above discussion essentially contains Euler’s proof of the
following theorem, although he did not use the modern language of graph theory.

Theorem 2.12 A multigraph possesses an FEuler circuit only if the degree of
every vertex is even, and every edge is in the same component (in other words,
it is connected except for isolated vertices).

Notice that we have not proved the converse of this result! It is not as easy
as you may think. The problem is that if you just keep walking you might run
out of places to go to from where you are, while still not having used all the
edges in some other part of the multigraph. Thus, you may have to go back and
insert an extra circuit into the walk somewhere. Formally, we need to express
this as a prool by induction, or the following contrapositive version (a proof by
contradiction).

Theorem 2.13 A multigraph possesses an Euler curcuit if it is connected and
the degree of every vertex is even.
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Proof Suppose G is a connected multigraph and the degree of every vertex
is even. If G does not possess an Euler circuit, then let viejvges - - - vye,v1 be
a circuit which is as long as possible subject to not containing any edge more
than once. Call this circuit C'. By assumption, there is an edge e not in C. Since
G is connected, we may assume that one of the endpoints of e is already in C,
so let this endpoint be v;, and let the other endpoint of e be w;. Now an even
number (possibly 0) of the edges incident with w; are already used in C. Also
e is incident with wi, and wy has even degree, so there is another edge, f1, say,
incident with wy and not used in C.

Let ws be the other endpoint of f;. The same argument now applies to ws,
and by induction we obtain a walk

views frwafo - - -

such that all the edges e, f1, f2,... are not used in C. Since the multigraph is
finite, this process must eventually stop, but the only way this can happen is if
we arrive back at a vertex after using all edges incident with it, that is, an even
number of edges. But the only vertex where this can happen is v;, so we obtain
a circuit

view frwafo - wi frv

and then
v1e1v2eg - - - € 1Vew flws - - - Wi frvs€s - - Uneny

is a longer circuit than C, with no repeated edges. This contradiction completes
the proof. 0O

Exercises

Exercise 2.1 Let G be the graph in Fig. 2.15. Draw the induced subgraphs on
the following sets of vertices.

1. {b,c,e, f};
2' {bvcaf?g};
3. {a,d,e, f}.
Draw a spanning subgraph which is a tree.
a b c
®
g
d e f

Fig. 2.15 A graph for Exercise 2.1.
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Exercise 2.2 We say that two plane graphs are isomorphic as plane graphs
(as opposed to being isomorphic only as graphs) if there are one-to-one correspon-
dences between vertices, edges and faces, preserving incidence. A plane graph is
called self-dual if it is isomorphic to its dual graph, as plane graphs. Show that
the tetrahedron (i.e. the complete graph Ky on four vertices) is self-dual. Find
another plane graph which is self-dual.

Exercise 2.3 Prove formally that the two graphs in Fig. 2.12 are isomorphic
(as graphs), but are not isomorphic as plane graphs.

Exercise 2.4 Prove that a standard map can be 2-coloured if and only if every
vertex of the underlying graph has even valency.

Exercise 2.5 Prove that the following three conditions on a graph G are equiv-
alent:

1. G is bipartite;

2. all cycles in G have even length;

3. the vertices of G can be 2-coloured, so that adjacent vertices have different
colours.

Exercise 2.6 Show that if M has a cutvertex (i.e. a vertex whose removal dis-
connects M) then so does D(M).

Exercise 2.7 Show that every edge in a tree is a bridge.

Exercise 2.8 Prove that if G is a connected graph such that every edge is a
bridge, then G is a tree.

Exercise 2.9 Show that there are just four non-isomorphic graphs on three
vertices.

Exercise 2.10 Show that there are just 11 non-isomorphic graphs on four ver-
tices. How many of these are connected?” How many of these are trees?

Exercise 2.11 Show that there are just six non-isomorphic trees on six vertices.
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Applications of Euler’s formula

3.1 Euler’s formula

You may have met Euler’s formula for regular polyhedra: if V' is the number of
vertices, F the number of edges, and F' the number of faces, then V- E+ F = 2.
There are five such regular polyhedra, and you can check this equation in the
five cases (see Table 3.1). Moreover, since this is a purely combinatorial result,
which does not depend on the actual shapes of the polyhedra, we can stretch
them and flatten them out onto a piece of paper, and hence draw them as maps
or graphs in the plane. These graphs are drawn in Figs 3.1 and 3.2. Notice that
one of the faces of the polyhedron has now become the whole of the outside
region of the map.

What is not so well known is that Euler’s formula actually holds for any con-
nected map, or, equivalently, for any connected plane graph, or even connected
plane pseudograph. Euler announced this result in 1750, but admitted he could
not prove it. His proof published in 1752 does not actually cover all cases, and
the first complete proof was given by Cauchy in 1813.

We prove the theorem by induction on the number of edges in the graph.
First, we need a technical lemma, which is intuitively ‘obvious’ but is nevertheless
worth proving carefully.

Lemma 3.1 If a pseudograph has at least one edge, and has no vertex of de-
gree 1, then it contains a cycle.

Proof Let e; = vivs be an edge. Then vy does not have degree 1, so either e;
is a loop, in which case we are done, or there is a second edge e; = vovs, say,

Table 3.1 Euler’s formula for the five Platonic

solids

|4 FE F V-FE+F
Tetrahedron 4 6 4 2
Cube 8 12 6 2
Octahedron 6 12 8 2
Dodecahedron 20 30 12 2
Icosahedron 12 30 20 2

19
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(a) (b)

Fig. 3.1 The underlying graphs of the five Platonic solids I. (a) Tetrahedron, (b) cube
and (c} octahedron.

incident with vs. Thus there is a trail vie;veesvs. Again, vz does not have degree
1, so (unless v3 = vy or vy, in which case we are done) there is another edge
e3 = v3yy # eq extending the trail to viejveesvzesvy. In general, we obtain a
trail viejvses - - - €;_1v;, and v; does not have degree 1, so we can adjoin another
edge e; = v;u;41 to the trail. Eventually, since the pseudograph is finite, we must
end up at a vertex we have already had. Suppose that the first time this happens
is when we try to adjoin v;y1, and we find that v;1; = v; for some 5 < 4. Then
Vi€V 41 - Vi€V 1S & cycle, since all the vertices vs,v;41,...,v; are distinct.

|

Theorem 3.2 (Euler’s theorem) IfG is a connected plane pseudograph, with
p vertices, q edges, and r faces, thenp —q+r = 2.

Proof By induction on the number ¢ of edges. If there is a vertex of degree 1,
remove it and the edge incident to it (see Fig. 3.4(a)). This does not change the
number of faces, so does not change the value of p— ¢+ 7. If there is no vertex of
degree 1, then as in Lemma 3.1 we can keep walking along the pseudograph until
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Fig. 3.2 The underlying graphs of the five Platonic solids II. (a) Icosahedron and
{b) Dodecahedron.

we get to somewhere we have been before. Therefore, there is a circuit in the
pseudograph, and we can remove one of its edges while keeping the pseudograph
connected (see Fig. 3.4(b)). This does not change the number of vertices, but
decreases the number of edges and faces by 1 (since two faces have been combined
into one), and therefore, the value of p — g+ r is again unchanged. Eventually, we
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U1 va U3 V4 Uy Vj+1

Fig. 3.3 The proof of Lemma 3.1.
(a)
(b)

Fig. 3.4 Steps in the proof of Euler’s theorem. (a) Removing a vertex v of degree 1
and (b) removing an edge e from a cycle.

Fig. 3.5 Projecting from a sphere to a plane.

have removed all the edges, and we are lelt with one vertex (since the resulting
pseudograph is still connnected) and one face, sop— g+ r = 2. m]

As we saw when looking at the regular polyhedra, this formula really holds
on the surface of a sphere: just make a hole in the middle of some region, and
flatten out the sphere onto a plane. This is, of course, what we do when making
real maps of the surface of the Earth. In particular, all questions and results
about plane graphs can be reformulated in terms of graphs drawn on the surface
of a sphere. More formally, we can project a map from a sphere onto a plane {or
vice versa) by drawing rays from the North Pole onto a horizontal plane through
the South Pole (see Fig. 3.5).
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3.2 Applications

From now on we shall usually use p for the number of vertices of a pseudograph
G, and ¢ for the number of edges. For plane pseudographs we also use r for the
number of faces (including the exterior face). There are some useful inequalities
involving p, ¢, and r for plane graphs, most of which follow from Euler’s formula
and a simple counting argument. In some cases, but by no means all, these
generalize to multigraphs or pseudographs.

The basic counting argument is the so-called ‘handshaking lemma’, which
says that if a number of people shake hands, then the total number of hands
being shaken (counted with multiplicities) is even. This is obvious because each
individual handshaking involves two hands. It follows that the number of people
who have shaken hands an odd number of times is even. More generally, if you
take the sum over all people, of the number of hands they have shaken, you
get twice the total number of handshakings. This result first appears in Euler’s
paper of 1736, mentioned in Section 2.4. In graph-theoretical language, we have
the following.

Lemma 3.3 The sum of the degrees of the vertices of a pseudograph is equal
to twice the number of edges. Writing p; for the number of vertices of degree 1,

this can be expressed
o
Z ipi = 2(] .
i=1

Proof First note that this sum is really a finite sum, as there are no vertices
of degree more than g. Now divide each edge into two half-edges. Thus the total
number of half-edges is 2¢g. On the other hand, each half-edge is incident with
a unique vertex, and the number of half-edges incident with a vertex is exactly
the degree of that vertex. Therefore, the total number of half-edges is the sum
of the degrees of the vertices. O

There is a dual version of this for plane pseudographs, obtained by counting
the edges around the faces. Since each edge is again counted twice, we have the
following.

Lemma 3.4 If G is a plane pseudograph, and r; is the number of faces with

1 sides, then
[e0]
Z iry = 2q.
i=1

In this formula, an edge is counted twice if it occurs twice in the boundary
walk of a face. Thus, for example, in Fig. 3.6 face A has 7 sides, face B has
12 sides, face C has 8 sides, and face D has one side.

The following are simple corollaries of the two forms of the handshaking
lemma.

Corollary 3.5 For any pseudograph G, the average degree of the vertices is 2q/p.
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Fig. 3.6 Counting edges of unusual faces. Faces A, B, C, and D have 7, 12, 8, and
1 edge(s), respectively.

Corollary 3.6 For any plane pseudograph G, the average number of sides of
the faces is 2q/r.

Many useful results about planar graphs can be obtained by combining the
handshaking lemmas with Euler’s formula. For example,

Proposition 3.7 In any plane graph in which all faces are triangles, ¢ = 3p—6.

Proof Since every face (including the exterior face) has three edges, and every
edge helongs to two faces, the handshaking lemma says 2¢ = 3r. Substituting
into Euler’s equation gives 6 = 3p — 3¢ 4+ 3r = 3p — ¢, that is ¢ = 3p — 6. O

Theorem 3.8 In any planar graph with at least 3 vertices, ¢ < 3p — 6.

Proof First, embed the graph in the plane, and then add edges until we have
a connected graph G, which contains a cycle. This is possible, since there are at
least 3 vertices. If ¢ < 3p — 6 for the new graph G, then it is certainly true for
the original graph. Now G has at least two faces, and so at least 3 sides to each
face. Therefore 3r < 2q, so by Euler’s formula

6=3r—3¢+3p
<3p—¢q

whence ¢ < 3p — 6 as required. O

The above results can be used in certain circumstances to prove a graph is not
planar. For example, the complete graph on n vertices, written K,,, is defined
by joining all pairs of vertices by an edge, and we show that Ky is not planar
(see Fig. 3.7). For Ky has 5 vertices and 10 edges, so p = 5 and ¢ = 10, and so
q % 3p—6. As a corollary we have that K, is non-planar for every n > 5. On the
other hand, K is planar—it is isomorphic to the tetrahedron (see Fig. 3.1(a)).

Remark It is sometimes said that Md&bius originated the four-colour problem
in 1840. In fact, according to May [36], Mébius’ remark was equivalent to the
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Fig. 3.7 The complete graph K.

Fig. 3.8 The ‘utilities graph’ K3 3.

statement that K is not planar. It is a common misconception (shared appar-
ently even by De Morgan in 1852) that this implies the four-colour theorem.
However, the fact that a planar graph does not contain a subgraph Ky merely
means that there is no local obstruction to a 4-colouring of the vertices. There
may still be a global obstruction to 4-colouring, and this is the crux of the
problem.

We have defined the complete bipartite graph K, , by taking one set of
m vertices and another set of n vertices, and joining every vertex in the first set to
every vertex in the second set. Thus K, ,, has m+n vertices and mn edges. Then
K3 3 is non-planar, as we shall see. This graph is sometimes called the ‘utilities
graph’: three houses are to be connected to three utilities: gas, electricity and
water. Can this be done in such a way that no pipes or cables cross? The graph
is as in Fig. 3.8 and a little thought will convince you that it is not possible to
draw this without crossing edges.

In fact, this can also be proved from Euler’s formula: the shortest cycles in the
graph have length 4 (all cycles in a bipartite graph have even length, since they
must alternate between the two sets of vertices), so if it were planar, all the faces
would have to have at least four edges. This implies that 2¢ > 4r, that is, g > 2r,
and substituting into Euler’s formula gives 4 = 2p — 2¢ + 2r < 2p — 2¢ + ¢, that
is ¢ < 2p — 4. However, in the graph K3 3, we have 2p — 4 = 8, but ¢ = 9. Thus
g & 2p — 4, so the graph cannot be planar. It follows that K, , is non-planar
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whenever m > 3 and n = 3. On the other hand, K3, is planar for any n
(prove it!).

We define the girth of a graph to be the length of the shortest cycle in the
graph. Note that this is only defined for graphs which do contain cycles. Thus,
Ks has girth 3, while K33 has girth 4. With this definition, we can generalize
Theorem 3.8.

Theorem 3.9 In any plane graph of girth [,

Proof First add enough edges to make the graph connected, without changing
the girth. Then every face has at least [ sides, so the handshaking lemma says
2q = lr. We now substitute r < 2¢/! into Euler’s formula p — ¢ + r = 2, giving

p—2=q-—r
Zq-— 2
[
S -2
Z q
and hence ;
< -2
IS T (p—2)
as required. O

Definition 3.10 The Petersen graph may be defined by taking 10 vertices
corresponding to the unordered pairs from the numbers 1,2,3,4,5, and joining
two vertices when the corresponding pairs have no number in common.

Corollary 3.11 The Petersen graph is not planar.

Proof By inspection, the graph (see Figs 3.9 and 3.10) has girth 5, and has
10 vertices and 15 edges, but 15 £ % x &8, so the graph is not planar. O

We have proved various corollaries of Euler’s formula, and deduced that cer-
tain graphs are non-planar. It is clear that if G is a non-planar graph, and G
is a subgraph of a graph H, then H is non-planar. But we can actually do bet-
ter than this. For example, the Petersen graph contains a subgraph which is a
‘subdivision’ of K3 3, and this shows that the Petersen graph is non-planar. We
will define the term subdivision precisely later (see Section 7.1}, but for the
moment we just think of it as repeatedly adding vertices in the middle of existing
edges. It is, then, clear that subdividing a graph does not change the property
of being planar. This proves

Theorem 3.12 A graph G is planar only if it contains no subgraph which is a
subdivision of K5 or Kz 3.

The converse of this theorem, known as Kuratowski’s theorem, is much
harder, and we will prove it in Section 7.2. For now, we prove some more corol-
laries of Euler’s theorem which will be useful in our analysis of the four-colour
problem. The most important one from our point of view is the following.

Corollary 3.13 Every plane connected pseudograph G with all vertices of degree
at least 3 has a face with at most five sides.
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Fig. 3.9 The Petersen graph.

Fig. 3.10 Another drawing of the Petersen graph.
Proof By contradiction. Suppose that all the vertices have degree at least 3,

and all the faces have at least six sides. Then the usual handshaking lemmas
imply that 2¢ > 3p and 2¢ > 6r, so substituting in Euler’s formula gives

which is the desired contradiction. O
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We can strengthen this result in various ways. First, we have a lemma which
uses only the handshaking lemma, and does not use Euler’s formula.

Lemma 3.14 In any plane pseudograph,

x>

> (6 —i)r; = 6r — 2,

i=1

where r; denotes the number of i-sided faces (regions).

(In a multigraph there are no 1-sided faces, so the summation starts at i = 2.
In a graph there are no faces with just one or two sides, so the summation starts
with i = 3.)

Proof First note that the summation » ;2 (6 —i)r; is really a finite sum, since
the number of faces is finite. We observe that > 5, 4r; is the sum over all the
faces, of the number of sides of that face. In other words, it counts all the edges
exactly twice, since each edge is on the boundary of exactly two faces. (In certain
cases, these two faces may actually be the same face.) Thus > .° ir; = 2q¢, as in
Lemma 3.4 , and similarly Zfil r; = r, the total number of faces. Therefore,

6r —2q = Gim — iiﬁ
i=1 i=1
=> (6 i)
i=1

O

Proposition 3.15 In any plane connected pseudograph G with all vertices of

degree at least 3,
[e0]

D (6 —iyrs > 12,

i=1
(Again we can start the summation at ¢ = 2 if G is a multigraph, and at i = 3
if G is a graph.)
Proof Since the vertices have degree at least 3, we have 2¢ = 3p, so 6p—4q < 0.
From Euler’s formula, we have

12 = 6p — 6g + 67
= (6p — 4q) + (61 — 2q)
< 6r —2¢q

s0 6r — 2g > 12. Now apply Lemma 3.14. O

Corollary 3.16 Every plane connected pseudograph G with all vertices of degree
at least 3, and no faces with fewer than five sides, has at least 12 faces with five
sides.
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Proof The terms of the sum » ;2 (6 — i)r; are all negative for i > 6, and zero
for ¢ = 6, so for the sum to be positive, at least one of the r; for ¢ < 5 must be
non-zero. If moreover r; = 0 for ¢ < 5, we obtain r5 > 12. O

The above results are stated in the form required for the face-colouring version
of the four-colour conjecture. They all have ‘dual’ forms using vertices instead
of faces, but you must be careful to get the conditions on the graphs correct. In
particular, duality only really makes sense for connected plane graphs, so you
need to consider separately the question as to whether the result remains true
for non-connected graphs. We state them here, and leave the proofs as exercises.
In each case we have given the statement for plane graphs, but since the actual
planar embedding is irrelevant, the results are true for planar graphs.

Lemma 3.17 In any plane pseudograph,

x>

> (6 —i)p; = 6p — 2g,

i—1
where p; denotes the number of vertices of degree 1.

Proposition 3.18 In any plane, connected graph with at least three vertices,

x>

> (6 i)p: = 12,

i=1
where p; denotes the number of vertices of degree i. Equivalently,

D (6-d(v)) =12,

v

where the sum is taken over all vertices v. The same inequalities are true without
the connectedness condition.

Corollary 3.19 Every plane connected graph has a vertex with degree at most
5. Moreover, if there is no vertex with degree less than than 5, then there are at
least 12 vertices of degree 5.

The same is true without the connectedness condition.

Exercises

Exercise 3.1 For each of the five regular polyhedra, determine the minimum
number of colours required to colour the faces.

Exercise 3.2 Prove that if G is a plane graph with p vertices, ¢ edges, and
r faces, and with exactly £ connected components, then p —g¢g+r =%k + 1.

Exercise 3.3 Find a subgraph of the Petersen graph which is a subdivision
of K373.
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Exercise 3.4 Suppose that G is a connected plane pseudograph, and for each
1, let p; be the number of vertices of degree ¢. Similarly, let r; be the number of
i-sided faces. Use Euler’s formula to show that

o0

D> A—i)(pi+r) =8

i=1

Deduce that G has either a vertex of degree at most 3, or a face with at most
three sides (or both).

Exercise 3.5 Show that in any standard map (i.e. connected plane graph with
no bridges, and with all vertices of degree at least 3), the average number of
neighbours of all regions is less than 6.

Exercise 3.6 Show that in any planar graph the average degree of the vertices
is less than 6.

Exercise 3.7 Draw a picture which makes it obvious that K, is planar for
every n.

Exercise 3.8 Prove Lemma 3.17, Proposition 3.18 and Corollary 3.19.

Exercise 3.9 Show that Theorem 3.8 is false for multigraphs. Where does the
proof break down?

Exercise 3.10 (M&bius’s problem) A certain king had five sons, and on his
deathbed wanted to divide his kingdom between all his sons, in such a way that
each son’s kingdom bordered each of the others. What advice would you give to
the king?
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Kempe’s approach

4.1 The first ‘proof’ of the four-colour theorem

Kempe (pronounced ‘kemp’) published his ‘proof’ of the four-colour theorem
in 1879, and for a decade it was accepted as a valid proof, and an ingenious
solution to the problem. It contained several clever ideas, which we now present.
For historical reasons, we describe his arguments in the face-colouring form, as
Kempe himself did. He also mentioned duality and the translation of the problem
into the vertex-colouring form. We discuss this translation in Section 4.4.

We first define a Kempe chain to be the largest set of countries you can get
to from a given place by keeping to countries of a particular two colours, and
crossing at edges, not vertices. In other words, in the dual form it should consist
of a largest connected subgraph consisting of the vertices coloured in the two
chosen colours. For example, a red—green chain would be a largest ‘connected’
piece of the map which consists entirely of countries coloured red or green. Note
that, in general, it need not look like a chain at all.

Lemma 4.1 Let M be a 4-colourable map. If four countries meet at a point v,
then the map can be 4-coloured in such a way that only three colours are used
for these four countries.

Proof Suppose you used four colours, say red, green, blue, yellow in order
round the point. Then if the red and blue countries do not belong to the same
red—blue chain, we can swap red and blue in one of these two chains, and obtain
the required colouring. If they do belong to the same red—blue chain, then the
green and yellow countries are separated from each other by this red—blue chain,
and so they cannot belong to the same green—yellow chain. Therefore, we can
swap the colours in one of these two green—yellow chains. o

The above proof is illustrated in Fig. 4.1, where a portion of a typical map is
shown in each of the two cases. The colours are denoted by the letters R, G, B,
Y, and the letters in brackets denote the colours after they have been changed.

Lemma 4.2 Let M be a 4-colourable map. If five countries meet at a point v,
then the map can be 4-coloured in such a way that only three colours are used
for these five countries.

31
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(a)

G Y
R G B(R)
° v
Y B(R) R(B)
(b)
R
B R
R
G B
Y(G) G(Y)
B
Y(G)
R G(Y)
° v
R
Y B

Fig. 4.1 The proof of Lemma 4.1. (a) Case 1: no R-B chain and (b) case 2: an
R-B chain.

Proof Actually, this is the bit that Kempe got wrong. See if you can spot the
error:

If you need all four colours around v, then the two countries coloured the
same are separated by one country in one direction, and two in the other, so
we may assume that the colours are red, green, blue, yellow, green in clockwise
order. Now if the red and blue countries do not belong to the same red—blue
chain, then we can interchange the colours in one of these chains, and so use
only three colours. Similarly, if the red and yellow countries do not belong to the
same red—yellow chain, we can again reduce to three colours.

The only other case (see Fig. 4.2) is where there is a red—blue chain isolating
one green country, and a red—yellow chain isolating the other green country.
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G R Y B R B
R
Y Y R
G N\, G
R Y B R B

Fig. 4.2 The ‘proof’ of Lemma 4.2.

Thus, we can interchange the colours in the green—yellow chain containing the
first of these green countries, and in the green—blue chain containing the second.
This makes the colours red, yellow, blue, yellow, blue, clockwise in order, thus
achieving the desired 3-colouring around this point. O

Did you spot the error? Don’t worry if you did not—it took the world over
ten years to spot it originally! We shall explain the problem in the next section.
Meanwhile, keep thinking.

Kempe’s ‘proof’ of the theorem now goes by induction on the number of
countries. By Corollary 3.13, we can choose a country with five or fewer edges,
and carve it up equally amongst its neighbours, to obtain a map with fewer
countries, which can be four-coloured, by induction. Then we put the country
back, and choose a colour for it. If it has three or fewer neighbours, then these
use up at most three colours, so there is always one left. Similarly, if there are
four neighbours, then Lemma 4.1 says you only need three colours for them, so
there is still one left. And Lemma 4.2 would deal with the only remaining case,
of five neighbours, if only the Lemma were true!

Remark Whilst we have noted that Kempe’s argument was fallacious, we must
still give him credit for several clever ideas. In particular, the general inductive
argument, the use of Euler’s formula to focus attention on a local area, and the
Kempe-chain argument, are all essential ingredients of the eventual proof nearly
100 years later.

4.2 The five-colour theorem

Before we consider why Kempe’s attempt at a proof fails, let us show how
Heawood salvaged the five-colour theorem from the wreckage. The inductive
argument and Euler’s formula alone, without any Kempe chain argument, only
allow one to prove the six-colour theorem, as follows.
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Theorem 4.3 Every map can be coloured with at most six colours.

Proof Clearly, this is true for any map with no more than six countries, so
suppose our map has at least seven countries. Then by Corollary 3.13 to Euler’s
formula, there is a country with fewer than six neighbours. If we remove this
country by sharing it out amongst its neighbours, then the resulting map has
one fewer country and so (by induction) can be coloured with at most six colours.
Now replace the country which was removed. It has at most five neighbours which
are already coloured, which leaves at least one colour available to complete the
map colouring. m]

Now to prove Heawood’s five-colour theorem, we use Lemma 4.4 instead of
the discredited Lemma 4.2.

Lemma 4.4 Let M be a 5-colourable map. If five countries meet at a point,
then the map can be 5-coloured in such a way that only four colours are used
for these five countries.

Proof For the sake of argument suppose that the five colours that you need are
called red, orange, yellow, green and blue in cyclic order. If the red and yellow
countries are not in the same red—yellow chain, then as before we swap the colours
in one of these chains, and achieve the desired colouring. But if they are in the
same red—yellow chain, then this separates the orange and green countries from
each other, which are, therefore, not in the same orange—green chain, so one of
them can be re-coloured. ]

Theorem 4.5 (Heawood, 1890) Every plane map can be coloured with at
most five colours.

Proof By Corollary 3.13 we can choose a country with five or fewer edges, and
carve it up equally amongst its neighbours, to obtain a map with fewer countries,
which can be 5-coloured, by induction. Then we put the country back, and choose
a colour for it. If it has four or fewer neighbours, then these use up at most four
colours, so there is always one left. Similarly, if there are five neighbours, then
Lemma 4.4 says you only need four colours for them, so there is still one left.

]

Where does Kempe’s proof fail? It fails because you may not be able to change
colours in both Kempe chains simultaneously. That is, by changing colours inside
one chain, you completely change the other chain, so that changing colours inside
this second chain no longer achieves the result it was supposed to achieve. This
can happen if the two chains intersect each other—which they can do, since they
have one colour in common.

Figure 4.3 shows a small example, with the colours labelled R, G, B, Y.
Kempe’s argument first swaps the colours in the G-Y chain containing the coun-
try 1. This has the effect of breaking the R-Y chain, and creating a G-B chain
from country 2 round to the country 3. If we then perform the second colour-
change required by Kempe, we swap the colours in this G-B chain, which has
the effect of colouring country 3 with colour G. Thus, we have not achieved the
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Fig. 4.3 A counterexample to Lemma 4.2. (a) The original colouring and (b) after the
G-Y colour interchange.

desired result, of colouring the five countries around the central vertex with three
colours.

4.3 A reduction theorem

As we have seen, Kempe's argument (amended by Heawood) does actually prove
the five-colour theorem. If we want to prove the four-colour theorem, we have to
be much more careful. First, we give a useful reduction theorem, which was
first proved by Cayley a year before Kempe’s paper. A graph or map is called
cubic (or trivalent) if every vertex has degree 3.
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Fig. 4.4 Making a map cubic.

Theorem 4.6 If the (face-colouring) four-colour theorem holds for cubic plane
maps, then it holds for all plane maps.

Proof Certainly, the four-colour theorem implies this restricted version. Con-
versely, given any map, if there is a point where more than three countries meet,
introduce a small country centred on this point, so that round its edges now only
three countries meet at any one point (see Fig. 4.4). Then if the new map can
be coloured with four colours, so can the old one: we simply delete these small
introduced countries, with no violation of the colouring conditions. O

Now the general strategy of proof for a theorem like the four-colour theorem
is often to consider a minimal counterexample. That is, we assume that the
theorem is false, and so there must be a counterexample, namely a map which
cannot be coloured with four colours. Moreover, among all the counterexam-
ples there must be one which is minimal, in the sense that it has the smallest
possible number of countries. Then we try to prove all sorts of properties of a
minimal counterexample, in the hope of getting a contradiction. If we succeed,
then we have proved that a minimal counterexample cannot exist, and therefore
no counterexample can exist, and therefore, the theorem is true in all cases.

In more colourful language, a minimal counterexample is sometimes called a
‘minimal criminal’—if the ‘law’ (e.g. the four-colour conjecture) is broken, then
there must be a criminal, and therefore, there must be a minimal criminal. If we
hunt the minimal criminal, and find that he does not exist, then there can be no
criminals, and the law is upheld.

Theorem 4.7 Any minimal counterexample to the four-colour theorem contains
at least 12 pentagons.

Proof Kempe’s argument shows that a minimal counterexample to the four-
colour conjecture can have no triangles or quadrangles, and therefore, since by
Proposition 3.15

o

D (6 iy > 12,

i=1

has at least 12 pentagons. O
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4.4 Vertex-colouring of graphs

Kempe’s paper of 1879 already mentions the dual version of the four-colour
problem, where we consider colouring the vertices of the dual pseudograph of
a map. This version is much easier to formalize, and is the version which is
almost always used nowadays. In particular, we do not need to worry about the
faces, and such matters as whether a face meets itself at a vertex. Moreover, the
vertex-colouring version lends itself more easily to generalization. Thus, the four-
colour conjecture can be stated without any restriction on the pseudograph other
than planarity. However, clearly we cannot allow loops, and multiple edges are
irrelevant, so we might as well state the four-colour conjecture for graphs only.

Conjecture 4.8 If G is any planar graph, then G is 4-vertex-colourable.

The concept of a Kempe chain is now much easier to describe: it is a max-
imal connected subgraph consisting of vertices of two colours only. To illustrate
this, we prove the dual version of Lemma 4.1.

Lemma 4.9 Let G be a 4-vertex-colourable plane graph, and let a,b,c,d be the
four vertices of a face of G, in cyclic order. Then G can be 4-coloured in such a
way that a, b, ¢ and d receive at most three colours between them.

Proof If four distinct colours are used, then the graph cannot simultaneously
contain a Kempe chain from a to ¢ and a Kempe chain from b to d, for these two
chains would have to intersect at a vertex, which is impossible since the colours
of a and ¢ are different from the colours of b and d (see Fig. 4.5). Therefore, we
can change colours so that either ¢ and ¢ have the same colour, or b and d have
the same colour. O

Remark This result can be generalized to the case where a, b, ¢, d is any cycle
of length 4 in G (see Corollary 10.6).

G Y

Fig. 4.5 Impossibility of two Kempe chains.
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4.5 A three-colour theorem

We have now reduced the four-colour problem to the case of cubic maps. Whilst
we cannot at present determine the precise number of colours required to colour
the faces of all cubic maps, we can determine exactly which ones can be coloured
with three colours.

First, we see that if any face of the map is surrounded by an odd number of
edges, then the adjacent faces cannot be coloured with just two colours, since
they would have to be coloured alternately (this uses the fact that the graph is
cubic). Therefore, these faces require at least three colours, and the whole map
requires at least four.

It follows that if a cubic map can be coloured with three colours, then every
face is surrounded by an even number of edges. Another way of expressing this
is to say that the vertices of the dual graph have even degree, which is exactly
the criterion for the existence of an Euler circuit. Translating everything into the
dual form, therefore, we have proved the following.

Theorem 4.10 Let G be a plane graph in which all faces are triangles, and
suppose that G is 3-vertex-colourable. Then, G has an Euler circuit.

In fact, the converse is also true, as we proceed to prove.

Theorem 4.11 Let G be a plane graph in which all faces are triangles, and
suppose that G has an Fuler circuit. Then G is 3-vertex-colourable.

Proof Let G be a counterexample with the minimum possible number of ver-
tices. Since G has an Euler circuit, all vertex degrees are even, so the faces can
be coloured with two colours by Exercise 2.4. We wish to show that there is a
3-colouring of the vertices in which the vertices of every white triangle are red,
blue, green in clockwise order, while the vertices of every black triangle are red,
blue, green in anticlockwise order.

Now by Corollary 3.19, there is a vertex of degree less than 6, and therefore,
there is a vertex of degree 4. We start by colouring around a vertex of degree 4,
as shown in Fig. 4.6. If the vertex itself is coloured green, then its neighbours are
coloured alternately red and blue. Now extend the colouring to the neighbours
of the two blue vertices: these neighbours are coloured alternately red and green.
Thus, we obtain a ring of red and green vertices surrounding the two blue vertices
and the central green vertex. Now collapse these three interior vertices to a single
blue vertex v’ joined to all the vertices in the red—green ring.

This gives us a new graph on fewer vertices, in which all faces are trian-
gles. Moreover, the colouring of the triangles which remain is the same as the
corresponding ones in the original graph. Therefore, by induction there is a 3-
colouring of the vertices of this smaller graph. Without loss of generality, we
may suppose the colours to be named so that v’ is blue, and its neighbours are
alternately red and green. Then the colouring can be extended to the original
graph in the obvious way. This contradiction proves the theorem. m]

The following corollary is simply the dual version of this theorem, and was
originally proved by Heawood in 1898.
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Fig. 4.6 Colouring around a vertex of degree 4.

Corollary 4.12 A cubic map is 3-colourable if and only if every face has an
even number of edges.

Exercises

Exercise 4.1 Three-colour the faces of a cube and exhibit the three Kempe
chains.

Exercise 4.2 Four-colour the faces of a dodecahedron and exhibit the six Kempe
chains. Do you notice anything interesting?

Exercise 4.3 Suppose M is a 4-colourable map, and suppose that there is a
vertex of M at which six countries meet. Show that if all four colours are used
to colour these six countries, then the colours are used in one of the following
five orderings (up to cyclic permutations, reflections, and renaming colours):

. rbrgry
. rbgrby
. rbgryb
. rbrbgy
. rgrbyb

Ot W N~

Exercise 4.4 Using Kempe chain arguments, show that the first four cases
above can be reduced either to a colouring which uses only three colourings
for the six countries, or to the fifth case.
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Other approaches to the
four-colour problem

5.1 Hamilton cycles

There is a surprising connection between map-colouring and Hamilton cycles.
We need to stay with the face-colouring version of the four-colour conjecture to
make this connection explicit. A Hamilton cycle is a cycle which includes each
vertex exactly once (in other words, it is a spanning cycle). A graph is called
Hamiltonian if it has a Hamilton cycle. The origin of this term was Hamilton’s
‘icosian game’ of 1857, whose object was to find such a cycle on the dodecahedron
(see Fig. 5.1), although the general question of whether any given polyhedron
possesses such a cycle was considered slightly earlier by Kirkman (see [31,32]).
The idea of a Hamilton cycle can be traced back to 1759, when Euler introduced
the knight’s tour problem, though not of course in graph-theoretical language. In
contrast to Euler circuits, there is no simple criterion to decide if a given graph
has a Hamilton cycle. On the other hand, it turns out that if the underlying graph
of a map has a Hamilton cycle, then the map is 4-colourable. This was apparently
proved by Tait in 1880, as a special case of a more general result (see Theorems
5.7 and 5.8), although the published version of his lecture gives merely a sketch.

Theorem 5.1 If a map has a Hamilton cycle, then it can be 4-coloured.

Proof Consider the countries in the interior of the Hamilton cycle, and draw
the part of the dual graph induced on them. This is a tree, for otherwise a cycle
in the dual graph encloses a vertex of the original map (as in Fig. 2.11), which
cannot, therefore, be visited by the Hamilton cycle (a contradiction). Now the
vertices of a tree can always be 2-coloured, by working outwards from any given
point. Therefore, the countries inside the Hamilton cycle can be coloured with
two colours.

Similarly, the countries in the exterior of the cycle have the same property, so
can be coloured with two other colours. Thus the whole map can be 4-coloured,
as required. O

For example, if we colour the interior faces of the Hamilton cycle in Fig. 5.1
alternately red and green, and the exterior faces alternately yellow and blue, we
obtain the 4-colouring shown in Fig. 5.8(a).

43



44  Other approaches to the four-colour problem

Fig. 5.1 A Hamilton cycle on the dodecahedron.

<1

Fig. 5.2 Tait’s counterexample to a naive version of his conjecture.

In his 1880 paper, Tait asked the question as to whether all cubic graphs
have Hamilton cycles. He immediately rejects this, saying it is obvious the graph
cannot have a bridge (i.e. an edge whose removal disconnects the graph). Clearly,
this prevents the graph having a Hamilton cycle, since no cycle can cross this
bridge—once this edge is used, we cannot use it again, and hence cannot get back
to where we started. Tait’s counterexample is shown in Fig. 5.2. It seems that he
was tacitly assuming that the graphs he was considering were plane graphs. Next
he gives a bridgeless counterexample (see Fig. 5.3), which in our terminology is
a multigraph, not a graph. To exclude such cases, he imposes the extra condition
that the graph be ‘a projection of a polyhedron’, before dismissing the question
as being unimportant.

Other counterexamples to various generalizations of this conjecture were
given by Petersen in 1898 (see [38] and Fig. 5.4), and Konig in 1936 (see [33]
and Fig. 5.5). The main conjecture was not disproved until 1946, when Tutte
provided a counterexample (see Fig. 5.6). It is quite complicated, and has 46
vertices and 25 countries. A counterexample with 38 vertices and 21 countries
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Fig. 5.3 Tait’s multigraph counterexample to his conjecture.

a

Fig. 5.4 The Petersen graph is not Hamiltonian.

Fig. 5.5 Konig’s bridgeless counterexample to Tait’s conjecture.

45
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Fig. 5.6 Tutte’s polyhedral counterexample to Tait’s conjecture.

was constructed by Lederberg in 1967. According to Barnette [7], Okamura has
shown that no counterexample exists with fewer than 34 vertices. If we drop the
cubic condition, then the Herschel graph shown in Fig. 5.7 is a counterexample
with 11 vertices. Moreover, it is known that there is no smaller counterexample
to this version of the conjecture. We now consider some of these examples in
detail.

Lemma 5.2 The Petersen graph (Fig. 5.4) has no Hamilton cycle.

Proof The Petersen graph (Fig. 5.4) consists of an outer pentagon abede, an
inner pentagon fhjgi, and five joining edges af, bg, ch,di,ej. A Hamilton cycle
must enter the inner pentagon as often as it leaves it, and so contains an even
number of the joining edges. If two, then they meet two adjacent vertices on
either the outer or the inner pentagon, but not both, so we miss out at least one
vertex on one of these pentagons. (In the figure, if the Hamilton cycle contains
the edges af and bg, then on the inner cycle f and g are joined either by fhjg or
by fig, and in either case not all vertices of the inner cycle are on the Hamilton
cycle. Similarly, if it contains the edges af and ch, then on the outer cycle a
and ¢ are joined either by abc or by cdea.) If four, it is again easy to get a
contradiction: suppose the edges af, bg, ch,di are in the Hamilton cycle, so that
ej is not, whence gj and hj are, in order to include j in the cycle. Similarly,
in order to include e we must use edges ea and ed. But then the only way to
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Fig. 5.7 The Herschel graph.

continue the paths is to add the edges bc and fi, which give two 5-cycles, not a
10-cycle. m]

Since Tait’s conjecture turns out to be false, we might consider trying to
strengthen the polyhedral condition. By a theorem of Steinitz, this is equivalent
to the condition that the graph is connected and planar, and cannot be discon-
nected by removing fewer than three vertices, that is, the graph is 3-connected
(see Definition 7.4). Tutte [48] has shown that 4-connected planar graphs (with
the obvious definition) always have Hamilton cycles. This is definitely not true
for non-planar graphs, however. This is one of several known sufficient (but not
necessary) conditions for a graph to be Hamiltonian. See the book by Bondy and
Murty [14] for other examples.

The following result, due to Grinberg, is one of the few known simple neces-
sary conditions for the existence of a Hamilton cycle. It can, therefore, be used
to show that certain graphs do not have Hamilton cycles. However, it is no use
for Tutte’s graph, and in fact it is not easy to prove that Tutte’s graph has no
Hamilton cycle, except by trial and error.

Theorem 5.3 (Grinberg) If G is a plane graph with a Hamilton cycle C, let
r; denote the number of i-sided faces inside C, and s; the number of i-sided faces
outside C'. Then

D> G—2)(r —s:) = 0.

i=2

Proof The number of edges in C is p, the number of vertices of G, since C
is a Hamilton cycle. Let e be the number of edges in the interior of C. Then
the number of faces inside C is e + 1, since, as we have noted in the proof
of Theorem 5.1, the subgraph of the dual graph induced on the corresponding



48 Other approaches to the four-colour problem
vertices is a tree. But the total number of faces inside C' is by definition > 2, r;,
so we have

[ee]

Z ri =€+ 1.

i=2

Next, we count the total number of edges of all the faces inside C. On the one
hand, this is > o, ér;. But this just counts the edges of C once each, and the
edges interior to C twice each. Thus,

[e0]
Ziri =2e+p
i=2

x>
= Z(i—Q)ri =2+p—2e+1)
=2

=p— 2
Similarly, we obtain
o
i=2
and the result follows by subtraction. O

Corollary 5.4 The Herschel graph (Fig. 5.7) is not Hamiltonian.

Proof All nine faces of the graph are quadrangles, so with the notation of the
theorem, we have 2(rs — s4) = 0, so r4 = s4 and the total number of faces is
r4 + 84 = 2r4, which is even. But this contradicts the fact that the number of
faces is odd. 0O

Alternatively, since the faces are quadrangles, it follows that the graph is
bipartite. But a bipartite graph with a Hamilton cycle has both parts with the
same number of vertices, and so has an even number of vertices altogether. This
contradicts the fact that the Herschel graph has 11 vertices.

5.2 Edge-colourings

As we have seen, Tait observed in 1880 that if the underlying graph of a map
has a Hamilton cycle, then the map can be 4-coloured. He was thus led to
try (unsuccessfully, of course) to prove that every cubic map has a Hamilton
cycle, and thereby prove the four-colour theorem. He also made the observation
(Proposition 5.5) that, on a cubic map, the edges of a Hamilton cycle can be
coloured alternately with two colours, and the remaining edge with a third colour.
In this way, every vertex is incident with an edge of each colour. The relationship
between such edge-3-colourings and 4-colourings of maps was explored first by
Tait and later by Petersen.

We define an edge-k-colouring of a graph to be a colouring of the edges
with k colours, in such a way that no two adjacent edges have the same colour.
In other words, all the edges at each vertex must have different colours. It is



Edge-colourings 49

obvious, therefore, that you need at least A colours, where A = A(G) is the
maximum degree of the vertices of the graph G. In some cases, this number of
colours is sufficient, as in the following example.

Proposition 5.5 Any Hamiltonian cubic graph can be edge-3-coloured.

Proof Since G is cubic, we have 2¢ = 3p, so p is even. Thus a Hamilton cycle
has an even number of edges, so can be coloured with two colours. There is now
just one more edge at each vertex, so these remaining edges cannot meet each
other, which means they can all be coloured the same colour. m]

In other cases, however, A colours may not be sufficient.
Proposition 5.6 The Petersen graph is not edge-3-colourable.

Proof If it is, supposing the colours are red, green and blue, then every vertex
is adjacent to three edges, one of each colour. Therefore, the red and green edges
together form a union of disjoint cycles of even length, which together cover all
10 vertices. Now the girth is 5, so there are no cycles of length 2 or 4, and the
graph is not Hamiltonian, so there is no cycle of length 10. But there is no way
to cover 10 vertices with disjoint cycles of lengths 6 and 8. m]

In the above proof, we have used the fact that in any 3-colouring of the edges
of a cubic graph, the edges of any two colours form a spanning set of disjoint
cycles of even length. This connection was made explicit by Tait.

Theorem 5.7 (Tait) Let G be a cubic graph (not necessarily planar). Then
G can be edge-3-coloured if and only if G is spanned by a collection of disjoint
cycles of even length.

Proof If G is spanned by such a collection of cycles, then as above we can
colour the edges of the cycles with two colours, and the remaining edges with a
third colour. Conversely, if G is edge-3-coloured, then the edges of any given two
colours form such a collection of cycles. ]

The following important theorem describes the fundamental relationship bet-
ween edge-colouring and the four-colour conjecture. Remember that we can ass-
ume that the underlying graph of our map is a bridgeless cubic plane graph. The
theorem was originally stated by Tait [46], but his paper was only an abstract of
his lecture, so contained only a sketch of the proof. A more complete proof was
given by Petersen in 1898, when he also proved Proposition 5.6 and Theorem 5.7.

Theorem 5.8 (Tait) Let G be a bridgeless cubic plane graph. Then the edges
of G can be 3-coloured if and only if the faces of G can be 4-coloured.

Proof Suppose first that we are given a 4-colouring of the faces. Then the
edges are of six types, according to which pairs of colours lie on either side of
it (Fig. 5.8). But a red—green edge cannot meet a blue—yellow edge, since two
adjacent edges must be on the boundary of a face (since the graph is cubic), and
therefore, share a colour. Thus, we can colour the red—green edges with the same
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(a)

Fig. 5.8 Colouring the dodecahedron. (a) A 4-colouring of the faces and (b) a 3-colour-
ing of the edges.

colour as the blue—yellow edges, and so on. Thus, we only need three colours for
the six types of edges.

Conversely, suppose we are given a 3-colouring of the edges. Then the edges
of any two colours {say red and green) form a collection of disjoint cycles, which
together include all the vertices. Any face is inside some number of these cycles,
and this number can be either even or odd. Now do the same for another pair
of colours (say red and blue). We have now divided the faces into four types,
which we assign to four colours. All we have to prove is that two adjacent faces
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cannot have the same colour. Now, two adjacent faces meet either at a red edge,
or at a green edge, or at a blue edge. If they meet at a green edge, then crossing
this edge changes the parity of the number of red—green cycles that a face is
contained in. Similarly, if we cross a blue edge, then we change the parity of the
number of red—blue cycles, while if we cross a red edge then we change both
parities. O

Remark Note that if G has a bridge, then the exterior face lies on both sides of
this bridge, so there is no 4-colouring of the faces according to the usual meaning.
Similarly, a cubic graph with a bridge has an odd number of vertices on each
side of the bridge, by the handshaking lemma, so cannot possibly be covered
with even length cycles, and so, by Theorem 5.7, cannot he edge-3-coloured.
This means that (technically speaking) we do not need the bridgeless condition
in Theorem 5.8, since the theorem is vacuously true in the other cases.

By combining Theorems 5.7 and 5.8 we obtain Petersen’s equivalent formu-
lation of the four-colour conjecture. In a sense, this was already known to Tait,
although he was at a disadvantage in believing the four-colour theorem to have
been proved.

Theorem 5.9 The four-colour conjecture is equivalent to the conjecture that
every bridgeless cubic planar graph is spanned by a collection of disjoint cycles
of even length.

5.3 More on edge-colouring

We have just seen that 4-colouring of maps is equivalent to 3-colouring of cubic
bridgeless (connected) plane graphs. It is obvious that cubic graphs need at least
three colours for colouring the edges, and a simple induction shows that five
colours are sufficient, since each edge is adjacent to just four others. We have
seen that the Petersen graph requires four colours (though of course it is not
planar). In fact, every cubic graph can be edge-coloured with four colours, and
we will prove this in due course. This is a special case of Vizing’s theorem, proved
in 1964, and described by Fiorini and Wilson [21] as ‘the great breakthrough’.

First, define the chromatic index, or edge-chromatic number, to be the
minimum number of colours required to colour the edges of a graph, in such
a way that adjacent edges have different colours. Thus, we require that all the
edges incident with v have different colours. We write x'(G) for the chromatic
index. As above, it is obvious that x'(G) = A(G), and it is easy to see that
X' (G) € 2A(G) — 1 (just keep colouring the edges one at a time, and you will
find you always have enough colours available for each edge, since no edge is
adjacent to more than 2A(G) — 2 others).

The truly remarkable fact is that x'(G) < A(G) + 1, so that x'(G) is very
tightly bounded. This is Vizing’s theorem, which we prove in Theorem 5.11. It
immediately suggests the question, for which graphs is X’ (G) = A(G), and for
which graphs is x’(G) = A(G)+1? The answer to this question is far from known.

The proof we shall give of Vizing’s theorem is by a Kempe chain argument.
Note that Kempe chains for edge-colouring are very simple: they are either closed
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Fig. 5.9 The proof of Konig’s theorem.

cycles of even length, or open paths. To illustrate the use of Kempe chains of
edges, we first prove a much earlier result, due to Kénig, which shows that
bipartite graphs are of the first type, that is, have x'(G) = A(G). In fact Konig
proved this theorem more generally, for multigraphs.

Theorem 5.10 (Konig, 1916) If G is a bipartite multigraph, then x'(G) =
A(G).

Proof We use induction on the number of edges. The induction starts with a
multigraph with no edges, in which case A(G) =0 and x/(G) = 0. Now suppose
there is at least one edge. Then we remove an edge xy from G, to get a multigraph
H, say (Fig. 5.9). Then we colour H with at most A(H) colours (and therefore
with at most A(G) colours, since A(H) < A(G)). Now in H, both z and y have
degree at most A(G) — 1, since the edge zy has been removed, and therefore,
there is at least one colour missing at z, and at least one colour missing at y. If
the same one colour is missing at both x and y, then obviously we can colour zy
with that colour, and the induction continues. So the only problem is if, say, «
is incident with a red edge but no blue edge, and y is incident with a blue edge
but no red edge. Now consider the red—blue Kempe chain starting from x. As we
use red edges and blue edges alternately, we keep crossing from one of the two
parts of the bipartite graph to the other, and back again. We cannot ever reach
y, for each time we reach the y-part of the bipartite multigraph, we use a red
edge. To put it another way, any path from x to y has an odd number of edges,
so if the edges are alternately red and blue, the path starts and ends with the
same colour.

Therefore, we can swap the colours red and blue in the Kempe chain from =,
which leaves red available to colour xy. m]
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Now we are ready to tackle the proof of Vizing’s theorem. The argument we
give closely follows that given by Fiorini and Wilson [21]. See also Bondy and
Murty [14], who give a similar proof, which they attribute to Fournier.

Theorem 5.11 (Vizing, 1964) x'(G) < A(G) + 1.

Proof As usual, we proceed by induction on the number of edges. Thus, we
remove an edge vw;, and colour the remaining edges with at most A(G) + 1
colours. If there is a colour that is not used at v which is also not used at wi,
then we can use that colour for vw; and the induction continues.

Otherwise, we have a colour, red (r), say, used at w; but not v, and a colour,
blue (b1) say, used at v but not at wy. As in the proof of Kénig’s theorem, if v and
w1 are not in the same red—blue Kempe chain, then we can recolour one of these
two Kempe chains, to obtain a colour for vwy, and the induction continues. So,
we may assume that this does not happen, so v and wy are in the same red—blue
(r—b1) Kempe chain (see Fig. 5.10(a)).

Now let vws be the blue (b1) edge from v. We want to use blue for the edge
vwy, so we do so, but then we have to look for another colour for the edge
vws. Remember that wy and ws are still in the same red—blue Kempe chain (see
Fig. 5.10(b)).

For the second step of the inductive process, we look at which colours are
missing at v and at wy. We still have a red edge used at wsz, and no red edge at v.
Also, there is a blue (b1) edge at v but not at ws. Since at most A(G) — 1 edges
at wq are coloured, we may suppose that there is another colour, different from
blue, say black (b2), missing at ws, but used at v. By the same process as before,
we can suppose that v and ws are in the same red-black (r—b3) Kempe chain,
and we let vws be the black edge from v (see Fig. 5.10(c)). We then uncolour
vws so that we can colour vws black (see Fig. 5.10(d)).

We keep on going in this way, until eventually the second colour which is
missing at wy, is a colour b; (say brown) which we have seen before (in other
words, j + 1 < k). Now consider the red-brown (r—b;) Kempe chain containing
v. By our assumptions, this chain runs from v through w; to w41, starting with
a brown edge and ending with a red one (see Fig. 5.10(e)). Moreover, this chain
does not contain wy, since the colour brown is missing at wy, whereas all vertices
of the chain (except the two endpoints v and w;41) are incident with edges of
both colours red (r) and brown (b;). Therefore, we can change colour in the
red-brown (r-b;) chain containing w; without affecting the colours in the first
chain. In particular, the missing colour at wy changes from brown to red, which
enables us to colour vwy red (see Fig. 5.10(f)), and hence complete the colouring
with A(G) + 1 colours. O

For examples, consider the complete graphs. If G = K3,,41, then A(G) = 2n,
and the total number of edges is (2n + 1)(2n)/2 = n(2n + 1). But at most n
edges can be coloured with one colour, since each such edge uses up two vertices.
Therefore there are at least n(2n + 1)/n =2n+ 1= A(G) + 1 colours.

An explicit colouring of Ko,4+1 with 2n+1 colours may be obtained as follows.
Draw the 2n+1 vertices equally spaced around a circle. Then each set of parallel
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Fig. 5.10 The proof of Vizing’s theorem.
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lines contains 1 edges of the graph, and there are 2n+1 such sets. We colour each
set of parallel lines with one colour. The case n = 2 is illustrated in Fig. 5.11.

On the other hand, if G = Ks,, we first colour a subgraph Ks,, 1 with 2n—1
colours as above. Then the colour missing at each vertex is different, so we can
join each vertex to the last vertex with this missing colour, thereby achieving a
colouring with 2n — 1 = A(G) colours. The case n = 3 is illustrated in Fig. 5.12.

In fact, ‘most’ graphs can be edge-coloured with just A(G) colours (these
graphs are called class 1), rather than needing A(G) + 1 (these are called class
2). It turns out that there are just eight graphs on at most six vertices which are
class 2. We have already seen two of them, namely K3 and K. It is also easy to
see that any odd cycle has class 2. The following proposition illustrates a useful
method of proving that certain graphs are of class 2.

Fig. 5.12 A 5-colouring of the edges of Kg.
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Proposition 5.12 The graph G obtained by subdividing one edge of K4 is of
class 2.

Proof The graph G is illustrated in Fig. 5.13. As there are five vertices, there
can be at most two edges of any given colour. But there are seven edges alto-
gether, so at least four colours are required. Thus A(G) = 3 and x'(G) = 4, so
G is of class 2. ]

It has been conjectured that planar graphs are of class 1, provided A(G) > 6.
This has been proved by Vizing except in the cases A(G) =6 or 7.

There is a version of Vizing’s theorem for multigraphs, in which 1 is replaced
by the maximum number of parallel edges. That is, X' (G) < A(G)+m, where m
is the maximum number of parallel edges between any two vertices. Much more
about edge-colourings can be found in the book by Fiorini and Wilson [21],
including a great deal of discussion about distinguishing graphs of class 1 and
class 2. See also the books by Bondy and Murty [14] and Berge [9].

Exercises
Exercise 5.1 Kirkman’s graph is shown in Fig. 5.14. Prove that it is non-

Hamiltonian.

Exercise 5.2 Show that Tutte’s map (his counterexample to Tait’s conjecture,
see Fig. 5.6) is 4-colourable, but has no Hamilton cycle.

Fig. 5.13 A graph of class 2.

Fig. 5.14 Kirkman’s graph of 1855.
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Exercise 5.3 Find the chromatic index of the underlying graphs of each of the
five Platonic solids.

Exercise 5.4 Do Proposition 5.5 and Theorems 5.7 and 5.8 remain true for
multigraphs? Give proofs or counterexamples as appropriate.

Exercise 5.5 Find some graphs of class 2 other than those presented in this
chapter.

Exercise 5.6 Prove that every cubic Hamiltonian graph is class 1.
Exercise 5.7 Find a planar graph G of class 2 with A(G) = 4.

Exercise 5.8 Let G be the underlying graph of the icosahedron with one edge
subdivided. Calculate p, ¢ and r for this graph. Show that x'(G) = A(G)+1, so
that G is of class 2.

Exercise 5.9 A famous problem known as Lucas’s Schoolgirls Problem states:
‘Each day 2n schoolgirls take a walk in pairs: for how many days can they walk
before some pair walks together twice?” What is the answer, and why?

Exercise 5.10 Suppose that G is a graph satisfying ¢ > AL%pJ. Prove that G
is of class 2.

Show that this inequality can only hold if p is odd, and find an example of
such a graph.



6
Maps on surfaces with holes

6.1 Some topology

It is a remarkable fact that although the map-colouring problem is so hard on
the plane (or equivalently the sphere), it is much easier on the torus (a doughnut
shape) or even on surfaces with larger numbers of holes. On the torus, for exam-
ple, seven colours are necessary and sufficient. This was proved by Heawood in
1890, in the same paper in which he pointed out Kempe's mistake.

First, we need some background from topology. For the moment, we will only
consider surfaces which, like the sphere, have an inside and an outside. Such
surfaces are called orientable, as opposed to non-orientable surfaces such as the
Klein bottle. A sphere is an example of an orientable surface which is closed
(i.e. it has no boundaries), and smooth (i.e. it is infinitely differentiable, in a
suitable sense). In fact, smooth closed orientable surfaces are characterized by
their genus, which is just the number of ‘holes’ they have. Thus, the sphere has
genus 0, since it has no holes, while a torus (the surface of a ring doughnut, or the
inner tube of a bicycle tyre) has genus 1, since it has one hole through the middle.

An analogue to Euler’s formula holds on a torus: p — g + r = 0. We have to
be careful, though, to make sure that the faces are sensible: that is, we must be
able to flatten out each face onto a plane without cutting it up. That means we
cannot have a face so large that it contains the hole in the torus. In topological
terms, each face must be simply-connected, or a 2-cell, or homeomorphic
to a disk. (These three terms are equivalent to each other in this context.)

As we have seen in Chapter 3, maps in the plane are equivalent to maps on a
sphere. We can see this equivalence by using a projection from one to the other,
or in purely topological terms we can imagine making a hole in the sphere and
stretching it until it becomes flat. In a general sense this is how we put maps of
a (nearly) spherical Earth into a flat Atlas.

For the sake of drawing clear pictures, we need to make similar flat maps
representing real maps on curved surfaces of higher genus. If we want to flatten
out a torus, we first of all need to cut a circle around the torus, and open it out
into a cylinder. Then we need to cut open the cylinder along its length. We end
up with a rectangle in which two opposite sides represent the same points, where
the cyclinder was cut open. Similarly, the other two sides represent the two ends
of the cylinder, which again came from the same points on the torus. The result
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Fig. 6.1 Representation of a torus.

is as in Fig. 6.1, where the arrows are used to indicate that opposite edges are
identified.

Reversing the whole process, a torus can be made from a {sufliciently flexible)
square by first rolling it up into a cylinder, sticking two parallel edges together,
and then rolling the cylinder up, sticking the two ends of the cylinder together. In
other words, we identify the left and right edges of the square, and then identify
the top and bottom edges (see Fig. 6.1).

Another way of picturing this is to repeat the square—as we cross the right-
hand edge of the square, we reappear at the left-hand edge, so we can picture
this by putting another copy of the square to the right of the first. If we keep
doing this in all directions, we end up with a tiling of the plane with infinitely
many identical squares (see Fig. 6.2).

Now imagine drawing maps on a torus. If there are no edges going through
the hole, or round it, then we could remove the hole {(either filling it in, in the first
case, or breaking the ring, in the second case), and draw the map equally well on
the surface of a sphere. Neglecting such trivial cases, we consider only the maps
which really need the torus—these are called 2-cell embeddings, which means
that each region of the map can be flattened out into a disk without cutting
the torus. In the other cases, there is some region which contains the hole, and
cannot be flattened out in this way.

As in the plane, our map-colouring theorems rely on the corresponding version
of Euler’s formula for 2-cell embeddings of maps on a torus, that isp—qg+7 = 0.

Proposition 6.1 If a connected graph G is drawn on a torus in such a way that
every face is a 2-cell, and G has p vertices, q edges and r faces, thenp—qg+1 = 0.

Proof Asin the proof of Theorem 3.2, we prove this by induction on the number
of edges. If there is a vertex of degree 1, we remove it and the incident edge,
without changing the value of p — ¢+ r. If there is an edge which is incident with
two different faces, remove it, thereby reducing ¢ and r by 1 and not changing
p — q + r. Moreover, the face formed by the union of the two old ones is still
topologically a 2-cell, since it has no holes in it.

Otherwise, there is only one face, and all remaining edges are on the boundary
of this face. By cutting along the boundary of this face, we can flatten out the
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Fig. 6.2 Another representation of a torus.

Fig. 6.3 A map with a single face on a torus.

torus, which means that it essentially looks as in Fig. 6.3. If there are m edges
on each horizontal line in the diagram, and n edges in each vertical line, then
there are m + n edges in all, and m +n — 1 vertices. Since there is just one face,
wehavep—g+r=(m+n—-1)—(m+n)+1=0. a
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Corollary 6.2 If G is any graph embedded in a torus, with p vertices, q edges
and r faces, then
p—q+r=0

Proof First, add just enough edges to make the graph connected. This can
only reduce the value of p — g + r, as no new cycles are created, and therefore,
the number of faces does not change. Now the new value of p — g + r is either 2
or 0 according as the graph is planar or not, so the original value of p — ¢ +r
was also at least 0. O

If we generalize to a surface with genus g, that is, one with g holes, then we
obtain the following generalization of Euler’s formula:

p—qg+r=2(1-g).

Proposition 6.3 If a connected graph G is drawn on a surface of genus ¢ in
such a way that every face is a 2-cell, and G has p vertices, q edges and r faces,
thenp—qg+r=2-—2g.

Proof (Sketch.) One way to prove this is to imagine boring a hole through the
middle of one face, A, and reappearing in the middle of another face, B. We
then join m of the vertices of A to n of the vertices of B, by n edges running
through the hole. The result of this is to replace the two faces A and B by n
faces, while adding n edges and leaving the number of vertices unchanged. Thus
for each new hole, p — ¢ + r is decreased by 2, so the result follows by induction
on the number of holes. O

Note that in this proof the induction starts with the sphere, so this gives us
an alternative proof that p — g + r = 0 on the torus.

Corollary 6.4 If G is any graph embedded in a surface of genus g, with p
vertices, q edges and r faces, then

p—q+r=2-—2g.

Proof First, add just enough edges to make the graph connected. This can
only reduce the value of p — g + r, as no new cycles are created, and therefore,
the number of faces does not change. Now the new value of p — g +r is 2 — 2¢/,
where ¢’ € ¢ is the genus of the graph, so the original value of p — ¢+ r was also
at least 2 — 2¢’, and therefore, at least 2 — 2g. O

The quantity 2(1 — g) is called the Euler characteristic of the surface. One
reason for using this concept rather than the genus is that it can be defined for
non-orientable surfaces also (see Section 6.4).

6.2 Map colouring on a torus

Just as on the plane, k-colouring all maps on a torus is equivalent to k-colouring
all cubic maps on the torus. The proofis just the same as the proof of Theorem 4.6.
Corresponding to Corollary 3.13 we have the following.
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Proposition 6.5 In any cubic map drawn on a torus, there exists a face with
at most six neighbours.

Proof We have 2¢g = 3p for cubic maps, as before, and on the torus Euler’s
formula gives
0<3p—3¢+3r=3r—g

s0 ¢ £ 3r. If d denotes the average number of neighbours to a face, then by the
handshaking lemma we have 2¢ = dr which implies that
2q < 6_r

d==2

< = 6.
T T

Therefore, there exists a face with at most six neighbours. a

Note that if, in fact, all the faces are 2-cells, then the above argument shows
that the average number of neighbours of the faces is exactly 6.

Theorem 6.6 Every map on a torus can be coloured with at most seven colours.

Proof If the map has seven or fewer faces, then the result holds trivially. If there
are at least eight faces, then we can choose a face with at most six neighbours.
Remove one edge from this face, and 7-colour the resulting smaller map—this is
possible, by induction. Put the edge back, and colour the last face with a colour
different from those of its (at most six) neighbours. a

This result is best possible, in the sense that there exists a map which requires
seven colours. Indeed, there is a map consisting of seven hexagons, each of which
is adjacent to all the other six (see Fig. 6.4 or Fig. 6.5). The dual graph of this
map is, therefore, K7, and is illustrated in Fig. 6.6.

Thus we have proved the following.

Theorem 6.7 (Heawood, 1890) Seven colours are necessary and sufficient to
colour all maps on a torus.

Let us restate this in the dual form. We first define the genus of a graph
to be the minimal genus of a surface in which it can be embedded without any
edges crossing each other. Thus, planar graphs are exactly the graphs of genus 0.
Given a map drawn on a surface of genus g in such a way that the individual
countries are homeomorphic to disks, we define the underlying graph as before:
we take vertices at the points where three or more countries meet, and edges
for the portions of the boundaries running from one such point to another. The
dual graph D(M) of a map M is defined by taking a vertex v(C) in D{M) for
each country C' in M, and an edge joining v(A4) to v(B) in D(M) for each edge
forming part of the boundary between A and B.

Now our original map-colouring problem translates to colouring the vertices
of D(M) in such a way that adjacent vertices receive distinct colours.

Theorem 6.8 The vertices of any graph G of genus 1 can be coloured with at
most seven colours.



Map colouring on a torus 63

Fig. 6.4 A map on the torus requiring seven colours.

Fig. 6.5 Seven mutually adjacent hexagons on a torus.
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Fig. 6.6 Kr embedded in the torus.

Proof By induction on the number of vertices. We may assume that G is con-
nected. If G has at most seven vertices, then the result is trivial. So suppose that
G has at least eight vertices. We may assume that the graph G has no multiple
edges, so that the faces have at least three edges, so 3r < 2¢ by the handshaking
lemma (the obvious generalization of Lemma 3.4). Therefore

0=3p—3¢g+3r<3p—q

so ¢ < 3p. But 2q = dp where d is the average degree of the vertices (by the
other handshaking lemma, or Corollary 3.5), so dp < 6p, and d < 6. Thus,
we can choose a vertex v of degree at most 6, and remove it and the incident
edges. The resulting graph can be coloured with seven colours (by induction),
and v has at most six neighbours, so can also be coloured with one of the seven
colours.

Thus, the induction continues, and the result follows. O

6.3 Generalizing to surfaces of higher genus

In his 1890 paper Heawood proved not only Theorem 6.6, but also the general-
ization to g > 1. We first generalize Theorem 3.8 to arbitrary genus.

Proposition 6.9 If a map is drawn on a surface of genus g, then

g < 3p+6g —6.
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Proof As usual, the faces have at least three sides, and so 2¢ > 3r, and sub-
stituting into Euler’s formula {Corollary 6.4) we have

6 —6g < 3p—3¢g+3r<3p—gq,
and therefore,
g<3p+6g—6
as required. O
As an aside we remark that Theorem 3.9 can be generalized as follows.

Theorem 6.10 If a graph of girth [ is drawn on a surface of genus g, then

g < (p+29-2),

b
-2

>1+1 -2
gz 5 I q9—P])-

Proof If the graph is disconnected, add just enough edges until it becomes
connected, so that no new circuits are created. If the theorem is true for the new
graph, then it is also true for the original graph. Since the new graph still has
girth [, the handshaking lemma implies that Ir < 2¢. Moreover, the genus of the
new graph is at most g, so substituting for r into p — ¢ + 7 = 2 — 2g, we obtain

or equivalently

2q
P—q+— 2p—aq+r
Z2-2
-2
épfq—7—22f2g
-2
> q¢—— <pt+29-—2

which implies the first inequality by multiplying both sides by [/{l — 2), since
[ > 3. Rearranging again gives 2g > 2 — p + ¢q(l — 2)/l, which implies the second
inequality. m]

In particular, for a bipartite graph we have g > 1+ %q — %p, by putting [ = 4
in the above theorem.

Returning to the proof of Heawood’s theorem, we shall, as usual, consider the
dual graph of a map. By the same construction as in the plane and on the torus,
we can see that a map is k-colourable if and only if the dual graph is vertex-k-
colourable. Also, without loss of generality we may restrict to the case when the
vertices of the map all have degree 3. (If all such maps are k-colourable, then so
are all maps.) This corresponds to the dual graph having all faces triangles.

Lemma 6.11 If G is a graph drawn on a surface of genus g in such a way that
all faces are triangles, then the average degree d = d(G) of the vertices of G is

129 — 12
d=6+—4 <

M

where p is the number of vertices.
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Proof Since all faces are triangles, we have 2 = 3r, and therefore, from Euler’s
formula

6(1 —g)=3p—3¢+3r
=3p—q
s0 ¢ = 3p + 6g — 6. Moreover, dp = 2q = 6p + 12g — 12, so
129 — 12
Jlg-12
p

d=6

O

Lemma 6.12 With the same hypotheses, let h = (7 + /1 + 48¢)/2 be the pos-
itive root of the quadratic equation 2 — Tz +12 —12g = 0. Then d < h — 1,
provided g > 1.

Proof The maximum degree of the vertices of Gisat most p—1,so0d <p—1,

which implies
129 — 12
6+ ——<p—1,
p

and therefore, 129 — 12 < p? — 7p, or
p? —Tp+12 —12¢ > 0.

Regarding this expression as a quadratic in p, the roots are

7+ +/1+48¢g
5 .

Only one of these roots is positive, so we deduce that

T+/IF48
p>7+ 2+ g:h,

and h is a root of the above quadratic, so A2 — 7h +12 — 12g = 0, and therefore,

129 —12 _ 129 — 12
= g = g .

h—17 5 > ’

Hence

provided g > 1. O
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Theorem 6.13 (Heawood, 1890) If g > 2, then every graph on a surface of
genus g is k-colourable, where

b= {7+\/1+48gJ

Proof By induction on p. If p < k, the result is immediate. If p > k, then by
Lemma 6.12, there exists a vertex v of degree at most h — 1. Of course, i need
not be an integer, so we let k = | k|, the integral part of h, so that v has degree at
most k — 1. Perform an ‘elementary contraction’ by identifying this vertex with
any one of its neighbours. In other words, we replace the two vertices u,v by a
single vertex z, joined to all the other vertices which were joined to either u or v,
or both. The new graph has p—1 vertices, so by induction can be vertex-coloured
with k colours. Now we can k-colour the original graph, by colouring u the same
colour as z, and colouring v (which has degree at most k — 1) with a colour not
used by any of its neighbours. O

Definition 6.14 The number

k= L7+\/1+489J
= |—5—

is called the Heawood number of the surface.

Heawood appeared to believe that he had also proved the converse of
Theorem 6.13, but the fact that he did not was pointed out by Heffter. Indeed,
this converse is much harder, and was not proved until 1968—we cannot prove
it here. Clearly, it will be sufficient to embed the complete graph K}, in a surface
of genus g, which will show that there is some map which requires exactly &
colours. In 1957 Dirac proved that this condition is also necessary.

The cases ¢ < 6 and some others were done by Heffter in 1891, but the
general case was the work of many people, including Gustin, Terry, Welch, Guy
and Mayer, culminating in the monumental work of Ringel and Youngs in 1968.
The full proof is given in Ringel’s book [40], and summarized in the article by
White in [8, vol. 1, pp. 51-82]. This proof divides into 12 cases, according to the
residue class of £ modulo 12.

The following related result is an easy corollary of Theorem 6.13. For if K,
is k-colourable, then n < k. We give also a direct proof.

Proposition 6.15 If the complete graph K, on n vertices can be drawn as a
map on a surface of genus g, then

or, equivalently

o 74+ 14+ 48¢g

n < 5
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Proof We have p =n and ¢ = n(n — 1)/2, so substituting into the inequality
q < 3p+ 69 — 6 (see Proposition 6.9) gives
n{n —1)
2
which can be rearranged into the form
> (n73)(n74)'
12

< 3n + 6g — 6,

Now we can rearrange the inequality again to give n? — Tn + 12 — 12¢ < 0, and
applying the usual criterion for a quadratic expression to be non-positive, we

have
< 7+ 1+ 48g
ng ——=.
2
[l

As we have already noted, it is a fact, but very hard to prove, that the converse
of this result is true. That is, the complete graph on n points can be drawn as
a map on any surface whose genus is at least (n — 3)(n — 4)/12. Assuming this
result, we can deduce the converse of Theorem 6.13.

Theorem 6.16 If g > 1 then there is a map on the surface of genus g which
requires k colours, where

L {7 + T+ 48_gJ

Corollary 6.17 On a surface of genus g, where g > 1,

b= L7+\/1+48gJ
= | —5—

colours are both necessary and sufficient to colour all maps.

6.4 Non-orientable surfaces

It turns out that in addition to the orientable surfaces described above, which
are classified by their genus g, or alternatively by their Euler characteristic
2 — 2g, there is also a series of non-orientable surfaces. These may be defined
by cutting n circular holes in a sphere, and sewing up each hole by identifying
each point on a circle with the opposite point. This cannot be physically done
in three dimensions, so is hard to visualize. These non-orientable surfaces do not
have a genus, but they do have an Euler characteristic, which is 2 — n. The
case n = 1 is the projective plane (see Exercise 6.8), and the case n = 2 is the
Klein bottle (see Exercise 6.10).

Many of the above results generalize to non-orientable surfaces, by way of
the Euler formula p — ¢ + 7 = 2 — n. In particular, Heawood’s theorem applies
to non-orientable surfaces, if we replace 2g by n in the formula, provided n > 2.
Thus, the projective plane is the only case where it does not hold.
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Theorem 6.18 Ifn > 2, then every map on a non-orientable surface with Fuler
characteristic 2 — n is k-colourable, where

k= L7+\/1+24nJ
— # .

On the other hand, the question of whether there exists a graph which
requires k colours surprisingly has a different answer for the Klein bottle—in
fact only six colours are necessary in this case, not the seven colours suggested
by Heawood’s formula (see Exercise 6.10).

Exercises

Exercise 6.1 Show how to draw the complete bipartite graph K33 on a torus.
Verify that Euler’s formula holds for this embedding of the graph. How many
colours are needed to colour the faces? How many colours are needed to colour
the vertices?

Exercise 6.2 Do the same for the Petersen graph.

Exercise 6.3 Show that K5 can be drawn on the torus as a ‘regular’ polyhedron
with five faces, each with four sides.

Show also that in this embedding, K5 is self-dual.

Can you find another embedding of K5 on the torus, in which it is not self-
dual?

Exercise 6.4 Suppose that the complete graph K, can be drawn on a surface
of genus ¢ in such a way that all the faces are triangles. Use Euler’s formula to
prove that

12(g — 1) =n? — Tn.

Deduce that n =0,3,4 or 7 (mod 12).

Exercise 6.5 Suppose that the complete bipartite graph K, can be drawn
on a surface of genus ¢ in such a way that all the faces are quadrangles. Use
Euler’s formula to prove that

{(m —2)(n —2) = 4g.

Find all solutions to this equation in the case g = 1, and in the case ¢ = 2.

For each solution, determine whether or not the corresponding K, , can
be drawn on a torus. Hence, list all the complete bipartite graphs which have
genus 1.

Exercise 6.6 Show that if h = (74 /T + 48¢)/2 is an integer, then
h=0,3,40r 7 (mod 12).

Calculate the values of g for the first few integer values of h.
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Exercise 6.7 A surface of genus 2 can be represented in the plane by drawing an
octagon, and identifying each edge with the opposite edge, as shown in Fig. 6.7.

Heawood’s formula (Theorem 6.16) shows that (how many?) colours are suf-
ficient to colour any map on this surface. Can you find an embedding of the
complete graph on this number of points, into the surface, and thus show that
this number of colours is also necessary?

Exercise 6.8 The projective plane is a surface which can be defined by iden-
tifying opposite sides of a square in opposite directions as in Fig. 6.8.

Show how to draw Kg on a projective plane. Is your embedding a 2-cell
embedding?

Calculate p — g + r for this embedding. What does this tell you about the
surface?

Prove the six-colour theorem for the projective plane.

Exercise 6.9 A Klein bottle is a closed non-orientable surface which may be
represented by the diagram in Fig. 6.9. In other words, first make a cylinder,
and then turn one end inside out (you can only ‘physically’ do this in a space of
four or more dimensions), before sticking the two ends together.

Show that the analogue of Euler’s formula on the Klein bottle isp—qg+7r = 0,
just as for the torus.

Fig. 6.7 Representation of a surface of genus 2.

Fig. 6.8 Representation of a projective plane.
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Fig. 6.9 Representation of a Klein bottle.

Exercise 6.10 (Hard) Use a Kempe chain argument to show that if six regions
meet, at a point in a 6-colourable map drawn on a Klein bottle, then the map
can be 6-coloured in such a way that at most five colours are used for the given
six regions.

Deduce that any map on a Klein bottle can be coloured with at most six
colours.



7
Kuratowski’s theorem

7.1 Connectivity

We have looked at problems of colouring graphs of different genus, but how do
we know what genus a given graph has? In general, this is a hard problem. The
genus 0 case is obviously of special interest to us, as a good characterization of
genus O (i.e. planar) graphs might help us to attack the four-colour theorem. The
most famous characterization of planar graphs is Kuratowski’s theorem, which
gives us a practical way of showing that a given graph is non-planar. On the
other hand, the easiest way to show that a given graph is planar is to draw a
plane graph which is isomorphic to it.

As we have already seen in Chapter 3, the complete graph on five vertices,
Ks, is non-planar, as is the complete bipartite graph Kz 3. What Kuratowski’s
theorem tells us is that, in a certain sense, every non-planar graph ‘contains’ one
of these two graphs.

In order to state the theorem precisely, we define a subdivision of a graph G
to be a graph obtained from G by a finite number of operations of the following
form: introduce a new vertex x and replace an edge vw by two edges vz and
zw. We think of this as just adding a vertex in the middle of an existing edge.
Obviously, if a graph is planar then any subdivision of it will be planar, and vice
versa, so any subdivision of a non-planar graph is itself non-planar. In particular,
since K5 and K33 are non-planar, it follows that any graph which contains a
subdivision of either K5 or K33 is non-planar (Fig. 7.1). What is remarkable
is that this is a necessary condition for a graph to be non-planar, as well as a
sufficient one.

Theorem 7.1 (Kuratowski) If G is a non-planar graph, then it contains a
subgraph H which is a subdivision of K5 or K3 3.

There is a similar theorem, due to Wagner, which uses contractions instead
of subdivisions. An elementary contraction of a graph is the operation of
replacing two adjacent vertices by a single vertex: the new vertex is joined to
every other vertex which was joined to one or both of the original two vertices. A
contraction of G is, then, any graph which can be obtained from G by a finite
sequence of elementary contractions.

72
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Fig. 7.1 A subdivision of K.

Theorem 7.2 (Wagner) If G is a non-planar graph, then it contains a sub-
graph H which has K5 or K33 as a contraction.

We prove Kuratowski’s theorem first. The proof is quite hard: the version we
give is a mixture of those given by Harary [28] and by Bondy and Murty [14].
Before we embark on it, we make a few useful definitions.

Definition 7.3 The connectivity «(G) of a graph G is the minimum number
of vertices you need to remove in order to disconnect the graph (or to reduce
it to a 1-vertex graph, in the case when G cannot be disconnected by removing
vertices).

In this definition, note that when you remove a vertex you must also remove
all the edges incident to that vertex, since an edge cannot live without its end-
points. We shall see in Exercise 7.6 that the complete graphs are the only con-
nected graphs which cannot be disconnected by removing vertices.

Definition 7.4 A graph is called k-connected if k < x(G), that is if it requires
the removal of at least k vertices (and the incident edges) to disconnect the graph,
or to make it a 1-vertex graph.

In particular, a 1-connected graph is the same thing as a connected graph.
A maximal 1-connected subgraph of a graph G is a connected component of G.
Note that our definition implies that every k-connected graph has at least k£ + 1
vertices. Also note that if G is k-connected, then G is [-connected for all [ < k.
The complete graphs K, are (n — 1)-connected, but not n-connected.

More generally, if G has a vertex v of degree d, then removal of all the neigh-
bours of v will disconnect the graph, so G is at most d-connected. In other words,
k(G) < §(G). For example, a tree is 1-connected but not 2-connected. A cycle
is 2-connected but not 3-connected. The octahedron (Fig. 3.1(c)) is 4-connected
but not 5-connected. Figure 7.2 shows the cycle Cg, which has connectivity 2,
and the wheel Wy, which has connectivity 3.
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| <:> | @

Fig. 7.2 Two-connected and 3-connected graphs. (a) k(Cs) = 2 and (b) x(W7) = 3.

(2)

B AVAANAND

Fig. 7.3 The blocks of a 1-connected graph. (a) A graph with connectivity 1 and (b) its
five blocks.

Recall that a cutvertex {sometimes called a cutpoint or articulation ver-
tex) of a graph is a vertex whose removal disconnects the graph. Thus, a con-
nected graph with a cutvertex is 1-connected but not 2-connected. Recall also
that a bridge is an edge whose removal disconnects the graph.

Definition 7.5 Let G be a graph. Then, the blocks of G are (a) the maximal
2-connected subgraphs and (b) the bridges with their two endpoints.

In Fig. 7.3, we give an example of a 1-connected graph and its blocks.

Definition 7.6 A graph G is k-edge-connected, if it requires the removal of at
least k edges to disconnect the graph. The edge-connectivity x'(G) of a graph
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G is the minimum number of edges you need to remove in order to disconnect
the graph. Thus, G is k-edge-connected if and only if k < &'(G).

These numbers are related by the following easy inequalities.

Theorem 7.7 x(G) < '(G) < §(G), where §(G) is the minimum degree of the
vertices of G.

Proof To prove the second inequality, choose a vertex v of minimal degree, that
is of degree §(G), and remove all the edges incident with v. This disconnects G
by removing §(G) edges, so &'(G) < §(G).

To prove the first inequality, choose a disconnecting set of x'(G) edges. Now
remove one of the two vertices incident with each such edge. This forces us to
remove the edges also, and therefore, disconnects the graph, removing at most
k'(G) vertices. Therefore, k(G) < k'(G). O

The next lemma is crucial to our proof of Kuratowski’s theorem. It may be
thought of as a special case of Menger’s theorem, which states that if G has at
least k£ + 1 vertices, then G is k-connected if and only if every pair of vertices u,
v is connected by at least k internally disjoint paths (i.e. paths which intersect
only at u and v). The ‘if’ part of Menger’s theorem is easy: if u is connected to
v by at least k internally disjoint paths, then you need to remove at least one
internal vertex from each of these paths in order to disconnect u from v. The
lemma we require, however, is the case k = 2 of the ‘only if’ part. This states
that if G is 2-connected, then every pair of vertices is connected by two internally
disjoint paths. In other words,

Lemma 7.8 If G is a 2-connected graph, then every pair of vertices lies on a
cycle.

Proof Let u,v be distinct vertices, and suppose that there is no cycle containing
both v and v. We aim for a contradiction. Choose a point w which is on a
cycle with u, and is as close to v as possible, in the sense that there is a path
from w to v with as few edges as possible. Note that there is some non-trivial
cycle involving u, for otherwise one of the edges incident with w is a bridge,
contradicting 2-connectedness. In particular, w # u. Now choose a cycle u—w—u
and a shortest path from w to v (see Fig. 7.4).

Now 2-connectedness implies that there is a path P from u to v which does
not pass through w. This new path P involves at least one of the vertices in the

Fig. 7.4 No cycle through « and v.
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Fig. 7.5 Extending the cycle to v'.

u—w—u cycle (in particular, it involves u), so let v/ be the last such vertex along
P in the direction from u to v. Similarly, the section of the new path P from v’
to v involves at least one vertex in the old w—v path (in particular, it involves
v), so let v' be the first such vertex (see Fig. 7.5).

Then, the new path from v’ to v’ is internally disjoint from all the old paths,
and we can see in the picture that there is a cycle through u and v’, taking the
old path from v’ to w, then the old cycle from w to v and on to «/, and finally,
the new path from u’ to v’. This contradicts our choice of w. a

7.2 A minimal counterexample to Kuratowski’s theorem

We shall prove Kuratowski’s theorem by contradiction, so suppose the theorem
is false, which means there is a non-planar graph which does not contain a
subdivision of either K5 or Ks33. Let G be such a graph with the minimum
possible number of edges. (Such a graph is a minimal counterexample to
Kuratowski’s theorem.)

Lemma 7.9 G is 3-connected.

Proof Suppose G is not 3-connected, and choose vertices v and v which discon-
nect G. Thus, G is the union of two graphs which intersect in u, v, and possibly
the edge uv. Now add the edge uv to each of these subgraphs if it is not there
already. Then either both the resulting graphs are planar, or at least one of them
is not planar.

In the latter case, we have constructed a smaller counterexample to
Kuratowski’s theorem, which is a contradiction. In the former case, we can draw
each of the two graphs in the plane, with the edge uv on the exterior face. Then,
we can join them together along this edge, and produce a planar embedding of
(7, which is again a contradiction. O

Now we choose any edge ugvg of G, and let I’ be the graph obtained by
removing that edge. By the minimality of G, we know that F' is planar. For if
F is not planar, then by assumption it is not a counterexample to Kuratowski’s
theorem, so it contains a subgraph which is a subdivision of K5 or K33, and
therefore, so does G.

Corollary 7.10 F is 2-connected.
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Proof If F can be disconnected by removing a vertex x, then G can be dis-
connected by removing ug (and hence the edge ugvg) and z. This contradicts
Lemma 7.9. O

In particular, we have the following.
Lemma 7.11 The graph F contains a cycle C' going through both ug and vy.

Proof This follows immediately from Corollary 7.10 and Lemma 7.8. o

7.3 The proof of Kuratowski’s theorem

With G, F and C as in the previous section, we choose the cycle C' and a planar
embedding of F, such that C has as many faces inside it as possible. Now F
must be such that it is impossible to draw the edge ugvg without crossing some
edges of F'. That means that ug and vg must be separated by both a piece of the
graph inside C, and by a piece of the graph outside C.

To make these notions precise, consider the ‘outer’ subgraph I consisting
of all vertices and edges outside C', together with those vertices of C which are
incident with such edges. We define an ‘outer piece’ to be a connected component
of Fy. For convenience, we divide the cycle C into a left-hand path C; running
anticlockwise (say) from wug to vg, and a right-hand path C). running clockwise
from ug to v (see Fig. 7.6).

Lemma 7.12 Fach outer piece consists of a single edge with its two endpoints,
one of which is in C; and the other in C,.

Ug Ps

B,

P

L
Cl Vo CT

Fig. 7.6 Starting the proof of Kuratowski’s theorem.
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Proof First note that an outer piece P cannot meet C; in more than one vertex,
for if it did we could change C to enclose more faces, by taking a detour through
P (see the piece P; in Fig. 7.6). Similarly, P cannot meet C, in more than
one vertex. Therefore, P meets each of C; and C, in exactly one vertex, since
otherwise P meets C in only one vertex, and then that vertex is a cutvertex of
F, contradicting the fact that F' is 2-connected (see the piece P, in Fig. 7.6).
Indeed, P must be a single edge, since otherwise its two endpoints in C' not only
disconnect F', but also disconnect GG, contradicting the fact that G is 3-connected
(see the piece Ps in Fig. 7.6). O

As a consequence of this lemma, we can order the outer pieces vertically, so
that P; meets C; in u;, and meets C,. in v;, in such a way that C; passes through
Ug, U, U2, - - -, Un, Vo in turn, and C,. passes through ug, v1,v2, ..., Uy, vg in turn
(see Fig. 7.7).

Next, we turn our attention to the inner pieces of F, defined analogously.
Those which do not separate any u, from the corresponding v; can be redrawn
outside C, since they do not cross any of the outer pieces P;. If, having done
this, none of the remaining inner pieces separates ug from vg, then we can draw
the edge ugug inside C without violating planarity (see Fig. 7.8). This is a con-
tradiction. Therefore, at least one of the inner pieces separates ug from vy, and
simultaneously separates some u; from w;. For the sake of the rest of the argu-
ment, we might as well suppose that ¢ = 1.

We now disjoin cases according to where this inner piece meets the cycle C.
Let wg and 2o be places where it separates ug from vg, and let w; and x1 be
places where it separates u; from v;. For definiteness, say w is between u; and
v1 going anticlockwise around C, and z1 is between v; and uq.

Py
L
Uz Uo U1
C’l Cr
. U2 U2 .
Unp Vo Un,

RN

Fig. 7.7 Some outer pieces of F.
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Uy Uy V1
L 4
C
*—
U9 ® ® V2
*—o
L L L
Up, Vo Un

Fig. 7.8 Drawing uovo inside C.

Note that there is a symmetry of the whole situation interchanging the
subscripts 0 and 1. For if we replace the edge ugvg and draw it outside the
cycle C, then the problem is to prevent the drawing of the edge u,v; inside C.
This symmetry can be used to reduce the number of cases which need to be
considered.

Case 1. wy and x1 are on opposite sides of ugvyg.
Case 2. w; and x1 are on the same side of ugvg.
Case 3. One of these points is equal to ug or vg.
Case 4. Both of these points are equal to ug or vg.

In each case, we throw away as much of the graph as we like, and ignore
subdivisions of edges, until we obtain either K5 or K3 3. This will show that in
every case we have a subgraph which is a subdivision of K5 or K3 3 (see Figs 7.9
and 7.10).

Case 1. In this case we get K33 (Fig. 7.9(a)).

Case 2. In this case, the inner piece must also separate ug and vy on the
other side. Either it meets the cycle at say vy, or it meets at some other point.
In the first case (Fig. 7.9(b)), we omit the path vivy and obtain a subdivision
of K3 3. In the second case (Fig. 7.9(c)), there is a subgraph looking just like
case 1.

Case 3. Without loss of generality we have x1 = ug, and w; is below u; and
v1 in the cycle, so without loss of generality wy is between vy and vy. In order
to separate ug from vg, this piece meets C also in Cj, either above, below or
at ui. The first case (Fig. 7.9(d)) contains case 1 as a subgraph, while the
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(a) (b)
Uo Uo
1 T
U1 1 Uug U1
w1 wy
Vo Vo
(c) (d)
Uo Uo
T
U1 U1 U1 U1
w1 w1
Vo Vo
(e) ()
Ug Up
U1 U1 Ut U1
w1 w1
Vo Vo

Fig. 7.9 Cases 1-3 in the proof of Kuratowski’s theorem.
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(a) (b)

Up Ug

Up U1 U1 V1

Vo Vo

Fig. 7.10 Case 4 in the proof of Kuratowski’s theorem.

second (Fig. 7.9(e)) is equivalent to case 2 on interchanging ugy and vy with w44
and vy. The third case (Fig. 7.9(f)) gives a subdivision of K33 on removing
the path ugu;.

Case 4. By symmetry (i.e. by interchanging ug with u; and vy with vy if
necessary) we can deal with all the cases except those where both wq and zg
are equal to uy or vi. There are now two cases: either the paths wiz; and
woxg meet at a single point, which gives us a subdivision of Ky (Fig. 7.10(a)),
or they overlap in a non-trivial path, in which case we have a subdivision of

This concludes the proof of Kuratowski’s theorem.

Let us now consider Wagner’s theorem (Theorem 7.2). Historically, this was
first proved as a corollary to Kuratowski’s theorem, as here, but in the next
section we shall give a direct proof.

Before we prove the theorem, note that if G is planar, and G’ is the graph
obtained from G by contracting the edge vw, then G’ can be drawn in the plane
by physically shrinking the edge vw until v and w coincide. Therefore, G’ is also
planar. It follows, by induction, that any contraction of a planar graph is planar.

Theorem 7.13 A graph G is planar if and only if it contains no subgraph which
has Ky or K33 as a contraction.

Proof If G is not planar, then by Kuratowski’s theorem {Theorem 7.1) G con-
tains a subgraph H which is a subdivision of K, where K is either K5 or K3 3.
Then H can be contracted onto K simply by contracting the subdividing edges
one at a time. Thus, G contains a subgraph A which has K5 or K33 as a
contraction.

Conversely, if H contracts onto K and K is not planar, then H cannot be
planar, for if it were, then K would be planar by the above remarks. O

For example, consider the Petersen graph. If you contract the five edges con-
necting the outer 5-cycle with the inner one, then you obtain K5 (see Fig. 7.11).
Hence the Petersen graph is non-planar.
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Fig. 7.11 Contracting the Petersen graph onto K.

Remark Notice that we have used the fact that if G is a subdivision of H,
then G contracts onto H. It is worth noting that the converse of this is false (see
the next section).

7.4 An alternative approach

Although Kuratowski’s theorem is older than Wagner’s theorem, and historically,
the latter was deduced from the former, it is perhaps easier to prove Wagner’s
theorem first, and deduce Kuratowski’s theorem from it. This is the approach
adopted by Diestel [19], whose proof goes roughly as follows.

We take G to be a minimal counterexample to Wagner’s theorem. Thus, G
is a minimal non-planar graph which has no subgraph contracting onto Kx or
K3 3. In particular, if we contract any edge of G, then we obtain a planar graph,
since we obviously cannot have a subgraph contracting onto K5 or K3 3.

We first show that G is 3-connected, in exactly the same way as in Section 7.2.

Lemma 7.14 Any minimal counterexample to Wagner’s theorem is 3-connected.
Proof Just as in Lemma 7.9. (W

Next we show that we can choose an edge to contract, in such a way that the
resulting graph is still 3-connected.

Lemma 7.15 If G is any 3-connected graph other than K4, then G has an edge
such that the graph resulting from G by contracting that edge is still 3-connected.

Proof If not, then contracting any edge in G results in a non-3-connected
graph. So if uv is any edge in G, then there is a vertex x such that {u,v,z} dis-
connects G, into components G1,Ga, .. ., say. Moreover, each of u, v, x is adjacent
to some vertex in each component G, for otherwise a proper subset of {u,v,z}
would already disconnect G.
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0
v G1

Fig. 7.12 The proof of Lemma 7.15.

Now choose uv and x so that there is a component ; with the smallest
possible number of vertices, and choose y adjacent to x in G1. Applying the same
argument now to the edge zy, we find a vertex z such that {z,y, z} disconnects G,

into components Hy, Hs, ..., say. We shall show that one of these components
has fewer vertices than G5, and this contradiction will prove the lemma (see
Fig. 7.12).

Let H; be a component not containing u, and therefore, not containing v
(since u and v are adjacent). Now H; contains at least one neighbour of y, but
does not contain u, v or x, so is entirely contained within G1. On the other hand,
H7 does not contain y, so Hi is a subgraph of Gy, with strictly fewer vertices,
as required. O

Theorem 7.16 (Wagner) If G is a non-planar graph, then it contains a sub-
graph H which has K5 or K33 as a contraction.

Proof We let G be a minimal counterexample, so that, by Lemma 7.14, G is
3-connected, and certainly G is not K4, so by Lemma 7.15 we can choose an edge
uv in G such that contracting uv gives a 3-connected graph F. By minimality
of G, we know that F' is planar, so we draw it in the plane, with a vertex w
corresponding to the two vertices v and v in G. Then the faces incident with
w together form a region R of the plane, enclosing w, and with a cycle C as
its boundary. We now try to draw u and v inside R, and join them up to the
appropriate vertices of the cycle.

First draw u and join it to its neighbours in C—let these be uq,us, ..., ug,
Uugy1 = u1 in cyclic order around C. We now disjoin cases according to where in
the cycle the neighbours of v lie. Notice that v has at least two neighbours v; and
v on the cycle, since its only other neighbour is u, and G is 3-connected. If there
are neighbours vy strictly between u; and u;41 and vo between u; and uj;41, with
1 # j, then contracting the edges of the cycle between u;11 and u; if necessary,
we obtain a K33 on the vertex set {u,v1,vs} U {v,u;, uip1} (see Fig. 7.13(a)).
The same thing happens if vy is as above and vy = u;, with j # 4,0 4+ 1 (see
Fig. 7.13(b)).
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(a) vy Uit1
0/‘
v
U
‘\'
Uji1 V2 Uj
(b) u; vy Uir1
L
v
U
[ @
V2 = Uy
(¢) u;=w Ujt1
v
U
Uj+1 Uy = U2

Fig. 7.13 Three cases in the proof of Wagner’s theorem.

Otherwise, all neighbours of v in the cycle are neighbours of u. If two are
non-adjacent, say v1 = u,; and vy = uy, with ¢ # j + 1, then we obtain a Kj3
on the vertex set {u,v1,v2} U {v,ujt1,u; 41} (see Fig. 7.13(c)). If they are all
adjacent, then either there are only two of them, say v1 = u; and vo = u;y1,
and it is easy to draw v and all the required edges inside the triangle uwu;u;q1,
contradicting the fact that G is not planar; or there are three of them, and
the cycle is a triangle ujusug, so the vertices wu,v,u1,us,uz form a Ks (see
Fig. 7.14). ]

We can now deduce Kuratowski’s theorem from Wagner’s theorem, although
this is not as easy as the other way round. All we have to show is that if H
contracts onto Ky or K33, then H contains a subdivision of K5 or K3 3. Note,
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U; = U1 Ujy1 = V2

=2
iy
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Fig. 7.14 Two more cases in the proof of Wagner’s theorem.

however, that the contraction and the subdivision need not be the same. For
example, the Petersen graph contracts onto K5 but does not contain a subdivision
of K5 (Why not?).

Theorem 7.17 If H is a graph which contracts onto Ky or K33, then H con-
tains a subdivision of K5 or K3 3.

Proof First suppose that H contracts onto K3 3. Thus, H contains six con-
nected induced subgraphs Hy, Hs, Hs, L1, Lo, L3, say, and edges between each
H; and Ly, for all i and j, but no edges between any H; and H;, or between
L; and Lj, for ¢ # j (see Fig. 7.15(a)). If we choose a suitable set of nine edges
between these subgraphs, then in each subgraph, we want to join up the ends
of the appropriate three edges. Whatever way we do this, we end up with three
paths meeting at a vertex. The subgraph we have drawn connecting these six
vertices is then a subdivision of K3 3.

Now suppose that H contracts onto K5, and that the subgraphs correspond-
ing to the vertices of the K5 are Hi,...,Hs. In each H; there are now two
possibilities as to how the four incoming edges can be joined up. Either we
obtain four paths all meeting at a single point, or we have two paths meeting at
a vertex v, and the other two meeting at a vertex w, joined by a path from v to
w. If all five subgraphs have the four paths meeting at a single point, then we
have a subdivision of K5. Otherwise, we have a subgraph consisting of v and w
from H;, say, and the whole of Hy, Hs3, Hy and Hs, which contracts onto K 3,
so we are back in the first case (see Fig. 7.15(b)). O
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(a)

H, , H,
L1 LQ LS
(b)
, o H;
Hy Hs

Fig. 7.15 Two cases in the proof of Theorem 7.17. (a) H contracts onto K33 and
(b) H contracts onto Ks.

Exercises

Exercise 7.1 Suppose that two graphs G (with py vertices and ¢; edges) and
Gy (with po vertices and g2 edges) are homeomorphic (i.e. they are both sub-
divisions of the same graph H). Prove that p; + g2 = p2 + ¢1.
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Fig. 7.16 The four-dimensional cube.

Exercise 7.2 The graph of the four-dimensional cube is made by taking two
copies of the three-dimensional cube and joining corresponding vertices by edges,
as shown in Fig. 7.16. Determine whether this graph is planar. If it is, draw it
in the plane. If it is not, try to draw it on a torus.

Exercise 7.3 A planar graph is called maximal if no edge can be added to it
without violating planarity. Show that any maximal planar graph can be embed-
ded in the plane so that every region has three edges. Find a maximal planar
graph which is not a complete graph.

Exercise 7.4 Show that any 5-connected planar graph has at least 12 vertices.
Give an example of a 5-connected planar graph.

Exercise 7.5 Does there exist a 6-connected planar graph? Justify your answer.

Exercise 7.6 Prove that the complete graphs are the only connected graphs
which cannot be disconnected by removing vertices.

Exercise 7.7 Prove that the Petersen graph does not contain a subdivision of
K.

Exercise 7.8 Determine (with proof) the connectivity of

1. Konig’s graph (Fig. 5.5);

2. the Herschel graph (Fig. 5.7);

3. the Petersen graph;
4. the complete bipartite graph Ky, r.
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Colouring non-planar graphs

8.1 Brooks’ theorem

Whilst we cannot prove that every map can be 4-coloured, we can prove that
(with one exception) every triangular map can be 3-coloured. As usual, we
state and prove this in the dual form. In fact, this result is true even without
the assumption that the graph is planar, and is the case A = 3 of Theorem 8.1.

In a sense, we can regard this and similar results as first steps in the gener-
alization of the four-colour theorem to non-planar graphs. First we note that if
a graph G has maximum degree A = A(G), then its vertices can be coloured
with at most A+ 1 colours. To prove this, we simply colour the vertices one at a
time. At each stage, the vertex is joined to at most A of the vertices which have
already been coloured, so can be coloured itself.

The following theorem, due to Brooks, says that with two exceptions, we can
manage with one colour fewer. The exceptions are genuine: K a1 has maximum
degree A, but requires A 4+ 1 colours. Similarly, if A = 2, and G is a cycle of
odd length, then we are forced to colour with alternate colours round the cycle,
which produces a 2-colouring if and only if the cycle has even length.

Theorem 8.1 (Brooks) Any connected graph G with maximum degree A can
be A-vertex-coloured, unless G is isomorphic to Ka 11, or to a cycle of odd length
in the case A = 2.

Proof Since a cycle of even length can be 2-coloured, we assume from now on
that A > 3. We may also assume that G is 2-connected, since otherwise there is
a cutpoint, and we can colour the two blocks separately, and then match up the
colouring on the point which is in both blocks.

Moreover, we may assume that every vertex v of G has degree A, for if not,
choose a vertex of degree strictly less than A, and remove it from the graph: by
induction on the number of vertices, we can colour this smaller graph with at
most A colours, and then colour v with a colour not used by its at most A — 1
neighbours. We divide into two cases according to whether G is 3-connected
or not.

If G is 3-connected, with n vertices, say, and G is not K,, then we can
choose a vertex v, with two non-adjacent neighbours vy and vs (Fig. 8.1). We
now choose recursively v, 1, v,_2 and so on, such that each v; is adjacent to
at least one of v;¢1,...,v,. This can be done since otherwise v; and ve would
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Un = V20

ek

Vg U3

Fig. 8.1 A 3-connected case of Brooks’ theorem, A = 3.

disconnect {v;y1,...,v,} from the rest of the graph, contradicting the fact that
(3 is 3-connected. Now we can colour v1, v2 with the same colour, and then colour
U3, Uy, - - - 0 turn, since each v; adjacent to at most A —1 of the previous vertices
v1,...,0—1. Finally, v, is adjacent to v; and vy, which have the same colour,
and to at most A — 2 other vertices, so v, can also be coloured.

If G is 2-connected but not 3-connected, then we order the vertices in a
slightly different way (Fig. 8.2). We first let {u,v,} be a pair of vertices which
disconnects the graph. Now the graph obtained from G by removing v, and
all edges incident to v, is 1-connected but not 2-connected, so has at least two
blocks. Moreover, at least two of these blocks are ‘endblocks’—which means that






The chromatic number 91

they contain only one cutvertex of the graph. Now v,, is adjacent to at least one
vertex (other than the cutvertex) in every endblock, for otherwise, the cutvertex
is a cutvertex for the whole of GG, contradicting the fact that G is 2-connected.
If we choose such vertices v; and vs in two different endblocks, then clearly vy
and vo are non-adjacent.

Now we choose vp—1,Vn—2,... as in the 3-connected case, and apply the
same colouring algorithm, with the same result. {Note that we need A > 3 to
show that v,, has degree at least 3, and hence is joined to a vertex other than v
and ve.) O

The above proof of Brooks’ theorem is due to Lovasz. A different proof of
Brooks’ theorem, using Kempe chains, is given by Robin Wilson [53]. The original
proof of Brooks [15] is different again.

8.2 The chromatic number

Having spent a lot of effort trying to decide whether planar graphs can always
be coloured with four colours, it is natural to ask in general how many colours
a given graph needs. We define the chromatic number of a graph G to be the
minimum number of colours required to colour the vertices of G, such that adja-
cent vertices are coloured differently. We write x(G) for the chromatic number,
and if x(G) = n we say G is n-chromatic (as opposed to n-colourable, which
means x(G) < n).

For example, the 1-chromatic graphs are exactly the graphs with no edges,
and the 2-chromatic graphs are exactly the bipartite graphs.

In general, there are not very good bounds on the chromatic numbers of
graphs. We have proved Brooks’ theorem, which says that with the exception
of complete graphs and odd cycles, x(G) € A(G), where A(G) denotes the
maximum degree of the vertices of G. The following result is similar in flavour.
Recall that §(G) denotes the minimum degree of the vertices of G.

Theorem 8.2 x(G) < 1+ max{§(H)}, where the maximum is taken over all
induced subgraphs H of G.

Proof The result is clear if x(G) = 1, that is, G has no edges. Now suppose
that x(G) = n > 2, and choose H an induced subgraph with x(H) = n, and
with H as small as possible (i.e. H has as few vertices as possible). Note that we
may have H = G.

Removing any vertex v from H leaves a graph colourable with n — 1 colours,
by our choice of H, so v must have degree at least n — 1 in H, in order to force
us to use the nth colour. But this is true for all vertices v in H, so 6(H) > n— 1.
Finally, §(H) for this particular H is less than or equal to the maximum of §{H)
over all induced subgraphs, and the result follows. O

Two vertices are called independent if they are not adjacent. We define
the vertex independence number of a graph to be the maximum number
of vertices in the graph with the property that no two are adjacent, in other
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words, the maximum number of mutually independent vertices. Write a(G) for
the vertex independence number of G.

Note that the set of vertices coloured in any one colour must have this prop-
erty, so there must be at least p/a(G) different colours. On the other hand, if
you choose a(G) mutually non-adjacent vertices, and colour them in one colour,
then you need at most p — a(G) colours for the remaining p — a(G) vertices,
giving at most p — a(G) + 1 colours in all. Thus, we have proved the following.

Theorem 8.3 p/a(G) < x(G) <p—ao(G) + 1.

In general, these bounds are not very good, although they are ‘best possible’
in the sense that there are graphs which meet each of them. For example, com-
plete graphs meet both. To see this, observe that for a complete graph K, on p
vertices, a(K,) = 1, since any pair of vertices is adjacent. Thus,

p
——— =p=p—a(K,)+ 1L
o Kp) F
Therefore, x(K,) = p, which of course we knew already.

The following bounds consider the graph and its complement simultaneously.

Definition 8.4 The complement G of a graph G has the same vertex set, but
the complementary set of edges. In other words, vertices u and v are adjacent in
G if and only if they are not adjacent in G.

For example, the complement of the complete graph K, is the graph on n
vertices with no edges. You might expect that if x(G) is small, then it cannot
have too many edges, so that G would have lots of edges, and therefore, x(G) is
large. Broadly speaking this is true, and the following result, due to Nordhaus
and Gaddum, makes this more precise.

Theorem 8.5 2,/p < x(G) + x(G) <p+1, and

p<x(G)-x(G) < (z%ly.

Proof We shall prove that p < x(G)-x(G) and x(G)+x(G) < p+1. The other
two inequalities will then follow immediately from the fact that the arithmetic
mean of two positive numbers is greater than or equal to the geometric mean,
that is

a;b%/@

for positive real numbers ¢ and b.

The first result follows from the result we have already proved in Theorem 8.3,
that p/a(G) < x(G). For G contains a set of @(G) mutually non-adjacent ver-
tices, so that G contains the complete graph on these same vertices, and therefore,

x{G) = a{G). Hence .
X(G) - x(G) 2 x(G)a(G) = p

as required.
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The second result is proved by induction on the number of vertices, p. Pick
any vertex v in G, and let H be the graph obtained by removing it and its
incident edges. Then H is the graph obtained by removing v from G. By the
induction hypothesis x(H) + x(H) < p, since H has p— 1 vertices. Let d denote
the degree of v in G, so that the degree of v in G is p — 1 — d.

If d < x(H), then colour H with at most x(H) colours, and then v has fewer
than x(H) neighbours in G, so we can colour v in G with one of these same

X(H) colours. Therefore, x(G) = x{H), and clearly x{(G) < x(H) + 1, so
X(G) +x(G) <x(H) +x(H)+1<p+1

as required.

Similarly, if p—1—d < x(H) we use the same argument in the complementary
graphs. The only remaining case is when d > x(H) and p—1—d > x(H). Adding
together these two inequalities we obtain p — 1 > x(H) + x(H), so

p = xH)+x(H) +12x(G) ~1+x(G),
and therefore x(G) + x(G) < p+ 1 again. O

Remark As we noted in the proof, it is obvious that x(G) = «a(G), since
there is a set of (&) mutually non-adjacent vertices in G, which means that
the corresponding vertices in G induce a complete graph, so must be coloured

different colours. Thus, the second inequality x(G)+x(G) € p+1 in Theorem 8.5
implies the second inequality x(G) < p — a(G) + 1 in Theorem 8.3.

A more precise expression of the feeling that the more edges there are, the
more colours you need, is given by the inequality x(G) > p*/(p? — 2¢). At one
extreme, when there are no edges, so ¢ = 0, this gives x(G) > 1, which is at
least true, if not very helpful. At the other extreme, if G is a complete graph
then ¢ = p(p — 1)/2, so the inequality reduces to x(G) > p. Thus, the inequality
generalizes some results we already know.

Theorem 8.6
»?
G) > ——.
X( ) = pg _ 2q
Proof Suppose that G is coloured with &k colours, and the numbers of vertices
of each colour are p1, ..., pg, say. Let n be the number of edges in the complement

G. Then, clearly, all vertices of one colour are joined in G, so

o> (3)+(3) )
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by the Cauchy—Schwartz inequality applied to the two vectors (p1,...,px) and
(1,...,1). More precisely, these two vectors have norms Zle p? and k respec-
tively, and inner product Zle p;, and the square of the inner product is at most
the product of the norms, that is (Zle pi)? <k Zle p2.

Also, we have that n + ¢ = p(p — 1)/2 and Zle D; = D, SO

plp—1) Lo 1
i > I

3 n+q/2kp 2p+q
p2
:>p2>?+2q
p

[

ép272q>?
P

>
T p?-2

(since ¢ < p(p — 1)/2 implies that p? — 2q is positive), as required. O
An inequality in the other direction is the following.

Theorem 8.7
X(G) <14+ M
p

Proof Suppose that x{(G) = k and choose a k-colouring with the maximum
possible number, say n1, of vertices of the first colour x1. Let S1 be such a set of
ny vertices. Then every vertex x not in S; must be joined to a vertex in S7, for
otherwise, x could be coloured with the colour x1, contradicting the maximality
of 71

Similarly, among these colourings choose one with the maximum possible
number, say ns, of vertices of the second colour xs, and choose such a set, S»
say, of no vertices. Then every vertex not in S1 or Sz is joined to a vertex in So,
by the maximality of ns.

Continuing in this way, every vertex not in S; U --- U .S; must be joined to
at least one vertex in each of Si,...,S;. Thus we construct at least no + 2n3 +

-+ + (k — 1)ny distinct edges, so

g=zng+2n3+---+(k—1)ng
1424+ (k1)

k(k—1)

-
k-12 &

T2 k-1
(k=17 p

> - 7
-2 p—1
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since k < p. Therefore (k — 1)2 < 2¢(p — 1)/p, and substituting x(G) for k we
obtain

2q(p—1)
P

as required. O

x(G) —1<

8.3 Hadwiger’'s conjecture

We next discuss a conjecture which can be thought of as a generalization of
the four-colour conjecture. First, we restate the four-colour conjecture in the
contrapositive: every 5-chromatic graph G is non-planar. Then Wagner’s theorem
(Theorem 7.2) implies that G has a subgraph which contracts onto K5 or Ks 3.
But K3 3 is 2-colourable, so you might expect this case not to arise. It has indeed
been proved (using the four-colour theorem) that every 5-chromatic graph has a
subgraph which contracts onto K.

Hadwiger’s conjecture (enunciated in 1943) is that this holds more generally:
every n-chromatic graph has a subgraph which contracts onto K. This has not
been proved in general. Indeed, the cases n > 7 are all still open. The cases
n < 3 are trivial, the case n = 4 was proved by Hadwiger himself [25] (see also
Theorem 8.8), and the case n = 5 was proved by Wagner to be equivalent to the
four-colour theorem. The case n = 6 was proved only recently, by Robertson,
Seymour and Thomas [41], again using the four-colour theorem.

We conclude this section with a proof of the conjecture for n = 4. That is, we
prove that if G is any 4-chromatic graph, then G has a subgraph which contracts
onto K4. Restating this in the contrapositive, we have the following.

Theorem 8.8 If G is a graph which has no subgraph contracting onto K4, then
G is 3-colourable.

Proof We prove this by induction on the number of vertices of G. We may
assume that G is connected, and since trees are 2-colourable, we may assume
that G contains a cycle. We choose a cycle C' = vyvy - - - vv1 of minimal length (so
that k is the girth of G), and let H be the induced subgraph on all the remaining
vertices other than vy, vs,...,vg. Let Hy, Hy, ..., H, be the components of H.

We claim that, for each i, at most two of the vertices in the cycle C are
adjacent to vertices of H;. For if three vertices in C are adjacent to H;, then
we can contract C' to a triangle, and contract H; to a vertex, such that the
corresponding subgraph of G contracts onto Ky (see Fig. 8.3). This contradiction
proves the claim.

Now if H; is adjacent to just one vertex in C, this is a cutvertex of G, and a
3-colouring of G can be obtained from 3-colourings of the two pieces into which
(5 is cut. Thus, we may assume that each H; is adjacent to exactly two vertices
in C. For the rest of this proof we will call these vertices the ‘feet’ of H;.

Next we claim that the feet of H; cannot straddle the feet of H;. For other-
wise, the subgraph on C, H; and H; can be contracted onto the four feet, giving
a K4 as in Fig. 8.4.
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Fig. 8.3 A component with three feet in the proof of Theorem 8.8.

Fig. 8.4 Two components with stradding feet in the proof of Theorem 8.8.

It follows that as we go around the cycle C, we encounter a series of nested
collections of the H;, as shown in Fig. 8.5.

If there is only one such nest of H;, then the outermost H; can he redrawn
on the other side of C, making two nests. Therefore, we may assume there
are at least two nests, unless there is only one H,, in which case H = H; is
connected.

In the first case, we can divide the graph into two pieces G; and G3, whose
intersection is just two vertices v and w on C. Adding the edge vw to each of
(1 and Gy if it is not there already, we can 3-colour the two resulting graphs,
by induction. Then we obtain a 3-colouring of G by matching the colours of v
and w in the two parts.
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Hg

Hs

Fig. 8.5 Three nested collections of H; in the proof of Theorem 8.8.

In the second case, there is a vertex x in C which is not adjacent to any
vertex in H. Let G be the graph obtained by removing = and the two incident
edges from G. By induction, G; is 3-colourable. But x is adjacent to just two
vertices in G, so can be coloured with the third colour. O

8.4 The Hajos conjecture

A variant of the Hadwiger conjecture, due to Hajés (pronounced ‘hoy-oash’), has
subdivision instead of contraction. That is to say, the Hajos conjecture is that if
a graph G is n-chromatic, then G has a subgraph which is a subdivision of K.
Although this conjecture sounds superficially similar to the Hadwiger conjecture,
it turns out to be quite different. For n < 3 the conjecture is easily seen to be true,
while for n = 4 it was proved by Dirac [20] in 1952. The general case remained
unsolved for 35 years. However, in general it is false, and counterexamples are
now known for all n > 7. Thus, for all n > 7 there exists an n-chromatic graph
which contains no subdivision of K,,. The cases n = 5 and 6 are still unresolved.
It is clear that, if true, the case n = 5 must be hard, as it would imply the
four-colour theorem.

Next we construct Catlin’s counterexample to Haj6s's conjecture (see [16]).
It may be obtained by taking five complete graphs K3, Ks, K3, K3 and K» in
cyclic order, and joining every vertex of one such graph to every vertex of the
next one in the cyclic order. A picture is shown in Fig. 8.6.
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Fig. 8.6 Catlin’s counterexample to Hajés’s conjecture.

Notice that the bottom two copies of K3 in the figure are joined together to
form a Kg. Notice also that any vertex outside this K has at most five internally
disjoint paths from it into the Kjg. In particular, there is no subgraph which is a
subdivision of K7. On the other hand, there is no 6-colouring of the graph: for if
there were, then the two adjacent copies of K3 would (without loss of generality)
require colours 1, 2, 3 and 4, 5, 6 respectively, and then the copies of K> on either
side would need (without loss of generality) colours 4, 5 and 1, 2 respectively.
But then the last K3 would require three colours distinet from 1,2,4,5, which
is impossible. Thus, we have shown that Catlin’s graph is a counterexample to
Hajés’s conjecture for n = 7.

Now if we add a vertex, joined to all of the original vertices, then we increase
the chromatic number by 1. Moreover, if the new graph contains a subdivision
of K,, then the old one contains a subdivision of K,,_;. Therefore, we obtain
counterexamples for n = 8,9, ... by adding one vertex at a time in this way.
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8.5 The chromatic polynomial

We turn now to a different aspect of colouring. Rather than asking for the min-
imum number of colours we can get away with, suppose we are given a set of ¢
colours, how many different ways are there of colouring a given graph with these
t colours? Clearly, this is a function both of the graph G and of the number ¢,
and we write this function as P(G,t). It was introduced by Birkhoff [11] in 1912,
in the dual form, for maps, in the hope that it would help solve the four-colour
problem: for a graph G is 4-colourable if and only if P(G,4) > 0, in other words
if and only if 4 is not a root of P(G,t).

For certain graphs this function is easy to calculate. For example, if the graph
has n vertices and no edges, then each vertex can be coloured independently of
the rest, with one of the ¢ colours, and therefore, there are t™ possible colourings
altogether. Again, for the complete graph K,,, we can colour the first vertex with
any of the ¢t colours, the next with any of the remaining ¢ — 1, and so on, giving
P(K,,t) =t(t—1)(t—2) .- (t—n+1). Similarly, if G is a tree on p vertices, then
it is easy to see that P(G,t) = t(t — 1)P~1. This is because the first vertex can
be coloured in any of ¢ colours, and each adjacent vertex in any of the remaining
t — 1 colours, and so on until all vertices are coloured.

Note also that if G is the disjoint union of two graphs H and K, then the
number of colourings of GG is the product of the number of colourings of H with
the number of colourings of K. That is, P(G,t) = P(H,t) - P(K,t). Thus we
may restrict attention to connected graphs.

If GG is any connected graph which is not a complete graph, we can choose two
non-adjacent vertices u and v. These can either be coloured the same colour, or
different colours. If they are coloured differently, we might as well add the edge
uv, as this does not change the number of such colourings. If they are coloured the
same, we might as well replace them by a single vertex, joined to all the vertices
which were joined to either u or v (or both). Thus P(G,t) = P(H,,t)+ P(Haz,t),
where H; has more edges than G (but the same number of vertices), and Hs
has fewer vertices than G. (Notice incidentally that Hj is the contraction of H;
along the edge uv.)

Now any combination of adding edges and identifying pairs of vertices in a
connected graph must eventually lead us to a complete graph. This means that
the process above leads to an expression for P(G,{) as a sum of P(K,,t) for
various (not necessarily distinct) values of n. In particular, we have proved that
P(G,t) is always a polynomial in ¢ It is called the chromatic
polynomial.

For example, the graph G in Fig. 8.7 is K4 with an edge removed. So H; is
K4, obtained by putting the edge uv back, while Hy is K3, obtained by replacing
u and v by a single vertex. Therefore,

P(G,t) = P(Ky4,t) + P(Ks,t)
=it — 1)t —2)(t —3) +t(t — 1)(t —2)
=t(t—1)(t —2)°
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Fig. 8.7 Calculating a chromatic polynomial.

In some cases it may be easier to use the formula the other way round:
P(G,t) = P(G1,t) — P(Ga,1),

where G is obtained from G by removing an edge e, and G5 is obtained by
contracting the same edge to a single vertex. In this form, the formula is known
as the deletion—contraction formula. For example, if G is a cycle, we can
remove one edge at a time to prove the following.

Proposition 8.9 If G is a cycle with p vertices, then P(G,t) = (t — 1)? +
(=P —1).

Proof By induction on the number of vertices. If p = 3, then G is the complete
graph K3, so P(G,t) =t(t —1)(t —2) = (t — 1) — (¢ — 1), as required. For p > 3,
removing an edge gives a tree, which has chromatic polynomial £(¢ — 1)?~!, and

contracting it gives a cycle on p — 1 vertices, which by induction has chromatic
polynomial (¢ — 1)79—1 — (=1)?(t — 1). Therefore,

Gty =t(t — 1P = (t = )P+ (-1)P(t - 1)
=17+ (=) -1)

as required. O

Proposition 8.10 If G is the union of two subgraphs H and K, such that the
intersection of H and K is a complete graph on k vertices, then

P(H,t)- P(K,t)

P(G’t):t(t—l)---(t—k+1)'

Proof First, we can colour H in any of P(H,t) ways. Then we have chosen one
of the ¢(t — 1)---(t — k + 1) possible colourings of H N K. Since all colourings
of this complete graph extend to the same number of colourings of K, we have
P(K,0)/t(t —1)---{t — k+ 1) ways of extending this particular colouring to the
whole of G. m]

Another result which is sometimes useful for calculations is the following.
Proposition 8.11 If G is obtained from a subgraph H by adjoining one vertex
v joined to all vertices of H, then P(G,t) =t - P(H,t —1).

Proof Colour v in any of ¢ ways, and then H has to be coloured using the
remaining ¢ — 1 colours. O
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For example, Proposition 8.9 tells us that a cycle on p — 1 vertices has chro-
matic polynomial (£—1)P~14+(—1)?~1(¢—1) so a wheel on p vertices has chromatic
polynomial #(t — 2)((t —2)P~2 + (—1)P~1).

Some properties of the chromatic polynomial are fairly straightforward to
prove, and enable you to read off some information about the graph from its
chromatic polynomial.

Proposition 8.12 P(G,t) is a monic polynomial of degree p (the number of
vertices in G).

Proposition 8.13 The coefficient of t*~! in P(G,t) is —q (where q is the num-
ber of edges in G).

Proof Using the above notation we have P(G,t) = P(H,,t) + P(Hj,t), where
Hi has the same number of vertices as GG, while Hy has one fewer. Therefore,
the coefficient of #~=1 in P(Hj,t) is 1. So every time we remove an edge from
Hy, we add 1 to the coefficient of t?P~'. This continues until we have no edges
left, when the chromatic polynomial is ¢P. ]

Proposition 8.14 The constant term of P(G,t) is 0.

Proof Putt =0, and get the number of colourings with no colours, which is 0.
Alternatively, note that you can always choose the first colour arbitrarily, so
there is a factor of ¢ in the polynomial. ]

Proposition 8.15 The trailing term in P(G,t) is the term in t*, where k is the
number of connected components of G.

Proof It is sufficient to prove the case k = 1, since P(G,t) is the product
of P(C;,t) over the components C; of G. One half of the proof is obvious: the
previous proposition shows that the constant term is 0. So we only need to prove
that the ¢-term is non-zero. This is a consequence of the following more precise
result. m]

Lemma 8.16 Let G be a connected graph with n vertices. Then the coefficient
of t in P(G,t) is positive if n is odd, and negative if n. is even.

Proof We prove this by induction on n. For n = 1, we have P(G,t) = ¢, and the
result holds. Suppose now that n > 1, and suppose the result holds for all graphs

with n — 1 vertices. Pick a vertex, v, of degree d, say, in G, and let wy,...,wy be
the neighbours of v. Now let G; be the graph obtained by removing the edges
vwi,...,vw;. Thus Gg = G, and G4 is a graph consisting of the single vertex v,

together with a graph H on n — 1 vertices.

Now our basic lemma for calculating chromatic polynomials (the deletion—
contraction formula) gives P(G,,t) = P(G,;_1,t) + P(H,;,t), where H; is some
graph on n — 1 vertices. By induction on ¢ we obtain

d d
P(Gq,t) = P(Go,t) + > P(H;,t) = P(G,t) + > _ P(H;,1).
i=1 1=1
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But P(Gg4,t) = tP(H,t), so has zero t-term, while our inductive hypothesis
implies that all the ¢-terms of the P(H;,t) have the same sign. Therefore, the
t-term of P(G,t) has the opposite sign, and the induction continues. O

More generally, we have:

Theorem 8.17 If G has p vertices, q edges and k components, then
P(Gt) =tP — qtP ™t 4 (= 1)P it + - (=1)P Fat?,
where each a; > 0, for k < j < p.

Proof By induction on the number of edges, using the deletion—contraction
formula for the chromatic polynomial, P(G,t) = P(G1,t) — P(Gas,t), where Gy
is obtained by removing an edge, and G5 is obtained by contracting the same
edge, from G. The induction starts with no edges, when P(G,t) = t¥ and p = k,
so the result holds trivially. Now if G has at least one edge, then both G and G5
have fewer edges, so by induction we can assume the result for them. Moreover,
(i1 has p vertices, ¢ — 1 edges, and either k or k + 1 components, while G5 has
p — 1 vertices and k& components, so we have

P(G1,t) =tP — (g — P~ oo (= 1P b0 4o (—1)P Fpyt?
P(Go,t) = P71 oo — (1P egtd 4o — (—1)P Reyth

where all b; > 0 and all ¢; > 0, except possibly ¢z, which might be zero. The
result follows by substituting into P(G,t) = P(G1,t) — P(Ga,t). O

We can actually deduce a little more from the proof of this theorem. With
the above notation, we had a; = b; +¢;, with ¢; > 0, so that «; > b; for all ¢. Here
a; denotes the absolute value of the coefficient of #* in the chromatic polynomial
of G, while b; denotes the corresponding value in the chromatic polynomial of
(1, obtained from G by removing an edge. If we now remove enough edges to
leave just a spanning tree 7', say, then we have a; > d;, where d; is the absolute
value of the coefficient of ¢¢ in the chromatic polynomial of 7. But the chromatic

-1
polynomial of T is t(t — 1)?~!, so d; = (p 1>. Therefore, we have proved the
i
following result.

Theorem 8.18 If G is a connected graph with chromatic polynomial

P(G,t) =7 — P o (1P Tagt! e (1P Ry,

-1
thenai><? )
1—1

In some cases you can actually tell a lot more about the graph from its
chromatic polynomial. For example, it is easy to see that a tree on p vertices has
chromatic polynomial ¢(t — 1)? 1. Conversely,

Theorem 8.19 If P(G,t) = t(t — 1)?~! then G is a tree on p vertices.
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Proof P(G,t) has a non-zero ¢ term, so G is connected. Also, the coefficient
of *~1is —(p — 1), so G has p — 1 edges. Therefore G is a tree, by virtue of
Lemma 2.8. O

Note that a graph is in general not determined by its chromatic polynomial,
as all trees on p vertices have the same chromatic polynomial. Another example
is given in Fig. 8.8.

The original purpose of introducing the chromatic polynomial was to study
the roots. We know that 0 is always a root, of multiplicity equal to the number
of components. Also, if there is at least one edge then 1 is a root. Indeed, if G
contains a complete subgraph K, then 0,1,2,...,n —1 are all roots of P(G,t).
Moreover, since the coefficients alternate in sign, all roots are non-negative. For
if A < 0 then all terms in P(G,\) have the same sign (positive if p is even,
negative if p is odd), so P(G, A} cannot be 0.

Theorem 8.20 For any graph G, the chromatic polynomial has no root strictly
between 0 and 1.

Proof Since the roots of P(G,t) are roots of P(C,t) for one of the connected
components C of G, it suffices to prove the result in the case when G is connected.
We prove this case by induction on the number of edges. If G has only one edge,
then it has two vertices and P(G,t) = t(t — 1), so the result holds.

Now choose an edge e. If removing e disconnects GG, then G is the union of
two connected graphs (G; and G5 whose intersection is the edge e and its two
endpoints. Thus, the intersection is a copy of K, and we apply Proposition 8.10
to obtain
P(G1,t) - P(Ga,t)

PGt = tt—1)

which is non-zero for all ¢ strictly between 0 and 1, by induction. Moreover, this
shows that P(G,t) is positive if and only if p is even.

On the other hand, if removing e does not disconnect G, then use the deletion—
contraction formula and the stronger induction hypothesis that if 0 < ¢ < 1 then
P(G,t) > 0if p is odd, and P(G,t) < 0 if p is even. ]

Fig. 8.8 Two graphs with the same chromatic polynomial.
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More on the chromatic polynomial can be found in the chapter by Read and
Tutte [8, vol. 3].

Exercises

Exercise 8.1 Find some graphs other than complete graphs for which
xX(G)=p—a(G)+ 1.

Is it possible to find, for each positive integer n, and each positive integer m,
such a graph G with x(G) = n and a(G) = m? Justify your answer.

Exercise 8.2 For each p > 1, and each positive integer k < p, find a graph on

p vertices such that x(G) = k and x(G) + x(G) =p + 1.
Exercise 8.3 For each p > 1, and each positive integer k£ dividing p, find a
graph on p vertices such that x(G) = k and x(G)x(G) = p.

Exercise 8.4 State the converse of the Hajés conjecture, and show that it is
false for all n > 3.

Exercise 8.5 (Hard.) Let G be a minimal counterexample to the Hajés conjec-
ture for n = 4, so that G is 4-chromatic but contains no subdivision of Kjy.

1. Show that every vertex of G has degree at least 3, and that G has no cutvertex.

2. Show that every vertex of C is connected by a chord (i.e. a path internally
disjoint from C') to some other vertex of C.

3. Show that if two such chords intersect then G contains a subdivision of K.

4. Show that if no two chords intersect, then G contains a subdivision of Kj.

5. Deduce that the Hajés conjecture is true for n = 4.

Exercise 8.6 Calculate the chromatic polynomials of the following graphs:

(a) (b)

Exercise 8.7 Calculate the chromatic polynomials of the two graphs in Fig. 8.8
and verify that they are equal.

Exercise 8.8 Prove that no graph can have chromatic polynomial t* — 3¢3 +3¢2.
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How to prove the four-colour theorem






9
Overview

9.1 Historical remarks

The overall strategy of the proof of the four-colour theorem does not differ
greatly from that adopted by Kempe in his 1879 paper. If we consider the vertex-
colouring form of the theorem, then the proof goes by induction on the number
of vertices. Clearly, the induction starts, as any graph with at most four vertices
is 4-colourable.

The general inductive step is to remove a vertex, thereby reducing to a
smaller case, which by the inductive hypothesis we can assume is 4-colourable.
The problem then is to extend the colouring to include the extra vertex, or more
generally, to find a way of changing the colouring so that it can be extended to
the extra vertex.

As we have seen, if the vertex has degree less than 4, then the colouring
extends trivially, while if it has degree 4, we can change the colouring using
a Kempe-chain argument in such a way that the new colouring extends to the
extra vertex. In modern language, we have shown that a vertex of degree at most
4 is reducible. (It would be more logical to say that any graph containing
a vertex of degree at most 4 is reducible, but the above usage is the one
generally adopted.)

The other half of the problem is to show that every planar graph contains
one of these reducible configurations. Kempe used Euler’s formula to show that
every planar graph contains a vertex of degree at most 5. In other words, the
graph cannot avoid having a vertex of degree 5 or less. We say that this set of
‘configurations’ (we will define this term more precisely later) is unavoidable,
since every planar graph contains at least one of them. If we neglect the trivial
cases where a vertex has no neighbours or one neighbour, this unavoidable set
is as illustrated in Fig. 9.1. Note that a vertex of degree 2 creates a pair of
parallel edges, so that strictly speaking we have a multigraph rather than a graph.
However, we can easily neglect this case if we like, and restrict our attention to
graphs in the strict sense.

The reason why Kempe’s attempted proof fails is because the unavoidable
set here is not a subset of the reducible set (i.e. the set of reducible configura-
tions). If we could somehow find an unavoidable set consisting only of reducible
configurations, then we would have finished the proof of the four-colour theorem.
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v A XX

Fig. 9.1 Kempe’s unavoidable set of configurations.

Historically, the attack was pursued from both sides simultaneously, so that
improvements were made in both the unavoidable sets and in the reducibility
arguments. It was immediately clear that it was necessary to look not just at
individual vertices and their degrees, but at larger configurations of adjacent
vertices. And if attempts to prove that a vertex of degree 5 is reducible continued
to fail, then it would be necessary to replace this particular configuration in the
unavoidable set, by a possibly larger number of larger configurations.

The first result in this direction was Wernicke’s proof in 1904 that the vertex
of degree 5 could he replaced by a pair of adjacent vertices, one of degree 5
and the other of degree 5 or 6. This then gives extra information about the
neighbourhood of the degree 5 vertex, which may be of help when we try to prove
reducibility. However, it turned out that this information was quite inadequate
for the purpose.

Birkhoff in 1913 approached the problem from the other direction, and showed
that a vertex of degree 5 with three consecutive neighbours of degree 5 is reducible.
It was clear, though, that there was still a huge gap between the set of known
reducible configurations, and any known unavoidable set.

Nevertheless, there was steady progress from both directions. In 1922 Franklin,
a student of Birkhoff, improved Wernicke’s result by showing that the vertex of
degree 5 in the unavoidable set could be replaced by a vertex of degree 5 with
two neighbours of degree 5 or 6. At the same time he showed that a vertex of
degree 6 with three consecutive neighbours of degree 5 is reducible. Later authors
proved reducibility of more and more configurations of this sort.

9.2 Elementary reductions

We know that it is sufficient to consider triangulated graphs—that is, plane
graphs in which every face has exactly three edges. This corresponds to our
reduction to the case of cubic maps (Theorem 4.6) in the face-colouring version.
Triangulated graphs are automatically connected. Moreover, since we already
know that vertices of degree at most 4 are reducible, we may assume that our
graph contains no vertices of degree less than 5.

There are other reductions of this type, which we shall prove in the next
chapter. For example, the neighbours of a vertex of degree d form a cycle of
length d, whose interior {or exterior, if the vertex is an exterior vertex) contains
a single vertex. Thus, we know that such cycles of length d < 4 are reducible. In
Theorem 10.5 and Corollary 10.6 we show by a Kempe-chain argument that any
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4-cycle is reducible. We can even show (see Theorem 10.7) that any 5-cycle is
reducible, except for the one troublesome case that we know, namely a 5-cycle
consisting of the neighbours of a vertex of degree 5.

Thus, we may if we like assume that G has no separating circuit of length 5
or less, except circuits consisting of the five neighbours of a vertex of degree 5.
A graph with this property is called internally 6-connected.

9.3 Strategy

From this point on we can assume that our graph is an internally 6-connected tri-
angulation. Various new methods of proving reducibility had been developed over
the years, but it always seemed that, whatever unavoidable set was produced,
some of its configurations were resistant to all attempts to prove its reducibility.
Some method was required to produce unavoidable sets without any such ‘bad’
configurations.

All methods for producing unavoidable sets rely ultimately on Euler’s for-
mula. Specifically, there must be at least 12 vertices of degree 5, and every vertex
of degree d bigger than 6 must be compensated for by (d — 6) more vertices of
degree 5, by the formula ) (6 — d(v)) = 12, which is Proposition 3.18.

Thus, there must be ‘plenty’ of vertices of degree 5, and the idea is to somehow
home in on the places were this plenty is manifested. In other words, where (in
a suitable sense) do the positive contributions to ) (6 — d(v)) come from? The
subtlety in this question is, what do we mean by ‘where’? If we define ‘where’
too narrowly, by referring to individual vertices, then the answer is simply that
the positive contributions come from the vertices of degree 5, and we have made
no progress beyond the point reached by Heawood in 1890. If, on the other hand,
we define ‘where’ too broadly, then we have not located the problems precisely
enough, and will never be able to solve them. In the end it turned out that it was
sufficient to confine attention to parts of the graph consisting of an n-cycle and
its interior, for n < 14. However, this on its own gives no bound on the number
of vertices in such a configuration.

The idea of ‘discharging’ was introduced by Heesch, in order to give a precise
meaning to this word ‘where’. The idea is to associate a ‘charge’ of magnitude
6 — d(v) to each vertex v, and then to devise a method (called a ‘discharging
algorithm’) of spreading the charge around from one vertex to its neighbours, in
such a way that positive charges only arise under certain restricted conditions
(where there are ‘too many’ vertices of degree 5 nearby), which can be identified.
These restricted conditions then constitute the ‘unavoidable set’.

The way that Appel and Haken were able to prove the four-colour theorem
was by successively modifying the discharging algorithm to produce a better
unavoidable set each time. By this stage Heesch had developed a feeling for
what sort of configurations were likely to be troublesome, and so knew what to
look out for when searching for unavoidable sets. Using this intuition, Appel and
Haken would look at those configurations in the unavoidable set which looked
hard to reduce. Then they would redesign the discharging algorithm to elimi-
nate these particular cases. Of course, this might then introduce new problem



110 Overview

cases. However, by repeating this procedure they eventually found a discharging
algorithm which produced an unavoidable set of 1936 configurations which they
believed they could prove were reducible. These configurations were then proved
reducible, with the help of a computer which was programmed by Koch to search
for the required colouring extensions.

The proof was completed in 1976. The published proof appears in two parts
[4,5]. The latter contains a 63-page table listing all the 1936 configurations.
A very readable introduction, describing all the main ideas, can be found in the
article by Woodall and Wilson in [8, vol. 1, pp. 83-101].

9.4 Later improvements

It soon transpired that not all of the 1936 configurations were distinct—some
were actually repeated, and others were subconfigurations of bigger ones—so
that just 1834 of them were actually required in the proof. A little later, further
improvements to the proof of unavoidability resulted in another 352 configura-
tions being declared redundant, leaving just 1482 configurations in the unavoid-
able set.

More recently (in 1997), a simplified version of the Appel-Haken proof has
been published by Robertson, Sanders, Seymour and Thomas [43]. It still relies on
computer calculations, but the number of unavoidable configurations has been re-
duced to 633, which are explicitly drawn in the last 9 pages of the article, and the
‘discharging algorithm’ (used to produce the unavoidable set of configurations—
see Chapter 11) is greatly simplified. Indeed, they found an unavoidable set of 591
configurations, but rejected it because it made the proof of reducibility harder.
Moreover, the article is much shorter, at 43 pages instead of 139, and gets close
to providing a proof which can be checked by the sufficiently determined reader.
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10.1 The Birkhoff diamond

In the eventual proof of the four-colour theorem, the first step, logically, is to use
discharging to produce the unavoidable set, and then the second step is to prove
reducibility of each configuration in the unavoidable set. However, historically,
many of the reducibility arguments came first, and it is easier to appreciate the
subtlety of the discharging arguments if we first see what they are being used
for. Indeed, if we know that certain configurations are reducible, we can try to
design our discharging algorithm to produce these particular configurations.

As usual, we agssume that our graph is triangulated, and that it has no ver-
tices of degree less than 5. For our purposes, a configuration inside a plane
triangulation G consists of a circuit (called the boundary ring of the config-
uration) together with the part of G in its interior. Note, however, that this is
not the definition used by Appel and Haken [4].

As an example to illustrate the nature of these arguments, we consider the
‘Birkhoff diamond’, that is, a vertex of degree 5 with three consecutive neighbours
of degree 5. This is named after G. D. Birkhoff who proved its reducibility in 1913.
We draw the induced subgraph on these four vertices and their six neighbours
(i.e. the full configuration) in Fig. 10.1. Note that we do not know the degrees of
these six neighbours. We also need the following easy lemma. By a separating
triangle, we simply mean a triangle which separates the graph into an inside
and an outside, both of which are non-empty subgraphs.

U1 U2

Us U3

Vs V4

Fig. 10.1 A vertex of degree 5 with three consecutive neighbours of degree 5.
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Lemma 10.1 If G is a minimal counterexample to the four-colour theorem,
then G contains no separating triangle.

Proof If GG contains a separating triangle, then G is the union of two graphs,
which intersect just in this triangle. By induction, each of these graphs can
be 4-coloured, and in each case the three colours used by the vertices of the
separating triangle are different. Thus, by renaming the colours in one of the
two subgraphs if necessary, we can match up the two colourings to produce a
4-colouring of the whole graph. This contradiction proves the result. o

Theorem 10.2 (Birkhoff) The Birkhoff diamond is reducible.

Proof Let GG be a graph which contains the Birkhoff diamond, and is as small
as possible subject to not being 4-colourable. Now remove the inside of the
hexagon, and collapse the hexagon by identifying vertices v, and vy, and joining
this vertex to vg, as in Fig. 10.2. (Note that this is possible, for if vo and v4 were
originally adjacent, then there would be a separating cycle of length 3, contrary
to Lemma 10.1.) In effect, we contract v2, v4 and the four interior vertices to a
single vertex vs 4.

This gives us a smaller graph, which can be 4-coloured (by our assumption
that G is a minimal counterexample). If we colour vy red, v green, and vg4
blue, then vs can be either yellow or red, while v3 can be green, yellow or red.
Thus, there are now six possibilities for the colouring of the vertices v1 to vg,
and in five of these cases, we can easily complete this to a 4-colouring inside the
hexagon. Indeed, there is a colouring which works in all four of the cases when
vz is not red (see Fig. 10.3). In the last case, a Kempe-chain argument reduces
it to one of the other five cases, as follows.

In this case, if all the red vertices in the boundary ring belong to the same
red—yellow chain, we can change the colour of v4 to green, and complete the new
colouring as in Fig. 10.4. If not, and v3 is in a different red—yellow chain from the
other two red vertices, we can recolour it yellow, so it becomes the middle case
of the right-hand column. Finally, if v1 or v is in a different red—yellow chain
from the other two, we recolour it to the bottom case in the first column. O

Remark The above argument is the one originally given by Birkhoff, in the
dual form. See also Barnette [7], and Saaty and Kainen [44]. A similar, perhaps

U1

V2,4 U3
Vs O

Us

Fig. 10.2 The collapsed hexagon.
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slightly easier, argument is given by Woodall and Wilson [8, vol. 1, pp. 83-101],
joining vy to v, rather than v to ve 4 (see also Exercise 10.5).

Definition 10.3 A configuration is called B-reducible (after Birkhoff) if it can
be proved reducible by an argument of this type. That is, if it can be collapsed
to a smaller configuration in such a way that all permissible colourings of the
smaller configuration can either be directly extended to colourings of the larger
configuration, or can be so extended after recolouring a single Kempe chain.

It is called A-reducible in the special case when no Kempe-chain recolouring

is necessary. If more than one Kempe-chain recolouring is necessary, it is called
C-reducible.

In this definition, the only requirement on the collapsed configuration is that
it has fewer vertices in its interior than the original configuration.

10.2 Reducing small cycles

Birkhoff also proved some other types of reduction theorems, which turned out to
be useful in putting general restrictions on possible configurations in a minimal
counterexample G to the four-colour theorem. We know, for example, that there
is no vertex of degree 4. This means that there is no cycle of length 4 whose
interior contains a single vertex. Birkhoff generalized this to saying that there
is no cycle of length 4 at all. Moreover, such a cycle would separate the graph
into an inside and an outside, so the four vertices of the cycle would form a
disconnecting set. Thus, Birkhoff’s result says that there is no disconnecting
cycle of length 4 (or less). With the aid of the following lemma, we deduce that
there is no disconnecting set of four vertices, and therefore, G is 5-connected.

Lemma 10.4 Let G be a minimal counterexample to the four-colour conjecture.
Then, any minimal disconnecting set in G induces at least a cycle.

Proof If S is a minimal disconnecting set which does not induce a cycle, and
S disconnects G into L and R, then we can draw G in the plane in such a way
that L and R lie on the left and right of S, respectively (see Fig. 10.5).

Now choose a vertex v in the exterior boundary of L, and a vertex w in the
exterior boundary of R. The edge vw can now be added to G without violating

Fig. 10.5 Proof of Lemma 10.4.
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planarity. This contradicts the fact that G is a maximal planar graph (ie. a
triangulation). O

Theorem 10.5 If G is a minimal counterexample to the four-colour conjecture,
then G is 5-connected.

Proof We give a proof due to Saaty and Kainen [44]. We assume G is not
5-connected, and try to obtain a contradiction. By the lemma, there is ei-
ther a separating triangle or a separating quadrangle. In the former case, as
in Lemma 10.1, we can 4-colour the inside and outside separately, and relabel
the colours in one part so that the three colours on the vertices of the triangle
are the same in both colourings, and we obtain a 4-colouring of the whole graph.

In the latter case, label the vertices of the quadrangle w,z,y,z in order.
Add the edge yw to the outside graph—this gives a plane graph, G say, with
a smaller number of vertices than G (see Fig. 10.6). Therefore, by induction,
(1 can be 4-coloured, and w,x,y are three different colours. Similarly for the
inside of the separating quadrangle—we add the edge wy to the graph consisting
of the quadrangle and its interior—this gives a graph G5 say, which is again a
triangulation with fewer vertices than G, so G5 can be 4-coloured. Then we can
match up the colours in the two parts unless z and z are coloured the same in
one colouring (say the outer one, G1), and differently in the other (say the inner
one, Ga).

If there is no Kempe chain in G from z to z, then we can change the colour
of z to match the outer colouring. On the other hand, if there is such a chain,
then there is no Kempe chain in G5 from y to w, so we may change the colour of
w in the inner colouring, so that w and y are now coloured the same. Now add
the edge xz to the outer graph instead of yw, and colour again. In the new outer
colouring, x,y, z are three different colours, and w is either the same colour as
1y, or a different colour. In the first case, we match the modified inner colouring,
while in the second case, we match the original inner colouring. This concludes
the proof of the theorem. 0O

The original proof of Birkhoff is along the same lines, except that instead of
triangulating the quadrangle wzyz by introducing the edge yw, he collapses the
quadrangle by identifying the two vertices w and y. Thus, the two colourings of
the quadrangle wzxyz are either rgrg or rgrb, say, and the only problem arises
when one colouring has rgrg and the other has rgrb. Now the usual Kempe-chain
argument implies that we can change the first (rgrg) colouring to either rgrb or
rgyg, depending on which Kempe chains exist. In the first case, we match the
second colouring, so we may assume the first colouring changes to rgyg. Finally,
we change the second colouring, by collapsing the quadrangle the other way,
identifying x and z. Thus, the second colouring is either rgrg or rgyg, say, and
matches either the original first colouring, or the new one.

Corollary 10.6 If G is any planar graph which has a separating cycle of length
less than 5, then G is reducible, in the sense that we can prove 4-colourability
from 4-colourings of smaller planar graphs.



116 Reducibility

H,

Gy

Fig. 10.6 Reducing a separating cycle of length 4. (a) A triangulated graph G consist-
ing of two pieces H; and H intersecting in a cycle waxyzw of length 4, (b) G consists
of H: (including the cycle wayzw), and an extra edge wy, and (¢} Gz consists of Ha
(including the cycle wzyzw), and an extra edge wy.

10.3 Birkhoff’s reduction theorem

We know that it is impossible to strengthen Theorem 10.5 to saying that if G
is a minimal counterexample to the four-colour theorem then G is 6-connected,
because G has vertices of degree 5, so can be disconnected by removing the five



Birkhoff's reduction theorem 117

neighbours of such a vertex. However, it turns out that this is the only way of
disconnecting G with five vertices. This was also proved by Birkhoff in his 1913
paper [12].

Theorem 10.7 If G is any planar graph which has a separating circuit C' of
length 5, such that both the interior and the exterior of C contain at least two
vertices of G, then G is reducible.

Proof We give Birkhofl’s original proof in the dual form. As in the proof of
Theorem 10.5, we try to colour the inside and outside parts of the graph, and
match them up on the cicuit C. The difference now is that we are allowed to add
one vertex to each part of the graph, and still have graphs with fewer vertices
than G. Let G; denote the graph consisting of the cycle C' together with its
exterior, and let G5 denote the graph consisting of the cycle together with its
interior.

Let G denote the graph obtained from G; by adding a vertex joined to all
the vertices of C. Then G’ is a triangulation with fewer vertices than G, so by
induction can be 4-coloured. Moreover, this colouring uses exactly three colours
on the cycle C, since the fourth colour is required for the central vertex. The
colouring of C' is therefore of the type (r, g, b, g, b) with one vertex (which we call
the marked vertex) of one colour, and two each of two other colours.

Now we do the same thing with the interior graph Gs. Let G5 denote the
graph obtained from G5 by adding a vertex joined to all the vertices of C. We
obtain a 4-colouring of G which again induces a 3-colouring on C. The trick now
is to try to match up the two colourings of C, so that by putting the colourings
of G1 and G5 together we obtain a 4-colouring of G. This is easy if the marked
vertex is the same in the two colourings. Otherwise we need to use Kempe-chain
arguments to change one or both of the colourings. There are two cases: either
the two marked vertices are adjacent in the cycle C, or they are not.

Case 1. We deal first with the adjacent case. Suppose that the colouring
of C'in G is (r,¢g,b,g,b) and the colouring of C in G} is (b,r, g,b, g), where the
vertices are labelled in order vy, vs,vs, v4,vs (see Fig. 10.7). Thus, the marked
vertex of C' in G is v, and in G} is vs. If there is no blue-red chain in G5 from
vg to vy, then we can change the Ga-colouring of C to (r,b, g,b,g), and now the
marked vertices match up. Thus, by relabelling the colours in either G or Gy,
we obtain a 4-colouring of G.

Otherwise, there is a blue-red chain in G5 from v to v4, so there cannot be a
green—yellow chain from vs to vs, and therefore we can change the Gs-colouring
to (b,r,y,b,g). Now we consider a completely different method of obtaining a
colouring for G1. This time we do not add an extra vertex, we simply collapse
the cycle C' by identifying vy with v4. This gives us a new graph GY, which is
again a triangulation containing fewer vertices than G. A four-colouring of G¥
now induces a colouring of G; in which v; and v, are coloured with the same
colour. Therefore, the G1-colouring of C is, without loss of generality, of the form
(b,r,y,b,x), where z is a colour other than blue.
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z=r/g/y b
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g r
Go

Y
o /X
b Y
Fig. 10.7 Case 1 of Theorem 10.7.

If x is green, the two colourings of C already match up, and we are done.
If z is yellow, we obtain a 3-colouring of C in which the marked vertex is vs.
Therefore (changing the names of the colours suitably), we obtain a match with
the original Gs colouring (b,r,¢,b, g).

This leaves just the case when x is red, so that the Gi-colouring of C is
(b,7,9,b,7) and the marked vertex is vs. So in effect the marked vertex in the
G1-colouring has jumped (from v; to v3) over the marked vertex (v3) in the
Gs-colouring. Repeating the argument, with the roles of G; and G5 interchanged,
we can obtain a Ga-colouring with marked vertex vy and a G;-colouring with
marked vertex vs. Repeating the argument twice more, both marked vertices
move on two more places around the cycle, to v1 and vs, respectively. In partic-
ular; we have obtained a colouring of G9 with marked vertex v;. Therefore, we
can match this up with the original G;-colouring (r, g,b, g,b), and we are done.

Case 2. The other case is the non-adjacent case, where we can suppose that
the Gy-colouring of C' is (r,g,b,9,b), with marked vertex therefore v, and the
Gs-colouring is (g, b, g,b), with marked vertex vz (see Fig. 10.8). Again, we
consider red—blue Kempe chains. If there is no such chain from vy to vg in Go,
then we can recolour G in such a way that C is coloured (g,7,b, ¢,b). Now the
marked vertex is vs, and we are back in the first case.
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Fig. 10.8 Case 2 of Theorem 10.7.
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Otherwise, there is a red—blue chain in G5 from v, to vs, so there is no green—
yellow chain from v; to vg. Therefore, we can change the Gs-colouring of C to
(g,b,7,y,b). Now we collapse G; again by identilying v, and vs, to get a colouring
of G1 in which C' is coloured (z,b,7,y,b), for some colour z other than blue.

If x is green we match the new Gs-colouring, and we are done. If x is yellow
we rename the colours y and g to match the original G>-colouring. Finally, if z is
red, the marked vertex in the Gi-colouring is v4, adjacent to the marked vertex
in the orignal Ga-colouring, and we are back in the first case again. O

Definition 10.8 A triangulated graph with the property that the only separat-
ing cycles of length at most 5 are those which disconnect a single vertex, is called
an internally 6-connected triangulation.

10.4 Larger configurations

Nearly 10 years after Birkhoff’s proof of reducibility of the Birkhoff diamond,
his student Franklin proved by a similar argument the reducibility of the config-
uration consisting of a vertex of degree 6 with three consecutive neighbours of
degree 5 (see Fig. 10.9). Franklin’s paper, which contains much else besides, is
reproduced in full by Biggs, Lloyd and Wilson [10].
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Fig. 10.9 A vertex of degree 6 with three consecutive neighbours of degree 5, and the
collapsed heptagon.

Theorem 10.9 (Franklin) The configuration of a vertex of degree 6 with three
consecttive neighbours of degree 5 is reducible.

Proof This time, the key to reducing the configuration is to collapse the hep-
tagon by identifying vertices vs and v;, and identifying vertices v, and wvy.
First note that this is possible—if v5 and v; were already joined by an edge,
then the graph would contain a separating cycle of length 3, contrary to Corol-
lary 10.6. Similarly, if v; and v4 were joined, then there would be a separating
cycle of length 5, containing more than one vertex in its interior, contrary to
Theorem 10.7.

There are only five essentially different colourings of the collapsed heptagon,
as shown in Fig. 10.10. The first three of these can be immediately extended to
a colouring inside the heptagon, as shown in Fig. 10.11(a)—{c). In the other two
cases, we use a Kempe-chain argument as before.

In case 4, there cannot be both a blue—green chain from vs to v2, and a red—
yellow chain from vy to vs. So, we can either change the colour of vy from green
to blue, giving case 3 again, or change the colour of v; to yellow, and complete
the colouring as in Fig. 10.11(d).

In case 5, there cannot be both a yellow—blue chain from vy to vs and a
red—green chain from vy to vg. So we can either change the colour of vy to
yellow, giving case 2, or change the colour of vg to red, giving case 3 again. This
completes the proof of Franklin’s theorem. 0O

In what we have done so far, we have tacitly assumed that the vertices of the
boundary ring of our configuration are distinct. In the cases we have considered,
this is easy to prove, for otherwise there is a separating cycle of length 4 or
less, contrary to Theorem 10.6. Indeed, provided our configuration has all its
vertices at distance 2 or less from a particular vertex, then all the vertices of the
boundary ring are distinct by Theorem 10.7.
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0g 0g or
b b b
b y g y b g
or og
b b
y g g b

Fig. 10.10 The five colourings of the collapsed heptagon.

However, for larger configurations this is not necessarily true. This extra
complication is known as the immersion problem. The significance of it is
that our Kempe-chain arguments do not work if the boundary ring is not a
cycle. Thus extra reduction arguments are needed in this case.

10.5 Using a computer to prove reducibility

The above examples give the flavour of the reducibility arguments used in the
proof of the four-colour theorem. Once we have produced an unavoidable set
of configurations, we need to try to prove reducibility for each configuration in
the set. Following Kempe’s method, we remove the given configuration from the
graph, leaving just its ring of neighbours behind. Then by induction we can 4-
colour the resulting graph, as it has fewer vertices than the original. The problem
now is to extend the colouring to the configuration inside the ring. In principle,
we need to consider all possible colourings for the ring of neighbours of the
configuration, and produce a colouring of the whole graph in each case. Some
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b g y g

Fig. 10.11 Colouring inside the heptagon.

colourings of the ring will extend directly to a colouring inside (these are called
good ring-colourings), while others may succumb to a Kempe-chain argument
to recolour the ring. If all possible colourings of the ring can be dealt with in this
way, Appel and Haken, following Heesch, called the configuration D-reducible.
Thus the D-reducible configurations are exactly the ones which can be dealt with
by the original methods of Kempe.

Now it is easy to program a computer to enumerate all possible colourings
of the ring, and it is easy to program it to check for each ring-colouring whether
there is a way to extend it to a colouring of the whole configuration. But what
about the Kempe-chain arguments? Well, there are just three choices for the
partition of the four colours into three pairs, and for each colouring and each par-
tition, there are only finitely many possibilities for incompatible pairs of Kempe
chains. In each case, there are just two possible colour changes to try. Thus it
is straightforward also to program a computer to apply all Kempe-chain argu-
ments systematically, to see if we can reduce each possible ring colouring to a
good colouring. Note that this may require several successive recolourings, but
there is a bound on the number of recolourings needed. In this way, we can write
a straightforward program to check whether a given configuration is D-reducible.

As we have seen in Sections 10.1 and 10.4, a more powerful method of prov-
ing reducibility is to replace the interior of the ring by something smaller. The
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most obvious way to do this is simply to triangulate inside the ring in any way
we like. This will reduce the number of possible colourings of the ring, by mak-
ing some vertices adjacent to others, and may, if we are lucky, eliminate the
awkward ones.

More subtle ways to do this include identifying two or more vertices of the
ring, so that they must be coloured the same colour, or introducing new vertices
(as long as they are fewer than in the original configuration). This will again
produce a 4-colourable graph, but the possible colourings of the ring will be more
restricted. The idea is to choose a suitable replacement for the configuration, to
exclude the awkward cases for the ring colouring. If this works, the configuration
is called C-reducible. This is less easy to program for a computer, as there
may be a huge number of ways to replace the interior of the ring with something
smaller, and it is not clear beforehand which ones are likely to be useful. It is out
of the question to try all possibilities. So in practice, Heesch, and later Appel
and Haken, just tried a few likely-looking candidates, and if these did not work,
they gave up.

Exercises

Exercise 10.1 Use the Theorems of Birkhoff and Franklin to show that if a
vertex of degree 5 has three neighbours of degree 5, one of degree 6, and one of
arbitrary degree, then it is reducible.

Exercise 10.2 Consider the configuration of a vertex of degree 5 with two con-
secutive neighbours of degree 5, and the other neighbours of degree 6. By col-
lapsing this down to a 4-star as in Fig. 10.12, show that this configuration is
reducible.

Exercise 10.3 Use Exercise 10.2 to show that a vertex of degree 5 with two
neighbours of degree 5 and three neighbours of degree 6 is reducible.

U1
g (%] ® U1
_ V2,4,6,8
V7 @ ® U3 V7 @ L 4 ® U3
Us V4 ®Us
Us

Fig. 10.12 The configuration for Exercise 10.2.
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Us Vs

Us

U4 g

U3 U8

(% U1 Vo

Fig. 10.13 The configuration for Exercise 10.4.

U1 V2
ve@ v3
Us V4
U1
V2,4 U3
Vg O
Us

Fig. 10.14 Diagram for Exercise 10.5.

Exercise 10.4 (Hard) Consider the configuration of a vertex of degree 8 with
five consecutive neighbours of degree 5. By collapsing this configuration as shown
in Fig. 10.13, show that this configuration is reducible.

Exercise 10.5 Prove that the Birkhoff diamond is reducible by collapsing the
hexagon as shown in Fig. 10.14.
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Discharging

11.1 Unavoidable sets

In order to prove the four-colour theorem, we need a good method for produc-
ing unavoidable sets. All methods ultimately rely on Euler’s formula, or more
specifically on the fact that for triangulated graphs (i.e. maximal planar graphs)

Y. (6-d(v) =12,

all vertices v
which is Proposition 3.18. For completeness, we prove this here.
Lemma 11.1 In a triangulated graph or multigraph, >, (6 — d(v)) = 12.

Proof The faces have exactly three edges, so 2¢ = 3r, and thus 6r — 4¢ = 0.
Also, >~ d(v) =2¢ and >, 6 = 6p, so

S (6 d(v)) = 6p— 2

= 6p — 2q + (6r — 4q)
=6(p—q+r)=12

by Euler’s formula. O

The main difficulty in using this result is that it is a global result (i.e. it
mentions all vertices) and we want local consequences (i.e. the existence of
certain small configurations).

Let us look at some of the early results on unavoidable sets, in order to
appreciate where the difficulty lies. The earliest significant result after Kempe’s
was that of Wernicke, who strengthened Kempe’s result by proving that some
vertex of degree 5 must have a neighbour of degree 5 or 6. (In fact, he proved
this in the dual form, for maps rather than graphs.)

First, we introduce a shorthand notation for an unavoidable set U of con-
figurations. We always assume that U/ contains the first three configurations of
Fig. 9.1 (i.e. a vertex of degree 2, 3, or 4}, so we do not explicitly mention them
each time. In effect, this means that from now on we may assume that our graphs
never have any vertices of degree less than 5. A vertex of degree 5 is denoted by
@ and a vertex of degree 6 by O. Vertices of larger degree are denoted by circles
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labelled with the degree. Thus, Kempe’s unavoidable set in Fig. 9.1 is denoted
by {®@}. Similarly, Wernicke’s unavoidable set is denoted by {#—e, &—0O}.

Theorem 11.2 (Wernicke, 1904) In any minimal counterexample to the (ver-
tex-colouring) four-colour theorem, there is a vertex of degree 5 with a neighbour
of degree 5 or 6.

Proof We first choose any planar embedding of the graph, and note that all
faces are triangles. The idea now is to count the faces (triangles) of the graph
which are incident with a vertex of degree 5 or 6. If no vertex of degree 5 is
adjacent to any vertex of degree 5 or 6, then each vertex of degree 5 is surrounded
by five such faces, and each such face is incident with a unique vertex of degree 5.
Thus, every vertex of degree 5 contributes 5 to the number of such faces. A vertex
of degree 6 is surrounded by six such faces, but each such face could be incident
with three vertices of degree 6, so could be counted up to three times. So each
vertex of degree 6 contributes at least two faces (on average). Therefore, the
number of faces, r, is at least 5ps + 2pg, where p; denotes the number of vertices
of degree i. Thus,

r 2 5ps + 2ps
2 bps +2ps —pr — 4pg — -+
o0

= 2(20 - 31)p;
=5
o0
=20p -3 ipi.
i=5

Now the handshaking lemma implies

i ip; = 2q = 3r
i=5

o [e.e]
=20 —21r =10 ip; =7 ip;
=5 =5

o
=3 ip;.
i=5
Substituting back into the above inequality gives

r = 20p — 20q + 21r
=7r+40

by Euler’s formula, giving a contradiction. O

Nearly 20 years after Wernicke, Franklin strengthened Wernicke’s result, and
proved that some vertex of degree 5 must be adjacent to two vertices of degree
5 or 6. The proof he gives is very similar. Both results are proved again in 1940,
in a paper by Lebesgue [35], in which he generalizes the method to produce a
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variety of different unavoidable sets. These and other results along these lines
are discussed in detail in Ore’s book [37].
Lebesgue’s version of the proof takes Euler’s formula in the form

o
2Zpi—2q+2r:4

=5

and uses the handshaking lemmas to substitute for 2¢ as either Zfi,) ip; or 3r,
giving the two equations

[ee]

d@-ipi+2r=4

i=5
o0
Z 2p; —r = 4.
i=5

He then eliminates pr from these two simultaneous equations to give
dps + 2pg — 2pg — - - =28+

which implies r < 4ps + 2pg, contradicting r > 5ps + 2pg. He then goes on to
note that there is enough room between these two inequalities to prove Franklin’s
result as well.

Theorem 11.3 (Franklin, 1923) In any minimal counterexample to the four-
colour theorem, there is a vertex of degree 5 with two neighbours, each of degree
5 or 6.

Proof We summarize Lebesgue’s proof of this result. As above, we see that
r < 4ps 4 2ps. Now suppose that no vertex of degree 5 is adjacent to two vertices
of degree 5 or 6. Then, each vertex of degree 6 contributes at least 2 to the
number of triangles, as before. Two adjacent vertices of degree 5 contribute 8
triangles between them, that is, an average of four each. A vertex of degree 5
adjacent to a vertex of degree 6 contributes 5 triangles, less the amount % which
we have already counted of the 2 triangles incident to both vertices. An isolated
vertex of degree 5 contributes 5. In each case, therefore, the vertex of degree 5
contributes at least 4, so in total the number of triangles is at least 4ps + 2pg.
Thus, we obtain r > 4ps + 2pg, and the required contradiction. O

Note that the unavoidable set in this case is

Q—Q—QyH—OyO—Q—OyAyAyA ,

not as stated in [8, vol. 1, chapter 4].
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11.2 Simple examples of discharging

At this point, it becomes clear that it is necessary to consider not just the neigh-
bours of a vertex of degree 5, but the neighbours of the neighbours, and possibly
more. Everything becomes very complicated, and in particular, the counting
arguments get out of hand. The idea of ‘discharging’” was introduced by Heesch
to overcome this difficulty. The word itself is due to Haken, as Heesch used the
word ‘curvature’ instead of ‘charge’, but the concept is the same.

(Heesch’s work on the four-colour theorem began in the late 1940s, but for
various reasons was not published until 1969, which may account in part for the
lack of recognition he has been given for this work. In particular, Ore did not
mention the work of Heesch in his 1967 book on the four-colour problem [37],
which was considered the authoritative work on the subject at that time. Never-
theless, Haken learnt from Heesch many of the ideas which played a part in the
eventual proof. The introduction to the Appel-Haken [4] paper is instructive in
this regard.)

We put a ‘charge’ of 6 — d(v) on each vertex v. This means that the vertices
of degree 5 receive a charge of +1, the vertices of degree 6 are uncharged, and
all other vertices have a negative charge. Thus by Lemma 11.1, the total charge
on the vertices of the graph is 12. Then we redistribute the charge in some way,
and try to get all charges to be 0 or negative. This is obviously impossible,
by charge conservation, so we must see what ‘obstacles’ there are. Since every
graph must contain some obstacle preventing complete discharging, we obhtain
some set of configurations with the property that every graph contains at least
one of them. This set is called an unavoidable set. Ultimately, our goal is to
produce an unavoidable set such that we can show that every configuration in
the unavoidable set is reducible.

(Roughly speaking, if discharging works everywhere, locally, then it works
globally. But this contradicts Euler’s formula, so there must be somewhere where
discharging fails. We then look to see what local conditions are necessary for
discharging to fail.)

To try to understand the method, let us first obtain Kempe’s unavoidable set
by the discharging method. In this case, we use the simplest possible discharging
algorithm, that is, the algorithm that does nothing at all to the original charges.
Then, the only vertices which are not ‘discharged’ (by which we mean the charge
on the vertex is zero or negative) are those of degree at most 5. These vertices
are then the obstacles which constitute the unavoidable set.

We look now at a less trivial example, namely Wernicke’s theorem. Consider
the following discharging algorithm.

Algorithm 11.4 Every vertex of degree 5 gives a charge of % to each of its
neighbours which has degree at least 7.

Now it is clear that this will not discharge a vertex of degree 5 unless all its
neighbours have degree at least 7. Therefore, &—® and ®—O must appear in
the unavoidable set. What we now show is that these are the only ohstructions
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to complete discharging. That is, we show that
U ={e—e ,6—0}

is an unavoidable set, thereby giving an alternative proof of Theorem 11.2. A con-
sequence of this is that in trying to prove the four-colour theorem, we may assume
that our vertex of degree 5 has a neighbour of degree 5 or 6.

Theorem 11.5 The set U, defined above is an unavoidable set.

Proof Now if G has none of the above configurations in {1, then all neighbours
of every vertex of degree 5 have degree at least 7, so the vertices of degree 5 end
up with a charge of 0. The vertices of degree 6 are not affected by the algorithm,
so end up with the 0 charge they started with. If v is a vertex of degree & > 7,
then no two consecutive neighbours of v can have degree 5, so v has at most %k
neighbours of degree 5, so acquires a charge of at most %/{:. Since it started out
with a charge of 6 —k, it ends up with a charge of at most 6 — %k <6— % -7 < 0.
Thus the total charge on G is negative. This contradiction implies that If; is an
unavoidable set. O

Notice that a single discharging algorithm can be used to prove unavoidability
for different sets of configurations. It all depends on how, and how closely, we
look at the graph. For example, consider the following algorithm.

Algorithm 11.6 Fach vertex of degree 5 gives a charge of % to each of its
neighbours of degree 7 or more.

Algorithm 11.6 can be used to prove that U defined above is an unavoidable
set, by a slight modification of the above argument (see Exercise 11.1). More
usefully, it can he used to show that

- | e—e A

is an unavoidable set.
Theorem 11.7 The set Uy defined above is an unavoidable set.

Proof Suppose that G is a triangulated graph with minimal vertex degree 5,
and suppose that G contains none of the configurations in Us. Thus, no vertex
of degree 5 has either a neighbour of degree 5, or two consecutive neighbours of
degree 6. So each vertex v of degree 5 has at least three neighbours of degree 7 (for
otherwise it has at most two such, so it has two consecutive neighbours of degree
at most 6—either both have degree 6, or one has degree 5). Therefore, the vertices
of degree 5 are discharged. As before, vertices of degree 7 have at most three
neighbours of degree 5, so end up with a charge at most (6 —7)+3-
vertices of degree k > 8 have charge at most (6 —k) + %/4: =6— %k <
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In a similar way, Appel and Haken used the same discharging procedure to
produce their unavoidable set of 1834 configurations, as to produce their later
set of 1482 configurations.

11.3 A more complicated discharging algorithm

In this section, we illustrate one of the ways in which a more subtle discharging
algorithm can be used to produce a different sort of unavoidable set. We show
that the following set U3 is an unavoidable set. This example is given by Saaty
and Kainen [44], following Haken [27].

N TN
Leat A NG SR A

We have already seen that the configuration of a vertex of degree 5 with three
consecutive neighbours of degree 5 (the so-called Birkhofl diamond) is reducible.
The vertex of degree 8 with five consecutive neighbours of degree 5 was proved
irreducible by Choinacki [18] in 1942 (see also Exercise 10.4, and [23, Theorem
6.5.5] for a sketch). The last three configurations in the set Us were proved
irreducible by Franklin [22] in 1922. As a corollary, we see that every minimal
counterexample to the four-colour theorem must contain a vertex of degree 6 or 7.

Consider the following discharging algorithm.

Algorithm 11.8 For each vertex of degree at least 8, we distribute its charge
among those of its neighours which have degree 5, according to a certain weight-
ing. We consider chains of consecutive neighbours of degree 5, and weight ends of
chains with 1, and interior vertices of chains with 2, and also isolated vertices 2.
The charge is then distributed so that the vertices of weight 2 get twice the
charge that those of weight 1 get.

We illustrate this algorithm by means of an example. In Fig. 11.1, we draw
the neighbourhood of a particular vertex of degree 9. Vertices of degree 5 are

1

Fig. 11.1 Weights on the neighbours of a vertex of degree at least 8.
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denoted by black circles, and those of degree 8 or more by white circles. The
weights of the vertices of degree 5 are marked on the figure. The total weight
is 8, so the vertices of weight 1 receive % of the original charge of the central
vertex, while the vertices of weight 2 receive %. Since the central vertex has
degree 9 in this case, it has charge —3, so its neighbours receive charges —% or
—% from it, according to their weight.

Thus, by construction, the algorithm discharges all vertices of degree at
least 8. We need only show that, provided none of the configurations in Us
occurs, it discharges the vertices of degree 5. This contradiction then shows that
Us is an unavoidable set of configurations.

We prove a technical lemma first.

Lemma 11.9 If G is a plane graph in which none of the configurations in Us
occurs, then the amount of charge moved by Algorithm 11.8 from a vertex v of
degree j to a vertex u of degree 5, is at most —w/4, where w is the weight of u
as a neighbour of v.

Proof Note that all the charges on vertices of degree greater than 6 are neg-
ative, so check carefully the directions of the inequalities below. If j > 12, then
6 — 7 < —j/2, and as the total weight W of the neighbours of v is at most 27,
the transferred charge is
w
— (66—
5 j( 7)
w(—j/2)

27
-7

If j = 9, 10, or 11, then by assumption, v has at most j — 2 neighbours of
degree 5. The number of weight 1 neighbours of v is even. If this number is 0,
then we have only isolated points (here we use the fact that not all neighbours
have degree 5), which make up at most half of the neighbours, so the total weight
is at most 7, giving transferred charge

w
— 66— <
W(6 J) <

<

w w
(6 5) < = (6
A ]( 7)
w
<__7
3
since
. 2
329:‘6*§J<0
1
=6—7< ——jJ
. J. 313
SN -
7 3

If on the other hand there are at least two neighbours of weight 1, then the total
weight is at most 2j — 6 (here, we use the fact that at least two neighbours do
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not have degree 5), which gives the result again in the same way:

w
—(6—7) € — 6—7
ACk)) 57 5(6-7)
w
< —
4
since
9-j<0=>12-2j<3—3
. 2j—6
=6—7<—
J 1
6—j 1
= < -=.
2j—6 4
Finally, if j = 8, we apply a similar argument. Since we are assuming that

the vertex of degree 8 does not have five consecutive neighbours of degree 5, it
follows that all the chains of such neighbours have length at most 4. Then, it is
easy to draw all possible cases, and see that the lengths of chains can be {4, 2},
{4,1}, {8,3}, {3,2}, {38,1,1}, {2,2,1}, {2,1,1}, {1,1,1,1}, or subsets of these
(see Fig. 11.2). In all these cases, the total weight is 8 or less, and therefore, the
charge transferred is at most (6 — 8)w/8 = —w/4, as required. O

Theorem 11.10 If G is a triangulated graph with minimum vertex degree 5,
and G contains none of the configurations inUs, then Algorithm 11.8 discharges G.

Proof We pick a vertex u of degree 5, and divide the proof into three cases,
according as the number of neighbours of v degree 5 is 3, 2 or at most 1.

In the case when u has three neighbours of degree 5, we see that u has weight 2
in the shareouts of both its other two neighbours, v; and vs (see Fig. 11.3, where
the weight of u as a neighbour of v; is shown alongside the edge uv;) so by Lemma
11.9 gets a charge of at most —1. Therefore, the final charge is at most 0.

In the case when u has two neighbours of degree 5, it has weights 2, 1 and 1
in the three shareouts so again by Lemma 11.9 the final charge is at most 0.

Finally, if v has 1 or 0 neighbours, the weights are 2, 2, 1, 1 in the first case,
or 2,2, 2 2, 2 in the second, and again the result follows. m]

Corollary 11.11 The set U3 of configurations, defined above, is an unavoidable
set, for a minimal counterexample to the four-colour conjecture.
Combining this with known reducibility results, we have the following.

Corollary 11.12 Any minimal counterexample to the four-colour theorem con-
tains a vertex of degree 6 or 7.

11.4 Conclusion

To prove the four-colour theorem, therefore, it suffices to devise a sufficiently
complicated discharging algorithm, and a sufficiently complicated ‘unavoidable
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Fig. 11.2 Weights of neighbours of an 8-vertex.

set’, and then prove that (a) the discharging algorithm will discharge any graph
that avoids the unavoidable set, and (b) any graph in the unavoidable set is
reducible.

The difficulty, of course, is to achieve both these aims simultaneously. After
running his reducibility-testing program on very many configurations, Heesch
developed a good intuition as to which configurations were likely to be easily
proved to be reducible, and which were likely to be troublesome. Only then did
he start serious work on discharging procedures. {Note: Heesch actually called
the charge ‘curvature’, on the basis that you need a fixed amount of curvature
in your map in order to roll it up into a sphere. You can move the curvature
around, as long as you keep the total fixed. It was Haken who renamed the
concept ‘charge’ by analogy with electrical networks.)
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Fig. 11.3 The proof of Theorem 11.10.

Heesch’s intuition told him that a vertex in the configuration with four con-
secutive neighbours in the boundary ring was likely to be troublesome. In a
sense this is reasonable, because these four neighbours can be coloured with all
four colours, and even with a Kempe-chain argument, this can only be reduced to
three colours, leaving a unique colour available for the given interior vertex—this
may impose too many restrictions to enable the colouring to be completed.

Similarly, he found that a vertex in the configuration with three neighbours,
not all consecutive, in the boundary ring, was also troublesome. A configuration
without either of these two obstacles was called geographically good. A third
obstacle was a pair of adjacent vertices v, w of degree 5, each adjacent to only
one other vertex inside the boundary ring (the same vertex for both v and w).

The strategy of Appel and Haken at this point was to start with a simple
discharging algorithm (distributing the positive charge of each vertex of degree 5
equally to all its neighbours of degree at least 7), and then to modify it repeat-
edly, to exclude troublesome cases at each stage. Hundreds of modifications were
needed until a reasonable unavoidable set was produced—first of geographically
good configurations, and then with more modifications, also excluding the third
type of obstacle.

Appel and Haken [4] used a discharging algorithm made up of over 300 sepa-
rate rules, whereas Robertson et al. [42] found a simpler algorithm of just 32 rules.

So can we regard the four-colour theorem as finally proved? This was the
first major theorem whose proof involved a substantial amount of computer
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calculation, and as such it was bound to cause controversy. It has stimulated a
wide-ranging debate over the past quarter of a century, into what we mean by a
proof, what a proof is for, and so on. Whilst some traditionalists still insist that
a proof is not a proof unless it is written out on paper, the modern view is that
all means of proof are fair, provided adequate attention is paid to verifiability
and reproducibility.

In both respects, we have come a long way since 1976. The almost univer-
sal availability of high-powered computers, running high-quality mathematical
software, means that most computer-assisted proofs nowadays are easy to verify,
and easy to reproduce. Of course, the harder proofs are not so easy to verify
and to reproduce, but that is also the case with proofs ‘by hand’, and must be
expected.

It is noticeable, too, that in modern mathematics the importance of proof
in the traditional sense is declining. In certain areas, the emphasis has shifted
to getting the ‘right answer’. In very many cases, too, answers can be obtained
by computer to problems that could never be solved by hand. The purpose of
a proof is then to demonstrate that this really is the right answer. But can you
trust a ‘proof’, written out on paper, that consists of 10,000 pages of intricate
argument? Such ‘proofs’ certainly exist, but you can no more check them yourself
than you can check a computer calculation line by line. Thus many mathemati-
cians nowadays are looking for better ways than traditional proofs, of convincing
ourselves, and each other, that the answer is right.

The fact is, that the mathematical literature is riddled with false ‘proofs’,
like that of Kempe, and this is a problem which will not go away. How are we to
know which of today’s generally accepted proofs will turn out in ten years time
to be fallacious?

Exercises
Exercise 11.1 Use Algorithm 11.6 to prove that

U ={e—e -0}

is an unavoidable set.

Exercise 11.2 Consider the discharging algorithm which distributes the charges
on each vertex of degree 5 equally to all its neighbours of degree at least 9.
Use this algorithm to show that

N DY
st B L

is an unavoidable set.
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