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Foreword

This book is a wonderful companion to the third edition of my textbook, Epidemiology: Study
Design and Data Analysis. It is comprehensive and thoughtfully laid out. Most importantly
to me, it echoes the underlying principles of my work, which were to educate and motivate
the reader by leading them systematically through ideas and methodology with explanations
and examples. The author follows my book in sequence, providing R code and explaining
how he derived it, for not only the modelling examples I provided but also the descriptive
statistics and the figures. Quite rightly, he acknowledges that there are often other ways to
obtain the same results, which may prompt the reader to instigate their own investigation
into R.

In 1989, the World Wide Web was launched by Sir Tim Berners-Lee, personal computers
were still rare, undergraduate courses in statistics in the U.K. had only recently introduced
computer labs for practical instruction, and I started writing what became the first edition
of my textbook. Due to my own experience working on international aid projects in Africa
and Asia, and teaching visitors from those countries to the Department of Applied Statistics
at Reading University, U.K. where I was based in the 1990s, I wanted to make the book
useful to students and researchers in low- and middle-income countries where computers
were relatively slow to come into routine use. Therefore, it felt essential to provide much
detail on arithmetic methods that did not rely on the use of statistical software (apps were
not even a concept then). Thus, the book was in two parts; by and large, the “design” part of
the book, including formulae, was the first half and the “analysis” part was the second. The
passage of time has shown that readers appreciate this progression, and the way concepts
are introduced with examples.

Nevertheless, I had to choose which statistical software package to use in the modelling
chapters of the first edition. At Reading, as well as our own software and routines, we mainly
used Minitab to teach undergraduates and GENSTAT and GLIM for postgrads and for
research. The former was too simplistic for my purposes, although I did use it to produce the
figures. The latter two packages were British, and the local mantra was that US packages
gave a lot of output for little effort, whilst the U.K. ones gave little output for a lot of effort
– and thus were superior! SPSS was regarded as the number one criminal as far as leaving
the user to decide whatever result (p-value, usually) best suited their hypothesis. So that
was out for my book. SAS was thought to be (a bit) better and had the huge advantages of
having a broad array of procedures and being widely used by Big Pharma; little by little it
was usurping GLIM and GENSTAT at Reading. I liked it myself and hence I chose SAS.

SAS remained the only package used in the book’s second edition. However, I discovered
Stata when asked, with a few days’ notice, to give a short course which involved computer
labs using that package, in Antwerp. It turned out that, like Minitab, it was very easy to
learn and handled the usual basic statistical procedures in a logical fashion with informative
(but limited!) output. Later, whilst working at Johns Hopkins University in the 2010s, I
discovered that it was also a superb tool for research, with a plethora of commands and
user-supplied add-ons. It was also more accessible than SAS, although SAS was still the
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choice of many professionals. Hence, the third edition included both SAS and Stata output
and online code. But that was ten years ago, and undoubtedly, R is now the main statistical
package of choice for the type of reader that my book targets. As a not-for-profit undertaking,
with strong input from leading statisticians, it is surely going to be around for many years,
and I would recommend its use.

I am flattered that Dr Ajith R found my book so useful that he took on the mammoth task
of working out how the vast majority of material in the book could be redone with R, and
then writing such a masterful text around the code he produced. I would argue that the
book you have in your hand, or on your screen, is an excellent primer for R even if you don’t
use it in conjunction with my book. I look forward to trying out his code and learning much
more about R. Many thanks to him, but also to Rob Calver of Chapman & Hall/CRC Press
for his support of both this book and my own.

Mark Woodward

Sydney, Australia



Preface

I bought Epidemiology: Study Design and Data Analysis, Third Edition while I was undergo-
ing epidemiology training in 2014-16. I was impressed by the breadth of the topics covered
and by the fact that the topics were explained thoroughly without burdening the reader with
mathematical details. However, I couldn’t use any software I knew to work the examples
myself, and SAS and STATA were too costly to afford (Later, I learned that SAS is also
available for free for independent learners). That is when I learned about R.
R is free and open source to mean not only that we needn’t pay anything to use it, but also to
mean that you are free to modify the software if you are capable. This means that many more
people can use it, unlike paid proprietary software, and that many more people contribute
to bring cutting edge methods to R. Even for common problems, there are multiple choices
of solutions to choose from.
I learned R by myself using free online resources which are innumerable. It was not very
easy, but I enjoyed it. How could I know that the method I was employing was correct?
Epidemiology: Study Design and Data Analysis had made that easy by providing the data
sets it used. I could use the data, rework the examples and confirm from the book if they
were correct. When the results were not as in the book, I would read more to find the reasons
and correct it if needed. I wrote down the code I learned and made some notes.
As I slowly progressed through the chapters, I grew confident. I thought, “Why not share
the code with whoever wants to use R for practising epidemiology?", which resulted in this
book. I hope this book will be as useful to you too as it has been to me.
Most things in R can be done in multiple ways. Most often, I have shown only one of these
many ways to solve any given problem. I do not claim it is the most efficient way to approach
that problem. It works. If there is a difference from the result given in the textbook, I have
tried to explain the reasons. As you progress in your R journey, you may find better/easier
solutions; do share them with me.
I was introduced to regression analysis by Dr. Melissa Rolfes, who was an EIS officer at
CDC at that time. I thank her for showing me this new path. I would not have learned R if
not for the thousands of people who maintain R, contribute R packages and provide free
resources to learn R. I am indebted to them all.
I am grateful to Professor Mark Woodward, who was very encouraging when I approached
him with the book. I thank Rob Calver, Senior Publisher – Mathematics, Statistics, and
Physics – Chapman & Hall/CRC Press, for making this book a reality. I am indebted to
the (unknown) early reviewers who reviewed the first draft and gave valuable suggestions to
improve the book. I am grateful to Sherry Thomas, CRC Press Senior Editorial Assistant,
and Shashi Kumar, Production Controller, KnowledgeWorks Global Ltd, for their support
while preparing the manuscript. I acknowledge with gratitude the assistance provided by my
daughter, Manjari, while checking the results against that in the textbook. I am grateful to
the free service provided by https://www.wordclouds.com/ that was used to generate the
word cloud used for the cover art.

Dr Ajith R
Kerala, India
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Preliminaries

This book is a companion to Epidemiology: Study Design and Data Analysis, written with
the goal to enable readers to practice the concepts discussed in that book using R. This
book doesn’t teach epidemiology. Neither is this book an R tutorial in the usual sense.
This book teaches you to use R as a tool to practice epidemiology. Towards this goal, this
book reworks the examples and concepts discussed in Epidemiology: Study Design and Data
Analysis (which I will refer to as the textbook) using R. The R code is provided along with
an explanation of it. I am sure that that will help develop a pretty decent level of R skill;
just that it is not the primary aim.

Requirements
Thus, you need to have a copy of Epidemiology: Study Design and Data Analysis, without
which this book will be of no use to you. You also need access to a computer with R installed
on it. You may install the latest version of R from https://cran.r-project.org, following the
instructions for your computer’s operating system. It is also recommended to install RStudio
from https://posit.co/download/rstudio-desktop/.

Organisation of the book
This book uses the same chapter headings as in the textbook. Under each chapter we discuss
an example, figure, table or section of the textbook. The beginning of each such part is
marked with a horizontal line that ends with the name of that part and the starting page
number from the textbook.

In each part, R code to tackle the problem at hand is introduced in small portions. An
explanation follows each portion. Once the code is introduced completely, its result is shown.
If there is any difference from the textbook, it is highlighted.

At the end of the chapters, there is a Recap section that lists out the commands and concepts
introduced in the chapter.
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xxii Preliminaries

How to use this book
I suggest you to read a section of the textbook (after a quick overview reading of the entire
chapter if you are like me), repeating it as many times as needed to understand it completely.
Then switch to this book to the section, example or figure discussed in that section and read.
Once you read it, type (TYPE!) the code into the R console (of RStudio) of your computer
and execute it by pressing the ENTER key. There will be errors, typically typing mistakes.
Try to understand what the error message is telling; compare the code you typed with that
given in this book, correct and rerun. R is case-sensitive. Many a times the error is a case
change.

There are no sections that you may skip. You need to go in sequence as almost all sections
depend on what was discussed in earlier sections. Before leaving a chapter, confirm that the
concepts and commands listed in “recap” are not unfamiliar to you.

Typographic convention
There is prose and code in this book. The code is given in monospaced font as below

mock_code <- seq(1,10)
mock_code

The numerical results of the commands are shown as

[1] 1 2 3 4 5 6 7 8 9 10

In the prose, we will be referring to the code. We will use text typeset like seq to indicate
portions of the code that are to be written exactly. The portions typeset like mock_code
indicate the portions of the code that may well have been another word of our choice. There
are a few words typeset like concepts. These are words used with a distinctive meaning in
R, the meaning of which should be clear from the paragraph where such words are seen.

Groups of R commands are available as add-on modules called packages or libraries. We will
be using many packages in the course of this book. Occasionally more than one package
adopts the same name for one of their commands. While using the command name suffices
most of the time, when there is conflict across packages for the same command name,
the right command is specified by prefixing the package name separating it from the
command name using two colons ::. At the end of each chapter, I provide a recap of the
commands used in that chapter. There and in the command index, I refer to commands
as packagename::commandname, though in the body of the chapter I would have used only
commandname. This is only to inform you of the package to which the command I discussed
belongs. That extra bit of information will help you to search information regarding a specific
command and when you encounter a conflict in names.

Let us start!



1
Fundamental issues

The first chapter of our textbook introduces us to epidemiology. There aren’t any examples
in this chapter that demonstrate calculations relevant to epidemiology. So, here we will learn
some basic concepts related to R.

R is a software tool to interact with data to make sense of it. It is thus essential for R to
have a system to represent data and a way to interact with it. We interact with R by issuing
commands at the R prompt displayed in the R console that we are presented with when we
start R either directly or through RStudio. R can also accept commands non-interactively
through a script file. There also is the medium of an R markdown file through which we
can issue R commands. Typically, we will be using the command prompt to interact with
the data, save the useful commands in a script or markdown file to generate final reports at
a later stage. Throughout this book we will use the console. In the final chapter, we will see
the relevance of R markdown files.

R organises data into different data objects based on what type of data it is. While there are
many data objects, the majority of the time we are concerned only with dataframes and
vectors. When we import data from external files of various formats, we usually end up with
dataframes, which are collections of vectors of same length. Vectors can exist by themselves
too. There are different types of vectors. When we issue commands, some commands accept
a dataframe and some require a specific type of vector. Many commands accept different
varieties of data objects. Mismatch between what the command expects and what we provide
will result in errors. Some commands which manipulate a specific type of vector will accept
a different type, doing the conversion automatically. This may confuse those already familiar
with other data analysis programs. We start with vectors.

1.1 Vectors
A vector is a collection of similar type (mode) of data items. R recognises different types –
numeric, character and logical being the most important. What R can do with data depends
on its mode. For example, you can do arithmetic operations on data of numeric type but
not on character type data. R does allow explicit conversion between different modes where
possible. R also converts data to a different mode without explicit instructions. This implicit
type conversion is useful most of the time but may be the source of unexpected results.

Let us use table 1.1 as an example. It displays the number of cases and controls in different
tobacco consumption categories for either sex. The percentages that are calculated from the
raw numbers are shown in parentheses. We can tell R the number of male cases in each
category as
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2 1 Fundamental issues

c(2,33,250,196,136,32)

The c() is the command that tells R that we are typing a vector. The elements of the vector
are separated by commas. The parentheses are mandatory. What does R do in response to
our command?

[1] 2 33 250 196 136 32

R simply prints the vector on the screen. It appends “[1]” in front of the values, removes
the command name “c”, the parentheses and the commas. The “[1]” is the number of the
element with which the printed line started. You will appreciate the value of this piece of
information when the vector is long enough to be printed in more than one line.

1.1.1 Assignment
There isn’t much use in typing some data and seeing it displayed immediately. We need to
store the data (for at least the duration of our interaction with R). We do this by assigning
the vector to a variable. In simple terms, we can think of variable as a name for the data.
So, the name that we select should help us remember what the data is.

c(2,33,250,196,136,32) -> case_m

Here, case_m is the name we selected for the variable. R allows almost all sensible combina-
tions as names. However, it is recommended to use only the alphabets, digits, underscore
and period. R is case-sensitive. We generally use different cases, underscore or period to
separate the different parts of the name we choose. If we use space inside a variable’s name,
R, understandably, considers it as different words. We are allowed to use space inside a
variable name if we quote the name using back ticks. But, stick to underscores, period or
case changes. The -> is the assignment operator which tells R to assign the name we
specified to the vector we chose. R also allows = and <- as assignment operators. If we use
<-, the variable name should be on its left side and the vector on its right. In this text we
will be using both -> and <- for assignment. We will be using = as well, but not for assigning
values to variable names.

What does our assignment command print on screen? Nothing! No news is good news. We
asked R to assign our vector to the variable. R did just that. There was no error; hence
nothing to print on screen.

What good is our assignment command? After the assignment command is executed, the
entire vector is available if we type case_m. Let us check.

case_m

[1] 2 33 250 196 136 32
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There are four more columns of data in table 1.1. Let us enter them too.

c(27,55,293,190,71,13) -> control_m
c(19,7,19,9,6,0) -> case_f
c(32,12,10,6,0,0) -> control_f

What about the row labels? We can enter those too as a vector.

c("Never-smokers", "1-4", "5-14", "15-24", "25-49",
"50 or mor") -> tobacco

In contrast to the vectors we have entered already, tobacco is a character vector. The
individual elements of the vector are enclosed within quotes to indicate so. If you omit the
quotes, R will try to look for a variable by the name indicated by the word that was not
quoted, and this will result in an error.

We may change the value of a variable by issuing a new assignment command with the
updated values. Thus, if we notice the missing “e” in tobacco, we can correct it now by
issuing

c("Never-smokers", "1-4", "5-14", "15-24", "25-49",
"50 or more") -> tobacco

Variables exist for only a session. If you want to save them for a future session, you should
save your workspace information when prompted at the time of closing the current R session.
Most often, it is not needed to save the workspace. Saving the codes in a text file, either
script or a markdown, would be preferable. Executing them to rerun all the code that we
saved takes only one mouse click. We will see more of markdown files in the last chapter.

Though not required most often, we may need to remove R objects already loaded from
memory if they are huge and affecting performance. To do this, we use the command rm
with the object to remove as its argument. For example, to remove tobacco, we would issue

rm(tobacco)

In the console, we can recall a previous command using arrow keys. Press the up arrow key
until you find the command we issued to create tobacco and execute it again to bring back
the variable (We need it in the next step.)

1.2 Dataframes
Now, we have all the relevant raw data from table 1.1. We are not going to type the calculated
percentages or the totals. But, can’t we have all these vectors joined together as a table? R
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holds tabular data in what are called dataframes. They are essentially vectors of equal
length held together. The vectors correspond to the columns of the tables.

cbind.data.frame(tobacco, case_m, control_m, case_f,
control_f) -> table_1_1

The command we use to join together existing vectors as a dataframe is cbind.data.frame.
The vectors that we want it to join together are provided to it as parameters inside
parentheses. The resulting dataframe is assigned to the variable table_1_1 and hence is not
printed on screen. If we type table_1_1 and press enter, we will see the data frame printed.

tobacco case_m control_m case_f control_f
1 Never-smokers 2 27 19 32
2 1-4 33 55 7 12
3 5-14 250 293 19 10
4 15-24 196 190 9 6
5 25-49 136 71 6 0
6 50 or more 32 13 0 0

The table printed has the variable names as the column heading and each row is serially
numbered. Note that we can pretty the table when we want to print it which we will learn
later.

1.3 Functions
The R commands are functions, and we use both the words interchangeably. The functions
we use may accept one, more or no values. We call those values arguments or parameters.
There is a difference between the words argument and parameter. Parameter is the name
used in the code of the function, and argument is the value we pass when we call the
function. However, I use the words interchangeably. How does R assign values to the different
parameters? In the definition of the command, all parameters have names. When we call a
command, we may give the name of the parameter, an equal to sign and then the value we
want to assign to that parameter and separate each of these name-value pairs by commas.
We may choose not to provide the name of the parameter but only a comma-separated list
of values. In such case, R assigns the values by position. That is, the first value is taken
as that of the first parameter in the command definition, the second as that of the second
and so on. Many a time, commands have a mandatory first parameter and many optional
parameters. We will pass the mandatory argument without a name as the first argument
and the optional parameters whose values we want to change from the default are supplied
as name-value pairs. We won’t use = as an assignment operator as it is also used to mark
name-value pairs when we call functions. If it is used in both ways, there is the possibility of
confusion of the two roles.

Commands are collected together into packages. Some packages come with the base
installation of R. Many are add-ons. Packages are also called libraries. Packages number in
thousands and new ones get added with time. Add-on packages are added with the command
install.packages. While installation is a one-time process, we need to load it to memory
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whenever we want to use it. This is accomplished by the command library. We will visit
these commands later in this book when we have to use an add-on package. A good starting
point to know about the common packages is the CRAN task view.

1.4 Importing
What if we have large tables saved as separate files formatted as comma-separated values,
tab separated values, excel files etc.? Most often we will be importing data from separate files
rather than typing it ourselves. R is capable of importing data stored in different formats.
As an example, let us first save the data of table 1.3 as a comma-separated file. Open a
spreadsheet program and type the data of table 1.3 in it and save it as a csv file. Use only
one row of headers when you type, avoid the figures in parentheses and the totals. Give
it the name test.csv and save it in your current working folder. You can find your current
working folder by executing getwd() at your R command prompt.

table_1.3 <- read.csv("test.csv")

The read.csv command reads the csv file specified by its first parameter. You may specify
the full path of the file. Here, just the file name was sufficient as we saved the file in our
working directory. There are other commands for other formats – read.csv2, read.delim,
read.delim2 etc. You can read about any command by typing ? followed by the command
name (?read.csv for example) from the R command prompt. There are many add-on
packages with functions to import specific formats. The package haven which has functions
to import(and export) data from SPSS, Stata and SAS, the readxl package to import excel
formats are examples.

The read.csv command accepts many more parameters in addition to the file name. For
example, the parameter named dec denotes the character that specify the decimal marker.
All these parameters have certain default values specified. That is the reason why we
don’t specify them when we call the command. If we want to change the value of those
parameters to something other than the default, we will include them in our command call.
For example, if we want to tell R that the character that is used as the decimal marker
in our csv file is , instead of the usual ., we should change our command to table <-
read.csv("test.csv", dec = ","). For all the commands that we will be using later, we
will discuss only those parameters that are relevant for our problem at hand. If you need
more details, use the ? command to bring up the documentation.

1.5 Other data objects
1.5.1 Matrices and arrays
We discussed vectors and data frames. But, those are not the only data structures in R.
Rectangular data can be represented as matrices. Arrays can be used to store data with
more than two dimensions. Matrix is an array with two dimensions. Arrays and matrices are
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similar to vectors in that the data contained in them are all of the same mode. Table 1.3 can
be represented as a matrix. Calculating totals and percentages would be easier than when
represented as a data frame. Even then, data frame is more flexible as it allows different
type of data to be together. We will discuss matrices when we see them later.

1.5.2 Lists
Another type of data structure is a list. List can have elements of different modes. Also, the
length of the elements need not be the same. The data frame that we saw earlier is a list,
but with the restriction that the elements should be of the same length.

1.5.3 Dates and factors
The basic vectors can be converted to derived data types. By basic vectors, I mean those
vectors types that can be made directly using the c() command. The derived vectors are
made using commands that accept a basic vector and modify them. Easiest to comprehend
would be dates. We write dates in different ways and yet can make sense of them easily. It is
not so easy for a computer. We have to tell it the logic we followed to write a date. When
we type dates, we should specify them as character vectors in a consistent way. We should
import them into R as character vectors. After inspecting the imported data to confirm that
the text has been imported correctly, we may change it to one of the data classes R uses to
store date. A relevant package to manage dates in R is lubridate.

When we have labels of categories as our data, it is possible that they are typed in as codes
instead of the actual labels. Indeed, some R functions also require such factors. However,
whenever possible, use the actual labels and import the data as character vectors. After
importing, it can be converted to factors using the command factor. The package forcats
is a package to manipulate factors.

1.6 Rounding
R calculates results to many decimal places. While we needn’t care about this while interacting
with data, we typically restrict the decimal places when we present results. We use the
function round to round numbers to a specified number of decimal places. We also have the
function signif that allows us to round to a specified number of significant digits. Here, we
round 1 divided by 30 to two decimal places and two significant digits.

1/30
round(1/30,2)
signif(1/30,2)

[1] 0.03333333
[1] 0.03
[1] 0.033
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Both the functions accept the number to be rounded and the number of digits to round to.
In the chapters that follow, I use rounding only rarely. That is only because I want to show
the result given by R without any modifications. You should use rounding when you present
your results. We may also set the number of significant digits to print globally using the
command options. For example, options(digits = 5), will set it to 5 significant digits.

Now that we have an idea of the basic aspects of R, we can proceed to see how R is useful
for epidemiology.

1.7 Recap
Let us recap what we learned in this chapter.

1.7.1 Concepts introduced in this chapter
• script
• R markdown
• vectors
• mode
• implicit type conversion
• variable
• assignment
• operator

• parameters
• dataframes
• default values
• packages
• matrices
• arrays
• list
• factor

1.7.2 Commands introduced in this chapter
• base::c
• base::<-
• base::=
• base::->
• base::cbind.data.frame

• base::getwd
• utils::read.csv
• utils::?
• base::round
• base::signif



2
Basic analytical procedures

The second chapter of the textbook introduces us to basic descriptive and analytical
techniques. We will be using the standard packages that are installed and loaded by default
along with R. We will introduce add-on packages dplyr, readr and ggplot2 which are part
of tidyyverse, tinytable and DescTools. The command names that we use are intuitive.
For graphs, these are names of the graph itself or remind of it. For common statistical tests,
these have two parts – an initial part which reminds us of the test, followed by “.test”. The
arguments that the command expects are varied, with a majority accepting vectors.

2.1 Tables and charts
First, we will look at the chart made using the data in table 2.1.

2.1.1 Bar chart
Figure 2.1 (page 28)

c(I = 592,II = 2254,IIIn = 1017,IIIm = 3150,IV = 1253,V = 415) -> table_1_1

We have made a vector by name table_1_1 and assigned to it the data in the column
“Number”. In contrast to how we created vectors in our previous chapter where only the bare
numbers were supplied, we give a name to each value (Note that the names are not quoted).
These names will be useful for plotting labels.

barplot(table_1_1)

To plot the graph, the command barplot is called with our vector as its argument. The bar
chart drawn by R isn’t exactly like in our parent book. In particular, it lacks the axis labels.
We can provide more arguments to the command to add the labels.

barplot(table_1_1,
xlab = "Social class",
ylab = "Frequency")

DOI: 10.1201/9781003589563-2 8

https://doi.org/10.1201/9781003589563-2
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FIGURE 2.1
Replication of figure 2.1

Similarly, we can make the pie chart given in the chapter with the command pie(table_1_1).
Now, let us try to chart figure 2.3.

Figure 2.3 (page 29)

matrix(c(100,492,382,1872,183,834,668,2482,279,974,109,306),
ncol = 6) -> table_1_2

rownames(table_1_2) <- c("CHD Yes", "CHD No")
colnames(table_1_2) <- c( "I","II","IIIn","IIIm","IV","V")

Here we use the command matrix to create a matrix from the unnamed vector holding our
data. Matrix is similar to vectors in that all the values stored in it are of the same mode.
In contrast to vectors, matrices are (conceptually) rectangular, i.e., the data in them can
be thought of as arranged in a rectangular grid. We need to tell the number of rows and
columns our matrix contains. This is accomplished by specifying the ncol parameter in our
example. We may also specify nrow parameter. By default, matrix command fills the matrix
top down column wise. The parameter byrow can be specified to ask the matrix to be filled
row wise. We have used the command rownames with the matrix we created as its argument
and assigned to it a character vector to indicate the row headings. Similarly, the command
colnames sets the column headings. We could have set the row and column names inside
the matrix command itself by using the dimnames parameter which expect a list of length
two. A list is another kind of data object in R. It differs from vectors and matrices in that
its components need not be of the same type or length. We will learn more about lists later.

Now, to make the graph.
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prop.table(table_1_2, 2)*100 -> percent_1_2
percent_1_2

I II IIIn IIIm IV V
CHD Yes 16.892 16.948 17.994 21.206 22.267 26.265
CHD No 83.108 83.052 82.006 78.794 77.733 73.735

We use the command prop.table, which returns the proportion of each cell of its first
argument, an array (A matrix is an array with two dimensions). The second argument margin
determines the denominator for calculating proportions – 2 indicating that we want column
proportions. If we want row proportions we should specify 1 instead. If we want proportions
to be calculated relative to total of all cells, we can leave out the second argument. We
multiply the proportions returned by the function with 100, to obtain percentages. Note
that when we ask R to multiply with 100, it multiplies each element of the vector with 100.
This is an example of vector arithmetic.

barplot(percent_1_2, horiz = TRUE, xlab = "Percent", ylab = "Social class")

When we call barplot with the matrix carrying the percentage values as its argument, we
get a bar diagram with one bar for each column. The values corresponding to each cell of
the columns are stacked one above the other; hence it is a stacked bar chart. Because we
calculated column percentages and passed it to barchart, each of the stacked bars will be
of the same height, i.e., 100%. Specifying the horiz argument as TRUE makes the graph
horizontal.

FIGURE 2.2
Replication of figure 2.3
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2.2 Inferential techniques for qualitative variables
2.2.1 Chi-square test

Section 2.5.1 (page 33)

Section 2.5 discusses inferential techniques for categorical values. The first test discussed
is chi square. We will first prepare the matrix that will be provided as the argument for
chisq.test, the R command to do chi square test.

matrix(c(2241,1400,103,352,424,2599,1551,0,9,2),
nrow = 2,
byrow = TRUE) -> tbl_2_8

chisq.test(tbl_2_8)

The result displayed by the chisq.test shows the value of chi squared, the degrees of
freedom as well as the p value of the test.

Pearson's Chi-squared test

data: tbl_2_8
X-squared = 868, df = 4, p-value <2e-16

In reality, the test provides more information than what is shown by default. A common
paradigm in R is to store the results of tests in an object to inspect it closely. For example,
we can execute chisq.test(tbl_2_8) -> chi.tbl_2_8 to store our result in chi.tbl_2_8.
The result returned by chisq.test is a list. We can find the structure of an object by
passing it as an argument to the command str. When we execute str(chi.tbl_2_8), we
can see that it contains 9 components, the names of which are self explanatory. If we need to
see any one component of the list, we can use the $ operator. For example, if we want to see
the expected values calculated by the command, we can execute chi.tbl_2_8$expected.
This will display a matrix on the screen which will reveal that the expected values calculated
by the command are the same as in our parent text except for rounding error.

chisq.test(tbl_2_8) -> chi.tbl_2_8
chi.tbl_2_8$expected

[,1] [,2] [,3] [,4] [,5]
[1,] 2520.1 1536.5 53.63 187.96 221.81
[2,] 2319.9 1414.5 49.37 173.04 204.19

The command chisq.test accepts other arguments too, one of which is correct which
needs to be specified as TRUE if you want continuity corrections to be applied. You can read
more about the command by executing ?chisq.test.
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2.2.2 Proportions – One Sample
Section 2.5.2 (page 36)

We can use binom.test command to calculate a proportion and its confidence interval.

binom.test(1562, 4161)

The binom.test is designed to test whether the proportion calculated from the numbers
provided is different from 0.5. Along with that, it also provides a confidence interval of
the proportion calculated. If we need to use only the confidence interval, we can specify
binom.test(1562, 4161)$conf.int. Note that the method for calculating the confidence
interval is different from the approximate method used in our parent text and may differ
from it. We can specify our choice of confidence interval through the parameter conf.level
as a number between 0 and 1.

Exact binomial test

data: 1562 and 4161
number of successes = 1562, number of trials = 4161, p-value <2e-16
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.36065 0.39031

sample estimates:
probability of success

0.37539

After rounding, the confidence interval we get is not different from that given in the textbook.

To test if the proportion is different from, say 0.39, we need to specify the p argument as

binom.test(1562, 4161, p = 0.39)

The p value we obtain is similar to that in our parent text, though the method used here is
different.

Exact binomial test

data: 1562 and 4161
number of successes = 1562, number of trials = 4161, p-value = 0.054
alternative hypothesis: true probability of success is not equal to 0.39
95 percent confidence interval:
0.36065 0.39031

sample estimates:
probability of success

0.37539
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To test if the proportion is less than 0.39, i.e. for a one sided test, we need to specify the
alternative argument as

binom.test(1562, 4161, p = 0.39, alternative = "less")

We get the same p value as in our parent text.

Exact binomial test

data: 1562 and 4161
number of successes = 1562, number of trials = 4161, p-value = 0.027
alternative hypothesis: true probability of success is less than 0.39
95 percent confidence interval:
0.00000 0.38792

sample estimates:
probability of success

0.37539

2.2.3 Proportions – Two Sample
Section 2.5.3 (page 40)

Two sample proportions are handled by prop.test. First, we will enter the data.

matrix(c(2279,1562, 2241,2599),
nrow = 2,
dimnames = list(c("Smoker","Nonsmoker"),

c("Male","Female"))) -> tbl_2_9
prop.test(tbl_2_9, correct = FALSE)

Note that the order in which we specify the data is different from the textbook. While the p
value and Chi squared value would be the same if we specify the data in the same order as
given in the textbook, the difference between proportions would have a different numerical
sign. The test result includes a confidence interval for the difference between the proportions
as well as the p value of a significance test. The significance test used employs chi squared
rather than the normal approximation. Hence the value of the statistic is expected to be
the square of the textbook value, though the p value is similar. As with binom.test, we
can store result in a variable and inspect it. Similar to binom.test we may specify the
conf.level we require as well as the alternative that we want tested. We have specified
correct = FALSE to say that we don’t want to apply continuity correction.

2-sample test for equality of proportions without continuity correction

data: tbl_2_9
X-squared = 146, df = 1, p-value <2e-16
alternative hypothesis: two.sided
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95 percent confidence interval:
0.10810 0.14952

sample estimates:
prop 1 prop 2

0.50420 0.37539

The test statistic we get is 145.726, the square of 12.07 given in the textbook.

2.3 Descriptive techniques for quantitative variables
Example 2.3 (page 43)

Section 2.6 deals with descriptive techniques for quantitative variables. Example 2.3 requires
a variable to be declared

c(15,3,9,3,14, 20,7,8,11) -> xmpl_2_3

We calculate the minimum using min(xmpl_2_3) and maximum using max(xmpl_2_3). We
can obtain the quartiles using the command quantile(xmpl_2_3). By default, the quantile
command outputs the five-number summary – minimum, maximum and median in addition
to the first and third quartiles. The quantile command provides any quantile value for the
probabilities we specify. For this we need to provide a numeric vector with values between
zero and one to the probs argument. If there are any unknown values in our data vector, we
need to specify na.rm = TRUE, to ignore those values in calculations.

min(xmpl_2_3)
max(xmpl_2_3)
quantile(xmpl_2_3)

[1] 3
[1] 20

0% 25% 50% 75% 100%
3 7 9 14 20

Section 2.6.1 (page 43)

Before we find out the five-number summary of the cholesterol data given in table 2.10, we
should import it into R.

While base R provides us with a lot of functions, the abilities of R are extended by different
packages. Some of the commonly used packages are available as a meta package named
tidyverse. We will use that package from now on. Before using the package, we need to
install the package. The command to do that is install.packages("tidyverse"). If your
internet connection is okay, the package will be downloaded and installed. Though the
package is installed, it is not loaded for use. To use the package during your R session, you
need to issue the command library(tidyverse). Note that installation is a one-time step,
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while library(tidyverse) needs to be issued during each R session. Also, note that the
string used for installation is enclosed in quotes, while in the library command, it is not.
Once loaded, all the commands in the package are available including read_table that we
use to import the data given in table 2.10.

The command that we use to import the data would be

library(tidyverse)
read_table("./K11828 supplements/Datasets/Table 2.10.DAT",

col_names=c("cholesterol","diastolic_bp","systolic_bp",
"alcohol","cigs","co","cotinine", "chd"),

col_types = cols( cholesterol = col_number(),
diastolic_bp = col_number(),
systolic_bp =col_number(),
alcohol = col_number(),
cigs = col_number(),
co = col_number(),
cotinine = col_number(),
chd = col_factor())) -> tbl_2_10

The command read_table is used to import textual data where the columns are separated
by space. It requires a string which specifies the path to the file we want to import. If the
path to the data file you downloaded from the textbook’s website is different from what I
have used, you need to change the argument accordingly. As our data doesn’t have a header
row in our data file, we specify the argument col_names as a vector of strings based on
the description of the data file given in the textbook. The argument col_types is called
with a cols() definition. It tells how R should treat each column of data. col_number tells
that the data in the column for which it is specified should be treated as a number. For us,
all columns are numbers except the column chd which is a factor. Factor stands for those
values which are actually codes for something else. For us, the value 1 in the column chd
stands for “yes” and the value 2 for “no”. Though read_table can guess correctly the type
of data in our data file, it is better to provide the col_types argument to avoid surprises.
The tidyverse uses a type of dataframe called tibble and read_table is no exception.
However, there aren’t any particular difference that we will have to keep in mind. I will be
using the word tibble only in situations where the differences from dataframe is significant
to note.

Now that we have our data in the variable tbl_2_10, finding the five-number summary for
the cholesterol data is easy

quantile(tbl_2_10$cholesterol, na.rm = TRUE)

0% 25% 50% 75% 100%
4.350 5.750 6.270 6.775 7.860

If we want just the range, we can use range which returns a numeric vector containing the
minimum and maximum. We can then find their difference.
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range(tbl_2_10$cholesterol) -> range_chol
range_chol[2] - range_chol[1]

The result given by range is a vector with two elements. To find their difference, we subtract
the first element from the second. The square brackets that follow the name of the vector
and the number given inside it is the way we refer to an element of a vector and is called
subsetting.

[1] 3.51

To find the interquartile range, we can use the result of quantile or the function IQR

quantile(tbl_2_10$cholesterol, na.rm = TRUE) -> five_chol
five_chol[4] - five_chol[2]
IQR(tbl_2_10$cholesterol, na.rm = TRUE)

75%
1.025
[1] 1.025

The semi interquartile range is easily calculated by IQR(tbl_2_10$cholesterol)/2. Quar-
tile symmetry can be calculated using the values given by quantile. As an example:
(five_chol[2] - five_chol[1]).

I hope that you have noticed that R uses the usual symbols to do basic arithmetic operations
-, +, / and *.

Section 2.6.3 (page 48)

We can calculate the mean of the cholesterol data using

mean(tbl_2_10$cholesterol)

[1] 6.2866

The variance is calculated using

var(tbl_2_10$cholesterol)

[1] 0.57299

The standard deviation is calculated using
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sd(tbl_2_10$cholesterol)

[1] 0.75696

All the three functions require the argument na.rm=TRUE if any values of the provided
numeric vector is not available.

Section 2.6.4 (page 50)

While there is no ready available function to calculate coefficient of variation, we can calculate
it from the mean and standard deviation provided by the previous functions.

sd(tbl_2_10$cholesterol) * 100 / mean(tbl_2_10$cholesterol)

[1] 12.041

Similarly, we can calculate the standard error by

sd(tbl_2_10$cholesterol) / sqrt(length(tbl_2_10$cholesterol))

[1] 0.10705

This formula doesn’t take care of NA values. A better alternative would be

sd(tbl_2_10$cholesterol, na.rm = TRUE) /
sqrt(sum(is.na(tbl_2_10$cholesterol) == FALSE))

The na.rm option to the command sd asks the command to remove NA values before
calculating sd. The command length doesn’t have such an option. So, we use the command
is.na which evaluates each element of its argument and reports TRUE if it is NA and FALSE
otherwise. We then select only those which are equal to FALSE, i.e. those that are not NA.
We use the equality comparison operator == for this purpose. Notice that we check against
the value FALSE, without quotes as we are asking if the value is the boolean (logical) value
FALSE, not if it is the string “FALSE”, in which case it would have been provided inside
quotes. We sum the elements that satisfy the result. R implicitly converts the TRUE values
to 1 and FALSE to 0. The net result is that we get the length of the supplied vector where
the value is not NA. We use sqrt to get the square root of this number.

We can actually avoid the explicit comparison. What is.na returns is a logical vector. Type
and see the result of is.na(tbl_2_10$cholesterol). It is a vector composed of the logical
values TRUE and FALSE. The command sum when given a logical vector will implicitly convert
all TRUEs to 1 and add. But, we want to sum those that are not NAs; is.na reports TRUE
only if the value is NA. We can invert (i.e. turn TRUE to FALSE and vice-versa) the logical
values by using the negation operator !. Thus our command should be
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sd(tbl_2_10$cholesterol, na.rm = TRUE) /
sqrt(sum(!is.na(tbl_2_10$cholesterol)))

Figure 2.5 (page 45)

Section 2.6.1 also deals with graphical summary of quantitative variables. We can construct
a box plot of the cholesterol data with

boxplot(tbl_2_10$cholesterol,
horizontal = TRUE,
xlab="Serum total cholesterol (mmol/l)")

The horizontal argument was provided to change the default orientation of the graph. The
boxplot of alcohol shown in figure 2.6, can be made similarly.

FIGURE 2.3
Replication of figure 2.5

Figure 2.7 (page 47)

To produce figure 2.7, where two boxplots are produced for the two categories of chd, we use

boxplot(cholesterol ~ chd,
data = tbl_2_10,
horizontal = TRUE,
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xlab = "Serum total cholesterol (mmol/l)",
ylab = NA,
names = c("No CHD","CHD"))

The first argument is called a formula. It informs R that we want cholesterol values to
be used for constructing the boxplot, but split by chd which appears after the tilde ~. The
data argument tells R that the variables mentioned in the formula are part of the dataframe
tbl_2_10. The argument horizontal = TRUE makes the boxplots horizontal, xlab specifies
the x-axis label, ylab = NA prevents y-axis label and names determine the labels against
each box.

FIGURE 2.4
Replication of figure 2.7

Table 2.12 (page 52)

How can we prepare a table like 2.12 of the textbook?

summarise(tbl_2_10, Mean = mean(alcohol))

The command summarise is provided by dplyr, part of tidyverse. It accepts a data frame
and a function. It will summarise the column that we provide as the argument to the
function using the function given as the second argument. Here, we want the function mean
to summarise the column alcohol of the dataframe tbl_2_10 and assign it the name Mean.

# A tibble: 1 x 1
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Mean
<dbl>

1 26.8

We can request multiple summaries of the same column or of different columns.

summarise(tbl_2_10,
Mean.alcohol = mean(alcohol),
SD.alcohol = sd(alcohol),
Mean.Cholesterol = mean(cholesterol))

# A tibble: 1 x 3
Mean.alcohol SD.alcohol Mean.Cholesterol

<dbl> <dbl> <dbl>
1 26.8 27.8 6.29

Notice that we have different names for the summary columns. To get the same summary
for all the columns requires some copy pasting or . . .

summarise(tbl_2_10, across(!chd, ~ mean(.x, na.rm = TRUE)))

Here, instead of providing a list of comma-separated name function pairs, we provide another
function across. The first argument to across is a way of specifying the required columns
that is called tidy select. We may specify col_1 : col_3 to mean all columns from that
named col_1 till the one named col_3, c( col_1, col_3 ) to mean col_1 and col_3,
!col_1 to mean all columns except col_1 or everything(). There are many more helper
functions like starts_with(). In our example, we select all columns except chd. After the
first argument, we provide the function that needs to be applied. If we are not providing any
arguments to the function, we need only provide its name. Here, we want to pass na.rm =
TRUE to mean. So, we provide a one sided function, with only the right-hand side. After the
tilde, the function name is provided and within the parentheses that follow, the arguments
for the function. The first argument is a special one .x, which stands for the column that
will be passed to the function.

# A tibble: 1 x 7
cholesterol diastolic_bp systolic_bp alcohol cigs co cotinine

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 6.29 84.6 131. 26.8 8.74 12.8 139.

The across function can handle multiple functions too. However, what it returns is a
dataframe with a single row and many many columns. So, to get to table 2.12, we follow a
different path.

bind_rows(summarise(tbl_2_10, across(!chd, ~ mean(.x, na.rm = TRUE))),
summarise(tbl_2_10, across(!chd, ~ sd(.x, na.rm = TRUE))),
reframe(tbl_2_10, across(!chd,
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~ quantile(.x,
probs = c(0.5,0.25,0.75,0,1),
na.rm = TRUE)))) ->

tbl_2_10_summary

The command reframe is very similar to summarise. The difference is that summarise
handles summaries that are a single value (like those provided by mean, sd. . . ) while
reframe handles summaries that return multiple values (like those provided by quantile).
The bind_rows joins together multiple rows of data to make one dataframe. Thus we get
one row for each call of summarise and as many rows as the value returned by reframe. We
save this summary table for future use. We will come back to table 2.12 a little while later.

# A tibble: 7 x 7
cholesterol diastolic_bp systolic_bp alcohol cigs co cotinine

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 6.29 84.6 131. 26.8 8.74 12.8 139.
2 0.757 10.5 14.3 27.8 12.5 14.9 177.
3 6.27 82.5 132. 19.1 0 6 7
4 5.75 76.2 123 6.45 0 3 0
5 6.78 92 139 36.5 20 16 284.
6 4.35 65 104 0 0 1 0
7 7.86 109 183 120. 40 57 554

Figure 2.8 (page 53)

Now, we will turn our attention to figure 2.8. We need to change our data as described in
the textbook to make this graph. A function named mutate of the dplyr package will help
us accomplish this.

mutate(tbl_2_10,
talcohol = (alcohol - median(alcohol))/ IQR(alcohol)) -> tbl_2_10t

Similar to summarise, the first argument is the dataframe that we want to manipulate.
Next, we specify the name of the new column that we want and how its value should be
calculated. In our example, we want a new column named talcohol (short for transformed
alcohol) defined as the value of each observation minus the median for the column, which is
then divided by the inter quartile range. We store this transformed table with the name
tbl_2_10_t. We may repeat the same technique to add more name calculation pairs to get
the transformed values for all columns. Instead, we will use across.

mutate(tbl_2_10, across(!chd, rescale)) -> tbl_2_10t

Here, we are asking to mutate all columns except chd using the function rescale. But, what
is rescale? It is a custom function that we define as given below.
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rescale <- function(x) {(x-median(x))/IQR(x)}

In contrast to the earlier instance where we defined a function, here we are assigning the
name rescale to our function because we want to be able to call it from else where. Note that
we could have used any other name. The keyword function tells R that we are defining a
function. The x inside the () is the variable name that will represent inside the function
body, the argument we pass to the function. You may note the similarity between our first
mutate example and the code inside the function body. Note that though I have given the
function definition after calling it inside across, we should define the function before calling
it. Otherwise, R will complain that the object rescale is not found.

The actual command to make the graph is

boxplot(select(tbl_2_10t,
c(diastolic_bp,systolic_bp,cigs,co,cotinine)),

horizontal = TRUE,
ann = FALSE,
names = c("dBP", "sBP", "Cigs", "CO", "Cotinine"))

The first argument to boxplot is select, another function provided by dplyr. From the
data frame that is supplied to select, it returns a new dataframe selecting only those
columns we specify. It supports tidy select mentioned earlier. Here, we are giving a list of
desired columns. The command boxplot will create a boxplot for each of the columns in
the dataframe. We use ann = FALSE to prevent annotation of the axis. Note that though we
have shortened the labels given as names, boxplot does not print them properly. Later, we
will learn better ways to create boxplots.

FIGURE 2.5
Replication of figure 2.8
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Table 2.12 (page 52)

Now let us turn our attention back to table 2.12. The tbl_2_10_summary that we made till
now doesn’t have all the rows of table 2.12. While the data to calculate the remaining rows
are there, it is not arranged properly. The command mutate can produce new columns from
existing columns, not new rows. We need a way to “rotate” the table we prepared.

rownames(tbl_2_10_summary) <- c("mean", "sd", "median",
"Q1", "Q3", "min", "max")

as.data.frame(t(tbl_2_10_summary)) -> tbl_2_10_summary

The rows of the summary table that we generated don’t have names, but numbers as
indicated at the beginning of each row when the data frame is printed. While it is of no
consequence if we were using the table as such, we need row names so that they become column
names when we transpose the table. First of all check the current row names by executing
rownames(tbl_2_10_summary). You can confirm that the row names are just a sequence of
numbers. Now execute rownames(tbl_2_10_summary) <- c("mean", "sd", "median",
"Q1", "Q3", "min", "max"). This will assign the names in the character vector on the
right-hand side to the row names of tbl_2_10_summary. After executing this command,
check the row names again. You will see that the row names are the strings we supplied.
Confirm that the names conform to the data in the row. If needed, change the order of
row names and reassign them. Now, we will use the command t(tbl_2_10_summary) ->
tbl_2_10_summary to transpose the dataframe, i.e. to change the columns to rows and rows
to columns. R will issue a warning that you can safely ignore. Note that by assigning the
transposed data frame to the name of the original dataframe, we overwrite and loose the
original dataframe.

However, what t returns is not a dataframe. It is a matrix. We need to convert it back to a
data frame. The command we use to do that is as.data.frame. We can actually combine the
previous step with this as as.data.frame(t(tbl_2_10_summary)) -> tbl_2_10_summary.
Now we are in a position to manipulate the table to calculate the missing data

nrow(tbl_2_10) -> num
mutate(tbl_2_10_summary,

serror = sd / sqrt(num),
range = max -min,
iqr = Q3-Q1,
cv = sd * 100/ mean) -> tbl_2_10_summary

select(tbl_2_10_summary,
c(mean,median,sd,serror,Q1,

Q3,iqr,min,max,range,cv)) -> tbl_2_10_summary

as.data.frame(t(tbl_2_10_summary)) -> tbl_2_10_summary

cholesterol diastolic_bp systolic_bp alcohol cigs co cotinine
mean 6.28660 84.5600 131.2600 26.7640 8.7400 12.7800 139.46
median 6.27000 82.5000 131.5000 19.1000 0.0000 6.0000 7.00
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sd 0.75696 10.4533 14.2812 27.7533 12.4619 14.9466 177.27
serror 0.10705 1.4783 2.0197 3.9249 1.7624 2.1138 25.07
Q1 5.75000 76.2500 123.0000 6.4500 0.0000 3.0000 0.00
Q3 6.77500 92.0000 139.0000 36.5000 20.0000 16.0000 283.75
iqr 1.02500 15.7500 16.0000 30.0500 20.0000 13.0000 283.75
min 4.35000 65.0000 104.0000 0.0000 0.0000 1.0000 0.00
max 7.86000 109.0000 183.0000 119.6000 40.0000 57.0000 554.00
range 3.51000 44.0000 79.0000 119.6000 40.0000 56.0000 554.00
cv 12.04087 12.3620 10.8801 103.6963 142.5844 116.9527 127.11

Notice that the quartiles and IQR for alcohol in our table doesn’t match the values in our
textbook (6.45 is our Q1 against the 6.2 in the textbook: Q3 is 36.5 against 38.3; IQR is
30.05 against 32.1). The reason for this discrepancy is the way quantiles are calculated. We
can change the way quantiles are calculated by specifying the type option for the quantile
command. As the textbook doesn’t talk about how to choose from the various ways to
calculate quantiles, it is up to you to read about them. We haven’t calculated skewness in
our table. This can be achieved by defining a custom function and using it while building
the summary table. You will also find ready made functions in some packages. We use the
select command to rearrange the columns in the data frame to align with the one in the
textbook.

We will try to pretty the table now. For that we use a package named tinytable. Remember
to install it and load it before using.

library(tinytable)
bind_cols(c("Mean","Median","Std deviation","Std error","Q1",

"Q2","IQR","Minimum","Maximum","Range","CV"),
tbl_2_10_summary) |>

setNames(c("Summary statistic",
"{Serum total\\\\cholesterol\\\\(mmol/l)}",
"{Diastolic\\\\blood pressure\\\\(mmHg)}",
"{Systolic\\\\blood pressure\\\\(mmHg)}",
"{Alcohol\\\\(g/day)}",
"{Cigarettes\\\\(no./day)}",
"{Carbon\\\\monoxide\\\\(ppm)}",
"{Cotinine\\\\(ng/ml)}")) |>

tt(caption = "Replication of table 2.12",
notes = "Note: IQR = inter quartile range;

CV = coefficient of variation.
Sample size, n = 50.",

width = 8) |>
format_tt(j = c(3,6,7), digits = 2) |>
format_tt(j = c(2,4,5,8), digits = 3) |>
format_tt(i = 11,j = 2:8, sprintf = "%3.0f%%", escape = TRUE) |>
style_tt(j = 2:8,

align = "d") |>
style_tt(i = 0,

align = "c",
alignv = "b") |>
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theme_tt("placement",
latex_float = "H")

We use what are called pipes in our code. The pipe that we use is |>. Earlier, R did not
support pipes natively. A pipe was provided by magrittr package. However, now that R
supports pipe natively, we use that. The pipe passes the result of the left-hand side expression
as the first argument of right-hand side. Though not all functions accept its argument from
a pipe, for those functions which do accept its argument from a pipe it is a very convenient
way to make incremental changes as we do in the above example.

tinytable is used to pretty tables for the purpose of presentation. The package provides
many functions to pretty tables while allowing great flexibility in usage. The function tt
creates a tinytable from its argument, a dataframe. Here, we piped the result of bind_cols to
setNames to change names for printing. The bind_cols was used to bind together a column
of row labels with the dataframe tbl_2_10_summary that we want to pretty. setNames
returns the dataframe after assigning the new names, which we pass to tt. We enclose the
new names in {} and add \\\\ at places where we want line breaks to let know LATEX how
we want them to be printed. We specify the arguments caption which specifies the table
caption, notes which specifies the footnote of the table and width which specifies the print
width of the table. While the output of tt itself would be pretty clean, we want fine control
over the appearance.

So, we pipe the result of tt to format_tt thrice, one after the other. This function is used
to format many aspects of the table contents. We can specify which rows and columns the
formatting should apply to by using the i and j arguments. We use different decimal places
for different columns – two digits for the third, sixth and seventh column and three digit
for the remaining columns except the first. Then we ask to not show decimal places for the
last row of numbers and to add a percentage sign after the numbers. We specify this as the
argument sprintf, which asks tinytable to format the specified contents using the sprintf
command. Read its document to see the format string specification. We set the argument
escape as TRUE in the last call to escape (prefixes) the characters special for LATEX (which
is the program that makes the pdf version of this document) appropriately.

The result is piped to style_tt to align the contents of the second to the eighth columns
by the decimal point. This is achieved by specifying the argument align as "d". We use
style_tt again to align the table header row at the bottom centre. The theme_tt is also
used here to set a LATEX parameter.

There are many more functions in the tinytable package that allows us to fine tune the
appearance of the table. We will need them when we want to prepare tables for publications.
Do read about them from the tiny table manual. While I may use tt commands to pretty
the dataframes that are shown in this book, I will not be showing those commands. Similarly,
the default print command prints dataframe columns vertically, as expected. A better way
to see the columns of a dataframe is arranging them horizontally. The function glimpse
(package pillars, re-exported in dplyr) achieves this. I may use glimpse to show contents
of a dataframe though I may not show the command.
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TABLE 2.1
Replication of table 2.12

Summary
statistic

Serum total
cholesterol
(mmol/l)

Diastolic
blood pressure
(mmHg)

Systolic
blood pressure
(mmHg)

Alcohol
(g/day)

Cigarettes
(no./day)

Carbon
monoxide
(ppm)

Cotinine
(ng/ml)

Mean 6.287 84.6 131.26 26.76 8.7 12.8 139.5
Median 6.27 82.5 131.5 19.1 0 6 7
Std deviation 0.757 10.5 14.28 27.75 12.5 14.9 177.3
Std error 0.107 1.5 2.02 3.92 1.8 2.1 25.1
Q1 5.75 76.2 123 6.45 0 3 0
Q2 6.775 92 139 36.5 20 16 283.8
IQR 1.025 15.8 16 30.05 20 13 283.8
Minimum 4.35 65 104 0 0 1 0
Maximum 7.86 109 183 119.6 40 57 554
Range 3.51 44 79 119.6 40 56 554
CV 12% 12% 11% 104% 143% 117% 127%

Note: IQR = inter quartile range; CV = coefficient of variation. Sample size, n = 50.
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2.3.1 Grouped Frequency Distribution Table
Table 2.13 (page 53)

To make the grouped frequency table 2.13, we use

table(
cut(tbl_2_10$cholesterol,

breaks = seq(from = 4, to = 8, by = 0.5))) -> tbl_2_13

The cut command accepts a numeric vector and returns a factor based on the options we
provide. The first argument that we provide is the numeric vector. The next argument
breaks can be a single number, in which case the numeric vector is broken up into that
many groups. Here we call a command seq to provide a vector of cut off points. It provides a
sequence of numbers starting from from until to in steps of by. Thus seq(from = 4, to =
8, by = 0.5) returns the sequence 4,4.5,5,5.5,6,6.5,7,7.5,8. The command cut determines
the interval of the sequence in which each value of the numeric vector falls and labels it as
such. The command table provides an aggregate of these labels. If we want our own labels,
we can supply a character vector as the label argument to cut. Here, we are not changing
the default labels.

cbind(Frequency = tbl_2_13,
Percentage = prop.table(tbl_2_13) * 100) |>

as.data.frame() |>
rownames_to_column(var = "Cholesterol") |>
mutate(Cumulative = cumsum(Percentage)) -> tbl_2_13

If we inspect tbl_2_13, we will see that it includes the frequencies only. To calculate
the proportions, we can use prop.table(tbl_2_13). To convert it to percentages, we can
multiply the proportions with 100. We bind both sets of values together using cbind and
convert them to a data frame using as.data.frame. The command rownames_to_column
adds the row name of the supplied dataframe as a new column with the value of var as its
heading. In our case, it adds the labels that cut creates.

Finally, we add the cumulative column using mutate. You must have inferred that cumsum
provides cumulative sum of the numerical vector passed to it.

TABLE 2.2
Replication of table 2.13

Cholesterol (mmol/l) Frequency Percentage Cumulative Percentage
(4,4.5] 1 2% 2%
(4.5,5] 2 4% 6%
(5,5.5] 4 8% 14%
(5.5,6] 11 22% 36%
(6,6.5] 11 22% 58%
(6.5,7] 11 22% 80%
(7,7.5] 7 14% 94%
(7.5,8] 3 6% 100%
Total 50 100%
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2.3.2 Histogram
Figure 2.9 (page 54)

Making a histogram from the frequency table is possible with
barplot(tbl_2_13$frequency). However, it will not be a true histogram as the
bars would be separated from each other. To get a true histogram, we pass the ungrouped
data to hist.

hist(tbl_2_10$cholesterol,
xlab = "Serum total cholesterol (mmol/l)",
ylab = "Frequency",
main = NA)

Notice how the bars of the real histogram touch each other in contrast to that of the bar
diagram (not shown). The arguments xlab, ylab and main serves the same functions as in
boxplot. Here we prevent a title from being drawn.

FIGURE 2.6
Replication of figure 2.9

2.3.3 Frequency Density
Table 2.14 (page 54)

We can make the frequency distribution table 2.14 using

c(0,10,20,30,50,70,120) -> brks
table(

cut(tbl_2_10$alcohol,
breaks = brks,
include.lowest = TRUE)) -> tbl_2_14
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Notice that we provided include.lowest=TRUE option while calling cut. Otherwise, the
zeroes which are the lowest values would be excluded from the tabulation.

diff(brks) -> class_size
prop.table(tbl_2_14) -> rel_freq
cbind(Frequency = tbl_2_14,

Proportion = rel_freq,
Density = rel_freq/ class_size) |>

as.data.frame() |>
rownames_to_column(var = "Alcohol") -> tbl_2_14

Calculating the proportion is achieved the same way as in our earlier example. To calculate
the frequency density we need to supply the class size. We calculate the class size using
diff to which we supply the brks vector. The diff calculates the difference between the
consecutive elements of its argument, thereby giving us the class size.

TABLE 2.3
Replication of table 2.14

Alcohol (g/day) Frequency Relative frequency Frequency density
[0,10] 16 0.32 0.032
(10,20] 9 0.18 0.018
(20,30] 10 0.2 0.02
(30,50] 5 0.1 0.005
(50,70] 6 0.12 0.006
(70,120] 4 0.08 0.0016
Total 50 1

Figure 2.10 (page 55)

As we have grouped data to get the table, we won’t get a histogram using that data. Instead,
we pass the ungrouped data to hist to make the histogram of figure 2.10. We can provide
the breaks that we want hist to use instead of the breaks that hist calculates itself. The
other argument serve the same purpose as in the graphs we have seen earlier.

hist(tbl_2_10$alcohol,
breaks = c(0,10,20,30,50,70,120),
xlab = "Alcohol (g/day)",
ylab = "Frequency",
main = NA)
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FIGURE 2.7
Replication of figure 2.10

2.3.4 Kernel Density Plot
Figure 2.11 (page 56)

The kernel density plot of figure 2.11 is made with the command

density(tbl_2_10$cholesterol,kernel = "epanechnikov", bw = 0.5) |>
plot(xlab = "Serum total cholesterol (mmol/l)",

ylab = "Density")

The result of density is piped to the plot command. The command density accepts the
numeric vector, the density of which needs to be calculated, the kernel to be used as well
as the bandwidth bw.

Figure 2.12 (page 57)

2.3.5 Ogive
Constructing an ogive is achieved by the command given below

ecdf(tbl_2_10$cholesterol) |>
plot(xlab = "Serum total cholesterol (mmol/l)",



2.3 Descriptive techniques for quantitative variables 31

FIGURE 2.8
Replication of figure 2.11

ylab = "Cumulative percentage",
main = NA)

Here too we use the plot command. However the argument we provide to plot is different
from what we used for kernel density plot. Here we use ecdf which provides the empirical
cumulative distribution of the numeric vector that is supplied to it, in our case cholesterol
of tbl_2_10.

FIGURE 2.9
Replication of figure 2.12
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2.4 Inferences about means
2.4.1 Normal Plots

Figure 2.14 (page 58)

We can build normal plots using

qqnorm(tbl_2_10$cholesterol,
main = NA,
xlab = "Normal scores",
ylab = "Serum total cholesterol (mmol/l)")

qqline(tbl_2_10$cholesterol)

The command qqnorm produces a normal quantile quantile plot of the data provided. The
qqline adds the ideal straight line. The argument supplied to qqnorm and qqline is the
numeric vector holding the data which is to be checked for normality. R also provides, qqplot
if you want to compare your data against other distributions.

FIGURE 2.10
Replication of figure 2.14

2.4.2 Inference for a single mean
Section 2.7.2 (page 60)

To find the confidence interval for a population mean, we use
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t.test(tbl_2_10$cholesterol)

The default print of t.test shows the mean and its 95% confidence interval. We may
provide the conf.level argument if we desire a different confidence interval. As usual, the
command by default doesn’t show every value it calculates. For example, if we want to know
the calculated standard error, we should store the result of the test in a variable, say chol.t,
and inspect the component named stderror.

One Sample t-test

data: tbl_2_10$cholesterol
t = 58.7, df = 49, p-value <2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
6.0715 6.5017

sample estimates:
mean of x

6.2866

Example 2.9 (page 61)

Example 2.9 shows the technique of assessing whether the population mean is different from
a pre-specified value. We can accomplish this in R using

t.test(tbl_2_10$cholesterol, mu = 6)

Here we supplied the argument mu, the pre-specified value. The default print includes the
test statistic calculated and p value among others. We may also specify alternative to
indicate whether we want a one sided or a two sided hypothesis test, the default being a two
sided test.

One Sample t-test

data: tbl_2_10$cholesterol
t = 2.68, df = 49, p-value = 0.01
alternative hypothesis: true mean is not equal to 6
95 percent confidence interval:
6.0715 6.5017

sample estimates:
mean of x

6.2866

2.4.3 Two sample t test
Example 2.10 (page 63)

To perform a two sample t-test, we use the same function.
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t.test(cholesterol ~ chd, data = tbl_2_10)

Here, we provide a formula - cholesterol ~ chd as the first argument. It means that cholesterol
should be split into groups using the value of chd and the groups should be used for the
two sample t-test. The argument data specifies the dataframe in which to search for the
variables used in the formula.

The result we get is different from the textbook. Why is that so? The reason is that the
default value of the argument var.equal is FALSE. If we provide var.equal = TRUE to the
t.test function, we will get the same answer as in the textbook. But, before that we need
to verify if there is any evidence to say that the variances are not equal. We achieve that by

var.test(cholesterol ~ chd, data = tbl_2_10)

F test to compare two variances

data: cholesterol by chd
F = 0.78, num df = 38, denom df = 10, p-value = 0.55
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.23891 1.87734

sample estimates:
ratio of variances

0.77987

Like the t.test, var.test accepts a formula. The F ratio of variances that the test returns is
the reciprocal of that in the textbook. This results because of the difference in treating which
chd group as the numerator and which as the denominator. The p value is the same after
allowing for rounding errors. The difference in which group is considered first is also visible
in the result of t.test, where the t statistic calculated has a negative sign, though this
doesn’t alter the p value. We can provide conf.level = 0.99, if we want a 99% confidence
interval for the difference in means.

Two Sample t-test

data: cholesterol by chd
t = -2.17, df = 48, p-value = 0.035
alternative hypothesis: true difference in means between

group 2 and group 1 is not equal to 0
95 percent confidence interval:
-1.041486 -0.039493

sample estimates:
mean in group 2 mean in group 1

6.1677 6.7082
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2.4.4 Paired t test
Example 2.11 (page 65)

We need to store the data in table 2.15 to learn to do the paired t test. If the first visit is
stored in a variable named first and the second visits in a variable named second, we can
perform the paired t-test using

first <- c(3.795,6.225,5.210,7.040,7.550,7.715,6.555,5.360,5.285,
6.230,6.475,5.680,5.490,9.865,4.625,7.480,4.970,6.710,
4.765,6.695,4.025,5.510,5.495,5.435,5.350,5.905,6.895,
4.350,5.950,5.855,5.410,5.220,4.700,4.215,5.395,7.475,
4.925,7.115,7.020,5.365,3.665,6.130,4.895,7.000)

second <- c(3.250,6.935,4.750,5.080,8.685,7.775,6.005,4.940,5.620,
5.870,6.620,5.635,5.080,9.465,4.120,6.955,5.100,7.480,
4.530,6.160,4.160,6.010,5.010,5.975,4.705,5.465,6.925,
4.260,5.325,5.505,5.280,5.175,4.815,3.610,5.705,6.580,
5.190,6.150,6.395,5.805,3.710,5.160,5.145,7.425)

t.test(second, first, paired = TRUE)

Here, we provide the arguments as two vectors. We may use a formula too if it is appropriate
to how we store the data. The essential argument is paired which should be TRUE. There is
no problem in reversing the order of the two vectors – just that the sign of the difference
and its confidence interval will change.

Paired t-test

data: second and first
t = -2.02, df = 43, p-value = 0.05
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-0.3398596 -0.0001404

sample estimates:
mean difference

-0.17

2.5 Inferential techniques for non-normal data
Section 2.8.1 (page 66)

How to transform data in R should be evident by now. We use mutate. Thus, to obtain
square root transformation of the alcohol data, we can use mutate(tbl_2_10, talcohol
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= sqrt(alcohol)) and mutate(tbl_2_10, tco = log(co)). We need to store them into
variables to enable us to use them later.

Selecting some records based on a criteria is called subsetting. Many functions support
a subset argument. But the boxplot command uses the subset argument only when we
supply a formula. We also have subset command, which can be used like subset(tbl_2_10,
cigs > 0, select = c(cigs)) The first argument we supply is the object that should be
subsetted. Next, we specify the criteria for subsetting. Because we supplied a dataframe
as the first argument, subset will understand that the cigs mentioned in the criteria is a
column of tbl_2_10. The last option select specifies that we want only the cigs column
from the subsetted data frame. We may store the subsetted data frame as an object or we
can use it directly as an argument. For example, to build figure 2.17 we may use

subset(tbl_2_10, cigs > 0, select = c(cigs)) |>
boxplot(horizontal = TRUE )

If we need to subset one vector, we needn’t use subset. We may subset the vector di-
rectly tbl_2_10$cigs[tbl_2_10$cigs > 0]. So, we can shorten our command to make the
previous boxplot to

boxplot(tbl_2_10$cigs[tbl_2_10$cigs > 0],
horizontal = TRUE)

When we want to refer to one vector of a dataframe, prefixing name of the data frame every
time we require the vector will become tiring. We can address this in two ways. The first
is to create a new object, say tbl_2_10$cigs -> cig and then use cig wherever we need
tbl_2_10$cigs. Thus our boxplot call will become

tbl_2_10$cigs -> cig
boxplot(cig[cig > 0], horizontal = TRUE)

The second option is to attach the dataframe using attach(tbl_2_10). This makes available
the data frame in the search path of R. After executing this command, we may refer to the
component vectors directly without prefixing the data frame’s name. If we take this route,
our boxplot call will become

attach(tbl_2_10)
boxplot(cigs[cigs > 0],

horizontal = TRUE,
xlab = "Cigarettes (no.day)",
ylab = NA)
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FIGURE 2.11
Replication of figure 2.17

2.5.1 Wilcoxon test
Example 2.12 (page 71)

The command to perform Wilcoxon test is wilcox.test. For the cholesterol data, we can
use

wilcox.test(cholesterol ~ chd, data = tbl_2_10)

The command wilcox.test is similar in usage to t.test. We can use it to perform signed
rank sum test, the non-parametric equivalent of one-sample t-test as well as paired test by
specifying the similarly named arguments.

Wilcoxon rank sum test with continuity correction

data: cholesterol by chd
W = 130, p-value = 0.048
alternative hypothesis: true location shift is not equal to 0
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2.6 Measuring agreement
2.6.1 Bland – Altman plot

Figure 2.18 (page 73)

Before we learn to build Bland – Altman plots, we need to import and shape the data.

read_table("./K11828 supplements/Datasets/Example 2.13.dat",
col_names=c("pt", "vc"),
col_types = cols(pt = col_number(),

vc = col_number())) -> xmpl_2_10
mutate(xmpl_2_10,

differ = pt - vc,
avg = (pt + vc)/2,
dlog = log(pt) - log(vc),
alog = (log(pt) + log(vc))/2) -> xmpl_2_10

While base R provides a lot of commands to draw graphs, there are many packages that
improve upon the graphing capabilities of R. The packages grid, lattice and ggplot2
are the better known ones. Here will learn the basics of ggplot2. The package ggplot2 is
part of tidyverse. So, if you have already installed tidyverse, there is no need to install
ggplot2 separately. While the ggplot commands are a bit verbose compared to base R,
there is greater clarity and more flexibility in them. The graphs are built step by step. The
command

ggplot(xmpl_2_10)

draws nothing, but sets the stage for the subsequent commands. We supply xmpl_2_10 as
the data argument to ggplot. This data is available to the subsequent commands. Subsequent
commands can be entered if a line is terminated with +. ggplot sees each data element
as being mapped to a geometric aspect of the graph. Thus, at each step, we add a geom
function that suits our requirement. We provide an aesthetic mapping as an argument to
the geom, specifying which data variable should map to each of the aesthetics. Seeing this
in action will help you understand.

ggplot(xmpl_2_10) +
geom_point(aes(x=avg, y = differ))

We used geom_point as our geom because we want points in our graph. Where do we want
the dots? We want a dot at each location specified by the avg and diff vectors of our data
frame. We specify this by saying aes(x = avg, y = differ).

The black dots really crowd the graph. Is there a way to reduce that crowded appearance?

ggplot(xmpl_2_10) +
geom_point(aes(x=avg, y = differ), alpha = 0.5)
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Notice that alpha is not specified inside aes. We don’t want alpha to map to any data.
We want all the dots to have a translucent look. Hence, we specify it as an argument to
geom_point. We may also change the colour and shape of the point in a similar fashion.

The axis labels don’t look good. How can we change them?

ggplot(xmpl_2_10) +
geom_point(aes(x=avg, y = differ), alpha = 0.5) +
labs(x = "Mean",

y = "Difference (PT - Clause)")

The labs accept many more arguments, including title, caption as well as the labels in
legends for other aesthetics specified (like colour) .

I don’t like that grey background. How can I remove them? ggplot’s answer to this requirement
is theme. There are different themes. You may choose to use any of them or build one from
the default theme by tweaking any element to your satisfaction.

ggplot(xmpl_2_10) +
geom_point(aes(x = avg, y = differ), alpha = 0.5) +
labs(x = "Mean",

y = "Difference (PT - Clause)") +
theme(panel.grid.major.y = element_blank(),

panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.background = element_blank(),
panel.border = element_rect(fill= NA))

Here we chose to modify some elements of the default theme. The other option we have is to
use one of the complete themes like theme_bw, theme_minimal etc.

The final prettying that we will do is drawing of the horizontal line at y = 0.

ggplot(xmpl_2_10) +
geom_point(aes(x = avg, y = differ),alpha = 0.5) +
labs(x = "Mean",

y = "Difference (PT - Clause)") +
theme(panel.grid.major.y = element_blank(),

panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.background = element_blank(),
panel.border = element_rect(fill= NA)) +

geom_hline(yintercept = 0, colour = "green")

We add another geom, geom_hline which draws a horizontal line at the specified y intercept.
The graph is drawn in the order we specify. Thus the horizontal line is drawn over the dots.
It is to demonstrate this point that we used colour for the line. In the next example, we
draw it before the dots.
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FIGURE 2.12
Replication of figure 2.18

Figure 2.19 (page 73)

Producing the Bland - Altman plot for log transformed fibrinogen data is as easy as changing
the mapping of the x and y arguments to alog and dlog.

FIGURE 2.13
Replication of figure 2.19
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2.6.2 Cohen’s kappa
Example 2.14 (page 76)

Functions for measures of inter-rater agreement is not available in base R. Many packages
provide suitable functions. Here we will use the package DescTools. Remember to install
it once and load it whenever required. The function that we use to calculate kappa is
CohenKappa. It requires a square matrix, which we will prepare in the next step from table
2.19.

matrix(c( 22,80,73,6,9,4,11,471,241,31,60,12,3,61,379,20,29,15,0,
159,326,197,263,152,0,60,92,43,266,64,0,10,26,11,41,97),

ncol =6,
byrow = TRUE) -> tbl_2_19

library(DescTools)
CohenKappa(tbl_2_19)

By default, the function prints the unweighted kappa without a confidence interval. If we
want a confidence interval, we should specify the conf.level argument.

[1] 0.30202

Example 2.15 (page 77)

2.6.3 Weighted kappa
To obtain weighted kappa, we should specify the weight argument. You have the choice
to specify Equal-Spacing or Fleiss-Cohen. Or, we can specify a custom weight matrix,
having the same dimension as the data we supplied. Let us first build the weight matrix.

sapply(1:6, function(x) {1 - abs((1:6)-x)/5}) -> wc
wc

The function sapply repeatedly passes each of the value of the first argument to the second
argument, which should be a function and collects the result returned by the function in a
list. The list is simplified to an array if the argument simplify is TRUE, the default value.
The first argument we supply to sapply is a vector with the numbers 1 to 6. This vector is
built by the colon: operator from its arguments, the numbers that precede and follow it.
The second argument is an anonymous function. It accepts a number, subtracts it from each
value of another vector with the values 1 to 6, takes the absolute value, divides it by five
and finds the difference from one. Thus it will return a vector of length 6 corresponding to
one row of weights calculated according to formula 2.33. We call this function repeatedly
using sapply, each time with one value from 1 to 6. As we didn’t change the default value
of simplify argument, these vectors are joined together as a matrix, which is stored in the
object wc.

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.0 0.8 0.6 0.4 0.2 0.0
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[2,] 0.8 1.0 0.8 0.6 0.4 0.2
[3,] 0.6 0.8 1.0 0.8 0.6 0.4
[4,] 0.4 0.6 0.8 1.0 0.8 0.6
[5,] 0.2 0.4 0.6 0.8 1.0 0.8
[6,] 0.0 0.2 0.4 0.6 0.8 1.0

Let us call the CohenKappa function using these weights.

CohenKappa(tbl_2_19, weights = wc)

The same result is obtained if we use weight="Equal-Spacing".

If we need the confidence interval of the weighted kappa result, we need to specify a value
to the conf.level argument.

CohenKappa(tbl_2_19, weights = wc, conf.level = 0.95)

The confidence interval and the point estimates are the same as in our text within the
tolerance of rounding error.

kappa lwr.ci upr.ci
0.42833 0.40740 0.44927

2.7 Assessing diagnostic tests
2.7.1 Sensitivity and specificity

Example 2.16 (page 80)

To calculate sensitivity and other measures used to assess diagnostic tests, we will use Conf
from DescTools. First we need to input the data in table 2.22.

matrix(c(84,10,43,92),
nrow =2,
dimnames = list(Dipstick = c("Positive","Negative"),

Culture = c("Positive","Negative"))) -> tbl_2_22
Conf(tbl_2_22, pos = "Positive")

The command Conf returns multiple calculated values including sensitivity, specificity and
the predictive values. If you need just the sensitivity you can use Sens and for specificity
alone, you can use Spec.
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Confusion Matrix and Statistics

Culture
Dipstick Positive Negative

Positive 84 43
Negative 10 92

Total n : 229
Accuracy : 0.769

95% CI : (0.710, 0.818)
No Information Rate : 0.590
P-Value [Acc > NIR] : 8.94e-09

Kappa : 0.546
Mcnemar's Test P-Value : 1.1e-05

Sensitivity : 0.894
Specificity : 0.681

Pos Pred Value : 0.661
Neg Pred Value : 0.902

Prevalence : 0.410
Detection Rate : 0.555

Detection Prevalence : 0.367
Balanced Accuracy : 0.788

F-val Accuracy : 0.760
Matthews Cor.-Coef : 0.569

'Positive' Class : Positive

2.7.2 ROC plot
Figure 2.20 (page 84)

There are many packages to plot ROC curves. However, most are aimed for real world
analysis. Thus they are poor for the aggregated data presented in table 2.24. It is much
easier to build the plot directly. But, first, we need the data.

5621 -> tot_smk
3274 -> tot_nsmk
c(5621,5460,5331,5200,5057,4932,4818,3499,1984,874,0) -> smk
c(0,817,1403,1914,2360,2696,2972,3266,3273,3273,3274) -> nsmk

smk / tot_smk -> sens
nsmk / tot_nsmk -> spec
c(1, 5:10, seq(20,50, by = 10)) -> colbl
cbind.data.frame(smk, nsmk, sens, spec) -> tbl_2_24

We will use ggplot to build figure 2.20
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ggplot(tbl_2_24, aes(x= colbl)) +
geom_line(aes( y = sens), linetype = 3) +
geom_line(aes( y = spec), linetype = 2) +
geom_line(aes( y = sens + spec), linetype = 1) +
labs(x= "CO cut-point (ppm)", y = NULL) +
annotate("text",

x = c(40,20,40),
y = c(.3,1.1, 1.25),
label = c("Sensitivity", "Specificity", "Sum"))

Notice that we supplied the aesthetic x to ggplot as it is common to most of the geoms
used. We used the same geom multiple times because we wanted multiple lines to be created,
each with a different linetype argument that decides the dash pattern. Also, note that we
supplied result of an operator +, as the value of one of the arguments. The labs(x= "CO
cut-point (ppm)", y = NULL) determines the axis labels, NULL removing the label. We
supplied vectors of length three for annotation layer because we want three labels. The x
and y locations of the labels used for annotation were determined by trial and error.

FIGURE 2.14
Replication of figure 2.20

While we won’t make ROC curve for thiocyanate, we will make the ROC curve for CO in a
similar manner. I hope you can understand the code without any explanation.

Figure 2.21 (page 84)

ggplot(tbl_2_24) +
geom_line(aes( x = 1- spec, y = sens)) +
labs(x= "One minus specificity", y = "Sensitivity")
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FIGURE 2.15
Replication of figure 2.21

When we analyse ungrouped data, it is better to use packages like plotROC, pROC, PRROC,
ROCit etc. to plot ROC curves.

2.8 Recap
As we come to the close of a long chapter, let us recap the important topics we covered here.

2.8.1 Concepts introduced in this chapter
• list
• vector arithmetic
• factor
• tibbles
• pipes

• escape sequences
• tidy select
• subsetting
• geom
• aesthetic mapping
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2.8.2 Commands introduced in this chapter
• graphics::barplot
• base::matrix
• base::rownames
• base::colnames
• base::prop.table
• stats::chisq.test
• utils::str
• base::$
• stats::binom.test
• stats::prop.test
• base::min
• base::max
• stats::quantile
• utils::install.packages
• base::library
• readr::read_table
• readr::cols
• readr::col_number
• readr::col_factor
• base::range
• stats::IQR
• graphics::boxplot
• base::-
• base::+
• base::*
• base::/
• base::mean
• stats::var
• stats::sd
• base::sqrt
• base::length
• base::is.na
• base::==
• dplyr::summarise
• dplyr::across
• stat::median
• dplyr::reframe
• dplyr::bind_rows
• dplyr::mutate
• dplyr::select
• base::t
• base::nrow

• base::as.data.frame
• dplyr::bind_cols
• base::|>
• tinytable::tt
• tinytable::format_tt
• tinytable::style_tt
• tinytable::theme_tt
• base::table
• base::cut
• base::seq
• base::cbind
• tibble::rownames_to_column
• base::cumsum
• graphics::hist
• base::diff
• base::plot
• stats::density
• stats::ecdf
• stats::qqnorm
• stats::qqline
• stats::t.test
• stats::var.test
• base::subset
• base::attach
• stats::wilcox.test
• base::log
• ggplot2::ggplot
• ggplot2::aes
• ggplot2::geom_point
• ggplot2::labs
• ggplot2::theme
• ggplot2::element_blank
• ggplot2::element_rect
• ggplot2::geom_hline
• DescTools::CohenKappa
• base::abs
• base::sapply
• base::list
• DescTools::Conf
• ggplot2::geom_line
• ggplot2::annotate
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Assessing risk factors

The third chapter of the textbook deals with assessing risk factors. We will need the
DescTools package to rework some of the problems in this chapter. Most of the commands
need a two-by-two table which is expected as matrix. We also use the package epiR.
Remember to install the packages using the command install.packages as described in
Chapter 2.

3.1 Risk and relative risk
Example 3.1 (page 91)

library(DescTools)
matrix(c(31,15,1386,1883),

nrow = 2,
dimnames = list(smoker = c("Yes", "No"),

cvdeath = c("Yes", "No"))) -> tbl_3_2
RelRisk(tbl_3_2, conf.level = 0.95, method = "wald")

We use the RelRisk function of DescTools. We supply it the data stored as tbl_3_2, a
two-by-two matrix. Without the conf.level argument only the point estimate is printed.
The function also allow us to provide our preferred method for calculating the confidence
interval.

rel. risk lwr.ci upr.ci
2.7682 1.5129 5.0652

Note that the confidence interval given by the function (1.513, 5.065) is narrower than in
our text (1.500,5.108). The probable explanation is the approximate nature of the formula
used in the textbook.

3.2 Odds and odds ratio
Example 3.2 (page 93)

To calculate the odds ratio, we have a similar function OddsRatio.

DOI: 10.1201/9781003589563-3 47
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OddsRatio(tbl_3_2, conf.level = 0.95, method = "wald")

OddsRatio accepts the same arguments as RelRisk. However, the choice of methods it
allows is different from RelRisk.

odds ratio lwr.ci upr.ci
2.8077 1.5099 5.2212

3.3 Prevalence studies
Example 3.4 (page 97)

Calculating the prevalence risk and odds ratios given in example 3.4 is done using the same
functions given above.

matrix(c(15,41,1727,3229),
nrow = 2,
dimnames = list(pvd = c("Yes", "No"),

smoker = c("Yes", "No"))) -> tbl_3_4
RelRisk(tbl_3_4)
OddsRatio(tbl_3_4)

[1] 0.68676
[1] 0.68404

Here again, the risk ratio (0.69) is slightly different from the textbook value of 0.68.

Vector arithmetic
Table 3.5 (page 98)

Let us try to build table 3.5.

c(15,33,8) -> pvdy
c(1712,1897,1291) -> pvdn
c(pvdy, sum(pvdy)) -> pvdy
c(pvdn, sum(pvdn)) -> pvdn
pvdy + pvdn -> total
pvdy / total -> Prevalence
c("Current smoker", "Ex-smoker", "Never smoked", "Total") -> ciglabels
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cbind.data.frame(ciglabels, pvdy, pvdn, total, Prevalence) -> tbl_3_5

tbl_3_5

First, we assign the data of those with PVD to pvdy and those without PVD to pvdn.
We then modify them to add the total to the end of both vectors. The total and prvl are
calculated using simple arithmetic. Finally the vectors are joined together as a dataframe
for prettying.

TABLE 3.1
Replication of table 3.5

Peripheral vascular disease?

Cigarette smoking status Yes No Total Prevalence
Current smoker 15 1712 1727 0.0086856
Ex-smoker 33 1897 1930 0.0170984
Never smoked 8 1291 1299 0.0061586
Total 56 4900 4956 0.0112994

Note that when we say pvdy + pvdn, the first element of the vector pvdy is added with
the first element of pvdn. In other words, R does vector arithmetic. This is a very useful
property and easily understandable when the vectors being added or multiplied are of the
same length. When the vectors are of unequal length, the shorter vector is recycled to the
same length as the longer one. Recycling is at work, say, when we divide a vector by a single
number. The single number is recycled to match the length of the longer vector and then
vector division is done. Things gets confusing when the length of the longer vector is not an
integer multiple of the length of the shorter one. Then, one copy of some elements of the
recycled shorter vector will not be used in the vector operation. In practice, be careful when
you need to perform arithmetic operations on two vectors of unequal length if the shorter
one has more than one element.

3.4 Testing association
3.4.1 Chi square test

Example 3.6 (page 99)

We used chisq.test in the previous chapter. We rework example 3.6 here.

chisq.test(tbl_3_2, correct = FALSE)

Note that we need to say correct = FALSE to avoid continuity correction and get the same
result as in the textbook.
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Pearson's Chi-squared test

data: tbl_3_2
X-squared = 11.6, df = 1, p-value = 0.00067

Subsetting
Example 3.7 (page 100)

We saw two commands to test a proportion against another proportion. The prop.test
that we saw in the previous chapter uses chi square methodology and not the normal
approximation used in the textbook. The binom.test uses an exact method. Thus both
functions won’t give the same answer as in the textbook when we rework the example 3.7.
However, we will use binom.test to rework example 3.7.

binom.test(x = tbl_3_2[1,1],
n = sum(tbl_3_2[1, ]),
p = tbl_3_2[2,1] / sum(tbl_3_2[2,]))

The above formula may look menacing. We will break it down for better understanding.
We are providing three arguments to binom.test viz. x, n and p. We may refer to one or
more elements of a vector, matrix or array. This process is called subsetting. To do this,
we follow the variable’s name with a pair of square brackets and inside the square brackets
provide the indices of the elements we need, separated by commas. The argument x should
represent the number of positive events. We subset tbl_3_2 with [1,1] to say that we want
the first row’s first column. We need to specify two indices to get one element of matrix
because matrix has two dimensions. The argument n should provide the total events. To
sum we supply tbl_3_2[1, ], to mean all elements of the first row of the matrix. Notice
that though we put a comma within the square brackets after 1, we didn’t specify any
numbers after that. This is to say that we want all elements in that (here, second) dimension.
The third argument is p, which is the hypothesized probability against which we want the
previous two arguments compared. We want this to be the proportion of CV death in non
smokers. We calculate this by dividing the number of CV deaths in non smokers obtained
by tbl_3_2[2,1] by the sum of non-smokers obtained by tbl_3_2[2,].

Matrices and arrays are vectors with more than one dimension. While it is better to subset
them with multiple indices to suit their dimensions, they may be subset with a single number
too. Thus we may refer to tbl_3_2[1] to refer to the first element of our matrix, the number
of CV deaths among smokers.

Exact binomial test

data: tbl_3_2[1, 1] and sum(tbl_3_2[1, ])
number of successes = 31, number of trials = 1417, p-value =
7.4e-07
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alternative hypothesis: true probability of success is not equal to 0.0079031
95 percent confidence interval:
0.014912 0.030910

sample estimates:
probability of success

0.021877

As expected, the p value we get (7 × 10−7) is different from the textbook’s value of 0.0007,
though the interpretation is strengthened.

3.4.2 Fisher exact test
Example 3.9 (page 103)

Fisher exact test is done with fisher.test.

matrix(c(3,9,55,51),
nrow = 2,
dimnames = list(activiy = c("bed rest", "normal"),

hypertension = c("yes", "no"))) -> tbl_3_6
fisher.test(tbl_3_6, alternative = "less")

Note that the default is to test against the two sided alternative. Notice how we specified a
list as the dimnames argument, to specify the labels for the rows and columns of the matrix.
Dimension names are not mandatory. But, they help us to make sure that we have entered
the right value for the appropriate cell.

Fisher's Exact Test for Count Data

data: tbl_3_6
p-value = 0.071
alternative hypothesis: true odds ratio is less than 1
95 percent confidence interval:
0.0000 1.1098

sample estimates:
odds ratio

0.31199

3.5 Risk factors measured at several levels
3.5.1 Linear trend

Example 3.14 (page 110)

We will use MHChisqTest from DescTools to test for linear trend.



52 3 Assessing risk factors

matrix(c(100,382,183,668,279,109,492,1872,834,2482,974,306),
ncol = 2,
dimnames = list(class = c( "I","II","IIIn","IIIm","IV","V"),

chd = c("CHD Yes", "CHD No"))) -> tbl_2_2
MHChisqTest(tbl_2_2)

The matrix we supply as the argument to the command is structured so that there are two
columns, with a row each for each level. Which row comes first doesn’t matter.

Mantel-Haenszel Chi-Square

data: tbl_2_2
X-squared = 33.6, df = 1, p-value = 6.7e-09

3.5.2 Non-linear trend
Example 3.15 (page 111)

There aren’t any built-in tests for non-linearity. So, we need to calculate it “by hand”.

MHChisqTest(tbl_2_2)$statistic -> chil
chisq.test(tbl_2_2)$statistic -> chio
MHChisqTest(tbl_2_2)$parameter -> dfl
chisq.test(tbl_2_2)$parameter -> dfo
pchisq(chio-chil, dfo-dfl, lower.tail = FALSE)

We saw earlier that most tests in R provide much more than what is printed by default. Here,
we assign the statistic and parameter values returned by MHChisqTest and chisq.test
to a variable each. The statistic returns the statistic calculated by the test, the value
of chi square in our case. The parameter returns the value of degrees of freedom that was
calculated by the tests. We pass the difference between the chi squares and the degrees of
freedom to the function pchisq.

R provides a family of functions to deal with statistical distributions. Typically, there are
four functions for each statistical distribution. The names of these functions start with d
for density, q for quantile, r for random and p, for probability. To these initial letters, a
word to indicate the statistical distribution is added, chisq in our case. The pchisq like
other p-functions returns the area under the curve of the statistical distribution to the left
or right of the value we supply. When we say pchisq(q,df, lower.tail = FALSE), we
are asking for the area under the chisquare distribution that falls to the right of q in a chi
square distribution with df degrees of freedom. In our example, as taught by the textbook,
we supply the difference between the chi square values returned by the two functions as q
and the difference in degrees of freedom returned by the two functions as the df for pchisq.

The q-functions returns the quantile for any given probability. That is, it is the inverse of
the p-functions. The r-functions returns random values from the specified distribution. The
d-functions returns the density of the distribution for specified quantiles.
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X-squared
0.59675

3.6 Attributable risk
Example 3.16 (page 112)

Neither base R, nor DescTools provide functions to calculate attributable risk. We will use
the package epiR to rework example 3.16. Remember to install it as discussed in chapter 1.

library(epiR)
epi.2by2(tbl_3_2,

method = "cohort.count")$massoc.detail$PAFRisk.strata.wald

The epi.2by2 functions calculates a number of measures used to analyse two-by-two
tables. The method argument specifies the study design. The choices we have are
cohort.count, cohort.time, case.control, or cross.sectional. The individual results
are available as a list in the massoc.detail element of the result returned. Here we use the
PAFRisk.crude.wald sub-component. Note that the terminology used by the function and
the textbook differs. What is called as attributable risk is called as population attributable
fraction in this function.

est lower upper
1 0.43046 0.13907 0.62323

The confidence interval returned by the function (0.139, 0.623) is different from that in the
textbook (0.224,0.664).

3.7 Rates and relative rates
Example 3.18 (page 116)

Rates and relative rates are handled by poisson.test. Its usage is similar to prop.test
and binom.test. Let us see an example, from table 3.15.

poisson.test(81,166582)

The command requires the number of events as the first argument and the time base, the
denominator, as the second argument.

Exact Poisson test

data: 81 time base: 166582
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number of events = 81, time base = 166582, p-value <2e-16
alternative hypothesis: true event rate is not equal to 1
95 percent confidence interval:
0.00038615 0.00060436

sample estimates:
event rate
0.00048625

The result returned includes the calculated rate (without multiplying it with any number),
its confidence interval calculated by an exact method and the probability for the hypothesis
test against the alternative that the true event rate is not one.

Example 3.19 (page 118)

Let us do the example 3.19. First the confidence interval. The poisson.test returns the
confidence interval for the rate, not the number of events. We may convert it to events by
multiplying with the population. For example, to get the confidence interval of male CHD
death in the same population from which the rate was derived, we use

poisson.test(1080,612955)$conf.int * 612955

[1] 1016.5 1146.4
attr(,"conf.level")
[1] 0.95

The confidence interval calculated by the exact method of poisson.test (1016.541, 1146.383)
is different from the values given by the textbook (1016.548, 1146.402) only at the decimal
places.

The function poisson.test allows us to calculate rate ratio and its confidence interval
directly.

poisson.test(c(1080, 306), c(612995, 634103))

We provide a vector of length two as the first two arguments. They are the number of
events in the two groups that are being compared in the first vector and the time base for
comparison (mid year population in our example) for the two groups. We are comparing
men to women from table 3.16. Note that poisson.test accepts conf.level argument to
specify the confidence interval we want. It also accepts r argument, a hypothesized rate or
rate ratio against which the calculated rate or rate ratio needs to be tested. The type of
hypothesis testing could be specified through the alternative argument.

Comparison of Poisson rates

data: c(1080, 306) time base: c(612995, 634103)
count1 = 1080, expected count1 = 681, p-value <2e-16
alternative hypothesis: true rate ratio is not equal to 1
95 percent confidence interval:
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3.2128 4.1587
sample estimates:
rate ratio

3.6509

Again, the result given by the exact method (3.21, 4.16) differs from the textbook values
(3.23, 4.17) at the decimal places.

3.8 Measures of difference
3.8.1 Risk difference

Section 3.9 (page 119)

Risk difference and its confidence intervals are calculated by epi.2by2.

epi.2by2(tbl_3_2,method ="cohort.count")$massoc.detail$ARisk.strata.wald

Here, we select the ARisk.strata.wald sub-component of massoc.detail. Note that
massoc.summary component of the result given by epi.2by2 gives a three column dataframe
similar to output 3.1 given in the textbook.

est lower upper
1 1.3974 0.53788 2.257

The result given by the function is multiplied by 100. We may change this by supplying our
preferred multiplication unit as the units argument.

3.9 Recap
We will end this chapter with a recap.

3.9.1 Concepts introduced in this chapter
• vector arithmetic
• recycling
• subsetting

3.9.2 Commands introduced in this chapter
• DescTools::RelRisk
• DescTools::OddsRatio
• DescTools::MHChisqTest
• base::sum

• stats::fisher.test
• stats::pchisq
• stats::poisson.test
• epiR::epi.2by2



4
Confounding and interaction

The fourth chapter of the textbook deals with confounding. We will use the add on package
epiR and ggplot2 in this chapter too. Make sure they are installed. To most of the commands
we see in this chapter we provide arrays or matrices as arguments. First, we will rework
example 4.3 for which we use epiR.

4.1 The concept of confounding
Example 4.3 (page 128)

library(epiR)
array(c(33,48,923,1722,52,29,898,678),

dim = c(2,2,2),
dimnames = list(house = c("rented", "owner"),

chd = c("yes", "no"),
smoke = c("nonsmoker","smoker"))) -> tbl_4_6

Here, first we build an array to hold our data. An array is needed as the data has three
dimensions – smoking status, chd status and housing status. To build the array, we use the
command array, provide it with a vector containing the data, specify the dim argument
which is a vector specifying the maximum indices in each dimensions. We provide c(2,2,2)
to say that our array has maximum two elements in the first, second and third dimensions.
Thus, conceptually, we get two two-by-two tables. The dimnames is a list that contains the
label for each component of each dimension. Print the contents of the array by executing
tbl_4_6 and see how the data is arranged.

epi.2by2(tbl_4_6)$massoc.detail$RR.strata.wald

We pass the array to epi.2by2 and select the RR.strata.wald component of the
massoc.detail component of the result using the $ operator.

est lower upper
1 1.2729 0.82292 1.9689
2 1.3344 0.85627 2.0797
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We can see the relative risk for each strata. If we want the overall measure, we should use
the massoc.summary component of the result.

4.2 Standardisation
4.2.1 Direct standardisation

Example 4.6 (page 136)

We will use epi.directadj from epiR to rework the example 4.6.

matrix(c(0,0,1,6,7,16,17,25,0,0,4,7,13,11,28,44,
0,0,1,9,17,19,43,53,0,1,5,10,15,24,28,56),

nrow = 4,
byrow = TRUE,
dimnames = list(deprive = c("I", "II", "III", "IV"),

age = c("25-29","30-34","35-39","40-44",
"45-49","50-54","55-59","60-64"))) -> grp_e

matrix(c(4784,4210,3396,3226,2391,2156,2182,2054,
4972,4045,3094,2655,2343,2394,2597,2667,
4351,3232,2438,2241,2360,2708,2968,2802,
4440,3685,2966,2763,2388,2566,2387,2380),

nrow = 4,
byrow = TRUE,
dimnames = list(deprive = c("I", "II", "III", "IV"),

age = c("25-29","30-34","35-39","40-44",
"45-49","50-54","55-59","60-64"))) -> grp_p

matrix(c(8,6,6,6,6,5,4,4),
nrow = 1,
byrow = TRUE) -> std_dir

epi.directadj(grp_e, grp_p, std_dir, unit = 1000)$adj.strata

The function requires three matrices. The first argument is called obs and it should be
a matrix with as many rows as the number of groups we have. It should have as many
columns as there are covariates (age groups in our case). The value in the argument is the
number of events. The second argument tar has a similar structure; but, the value should
be the population for the appropriate group. The third argument std is a matrix with the
number of columns similar to the other two arguments. It however should have only one
row. The value of each cell would be the standard population for the group. We also supply
the argument unit which is the multiplier that we want the result to be multiplied with,
1000 in our case.

strata obs tar est lower upper
1 I 72 24399 3.2766 2.5593 4.1449
2 II 107 24767 4.1991 3.4245 5.1162
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3 III 142 23100 5.2993 4.4334 6.3086
4 IV 139 23575 5.7545 4.8282 6.8230

We are interested in only the standardised rates. Hence we print only the adj.strata
component of the result. We get the direct standardised rate per thousand for each group
and its 95% confidence interval. The function supports conf.level argument in case we
want another confidence interval. The unadjusted crude rates are available in the component
crude.strata if we want to see that. The crude component provides crude covariate specific
(age specific, in our example) rates for each category along with their confidence intervals.

4.2.2 Indirect standardisation
Example 4.7 (page 139)

We will use the epi.indirectadj function from epiR to calculate the indirect standardised
rates. We will use the same matrices we used for the direct standardisation except for std.

c(margin.table(grp_e, margin = 2) * 1000 /
margin.table(grp_p, margin = 2),

margin.table(grp_e) * 1000 /
margin.table(grp_p)) -> std_indir

First we calculate std_indir to supply as the argument std. It is calculated from the other
two matrices as we are using an internal standard. We divide the column totals of the events
data matrix by the column total of the population data matrix. The column totals are
calculated using the function margin.table, specifying the margin as 2. To this we append
the grand total of events by the grand total of the population. The function c encloses the
two sets of proportions, joining them together as one vector. Thus the matrix supplied as
std argument is a matrix with one row. The number of columns it has is one more than the
number of columns in the other two matrices. Though the function will not report any error
even if the last element of the std is omitted, including it enables the calculation of indirect
standardised rates.

epi.indirectadj(grp_e,
grp_p,
std_indir,
units = 1000)$smr.strata

The smr.strata component of the result contains the standardised event ratio and their
confidence intervals.

obs exp est lower upper
I 72 103273 0.00069718 0.00054225 0.0008618
II 107 118505 0.00090291 0.00073415 0.0010801
III 142 125632 0.00113029 0.00094721 0.0013213
IV 139 112590 0.00123456 0.00103028 0.0014477
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epi.indirectadj(grp_e,
grp_p,
std_indir,
units = 1000)$adj.strata

The indirect standard rates are available in the adj.strata component of the result. The
crude rates are available in the crude component of the result.

est lower upper
I 3.3462 2.6026 4.1363
II 4.3336 3.5236 5.1842
III 5.4250 4.5463 6.3418
IV 5.9254 4.9450 6.9485

Figure 4.6 (page 140)

To make the graph in figure 4.6, we need to collect the three groups of estimates together.
We will be using ggplot2. Make sure tidyverse was installed following the instructions in
chapter 1.

epi.directadj(grp_e, grp_p,std_dir,unit = 1000)$adj.strata[,4] -> dire
epi.indirectadj(grp_e, grp_p,std_indir,units = 1000)$adj.strata[,1] -> inde
epi.directadj(grp_e, grp_p,std_dir,unit = 1000)$crude.strata[,4] -> crude
epi.directadj(grp_e, grp_p,std_dir,unit = 1000)$adj.strata[,1] -> dgroup
dire/dire[1] -> dirrr
inde/inde[1] -> indrr
crude/crude[1] -> crudrr
library(tidyverse)
data.frame(dgroup,dirrr, indrr, crudrr) -> rrdata
ggplot(rrdata) +

geom_line(aes(x = dgroup, y = dirrr, group=1),
color = "#004B73", linetype = 3) +

geom_point(aes(x = dgroup, y = dirrr, group=1),
color = "#004B73", shape = 3) +

geom_line(aes(x = dgroup, y = indrr, group=1),
color = "#713430", linetype = 2) +

geom_point(aes(x = dgroup, y = indrr, group=1),
color = "#713430", shape = 16) +

geom_line(aes(x = dgroup, y = crudrr, group=1),
color = "#111111", linetype = 1) +

geom_point(aes(x = dgroup, y = crudrr, group=1),
color = "#111111", shape = 16) +

labs(x = "Deprivation group",
y = "Relative rate") +

annotate("text", x = c(2.15,3),
y = c(1.75,1.5),
label = c("Unadjusted", "Adjusted")) +

scale_y_continuous(breaks = seq(1,2,by=0.5))
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We subset the results returned by the functions to obtain just the estimates. We then
calculate relative rates by dividing each of the estimates by the estimate of the reference
group. Then all the three relative rates and the group labels are combined together to form
a dataframe. The ggplot function is called with this dataframe. We use geom_line and
geom_point three times each, one for each group of estimates. In each geom specification, we
ask for a different colour specified as an RGB string starting with # followed by three pairs of
two hexadecimal numbers to represent the contribution of red, green and blue and line type or
point style. Finally, the axes are labelled and the lines annotated. The scale_y_continuous
is used to change the default axis ticks placement. Its breaks argument will decide the axis
ticks placement. Here we ask them to be placed at 1,1.5 and 2, the numbers being generated
by seq.

FIGURE 4.1
Replication of figure 4.6

4.2.3 Standardisation of risks
Example 4.8 (page 143)

I couldn’t find a ready made function in R that can standardise risks assuming binomial
probability distribution. So, we do the calculations “by hand”. This may look intimidating
at first. It is okay if you don’t understand it in the first go. You can come back and try this
at a later stage too. That said, I assure you that it is simple. First we prepare the data.
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array(c(1,3,4,7,10,16,
1,6,7,16,17,25,
0,4,8,5,12,24,
4,7,13,11,28,44,
1,4,7,10,19,31,
1,9,17,19,43,53,
2,5,6,11,15,38,
5,10,15,24,28,56),

dim = c(6,2,4),
dimnames = list(agegrps = c("35-39", "40-44", "45-49",

"50-54","55-59","60-64"),
events = c("deaths", "coronaries"),
deprive = c("I","II","III","IV"))) -> tbl_4_11

The data is input as an array. We use the array function for this purpose. Our array
has three dimensions specified as its dim argument. In the first dimension we will have a
maximum index of 6, in the second dimension a maximum index of 2 and a maximum index
of 4 in the third dimension. The names for each index is given using the dimnames argument.
The array is named tbl_4_11. Print it and see the structure.

result <- list(stdrisk = c(), serr = c())

Next, we use list to initiate a list to hold the intermediate stage of our result. A list
is another data structure in R. It can have multiple sub-components which needn’t be of
the same type or length. Our result will have two components stdrisk and serr. Both the
components are empty initially.

for (i in 1:4) {
result$stdrisk[i] <- sum(

apply(tbl_4_11,
"agegrps",
function(x) {x["deaths",i] * sum(x["coronaries",]) /

x["coronaries",i]}))
result$serr[i] <- sqrt(

sum(
apply(tbl_4_11,

"agegrps",
function(x) {sum(x["coronaries",])ˆ2 * x["deaths",i] *

(x["coronaries",i] -
x["deaths", i]) /

x["coronaries", i]ˆ3})))}

Then we build a loop using for. The sequence given after the keyword in within the
parentheses that follow the keyword for determines the number of times the commands
provided to the loop will be executed. The first time the loop is executed, the first value of
the sequence is made available for the commands provided to the loop as a variable with
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the name that we specify inside the parentheses that follow for and before in. Then with
each repetition, the value of this variable gets incremented by one till the maximum value
we specified. In our case, the value 1 will be available for the commands inside the loop
under the variable name i when the loop is executed the first time. Subsequently with each
repetition, its value increases by one until the value 4.

What happens with each repetition of the loop? The commands specified within the curly
braces gets executed. In our case, we make two assignments – to the ith element of the two
components of the result that we created. Thus, we will get four values each in the two
components. What value will get assigned? The workhorse in both cases is the function apply.
It accepts an array, in our case tbl_4_11, and executes the function specified as its third
argument passing to that function a subset of its first argument got by incrementing the values
of the dimension specified as its second argument. We supply an anonymous function as
the third argument to do part of the mathematical manipulations (the summation across
each deprivation group) as given in the textbook. Note that while subsetting the array, we
subset the required elements using the labels we assigned, which is less confusing than using
numeric indices. The anonymous function is anonymous because it doesn’t have a name.
It is a temporary function that exists only inside the apply calls. Thus, apply calls the
anonymous function with all values for each age group and collects the value returned by
the anonymous function in a vector. As tbl_4_11 has 6 age groups, the result of array
will have six elements. The apply is an argument for sum. It sums all the six components
and assigns it to the appropriate element of result. In case of the serr component, it is the
square root of the sum calculated using sqrt that is assigned.

result$stdrisk / marginSums(tbl_4_11[,"coronaries",])
result$serr / marginSums(tbl_4_11[,"coronaries",])

After the for loop, both the components of the result are divided by the sum of all coronary
events to get the final result.

[1] 0.58713 0.49871 0.52036 0.55820
[1] 0.057491 0.048311 0.040947 0.041810

4.3 Mantel Haenszel methods
Examples 4.9, 4.10, 4.11 (pages 144, 146, 148)

The Mantel Haenszel calculations are done by epi.2by2.

epi.2by2(tbl_4_6)$massoc.detail$OR.mh.wald
epi.2by2(tbl_4_6)$massoc.detail$RR.mh.wald
epi.2by2(tbl_4_6)$massoc.detail$chi2.mh
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To rework examples 4.9, 4.10 and 4.11 all we need do is select the appropriate component.

est lower upper
1 1.3176 0.95375 1.8203

est lower upper
1 1.3035 0.95497 1.7792

test.statistic df p.value.1s p.value.2s
1 2.8049 1 0.046989 0.093978

The Mantel Haenszel chi square value returned by epi.2by2. 2.8, is different from the
textbook value of 2.54 because continuity correction is not applied by epi.2by2. The function
mantelhaen.test in the automatically loaded stats package also can perform the Mantel
Haenszel test. It allows us to specify if we want to apply continuity correction. We may also
specify whether we want a one sided hypothesis test.

mantelhaen.test(tbl_4_6, correct = TRUE)

Mantel-Haenszel chi-squared test with continuity correction

data: tbl_4_6
Mantel-Haenszel X-squared = 2.54, df = 1, p-value = 0.11
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
0.95375 1.82033

sample estimates:
common odds ratio

1.3176

The result returned by mantelhaen.test includes the common odds ratio calculated and
its confidence interval in addition to the Mantel Haenszel chi square statistic and its p value.
However, there is no option to obtain common relative risks. On the other hand, it permits
us to use an exact method.

Example 4.12 (page 148)

The example 4.12 uses table 4.15, which has four dimensions – disease status, smoking status,
age group and occupation. However, both mantelhaen.test and epi.2by2 accept an array
of not more than three dimensions. However, this restriction is not really important. Mantel
Haenszel method works on two-by-two tables. The higher order arrangement of two-by-two
tables doesn’t matter. So, we can arrange all the two-by-two tables in the third dimension
rather than arranging them in third and fourth dimensions. The labels will make things
clearer.
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array(c(0,2,0,7,
3,0,2,6,
1,0,3,10,
2,5,1,24,
2,2,2,18,
4,1,1,12,
3,6,0,49,
2,4,2,23,
0,6,1,19,
0,11,0,42,
0,6,1,11,
1,3,0,15),

dim = c(2,2,12),
dimnames = list(disease = c("diseased", "no disease"),

smoke = c("smoker", "non smoker"),
strata = c("house wife and < 45",

"white collar and < 45",
"other occup and < 45",
"house wife and 45 - 54",
"white collar and 45 - 54",
"other occup and 45 - 54",
"house wife and 55 - 64",
"white collar and 55 - 64",
"other occup and 55 - 64",
"house wife and > 65",
"white collar and > 65",
"other occup and > 65"))) -> tbl_4_15

Print the tbl_4_15 to see its structure. Both epi.2by2 and mantelhans.test should accept
this array. However, epi.2by2 returns an error, probably because of multiple zero values.
We will use mantelhans.test

Though the default options give results similar to that in the textbook, it probably is better
to use an exact test.

mantelhaen.test(tbl_4_15, exact = TRUE)

Exact conditional test of independence in 2 x 2 x k tables

data: tbl_4_15
S = 18, p-value = 1.5e-07
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:

4.0474 33.5511
sample estimates:
common odds ratio

11.098
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4.4 Testing for interaction
Example 4.13, 4.15 (pages 153, 156)

To rework the example 4.13, we need to reproduce table 4.16.

array(c(67,46,2061,3454,8,11,51,41),
dim = c(2,2,2),
dimnames = list(smoke = c("Smoker", "Non_smoker"),

chd = c("CHD_Yes", "CHD_No"),
previous = c( "No previous MI",

"previous MI"))) -> tbl_4_16

Woolf test of homogeneity is calculated by epi.2by2, using relative risk and odds ratio.

epi.2by2(tbl_4_16)$massoc.detail$wRR.homog
epi.2by2(tbl_4_16)$massoc.detail$wOR.homog

test.statistic df p.value
1 8.0604 1 0.0045244

test.statistic df p.value
1 6.9418 1 0.0084202

The chi square calculated using both RR (8.06) and OR (6.94) differ slightly from the
values given in the textbook (8.67 and 7.33) respectively. However, the interpretation does
not change. WoolfTest available in DescTools also performs Woolf test of homogeneity.
However, it is based on odds ratio only. DescTools has BreslowDayTest which performs
the Breslow-Day test of homogeneity, again, based on odds ratio. BreslowDayTest accepts
a correct argument, which, if set as TRUE performs Tarone correction.

4.4.1 Interaction plots
Figure 4.8 (page 154)

First, we need to prepare the data for plotting.

bind_cols( lrisk = as.vector(log(tbl_4_16[,1,] /
margin.table(tbl_4_16,c(1,3)))),

smoke = rep(c("Smoker", "Nonsmoker"), times = 2),
previous = gl(2,2,labels = c("No MI","MI"))) -> data_4_8
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With the above command, we are building a dataframe named data_4_8 using the bind_cols
function. We are building a dataframe with three columns names lrisk, smoke and previous.
We pass three named arguments to match our requirement.

To build the first column, we subset the tbl_4_16. We select the elements in the first column.
It is the first column because we specified 1 inside the square brackets. It is first of the
columns because 1 is written as the second component inside the square brackets, separated
from the empty first and third component by commas. If we wanted the first row, we would
have used [1„] and if we wanted the first of the two two-by-two tables, we would have
used [„1]. By doing this subsetting, we are isolating the chd numbers in both strata. We
then divide these numbers by their corresponding row totals to calculate the risk. Totalling
is carried out by margin.table(tbl_4_16,c(1,3)). This function accepts an array and
computes the sum of the elements for the specified margins. We specify c(1,3) as our
margin argument to mean that we want row totals (dimension 1) to be calculated for each
two-by-two tables (dimension 3). We divide the first set of numbers by the calculated totals
to obtain the risks and pass them to log, which calculates the log of the risks. Because we
started with an array, we will be left with an array, which will result in two columns when
we pass that as such to bind_cols. To have only one column, we convert the array to a
vector using as.vector.

The columns smoke is built using rep, which repeats the argument according to our
specification. In case of smoke, we provide the argument times resulting in two copies of the
vector we supplied strung together. In case of previous, we use gl which is similar to rep,
but returns a factor. While we could have used rep as well, providing in place of times, the
argument each which causes each of the element of the vector we supplied to be repeated
twice, the resulting vector when converted as a factor will have a different reference base,
which will determine which of the values is plotted near the origin of our graph. You should
compare

factor(rep(c("No MI", "MI"), each = 2))

and

gl(2,2, labels = c("No MI", "MI"))

We now plot the data we prepared.

ggplot(data_4_8, aes(x = previous,
y = lrisk,
color = smoke,
linetype = smoke)) +

geom_line(aes(group = smoke), show.legend = FALSE) +
geom_point(show.legend = FALSE) +
annotate("text",

x = c(1.1,1.5),
y = c(-3,-3.75),
label = c("Smoker", "Nonsmoker")) +
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labs(x = "Previous MI status",
y = "Log(risk of CHD)") +

scale_y_continuous(breaks = seq(-4.5, -1.5, 1),
limits = c(-4.5,-1.5)) +

scale_colour_manual(values = c( "#111111", "#004B73"))

We provide the dataframe we built to ggplot. We also provide an aes call to ggplot. In
this aes we pass the aesthetics that are common to all the geoms that we will be using.
Even if we provide an aesthetic in the ggplot call, we are free to override its value inside
any geom if we want. When we say colour = smoke and linetype = smoke, ggplot will
assign a different colour and linetype to each set of values in the smoke column. Thus, we
will get different colours and linetypes for smokers and nonsmokers. We use geom_line to
plot lines. But, we add group = smoke as an aesthetic definition inside that geom. This
leads to different lines being drawn for different values of the column smoke. Without this
aesthetic specification, the colour = smoke and linetype = smoke specifications won’t
work. If we include only group aesthetic, but not the colour, we will still get different lines,
but with the same colour and linetype. The geom_point plots points based on the common
aesthetics specified inside ggplot. We don’t want a legend to be shown for either of these
geoms. Hence, the argument show.legend = FALSE. Instead of a legend, we annotate the
plot using annotate. We modify the axis labels using labs. The graph plotted with this
specification doesn’t show −4.5 in the y-axis, presumably because the lowest value in our
dataframe is only slightly bigger than that. Hence, we specify the y limits of the graph as well
as the locations of the tick labels using scale_y_continuous. We use scale_y_continuous
because we are concerned with the y axis and it represents a continuous value. The limits
argument accepts a vector with two values specifying the lower and upper limits. The breaks
argument tells ggplot where tick-labels should be placed in the y-axis.

FIGURE 4.2
Replication of figure 4.8
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4.4.2 Using the risk difference
Example 4.16 (page 158)

I do not know of any readymade R functions that tests for interaction using risk difference
in two-by-two tables. So we will do it by hand.

apply(tbl_4_16,"chd",c) -> ftbl
rowSums(ftbl) -> totals
ftbl/totals -> risks
diff(risks[c(1,3),"CHD_Yes"] - risks[c(2,4),"CHD_Yes"]) ˆ 2 /

sum(risks[,"CHD_Yes"] * risks[,"CHD_No"] / totals) -> ststc
ststc
pchisq(ststc,1,lower.tail = FALSE)

The first line converts the array into a matrix with four rows and two columns which we
name ftbl. We use apply to apply the function c over chd margin of tbl_4_16, our original
array to accomplish this. Then we use rowSums to get the row totals. We divide ftbl with
the totals to get a new matrix. The values in the risks created will be the proportion of each
cell value to the row total. In the next step, we calculate the chi square statistic according
to the formula given in the textbook. We subset the appropriate elements of risks and find
the difference between them. The numerator for calculating our test statistic, the difference
of the risk differences is calculated by diff which is then squared using ˆ operator. The
denominator is calculated by multiplying the risk of CHD with its complement and dividing
by the total of cases across each row, which is then summed. Finally this statistic is passed
to pchisq, providing df as 1 to obtain the upper tail probability.

[1] 1.7057
[1] 0.19155

4.5 Recap
Let us recap what we learned in this chapter.

4.5.1 Concepts introduced in this chapter
• array
• array subsetting
• list

• loop
• anonymous function
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4.5.2 Commands introduced in this chapter
• base::array
• epiR::epi.directadj
• epiR::epi.indirectadj
• base::margin.table
• base::data.frame
• ggplot2::scale_y_continuous
• base::for
• base::apply

• base::marginSums
• stats::mantelhaen.test
• base::as.vector
• base::rep
• base::gl
• base::factor
• base::rowSums



5
Cohort studies

The fifth chapter of the textbook deals with cohort studies. We use the packages survival,
dplyr, ggplot2, purrr, lubridate, epiR and popEpi to work the examples in this chapter.
Dataframes and vectors continue to be our main data objects. The vector that encodes
events for survival analysis is expected to be numerical with the numbers 0 and 1 or 1 and 2
or logical with event indicated by 1,2 or TRUE respectively. It may also be a factor with as
many levels as there are competing risks, the reference level taken as indicating censoring.
We start with example 5.2. First, the data.

5.1 Cohort life tables
Example 5.2 (page 174)

library(tidyverse)
c(1000,995,985,965,930) -> free
c(5,10,20,35,50) -> events
events / free -> irisk
1 - irisk -> isurvival
cumprod(isurvival) -> csurvival
0:4 -> period

data.frame(period = c(period,5),
free = c(free, 880),
events = c(events, NA),
irisk = c(irisk, NA),
isurvival = c(isurvival, NA),
csurvival = c(1,csurvival)) -> tbl_5_1

tbl_5_1

We create vectors to hold the serial number of periods, the number free of disease at the
start of each period and the number of events during each period. Note that we don’t include
period 5 here. The interval risk is calculated from events and free by division and stored in
irisk. Interval survival is calculated by subtracting irisk from one. Note that vector arithmetic
is at work here so that each value of irisk is subtracted from one, one being recycled to
the length of irisk. The cumulative survival is calculated using cumprod which returns the
cumulative product of the supplied argument. That is, for each element of the supplied
argument, product of all elements upto and inclusive of that element is calculated. Finally,
we join together the vectors to form a dataframe. It is here that we add the period 5. We
also shift the calculated cumulative survival one element down by adding 1 at the beginning
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of the vector, thus making it clear that the column reflects the state at the beginning of the
period.

NA is a special value in R which stands for missing values. Though classed as a logical
data type, it is compatible with all the usual datatypes. Thus when a value in a numerical
or character vector is missing, NA is inserted there. Calculations using NA propagates. For
example, if you do an arithmetic operation on a vector with one or more NAs, the result
corresponding to those NAs would be NAs. If you do an operation that uses all the elements
of a numerical vector, some of which are NAs, then the result would be NA. An example
would be mean. While this may surprise us, it really is the right answer – If you do not know
one or more numbers in a collection, then you cannot know their average. R expects you
to explicitly instruct it to remove NAs and do calculation on the reduced collection. Most
functions provide an na.rm argument for this purpose.

period free events irisk isurvival csurvival
1 0 1000 5 0.005000 0.99500 1.000
2 1 995 10 0.010050 0.98995 0.995
3 2 985 20 0.020305 0.97970 0.985
4 3 965 35 0.036269 0.96373 0.965
5 4 930 50 0.053763 0.94624 0.930
6 5 880 NA NA NA 0.880

Figure 5.3 (page 174)

ggplot(tbl_5_1) +
geom_step(aes(x = period, y = csurvival))+
labs(x = "Survival times (years)",

y = "Probabibility of survival")

We supply the dataframe we prepared earlier to ggplot, and plot the data using geom_step,
which uses lines that change direction by 90 degrees to create a stairstep plot.

FIGURE 5.1
Replication of figure 5.3
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Example 5.3 (page 175)

We rework example 5.3 to calculate the standard error of cumulative survival.

sqrt(
sum(tbl_5_1$irisk / (tbl_5_1$free - tbl_5_1$events),

na.rm = TRUE)) *
tbl_5_1$csurvival[6] -> serr_5_3

Each value of interval risk is divided by the difference between the number free of disease
and events. These values are summed taking care to exclude NAs. The square root of this
sum is multiplied with the last cumulative survival to obtain the standard error which is
saved with the name serr_5_3. The index of the last value is given by length which returns
the length of its argument, which will be the index of the last element in that vector.

0.95 -> ci
(qnorm((1 - ci) / 2, lower.tail = FALSE) * c(-1,1) * serr_5_3) +

tbl_5_1$csurvival[6]

We use qnorm to get the z value rather than typing it directly. We provide qnorm half of one
minus the confidence interval we want (which we stored as ci). The argument lower.tail =
FALSE is provided so that we get a positive value. We multiply this with the vector c(-1,1).
Thus we get two copies of the z value, one positive and negative. We multiply the standard
error we calculated with this vector. Next, we add the last cumulative survival to this.
The positive value gets added and negative value gets subtracted, giving us the confidence
interval.

[1] 0.85986 0.90014

Example 5.4 (page 177)

We now turn to example 5.4.

c(7,12,24,19,21,15,501,2143,1375,66) -> n.censor
c(17,22,26,23,37,38,31,20,5,0) -> n.event

n.censor + n.event -> n.total

4402 -> start
c(start,(start - cumsum(n.total))[-length(n.total)]) -> n.risk
n.risk - 0.5 * n.censor -> n.adj

Example 5.4 is reworked similar to our previous example. To keep the table similar to table
5.3, we have not added 1 to the top of cumulative survival. We start with the vectors to
represent the value of censored and events. We calculate their sum. The at risk is calculated
by subtracting cumulative sum of censored plus events from the number of participants at the
start. Negative indexing is used to exclude the last value and the number of participants
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at start is added as the first value. The adjusted number at risk is calculated by subtracting
half of censored from the number at risk.

n.event / n.adj -> i.risk
1 - i.risk -> i.survival
cumprod(i.survival) -> cum.survival

The interval risk, interval survival and cumulative survival are calculated as in the previous
example except that the adjusted at risk number is used.

i.risk / (n.adj - n.event) -> riskbyadj
sqrt(cumsum(riskbyadj)) -> sqrtsumriskbyadj
cum.survival * sqrtsumriskbyadj -> serr

data.frame(time = 0:9,
number = n.risk,
censored = n.censor,
adjusted = n.adj,
events = n.event,
int.risk = i.risk,
cum.survival = cum.survival,
std.err = serr)-> tbl_5_3

tbl_5_3

As we want to calculate the standard error at each time, we save intermediate results of std
error calculations in vectors. Finally, we join together the relevant columns to re-produce
table 5.3.

time number censored adjusted events int.risk cum.survival std.err
1 0 4402 7 4398.5 17 0.004 0.996 0.001
2 1 4378 12 4372.0 22 0.005 0.991 0.001
3 2 4344 24 4332.0 26 0.006 0.985 0.002
4 3 4294 19 4284.5 23 0.005 0.980 0.002
5 4 4252 21 4241.5 37 0.009 0.971 0.003
6 5 4194 15 4186.5 38 0.009 0.963 0.003
7 6 4141 501 3890.5 31 0.008 0.955 0.003
8 7 3609 2143 2537.5 20 0.008 0.947 0.004
9 8 1446 1375 758.5 5 0.007 0.941 0.005
10 9 66 66 33.0 0 0.000 0.941 0.005

Figure 5.4 (page 177)

We will now try to plot the graph in figure 5.4.

bind_rows(list(cum.survival = 1, ll = 1, ul = 1, time = 0),
mutate(tbl_5_3,

ll = cum.survival -
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(qnorm(0.025,lower.tail = FALSE) *std.err),
ul = cum.survival +

(qnorm(0.025,lower.tail = FALSE) *std.err),
time = time + 1)) -> tbl_5_3

ggplot(tbl_5_3) +
geom_step(aes(x = time, y = ll), linetype = 2) +
geom_step(aes(x = time, y = ul), linetype = 2) +
geom_step(aes(x = time, y = cum.survival), linetype = 1) +
scale_x_continuous(breaks = 0:9) +

labs(x = "Survival times (years)",
y = "Probabibility of survival")

We use mutate to calculate l l and ul, the lower and upper limits of confidence interval. We
also add one to the time periods, effectively shifting the cumulative survival and other values
to reflect the start of the period. To this we use bind_rows to add a row with values at
the start of study. This row is made with list and its elements have the same names as
the columns of the dataframe. Those columns not in the list will have a value of NA. We
use the mutated tbl_5_3 as the data argument to ggplot. We use geom_step to plot the
cumulative survival, the ll and the ul; the point estimate using a line type different from
that used for the upper and lower limits.

FIGURE 5.2
Replication of figure 5.4
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5.2 Kaplan Meier estimation
Example 5.6 (page 182)

Though there are examples that use actuarial methods that we haven’t covered yet, we will
turn our attention to Kaplan Meier estimations now. The package to do survival analysis in
R is survival. It is a recommended package which means that it should be installed already.
If not, remember to install it using install.packages as detailed in the first chapter. First,
we read in the relevant data.

read_table("./K11828 supplements/Datasets/Example 5.9.DAT",
col_names=c("age", "tenure", "chd", "survival"),
col_types = cols(

age = col_number(),
tenure = col_factor(),
chd = col_factor(),
survival = col_number())) -> data_5_9

library(survival)
Surv(data_5_9$survival,data_5_9$chd=="1")

Note that tenure and chd are both specified as factors while importing. An essential step in
doing survival analysis is the construction of survival object. This is done by the function
Surv. For right censored data, as is our case, it requires two arguments. The first one named
time is the follow-up time. The second argument named event is either numerical or logical.
If numerical, it can have two possible values, either 0 and 1 to indicate censored and event
status respectively or 1 and 2 to indicate censored and event status respectively. If logical,
TRUE will stand for event and FALSE for censored status. We specified chd as a factor. So,
we need to use chd=="1" to convert it to logical values.

Printing a survival object results in something similar to that given in example 5.6. Instead
of printing all 4402 values, we can limit our print to the first year as in the example, with
the following code.

subset(data_5_9, survival < 365) |>
with(Surv(survival,chd=="1")) |>
sort()

[1] 1 46 91+ 101 101 103 119 133+ 137 145+ 156 186+ 208 215
[15] 235 242 251 294 299 300 309+ 312 336+ 357+

We use subset function to restrict the data to the first year. This is achieved by spec-
ifying survival < 365. The result of subset(data_5_9, survival < 365) is the first
argument to with which it receives through the pipe. The second argument to with
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is Surv(survival,chd=='1'). The function with helps us to specify the columns of a
dataframe without prefixing the dataframe’s name before each mention of the various
columns. In other words, it evaluates its second argument expr in a local environment
constructed from its first argument data. The entire result is sorted by sort for printing
according to the sequence in which the event or censoring occurred.

Table 5.5, 5.6 (page 183)

survfit(Surv(survival,chd=="1") ~ 1 ,data =data_5_9) -> sf_5_9

The function survfit constructs survival curves. It doesn’t plot the graph, but prepares
the data. Its first argument is a formula, the left-hand side of which is a survival object.
Formulas are R’s symbolic way to represent model specifications. It consists of three parts –
the ~ operator, the response to the left of ~ and model terms to the right of ~. In our case,
we want to construct a single curve for the entire data. Hence, the model term is 1. Note
that we don’t prefix the dataframe’s name to the arguments supplied to Surv as survfit
accepts a data argument. We store the survival curve with the variable name sf_5_9. We
now use the survival curve to print table 5.5 and 5.6, as well as to plot the Kaplan Meier
curves.

summary(sf_5_9)
summary(sf_5_9, times= (1:9)*365.25,scale=365.25) -> sf_5_9_yrs

The function summary is a generic function. Generic functions can be thought of as a
common name for a group of functions; the specific function that is called automatically
depends on the class of data that is passed on. When we pass on a survival curve, the
actual function that does the work is summary.survfit. With just a survival curve as its
argument, summary will print the details similar to that in table 5.5. When we supply a
times argument, it will return the same info, for the time points specified in the vector.
Note that the n.event returned in this circumstance is the cumulative number of events
since last time until the current time rather than at the current time. The scale argument
is used to display the survival period. In our example, the value 365.25 is used to display
the survival period in years instead of days. Thus we get the columns relevant to Kaplan
Meier analysis of table 5.6.

Figure 5.8 (page 184)

plot(sf_5_9, ylim = c(1, 0.92), xscale = 365.25)

To plot the Kaplan Meier curve, we pass the survfit object to plot. plot is another generic
function. For survfit objects, plot accepts xscale and ylim arguments amongst others. The
ylim argument sets the limits of the y-axis displayed. We use it here to limit the display
between 1 and 0.92, instead of the default 1 to 0. The xscale argument rescales the x-axis
to display the survival period in years.
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TABLE 5.1
Replication of table 5.6

Survival Probability

Time Number Events KM KM Upper Lower
(years) at risk estimate std error 95% CI 95% CI

1 4378 17 0.99614 9.3541 0.99430 0.99797
2 4344 22 0.99113 14.1481 0.98836 0.99390
3 4294 26 0.98518 18.2493 0.98161 0.98876
4 4252 23 0.97989 21.2263 0.97573 0.98405
5 4194 37 0.97134 25.2672 0.96640 0.97630
6 4141 38 0.96252 28.8006 0.95690 0.96819
7 3609 31 0.95498 31.6077 0.94881 0.96120
8 1447 20 0.94714 36.3086 0.94005 0.95429
9 66 5 0.93661 70.0043 0.92299 0.95043

FIGURE 5.3
Replication of figure 5.8

5.3 Comparison of two sets of survival probabilities
5.3.1 Mantel Haenszel method

Example 5.7 (page 184)
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To use Mantel Haenszel method for calculating common odds ratio across the various
intervals given in table 5.7 we can use mantelhaen.test. We can type the data to create
the three-dimensional array with the two-by-two tables that we feed to mantelhaen.test.
Here, we collect the summary prepared by survfit and reshape it, primarily to show array
manipulation.

summary(survfit(Surv(survival,chd=="1") ~ tenure, data =data_5_9),
times= (1:9)*365.25,
scale=365.25) -> sf_5_7

We save the results of summary of survfit with the name sf_5_7. It is a list with multiple
components. See its structure by passing it as the argument to str.

cbind(rbind(matrix(sf_5_7$n.event, ncol = 2, byrow = FALSE), c(0,0)),
rbind(sf_5_7$n, matrix(sf_5_7$n.risk, ncol = 2, byrow = FALSE)) -

rbind(matrix(sf_5_7$n.event, ncol = 2, byrow = FALSE),c(0,0))
) -> tbl_5_7

We now bind the different components to make tbl_5_7. The component n.event is a vector
containing the number of events, where the values for each of tenure is joined end to end. We
convert this to a matrix with two columns, column-wise. We add a row to this two column
matrix with both values set to zero using rbind. Similarly, the at risk population component
n.risk is also converted to a two column matrix. The at risk population is calculated at
the end of the time period. As we want the at risk population value at the beginning of the
period, we add the numbers with which the study starts available as n as a row at the top.
This will shift every row of the at risk data one step down, making them valid at the start
of the period. We subtract from this the number of events to get the number without the
events. We bind these columns together using cbind to get a four column matrix. Do print
tbl_5_7 to see the arrangement of the data.

matrix(c(rep(1:10, each = 4), rep(c(2,1,4,3), times = 10)),
ncol = 2,
byrow = FALSE) -> indx

Now, we have all the data in table 5.9. But, it is a matrix and not a three dimensional array
of two-by-two tables. We need to rearrange the data to get the desired array. To achieve
this, we first create an index matrix. An index matrix is a matrix with as many columns
as there are dimensions in the array we want to subset. As we are going to subset a matrix
which is an array with two dimensions, our index matrix will have two columns. When we
supply an index matrix for subsetting, the value in each column will decide the element
that will be selected from the array that is being subset – the value in the first column
representing the index along the first dimension, the value in the second column determining
the index of the second dimension and so on. The selected elements will be in the order
specified by the index matrix. So, we will specify all the elements in the order we want. Thus
through subsetting we will have rearranged the matrix in the order we want.
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We build the index matrix indx using two calls of rep. The first call repeats the numbers 1
to 10 four times each. Thus, we will have four repetitions of 1 followed by four repetitions
of 2 etc. The second rep repeats the vector c(2,1,4,3) 10 times. Thus we will get the
specified sequence one after the other ten times. This sequence of vectors is converted to a
two column matrix using matrix. Print the index matrix and see its value.

array(tbl_5_7[indx], dim = (c(2,2,10))) -> tbl_5_9
mantelhaen.test(tbl_5_9, correct = TRUE)

Now, we use array to build the argument for mantelhaen.test from the vector made by
subsetting the tbl_5_7 on the indx matrix.

Mantel-Haenszel chi-squared test with continuity correction

data: tbl_5_9
Mantel-Haenszel X-squared = 7.51, df = 1, p-value = 0.0061
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
1.1198 1.9066

sample estimates:
common odds ratio

1.4612

5.3.2 The log-rank test
Example 5.8 (page 186)

The function provided by survival to test if two or more survival probabilities are different
is survdiff.

survdiff(Surv(survival,chd=="1") ~ tenure,
data =data_5_9,
rho = 0,
subset = survival < 365.25)

The first argument to survdiff is a formula, the left-hand side of which is a survival object.
The right-hand side of the formula should consist of the predictors, the columns by which
the different groups are determined. In our case, we use tenure, to mean that we want the
survival probabilities to be compared between the different group of housing tenure. The
rho argument is used to specify the actual test used, 0 to signify log-rank test. The subset
argument is used to restrict the comparison to the first year.

Call:
survdiff(formula = Surv(survival, chd == "1") ~ tenure, data = data_5_9,

subset = survival < 365.25, rho = 0)

N Observed Expected (O-E)^2/E (O-E)^2/V
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tenure=1 10 8 7.05 0.1289 0.223
tenure=2 14 9 9.95 0.0913 0.223

Chisq= 0.2 on 1 degrees of freedom, p= 0.6

Though the statistic calculated by survdiff (0.2234) doesn’t have the textbook’s exact
value (0.2850) , the p value 0.6365 results in the same interpretation. Possible reason for the
difference is that the textbook value is derived with continuity correction.

5.3.3 Weighted log rank test
Example 5.9 (page 188)

The weighted logrank test is also done using survdiff. The rho argument is changed to
less than zero to give weight to the later part of data, while values more than 0 gives more
weight to the initial part of data. According to the help documents of survival, specifying
rho as 1 is equivalent to the Peto & Peto modification of the Gehan-Wilcoxon test.

survdiff(Surv(survival,chd=='1') ~ tenure ,
data =data_5_9,
rho = 1)

The weighted log-rank test too returns a value similar to that in the textbook.

Call:
survdiff(formula = Surv(survival, chd == "1") ~ tenure, data = data_5_9,

rho = 1)

N Observed Expected (O-E)^2/E (O-E)^2/V
tenure=1 2482 101 121.3 3.27 7.78
tenure=2 1920 112 92.2 4.31 7.78

Chisq= 7.8 on 1 degrees of freedom, p= 0.005

Figure 5.9 (page 189)

To plot the graph of figure 5.9, we supply plot with a survfit object with the appropriate
formula.

plot(survfit(formula = Surv(survival, chd == "1") ~ tenure,
data = data_5_9),

ylim = c(1, 0.91),
xscale = 365.25,
xlab = "Survival time (years)",
ylab = "Probability of survival")
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FIGURE 5.4
Replication of figure 5.9

5.4 Competing risk
Table 5.11 (page 192)

The same functions that were used for simple Kaplan Meier estimations can be used for
competing risk analysis. The data, however, needs to be presented differently. The events
column needs to be a factor and the first level of the factor should indicate censoring.
Analysis is better done using individual level data rather than grouped data given in table
5.11. So, to replicate the analysis of table 5.11, we need to produce individual level data
from the grouped data. Our data should thus have 4402 rows and two columns – one to
indicate the outcome, either survival, death or chd and one to indicate the time when the
outcome occurred.

c(1,46,91,101,103,119,133,137,145,156,186,208,
215,235,242,251,294,299,300,309,312,336,357) -> time

c(50,50,0,100,50,50,0,50,0,50,0,50,
50,50,50,50,50,50,50,0,50,0,0) -> chd

rep(0,23) -> dead
dead[c(3,7,9,11,20,22,23)] <- 60
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rep(0,23) -> censor
censor[c(3,7,9,11,20,22,23)] <- 40
c(rep(time, chd),

rep(time, dead),
rep(time, censor),
rep(365, 2852)) -> period

c(rep("chd", sum(chd)),
rep("dead", sum(dead)),
rep("censor", sum(censor) + 2852)) -> outcome

First, we input the data in time, chd, death and censored columns of the table into individual
vectors. While time and chd are built obviously, dead and censor is built in two steps to
reduce typing. First all the elements of both the vectors are set to zero using rep. In the
second step, we use an index vector to subset those elements of the vectors dead and censor
which have a value other than zero and assign them with the different value.

We now build period by repeating time as many times as chd, dead and censor. We also
add the time 365 as many times as the number at the end of 365 days. Similarly, we build
outcome, a character vector with the value “chd” repeated as many times as the total of
chd, with value “dead” repeated as many times as the total of dead and with value censor
repeated as many times the total of censor. To its end we add the value “censor” as many
times as the number at the end of 365 days. Thus we get two vectors, one with the time
periods and one with the outcome labels corresponding to the time periods. We should get
the data we started with if we cross tabulate the vectors using table. Do print the vectors
at each of the intermediate steps to see how they are being built. Also see the result of the
final cross tabulation.

table(period, outcome)

We now use Surv and survfit to do the competing risk analysis.

survfit(Surv(period, factor(outcome)) ~ 1) -> sf_5_11
summary(sf_5_11)

Our call to survfit is, as in earlier examples, a formula with a survival object on its
left-hand side. The right-hand side is 1 because we are not using any predictors. Inside
Surv, the event argument is specified as factor(outcome) to coerce our character vector to
factor. Remember the requirement that the first level of the event argument should indicate
censoring. The default order of levels of a factor is alphabetical. So, our requirement is taken
care of without explicitly stating the order of levels in the factor. Also, we haven’t supplied
data argument to survfit as the two vectors are not joined together as a dataframe.
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TABLE 5.2
Replication of table 5.11

Time Number CHD Died Censored Cumulative Cumulative
at risk joint surv. failure

(s(J)) (f (l))
1 4402 50 0 0 0.98864 0.011358

46 4352 50 0 0 0.97728 0.022717
91 4302 0 60 40 0.96365 0.022717

101 4202 100 0 0 0.94072 0.045650
103 4102 50 0 0 0.92925 0.057117
119 4052 50 0 0 0.91779 0.068583
133 4002 0 60 40 0.90403 0.068583
137 3902 50 0 0 0.89244 0.080167
145 3852 0 60 40 0.87854 0.080167
156 3752 50 0 0 0.86683 0.091875
186 3702 0 60 40 0.85278 0.091875
208 3602 50 0 0 0.84095 0.103713
215 3552 50 0 0 0.82911 0.115550
235 3502 50 0 0 0.81727 0.127388
242 3452 50 0 0 0.80543 0.139226
251 3402 50 0 0 0.79360 0.151063
294 3352 50 0 0 0.78176 0.162901
299 3302 50 0 0 0.76992 0.174739
300 3252 50 0 0 0.75808 0.186576
309 3202 0 60 40 0.74388 0.186576
312 3102 50 0 0 0.73189 0.198567
336 3052 0 60 40 0.71750 0.198567
357 2952 0 60 40 0.70292 0.198567

The cumulative joint survival given in table 5.11 is shown under P((s0)) printed by summary
and cumulative failure under P(chd).

5.5 The person-years method
Example 5.10 (page 194)

We now turn to person years analyses. Until now, we dealt with periods directly. The
examples here require us to calculate the periods from given dates. A tidyverse package
lubridate makes it easy to handle dates.

library(lubridate)
dmy(c("5 Oct 1962","10 Oct 1975","10 June 1985","30 Aug 1990",

"8 May 1968","1 Nov 1972","21 Mar 1960","8 June 1967")) -> entry
dmy(c("1 Dec 1999","31 Dec 2003","31 Dec 2003","28 Sep 2000",

"8 Jul 1997","10 May 1985","30 Jun 1997","29 Jul 1971")) -> exit
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c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE) -> death
pyears(Surv(difftime(time1 = exit, time2 = entry,unit = "days"),

death) ~ 1) -> result
poisson.test(result$event, result$pyears)

We input the dates of entry into study, exit from study and the outcome from table 5.12
into suitably named vectors. The vectors for the dates are typed in as text within quotes.
This character vector is then passed onto dmy which converts it to date assuming that it
is specified in the order date, month, year. There are other functions like ymd, ydm, mdy,
myd, dym and many others that handle date specifications with missing date components or
additional time components. Outcome is input as a logical vector. We then use difftime to
calculate the number of days between the dates. Note that the later date is supplied as the
first argument time1. The function difftime will return the number of unit between the
two periods. We have asked for days. This function is the first argument to Surv, the event
argument being death. We supply this survival object as the left-hand side of the formula
argument to pyears, the function from survival that is used for person years calculations.
The result of pyears is stored in result. We calculate the rate and its confidence interval
using poisson.test by passing on to it the event and pyears components of result.

Exact Poisson test

data: result$event time base: result$pyears
number of events = 4, time base = 177, p-value <2e-16
alternative hypothesis: true event rate is not equal to 1
95 percent confidence interval:
0.0061533 0.0578230

sample estimates:
event rate

0.022584

5.5.1 Age specific rates
Example 5.11 (page 195)

To rework example 5.11, we need to enter the date of birth given in table 5.13 first.

dmy(c("21 Jul 1935","1 Aug 1939","8 June 1957","17 June 1950",
"3 Jan 1937","14 May 1942","30 June 1932","10 Aug 1932")) -> dob

We use dmy to convert the character vector carrying the date of birth information to dates
and store it under the name dob. The next step is to create the specified age groups. For
this, we use the tcut function from survival.

tcut(entry - dob,
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c(0, 40,55,110)*365.25,
labels = c('< 40', '40-54', '55+')) -> agegrp

The first argument to tcut is the age at entry calculated by subtracting dob from entry.
The second argument is the break points we desire. As age is in days, we need the breaks
too in days. Hence, we multiply our desired break points with 365.25. Note that we supply
break points for the lower end of the first group (0) and the higher end of last group (110).
Finally, we supply labels for the groups. As the groups created are one less than the break
points specified, we need to specify only three labels.

pyears(Surv(exit - entry, death) ~ agegrp,
data.frame = TRUE)$data -> py_5_13

Now, we use pyears supplying it with a formula. The left-hand side of the formula is a
survival object. Its time argument is the period of follow-up, calculated by subtracting entry
from exit and its event argument is death. The right-hand side of the formula is agegrp
we prepared in the previous step. We also specify data.frame = TRUE so that we get the
result arranged as a data frame. We assign data, the dataframe returned by the function to
py_5_13. If we examine this object, we will see that it contains the person years and events
calculated for each age group. We need to extend this result by calculating the rate for each
age group.

mutate(py_5_13,
rate = map2_dbl(event,

pyears,
function(x,y) {poisson.test(x,y)$estimate}))

We use mutate from dplyr, a member of tidyverse. This function creates or modifies
columns of a data frame. We need to supply the dataframe which needs to be modified.
Additional arguments are pairs of column names and the values that they must carry. We
are creating only one column rate. This column is assigned a value returned by map2_dbl,
a function from purrr, part of tidyverse. map2_dbl accepts two vectors, and performs the
third argument, a function using their values in parallel. We supply an anonymous function
to map2dbl, which accepts two arguments, calls poission.test with those two arguments
and returns the estimate. Thus, each pair of events and pyears from py_5_13 is passed
on to poisson.test and the estimate from the result gets stored in a new column named
rate.

agegrp pyears n event rate
1 < 40 63.198 7 1 0.015823
2 40-54 79.633 7 1 0.012558
3 55+ 34.289 4 2 0.058328
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5.5.2 Summarisation of rates
Example 5.12 (page 196)

To calculate the standardised mortality ratio, we use the function epi.indirectadj, which
we have seen already. As this function expects matrices as its arguments, we convert the
relevant columns from py_5_13 using matrix.

library(epiR)
epi.indirectadj(obs = matrix(py_5_13$event,

nrow = 1,
byrow = TRUE,
dimnames = list(row ="",age = py_5_13$agegrp)),

pop = matrix(py_5_13$pyears,
nrow = 1,
byrow = TRUE,
dimnames = list(row ="",age = py_5_13$agegrp)),

std = matrix(c(1.8,9,19.2)/1000,
nrow = 1,
byrow = TRUE),units = 1) -> smr_5_12

The obs argument is derived from event column of py_5_13 and the pop argument from
pyears. The std is supplied as given in the textbook, but divided by 1000. All arguments
have one row only. The dimnames argument is a list with two components – the first being
the name for the row, which is needed though there is only one row. The columns are named
using the agegrp column. We need the smr component of the result, which provides the
expected number of deaths, the SMR and its confidence interval.

smr_5_12$smr

obs exp est lower upper
4 1.4888 2.6867 0.67168 5.3735

5.5.3 Comparison of two SERs
Example 5.13 (page 198)

To calculate relative SER, we need a new package popEpi. Remember to install it using
install.packages as discussed in chapter 1. We use the function sir_ratio to compute
the relative SER.

library(popEpi)
sir_ratio(c(43,38.755), c(4,1.488))
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The function requires two numeric vectors, each with the number of events and the person
times for the two groups that are to be compared.

sir_ratio lower upper
0.413 0.150 1.583

We get the relative SER and its confidence interval.

As I couldn’t find a readymade function to test the hypothesis that relative SER is 1, we
will do it by hand.

events <- c(4,43)
xpctd <- c(1.488,38.755)
xpctdn <- xpctd * sum(events) / sum(xpctd)
sum(((abs(events - xpctdn) - 0.5 ) ˆ2) / xpctdn) -> ststc
ststc
pchisq(ststc,1,lower.tail = FALSE)

We enter the number of deaths observed and expected into two vectors, then multiply the
overall SER with expected which is saved as xpctdn. It is used to calculate the test statistic
using the formula given in the textbook. The p value for this statistic is calculated using
pchisq.

[1] 1.8554
[1] 0.17315

5.5.4 Mantel-Haenszel methods
Example 5.14 (page 201)

To re-work example 5.14, we will be using epi.2by2. We input the data in table 5.14 in an
array suitable for use by epi.2by2.

array(c(2,3,1107.447,1619.328,
24,19,3058.986,4550.166,
31,25,3506.530,4857.904,
28,27,3756.650,4536.832,
28,26,2419.622,2680.843,
2,4,351.710,356.394),

dim = c(2,2,6),
dimnames = list(house = c("rented", "owned"),

data = c("event", "period"),
age = c("40-44", "45-49","50-54",

"55-59","60-64", "65-69"))) -> tbl_5_14

The third dimension of the array are the different levels of strata. In each strata, the
two-by-two tables are arranged with events in the first column and person time in the second
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column. The first row corresponds to those exposed to risk factor, renters in our case and
the second row to those unexposed, owners in our case. We pass the array to epi.2by2
and store the massoc.detail component of the result. Note that we have used method =
"cohort.time" to say that we are using person time analysis.

epi.2by2(tbl_5_14,method = "cohort.time")$massoc.detail -> result_5_14

We can extract the required results from this object. If we desire the relative rates for each
strata, it is available as IRR.strata.wald. The overall crude relative rate is available in
IRR.crude.wald. The Mantel Haenszel relative rate is available in IRR.mh.wald. The chi
square test on MH estimate is available in chi2.mh. Here we print the MH estimate with its
confidence interval.

result_5_14$IRR.mh.wald

est lower upper
1 1.4074 1.0809 1.8327

The MH relative rates is not different from the textbook. The chi square statistic calculated
(6.46) is slightly different from the textbook value (6.16), though the p value is similar. This
is because epi.2by2 does not use continuity correction.

As there aren’t any examples under period cohort analysis that requires calculations, we
end this chapter with a recap.

5.6 Recap
5.6.1 Concepts introduced in this chapter
• survival object
• formula

• generic function
• index matrix

5.6.2 Commands introduced in this chapter
• base::cumprod
• ggplot2::geom_step
• stats::qnorm
• ggplot2::scale_x_continuous
• survival::Surv
• survival::survfit
• base::with
• base::sort
• base::summary

• base::rbind
• survival::survdiff
• lubridate::dmy
• base::difftime
• survival::pyears
• survival::tcut
• purrr::map2_dbl
• popEpi::sir_ratio
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Case-control studies

This chapter deals with case control studies. We will use the add-on packages epiR and
epiDisplay. Remember to install them using install.packages as discussed in chapter
1. Matrices and vectors continue to be the predominant data types we use. We start with
reworking example 6.3.

6.1 Basic methods of analysis
Example 6.3 (page 216)

library(epiR)
matrix(c(99,303,132,290),

byrow = TRUE,
nrow = 2,
dimnames = list(sun = c("protected","unprotected"),

status = c("cases","controls"))) -> tbl_6_2
epi.2by2(tbl_6_2,

method = "case.control")$massoc.detail -> result_6_3

We use epi.2by2 function from epiR. We pass our data to the function as a two-by-two
matrix and specify case.control as the method. The massoc.detail component of the
result is stored.

result_6_3$OR.strata.wald
result_6_3$chi2.strata.yates

We use the $ operator to get OR.strata.wald of this object to get the odds ratio and its
confidence interval & the chi2.strata.yates to get the continuity corrected chi-square
test’s value and its probability.

est lower upper
1 0.71782 0.52843 0.9751

test.statistic df p.value.1s p.value.2s
1 4.1928 1 0.020298 0.040597
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6.1.1 Polytomous exposure
Example 6.4 (page 217)

To rework the example 6.4, we need an array to represent the four two-by-two tables. As the
unexposed row of all the two-by-two tables are the same, the straight forward way would be
to repeat those values as required in the vector we supply to array command. However, we
will follow a different path.

array(0,
dim = c(2,2,4),
dimnames = list(exposure = c("exposed", "base"),

status = c("cases", "controls"),
ethnicity = c("african","hispanic","asian","others"))

) -> tbl_6_4
tbl_6_4[1,,] <- c(25,25,13,5,32,21,20,37)
tbl_6_4[2,,] <- rep(c(514,541),4)

First, we build an array of suitable dimensions, but with a dummy value zero for all elements.
In the second step, we subset the array to select all elements in the first row in all other
dimensions and assign the correct values from table 6.4 to them. In the final step, we subset
the second row in all other dimensions and assign to them the values in the first row of table
6.4 repeated four times. Thus we get four two-by-two tables, each with the same values in
the second row. We now pass the array to epi.2by2.

epi.2by2(tbl_6_4,
method = "case.control")$massoc.detail$OR.strata.wald

The odds ratio and its confidence intervals for each of the two-by-two tables is in the
OR.strata.wald sub-component of the massoc.detail component of the result returned
by epi.2by2.

est lower upper
1 1.05253 0.59681 1.85624
2 2.73658 0.96876 7.73032
3 1.60385 0.91292 2.81770
4 0.56893 0.32589 0.99323

6.1.2 Attributable risk
Example 6.5 (page 219)

matrix(c(639,373,593,419),
byrow = FALSE,
nrow = 2,
dimnames = list(psmoke = c("yes", "no"),

status = c("cases","controls"))) -> tbl_6_5



6.2 The analysis of matched studies 91

epi.2by2(tbl_6_5,
method = "case.control",
interpret = TRUE)$massoc.detail$PAFest.strata.wald

While the result returned by epi.2by2 does include estimates of attributable fraction and
population attributable fractions, they are named differently from the textbook. We use the
PAFest.strata.wald to get the measure called attributable fraction in the textbook.

est lower upper
1 0.10979 0.0072926 0.2017

While the point estimate is the same as in the textbook, the confidence interval is different,
probably because a method different from the textbook is followed.

6.2 The analysis of matched studies
6.2.1 1:1 matching

Example 6.8 (page 233)

R doesn’t really favour grouped data for matched analysis. However, it does have Mc Nemar’s
test, which we use here to re-work example 6.8.

matrix(c(6,25,12,66),
byrow = TRUE,
nrow = 2,
dimnames = list(control = c("dementia", "no dementia"),

relative = c("dementia","no dementia"))) -> tbl_6_11
mcnemar.test(tbl_6_11)

Usage of mcnemar.test is rather straight forward. It is called with the two-by-two matrix.
It returns the chi square value and its associated p value. Continuity correction is applied
by default.

McNemar's Chi-squared test with continuity correction

data: tbl_6_11
McNemar's chi-squared = 3.89, df = 1, p-value = 0.049

The package epiDisplay provides matchTab function to calculate odds ratio for the matched
cases. However, it does not accept grouped data. We need to expand the grouped data to
recreate the individual level data.
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library(epiDisplay)
rep(c(0,1), 109) -> status
rep(c(1: 109), each = 2) -> id
c(rep(1, 12),

rep(c(1,0), 12),
rep(c(0,1), 25),
rep(0,132)) -> expose

matchTab(status, expose, id)

The matchTab expects three numeric vectors. One to denote case / control status, one to
indicate the exposure status and one to indicate the identification number of each set. The
first vector status is the pair c(0,1) repeated 109 times. The number 109 denotes the sum
of all numbers in table 6.11, the total number of case control pairs. Thus we get alternate
zero and ones for a total of 218. Zero stands for controls and one for cases. The vector id
should carry the same number for each case control pair. We thus repeat the numbers one
to 109, each twice. The length of the vector is again 218. The final vector expose is also
numeric, with zero standing for unexposed (in our case, not having a relative with dementia)
and one for exposed status. For the first six pairs, both cases and controls have a relative
with dementia. So, we use rep(1,12). For the next 12 pairs, the controls have a relative with
dementia, cases don’t have. So, we use rep(c(1,0), 12). Remember that when building status
we put 0 first, to indicate controls. Thus, their exposure status 1 should come first when
building the expose vector. The expose vector is thus built by joining together the four rep
results together. We finally call matchTab with the vectors we have built.

Exposure status: expose = 1

Total number of match sets in the tabulation = 109

Number of controls = 1
No. of controls exposed

No. of cases exposed 0 1
0 66 12
1 25 6

Odds ratio by Mantel-Haenszel method = 2.083

Odds ratio by maximum likelihood estimate (MLE) method = 2.083
95%CI= 1.047 , 4.147

The confidence interval is calculated by a method different from the textbook, hence slightly
different from the textbook value.

6.2.2 1:c matching
Example 6.9 (page 234)

Re-working the example 6.9 follows the same steps as in the previous example. Rather than
following the calculations using the formula given in the textbook, we build appropriate
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vectors from the grouped data and feed it to matchTab.

rep(1:(57+54), each = 6) -> id
rep(c(1,0,0,0,0,0),times = 57+54) -> status
c(c(1,0,0,0,0,0),

rep(c(0,0,0,0,0,0),11),
rep(c(1,1,0,0,0,0), 5),
rep(c(0,1,0,0,0,0),15),
c(1,1,1,0,0,0),
rep(c(0,1,1,0,0,0),11),
rep(c(1,1,1,1,0,0),3),
rep(c(0,1,1,1,0,0),5),
rep(c(1,1,1,1,1,0),20),
rep(c(0,1,1,1,1,0),7),
rep(c(1,1,1,1,1,1),27),
rep(c(0,1,1,1,1,1),5)) -> expose

matchTab(status, expose, id)

The result is similar to that in the textbook.

Exposure status: expose = 1

Total number of match sets in the tabulation = 111

Number of controls = 5
No. of controls exposed

No. of cases exposed 0 1 2 3 4 5
0 11 15 11 5 7 5
1 1 5 1 3 20 27

Odds ratio by Mantel-Haenszel method = 0.514

Odds ratio by maximum likelihood estimate (MLE) method = 0.519
95%CI= 0.301 , 0.897

6.2.3 1: variable matching
Example 6.10 (page 241)

The function matchTab supports 1: variable matching. However, in the case of our example
it returns an error due to low numbers. So, we will re-work example 6.10 “by hand” using
the steps given in the textbook. First, we enter the data from table 6.18.

c(2,3,3,3) -> j
c(2,1,2,3) -> i
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c(1,2,2,2) -> m
c(1,3,2,2) -> t

Next, we calculate the intermediate values for each of the rows.

i * t /(j+1) -> Ei
i * (j +1 - i) * t / (j + 1) ˆ2 -> Vi
(j + 1 - i) * m / (j +1) -> Ti
i * (t - m) / (j +1) -> Bi

From these we calculate the Mantel Haenszel odds ratio, the CMH test statistic and its
probability given null hypothesis.

sum(Ti) / sum(Bi) -> mhor_6_10
(abs(sum(m) - sum(Ei)) - 0.5 ) ˆ 2 / sum(Vi) -> cmh_6_10
mhor_6_10
cmh_6_10
pchisq(cmh_6_10,1, lower.tail = FALSE)

The function abs returns the absolute value of its argument. The pchisq returns the upper
tail probability of finding the specified value (cmh_6_10 in our case) in the chi squared
distribution of the specified degrees of freedom (1 in our case).

[1] 13.333
[1] 4.0209
[1] 0.044939

6.2.4 Many: many matching
Example 6.11 (page 244)

The function matchTab doesn’t support many:many matching. So, we will re-work example
6.11 similar to how we did the previous example.

c(rep(1,12), rep(2,4), 3,3) -> r
c(2,3,rep(4,9),rep(7,3),8,8,11,12) -> s
c(1,2,1,1,1,2,3,2,2,3,4,4,3,6,8,5,5,10) -> i
c(0,1,rep(0,5),rep(1,8),2,1,2) -> k
i * r / (r +s) -> Eik
( i * r * s * (r + s - i)) /

((r + s) ˆ 2 * (r + s -1)) -> Vik
k * (s - i + k) / (r +s) -> Tik
(i - k) * (r - k) / (r +s) -> Bik
sum(Tik) / sum(Bik) -> mhor_6_11
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(abs(sum(k) - sum(Eik)) - 0.5) ˆ 2 / sum(Vik) -> cmh_6_11
cmh_6_11
pchisq(cmh_6_11,1, lower.tail = FALSE)
mhor_6_11

The steps are similar to the previous example and so are not elaborated.

[1] 0.092541
[1] 0.76097
[1] 1.2647

We will end this chapter here with a recall of the important points.

6.3 Recap
6.3.1 Commands introduced in this chapter
• stats::mcnemar.test
• epiDisplay::matchTab
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Intervention studies

This chapter introduces intervention studies. The add-on packages we use include readr,
ggplot2, dplyr, all part of tidyverse, epiR and DescTools.

Example 7.1 (page 257)

We start with t test, which we learned in a previous chapter. In example 7.1 of this chapter,
we have a table with individual level data upon which we need to perform the t test. First,
we import the given data.

library(tidyverse)
read_table("./K11828 supplements/Datasets/Table 7.1.DAT",

col_names=c("treat","nvinitial","nvfinal","vinitial","vfinal"),
col_types = cols(treat = col_factor(),

nvinitial = col_number(),
nvfinal = col_number(),
vinitial = col_number(),
vfinal = col_number())) -> data_7_1

mutate(data_7_1,
nvdiff = nvfinal - nvinitial,
vdiff = vfinal - vinitial) -> data_7_1

Note that the data provided is formed essentially by joining the two halves of table 7.1 one
below the other. An additional column is also there, as marker to indicate the treatment
group to which each row belongs. Except for treat, we specify all other columns as number.
After the data is imported, we make two new columns nvdiff and vdiff, to calculate the
difference between the two readings of each type of IQ tests.

t.test(nvdiff ~ treat, data = data_7_1)
t.test(vdiff ~ treat, data = data_7_1)

We now call t.test with a formula. The left-hand side of the formula is the variable on
which t test is to be performed, the right-hand side is the variable by which the left-hand
side variable should be grouped ( treat in our case). We also specify the data argument
to inform t.test that the variables that we specify in the formula are in data_7_1 data
frame.

Welch Two Sample t-test
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data: nvdiff by treat
t = -1.24, df = 81.9, p-value = 0.22
alternative hypothesis: true difference in means between

group 1 and group 2 is not equal to 0
95 percent confidence interval:
-6.2543 1.4448

sample estimates:
mean in group 1 mean in group 2

1.5000 3.9048

Welch Two Sample t-test

data: vdiff by treat
t = -0.364, df = 82.3, p-value = 0.72
alternative hypothesis: true difference in means between

group 1 and group 2 is not equal to 0
95 percent confidence interval:
-3.2749 2.2619

sample estimates:
mean in group 1 mean in group 2

2.6364 3.1429

The sign of the statistic is different from the textbook based on which factor level is taken
as the reference. This makes no difference to the interpretation.

7.1 Parallel group studies
7.1.1 Numbers needed to treat

Example 7.6 (page 269)

The function epi.2by2 calculates NNT when we provide it the relevant two-by-two tables.
Here, we use the data in example 7.6.

matrix(c(26, 1176 - 26, 48, 1176 - 48 ),
nrow = 2,
byrow = TRUE,
dimnames = list(status = c("case", "control"),

pneumonia = c("yes","no"))) -> data_7_6
epi.2by2(data_7_6)$massoc.detail$NNT.strata.wald

NNT is returned in the NNT.strata.wald of maasoc.detail component of the result. Our
result has a negative sign, indicating that “risk factor” (treatment in our case), reduces the
risk of disease.

est lower upper
1 -53.455 -216.54 -30.491
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As NNT is calculated directly from numbers rather than from rates, adjusting the NNT
is not possible directly. If we can algebraically manipulate the NNT formula given in the
textbook to derive the extrapolated numbers rather than rates, we can feed those numbers
to epi.2by2 to obtain NNTs extrapolated to treatment duration other than the actual study
duration. For our example, using the vector c(30.89, 1176-30.89,56.92, 1176-56.92) in place
of the original will get us the NNT for five years.

7.2 Cross-over studies
Figure 7.4 (page 276)

To rework the example 7.9, we need the data in table 7.5. The data is provided in long
format to mean that there is one row for one observation. Thus, for any individual, there
are two rows of data – one for the first period and one for the second.

read_table("./K11828 supplements/Datasets/Example 9.20.DAT",
col_names=c("id", "period","group", "med", "score"),
col_types = cols(id = col_number(),

period = col_factor(),
group = col_factor(),
med = col_factor(),
score = col_number())) -> data_7_5

Now, we will try to reproduce the graph in figure 7.4. We need to calculate the mean pain
score for each period and each treatment.

group_by(data_7_5,period, med) |>
summarise(mps = mean(score)) -> data_7_5s

We use the function group_by to first group the data by both period and med. We then
pipe the result using |> to the next function summarise. The first argument of summarise
is thus received from the pipe. For each group, summarise calculates the value of a new
field using the definition we provide. In our case, the field is named mps and its value is
calculated by applying the function mean to the values in the score column. Thus, we get a
new dataframe with three columns, two with the values of the columns we used for grouping
and the third one mps with the mean pain score for that group. There will be as many rows
as there are unique combination of values of the grouping variables.

ggplot(data_7_5s) +
geom_line(aes(x=period,y = mps,group = med,colour = med,linetype = med)) +
labs(x = "Period",

y = "Mean pain score") +
scale_linetype_manual(labels = c("Ibuprofen", "Aspergesic"),

values = c(1,2),
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name = "Medicines") +
scale_colour_manual(labels = c("Ibuprofen", "Aspergesic"),

values = c( "#111111", "#004B73"),
name = "Medicines")

Then, we call ggplot with the data frame we prepared. We use the geom_line to draw lines
between the mean pain score for each period. We ask geom_line to use different line type
and colour for the different med groups. As we want the legend to use labels different from
the values in the dataframe, we use scale_linetype_manual and scale_colour_manual.
We use both the manual scales as we use linetype and colour as aesthetics. Both require
labels, the values of which will be used for the legend labels, values which determines line
type or colour used and name which determines the heading used for the legend.

FIGURE 7.1
Replication of figure 7.4

Figure 7.5 (page 277)

To prepare the graph in figure 7.5, we need to reshape our data. We need to do this because
geom_segment which we will be using to draw line segments for each individual, wants the
data to draw both points in one row of the data frame. We use pivot_wider.
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pivot_wider(data_7_5,
id_cols = c(id,group),
names_from = period,
names_prefix = "score",
values_from = score) -> data_7_5w

Our aim is to make two columns for each individual – one for the first pain score and the
other for the second pain score. The id_cols specify which set of columns uniquely identify
a row of observation. Though id is sufficient to make our rows unique, we include group
too as we need the info in group at a later stage. If, we don’t include group, we will not
have the info in that column for later use. The option names_from determines the name of
the new columns that will be created. As many columns as there are unique values in the
column specified for this option will be created. The columns will be named with the unique
values prefixing the string we specify for names_prefix. What will be the values under these
columns? The values will be sourced from the column we specify for values_from. The end
result for us is a wider data frame with as many rows as are dictated by the combination of
values of id and group, with two new columns score1 and score2, the first column carrying
the value from score when the period has the value 1 and the second one with the value
from score when the period has the value 2.

levels(data_7_5w$group) <- c("Ibuprofen-Aspergesic","Aspergesic-Ibuprofen")

We now change the labels associated with the codes used in group. Remember that group was
imported as factor. A factor variable uses numerical codes to represent categorical values.
We can change the labels used for each of the codes of a factor variable by using levels
providing it with the factor vector’s name. Note that levels is assigned a set of values
by using the <- assignment operator. In our example, the value 1 will get associated with
“Ibuprofen-Aspergesic” and 2 with “Aspergesic-Ibuprofen” when printed.

ggplot(data_7_5w) +
geom_segment(aes(x = "1", y = score1,xend = "2", yend = score2)) +
facet_wrap(c("group")) +
labs(y = "Mean pain score", x= "Period")

We now draw the widened data frame using ggplot. We use geom_segment. The first set of
points is specified with x and y. We use a string “1” for x for all the rows of data, and y is
sourced from score1. The second set of points is specified with xend, for which we specify
a common “2” and yend which is sourced from score2. We need two graphs, one for each
value of group. This is achieved by facet_wrap, to which we supply group as a character
vector. Note how facet_wrap uses the labels attached with the factor as headers.
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Figure 7.6 (page 277)

We will now use the same data frame we prepared for the earlier graph to prepare the graph
in figure 7.6.

ggplot() +
geom_point(data = data_7_5w,

mapping = aes(x=score1,y= score2,colour= group,shape= group),
show.legend = FALSE) +

geom_line(aes(x = 1:5, y=1:5), linetype = 2) +
scale_shape_manual(values = c(1,20)) +
scale_colour_manual(values = c( "#111111", "#004B73")) +
labs(x = "Period 1",

y = "Period 2")

We use ggplot, but doesn’t provide it with a data argument. We do so because the two geoms
we use require two different sets of data. For geom_point, we specify the data argument as
the wider data frame we prepared. We ask it to use score1 and score2 to determine the x y
location of the point. We use shape and colour arguments to specify that we want different
colours and shapes for each of the different values of group. We provide show.legend =
FALSE to say that we don’t want a legend to be printed. We use geom_line to draw the
central guideline. The x and y arguments for this geom are the same, a sequence from 1 to
5. The scale_shape_manual is used to restrict the shapes used for drawing the points. The
values we selected restrict the shapes to the filled and empty circles. If we don’t specify that,
we will get the shapes represented by 1 and 2 – circle and triangle.
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FIGURE 7.2
Replication of figure 7.6

Example 7.9 (page 279)

We now turn to the hypothesis tests. We need to modify our dataframe to calculate the
total of and difference between the pain scores.

mutate(data_7_5w,
total = score1 + score2,
diff = score1-score2) -> table_7_5

We use the function mutate and supply the dataframe we prepared earlier as its first
argument. We provide names and specification for the new columns we need. The column
total is defined as the sum of score1 and score2 and the column diff as the difference between
score1 and sore2. The modified dataframe is stored as table_7_5.

t.test(total ~ group, data = table_7_5, var.equal = TRUE)

We use t.test to test for treatment by period interaction. The first argument is a formula,
the left-hand side of which is the total column that was calculated in the previous step.
The right-hand side of the formula is group. Thus, we are instructing t.test to test for
differences in the mean of total in the two groups defined by the value of group.

Two Sample t-test

data: total by group
t = -0.583, df = 27, p-value = 0.56
alternative hypothesis: true difference in means between
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group Ibuprofen-Aspergesic and
group Aspergesic-Ibuprofen is not equal to 0

95 percent confidence interval:
-1.36733 0.76252

sample estimates:
mean in group Ibuprofen-Aspergesic mean in group Aspergesic-Ibuprofen

5.5247 5.8271

t.test(diff ~ group, data = table_7_5, var.equal = TRUE)

Similarly, we test for treatment effect, by using diff in place of total.

Two Sample t-test

data: diff by group
t = 1.43, df = 27, p-value = 0.16
alternative hypothesis: true difference in means between

group Ibuprofen-Aspergesic and
group Aspergesic-Ibuprofen is not equal to 0

95 percent confidence interval:
-0.12052 0.68125

sample estimates:
mean in group Ibuprofen-Aspergesic mean in group Aspergesic-Ibuprofen

0.28187 0.00150

Testing for period effect is slightly different.

t.test(subset(table_7_5, group == "Ibuprofen-Aspergesic")$diff ,
-1 *(subset(table_7_5,group == "Aspergesic-Ibuprofen")$diff),
var.equal = TRUE)

Here, we use t.test; but, we don’t give it a formula. Instead, we supply it with two vectors
corresponding to the two groups. We use subset to select only some of the records of the
dataframe. The first argument to subset is the data frame we want to subset and the second
argument is the criteria for selecting the records. In our case, for the first vector, we ask it
to select only those records having the value Ibuprofen-Aspergesic in the column group and
then select only the diff column of those records. For the second vector, we select only those
records with the value Aspergesic-Ibuprofen in the column group. We select the diff column
of those records and multiply it with -1.

Two Sample t-test

data: subset(table_7_5,
group == "Ibuprofen-Aspergesic")$diff and
-1 * (subset(table_7_5, group == "Aspergesic-Ibuprofen")$diff)

t = 1.45, df = 27, p-value = 0.16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.11752 0.68425
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sample estimates:
mean of x mean of y

0.28187 -0.00150

We have no direct way to calculate the mean difference in pain score and its confidence
interval. However, calculating it is not difficult. First, we need to store the result of the
relevant t test.

t.test(diff ~ group,
data = table_7_5,
var.equal = TRUE) -> tdiff

(tdiff$estimate[1] - tdiff$estimate[2]) * 0.5

The mean of the difference in pain score when using aspergesic and ibuprofen is calculated
as half of the difference between the mean for the two groups returned by t.test in its
estimate component.

(tdiff$estimate[1] - tdiff$estimate[2]) * 0.5 +
(0.5 * qt(c(0.05/2, 1-0.05/2), df =tdiff$parameter) * tdiff$stderr)

The standard error is returned by t.test in the component stderr. We multiply the
standard error with the appropriate t value returned by qt. The function qt requires two
parameters. The first one is the probability for which t value is required. We provide a vector
with two values, one for the lower tail (0.05/2) and one for the upper tail (1-0.05/2). The
second argument is the df, the degrees of freedom which we collect from the parameter
component of the result returned by t.test. We add this to the mean of differences calculated
in the previous step to get the confidence interval.

mean in group Ibuprofen-Aspergesic
0.14018

[1] -0.060258 0.340625

The steps for calculating the confidence interval for period differences is similar except for
the t test used.

t.test(subset(table_7_5,group == "Ibuprofen-Aspergesic")$diff,
-1 *(subset(table_7_5,group == "Aspergesic-Ibuprofen")$diff),
var.equal = TRUE) -> pdiff

(pdiff$estimate[1] - pdiff$estimate[2]) * 0.5
(pdiff$estimate[1] - pdiff$estimate[2]) * 0.5 +

(0.5 * qt(c(0.05/2, 1-0.05/2),df =pdiff$parameter) * pdiff$stderr)

mean of x
0.14168

[1] -0.058758 0.342125
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7.2.1 Analysing preferences
Example 7.10 (page 283)

I couldn’t find a direct way to perform the Prescott’s test or Gart’s test. Instead, we may
perform the MH chi square test of linear trend or Fischer’s exact test.

DescTools::MHChisqTest(matrix(c(6,3,8,7,3,3),nrow = 2,byrow = TRUE))
fisher.test(matrix(c(6,8,7,3), nrow = 2, byrow = TRUE))

The syntax “package::function” used as DescTools::MHChisqTest in our example, can be
used to call a function of a particular library. This is useful when that library has not been
loaded or when we want to specify the function of that particular library though loaded is
masked by another function with the same name in another library that was loaded later.

Mantel-Haenszel Chi-Square

data: matrix(c(6, 3, 8, 7, 3, 3), nrow = 2, byrow = TRUE)
X-squared = 1.62, df = 1, p-value = 0.2

Fisher's Exact Test for Count Data

data: matrix(c(6, 8, 7, 3), nrow = 2, byrow = TRUE)
p-value = 0.24
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.038833 2.316053

sample estimates:
odds ratio

0.33757

7.3 Allocation to treatment group
7.3.1 Randomisation
We will look at a command that is concerned with randomisation. The function sample
generates a random permutation of its supplied argument.

sample(c("A", "B", "C", "D"))

Each time, the above code is run, we will get a different sequence. This may be useful for
global randomisation.

If sample is provided just a positive number, it gives us a random permutation of the
numbers from 1 to the supplied number.
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sample(10)

We can specify a bias by providing the prob argument to sample.

sample(c("A", "B"), prob =c(1,2), size = 1)

When we run this code, we will get either “A” or “B” as we have specified size=1. The
chance of getting “B” is two times the chance of getting “A”. This could be useful for biased
coin method.

The package Minirand has functions blkrandomisation that generates treatment allocation
sequences based on random permuted blocks and Minirand that generates treatment allo-
cation sequences based on minimisation algorithms. Another package blockrand provides
the functions blockrand that generates block randomised treatment allocation sequences
and plotblockrand which generates a pdf file of individual randomisation cards from the
treatment allocation sequences.

We are now at the end of this chapter.

7.4 Recap
7.4.1 Concepts introduced in this chapter
• long format

7.4.2 Commands introduced in this chapter
• dplyr::group_by
• tidyr::pivot_wider
• base::levels
• ggplot2::geom_segment

• ggplot2::facet_wrap
• ggplot2::scale_shape_manual
• stats::qt
• base::sample



8
Sample size determination

This chapter deals with power and sample size calculations. We will be using the epiR
package. All the functions that we use have a similar way of specifying the parameter we
want it to calculate; the parameter we want the function to calculate should be specified as
NULL and all other arguments specified with appropriate values. We start with example 8.1.

8.1 Power
Example 8.1 (page 298)

power.t.test(power = NULL,
n = 50,
delta = 0.5,
sd = 1.4,
type = "one.sample",
alternative = "one.sided")

The function that we use is power.t.test of stats package. As we want the power to be
calculated, our first argument is power = NULL. The argument n stands for the number of
observations, delta for the difference in means and sd for the standard deviation. The type
argument specifies whether our test is one sample, two sample or paired. In our case, we are
testing one sample against a hypothesised value. The type of hypothesis testing is specified
by alternative. In our case, we want a one sided test.

One-sample t test power calculation

n = 50
delta = 0.5

sd = 1.4
sig.level = 0.05

power = 0.80106
alternative = one.sided

The default print of the function shows the value of all arguments, not just the one calculated.
If we want to refer to only one component, we can use the $ operator to select the component
we want. The value we obtain (0.8011) is slightly different from our textbook value of 0.8107.
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Example 8.2 (page 302)

Calculating power for the two sided alternative of example 8.2 requires only changing the
argument named alternative.

power.t.test(power = NULL,
n = 50,
delta = 0.5,
sd = 1.4,
type = "one.sample",
alternative = "two.sided")$power

[1] 0.69696

The result given by power.t.test 0.697 is slightly different from the textbook value of
0.7141 . This probably is because of the normal approximation used in the textbook.

8.2 Testing a mean value
Example 8.3 (page 303)

Calculating the sample size instead of power, as in example 8.3, requires us to change the
argument that is given the value NULL.

power.t.test(n = NULL,
power = 0.9,
delta = 0.5,
sd = 1.4,
type = "one.sample",
alternative = "one.sided")$n

[1] 68.516

Again, the value is slightly different from the textbook values.

Example 8.4 (page 304)

Changing the value of power and delta suffices to replicate example 8.4.

power.t.test(n = NULL,
power = 0.95,
delta = 0.6,
sd = 1.4,
type = "one.sample",
alternative = "one.sided")$n
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[1] 60.302

Example 8.5 (page 305)

Example 8.5 and 8.6 are done in a similar fashion.

power.t.test(n = NULL,
power = 0.99,
delta = 0.1,
sd = 0.2,
type = "one.sample",
alternative = "one.sided")$n

[1] 64.465

Example 8.6 (page 306)

power.t.test(n = NULL,
power = 0.99,
delta = 0.1,
sd = 0.2,
type = "one.sample",
alternative = "two.sided")$n

[1] 75.446

Example 8.7 (page 307)

In example 8.7, the minimum detectable difference is calculated. In order to redo the example,
we use the same function, but specify the value of d as NULL.

power.t.test(power = 0.9,
n = 50,
delta = NULL,
sd = 1.4,
type = "one.sample",
alternative = "one.sided")$d

[1] 0.58759

8.3 Testing a difference between means
Example 8.8 (page 308)

To redo the example 8.8 which deals with two sample situation, we need to change the value
of the argument type.
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power.t.test(power = 0.95,
n = NULL,
delta = 0.5,
sd = 1.4,
type = "two.sample",
alternative = "one.sided")

Two-sample t test power calculation

n = 170.37
delta = 0.5

sd = 1.4
sig.level = 0.05

power = 0.95
alternative = one.sided

NOTE: n is number in *each* group

The result returned is very different from the textbook value. If we pay attention, we will see
that it is nearly half of the textbook value. In other words, the function returns the number
required in each of the two samples.

Example 8.9 (page 309)

We cannot use power.t.test directly to calculate sample sizes when the two samples are not
equal. As an alternative to calculating (r+1)2/r and multiplying it with the result given by
power.t.test, we can use epi.sscompc of epiR package. Remember to install the package
using install.packages as discussed in the first chapter.

library(epiR)
epi.sscompc( n = NA,

treat = 8,
control = 4,
sigma = 4,
power = 0.9,
r = 4,
sided.test = 2,
conf.level = 0.95)

The arguments to epi.sscompc is slightly different from power.t.test. The function expects
NA as the value of the argument which we want to be calculated. Instead of d, it requires
treat and control, the values in the two groups, from which the difference is calculated. It
supports r which is used to specify the ratio of observations in the treatment group to that
in the control group. The type of hypothesis test is specified as a number assigned to the
argument sided.test. The argument sd of power.t.test is named sigma in epi.sscompc.
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$n.total
[1] 67

$n.treat
[1] 53

$n.control
[1] 14

$power
[1] 0.9

$delta
[1] 4

The values returned by epi.sscompc are accessible using $ operator includes n.total,
n.treat, n.control, power and delta.

Example 8.10 (page 310)

To redo the example 8.10, we use the epi.sscompc. As, the function doesn’t have an
argument named delta, we need to specify both treat and control (from which delta is
calculated) as NA. Also, we need to remember that n is the total number of subjects from
both groups combined.

epi.sscompc( n = 150,
treat = NA,
control = NA,
sigma = 1.4,
power = 0.95,
r = 2,
sided.test = 1,
conf.level = 0.95)$delta

[1] 0.79771

Example 8.11 (page 311)

To redo the paired sample example 8.11, we use power.t.test. We need to specify type as
paired.

power.t.test(power = 0.95,
n = NULL,
delta = 0.5,
sd = 1,
type = "paired",
alternative = "one.sided")$n

[1] 44.68
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8.4 Testing a proportion
Example 8.12 (page 312)

To redo the example 8.12, we use epi.sscompb of epiR.

epi.sscompb(n = NA,
treat = 0.3,
control = 0.32,
power = 0.9,
sided.test = 1 )$n.total

The result returned by epi.sscomph is as in the textbook. For epi.sscompb, we specify n as NA to
say that we want it to be calculated. The treat and control are used to specify the proportions in
the treatment and control groups. We specify sided.test = 1 to say that we want to evaluate a
one sided hypothesis.

[1] 4568

8.5 Testing a relative risk
Example 8.13 (page 314)

We will use epi.sscohortc function to redo the example 8.13.

epi.sscohortc(n = NA,
irexp0 = (5 * 413 /100000),
irexp1 = (1.4 * 5 * 413 /100000),
power = 0.9,
sided.test = 1)$n.total

The function, similar to the earlier functions, require the parameter that needs to be
calculated to be given the value NA. So, here we use n = NA. The arguments irexp0 and
irexp1 indicate the incidence risk in the non-exposed and exposed group. We calculate those
values from the information given in the textbook. We multiply the average annual death
rate for non-smokers given in the textbook with 5 to get the death risk among non-smokers
for five year period. We multiply this figure with 1.4, the relative risk of smokers combined
with non-smokers as given in the textbook, to obtain the 5 year risk of death among smokers.
The arguments power and sided.test are as in the previous examples.
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[1] 12130

Example 8.14 (page 314)

epi.sscohortc(n = NA,
irexp0 = (5 * 413 /100000),
irexp1 = (1.4 * 5 * 413 /100000),
r = 0.5,
power = 0.9,
sided.test = 1,
conf.level = 0.95)$n.total

To redo example 8.14, we need to specify the additional argument r to epi.sscohortc. It is
the ratio of the number of exposed to the number of unexposed. As the number of unexposed
is higher, value of r in our example is less than one.

[1] 13544

Example 8.15 (page 315)

Example 8.15 is done in a similar way.

epi.sscohortc(n = NA,
irexp0 = 0.2,
irexp1 = (0.4 * 0.2),
r = 1,
power = 0.9,
sided.test = 2,
conf.level = 0.95)$n.total

[1] 348

Example 8.16 (page 316)

To calculate the minimum relative risk, as given in example 8.16, we use the same
epi.sscohortc.

epi.sscohortc(n = 12132,
irexp0 = (5 * 413 /100000),
irexp1 = NA,
r = 0.5,
power = 0.9,
sided.test = 1,
conf.level = 0.95)$irr
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The argument that is specified as NA is irexp1, the incidence risk in the exposed. The value
that we want from the result is of the component irr.

[1] 0.65824 1.43987

The result includes two values, one solved for the positive root and one for the negative root
as explained in the textbook. We take the value above unity as we are assuming a risk factor
in contrast to a protective factor.

8.6 Case control studies
Example 8.17 (page 318)

For sample size and power calculation related to case control studies, the function epi.sscc
is used. Here, we rework example 8.17.

epi.sscc(n = NA,
OR = 2.0,
p0 = 0.30,
power = 0.90,
sided.test = 2,
conf.level = 0.95,
method = "unmatched")$n.total

Similar to the previous commands, epi.sscc requires that the parameter that needs to be
calculated specified by the value NA. Here, we use n = NA. The argument OR is used to supply
the approximate relative risk. The argument p0 is used to supply the expected population
prevalence of the risk factor. The arguments power, sided.test and conf.level are used
as in the previous examples. The argument method is provided the string unmatched to
specify that the proposed design is not a matched study. We get the total number of subjects
in the n.total component of the result.

[1] 376

Example 8.18 (page 320)

Example 8.18 requires power to be calculated in a study design with a case:control ratio of
1:5. We use epi.sscc providing it with the argument r to specify the ratio.

epi.sscc(power = NA,
n = 188 + 940,
OR = 2.0,
p0 = 0.3,
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r = 188/940,
sided.test = 2,
conf.level = 0.95,
method = "unmatched")$power

Here, we specify power=NA to indicate that we want to calculate power. We supply the sum
of the number of cases and of controls as given in the textbook as the value of the argument
n. The argument r is the ratio between the cases and controls, calculated from the figures
given in the textbook. The power calculated is available in the power component of the
result.

[1] 0.98748

Example 8.19 (page 323)

The command epi.sscc can handle matched study design scenarios. To redo the example
8.19, we use

epi.sscc(n = NA,
OR = 2.0,
p0 = 0.30,
power = 0.90,
r = 1,
phi.coef = 0.2,
sided.test = 2,
conf.level = 0.95,
method = "matched")

The argument phi.coef is used to provide the correlation between case and control exposure
for matched pairs. This, I have been told (personal email), is not equivalent to the chance
of a discordant pair as discussed in the textbook. Whether it is possible to calculate the
correlation between case and control exposure for matched pairs from the chance of a
discordant pair given in our text, is not known to me. However, even if we could calculate
the exact value of phi.coef corresponding to 0.5 chance of a discordant pair, epi.sscc
would return a value different from that in the textbook as it follows a calculation method
different from that described in the textbook.

So, let us make a function that would do the calculations in the textbook.

ss.ccmatched <- function(rr, power = 0.90,
conf.level = 0.95, r = 1,
sided = 2, prop.discord = 0.5) {

zalpha <- qnorm((1 - conf.level)/sided,
lower.tail = FALSE)

zbeta <- qnorm((1 - power)/2,
lower.tail = FALSE)

n <- 2 * ((zalpha * (rr +1)) +
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(2 * zbeta * sqrt(rr)))ˆ2 /
(rr - 1) ˆ 2 / prop.discord

nc <- n * ((r+1) ˆ2) / (4 * r)
ceiling(nc/ (r + 1)) * (r + 1)}

We name the function ss.ccmatched. The reserved word function tells R that we are going
to define a function. We expect the function to accept six parameters. All of them except
rr have default values. Thus when we call the function, if we provide only one unnamed
argument, it will be taken as rr. Inside the function, we use qnorm to calculate zalpha
considering whether one sided or two sided hypothesis is being tested and zbeta. We calculate
n as described in the textbook. We use r to correct it for the number of controls for a case.
In the final step we use ceiling which returns the smallest integer that is not less than its
argument. The argument we provide it is the corrected sample size divided by the size of
the matched set (number of matched controls for a case plus 1 for case). The value returned
by ceiling is multiplied with the same matched set size. Thus we will get the sample size
we calculated rounded to the next multiple of the sum of case and the number of matched
controls in one set. If there is no explicit return statement, the function will return the result
of the last statement in its body. Thus our function will return this rounded up number.

Let us try our function

ss.ccmatched(2, power = 0.8)

[1] 362

Example 8.19 (page 323)

ss.ccmatched(2, power = 0.8, r = 3)

[1] 484

Our function works well. However, it is incomplete. It does not have any error checking. Say,
what if I (accidentally) call it with the value 3 for sided? In the final chapter, I will point
you to some resources to hone your R programming skills.

Before we conclude this chapter, note that, though we do not have a textbook example to
demonstrate, there are many more “epi.ss” group of functions that are suited for complex
sampling designs including cluster designs.
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8.7 Recap
8.7.1 Commands introduced in this chapter

• stats::power.t.test
• epiR::epi.sscompb

• epiR::epi.sscohortc
• epiR::epi.sscc
• base::ceiling
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Modelling quantitative outcome variables

From this chapter onward we learn about statistical modelling. The main function to fit
linear models is lm. Its main argument is a formula specifying the model. It can handle
data frames. The results are stored and required information extracted from it using helper
functions. For this chapter we use the add on package readr, ggplot2 part of tidyverse, car,
emmeans, gridExtra, broom, lspline ggeffects and geepack. Remember to install them
using install.packages as discussed in chapter 1. We start with ANOVA by reworking
example 9.2.

9.1 One categorical explanatory variable
Example 9.2 (page 335)

library(tidyverse)
read_table("K11828 supplements/Datasets/Table 9.1.DAT",

col_names = c("diet", "chol"),
col_types = cols(diet = col_factor(),

chol = col_double())) -> tbl_9_1
lm(chol ~ diet, data = tbl_9_1) -> lm_9_1

First, we import the relevant table using read_table supplying it with the file name, the
list of column names and the list of column types that is represented in the columns. Note
that we specify that diet is a factor, to say that the numbers in that column are actually
codes that stand for a category and don’t have any numerical significance. The analysis of
variance is done by lm which accepts a formula. Our formula is chol ~ diet, to mean that we
want the mean of the column chol to be tested for equality across the groups dictated by
the value in the column diet. The data argument tells lm that the columns mentioned in
the formula are to be found in the dataframe tbl_9_1. We save the result of the command
using the name lm_9_1.

anova(lm_9_1)

To prepare the ANOVA table, we pass the result of lm to anova.

Analysis of Variance Table

DOI: 10.1201/9781003589563-9 118
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Response: chol
Df Sum Sq Mean Sq F value Pr(>F)

diet 2 1.25 0.622 17.6 0.00012 ***
Residuals 15 0.53 0.035
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The values in the ANOVA table printed is similar to table 9.4, except for rounding errors.
The term “Error” in table 9.4, is called “Residuals” by anova. In addition to the value of
F ratio, anova computes and prints the probability associated with the F value, as well as
the “significance stars” for that probability. Note that there are two alternate functions
to perform ANOVA. The function aov, prints an abbreviated ANOVA table directly. The
function oneway.test can be instructed to perform tests with the assumption of equal
or unequal variance by changing the value of var.equal. Both these functions accept the
formula and data arguments.

R provides many helper functions to display requisite information about fitted models. To
display a succinct summary, we can use

summary(lm_9_1)

Call:
lm(formula = chol ~ diet, data = tbl_9_1)

Residuals:
Min 1Q Median 3Q Max

-0.253 -0.188 0.045 0.141 0.337

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.3150 0.0767 82.30 < 2e-16 ***
diet2 -0.3700 0.1085 -3.41 0.0039 **
diet3 -0.6417 0.1085 -5.91 2.8e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.188 on 15 degrees of freedom
Multiple R-squared: 0.701, Adjusted R-squared: 0.662
F-statistic: 17.6 on 2 and 15 DF, p-value: 0.000116

In the summary displayed, we have the five number summary of residuals, the value, standard
error, t test statistic and probability of the t test of the coefficients and summary information
on the model fitted. If we want only the coefficients, we can use coef. If we want confidence
intervals for the coefficients, we may use confint.

confint(lm_9_1, level = 0.95)
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2.5 % 97.5 %
(Intercept) 6.15146 6.47854
diet2 -0.60128 -0.13872
diet3 -0.87295 -0.41039

Table 9.5 (page 338)

Following the steps outlined in the textbook, we may use this information to build the
confidence intervals shown in table 9.5. However, an easier way is to use a model without an
explicit intercept term.

lm(chol ~ diet - 1, data = tbl_9_1) -> lm_9_5
confint(lm_9_5, level = 0.95)

2.5 % 97.5 %
diet1 6.1515 6.4785
diet2 5.7815 6.1085
diet3 5.5098 5.8369

The formula argument of our call to lm is modified to tell R that we don’t want an explicit
intercept. This is done by including -1 on the right-hand side of the formula. We pass this
model to confint. The result is that the coefficients we get are absolute values rather than
the difference from the intercept when we include an explicit intercept. Thus, we need not
add together the value of the intercept and the coefficients to calculate the mean cholesterol
of each group.

To include the coefficients in the print, we need to use cbind to bind together the result of
confint and coef or the coefficient component of the result returned by lm.

cbind( lm_9_5$coefficients, confint(lm_9_5, level = 0.95))

TABLE 9.1
Replication of table 9.5

Diet group Mean 2.5% 97.5%
diet1 6.3150 6.1515 6.4785
diet2 5.9450 5.7815 6.1085
diet3 5.6733 5.5098 5.8369

Example 9.4 (page 338)

To rework the example demonstrating the Bonferroni correction for pair wise comparison, we
need to calculate the difference in the coefficients for diet2 and diet3. Our model specification
returns as intercept, the coefficient of diet1 and the other coefficients are calculated as the
difference from this intercept. While, we have the option to algebraically manipulate these
values to get the difference between the coefficients of diet2 and diet3, we will follow a
different path.



9.1 One categorical explanatory variable 121

relevel(tbl_9_1$diet,ref = "2") -> tbl_9_1$diet
lm(chol ~ diet, data = tbl_9_1) -> lmr_9_1

The function relevel is used to change the reference level of a factor vector. By default, in
R, the reference level for any factor vector is determined alphabetically. However, we can
modify it using relevel, which accepts the factor vector the reference level of which needs
to be changed. The new reference level is passed through the argument ref. Here, we say
that we want the factor value 2 to be used as the reference level. Note that we need to save
the changed factor name. Here, we use the same name, overwriting the old one. We then use
lm to build the model with the changed factor vector.

(Intercept) diet1 diet3
5.94500 0.37000 -0.27167

We can see that the coefficients are calculated with diet2 as the base. The coefficient for
diet3 directly shows the difference between diet3 and diet2 group means. Similarly, the
summary function will show the standard error, the t value and its probability given the null
hypothesis.

We can use this value directly in the remainder of calculations.

summary(lmr_9_1)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.94500 0.076727 77.4825 6.0484e-21
diet1 0.37000 0.108508 3.4099 3.8784e-03
diet3 -0.27167 0.108508 -2.5036 2.4330e-02

To obtain the 95% confidence interval for the difference between the group means, we
multiply the standard error with the critical value for t distribution obtained using qt. The
function qt requires the probability for which the critical value need to be calculated and
the df. We specify 1-0.05/2 as our probability as we require 95% confidence interval. The
df we specify is the error df. We need to subtract and add this spread to the calculated
difference. To achieve this, we multiply the calculated spread with the vector c(-1,1) and
add it to the difference of the group means as returned by our model.

abs(lmr_9_1$coefficients[3]) + (c(-1,1) * qt(1-0.05/2, 15) *
summary(lmr_9_1)$coefficients[3,2])

[1] 0.040386 0.502947

To apply the Bonferroni correction, we need to multiply the probability returned by summary
with the number of comparisons made and judge it against the nominal significance level.
Otherwise, we can adjust the nominal significant level by dividing it with the number of
comparisons made. Thus, if we are doing all three pair wise comparison, the Bonferroni
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corrected p value would be summary(lmr_9_1)$coefficients[3,4] * 3 if we keep the
significant level as 5%.

However, R provides TukeyHSD, a better alternative. It requires the result returned by aov.

aov(chol ~ diet, data = tbl_9_1) |> TukeyHSD()

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = chol ~ diet, data = tbl_9_1)

$diet
diff lwr upr p adj

1-2 0.37000 0.088153 0.651847 0.01019
3-2 -0.27167 -0.553514 0.010181 0.05963
3-1 -0.64167 -0.923514 -0.359819 0.00008

The result shows the Tukey honest significant differences calculated for each pair of the
factor values (diet in our case).

9.2 One quantitative explanatory variable
Figure 9.2 (page 348)

To rework example 9.5 that demonstrates simple linear regression, we need to import the
data.

read_table("K11828 supplements/Datasets/Table 9.8.DAT",
col_names = c("country", "sugar", "dmft"),
col_types = cols(country = col_factor(),

sugar = col_double(),
dmft = col_double())) -> tbl_9_18

filter(tbl_9_18, country == "2") -> tbl_9_8

We use read_table to import the relevant data into R. In addition to the columns sugar
and dmft, there is a column of data to distinguish between industrialised countries and
developing countries. We import it as a factor calling it country. As we need only the data for
developing countries, we select only that data using filter. We save the filtered dataframe
with the name tbl_9_8.

The command to generate the graph in figure 9.2 is

ggplot(tbl_9_8) +
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geom_point(aes(x = sugar, y = dmft)) +
labs(x = "Sugar consumption (kg/person/year)",

y = "DMFT") +
theme_bw()

We have seen both ggplot and geom_point earlier. Instead of modifying the default theme,
we use theme_bw.

FIGURE 9.1
Replication of figure 9.2

Figure 9.3 (page 350)

To generate the graph in figure 9.3, we need another geom function.

ggplot(tbl_9_8, aes(x = sugar, y = dmft)) +
geom_point() +
geom_smooth(method = lm, se = FALSE) +
labs(x = "Sugar consumption (kg/person/year)",

y = "DMFT") +
theme_bw()
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FIGURE 9.2
Replication of figure 9.3

We provide the aes definition inside ggplot because it is common to both geoms. We have no
further arguments to geom_point; hence the empty parentheses. The function geom_smooth
adds a smoothed curve of the values calculated based on its argument. The main argument
to geom_smooth is method, which we specified as lm. Thus, it will use the lm function to
produce the overlaid curve.

Now, we try to redo the actual modelling.

Example 9.5 (page 348)

lm( dmft ~ sugar, data = tbl_9_8) -> lm_9_5

For simple linear regression, we use lm, similar to how we used it for anova. We store the
result with a name and use helper function as per our requirement.

We use anova to display the analysis of variance table given in table 9.9.
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anova(lm_9_5)

Analysis of Variance Table

Response: dmft
Df Sum Sq Mean Sq F value Pr(>F)

sugar 1 36.6 36.6 18.8 5.7e-05 ***
Residuals 59 114.7 1.9
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To display the value of the coefficients, their standard errors and marginal t tests, we use
summary.

summary(lm_9_5)

Call:
lm(formula = dmft ~ sugar, data = tbl_9_8)

Residuals:
Min 1Q Median 3Q Max

-2.337 -0.812 -0.290 0.438 5.277

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.1647 0.3204 3.63 0.00059 ***
sugar 0.0470 0.0108 4.34 5.7e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.39 on 59 degrees of freedom
Multiple R-squared: 0.242, Adjusted R-squared: 0.229
F-statistic: 18.8 on 1 and 59 DF, p-value: 5.66e-05

We may use confint to obtain confidence intervals for the coefficients.

confint(lm_9_5)

2.5 % 97.5 %
(Intercept) 0.523484 1.805877
sugar 0.025318 0.068635

We have a helper function to make predictions too.

predict(lm_9_5,
newdata = data.frame(sugar = 35),
interval = "predict")
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predict(lm_9_5,
newdata = data.frame(sugar = 35),
interval = "confidence")

The predict function requires a model object which in our case is lm_9_5. The newdata
should be a dataframe containing columns with the same name as used for the explanatory
variable in the model. In our example, we build our newdata using data.frame which
is supplied just one value for the variable sugar. The argument interval decides what
type of interval is needed. For the first of the predictions (of individual values), we use
interval ="predict". For the second prediction (of average values), we use interval =
"confidence".

fit lwr upr
1 2.8088 -0.01254 5.6302

fit lwr upr
1 2.8088 2.3864 3.2313

Figure 9.4 (page 353)

To plot the graph in figure 9.4, we need only ask geom_smooth to include the confidence
interval.

ggplot(tbl_9_8, aes(x = sugar, y = dmft)) +
geom_point() +
geom_smooth(method = lm, se = TRUE) +
labs(x = "Sugar consumption (kg/person/year)",

y = "DMFT") +
theme_bw()

FIGURE 9.3
Replication of figure 9.4
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This is achieved by specifying se =TRUE in the call for geom_smooth. When we ask
geom_smooth to plot the confidence interval band for the smoothed curve, it uses predict
to calculate the confidence interval.

9.2.1 Correlation
Section 9.3.2 (page 352)

R provides functions to calculate correlation coefficients.

cor(tbl_9_8$sugar, tbl_9_8$dmft, method = "pearson")
cor(tbl_9_8$sugar, tbl_9_8$dmft, method = "spearman")

The function cor accepts two vectors, the correlation between which needs to be calculated.
It also accepts the method argument, which we use to specify whether we want Pearson’s
correlation coefficient or Spearman’s.

[1] 0.49194
[1] 0.52651

The function cor.test can be used to test the hypothesis that the correlation coefficient is
zero.

cor.test(tbl_9_8$sugar, tbl_9_8$dmft, method = "pearson")

It also produces a confidence interval for the correlation coefficient calculated. Its arguments
are similar to that of cor. In addition, it can accept alternative to specify the type of
hypothesis testing required and conf.level to specify the confidence level for the confidence
interval calculated.

Pearson's product-moment correlation

data: tbl_9_8$sugar and tbl_9_8$dmft
t = 4.34, df = 59, p-value = 5.7e-05
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.27407 0.66178

sample estimates:
cor

0.49194

9.2.2 Non linear regression
Figure 9.8 (page 357)

To redo the example 9.6, we need to modify the formula given to lm.
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lm(log(dmft) ~ sugar, data = tbl_9_8) -> lm_9_6

Now, the left-hand side of the formula indicating the response variable is log(dmft), to
indicate that we want the log transformation of the dmft variable. We can use the model as
we used the earlier models, but remembering that it is log of DMFT that is returned by the
helper function. To convert the log back to the original scale, we need to use the function
exp.

Building the graph in figure 9.8 is not directly possible using geom_smooth. Instead, we use
geom_line and predict.

ggplot(tbl_9_8) +
geom_point(aes(x = sugar, y = dmft)) +
geom_line( aes(y = exp(predict(lm_9_6)), x = sugar)) +
labs(x = "Sugar consumption (kg/person/year)",

y = "DMFT") +
theme_bw()

The scatter plot is on the original scale. So, we specify x and y for geom_point as such. Over
the scatterplots, we draw a line using geom_line. The y coordinates for this line is obtained
using predict. If newdata is not given to predict, it will use the data used for the model
fitting. Thus, our use of predict here will return a vector containing predicted y value for
each of the x value supplied by the sugar column of the dataframe we used for model fitting.
Remembering that we used log for model fitting, we need to use exp to convert back these
predicted values to the original scale.

FIGURE 9.4
Replication of figure 9.8
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9.3 Two categorical explanatory variables
Example 9.7 (page 360)

To rework the example 9.7 that demonstrates two way anova, we need to get our data into
shape.

factor(rep("F", 18), levels = c("F", "M")) -> sex
sex[c(1,4,10,13,16,17,3)] <- "M"
cbind.data.frame(tbl_9_1, sex) -> tbl_9_7

First, we use factor to create a vector containing 18 values, all of them “F”. By means of
level argument, we say that only the values “M” and “F” will be allowed in this vector.
We then modify the value of seven elements of this vector, selected by subsetting using an
index vector, to “M”. We thus get a vector that denotes the sex of each observation as said
in example 9.7. We join this vector with the tbl_9_1 we created earlier to make a new table
which we name tbl_9_7.

We can confirm that the mean given for each cross category is as in table 9.11 using

tbl_9_7 |>
group_by(sex, diet) |>
summarise(cholesterol = mean(chol))

# A tibble: 6 x 3
# Groups: sex [2]

sex diet cholesterol
<fct> <fct> <dbl>

1 F 2 5.91
2 F 1 6.09
3 F 3 5.61
4 M 2 6.11
5 M 1 6.36
6 M 3 6.01

Again, we use lm to perform two way anova.

lm(chol ~ diet + sex, data = tbl_9_7) -> lm_9_7

The difference from our previous examples is that we have two variables on the right-hand
side of the formula.

To get the sequential anova table shown in table 9.12, we need to pass the model object to
anova.
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anova(lm_9_7)

Analysis of Variance Table

Response: chol
Df Sum Sq Mean Sq F value Pr(>F)

diet 2 1.245 0.622 27.35 1.5e-05 ***
sex 1 0.211 0.211 9.28 0.0087 **
Residuals 14 0.319 0.023
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We get the same results. However, note that though this is a sequential anova, the labels for
the explanatory variables don’t make this clear. In other words, we get “sex” as the label
instead of “sex|diet”.

To obtain type 2 or 3 anova results in base R requires some extra effort. The easier way
is to use the function Anova from car package. Note that the function name starts with
uppercase. Install the package using install.packages as discussed in chapter 1.

library(car)
Anova(lm(chol ~ diet + sex,

data = tbl_9_7,
contrasts =list(diet=contr.sum, sex=contr.sum)),

type=3)

Anova Table (Type III tests)

Response: chol
Sum Sq Df F value Pr(>F)

(Intercept) 597 1 26236.73 <2e-16 ***
diet 0 2 9.87 0.0021 **
sex 0 1 9.28 0.0087 **
Residuals 0 14
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Anova accepts the model object as its first argument. We also need to specify type, which
may be 2 or 3. The model object we specified here includes a contrasts option which is
used to specify the contrast used for the factor variables. Of the different options we have,
we chose contr.sum for both the factors used in the formula. Though, the right contrast
is relevant when we have interaction terms in the model, we get into the habit right away.
Instead of specifying the contrast in the call to lm, we may set our choice of contrast globally
by using options(contrasts = c(“contr.sum”,”contr.poly”)). The first choice is used
for unordered factors and the second is used for ordered factor.

If we pass the model object to summary or coefficients we won’t get the results shown
in table 9.13. You should be able to guess the reason for this apparent discrepancy – the
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factor level that is considered as the reference is different from that in the textbook. We use
relevel to set the appropriate base level of the factor to get the values in the textbook.

tbl_9_7$diet <- relevel(tbl_9_7$diet, ref = "3")
summary(lm(chol ~ diet + sex, data = tbl_9_7))

Call:
lm(formula = chol ~ diet + sex, data = tbl_9_7)

Residuals:
Min 1Q Median 3Q Max

-0.2534 -0.0842 0.0119 0.1062 0.1951

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.6249 0.0636 88.43 < 2e-16 ***
diet2 0.2717 0.0871 3.12 0.00754 **
diet1 0.4479 0.1079 4.15 0.00098 ***
sexM 0.2907 0.0954 3.05 0.00871 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.151 on 14 degrees of freedom
Multiple R-squared: 0.82, Adjusted R-squared: 0.782
F-statistic: 21.3 on 3 and 14 DF, p-value: 1.73e-05

9.3.1 Fitted values
Table 9.14 (page 363)

The model object has a component fitted.values which may be accessed directly using
the $ operator or by passing the model object to the helper function fitted. However, it
gives the fitted values for all the observations and hence is inconvenient to work with. We
will use the package emmeans to calculate the various fitted values.

library(emmeans)
emmeans(lm_9_7, c("diet", "sex"))

Note that the function we use has the same name as the package – emmeans. It requires the
model object as its first argument. The second argument specs is a character vector that
specifies the explanatory variables used in the model specification, from which the cross
categories are built.
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TABLE 9.2
Replication of table 9.14

Diet group Sex Fitted value S.E. df Lower CI Upper CI
2 F 5.8966 0.063607 14 5.7601 6.0330
1 F 6.0728 0.100572 14 5.8571 6.2885
3 F 5.6249 0.063607 14 5.4885 5.7613
2 M 6.1872 0.100572 14 5.9715 6.4029
1 M 6.3634 0.063607 14 6.2270 6.4999
3 M 5.9156 0.100572 14 5.6998 6.1313

We get a neat grid showing the fitted values of table 9.14. In addition, the confidence interval
of the estimates are also shown.

Output 9.5 (page 364)

We get the adjusted means using the same function.

emmeans(lm_9_7, specs = c("diet"), weights = "proportional")

Here we want only the means for the various levels of diet. Hence, the specs argument is
provided only that name. The weights argument is used to specify the weighting scheme
that we want to use for adjusting the values. To weight according to the observed frequencies,
we specify weights = "proportional". If we want to use the balanced margins weight, we
need to specify weights = "equal".

emmeans(lm_9_7, specs = c("diet"), weights = "equal")

diet emmean SE df lower.CL upper.CL
2 6.01 0.0651 14 5.87 6.15
1 6.19 0.0748 14 6.03 6.35
3 5.74 0.0651 14 5.60 5.88

Results are averaged over the levels of: sex
Confidence level used: 0.95

diet emmean SE df lower.CL upper.CL
2 6.04 0.0693 14 5.89 6.19
1 6.22 0.0693 14 6.07 6.37
3 5.77 0.0693 14 5.62 5.92

Results are averaged over the levels of: sex
Confidence level used: 0.95

To get the result of pair wise comparisons of the adjusted means, we have a couple of options.
First, we use the function pwpm, again from emmeans.
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pwpm( emmeans(lm_9_7,
specs = c("diet"),
weights = "proportional"))

All we do is pass the result returned by emmeans to pwpm. As we did not store the result of
emmeans, we pass the command call directly.

2 1 3
2 [6.01] 0.2646 0.0194
1 -0.176 [6.19] 0.0026
3 0.272 0.448 [5.74]

Row and column labels: diet
Upper triangle: P values adjust = "tukey"
Diagonal: [Estimates] (emmean)
Lower triangle: Comparisons (estimate) earlier vs. later

The result returned by pwpm is a grid similar to output 9.5. However, the p value of the pair
wise comparison is given only in the upper triangle, not repeated as in the output from SAS.
The diagonal cells are not empty, but contains the adjusted mean calculated. The lower
triangle shows the difference between the adjusted means, the p value for which is shown in
the upper triangle.

Another option is use to use pairs from emmeans.

pairs(emmeans(lm_9_7,
specs = c("diet"),
weights = "proportional"))

contrast estimate SE df t.ratio p.value
diet2 - diet1 -0.176 0.1080 14 -1.634 0.2646
diet2 - diet3 0.272 0.0871 14 3.119 0.0194
diet1 - diet3 0.448 0.1080 14 4.153 0.0026

Results are averaged over the levels of: sex
P value adjustment: tukey method for comparing a family of 3 estimates

The result of pairs is similar to that of pwpd, but in a rectangular grid omitting the adjusted
means themselves. Note that the p values of multiple comparison are different from that in
the textbook, probably because emmeans uses Tukey method for adjustment.

9.3.2 Interaction
Example 9.9 (page 365)

In order to specify an interaction term, we need to modify the call to lm.
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lm(chol ~ diet * sex, data = tbl_9_7) -> lm_9_9
summary(lm_9_9)

We changed the formula to chol ~ diet * sex. The * instructs that the model should
include the interaction terms between the explanatory variables in addition to the main
effects. We can pass the model object lm_9_9 to summary and anova to confirm that results
are similar to that in output 9.6.

Call:
lm(formula = chol ~ diet * sex, data = tbl_9_7)

Residuals:
Min 1Q Median 3Q Max

-0.250 -0.079 0.004 0.116 0.214

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.6060 0.0708 79.23 <2e-16 ***
diet2 0.3060 0.1001 3.06 0.0099 **
diet1 0.4840 0.1733 2.79 0.0163 *
sexM 0.4040 0.1733 2.33 0.0380 *
diet2:sexM -0.2060 0.2451 -0.84 0.4171
diet1:sexM -0.1340 0.2451 -0.55 0.5946
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.158 on 12 degrees of freedom
Multiple R-squared: 0.831, Adjusted R-squared: 0.76
F-statistic: 11.8 on 5 and 12 DF, p-value: 0.000273

9.4 Model building
Example 9.10 (page 366)

We need to import the data to rework the example 9.10 and build the model objects.

read_table("K11828 supplements/Datasets/Table 9.15.DAT",
col_names = c("bmi", "sex", "smoke"),
col_types = cols(bmi = col_double(),

sex = col_factor(),
smoke = col_factor())) -> tbl_9_15

lm(bmi ~ sex, data = tbl_9_15) -> lm_9_15_1
lm(bmi ~ smoke, data = tbl_9_15) -> lm_9_15_2
lm(bmi ~ sex + smoke, data = tbl_9_15) -> lm_9_15_3
lm(bmi ~ sex * smoke, data = tbl_9_15) -> lm_9_15_4
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We use read_table to import the data, specifying sex and smoke as factors. We build 4
model objects using lm and save them. The last digit in the model names correspond to
that used in example 9.10. As with the previous examples, we can use helper functions to
print anova tables, coefficients etc. We may use Anova if we want type 2 or 3 anova tables,
emmeans to get adjusted means and pairs or pwpd to obtain pairwise comparison of adjusted
means as with our previous examples.

9.5 General linear models
Figure 9.9 (page 375)

To rework example 9.11 we import the data, as we did earlier. This time, we don’t filter the
data as we want data of both developing and industrialised countries.

read_table("K11828 supplements/Datasets/Table 9.8.DAT",
col_names = c("country", "sugar", "dmft"),
col_types = cols(country = col_factor(),

sugar = col_double(),
dmft = col_double())) -> tbl_9_18

lm(log(dmft) ~ sugar, data = tbl_9_18) -> lm_9_11_1
lm(log(dmft) ~ country, data = tbl_9_18) -> lm_9_11_2
lm(log(dmft) ~ sugar + country, data = tbl_9_18) -> lm_9_11_3
lm(log(dmft) ~ sugar * country, data = tbl_9_18) -> lm_9_11_4

We will not repeat what we saw in previous examples. We will try to reproduce the graphs
in figure 9.9. Towards that end, we will extend tbl_9_18 with the fitted values returned by
the models.

tbl_9_18$mdl_1 <- fitted(lm_9_11_1)
tbl_9_18$mdl_2 <- fitted(lm_9_11_2)
tbl_9_18$mdl_3 <- fitted(lm_9_11_3)
tbl_9_18$mdl_4 <- fitted(lm_9_11_4)

We have used $ operator to assign the fitted values of each of the model objects to
non_existent columns named mdl_1 to mdl_4 of tbl_9_18. As the columns to which
we assign new values are non existent, the columns will be created. Thus, tbl_9.9 gets
extended by four new columns carrying the fitted values according to each model. We now
create the four plots.

ggplot(tbl_9_18) +
geom_line(aes( x = sugar,

y = mdl_1,
group = country,
linetype = country)) +
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scale_y_continuous(breaks = seq(0,1.5, by = 0.5)) +
ylim(0,1.5)+
labs(x = "Sugar consumption (kg/person/year)",

y = "Fitted values",
title = "Common regression line") +

scale_linetype_manual(labels = c("Industrialised", "Developing"),
values = c(2,1),
name = NA) +

theme_minimal() -> plt_9_9_1
ggplot(tbl_9_18) +

geom_line(aes( x = sugar,
y = mdl_2,
group = country,
linetype = country)) +

scale_linetype_manual(labels = c("Industrialised", "Developing"),
values = c(2,1),
name = NA) +

scale_y_continuous(breaks = seq(0,1.5, by = 0.5)) +
ylim(0,1.5)+
labs(x = "Sugar consumption (kg/person/year)",

y = "Fitted values",
title = "No regression line") +

theme_minimal() -> plt_9_9_2
ggplot(tbl_9_18) +

geom_line(aes( x = sugar,
y = mdl_3,
group = country,
linetype = country)) +

scale_linetype_manual(labels = c("Industrialised", "Developing"),
values = c(2,1),
name = NA) +

scale_y_continuous(breaks = seq(0,1.5, by = 0.5)) +
ylim(0,1.5)+labs(x = "Sugar consumption (kg/person/year)",

y = "Fitted values",
title = "Parallel regression lines") +

theme_minimal() -> plt_9_9_3
ggplot(tbl_9_18) +

geom_line(aes( x = sugar,
y = mdl_4,
group = country,
linetype = country)) +

scale_linetype_manual(labels = c("Industrialised", "Developing"),
values = c(2,1),
name = NA) +

scale_y_continuous(breaks = seq(0,1.5, by = 0.5)) +
ylim(0,1.5)+
labs(x = "Sugar consumption (kg/person/year)",

y = "Fitted values",
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title = "Separate regression lines") +
theme_minimal() -> plt_9_9_4

Each of the plots are saved with a name. All plots have the same x axis sugar, y axis
being one of the columns with fitted values. The geom used is geom_line, which is also
provided the argument group and linetype. This will result in different lines being drawn
for different values in country. The scale_y_continuous and ylim are used so that all the
four plots have the same y axis limit and ticks instead of the default decided by ggplot.

The package ggplot doesn’t have a function to stitch together multiple graphs. So, we use
the package gridExtra.

library(gridExtra)
grid.arrange(plt_9_9_1, plt_9_9_2, plt_9_9_3, plt_9_9_4,

nrow= 2 )

FIGURE 9.5
Replication of figure 9.9

The function grid.arrange accepts as many plots as we provide it, arrange them as we
specify and return them as a single graph. In our example, we specify nrow = 2. So, we get
the four graphs arranged in two rows.

Figure 9.10 (page 377)

The code to prepare the graph in figure 9.10 is

ggplot(tbl_9_18,
aes( x = sugar, group = country)) +

geom_point(aes(y = dmft, shape = country), show.legend = FALSE) +
geom_line(aes(y = exp(mdl_4), linetype = country), show.legend = FALSE) +
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labs(x = "Sugar consumption (kg/person/year)",
y = "DMFT")

All the concepts used in building this graph were discussed earlier.

FIGURE 9.6
Replication of figure 9.10

9.6 Several explanatory variables
Table 9.19 (page 379)

To rework the example 9.12, we need to import the data.

read_table("K11828 supplements/Datasets/Example 9.12.DAT",
col_names = c("hdl", "age", "alcohol","chol", "fibre"),
col_types = cols(hdl = col_double(),

age = col_double(),
alcohol = col_double(),
chol = col_double(),
fibre = col_double())) -> tbl_9_12

To prepare table 9.19 of the textbook, we use the function cor.

cor(tbl_9_12)



9.6 Several explanatory variables 139

The function cor computes the correlation between the columns of its argument if the first
argument is a dataframe. So, cor will calculate the correlation between the columns of
tbl_9_12.

TABLE 9.3
Replication of table 9.19

HDL Age Alcohol Cholesterol Fibre
hdl 1 −0.006052 0.3281 0.05753 −0.0414
age −0.006052 1 −0.1244 −0.03287 −0.01706
alcohol 0.328074 −0.124365 1 0.14576 −0.13285
chol 0.057526 −0.032869 0.1458 1 0.1023
fibre −0.041398 −0.017055 −0.1328 0.1023 1

Table 9.20 (page 380)

There are no functions to directly prepare table 9.20 of the textbook. We will prepare it in a
few steps. We will use the library broom. Remember to install it using install.packages
as discussed in chapter 1.

library(broom)
mdl_summary <- function(mdl) {

bind_cols(
data.frame(var_names = paste(attr(mdl$terms, "term.labels"),

collapse = ", "),
var_num = length(attr(mdl$terms, "term.labels")),
r.square = summary(mdl)$r.squared * 100,
ems = anova(mdl)["Residuals", "Mean Sq"]),

pivot_wider(select(tidy(mdl), term,estimate),
names_from = term,
values_from = estimate))}

Here we define a new function, which we call mdl_summary. The keyword function tells
R that what follows is a function. The parenthesis following the word function determines
the arguments that the function can accept and their names inside the function. Here, it
will accept only one argument under the name mdl. We want the function to accept a fitted
model and generate a row containing the details as in table 9.20. The code inside the body
of the function, i.e., the portion between the braces are intended to achieve this.

We do this by binding together two data frames column wise. The function that does this is
bind_cols. It is provided with two single row data frames to bind together.

The first one is built from scratch using data.frame, inside which the names of the columns
and their values are specified. We specify three columns.

The first, we name as var_names. We calculate its value as paste(attr(mdl$terms,
"term.labels"), collapse = ", "). We extract the term.labels attribute of the terms
component of mdl and then collapses its values into a comma-separated string using paste.
Attributes are meta data about an R object. For example, data frames have the attribute
names which stores the name of the columns. We can find out what attributes an R object
has and their values using the function attr. If we want just the value of a specific attribute,
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we pass the name of that attribute too. Here, we want the attribute of the component terms
of the fitted model. The component terms stores the details of the terms used in model
fitting. Its term.labels attribute carries the names of the terms as a character vector. Thus
we get a string that contains the name of the variables used for specifying the model.

The second column var_num makes use of the same attribute term.labels, but ascertain its
length using length. Thus its length will give us the number of variables used for specifying
the model.

The third column r.square stores the r.squared component of summary’s return value, after
multiplying with 100. The function anova returns a dataframe. We subset it to obtain the
row with the name Residuals and the column with the name Mean Sq. Thus we get the
error mean square for the model, which we save with the name ems.

The second data frame we ask bind_cols to join together is provided by pivot_wider. It
accepts a dataframe, which in our case is provided by tidy from the package broom. The
function presents the coefficients from fitted model as a neat data frame with their standard
error and p value. By means of select, we select only the columns term and estimate from
the function’s return value. Thus, we provide a two column data frame to pivot_wider.
The function pivot_wider reshapes the data frame to a wide format. It takes the values
from the column specified as names_from argument and makes them new column headings.
The values for each of these new columns is filled from the original column specified as the
argument values_from. Thus, we get as many terms are there in the fitted model with their
estimates as the value of the single row of the data frame.

The result returned by our custom function will be a single row data frame containing all
the info present in one row of table 9.20 for the model we pass to it.

However, the table is filled with data from all possible models described in example 9.12.

lm(hdl ~ age, data = tbl_9_12) -> lm_9_12_age
lm(hdl ~ alcohol, data = tbl_9_12) -> lm_9_12_alc
lm(hdl ~ chol, data = tbl_9_12) -> lm_9_12_chol
lm(hdl ~ fibre, data = tbl_9_12) -> lm_9_12_fib
lm(hdl ~ age + alcohol, data = tbl_9_12) -> lm_9_12_age_alc
lm(hdl ~ age + chol, data = tbl_9_12) -> lm_9_12_age_chol
lm(hdl ~ age + fibre, data = tbl_9_12) -> lm_9_12_age_fib
lm(hdl ~ alcohol + chol, data = tbl_9_12) -> lm_9_12_alc_chol
lm(hdl ~ alcohol + fibre, data = tbl_9_12) -> lm_9_12_alc_fib
lm(hdl ~ chol + fibre, data = tbl_9_12) -> lm_9_12_chol_fib
lm(hdl ~ age + alcohol + chol, data = tbl_9_12) -> lm_9_12_age_alc_chol
lm(hdl ~ age + alcohol + fibre,data = tbl_9_12) -> lm_9_12_age_alc_fib
lm(hdl ~ age + chol + fibre,data = tbl_9_12) -> lm_9_12_age_chol_fib
lm(hdl ~ alcohol + chol + fibre,data = tbl_9_12) -> lm_9_12_alc_chol_fib
lm(hdl ~ ., data = tbl_9_12) -> lm_9_12_all

list(lm_9_12_age, lm_9_12_alc, lm_9_12_chol, lm_9_12_fib,lm_9_12_age_alc,
lm_9_12_age_chol, lm_9_12_age_fib,lm_9_12_alc_chol, lm_9_12_alc_fib,
lm_9_12_chol_fib,lm_9_12_age_alc_chol, lm_9_12_age_alc_fib,
lm_9_12_age_chol_fib, lm_9_12_alc_chol_fib,lm_9_12_all) -> list_mdls
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We specify all the models and save them in a suitable named object. The formula used in all
the models except the last should be clear. The formula for the last model hdl ~ ., means
that the model terms should include all variables except hdl, the outcome variable on the
left-hand side of the formula.

We collect all the models in a group using list. A list is a collection of R objects, similar
or not, usually dissimilar.

map_dfr(list_mdls, mdl_summary)

The function map_dfr belongs to a family of map functions from tidyverse. These functions
accept an argument – a list or a vector and calls the second argument, a function, repeatedly
with the values in the first argument. Thus, map_dfr(list_mdls, mdl_summary) will call
mdl_summary with each of the model objects in the list_mdls. The result returned by each
call is row joined by map_dfr for the final result. Thus we will get our table 9.20.

9.6.1 Information criteria
Example 9.13 (page 382)

The function used to calculate AIC, is AIC.

AIC(lm_9_12_age_alc)

[1] 3524.6

The function AIC accepts one or more models for which it calculates the AIC. The function
BIC calculates BIC. The value returned by both functions is slightly different from the
textbook values. However, the models with the minimum AIC or BIC are the same as in the
textbook. Preparing table 9.22 can be done in a way similar to how we built table 9.20. We
need to modify our custom function to add columns for AIC and BIC and remove those
that are not required. We will however, make use of another function glance from broom.

Table 9.22 (page 382)

mdl_compare <- function(mdl) {
bind_cols(

data.frame(var_names = paste(attr(mdl$terms, "term.labels"),
collapse = ", "),

var_num = length(attr(mdl$terms, "term.labels"))),
glance(mdl))}

map_dfr(c(list(lm(hdl ~ 1, data =tbl_9_12)), list_mdls),
mdl_compare) |>

mutate( age = ifelse(str_detect(var_names, "age"),"X","-"),
alcohol = ifelse(str_detect(var_names, "alcohol"),"X","-"),
cholesterol = ifelse(str_detect(var_names, "chol"),"X","-"),
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TABLE 9.4
Replication of table 9.20

Estimates

Variable names Number R2 (%) Error Intercept Age Alcohol Cholesterol Fibre
of x mean
variables square

age 1 0.00366 0.135 1.38 −0.000386
alcohol 1 10.76325 0.12 1.26 0.00622
chol 1 0.33092 0.134 1.31 0.0001369
fibre 1 0.17138 0.135 1.41 −0.002059
age, alcohol 2 10.88589 0.12 1.15 0.002248 0.0063
age, chol 2 0.33266 0.134 1.32 −0.000265 0.0001365
age, fibre 2 0.17595 0.135 1.43 −0.000431 −0.0020647
alcohol, chol 2 10.77287 0.12 1.25 0.00619 0.0000236
alcohol, fibre 2 10.76373 0.12 1.26 0.00623 0.0001107
chol, fibre 2 0.55686 0.134 1.36 0.0001485 −0.0023765
age, alcohol, chol 3 10.89657 0.12 1.14 0.002258 0.00628 0.0000249
age, alcohol, fibre 3 10.88705 0.12 1.14 0.002256 0.00631 0.0001709
age, chol, fibre 3 0.55918 0.134 1.37 −0.000307 0.0001481 −0.0023798
alcohol, chol, fibre 3 10.77297 0.12 1.25 0.0062 0.0000233 0.0000504
age, alcohol, chol, fibre 4 10.89703 0.12 1.14 0.002262 0.00628 0.0000242 0.0001083
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fibre = ifelse(str_detect(var_names, "fibre"),"X","-")) |>
select(age, alcohol, cholesterol, fibre,var_num, logLik, AIC, BIC)

The function glance which accepts a model object returns a single row data frame with mul-
tiple statistics about that model. The information returned includes AIC, BIC, r squared, log
likelihood etc. Our new custom function mdl_compare joins these columns with var_names
and var_num we saw in our previous custom function. We pass this custom function along
with the list of models to map_dfr which will join together row wise the data frames returned
for each model. The list we pass is made by adding the null model to the existing list. The
null model formula is hdl ~ 1, the right-hand side with just 1. Note how the joint list is
made – we provide the lists to be joined as arguments to c. Though the model object is a
list, we need to place the null model object inside list before passing on to c so that it is
appended properly.

We pass this combined dataframe as the first argument of mutate by piping it using |>.
We create four new columns using mutate to mark with an “X”, the use of that particular
variable as a modelling term in that model. We use str_detect to check if the name of
that variable is present in the value of var_names. If str_detect returns TRUE, ifelse
assigns the value “X” to that column, otherwise it assigns “-”. The function ifelse accepts
a construction that returns a logical value, either TRUE or FALSE. Instead of functions like
str_detect, we may use expressions constructed using comparison operators >, <, ==,
<=, >=, != according to our needs. Finally, the result of mutate is piped to select to select
only the columns that we want printed.

TABLE 9.5
Replication of table 9.22

Terms included in the model

age alcohol cholesterol fibre Number of x terms logeL̂ AIC BIC
- - - - 0 −2040.5 4085.0 4098.0
X - - - 1 −2040.4 4086.8 4106.3
- X - - 1 −1761.7 3529.4 3548.8
- - X - 1 −2032.4 4070.8 4090.3
- - - X 1 −2036.3 4078.6 4098.1
X X - - 2 −1758.3 3524.6 3550.6
X - X - 2 −2032.3 4072.7 4098.7
X - - X 2 −2036.2 4080.4 4106.4
- X X - 2 −1761.4 3530.8 3556.8
- X - X 2 −1761.7 3531.3 3557.3
- - X X 2 −2026.8 4061.7 4087.6
X X X - 3 −1758.0 3526.0 3558.5
X X - X 3 −1758.3 3526.6 3559.0
X - X X 3 −2026.8 4063.5 4096.0
- X X X 3 −1761.4 3532.8 3565.3
X X X X 4 −1758.0 3528.0 3567.0

While we have reworked the examples in the textbook, in the usual work flow we will
probably be using a few more functions. The function update will update and refit a model.
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It requires a model object and an update formula. For example, an alternate way to build
some of the models we built earlier is

lm(hdl ~ 1, data = tbl_9_12) -> lm_9_12_null
update(lm_9_12_null, . ~ . + age) -> lm_9_12_age
update(lm_9_12_age, . ~ . - age + alcohol) -> lm_9_12_alc

We are asking update to drop or add one or more terms to the model we supply to it. The
update formula is what makes clear our requirement. In the update formula, a period stands
for the terms that were used in the original model, a minus - for dropping a term and a
plus + for adding a new term. Thus, in the lm_9_12_alc, we are asking update to regress
whatever term was on the left-hand side of the formula of lm_9_12_age against all terms
originally on the right-hand side, but dropping age and adding alcohol.

Another function that may be useful is step, which does step wise selection. It accepts
an initial model, a scope argument and a direction argument. To select the appropriate
model, we may use, for example

step(lm(hdl ~ 1, data = tbl_9_12),
hdl ~ age + alcohol +chol +fibre,
direction = "both")

step(lm(hdl ~ ., data = tbl_9_12),
direction = "both")

In the first example, we start with the null model, provide a scope, which is taken as
the upper model. In the second example, the model object we provide regresses hdl on all
variables. As we haven’t provided a scope argument, the starting model object itself is
treated as the upper model. Instead of direction = "both", we may specify "backward"
or "forward" if that is what we want. We also have the option to turn off the print that
happens during the selection process using trace = 0 or provide a positive number to print
the details.

9.7 Model checking
Figure 9.11, 9.12 (page 385)

To check model fit graphically, we need to pass the model object to plot.

plot(lm_9_5, which =1)
plot(lm_9_5, which =2)

The command plot will print the diagnostic plots if it is provided a model object as its
argument. By default, when we plot diagnostic plots in base R, 4 plots are generated. The
argument which is used to restrict the plot to our choice from among the six that R provides.
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It accepts a vector containing any combination of values from 1 to 6. Here we select the
residual plot and normal plots individually.

FIGURE 9.7
Replication of figure 9.11

FIGURE 9.8
Replication of figure 9.12

The diagnostic plots that are printed include scale location plot and residuals versus leverage
plot in addition to residual plot and normal plot discussed in the textbook.
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Figures 9.13, 9.14 (page 386)

Next, we print the residual plot and normal plot for the log model.

plot(lm_9_6, which = 1)
plot(lm_9_6, which = 2)

FIGURE 9.9
Replication of figure 9.13

FIGURE 9.10
Replication of figure 9.14

Example 9.14 (page 384)

We can access the residuals directly from a model object using the helper function residuals
or using $. We may, pass the residuals directly to plot. We may use qqnorm to plot a normal
plot of the residuals, passing to it the residuals. The function cooks.distance calculates
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Cook’s distance for each observation used for model building. The plot function will generate
a graph showing Cook’s distance if which has the value 4. The function influence.measures
will generate some more measures of influence in addition to Cook’s distance. The function
rstandard produces standardised residuals. All these functions accepts a model object as
its parameter. We may subset the values returned by these functions if we are interested in
some particular value. For example, for Algeria given in example 9.14,

fitted(lm_9_5)[1]
residuals(lm_9_5)[1]
rstandard(lm_9_5)[1]

will give the fitted value, residual and standardised residual.

1
2.884

1
-0.58401

1
-0.42427

9.8 Confounding
Example 9.15 (page 387)

To rework the example 9.15, we need to first prepare the data.

c(126,131,118,128,128,130,123,137,113,131,123,122,
125,127,117,138,135,136,148,123,130,125,131,124,
133,123,135,119,140,128,132,126,128,130,130,135) -> sbp

factor(c(rep(c("chilli", "none"), each = 2),
rep("chilli",4), rep("none",8), rep("chilli",4),
rep("none",16)),

levels = c( "none", "chilli")) -> sauce
factor(rep(c("mex", "white", "afam"),

times = c(4,12,20))) -> ethnic

bind_cols(sbp = sbp,
sauce = sauce,
ethnic = ethnic) -> tbl_9_15

We have prepared three vectors and joined them into a dataframe using bind_cols. The
vectors with factor data was prepared using factor to which character vectors made using
multiple calls to rep to reflect the data given in table 9.24 was fed.
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Table 9.23 presents data of the example, categorised according to the value of one column.
It also contains a summary statistics – mean, for the two groups of data. Here, we use
aggregate to show how to obtain summary statistics for subsets of data.

aggregate(sbp ~ sauce, data = tbl_9_15, FUN = mean) |>
pivot_wider(names_from = "sauce",

values_from = "sbp") -> tbl_9_23

The function aggregate accepts a formula and a data argument from which to obtain
the variables in the formula. The variable on the left-hand side of the formula is used for
calculating the summary statistic, categorised according to the variables on the right-hand
side of the formula. The function name which is used for calculating the summary statistic is
passed on to the argument FUN. In our example, we categorise sbp according to the different
values of sauce, both from the tbl_9_24 dataframe, and calculate the mean of sbp using
the function mean for each of the subcategories of sauce. We pipe the result, a data frame,
using |> to pivot_wider and the final result is stored as tbl_9_23. We will see why we
need pivot_wider in a moment.

TABLE 9.6
Replication of table 9.23

No chilli sauce Chilli sauce
127.35 131.7

Table 9.24 (page 388)

Table 9.24 is rather complicated with many summary measures.

tbl_9_15 |>
group_by(sauce, ethnic) |>
summarise( mean = mean(sbp),

count = n(),
values = paste(sbp, collapse = ",")) |>

pivot_wider(names_from = c("sauce"),
values_from = c("mean", "count", "values"),
names_sep = "\n",
id_cols = "ethnic") |>

mutate(perc_chili = count_chilli * 100 /(count_chilli + count_none),
diff = mean_chilli - mean_none,
mean = (mean_chilli * count_chilli + mean_none * count_none)/

(count_none + count_chilli)) |>
select(ethnic, values_chilli, values_none, perc_chili, mean,

mean_chilli, mean_none, diff) -> tbl_9_24

First, we pipe tbl_9_15 to group_by, which produces a grouped dataframe. We are in effect
saying that we want separate measures for the cross categories decided by the different
values of sauce and ethnic.
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We pipe the grouped database to summary, which will produce new columns according to
our instructions. We ask summarise to make a column mean, which will contain the value
returned by the function mean to which sbp is passed as the argument. The second column
we ask summarise to make is count, which will carry the result given by n, which is the
number of rows. The third column values will contain the values in the column sbp joined
together using “,”. As we have passed a grouped dataframe to summarise, the result, a data
frame, will contain as many cross categories as are there in the grouped data frame. The
values of the variables used for categorisation will also be included in separate columns
named appropriately.

We pipe the result of summarise to pivot_wider which changes the dataframe to a wide
column format. It takes the values in the column specified as names_from and creates new
columns, one set for each value in that column. What values, this column will contain is
decided by the values_from column. We specify three columns as the value of values_from.
Thus three sets of columns, the names of which will be derived from the values in sauce
combined with the column names we specified from values_from. We get a three row seven
column data frame from this pivot_wider command.

We pass the result of pivot_wider to mutate to make new columns. We make three new
columns, perc_chilli for the percentage of chilli users, diff for the difference in means between
the chilli users and non users and mean for the mean bp without regards to chilli use.

In the next step, we use select to select only those columns we want to display. Finally,
we may use t to transpose the dataframe so that columns become rows and rows columns.
However, we won’t do it now, as we need the data frame in this orientation for the graph of
figure 9.15.

Figure 9.15 (page 388)

We will supply the tables we prepared in the previous steps to prepare the graph in figure
9.15.

ggplot() +
geom_point(aes(x = sauce,

y = sbp,
shape = ethnic),

data = tbl_9_15) +
geom_segment(aes(x = factor("none"),

y = none,
xend = factor("chilli"),
yend = chilli),

data = tbl_9_23,
colour = "blue") +

geom_segment(aes(x = factor("none"),
y = mean_none,
xend = factor("chilli"),
yend = mean_chilli,
linetype = ethnic,
colour = ethnic),

data = tbl_9_24) +
labs(x = "Chilli sauce use?",
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y = "Systolic blood pressure (mmHg)") +
scale_colour_manual(values = c( "#111111", "#004B73","#713430" ))

There are three geoms, each using a different data frame. So, we don’t give ggplot any
arguments. The first geom_point uses the raw table. In addition to specifying the x and y
values, we pass ethnic as the value for shape arguments. Thus, we will get different shapes
for the points plotted based on the ethnicity of the user. The second geom_segment uses the
tbl_9_23 to display using a line segment, the unadjusted means for the two categories of
sauce users. The arguments, y and yend needs to be in different columns of the data frame
used. We used pivot_wider while preparing the table for this reason. As there is only one
line segment to be drawn, we specify x and xend directly. We use factor so that the values
will have the same interpretation as in the previous geom. The last geom_segment uses the
tbl_9_24 to draw three line segments, one for each category of ethnic as we pass ethnic as
the value for colour and line_type arguments. The y and yend are derived from different
columns of the data frame, the reason for not transposing the data frame; while x and xend
are specified directly.

FIGURE 9.11
Replication of figure 9.15

We may now transpose and pretty the tbl_9_24 to make it look similar to that in the
textbook.
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library(sjmisc)
rotate_df(tbl_9_24, cn = TRUE, rn=" ")

We may use rotate_df of sjmisc to rotate the table. The cn = TRUE argument asks it to
use the first row of the original dataframe as the column heading of the rotated dataframe.
The rn=" " asks the function to include the row headings as the first column, with the
heading of that column being an empty string.

TABLE 9.7
Replication of table 9.24

African Americans Mexican Americans Whites
values_chilli 135,136,148,123 126,131 128,130,123,137
value_none 130,125,131,124,

133,123,135,119,
140,128,132,126,
128,130,130,135

118,128 113,131,123,122,
125,127,117,138

perc_chili 20.000 50.000 33.333
mean 130.55 125.75 126.17
mean_chilli 135.5 128.5 129.5
mean_none 129.31 123.00 124.50
diff 6.1875 5.5000 5.0000

Note: s.e = standard error

Table 9.25 (page 389)

To rework the example 9.16, we import the data first.

read_table("K11828 supplements/Datasets/Example 9.16.DAT",
col_names = c("fibrinogen", "age", "hpylori"),
col_types = cols(fibrinogen = col_double(),

age = col_double(),
hpylori = col_factor())) -> tbl_9_16

levels(tbl_9_16$hpylori) <- c("Negative", "Positive")

After importing the data, we change the labels attached with the factor levels using levels,
which accepts the factor vector. Rather than receiving its result, we assign the character
vector containing the new labels to it using <-. We do this so that we get decent labels while
printing.

tbl_9_16 |>
group_by(hpylori) |>
summarise( n = n(),

mean = mean(fibrinogen),
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`(s.e.)` = sd(fibrinogen)/sqrt(n),
Q1 = quantile(fibrinogen, 0.25),
Q2 = quantile(fibrinogen, 0.5),
Q3 = quantile(fibrinogen, 0.75))

Preparing table 9.25 uses group_by and summarise we learned earlier. One thing to note is
how we specified the name of the (s.e.) column. The name contains parentheses, which is
not allowed in names unless the name is put inside a pair of back ticks. The names, properly
called identifiers should only contain letters, digits, underscore and period. Names that
adhere to this rule are called syntactic names. We should strive to use only syntactic names.
However, if you must use non-syntactic names, you must quote them within back ticks.

TABLE 9.8
Replication of table 9.25

H. pylori status n Mean s.e Q1 Q2 Q3

Negative 149 2.7604 0.058563 2.33 2.55 3.07
Positive 361 2.9289 0.037925 2.43 2.84 3.35

Table 9.26 can be easily constructed using the above code, substituting age for fibrinogen.
Table 9.27 requires some extra steps.

Table 9.27 (page 390)

mutate(tbl_9_16,
age_grp = cut(age,

breaks = c(25,35,45,55,65,75),
right = FALSE)) -> tbl_9_16

At first, we add a new column named age_group to tbl_9_16 using mutate. For this, we use
the function cut, which produces a factor vector from a numerical variable, based on which
interval the values fall with respect to the breaks specified. The option right determines
which side of the intervals is closed.

Next, we prepare two new data frames from tbl_9_16.

tbl_9_16 |>
group_by(age_grp, hpylori) |>
summarise(n = n(),

mean = mean(log(fibrinogen)),
s.e = sd(log(fibrinogen)) / sqrt(n)) |>

pivot_wider(names_from = "hpylori",
values_from = c("n", "mean","s.e")) -> tbl_9_27_1
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Here, we group the data by age_grp we created in the previous step and by hpylori and
then calculate the summary measures in table 9.27. We then change the data frame into a
wider format as we want different columns for different values of hpylori.

We haven’t calculated p values for the t tests comparing the log of fibrinogen levels between
the two levels of hpylori. The reason is that t.test is done on a group of rows, not for each
row of the dataframe.

tbl_9_16 |>
group_by(age_grp) |>
nest() |>
mutate(p.value = map_dbl(data,

function(df) {t.test(log(fibrinogen) ~ hpylori,
data = df,
var.equal = TRUE)$p.value}),

n = map_dbl(data, nrow)) -> tbl_9_27_2

We group by only age_grp and then pipe the result to nest. The function nest creates
nested data frames. For each value of age_grp, nest will collect all the rows of the
supplied dataframe and create a new dataframe, which will be contained in a cell of the
data frame returned as result. By default, the column that contains the nested data frames
is called data. In our case, the data frame returned by nest will have two columns – one
containing the unique values from the column age_grp and another with the nested data
frames.

We pipe the result of nest to mutate to create two columns. The column p.value is
calculated by map_dbl to which the nested data frames are passed as the first argument. The
second argument to map_dbl is an anonymous function, which calls t.test with arguments
appropriate to test the difference between the two levels of hpylori in each of the nested data
frames. The p.value component of the t.test result is returned by map_dbl. Similarly, the
column n is constructed by map_dbl, this time calling nrow with the nested dataframe to
obtain the number of rows in each of the nested data frames.

We now have two data frames which we need to join together to get table 9.27 of the
textbook.

left_join(tbl_9_27_1, tbl_9_27_2) |>
select(c(age_grp, n, mean_Positive, s.e_Positive,

mean_Negative, s.e_Negative, p.value))

The function left_join joins two data frames keeping all rows of the first dataframe and
values in the columns of the second data frame for all rows with the same value in the
matching columns. We have not specified a matching column because the column age_grp
is named the same in both data frames and so, will be used as the default matching column.
The result from left_join is piped to select to choose the columns we want to print.
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TABLE 9.9
Replication of table 9.27

H. pylori status

Age group (years) n Positive s.ep Negative s.en p value
[25,35) 65 0.85633 0.040663 0.86621 0.032932 0.857642
[35,45) 100 0.98980 0.031695 0.96507 0.029907 0.598363
[45,55) 107 1.00137 0.023543 1.00084 0.038512 0.990083
[55,65) 122 1.09739 0.022300 1.10496 0.051917 0.885753
[65,75) 116 1.13323 0.024809 1.03190 0.058855 0.086528

Example 9.16 (page 389)

Fitting the linear model and obtaining the least square means for the data in example 9.16
is not different from the previous examples we saw.

emmeans(lm(log(fibrinogen) ~ age + hpylori,data = tbl_9_16),
specs = "hpylori")

hpylori emmean SE df lower.CL upper.CL
Negative 1.01 0.0189 507 0.976 1.05
Positive 1.03 0.0121 507 1.011 1.06

Results are given on the log (not the response) scale.
Confidence level used: 0.95

9.9 Splines
Example 9.17 (392)

To fit linear splines we can use mutate to re-express sugar the way explained in the textbook
and fit them. Instead, we follow a slightly different, but equivalent path in our first example.

lm(dmft ~ sugar + I((sugar-12) * (sugar <=12)) + I((sugar-34) * (sugar <=34)),
data = tbl_9_8) -> ls_9.17

summary(ls_9.17)

While we use the lm command for fitting linear splines, the difference is in how we specify
the right-hand side of the formula argument. On the right-hand side, we use three terms.
The first is the unchanged sugar variable. The second and third term uses I. The function I
is used to insulate the expression given inside it from being interpreted according to the
special meanings attached to mathematical operators in the context of formulas. Thus,
expressions given inside I are evaluated in the usual mathematical sense and the resulting
value is used for model fitting. The mathematical expression given inside I consists of two
parts multiplied together. The first part deducts the value of one of the knots from the
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observed sugar value. The second part returns TRUE if the observed sugar value is less than
the value of knot and FALSE otherwise, which gets coerced to 1 and 0 respectively when
used in numerical operations. Thus, we will get a zero if the observed sugar value is below
the knot considered and difference from the knot value if it is greater.

Call:
lm(formula = dmft ~ sugar + I((sugar - 12) * (sugar <= 12)) +

I((sugar - 34) * (sugar <= 34)), data = tbl_9_8)

Residuals:
Min 1Q Median 3Q Max

-2.318 -0.868 -0.296 0.479 5.298

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.95373 1.36036 0.70 0.49
sugar 0.05237 0.03249 1.61 0.11
I((sugar - 12) * (sugar <= 12)) -0.03048 0.09085 -0.34 0.74
I((sugar - 34) * (sugar <= 34)) -0.00182 0.05119 -0.04 0.97

Residual standard error: 1.42 on 57 degrees of freedom
Multiple R-squared: 0.244, Adjusted R-squared: 0.205
F-statistic: 6.15 on 3 and 57 DF, p-value: 0.00108

As we are using lm, we may use any of the helper functions like summary to extract required
information from the model object as we did in our previous examples. While the coefficients
are different from the text value, the model we fitted results in the same fitted values as in
the text.

Output 9.17 (page 393)

For the second example, we will use a new library, lspline. Remember to install it using
install.packages as discussed in chapter 1.

library(lspline)
lm(dmft ~ lspline(sugar, knots = c(12,34), marginal = TRUE),

data = tbl_9_8)

The right-hand side of formula is supplied by lspline, which accepts the variable that has
to be split into pieces and the value of knots where split should occur. Instead of knots, we
may specify n which specifies the number of equally spaced intervals or q which specifies the
number of equal frequency intervals. To obtain coefficients for changes in slope rather than
the actual slopes, we need to change the default value of marginal argument of lspline.

Call:
lm(formula = dmft ~ lspline(sugar, knots = c(12, 34), marginal = TRUE),

data = tbl_9_8)

Coefficients:
(Intercept)

1.38143
lspline(sugar, knots = c(12, 34), marginal = TRUE)1
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0.02007
lspline(sugar, knots = c(12, 34), marginal = TRUE)2

0.03048
lspline(sugar, knots = c(12, 34), marginal = TRUE)3

0.00182

Figure 9.16 (page 394)

We will now plot the graph in figure 9.16.

ggplot(tbl_9_8, aes(x = sugar, y = dmft)) +
geom_point() +
geom_smooth(method = "lm",

formula = y ~ x + I((x-12) * (x<=12)) + I((x-34) * (x<=34))) +
labs(x = "Sugar consumption (kg/person/year)",

y = "DMFT")

We use ggplot, with two geoms. The first geom_point is used to plot the individual data
values as points. The second geom_smooth plots smoothed conditional means calculated
from the fitted model objects. In addition to x and y aesthetics, geom_smooth requires a
method and formula. The method we use is lm, the function we want it to produce the
model object. The formula is similar to what we used earlier. The difference is that we use
x and y instead of the variable’s name.

FIGURE 9.12
Replication of figure 9.16
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The graph generated is similar to that in figure 9.16 though we have specified the linear
splines differently from the textbook.

9.9.1 Other types of splines
Figure 9.17 (page 396)

First, we will reproduce figure 9.17. We use ggeffects package here. Remember to install
it using install.packages as discussed in chapter 1.

lm(hdl ~ age + lspline(alcohol, knots = c(2,10,24)) ,
data = tbl_9_12) -> ls_9_12

library(ggeffects)
plot(ggpredict(ls_9_12, terms = c( "alcohol"))) +

labs( x = "Alcohol consumption (units/week)",
y = "HDL-cholesterol (mmol/l)")

We fit a piece wise linear spline regression of hdl on alcohol and age. We use lspline to split
alcohol according to the knots provided. The ggpredict function of ggeffects package
returns predicted values adjusted for the terms specified. Here, we get predicted values of
hdl adjusted for age for the alcohol use values of 0, 2, 10, 24 and 155. These values are the
extremes of the alcohol values and the knots we supplied. The result returned by ggpredict
is graphed by plot. The object returned by plot when it is passed the result of ggpredict
is a ggplott2 object. So, we may add layers as we do to a ggplot object. Here, we add labs
for axis labels.

Figure 9.18 (page 396)

The library splines is used for fitting splines. For natural splines we use ns from this
package.

library(splines)
lm(hdl ~ age + ns(alcohol, knots = c(10),Boundary.knots = c(2,24)),

data = tbl_9_12) -> ns_9_12
plot(ggpredict(ns_9_12, terms = c( "alcohol"))) +

labs(x = "Alcohol consumption (units/week)",
y = "HDL-cholesterol (mmol/l)")

The difference from our previous example is that instead of lspline, we use ns. The
arguments that ns require are similar to lspline – the variables name and the knots. The
additional argument required is Boundary.knots, which along with knots determine which
segments of the regression are linear. In our example, up to the value 2 and beyond the
value 24, it will be linear; 2 to 10 and 10 to 24 will be smooth.

The splines package also provides bs for B splines. The loess function from stats performs
local polynomial regression fitting.
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FIGURE 9.13
Replication of figure 9.17

9.10 Panel data
Example 9.19 (page 399)

There are different packages to perform generalised estimating equations. We will be using
geepack. Remember to install it using install.packages as discussed in chapter 1. First,
we need to prepare the data.

c(3.795,6.225,5.210,7.040,7.550,7.715,6.555,5.360,5.285,6.230,
6.475,5.680,5.490,9.865,4.625,7.480,4.970,6.710,4.765,6.695,
4.025,5.510,5.495,5.435,5.350,5.905,6.895,4.350,5.950,5.855,
5.410,5.220,4.700,4.215,5.395,7.475,4.925,7.115,7.020,5.365,
3.665,6.130,4.895,7.000) -> first

c(3.250,6.935,4.750,5.080,8.685,7.775,6.005,4.940,5.620,5.870,
6.620,5.635,5.080,9.465,4.120,6.955,5.100,7.480,4.530,6.160,
4.160,6.010,5.010,5.975,4.705,5.465,6.925,4.260,5.325,5.505,
5.280,5.175,4.815,3.610,5.705,6.580,5.190,6.150,6.395,5.805,
3.710,5.160,5.145,7.425) -> second



9.10 Panel data 159

FIGURE 9.14
Replication of figure 9.18

bind_cols(id = c(1:44,1:44),
time = c(rep(1,44), rep(2,44)),
chol = c(first, second)) -> tbl_2_15

We use bind_cols to prepare the data as mentioned in example 9.19.

library(geepack)
geeglm(chol ~ time,

id = id,
data = arrange(tbl_2_15, id, time),
corstr = "exchangeable") -> gee_9_19

summary(gee_9_19)

The arguments required by geeglm are similar to lm. The first argument required is a formula.
The second argument required is id, which should carry the cluster identifier. The data
frame should be sorted by this variable so that the observations on a cluster are contiguous.
We have sorted the table according to id variable and on time within each id value using
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arrange which is supplied to the data argument, the data frame from which to obtain
the variables of formula and id. The corstr is a string that determines the correlation
structure that will be used in the calculations. The result of geeglm supports the summary
and coefficient helper methods. Also, there is an anova method for geeglm objects. The
function QIC calculates QIC, QICu and other measures when a geeglm object is supplied.

Call:
geeglm(formula = chol ~ time, data = arrange(tbl_2_15, id, time),

id = id, corstr = "exchangeable")

Coefficients:
Estimate Std.err Wald Pr(>|W|)

(Intercept) 6.0114 0.2092 825.96 <2e-16 ***
time -0.1700 0.0833 4.17 0.041 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation structure = exchangeable
Estimated Scale Parameters:

Estimate Std.err
(Intercept) 1.52 0.382

Link = identity

Estimated Correlation Parameters:
Estimate Std.err

alpha 0.9 0.036
Number of clusters: 44 Maximum cluster size: 2

The coefficients returned by geeglm are similar to that in output 9.19. The associated p
values are also same.

Example 9.20 (page 400)

We rework the example 9.20 similarly.

read_table("./K11828 supplements/Datasets/Example 9.20.DAT",
col_names=c("id", "period", "group","med", "score"),
col_types = cols(id = col_number(),

period = col_factor(),
group = col_factor(),
med = col_factor(),
score = col_number())) -> data_7_5

geeglm(score ~ period * med, id = id,
data = arrange(data_7_5, id, period),
corstr = "exchangeable") -> gee_7_5_pm

geeglm(score ~ med, id = id,
data = arrange(data_7_5, id, period),
corstr = "exchangeable") -> gee_7_5_m
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coef(summary(gee_7_5_pm))
coef(summary(gee_7_5_m))

Estimate Std.err Wald Pr(>|W|)
(Intercept) 2.90327 0.167 3.00e+02 0.000
period2 0.00952 0.261 1.33e-03 0.971
med2 0.01102 0.258 1.82e-03 0.966
period2:med2 -0.30240 0.502 3.63e-01 0.547

Estimate Std.err Wald Pr(>|W|)
(Intercept) 2.908 0.1296 503.6 0.000
med2 -0.145 0.0978 2.2 0.138

Though the calculated coefficients are different from the textbook examples, p value of the
relevant term is essentially the same as in the textbook.

Example 9.21 (page 400)

We rework the example 9.21 in a similar fashion. We import the data first.

read_table("K11828 supplements/Datasets/Example 9.21.dat",
col_names = c("id","week","group","accept","flavour","change"),
col_types = cols(id = col_factor(),

week = col_double(),
group = col_factor(),
accept = col_double(),
flavour = col_double(),
change = col_logical()),

na = ".") -> tbl_9_21

We have used read_table to import the data as in our previous examples. We have used
one argument na that we haven’t used earlier. When the data contain specific string to mark
values that are not available, that string should be passed on to na. Here, we are telling R
that a period is used to mark values that are not available.

relevel(tbl_9_21$group, ref = "R") -> tbl_9_21$group
geeglm(accept ~ week * group,

id = id,
data = arrange(tbl_9_21, id, week),
corstr = "exchangeable") -> gee_9_21

summary(gee_9_21)

We change the reference level of the factor variable group from the default and build the
model object as we did in our previous examples.

Call:
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geeglm(formula = accept ~ week * group, data = arrange(tbl_9_21,
id, week), id = id, corstr = "exchangeable")

Coefficients:
Estimate Std.err Wald Pr(>|W|)

(Intercept) 51.727 2.714 363.18 <2e-16 ***
week 0.308 0.637 0.23 0.63
groupC 2.811 3.651 0.59 0.44
week:groupC 0.052 0.852 0.00 0.95
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation structure = exchangeable
Estimated Scale Parameters:

Estimate Std.err
(Intercept) 474 38.8

Link = identity

Estimated Correlation Parameters:
Estimate Std.err

alpha 0.334 0.067
Number of clusters: 109 Maximum cluster size: 6

Output 9.20 (page 401)

To obtain the output 9.20, we need to find the mean acceptability by week and treatment
groups.

tbl_9_21 |>
group_by(week, group) |>
summarise(meanAccept = mean(accept, na.rm = TRUE)) -> tbl_9_21_grouped

We group the data frame tbl_9_21 by the variables of interest using group_by and then
use summarise to calculate the mean. Note that we have supplied na.rm = TRUE to mean to
instruct it to remove the NA values before calculating the mean. We now use the summarised
data frame to build the model object.

lm(meanAccept ~ group * week, data = tbl_9_21_grouped)

Call:
lm(formula = meanAccept ~ group * week, data = tbl_9_21_grouped)

Coefficients:
(Intercept) groupC week groupC:week

5.20e+01 2.48e+00 2.67e-01 9.04e-04
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Base R provides interaction.plot that can be used to plot spaghetti plots. Here, we will
use ggplot.

ggplot() +
geom_line(aes(x = week, y = accept, group = id),

colour = "grey",
data = tbl_9_21) +

labs(x = "Week",
y = "Acceptability") +

geom_line( aes(x = week, y = meanAccept, colour = group),
size = 1,
data = tbl_9_21_grouped) +

scale_colour_manual(labels = c("Normal", "Reduced"),
values = c("black", "blue"),
name = "Salt")

We need geom_line to plot lines. We specify the aesthetics, y being the value of accept and
x being the value of week. The crucial aesthetic is group, for which we specify the value id.
Thus, ggplot will plot a different line for each set of rows with the same id. Note, that we
have specified colour as an argument to geom_line, but outside aes. This means that we
want the lines to be drawn with the specified colour, common for all lines. Contrast this
with the second geom_line, where colour is part of aes. This results in the lines being
drawn with different colours for different values of group. Similarly, size is specified outside
aes in the second geom_line. This results in both lines having similar thickness, but wider
than the lines plotted by the first geom_line.

We have used all the rows of tbl_9_21 in the first geom_line. If we want to restrict the
number of lines, we should use slice_head, slice_tail or slice_sample to select the
rows we desire to be displayed.

9.11 Non-normal alternatives
Example 9.22 (page 402)

The function to perform Kruskal Wallis test is kruskal.test. For the example 9.22, the
command is

kruskal.test(chol ~ diet, data = tbl_9_1)

The arguments accepted by kruskal.test is the same as anova or lm, viz. formula and
data.

Kruskal-Wallis rank sum test

data: chol by diet
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FIGURE 9.15
Spaghetti plot for example 9.21

Kruskal-Wallis chi-squared = 13, df = 2, p-value = 0.002

The calculated value of the Kruskal Wallis rank sum statistic and its p value are printed.
The p value we have is different from that in the textbook. I suspect that the book value is
an error.

We end this long chapter with a recap.

9.12 Recap
9.12.1 Concepts discussed in this chapter
• keyword
• attribute
• list
• piping
• comparison operators

• syntactic names
• quote
• identifiers
• nested data frames
• coercion
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9.12.2 Commands introduced in this chapter

• readr::col_double
• stats::lm
• stats::anova
• stats::oneway.test
• stats::aov
• stats::confint
• stats::relevel
• stats::TukeyHSD
• dplyr::filter
• ggplot2::theme_bw
• ggplot2::geom_smooth
• stats::predict
• stats::cor
• stats::cor.test
• base::exp
• car::Anova
• base::options
• emmeans::emmeans
• emmeans::pwpm
• emmeans::pairs
• stats::fitted
• ggplot2::ylim
• ggplot2::theme_minimal
• gridExtra::grid.arrange
• base::paste
• base::attr

• broom::tidy
• purrr::map_dfr
• stats::AIC
• broom::glance
• base::ifelse
• stringr::str_detect
• stats::update
• stats::step
• stats::residuals
• stats::rstandard
• sjmisc::rotate_df
• stats::aggregate
• dplyr::n
• tidyr::nest
• purrr::map_dbl
• dplyr::left_join
• base::I
• lspline::lspline
• ggeffects::ggpredict
• splines::ns
• splines::bs
• stats::loess
• geepack::geeglm
• dplyr::arrange
• stats::coef
• readr::col_logical
• stats::kruskal.test
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Modelling binary outcome data

The main function that we use in this chapter is glm, which requires arguments similar to lm.
In this chapter we use addon packages ggplot2, dplyr, readr, purrr all part of tidyverse,
Epi, broom, emmeans and gridExtra. We will start with example 10.4.

10.1 Interpretation of logistic regression coefficients
Example 10.4 (page 415)

The function to perform logistic regression is glm. First we will enter the data.

factor(c("yes", "no")) -> smoke
c(31 /(31 + 1386), 15 / (15+1883)) -> deaths
glm(deaths ~ smoke,

family = binomial(link ="logit")) -> lg_10_4

The explanatory variable, smoke is input as a factor and the response variable deaths is a
numerical vector carrying the proportion of success. We call glm with a formula, the left-hand
side of which is the response variable and right-hand side is the explanatory variable(s). We
need to specify a second parameter family, which should be one from a select group of
functions. Here we use binomial. The function specified as the argument for family should
be supplied an argument link. Though the default link for binomial is logit, here, we
explicitly state it for the sake of clarity. The argument specified as family is what makes this
call to glm a logistic regression. We will see other functions and link that can be supplied
to family later.

The regression model returned by glm is stored in lg_10_4 and inspected with suitable
helper functions as we saw earlier. To obtain the odds ratio of smokers versus non smokers,
we may use

exp(coef(lg_10_4)[2])

The function exp was used to exponentiate the value returned by coef.

smokeyes
2.8077
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However, if we use confint, we will see that R is unable to calculate a confidence interval
for the coefficients. This can be solved by changing the way the response variable is supplied.

matrix(c(31,1386,15,1883), byrow = TRUE, ncol = 2) -> deaths
glm(deaths ~ smoke, family = binomial(link ="logit")) -> lg_10_4

Now, we have constructed the response variable as a matrix with two columns, the first
column carrying the number of success and the second carrying the number of failures. We
call glm with this response matrix. Now, R is able to calculate confidence intervals, which
we can use directly or exponentiate to show confidence intervals of odds ratio.

exp(confint(lg_10_4)[2,])

2.5 % 97.5 %
1.5357 5.3641

We may use the coefficients to calculate risks as elaborated in our textbook. For example,
exp(sum(-(coef(lg_10_4)))) ˆ -1 calculates the risk for smokers. Though we will not
calculate the standard error of odds, we should be aware of vcov function which returns the
variance – covariance matrix of a regression model.

vcov(lg_10_4)

(Intercept) smokeyes
(Intercept) 0.067198 -0.067198
smokeyes -0.067198 0.100177

Example 10.5 (page 417)

Fitting logistic regression model for example 10.5 is similar to the previous example.

matrix(c(1, 251-1,12, 317-12,13,309-13,6,285-6,10,236-10,8,
254-8,10,277-10,12,278-12,10,285-10,14,276-14,15,
274-15,14,296-14,19,305-19,36,341-36,26,305-26,21,
276-21,28,325-28,41,302-41,38,260-38,49,302-49),

byrow = TRUE,
ncol =2) -> deaths

40:59 -> age
glm(deaths ~ age, family = binomial()) -> lg_10_5

We prepare the response variable as a two column matrix deaths and the explanatory variable
age as a numerical vector. We call glm using these variables in its formula argument while
specifying the family argument as binomial with the default value for link.
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We can calculate the odds ratio for men aged 59 relative to men aged 40 using

exp(coef(lg_10_5)[2] * (59-40))

age
8.4874

Similarly, the confidence interval for this odds ratio can be calculated using

exp(confint(lg_10_5)[2,] * (59-40))

2.5 % 97.5 %
5.7884 12.5733

Figure 10.4 (page 418)

To prepare the graphs shown in figure 10.4, we need to prepare a dataframe to pass on to
ggplot.

log(deaths[,1] / deaths[,2]) -> logit.obs
predict(lg_10_5) -> logit.fit
(deaths[,1] / (deaths[,1] + deaths[,2])) * 100 -> prcnt.obs
(( 1+ exp(-coef(lg_10_5)[1] -

(coef(lg_10_5)[2] * (40:59)))) ˆ -1) * 100 -> prcnt.fit
data.frame(age = 40:59, logit.obs,logit.fit,

prcnt.obs, prcnt.fit) -> data_10_5

The observed logit given the name logit.obs is calculated as the log of odds using the data
entered in deaths. The fitted logits is returned by predict when we call it with the regression
model which we store in logit.fit. The observed percentages is calculated from the data in
deaths and stored as prcnt.obs. The fitted percentages are calculated following the details
given in the textbook and stored in prcnt.fit. We join together these vectors and a vector of
ages into a data frame which we call as data_10_5. Now, we are in a position to plot the
graphs.

ggplot(data_10_5) +
geom_point(aes(x = age, y = logit.obs), shape = 16) +
geom_point(aes(x = age, y = logit.fit), shape = 4)

ggplot(data_10_5) +
geom_point(aes(x = age, y = prcnt.obs), shape = 16) +
geom_point(aes(x = age, y = prcnt.fit), shape = 4)
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Both the graphs are made similarly. We use ggplot, pass it data_10_5 as its data argument
and add geom_point twice – once for observed values and once for fitted values. We specify
shape outside aes so that all points in each geom are plotted with the shape of our choice.

FIGURE 10.1
Replication of figure 10.4(a)

FIGURE 10.2
Replication of figure 10.4(b)
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Example 10.6 (page 420)

Reworking example 10.6 is similar to the previous example.

matrix(c(10,38-10,40,86-40,36,57-36,226,
300-226,83,108-83,60,73-60),

byrow = TRUE,
ncol =2) -> hpylori

factor(c("I", "II", "IIIn", "IIIm", "IV", "V"),
levels = c("I", "II", "IIIn", "IIIm", "IV", "V")) -> s.class

glm(hpylori ~ s.class, family = binomial()) -> lg_10_6

summary(lg_10_6)

R fixes the first level of factors as zero. Hence, we get the result in table 10.11. We saw
relevel in the previous chapter which allows us to redefine the base level of a factor. We
will not demonstrate it again here. We specify the argument levels while constructing
s.class so that the display order of the factor level is as per our wish. Otherwise, R will
arrange factor levels alphabetically by sorting their labels.

Call:
glm(formula = hpylori ~ s.class, family = binomial())

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.030 0.368 -2.79 0.00519 **
s.classII 0.890 0.427 2.08 0.03723 *
s.classIIIn 1.569 0.459 3.41 0.00064 ***
s.classIIIm 2.146 0.392 5.47 4.4e-08 ***
s.classIV 2.230 0.433 5.15 2.7e-07 ***
s.classV 2.559 0.479 5.34 9.1e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.4435e+01 on 5 degrees of freedom
Residual deviance: 5.7732e-14 on 0 degrees of freedom
AIC: 40.07

Number of Fisher Scoring iterations: 3

Figure 10.5 (page 423)

To prepare the graph in figure 10.5, we need to prepare the data.
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as.data.frame(exp(cbind( lg_10_6$coefficients[-1],
confint(lg_10_6, level = 0.95)[-1,]))) -> data_10_6

as.data.frame(rbind(c(or =1, ll =NA, ul = NA),
rename(data_10_6,

ll = `2.5 %`,
ul = `97.5 %`,
or = `V1`))) -> data_10_6

ggplot(data_10_6) +
geom_pointrange(aes(x = s.class, y = or, ymin = ll, ymax = ul)) +
labs(x = "Social class",

y = "Odds ratio")

We use cbind to bind together the coefficients component of the model object and the result
returned by confint. We remove the values corresponding to the intercept by means of
negative subsetting before joining the two. We exponentiate the resultant values which is
then converted to a data frame using as.data.frame. Thus we get a dataframe with three
columns corresponding to the odds ratio and its confidence intervals. In the next step, we
add a row with only the value of or assigned to 1 and that of ul and ll assigned as NA to
data_10_6 obtained in the previous step. Before adding the new row, the awkward names
of the columns obtained by cbind are renamed. We then call ggplot with this dataframe.
We use geom_pointrange to draw the confidence interval.

FIGURE 10.3
Replication of figure 10.5
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Figure 10.6 (page 425)

To fit against the rank of social classes, we use a numerical vector as the explanatory variable.

s.rank <- 1:6
glm(hpylori ~ s.rank, family = binomial()) -> lgo_10_6

To fix the odds of the social class rank 1 as unity, we need to adjust the coefficients returned
by the regression model so that the coefficient of rank 1 is zero. We can then use the adjusted
values to prepare the graphs in figure 10.6

as.data.frame(cbind(lodd.adj = predict(lgo_10_6) +
(-1 * predict(lgo_10_6)[1]),

rank = 1:6)) -> data_10_6f

ggplot(data_10_6f) +
geom_line(aes(x = rank, y =lodd.adj)) +
labs(x = "Social class rank",

y = "Log odds ratio")

ggplot() +
xlim(1,6) +
geom_function(fun = function(x){exp(lgo_10_6$coefficients[2] * (x -1))}) +

labs(x = "Social class rank",
y = "Odds ratio")

We use predict to obtain the fitted values for all cases. We make a data frame by binding
together these values with the ranks. The resultant data frame is used to draw the graph
using ggplot and geom_line. For the second graph, we use geom_function and supply as
its argument fun, an anonymous function. This function will accept a value x corresponding
to the x axis values and return a corresponding value for the y axis. A smooth line joins the
points thus calculated. Our anonymous function uses the ordinal model coefficient, multiplies
its slope parameter with x minus 1. We deduct one from the rank as the reference for
calculating odds ratio is rank 1. The function xlim determines the range of the x axis of the
graph.

10.1.1 Floating absolute risks
The package Epi has a function float that implements floating absolute risks. Remember
to install it using install.packages as discussed in chapter 1.

library(Epi)
float(lg_10_6) -> far_10_6
est <- exp(far_10_6$coef)
ul <- exp(far_10_6$coef + (qnorm(1-0.05/2) * sqrt(far_10_6$var)))
ll <- exp(far_10_6$coef - (qnorm(1-0.05/2) *sqrt(far_10_6$var)))
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FIGURE 10.4
Replication of figure 10.6 (a)

FIGURE 10.5
Replication of figure 10.6 (b)

ggplot(cbind.data.frame(est,ul,ll)) +
geom_pointrange(aes(x = s.class, y = est,ymin = ll, ymax = ul)) +
labs(x = "Social class",

y = "Odds ratio")

The argument that we provide to float is the fitted model. If there are multiple explanatory
variables in the model, we need to specify factor, the variable for which floating absolute
risks need to be calculated. The result returned by float is a list, of which we use coef and
var to calculate the FAR odds ratios and their confidence interval by adding and subtracting
the product of standard error and appropriate values returned by qnorm from the FAR



174 10 Modelling binary outcome data

estimates. All these values are exponentiated to convert to odds ratio. These are then bound
together using cbind.data.frame while calling ggplot to use geom_pointrange to plot the
data.

FIGURE 10.6
Replication of figure 10.7

10.2 Generic data
Example 10.10 (page 427)

To fit the generic data of example 10.10, we will import the data first.

read_table("K11828 supplements/Datasets/Example 10.10.DAT",
col_names = c("age", "death"),
col_types = cols(death = col_factor())) ->tbl_10_10

glm(death ~ age, tbl_10_10, family = binomial()) -> lg_10_10



10.3 Multiple logistic regression models 175

The call to glm is no different when data is given in generic form.

summary(lg_10_10)

We can see that R uses a standard normal test when we pass the model object to summary.

Call:
glm(formula = death ~ age, family = binomial(), data = tbl_10_10)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.4056 0.5507 -15.3 <2e-16 ***
age 0.1126 0.0104 10.8 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2815.5 on 5753 degrees of freedom
Residual deviance: 2683.7 on 5752 degrees of freedom
AIC: 2688

Number of Fisher Scoring iterations: 6

10.3 Multiple logistic regression models
Example 10.11 (page 428)

To rework the example 10.11, we need the data.

matrix(c(1,190-1,0,183,4,178-4,8,157-8,4,132-4,2,203-2,2,175-2,
6,167-6,10,166-10,11,137-11,5,173-5,9,176-9,9,181-9,
8,167-8,11,164-11,5,139-5,3,156-3,10,154-10,13,174-13,
16,174-16,5,123-5,8,123-8,12,144-12,13,179-13,23,180-23),

byrow = TRUE,
ncol = 2) -> chd

gl(5,1,25,
labels = c("<=5.41","5.42-6.01","6.02-6.56","6.57-7.31",">7.31")) -> chol

gl(5,5,25,
labels = c("<=118", "119-127","128-136","137-148",">148")) -> sbp

glm(chd ~ chol + sbp, family = binomial()) -> lg_10_11
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As the data is grouped, we type in the CHD data of table 10.14 as a matrix with two
columns. The corresponding values for cholesterol group and systolic BP group are built
as factors using gl. The first argument that gl requires is the number of levels that the
factor has. In our case, both chol and sbp have five levels. The next argument specifies the
number of replications, the number of times each level has to be replicated. In the case of
chol, the adjacent values in chd correspond to different cholesterol groups. So, we specify
the number of replications as one. In the case of sbp, five adjacent values of chd belong to
the same systolic blood pressure group. So, the number of replications required to build sbp
is five. The third argument is the length of the vector required. For both chol and sbp, we
need 25. For sbp, the length calculated from the first two arguments is what we require and
so there really is no need to specify length. The argument labels is optional. We supply a
character vector containing the display label for each level of the factor. Building the model
object using glm is no different from the previous examples.

Instead of calculating the logit, odds and relative risks for specific examples, we will calculate
them for all combinations of the explanatory variables.

data.frame(chol, sbp,
logit = predict(lg_10_11,

newdata = data.frame(chol,sbp))) -> pred_10_11

We build a data frame using data.frame, which joins together its arguments into one data
frame. We provide chol, sbp and another vector returned by predict to be named as logit. As
we saw earlier, predict will return predicted values for the values of explanatory variables
we supply based on its first argument, a model object. The values of explanatory variables
need to be provided as a dataframe with the same column names as in the model object.
Here, we join together chol and sbp. Thus, the data frame supplied to predict contains all
combinations of both explanatory variables. We store the data frame obtained by joining
the values returned by predict and sbp and chol with the name pred_10_11.

We may now use mutate to calculate odds and risk ratios from the logit values.

pred_10_11 |>
mutate(odds = exp(logit),

risk = (1 + exp(abs(logit))) ˆ -1 ) -> pred_10_11
pred_10_11

chol sbp logit odds risk
1 <=5.41 <=118 -4.5995 0.010057 0.0099569
2 5.42-6.01 <=118 -4.3906 0.012394 0.0122421
3 6.02-6.56 <=118 -3.7766 0.022901 0.0223879
4 6.57-7.31 <=118 -3.5929 0.027518 0.0267811
5 >7.31 <=118 -3.3038 0.036743 0.0354409
6 <=5.41 119-127 -3.9903 0.018494 0.0181578
7 5.42-6.01 119-127 -3.7814 0.022791 0.0222829
8 6.02-6.56 119-127 -3.1674 0.042111 0.0404095
9 6.57-7.31 119-127 -2.9838 0.050602 0.0481650
10 >7.31 119-127 -2.6947 0.067566 0.0632897
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11 <=5.41 128-136 -3.7297 0.023999 0.0234367
12 5.42-6.01 128-136 -3.5208 0.029576 0.0287260
13 6.02-6.56 128-136 -2.9068 0.054648 0.0518161
14 6.57-7.31 128-136 -2.7232 0.065667 0.0616201
15 >7.31 128-136 -2.4341 0.087680 0.0806122
16 <=5.41 137-148 -3.5698 0.028161 0.0273898
17 5.42-6.01 137-148 -3.3609 0.034705 0.0335406
18 6.02-6.56 137-148 -2.7469 0.064125 0.0602606
19 6.57-7.31 137-148 -2.5632 0.077054 0.0715418
20 >7.31 137-148 -2.2741 0.102886 0.0932879
21 <=5.41 >148 -3.2570 0.038504 0.0370767
22 5.42-6.01 >148 -3.0481 0.047451 0.0453015
23 6.02-6.56 >148 -2.4341 0.087677 0.0806093
24 6.57-7.31 >148 -2.2504 0.105355 0.0953136
25 >7.31 >148 -1.9613 0.140674 0.1233256

Now, getting the logit, odds or risk of any combination is easy.

subset(pred_10_11, chol==">7.31" & sbp==">148")

The function subset returns a subset of its first argument that satisfies the logical condition
given as the second argument. We joined the two parts of our logical condition using &.
subset supports an argument select which can be used to restrict the columns printed, if
required.

chol sbp logit odds risk
25 >7.31 >148 -1.9613 0.14067 0.12333

Calculating odds ratios and risk ratios are also easy.

subset(pred_10_11, chol==">7.31" & sbp==">148")[["odds"]] /
subset(pred_10_11, chol=="<=5.41" & sbp=="<=118")[["odds"]]

subset(pred_10_11, chol==">7.31" & sbp==">148")[["risk"]] /
subset(pred_10_11, chol=="<=5.41" & sbp=="<=118")[["risk"]]

We use subset to obtain the row of our interest. Then we use [[ and ]] to get the numerical
value inside the column of our interest. If we use the select argument of subset, a dataframe
with the numerical value is returned, which we cannot use in division. Similarly, if we use
single square bracket [ and ], we get a dataframe. Subsetting using double square brackets
[[ ]] is essential when we want to get the value inside a component of lists, dataframe
included.

[1] 13.988
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[1] 12.386

We will not discuss confidence intervals now.

Example 10.12 (page 431)

We import the relevant data to rework the example 10.12.

read_table("K11828 supplements/Datasets/Example 10.12.DAT",
col_names = c("age", "chol", "bmi", "sbp",

"smoke", "active", "chd", "nmbr"),
col_types = cols( smoke = col_factor(levels = c("1","2","3")),

active = col_factor(levels = c("1","2","3")),
chd = col_factor(levels = c("0","1")),
nmbr = col_skip())) -> data_10_12

glm(chd ~ age + chol + bmi + sbp + smoke + active,
data = data_10_12,
family = binomial()) -> lg_10_12

We have asked R to import the data treating smoke, active and chd as factors. We have
specified the levels of the factor within col_factor. As we don’t want the final column, we
use col_skip to avoid importing it.

coef(lg_10_12)

We use coef to print the parameter estimates to confirm that they are the same as in the
textbook.

(Intercept) age chol bmi sbp smoke2
-10.107560 0.017105 0.307075 0.041656 0.020390 0.322548

smoke3 active2 active3
0.729598 -0.190420 -0.101058

To calculate the logit for different values of the explanatory variables, we can multiply the
vector of parameter estimates by a vector with the values of explanatory variables given in
the same sequence and add them up.

sum(coef(lg_10_12) * c(1,50,6,25,125,1,0,0,0))

Note that we multiply the value of intercept with one. Only that level of a factor which
applies is multiplied with one and others with zero. The logit for a 50 year old active
ex-smoker with cholesterol 6.0 units and systolic BP 125 units agree with the textbook value
except for rounding error.

[1] -3.4972
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10.4 Tests of hypothesis
Section 10.7.1 (page 433)

The deviance of a model is obtained using deviance.

deviance(lg_10_12)

[1] 1481.3

The model deviance degrees of freedom is obtained using df.residual.

df.residual(lg_10_12)

[1] 4040

The p value of the goodness of fit chi square test can be obtained using the values returned
by these functions.

pchisq(deviance(lg_10_5),
df.residual(lg_10_5),
lower.tail = FALSE)

[1] 0.16062

The Hosmer-Lemeshaw goodness of fit test for generic data is available through
HosmerLemeshowTest function of DescTools.

Example 10.13 (page 436)

To rework the example 10.13, we need to fit the null model.

glm(hpylori ~ 1, family = binomial()) -> lg_10_6_null
glm(hpylori ~ s.class, family = binomial()) -> lg_10_6_full

deviance(lg_10_6_null) - deviance(lg_10_6_full) -> ddev_f_n
df.residual(lg_10_6_null) - df.residual(lg_10_6_full) -> ddf_f_n

We calculate the difference in deviance and difference in degrees of freedom between the two
models and use those values to calculate the p value of chi square test.



180 10 Modelling binary outcome data

pchisq(ddev_f_n, ddf_f_n, lower.tail = FALSE)

[1] 1.4679e-12

It is easier to obtain the p value of chi square goodness of fit test using anova.

anova(lg_10_6_null,lg_10_6_full, test = "Chisq")

Analysis of Deviance Table

Model 1: hpylori ~ 1
Model 2: hpylori ~ s.class

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 5 64.4
2 0 0.0 5 64.4 1.5e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example 10.14 (page 437)

To rework the example 10.14, we build the models to be considered.

glm(chd ~ 1, family = binomial()) -> lg_10_11_null
glm(chd ~ sbp, family = binomial()) -> lg_10_11_sbp
glm(chd ~ chol, family = binomial()) -> lg_10_11_chol
glm(chd ~ chol + sbp, family = binomial()) -> lg_10_11_full
anova(lg_10_11_null, lg_10_11_sbp,lg_10_11_chol, lg_10_11_full,

test = "Chisq")

The analysis of deviance table is constructed by anova from all the model objects passed
to it. Note that, models are compared only with the preceding. As the third model is not
nested in the second, they are not compared.

Analysis of Deviance Table

Model 1: chd ~ 1
Model 2: chd ~ sbp
Model 3: chd ~ chol
Model 4: chd ~ chol + sbp

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 24 94.6
2 20 56.7 4 37.8 1.2e-07 ***
3 20 49.5 0 7.3
4 16 18.9 4 30.6 3.7e-06 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Further analysis as given in table 10.21 needs to be done separately for each comparison.
For example,

pchisq(deviance(lg_10_11_null) - deviance(lg_10_11_sbp),
df.residual(lg_10_11_null) - df.residual(lg_10_11_sbp),
lower.tail = FALSE)

Here we calculated the p value of the goodness of fit chi square test using the difference in
deviance of the model with systolic blood pressure from the null model, corresponding to
the first row of table 10.21.

[1] 1.2052e-07

Probably, it is easier to specify two anova commands.

anova(lg_10_11_null, lg_10_11_sbp, lg_10_11_full, test = "Chisq")
anova(lg_10_11_null, lg_10_11_chol, lg_10_11_full, test = "Chisq")

Analysis of Deviance Table

Model 1: chd ~ 1
Model 2: chd ~ sbp
Model 3: chd ~ chol + sbp

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 24 94.6
2 20 56.7 4 37.8 1.2e-07 ***
3 16 18.9 4 37.9 1.2e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Deviance Table

Model 1: chd ~ 1
Model 2: chd ~ chol
Model 3: chd ~ chol + sbp

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 24 94.6
2 20 49.5 4 45.1 3.8e-09 ***
3 16 18.9 4 30.6 3.7e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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We will not rework the example 10.15 as the steps involved are as in the previous examples.
The functions AIC, BIC and step that we saw in the previous chapter can be used to calculate
the information criteria and for automatic model selection.

Example 10.17 (page 441)

We now turn to example 10.17. We will calculate the p value for the test of non linearity
and for linear trend.

glm(hpylori ~ 1, family = binomial()) -> lg_10_6_null
glm(hpylori ~ s.class, family = binomial()) -> lg_10_6_full
glm(hpylori ~ s.rank, family = binomial()) -> lg_10_6_ord

anova(lg_10_6_null, lg_10_6_ord, lg_10_6_full, test = "Chisq")
anova(lg_10_6_null,lg_10_6_full, test = "Chisq" )

The calculation is no different from the previous examples and yield the values in table
10.25.

Analysis of Deviance Table

Model 1: hpylori ~ 1
Model 2: hpylori ~ s.rank
Model 3: hpylori ~ s.class

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 5 64.4
2 4 6.5 1 58.0 2.7e-14 ***
3 0 0.0 4 6.5 0.17
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Analysis of Deviance Table

Model 1: hpylori ~ 1
Model 2: hpylori ~ s.class

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 5 64.4
2 0 0.0 5 64.4 1.5e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example 10.18 (page 441)

To rework the example 10.18, we need to build model objects with polynomial effects.

glm(hpylori ~ poly(s.rank, degree = 2), family = binomial()) -> lg_10_6_p2
glm(hpylori ~ poly(s.rank, degree = 3), family = binomial()) -> lg_10_6_p3
glm(hpylori ~ poly(s.rank, degree = 4), family = binomial()) -> lg_10_6_p4
glm(hpylori ~ poly(s.rank, degree = 5), family = binomial()) -> lg_10_6_p5
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We use the function poly as the right-hand side of the formula in all our model specifications
above. The function poly expands the variable to power terms to the degree specified. Thus
poly(s.rank, degree = 2) is equivalent to s.rank1 + s.rank2.

anova(lg_10_6_null,lg_10_6_ord, lg_10_6_p2,
lg_10_6_p3, lg_10_6_p4, lg_10_6_p5,
test = "Chisq")

The anova table prepared using the polynomial models give results similar to that in table
10.26.

Analysis of Deviance Table

Model 1: hpylori ~ 1
Model 2: hpylori ~ s.rank
Model 3: hpylori ~ poly(s.rank, degree = 2)
Model 4: hpylori ~ poly(s.rank, degree = 3)
Model 5: hpylori ~ poly(s.rank, degree = 4)
Model 6: hpylori ~ poly(s.rank, degree = 5)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 5 64.4
2 4 6.5 1 58.0 2.7e-14 ***
3 3 0.7 1 5.8 0.016 *
4 2 0.7 1 0.0 0.835
5 1 0.2 1 0.4 0.510
6 0 0.0 1 0.2 0.638
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Output 10.2 (page 443)

To make the table in output 10.2, we will use the broom library.

library(broom)
tidy(lg_10_12, conf.int = TRUE) |>

mutate(chisqr = (estimate / std.error) ˆ 2,
`Pr > ChiSq` = pchisq(chisqr,1, lower.tail = FALSE))

We use tidy to get a neat dataframe of the data returned by summary when a model object
is passed to it. The argument conf.int is specified as TRUE so that we get the confidence
intervals. We add two columns to the data frame returned by tidy to calculate the value of
chi square and its probability according to the formula given by the textbook. Note that the
p value returned by the chi square test and the normal test done by default are the same.

# A tibble: 9 x 8
term estimate statistic p.value conf.low conf.high chisqr `Pr > ChiSq`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
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1 (Inte~ -10.1 -10.1 3.81e-24 -1.21e+1 -8.17 103. 3.81e-24
2 age 0.0171 1.25 2.10e- 1 -9.56e-3 0.0439 1.57 2.10e- 1
3 chol 0.307 5.14 2.68e- 7 1.89e-1 0.424 26.5 2.68e- 7
4 bmi 0.0417 1.95 5.13e- 2 -7.94e-4 0.0830 3.80 5.13e- 2
5 sbp 0.0204 5.33 9.81e- 8 1.28e-2 0.0278 28.4 9.81e- 8
6 smoke2 0.323 1.29 1.98e- 1 -1.62e-1 0.825 1.66 1.98e- 1
7 smoke3 0.730 3.33 8.72e- 4 3.16e-1 1.18 11.1 8.72e- 4
8 activ~ -0.190 -1.06 2.90e- 1 -5.37e-1 0.170 1.12 2.90e- 1
9 activ~ -0.101 -0.433 6.65e- 1 -5.65e-1 0.353 0.187 6.65e- 1

Table 10.27 (page 445)

To prepare table 10.27, we need to exponentiate the coefficients of the relevant model.

cbind.data.frame(unadjusted = exp(coef(lg_10_11_chol))[2:5],
adjusted = exp(coef(lg_10_11_full))[2:5])

We have used coef to obtain the coefficients, passed it on to exp to exponentiate the
coefficients and subset the relevant values. We build a data frame by using cbind.data.frame
and passing to it the exponentiated coefficients from the two models we are comparing.

TABLE 10.1
Replication of table 10.27

Odds ratio

Serum total cholesterol fifth Unadjusted Adjusted
chol5.42-6.01 1.2516 1.2324
chol6.02-6.56 2.3563 2.2771
chol6.57-7.31 2.9583 2.7362
chol>7.31 4.0512 3.6535

10.5 Interaction
Example 10.22 (page 446)

Building a model with interaction terms is similar to previous examples. First, the data.

matrix(c(57,1022,56,918,39,927,46,1022,
30,915,20,1081,10, 1066,10,938),

byrow= TRUE,
ncol = 2) -> chd

factor(rep(c("<=144", "145-169", "170-194", ">=194"),2)) -> bortner
factor(c(rep("male",4), rep("female",4))) -> sex
glm(chd ~ 1, family = binomial()) -> lg_10_22_null
glm(chd ~ bortner, family = binomial()) -> lg_10_22_bort
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glm(chd ~ sex , family = binomial()) -> lg_10_22_sex
glm(chd ~ bortner + sex, family = binomial()) -> lg_10_22_bs
glm(chd ~ bortner * sex, family = binomial()) -> lg_10_22_bsi

anova(lg_10_22_null, lg_10_22_bort,lg_10_22_bs, lg_10_22_bsi,
test = "Chisq")

We use a two column matrix as our response variable chd. The explanatory variables are
factors with length as much as the number of rows in the explanatory variable. We call
glm to build the appropriate model objects. The formula used to specify interaction uses *
between the variables of interest. There is no need to build the dummy variables ourselves.
Using anova, we build the anova table. We haven’t included the “Bortner given sex” row
from table 10.32. We should use a separate anova command if we wish to calculate that too.
Note that though we call anova with four models, it is sufficient to call anova with just the
last model.

Analysis of Deviance Table

Model 1: chd ~ 1
Model 2: chd ~ bortner
Model 3: chd ~ bortner + sex
Model 4: chd ~ bortner * sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 7 86.6
2 4 72.5 3 14.1 0.0027 **
3 3 8.1 1 64.3 1e-15 ***
4 0 0.0 3 8.1 0.0431 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 10.34 (page 448)

We will use predict to build table 10.34.

data.frame(bortner, sex,
odds = exp(predict(lg_10_22_bsi,

newdata = data.frame(bortner,
sex)))) -> pred_10_22

cbind.data.frame(Bortner = c("<=144", "145-169", "170-194", ">=194"),
Males = subset(pred_10_22,sex == "male")[["odds"]] /

subset(pred_10_22,
bortner =="<=144" &sex == "male")[["odds"]],

Females = subset(pred_10_22,
sex == "female")[["odds"]] /

subset(pred_10_22,
bortner =="<=144" &sex == "female")[["odds"]])
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We build a data frame using the exponentiated values returned by predict when it is passed
a data frame containing all combinations of bortner and sex. To calculate odds ratio, we
subset the two sexes separately and then divide them with the reference values. We collect
the result in an unnamed data frame for printing.

TABLE 10.2
Replication of table 10.34

Sex

Bortner quarter Male Female
<=144 1.00000 1.00000
145-169 1.09376 0.56429
170-194 0.75433 0.28612
>=194 0.80702 0.32516

We may use tidy(lg_10_22_bsi, conf.int = 0.95) to get an output similar to output
10.3 except that rows with estimate zero won’t be printed.

Example 10.23 (page 449)

We now turn to example 10.23. First, we need the data.

read_table("K11828 supplements/Datasets/Example 10.23.DAT",
col_names = c("sex", "bscore", "bqrtr", "chd", "survive"),
col_types = cols(sex = col_factor(levels = c("1","2")),

bqrtr = col_factor(levels = c("1","2","3","4")),
chd = col_factor(levels = c("0","1")))

) -> data_10_23
glm(chd ~ bscore * sex,

data = data_10_23,
family = binomial()) -> lg_10_23

anova(lg_10_23, test = "Chisq")

When we import the data, we need to specify which of the variables are factors. We fit only
the full model as in the previous examples. We pass that model to anova to build the anova
table. If we need the missing rows, we need to build the model with the predictors in the
alternate order and pass it to anova.

Analysis of Deviance Table

Model: binomial, link: logit

Response: chd

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 8156 2358
bscore 1 10.3 8155 2348 0.0013 **
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sex 1 64.5 8154 2283 9.5e-16 ***
bscore:sex 1 8.5 8153 2275 0.0036 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Output 10.4 (page 451)

We may use summary or tidy to build the output 10.4

tidy(lg_10_23, conf.int = TRUE)

# A tibble: 4 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -2.59 0.301 -8.61 7.59e-18 -3.19 -2.01
2 bscore -0.00231 0.00177 -1.31 1.90e- 1 -0.00577 0.00115
3 sex2 0.627 0.582 1.08 2.82e- 1 -0.533 1.75
4 bscore:sex2 -0.0106 0.00364 -2.92 3.47e- 3 -0.0177 -0.00349

Though the coefficients have values different from output 10.4, the calculated logits are
similar to output 10.4. The difference is due to the different reference level used for sex.

Changing the reference level of a factor is easy as we saw in an earlier example. We will
rebuild the model after changing the reference level of sex.

relevel(data_10_23$sex, ref = 2) -> data_10_23$sex
tidy(glm(chd ~ bscore * sex,

data = data_10_23,
family = binomial()),

conf.int = TRUE)

# A tibble: 4 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -1.96 0.498 -3.94 0.0000806 -2.97 -1.02
2 bscore -0.0129 0.00318 -4.07 0.0000470 -0.0192 -0.00669
3 sex1 -0.627 0.582 -1.08 0.282 -1.75 0.533
4 bscore:sex1 0.0106 0.00364 2.92 0.00347 0.00349 0.0177

When the reference level is 2, the code for females, the coefficients for sex equals 2 is zero.
Hence, the coefficient for the interaction term involving sex equals 2 is also zero. Thus
the only coefficient contributing towards logit is bscore and the intercept. The intercept’s
value gets cancelled and thus only bscore becomes relevant to calculating the logit and its
confidence interval. Thus, we need to use the confidence interval of bscore alone as the
confidence interval of logits for the sex that was used as the reference level.
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10.6 Dealing with a quantitative explanatory variable
Example 10.24 (page 454)

To categorise continuous variables, we need cut. In addition to the vector carrying the
continuous variable, it accepts a break argument, which is a vector containing the boundary
values for the categories. There are additional logical arguments right which determines
whether the intervals are closed on the right or not and include.lowest which determines
whether the value that equals the open boundary should be included or not.

cut(data_10_12$sbp,
quantile(data_10_12$sbp, probs = seq(0, 1, 0.25)),
include.lowest = TRUE) |> table()

We provide to cut, the vector containing the systolic blood pressure. We calculate the
quantiles of the same vector using quantile and provide them as the breaks argument of
cut. To calculate the values of the quantiles, quantile needs an argument probs, which
we supply as the sequence from 0 to 1 at steps of 0.25. As, the vector of values returned
by quantile includes the minimum and because cut will not include the lowest value
in a category by default, we say include.lowest=TRUE. Finally, the vector thus cut into
categories is piped into table to confirm that the results we get are consistent with that in
table 10.36.

[82,121] (121,131] (131,143] (143,233]
1083 960 995 1011

To categorise the vector according to the quarters defined by events, all we need is change
the breakpoints. We can obtain the quartiles if we filter the data to include only those
rows with the value 1 in the chd column.

quantile(filter(data_10_12,chd == 1)$sbp,
probs = seq(0, 1, 0.25))

0% 25% 50% 75% 100%
97 128 138 151 210

However, the minimum and the maximum returned by quantile is affected by the restriction
caused by filtering of the rows. Thus, the minimum and maximum returned doesn’t apply
to the whole data set. So, we need to specify the breaks manually incorporating the values
returned by quantile changing the minimum and maximum to reflect that of the entire
dataset.

cut(data_10_12$sbp,
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c(82,128,138,151,233),
include.lowest = TRUE) |> table()

The result we get is different from that in table 10.37. I suspect that there has been a mistake
in the textbook.

[82,128] (128,138] (138,151] (151,233]
1765 934 757 593

10.6.1 Linear spline model
To fit the linear spline model, we will use lspline. Remember to install it using
install.packages as discussed in chapter 1.

Example 10.25 (page 455)

glm(chd ~ lspline(sbp , knots = c(121,131,143)),
family = binomial(),
data = data_10_12) -> ls_10_25

glm(chd ~ lspline(sbp , knots = c(121,131,143), marginal = TRUE),
family = binomial(),
data = data_10_12) -> ls_10_25_m

tidy(ls_10_25)
tidy(ls_10_25_m)

Similar to what we saw in the previous chapter, we use lspline as the right-hand side of the
model formula. We provide lspline with the knots we want; as a numeric vector. We build
two models, the first one where the coefficients represent the slope of each segment of the
linear spline. In the second model, which is specified with marginal=TRUE, the intercept as
well as the first slope coefficient are the same as in the first model. However, the subsequent
coefficients are change in slope compared with the previous. If we desire a joint table like
10.38, we can combine together the coefficients of the two models using cbind, either directly
or after tidying it.

# A tibble: 5 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -1.03e+1 3.89 -2.64 0.00830
2 lspline(sbp, knots = c(121, 131, 143~ 5.69e-2 0.0333 1.71 0.0876
3 lspline(sbp, knots = c(121, 131, 143~ 4.76e-2 0.0325 1.46 0.143
4 lspline(sbp, knots = c(121, 131, 143~ 8.21e-3 0.0218 0.376 0.707
5 lspline(sbp, knots = c(121, 131, 143~ 2.03e-2 0.00704 2.88 0.00392
# A tibble: 5 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -1.03e+1 3.89 -2.64 0.00830
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2 lspline(sbp, knots = c(121, 131, 143~ 5.69e-2 0.0333 1.71 0.0876
3 lspline(sbp, knots = c(121, 131, 143~ -9.29e-3 0.0574 -0.162 0.871
4 lspline(sbp, knots = c(121, 131, 143~ -3.94e-2 0.0490 -0.803 0.422
5 lspline(sbp, knots = c(121, 131, 143~ 1.21e-2 0.0261 0.464 0.643

Figure 10.10 (page 456)

To prepare the graph in figure 10.10, we need to prepare the data first. The dataframes that
we use to build the model objects can’t be used directly for preparing the graphs as they
don’t have a column of logit. Thus, our first step is to add the logit and its upper and lower
bounds to the dataframes.

cbind.data.frame(data_10_12,
predict(glm(chd ~ sbp,

data = data_10_12,
family = binomial()),

se.fit = TRUE)) |>
mutate (uci = fit + (1.96 * se.fit),

lci = fit - (1.96 * se.fit)) -> pred_lg_10_25sbp

cbind.data.frame(data_10_12,
predict(glm(chd ~ cut(data_10_12$sbp,

breaks = c(50,121,143,250)),
data = data_10_12,
family = binomial()),

se.fit = TRUE)) |>
mutate (uci = fit + (1.96 * se.fit),

lci = fit - (1.96 * se.fit)) -> pred_lg_10_25cut

cbind.data.frame(data_10_12,
predict(glm(chd ~ lspline(sbp,knots = c(100,120,140,160)),

family = binomial(),
data = data_10_12),

se.fit = TRUE)) |>
mutate (uci = fit + (1.96 * se.fit),

lci = fit - (1.96 * se.fit)) -> pred_ls_10_25cli

cbind.data.frame(data_10_12,
predict(ls_10_25, se.fit = TRUE)) |>

mutate (uci = fit + (1.96 * se.fit),
lci = fit - (1.96 * se.fit)) -> pred_ls_10_25qrt

In the first four commands, we use predict to get the calculated logit for each row of the
dataframe. The function predict requires a model object as its argument. Where we haven’t
saved a model object, we build the model object inside predict by specifying the call to glm
as its model object argument. We also specify se.fit=TRUE so that predict returns the
standard error as well. We use cbind.data.frame to bind together the original dataframe
with the data returned by predict. Then, we use mutate to build two new columns to
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store the value of the upper and lower confidence interval of the predicted logit. We do this
by adding and subtracting 1.96 times the standard error to /from the predicted logit. We
store the dataframes thus prepared with suitable names so that we may use them in calls to
ggplot.

ggplot(pred_ls_10_25qrt, aes(y = fit, x = sbp)) +
geom_ribbon(aes(ymin =lci, ymax = uci),

fill = "blue",
alpha = 0.25) +

geom_line() +
labs(x = "Systolic blood pressure (mmHg)",

y = "Logit",
title = "Spline with knots at quartiles") -> plot_ls_10_25qrt

ggplot(pred_lg_10_25sbp, aes(y = fit, x = sbp)) +
geom_ribbon(aes(ymin =lci, ymax = uci),

fill = "blue",
alpha = 0.25) +

geom_line() +
labs(x = "Systolic blood pressure (mmHg)",

y = "Logit",
title = "Linear") -> plot_ls_10_25sbp

ggplot(pred_lg_10_25cut, aes(y = fit, x = sbp)) +
geom_ribbon(aes(ymin =lci, ymax = uci),

fill = "blue",
alpha = 0.25) +

geom_line()+
ylim(-8,0) +
labs(x = "Systolic blood pressure (mmHg)",

y = "Logit",
title = "Categorical by quarter")-> plot_ls_10_25cut

ggplot(pred_ls_10_25cli, aes(y = fit, x = sbp)) +
geom_ribbon(aes(ymin =lci, ymax = uci),

fill = "blue",
alpha = 0.25) +

geom_line()+
ylim(-8,0) +
labs(x = "Systolic blood pressure (mmHg)",

y = "Logit",
title = "Spline with chosen knots" ) -> plot_ls_10_25cli

library(gridExtra)
grid.arrange(plot_ls_10_25sbp, plot_ls_10_25cut,

plot_ls_10_25cli, plot_ls_10_25qrt)
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We call ggplot with the data frames we prepared. Each ggplot call asks for two geoms –
geom_ribbon to create the confidence interval and geom_line to create the estimate. We
provide alpha=0.25 to geom_ribbon so that it is drawn with a translucent colour. We
use ylim to ensure that all the four graphs have the same vertical extent. The horizontal
range is the same because the same variable sbp is used for all the graphs. Finally, we use
grid.arrange to make a composite graph from the individual graphs we prepared.

FIGURE 10.7
Replication of figure 10.10

Figure 10.11 (page 458)

Figure 10.11 is made in a similar way except that one model is laid over the other.

read_table("K11828 supplements/Datasets/Example 10.26.dat",
col_names = c("egfr", "stroke"),
col_types = cols(`stroke` = col_factor(levels = c("0", "1")))
) -> data_10_26

glm(stroke ~ egfr,
data = data_10_26,
family = binomial()) -> lg_10_26

glm(stroke ~ lspline(egfr, knots = quantile(data_10_26$egfr, c(1/3, 2/3))),
data = data_10_26,
family = binomial()) -> ls_10_26

glm(stroke ~ lspline(egfr,
knots = quantile(data_10_26$egfr,c(1/3, 2/3)),
marginal =TRUE),

data = data_10_26,
family = binomial()) -> ls_10_26m

cbind.data.frame(data_10_26,
predict(ls_10_26, se.fit = TRUE)) |>

mutate(ucils = fit + (1.96 * se.fit),
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lcils = fit - (1.96 *se.fit)) -> pred_10_26ls

cbind.data.frame(data_10_26,
predict(lg_10_26, se.fit = TRUE)) |>

mutate(ucilg = fit + (1.96 * se.fit),
lcilg = fit - (1.96 *se.fit)) -> pred_10_26lg

ggplot(pred_10_26ls) +
geom_ribbon(aes(x=egfr, ymin = lcils, ymax = ucils),

alpha = 0.25) +
geom_line(aes(x=egfr, y = fit)) +
geom_line(aes(x=egfr, y = fit),

data = pred_10_26lg,
colour = "#004B73")+

geom_line(aes(x=egfr, y = ucilg),
data = pred_10_26lg,
colour = "#004B73",
linetype = 3) +

geom_line(aes(x=egfr, y = lcilg),
data = pred_10_26lg,
colour = "#004B73",
linetype = 3) +

labs(x = "eGFR (ml/min/1.73mˆ2",
y = "Logit")

We import data and build the model objects for example 10.26 as we did in the previous
examples. We prepare two dataframes with the predicted values from the two models. While
we could have combined the two, there will be conflict in the columns returned by predict.
When we call ggplot, we first draw geom_ribbon. Otherwise, it will draw over the other
lines and obscure them. When we call geom_line to draw the linear model, we provide it
with a data argument to override that given in the ggplot call. We also specify line types
and colours for the lines.

10.7 Model checking
Example 10.27 (page 460)

R provides helper functions to obtain the various residuals.

hatvalues(lg_10_5)
residuals(lg_10_5)
influence(lg_10_5)$dev.res
rstandard(lg_10_5)
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FIGURE 10.8
Replication of figure 10.11

The function hatvalues returns the leverage for each observation. The function residuals
returns the raw residuals, while rstandard returns the standardised residuals. The deviance
residual is available as the component dev.res returned by influence. The function summary
when provided with the result of influence, will give a list of outliers according any of
these measures.

1 2 3 4 5 6 7 8
0.098315 0.120284 0.112579 0.098758 0.077008 0.077258 0.077785 0.071506

9 10 11 12 13 14 15 16
0.066880 0.059292 0.054744 0.056877 0.059482 0.072335 0.075584 0.084760

17 18 19 20
0.128586 0.156968 0.178435 0.272564

1 2 3 4 5 6 7
-2.187774 1.737357 1.797810 -0.693693 0.986487 -0.240677 -0.177415

8 9 10 11 12 13 14
0.057026 -1.015599 -0.142785 -0.270138 -1.298515 -0.686425 1.654159

15 16 17 18 19 20
-0.223551 -1.291742 -1.358424 0.813221 0.630932 0.778480

1 2 3 4 5 6 7
-2.187774 1.737357 1.797810 -0.693693 0.986487 -0.240677 -0.177415

8 9 10 11 12 13 14
0.057026 -1.015599 -0.142785 -0.270138 -1.298515 -0.686425 1.654159

15 16 17 18 19 20
-0.223551 -1.291742 -1.358424 0.813221 0.630932 0.778480

1 2 3 4 5 6 7
-2.303961 1.852327 1.908442 -0.730713 1.026815 -0.250550 -0.184746

8 9 10 11 12 13 14



10.7 Model checking 195

0.059181 -1.051364 -0.147216 -0.277850 -1.337097 -0.707799 1.717440
15 16 17 18 19 20

-0.232511 -1.350232 -1.455201 0.885699 0.696084 0.912747

Figure 10.12 (page 462)

We may choose to plot any of these residuals. To prepare the graph in figure 10.12, we need
the command

plot(rstandard(lg_10_5) ~ age,
xlab = "Age (years)",
ylab = "Standardised deviance residuals")

FIGURE 10.9
Replication of figure 10.12

Figure 10.13 (page 463)

Similarly, to plot the graphs in figure 10.13, we may use

qplot(s.class, rstandard(lg_10_6_ord),
xlab = "Social class",
ylab = "Standardised deviance residuals",
main = "Linear model")

qplot(s.class, rstandard(lg_10_6_p2),
xlab = "Social class",
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FIGURE 10.10
Replication of figure 10.13 (a)

ylab = "Standardised deviance residuals",
main = "Quadratic model")

Note that we have used qplot from ggplot package, which has a syntax similar to plot
with some differences. The order of the variables are different in qplot and plot. Formulas
are acceptable in plot, but not in qplot.

10.8 Case control studies
Example 10.32 (page 469)

As we don’t have the data of table 6.11 in generic form, we will skip example 10.31. To
rework the example 10.32, we need to import the data. We will use the package survival
for this example.

read_table("K11828 supplements/Datasets/Table 10.42.DAT",
col_names = c("id", "cc_status", "ddimer", "sbp"),
col_types = cols(id = col_integer(),

ddimer = col_factor(levels = c("0", "1")))
) -> tbl_10_42

library(survival)
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FIGURE 10.11
Replication of figure 10.13 (b)

clogit(cc_status ~ ddimer + strata(id),
data = tbl_10_42) -> cl_10_42_dd

clogit(cc_status ~ sbp + strata(id),
data = tbl_10_42) -> cl_10_42_bp

clogit(cc_status ~ ddimer + sbp + strata(id),
data = tbl_10_42) -> cl_10_42_db

Note that when we import data, the outcome variable cc_status is not defined as a factor,
but left as numeric, the default. This is what clogit from survival which we use to perform
conditional logistic regression analysis, expects. Apart from the name of the function, the
formula that we provide for conditional logistic regression is different in that it has an
additional term strata(), which accepts the name of variable which identifies the case
control groups, in our case id.

Though we may use helper functions to extract the relevant information from the model
objects, the default print method itself displays most details. We may use anova to compare
the models.

cl_10_42_db
anova(cl_10_42_db)

Call:
clogit(cc_status ~ ddimer + sbp + strata(id), data = tbl_10_42)
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coef exp(coef) se(coef) z p
ddimer1 0.194 1.215 0.451 0.4 0.67
sbp 0.022 1.022 0.011 2.0 0.04

Likelihood ratio test=4.5 on 2 df, p=0.1
n= 135, number of events= 28

Analysis of Deviance Table
Cox model: response is Surv(rep(1, 135L), cc_status)

Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chi|)
NULL -48.6
ddimer -48.5 0.27 1 0.601
sbp -46.4 4.25 1 0.039 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, we have used the model with both risk factors to call the default print method. R
reports the likelihood ratio test, its df and its probability. The coefficients are reported
for both explanatory variables along with its exponentiated value, standard error as well
as Wald’s test and its p value. We don’t get a confidence interval, for which we may use
confint. Another helper function of importance is logLik, which returns the log likelihood
of the model. anova too reports log likelihood rather than -2 log likelihood.

10.9 Outcomes with several levels
Example 10.33 (page 472)

We will use polr from MASS to fit the proportional odds model. First, the data.

data.frame(hstry = factor(rep(c("yes", "no"), each = 4)),
chd = factor(rep(c("mi", "ang2", "ang1", "none"),2),

levels = c("mi", "ang2", "ang1", "none")),
num = c(104,17,45,830,192,30,122,3376)) -> tbl_10_44

library(MASS)
polr(chd ~ hstry,

weights = num,
data = tbl_10_44,
method = "logistic") -> po_10_44

We build a dataframe to represent the data in table 10.44. For this, we use rep and factor.
The order of the levels of the response factor chd needs to be specified as the default
alphabetic arrangement does not reflect the actual order. For this, we provide the levels
argument to factor while building chd.
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We call polr in a way similar to previous examples. Thus, we have a formula that specifies
the response and predictors and data argument to specify the data frame in which to look
for the variables mentioned in the formula. As we have grouped data, we need to ask R
to weight the fitting using num. Though logistic is the default method, we specify it for
clarity. We may use summary to confirm that the model we built is the same as given in
output 10.7.

summary(po_10_44)

Call:
polr(formula = chd ~ hstry, data = tbl_10_44, weights = num,

method = "logistic")

Coefficients:
Value Std. Error t value

hstryyes -0.684 0.102 -6.72

Intercepts:
Value Std. Error t value

mi|ang2 -2.884 0.068 -42.245
ang2|ang1 -2.725 0.065 -42.113
ang1|none -2.286 0.057 -40.406

Residual Deviance: 4108.43
AIC: 4116.43

Multinomial regression can be done using multinom function of nnet package.

10.10 Longitudinal data
Example 10.35 (page 475)

We will use the package gee to rework the example 10.35.

read_table("K11828 supplements/Datasets/Example 9.21.dat",
col_names = c("id","week","group","ascore","fscore","detect"),
col_types = cols(id = col_integer(),

week = col_integer(),
group = col_factor(),
ascore = col_double(),
fscore = col_double(),
detect = col_integer()),

na = ".") |>
filter(!is.na(detect)) |>
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arrange("id", "week") -> data_9_21
relevel(data_9_21$group, ref = "R") -> data_9_21$group

The process of importing is similar to our previous examples. An argument that we haven’t
seen earlier is na, which is used to specify the character in the data file that stands for NA,
the period in our case. We remove those rows with NA in the detect column using filter. We
make sure that the imported data is sorted by the id variable. We use arrange to achieve this.
The first argument for arrange is the dataframe that needs to be sorted, which is supplied
by the pipe. Rest of the arguments are names of the columns by which the dataframe should
be sorted. Note that we have specified the response variable detect as numeric, rather than
as a factor because that is what geeglm, the function that we use to model generalised
estimating equations requires. Remember to install geepack using install.packages as
discussed in chapter 1.

library(geepack)
geeglm(detect ~ group,

id = id,
data = data_9_21,
family = binomial(),
corstr = "exchangeable") |>

summary()

We use the package geepack to model using generalised estimating equations. The function
is named geeglm. It requires a formula specifying the model. In addition it requires an
id, which specifies the column that carries the information to identify the clusters. The
arguments data is the name of the dataframe in which the supplied variables should be
looked for. The family = binomial() specifies that we want to use a binomial model. The
argument corstr is used to specify the correlation structure we want. The summary function
prints a great amount of information including the value of coefficients, their standard errors,
the z value calculated for the standard errors and the probability for the z value.

Call:
geeglm(formula = detect ~ group, family = binomial(), data = data_9_21,

id = id, corstr = "exchangeable")

Coefficients:
Estimate Std.err Wald Pr(>|W|)

(Intercept) 0.138 0.166 0.69 0.41
groupC -0.048 0.239 0.04 0.84

Correlation structure = exchangeable
Estimated Scale Parameters:

Estimate Std.err
(Intercept) 0.999 0.00593

Link = identity
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Estimated Correlation Parameters:
Estimate Std.err

alpha 0.213 0.0464
Number of clusters: 107 Maximum cluster size: 5

We can use gee function from the package gee as well to fit generalised estimating equations.
However, there is no anova method for the model object it returns.

10.11 Binomial regression
Example 10.36 (page 476)

To fit a binomial regression, we use glm, but with the link log. We use the variables from
example 10.11.

glm(chd ~ chol + sbp,
family = binomial(link = "log")) -> br_10_11

The only difference from the fitting of logistic regression is in the link argument to binomial.
We can use tidy to get the odds ratio, relative risk and their confidence intervals.

dplyr::select(tidy(lg_10_11_full,exponentiate = TRUE,conf.int = TRUE)[-1, ],
c(estimate,conf.low,conf.high)) |>

rename(`Odds Ratio` = estimate,
`OR ll` = conf.low,
`OR ul` = conf.high) -> or_10_11

dplyr::select( tidy(br_10_11,
exponentiate = TRUE,
conf.int = TRUE)[-1, ],
c(estimate,conf.low,conf.high)) |>

rename(`Relative Risk` = estimate,
`RR ll` = conf.low,
`RR ul` = conf.high) -> rr_10_11

We use tidy, asking it to exponentiate the coefficients and to provide confidence intervals.
We exclude the row corresponding to the intercept by negative subsetting. We use select
to select only those columns we want in the table. We specify dplyr before select to make
sure that the conflict with a function of the same name in MASS that we loaded earlier doesn’t
affect us. We use rename to change the default column names returned by tidy. We store
the dataframes thus made.
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cbind.data.frame(predictor = c(paste("sbp",levels(sbp)),
paste("chol", levels(chol))),

rbind(c(1,NA,NA),
or_10_11[5:8,],
c(1,NA,NA),
or_10_11[1:4,]),

rbind(c(1,NA,NA),
rr_10_11[5:8,],
c(1,NA,NA),
rr_10_11[1:4,]))

We column bind a vector containing the labels for each row and the two data frames using
cbind.data.frame. The vector containing the row labels is built by concatenating the
levels of the explanatory variables we used for model building after adding a tag before
them to indicate the variable name. The dataframes we made that contains the exponentiated
coefficients and their confidence intervals does not have a row for the reference levels, but
the vector containing the row labels has. So, we need to insert a row containing the value
one for the reference levels before we can column bind them. We do this by breaking up the
dataframes suitably by subsetting it and then using rbind to join them back together with
the rows for the reference levels.

predictor Odds Ratio OR ll OR ul Relative Risk RR ll RR ul
1 sbp <=118 1.00 NA NA 1.00 NA NA
2 sbp 119-127 1.84 1.021 3.43 1.81 1.022 3.31
3 sbp 128-136 2.39 1.369 4.34 2.29 1.343 4.10
4 sbp 137-148 2.80 1.622 5.07 2.68 1.585 4.76
5 sbp >148 3.83 2.260 6.83 3.56 2.150 6.23
6 chol <=5.41 1.00 NA NA 1.00 NA NA
7 chol 5.42-6.01 1.23 0.656 2.34 1.23 0.665 2.30
8 chol 6.02-6.56 2.28 1.316 4.10 2.20 1.301 3.90
9 chol 6.57-7.31 2.74 1.614 4.85 2.60 1.568 4.53
10 chol >7.31 3.65 2.188 6.41 3.41 2.092 5.88

Table 10.46 (page 477)

To prepare table 10.46, first we import the data.

read_table("K11828 supplements/Datasets/Example 9.16.DAT",
col_names = c("fibrinogen", "age", "hpylori" ),
col_types = cols(hpylori =col_factor(levels =c("0","1")))
) -> data_9_16

mutate(data_9_16,
age_hl = factor(ifelse(age >= 50, "old", "young"),

levels = c("young", "old")),
fib_hl = factor(ifelse(fibrinogen >= 2.7, "high", "low"),

levels = c("low","high"))) -> data_9_16
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We then mutate the data to prepare two new columns from the existing columns. We use
ifelse which evaluates the logical statement given as its first argument and returns the
second argument if the logical statement is true or the third argument if the logical statement
is false. Thus, these new columns will contain the appropriate label to indicate in which of
the two groups they fall according to the value of age and fibrinogen.

table(data_9_16$fib_hl,
data_9_16$age_hl,
data_9_16$hpylori,
dnn = c("fibrinogen", "age group", "hpylori")) |>

data.frame() |>
pivot_wider(names_from = hpylori,

names_prefix = "hpylori",
values_from = Freq) |>

mutate(prevalence = hpylori1 / (hpylori0 + hpylori1),
odds = hpylori1 / hpylori0)

We then use table to cross tabulate the three variables. The dnn argument determines
the name of the resulting columns. The last column containing the counts is named Freq.
However, the result we get from table is an array, not very suitable for printing. So, we
convert it into a dataframe. The resulting dataframe has different rows corresponding to
the different values of hpylori. But, we want different columns. So, we use pivot_wider
to make new columns corresponding to the different values of hpylori and carrying the
corresponding Freq. We pipe the resulting data frame into mutate to calculate prevalence
and odds. Note that we have prepared only the first four rows of table 10.46 corresponding
to cross tabulation of age and fibrinogen groups. We need to repeat the steps by cross
tabulating only fibrinogen groups and row bind the result with this data frame to get the
complete table.

TABLE 10.3
Replication of table 10.46

Fibrinogen Age group No H. pylori H. pylori Prevalence Odds
low young 63 79 0.556 1.25
high young 27 48 0.640 1.78
low old 26 73 0.737 2.81
high old 33 161 0.830 4.88

Table 10.48 (page 478)

To prepare table 10.48, we need to specify all four models.

list(unadjlog = glm(hpylori ~ fib_hl,
data = data_9_16,
family = binomial(link = "logit")),

unadjbin = glm(hpylori ~ fib_hl,
data = data_9_16,
family = binomial(link = "log")),



204 10 Modelling binary outcome data

adjstlog = glm(hpylori ~ fib_hl + age_hl,
data = data_9_16,
family = binomial(link = "logit")),

adjstbin = glm(hpylori ~ fib_hl + age_hl,
data = data_9_16,
family = binomial(link = "log"))) -> mdls_10_37

map_dfr(mdls_10_37, coef, .id = "model") |>
replace_na(list(age_hlold = 0)) |>
mutate(pfib_l = ifelse(str_detect(model, "bin"),

exp(`(Intercept)` + age_hlold),
(1 + exp(-1 *

(`(Intercept)` +
age_hlold ))) ˆ -1),

pfib_h = ifelse(str_detect(model, "bin"),
exp(`(Intercept)` + age_hlold + fib_hlhigh),
(1 + exp(-1 *

(`(Intercept)` +
age_hlold +
fib_hlhigh))) ˆ -1),

pratio = ifelse(str_detect(model, "bin"),
exp(fib_hlhigh),
pfib_h / pfib_l)) -> tbl_10_48

tbl_10_48

In the first step we save the four model objects as a list using the command list. In the
next step, we use map_dfr to build a data frame containing the coefficients of one model in
one row. The map_dfr accepts a list, the list containing the model objects in our case. It
passes on each element of the list to the function that is its second argument, coef in our
case. The result returned by the function is converted to a data frame. If we supply the .id
argument, map_dfr will add a column whose name is the value of .id. Its value will be the
name of each element of the list we supplied as the first argument.

The data frame returned by map_dfr will contain NA for age_hold column for the unadjusted
models. We change those NAs to 0 using replace_na. The function replace_na accepts in
addition to the dataframe whose NA needs to be replaced, a list containing the variable value
pair indicating the name of the column whose NA values need change and the value that
should replace NAs. In our case, we change the NAs of age_hlold column to 0.

Finally, we use mutate to add three new columns to calculate the prevalences corresponding
to high and low fibrinogen levels and prevalence ratio. Each specification of mutate is
an ifelse which evaluates whether the name of the model contains “bin”. The function
that does this comparison is str_detect from the library stringr, a part of tidyverse.
It accepts the variable whose values should be checked and the string whose presence is
checked for. Based on whether str_detect returns TRUE or FALSE, we use the calculations
appropriate for the model to calculate the value of the new columns.
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TABLE 10.4
Replication of table 10.48

Parameters Prevalence

Model fitted Intercept Fibrinogen Age Low High Prevalence
b0 b1 b2 fibrinogen fibrinogen ratio

unadjlog 0.535 0.713 0.00 0.631 0.777 1.23
unadjbin −0.461 0.209 0.00 0.631 0.777 1.23
adjstlog 0.193 0.450 0.90 0.749 0.824 1.10
adjstbin −0.580 0.124 0.27 0.734 0.831 1.13

Example 10.38 (page 478)

We fit binomial regression model to grouped data, similar to how we fit a logistic model.
The difference is in the link. Here, we rework example 10.38.

factor(c("yes", "no")) -> smoke
matrix(c(31,1386,15,1883),

nrow = 2,
byrow = TRUE) -> deaths

glm(deaths ~ smoke,
family = binomial(link ="log")) -> bi_10_38

We can use predict to obtain the log risk for each category of the predictor variable, along
with the standard error.

predict(bi_10_38, se.fit=TRUE) -> prdl_10_38

exp(prdl_10_38$fit[1] + c(-1,1) * (prdl_10_38$se.fit[1] * 1.96))
exp(prdl_10_38$fit[2] + c(-1,1) * (prdl_10_38$se.fit[2] * 1.96))

The function predict returns a list with the elements fit and se.fit. We select the one
element of fit, add to and subtract from it 1.96 times the corresponding element from
se.fit. We repeat the same for the other element.

[1] 0.0154 0.0310
[1] 0.00477 0.01308

To get the confidence interval of the risk ratio, we can use confint.

exp(confint(bi_10_38))["smokeyes",]
exp(confint.default(bi_10_38))["smokeyes",]
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We use confint, exponentiate it and subset the row corresponding to smokers. If we would
prefer the confidence interval based on normal approximation as given in the textbook, we
may use confint.default instead of confint.

2.5 % 97.5 %
1.53 5.25

2.5 % 97.5 %
1.50 5.11

Example 10.39 (page 480)

To rework example 10.39 to demonstrate calculation of adjusted risks, we need to fit the
binomial regression model.

rep(c("no", "yes"), each = 2) -> smoke
rep(c("rent", "own"), 2) -> house
matrix(c(33,923,48,1722,52,898,29,678),

byrow = TRUE,
ncol = 2) -> chd

glm(chd ~ smoke + house,
family = binomial(link=log)) -> br_10_39

data.frame(`Housing Tenure` = house,
`Confounder` = smoke,
`CHD Events` = chd[,1],
n = marginSums(chd, 1),
Risk = chd[,1]/ marginSums(chd, 1),
`Log risk` = predict(br_10_39),
Risk = predict(br_10_39, type = "response"))

The grouped data is typed in as matrix and binomial regression model is fit using glm as we
did in our previous examples. To build table 10.51, we build a data frame. The function
marginSums calculates the sum of a matrix or array along the specified margins. Here, we
specify marginSums to calculate the totals of each row of chd. Thus, we get the total for
each combination of housing type and smoking status. We divide the first column of chd
obtained by subsetting with the total returned by marginSums to calculate the risk directly.
We use predict to get the log risk. When we pass type="response", predict returns the
predicted values in the scale of the response, i.e. after exponentiation.

Housing.Tenure Confounder CHD.Events n Risk Log.risk Risk.1
1 rent no 33 956 0.0345 -3.35 0.0350
2 own no 48 1770 0.0271 -3.62 0.0269
3 rent yes 52 950 0.0547 -2.91 0.0543
4 own yes 29 707 0.0410 -3.18 0.0417
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We can calculate the adjusted log risks from the fitted model.

sum(coef(br_10_39) * c(1,0.5,1))
sum(coef(br_10_39) * c(1, tapply(marginSums(chd,1), smoke,FUN= sum)["yes"] /

marginSums(chd), 1))

We multiply the values returned by coef with the appropriate values and add them together.
For the balanced weighting, we multiply the coefficient for smoking status with 0.5 and that
for intercept and housing type with 1. For the observed margins calculations, we multiply
the coefficient for smoking with the proportion of smokers, while intercept and coefficient
for housing remains one. We don’t type the proportion of smokers, but calculate it. We
use tapply to get the numerator. The function tapply applies a function given as the
value for the argument FUN to each group of values of its first argument, the groups being
determined by the second argument INDEX. In our example, the first argument is the result
of marginSums(chd,1), the row-wise total of chd. The variable smoke determines the groups.
Thus we get an array containing the totals of chd for each value of smoke viz “yes” and
“no”. We subset the value for “yes” of this array and divide it with the value returned by
marginSums(chd). When no margins are specified, marginSums sums across all margins and
returns the total cases. Thus, we get the prevalence of smoking for calculating the observed
margin adjusted log risk.

[1] -3.13
[1] -3.19

We may instead use emmeans to calculate adjusted values.

library(emmeans)
emmeans(br_10_39, c("house"))
emmeans(br_10_39,

c("house"),
weights =tapply(marginSums(chd,1),smoke,FUN= sum))

The function emmeans is passed the model object as its first argument. The second argu-
ment is a character vector which specifies the names of the variables for which we want
the adjusted risks estimated. In our case, we want the adjusted risks for the various lev-
els of house. The function emmeans also supports weights, which permits vectors, with
weight specified for each of the level of variable for which adjustment is required. We use
tapply(marginSums(chd,1), smoke,FUN= sum) as our weight to adjust according to the
observed margins. This works because the way we have specified tapply returns the total
number of smokers and non smokers. The advantage of emmeans is that confidence intervals
are returned as well.

house emmean SE df asymp.LCL asymp.UCL
own -3.40 0.114 Inf -3.62 -3.18
rent -3.13 0.107 Inf -3.34 -2.92

Results are averaged over the levels of: smoke
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Results are given on the log (not the response) scale.
Confidence level used: 0.95
house emmean SE df asymp.LCL asymp.UCL
own -3.45 0.112 Inf -3.67 -3.23
rent -3.19 0.112 Inf -3.41 -2.97

Results are averaged over the levels of: smoke
Results are given on the log (not the response) scale.
Confidence level used: 0.95

10.11.1 Risk differences
Example 10.40 (page 484)

To fit the binomial model for estimating risk differences, we use the data from the previous
example.

glm(chd ~ house,
family = binomial(link="identity")) -> br_10_40sv

glm(chd ~ smoke + house,
family = binomial(link="identity")) -> br_10_40dv

The difference in model specification is the value that link takes. For the binomial model
that assumes additive effects, we use link="identity".

We may use confint to get the confidence interval for the coefficients or use predict which
returns the standard errors.

confint.default(br_10_40sv)
predict(br_10_40sv, se.fit = TRUE)

2.5 % 97.5 %
(Intercept) 0.0243 0.0379
houserent 0.0020 0.0250
$fit

1 2 3 4
0.0446 0.0311 0.0446 0.0311

$se.fit
1 2 3 4

0.00473 0.00349 0.00473 0.00349

$residual.scale
[1] 1

Example 10.42 (page 486)
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We will use geeglm to model using generalised estimating equation Poisson regression.

library(geepack)
read_table("K11828 supplements/Datasets/Example 10.12.DAT",

col_names = c("age", "chol", "bmi", "sbp",
"smoke", "active", "chd", "nmbr"),

col_types = cols( smoke = col_factor(levels =c("1","2","3")),
active = col_factor(levels = c("1","2","3")),
chd = col_integer())) -> data_10_12

geeglm(chd ~ age + chol + bmi + sbp + smoke +active,
data = data_10_12,
id = nmbr,
family = poisson(),
std.err = "san.se") -> ge_10_42

summary(ge_10_42)$coef

When we import data, we specify the response variable as numeric, to satisfy the requirement
of geeglm. We call geeglm with the arguments we discussed in an earlier example. The
difference is in the family argument. Here, we specify poisson() with its default link.
We have also specified std.err = "san.se" to say that we want the robust estimation.
However, it is the default option used even if we omit the argument. The summary method
prints a great deal of information. Here, we select only the coef component, a data frame,
returned by summary for printing.

Estimate Std.err Wald Pr(>|W|)
(Intercept) -9.6080 0.80531 142.342 0.00e+00
age 0.0162 0.01286 1.581 2.09e-01
chol 0.2793 0.04793 33.962 5.62e-09
bmi 0.0386 0.01866 4.291 3.83e-02
sbp 0.0187 0.00335 31.166 2.37e-08
smoke2 0.3042 0.23616 1.659 1.98e-01
smoke3 0.6854 0.20512 11.166 8.33e-04
active2 -0.1734 0.16723 1.075 3.00e-01
active3 -0.0925 0.21973 0.177 6.74e-01

Table 10.54 (page 486)

We can column bind the coef components of the logistic model we fitted earlier and the
GEE model to prepare table 10.54.

bind_cols(as.data.frame(summary(lg_10_12)$coef)[-1,],
summary(ge_10_42)$coef[-1,]) |>

mutate(ORlci = exp(`Estimate...1` - (1.96 * `Std. Error`)),
ORuci = exp(`Estimate...1` + (1.96 * `Std. Error`)),
RRlci = exp(`Estimate...5` - (1.96 * `Std.err`)),
RRuci = exp(`Estimate...5` + (1.96 * `Std.err`)),
OR = paste(format(exp(`Estimate...1`),trim = FALSE,digits = 2),
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"(",
format(ORlci, trim = FALSE, digits = 2),
",",
format(ORuci, trim = FALSE, digits = 2),
")" ),

RR = paste(format(exp(`Estimate...5`),trim = FALSE,digits = 2),
"(",
format(RRlci,digits = 2),
",",
format(RRuci, digits = 2),
")"),

OR_p = format(`Pr(>|z|)`, digits = 2),
RR_p = format(`Pr(>|W|)`, digits = 2)) |>

dplyr::select(OR,OR_p, RR, RR_p)

The coef component of the summary method for logistic model is not a dataframe, but a
matrix. So, we coerce it to a dataframe using as.data.frame. We use bind_cols to column
bind the two data frames. We calculate the upper and lower confidence intervals for odds
ratio and risk ratio from the coefficients. Note that the name of the estimate columns change
after column binding to ensure unique column names. We paste together the exponentiated
coefficient and its lower and upper intervals into a string. The numbers passed to paste
are prettied using format. Its argument trim=FALSE decides whether the number is right
justified to a common width, padded with zeros on the left. The argument digits determines
the number of significant figures. Finally, we select only those columns that we want to
display.

TABLE 10.5
Replication of table 10.54

Odds ratio Relative Risk

Variable Estimate p value Estimate p value
(95% CI) (95% CI)

age 1.02 ( 0.99 , 1.04 ) 2.1e-01 1.02 ( 0.99 , 1.04 ) 2.1e-01
chol 1.36 ( 1.21 , 1.53 ) 2.7e-07 1.32 ( 1.20 , 1.45 ) 5.6e-09
bmi 1.04 ( 1.00 , 1.09 ) 5.1e-02 1.04 ( 1.00 , 1.08 ) 3.8e-02
sbp 1.02 ( 1.01 , 1.03 ) 9.8e-08 1.02 ( 1.01 , 1.03 ) 2.4e-08
smoke2 1.38 ( 0.84 , 2.26 ) 2.0e-01 1.36 ( 0.85 , 2.15 ) 2.0e-01
smoke3 2.07 ( 1.35 , 3.19 ) 8.7e-04 1.98 ( 1.33 , 2.97 ) 8.3e-04
active2 0.83 ( 0.58 , 1.18 ) 2.9e-01 0.84 ( 0.61 , 1.17 ) 3.0e-01
active3 0.90 ( 0.57 , 1.43 ) 6.7e-01 0.91 ( 0.59 , 1.40 ) 6.7e-01

We can obtain adjusted risks using emmeans.

emmeans(ge_10_42, c("smoke"), weights = "proportional")

smoke emmean SE df lower.CL upper.CL
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1 -3.66 0.189 4040 -4.03 -3.29
2 -3.36 0.156 4040 -3.66 -3.05
3 -2.98 0.102 4040 -3.18 -2.78

Results are averaged over the levels of: active
Covariance estimate used: vbeta
Results are given on the log (not the response) scale.
Confidence level used: 0.95

While the adjusted means are the same as in the textbook, the confidence interval is different
from that in the textbook.

10.12 Propensity score
Example 10.45 (page 492)

We will skip examples 10.43 and 10.44. We will first import the relevant data to rework
example 10_45.

read_table("K11828 supplements/Datasets/Example 10.45.dat",
col_names = c("age", "simd", "smoke","alcohol", "cancer"),
col_types = cols(smoke = col_logical(),

alcohol = col_logical(),
cancer= col_logical())) -> data_10_45

glm(alcohol ~ age + simd +smoke ,
data = data_10_45,
family = binomial()) -> lg_10_45

data_10_45$ps <- predict(lg_10_45, type = "response")
summary(data_10_45$ps)

Importing data and fitting the logistic model are similar to the previous examples. We use
predict to obtain the fitted values for each record. By specifying type="response", we
ensure that logit is exponentiated. We attach the predicted values to the original dataframe
as a new column. Finally, we use summary to confirm that the averages and extremes are
similar to that given in the textbook.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.226 0.330 0.389 0.398 0.457 0.731

We will use the library MatchIt to match records based on the propensity score. Remember
to install it using install.packages as described in chapter 1. I couldn’t find an R package
that allows digit matching. So, we will use greedy nearest neighbour matching with calipers.
Consequently, the results here will differ from the textbook.
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library(MatchIt)
matchit(alcohol ~ age +simd + smoke,

data = data_10_45,
method = "nearest",
caliper = 0.2) -> ps_10_45

match.data(ps_10_45) -> match_10_45_pair

The function we use for matching is matchit. It requires a formula, the left-hand side of
which is the treatment variable and the right-hand side is the combination of variables that
we want to use for calculating propensity score. It accepts a data argument denoting the
dataframe in which to find the variables mentioned in the formula. We specify the matching
method as method="nearest". The function matchit allows many more ways of matching,
which are probably better methods. The argument caliper is used to specify the value
of the caliper if we want to use one. Note that matchit is very versatile and supports a
great many ways of performing matching than we are discussing here. We store the object
returned by matchit.

The object returned by matchit is examined using different helper functions. For example,
summary will print a detailed analysis of balance before and after matching. Another useful
function is plot, which will prepare graphical displays for analysing balance. Many different
graphs are available. For example, plot(ps_10_45, type = "density") will show the
density plot for each of the covariates before and after matching.

The function match.data when supplied an object returned by matchit will return a data
frame containing only those rows that were matched. In addition to the columns present
initially, additional columns containing the matching strata value, the distance measure
calculated etc. are also included.

Figure 10.15 (page 496)

We will use the data frame returned by match.data to prepare the graph of figure 10.15.

ggplot(match_10_45_pair)+
geom_density(aes(x = ps,

group = alcohol,
linetype = alcohol,
colour = alcohol)) +

labs(x = "Propensity score",
y = "Density") +

scale_color_manual(labels = c("Heavy Drinkers", "Not"),
values = c("#111111","#004B73")) +

scale_linetype_manual(labels = c("Heavy Drinkers", "Not"),
values = c(1,2))

We call ggplot with the dataframe returned by match.data. We use geom_density to plot
the density of the ps column of the dataframe, containing the calculated propensity scores.
We ask to plot different lines for each value of alcohol with different colours and line types.



10.12 Propensity score 213

FIGURE 10.12
Replication of figure 10.15

Our graph is different from the textbook because of the different matching method we
followed.

Figure 10.16 (page 497)

We will use the original dataset as well as the matched dataset to prepare the graphs of
figure 10.16. We need gridExtra package to combine the two sets of graphs into one figure.

library(gridExtra)
grid.arrange(
ggplot(data_10_45)+

geom_boxplot(aes(x = simd,
y = factor(alcohol, labels = c("Not","Heavy drinker")),
colour = alcohol),

show.legend = FALSE) +
labs(x = "Scottish Index of Multiple Deprivation",

y = NULL) +
scale_colour_manual(values = c("#111111","#004B73")),

ggplot(match_10_45_pair)+
geom_boxplot(aes(x = simd,
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y = factor(alcohol, labels = c("Not","Heavy drinker")),
colour = alcohol),

show.legend = FALSE) +
labs(x = "Scottish Index of Multiple Deprivation",

y = NULL) +
scale_colour_manual(values = c("#111111","#004B73")))

We pass the appropriate data set to ggplot. The geom we use is geom_boxplot, which
draws a boxplot for the x variable we specify. We use y = factor(alcohol, labels =
c("Not","Heavy drinker")) to prepare different boxplots for different values of alcohol,
with appropriate labels. The colour arguments gives different colours to each value of
alcohol from the ones specified in scale_colour_manual. We put both ggplot calls inside
grid.arrange to combine them into one figure.

FIGURE 10.13
Replication of figure 10.16

Table 10.60 (page 496)

To prepare table 10.60, we will use both the original and matched data sets.

group_by(data_10_45, alcohol) |>
summarise(age = paste0(round(mean(age),2)," (", round(sd(age),2), ")"),

simd = paste0(round(mean(simd),2)," (", round(sd(simd),2), ")"),
smoke = as.character(round(mean(smoke),4) *100)) |>
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pivot_longer(cols = c(age, simd, smoke),
names_to = "Covariates") -> sum_orig

group_by(match_10_45_pair, alcohol) |>
summarise(age = paste0(round(mean(age),2)," (", round(sd(age),2), ")"),

simd = paste0(round(mean(simd),2)," (", round(sd(simd),2), ")"),
smoke = as.character(round(mean(smoke),4) * 100)) |>

pivot_longer(cols = c(age, simd, smoke),
names_to = "Covariates") -> sum_match

left_join(sum_orig,
sum_match,
by = c("alcohol", "Covariates")) |>

rename(All = value.x, Matched = value.y) |>
mutate(Drinking = ifelse(alcohol, "Heavy", "Not")) |>
arrange(Covariates, Drinking) |>
dplyr::select(Covariates, Drinking, All, Matched)

First, we prepare two dataframes, one each for the original dataset and for the matched
dataset. We use group_by to group the data by alcohol and pipe the result to summarise.
We use summarise to calculate summary measures for the three covariates. For age and simd,
we calculate mean and standard deviation using mean and sd, round them using round and
join them together with appropriate parentheses using paste0. For smoke, we calculate the
proportion of smokers using mean. This is possible because of implicit coercion whereby
the logical TRUE is converted to 1 and FALSE to 0. We need to convert this numerical value
to character because we intend to join together all the summary measures into one column
and for this to happen all values should be of the same mode. We use as.character to
make this conversion. Each of the summary measure calculated is in a different column. We
use pivot_longer to bring them all in one column. The first argument to pivot_longer
is cols, the columns whose values we want to bring together into one column. Here we
specify three columns corresponding to the covariates. The argument names_to determines
the name of the new column.

We use left_join to join the two summary data frames. It matches the supplied dataframes
using the values given in by and joins the appropriate rows.. We could have used bind_cols
as well for joining the dataframes. An advantage of left_join is that the common columns
by which the dataframes are joined are not repeated unlike bind_cols. One column each of
the two summary data frames have the same name. When joined by left_join, their names
are appended with .x and .y to distinguish between them. We rename them appropriately.
The result is piped to mutate. We use mutate to create a new column Drinking from alcohol.
We use ifelse to return the value “Heavy” if alcohol has the value TRUE and “Not” otherwise.
Note that we don’t do an explicit logical comparison to check if the value of alcohol is TRUE.
In other words, we don’t use alcohol == TRUE. We do so because the value of alcohol itself
is a logical value. We sort the result using arrange and then use select to order and select
the columns we need.

As expected, the values calculated for the unmatched data agree with the textbook while
that of the matched data is slightly different from the textbook value because of the different
matching procedure we use.
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TABLE 10.6
Replication of table 10.60

Covariates Drinking All Matched
age Heavy 49 (5.72) 49.07 (5.71)
age Not 50.29 (5.79) 49.05 (5.73)
simd Heavy 24.65 (19.12) 24.18 (18.68)
simd Not 20.08 (15.94) 23.36 (17.52)
smoke Heavy 44.43 43.89
smoke Not 33.85 43.03

Example 10.46 (page 496)

I am not aware of any ready-made function to cross tabulate the matched data and calculate
the relative risk. So, we do the calculations by hand.

filter(match_10_45_pair, alcohol == TRUE) -> match_exp_10_45
filter(match_10_45_pair, alcohol == FALSE) -> match_nxp_10_45

left_join(match_exp_10_45,
match_nxp_10_45,
by = "subclass",
suffix=c(".exp", ".nxp")) |>

group_by(cancer.exp, cancer.nxp) |>
summarise(counts = n()) |>
arrange(desc(cancer.exp),

desc(cancer.nxp)) -> sum_match_10_45

matrix(sum_match_10_45$counts,
byrow = TRUE,
nrow = 2,
dimnames = list(`Heavy drinker dies from cancer`= c( "Yes","No"),

`Non-heavy drinker dies from cancer` =c( "Yes","No"))
) -> mm_10_45

First, we split the dataframe into two – one of heavy alcohol users and another of non-heavy
alcohol users. We use filter to accomplish this. Next, we left_join them by the subclass
column which carries the matching id. In effect, we are making a dataframe with one row for
a pair of matched exposed and unexposed. We provide suffix to left_join to differentiate
the columns of exposed and unexposed.

We pipe the joined dataframe to group_by. We ask group_by to group according to the
values of cancer.exp and cancer.nxp, which carries the outcome variables of exposed and
unexposed. The grouped data frame is fed to summarise, which summaries the number of
records in each combination of values of the grouping variables. The summarised dataframe
is then sorted in the descending order of cancer.exp and cancer.nxp. The sorting is needed
to replicate the order in table 10.61. Finally, we construct a two-by-two matrix from the
count column of the summarised dataframe and give appropriate column and row names.

We use the matrix to calculate RR, its variance, confidence interval and Wald statistic
according to the formula given in the textbook.
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rowSums(mm_10_45)[1] / colSums(mm_10_45)[1] -> rr_10_45
sqrt((mm_10_45[1,2] + mm_10_45[2,1]) /

(rowSums(mm_10_45)[1] * colSums(mm_10_45)[1])) -> se_lRR_10_45
exp(log(rr_10_45) + c(-1.96, 1.96) * se_lRR_10_45)
pchisq(log(rr_10_45)ˆ2 / se_lRR_10_45ˆ2, 1, lower.tail=FALSE)

We use rowSums, colSums and subsetting of the appropriate cells of the matrix we prepared
to calculate the results. Note that as our matching algorithm was different from the textbook,
our results differ from that in the textbook.

[1] 1.01 1.41
Yes

0.0335

Next we divide the propensity score into its fifths and fit the data separately for these
groups. We achieve this by specifying method for matching as subclass. In the textbook,
the propensity score of the entire dataset is divided into its fifths. By default, matchit
divides the propensity score of only those treated to derive the subgroups. We need to change
the default behaviour of matchit.

matchit(alcohol ~ age + simd + smoke,
data = data_10_45,
method = "subclass",
subclass =5,
estimand = "ATE") -> ps_10_45_sc

match.data(ps_10_45_sc) -> match_10_45_sc

First, we use matchit to prepare a matchit object. The call is similar to our previous
example, except that we specify the method as subclass, the number of subclass required
as 5 and estimand as "ATE", for average treatment effect. We specify estimand as "ATE" so
that quantiles of propensity score to decide the subclass is calculated from the entire data
set and not just the treated, which is the default. We use match.data to save the matched
data as a dataframe.

Table 10.62 (page 497)

In order to build table 10.62, we write a custom function. We do this because we need to
repeat essentially the same steps, save the stratum number, to obtain each row of information
in the table. A function makes this a bit easier.

build_tbl <- function(x){mdl <- glm(cancer ~ alcohol ,
family = binomial(link = "log"),
data = match_10_45_sc,
subset = subclass == x)

list(stratum = x,
estimate = summary(mdl)$coefficients["alcoholTRUE", 1],
std.err = summary(mdl)$coefficients["alcoholTRUE", 2],
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events = nrow(subset(match_10_45_sc,subclass == x & cancer == TRUE)),
n = nrow(subset(match_10_45_sc, subclass == x)))}

We name the function build_tbl. We expect the function to accept one argument, the subclass’
number, which will be accepted under the name x by the function. Inside the function, a
binomial model is fitted using glm using the match_10_45_sc dataframe we prepared earlier.
However, we restrict the data to only that match the specified subclass. This is achieved
by specifying the subset argument to glm as subclass == x. Next, a list of five items,
corresponding to the first five columns of table 10.62 is built. We use the coefficients
component of the summary returned for the model object to select the estimate and standard
error estimated for alcohol. We use nrow which returns the number of rows in a data frame,
to calculate the total number of observations and events in each subclass. The data frame
that is supplied to nrow is filtered using subset, which accepts the name of the dataframe
to be filtered and the filtering condition. To obtain the total number of observations, we
filter only by the subclass; to obtain the number of events, we filter by cancer as well.

We now build the table proper.

bind_rows(lapply(1:5, build_tbl)) |>
mutate(n.logRR = n * estimate, n.se = (n * std.err)ˆ2) -> tbl_10_62

summarise(tbl_10_62,
across(c(events, n, n.logRR, n.se), sum)) -> smry_tbl_10_62

bind_rows(tbl_10_62,smry_tbl_10_62)

We use lapply, supplying it with a vector with values 1 to 5 and the name of the function
we built in the previous step. Thus, lapply will call the function five times, with the values
1 to 5, the value of the subclass and each time the function will return a list of five items
for that particular subclass. As we call lapply from within bind_rows, the results are row
bound into one data frame, which we save with the name tbl_10_62, after adding two more
columns using mutate. These correspond to the last two columns of table 10.62. We build a
row corresponding to the bottom row of table 10.62 using summary, which we row bind for
display.

TABLE 10.7
Replication of table 10.62

Stratum (fifth) log RR SE Events n n × log RR (n × SE)2

1 −0.0231 0.159 165 1009 −23.3 25720
2 0.2714 0.163 135 1009 273.8 26906
3 0.1999 0.176 115 1008 201.5 31580
4 0.2103 0.175 115 1009 212.1 31340
5 0.0506 0.163 132 1009 51.1 26983

662 5044 715.3 142529
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We now use the information in the summary we calculated to substitute on the formulas
given in the textbook to calculate the weighted log relative risk & its standard error and the
Wald statistics & its significance.

smry_tbl_10_62$n.logRR/ smry_tbl_10_62$n -> logRR_10_62
sqrt(smry_tbl_10_62$n.se)/ smry_tbl_10_62$n -> se_lRR_10_62
exp(logRR_10_62 + c(-1.96, 1.96) * se_lRR_10_62)
pchisq(logRR_10_62ˆ2 / se_lRR_10_62ˆ2, 1, lower.tail=FALSE)

[1] 0.995 1.334
[1] 0.0581

Table 10.63 (page 498)

We will now build table 10.63.

glm(cancer ~ alcohol ,
family = binomial(link = "log"),
data = data_10_45) -> unadj

glm(cancer ~ alcohol + age + smoke + simd,
family = binomial(link = "log"),
data = data_10_45) -> adjst

glm(cancer ~ alcohol + ps ,
family = binomial(link = "log"),
data = data_10_45) -> psadjst

mutate(data_10_45,
weight = ifelse(alcohol,1/ps,1/ (1-ps))) -> data_10_45

glm(cancer ~ alcohol,
family = binomial(link = "log"),
weights = weight,data = data_10_45) -> pswt

We build the model objects using glm. The dataframe that we supply for the unadjusted,
covariate adjusted, and ps adjusted models is the original data with the calculated propensity
score appended. For the inverse propensity weighted model, we use mutate to add a column
with the weight calculated using ifelse and use it as the value of weights argument. This
function evaluates a condition and returns the second argument if the condition is true and
the third argument if the condition is false. We specify alcohol as our condition because its
value is itself logical.

In the next step, we specify a custom function to build the rows for models that were built
using glm.

build_tbl_noclstr <- function(mdl){
tidy(mdl,conf.int = TRUE, exponentiate = TRUE) |>
mutate(rr = paste0(round(estimate,2),
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" (",
round(conf.low,2),
", ",
round(conf.high,2),
")"),

`p value` = round(p.value,2)) |>
filter(term == "alcoholTRUE") |>
dplyr::select(rr,`p value`)}

Our custom function accepts a model object, passes it to tidy asking it to exponentiate
and to return confidence intervals. This dataframe is passed to mutate to produce a column
containing a string with the point estimate and confidence interval joined together and
another with the p value rounded to three decimal places. We restrict the rows to alcohol
and columns to the joined point estimate plus confidence interval and p value.

Now, we build the table proper.

bind_cols( Method = c("Unadjusted regression",
"Adjusted regression",
"Adjusted for PS",
"Weighted by inverse PS",
"Pair-matched by PS",
"Stratified by PS"),

bind_rows(lapply(list(unadj, adjst, psadjst,pswt),
build_tbl_noclstr),

list(rr = paste0(round(rr_10_45, 2),
" (",
round(exp(log(rr_10_45) -

(1.96 * se_lRR_10_45)),2),
", ",
round(exp(log(rr_10_45) +

(1.96 * se_lRR_10_45)),2),
")"),

`p value` = round(pchisq(log(rr_10_45)ˆ2 /
se_lRR_10_45ˆ2,

1,
lower.tail=FALSE),3)),

list(rr = paste0(round(exp(logRR_10_62), 2),
" (",
round(exp(logRR_10_62 -

(1.96 * se_lRR_10_62)),2),
", ",
round(exp(logRR_10_62 +

(1.96 * se_lRR_10_62)),2),
")"),

`p value` = round(pchisq(logRR_10_62ˆ2 /
se_lRR_10_62ˆ2,

1,
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lower.tail=FALSE),3))))|>
rename(`Relative risk (95% confidence interval)` = rr)

We use bind_rows to row bind the result returned by calling lapply with a list of models
and our custom function build_tbl_noclstr. The confidence interval and p value for the pair
matched and stratified analysis calculated in earlier steps are joined inside a list each of
which are supplied to bind_cols along with those returned by bind_rows. We join these
rows with a column with name of the methods. Finally, the column containing the point
estimate plus confidence interval is renamed.

TABLE 10.8
Replication of table 10.63

Method Relative risk (95% confidence interval) p value
Unadjusted regression 1.11 (0.96, 1.28) 0.167
Adjusted regression 1.16 (1, 1.33) 0.045
Adjusted for PS 1.15 (0.99, 1.33) 0.061
Weighted by inverse PS 1.15 (1.04, 1.27) 0.007
Pair-matched by PS 1.19 (1.01, 1.41) 0.034
Stratified by PS 1.15 (1, 1.33) 0.058

Note that while the result that we get when we use the original data frame is similar to
that given in the textbook, the results are different when we use propensity score matched
data. This is expected as different matching algorithms are expected to give different results.
Also, as mentioned in the textbook, there is no consensus as to which ps matching algorithm
or estimate of causal effect is better. Hence, I have not taken the effort to find out if the
methods used in the textbook can be replicated exactly in R. Clearly, there is more to
propensity score matching using R than is mentioned here. One package I would suggest
you to check out for propensity score analysis is PSweight.

10.13 Recap
10.13.1 Concepts
• implicit coercion



222 10 Modelling binary outcome data

10.13.2 Commands introduced in this chapter
• stats::glm
• stats::binomial
• stats::vcov
• ggplot2::geom_pointrange
• dplyr::rename
• ggplot2::geom_function
• ggplot2::xlim
• Epi::float
• readr::col_skip
• stats::deviance
• stats::df.residual
• stats::poly
• ggplot2::geom_ribbon
• stats::hatvalues
• stats::inflence
• ggplot2::qplot
• survival::clogit
• survival::strata

• MASS::polr
• readr::col_integer
• tidyr::replace_na
• base::tapply
• stats::confint.default
• stats::poisson
• base::format
• MatchIt::matchit
• MatchIt::match.data
• ggplot2::geom_density
• ggplot2::geom_boxplot
• base::paste0
• tidyr::pivot_longer
• dplyr::desc
• base::colSums
• base::lapply



11
Modelling follow-up data

In this chapter we will use the package survival to model follow up data. Most functions
require formulas, dataframes or vectors. In addition to the tidyverse packages readr, dplyr,
stringr, tibble and ggplot2, we will also use the add on packages broom, SurvRegCensCov
and Greg. We start with example 11.1.

11.1 Estimating the hazard function
Example 11.1 (page 509)

library(tidyverse)
library(survival)
library(broom)
c(10,12,13,15,16,20,20,24,24,26,26,27,39,42,

45,45,48,52,58,60,61,62,73,75,77,104,120) -> time_11_1
rep(TRUE, 27) -> event_11_1
survfit(Surv(time_11_1, event_11_1) ~ 1) -> km_11_1

We save the survival times with a suitable name. As all subjects experience death, the
variable events_11.1 has the value TRUE repeated 27 times. We fit a Kaplan Meir curve to
the data using survfit, which accepts a formula with a Surv object as its left-hand side.
The Surv object requires a variable with the survival time and a variable with information
on death / alive to be supplied to it. As we are fitting only one KM curve, the right-hand
side of the formula is just 1. We may use summary to print a tabular data similar to the one
in table 11.1. However, it won’t print the column corresponding to hazard. Hence, we will
use the variables returned by survfit to prepare table 11.1.

lead(km_11_1$time) - km_11_1$time -> km_11_1$interval
km_11_1$n.event /(km_11_1$interval * km_11_1$n.risk) -> km_11_1$hazard
bind_cols(`Time (t)` = km_11_1$time,

`Survivors (n)` = km_11_1$n.risk,
`Deaths (e)` = km_11_1$n.event,
`Interval (u)` = km_11_1$interval,
`Survival (s)` = km_11_1$surv,
`Hazard (h)` = km_11_1$hazard) -> tbl_11_1

bind_rows(c(`Time (t)` = 0,
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`Survivors (n)` = 27,
`Deaths (e)` = 0,
`Interval (u)` = 10,
`Survival (s)` = 1,
`Hazard (h)` = 0), tbl_11_1) -> tbl_11_1

tbl_11_1

The survfit object returns many variables in a list. We use the variable time to calculate
the interval. The interval is calculated as the difference between the value of the next time
and current time. The function lead supplies us the next value in the provided variable.
We use this information to calculate hazard according to the formula given in the textbook.
Finally we column bind the required variables to print our table. We add a row to indicate
the state at the start of the time period. Note that though survift does not provide hazard,
it does provide a variable with calculated cumulative hazards.

Time (t) Survivors (n) Deaths (e) Interval (u) Survival (s) Hazard (h)
0 27 0 10 1.000000 0.0000000
10 27 1 2 0.962963 0.0185185
12 26 1 1 0.925926 0.0384615
13 25 1 2 0.888889 0.0200000
15 24 1 1 0.851852 0.0416667
16 23 1 4 0.814815 0.0108696
20 22 2 4 0.740741 0.0227273
24 20 2 2 0.666667 0.0500000
26 18 2 1 0.592593 0.1111111
27 16 1 12 0.555556 0.0052083
39 15 1 3 0.518519 0.0222222
42 14 1 3 0.481481 0.0238095
45 13 2 3 0.407407 0.0512821
48 11 1 4 0.370370 0.0227273
52 10 1 6 0.333333 0.0166667
58 9 1 2 0.296296 0.0555556
60 8 1 1 0.259259 0.1250000
61 7 1 1 0.222222 0.1428571
62 6 1 11 0.185185 0.0151515
73 5 1 2 0.148148 0.1000000
75 4 1 2 0.111111 0.1250000
77 3 1 27 0.074074 0.0123457
104 2 1 16 0.037037 0.0312500
120 1 1 NA 0.000000 NA
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Figure 11.2 (page 510)

To get a survival plot, all we need to do is pass the survfit object to plot.

plot(km_11_1,
conf.int= FALSE,
xlab = "Time (weeks)",
ylab = "Probability of survival")

We use conf.int= FALSE to suppress the lines that mark the confidence interval of the
estimated survival function.

FIGURE 11.1
Replication of figure 11.2

Figure 11.3 (page 510)

To plot the hazard function, we use the hazard variable that we calculated.

plot( tbl_11_1$`Time (t)`,
tbl_11_1$`Hazard (h)`,
type = "s",
xlab = "Time (weeks)",
ylab = "Hazard")

We use plot, provide it with the x and y values, this time from tbl_11_1 we prepared and
specify type="s" to make it plot using steps.
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FIGURE 11.2
Replication of figure 11.3

11.1.1 Person-time estimation
Example 11.2 (page 511)

The function to calculate person times is pyears, which we use to rework example 11.2.

pyears(time_11_1 ~ 1 ,
subset = time_11_1 >= 10 & time_11_1 < 20 ,
scale = 1)

sum(time_11_1 >= 20)

The functions requires a formula. The left-hand side could be a Surv object or just the time
variable. We use subset to specify the restrictions that we want to impose. The argument
scale = 1 is used to change the default behavior of dividing the time period by 365.25
assuming that the periods are in days. We obtain the number of people surviving up to and
beyond 20 weeks by summing the elements of time_11_1 which satisfies the condition.

Call:
pyears(formula = time_11_1 ~ 1, subset = time_11_1 >= 10 & time_11_1 <

20, scale = 1)

Total number of person-years tabulated: 66
Total number of person-years off table: 0
Observations in the data set: 5
[1] 22
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The result returned by the function is different from that in the text. The reason is that
pyears doesn’t subtract 10 from the periods for each of the events as done in the textbook.

11.2 Probability models
Example 11.5 (page 519)

Of the probability models, we will first fit the Weibull model of example 11.5. We will use
survreg from survival.

survreg(Surv(time_11_1, event_11_1) ~ 1,
dist = "weibull") -> wb_11_5

1 / wb_11_5$scale -> gamma_11_5
exp(-wb_11_5$coefficients["(Intercept)"]/ wb_11_5$scale) -> lambda_11_5
gamma_11_5
lambda_11_5

The first argument to survreg is a formula with a Surv object as its left-hand side. Our
formula is the same as we used for Kaplan Meir estimation. The second argument specifies
the distribution that we assume for the parametric regression. We may use summary to print
the details of the survival regression object. Among the values returned by the function are
the intercept and scale with the same interpretation that is required for SAS output as given
in our textbook. We convert the two values to gamma and lambda using the formula given
in the textbook.

[1] 1.6743
(Intercept)

0.0014412

Figure 11.10 (page 520)

We now use the calculated values to plot the graph in figure 11.10. We use ggplot for
plotting.

ggplot(tbl_11_1) +
geom_step(aes(x= `Time (t)`, y = `Survival (s)`)) +
geom_function(fun = function(x) exp(-lambda_11_5 * x ˆ gamma_11_5),

linetype = 2,
colour = "blue")

We supply ggplot with tbl_11_1 and use geom_step to draw the observed survival curve.
We use geom_function to draw the Weibull survival function. geom_function requires a
function as its argument using which it will calculate the y value for each x value. Here, we
supply an anonymous function which calculates the Weibull survival function for each of the
time period according to the formula given in the textbook using the values returned by
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survreg. We use a different colour and linetype for the Weibull survival curve by specifying
our choice of values for linetype and colour.

FIGURE 11.3
Replication of figure 11.10

Example 11.4 (page 516)

Fitting the exponential model is similar to the previous example.

survreg(Surv(time_11_1, event_11_1) ~ 1,
dist = "exponential") -> xp_11_4

exp(- (coef(xp_11_4))) -> lambda_11_4
lambda_11_4

To fit an exponential model, survreg fits a Weibull distribution with the scale fixed at 1. Thus
the coefficient returned needs the same transformation as described under Weibull to convert
it to lambda of exponential model. We may substitute lambda in any of the formulas given
in the textbook. For example, the median survival time calculated is log(2)/lambda_11_4.

(Intercept)
0.022613
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11.3 The Cox proportional hazards model
Example 11.7 (page 526)

To rework the example 11.7, we need the data.

c(12,15,16,20,24,26,27,39,42,45,45,58,60,61,
62,73,77,104,120,10,13,20,24,26,48,52,75) -> time_11_7

factor(c(rep("low", 19), rep("high",8)),
levels = c("low", "high")) -> cell_11_7

rep(TRUE,27) -> events_11_7
coxph(Surv(time_11_7,events_11_7) ~ cell_11_7,

ties = "breslow") -> cph_11_7
summary(cph_11_7)

The data for the vector for survival period is rearranged so that all values that correspond
to one type of cellularity is contiguous. The data on cellularity is stored as a factor with
two levels. We specify the argument levels for factor to set the baseline level. If we don’t
specify levels, the levels are ordered alphabetically and high would be treated as the base
level.

The function to build Cox’s proportional hazards model is coxph. It requires a formula, the
left-hand side of which is a Surv object. The right-hand side are the explanatory variables;
we have only cell_11_7. The argument ties decides how the command will manage ties.
Here, we use breslow so that we get answers similar to the textbook though the default
method used by coxph is considered more accurate.

Call:
coxph(formula = Surv(time_11_7, events_11_7) ~ cell_11_7, ties = "breslow")

n= 27, number of events= 27

coef exp(coef) se(coef) z Pr(>|z|)
cell_11_7high 0.558 1.747 0.437 1.28 0.2

exp(coef) exp(-coef) lower .95 upper .95
cell_11_7high 1.75 0.572 0.742 4.11

Concordance= 0.568 (se = 0.052 )
Likelihood ratio test= 1.52 on 1 df, p=0.2
Wald test = 1.63 on 1 df, p=0.2
Score (logrank) test = 1.67 on 1 df, p=0.2

The summary method prints the calculated coefficient, its exponentiation, standard error
and confidence interval. The likelihood ratio test, Wald test and Score test statistics and
their p values are also printed. We may use anova to print an anova table.

Example 11.8 (page 527)

To rework the example 11.8, we import the data.
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read_table("K11828 supplements/Datasets/Example 11.8.DAT",
col_names = c("cholfifths", "sbpfifths", "chd", "survive"),
col_types = cols(cholfifths = col_factor(levels = c("1","2","3",

"4", "5")),
sbpfifths = col_factor(levels = c("1","2","3",

"4", "5")))
) -> data_11_8

coxph(Surv(survive, chd) ~ sbpfifths + cholfifths ,
data = data_11_8) -> cph_11_8sc

coxph(Surv(survive, chd) ~ cholfifths + sbpfifths ,
data = data_11_8) -> cph_11_8cs

Note that when we import the data, the response variable is left as the default numeric
type rather than converting it into a factor to satisfy the requirement of coxph. Fitting a
Cox proportional model is similar to our previous example except that the right-hand side
contains two explanatory variables. We fit two models which differ only in the sequence in
which the explanatory variables are introduced.

Table 11.2 (page 528)

We use anova to obtain the data in table 11.2.

anova(cph_11_8sc) -> anova_11_8sc
anova(cph_11_8cs) -> anova_11_8cs

cbind(model = c("SBP", "Cholesterol",
"SBP + Cholesterol",
"Cholesterol + SBP"),

select(rbind(anova_11_8sc[2,],
anova_11_8cs[2,],
anova_11_8sc[3,],
anova_11_8cs[3,],
make.row.names = FALSE),

`Chisq`, `Df`, `Pr(>|Chi|)`))

We subset the relevant rows from the two anova tables and row bind them, select the relevant
columns and add a column to indicate the model to prepare the table.

TABLE 11.1
Replication of table 11.2

Test details

model ∆ df p value
SBP 39.017 4 6.9104e-08
Cholesterol 45.027 4 3.9253e-09
SBP + Cholesterol 37.492 4 1.4264e-07
Cholesterol + SBP 31.482 4 2.4410e-06
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Output 11.2 (page 529)

The summary method will display the information in output 11.2. Here, we use tidy to print
a cleaner table

library(broom)
tidy(cph_11_8sc, conf.int = TRUE)

# A tibble: 8 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 sbpfifths2 0.602 0.302 2.00 0.0460 0.0108 1.19
2 sbpfifths3 0.850 0.288 2.96 0.00311 0.287 1.41
3 sbpfifths4 1.01 0.283 3.56 0.000375 0.453 1.56
4 sbpfifths5 1.33 0.275 4.83 0.00000136 0.789 1.87
5 cholfifths2 0.203 0.318 0.637 0.524 -0.421 0.826
6 cholfifths3 0.804 0.283 2.84 0.00448 0.250 1.36
7 cholfifths4 0.976 0.274 3.56 0.000369 0.439 1.51
8 cholfifths5 1.26 0.267 4.70 0.00000258 0.733 1.78

Note that the statistic calculated is z statistic rather than the Chi square statistics.

Table 11.3 (page 529)

To prepare table 11.3, we use tidy again.

tidy(cph_11_8sc, conf.int = TRUE, exponentiate = TRUE) |>
mutate(value = paste0(round(estimate,2) ,

"(",
round(conf.low,2),
", ",
round(conf.high,2),
")"),

fifth = str_sub(term, -1,-1),
variable = ifelse(str_starts(term, "sbp"),

"Systolic blood pressure",
"Serum total cholesterol")) |>

select(variable, fifth, value ) |>
pivot_wider(names_from = variable, values_from = value)

We ask tidy to exponentiate the coefficients and its confidence interval by specifying
exponentiate=TRUE. We mutate the result returned by tidy to create a string consisting
of the exponentiated coefficients and their confidence interval appropriately rounded. We
create two new columns, one to denote the fifth and one to denote the explanatory variable.
To create fifth, we use str_sub to extract the last character from the term column. The first
-1 indicates that the substring begins from the first character from the end of term and the
second -1 indicates that the portion till the first character from the end of term should be
returned. As the start and end are the same, we get just the last character from the end
of term. The variable column created will have the name appropriate for the explanatory
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variable based on whether term starts with “sbp” as determined by str_starts. We select
the columns we created and then use pivot_wider to separate the values_from value to
different columns, which will be named according to their names_from variable.

TABLE 11.2
Replication of table 11.3

Fifth Systolic blood pressure Serum total cholesterol
2 1.83(1.01, 3.3) 1.22(0.66, 2.28)
3 2.34(1.33, 4.11) 2.23(1.28, 3.89)
4 2.74(1.57, 4.78) 2.65(1.55, 4.54)
5 3.77(2.2, 6.47) 3.51(2.08, 5.93)

Figure 11.12 (page 530)

We will now reproduce the graph in figure 11.12.

plot(survfit(cph_11_8cs,
newdata = data.frame(cholfifths = factor(1:5),

sbpfifths = factor(3))),
ylim = c(.9, 1),
col = c(1,2,3,4,5),
xlab = " Time years",
ylab = "Estimated probability of survival") -> plt_cph

text(plt_cph, c("1", "2", "3", "4", "5"), adj= - 0.25)

First, we use survfit to prepare survival curves. However, unlike our previous examples, we
provide it with the model object returned by coxph and with a new dataframe. The newdata
we provide contains the explanatory variables used for building the Cox model. The column
cholfifths has one instance each of the unique value of cholfifths in the data frame used for
building the Cox model. As cholfifths was defined as a factor in the original dataframe, here
also we use factor. As we want the survival probabilities to be adjusted for systolic blood
pressure at the level of the middle fifth of the systolic blood pressure, the value of sbpfifths
is set as factor(3) for the newdata. Thus survfit will give us five survival curves, one for
each fifth of cholesterol adjusted at the middle fifth of systolic blood pressure.

We use plot to draw the curves returned by survfit. In addition to the survfit curves,
we provide ylim to restrict the range of y-axis to between 0.9 and 1 or else, the lines will be
squashed to the upper one tenth of the plot. We also provide col with five different integers
so that each line gets a different colour. We don’t print the graph immediately, but save it as
we want to add labels to the lines. The function text adds the provided labels to the end of
each line. The argument adj is provided to move the labels a bit away from the end of lines.

Example 11.9 (page 530)

We use the data from the previous example to rework example 11.9.

coxph(Surv(survive, chd) ~ as.numeric(sbpfifths),
data = data_11_8)
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FIGURE 11.4
Replication of figure 11.12

Here, we have converted sbpfifths, which was originally defined as a factor, to a number using
as.number. Otherwise, the procedure is similar to the previous example. We may use anova
to compare the categorical and linear models. As we haven’t saved the relevant models, we
will specify them inside anova.

anova(coxph(Surv(survive, chd) ~ sbpfifths, data = data_11_8),
coxph(Surv(survive, chd) ~ as.numeric(sbpfifths), data = data_11_8))

Analysis of Deviance Table
Cox model: response is Surv(survive, chd)
Model 1: ~ sbpfifths
Model 2: ~ as.numeric(sbpfifths)
loglik Chisq Df Pr(>|Chi|)

1 -1604
2 -1605 1.23 3 0.75

Example 11.10 (page 531)

Reworking example 11.10 is similar to our previous example, except for the data and the
explanatory variables we use.
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read_table("K11828 supplements/Datasets/Example 10.12.DAT",
col_names = c("age", "chol", "bmi", "sbp",

"smoke", "active", "chd", "survive"),
col_types = cols( smoke = col_factor(levels = c("1","2","3")),

active = col_factor(levels =c("1","2","3")))
)-> data_10_12

coxph(Surv(survive, chd) ~ age + chol + bmi + sbp + smoke +active,
data = data_10_12)

Call:
coxph(formula = Surv(survive, chd) ~ age + chol + bmi + sbp +

smoke + active, data = data_10_12)

coef exp(coef) se(coef) z p
age 0.0180 1.0182 0.0132 1.4 0.171
chol 0.2861 1.3312 0.0550 5.2 2e-07
bmi 0.0381 1.0388 0.0205 1.9 0.063
sbp 0.0200 1.0203 0.0036 5.5 4e-08
smoke2 0.3121 1.3663 0.2441 1.3 0.201
smoke3 0.6999 2.0135 0.2134 3.3 0.001
active2 -0.1886 0.8281 0.1732 -1.1 0.276
active3 -0.1098 0.8961 0.2242 -0.5 0.624

Likelihood ratio test=89 on 8 df, p=7.4e-16
n= 4049, number of events= 196

Example 11.11 (page 532)

We will now turn our attention to example 11.11.

read_table("K11828 supplements/Datasets/Example 10.23.DAT",
col_names = c("sex", "bscore", "bqrtr","chd", "survive"),
col_types = cols(sex = col_factor(levels = c("1","2")),

bqrtr = col_factor(levels = c("1","2","3","4")))
) -> data_10_23

relevel(data_10_23$sex, ref = "2") -> data_10_23$sex
coxph(Surv(survive, chd) ~ sex * bqrtr,

data = data_10_23) -> cph_11_11_fb
relevel(data_10_23$sex, ref = "1") -> data_10_23$sex
coxph(Surv(survive, chd) ~ sex * bqrtr,

data = data_10_23) -> cph_11_11_mb

After importing data, we use relevel to change the reference level for sex, so that females
would be taken as the baseline as in the textbook. This will give us the values in output
11.5. If we avoid changing the reference level or if we change it back to “1”, we will get the
values in output 11.6. Fitting the proportional hazards model in either case is similar to our
previous examples. We may use summary or confint to obtain the confidence interval of
the coefficients.
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Table 11.5 (page 534)

To prepare table 11.5, we will use tidy.

bind_rows(tidy(cph_11_11_mb, conf.int = TRUE, exponentiate = TRUE) |>
filter(str_starts(term, "bqrtr")) |>
mutate(sex = "Male",

quarter = str_sub(term, -1,-1),
result = paste0(round(estimate,2),

" (",
round(conf.low, 2),
",",
round(conf.high,2),
")")) |>

select(quarter, sex, result),
tidy(cph_11_11_fb, conf.int = TRUE, exponentiate = TRUE) |>

filter(str_starts(term, "bqrtr")) |>
mutate(sex = "Female",

quarter = str_sub(term, -1,-1),
result = paste0(round(estimate,2),

" (",
round(conf.low, 2),
",",
round(conf.high,2),
")")) |>

select(quarter, sex, result)) |>
pivot_wider(names_from = "sex", values_from = result)

We use bind_rows to row bind two sets of dataframes, one for males and one for females, both
returned by tidy. We ask tidy to return confidence intervals in addition to the coefficients
and to exponentiate the values. For males, we supply tidy with the Cox model in which
male sex was specified as the reference level and for females the Cox model in which female
sex was the reference level. We use filter to select from the data frame returned by tidy,
only those rows which give the values for the Bortner quarters. We add a new column to
indicate sex, another to indicate the Bortner quarter and one with the hazard ratio and its
confidence interval. Finally, we select only those columns that we want to show. We use
pivot_wider to separate out the values of the two sexes into different columns.

TABLE 11.3
Replication of table 11.5

Sex

Quarter of Bortner score Male Female
2 1.1 (0.76,1.58) 0.56 (0.32,0.99)
3 0.75 (0.5,1.12) 0.29 (0.14,0.59)
4 0.8 (0.54,1.18) 0.33 (0.16,0.67)
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Example 11.12 (page 534)

To rework example 11.12, we set the reference level for sex to female.

relevel(data_10_23$sex, ref = "2") -> data_10_23$sex
coxph(Surv(survive, chd) ~ sex * bscore,

data = data_10_23) -> cph_11_12_fb
cph_11_12_fb

Fitting an interaction model is similar to our earlier examples. We use * to say that we want
interaction terms in addition to the main effects.

Call:
coxph(formula = Surv(survive, chd) ~ sex * bscore, data = data_10_23)

coef exp(coef) se(coef) z p
sex1 -0.6133 0.5416 0.5723 -1.1 0.284
bscore -0.0129 0.9872 0.0031 -4.1 4e-05
sex1:bscore 0.0105 1.0105 0.0036 2.9 0.003

Likelihood ratio test=84 on 3 df, p=<2e-16
n= 8157, number of events= 268

We may obtain the variance covariance matrix using vcov.

vcov(cph_11_12_fb)

sex1 bscore sex1:bscore
sex1 0.3274821 1.4969e-03 -1.9886e-03
bscore 0.0014969 9.8761e-06 -9.8760e-06
sex1:bscore -0.0019886 -9.8760e-06 1.2851e-05

Before we move on to the next section, note that coxph can handle time dependent covariates
and recurrent events.

11.4 The Weibull proportional hazards model
Example 11.13 (page 538)

To rework example 11.13, we will use the variables from one of our previous examples.

data.frame(time = time_11_7,
events = events_11_7,
cell = cell_11_7) -> data_11_13
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survreg(Surv(time, events) ~ cell,
dist='weibull',
data = data_11_13) -> wbph_11_13

1 / wbph_11_13$scale -> gamma_11.13
exp(-wbph_11_13$coefficients["(Intercept)"]/

wbph_11_13$scale) -> lambda_11_13
- wbph_11_13$coefficients["cellhigh"]/

wbph_11_13$scale -> coef_11_13

library(SurvRegCensCov)
ConvertWeibull(wbph_11_13)

We use data.frame to bind together the relevant variables. We then use survreg to fit a
Weibull proportional hazards model. The difference from our previous example on Weibull
model is that the right-hand side of the formula has the explanatory variable cell instead of
1. Following the formula given in the textbook, we calculate the Weibull shape and scale. The
coefficient for high cellularity was also calculated from the coefficient of the model. We may
use them to estimate the hazard function or survival function as given in the textbook. If we
desire standard errors, we may use vcov to obtain the variance covariance matrix. We use
ConvertWeibull from SurvRegCensCov to present the result of the survival regression in an
easily understandable form. Remember to install it using install.packages as discussed
in chapter 1.

$vars
Estimate SE

lambda 0.00094 0.0010585
gamma 1.74069 0.2591691
cellhigh 0.63281 0.4306925

$HR
HR LB UB

cellhigh 1.8829 0.80951 4.3796

$ETR
ETR LB UB

cellhigh 0.69521 0.43252 1.1175

The ETR in the result stands for event time ratio and HR for hazard ratio.

Figure 11.13 (page 540)

We will now prepare the graph shown in figure 11.13.

survfit(Surv(time, events) ~ cell,
data = data_11_13) -> km_11_13

bind_rows(data.frame(survival = 1,
strata = factor("cell=high"),
time = 0),
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data.frame(survival = 1,
strata = factor("cell=low"),
time = 0),

data.frame(survival = summary(km_11_13)$surv,
strata = summary(km_11_13)$strata,
time = summary(km_11_13)$time)) -> tbl_11_13

We use survfit to get the Kaplan Meir curves. We bind together the relevant columns of
the KM curves to build a data frame that we will supply to ggplot. We also add two rows
to indicate the survival of 1 at time zero. We need two rows, because there are two strata.
Note that in these two rows, the strata are given values cell=high and cell=low, rather
than high and low. This to make the values align with the values returned by survfit.

ggplot(tbl_11_13 ) +
geom_step(aes(y = survival,

x = time,
group = strata,
colour = strata)) +

geom_function(fun = function(x) {exp(-lambda_11_13 * x ˆ gamma_11.13)},
linetype = 2,
colour = "#111111") +

geom_function(fun = function(x) {exp(-lambda_11_13 * exp(coef_11_13) *
x ˆ gamma_11.13)},

linetype = 2,
colour = "#004B73") +

labs(x = "Time (weeks",
y = "Probability of survival") +

scale_color_manual(values = c("#111111", "#004B73"))

We supply ggplot with the data frame we built, specify the geom as geom_step and specify
the appropriate aesthetics. We specify group and colour aesthetics to strata to get two
curves, one each for each level of cellularity. We use geom_function twice to draw the
Weibull survival curves, supplying an anonymous function for each curve. The functions are
similar except for inclusion of coef_11_13 in the curve for high cellularity. The functions
are realisations of the equations given in the textbook.

We can use anova to compare the model with the null model.

anova(wbph_11_13)

Analysis of Deviance Table

distribution with link

Response: Surv(time, events)
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FIGURE 11.5
Replication of figure 11.13

Scale estimated

Terms added sequentially (first to last)
Df Deviance Resid. Df -2*LL Pr(>Chi)

NULL 25 249
cell 1 1.98 24 247 0.16

The result is similar to that in the textbook.

Example 11.14 (page 540)

To rework example 11.14, we use the data from the previous example.

survreg(Surv(survive, chd) ~ age + chol + bmi +sbp + smoke + active,
data = data_10_12,
dist = "weibull") -> wbph_11_14

summary(wbph_11_14)

The code to fit a Weibull proportional model is similar to our previous examples, except for
the many explanatory variables on the right-hand side of the model formula. The summary
method displays the information shown in output 11.9.

Call:
survreg(formula = Surv(survive, chd) ~ age + chol + bmi + sbp +

smoke + active, data = data_10_12, dist = "weibull")
Value Std. Error z p

(Intercept) 15.78271 0.92411 17.08 < 2e-16
age -0.01415 0.01050 -1.35 0.17780



240 11 Modelling follow-up data

chol -0.22729 0.04637 -4.90 9.5e-07
bmi -0.03044 0.01643 -1.85 0.06389
sbp -0.01599 0.00308 -5.19 2.1e-07
smoke2 -0.24895 0.19442 -1.28 0.20039
smoke3 -0.55459 0.17371 -3.19 0.00141
active2 0.15192 0.13774 1.10 0.27004
active3 0.09164 0.17793 0.52 0.60653
Log(scale) -0.23127 0.07007 -3.30 0.00096

Scale= 0.794

Weibull distribution
Loglik(model)= -2290.3 Loglik(intercept only)= -2335

Chisq= 89.39 on 8 degrees of freedom, p= 6.2e-16
Number of Newton-Raphson Iterations: 10
n= 4049

Table 11.7 (page 541)

We will extract the table component returned by summary to build table 11.7.

data.frame(summary(wbph_11_14)$table) -> tbl_11_7

mutate(tbl_11_7,
variable = row.names(tbl_11_7),
B = round(Value, 4),
b = round(- Value / wbph_11_14$scale, 4),
phi = round(exp(b),2)) |>

filter(variable != "(Intercept)" & variable != "Log(scale)") |>
select( B, b, phi)

We save the table component returned by summary as a data frame. We use mutate to build
new columns B, b and phi from the Value column using the formula given in the textbook.
The variable’s name is given as the row name. Negative subsetting based on character value
is not possible. In other words, we cannot ask R to return a modified data frame excluding
certain rows by specifying row names. So, we create a new column from the row names. Now,
we can filter this column to avoid rows of our choice. We exclude the rows corresponding
to intercept and scale. Finally, we select the columns that we want to show.

11.5 Model checking
Example 11.15 (page 542)

To rework example 11.15, we use the table we prepared earlier.

tbl_11_1 |>
mutate(logtime = log(`Time (t)`),
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lch = log(- log(`Survival (s)`))) -> tbl_11_8
select( tbl_11_8, `Time (t)`, logtime, `Survival (s)`, lch)

TABLE 11.4
Replication of table 11.7

Regression coefficients

Explanatory variable B b Φ
age −0.0142 0.0178 1.02
chol −0.2273 0.2864 1.33
bmi −0.0304 0.0384 1.04
sbp −0.0160 0.0201 1.02
smoke2 −0.2490 0.3137 1.37
smoke3 −0.5546 0.6989 2.01
active2 0.1519 −0.1915 0.83
active3 0.0916 −0.1155 0.89

We mutate tbl_11_1 to produce two new columns logtime and lch. The values in the column
are calculated according to the formula given in the text. Note that the values calculated
for the start and end of the time periods are infinity. We select our choice of columns to
display.

# A tibble: 24 x 4
`Time (t)` logtime `Survival (s)` lch

<dbl> <dbl> <dbl> <dbl>
1 0 -Inf 1 -Inf
2 10 2.30 0.963 -3.28
3 12 2.48 0.926 -2.56
4 13 2.56 0.889 -2.14
5 15 2.71 0.852 -1.83
6 16 2.77 0.815 -1.59
7 20 3.00 0.741 -1.20
8 24 3.18 0.667 -0.903
9 26 3.26 0.593 -0.648

10 27 3.30 0.556 -0.531
# i 14 more rows

Figure 11.14 (page 543)

We use the table to plot the graph given in figure 11.14.

ggplot(tbl_11_8, aes(x = logtime, y = lch)) +
geom_line() +
geom_point() +
labs(x = "Log of survival time",

y = "Log cumulative hazard")
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We use ggplot. As, the aesthetic values are common to both the geoms we intend to use,
we specify them inside ggplot. We use geom_line and geom_point to draw the graph.

FIGURE 11.6
Replication of figure 11.14

Figure 11.15 (page 544)

We can prepare the graph in figure 11.15 in a manner similar to our previous example.

tbl_11_13 |>
mutate(logtime = log(time),

lch = log(- log(survival))) -> tbl_11_16
ggplot(tbl_11_16,

aes(x = logtime, y = lch,group = strata,colour = strata)) +
geom_line() +
geom_point() +
scale_color_manual(values = c("#111111", "#004B73")) +
labs(x = "Log of survival time",

y = "Log cumulative hazard")

The difference from our previous example is that we provide group and colour arguments
to ggplot. We do this to have different lines with different colours for each value in the
strata variable.

Example 11.17 (page 544)

To rework the example 11.17, we need the Kaplan Meir curves for example 11.8.

survfit(Surv(survive, chd) ~ cholfifths,
data = data_11_8) -> km_11_17

data.frame(strata = summary(km_11_17)$strata,
time = summary(km_11_17)$time,
survival = summary(km_11_17)$surv) |>

mutate(logtime = log(time),
lch = log(- log(survival))) -> tbl_11_17

ggplot(tbl_11_17,
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FIGURE 11.7
Replication of figure 11.15

aes(x = logtime,
y = lch,
group = strata,
colour = strata,
linetype = strata)) +

geom_line()

Except for the fact that we needed to fit a KM curve, the steps for building the graph are
similar to the previous examples. Here, we omitted geom_point as including it will cause
crowding in the graph.
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FIGURE 11.8
Replication of figure 11.16

Example 11.18 (page 545)

To rework example 11.18, we use the data from our previous example.

coxph(Surv(time,events) ~ cell ,
ties = "breslow",
data = data_11_13) -> cph_11_18c

survSplit(Surv(time, events) ~ cell,
data=data_11_13,
cut=data_11_13$time) -> newdata

coxph(Surv(tstart,time,events) ~ cell + tt(as.numeric(cell)),
data =newdata,
ties = "breslow",
tt = function(x, t,...) x*t) -> cph_11_18tc

-2 * (cph_11_18c$loglik[2] - cph_11_18tc$loglik[2]) -> chistat
pchisq(chistat,df =1, lower.tail = FALSE)
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First, we fit a Cox proportional hazards model and save with a suitable name. We use
survSplit to create a new data frame. Each record in the data that is supplied to survSplit
is split into multiple sub-records for each of the time specified in cut. It is sufficient to use
the unique time periods. Here, we use the time component of tbl_11_18 as the cut time.
The new data frame is in a counting process format. This means that there will be a new
column to indicate a start time, which will be named tstart. In the next step, we fit a Cox
proportional hazards model using the newdata. There are some differences from the previous
examples. First, Surv is supplied the tstart variable as the first option and time as the
second option. Thus Surv will understand that the supplied dataframe is in counting process
format. Second, the response variable supplied includes tt(as.numeric(cell)). We use
as.numeric because we need to convert cell, a factor to numeric as expected by the function.
The term tt() is to indicate that coxph needs to calculate a time varying variable from its
argument as.numeric(cell). How exactly the time varying variable is calculated depends on
the value of tt argument. In our case, we supply an anonymous function which accepts two
named variables x and t. coxph will supply the time and as.numeric(cell) to these variables
when the function is called. The function returns the product of the supplied variables.

We calculate the difference of loglik components of the two models and multiply it with
-2 to calculate the statistic. We use pchisq to calculate the significance of the statistic. We
can find the value of the coefficient corresponding to the time varying variable by printing
cph_11_18tc to confirm that it agrees with the text value.

[1] 0.83277

Note that the method we followed would look like a rather convoluted path. We may think
that modifying the original coxph call to include the term as.numeric(cell) * time as
a predictor variable could achieve the same result. However, it is not so. We need tt to
calculate the time dependent covariate correctly. But, we needn’t follow this path at all.
survival provides cox.zph, a function that will test the proportional hazards assumption
directly. However, it doesn’t use the methodology described in the textbook.

Example 11.19 (page 546)

To rework example 11.19, we fit the different models.

survreg(Surv(time, events) ~ cell,
dist='weibull',
data = data_11_13,
subset = cell == "low") -> wbph_11_19lc

survreg(Surv(time, events) ~ cell,
dist='weibull',
data = data_11_13,
subset = cell == "high") -> wbph_11_19hc

survreg(Surv(time, events) ~ cell,
dist='weibull',
data = data_11_13) -> wbph_11_19all

-2 * ( wbph_11_19all$loglik[2] -
(wbph_11_19lc$loglik[2] +

wbph_11_19hc$loglik[2])) -> stat_11_19
stat_11_19
pchisq(stat_11_19, df = 1,lower.tail = FALSE)
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The difference from our previous examples is that we use the subset argument to restrict
model fitting to suit our needs. We calculate the test statistic from the loglik component
of the models. We find the significance of the statistic using pchisq.

[1] 0.021186
[1] 0.88427

11.5.1 Competing risk
Example 11.20 (page 547)

Fitting a Fine and Gray model is a two step process.

read_table("K11828 supplements/Datasets/Example 11.20.dat",
col_names = c("smoker", "age", "time", "event"),
col_types = cols(smoker = col_factor(levels = c("0","1")),

age = col_double(),
time = col_double(),
event = col_factor( levels =c("0","1","2")))

) -> data_11_20
finegray(Surv(time, event) ~ .,

data = data_11_20) -> fgdata_11_20
coxph(Surv(fgstart, fgstop, fgstatus) ~ smoker + age,

weight=fgwt,
data = fgdata_11_20) -> fgmdl_11_20

After importing the data, the first step is to create a modified data frame. We use finegray
for this step. It accepts a formula whose left-hand side is Surv object. The . on the right-hand
side stand for all the remaining columns in the dataframe supplied as data argument. The
result is stored. This dataframe contains four new columns instead of those used on the
left-hand side of the formula. These are named fgstart, fgstop, fgstatus and fgwt. The
columns specified by the right-hand side of the formula are preserved as such.

In the second step, we use the datafame created by finegray to fit a weighted Cox model.
The left-hand side of the formula we supply to coxph uses the new columns fgstart, fgstop,
fgstatus created by finegray. The fgwt is given as the weight argument for coxph.

We will print the Fine and Gray model to confirm that the coefficients are similar to that in
output 11.11.

Call:
coxph(formula = Surv(fgstart, fgstop, fgstatus) ~ smoker + age,

data = fgdata_11_20, weights = fgwt)

coef exp(coef) se(coef) robust se z p
smoker1 0.530 1.698 0.227 0.222 2.4 0.02
age 0.035 1.036 0.037 0.037 1.0 0.34

Likelihood ratio test=5.7 on 2 df, p=0.058
n= 199, number of events= 83
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To fit the wrong Cox model, ignoring the information given by the competing risk, we need
to modify the data frame.

mutate(data_11_20,
eventmod = ifelse(event == "1",1,0)) -> data_11_20mod

coxph(Surv(time, eventmod) ~ smoker + age,
data = data_11_20mod) -> cxph_11_20

We create a new column eventmod from event. All values except 1 are converted to zero; 1
is retained as one. Thus, the competing risk indicated by 2 is treated as censored. Also note
that event was originally factor, but eventmod is numeric. We use this new column inside
Surv and fit a Cox model using coxph.

We print the model object to confirm that the coefficients are similar to that on output
11.10.

Call:
coxph(formula = Surv(time, eventmod) ~ smoker + age, data = data_11_20mod)

coef exp(coef) se(coef) z p
smoker1 0.846 2.330 0.232 3.6 3e-04
age 0.058 1.060 0.036 1.6 0.1

Likelihood ratio test=13 on 2 df, p=0.0013
n= 160, number of events= 83

Figure 11.17 (page 549)

We use base graphics to prepare the graphs in figure 11.17.

expand.grid(age = mean(data_11_20$age),
smoker = c("0", "1")) -> new_data

par(mfrow = c(1,2))
cxplt <- plot(survfit(cxph_11_20, newdata= new_data),

fun = function(x) 1-x,
col = c("blue", "black"),
lty = 2:1,
conf.int = FALSE,
xscale = 365.25,
xlab = "Time (years)",
ylab = "cumulative incidence",
ylim = c(0,0.9))

text(cxplt, c("Non-smokers", "Smokers"), adj = c(1,-0.25))
title("Cox analysis")
fgplt <- plot(survfit(fgmdl_11_20, newdata= new_data),

fun = function(x) 1-x,
col = c("blue", "black"),
lty = 2:1,
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conf.int = FALSE,
xscale = 365.25,
xlab = "Time (years)",
ylab = "Cumulative Incidence",
ylim = c(0,0.9))

text(fgplt, c("Non-smokers", "Smokers"), adj = c(1,-0.25))
title("Fine and Gray analysis")

First, we create a new data frame using expand.grid. We ask expand.grid to build a data
frame using the unique combination of values from each of the vectors supplied. In our case,
we get two rows with two columns. One column will be named age and will have the mean
age of our original data frame in both rows. The second column smoker will have the values
0 and 1 corresponding to the smoker column of the original data set.

We call survfit to produce survival curves from the models we fitted. Each time, survfit
is provided the relevant model object and the newdata. The plot command is provided
many more arguments in addition to the survfit object. One important argument is fun.
We specify an anonymous function which can accept a named argument x. The function
returns the 1 minus the supplied value, the cumulative incidence. Thus, plot will use the
survival curve to calculate the cumulative incidence from the survival curve and plot it. We
use xscale to scale the x axis by a factor of 365.25. Thus, we get the number of years in
the x axis instead of days. We supply ylim to both the graphs so that the y axis spread
is the same in both the graphs. The arguments col, lty each with a vector of two values
specify the colour and line type of each of the two lines drawn. The command par(mfrow =
c(1,2)) given before the plot commands asks R to print the next plots in a one row, two
column grid. Thus, we get the two plots side by side. However, we save the plots instead of
drawing them immediately. We do this to add labels to the curves using text. The argument
adj is used to adjust the position of the labels. We add titles to the graphs using title.

It is unclear how cumulative incidence was calculated in our text. Though we calculated
the cumulative incidence as 1 minus survival, it is not valid when competing risks are to be
accounted for. We should prefer to use cuminc function from cmprsk package. The cmprsk
pack also provide crr to fit Fine and Gray models.

11.6 Poisson regression
Example 11.21 (page 551)

We can fit Poisson regression models using glm.

data.frame(house = c("rented", "owned"),
events = c(115, 104),
pyears = c(14200.945,18601.467)) -> data_11_21

glm(events ~ offset(log(pyears)) + house,
family = "poisson",
data = data_11_21) -> psn_11_21
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FIGURE 11.9
Replication of figure 11.17

First, we prepare a data frame to hold the data in a form appropriate for glm. We call
glm in a manner similar to our previous examples. The difference is that we use offset to
specify that the log of pyears is the offset and that the value supplied to family argument
is poisson.

tidy(psn_11_21, conf.int = 0.95)

We use tidy to print the coefficients and their confidence interval to confirm that they agree
with output 11.12.

# A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -5.19 0.0981 -52.9 0 -5.39 -5.00
2 houserented 0.370 0.135 2.74 0.00619 0.105 0.637

We may ask tidy to exponentiate the result.

tidy(psn_11_21, exponentiate = TRUE, conf.int = 0.95)
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# A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.00559 0.0981 -52.9 0 0.00458 0.00674
2 houserented 1.45 0.135 2.74 0.00619 1.11 1.89

The exponentiated estimate for intercept and its confidence interval gives us the event rate
for owners (which we will have to multiply by 1000 to get the per thousand rate). The
exponentiated estimate for renters gives us the relative rate and its confidence interval.
To get the event rate for renters, we need to manually add the original coefficients and
then exponentiate it. For calculating its confidence interval using the formula given in the
textbook, we need vcov to obtain the variance covariance matrix.

Example 11.22 (page 553)

For reworking the example 11.22, we prepare the de-aggregated data.

data.frame(age = factor(rep(c("40-44", "45-49", "50-54",
"55-59", "60-64", "65-69"),

2)),
house = factor(rep(c("rented", "owned"), each = 6)),
events = c(2,24,31,28,28,2,3,19,25,27,26,4),
pyears = c(1107.447,3058.986,

3506.53,3756.65,
2419.622,351.71,
1619.328,4550.166,
4857.904,4536.832,
2680.843,356.394)) -> data_11_22

anova(glm(events ~ offset(log(pyears)) + age * house ,
family = "poisson",
data = data_11_22),

test = "Chisq")

We provide to anova, the model that we propose to fit. It returns an analysis of deviance
table showing results as if the terms were added sequentially. We also specify the test to be
performed to determine the significance of the terms.
Analysis of Deviance Table

Model: poisson, link: log

Response: events

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 11 35.1
age 5 24.97 6 10.1 0.00014 ***
house 1 6.44 5 3.7 0.01114 *
age:house 5 3.66 0 0.0 0.59917
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Having found that the interaction term is not significant, we fit the simpler model

relevel(data_11_22$age, ref = "65-69") -> data_11_22$age
glm(events ~ offset(log(pyears)) + age + house ,

family = "poisson",
data = data_11_22) -> psn_11_22

We use relevel to change the reference level for the variable age to align with the textbook
results. The use of glm is similar to our previous example, except for the model formula.

tidy(psn_11_22)

We confirm that the results agree with output 11.13 given in our text.

# A tibble: 7 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -4.96 0.416 -11.9 9.28e-33
2 age40-44 -1.50 0.606 -2.48 1.33e- 2
3 age45-49 -0.372 0.436 -0.854 3.93e- 1
4 age50-54 -0.209 0.430 -0.486 6.27e- 1
5 age55-59 -0.230 0.430 -0.535 5.93e- 1
6 age60-64 0.230 0.430 0.535 5.92e- 1
7 houserented 0.344 0.136 2.54 1.12e- 2

Similar to our previous example, we may ask tidy to exponentiate the estimates and
confidence intervals if we desire so.

11.6.1 Comparison of standardised event ratios
Example 11.23 (page 555)

Comparing standardised event ratios is essentially the same as our previous examples. Here
we rework example 11.23.

data.frame(deaths = c(4,43),
expect = c(1.488, 38.755),
factory = factor(c("a", "b"))) -> data_11_23

glm(deaths ~ offset(log(expect)) + factory,
data = data_11_23,
family = "poisson") -> psn_11_23

tidy(psn_11_23)

As with our previous examples, we prepare a data frame and use glm. The point to note is
that the log of the expected number is specified as the offset.
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# A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.989 0.500 1.98 0.0480
2 factoryb -0.885 0.523 -1.69 0.0905

Example 11.24 (page 556)

To rework example 11.24, we prepare the data.

data.frame(deprive = factor(rep(c("I", "II", "III", "IV"),
each = 8)),

agegrp = factor(rep(c("25-29", "30-34","35-39","40-44",
"45-49", "50-54","55-59", "60-64"),

4)),
events = c(0,0,1,6,7,16,17,25,0,0,4,7,13,11,28,44,

0,0,1,9,17,19,43,53,0,1,5,10,15,24,28,56),
popln = c(4784,4210,3396,3226,2391,2156,2182,2054,4972,4045,

3094,2655,2343,2394,2597,2667,4351,3232,2438,2241,
2360,2708,2968,2802,4440,3685,2966,2763,2388,2566,
2387,2380)) -> data_11_24

anova(glm(events ~ offset(log(popln)) + agegrp * deprive,
family = "poisson",
data = data_11_24),

test = "Chisq")

We supply the model with interaction term to anova to get the analysis of deviance table.
Note that this won’t give the row corresponding to row 3 of table 11.10. If we need that row,
we will need to call anova with that model.

Analysis of Deviance Table

Model: poisson, link: log

Response: events

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 31 698
agegrp 7 665 24 33 <2e-16 ***
deprive 3 20 21 13 0.0002 ***
agegrp:deprive 21 13 0 0 0.8916
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Once the anova table informs us that the interaction terms are not significant, we fit the
simpler model. We need to relevel the age group variable to align the results with that of
the textbook.
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relevel(data_11_24$agegrp, ref = "60-64") -> data_11_24$agegrp
glm(events ~ offset(log(popln)) + agegrp + deprive,

family = "poisson",
data = data_11_24) -> psn_11_24

The model fitting command is different only in the model formula and the offset used.

Table 11.11 (page 557)

We will prepare only the column corresponding to Poisson regression of table 11.11.

rownames_to_column(data.frame(estimate = coefficients(psn_11_24),
lower = confint.default( psn_11_24)[,1],
upper = confint.default( psn_11_24)[,2])) |>

filter(str_starts(rowname, "deprive")) |>
transmute(`Deprivation Group` = str_remove(rowname, "deprive"),

Poisson = paste0(round(exp(estimate),2),
" (",
round(exp(lower), 2),
",",
round(exp(upper), 2), ")"))

First, we prepare a data frame containing the coefficients and their confidence intervals. By
default, R uses a method called profile likelihood for estimating the confidence interval for
glm objects. In this example however, R is unable to calculate the confidence interval by
the profile likelihood method. So, we ask R to use the normal approximation by calling
confint.default. We use rownames_to_column to include a column in the dataframe with
values corresponding to its rownames. The result of coefficients and confint.default
are vector and matrix respectively. When we join them to form a data frame, each row has
a name assigned corresponding to the coefficient’s name. This is not a column that we can
manipulate like other columns. In order to make it manipulable, we make it a new column.

Next, we filter the dataframe to output only those rows corresponding to the deprivation
groups. We use transmute to make two new columns with the result we want. The function
transmute is similar to mutate except that transmute will return only the newly made
columns. This saves us an extra step of hiding / deleting the columns that we don’t want to
show.

TABLE 11.5
Replication of table 11.11

Deprivation group Poisson regression method
II 1.3 (0.96,1.75)
III 1.62 (1.22,2.16)
IV 1.77 (1.33,2.36)

To fit a model postulating linear trend of the effect of deprivation group, we need to create
a new column with the appropriate value.
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as.numeric(data_11_24$deprive) -> data_11_24$depriven
anova(glm(events ~ offset(log(popln)) + agegrp + depriven +

I(deprivenˆ2) + I(deprivenˆ3),
family = "poisson",
data = data_11_24),

test = "Chisq")

We coerce the factor variable deprive to numeric using as.numeric. This works because
factors are internally represented as numbers and the numerical code used for the various
factor levels agree with the numeric value we need for each level. We use the new column
depriven to specify the model. We use anova to build an analysis of deviance table. We
specify a model with upto the cubic power of the new variable we created. Each power of
depriven is specified inside I. This is done to insulate the mathematical expression inside it
from being assigned the special meanings within a model formula. Thus depriven ˆ 2 will
be treated as depriven squared. Note that our analysis of deviance model doesn’t have the
second row of table 11.12. If we really want to include it, we will have to specify another
anova command with the relevant model and add the corresponding row to our table.
Analysis of Deviance Table

Model: poisson, link: log

Response: events

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 31 698
agegrp 7 665 24 33 < 2e-16 ***
depriven 1 19 23 14 1.6e-05 ***
I(depriven^2) 1 1 22 14 0.34
I(depriven^3) 1 0 21 13 0.80
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model named “depriven” is the linear model, followed by the quadratic and the cubic
models.

11.7 Pooled logistic regression
Example 11.25 (page 560)

We will use the package “Greg” to prepare our data for pooled logistic regression. Remember
to install it using install.packages as discussed in chapter 1.

read_table("K11828 supplements/Datasets/Example 5.9.DAT",
col_names = c("age","house","chd","survive"),
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col_types = cols(house = col_factor())) |>
rownames_to_column() |>
mutate(agedays = age * 365.25) -> data_11_25

library(Greg)

timeSplitter(data_11_25, by = 365.25,
time_var = "survive", event_var = "chd",
time_related_vars = "agedays") -> data_11_25split

We import the data and add two new columns. One, the rownumber, to serve as an id and
another to represent the age in days. This step is required to bring the survival time and
age, the variables we want to modify for each interval, to the same unit of measurement.

We use the function timeSplitter from Greg to prepare the data. The first argument to
timeSplitter is the dataframe we wish to modify. The argument by tells the width of the
intervals into which the data will be split. Here, we want each record to be split into one
year periods. As the survival time is stored in days, we use 365.25 to represent an year.
The time_var tells which variable represents the survival time. The event_var tells which
variable represents the outcome – censored or death. The time_related_vars is used to
indicate the variables that need to be calculated for each interval. Here, we supply the age
represented in days. This variable will be incremented by 365.25 after each interval starting
from the original value. Note that though we supply a data argument, we cannot refer
directly to the data frame’s columns by their name; they need to be enclosed in quotes.

We can confirm that the number of rows in the newly created data frame agrees with that
given in the textbook.

nrow(data_11_25split)

[1] 35126

We may inspect a set of the split records against the original.

filter(data_11_25, rowname == 10)

# A tibble: 1 x 6
rowname age house chd survive agedays
<chr> <dbl> <fct> <dbl> <dbl> <dbl>

1 10 46.7 2 1 1635 17068.

filter(data_11_25split, rowname == 10)

agedays rowname age house chd Start_time Stop_time
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17068 10 46.73 2 0 0.00 365.25
17433 10 46.73 2 0 365.25 730.50
17799 10 46.73 2 0 730.50 1095.75
18164 10 46.73 2 0 1095.75 1461.00
18529 10 46.73 2 1 1461.00 1635.00

Note how the agedays column increment by 365.25 in each row, while age, which we left
untouched, remains the same. Note the new columns Start_time and Stop_time which
indicate the interval during the observation period for which the information in the row is
valid. Note how the value of chd is 0 except for the last period.

Now that we have verified that the data frame has been modified correctly, we may perform
a logistic regression on it and confirm that it agrees with the textbook value. As we do not
intend to use the model anywhere else, we will specify the model directly within tidy asking
it to provide us with exponentiated values including the confidence interval.

tidy(glm(chd ~ agedays + house,family = binomial(),data = data_11_25split),
exponentiate = TRUE,
conf.int = TRUE) |>

filter(term == "house2") |>
select(c(term, estimate, conf.low, conf.high))

# A tibble: 1 x 4
term estimate conf.low conf.high
<chr> <dbl> <dbl> <dbl>

1 house2 1.42 1.09 1.86

Note that we may use the same modified dataframe for pooled Cox regression by providing
the columns that mark the start and end of the intervals to Surv.

11.8 Recap
11.8.1 Concepts
• counting process format

11.8.2 Commands introduced in this chapter
• dplyr::lead
• survival::survreg
• survival::coxph
• stringr::str_sub
• stringr::str_starts
• graphics::text
• base::as.numeric
• SurvRegCensCov::ConvertWeibull

• survival::survSplit
• survival::finegray
• base::expand.grid
• stats::offset
• graphics::title
• dplyr::transmute
• Greg::timeSplitter
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We will use the package metafor in this chapter on meta-analysis. Most of the functions
expect a data frame and use the column names directly or by means of a formula. The
tidyverse packages we use include readr, dplyr, ggplot2 and stringr. First, we will try
to recreate the graph in figure 12.1 using ggplot.

Figure 12.1 (page 566)

data.frame(author = c("Alderson", "Benhamou", "Chan"," Chan",
"de Stefani (a)","de Stefani (b)","Hu"," Hu",
"Ives", "Maclennan", " Maclennan","Engeland",
" Engeland","Hawthorne","Reid"),

sex = c("Male","Male","Female","Male","Male",
"Male","Female","Male","Female","Female",
"Male","Female","Male","Male","Male"),

rr = c(1.46,1.28,0.47,1.40,1.67,2.00,2.89,1.27,
2.39,0.69,1.64,1.56,1.06,1.94,1.67),

lci = c(1.11,0.98,0.22,0.80,1.22,1.28,0.79,0.74,
1.11,0.31,0.96,0.91,0.79,0.95,1.11),

uci = c(1.91,1.67,1.01,2.46,2.30,3.12,10.5,2.19,
5.13,1.52,2.79,2.69,1.43,3.97,2.51)

) -> tbl_12_1

ggplot(tbl_12_1, aes(y = author)) +
geom_pointrange(aes(x = rr, xmin = lci, xmax = uci)) +
geom_text(aes(x = 0,label = sex),hjust = "left",size = 3) +
geom_text(aes(x = 25,

label = paste0(rr, "(", lci, ", ", uci, ")"),
hjust = "right")) +

geom_vline(aes(xintercept = 1), lty = 2) +
scale_x_log10(limits = c(0.1,25),breaks = c(0.2,0.5,1:4)) +
xlab("Relative risk") +
scale_y_discrete( limits = rev(tbl_12_1$author)) +
ylab(NULL) +
theme(panel.grid = element_blank(),

panel.background = element_blank(),
axis.ticks = element_blank())

We use the values given in fig 12.1 to prepare the dataframe. The rows are sorted according
to the order in figure 12.1. We use geom_pointrange to plot the estimated relative risk and
its confidence interval. We use geom_text to plot the sex group studied in each study as well
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the values of relative risk and its confidence interval. The hjust argument determines the
horizontal alignment of the text relative to the specified coordinates. We use geom_vline
to place a vertical line corresponding to relative risk of 1. We use scale_x_log10 to tell
ggplot that we need log scaled x axis. The limits argument decides the extend of the scale
and the breaks argument determines the tick marks that will be placed. We use rev inside
scale_y_discrete to order the y axis properly as the default behaviour of ggplot is to
start from origin and go up the positive y axis. ggplot uses only unique values in author
and thus overplots whenever the author is repeated. We have resorted to a trick to make
each value of author unique – we add a space before the duplicated value. xlab and ylab
determine the axis labels. Finally, we use theme to unset the panel grid, panel background
and axis ticks. While we don’t have the plot exactly as in figure 12.1, we will move ahead
and see more of forest plots later.

FIGURE 12.1
Replication of figure 12.1

12.1 A general approach to pooling
Example 12.3 (page 577)

Reworking example 12.3 requires only mutate to create the new columns.
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mutate(tbl_12_1,
logrr = log(rr),
stderr = (((logrr - log(lci)) / 1.96 ) +

((log(uci) -logrr) / 1.96))/2) -> tbl_12_2
tbl_12_2[tbl_12_2$author == "Alderson",]

In a single step we calculate the standard error by averaging the value calculated from both
the confidence limits.

author sex rr lci uci logrr stderr
1 Alderson Male 1.46 1.11 1.91 0.37844 0.13845

Example 12.4 (page 578)

For example 12.4, we need few more columns.

mutate(tbl_12_2,
weightfe = 1/ stderrˆ2,
wfelogrr = weightfe * logrr) -> tbl_12_2

sum(tbl_12_2$wfelogrr) / sum (tbl_12_2$weightfe) -> fe_12_2
1/ sqrt(sum(tbl_12_2$weightfe)) -> fesr_12_2
fe_12_2
fesr_12_2

We add the columns with weight for fixed effects and for the product of the log of RR and
the weight. From these columns, we calculate the pooled log relative risk and its standard
error.
[1] 0.34064
[1] 0.056666

We can test the null hypothesis of pooled log risk using pnorm

pnorm(fe_12_2/fesr_12_2, lower = FALSE)

[1] 9.201e-10

We can calculate D,Q, and I2 using the formula given in the textbook.

mean(tbl_12_2$weightfe) -> meanwfe_12_2
var(tbl_12_2$weightfe) -> varwfe_12_2
length(tbl_12_2$author) -> k
(k - 1) * ((k * meanwfe_12_2 ˆ 2) - varwfe_12_2 ) / (k * meanwfe_12_2) -> D
mutate(tbl_12_2,

q = (logrr - fe_12_2)ˆ 2 * weightfe) -> tbl_12_2
sum(tbl_12_2$q) -> Q
100 * (Q - (k -1)) / Q -> I
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sqrt(Q / (k -1)) -> H
(log(Q) - log(k-1))/ ( 2 * (sqrt(2*Q) - sqrt(2 * k -3))) -> selogH
exp(log(H) - (1.96 * selogH)) -> L
exp(log(H) + (1.96 * selogH)) -> U

We confirm that the upper confidence limit of I2 is as given in our example.

100 - (100 / U ˆ2 )

[1] 67.922

Table 12.2 (page 578)

To calculate the weights for random effects model, we need to calculate the between-studies
variance estimate.

(Q - k+1) / D -> tsq
mutate(tbl_12_2,

weightre = 1/ (( 1/ weightfe) + tsq)) -> tbl_12_2
select(tbl_12_2, c(author, sex, logrr,stderr, weightfe, weightre)) |>

mutate(author = str_trim(author)) |>
arrange(author, sex)

We add a new column of weights to the dataframe. We now have all the columns of table
12.2. We use str_trim to remove the extra space in front of the repeated author’s names.

TABLE 12.1
Replication of table 12.2

Log relative risk Weights

Study author Sex Estimate Standard error Fixed effect Random effects
Alderson Male 0.378436 0.13845 52.1655 18.4606
Benhamou Male 0.246860 0.13598 54.0847 18.6954
Chan Female −0.755023 0.38880 6.6154 5.3717
Chan Male 0.336472 0.28656 12.1780 8.5386
Engeland Female 0.444686 0.27649 13.0807 8.9728
Engeland Male 0.058269 0.15138 43.6397 17.2668
Hawthorne Male 0.662688 0.36481 7.5139 5.9493
Hu Female 1.061257 0.65997 2.2959 2.1251
Hu Male 0.239017 0.27679 13.0529 8.9597
Ives Female 0.871293 0.39050 6.5579 5.3337
Maclennan Female −0.371064 0.40559 6.0791 5.0126
Maclennan Male 0.494696 0.27216 13.5006 9.1684
Reid Male 0.512824 0.20814 23.0820 12.7676
de Stefani (a) Male 0.512824 0.16175 38.2220 16.3499
de Stefani (b) Male 0.693147 0.22729 19.3572 11.5394
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We add new columns to the dataframe to facilitate the calculation of the pooled estimate
according to the random effect model.

mutate(tbl_12_2,
wrelogrr = weightre * logrr,
serenum = weightre ˆ 2 * stderr ˆ 2) -> tbl_12_2

sum(tbl_12_2$wrelogrr) / sum (tbl_12_2$weightre) -> re_12_2
1/ sqrt(sum(tbl_12_2$weightre)) -> resr_12_2

We confirm that the result agree with our example.

exp(re_12_2)
exp(re_12_2 + c(-1.96,1.96) * resr_12_2)

[1] 1.4184
[1] 1.2115 1.6607

We will see in the next example that we needn’t calculate the pooled effects by hand. We
followed manual calculation to reproduce the table showing the weights for fixed effects and
random effects models.

Example 12.5 (page 580)

We use rma from metafor to calculate the pooled effects. Remember to install the package
using install.packages as discussed in chapter 1.

data.frame(study = c("Busselton", "CISCH", "Civil Service",
"Fletcher Challenge","Ohasama",
"Seven Cities","Singapore NHS",
"Singapore Heart", "Tanno Soubetsu"),

DMyCBVy = c(17,1,1,7,8,9,20,22,3),
DMyCBVn = c(85,24,52,251,216,116,300,195,104),
DMnCBVy = c(454,37,8,77,46,284,24,53,30),
DMnCBVn = c(4718,1736,2102,9976,1970,10264,2987,2072,1677),
est = c(1.351,0.770,1.611,1.334,0.679,1.468,2.079,1.852,0.509),
stderr = c(0.248,1.013,1.061,0.395,0.390,0.340,0.310,0.255,0.606)
) -> tbl_12_3

library(metafor)
rma(yi = est, sei = stderr,

data = tbl_12_3,
method = "FE",
slab = study) -> fe_12_3

The function rma accepts many arguments. When the estimate from the study is provided
directly, we use the argument yi. The standard error is supplied via sei. The data argument
specifies the data frame in which to find the variables specified. The method argument
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specifies whether we want a fixed effect model or a variable effect model. We have specified
FE to mean that we need the fixed effect model. The slab argument is used to specify the
column that carries the study labels.

We may print the returned object, use summary or select only those components that we
need. We can confirm that the pooled estimate, its standard error and the I2 statistic all
agree with the values given in the textbook.

fe_12_3$beta
fe_12_3$se
fe_12_3$I2

[,1]
intrcpt 1.4849
[1] 0.12103
[1] 41.006

To fit a random effects model, we need to specify one of the various estimators of heterogeneity
as the method. Here, we use DL. We can confirm the agreement of the calculated values with
the textbook values.

rma(yi = est,
sei = stderr,
data = tbl_12_3,
method = "DL",
slab = study) -> re_12_3

re_12_3$beta
re_12_3$se
re_12_3$tau2

[,1]
intrcpt 1.4247
[1] 0.17133
[1] 0.097772

The weights assigned to each of the studies can be obtained using weights.

weights(fe_12_3)

Busselton CISCH Civil Service Fletcher Challenge
23.8180 1.4275 1.3013 9.3889
Ohasama Seven Cities Singapore NHS Singapore Heart
9.6312 12.6722 15.2435 22.5283

Tanno Soubetsu
3.9890

However, this gives us the percentage contribution of each study, corresponding to the second
and fourth column of table 12.4. We may specify the argument type="matrix" to get the
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values corresponding to that in column one and three of table 12.4. However, the values are
in the diagonal elements of the matrix returned by the function. We use diag to get the
diagonal elements.

diag(weights(fe_12_3, type="matrix"))

Busselton CISCH Civil Service Fletcher Challenge
16.25911 0.97450 0.88832 6.40923
Ohasama Seven Cities Singapore NHS Singapore Heart
6.57462 8.65052 10.40583 15.37870

Tanno Soubetsu
2.72304

Table 12.4 (page 581)

We can now build table 12.4.

mutate(tbl_12_3,
WeightsFE = diag(weights(fe_12_3, type="matrix")),
PercentageFE = weights(fe_12_3),
WeightsRE = diag(weights(re_12_3, type="matrix")),
PercentageRE = weights(re_12_3)) -> tbl_12_3

We still don’t have the heterogeneity measure, which we will have to calculate by hand.

fe_12_3$beta["intrcpt",] -> fepm
mutate(tbl_12_3,

q = WeightsFE * (est - fepm) ˆ 2,
Percentageq = 100 * q / sum(q)) -> tbl_12_3

select(tbl_12_3, study, WeightsFE, PercentageFE,
WeightsRE, PercentageRE, q, Percentageq)

TABLE 12.2
Replication of table 12.4

Weights

Study name Fixed % Random % Components of %
effects effects heterogeneity

Busselton 16.25911 23.8% 6.27842 18.4% 0.2912976 2.1%
CISCH 0.97450 1.4% 0.88973 2.6% 0.4979797 3.7%
Civil Service 0.88832 1.3% 0.81733 2.4% 0.0141364 0.1%
Fletcher Challenge 6.40923 9.4% 3.94016 11.6% 0.1458477 1.1%
Ohasama 6.57462 9.6% 4.00205 11.7% 4.2695272 31.5%
Seven Cities 8.65052 12.7% 4.68666 13.8% 0.0024562 0.0%
Singapore NHS 10.40583 15.2% 5.15805 15.1% 3.6733984 27.1%
Singapore Heart 15.37870 22.5% 6.14263 18.0% 2.0730293 15.3%
Tanno Soubetsu 2.72304 4.0% 2.15050 6.3% 2.5931125 19.1%
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12.2 Investigating heterogeneity
Figure 12.2 (page 585)

We use the function forest to plot a forest plot of figure 12.2.

forest(fe_12_3,
atransf = exp,
at = log(c(0.5,1,2,4,8,16)),
order = "prec",
header = TRUE,
annotate = FALSE,
ylim = c(-2,12))

addpoly(re_12_3)

The first argument that we provide is the object returned by rma. We ask for transforming
the x-axis labels using exp by specifying atransf = exp. The argument at determines
the placement of tick marks on the x-axis. We use log as we have specified atransf=exp.
The argument order determines the order in which the studies appear. Our choice prec
arranges them according to their variance. The arguments header determines whether a
header should be drawn. The argument annotate determines whether the numerical value of
the estimate and confidence intervals are shown or not. We use addpoly to add the pooled
measure calculated according to the random effects model. It is in anticipation of this that
we increased the y limits of the graph drawn using forest by specifying the ylim argument.
The argument we supply to addpoly is an object returned by rma.

Figure 12.3 (page 587)

We don’t have a ready-made function to prepare the influence plot given in figure 12.3.

ggplot(tbl_12_3, aes(y = ifelse(est > fepm,sqrt(q), -1 * sqrt(q)))) +
geom_point(aes(x = sqrt(WeightsFE))) +
geom_text(aes(label = study,x = sqrt(WeightsFE) - 0.05),

vjust = "top",
hjust = "right") +

geom_hline(yintercept = 0) +
geom_hline(yintercept = c(2,-2), lty = 2) +
xlim(c(0,5)) +
xlab("Square root of weight") +
ylab("Square root of heterogeneity measure") +
theme_minimal() +
theme(panel.grid = element_blank())

We use ggplot to draw the graph. We specify the y aesthetics inside ggplot as it is common
to the two layers that we plan to include. The value of y is calculated from the existing
columns of tbl_12_3 according to the directions in our text. For drawing the points, we
use geom_point and supply it with the square root of the weights as mentioned in our text.
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FIGURE 12.2
Replication of figure 12.2

For drawing the labels, we reduce 0.05 from these values so that there is some separation of
text from the points. We use the arguments vjust and hjust to adjust the alignment of the
labels relative to the coordinates we specified. We use geom_hline to add the horizontal
lines of reference. We use it twice because we use two different line types. We set the x-axis
limits, x label and y label by hand. Finally, we use the theme_minimal and remove the grid
lines.

Though we don’t have a ready-made function to prepare the influence plot, metafor provides
radial to draw radial plots.

12.2.1 Meta regression
Example 12.8 and 12.9 (page 588 and 590)

Fitting a meta regression model is accomplished through rma.

c(46.3,53.9,44.2,44.4,59.5,53.8,38.8,40.1,50.8) -> tbl_12_3$age
rma(est ~ age,

sei = stderr,
data = tbl_12_3,
method = "FE",
slab = study) -> mr_12_3

mr_12_3

First, we create a new column in tbl_12_3 to hold the mean age. Then, we call rma. The
difference from our previous example is that instead of yi we supply a formula. The left-hand
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FIGURE 12.3
Replication of figure 12.3

side of the formula contains the same column of effect measure. The right-hand side contains
the variable age, which we think explains part of the heterogeneity of the studies. Printing
the model object provides all the information in example 12.9.

Fixed-Effects with Moderators Model (k = 9)

I^2 (residual heterogeneity / unaccounted variability): 0.00%
H^2 (unaccounted variability / sampling variability): 0.57
R^2 (amount of heterogeneity accounted for): 66.58%

Test for Residual Heterogeneity:
QE(df = 7) = 3.9652, p-val = 0.7838

Test of Moderators (coefficient 2):
QM(df = 1) = 9.5956, p-val = 0.0020

Model Results:

estimate se zval pval ci.lb ci.ub
intrcpt 4.1150 0.8577 4.7980 <.0001 2.4340 5.7960 ***
age -0.0571 0.0184 -3.0977 0.0020 -0.0932 -0.0210 **
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 12.4 (page 589)

We can use regplot to draw the graph in figure 12.4

regplot(mr_12_3, ci = FALSE,
bg = "white",
ylab = "Log hazard ratio",
xlab = "Mean age (years)")

The main argument for regplot is the model object returned by rma. We specify that we
don’t want a confidence interval band around the regression line by specifying ci = FALSE.
The argument bg = "white" determines the shading of the bubbles.

FIGURE 12.4
Replication of figure 12.4
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12.3 Pooling tabular data
Example 12.10 (page 591)

We can use rma to calculate pooled estimates from tabular data too.

rma(ai = DMyCBVy, bi = DMyCBVn,
ci = DMnCBVy, di = DMnCBVn,
data = tbl_12_3, measure = "RR",
method = "FE", slab = study) -> ivfe_12_10

rma(ai = DMyCBVy, bi = DMyCBVn,
ci = DMnCBVy, di = DMnCBVn,
data = tbl_12_3, measure = "RR",
method = "DL", slab = study) -> ivre_12_10

The difference from our previous examples is that instead of log RR, we are specifying the value
of the two-by-two cells from which the RR is calculated. The columns specified as values for the
arguments ai,bi,ci and di are taken as containing the values in each of the cells in a two-by-two
table, the names being the standard names assigned to these cells. We need to specify measure
as well. We specify it as "RR" here because we want rma to calculate the log RR. The arguments
method and slab have the same use as in our previous examples.

The coefficient and its standard error returned by the function are in the log scale. We can
exponentiate them to confirm that they agree with the values in the text.

exp(c(ivfe_12_10$beta,ivfe_12_10$ci.lb,ivfe_12_10$ci.ub))
exp(c(ivre_12_10$beta,ivre_12_10$ci.lb,ivre_12_10$ci.ub))

[1] 3.0285 2.4171 3.7945
[1] 2.9669 1.9752 4.4567

Example 12.11 (page 592)

We can use rma.mh function to apply MH meta analysis. Here, we rework example 12.11.

rma.mh(ai = DMyCBVy, bi = DMyCBVn,
ci = DMnCBVy, di = DMnCBVn,
data = tbl_12_3, measure = "RR",
slab = study) -> mh_12_11

mh_12_11

Except for the function name, using rma.mh is no different from using rma for tabular data.
The argument method is not required.

Equal-Effects Model (k = 9)

I^2 (total heterogeneity / total variability): 62.05%
H^2 (total variability / sampling variability): 2.64
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Test for Heterogeneity:
Q(df = 8) = 21.0829, p-val = 0.0069

Model Results (log scale):

estimate se zval pval ci.lb ci.ub
1.0679 0.1120 9.5337 <.0001 0.8483 1.2874

Model Results (RR scale):

estimate ci.lb ci.ub
2.9092 2.3357 3.6233

The function rma.peto can apply the Peto method. The rma function also permits adding a
non-negative number to cells with the value zero through its add argument. Further control
is given by to which allows one to control whether this value should be added to all cells or
only those with zero value.

12.4 Publication bias
Figure 12.6 (page 598)

To rework the example 12.12, we import the data. Note that the data file is named 12.13
though it is for example 12.12.

read_table("K11828 supplements/Datasets/Example 12.13.dat",
col_names = c("study","adjust","rr","lci","uci")) -> data_12_12

mutate(data_12_12,
logrr = log(rr),
stderr = (log(uci) - log(lci))/(2*1.96)) -> data_12_12

rma(yi = logrr,
sei = stderr,
data = data_12_12,
method = "DL",
slab = study) -> re_12_12

paste0("Overall (I-squared = ",
round(re_12_12$I2,2),
"%)") -> relabel

After importing the data, we mutate the data frame to introduce two columns corresponding
to the log of RR and the standard error calculated from the confidence interval. We supply
these values to rma.

forest(re_12_12,
header = c("Study author", "Relative risk"),
showweights = TRUE,



270 12 Meta-analysis

order ="obs",
ilab = adjust,
ilab.xpos = -4.25,
ilab.pos = 4,
atransf = exp,
at = log(c(0.25,0.5,1,2,4,6,8)),
mlab = relabel,
cex = 0.75,
col = "white")

text(x = c(-4.25,3),
y = 30,
labels = c("Adjustments", "Wts"),
cex = 0.75,
font = 2,
pos = 4)

The returned object is saved and forest called with it. We also build a label for the pooled
estimate corresponding to that in figure 12.6, which we supply to mlab argument of forest.
The header argument determines the heading labels for the column carrying the study
names and the column carrying the numerical value of confidence interval. We ask for a
new column showing the weights through showweights argument. We use the order="obs"
argument to get the studies sorted according to the relative risk as in figure 12.6. The ilab
argument allows us to include additional columns in the graph. Here, we want the code for
adjustments shown. So, we specify the value of ilab as adjust. The x axis position where
these additional rows will go is determined by ilab.xpos. The ilab.pos determines the
alignment of the label at the specified coordinates. The cex determines the scaling factor
for the font size. We specify this value so that we can reuse the value to have consistent
looks when we add more headings in the next step. The col argument decides the colour
of the fill of the pooled estimate. Note that forest doesn’t have an option to determine
the color of the boxes around the point estimate of individual studies. The col argument
determines the colour used to plot the observed outcomes. It affects the line, the dot and the
box together. Finally, we use text to add headings to the weight and adjustments columns.
The x determines the x-axis positions and y the y-axis positions of the labels. The pos
determines the relation of the text to the coordinate specified using x and y; here we specify
4 to mean right. The font = 2 determines that the labels will be printed in bold, cex
determines the proportion of font size displayed.

Figure 12.7 (page 599)

A funnel plot is drawn using funnel. Here, we reproduce figure 12.7.

funnel(re_12_12,
atransf = exp,
at = log(c(0.25,0.5,1,2,4,6,8)))

The first argument we supply to funnel is the object returned by rma. We use atransf to
transform the x-axis labels using exp. The at argument determines the positioning of x-axis
labels. We use log transformation of the required positions as we have specified atransf.
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FIGURE 12.5
Replication of figure 12.6

FIGURE 12.6
Replication of figure 12.7
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Example 12.12 (page 597)

The function trimfill applies the trim and fill method to an object returned by rma.

trimfill(re_12_12) -> tf_12_12
funnel(tf_12_12,

atransf = exp,
at = log(c(0.25,0.5,1,2,4,6,8)))

The trimfill permits the use of different estimators. Here, we have gone with the default.
We can reproduce figure 12.8 by passing the object returned by trimfill to funnel.

FIGURE 12.7
Replication of figure 12.8

12.5 Recap
12.5.1 Commands introduced in this chapter
• ggplot2::geom_text
• ggplot2::geom_vline
• ggplot2::scale_x_log10
• ggplot2::xlab
• ggplot2::scale_y_discrete
• base::rev
• ggplot2::ylab
• stats::pnorm
• stringr::str_trim
• metafor::rma

• metafor::weights
• base::diag
• metafor::forest
• metafor::addpoly
• metafor::regplot
• metafor::rma.mh
• metafor::rma.peto
• metafor::funnel
• metafor::trimfill
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Risk scores and clinical decision rules

We will be using the tidyverse packages readr, dplyr, ggplot2 and purrr. The other
add on packages that we will use in this chapter include broom, pROC, ROCit, effectsize,
rms,riskregression,epiR, DescTools and Hmisc.

13.1 Association and prognosis
Example 13.1 (page 609)

For example 13.1, we will import the data.

read_table("K11828 supplements/Datasets/Example 13.1.dat",
col_names = c("sex", "fibrinogen", "cvd10","cvdfllw", "survive"),
col_types = cols(sex = col_factor())) -> data_13_1

factor(data_13_1$sex,
labels = c("women", "men")) -> data_13_1$sex

factor(data_13_1$cvd10,
labels = c("no", "yes")) -> data_13_1$cvd10

factor(data_13_1$cvdfllw,
labels = c("no", "yes")) -> data_13_1$cvdfllw

After importing, we modify the factor variables to assign appropriate labels. Note that the
data doesn’t include the columns for cholesterol, systolic blood pressure and smoking. Thus,
we will not be able to replicate the examples when these data are needed.

Table 13.1 (page 609)

We will prepare the first three columns of table 13.1.

group_by(data_13_1, sex, cvdfllw) |>
summarise(n = n(),

mean = round(mean(fibrinogen),2),
median = round(median(fibrinogen),2)) |>

arrange(desc(sex), cvdfllw)

We group the data by sex and cvdfllw, use summary to find the summary numbers and
arrange them.

DOI: 10.1201/9781003589563-13 273
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TABLE 13.1
Replication of table 13.1

Sex CVD during follow-up? n Mean (g/l) Median (g/l)
men no 4875 2.71 2.60
men yes 1634 2.87 2.74
women no 5559 2.82 2.71
women yes 992 3.04 2.92

Figure 13.3 (page 609)

To prepare the graph of figure 13.3, we need to create a column containing the info on tenth
of fibrinogen.

filter(data_13_1,sex == "women") |>
mutate(fib10 = cut(fibrinogen,

breaks = quantile(fibrinogen,seq(0,1, by = .1)),
right = FALSE,
include.lowest = TRUE)) -> data_13_1f

We filter records of women and create a new column fib10, the value of which is determined
by cut. Based on the breaks we supply, cut divides the range of values of the supplied
numerical vector into intervals to make that many groups and assigns each value to its
appropriate category. The breaks we supply is calculated using quantile, which in our
case will return the values of fibrinogen corresponding to its deciles and the minimum and
maximum. The argument right given to cut determines whether the right-hand side of the
interval is closed or not. The include.lowest when TRUE includes the most extreme value
into the extreme category though that side of the interval is open.

library(survival)
coxph(Surv(survive, cvdfllw == "yes") ~ fib10,

data = data_13_1f,
x = TRUE,
y = TRUE,
ties ="breslow") -> cphf_13_1

We use coxph to fit the Cox proportional hazards model on the data we prepared.

We use tidy to get a neat dataframe from the coxph model and use it to draw the graph in
figure 13.3.

ggplot(bind_rows(c(estimate = 1, conf.low = 1,conf.high = 1),
tidy(cphf_13_1,exponentiate = TRUE,conf.int = TRUE))) +

geom_hline(yintercept = 1, lty = 2) +
geom_pointrange(aes(y = estimate,

ymin = conf.low,
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ymax = conf.high,
x = 1:10)) +

scale_y_log10(breaks = 1:5) +
lims(x = as.character(1:10)) +
ylab("Hazard ratio") +
xlab("Fibrinogen tenths")

The data we supply to ggplot is made by bind_rows applied to the dataframe returned by
tidy and a single row with the value 1 for estimate and its confidence interval corresponding
to the reference group. We add a reference line at 1 using geom_hline. The hazard ratios
and their confidence intervals are drawn using geom_pointrange. We use scale_y_log10
to specify a log scale for the y axis. The lims is used to set the axis labels for the x-axis.

FIGURE 13.1
Replication of figure 13.3

Figure 13.6 (page 611)

To prepare the graph of figure 13.6, we use geom_boxplot.
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ggplot(data_13_1) +
geom_boxplot(aes(x = fibrinogen,

y = paste0(sex, "\n", cvdfllw)),
outlier.shape = NA) +

coord_cartesian(xlim = c(1,5)) +
ylab(NULL) +
xlab("Fibrinogen (g/l)")

Though there is need for only the x or y aesthetics, we supply both to get different boxplot
for each of the categories. Because the category is determined by the value of both sex and
cvdfllw, we use paste0 to join them into one string. We use outler.shape=NA to specify that
we don’t want to include outliers in the graph. We may adjust the length of whiskers using
the coef argument. However, it accepts a number that would be considered as multiple of
the inter quartile range. As we cannot use it to extend the whiskers from 1 to 99 percentile,
we have not modified the default value. We specify xlim inside coord_cartesian so that
the x limits are as per our desire, but the data falling outside that range is not excluded
from calculations.

FIGURE 13.2
Replication of figure 13.6
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Table 13.4 (page 613)

To prepare table 13.4, we will use table.

table(data_13_1f$cvd10,data_13_1f$fib10) |> addmargins()

We pass the result of table to addmargins to get the margin totals. As we don’t specify a margin,
row, column and grand totals are returned. Note that our result differs from that in the textbook. I
was unable to find the reason for the discrepancy.

Figure 13.9 (page 615)

We need to prepare the graph of figure 13.9 by hand. Though table can give us the grouped
data of table 13.4, it is not sufficient to calculate sensitivity and specificity. To calculate
them, we need the numbers above or below a cutoff.

bind_cols(tenths = 0:10,
maxval = quantile(data_13_1f$fibrinogen,seq(0,1, by = 0.1))
) -> data_13_2

data_13_2[1,"maxval"] <- data_13_2[1,"maxval"] * 0.99
data_13_2[11,"maxval"] <- data_13_2[11,"maxval"] * 1.01
mutate(data_13_2,

pos = map_int(maxval,
function(x) nrow(filter(data_13_1f,

cvd10 == "yes",
fibrinogen >x))),

neg = map_int(maxval,
function(x) nrow(filter(data_13_1f,

cvd10 == "no",
fibrinogen < x)))

) -> data_13_2

nrow(filter(data_13_1f,cvd10 == "yes")) -> cvdtot
nrow(filter(data_13_1f,cvd10 == "no")) -> nocvdtot
mutate(data_13_2,

sns = pos / cvdtot,
spc = neg / nocvdtot) |>

ggplot(aes(x = tenths)) +
geom_point(aes(y = sns), shape = 21, colour = "#111111" ) +
geom_line(aes(y = sns), colour = "#111111") +
geom_point(aes(y = spc), shape =3, colour = "#004B73") +
geom_line(aes( y = spc), colour = "#004B73") +
labs(x = "Fibrinogen tenths",

y = NULL)

We start by building a dataframe, with a column to indicate the cutoff points. We need one
more than the number of cutoffs. So, we use the values zero to ten. We then add a column
corresponding to the maximum value of each tenth calculated using quantile. We then
move the extreme values a bit away so that the extreme values get included into the extreme
categories. We use mutate again to add the number of future cvd cases that would fall in
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TABLE 13.2
Replication of table 13.4

Tenth(range; g/l)

CVD [0.441,2.01) [2.01,2.25) [2.25,2.43) [2.43,2.59) [2.59,2.74) [2.74,2.91) [2.91,3.11) [3.11,3.38) [3.38,3.86) [3.86,11.3] Sum
no 631 599 649 606 626 625 617 615 599 580 6147
yes 23 26 27 30 36 46 43 41 55 77 404
Sum 654 625 676 636 662 671 660 656 654 657 6551
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the risk group if each of the cut offs were used. Similarly, we add a column to indicate the
number of non-cases that would fall in the complementary category. We use nrow to find the
total number of cases with and without cvd. We then calculate sensitivity and specificity
according to the standard formula. We pass the dataframe to ggplot to plot the graph using
geom_point and geom_line.

FIGURE 13.3
Replication of figure 13.9

Table 13.6 (page 617)

We will now try to reproduce table 13.6.

seq(0.1, 0.9, by = 0.1) -> values
expand.grid(Sensitivity = values, Specificity = values) |>

mutate(odds = round(Sensitivity * Specificity /
((1-Sensitivity) * (1- Specificity)),

1)) |>
filter(odds >= 1) |>
pivot_wider(names_from = Specificity,

values_from = odds) |>
arrange(Sensitivity)
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First, we create a variable with the values we desire for sensitivity and specificity using seq.
We then use expand.grid to prepare a dataframe containing all combinations of sensitivity
and specificity values we specified. We use mutate to calculate odds ratio according to the
formula given in the textbook. We then use filter to remove those rows with odds ratio
less than 1. We rearrange the columns using pivot_wider and then sort according to the
value of sensitivity.

TABLE 13.3
Replication of table 13.6

Specificity

Sensitivity 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 1.0
0.2 1.0 2.3
0.3 1.0 1.7 3.9
0.4 1.0 1.6 2.7 6.0
0.5 1.0 1.5 2.3 4.0 9.0
0.6 1.0 1.5 2.2 3.5 6.0 13.5
0.7 1.0 1.6 2.3 3.5 5.4 9.3 21.0
0.8 1.0 1.7 2.7 4.0 6.0 9.3 16.0 36.0
0.9 1 2.3 3.9 6.0 9.0 13.5 21.0 36.0 81.0

Figure 13.10 (page 618)

We will use geom_function to create the graph in figure 13.10.

ggplot() +
geom_function(fun = dnorm,

args = list(mean = 6.287, sd = .757),
colour = "#004B73") +

geom_function(fun = dnorm,
args = list(mean = 6.680, sd = .757),
lty = 2,
colour = "#111111") +

geom_text(aes(x =c(5,7.75), y = 0.3),
label = c("No CHD", "CHD")) +

ylab(NULL) +
xlab("Serum total cholesterol (mmol/l)") +
theme(panel.grid = element_blank(),

axis.ticks.y = element_blank(),
axis.text.y = element_blank()) +

scale_x_continuous(limits = c(3,10),
breaks = c(3:6,(6.287 + 6.680) /2,7:10),
labels = c(3:6, "Mean", 7:10))

As we have no data to specify, ggplot doesn’t have an argument. The function
geom_function accepts a function that will calculate the y values for the range of x
values. Here we provide dnorm which gives the density for the normal distribution. The
arguments that dnorm require are given inside a list as the value of the argument args
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of geom_function. In our examples, we provide mean and sd as these are the arguments
for dnorm that we want to change. We use the mean of cholesterol in the diseased and
healthy group along with their common standard deviation as provided in the textbook.
To add labels to mark the curves, we use geom_text. We use scale_x_continuous to limit
the x-axis and to set appropriate labels. The argument limits to scale_x_continuous
determines the limits. The argument breaks determine the location of axis tick marks and
labels determine the labels at the tick mark. For breaks and labels we add a point to
mark the average of the mean of the two distributions in addition to the whole numbers
within the specified limits.

FIGURE 13.4
Replication of figure 13.10

13.2 Risk scores from statistical models
Example 13.4 (page 619)

To rework example 13.4, we need to fit the logistic model.

glm(cvd10 ~ fibrinogen,
data = data_13_1f,



282 13 Risk scores and clinical decision rules

family = binomial()) -> lg_13_4
bind_cols(data_13_1f,

predict = predict(lg_13_4,type = "response")) -> data_13_4
ggplot(data_13_4,

aes(x = fibrinogen, y = predict)) +
geom_point( alpha = 0.3) +
geom_function(fun = function(x) (1 + exp(-(coef(lg_13_4)[1] +

(coef(lg_13_4)[2] *
x))))ˆ-1) +

ylab("Expected risk") +
xlab("Fibrinogen (g/l)") +
scale_x_continuous(breaks = 0:10,

labels = as.character(0:10))

After fitting the logistic model, we use predict to calculate the predicted risk for the
observed values. That we want risks is specified by using type = "response". We column
bind the predicted values with the original data frame. We then supply this data frame
to ggplot and use geom_point and geom_function to plot the predicted risk for observed
values and the fitted curve respectively. The fun argument supplied to geom_function is
an anonymous function to predict the risk according to the formula derived from the fitted
model.

Example 13.5 (page 620)

Before we can fit the logistic model of example 13.5, we need to modify the data.

read_table("K11828 supplements/Datasets/Example 10.12.DAT",
col_names = c("age", "chol", "bmi", "sbp",

"smoke", "active", "chd", "survive"),
col_types = cols( smoke = col_factor(levels = c("1","2","3")),

active =col_factor(levels = c("1","2","3")))
) -> data_13_15

mutate(data_13_15,
chd5 = ifelse(survive >= 1827, 0, chd)) -> data_13_15

glm(chd5 ~ chol + sbp + smoke ,
data = data_13_15,
family = binomial()) -> lg_13_15

lg_13_15

After importing the data, we mutate the data frame to create a new column to show the
outcome at five years. We use ifelse to return 0 if the survival period is more than five
years, otherwise the original outcome. We use this column as the response variable in the
model formula.
Call: glm(formula = chd5 ~ chol + sbp + smoke, family = binomial(),

data = data_13_15)

Coefficients:
(Intercept) chol sbp smoke2 smoke3

-9.1372 0.3391 0.0208 0.4016 0.7089
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FIGURE 13.5
Replication of figure 13.11

Degrees of Freedom: 4048 Total (i.e. Null); 4044 Residual
Null Deviance: 1040
Residual Deviance: 989 AIC: 999

Example 13.6 (page 622)

We use coxph to fit the Cox proportional hazards model of example 13.6.

coxph(Surv(survive, cvdfllw == "yes") ~ fibrinogen,
data = data_13_1f,
x =TRUE,
y =TRUE,
ties ="breslow") -> cphf_13_6

predict(cphf_13_6,
newdata = data.frame(fibrinogen =mean(data_13_1f$fibrinogen),

survive = 3652,
cvdfllw = "yes"),

type = "survival") -> meansurv_13_6
1 - meansurv_13_6 ˆ exp(coef(cphf_13_6) * (2-mean(data_13_1f$fibrinogen)))
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We use predict to calculate the 10 year survival at the mean level of fibrinogen. In addition
to the fitted model, predict needs newdata, a dataframe containing the values at which it
should predict. The fields in the newdata should be named as in the original data frame
used to fit the model. All columns used in the formula should be available in the new data
frame. Thus, our newdata contains fibrinogen with its value set as the mean of fibrinogen in
the original data frame, survive set to 3652 to correspond to ten years and cvdfllw set to
“yes”. The value of cvdfllw doesn’t actually matter, but the field needs to be included. Finally,
we specify type = "survival" to say that we want the estimate of survival. We then use
the formula given in our textbook to calculate the predicted risk for a fibrinogen value of 2.

fibrinogen
0.047102

We may follow another path to arrive at the same figure.

1 - summary(survfit(cphf_13_6,newdata = data.frame(fibrinogen = 2)),
times = 3652 )$surv

We use survfit supplying it with the model object and newdata. The value returned by
survfit is given as an argument to summary along with times, the time period we want.
We select the surv component from the list returned. This is deducted from 1 to arrive at
the predicted risk at 10 year for a fibrinogen level of 2.

[1] 0.047102

The newdata that we supply to predict or survfit is expected to be in the same form as
the original data frame used to build the model. This means that factors should be supplied
as factors. We cannot give the proportion of a particular value, a number, in its place. So,
we cannot use predict and survfit to rework the example 13.7. We will try to reproduce
table 13.8.

Table 13.8 (page 623)

coxph(Surv(survive, chd) ~ chol + sbp +smoke,
data = data_13_15,
ties ="breslow",
x = TRUE,
y = TRUE) -> cph_13_7

bind_cols(Variable = names(coef(cph_13_7)),
b = coef(cph_13_7),
Mean = c(mean(data_13_15$chol),

mean(data_13_15$sbp),
prop.table(table(data_13_15$smoke))[-1]))|>

mutate(Product = Mean * b) -> tbl_13_8
tbl_13_8
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After fitting the requisite model using coxph, we use bind_cols to column bind the variable
names, the coefficients of the model and mean of the variables. We obtain the coefficients
using coef and the names associated with the coefficients using names. For the mean, we
use mean to calculate the mean of the continuous variables and for the factor, we tabulate
the data using table, convert them to proportions using prop.table and remove the value
for the reference level by negative subsetting.

TABLE 13.4
Replication of table 13.8

Variable b Mean Product
chol 0.29483 6.35832 1.87465
sbp 0.02186 133.22289 2.91223
smoke2 0.32380 0.25537 0.08269
smoke3 0.65895 0.52038 0.34290

As told earlier, predict and survfit expects the newdata to contain the same columns as
in the database originally used for fitting the model. Thus, we cannot assign proportions to
factors like smoke. So, we cannot derive the risk score for the mean combination of factor
levels as given in example 13.7 of our textbook. However, the purpose of deriving the risk
score for the mean combination is to predict the risk score for a set of values. This is possible
using predict or survfit. Here we predict the risk for an ex-smoker with systolic blood
pressure 150 and cholesterol 6.5 using survfit.

1 - summary(survfit(cph_13_7,
newdata = data.frame(smoke = "2",

sbp = 150,
chol = 6.5)),

times = 1827 )$surv

Comparing it with the value derived using the formula given in our text, we can confirm
that there is only rounding error.

1 - (0.97648 ˆ exp((0.29483*6.5) + (0.02186 * 150) + 0.32380 - 5.21247))

[1] 0.03182
[1] 0.031827

Note that if we don’t provide a newdata argument to survfit, it will return the value for
the baseline combination. The difference from the mean combination given in our textbook
is that though the continuous variables are considered at their mean values, factors are
considered at their reference levels. Thus, the value given by

1 - summary(survfit(cph_13_7),
times = 1827 )$surv
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is same as that given by

1 - (0.97648 ˆ exp((0.29483*mean(data_13_15$chol)) +
(0.02186 * mean(data_13_15$sbp)) -
5.21247))

[1] 0.015427
[1] 0.015431

except for rounding error.

Table 13.9 (page 623)

To prepare table 13.9, we will use epiR and DescTools.

library(epiR)
library(DescTools)
Rev(

table(
ifelse(predict(lg_13_4, type = "response") <= 0.1,"N", "Y"),
data_13_1f$cvd10)) -> tbl_13_9

tbl_13_9

We use table to create the two-by-two table. We provide two vectors to table. The first is
returned by ifelse and has the values “N” or “Y” based on whether the value returned by
predict is less than or equal to 0.1. The second is the cvd10 column of fibrinogen data. We
use Rev to reverse the order of the columns and rows.

TABLE 13.5
Replication of table 13.9

True CVD outcome

Test Positive Negative Total
Y 30 224 254
N 374 5923 6297

This is passed to epi.tests and the relevant components from the result are selected for
printing.

filter(epi.tests(tbl_13_9)$detail,
statistic == "se" | statistic == "sp")
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statistic est lower upper
1 se 0.074257 0.050659 0.10431
2 sp 0.963559 0.958569 0.96810

Figure 13.12 (page 624)

To prepare the inverse ogive of figure 13.12, we need a custom function that returns the
percentage with the specified risk or higher.

prophigher <- function(x) {
map_dbl(x,

function(val)
prop.table(

table(
predict(lg_13_15,

type = "response") >= val))["TRUE"])}

We name our custom function as prophigher. We specify that it will accept one argument
which is called x. This argument is passed on to map_dbl for processing. The function
map_dbl passes each value of its first argument to its second argument. In our example, its
second argument is an anonymous function that calculates the proportion of values greater
than or equal to the supplied value in the vector returned by predict, the arguments for
which is lg_13_15, our logistic model object. Thus, when we pass a vector to prophigher
we will get a vector equal in length to the vector passed to prophigher, with each element
denoting the proportion of predicted values above or equal to the corresponding value in the
vector passed to prophigher.

Now, we use ggplot and geom_function to plot the inverse ogive.

ggplot() +
geom_function(fun = prophigher) +
xlim(0,.2) +
labs(x = "10-year risk (%)",

y = "Percentage with this risk or higher")

13.3 Quantifying discrimination
Figure 13.13 (page 625)

We will use the package ROCit to prepare ROC plot of figure 13.13.

library(ROCit)
rocit(lg_13_4$fitted.values, lg_13_4$y) -> roc_13_13
plot(roc_13_13, YIndex = FALSE, legend = FALSE)
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FIGURE 13.6
Replication of figure 13.12

The function that does all the calculations is rocit. It requires two main arguments – score
and class. The score is a vector that contains the diagnostic / risk score and class is
a vector of same length as score containing the category of outcome. In our example, we
provide the fitted component of the model object as score and the y component as class.
We store this object with a name. To plot the graph, we simply pass it to plot. We use
legend = FALSE and YIndex = FALSE to remove the legend and the optimal Youden index,
which are plotted by default.

To obtain AUC, we may use summary method for the ROC object or use ciAUC.

ciAUC(roc_13_13)

The argument required for ciAUC is again the ROC object. It returns the AUC as well as its
confidence interval.

estimated AUC : 0.606916035673846
AUC estimation method : empirical

CI of AUC
confidence level = 95%
lower = 0.576933312481726 upper = 0.636898758865965

We need to calculate Somer’s D by hand using the AUC.

ciAUC(roc_13_13)$AUC * 2 -1

[1] 0.21383
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FIGURE 13.7
Replication of figure 13.13

Figure 13.14 (page 627)

We may plot the ROC curves in figure 13.14 similarly, but by typing the score and class
arguments directly.

rocit(c(2,4,6,8,10,12,14,9,11,13,15),
c(0,0,0,0,0,0,0,1,1,1,1)) -> roc_13_14b

rocit(c(2,4,6,8,10,12,14,9,10,13,15),
c(0,0,0,0,0,0,0,1,1,1,1)) -> roc_13_14d

plot(roc_13_14b,legend = FALSE, YIndex = FALSE)
plot(roc_13_14d,legend = FALSE, YIndex = FALSE)
ciAUC(roc_13_14b)
ciAUC(roc_13_14d)

estimated AUC : 0.785714285714286
AUC estimation method : empirical

CI of AUC
confidence level = 95%
lower = 0.475375966723316 upper = 1

estimated AUC : 0.767857142857143
AUC estimation method : empirical
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FIGURE 13.8
Replication of figure 13.14(b)

FIGURE 13.9
Replication of figure 13.14(d)

CI of AUC
confidence level = 95%
lower = 0.448466991941638 upper = 1

Example 13.10 (page 629)

We will use the library pROC to compare different ROC curves / AUC. First, we need to fit
the additional logistic models.

library(pROC)
roc(lg_13_15$y, lg_13_15$fitted.values) -> roc_13_10a
glm(chd5 ~ chol + sbp + smoke + bmi,
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data = data_13_15,
family = binomial()) -> lg_13_10bmi

glm(chd5 ~ sbp,
data = data_13_15,
family = binomial()) -> lg_13_10sbp

roc(lg_13_10bmi$y, lg_13_10bmi$fitted.values) -> roc_13_10bmi
roc(lg_13_10sbp$y, lg_13_10sbp$fitted.values) -> roc_13_10sbp
roc.test(roc_13_10a, roc_13_10sbp)
roc.test(roc_13_10a, roc_13_10bmi)

The function to prepare ROC curves roc is similar in usage to rocit, except that the order
of the two arguments is reversed. We save the ROC objects and supply them as arguments to
roc.test, which performs the DeLong’s test. Note that the function accepts the argument
alternative if you want to do a one sided test.

DeLong's test for two correlated ROC curves

data: roc_13_10a and roc_13_10sbp
Z = 3.61, p-value = 3e-04
alternative hypothesis: true difference in AUC is not equal to 0
95 percent confidence interval:
0.033049 0.111484

sample estimates:
AUC of roc1 AUC of roc2

0.69772 0.62545

DeLong's test for two correlated ROC curves

data: roc_13_10a and roc_13_10bmi
Z = -0.909, p-value = 0.36
alternative hypothesis: true difference in AUC is not equal to 0
95 percent confidence interval:
-0.0091952 0.0033681

sample estimates:
AUC of roc1 AUC of roc2

0.69772 0.70063

The ROC objects that are returned by roc can be provided as argument to plot to plot the
curve. Here, we prepare the graph in figure 13.15.

Figure 13.15 (page 630)

plot(roc_13_10a, lwd =1, legacy.axes = TRUE)
plot(roc_13_10bmi, add = TRUE, lty = 5, lwd =1, col = 5)
plot(roc_13_10sbp, add = TRUE, lty = 4, lwd =1, col = 4)

The add = TRUE argument is supplied to all calls of plot except the first. This is to make
sure that the ROC plots are added to the first. The legacy.axes = TRUE chooses one set
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of axes labels. The lwd argument determines the thickness of the lines used for plotting;
the lty determines the line type – continuous or dashed or dotted and col determines the
colour of the line.

FIGURE 13.10
Replication of figure 13.15 using pROC

The package rocit also allows us to add multiple ROC lines, but by using lines. While the
graphs of ROCit looks better to me, it doesn’t have a function to compare different ROCs /
AUCs. We may prepare the same graph using ROCit.

rocit(lg_13_15$fitted.values, lg_13_15$y) -> rocit_13_10a
rocit(lg_13_10bmi$fitted.values,

lg_13_10bmi$y) -> rocit_13_10bmi
rocit(lg_13_10sbp$fitted.values,

lg_13_10sbp$y) -> rocit_13_10sbp
plot(rocit_13_10bmi, YIndex = FALSE, legend = FALSE)
lines(rocit_13_10a$TPR~rocit_13_10a$FPR,

col = 2, lty = 2, lwd =2)
lines(rocit_13_10sbp$TPR~rocit_13_10sbp$FPR,

col = 3, lty = 3, lwd =2)
legend("bottomright",

c( "Cholesterol, blood pressure, smoking and BMI",
"Cholesterol, blood pressure, smoking",
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"Blood Pressure"),
lwd = 2,
col = c(1,2,3),
lty = c(1,2,3))

The three ROC objects are prepared using rocit. The first curve is plotted using plot.
The latter lines are added using lines. The argument for lines is a formula with the TPR
component of the relevant ROC object as the left-hand side and FPR component as the
right-hand side. We may provide lty, lwd and col as per our wish. Finally, we use legend
to add a legend. We need to specify the location of the legend by means of a string. Here we
say "bottomright". The labels are specified next. In our case, there are three lines; hence, a
character vector of length 3. Similarly, lty and col are also vectors of length 3, with values
corresponding to what we used in lines. The lwd is same for all three lines; hence, only
one value is supplied.

FIGURE 13.11
Replication of figure 13.15 using ROCit

Section 13.4.3 (page 631)

The function concordance of survival returns Harrel’s c statistic when it is passed a Cox
proportional hazards model object. We use the Cox model object that we fitted for fibrinogen
data using all survival times.

concordance(cphf_13_6)

Call:
concordance.coxph(object = cphf_13_6)

n= 6551
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Concordance= 0.6 se= 0.0092
concordant discordant tied.x tied.y tied.xy

3093011 2057184 16396 75 0

For other worked examples in section 13.4.3, we need to fit the appropriate Cox models. We
do this inside concordance without storing the model object.

concordance(coxph(Surv(survive, cvd10 == "yes") ~ fibrinogen,
data = data_13_1f,
ties ="breslow"))$concordance

concordance(coxph(Surv(survive, chd5) ~ chol + sbp +smoke,
data = data_13_15,

ties ="breslow"))$concordance
concordance(coxph(Surv(survive, chd5) ~

chol + sbp +smoke + bmi,
data = data_13_15,

ties ="breslow"))$concordance

[1] 0.60594
[1] 0.69556
[1] 0.69854

Example 13.11 (page 634)

We will use the package effectsize to calculate the standardised mean effect sizes.

library(effectsize)
hedges_g(predict(lg_13_4) ~ factor(lg_13_4$y,levels = c("1", "0")))

We use hedges_g which accepts a formula. The left-hand side is the risk scores as provided
by predict. The right-hand side is a factor of same length as the first, with two values,
which is used to sort the first vector into two groups. We provide levels argument while
building the factor vector to ensure that the without CVD group is subtracted from the
with CVD group. Note that the result is different from that in our text. It looks like that
the difference is due to the use Bessel’s correction (n -1 instead of n as the denominator)
while calculating the means.

Hedges' g | 95% CI
------------------------
0.37 | [0.27, 0.47]

- Estimated using pooled SD.

Table 13.10 (page 634)

Now, we try to recreate table 13.10. We build custom functions to obtain the standardised
mean effect sizes and their confidence interval as one string.
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buildcph <- function(f) {
mdl <- coxph(f,data = data_13_15,ties ="breslow")
hg <- hedges_g(predict(mdl) ~ factor(data_13_15$chd5,levels = c("1","0")))
paste0(round(hg$Hedges_g,4),

" (",
round(hg$CI_low,4),
", ",
round(hg$CI_high,4), ")")}

buildlgt <- function(f) {
mdl <- glm(f, data = data_13_15,family = binomial())
hg <- hedges_g(predict(mdl)~ factor(data_13_15$chd5,levels = c("1", "0")))
paste0(round(hg$Hedges_g,4),

" (",
round(hg$CI_low,4),
", ",
round(hg$CI_high,4),
")")}

Our custom functions buildcph and buildlgt are similar. They both accept a formula. In
buildph, a Cox model is built from this formula, which is passed on to hedges_g with the
appropriate arguments. The appropriate components of the result of hedges_g is joined
together using paste0 and returned. The custom function buildlgt uses the formula to build
a logistic model; otherwise, it is similar to buildcph.

data.frame(`Variables in model` =
c("SBP",

"SBP, total cholesterol, and smoking",
"SBP, total cholesterol, smoking and BMI"),

`Logistic model` =
map_chr(c(chd5 ~ sbp,

chd5 ~ chol + sbp +smoke,
chd5 ~ chol + sbp +smoke + bmi),

.f = buildlgt),
`Cox model` =

map_chr(c(Surv(survive, chd5) ~ sbp,
Surv(survive, chd5) ~ chol+sbp+smoke,
Surv(survive, chd5) ~

chol + sbp +smoke + bmi),
.f = buildcph))

We call these functions using map_chr which is provided a vector of appropriate formulas
and the function name. map_chr will pass each element of the vector to the function and
collect the result into a character vector. We call map_chr twice – once with build_cph and
once with buildlgt. map_chr is called from inside data.frame. Thus, the results of map_chr
are joined together as a dataframe along with a vector of characters to show the variable
names. As we use column headings with embedded spaces, those names are enclosed in a
pair of back ticks.
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TABLE 13.6
Replication of table 13.10

Variables.in.model Logistic.model Cox.model
SBP 0.477 (0.2905, 0.6634) 0.477 (0.2905, 0.6634)
SBP, total cholesterol, and smoking 0.6935 (0.5067, 0.8802) 0.693 (0.5062, 0.8798)
SBP, total cholesterol, smoking and BMI 0.6981 (0.5113, 0.8849) 0.6977 (0.5109, 0.8845)

Section 13.4.4 (page 632)

We need to calculate the standardised median effect size by hand.

(qnorm(0.75) - qnorm(0.25)) *
(median(predict(lg_13_4)[data_13_1f$cvd10 == "yes"]) -

median(predict(lg_13_4)[data_13_1f$cvd10 == "no"])) /
IQR(predict(lg_13_4)[data_13_1f$cvd10 == "no"])

We use qnorm to calculate the distance between the third and first quartiles of a standard
normal distribution. We use median and IQR to calculate median and inter quartile range.
The argument for these functions is the vector returned by predict subset by logical
subscripting.
[1] 0.40509

The functions pnorm and qnorm can be used to solve equations 13.12 and 13.13.

qnorm(0.9, mean = 20, sd =2)
pnorm(0.1184)

When using qnorm we are asking what would be the value below which 90% of the values of
a normal distribution with mean 20 and standard deviation 2 occurs. When using pnorm we
are asking the reverse – given a normal distribution (mean 0 and sd 1), what proportion of
values fall below the specified value.
[1] 22.563
[1] 0.54712

13.4 Calibration
Section 13.5.1 (page 638)

We need rms package to perform Spiegelhalter test.

library(rms)
val.prob(lg_13_4$fitted.values, lg_13_4$y, pl = FALSE)["S:z"]
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We use the function val.prob. It requires a vector of predicted probabilities which is taken
from the fitted.values of the model object and a vector which denotes the outcome which
is taken from the y component of the model object. By default, val.prob plots a calibration
plot. We ask it not to plot the graph by saying pl = FALSE. Multiple statistics are returned
by val.prob. We select the value we are interested in by subscripting.

S:z
0.095867

Table 13.11 (page 640)

We will now try to recreate table 13.11.

lg_13_4$fitted.values -> data_13_1f$predlg
cut(lg_13_4$fitted.values,

quantile(lg_13_4$fitted.values, seq(0,1, by = 0.1)),
include.lowest = TRUE,
labels = FALSE) -> data_13_1f$tenth

group_by(data_13_1f, tenth) |>
summarise(maxlg = max(predlg),

meanlg = mean(predlg),
numcvd10 = sum(cvd10 == "yes"),
numrisk = n(),
obsrisk = numcvd10 /numrisk,
dfrnc = obsrisk - meanlg,
hlcmp = (numrisk * dfrnc ˆ 2) / (meanlg * (1-meanlg))
) -> tbl_13_11

tbl_13_11

We add two new columns to our fibrinogen data frame – one containing the predicted risks
and another categorising these risks into their tenths using cut. We have used labels =
FALSE to say that we don’t want the default labels, but integers to indicate the tenth. Then
we group the dataframe by these tenths and then calculate the columns by simple arithmetic.
The number of CVDs is calculated by sum(cvd == "yes"). Here, we get a logical vector,
whose values gets coerced to zeros and ones and then summed. When the condition is true,
we get the number 1 and when it is false 0. Thus, the sum will equal to the number of
instances where the condition is true. Note that the categories are different from that in our
textbook as is expected.

We can now sum the values of the last column to get the Hosmer Lemeshow statistic and
calculate its p value.

sum(tbl_13_11$hlcmp) -> hl_13_11
pchisq(hl_13_11, df = nrow(tbl_13_11) - 2, lower.tail = FALSE)

[1] 0.64687

Again, the value is slightly different from our textbook.



298 13 Risk scores and clinical decision rules

TABLE 13.7
Replication of table 13.11

Tenth of Maximum Mean Number No. Observed Difference Component
predicted value predicted with CVD at risk risk (r − p) of HL

risk risk (p) in 10 years (r)
1 0.044270 0.040285 24 674 0.035608 −0.0046770 0.381340
2 0.048095 0.046457 26 638 0.040752 −0.0057046 0.468680
3 0.051168 0.049720 27 677 0.039882 −0.0098384 1.386916
4 0.053980 0.052626 29 639 0.045383 −0.0072424 0.672275
5 0.056937 0.055518 38 664 0.057229 0.0017110 0.037074
6 0.060292 0.058702 46 668 0.068862 0.0101600 1.247909
7 0.064612 0.062446 41 634 0.064669 0.0022226 0.053494
8 0.070821 0.067541 41 659 0.062215 −0.0053258 0.296794
9 0.083237 0.076080 56 650 0.086154 0.0100743 0.938516
10 0.579411 0.108473 76 648 0.117284 0.0088111 0.520207

Instead of doing the calculations by hand, we may use the DescTools package.

HosmerLemeshowTest( lg_13_4$fitted.values, lg_13_4$y)$C

The function HosmerLemeshowTest requires two arguments similar to val.prob. The func-
tion returns both C and H statistics. As we are interested only in the C statistic, we subset
that component.

Hosmer-Lemeshow C statistic

data: lg_13_4$fitted.values and lg_13_4$y
X-squared = 6, df = 8, p-value = 0.65

Table 13.12 (page 641)

We now turn our attention to table 13.12.

1 - predict(cph_13_7,
newdata = mutate(data_13_15, survive = 1827),
type = "survival") -> data_13_15$predcph

cut(data_13_15$predcph,
quantile(data_13_15$predcph, seq(0,1, by = 0.1)),
include.lowest = TRUE,
labels = FALSE) -> data_13_15$tenth

summary(survfit(Surv(survive, chd5) ~ strata(tenth),
data = data_13_15),

times = 1827,
data.frame = TRUE) -> km_13_12

data.frame(obsrisk = 1 - km_13_12$surv ,
lciobr = (1-km_13_12$surv) - 1.96 * km_13_12$std.err,
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uciobr = (1-km_13_12$surv) + 1.96 * km_13_12$std.err
) -> tbl_13_12part

group_by(data_13_15, tenth) |>
summarise(meanrisk = mean(predcph),

numrisk = n()) |>
bind_cols(tbl_13_12part) |>
mutate(dfrnc = obsrisk - meanrisk,

hlcmp = (numrisk * dfrnc ˆ 2) /(meanrisk * (1-meanrisk))
) -> tbl_13_12

select(tbl_13_12, -c("lciobr", "uciobr"))

We add predicted risk as a new column to the original data frame. predict can provide
us many predicted values including survival probability, the complement of which is the
risk of event. However, predict will calculate the survival probability for up to the survival
period specified in the data used to fit the model. So, we give it a newdata which is the
original data modified to make all survival periods 1827. We may instead use predictRisk
of riskRegression to get the predicted probabilities. The result is added to the original
data frame as a new column.

In order to obtain the observed risk, we use survfit. On the right-hand side of the formula
we supply the term strata(tenth), tenth being the column we added by using cut to
assign labels according to the tenths of the predicted risks. Thus ten different KM curves are
calculated corresponding to each of the tenths. We pass the result to summary and extract
the surv component, subtract it from one and column bind it with its upper and lower
confidence intervals to create a temporary data frame. The original dataframe is grouped
by the tenths and the number at risk and mean predicted risk calculated for each group.
To this, the temporary data frame is joined. Finally, the difference between observed and
predicted risk and the contribution of each tenth to the test statistic are calculated.

TABLE 13.8
Replication of table 13.12

Tenth of Mean No. Observed Difference Component
predicted predicted risk at risk risk (r − p̄) of HL

risk (p̄) (r)
1 0.0088176 405 0.0049938 −0.0038238 0.677561
2 0.0126936 405 0.0075252 −0.0051684 0.863233
3 0.0154448 405 0.0124202 −0.0030246 0.243658
4 0.0182038 405 0.0100260 −0.0081778 1.515452
5 0.0212371 405 0.0225144 0.0012772 0.031786
6 0.0248020 404 0.0322223 0.0074204 0.919713
7 0.0288538 405 0.0350529 0.0061991 0.555418
8 0.0346723 405 0.0450612 0.0103889 1.305991
9 0.0437504 405 0.0596532 0.0159028 2.448214
10 0.0756900 405 0.0548204 −0.0208696 2.521319
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The first and sixth tenths in our categories differs by one from our textbook values. Con-
sequently, the difference and HL statistic components calculated for those rows also differ
slightly.

To calculate the p value of the test statistic, we use pchisq with the appropriate degrees of
freedom.

sum(tbl_13_12$hlcmp)
pchisq(sum(tbl_13_12$hlcmp),

df = nrow(tbl_13_12) - 1,
lower.tail = FALSE)

[1] 11.082
[1] 0.27011

The HL statistic calculated and its p value are essentially the same as in our textbook.

Figure 13.18 (page 642)

To prepare the graph in figure 13.18, we will use the table we prepared above.

ggplot(tbl_13_12) +
geom_point(aes(x = meanrisk, y = obsrisk )) +
geom_abline(intercept = 0, slope = 1, colour = "grey") +
ylim(0,0.08)+
xlim(0,0.08) +
labs(x = "Predicted risk",

y = "Observed risk")

We pass the data frame to ggplot and use geom_point to plot the points. We use
geom_abline to draw the diagonal line of perfect calibration. We specify the same xlim and
ylim to have a pleasing appearance.

Figure 13.19 (page 642)

To prepare the graph of figure 13.19 too we use the table we prepared earlier.

ggplot(tbl_13_12) +
geom_pointrange(aes( x = 1:10,

y = obsrisk / meanrisk,
ymin = lciobr / meanrisk,
ymax = uciobr / meanrisk)) +

geom_hline(yintercept = 1, colour = "grey") +
scale_x_discrete(limits = 1:10) +
theme_minimal() +
xlab("Tenth of predicted risk") +
ylab("Observed/Predicte risk")
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FIGURE 13.12
Replication of figure 13.18

We use geom_pointrange to plot the graph. Note that we provide a vector with value 1 to
10 as the x aesthetic and use scale_x_discrete with the same limits. This is done to plot
the points and lines at equal distance on the x-axis rather than at a distance dictated by
the mean predicted risk.

13.5 Recalibration
Example 13.15 (page 644)

To do the Cox’s calibration test, we need the fibrinogen data for men.

filter(data_13_1,sex == "men") -> data_13_1m
predict(lg_13_4,

newdata = data_13_1m) -> data_13_1m$predict
glm(formula = cvd10 ~ offset(predict),

family = binomial(),
data = data_13_1m) -> lg_13_16a

summary(lg_13_16a)

After saving the fibrinogen data for men in a new data frame, we use the logistic model fitted
for women to predict the logit for men. The predicted logits are added as a new column to
the data frame for men. In the next step, we fit a logistic model using the dataframe for
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FIGURE 13.13
Replication of figure 13.19

men. The response variable in the model formula is CVD death, while the right-hand side is
the predicted logits specified as an offset.

Call:
glm(formula = cvd10 ~ offset(predict), family = binomial(), data = data_13_1m)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.737 0.039 18.9 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 4627.3 on 6508 degrees of freedom
Residual deviance: 4627.3 on 6508 degrees of freedom
AIC: 4629

Number of Fisher Scoring iterations: 4
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Example 13.16 (page 645)

For Cox recalibration, we need to fit the model without an offset.

glm(formula = cvd10 ~ predict,
family = binomial(),
data = data_13_1m) -> lg_13_16b

summary(lg_13_16b)

Call:
glm(formula = cvd10 ~ predict, family = binomial(), data = data_13_1m)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.165 0.323 0.51 0.61
predict 0.791 0.117 6.79 1.1e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 4667.6 on 6508 degrees of freedom
Residual deviance: 4624.1 on 6507 degrees of freedom
AIC: 4628

Number of Fisher Scoring iterations: 4

To confirm that we get the predicted risk as given in our textbook, we build a function to
convert logits to risks.

logit2r <- function(logit) { (1 + exp(- logit)) ˆ -1}
logit2r(predict(lg_13_4,

newdata = data.frame(fibrinogen = 5)))
logit2r(predict(lg_13_4,

newdata = data.frame(fibrinogen = 5)) +
coef(lg_13_16a))

logit2r((predict(lg_13_4, newdata = data.frame(fibrinogen = 5)) *
coef(lg_13_16b)["predict"]) +

coef(lg_13_16b)["(Intercept)"])

Our function logit2r accepts a logit and does the necessary arithmetic to return the corre-
sponding risk. We pass it the logits calculated for a fibrinogen level of 5 using the prediction
from the female fibrinogen data, recalibrating it using intercept method and by Cox method
to confirm agreement with textbook values.

1
0.12094

1
0.22325
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1
0.19698

Next, we add new columns to the male data corresponding to intercept recalibrated and
Cox recalibrated logits.

data_13_1m$predict + coef(lg_13_16a) -> data_13_1m$irlg
(data_13_1m$predict *

coef(lg_13_16b)["predict"]) +
coef(lg_13_16b)["(Intercept)"] -> data_13_1m$crlg

mean(logit2r(data_13_1m$irlg))
mean(logit2r(data_13_1m$crlg))
sum(data_13_1m$cvd10 == "yes") / nrow(data_13_1m)

We confirm that the mean of predicted risks using intercept recalibration and Cox recalibra-
tion agree with the textbook values and with the observed risk.

[1] 0.11584
[1] 0.11584
[1] 0.11584

Figure 13.21 (page 647)

To prepare the graph in figure 13.21, we need to calculate the observed and predicted risk in
each tenths and gather it in a data frame.

cut(data_13_1m$predict,
quantile(data_13_1m$predict, seq(0,1, by = 0.1)),
include.lowest = TRUE,
labels = FALSE) -> data_13_1m$ucl10

cut(data_13_1m$irlg,
quantile(data_13_1m$irlg, seq(0,1, by = 0.1)),
include.lowest = TRUE,
labels = FALSE) -> data_13_1m$irlg10

cut(data_13_1m$irlg,
quantile(data_13_1m$irlg, seq(0,1, by = 0.1)),
include.lowest = TRUE,
labels = FALSE) -> data_13_1m$crlg10

bind_rows(summarise(group_by(data_13_1m, ucl10),
meanpred = mean(logit2r(predict)),
observed = sum(cvd10 == "yes") /n(),
calib = "uncalibrated"),

summarise(group_by(data_13_1m, irlg10),
meanpred = mean(logit2r(irlg)),
observed = sum(cvd10 == "yes") /n(),
calib = "intercept"),

summarise(group_by(data_13_1m, crlg10),
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meanpred = mean(logit2r(crlg)),
observed = sum(cvd10 == "yes") /n(),
calib = "Cox")) -> data_13_21

First, we cut each of the three predicted logits into their tenths and add them as new
columns to the original dataframe. Next, we group the dataframe according to these tenths
and calculate the mean of the predicted risk returned by logit2r and the observed risk. This
step is done separately for the three predictions and the values added together as a single
dataframe along with a column to distinguish the type of prediction used.

ggplot(data_13_21) +
geom_point(aes(x = meanpred,

y = observed,
group = calib,
colour = calib,
shape = calib),

show.legend = FALSE) +
geom_abline(intercept = 0, slope = 1, colour = "grey") +
xlim(0.025,0.2) +
ylim(0.025,0.2) +
xlab("Predicted risk") +
ylab("Observed risk") +
scale_color_manual(values = c("#111111", "#004B73", "#713430"))

Next, we pass the data frame we built to ggplot. We use geom_point to plot points using
the observed and predicted risks for each tenths. We ensure that each of the three different
predictions used have different colours and plotting symbols by specifying the value of group,
colour and shape aesthetics to that of the column with the identifier for prediction method.
The show.legend = FALSE specified outside aes asks ggplot to not draw a legend for the
geom within which it is specified.

The Hosmer Lemeshow test is done using HosmerLemeshowTest.

HosmerLemeshowTest( logit2r(data_13_1m$predict),
data_13_1m$cvd10 == "yes")$C

HosmerLemeshowTest( logit2r(data_13_1m$irlg),
data_13_1m$cvd10 == "yes")$C

HosmerLemeshowTest( logit2r(data_13_1m$crlg),
data_13_1m$cvd10 == "yes")$C

Hosmer-Lemeshow C statistic

data: logit2r(data_13_1m$predict) and data_13_1m$cvd10 == "yes"
X-squared = 382, df = 8, p-value <2e-16

Hosmer-Lemeshow C statistic
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data: logit2r(data_13_1m$irlg) and data_13_1m$cvd10 == "yes"
X-squared = 4.93, df = 8, p-value = 0.77

Hosmer-Lemeshow C statistic

data: logit2r(data_13_1m$crlg) and data_13_1m$cvd10 == "yes"
X-squared = 6.53, df = 8, p-value = 0.59

FIGURE 13.14
Replication of figure 13.21

Example 13.17

To rework the example 13.17, we need to fit the appropriate Cox model.

coxph(Surv(survive,cvdfllw == "yes") ~ fibrinogen,
data = data_13_1m) -> cph_13_17

mean(data_13_1m$fibrinogen) -> meanfibm
summary(survfit(cph_13_17,

newdata = data.frame(fibrinogen = meanfibm)),
times = 3652)$surv -> survm

calfib <- function(fib){1 - (survm ˆ exp(coef(cphf_13_6) *(fib -meanfibm)))}

We use the mean fibrinogen value in males and 10 year survival corresponding to that level
to build a formula that will return the risk probability.
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We will use the formula to extend data_13_1m and prepare the graph in figure 13.22.

calfib(data_13_1m$fibrinogen) -> data_13_1m$calcox
cut(data_13_1m$calcox,

quantile(data_13_1m$calcox, seq(0,1, by = 0.1)),
include.lowest = TRUE,
labels = FALSE) -> data_13_1m$calcox10

bind_rows(data_13_21,
summarise(group_by(data_13_1m, calcox10),

meanpred = mean(calcox),
observed = sum(cvd10 == "yes") /n(),
calib = "Calibrated Cox")) |>

filter(calib =="Calibrated Cox"|calib == "uncalibrated") |>
ggplot() +
geom_point(aes(x = meanpred,

y = observed,
group = calib,
shape = calib,
colour = calib),

show.legend = FALSE) +
geom_abline(intercept = 0, slope = 1, colour = "grey") +
labs(x = "Observed risk",

y = "Predicted risk") +
xlim(0,0.2) +
ylim(0,0.2) +
scale_color_manual(values = c("#111111", "#004B73", "#713430"))

As with our previous example, we add the predicted risk and its tenths as new columns.
Then, we group_by the tenths and summarise to get the mean of the predicted and observed
risks for each tenth. Before we pass the data frame to ggplot, we filter it to select the
data of our interest.

13.6 Accuracy of predictions
Table 13.13 (page 649)

We will now try to recreate table 13.13.

y <- c(rep(1,6), rep(0,18))
S1 <- rep(1,24)
S2 <- rep(0,24)
S3 <- y
S4 <- c(rep(0,6), rep(1,18))
S5 <- rep(0.5,24)
S6 <- rep(0.25,24)
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S7 <- c(rep(0.9,6), rep(0.1,18))
S8 <- c(rep(0.6,6), rep(0.4,18))
S9 <- c(0.5,0.45,0.4,0.35,0.3,0.25,0.31,0.26,0.2,rep(0.1,15))
S10 <- c(0.7,0.65,0.6,0.5,0.4,0.3,0.51,0.41,0.31,rep(0.1,13),0.22, 0.25)
S11 <- c(0.95, 0.7,0.5,0.4,0.3,0.1,0.8,0.4,0.3,0.25,0.2,0.18,0.16,

0.16,0.15,0.14,0.14,0.12,0.12,0.1,0.1,0.05,0.05,0.01)
data_13_13 <- data.frame(y,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11)

Brier <- function(x,y) { sum((y - x)ˆ2) / length(x)}
AUC <- function(x,y) { concordance( y ~ x)$concordance}
Spiegel <- function(x,y) { sum((y - x) * (1- (2 * x))) /

sqrt(sum( (1 - (2 * x)) ˆ2 * x * (1-x)))}

FIGURE 13.15
Replication of figure 13.22

The basic data is gathered together in a data frame; many of the individual columns built
using rep. We then make three functions to calculate the Brier score, AUC and Spiegelhalter
statistic. Though, val.prob does give all these results, it is not really suited for how we
intend to call the functions.

bind_rows(data_13_13,
summarise(data_13_13,

across(S1:S11, mean)),
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summarise(data_13_13,
across(S1:S11, ~mean(data_13_13$y) - mean(.x))),

summarise(data_13_13,
across(S7:S11, ~Spiegel(.x, data_13_13$y))),

summarise(data_13_13,
across(S1:S11, ~AUC(.x, data_13_13$y))),

summarise(data_13_13,
across(S1:S11,

~Brier(.x,data_13_13$y)))) -> tbl_13.13
tbl_13.13$y[is.na(tbl_13.13$y)] <- c("mean", "r-p","Spiegel", "AUC", "Bier")
tbl_13.13

We call these functions using summarise, once for each summary. The first argument for
summarise is the data frame. But, the second argument is the function across. The function
across accepts a selection of columns in the dataframe specified. There are multiple ways
in which we may select columns. Here we are asking for columns from S1 to S11 for most
summaries. The second argument for across is a function. The function name may be
specified or a lambda may be specified. For the first summarisation, we use the name
of the function mean. The result we get is what is returned by mean when each of the
columns specified within across is passed to it, combined together as a vector. Rest of
the summarisation use a lambda, a one sided function. It start with ~. Next, we call the
function as we would call it any time. However, the column that would be passed to it is
referred to in the function call as .x. Thus, to get the difference between mean of a column
from the mean of the true outcome, we use ~mean(tbl_13.13$y) - mean(.x). Here, the
.x gets substituted with the columns we specify in across. We row bind all the summaries
to the data. Next, we change the value of the y column for the summaries. As y was not one
of the columns for which summaries were calculated, all the summary values for y is NA. We
utilise this information to subset y and assign new values to them.

I couldn’t find a pre made Redelmeier test. Also, our text doesn’t say against what the
calculated Redelmeier statistic is compared to get the p value. So, we will not calculate
Redelmeier statistic.

13.7 Reclassification
Example 13.18 (page 655)

We will use improveProb of Hmisc to calculate IDI and NRI.

library(Hmisc)
improveProb(lg_13_10sbp$fitted.values,

lg_13_15$fitted.values,
lg_13_15$y) -> recal_13_8a

improveProb(lg_13_15$fitted.values,
lg_13_10bmi$fitted.values,
lg_13_15$y) -> recal_13_8b
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TABLE 13.9
Replication of table 13.13

y S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
1 1 0 1 0 0.5 0.25 0.9 0.6 0.5 0.7 0.95
1 1 0 1 0 0.5 0.25 0.9 0.6 0.45 0.65 0.7
1 1 0 1 0 0.5 0.25 0.9 0.6 0.4 0.6 0.5
1 1 0 1 0 0.5 0.25 0.9 0.6 0.35 0.5 0.4
1 1 0 1 0 0.5 0.25 0.9 0.6 0.3 0.4 0.3
1 1 0 1 0 0.5 0.25 0.9 0.6 0.25 0.3 0.1
0 1 0 0 1 0.5 0.25 0.1 0.4 0.31 0.51 0.8
0 1 0 0 1 0.5 0.25 0.1 0.4 0.26 0.41 0.4
0 1 0 0 1 0.5 0.25 0.1 0.4 0.2 0.31 0.3
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.25
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.2
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.18
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.16
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.16
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.15
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.14
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.14
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.12
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.12
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.1
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.1
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.1 0.05
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.22 0.05
0 1 0 0 1 0.5 0.25 0.1 0.4 0.1 0.25 0.01
p̄ 1 0 0.25 0.75 0.5 0.25 0.3 0.45 0.1883 0.25625 0.2658
r − p̄ −0.75 0.25 0 −0.5 −0.25 0 −0.05 −0.2 0.0617 −0.00625 −0.0158
Spiegel −1.63 −4 −0.5103 −1.37792 −0.0884
AUC 0.5 0.5 1 0 0.5 0.5 1 1 0.9722 0.94444 0.8148
Bier 0.75 0.25 0 1 0.25 0.19 0.01 0.16 0.1142 0.09324 0.1331

The function requires 3 vectors of equal length. The first two are predictions from the base
and new models. The last is a vector denoting the observed outcome. The function prints
out all the calculated indices including IDI, NRI and their confidence intervals by default.
Here, we save the result and print the values corresponding to example 13.18.

recal_13_8a$idi
recal_13_8a$z.idi
pnorm(recal_13_8a$z.idi, lower.tail = FALSE)
recal_13_8a$idi + c(-1.96,1.96)*recal_13_8a$se.idi
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While comparing the single model and multimodel, the score for the null hypothesis that the
second model is no better than the first, its one sided p value and 95% confidence interval
are similar to the textbook values, though not exact.

idi
[1] 0.0067989
z.idi
[1] 3.3409
z.idi
[1] 0.00041749
[1] 0.0028103 0.0107876

For the comparison of multiplus against multi model, the results are

recal_13_8b$idi
recal_13_8b$z.idi
pnorm(recal_13_8b$z.idi, lower.tail = FALSE)
recal_13_8b$idi + c(-1.96,1.96)*recal_13_8b$se.idi

idi
[1] 2.1862e-05
z.idi
[1] 0.054759
z.idi
[1] 0.47817
[1] -0.00076065 0.00080437

The improveProb doesn’t calculate RIDI. However, we can calculate it with the value of
IDI it returns.

recal_13_8a$idi /
(mean(lg_13_10sbp$fitted.values[lg_13_10sbp$y == 1]) -

mean(lg_13_10sbp$fitted.values[lg_13_10sbp$y == 0]))

idi
[1] 1.0079

Example 13.19 (page 656)

The improveProb also calculates NRI. Here, we check for the results in example 13.19.

recal_13_8a$nri
recal_13_8a$z.nri
pnorm(recal_13_8a$z.nri, lower.tail = FALSE)
recal_13_8a$nri + c(-1.96,1.96)*recal_13_8a$se.nri
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nri
[1] 0.49849
z.nri
[1] 5.4641
z.nri
[1] 2.3258e-08
[1] 0.31968 0.67730

Example 13.20 (page 657)

We need to rework example 13.20 by hand. First, we categorise the scores according to the
thresholds.

c(0,0.05,0.1,1) -> thresholds
cut(lg_13_10sbp$fitted.values,

thresholds ,
right = TRUE,
include.lowest = TRUE) -> rsnglcat

cut(lg_13_15$fitted.values,
thresholds,
right = TRUE,
include.lowest = TRUE) -> rmlticat

data_13_15$chd5 -> chd5

data.frame(rsnglcat = rsnglcat,
rmlticat = rmlticat,
chd = chd5) |>

group_by( rsnglcat, rmlticat, chd) |>
summarise(count = n()) |>
filter(rsnglcat != rmlticat) |>
mutate(chngdir = ifelse(as.numeric(rsnglcat) > as.numeric(rmlticat),

"d",
"u")) |>

group_by(chngdir,chd) |>
summarise(total = sum(count)) |>
bind_cols(actual = rep(table(chd5),2)) |>
mutate(prop = total /actual) -> data_13_20

We cut the fitted values of the two models we are comparing according to the thresholds given
in our text. We join the results with the outcome column of original data. We, then group
the resulting data frame by the categories in the two variables and by outcome and take the
count in each cross classification group. Then, we filter out those rows where the categories
are the same according to both risk scores as they don’t contribute to the calculations. Now,
we mutate to create a new column denoting the direction in which the multi model’s score
has moved the prediction. For this, we rely on the internal representation of factors, which is
as integers. Thus, when the score category is higher, the internal representation of the cut
category is a higher number. We ask R to consider the factors as number using as.numeric.
Now, we group_by the score movement direction and outcome. We sum the counts in each
group and calculate proportions. In calculating the proportions, the denominator is obtained
using table on the outcome variable.
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filter(data_13_20, chngdir == "u", chd == 1)$prop -> pud
filter(data_13_20, chngdir == "u", chd == 0)$prop -> puh
filter(data_13_20, chngdir == "d", chd == 1)$prop -> pdd
filter(data_13_20, chngdir == "d", chd == 0)$prop -> pdh

filter(data_13_20, chngdir == "u", chd == 1)$total -> nud
filter(data_13_20, chngdir == "u", chd == 0)$total -> nuh
filter(data_13_20, chngdir == "d", chd == 1)$total -> ndd
filter(data_13_20, chngdir == "d", chd == 0)$total -> ndh

We now, assign each of the four proportions and counts to four variables only to make it
easier to refer to them in formulas.

(pud - pdd) - (puh - pdh) -> nri_13_20
nri_13_20
sqrt(((nud + ndd) / table(chd5)["1"]ˆ2) -

((nud - nddˆ2) / table(chd5)["1"]ˆ3) +
((nuh + ndh) /table(chd5)["0"]ˆ2) -
((nuh - ndhˆ2) / table(chd5)["0"]ˆ3)) -> se_13_20

nri_13_20 + c(-1.96, 1.96) * se_13_20

((nud + ndd) /
table(chd5)["1"]ˆ2) +

((nuh + ndh) /
table(chd5)["0"]ˆ2) -> d_13_20

pnorm(nri_13_20/sqrt(d_13_20), lower.tail = FALSE)

The NRI, its 95% confidence interval and the p value of the test static for a zero value of
NRI are calculated using the formula given in the text.

1
0.021383
[1] -0.052443 0.095208

1
0.28456

Our cross classification differs from that in the textbook by one or two in a cell which is the
reason for the difference in the NRI calculated.

Table 13.16 (page 658)

To prepare table 13.16, we can use ftable.

ftable( rsnglcat, rmlticat,chd5,
col.vars = c("chd5","rmlticat" ))
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The function ftable outputs flat tables, where cross classification between more than two
variables is better arranged. Apart from the variables that need to be cross classified, it
can accept col.vars and / or row.vars to determine which all variables contribute groups
as columns and which as rows. Here, we specified col.vars so that the two variables we
specified as its argument are used to build the columns of the table.

TABLE 13.10
Replication of table 13.16

Risk using multi score

Risk using No CHD CHD
single score
rsnglcat [0,0.05]_0 (0.05,0.1]_0 (0.1,1]_0 [0,0.05]_1 (0.05,0.1]_1 (0.1,1]_1
[0,0.05] 3439 252 17 88 10 2
(0.05,0.1] 97 92 24 4 5 1
(0.1,1] 1 3 10 0 1 3

Example 13.21 (page 659)

The survIDINRI package provides functions for calculating IDI and NRI for variable cohorts.
However, I am not very sure if the statistic it calculates is the same as discussed in our text.
So, we will rework the examples by hand. First, example 13.21.

coxph(Surv(survive, chd) ~ sbp,
data = data_13_15,
ties ="breslow",
x = TRUE,
y = TRUE) -> cph_sngl

coxph(Surv(survive, chd) ~ chol + sbp +smoke,
data = data_13_15,
ties ="breslow",
x = TRUE,
y = TRUE) -> cph_mlti

coxph(Surv(survive, chd) ~ chol + sbp +smoke + bmi,
data = data_13_15,
ties ="breslow",
x = TRUE,
y = TRUE) -> cph_mltp

mutate(data_13_15, survive =1827) -> data_13_15_1827
1 - predict(cph_sngl,

newdata = data_13_15_1827,
type = "survival") -> data_13_15$crsngl

1 - predict(cph_mlti,
newdata = data_13_15_1827,
type = "survival") -> data_13_15$crmlti

1 - predict(cph_mltp,
newdata = data_13_15_1827,
type = "survival") -> data_13_15$crmltp
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summary(survfit(Surv(survive, chd5) ~ 1,
data = data_13_15),

times =1827)$surv -> surv_13_15

(var(data_13_15$crmlti) -
var(data_13_15$crsngl)) /

(surv_13_15 * (1 -surv_13_15)) -> idi_sm
(var(data_13_15$crmltp) -

var(data_13_15$crmlti)) /
(surv_13_15 * (1 -surv_13_15)) -> idi_mm

(var(data_13_15$crmlti) -
var(data_13_15$crsngl)) /

var(data_13_15$crsngl) -> ridi_sm
idi_sm
idi_mm
ridi_sm

First, we fit the Cox proportional hazards model, which we feed to predict. The newdata
that we provide predict is the original data frame which is mutated to change the value of
survive to 1827 in all rows. The call to mutate is made from inside the call to predict. We
ask predict to return survival probability, subtract it from 1 to obtain the probability of
event and add those values as new columns to the original data frame. We use the summary
method for survfit to obtain the KM estimate of survival. We use var to obtain the variance
of the predicted risk. The IDI for both comparisons and RIDI for the single-multi comparison
is calculated by substituting the equations given in the textbook with the appropriate values.

[1] 0.0075616
[1] 0.00049983
[1] 0.90821

Example 13.22 (page 660)

We now turn to example 13.22.

mutate(data_13_15,
dir = ifelse(crsngl >= crmlti, "d", "u")) -> data_13_15

table(data_13_15$dir)["u"] /nrow(data_13_15) -> propu
table(data_13_15$dir)["d"] /nrow(data_13_15) -> propd

1 - summary(survfit(Surv(survive, chd5) ~ 1,
data = data_13_15),

times =1827)$surv -> kmra_13_15
1 - summary(survfit(Surv(survive, chd5) ~ 1,

data = data_13_15,
subset = dir == "u"),

times =1827)$surv -> kmru_13.15
1 - summary(survfit(Surv(survive, chd5) ~ 1,
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data = data_13_15,
subset = dir == "d"),

times =1827)$surv -> kmrd_13_15

((kmru_13.15 * propu) - (kmrd_13_15 * propd)) / kmra_13_15 +
(((1 - kmrd_13_15) * propd) - ((1 - kmru_13.15) * propu)) /
(1 -kmra_13_15) -> nri_13_22

nri_13_22

Our first step is to create a category variable to show the direction of change between the
risk scores. Next, we summarise the numbers in the two categories using table and find
their proportions. Next, we find the KM estimate for the entire data and subsets with only
one of the two directions of change. We then substitute the values in the formula given in
the textbook.

u
0.53121

We now will rework the NRI calculated according to the clinical cutoffs.

c(0,0.05,0.1,1) -> cutoffs
cut(data_13_15$crsngl,

cutoffs,
right = TRUE,
include.lowest = TRUE) -> data_13_15$cat_sngl

cut(data_13_15$crmlti,
cutoffs,
right = TRUE,
include.lowest = TRUE) -> data_13_15$cat_mlti

cut(data_13_15$crmltp,
cutoffs,
right = TRUE,
include.lowest = TRUE) -> data_13_15$cat_mltp

mutate(data_13_15,
codir = case_when(

as.numeric(cat_sngl) > as.numeric(cat_mlti) ~ "d",
as.numeric(cat_sngl) < as.numeric(cat_mlti) ~ "u",
TRUE ~ "e")) -> data_13_15

table(data_13_15$codir)["u"]/nrow(data_13_15) -> propcou
table(data_13_15$codir)["d"]/nrow(data_13_15) -> propcod

1 - summary(survfit(Surv(survive, chd5) ~ 1,
data = data_13_15,
subset = codir == "u"),

times =1827)$surv -> kmrcou_13_15
1 - summary(survfit(Surv(survive, chd5) ~ 1,
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data = data_13_15,
subset = codir == "d"),

times =1827)$surv -> kmrcod_13_15

((kmrcou_13_15 * propcou) - (kmrcod_13_15 * propcod)) /
kmra_13_15 + (((1 - kmrcod_13_15) * propcod) -

((1 - kmrcou_13_15) * propcou)) /
(1 -kmra_13_15) -> nrico_13_22

nrico_13_22

Our first step is to cut the risk predictions into categories according to the clinical cut offs.
Next, we create a new column to store the direction of change. For this, we use case_when
inside mutate. As with our earlier example, we rely on the internal representation of factors
to do the comparison. We use table to calculate the proportion of cases with upward or
downward movement in prediction categories. We use summary of survfit to obtain the
KM estimate of risk for each of the two categories. Finally, we substitute the appropriate
values in the formula given in the text.

u
0.023155

Table 13.17 (page 661)

We will now try to recreate table 13.17.

bind_cols(event = rep(c("Overall", "CHD", "No CHD"),
each = 3) ,

bind_rows(data_13_15 |>
group_by(cat_sngl, cat_mlti) |>
summarise(count = n()) |>
pivot_wider(names_from = cat_mlti,

values_from = count),
filter(data_13_15, chd == 1) |>

group_by(cat_sngl, cat_mlti) |>
summarise(count = n()) |>
pivot_wider(names_from = cat_mlti,

values_from = count),
filter(data_13_15, chd == 0) |>

group_by(cat_sngl, cat_mlti) |>
summarise(count = n()) |>
pivot_wider(names_from = cat_mlti,

values_from = count)))

We are using bind_cols to bind together a character vector with the result given by
bind_rows. The character vector is made by repeating each of the three labels thrice.
The bind_row binds the rows returned by three pipe flows. In each of the pipe flows, an
appropriate data frame is grouped by the two score categories, their counts taken and then
converted into a wide format. The final result is table 13.17.
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TABLE 13.11
Replication of table 13.17

Risk using multi score

Event Risk using single score [0,0.05] (0.05,0.1] (0.1,1]
Overall [0,0.05] 3522 240 8
Overall (0.05,0.1] 105 123 24
Overall (0.1,1] 2 6 19
CHD [0,0.05] 145 21 2
CHD (0.05,0.1] 8 10 3
CHD (0.1,1] 3 4
No CHD [0,0.05] 3377 219 6
No CHD (0.05,0.1] 97 113 21
No CHD (0.1,1] 2 3 15

We will leave this section by mentioning two packages that implement cross validation in
R. One is the caret package. The package rms also implements cross validation and boot
strapped calibration for common regression models.

We will now turn to example 13.23.

13.8 Presentation of risk scores
Example 13.23 (page 665)

1.3 -> bsmoke
2.5 -> bsex
-5.6 -> intercept
rep(c("female", "male"),each =2) -> sex
rep(c("non-smoker", "smoker"),2) -> smoke
bind_cols(sex = sex,

smoke = smoke,
rowlabel = paste0(sex,", ", smoke)) |>

mutate( x1 = ifelse(sex == "female",0,1),
b1 = bsex,
x2 = ifelse(smoke == "smoker",1,0),
b2 = bsmoke,
bixi = b1*x1 + b2*x2,
risk = logit2r(bixi + intercept),
sexpts = round(b1*x1 / bsmoke),
smokepts = round(b2*x2 / bsmoke),
totpts= sexpts + smokepts,
riskpoints = logit2r((totpts * bsmoke) + intercept)) |>

select(-c("sex", "smoke"))

After storing the relevant data in variables, we use bind_cols to build the starting columns
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of the data frame. From these columns, we build the row labels and numerical values of x1
and x2. We multiply the relevant regression coefficients with x1 and x2, add them together
and with the value of intercept and feed it to logit2r that we defined in an earlier example
to get the exact risk. We divide the regression coefficients with the standard regression units
that we choose, round it to nearest integer and add intercept with it before feeding to logit2r.
Finally, we negative select the columns to exclude from display.

# A tibble: 4 x 11
rowlabel x1 b1 x2 b2 bixi risk sexpts smokepts totpts
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 female, non-~ 0 2.5 0 1.3 0 0.00368 0 0 0
2 female, smok~ 0 2.5 1 1.3 1.3 0.0134 0 1 1
3 male, non-sm~ 1 2.5 0 1.3 2.5 0.0431 2 0 2
4 male, smoker 1 2.5 1 1.3 3.8 0.142 2 1 3
# i 1 more variable: riskpoints <dbl>

Table 13.20 (page 668)

Now, we will rework example 13.24. First, we will recreate table 13.20.

c("female", "male") -> sex
c("40-49", "50-59", "60-69", "70-79") -> agegrp
c(0.52, 0.48) -> sexprop
c(0.3,0.25,0.25,0.2) -> ageprop
c(0,1.8) -> sexbeta
c(0,0.7,2.1,3.1) -> agebeta
sum(agebeta * ageprop) + sum(sexbeta * sexprop) -> baserisk
0.98 -> basesurv
bind_cols(sex = rep(sex, each =4),

agegrp = rep(agegrp,2),
sexbeta = rep(sexbeta, each = 4),
agebeta = rep(agebeta,2)) |>

mutate(bx = sexbeta + agebeta,
w = bx - baserisk,
`0.98z` = basesurv ˆ exp(w),
risk = 1 -`0.98z`) |>

select(-c("sexbeta", "agebeta"))

This is similar to the previous example. We bind together an initial data frame from the
beta coefficients for each value of the variables along with those values. We then mutate to
produce each of the columns in table 13.20. A difference from the previous example is that
we calculate the risk directly rather than by using a custom function.
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TABLE 13.12
Replication of table 13.20

Sex Age (yrs)
∑

bx w 0.98z Risk
female 40-49 0.0 −2.184 0.99773 0.0022720
female 50-59 0.7 −1.484 0.99543 0.0045701
female 60-69 2.1 −0.084 0.98160 0.0184035
female 70-79 3.1 0.916 0.95076 0.0492385
male 40-49 1.8 −0.384 0.98633 0.0136665
male 50-59 2.5 0.316 0.97267 0.0273302
male 60-69 3.9 1.716 0.89371 0.1062884
male 70-79 4.9 2.716 0.73678 0.2632151

Table 13.21 (page 669)

To make table 13.21, we follow a similar path.

sexbeta[2] -> baseru
bind_cols(sex = rep(sex, each =4),

agegrp = rep(agegrp,2),
sexbeta = rep(sexbeta, each = 4),
agebeta = rep(agebeta,2)) |>

mutate(sexpts = round(sexbeta / baseru),
agepts = round(agebeta / baseru),
totpts = sexpts + agepts,
bxsum = totpts * baseru,
w = bxsum - baserisk,
`0.98z` = basesurv ˆ exp(w),
risk = 1 -`0.98z`) |>

select(-c("sexbeta", "agebeta"))

The difference is that we use the points derived from the coefficients by dividing them
with the standard regression units we choose to calculate the risk instead of the coefficient
themselves.

TABLE 13.13
Replication of table 13.21

Sex Age Sex Age Total Est(
∑

bx)a w 0.98z Risk
(years) points points points

female 40-49 0 0 0 0.0 −2.184 0.99773 0.002272
female 50-59 0 0 0 0.0 −2.184 0.99773 0.002272
female 60-69 0 1 1 1.8 −0.384 0.98633 0.013666
female 70-79 0 2 2 3.6 1.416 0.92012 0.079876
male 40-49 1 0 1 1.8 −0.384 0.98633 0.013666
male 50-59 1 0 1 1.8 −0.384 0.98633 0.013666
male 60-69 1 1 2 3.6 1.416 0.92012 0.079876
male 70-79 1 2 3 5.4 3.216 0.60434 0.395659
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Table 13.23 (page 670)

We now move on to re-create table 13.23.

bind_rows(bind_cols(term = agegrp,
value = seq(45,75, by =10),
coef = 0.107, ref = 45),

bind_cols(term = sex,
value = c(0,1),
coef = 1.8, ref = 0)) |>

mutate(`c-ref` = value - ref,
`b*d` = coef * `c-ref`,
points = round(`b*d` / (5 * 0.107)))

Here, we create the rows for sex and age groups separately and then join them together
using bind_rows. Then, we mutate the data frame to make the new columns.

TABLE 13.14
Replication of table 13.23

Term Value of Estimated Reference c− (b)×(d) Points
concentration beta coeff. reference

(c) (b) (d)
40-49 45 0.107 45 0 0.00 0
50-59 55 0.107 45 10 1.07 2
60-69 65 0.107 45 20 2.14 4
70-79 75 0.107 45 30 3.21 6
female 0 1.800 0 0 0.00 0
male 1 1.800 0 1 1.80 3

Table 13.24 (page 671)

We follow the steps in our textbook to create table 13.24.

sum( c(0.107,1.8) * c(54.63, 0.48)) -> v
mutate(data.frame(points = 0:9),

risk = 1 - 0.968 ˆ exp(0.535 * points + (0.107 * 45 - v)))

We define the starting data frame inside mutate to contain only one column, a sequence of
points from zero to nine. We use mutate to calculate the column of risk according to the
formula given in the textbook.

Example 13.26 (page 672)

For the final example 13.26, as we know the textbook method, we will explore the R way
using the package rms. Remember to install it using install.packages as described in
chapter 1.



322 13 Risk scores and clinical decision rules

TABLE 13.15
Replication of table 13.24

Points Risk
0 0.0048798
1 0.0083176
2 0.0141600
3 0.0240562
4 0.0407244
5 0.0685291
6 0.1141541
7 0.1869508
8 0.2976896
9 0.4530390

library(rms)
datadist(data_13_15) -> dd_13_15
options(datadist = dd_13_15)

cph(Surv(survive, chd) ~ chol + sbp +smoke,
x = TRUE,
y= TRUE,
surv =TRUE,
data = data_13_15) -> cph_13_15

lp2rsk <- function(lp){1 - survest(cph_13_15,times = 1827)$surv ˆ exp(lp)}

The first steps are essential pre-requisites. We need to feed the data frame we are planning to
work on to datadist and the resulting object should be specified as the value of datadist
argument to options. This enables rms to do certain preparatory works like creating
summaries of different variables. Next, we fit the model for which we want a point score
estimated to be fitted using one of the functions of rms. Here, we are using cph to fit a
Cox proportional model. The arguments to cph is similar to coxph we saw earlier. In this
fit, we specify x=TRUE and y=TRUE to store the expanded design matrix of the model and
the response object as part of the result returned. This enables / makes easier further
calculations using the model object. Next, we construct a custom function, that will return
the predicted risks for a given linear predictor. Note that in our function, we don’t deduct the
mean combination of coefficients. This deduction is already included in the linear predictor
returned by rms.

nomogram(cph_13_15,
fun = lp2rsk,
fun.at = c(0.01, 0.02,0.04,0.08, 0.16, 0.32),
maxscale = 24) -> ng_13_15

plot(ng_13_15)

Now, we feed nomogram, the function that calculates the points, its arguments. The first
argument is the model object and this is the only one absolutely needed. Our custom
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function is given as fun. This is used for converting the linear predictor variable to whatever
we want. In our case, we are using the custom function to convert the linear predictor to
predicted risk. When we provide a fun, an additional axis to represent the values returned
by the specified function is made. The argument fun.at determines the tick values for
that axis. The argument maxscale determines the maximum points that can be assigned
to any one variable. We store the result given by nomogram, which we may print or plot.
We get a beautiful nomogram if we plot and the points assigned to each variable levels if
we print it. Note that the points calculated by nomogram won’t necessarily agree with the
textbook scoring system, but should agree with the approximate risk. We can categorise the
continuous variables into categories as given in the textbook and fit survival model using
cph and proceed to make another nomogram. I will leave it to you to determine which would
be a better scoring system.

FIGURE 13.16
Nomogram for continuous values in example 13.26 prepared using rms

Before we leave this chapter, I want to point out a function in rms named Function.

cphfun_13.15 <- Function(cph_13_15)
cphfun_13.15(smoke = "1", chol = 6.1, sbp = 150)

It accepts a model object returned by rms and outputs a function, which we should store.
This result can be called with our choice of values for explanatory variables used in fitting
the model that is fed to Function and returns the linear predictor according to that model.
Here, we feed the Cox proportional hazards model we fitted to Function and then call
the result of Function with our choice of values for chol, sbp and smoke to get the linear
predictor.

There are many more such functions that return a function to calculate some value from
a fitted model. One such is Survival which will return a function that will accept times
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and lp argument and return the survival calculated according to the model that was fed to
Survival.

surv_13_15 <- Survival(cph_13_15)
surv_13_15(times = 1827, lp =cphfun_13.15(smoke = "1",

chol = 6.1,
sbp = 150) )

13.9 Recap
13.9.1 Commands introduced in this chapter

• ggplot2::scale_y_log10
• ggplot2::lims
• ggplot2::coord_cartesian
• stats::addmargins
• purrr::map_int
• stats::dnorm
• base::names
• DescTools::Rev
• epiR::epi.tests
• ROCit::rocit
• ROCit::ciAUC
• pROC::roc
• pROC::roc.test
• graphics::lines

• graphics::legend
• survival::concordance
• effsize::hedges_g
• purrr::map_chr
• rms::val.prob
• DescTools::HosmerLemeshowTest
• riskRegression::predictRisk
• ggplot2::geom_abline
• ggplot2::scale_x_discrete
• Hmisc::improveProb
• stats::ftable
• dplyr::case_when
• rms::datadist
• rms::cph
• rms::nomogram
• rms::Function
• rms::Survival
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Computer-intensive methods

We will use the package boot to perform bootstrap analysis, coin for permutation tests and
VIM & mice for multiple imputation. In addition to tidyverse packages, we use lmtest,
sandwich and DescTools. As the results are dependent on randomisation, we do not expect
the results to agree exactly with that of the textbook. We will rework the examples in section
14.2.1

14.1 The bootstrap
Section 14.2.1 (page 681)

library(tidyverse)
library(boot)
read_table("K11828 supplements/Datasets/Table 2.10.DAT",

col_names = c("chol", "dbp","sbp","alcohol",
"cig","co","cotinine", "chd")) -> tbl_2_10

meanCust <- function(data,index){mean(data[index])}
boot(tbl_2_10$chol, meanCust,R = 10000) -> b_mnchol

After importing the data, we define a custom function to calculate the mean. A custom
function is needed because boot expects the function that is supplied to it to handle at least
two arguments – a vector of values and a vector of indices, weights or frequencies. However,
mean doesn’t expect a vector of indices; hence, the need for a custom function. All that the
custom function meanCust does is call mean using the index vector to subset the values. Now,
we call boot with our cholesterol data, the custom function and the number of replicates
required. The function boot will pass the cholesterol data, with the index vector specifying
the random sample from the data to meanCust 10,000 times and collect the returned value.
Printing the boot object will print the original statistic, the bias in the bootstrap estimate
and its standard error. Here, we are interested in the graphs in figure 14.2 to 14.5. Passing
the boot object to plot will print the histogram and qq plot. However, to replicate figure
14.2, we need to plot two histograms, one over the other.

Figure 14.2 (page 682)

The component t in the boot object contains the bootstrap replicates of the statistic. We
pass it to ggplot as a data frame to prepare the graph in figure 14.2.

DOI: 10.1201/9781003589563-14 325

https://doi.org/10.1201/9781003589563-14


326 14 Computer-intensive methods

FIGURE 14.1
Replication of figure 14.2

FIGURE 14.2
Replication of figure 14.3

ggplot() +
geom_bar(data = data.frame(bmean = b_mnchol$t),

aes(x = bmean,y=..prop..* 100),
fill = "blue", alpha = 0.5) +

geom_bar(data = tbl_2_10,
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aes(x = chol,y = ..prop.. * 100),
alpha = 0.5, fill = "black") +

scale_x_binned(limits = c(4,8),
n.breaks = 80,
nice.breaks = TRUE,
guide = guide_axis(check.overlap = TRUE)) +

xlab("Serum total cholesterol (mmol/l)") +
ylab("Percent") +
theme_minimal()

FIGURE 14.3
Replication of figure 14.4

We don’t pass any arguments to ggplot as the two histograms we plan to draw have different
data. We don’t use geom_histogram as we need to scale the y axis to use percentages rather
than counts. We use geom_bars; however, we don’t have a y in the data frame supplied
to each of the geoms. The y is supplied by stat_count using the specifications given to
scale_x_binned which categorises the continuous variable according to our requirements
and returns its count. But, we don’t use this count directly. Instead, we modify it inside
aes. The count calculated using scale_x_binned is available inside the aes as ..count..
or as ..prop... We choose ..prop.. and multiply it with 100 to obtain the percentage.
We specify alpha inside the geoms to have a see through effect where the bars overlap.
The nice.breaks argument for scale_x_binned permits it to use better looking cut points
instead of exact cut points for categorisation. We supply guide_axis with its argument
check.overlap set as TRUE as the value of guide of scale_x_binned to remove overlapping
labels.

Figures 14.3 and 14.4 (page 682 and 683)

We may use the same data to prepare the boxplot and qqplot.
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ggplot(data.frame(bmean = b_mnchol$t)) +
geom_boxplot(aes(x = bmean))

ggplot(data.frame(bmean = b_mnchol$t)) +
geom_qq(aes(sample = bmean))

Figure 14.5 (page 684)

To prepare the graph of figure 14.5, we need another custom function to return the inter
quartile range.

iqrCust <- function(data,index) {IQR(data[index])}

boot(tbl_2_10$chol, meanCust,R = 10000) -> b_mnchol
boot(tbl_2_10$alcohol, meanCust,R = 10000) -> b_mnalc
boot(tbl_2_10$cotinine, meanCust,R = 10000) -> b_mncot
boot(tbl_2_10$chol, iqrCust,R = 10000) -> b_iqrchol
boot(tbl_2_10$alcohol, iqrCust,R = 10000) -> b_iqralc
boot(tbl_2_10$cotinine, iqrCust,R = 10000) -> b_iqrcot

par(mfrow = c(2,3))
hist(b_mnchol$t,

breaks = 30,
xlab = "Serum total cholesterol(mmol/L)",
ylab = "Frequency",
main = NULL)

hist(b_mnalc$t,
breaks = 60,
xlab = "Alcohol (g/day)",
ylab = "Frequency",
main = NULL)

hist(b_mncot$t,
breaks = 30,
xlab = "Cotinine (ng/ml)",
ylab = "Frequency",
main = NULL)

hist(b_iqrchol$t,
breaks = 30,
xlab = "Serum total cholesterol(mmol/L)",
ylab = "Frequency",
main = NULL)

hist(b_iqralc$t,
breaks = 60,
xlab = "Alcohol (g/day)",
ylab = "Frequency",
main = NULL)

hist(b_iqrcot$t,
breaks = 30,
xlab = "Cotinine (ng/ml)",
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ylab = "Frequency",
main = NULL)

We feed boot with the appropriate custom function and data and store the results. We feed
hist with the t component of the appropriate boot object. We supply hist with other
arguments like xlab, ylab, breaks and main. The breaks determine the cut offs for the
bins, main is used for title. As we don’t want a title for the individual graphs, we set it to
NULL. The par(mfrow = c(2,3)) is used before calling hist to instruct R to combine the
next plots into one with 2 rows each with 3 columns. As we have 6 graphs to plot, we call
hist 6 times.

FIGURE 14.4
Replication of figure 14.5

Example 14.1 (page 685)

To obtain bootstrap confidence intervals, we use boot.ci, which accepts a boot object as
its argument. First, bootstrap normal intervals.

boot.ci(b_mnchol, type = "norm")

All we have to do is feed the boot object to boot.ci and specify the type of interval required.
Here we use type = "norm" to get the bootstrap normal interval.

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = b_mnchol, type = "norm")

Intervals :
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Level Normal
95% ( 6.078, 6.496 )
Calculations and Intervals on Original Scale

Example 14.2 (page 687)

To obtain the percentile intervals, we need to say type = "perc".

boot.ci(b_iqralc, type ="perc")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = b_iqralc, type = "perc")

Intervals :
Level Percentile
95% (17.02, 48.05 )
Calculations and Intervals on Original Scale

Figures 14.6 and 14.7 (page 687)

The boxplot and normal plot for the bootstrap sample of alcohol IQR is easily made.

boxplot(b_iqralc$t,
horizontal = TRUE,
xlab = "Alcohol (g/day)")

qqnorm(b_iqralc$t,
xlab = "Normal Score",
ylab = "Alcohol (g/day)")

FIGURE 14.5
Replication of figure 14.6
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FIGURE 14.6
Replication of figure 14.7

Example 14.3 (page 689)

boot.ci doesn’t provide bias corrected confidence intervals. However, we may calculate it
from values given by the percentile method (or even directly). Here, we will use the b_iqralc
object returned by boot in the earlier example.

qnorm(mean(b_iqralc$t <= b_iqralc$t0)) -> biascorr
quantile(b_iqralc$t, c(pnorm((2 * biascorr) + qnorm(0.025)),

pnorm((2 * biascorr) + qnorm(0.975))))

We use qnorm to calculate the bias correction. To provide the proportion of bootstrap values
that are less than or equal to the sample value, we use mean relying on implicit conversion of
the logical condition that is supplied to it. The logical condition checks if each of the value
of t component of the boot object is less than or equal to the t0 object of the boot object. t
is a vector with result of each iteration of bootstrap and t0 the result for the entire sample.
qnorm is the inverse normal function which gives the quantile for a given probability.

We add to twice the bias correction the appropriate quantiles for the confidence interval,
convert those to probabilities using pnorm and collect them as a vector. We supply to
quantile, the t component of the boot object and the vector we made asking it to return
values from the t corresponding to the given probabilities.

3.55059% 98.27648%
17.400 49.792

Example 14.4 (page 691)

boot.ci does give the bias corrected and accelerated interval.

boot.ci(b_iqralc, type ="bca")
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BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10000 bootstrap replicates

CALL :
boot.ci(boot.out = b_iqralc, type = "bca")

Intervals :
Level BCa
95% (17.45, 51.24 )
Calculations and Intervals on Original Scale

Table 14.1 (page 686)

The boot.ci returns all the different types of confidence intervals if we don’t specify a type
or if we specify type ="all". We use it to build table 14.1.

confint.str <- function(x) {paste0("(",
round(x[1],2),
", " ,
round(x[2],2), ")")}

build_bcistr <- function(bo){
b <- boot.ci(bo)
c(Normal = confint.str(b$normal[2:3]),

Percentile = confint.str(b$per[4:5]),
Basic = confint.str(b$basic[4:5]),
BCa = confint.str(b$bca[4:5]))}

First, we define two custom functions. The first one combines after rounding, the first two
elements of a numeric vector fed to it, presumably confidence limits, into a comma-separated
string enclosed in parentheses. The second function build_bcistr accepts a boot object, passes
it to boot.ci and collects the different confidence intervals and passes them to the first
custom function confint.str. The returned strings are collected in an appropriately labelled
vector.

n <- nrow(tbl_2_10)

bind_rows(list(label = "Observed PE",
cholmean = as.character(round(mean(tbl_2_10$chol),2)),
alcmean = as.character(round(mean(tbl_2_10$alcohol),2)),
cotmean = as.character(round(mean(tbl_2_10$cotinine),2)),
choliqr = as.character(round(IQR(tbl_2_10$chol),2)),
alciqr = as.character(round(IQR(tbl_2_10$alcohol),2)),
cotiqr = as.character(round(IQR(tbl_2_10$cotinine),2))),

list(label = "Observed CI",
cholmean = confint.str(mean(tbl_2_10$chol) + c(

(qt(0.025,df = n-1) *sd(tbl_2_10$chol) /sqrt(n)),
(qt(0.025,lower.tail = FALSE,df = n-1) *

sd(tbl_2_10$chol) /sqrt(n)))),
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alcmean =confint.str(mean(tbl_2_10$alcohol) + c(
(qt(0.025,df = n -1) * sd(tbl_2_10$alcohol) / sqrt(n)),
(qt(0.025,lower.tail = FALSE,df = n-1) *

sd(tbl_2_10$alcohol) / sqrt(n)))),
cotmean = confint.str(mean(tbl_2_10$cotinine) + c(

(qt(0.025,df = n -1) *sd(tbl_2_10$cotinine) / sqrt(n)),
(qt(0.025,lower.tail = FALSE,df = n-1) *

sd(tbl_2_10$cotinine) / sqrt(n))))),
rownames_to_column(

data.frame(
lapply(

list(cholmean = b_mnchol,
alcmean = b_mnalc,
cotmean = b_mncot,
choliqr = b_iqrchol,
alciqr = b_iqralc,
cotiqr = b_iqrcot),

build_bcistr)),
var = "label"))

We now use bind_rows to bind three different lists. The first one is created using list
with values of the observed means rounded to two digits and converted to strings using
as.character. The second is also created using list. Each of its component is a string
returned by confint.str, our custom function to join together confidence limits. We calculate
the confidence limits by adding to the mean, the appropriate multiple of the standard error
of the variable. The appropriate multiple is provided by qt which accepts the probability and
degrees of freedom. Based on whether lower.tail = FALSE or not, qt returns the upper
tail value or lower tail value. The lower tail value will have a negative sign and hence will be
deducted from the mean.

The third list is a data frame. It is built by passing to row_names_to_column, a dataframe
made from the result returned by lapply which passes each component of its first argument
to the function specified as its second argument. Here, we give it a list of all the boot objects
we prepared earlier and the custom function build_bcistr. The result is a dataframe with its
column label derived from the row names of the dataframe made from lapply’s result.

TABLE 14.1
Replication of table 14.1

Means Interquartile ranges

Method Cholesterol Alcohol Cotinine Cholesterol Alcohol Cotinine
(mmol/l) (g/day) (ng/ml) (mmol/l) (g/day) (ng/ml)

Observed PE 6.29 26.76 139.46 1.03 30.05 283.75
Observed CI (6.07, 6.5) (18.88, 34.65) (89.08, 189.84)

Normal (6.08, 6.5) (19.23, 34.27) (90.92, 188.53) (0.71, 1.32) (12.11, 48.08) (184.92, 380.85)
Percentile (6.08, 6.5) (19.72, 34.57) (92.1, 190.24) (0.75, 1.36) (17.02, 48.05) (189, 388)
Basic (6.08, 6.5) (18.96, 33.81) (88.68, 186.82) (0.69, 1.3) (12.05, 43.08) (179.5, 378.5)
BCa (6.07, 6.49) (20.21, 35.36) (94.93, 193.22) (0.74, 1.35) (17.45, 51.24) (219.75, 395)
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14.2 Practical issues when bootstrapping
Table 14.2 (page 694)

To prepare table 14.2, we need another custom function as we need to call boot with different
values for replication.

bootCustom <- function(v,f,r) {
boots <- lapply(r, boot, data = v, statistic = f)
lapply(boots, build_bcistr)}

c(50, 100, 500, 1000, 5000, 10000, 50000,100000) -> rpts

do.call(rbind,
bootCustom(v = tbl_2_10$chol,

f = meanCust, r = rpts) ) -> mnchollist
do.call(rbind,

bootCustom(v = tbl_2_10$alcohol,
f = meanCust, r = rpts) ) -> mnalclist

do.call(rbind,
bootCustom(v = tbl_2_10$cotinine,

f = meanCust, r = rpts) ) -> mncotlist
do.call(rbind,

bootCustom(v = tbl_2_10$chol,
f = iqrCust, r = rpts) ) -> iqrchollist

do.call(rbind,
bootCustom(v = tbl_2_10$alcohol,

f = iqrCust, r = rpts) ) -> iqralclist
do.call(rbind,

bootCustom(v = tbl_2_10$cotinine,
f = iqrCust, r = rpts) ) -> iqrcotlist

The custom function bootCustom accepts the variable, the function to apply the variable
and a vector of required replications. It uses lapply to call boot with the variable and the
function as many times as there are elements in the replications argument, each time with
one value from it. The result is a list of boot objects. Then, this is fed to another lapply
which passes each of these boot object to build_bci_str, the custom function we made in
the previous example which will provide a vector of confidence intervals for each boot object
strung together as a list. We call bootCustom from inside do.call. The function do.call is
some what similar to lapply. It accepts a function, which in our case is rbind, which it calls
with a list, the components of which are fed to the function as its argument. In our case,
the list for do.call is provided by our bootCustom. We call bootCustom through do.call
six times, each time with a different combination of the data variable and the summarising
function. The results are saved.
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rbind.data.frame(cbind(mnchollist,
rep = rpts,
var = "meanchol"),

cbind(mnalclist,
rep = rpts,
var = "meanalc"),

cbind(mncotlist,
rep = rpts,
var = "meancot"),

cbind(iqrchollist,
rep = rpts,
var = "iqrchol"),

cbind(iqralclist,
rep = rpts,
var = "iqralc"),

cbind(iqrcotlist,
rep = rpts,
var ="iqrcot")) |>

pivot_longer(cols = c("Normal","Percentile","Basic","BCa"),
names_to = "type", values_to = "ci") |>

pivot_wider(names_from = var, values_from = ci) |>
mutate(type = factor(type,

levels = c("Normal", "Percentile","Basic", "BCa")),
rep = factor(rep, levels = as.character(rpts))) |>

arrange(type, rep) |>
filter(type != "Basic")

The saved results are combined column wise with a vector to indicate the replication
number and the name of the data variable and then joined into one data frame using
rbind.data.frame. We use pivot_longer to bring all values into one column, simulta-
neously adding another column to indicate the type of bootstrap interval. Then, we use
pivot_wider to separate them out into different columns based on the data vector. Thus,
the initial format where we had different columns for the different bootstrap intervals is
transformed to one with different columns for different data vectors. We mutate the data to
convert the type of bootstrap interval and that of rep to factors, so that they sort according
to our needs. Finally, we use filter to remove the interval type Basic.

14.3 Further examples of bootstrapping
Example 14.5 (page 695)

We will now rework the example 14.5.
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TABLE 14.2
Replication of table 14.2

Means Interquartile ranges

Method b Cholesterol (mmol/l) Alcohol (g/day) Cotinine (ng/ml) Cholesterol (mmol/l) Alcohol (g/day) Cotinine (ng/ml)
Normal 50 (6.13, 6.47) (18.15, 34.71) (91.38, 190.15) (0.69, 1.32) (11.54, 44.98) (174.7, 386.37)
Normal 100 (6.1, 6.48) (18.69, 35.62) (88.37, 187.61) (0.66, 1.35) (13.08, 47.47) (181.55, 375.21)
Normal 500 (6.07, 6.49) (19.69, 34.38) (89.58, 192.1) (0.72, 1.3) (12.58, 47.46) (188.27, 382.29)
Normal 1000 (6.09, 6.49) (18.86, 34.08) (90.49, 186.69) (0.7, 1.32) (11.83, 47.88) (188.44, 372.14)
Normal 5000 (6.08, 6.5) (19.23, 34.38) (90.23, 188.29) (0.7, 1.32) (12.15, 48.16) (189.43, 375.11)
Normal 10000 (6.08, 6.5) (19.21, 34.36) (90.97, 187.46) (0.71, 1.32) (12.48, 47.98) (186.57, 378.53)
Normal 50000 (6.08, 6.49) (19.12, 34.43) (90.79, 188) (0.71, 1.32) (12.33, 47.98) (185.11, 381.41)
Normal 100000 (6.08, 6.49) (19.09, 34.41) (90.81, 187.85) (0.71, 1.32) (12.3, 47.91) (186.16, 379.93)
Percentile 50 (6.04, 6.45) (20.1, 37.28) (85.09, 198.6) (0.73, 1.36) (14.11, 46.52) (85.92, 383.62)
Percentile 100 (6.11, 6.52) (18.11, 36.82) (88.95, 193.16) (0.67, 1.37) (13.8, 45.45) (194.85, 401.61)
Percentile 500 (6.08, 6.49) (19.87, 34.4) (87.6, 191.71) (0.77, 1.37) (17.2, 47.77) (176.72, 387.35)
Percentile 1000 (6.09, 6.49) (20.04, 34.84) (93.34, 192.17) (0.73, 1.37) (17.08, 48.5) (208.76, 388)
Percentile 5000 (6.08, 6.5) (19.59, 34.81) (91.94, 190.25) (0.74, 1.36) (17.1, 48.5) (189, 393.5)
Percentile 10000 (6.08, 6.5) (19.45, 34.81) (92.36, 188.22) (0.74, 1.36) (17.15, 47.72) (189, 391.73)
Percentile 50000 (6.08, 6.49) (19.51, 34.78) (92.2, 189.44) (0.75, 1.36) (17.03, 48.1) (189, 388)
Percentile 100000 (6.08, 6.49) (19.54, 34.8) (92.66, 189.28) (0.75, 1.36) (17.02, 47.9) (189, 391)
BCa 50 (6.19, 6.46) (19.88, 34.02) (90.85, 209.06) (0.73, 1.36) (13.58, 45.69) (83.04, 383.49)
BCa 100 (6.12, 6.52) (19.16, 39.31) (90.98, 194.29) (0.64, 1.35) (14.46, 45.87) (219.75, 402.41)
BCa 500 (6.07, 6.48) (20.46, 35.89) (93.63, 197.2) (0.76, 1.36) (17.51, 49.24) (189, 393.62)
BCa 1000 (6.09, 6.48) (20.36, 35.51) (93.3, 192.03) (0.71, 1.34) (17.45, 50.44) (195.25, 387.75)
BCa 5000 (6.07, 6.49) (20.4, 36.36) (93.76, 192.16) (0.73, 1.35) (17.54, 52) (221.75, 400.75)
BCa 10000 (6.08, 6.5) (20.2, 35.77) (94.24, 190.57) (0.73, 1.36) (17.95, 51.34) (219.75, 395)
BCa 50000 (6.07, 6.49) (20.18, 35.83) (94.62, 192.74) (0.74, 1.36) (17.55, 51) (219.75, 395)
BCa 100000 (6.07, 6.49) (20.1, 35.7) (94.85, 191.94) (0.74, 1.35) (17.5, 50.65) (219.75, 395)
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read_table("K11828 supplements/Datasets/Table 9.8.DAT",
col_names = c("country", "sugar", "dmft"),
col_types = cols(country = col_factor(),

sugar = col_double(),
dmft = col_double())) -> data_14_8

filter(data_14_8, country == 2) -> data_14_8_2

lm(data = data_14_8_2, formula = log(dmft) ~ sugar) -> lm_14_8
lmCust <- function(data, index, formula) {

coef(lm(formula, data = data[index,]))}

boot(data_14_8_2,
formula = log(dmft) ~ sugar,
lmCust,
R = 2000) -> bs_14_8

boot.ci(bs_14_8, index = 2)
confint(lm_14_8)

We need a custom function that will accept data and its index along with other parameters
needed for regression. Here, we intend to provide only the formula. Note that when we
call boot, the formula is given as a named argument because boot sends data as the first
argument and its index as the second. Instead of using subset argument of lm, we use
filter to subset the dataframe and provide the filtered dataframe as data. We do this
as our custom function doesn’t accept a subset argument. After calling boot with the
appropriate arguments, the result is stored. It is fed to boot.ci, which prints various
bootstrap confidence intervals. Our custom function returns the result of coef. It will have
the values for intercept and sugar. The boot.ci needs to be told to select one of those
vectors to calculate the confidence interval. We use index = 2 to say that we want the
confidence interval for sugar. We may compare the bootstrap confidence intervals with the
confidence interval produced by feeding the lm_14_8 object to confint.

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL :
boot.ci(boot.out = bs_14_8, index = 2)

Intervals :
Level Normal Basic
95% ( 0.0123, 0.0302 ) ( 0.0120, 0.0303 )

Level Percentile BCa
95% ( 0.0125, 0.0307 ) ( 0.0125, 0.0309 )
Calculations and Intervals on Original Scale

2.5 % 97.5 %
(Intercept) -0.182456 0.373469
sugar 0.012005 0.030783

Example 14.6 (page 698)

We may follow the textbook method of extracting correlation coefficient from the model
object or use cor to calculate it directly.
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corCust <- function(data, index) {cor(data[index, ]$dmft,
data[index,]$sugar,
method = "pearson")}

boot(data_14_8_2, corCust, R = 2000) -> b_14_6
boot.ci(b_14_6) -> bci_14.6
c("Fisher", "Normal", "Percentile","Basic", "BCa") -> citypes

data.frame(
rbind(cor.test(data_14_8_2$dmft, data_14_8_2$sugar)$conf.int,

bci_14.6$normal[2:3],
bci_14.6$perc[4:5],
bci_14.6$basic[4:5],
bci_14.6$bca[4:5])) |>

mutate(pe = b_14_6$t0,
labels = factor(citypes,

levels = rev(citypes))) -> data_14_8

The custom function that we pass to boot uses cor to calculate the Pearson correlation
between the dmft and sugar components of the data argument after indexing it with the
index variable. We pass the boot object to boot.ci and store it. We build a data frame
from it by using rbind to bind together the appropriate element of the result and then
passing the resultant matrix to data.frame. We add two new columns to indicate the point
estimate and the labels for the confidence interval types. We specify the labels as a factor
as we want order to be preserved when graphing. We reverse the order of levels as ggplot
plots the first level near to zero and we want it away from zero like in our text. The Fisher
confidence interval is calculated by cor.test.

Figure 14.8 (page 698)

ggplot(data_14_8, aes(x = pe, y =labels)) +
geom_pointrange(aes(xmin = X1, xmax = X2)) +
geom_text(aes(x = 0.75,

label = paste0(round(pe,2),
" (",
round(X1,2),
", ",
round(X2,2),
")"))) +

geom_text(aes(x = 0.1,
label = labels), hjust = "left") +

xlim(0.05,0.85) +
xlab(NULL) +
ylab(NULL) +
theme_void()
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We use ggpplot along with geom_pointrange to plot the confidence intervals. We add the
numerical value of confidence interval to the plot using geom_text. We use xlim to expand
the x-axis to accommodate the numerical values.

FIGURE 14.7
Replication of figure 14.8

Example 14.7 (page 698)

We now turn to example 14.7.

2 -tbl_2_10$chd -> tbl_2_10$chd2
build_bcistr <- function(bo, index = 1){

b <- boot.ci(bo, index = index)
c(Normal = confint.str(b$normal[2:3]),

Percentile = confint.str(b$per[4:5]),
Basic = confint.str(b$basic[4:5]),
BCa = confint.str(b$bca[4:5]))}

buildlm <- function(var){
f <- as.formula(paste(var, "~ chd2"))
d <- tbl_2_10
l <- lm(f, data = d)
b <- boot(d, lmCust, formula = f, R = 2000)
t <- b$t[,2]
c(obsest = round(coef(l)["chd2"],3),

bias = round(mean(t) - coef(l)["chd2"], 4),
osd = round(summary(l)$coefficients["chd2",2],4),
bsd = round(sd(t),4),
obsci = confint.str(confint(l)["chd2",]),
build_bcistr(b, index = 2))}
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First, we create a new variable chd2 from the exiting chd. We also modify build_bcistr to
accept an index argument. We require index because lmCust returns more than one coefficient
and so, we need to tell boot.ci which among the different vectors we are interested in. We
make a new custom function buildlm, which accepts a string. This string is used to build the
left-hand side of the lm formula using as.formula. Inside buildlm we call boot and provide
it with this formula to pass on to lmCust. We also pass the formula to lm. We store the
results of boot and lm. We extract the required information from these objects. We convert
confidence intervals from lm to strings using confint.str and from boot using build_bcistr.

Table 14.3 (page 699)

bind_cols(`labels` = c("Observed estimate", "Bias",
"Observed SE","Bootstrap SE",
"Observed 95% CI","Normal 95% CI",
"Percentile 95% CI","Basic 95% CI",
"BCa 95% CI"),

`Total Cholesterol` = buildlm("chol"),
`Systolic BP` = buildlm("sbp"),
Alcohol = buildlm("alcohol"),
Cigarettes = buildlm("cig"),
`Carbon monoxide` = buildlm("co"),
Cotinine = buildlm("cotinine"))

Next, we call buildlm multiple times, each time with the name of a different column in
tbl_2_10. We bind together the result of these calls along with a vector of labels to recreate
table 14.3.

Example 14.8 (page 700)

logit2r <- function(logit) { (1 + exp(- logit)) ˆ -1}

confint.str <- function(x, digits = 2) {paste0("(",
round(x[1],

digits),
", " ,
round(x[2],

digits),
")")}

lgstCust <- function(data, index) {
lgst <- glm(deaths ~ smoke,

data = data[index,],
family = binomial())

logit2r(predict(lgst, newdata = data.frame(smoke = 1)))}

read_table("K11828 supplements/Datasets/Example 14.8.dat",
col_names = c("smoke", "deaths")) -> data_14_8

nrow(filter(data_14_8, smoke == 1)) -> tot_smoke
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nrow(filter(data_14_8,
deaths == 1,
smoke == 1)) -> death_smoke

death_smoke / tot_smoke -> prop_death
sqrt(prop_death * (1-prop_death) / tot_smoke) -> sd_pdeath
glm(deaths ~ smoke,

family = binomial(link ="log"),
data = data_14_8) -> bi_14_8

predict(bi_14_8,
newdata = data.frame(smoke =1),
se.fit=TRUE) -> prdb_14_8

boot(data_14_8, lgstCust, R = 2000) -> b_14_8

data.frame(Data = c(rep("Observed",3), rep("Bootstrap",3)),
`Analysis Method` =c("Binomial",

"Normal approximation",
"Binomial regression",
rep("Logistic regression",3)),

`Bootstrap method` = c(rep("",3), "Normal",
"Percentile", "Basic"),

`Confidence interval 95%` = c(
confint.str(binom.test(death_smoke,

tot_smoke)$conf.int,
digits = 4),

confint.str(prop_death +
c(-1.96, 1.96) * sd_pdeath,

digits = 4),
confint.str(exp(prdb_14_8$fit[1] + c(-1,1) *

(prdb_14_8$se.fit[1] * 1.96)),
digits = 4),

confint.str(boot.ci(b_14_8,
type ="norm")$norm[2:3],

digits = 4),
confint.str(boot.ci(b_14_8,

type ="perc")$perc[4:5],
digits = 4),

confint.str(boot.ci(b_14_8,
type ="basic")$basic[4:5],

digits = 4)))

We need the logit2r function we built in the last chapter to convert logits to risks. We modify
confint.str to accept the number of digits to round to. The third custom function we define
is lgstCust, to which boot will pass our data frame. As the formula to be used is the same,
the formula is defined inside the function and is not fed to it through boot.

We calculate the total smokers, the number of death among smoker, its proportion and
normal approximation of its confidence interval for the proportion using the formula given
in the textbook. The exact confidence interval is calculated using binom.test. Binomial
regression model is fitted using glm. We build a vector of confidence intervals from these and
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TABLE 14.3
Replication of table 14.3

Total Cholesterol Systolic BP Alcohol Cigarettes Carbon monoxide Cotinine
(mmol/l) (mm Hg) (g/day) (per day) (ppm) (ng/ml)

Observed estimate 0.54 8.874 0.163 4.762 14.851 98.245
Bias 0.0085 −0.0356 −0.0762 −0.0287 −0.3785 0.464
Observed SE 0.2492 4.7566 9.573 4.2432 4.6888 59.4797
Bootstrap SE 0.264 6.0794 8.5253 4.3956 6.5575 60.1421
Observed 95% CI (0.04, 1.04) (−0.69, 18.44) (−19.09, 19.41) (−3.77, 13.29) (5.42, 24.28) (−21.35, 217.84)
Normal 95% CI (0.01, 1.05) (−3.01, 20.83) (−16.47, 16.95) (−3.82, 13.41) (2.38, 28.08) (−20.1, 215.66)
Percentile 95% CI (−0.02, 1.06) (−2.24, 21.64) (−15.87, 17.68) (−3.47, 13.7) (2.08, 28.11) (−24.34, 210.36)
Basic 95% CI (0.02, 1.1) (−3.89, 19.99) (−17.36, 16.19) (−4.17, 13) (1.6, 27.62) (−13.87, 220.83)
BCa 95% CI (−0.05, 1.02) (−1.08, 23.43) (−14.36, 19.87) (−2.71, 14.9) (3.18, 30.08) (−30.59, 207.16)
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bind with the identifying text to create table 14.4. Note that, boot.ci couldn’t calculate the
confidence interval by BCa method and so we have omitted it here. That is the reason why
we chose not to use build_bcistr to build the confidence intervals for the bootstrap values.

TABLE 14.4
Replication of table 14.4

Data Analysis method Bootstrap method 95% confidence interval
Observed Binomial (0.0149, 0.0309)
Observed Normal approximation (0.0143, 0.0295)
Observed Binomial regression (0.0154, 0.031)
Bootstrap Logistic regression Normal (0.0141, 0.0297)
Bootstrap Logistic regression Percentile (0.0141, 0.0299)
Bootstrap Logistic regression Basic (0.0139, 0.0297)

Example 14.9 (page 701)

We will now rework the example 14.9.

library(survival)
read_table("K11828 supplements/Datasets/Example 10.12.DAT",

col_names = c("age", "chol", "bmi", "sbp",
"smoke", "active", "chd", "survive"),

col_types = cols( smoke = col_factor(levels = c("1","2","3")),
active =col_factor(levels =c("1","2","3")),
chd = col_integer())) -> data_14_9

confint.str <- function(x, digits = 2) {
if (is.null(dim(x)))

dim(x) <- c(1,2)
paste0("(",

round(x[,1],digits),
", " ,
round(x[,2],digits),
")")}

After importing the relevant data, we modify our custom function confint.str. Earlier,
we assumed that a vector of length two would be passed to it. Here, we will need to pass a
matrix of confidence intervals (returned by confint) to it. That will throw errors due to
inaccurate subscripting. So, we add a condition using if to check if the argument x has
the attribute dimension. We do this using dim which will return NULL if there is no such
attribute. Vectors don’t have dimension attribute. We check if the return value of dim() is
NULL using is.null in which case we assign the dimension c(1,2) to x. Thus, we convert
any vector to a two dimensional matrix with one row. Rest of the code confint.str is not
changed. The result will be a string for each row of the matrix passed made by joining
together the values in its first and second column.
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TABLE 14.5
Replication of table 14.5

Observed results (sample data) Bootstrap results

Labels Odds.ratio Odds.ratio.CI Hazard.ratio Hazard.ratio.CI Difference Ratio CI.for.difference CI.for.ratio
Age 1.01725 (0.99, 1.045) 1.01819 (0.992, 1.045) 0.00093554 1.00092 (−0.0007, 0.0025) (0.9991, 1.003)
Total Cholesterol 1.35944 (1.209, 1.528) 1.33118 (1.195, 1.483) −0.02825781 0.97921 (−0.0525, −0.0105) (0.9649, 0.9927)
BMI 1.04254 (0.999, 1.087) 1.03884 (0.998, 1.081) −0.00369943 0.99645 (−0.0084, −0.0006) (0.9935, 0.9997)
Systolic BP 1.02060 (1.013, 1.028) 1.02025 (1.013, 1.028) −0.00034768 0.99966 (−0.0011, 0.0005) (0.9987, 1.0004)
Smoker 1.38064 (0.851, 2.281) 1.36628 (0.847, 2.204) −0.01435671 0.98960 (−0.0674, 0.0229) (0.9556, 1.0176)
Smoker 2.07425 (1.372, 3.249) 2.01348 (1.325, 3.059) −0.06076845 0.97070 (−0.2168, −0.0119) (0.9394, 0.996)
Activity 0.82661 (0.584, 1.185) 0.82815 (0.59, 1.163) 0.00153747 1.00186 (−0.0248, 0.0237) (0.9753, 1.03)
Activity 0.90388 (0.568, 1.424) 0.89605 (0.577, 1.39) −0.00782695 0.99134 (−0.0545, 0.022) (0.9542, 1.0283)
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diffOddsHaz <- function(data,index) {
lgmdl <- glm(chd ~ age + chol+bmi+sbp+smoke+active,

data = data[index,],
family = binomial())

cpmdl <- coxph(Surv(survive, chd) ~ age + chol+bmi+sbp+smoke+active,
data = data[index,])

exp(coef(cpmdl)) - exp(coef(lgmdl))[-1]}

ratioOddsHaz <- function(data,index) {
lgmdl <- glm(chd ~ age + chol+bmi+sbp+smoke+active,

data = data[index,],
family = binomial())

cpmdl <- coxph(Surv(survive, chd) ~ age + chol+bmi+sbp+smoke+active,
data = data[index,])

exp(coef(cpmdl)) / exp(coef(lgmdl))[-1]}

We make two more custom functions diffOddsHaz and ratioOddsHaz which will calculate
the difference between the exponentiated coefficients from logistic and Cox proportional
hazards model & the ratio between them respectively. These functions need only accept a
data and index argument as the formula used for model fitting doesn’t change with each
call of the function. The intercept term of the logistic model is removed from the coefficients
by negative subscripting before the comparisons.

boot(data_14_9, diffOddsHaz, 200) -> bdiff_14_9
boot(data_14_9, ratioOddsHaz, 200) -> bratio_14_9
glm(chd ~ age + chol+bmi+sbp+smoke+active,

data = data_14_9,
family = binomial()) -> lg_14_9

coxph(Surv(survive, chd) ~ age + chol+bmi+sbp+smoke+active,
data = data_14_9) -> cp_14_9

bciperc <- function(i, b) {
confint.str(boot.ci(b, index = i, type = "perc")$perc[4:5],

digits = 4)}

data.frame(Labels = c("Age", "Total Cholesterol", "BMI","Systolic BP",
"Smoker", "Smoker","Activity", "Activity"),

`Odds ratio` = exp(coef(lg_14_9)[-1]),
`Odds ratio CI` = confint.str(exp(confint(lg_14_9)),digits = 3)[-1],
`Hazard ratio` = exp(coef(cp_14_9)),
`Hazard ratio CI` = confint.str(exp(confint(cp_14_9)),digits = 3),
`Difference` = exp(coef(cp_14_9)) - exp(coef(lg_14_9)[-1]),
`Ratio` = exp(coef(cp_14_9)) / exp(coef(lg_14_9)[-1]),
`CI for difference` = do.call(rbind,

(lapply(1:8,
FUN= bciperc,
b = bdiff_14_9 ))),

`CI for ratio` = do.call(rbind, lapply(1:8,
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FUN= bciperc,
b= bratio_14_9)))

We pass these functions to boot and store the result. The models are also fitted without
bootstrapping. The result of bootstrap will have values for each of the coefficients. We
make a custom function bciperc which will accept a boot object and an index. We need this
function as boot.ci will return confidence interval for only one index at a time and we will
have eight indexes corresponding to the coefficients. We use lapply to pass the values 1
to 8 to these functions and collects the values in a list. We convert the list to a matrix by
calling rbind on this list using do.call. All the relevant columns are bound together using
data.frame to create the table we want.

Example 14.10 (page 703)

Complex boot straps are supported by boot. It accepts a strata variable.

read_delim("./K11828 supplements/Datasets/Table 7.1.DAT",
"\t",
col_names=c("treat", "nvinitial", "nvfinal","vinitial", "vfinal"),
col_types = cols(

treat = col_factor(),
nvinitial = col_number(),
nvfinal = col_number(),
vinitial = col_number(),
vfinal = col_number())) -> data_14_10

mutate(data_14_10,
nvdiff = nvfinal - nvinitial,
vdiff = vfinal - vinitial,
treat = relevel(treat, ref = "2")) -> data_14_10

t.test(nvdiff ~ treat, data = data_14_10) -> ttnv_14_10
t.test(vdiff ~ treat, data = data_14_10) -> ttv_14_10

ttCust <- function(data,index) {
nvstat <- t.test(nvdiff ~ treat, data = data[index,])
vstat <- t.test(vdiff ~ treat, data = data[index,])
return(c(nvstat$estimate[1] - nvstat$estimate[2],

vstat$estimate[1] - vstat$estimate[2]))}

library(broom)
boot(data_14_10, ttCust, R = 2000,

strata = data_14_10$treat) -> b_14_10
tidy(b_14_10) -> b_14_10.tidy

data.frame(labels = c("Observed estimate", "Bias",
"Observed SE", "Bootstrap SE",
"Observed 95% CI", "Normal 95% CI",
"Percentile 95% CI", "Basic 95% CI",
"BCa 95% CI"),
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`Nonverbal score` = c(round(b_14_10.tidy[[1,2]],3),
round(b_14_10.tidy[[1,3]],5),
round(ttnv_14_10$stderr,3),
round(b_14_10.tidy[[1,4]],3),
confint.str(ttnv_14_10$conf.int,digits = 3),
build_bcistr(b_14_10,index =1)),

`Verbal score` = c(round(b_14_10.tidy[[2,2]],3),
round(b_14_10.tidy[[2,3]],5),
round( ttv_14_10$stderr,3),
round(b_14_10.tidy[[2,4]],3),
confint.str(ttv_14_10$conf.int,digits = 3),
build_bcistr(b_14_10, index =2)))

As with our previous examples, we import data, create a custom function to pass to boot
and save the result of the test done without booting. We modify the imported data to
store the difference in the two IQ scores and to change the reference level of treat. The
custom function that we defined ttCust does two t.tests within its body and combines
the corresponding statistics into a vector of length two. Thus, we will need to index the
result of boot. The call to boot is different from previous examples in that we specify a
strata. The strata argument should be a vector, which in our case is the treat column of
the dataframe. The results are combined into a data frame using data.frame. We use the
dataframe returned by tidy (when it is supplied the boot object) to select the observed
estimates, bias and bootstrap SEs. We use build_bcistr and confint.str to convert confidence
intervals into strings before joining them to form the table.

TABLE 14.6
Replication of table 14.6

labels Nonverbal.score Verbal.score
Observed estimate 2.405 0.506
Bias −0.01841 −0.01465
Observed SE 1.935 1.392
Bootstrap SE 1.924 1.38
Observed 95% CI (−1.445, 6.254) (−2.262, 3.275)
Normal 95% CI (−1.35, 6.19) (−2.18, 3.23)
Percentile 95% CI (−1.33, 6.21) (−2.26, 3.2)
Basic 95% CI (−1.4, 6.14) (−2.19, 3.27)
BCa 95% CI (−1.35, 6.2) (−2.11, 3.3)

14.4 Bootstrap hypothesis testing
Example 14.11 (page 704)

We will now rework example 14.11.
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t.test(chol ~ chd,
data = tbl_2_10,
var.equal = FALSE) -> t_14_11

t_14_11

As we mentioned in an early chapter, by default R assumes unequal variance between the
two samples of a t test. Here, we choose that option explicitly by specifying var.equal =
FALSE. We store the result. We may print the t.test result to confirm that the results agree
with the textbook.

Welch Two Sample t-test

data: chol by chd
t = 2.02, df = 14.7, p-value = 0.062
alternative hypothesis: true difference in means between

group 1 and group 2 is not equal to 0
95 percent confidence interval:
-0.030675 1.111654

sample estimates:
mean in group 1 mean in group 2

6.7082 6.1677

mean(tbl_2_10$chol[tbl_2_10$chd == "1"]) -> mnchol_1
mean(tbl_2_10$chol[tbl_2_10$chd == "2"]) -> mnchol_2
mutate(tbl_2_10,

cholt = case_when(chd == "1" ~ chol - mnchol_1,
chd == "2" ~ chol - mnchol_2)) -> tbl_2_10

ttCust <- function(data, index) {
(t.test(cholt ~ chd, data = data[index,]))$statistic}

boot(tbl_2_10, ttCust, R = 2000,
strata = tbl_2_10$chd) -> b_14_11

prop.table(table(abs(b_14_11$t >= t_14_11$statistic )))

We calculate the mean cholesterol levels in the two groups using mean. The argument given
to mean is the chol vector values selected by logical subsetting. We mutate the dataframe to
form a new column by subtracting the appropriate mean from chol. Note that calculating
mean on this modified values by chd group will not show zero, but a very small number.
This is due to the approximation used by computers to represent floating point numbers.

We define our custom function to accept data, its index and perform the t test on it and
return the t statistic. We call this custom function from boot, specifying strata as the chd
variable. From the returned values, we calculate the proportion of values above or below the
cutoff set by the statistic returned by the t.test on the original data.
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0 1
0.971 0.029

To calculate the robust confidence intervals, we need two more libraries – lmtest and
sandwich.

library(lmtest)
library(sandwich)
lm(chol ~ chd, data = tbl_2_10) -> l_14_11
coefci(l_14_11, vcov. = vcovHC(l_14_11, type = "HC3"))

First, we fit a linear regression using lm. As a second step, we call coefci to which we supply
the lm object as the first argument. The vcov. argument is given the result of vcovHC which
is fed the lm object. It also accepts various types. Here, we explicitly use HC3, though it is
the default value. We may use coeftest in place of coefci with the same arguments to
perform a t test of the coefficients using the robust standard errors.

2.5 % 97.5 %
(Intercept) 6.2014 8.295930
chd -1.1011 0.020163

Before we leave the topic of bootstrap, it may be noted that boot supports parametric
bootstrapping as well.

14.5 Permutation tests
Table 14.7 (page 707)

Permutation tests are done using the package coin. Remember to install it using
install.packages as described in chapter 1. First, we will try to reproduce table 14.7.

c(0.65,0.85,0.8,0.95,1) -> creat_14_7
factor(c("Women","Women", "Men", "Men", "Men")) -> sex_14_7
library(DescTools)
Permn(sex_14_7) -> permsex
cbind(permsex,

round(
apply(permsex, MARGIN = 1,

function(x) mean(creat_14_7[x == "Women"])),2),
round(

apply(permsex, MARGIN = 1,
function(x) mean(creat_14_7[x == "Men"])),2),

round(
abs(
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apply(permsex, MARGIN = 1,
function(x) mean(creat_14_7[x == "Women"])) -

apply(permsex, MARGIN = 1,
function(x) mean(creat_14_7[x == "Men"]))),2)) -> tbl_14_7

data.frame(tbl_14_7)

We use Permn from DescTools to create an array of all permutations of the sex_14.6 vector.
We then use apply four times, each time by specifying MARGIN = 1, to mean row wise, to
apply an anonymous function across the values in that row. The anonymous function returns
the mean of those values of creat_14_7 for which the corresponding sex_14.6 is as specified
– either women or men. We bind the values returned by the first two calls to apply, a vector
of length 10 (one value for each row in permsex) column-wise to permsex. The third and
fourth calls to apply are repetitions of the earlier calls, now used to calculate the absolute
difference between them, the result of which is also column bound with the others.

TABLE 14.7
Replication of table 14.7

1st 2nd 3rd 4th 5th Female Male Absolute
value value value value value mean mean difference
Women Women Men Men Men 0.75 0.92 0.17
Women Men Women Men Men 0.73 0.93 0.21
Men Women Women Men Men 0.82 0.87 0.04
Women Men Men Women Men 0.8 0.88 0.08
Men Women Men Women Men 0.9 0.82 0.08
Men Men Women Women Men 0.88 0.83 0.04
Women Men Men Men Women 0.82 0.87 0.04
Men Women Men Men Women 0.92 0.8 0.12
Men Men Women Men Women 0.9 0.82 0.08
Men Men Men Women Women 0.98 0.77 0.21

as.numeric(tbl_14_7[,8]) -> abdif
abs(mean(creat_14_7[sex_14_7 == "Women"]) -

mean(creat_14_7[sex_14_7 == "Men"])) -> obsdif
length(abdif[abdif > obsdif]) / length(abdif)

We select the last column of the matrix, convert it back to numbers. We calculate the observed
difference in mean by using mean which is provided with values from creat_14_7 after
subsetting for one of the sexes. Finally, we calculate the number of values in the calculated
difference column greater than the observed and divide by the number of permutations.

[1] 0.3
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Rather than calculating by hand, we may use indepenence_test from coin.

library(coin)
independence_test(creat_14_7 ~ sex_14_7,

distribution = "exact")

The first argument to independence_test is a formula, the left-hand side of which is
the variable with the value to be compared and the right-hand side is the variable which
determines the groups. We use distribution = "exact" to instruct the function to not
use approximations or resampling.

Exact General Independence Test

data: creat_14_7 by sex_14_7 (Men, Women)
Z = 1.33, p-value = 0.3
alternative hypothesis: two.sided

14.5.1 Montecarlo permutation tests
Section 14.8.1 (page 707)

To use Monte Carlo simulation, we need to change the value of distribution.

independence_test(creat_14_7 ~ sex_14_7,
distribution = approximate(nresample = 100000))

We may specify distribution as a function as above. We need to do it only if we want to
change the default value of its arguments. Otherwise specifying the string “approximate”
is sufficient. Here, though we are not changing the default value, we specify distribution
= approximate(nresample = 100000) to demonstrate how to change the number of MC
simulations if needed.

Approximative General Independence Test

data: creat_14_7 by sex_14_7 (Men, Women)
Z = 1.33, p-value = 0.3
alternative hypothesis: two.sided

The coin package provides many tests. However, I am not sure of the result they return.
We, will try another path.

replicate(10000,
expr = t.test(tbl_2_10$chol ~ sample(tbl_2_10$chd),
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var.equal =FALSE)$statistic) -> reptt
prop.table(table(abs(reptt) >= t_14_11$statistic))

We use replicate to repeat an expression a specified number of times. The first argument
to replicate is the number of repetitions. Next, the expression that needs to be replicated
is provided. In our example, we ask for a t test to be done with the variance assumed to be
unequal. The means of cholesterol levels are compared between the groups determined by chd.
This is similar to the usual t.test. The difference lies in the fact that chd is sampled without
replacement, in effect shuffled, each time. The function sample returns a sample of specified
size from its first argument. If no numbers are specified, the number of samples is equal
to the number in the original argument. By default, replace = FALSE. This means that
under the default options, we get a random permutation of the original vector. Thus, at each
repetition of the test, the cholesterol values are categorised against a random permutation of
the observed chd outcome variable. Next, we check what proportion of the values produced
by repetitions are larger than the statistic calculated in the observed sample.

FALSE TRUE
0.945 0.055

A permutation test for the Wilcoxon test is done similarly.

wilcox.test(tbl_2_10$chol ~ tbl_2_10$chd) -> w_14_11
replicate (10000,

expr = wilcox.test(tbl_2_10$chol ~
sample(tbl_2_10$chd))$statistic

) -> repwt
prop.table(table(repwt >= w_14_11$statistic))["TRUE"] * 2

The proportion of the replicated values greater than the observed test statistic is one sided.
So, we need to multiply it with two.

TRUE
0.0488

The wilcox_test of coin may also be used.

wilcox_test(chol ~ factor(chd),
data = tbl_2_10,
distribution = "approximate")

Approximative Wilcoxon-Mann-Whitney Test

data: chol by factor(chd) (1, 2)
Z = 1.99, p-value = 0.044
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alternative hypothesis: true mu is not equal to 0

We proceed to calculate the difference in medians.

tapply(tbl_2_10$chol , tbl_2_10$chd, FUN = median) |>
diff() -> diffmed_14_11

replicate (10000,
expr = diff(tapply(tbl_2_10$chol,

sample(tbl_2_10$chd),
FUN = median))) -> repmd

prop.table(table(abs(repmd) >= abs(diffmed_14_11)))

The function tapply applies the function supplied as its FUN argument to the categories of
values of the first argument as determined by the combination of the other factor argument(s)
supplied. Here, we ask it to calculate the median of the cholesterol vector as grouped by the
values in the chd vector. Thus, we will get two values. We pass the result to diff which
calculates the difference between the consecutive members of its argument. Thus, we get the
difference between the two medians of cholesterol in the two CHD groups.

We use replicate to repeat this exercise 10,000 times, with the change that each time a
permuted sample of chd is provided. Finally, we calculate the proportion of the repetitions
in which the absolute value of calculated difference in medians exceed absolute value of the
observed difference.

FALSE TRUE
0.9579 0.0421

14.6 Missing values
Example 14.12 (page 711)

We now turn to the topic of missing data.

read_table("K11828 supplements/Datasets/Table 14.8.dat",
col_names = c("sex", "age", "sbp"),
na = ".") -> tbl_14_8

Note the option na. It is used to specify which character(s) should be considered as repre-
senting missing data. In R, the missing data is marked as NA, a logical value.

Let us calculate the mean of sbp.

mean(tbl_14_8$sbp)

[1] NA
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The result may surprise the newcomer. When there are NAs in a data, the result of most
functions is NA. We have to specify explicitly that the missing data has to be omitted for
calculations.

mean(tbl_14_8$sbp, na.rm = TRUE)

[1] 146.53

R also provides many functions like is.na, anyNA, na.action etc. to check if any of the
variables are NAs. Equally useful are functions like Desc from DescTools, describe from
Hmisc and skim from skimr which will summarise data in more useful ways including distinct
values, extreme values. . . in addition to providing info on NAs.

Here, we see the result of marginplot of VIM. Remember to install VIM using
install.packages as described in chapter 1. It accepts a data frame or matrix with
two columns.

library(VIM)
marginplot(tbl_14_8[,c( "age","sbp")],

col = c("#111111","#004B73","#713430","#7FBFF5", "#F8A29E"))

The marginplot produces a visual summary of missing values in the two columns of a data
frame. We subset the data frame to select the two columns we want to compare. In addition
to a scatter plot, it shows two boxplots each on the margins of both axes. One for the NAs in
the other variable and one for which values are available for the other variable. The boxplots
are colour coded and the number of NAs are also shown. The col argument decides the
color palette used. The NAs are also shown in univariate scatter plots. The package also has
an aggr function which compares all combinations of columns in a data frame for missing
values. It has summary and plot methods too.

FIGURE 14.8
Marginplot showing the missing values in example 14.12
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Section 14.9.3 (page 714)

The function na.omit will return complete cases for analysis.

anyNA(tbl_14_8)
anyNA(na.omit(tbl_14_8))

[1] TRUE
[1] FALSE

14.7 Naive imputation methods
Section 14.10.1 (page 716)

We may apply mean imputation by subsetting the NA values and assigning them new values.

tbl_14_8$sbp -> sbp
tbl_14_8$sbp

First, we save the systolic blood pressure variable as a new vector to avoid overwriting the
original values.

sbp[is.na(sbp)] <- mean(sbp, na.rm = TRUE)
sbp

[1] 163.5 126.4 150.7 190.4 172.2 NA 136.3 146.8 162.5 161.0 148.7 163.6
[13] NA 140.6 NA 118.7 NA 104.6 131.5 126.9
[1] 163.50 126.40 150.70 190.40 172.20 146.53 136.30 146.80 162.50 161.00

[11] 148.70 163.60 146.53 140.60 146.53 118.70 146.53 104.60 131.50 126.90

Inspecting the vector after assignment confirms that all the NAs have been changed to the
mean values. The function impute from Hmisc can also perform simple imputation allowing
the choice of custom functions or random values.

Example 14.14 (page 717)

We will use regressionImp to perform conditional mean imputation and regression imputa-
tion.

regressionImp(sbp ~ age,
data = subset(tbl_14_8, sex == 1)) -> mimp_14_8



356 14 Computer-intensive methods

The function accepts a regression formula, decides the regression method automatically and
imputes missing values for the column on the left-hand side of the formula. A new column is
also created to carry a logical indicator to show if the value is imputed or original. Its name
is created by joining the name of the original column, “_” and the argument imp_suffix,
the default for which is “imp”. Thus the new column is named sbp_imp. If we don’t want
the indicator column, we may set imp_var to FALSE.

We pass the data frame with imputed values to marginplot.

marginplot(mimp_14_8[, c( "age", "sbp","sbp_imp")],
delimiter = "_imp",
col = c("#111111","#004B73","#713430","#7FBFF5", "#F8A29E"))

clip(min(mimp_14_8$age),max(mimp_14_8$age),
min(mimp_14_8$sbp), max(mimp_14_8$sbp))

abline(coef = coef(lm(sbp ~ age,data = subset(tbl_14_8, sex == 1))),
lty = 2,
col = "black")

Now, the dataframe supplied to marginplot should have the indicator column showing the
nature of the values. The delimiter option is used to set the string added to the name
of the original variable to make the name of the indicator variable. Note that though the
value of imp_suffix in regressionImp is “imp”, the value of delimiter for marginplot is
“_imp”, with an underscore prefixed to imp_suffix. The plot highlights the imputed values
as it does for missing values. The clip is used to specify the clipping co-ordinates for the
plots that follow the command. We intend to draw the regression line over the margin plot.
But, we want it to be within the limits of the data. So, we specify x and y coordinates for
the clipping rectangle as the maximum and minimum of the two variables. After setting the
clipping area, we draw the regression line using abline. We provide it with the coefficients
returned by the regression as its coef argument. Note that VIM has scattMiss which will
plot just the scatterplot if you really don’t want the marginplot.

FIGURE 14.9
Replication of figure 14.9
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For conditional mean imputation, all we have to do is change the right-hand side of the
formula supplied to regressionImp to the categorical variable.

regressionImp(sbp ~ sex, data = tbl_14_8) -> seximp_14_8

For regression imputing based on several conditional variables, all we need do is include all
the variable on the right-hand side of the formula supplied to regressionImp.

regressionImp(sbp ~ age + sex, data = tbl_14_8) -> imp_14_8

Section 14.10.3 (page 719)

The hot deck imputation method is achieved by hotdeck.

hotdeck(tbl_14_8,
variable = "sbp",
ord_var = "age",
domain_var = "sex")

The argument variable is used to specify the variables with missing value. The domain_var
determines the variables used for cross classifications. The variables specified as ord_var is
used for sorting the data set before imputation.

sex age sbp sbp_imp
1 1 50 163.5 FALSE
2 1 41 126.4 FALSE
3 1 52 150.7 FALSE
4 1 58 190.4 FALSE
5 1 56 172.2 FALSE
6 1 45 136.3 TRUE
7 1 42 136.3 FALSE
8 1 48 146.8 FALSE
9 1 57 162.5 FALSE
10 1 56 161.0 FALSE
11 1 55 148.7 FALSE
12 1 58 163.6 FALSE
13 2 57 126.9 TRUE
14 2 44 140.6 FALSE
15 2 56 126.9 TRUE
16 2 45 118.7 FALSE
17 2 48 118.7 TRUE
18 2 50 104.6 FALSE
19 2 59 131.5 FALSE
20 2 55 126.9 FALSE

The imputed data shows the imputed values.
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14.8 Univariate multiple imputation
Section 14.11.2 (721)

We need the package mice for multiple imputations. Remember to install it using
install.packages as described in chapter 1. For the three steps of multiple imputation, it
provides three functions.

library(mice)
filter(tbl_14_8, sex == "1") -> tblm_14_8
mice(tblm_14_8,

m = 5,
method = "norm",
seed = 123,
printFlag = FALSE) -> mitblm_14_8

complete(mitblm_14_8, action = "repeated") |>
select(starts_with("sbp")) |>
slice(6)

The function mice does the first step of producing the imputed data sets. It requires the
original dataframe with missing values. The number of imputations required is specified
through m, the default value of which is 5. mice also gives many options for the actual
imputation method, which we may specify through method argument. Here, we selected
"norm" as we want it to assume a normal distribution with random errors. The function
mice accepts a random seed which we specify using the argument seed. We use printFlag
= FALSE to suppress the messages that flash on the screen during computation.

We may use complete to access the dataframes completed by mice through imputation. The
action argument determines the structure of the dataframe. Here we choose "repeated".
We select only those columns, the names of which start with “sbp” using the helper function
starts_with and then slice the row number 6 to show the imputed value for the sixth
male.

sbp.1 sbp.2 sbp.3 sbp.4 sbp.5
1 136.82 155.07 146.51 130.31 155.08

The function that the package provides for the next step of estimating the quantity required
is with.

with(mitblm_14_8, mean(sbp))

We supply the imputed data object returned by mice (called a mids object by mice) to with
along with the expression that needs to be evaluated on each of the data sets. It returns a
list with as many components as the number of repetitions used to build the mids object.
Each element of the list will be the result returned by the expression supplied to with. Thus,
we will have a list of five means.
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For the final step of combining the results from each of the different data sets into one, we
have pool. However, it can handle only model objects. So, we cheat it.

summary(
pool(

with(mitblm_14_8, lm(sbp ~ 1))))

With with, we use lm regressing sbp against a constant to get the mean of sbp, which becomes
the argument for pool. pool returns many statistics including the averaged estimate from
all the different models. Here, we use summary to show a restricted set.

term estimate std.error statistic df p.value
1 (Intercept) 155.57 5.0789 30.631 9.0256 1.9658e-10

Table 14.9 (page 726)

We will now try to recreate table 14.9.

mice(tbl_14_8,
method = "norm",
seed = 234,
printFlag = FALSE) -> mitbl_14_8

complete(mitbl_14_8,
action = "repeated",
include = TRUE) |>

select(sex.0,age.0,num_range("sbp.", 0:5)) -> tbl_14_9

summarise(tbl_14_9,
across(num_range("sbp.", 0:5),mean, na.rm = TRUE)) -> mns_14_9

summarise(tbl_14_9,
across(num_range("sbp.", 0:5),sd, na.rm = TRUE)) -> sd_14_9

c(16,rep(20,5)) -> nr_14_9
sd_14_9 / sqrt(nr_14_9) -> se_14_9
bind_rows(tbl_14_9, mns_14_9, se_14_9)

First, we use mice to build the imputed dataframes and then bind them together using
complete. By default, mice uses all the columns in the imputer’s model. Here, we rely
on the default. Now, we select the required columns to get the basic table. The function
num_range is a helper function to select columns. It selects those columns named by adding
the numbers given as its second argument one by one to its first argument. Here, we will get
the columns sbp.1, sbp.2 . . . sbp.5. The columns sex.0 and age.0 are the columns of the
original data frame that was supplied to mice, which we asked complete to include in its
result by specifying include = TRUE. In other words, complete returns as many columns
as there are in the original dataframe, multiplied by the number of imputations (plus one if
you specify include = TRUE). These are named by appending to the original column names
a period followed by a number, starting with zero for the original columns. We use across
to apply summarise the imputed columns selected using num_range to calculate various
statistics like mean and sd.
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TABLE 14.8
Replication of table 14.9

Systolic blood pressure (mmHg)

Sex Age (yrs) Observed Imp1 Imp2 Imp3 Imp4 Imp5
1 50 163.5000 163.5000 163.5000 163.500 163.5000 163.5000
1 41 126.4000 126.4000 126.4000 126.400 126.4000 126.4000
1 52 150.7000 150.7000 150.7000 150.700 150.7000 150.7000
1 58 190.4000 190.4000 190.4000 190.400 190.4000 190.4000
1 56 172.2000 172.2000 172.2000 172.200 172.2000 172.2000
1 45 132.0063 171.4862 130.140 116.9105 132.9174
1 42 136.3000 136.3000 136.3000 136.300 136.3000 136.3000
1 48 146.8000 146.8000 146.8000 146.800 146.8000 146.8000
1 57 162.5000 162.5000 162.5000 162.500 162.5000 162.5000
1 56 161.0000 161.0000 161.0000 161.000 161.0000 161.0000
1 55 148.7000 148.7000 148.7000 148.700 148.7000 148.7000
1 58 163.6000 163.6000 163.6000 163.600 163.6000 163.6000
2 57 134.2187 110.2050 140.296 156.3410 145.8913
2 44 140.6000 140.6000 140.6000 140.600 140.6000 140.6000
2 56 125.6618 118.1960 146.536 139.5365 136.4099
2 45 118.7000 118.7000 118.7000 118.700 118.7000 118.7000
2 48 125.3708 123.8276 124.431 124.5686 117.8033
2 50 104.6000 104.6000 104.6000 104.600 104.6000 104.6000
2 59 131.5000 131.5000 131.5000 131.500 131.5000 131.5000
2 55 126.9000 126.9000 126.9000 126.900 126.9000 126.9000

146.5250 143.0829 143.4057 144.290 144.0878 143.8711
5.5296 4.6866 5.2324 4.598 4.7914 4.6765

Example 14.17 (page 725)

We use pool.scalar for estimating the imputation summaries.

pool.scalar(Q = as.numeric(mns_14_9)[2:6],
U = as.numeric(se_14_9)[2:6] ˆ 2,
n = nrow(tbl_14_9)) -> mipo_14_9

mipo_14_9

The function pool.scalar requires the estimate and square of the standard error, calculated
for each group, as two vectors, along with the number of observations.

$m
[1] 5

$qhat
[1] 143.08 143.41 144.29 144.09 143.87

$u
[1] 21.964 27.378 21.142 22.958 21.869
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$qbar
[1] 143.75

$ubar
[1] 23.062

$b
[1] 0.24603

$t
[1] 23.357

$df
[1] 17.043

$r
[1] 0.012802

$fmi
[1] 0.11116

It returns a list with the mean of the estimates named qbar, the within variance named as
ubar, between variance named as b and the total variance named as t. The relative increase
in variance is named r, the fraction of information lost due to missingness is named fmi.
The standard error of the pooled estimate needs to be calculated by hand.

sqrt(mipo_14_9$ubar + (mipo_14_9$m+1 *mipo_14_9$b/mipo_14_9$m))

[1] 5.302

The package provides many graphical methods for imputation diagnostics. The functions
stripplot, xyplot, bwplot all of which colour codes the imputed data and show their
distribution in relation to the original data.

Example 14.18 (page 729)

The default method for imputation in coin is "pmm", for predictive mean matching. It
however supports many more methods if we want to use them. First, we will see the problem
with the assumption of a normal distribution.

read_table("K11828 supplements/Datasets/Example 14.18.dat",
col_names = c("age", "sex", "co", "smoke",

"cotinine", "survive", "death"),
na = ".") -> data_14_18

stripplot(mice(data_14_18,
method = "norm",
printFlag = FALSE,
seed = 345))
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Here, we import the data and pass it to mice. We make sure that we specify method =
"norm" as an additional argument. The result is supplied to stripplot.

FIGURE 14.10
Imputed values assuming normal distribution visualised using strip plot

We can see that red coloured dots representing cotinine value in each of the five imputed
samples dips down below zero.

We now pass the data to “mice” without specifying the method.

mice(data_14_18, seed = 456, printFlag = FALSE) -> mi_14.18
stripplot(mi_14.18)

The strip plot made with this imputed data doesn’t have any value lesser than zero.

mi_14.18

If we print the mice object, we get to inspect the method and PredictorMatrix components
of the mice object. The methods component gives the method used for imputing the missing
values of different variables. Here, we see that the method "pmm" was used for cotinine
and no method was used for other variables (because there were no missing values). The
PredictorMatrix tells us which of the variables were considered to impute the missing
values for a given variable. For cotinine, we can see that all other variables were considered.
mice allows us to fine control the imputation process by changing the method for each of the
variable via its method argument and the variables that will be considered by the methods
for each variable via predictorMatrix argument. Various methods are supported by mice
including logistic regression, polytomous regression, bootstrap methods etc.
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FIGURE 14.11
Imputed values without assumption of normal distribution visualised using strip plot

Class: mids
Number of multiple imputations: 5
Imputation methods:

age sex co smoke cotinine survive death
"" "" "" "" "pmm" "" ""

PredictorMatrix:
age sex co smoke cotinine survive death

age 0 1 1 1 1 1 1
sex 1 0 1 1 1 1 1
co 1 1 0 1 1 1 1
smoke 1 1 1 0 1 1 1
cotinine 1 1 1 1 0 1 1
survive 1 1 1 1 1 0 1

Performing a complete case analysis and analysis with the imputed data follows.

library(survival)
coxph(Surv(survive, death) ~ age + sex + cotinine + I(cotinine ˆ 2),

data = data_14_18)

pool(
with(mi_14.18,

coxph(Surv(survive, death) ~age + sex + cotinine + I(cotinine ˆ 2))))
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Note that when we pass the result of a regression analysis with the imputed data using
with, the result can be passed directly to pool rather than calculating mean and variance
by hand.

Call:
coxph(formula = Surv(survive, death) ~ age + sex + cotinine +

I(cotinine^2), data = data_14_18)

coef exp(coef) se(coef) z p
age 0.10006397 1.10524162 0.00328031 30.5 <2e-16
sex -0.48705026 0.61443615 0.06453271 -7.5 4e-14
cotinine 0.00393861 1.00394637 0.00047587 8.3 <2e-16
I(cotinine^2) -0.00000308 0.99999692 0.00000096 -3.2 0.001

Likelihood ratio test=1272 on 4 df, p=<2e-16
n= 4530, number of events= 983

(858 observations deleted due to missingness)

Class: mipo m = 5
term m estimate ubar b t dfcom

1 age 5 0.0990461196 8.9913e-06 4.3046e-08 9.0429e-06 1198
2 sex 5 -0.4160455262 3.3759e-03 1.9436e-05 3.3992e-03 1198
3 cotinine 5 0.0044824527 1.9169e-07 2.2885e-08 2.1915e-07 1198
4 I(cotinine^2) 5 -0.0000039715 7.7580e-13 1.3415e-13 9.3678e-13 1198

df riv lambda fmi
1 1177.75 0.0057451 0.0057123 0.0073964
2 1171.42 0.0069087 0.0068613 0.0085525
3 204.85 0.1432647 0.1253119 0.1337286
4 119.15 0.2075067 0.1718472 0.1854064

Table 14.11 (page 732)

We will now try to build table 14.11.

cotcof <- function(seed, m=5) {
mice(data_14_18, m= m, seed = seed, printFlag = FALSE) -> midf
pool(with(midf,

coxph(Surv(survive, death) ~
age + sex + cotinine + I(cotinine ˆ 2)))) -> rslt

rslt$pooled[rslt$pooled$term == "cotinine",]}

lapply(1:10, cotcof) -> cotcof5rslt
lapply(11:20, cotcof, m= 20) -> cotcof20rslt

bind_cols(
do.call(rbind.data.frame, cotcof5rslt) |>

transmute(est5 = estimate * 10000,
se5 = 10ˆ7 * sqrt(ubar + ((m+1) * b/m)),
re5 = 100 * m/(m + fmi) ),

do.call(rbind.data.frame, cotcof20rslt) |>
transmute(est20 = estimate * 10000,
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se20 = 10ˆ7 * sqrt(ubar + ((m+1) * b/m)),
re20 = 100 * m/(m + fmi) ))

First, we create a custom function which will accept a random seed and then impute our
data frame using mice, conduct regression as specified, pool the results and return the row
corresponding to cotinine. We call this function repeatedly using lapply. Each time it is
called, it will get a new seed from the first argument, the sequence from 1 to 10 and 11 to
20, given to lapply. The lapply is used twice, once with the imputation number set to 5
and once to 20. The results returned by lapply are row bound as a dataframe and modified
using transmute to create new columns and remove all others. This sequence is done for
both the lapply results and are bound together by bind_cols.

TABLE 14.9
Replication of table 14.11

M = 5 M = 20

Estimatea SEb Relative Estimatea SEb Relative
efficiency (%) efficiency (%)

45.157 4717.3 97.407 44.445 4514.9 99.566
45.665 4592.9 98.438 44.704 4495.5 99.653
44.190 4538.3 98.906 44.531 4578.7 99.470
44.087 4670.0 96.974 44.874 4600.3 99.522
44.755 4890.7 95.569 45.156 4754.4 99.297
44.686 4800.0 96.419 44.574 4608.7 99.434
46.594 4905.8 95.954 44.211 4546.3 99.506
43.618 4591.2 97.624 44.627 4555.8 99.576
44.649 4536.6 98.123 44.822 4515.3 99.645
44.021 4664.0 96.988 44.537 4611.0 99.471
a Results multiplied by ten thousand
b Results multiplied by ten million

14.9 Multivariate multiple imputation
Example 14.20 (page 737)

We now turn to example 14.20

read_table("K11828 supplements/Datasets/Example 14.20.dat",
col_names = c("sbp", "age", "bmi", "chd","survive",

"dchol","hdl","tg", "tchol", "smoke"),
na = ".") -> data_14_20

md.pattern(data_14_20, rotate.names = TRUE)
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First, we inspect the missing pattern using md.pattern. We supply rotate.names = TRUE
so that the labels are vertical – to avoid overlapping. This graph contains all the information
that is shown in Output 14.8. In addition to the plot which is similar to that obtained by
plotting the result of aggr of VIM, md.pattern also returns the numbers as a matrix. We
may save that, say, if we want to calculate percentages of missing.

sbp age bmi chd survive smoke dchol tchol tg hdl
523 1 1 1 1 1 1 1 1 1 1 0
10 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 0 0 2
1 1 1 1 1 1 1 1 0 1 1 1
116 1 1 1 1 1 1 1 0 0 0 3
3 1 1 1 1 1 1 0 1 1 1 1
3 1 1 1 1 1 1 0 0 0 0 4
3 1 1 1 1 1 0 1 1 1 1 1
2 1 1 1 1 1 0 1 0 0 0 4

0 0 0 0 0 5 6 122 123 132 388

We may use cor to calculate and display the correlation between different variables.

cor(data_14_20[, c("tchol", "hdl", "tg","dchol","age", "sbp", "bmi")],
use = "pairwise.complete.obs",
method = "spearman") |>
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data.frame() |>
rownames_to_column()

We have specified use = "pairwise.complete.obs" to ask cor to compute correlation
using only those cases where the variables under consideration both have non NA values.
The method = "spearman" instructs cor to use the Spearman correlation coefficient.

tchol hdl tg dchol age sbp bmi
tchol 1.00000 0.29368473 0.41298 0.1096478 0.49391 0.31182119 0.19573
hdl 0.29368 1.00000000 -0.32649 0.0073132 0.10273 0.00063938 -0.18563
tg 0.41298 -0.32649061 1.00000 0.1162353 0.39421 0.31810453 0.37888
dchol 0.10965 0.00731321 0.11624 1.0000000 0.10772 0.09092713 0.09005
age 0.49391 0.10273042 0.39421 0.1077201 1.00000 0.50507877 0.22124
sbp 0.31182 0.00063938 0.31810 0.0909271 0.50508 1.00000000 0.29136
bmi 0.19573 -0.18563472 0.37888 0.0900502 0.22124 0.29136238 1.00000

The function aggregate can be used to calculate the mean cholesterol, aggregating the
values according to chd or smoke.

aggregate(tchol ~ chd, FUN = mean, data = data_14_20)
aggregate(tchol ~ smoke, FUN = mean, data = data_14_20)

chd tchol
1 0 6.3250
2 1 7.2732

smoke tchol
1 0 6.3230
2 1 6.6664

We will now try to do the actual imputation.

mutate(data_14_20, ltg = log(tg)) -> data_14_20
mice(select(data_14_20, -c("tg")),

printFlag = FALSE,
m = 20,
seed = 567,
maxit = 0,
method = "norm") -> mi_14_20

mi_14_20$post -> pst
trimupper <- function(x) {ifelse(round(x) > 1,1,round(x))}
trimlower <- function(x) {ifelse(x < 0 ,0,x)}

"imp[[j]][,i] <- trimlower(imp[[j]][,i])" -> pst["dchol"]
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"imp[[j]][,i] <- trimlower(imp[[j]][,i])" -> pst["hdl"]
"imp[[j]][,i] <- trimlower(imp[[j]][,i])" -> pst["tchol"]
"imp[[j]][,i] <- trimupper(imp[[j]][,i])" -> pst["smoke"]

mice(select(data_14_20, -c("tg")),
printFlag = FALSE,
m = 20,
seed = 678,
maxit = 20,
method = "norm",
post = pst) -> mi_14_20

First, we mutate the data to log transform the triglyceride value. Next, we use mice to do a
mock imputation. We use the arguments we need, but keep maxit, the number of iterations
zero. This is stored for the next step, where we extract the post object of the result given
by mice after the mock imputation. The argument post decides what post processing is
done on the imputed values. Though, by default it is a simple character vector with empty
strings for all its elements, it is easier to get it from a mock imputation and modify rather
than make it by hand from scratch. Next, we define two custom functions. One will convert
its argument to zero if it is less than zero, otherwise it will return the original value. The
second function, following the textbook, is to convert the imputed values for smoke to zero
or one, by rounding all values to the nearest integer. However, I doubt that this method is
fool proof. It can round to nearest negative numbers too. Any way, we will take the path
laid out in the textbook.

Next, we change the value of the four elements of pst. It is changed to a string that assigns
imp[[j]][,i] the value returned by one of our custom functions when supplied the original
value of imp[[j]][,i]. The imp[[j]][,i] is the jth imputation, ith column. This string
is executed to obtain new values from the imputed value. The name post refers to post
processing.

Now, we do the actual imputation. This time increasing the miter to 20, and specifying the
value of post as pst.

To obtain a trace plot, we need to supply the mice object to plot.

plot(mi_14_20, tchol ~ .it | .ms, layout = c(1,2))

By default, trace plots of mean and sd of imputed values for all the variables will be plotted.
We can specify a formula to change this behaviour. Here, we ask to plot the tchol against
.it in two panels – one for means and one for standard deviation. The .it and .ms are two
variables made available by the function. The .it identifies the iteration and .ms identifies
the value as mean or standard deviation. Each line plots the value for one imputation as
it varies over the iterations we have specified. The option layout = c(1,2) is used to tell
that we want the panels arranged in one column and two rows.
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FIGURE 14.12
Replication of figure 14.12

We can use densityplot to plot kernel density plots.

densityplot(mi_14_20, ~ tchol,
xlab = "Total cholesterol (mmol/l)",
ylab = "Kernel density")

We pass the mice object to densityplot and specify the details via a formula. For
densityplot, the left-hand side of the formula is empty. The variables for which we want
to plot density is specified on the right-hand side. Here, we need only tchol. We get density
for each of the 20 imputations overlaid on top of the density for the observed values. If we
want each of the curves on a different panel, we can add | . imp to the formula.

While R does provide an acf function to plot correlograms, it does not handle mice objects
directly. Also, I couldn’t understand which value is used for plotting the correlogram. If it is
the mean of values averaged over each imputation, then we can use the code below to get
the correlogram.

acf(colMeans(mi_14_20$imp$tchol),
main = NA)

Here, we are using the imputed values of tchol extracted from the .imp component of the
mice object. It is structured as a dataframe with one column for each of the imputations,
with as many rows as the number of missing values. The colMeans returns a vector with
the calculated mean for all columns in the data frame supplied to it. Thus, we are passing a
numerical vector to acf which calculates the correlation between lagged values and plots
them.
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FIGURE 14.13
Replication of figure 14.14

FIGURE 14.14
Replication of figure 14.13

Table 14.12 (page 740)

We will now try to build table 14.12.

with(mi_14_20,
coxph(Surv(survive, chd) ~age + I(sbp/10)+ bmi + smoke + tchol)) |>

pool() -> rslt_mi_14_20

bind_rows(tidy(rslt_mi_14_20,conf.int = TRUE,exponentiate = TRUE) |>
mutate(identifier = "impute"),

tidy(coxph(Surv(survive, chd) ~age + I(sbp/10)+ bmi+smoke+tchol,
data = data_14_20),

conf.int = TRUE,



14.9 Multivariate multiple imputation 371

exponentiate = TRUE) |>
mutate(identifier = "complete")) |>

select(c("term", "estimate","conf.low","conf.high",
"p.value","identifier")) |>

pivot_wider(names_from = identifier,
values_from = c("estimate", "conf.low","conf.high", "p.value"),
names_sep = "\n",
names_vary = "slowest")

We pool the result of regression and store it. We row bind the result of the pooled result and
the result from complete case analysis after using tidy to convert the result to a dataframe.
We tell tidy to exponentiate the estimates and also to provide a confidence interval. We also
add an identifier column before binding the results. From the combined results, we select
the required columns and convert it to wide format. We specify name_sep as "\n" so that
the column headings formed from the values in identifier and the column names specified
in values_from are joined together using a newline to ensure that it is not too wide to
print. The argument names_vary is used to determine the order in which the column names
resulting from widening are combined. We want the columns from one type of analysis to be
together rather than be separated by the columns from the other analysis. So, we opt for
"slowest".

TABLE 14.10
Replication of table 14.12

Complete cases Multiple imputation

Variable Estimate 95% 95% p Estimate 95% 95% p
(units) CI high CI low CI high CI low

age 1.0937 1.05805 1.1306 0.00000080377 1.0940 1.05283 1.1367 0.0000043824
I(sbp/10) 1.0495 0.94893 1.1608 0.34224621589 1.0468 0.93264 1.1750 0.4372858342
bmi 1.0765 1.02238 1.1335 0.00569220828 1.0768 1.01115 1.1467 0.0211342578
smoke 1.5292 0.96225 2.4303 0.07174524459 1.5199 0.88815 2.6010 0.1266961785
tchol 1.2396 1.02010 1.5062 0.03140511451 1.2469 1.02129 1.5222 0.0302470823

Example 14.22 (page 746)

We now turn to example 14.22.

data_14_20 |>
mutate(bchol = ifelse(tchol >= 6.5, TRUE,FALSE)) |>
select(-c("tchol", "tg")) -> data_14_22

mice(data_14_22,
printFlag = FALSE,
m = 20,
maxit = 0)$method -> mthd

"logreg" -> mthd["bchol"]

mice(data_14_22,
printFlag = FALSE,
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m = 20,
seed = 789,
maxit = 20,
method = mthd) -> mi_14_22_lg

mice(data_14_22,
printFlag = FALSE,
m = 20,
seed = 890,
maxit = 20,
method = "norm") -> mi_14_22_nr

with(mi_14_22_lg,
coxph(Surv(survive, chd) ~age + I(sbp/10)+ bmi + smoke + bchol)) |>

pool() -> rslt_mi_14_22_lg

with(mi_14_22_nr,
coxph(Surv(survive, chd) ~age + I(sbp/10)+ bmi + smoke + bchol)) |>

pool() -> rslt_mi_14_22_nr

bind_cols(Method = c("Complete cases",
"Data Augmentation",
"Chained equations"),

bind_rows(
filter(

tidy(
coxph(Surv(survive, chd) ~age+I(sbp/10)+ bmi+smoke+bchol,

data = data_14_22),
conf.int = TRUE),

term == "bcholTRUE"),
filter(tidy(rslt_mi_14_22_nr,

conf.int = TRUE),
term == "bchol"),

filter(tidy(rslt_mi_14_22_lg,
conf.int = TRUE),

term == "bchol")) |>
select(c("estimate", "std.error","conf.low",

"conf.high","p.value")))

First, we mutate the data to create the new binary cholesterol value. Then, we run a mock
imputation and select the method component from it. We modify it to make the value for
bchol to "logreg" to mean logistic regression. Now, we impute values supplying the modified
mthd as method. We also perform another imputation where the method is "norm" for all
variables. We pool the result for both the imputations and save it. We pass these results to
tidy, asking it to give the confidence intervals, select the row for bchol and row bind them
with the corresponding row from complete case analysis. We also add a column to identify
the methods.

# A tibble: 3 x 6
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Method estimate std.error conf.low conf.high p.value
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Complete cases 0.612 0.306 0.0128 1.21 0.0453
2 Data Augmentation 0.598 0.329 -0.0709 1.27 0.0780
3 Chained equations 0.549 0.293 -0.0392 1.14 0.0667

14.10 Recap
14.10.1 Commands introduced in this chapter
• boot::boot
• ggplot2::geom_bar
• ggplot2::guide_axis
• ggplot2::scale_x_binned
• ggplot2::geom_qq
• boot::boot.ci
• base::as.character
• base::do.call
• base::rbind.data.frame
• ggplot2::theme_void
• stats::as.formula
• base::is.null
• base::dim
• readr::read_delim
• base::return
• lmtest::coefci
• sandwich::vcovHC
• DescTools::Permn
• coin::independence_test
• coin::approximate
• base::replicate

• coin::wilcox_test
• VIM::marginplot
• base::anyNA
• stats::na.omit
• VIM::regressionImp
• graphics::clip
• graphics::abline
• VIM::hotdeck
• mice::mice
• mice::complete
• dplyr::starts_with
• dplyr::slice
• mice::with
• dplyr::num_range
• mice::pool.scalar
• mice::stripplot
• mice::md.pattern
• graphics::densityplot
• stats::acf
• mice::pool
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In this final chapter, I want to give you some tips to hone your R skill.

Literate programming
Many a times in this book, you will come across situations where I used code to refer to
small piece of information that could have been copied and pasted. When we copy and paste,
there are chances of error like leaving out a digit. The real problem surfaces when situations
demand us to revise or repeat calculations after correcting errors in the original data. How
can we be sure that we changed the values at all places? It is not easy. The answer to this
problem is literate programming. Literate programming refers to mixing code within the
prose we write. One of R’s solution is by means of an Rmd file, to mean R markdown file.
We write a plain text file with certain markups to indicate formatting or more importantly
code. We use a package knitr, which will run the code and replace it with its result in the
final output. If we develop the habit of referring all results using code, we need not worry
about changing it at any place; all we need is rerun the Rmd file using knitr. I am not
going to give you further details as there are excellent tutorials out there to cover this easy
topic. A favourite of mine is the free online tutorial called “knitr in a knutshell” available
at https://kbroman.org/knitr_knutshell/. I strongly recommend you to go through this
tutorial as support for literate programming is one of the best part of R and you need to
understand it clearly to achieve efficiency.

Presentation
Throughout this book, the focus has been on reproducing the results, not exactly on presenting
them. When we adapt literate programming, we need to take care about presentation using
R code as well. Though we have discussed graphs in some detail, we have just touched
upon tables. Of the many packages available to format tables, I have introduced tinytable.
However, I have not gone into the details. The user guide for the package available at
https://vincentarelbundock.github.io/tinytable/#tutorial is the source to master the
package. There are many other packages for the same purpose including flextable, kable,
kableExtra and huxtable. While I was preparing this book, I was using flextable, but
changed to tinytable at the very end as the LATEX code generated by it was rather bulky.
At the time of writing this book, tinytable version was still under 1. But, it was very
usable and I recommend it over flextable especially if the output you want is LATEX.
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The package broom which we used many times is another package helpful for presentation.
It converts many results, especially of modelling, to dataframes which we may format using
tinytable.

R
While we have covered a lot of R, I have not gone through in conventional order. I would
suggest you to go through the short “An introduction to R” that comes with R and also
available at https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf. In under 100
pages it gives a succinct introduction to R. While we have covered most of the topics included
in it, reading it should help you organise your R knowledge.

The tidyverse is a relatively new alternative to the base R methods. In our book, we have
used both base R and tidyverse methods. The book “R for Data Science” available at
https://r4ds.hadley.nz/ is an excellent source to consolidate what you have learned here
about tidyverse.

Help
We saw about the inbuilt help. Most packages also have vignettes, which teach you the
typical use of the packages, how the various functions that the package provide are related
to each other. The command vignette lists all the vignettes from all the installed packages.
It also allows you to restrict to one vignette or package if you specify them. To know about
a package, especially a new one, you need to check its vignette. When you know the package,
but want details of a specific function, then you need to use the ? function.

When you cannot find the answers to your questions from the above sources, there are many
online communities to turn to. The best, I think, are the Stack Exchange sites Stack Overflow
(https://stackoverflow.com/) and Cross Validated (https://stats.stackexchange.com/).

Advanced R
Hands-On Programming with R: Write Your Own Functions and Simulations available at
https://rstudio-education.github.io/hopr/, Advanced R available at https://adv-r.hadley.nz/
and R Packages: Organize, Test, Document, and Share Your Code available at https://r-
pkgs.org/ are some of the books for you to consider when you want to take your R skills to
the next level.

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://r4ds.hadley.nz
https://stackoverflow.com
https://rstudio-education.github.io/hopr
https://adv-r.hadley.nz
https://r-pkgs.org
https://r-pkgs.org
https://stats.stackexchange.com
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Recap
Command introduced in this chapter
utils::vignette
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Command Index

Note: The index is sorted by the command names though the command names are prefixed
with the package names.

base::!, 17
base::!=, 143
base::-, 16
base::->, 2
base:::, 41
utils::?, 5, 11
base::*, 10, 16
base::/, 16
base::+, 16
base::<-, 2,
base::=, 2, 4
base::==, 17, 143
base::|>, 25
base::$, 11, 12
base::<, 143
base::>, 143
base::>=, 143

A
graphics::abline, 356
base::abs, 41, 87, 94, 95, 121, 176, 348, 349,

350, 352, 353
stats::acf, 369
dplyr::across, 20, 21, 22, 218, 309, 359
stats::addmargins, 277
metafor::addpoly, 264
ggplot2::aes, 38, 39, 44, 59, 66, 71, 74, 98,

100, 101, 123, 126, 128, 135, 136,
137, 149, 156, 163, 168, 171, 172,
173, 191, 193, 212, 213, 227, 238,
241, 242, 243, 257, 264, 274, 276,
277, 280, 282, 300, 305, 307, 326,
338

stats::aggregate, 148, 367

ggplot2::annotate, 44, 59, 66
stats::anova, 118, 119, 124, 125, 129, 130,

183, 185, 186, 197, 229, 230, 233,
238, 250, 252, 254

car::Anova, 130, 135
base::anyNA, 354, 355
stats::aov, 119, 122
base::apply, 61, 62, 68, 349, 350
coin::approximate, 351
dplyr::arrange, 137, 159, 160, 161, 162, 191,

200, 213, 215, 216, 260, 273, 279,
335

base::array, 56, 61, 64, 65, 79, 87, 90
base::as.character, 214, 215, 275, 282, 332,

333, 335
base::as.data.frame, 23, 27, 29, 171, 172, 209,

210
stats::as.formula, 339, 340
base::as.numeric, 233, 244, 245, 254, 312,

316, 350, 360
base::as.vector, 65, 66
base::attach, 36
base::attr, 54, 139, 141, 242

B
graphics::barplot, 8, 10, 28
dplyr::bind_cols, 24, 25, 65, 66, 139, 140,

141, 147, 159, 209. 210. 220, 221,
223, 277, 282, 284, 285, 299, 312,
317, 318, 319, 320, 321, 340, 364,
365, 372

dplyr::bind_rows, 20, 21, 73, 74, 218, 220,
221, 223, 235, 237, 274, 275, 304,
307, 308, 317, 321, 332, 333, 359,
370, 372

stats::binom.test, 12, 13, 50, 342
stats::binomial, 166, 167, 170, 172, 174, 175,

178, 179, 180, 182, 184, 185, 186,
187, 189, 190, 192, 200, 201, 203,
204, 205, 206, 208, 211, 217, 219,
256, 282, 291, 295, 301, 302, 303,
340, 342, 344

boot::boot, 325, 326, 327, 329, 334, 337, 338,

379

stats::AIC, 141, 182

134, 139, 140, 160, 180, 181, 182,
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339, 340, 342, 344, 345, 347, 348,
349

boot::boot.ci, 329, 330, 331, 332, 337, 338,
339, 340, 342, 343, 344, 345

graphics::boxplot, 18, 22, 28, 36, 330
splines::bs, 157

C
base::c, 2, 3, 6, 8, 9, 11, 13, 14, 15, 19, 20,

21, 22, 23, 24, 28, 29, 35, 36, 38, 41,
42, 43, 44, 47, 48, 51, 52, 54, 56, 57,
58, 59, 61, 64, 65, 66, 67, 68, 70, 72,
75, 76, 78, 79, 80, 81, 82, 83, 84, 85,
86, 87, 89, 90, 91, 92, 93, 94, 96, 97,
98, 99, 100, 101, 104, 105, 106, 118,
121, 122, 129, 130, 131, 132, 133,
134, 135, 136, 138, 141, 147, 148,
150, 151, 152, 153, 155, 156, 157,
158, 159, 160, 161, 163, 166, 167,
170, 171, 174, 175, 178, 184, 185,
186, 189, 190, 192, 196, 198, 199,
201, 202, 203, 205, 206, 207, 209,
210, 211, 212, 213, 214, 215, 216,
217, 218, 219, 220, 223, 229, 230,
232, 234, 238, 242, 246, 247, 248,
250, 251, 252, 254, 256, 257, 260,
261, 264, 265, 268, 269, 270, 272,
273, 274, 276, 280, 282, 284, 289,
292, 293, 294, 295, 299, 305, 307,
308, 309, 310, 311, 312, 313, 316,
317, 318, 319, 320, 321, 322, 325,
326, 328, 329, 331, 332, 333, 334,
335, 338, 339, 340, 342, 343, 344,
345, 347, 349, 353, 354, 356, 359,
361, 365, 366, 367, 368, 371, 372

dplyr::case_when, 316, 317, 348
base::cbind, 27, 29, 78, 120, 171, 172, 230,

335, 349
base::cbind.data.frame, 4, 43, 49, 129, 173,

184, 185, 190, 192, 193, 202
base::ceiling, 116
stats::chisq.test, 11, 49, 52
ROCit::ciAUC, 288, 289
graphics::clip, 356
survival::clogit, 197
stats::coef, 119, 120, 161, 166, 167, 168, 178,

184, 204, 207, 228, 282, 283, 284,
285, 303, 304, 306, 337, 339, 344,
356

lmtest::coefci, 349
stats::coefficients, 253

DescTools::CohenKappa, 41, 42
readr::col_double, 118, 122, 134, 135, 138,

151, 161, 199, 246, 337
readr::col_factor, 15, 75, 96, 98, 118, 122,

134, 135, 151, 160, 161, 174, 178,
186, 192, 196, 199, 202, 209, 230,
234, 246, 255, 273, 282, 337, 343,
345

readr::col_integer, 196, 199, 209, 343
readr::col_logical, 161, 211
readr::col_number, 15, 38, 75, 96, 98, 160,

345
readr::col_skip, 178
base::colMeans, 369
base::colnames, 9
readr::cols, 15, 38, 75, 96, 98, 118, 122, 134,

135, 138, 151, 160, 161, 174, 178,
186, 192, 196, 199, 202, 209, 211,
230, 234, 246, 255, 273, 282, 337,
343, 345

base::colSums, 217
mice::complete, 358, 359
survival::concordance, 293, 294, 308
DescTools::Conf, 42
stats::confint, 119, 120, 125, 167, 168, 171,

205, 337, 339, 344
stats::confint.default, 205, 206, 208, 253
SurvRegCensCov::ConvertWeibull, 237
ggplot2::coord_cartesian, 276
stats::cor, 127, 138, 139, 338, 366
stats::cor.test, 127, 338
survival::coxph, 229, 230, 232, 233, 234, 236,

244, 245, 246, 247, 274, 283, 284,
285, 293, 294, 295, 306, 314, 344,
363, 364, 370, 372

rms::cph, 322, 323
base::cumprod, 70, 73
base::cumsum, 27, 72, 73
base::cut, 27, 28, 29, 152, 188, 190, 274, 297,

298, 304, 307, 312, 316

D
base::data.frame, 4, 23, 27, 29, 43, 49, 59, 70,

73, 125, 126, 129, 139, 141, 168,
171, 172, 173, 176, 184, 185, 190,
192, 193, 198, 202, 203, 206, 209,
232, 236, 237, 238, 240, 243, 248,
250, 251, 252, 253, 257, 261, 283,
284, 285, 295, 298, 303, 306, 308,
312, 321, 326, 333, 335, 338, 340,
342, 344, 345, 347, 350, 367
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rms::datadist, 322
stats::density, 30
graphics::densityplot, 369
dplyr::desc, 216, 273
stats::deviance, 179, 181
stats::df.residual, 179, 181
base::diag, 263
base::diff, 29, 68, 353
base::difftime, 84
base::dim,343
lubridate::dmy, 83, 84
stats::dnorm, 280, 281
base::do.call, 334, 344, 345, 364

E
stats::ecdf, 30, 31
ggplot2::element_blank, 39, 257, 264, 280
ggplot2::element_rect, 39
emmeans::emmeans, 131, 132, 133, 135, 154,

207, 210
epiR::epi.2by2, 53, 55, 56, 62, 63, 64, 65, 87,

88, 89, 90, 91, 97, 98
epiR::epi.directadj, 57, 59
epiR::epi.indirectadj, 58, 59, 86
epiR::epi.sscc, 114, 115
epiR::epi.sscohortc, 112, 113
epiR::epi.sscompb, 112
epiR::epi.sscompc, 110, 111
epiR::epi.tests, 286
base::exp, 128, 137, 166, 167, 168, 171, 172,

173, 176, 184, 185, 198, 204, 205,
209, 210, 217, 219, 220, 227, 228,
229, 234, 236, 237, 238, 240, 246,
247, 253, 260, 261, 268, 282, 283,
285, 286, 303, 306, 319, 320, 321,
322, 340, 342, 344, 364

base::expand.grid, 247, 279, 280

F
ggplot2::facet_wrap, 100
base::factor, 6, 66, 82, 129, 147, 149, 166,

170, 184, 198, 202, 205, 213, 214,
229, 232, 237, 238, 250, 251, 252,
273, 294, 295, 335, 338, 349, 352

dplyr::filter, 122, 188, 199, 200, 216, 220,
235, 240, 253, 255, 256, 274, 277,
279, 280, 286, 301, 307, 312, 313,
317, 335, 337, 342, 358, 372

survival::finegray, 246
stats::fisher.test, 51, 105
stats::fitted, 135, 147

Epi::float, 172, 173
base::for, 61, 62
metafor::forest, 264, 269, 270
base::format, 209, 210
tinytable::format_tt, 24, 25
stats::ftable, 313, 314
rms::Function, 323
metafor::funnel, 270, 272

G
geepack::geeglm, 159, 160, 161, 162, 200, 209
ggplot2::geom_abline, 300, 305, 307
ggplot2::geom_bar, 326
ggplot2::geom_boxplot, 213, 214, 276, 326
ggplot2::geom_density, 212
ggplot2::geom_function, 172, 227, 238, 280,

281, 282, 287
ggplot2::geom_hline, 39, 264, 265, 274, 275,

300
ggplot2::geom_line, 44, 59, 66, 98, 101, 128,

135, 136, 137, 163, 172, 191, 193,
241, 242, 243, 277

ggplot2::geom_point, 38, 39, 59, 60, 66, 67,
101, 123, 124, 126, 128, 137, 149,
150, 156, 168, 169, 241, 242, 243,
264, 277, 279, 282, 300, 305, 307

ggplot2::geom_pointrange, 171, 173, 174,
257, 274, 275, 300, 301, 338, 339

ggplot2::geom_qq, 326
ggplot2::geom_ribbon, 191, 192, 193
ggplot2::geom_segment, 99, 100, 149
ggplot2::geom_smooth, 123, 124, 126, 127,

128, 156
ggplot2::geom_step, 71, 74, 227, 238
ggplot2::geom_text, 257, 264, 280, 281, 338,

339
ggplot2::geom_vline, 257, 258
base::getwd, 5
ggplot2::ggplot, 38, 39, 44, 59, 60, 66, 67, 71,

74, 98, 99, 100, 101, 122, 123, 124,
126, 128, 135, 136, 137, 149, 150,
156, 163, 168, 169, 171, 172, 173,
174, 191, 192, 193, 196, 212, 213,
214, 227, 238, 241, 242, 243, 257,
258, 264, 274, 275, 276, 277, 279,
280, 282, 287, 300, 305, 307, 325,
326, 338, 339

ggeffects::ggpredict, 157
base::gl, 65, 66, 175
broom::glance, 141, 143
stats::glm, 166, 167, 170, 172, 174, 175, 176,
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178, 179, 180, 182, 184, 185, 186,
187, 189, 190, 192, 201, 203, 204,
205, 206, 208, 211, 217, 218, 219,
248, 249, 250, 251, 252, 253, 254,
256, 281, 282, 290, 291, 295, 301,
302, 303, 340, 342, 344

gridExtra::grid.arrange, 137, 191, 192, 213,
214

dplyr::group_by, 98, 129, 148, 151, 152, 153,
162, 214, 215, 216, 273, 297, 299,
304, 307, 312, 317

ggplot2::guide_axis, 326

H
stats::hatvalues, 193, 194
effsize::hedges_g, 294, 295
graphics::hist, 28, 29, 328, 329
DescTools::HosmerLemeshowTest, 298, 305
VIM::hotdeck, 357

I
base::I, 154, 155, 156, 254, 363, 364, 370,

371, 372
base::ifelse, 141, 143, 202, 203, 204, 215, 219,

231, 247, 264, 282, 286, 312, 315,
318, 367, 371

Hmisc::improveProb, 309, 311
coin::independence_test, 351
stats::influence, 193, 194
utils::install.packages, 4, 14,
stats::IQR, 16, 21, 22, 296, 326, 332
base::is.na, 17, 18, 199, 309, 355
base::is.null, 343

K
stats::kruskal.test, 163

L
ggplot2::labs, 39, 44, 59, 67, 71, 74, 98, 100,

101, 123, 126, 128, 136, 138, 149,
156, 157, 163, 171, 172, 173, 191,
193, 212, 213, 214, 238, 241, 242,
277, 287, 300, 307

base::lapply, 218, 220, 221, 333, 334, 344,
345, 364, 365

dplyr::lead, 223, 224
dplyr::left_join, 153, 215, 216
graphics::legend, 292, 293
base::length, 17, 72, 139, 141, 259, 308, 350
base::levels, 100, 151, 202
base::library, 5, 14, 15, 24, 41, 47, 53, 56, 59,

70, 75, 83, 86, 89, 92, 96, 110, 118,
130, 131, 137, 139, 151, 155, 157,
159, 172, 183, 191, 196, 198, 200,
207, 209, 212, 213, 223, 231, 237,
255, 261, 274, 286, 287, 290, 294,
296, 309, 322, 325, 343, 345, 349,
351, 354, 358, 363

ggplot2::lims, 275
graphics::lines, 292, 293
base::list, 13, 42, 47, 48, 51, 52, 56, 57, 61,

64, 65, 73, 86, 87, 89, 90, 91, 97,
130, 140, 141, 203, 204, 216, 217,
220, 280, 332, 333

stats::lm, 118, 119, 120, 121, 123, 124, 126,
127, 128, 129, 130, 131, 133, 134,
135, 140, 141, 144, 145, 154, 155,
156, 157, 162, 337, 339, 340, 349,
356, 359

stats::loess, 157
base::log, 36, 38, 65, 128, 135, 146, 152, 153,

154, 168, 217, 220, 228, 240, 241,
242, 243, 248, 250, 251, 252, 253,
254, 259, 260, 264, 269, 270, 272,
337, 367

lspline::lspline, 155, 156, 157, 189, 190, 192

M
stats::mantelhaen.test, 63, 64, 78, 79
purrr::map_chr, 295
purrr::map_dbl, 153, 287
purrr::map_dfr, 141, 143, 204
purrr::map_int, 277
purrr::map2_dbl, 85
base::margin.table, 58, 65, 66
VIM::marginplot, 354, 356
base::marginSums, 62, 206, 207
MatchIt::match.data, 212, 217
MatchIt::matchit, 212, 217
epiDisplay::matchTab, 91, 92, 93, 94
base::matrix, 9, 11, 13, 41, 42, 47, 48, 51, 52,

57, 78, 86, 89, 90, 91, 97, 105, 167,
170, 175, 184, 205, 206, 216

base::max, 14, 297, 356
stats::mcnemar.test, 91
mice::md.pattern, 365, 366
base::mean, 16, 17, 19, 20, 32, 33, 71, 98,

129, 148, 149, 151, 152, 162, 214,
215, 247, 259, 273, 283, 284, 285,
286, 297, 299, 304, 305, 306, 307,
309, 311, 325, 331, 332, 333, 339,
348, 349, 350, 353, 354, 355, 358
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stat::median, 21, 22, 23, 273, 296
DescTools::MHChisqTest, 51, 52, 105
mice::mice, 358, 359, 361, 362, 364, 365, 367,

368, 371, 372
base::min, 14, 356
dplyr::mutate, 21, 22, 23, 27, 35, 36, 38, 73,

74, 85, 96, 102, 141, 143, 148, 149,
152, 153, 154, 176, 183, 190, 192,
193, 202, 203, 204, 209, 215, 218,
219, 220, 231, 235, 240, 241, 242,
243, 247, 253, 255, 258, 259, 260,
261, 263, 269, 274, 277, 279, 280,
282, 284, 298, 299, 312, 314, 315,
316, 317, 318, 319, 320, 321, 335,
338, 345, 348, 367, 368, 370, 371,
372

N
dplyr::n, 148, 151, 152, 153, 155, 216, 273,

297, 299, 304, 305, 307, 312, 317
stats::na.omit, 355
base::names, 240, 284, 317
tidyr::nest, 153
rms::nomogram, 322, 323
base::nrow, 23, 153, 218, 255, 277, 279, 297,

300, 304, 315, 316, 332, 342, 360
splines::ns, 157
dplyr::num_range, 359

O
DescTools::OddsRatio, 47, 48
stats::offset, 248, 249, 250, 251, 252, 253,

254, 301, 302
stats::oneway.test, 119
base::options, 7, 130, 322

P
emmeans::pairs, 133, 135
graphics::par, 247, 248, 328, 329
base::paste, 139, 141, 148, 202, 209, 210, 339
base::paste0, 214, 215, 219, 220, 231, 235,

253, 257, 269, 276, 295, 318, 332,
338, 340, 343

stats::pchisq, 52, 68, 87, 94, 95, 179, 180,
181, 183, 217, 219, 220, 244, 245,
246, 297, 300

DescTools::Permn, 349, 350
dplyr::pivot_longer, 215, 335
tidyr::pivot_wider, 99, 100, 139, 140, 148,

149, 152, 203, 231, 232, 235, 279,
280, 317, 335, 371

base::plot, 30, 31, 76, 80, 144, 146, 157, 195,
212, 225, 232, 247, 248, 287, 289,
291, 292, 322, 368

stats::pnorm, 259, 296, 310, 311, 313, 331
stats::poisson, 209
stats::poisson.test, 53, 54, 84, 85
MASS::polr, 198, 199
stats::poly, 182, 183
mice::pool, 359, 363, 364, 365, 370, 372
mice::pool.scalar, 360
stats::power.t.test, 107, 108, 109, 110, 111
stats::predict, 125, 126, 127, 128, 168, 172,

176, 185, 186, 190, 192, 193, 205,
206, 208, 211, 282, 283, 284, 285,
286, 287, 294, 295, 296, 298, 299,
301, 303, 314, 315, 340, 342

riskRegression::predictRisk, 299
base::prop.table, 10, 27, 29, 284, 285, 287,

348, 352, 353
stats::prop.test, 13
emmeans::pwpm, 132, 133
survival::pyears, 84, 85, 226, 227

Q
stats::qnorm, 72, 74, 115, 116, 172, 173, 296,

331
ggplot2::qplot, 195, 196
stats::qqline, 32
stats::qqnorm, 32, 146, 330
stats::qt, 104, 121, 332, 333
stats::quantile, 14, 15, 16, 21, 24, 152, 188,

192, 274, 277, 297, 298, 304, 307,
331

R
base::range, 15, 16
base::rbind, 78, 171, 202, 230, 334, 338, 345
base::rbind.data.frame, 335, 364
readr::read_delim, 345
readr::read_table, 15, 38, 75, 96, 98, 118,

122, 134, 135, 138, 151, 160, 161,
174, 178, 186, 192, 196, 199, 202,
209, 211, 230, 234, 246, 254, 269,
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