

PRACTICAL SDR

®

P R A C T I C A L
S D R

G e t t i n g S t a r t e d w i t h
S o f t w a r e - D e f i n e d R a d i o

by David Clark and Paul Clark

San Francisco

PRACTICAL SDR. Copyright © 2025 by David Clark and Paul Clark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

ISBN-13: 978-1-7185-0254-3 (print)
ISBN-13: 978-1-7185-0255-0 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www​.nostarch​.com; info@nostarch​.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Sydney Cromwell
Developmental Editor: Nathan Heidelberger
Cover Illustrator: Joshua Kemble
Interior Design: Octopod Studios
Technical Reviewer: Josh Mormon
Copyeditor: Lisa McCoy
Proofreader: Daniel Wolff
Indexer: BIM Creatives, LLC

Library of Congress Control Number: 2024041499

For customer service inquiries, please contact info@nostarch​.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch​.com. For permission to translate this work:
rights@nostarch​.com. To report counterfeit copies or piracy: counterfeit@nostarch​.com.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

®

[E]

https://www.nostarch.com

To MQ and LVP
Y and S and K.

To the infinitely supportive Jennifer, and to Jessica, who
brightens every day.

And to our parents, who invested in love and education.

About the Authors
David Clark is an engineer interested in how things work, and he enjoys shar-
ing what he learns. He has been working with radio technology since the late
1980s and was using software-defined radios (SDRs) before they were cool.

Paul Clark is the owner and chief engineer at Factoria Labs, an organization
dedicated to the propagation of SDR. He has experience ranging from chip
design to firmware development to radio frequency reverse engineering. He
teaches classes and workshops on SDR in the United States and abroad.

About the Technical Reviewer
Josh Mormon is a senior research scientist in the wireless communications
industry, where he works primarily on SDR applications. He is currently the
president of the GNU Radio Project and is actively involved in the effort to
develop GNU Radio 4.0.

B R I E F C O N T E N T S

Introduction .xvii

PART I: BUILDING A BASIC RECEIVER .1

Chapter 1: What Is a Radio? . 3

Chapter 2: Computers and Signals . 11

Chapter 3: Getting Started with GNU Radio . 21

Chapter 4: Creating an AM Receiver . 37

PART II: INSIDE THE RECEIVER .57

Chapter 5: Signal Processing Fundamentals . 59

Chapter 6: How an AM Receiver Works . 107

Chapter 7: Building an FM Radio . 141

PART III: WORKING WITH SDR HARDWARE . .161

Chapter 8: The Physics of Radio Signals . 163

Chapter 9: GNU Radio Flowgraphs with SDR Hardware . 181

Chapter 10: Modulation . 193

Chapter 11: SDR Hardware Under the Hood . 221

Chapter 12: Peripheral Hardware . 255

Chapter 13: Transmitting . 279

Index . 297

C O N T E N T S I N D E T A I L

INTRODUCTION xvii
A Week in SDR .xviii
SDR and Hardware Development . xix
This Book’s Approach . xx
Who This Book Is For . xxi
What You’ll Need . xxi
What’s in This Book . xxi
Online Resources .xxiii

PART I: BUILDING A BASIC RECEIVER 1

1
WHAT IS A RADIO? 3
A Simple Radio Model . 3

Signals . 4
Modulation . 5

A Slightly More Complicated Radio Model . 5
AM Radio Signals . 6
Amplitude Modulation . 8

Conclusion . 9

2
COMPUTERS AND SIGNALS 11
Digital Sampling . 12

Analog-to-Digital Conversion . 12
Digital-to-Analog Conversion . 16

Sample Rate . 16
SDRs from 50,000 Feet . 18
Conclusion . 19

3
GETTING STARTED WITH GNU RADIO 21
Installing GNU Radio . 22

Linux . 22
Windows and macOS . 22
A Virtual Machine . 23

GNU Radio Companion . 23
Sources . 25
Sinks . 26

Hello, SDR! . 26
Adding Blocks to a Flowgraph . 26
Connecting Blocks . 29

xii Contents in Detail

Saving and Running the Flowgraph . 29
Changing Block Properties . 31

Between Input and Output . 33
Conclusion . 36

4
CREATING AN AM RECEIVER 37
Setting Up the Variables and Entries . 38
Adding a Source of Radio Data . 41
Processing the Signals . 42
The Output . 51
Conclusion . 54

PART II: INSIDE THE RECEIVER 57

5
SIGNAL PROCESSING FUNDAMENTALS 59
Frequency . 60

Exploring the Audible Spectrum . 60
Visualizing Signals in the Frequency Domain . 67

Gain . 80
Applying a Gain to a Signal . 80
Thinking in Decibels . 85

Filters . 91
Low-Pass Filters . 91
High-Pass Filters . 97
Band-Pass Filters . 102
Band-Reject Filters . 104

Creating an Equalizer . 105
Conclusion . 106

6
HOW AN AM RECEIVER WORKS 107
Examining the Input Radio Frequency Data . 108
Tuning . 112

Frequency Shifting . 113
Filtering . 118
Accounting for Real-World Frequencies . 126
Tuning the AM Receiver . 127

Demodulation . 129
Viewing the Modulated and Demodulated Signals 131
Setting the AM Demod Block Properties . 132

Resampling . 133
Decimation . 134
Interpolation . 137
Resampling in the AM Receiver . 138

Conclusion . 138

Contents in Detail xiii

7
BUILDING AN FM RADIO 141
Converting from AM to FM . 142
Improving the FM Receiver . 147

Tuning More Effectively . 147
Updating Variables Automatically . 152
Controlling the Volume . 154
Tuning to Other Signals . 158

Conclusion . 159

PART III: WORKING WITH SDR HARDWARE 161

8
THE PHYSICS OF RADIO SIGNALS 163
Electromagnetic Waves . 164

Propagation . 165
Frequency Bands . 166

Bandwidth . 168
Noise . 176

Viewing RF Noise . 177
Finding the Signal-to-Noise Ratio . 178

Conclusion . 179

9
GNU RADIO FLOWGRAPHS WITH SDR HARDWARE 181
Creating a Hardware-Enabled Flowgraph . 182
Setting Up the Hardware . 184
Operating the Hardware SDR Receiver . 187
Using USRP Hardware . 189
Using Other Hardware . 190
Conclusion . 190

10
MODULATION 193
Baseband Signals . 194
Amplitude Modulation . 197

Working with Negative Baseband Values . 200
Avoiding Overmodulation . 204

Frequency Modulation . 206
Using a Zero-Frequency Carrier . 208
Interpreting Waterfall Plots . 210
Adjusting Modulator Sensitivity . 211

Phase Modulation . 215
A Word on Digital Modulation . 217
Choosing a Modulation Scheme . 219
Conclusion . 220

xiv Contents in Detail

11
SDR HARDWARE UNDER THE HOOD 221
Classic Radios vs . SDR . 222
IQ Sampling . 224

IQ Signals . 224
Analog-to-Digital Conversion . 226

SDR Bandwidth and Sample Rates . 235
Identifying Bandwidth Limits . 235
Experiencing Overflow . 236
Preventing Overflow . 240

Gain and SDR Hardware . 240
The Three Gain Stages . 241
How to Set the Gain . 243
How Gain Affects a Signal . 243

A Better SDR Model . 246
DC Offset . 247
Important SDR Specs . 251
Conclusion . 253

12
PERIPHERAL HARDWARE 255
Antennas . 256

Characteristics . 257
Types . 259
Polarization . 265

An Antenna Experiment . 265
How Computers Affect SDRs . 269
Mitigating Noise . 270
Connectors . 271
Building an SDR Toolkit . 274

Antennas . 275
Adapters . 275
Upconverters . 276
Baluns . 276
Miscellaneous Items . 277

Conclusion . 278

13
TRANSMITTING 279
Building an FM Modulator . 280

Setting the Audio Source . 280
Modulating the Signal . 281
Upconverting the Signal . 281
Filtering After Interpolation . 284

Transmission Logistics . 286
Legal Issues . 286
Practical Issues . 286

Contents in Detail xv

Testing the FM Transmitter . 288
Recovering the Signal . 289
Running the Flowgraph . 290
Modeling Noise . 294

Conclusion . 296

INDEX 297

I N T R O D U C T I O N

There’s a revolution going on in wireless
communications technology, touching fields

from hardware development to information
security and from aerospace engineering to

reverse engineering. Professional electronics designers,
cybersecurity researchers, hardware hackers, and ham
radio operators alike can all reap the benefits of the
beautiful new combination of software and radio.

Since Marconi’s first transmissions over 100 years ago, nearly all radios
have been fixed-function devices. Any given radio could only tune to a rela-
tively narrow range of frequencies and transmit or receive a specific kind
of signal. At best, you’d have combination devices, like those that receive
both AM and FM signals, but this was largely a matter of combining two (or
more) fixed-function radios in one package. These old-school devices are
hardware-defined radios. What defines the frequencies one of these radios can

xviii Introduction

transmit or receive? Hardware. What defines whether it’s an FM radio or a
Wi-Fi router? Hardware. Nearly every aspect of these radios is defined by
stubbornly inflexible hardware.

On the other hand, software-defined radios (SDRs) provide programmabil-
ity throughout the radio’s architecture. When you want to change the oper-
ation of an SDR, you don’t have to rewire your hardware; you simply modify
the programming on the SDR board and, quite often, on a connected host
computer.

This book will show you how to build wonderfully flexible analog radios
using an SDR and a program called GNU Radio, and it introduces just the
right amount of basic theory to understand how those radios work.

A Week in SDR
It may not be immediately obvious how powerfully flexible an SDR can be.
To illustrate, here’s a story about a week in your life as an SDR user.

It’s Monday, and you want something to talk to a number of Wi-Fi
devices. You put together a project on your computer, connect to your SDR,
and, sure enough, you have a Wi-Fi access point. And not just any access
point, but one where you can control aspects of the channels used and the
packets sent.

On Tuesday you need some geographical data from a job site you’re vis-
iting. With nothing more than some software changes, you reprogram your
SDR to be a GPS receiver. As before, you’re not just limited to basic GPS
functionality but can keep track of how many satellites in the GPS constella-
tion are observable and the signal strength of each. On the way back from
the job site, you program your SDR to pick up FM broadcast stations so you
can listen to a bit of music while you drive.

Sometime on Wednesday you realize that your Wi-Fi system is having
some unknown difficulties. Suspecting security issues, you reconfigure your
SDR to scan all 14 available Wi-Fi channels simultaneously and see what
kind of traffic is out there. You save all the raw radio frequency (RF) data to a
file for further processing at your leisure.

You shift gears on Thursday, turning your attention to some signals you
saw broadcasting in the 2.4 GHz Wi-Fi band the day before. Not sure what
they are, you start breaking down the signals using powerful but free and
easy-to-use software. The mystery signals aren’t currently transmitting, but
that’s not a problem because you have the raw data from yesterday. After
looking at the data, you’re able to determine that there’s a ZigBee home
automation network nearby, as well as a baby monitor and a poorly shielded
microwave oven.

Now comes Friday, and you decide to drive around and check out the
RF activity at various points in your city. Taking advantage of your Wi-Fi
and GPS routines from earlier in the week, you’re able to write a position-
aware data logging application in just a couple dozen lines of Python code.

Finally, it’s the weekend, and you decide to take a camping trip. Before
you go, you reprogram your SDR to several different amateur radio modes

Introduction xix

in hopes of making contact with other ham operators while you’re up in the
mountains. Perhaps you might even ping the International Space Station!

Are you starting to see how powerful these devices are? Not only can
you easily implement new radio designs, but you can also switch between
them with nothing more than a few keystrokes or a function call in your
code. More than simply transmitting and receiving, you can scan, find, and
deconstruct other signals that may be out there.

In the interest of full disclosure, there’s one caveat to all this: as pro-
grammable as SDRs have become, their creators still haven’t figured out
how to make affordable, programmable antennas. For now, at least, you
may still have to swap those out when making big frequency changes.

SDR and Hardware Development
There’s another key application for SDRs: prototyping new products con-
taining an RF component. In the early stages of product development, it’s
critical to iterate quickly on new designs. Fail fast, and try as many new
ideas as reasonably possible.

SDRs allow you to implement the radios in your design much faster
than designing them from off-the-shelf components. You can also modify
their functionality far more quickly. Due to cost constraints, you most likely
won’t take a design into high-volume production while it still contains an
SDR, but you can optimize for cost later in the design cycle.

We’ve seen this before. For decades, digital logic was typically a hard-
wired affair. You’d grab a bunch of chips containing logic gates, wire them
together, and voilà: there’s your system. If performance or cost demanded,
you could even have a custom chip made (they’re called application-specific
integrated circuits, or ASICs). Then a new technology came and changed
everything. Engineers started prototyping with different types of program-
mable logic, going by questionably helpful abbreviations such as PLAs, PALs,
and PLDs. The most commonly used form today is the field-programmable
gate array (FPGA).

An interesting development occurred along the way. In certain cases,
engineers started realizing that the cost of the programmable solution
wasn’t so much higher than the fixed-function solution after all. In fact,
when factoring in the engineering hours required for designing the fixed-
function implementation, sometimes the programmable solution was cheaper.
And there was also the added benefit of being able to update the product’s
hardware functionality at any point in the production process and beyond—
even when the product was in the hands of customers.

Although this little history lesson has focused on digital logic, similar
programmable technologies now exist for analog circuitry too. One could
even consider 3D printers to be in the same vein: software-defined matter.

All of these technologies reduce design cycle times and get products out
more quickly. And while the earliest SDRs, FGPAs, and the like were pri-
marily used for prototyping, their more mature descendants are increas-
ingly finding their way into released products. This happens primarily in

xx Introduction

two circumstances. First, when time to market is critical, the additional
cost of incorporating one of these technologies may be acceptable. Second,
when you’re not making a large quantity of your product, it doesn’t make
sense to spend the engineering hours to optimize its cost.

How long will it take for SDRs to become ubiquitous in the market-
place? It’s hard to say for sure, but you might want to search for “RTL-SDR.”
In the past, this particular SDR design found its way into a number of con-
sumer products (mostly digital TV tuners), while radio hobbyists hacked
these products to turn them into extraordinarily low-cost devices for their
own experimentation.

This Book’s Approach
The goal of this book is not only that you’ll learn about SDR but also that
you’ll have fun doing it. The word fun comes from fundamentals; learning
how something works (for instance, a radio) makes that thing not only more
useful to you but also more fun to use. Learn the fundamentals of a topic,
then leverage them to have fun.

This book is designed for you to learn by doing. There won’t be a ton
of pages of dry exposition on electromagnetic theory and the mathemati-
cal underpinnings of signal processing. We don’t believe many beginners
to SDR are well served by a deep, formalized dive into these topics. To be
sure, the book will cover these topics, but in a different way than you would
encounter in an academic textbook: we’ll start with the simplest possible
concepts, pair them with actual SDR experiments, and then gradually build
on what you’ve learned to go progressively deeper. The intent is to provide
you with a functional understanding of the terms and concepts required to
build practical SDR systems, and we’ll always endeavor to not just tell you
those terms and concepts but actually show them to you hands-on.

Think of SDR as an onion. Each chapter of this book will peel back a
very thin layer of that onion (hopefully without any tears). Don’t worry if
you don’t fully grasp a topic in an early chapter; the concepts will be fleshed
out in greater detail as the book goes along and you work through more
projects. After a number of chapters, we think you’ll be pleasantly surprised
at how deeply you’ve traveled into the heart of the onion.

There’s one catch, however: learning by doing requires that you actu-
ally do the doing. Take the time (just a few minutes) to install the necessary
software, then follow along and work through the book’s examples so that
you can actively start playing with radios, both simulated and real.

What do we mean by simulated radios? It turns out that the primary SDR
software, GNU Radio, has the ability not only to control SDR hardware but
also to simulate the operation of a real radio without hooking up any hard-
ware at all. This simulation capability is the key to how we’ll incrementally
journey to the center of the SDR onion. Starting with simulations will allow
you to grasp ideas more quickly, without the complications of integrating
hardware and grappling with real-time radio data. Don’t worry, though—
we’ll get to hardware in later chapters.

Introduction xxi

Who This Book Is For
This book is written both for those who have no SDR experience and those
who have previously struggled to get off the ground with SDR. You may be a
tinkerer, an amateur radio enthusiast, or a student. Alternatively, you may be
an engineer who’s forgotten most of the radio theory you learned in school
and want a refresher. We just ask that you bring your curiosity to the subject.

The internet is useful for looking up information on just about any
topic, but sometimes it can take a while to assemble data from a vast array
of different websites into one cohesive mass of knowledge. We’ve had many
people tell us they could search the internet to find software for running
SDR hardware, but it wasn’t clear how the various components worked.
There was either “too much math” describing various SDR functions or too
little practical information. If that kind of frustration sounds familiar, this
book is for you. It won’t eliminate the need for you to do your own research
as your ambitions grow, but it will provide some of the fundamentals to
better grasp the fascinating world of SDR.

This book’s focus is on analog radios only. Building analog radios for
receiving broadcast signals or working with amateur radio is what many of
you reading this book will want to do, but the concepts covered are also cru-
cial for those of you interested in digital applications, like reverse engineer-
ing or information security. Digital radios are built on the same foundational
concepts as analog radios, so solidifying those concepts through simple ana-
log applications will help you transition to digital communication.

What You’ll Need
For the hardware-based activities in this book, we recommend using the
HackRF One SDR. It’s widely available, relatively affordable compared to
many professional-grade SDRs, and well supported by GNU Radio and other
open source software. If you possess a different SDR, such as a PlutoSDR or
LimeSDR, don’t worry: Chapter 9 outlines how to adapt the hardware projects
in the book to work with other common devices. You’ll also need an antenna
that you can connect to your SDR. For the purposes of this book, we recom-
mend the ANT500, but another antenna that can work with FM broadcast sig-
nals will also do. Many SDRs are sold bundled with a compatible antenna.

That said, you can start learning about SDR right away even if you don’t
have any hardware yet, since this book begins with simulated radios. Just
head over to Chapter 1 and start reading while you wait for your new SDR to
arrive. Because you can do so much with GNU Radio’s simulation capabili-
ties (and the input files we provide), you can actually learn quite a bit with
nothing more than your computer.

What’s in This Book
This book consists of three main parts. Here’s a breakdown of what you’ll
learn in each section.

xxii Introduction

Part I: Building a Basic Receiver teaches you just enough theory and
software to create your first SDR. You won’t use any SDR hardware yet but
rather will start out in a simulated environment. You also won’t necessarily
fully understand all the components of your radio and how they work at
this stage, but this first part lays the groundwork for deeper dives in later
chapters.

Chapter 1: What Is a Radio? ​  ​Defines what a radio system is at the
most basic level. You’ll learn what radio signals are and see how radio
systems use modulation and demodulation to transmit meaningful
information with those signals.

Chapter 2: Computers and Signals ​  ​Explores how radio signals are
sampled and digitized so that your computer can store and process
them. We’ll discuss analog-to-digital and digital-to-analog conversion
and highlight the importance of the sample rate in these processes.

Chapter 3: Getting Started with GNU Radio ​  ​Introduces GNU Radio
and its graphical user interface, GNU Radio Companion, the software
you’ll use throughout this book. You’ll install and test the software and
learn about its block-based interface for creating visual programs called
flowgraphs.

Chapter 4: Creating an AM Receiver ​  ​Walks you through the process
of creating a basic AM radio receiver using GNU Radio. You’ll test out
your receiver in a simulation by feeding it a file of previously captured
real-world radio data.

Part II: Inside the Receiver gradually unpacks the concepts and com-
ponents behind the radio built in Chapter 4, giving you a deeper under-
standing of how radios work and showing you how to build even better
radios in the process.

Chapter 5: Signal Processing Fundamentals ​  ​Takes a deeper dive into
three foundational concepts in signal processing: frequency, gain, and
filters. Through hands-on experiments, you’ll learn about the audible
spectrum, view the frequency components of signals, apply gain to
strengthen and attenuate signals, and use a variety of filters to isolate
different parts of a signal.

Chapter 6: How an AM Receiver Works ​  ​Circles back to the AM
receiver from Chapter 4. Armed with your new knowledge of signal pro-
cessing, you’ll take a closer look at each part of the receiver to under-
stand how it works and why you configured it the way you did. You’ll
also learn how the receiver is able to tune to different signals.

Chapter 7: Building an FM Radio ​  ​Shows you how to adapt your AM
receiver to work on FM signals (still simulated). In the process, you’ll
learn several tips for building cleaner and more powerful radios.

Part III: Working with SDR Hardware leaves the world of simulated
radio mostly behind and guides you through integrating SDR hardware
with your GNU Radio flowgraphs. You’ll find out how your SDR hardware

Introduction xxiii

works and gain a still-deeper understanding of signal processing, including
how signals are sent and received.

Chapter 8: The Physics of Radio Signals ​  ​Fills in more of the gaps
on the properties and propagation of radio signals. You’ll learn about
electromagnetic waves, understand the bandwidth of your signals, and
explore the ramifications of noise on your radio data.

Chapter 9: GNU Radio Flowgraphs with SDR Hardware ​  ​Walks through
the steps to modify your software FM radio from Chapter 7 to work with
real SDR hardware. You’ll finally test out your receiver on radio data you
capture yourself, in real time.

Chapter 10: Modulation ​  ​Details the three basic kinds of modulation:
amplitude, frequency, and phase. You’ll work through experiments
demonstrating each type as you learn how to avoid overmodulation,
adjust your modulator’s sensitivity, and more.

Chapter 11: SDR Hardware Under the Hood ​  ​Pulls back the curtain
on how SDR hardware is able to grab signals over the air and send them
to your computer (and vice versa). You’ll learn about IQ sampling, revisit
concepts like analog-to-digital conversion and gain, and get to know
some important specs to look for in an SDR.

Chapter 12: Peripheral Hardware ​  ​Discusses some of the practical
concerns around using SDR hardware, including what kind of antenna
you should use, what kinds of connectors and cables you need, and how
to mitigate noise.

Chapter 13: Transmitting ​  ​Outlines how to build an SDR transmitter
using FM modulation and highlights some of the practical and legal
issues behind transmitting. You’ll test your transmitter in a simulation
by connecting it to an SDR receiver.

Online Resources
To make your SDR learning experience as smooth as possible, all the neces-
sary project and input data files can be downloaded from this book’s web
page at https://nostarch.com/practical-sdr. Extract the contents of the down-
load into a convenient location on your hard drive because you’ll be using
the files frequently.

The contents of the compressed file are broken down by chapter, so you
can easily find the files you need as you work through the book. You’ll get
the most out of the book if you build each project from scratch as shown in
the book’s text, but the finished files are available as a reference in case you
run into trouble.

Each chapter typically contains one or more input data files in addition
to the completed projects. Thanks to these input data files, it’s possible to
work through most of the material in this book without needing access to
any SDR hardware.

https://nostarch.com/practical-sdr

PART I
B U I L D I N G A B A S I C R E C E I V E R

1
W H A T I S A R A D I O?

In this chapter, we’ll consider a very simple
model of a radio system. We’ll then expand

on that model by unpacking some of its
underlying concepts. By the end of the chapter,

you’ll have a general idea of what a radio is, what radio
signals are, and how modulation and demodulation
allow you to transmit information using radio signals.

A Simple Radio Model
At its simplest, a radio system is a pair of magic boxes that physically commu-
nicate through the air, without wires.

Consider a real-world example. You’ve probably played with a car radio at
some point. It picks up transmissions sent out into the air by a big radio tower
somewhere in the vicinity and turns those transmissions into sound. In other
words, this radio system includes a transmitter (the big tower), a receiver (the
car radio), and a transmission medium (air), as shown in Figure 1-1.

4 Chapter 1

Figure 1-1: A very simple radio model

As you can see, the transmitter is producing something and sending it
through the air to the receiver. But what’s that “something” moving through
the air? It’s a signal.

Signals
A signal is what happens when we change some kind of physical property to
convey information. Let’s consider some examples.

Imagine for a moment that you and a friend are working on the oppo-
site sides of a large, flat field. Also imagine that it’s nighttime and that every
so often your friend needs your assistance. In this rather contrived scenario,
your friend needs a way to communicate that you should cross the field to
help out. Imagine they do this by turning on a bright flashlight and point-
ing it across the field toward you. When you see the light in the darkness,
you know it’s time to come help.

Don’t ask why you don’t just use cell phones. That messes up the example.
In this simple thought experiment, your friend’s flashlight is the trans-

mitter, and your eyes are the receiver. Turning on the light generates a
change in a physical property (the light level) that your eyes (the receiver)
can interpret as information (“Come on over!”). Thus, when your friend
turns on the flashlight, they’re sending you a signal.

Another example of a signal is a message on an old-fashioned telegraph
system. The transmitter and receiver are connected by a wire. On one end of
the wire, a transmitter alternates between applying electricity to the wire and
then removing the voltage. On the other end of the wire, a receiver creates a
beeping tone when it senses an electrical current and is quiet when the cur-
rent goes away. Using Morse code, a system in which letters and numbers are
represented by different patterns of beeps and silences, the telegraph opera-
tors can send text messages to each other. In this case, the signals are based
on the changing physical property of electric current running through a wire.

Since this is a software-defined radio book, we’ll be most interested in
radio signals. You might recall from science class that radio signals are electro
magnetic in nature. This means that radio transmitters represent information
by changing the properties of electromagnetic waves. Don’t worry, though: you
don’t need to get into much math or physics to start working with SDR.

What information can you communicate using radio signals? It could
be several things:

•	 Sound, like the music or speech in an AM or FM radio broadcast

•	 Video, such as over-the-air television broadcasts

What Is a Radio? 5

•	 Control information, like the unlock command sent from your wireless
key fob to your car

•	 Data, such as the web traffic going between your Wi-Fi router and
your laptop

•	 And so much more!

Since these information types are themselves quantities varying over
time, each of them is a signal in its own right. Radio signals must then have
a clear relationship to the information contained within them. To under-
stand how radio signals can carry all these different types of information,
you’ll need to understand a little about modulation.

Modulation
Modulation is what makes it possible to transmit meaningful information
via radio signals. Essentially, modulation is a way of combining two signals
together by using some property of one signal to change some property of
the other. The first of these two signals is simply the information we’re try-
ing to communicate. It modulates, or changes, a second signal called the
carrier. The output of this modulation process is a signal that has character-
istics of both input signals, ready for transmission via a radio system.

It’s also possible to take a signal that has gone through the modulation
process and separate it back into its two original parts. This reverse process
is called demodulation. It’s what happens at the receiving end of a radio sys-
tem to turn a radio transmission back into meaningful information.

A Slightly More Complicated Radio Model
We now have enough information to return to our basic model of a radio
system and fill in some of the details. This time, we’ll think more specifi-
cally about a car’s AM radio dial. In fact, AM radio is the simplest kind of
radio around, and it’s a topic we’ll return to throughout the book.

Remember that our basic radio model began with a big transmission
tower. Imagine that at the site of the transmitter, there’s some audio that the
radio operator wants to broadcast. It could be music or someone’s voice. The
operator uses this audio signal to modulate a carrier signal assigned to
the radio station and then sends the resulting modulated signal out through
the air (there are some significant simplifications here). For the final step
in this process, a user turns the AM dial on their car radio to tune to the
desired station (hint: this tuning process will have something to do with that
carrier signal) and demodulates it to recover the original audio. This pro-
cess is shown in Figure 1-2.

6 Chapter 1

Figure 1-2: A less simple radio model

Notice that the carrier signal in the diagram is labeled 1,520 kHz. Short
for kilohertz, kHz is a unit of frequency, and this 1,520 kHz corresponds to
1520 on your AM radio’s dial. We’ll discuss frequency, one of the funda-
mental concepts in signal theory, in more detail later. For now, just consider
that the music coming out of your car radio hints at an important concept:
radio engineers have found a way to take sound and send it out to the world
on different radio frequencies.

More specifically, at the various AM channels on your dial, you have
sound somehow being transmitted, with different folks transmitting at dif-
ferent frequencies simultaneously. In Seattle, for example, there’s audio
flying around at 570 kHz, 1,150 kHz, 1,300 kHz, and many other AM fre-
quencies. All of the radio towers in the area are sending out their signals all
the time, but somehow it’s possible for you to listen to just one of them by
turning a knob. How is that?

Part of the answer is that radio receivers are capable of tuning, or focus-
ing in on just one signal at a time. Tuning is one of the most important
skills you’ll learn in this book, so rest assured that we’ll cover how it works
in depth before we’re done. In the meantime, let’s take a closer look at the
actual signals involved in AM radio broadcasts. This will get us closer to
understanding how a radio station can send sounds out into the world.

AM Radio Signals
As mentioned before, you can generally think of a signal as the variations
in some physical property over time to reflect information. Maybe it’s varia-
tions in air pressure that make up the sounds reaching your ears. Maybe
it’s the voltage on a wire that goes to your radio’s speaker. Maybe it’s the
electromagnetic intensity received by a radio antenna. Despite the wildly
different underlying physics of these signals, they all look similar on paper:
they’ll each have some kind of vertical axis representing the signal’s value
and a horizontal axis representing time. For example, Figure 1-3 shows what
the signal for a simple audio tone looks like when plotted on x- and y-axes.

What Is a Radio? 7

Figure 1-3: A simple audio tone

As time progresses, the signal in Figure 1-3 just keeps oscillating back
and forth for as long as the tone persists. You might recognize its shape
from a trigonometry class as a sine wave or sinusoid. Let’s assume that the
AM radio station operator wants to transmit this very simple sound.

Now let’s look at the AM station’s carrier signal, shown in Figure 1-4.
It’s actually similar to the simple audio tone; it just moves back and forth
a lot faster.

Figure 1-4: A carrier signal

8 Chapter 1

We now have an audio signal we want to send and a carrier frequency
that the radio station operates at. How do we send the audio signal using
the carrier signal?

Amplitude Modulation
This is probably a good time to mention that the AM in AM radio stands for
“amplitude modulation.” Amplitude refers to the strength of a signal (the
property shown on the y-axis of the signal diagrams you’ve been looking at),
so amplitude modulation means that we modulate, or change, the strength of
the carrier based on the strength of the audio signal. Specifically, we pro-
portionally reduce the strength of the carrier when the audio signal is low
and increase the carrier’s strength when the audio signal is high. Figure 1-5
shows a modulated signal based on the audio tone and carrier from the
previous two figures.

Figure 1-5: The carrier amplitude modulated by a simple tone

Notice first how the peaks and troughs of the modulated signal are the
same distance apart as the peaks and troughs of the carrier signal shown in
Figure 1-4. In this sense, the modulated signal is still closely related to the
carrier. But notice also how the heights of the signal’s peaks have changed
to take on the shape of the audio tone shown in Figure 1-3. You can actually
see the original audio signal imprinted on the shape of the carrier. That’s
amplitude modulation.

You might be wondering what this modulation process looks like for a
real-world audio signal, like a person talking or a band playing music. After
all, radio stations rarely just broadcast a simple tone. These more interest-
ing kinds of audio signals are much more complicated, as you can see in
Figure 1-6.

What Is a Radio? 9

Figure 1-6: A real-world audio signal

Even though this audio signal is more complicated than a simple musi-
cal tone, modulating it onto a carrier produces the same result: you can still
see the outline of the original audio signal on the modulated carrier, as
shown in Figure 1-7.

Figure 1-7: Amplitude modulation with voice audio

Demodulation simply reverses this process, allowing us to take a modu-
lated signal and extract the signal originally used to modulate the carrier.

Conclusion
You now have a very basic idea of what signals are, and you’ve seen how
modulation can use an audio signal to change the shape of a carrier signal.
You also know that demodulation can “undo” this. Later you’ll work on
actually building modulators and demodulators using GNU Radio, so you

10 Chapter 1

can see how modulation and demodulation fit into the structure of SDR
transmitters and receivers.

There are still a lot of unanswered questions: Why do we even need
a carrier? How do we choose the carrier frequency? What other kinds of
modulation are there? We’ll get to all those questions and more, but first
you need to understand how to work with signals using a computer.

2
C O M P U T E R S A N D S I G N A L S

The signals we examined in the last chapter
all looked like squiggly lines moving around

over time. This chapter answers the question,
“How do I get those squiggly lines into my com-

puter so my software can work with them?” We’ll take a
little excursion into the realm of digital signal processing,
a whole field of study dedicated to using computers to
capture, manipulate, and reproduce real-world sig-
nals. In particular, we’ll look at sampling, the process of
repeatedly measuring a signal.

We’ll only scratch the surface of digital signal processing in this chap-
ter, but that’s okay: you can start learning about SDR hands-on with just a
few concepts from this field under your belt.

12 Chapter 2

Digital Sampling
Sampling is really just measuring. Computers need numbers to work with,
and the sampling process consists of a series of measurements over time to
convert those squiggly, real-world signals into numbers. If you make those
measurements quickly enough and accurately enough, you’ll get a series
of numbers that reasonably represent the original signal. We call each of
those measurements a sample.

Consider a signal in the form of a voltage on a wire. What we need to
do is translate that voltage into a digital value that a computer can under-
stand. In other words, measure it! However, the voltage might change over
time: it could be 1.3 volts (V) one moment, –0.042 V another moment, and
110 V the next. To accurately represent this changing signal, we need to
keep measuring it (that is, keep taking samples), generating new digital val-
ues from those measurements for as long as we want to look at the signal.

Analog-to-Digital Conversion
The hardware that repeatedly samples a signal and translates those samples
into computer-readable values is called an analog-to-digital converter, or ADC
for short, because the real-world signals are considered analog and the
numerical measurements of them are considered digital.

Let’s look at an example to see how this works. Possibly the simplest sig-
nal you’ll ever encounter is a square wave. It alternates periodically between
two different values. In the case of the square wave shown in Figure 2-1, it
switches from 0 V to 3 V and back to 0 V, and it does so every second.

Figure 2-1: A square wave

Computers and Signals 13

When we feed this signal to an ADC, the ADC will take a series of mea-
surements, producing a steady stream of samples. Each of these samples
will be valued at 0 or 3, representing the voltage level of the signal at the
moment each sample is taken. Figure 2-2 shows a plot of the output sam-
ples, with each sample displayed as an individual dot.

Figure 2-2: A digitized square wave

As you can see, we have a series of dots, or samples, unfolding hori-
zontally across the diagram. Some of the dots are at 3, and some are at 0.
Connect those dots together, and you get a pretty good representation of
the original signal. Meanwhile, a computer would receive these samples as a
data stream or array with the following contents:

[0, 0, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, ...]

Now take a look at a sinusoid and its sampled version in Figure 2-3. You
may recall the discussion of sinusoids in Chapter 1. They’re an important
waveform type with unique properties that are useful for SDR work. Get
used to seeing them.

14 Chapter 2

Figure 2-3: Analog and digitized sinusoids

The smooth oscillations of the sinusoid are a good illustration of the
continuous nature of analog signals, which an ADC breaks up into a collec-
tion of discrete samples. Even so, look at the dots in the lower half of the
figure, and you can still kind of make out the shape of the original sinusoid.

Just so you don’t think ADCs are limited to artificial signals, Figure 2-4
shows a more arbitrary waveform, similar to the audio snippet you saw
in Chapter 1.

Computers and Signals 15

Figure 2-4: Analog and digital views of an arbitrary waveform

In this case, the number stream the computer receives would be
roughly as follows:

[+0.4, +0.2, +0.1, 0, -0.2, -0.5, -0.9, -1.2, -1.2, ...]

While you can still more or less see the original arbitrary waveform in the
sampled version, some of the nuances of its shape have been lost. We’ll dis-
cuss why in a moment.

16 Chapter 2

Digital-to-Analog Conversion
We can also flip the ADC process around and convert digital (computer)
values to analog (real-world) values. The device that does this is unsurpris-
ingly called a digital-to-analog converter, or DAC. A DAC is what makes it pos-
sible, for example, to plug in your headphones and listen to a song stored
on your computer’s hard drive. The DAC takes the digital information from
the audio file and converts it into a real-world signal that can be played
through your headphones.

In summary, an ADC measures signals in the real world and translates
them into a form your computer can understand. The DAC does the oppo-
site, allowing you to take the values your computer comes up with and send
them out as a real-world signal. As you probably expect, a lot of details are
missing in this simple description. We haven’t discussed precision, noise,
anti-aliasing filters, binary storage, and so on. We’ll get to some of these
concepts in later chapters. The one thing we do want to cover a bit more at
this stage, though, is the sample rate.

Sample Rate
The sample rate (sometimes called sampling rate) is the number of times
per second you take samples (that is, make measurements) of a signal.
Conversely, the amount of time that passes between each individual sample
is called the sample period (or sampling period). Take a look back at the sam-
pled signal diagrams we just discussed. The horizontal distance between
one dot, or sample, and the next represents the sample period. Count up
the number of dots per second, and you get the sample rate.

Think of the sample rate as how fast you tell the ADC to make measure-
ments of the signal. The higher the sample rate (and the shorter the sample
period), the better your computer representation of the signal will be. On
the other hand, the more samples you take per second, the more data you’ll
end up with, meaning you’ll need more storage space and processing power
to handle it. Also, your hardware will be limited with respect to how fast you
can sample.

The most important question, then, is “How fast should I sample my
signal?” To answer, first look at Figure 2-5, where a sinusoidal waveform has
been sampled at a relatively high sample rate.

Computers and Signals 17

Figure 2-5: A digitized sinusoid with a high sample rate

See how the original continuous signal is visible even to the naked eye?
When your computer receives this data stream, it will have a faithful repro-
duction of the original signal. In fact, the sampling in Figure 2-5 is actually
many times faster than necessary for this particular signal, but we’ve exag-
gerated it for clarity of visualization.

On the other hand, Figure 2-6 shows what happens when we sample
much more slowly. Compare the continuous waveform (top) with the sam-
pled one (bottom).

Figure 2-6: A digitized sinusoid with a low sample rate

18 Chapter 2

You can’t really see the original signal anymore, can you? It’s because
we’re sampling so slowly that we’re missing things. By slowly, we don’t mean
that the sample rate is slow in an absolute sense, but that it’s slow relative
to the signal we’re trying to sample. The sample period is so long that the
quickly changing signal moves around too much between successive sam-
ples. In between each pair of samples, we essentially lose track of the signal.

Here’s one way to think of it: Imagine you’re standing in a room with a
very active cat. It likes to pace around in a big circle, but it somewhat ran-
domly changes direction. For the sake of illustration, let’s say the cat can
stroll through a complete circuit of the room in 10 seconds at its very fast-
est. But sometime within those 10 seconds, the cat might slow down or turn
around and start strolling the other way; in fact, it might change speed or
direction several times.

Now imagine that someone turns off the lights. Then that same some-
one starts flipping the light switch up and down. Every second, they flip it
on for an instant and then back to darkness. The result of all this is that
every second you get a brief glimpse of where the cat is located. In other
words, you have a sample rate of one sample per second. Since the light is
flickering fairly quickly relative to the slow cat, you have a pretty good idea
of the cat’s motion. Even when it changes direction or speed, you can be
sure you know where the cat is and where it has just been. It just doesn’t
move fast enough to escape being observed in the flickering light.

Next imagine that the time between light flickers increases significantly.
Now the light switch only toggles to give you a view of the room every
60 seconds. Under these conditions, do you think you’d have any idea how
the cat is moving? In between those rare flashes of light, the cat could be
doing anything: switching direction, speeding up, slowing down. When you
“sample” the room too slowly relative to the speed of the cat, you have very
little idea of what the cat is doing.

A similar phenomenon is happening with our undersampled sinusoid in
Figure 2-6. We’re sampling it too slowly relative to the speed of the signal,
and we’re missing changes in the signal as a result.

Here’s the most important takeaway from this discussion: sample fast
enough, or you’ll get bad data. How fast is fast enough? Answer: you need to
sample significantly faster than the signal you’re trying to measure.

Assuming the signal isn’t a simple sinusoid, how do we know how fast
it is? Another great question. Don’t worry, we’ll address this in the coming
chapters.

SDRs from 50,000 Feet
Now that you’re armed with a basic understanding of analog-to-digital and
digital-to-analog conversion, you can begin to understand how an SDR
works. Figure 2-7 shows a simple model illustrating how an SDR and a com-
puter can receive radio signals.

Computers and Signals 19

Figure 2-7: A simple SDR receive model

Your receiving antenna picks up some radio signals, an ADC translates
them into a stream of numbers your computer can understand, and the
computer then processes the number stream to make sense of the signals.
On the transmit side, your computer generates a digital version of a signal,
a DAC translates the signal to analog, and then the transmitter portion
of the SDR sends that signal to the world through the transmit antenna.
Figure 2-8 gives you a view of that.

Figure 2-8: A simple SDR transmit model

These models leave out a lot of details, but they’re a good starting point.
The key is that we have a computer at the root of both block diagrams, one
that you can reprogram to do almost anything you can imagine. You can:

• Extract audio from radio signals and play it back through your speakers

• Capture raw radio data to a file so that you can analyze it later

• Change the SDR’s programming so that you can transmit or receive
completely different types of signals whenever you need to

• Find mysterious signals and reverse engineer them

This list only scratches the surface of what your computer can do in tandem
with an SDR and digital sampling.

Conclusion
In this chapter, you learned how an ADC can take a real-world signal and
translate it into information a computer can use. It does this by taking lots
of individual measurements, or samples, of the signal. You also learned that
a DAC performs a similar process in reverse. You discovered the importance
of the sample rate: by sampling fast enough, you ensure that you capture
the faster-moving parts of a signal. Finally, you saw how ADCs and DACs are

20 Chapter 2

essential to the world of SDR: they allow your computer to take in and send
out radio signals.

But enough theory. It’s time to start learning by doing! In the next chap-
ter, we’ll start digging into GNU Radio, the powerful software we’ll use for
capturing and processing radio signals using SDRs. GNU Radio will lie at the
heart of the computer block in this chapter’s block diagrams.

3
G E T T I N G S T A R T E D W I T H

G N U R A D I O

It’s finally time to start playing with GNU
Radio, a free and open source collection of

software capabilities that support radio design
graphically as well as through traditional text-

based coding. In this chapter, you’ll install GNU Radio
and test it out by creating and running a few simple
flowgraphs. These are programs built using GNU Radio’s
graphical user interface, GNU Radio Companion. You’ll
learn how to get data into and out of your flowgraphs
and how to manipulate that data, all using a simple,
block-based interface. You’ll see how GNU Radio lets
you create new radios almost entirely in software.

22 Chapter 3

Installing GNU Radio
Once upon a time, and by that we mean way back in the 2010s, installing
quality SDR software required quite a bit of time and effort. Fortunately,
those days are behind us, and due to the inexorable progress of open
source software and the incredible efforts of its contributors, you’ll be up
and running with GNU Radio in no time.

First, a word about your computer’s operating system. For many years,
the best advice for running GNU Radio was to use Linux, the operating
system (OS) on which GNU Radio was developed. Installation on Linux
was easier and more dependable than on systems running another OS.
Fortunately, there are now much more reliable ways to install GNU Radio
on Windows and macOS computers. The installation process differs
depending on your OS, so we’ll discuss each option separately.

Linux
The specific Linux distribution we recommend for installing GNU Radio
is Ubuntu, and for the purposes of this book, we’ll be using Ubuntu 24.04
LTS. GNU Radio will also work on numerous other versions and distribu-
tions of Linux, but we won’t cover all of the possibilities here. You can find
installation help for other distributions on the GNU Radio website (https://
www​.gnuradio​.org).

To install GNU Radio in Ubuntu, simply open a terminal window and
enter the following commands:

$ sudo apt update
$ sudo apt -y upgrade
$ sudo apt -y install gnuradio

You’ll need to enter your password for the first of these commands if you
haven’t done so recently.

And that’s it! You’re now ready to start using GNU Radio.

Windows and macOS
The best way to install GNU Radio on Windows or macOS is to use radio-
conda. Rather than install the software natively, or directly, on your com-
puter, radioconda creates a virtual environment containing everything you
need to run GNU Radio. It’s derived from Conda, a more general system
for managing Python virtual environments.

To get started, download the latest radioconda installer from the proj-
ect’s GitHub page and execute it on your computer. Once installed, you
simply need to switch from your computer’s native environment to the vir-
tual environment by activating radioconda. You can then run GNU Radio

https://www.gnuradio.org
https://www.gnuradio.org

Getting Started with GNU Radio 23

in this new environment and, if necessary, deactivate it when done. Don’t
worry if you haven’t worked with virtual environments before; activating
and deactivating are all you’ll need to do.

The specific steps on how to install and use radioconda can change
over time, so see the latest instructions on the GNU Radio website or visit
https://www​.factorialabs​.com​/install.

A Virtual Machine
Another option for running GNU Radio on non-Linux computers is to use
a virtual machine (VM). With commercial software from companies such as
VMWare or Parallels, or with open source software like VirtualBox, you can
run an instance of Ubuntu virtually on your Windows or macOS machine.
To do this, you first must create the VM per your virtualization software’s
instructions. Then, once you’ve logged into the Ubuntu VM, follow the
instructions outlined in “Linux” on the previous page to install GNU
Radio. This approach can be a bit trickier and can have a negative perfor-
mance impact, so unless you have a strong reason for doing otherwise, we
recommend starting with the radioconda approach.

GNU Radio Companion
Now let’s take a moment to explore some of the key features of GNU Radio
Companion, the graphic user interface (GUI) for GNU Radio. Rather than
writing programs in languages such as C++ or Python, with a host of text
files containing such things as if statements and while loops, GNU Radio
Companion lets you build programs graphically by linking together dif-
ferent blocks. Because of the way data flows from block to block, these pro-
grams are called flowgraphs.

N O T E The rest of this chapter is written from the vantage point of a Linux user. You’ll need
to enter the appropriate command for Windows or macOS (as shown on the install
web page) if you’re using either. Additionally, there will be minor differences in the
appearance of the user interface on non-Linux systems.

Start up GNU Radio Companion from a terminal window by entering
the gnuradio-companion command.

A split second later, you’ll see a window like Figure 3-1. We’ve anno-
tated the figure to highlight the major parts of the GNU Radio Compan
ion interface.

https://www.factorialabs.com/install

24 Chapter 3

Figure 3-1: The GNU Radio Companion interface

The menu on the right side of the window lists all the blocks available
for use in your flowgraphs. To actually make a flowgraph, you’ll drag blocks
from the list into the workspace, the main part of the window. Then you’ll
connect the blocks in whatever way you choose. Within the workspace,
you’ll also configure each of the blocks depending on the particular needs
of your flowgraph. You’ll use the icons in the toolbar across the top of the
window to open, close, save, and run your flowgraphs. The console at the
bottom of the window displays any warnings or errors.

Figure 3-2 shows an example of a flowgraph with several connected
blocks. Throughout this book, you’ll be working your way toward creating
this kind of flowgraph.

Getting Started with GNU Radio 25

Figure 3-2: An example flowgraph with blocks and connections

Of the many different types of blocks available in GNU Radio Com-
panion, perhaps the most important are sources and sinks. These are the
blocks that allow you to get data into and out of your flowgraphs.

Sources
Source blocks insert streams of data into your flowgraph. Remember the
analog-to-digital examples in the last chapter, where long sequences of num-
bers streamed out of the analog-to-digital convertor? You can inject streams
of radio data just like that into your flowgraph, from your SDR hardware,
using an SDR source block. This is perhaps the most important type of
source, but you won’t be working with those until later in the book. For now,
you’ll focus on several source blocks that don’t require any hardware.

26 Chapter 3

A File Source block, for example, gets its data from a selected file on
your computer. For the purposes of this book, we’ve generated a data file
that simulates the behavior of real SDR hardware. Throughout the first part
of this book, you’ll use File Source blocks to stream this data into your flow-
graphs for processing. This way, you can learn the basics of SDR much more
easily, without worrying yet about the nuances of the hardware.

Another key block you’ll use is the Signal Source, which generates pure
sinusoids as well as other synthetic signals and injects them into your flow-
graph. The Constant Source is even simpler, creating a stream of numbers,
each one identical to the next. You’ll soon see why these kinds of source
blocks are useful.

Sinks
The counterparts to the source blocks are sink blocks, the outputs of your
flowgraphs. Data flows into your flowgraph via sources and exits your flow-
graph via sinks. Sink blocks that send data to SDR hardware for radio trans-
mission are a crucial type, but like source blocks, not all sink blocks require
special hardware. For example, you can send data to an Audio Sink, which
drives your sound card, to hear what it sounds like. Or you can capture the
data your flowgraph produces and save it for later using a File Sink.

Although many of the sink blocks have source block counterparts, one
special type of sink block does not. These are the instrumentation blocks that
allow you to visualize your flowgraph’s data in real time using a number of
different techniques. In a moment, you’ll create your first flowgraph, and it
will include one of these instrumentation blocks as the output.

Hello, SDR!
As a “Hello, world!”–type introduction to GNU Radio, your first flowgraph
will generate and display a constant signal. As you create this simple proj-
ect, you’ll learn a number of crucial concepts about how to build and run
flowgraphs.

You should already have a blank flowgraph open in GNU Radio Compa
nion, as this is the default behavior when you start it the first time. If not,
create a new one by clicking FileNewQT GUI or using the ctrl-N
keyboard shortcut. You’re now ready to start creating your first SDR
masterpiece!

Adding Blocks to a Flowgraph
It’s possible to hunt through the complete list of 100+ blocks until you find
the one you want, but it’s much easier to find blocks using the search func-
tion, at least when you know part of the name of the block you’re looking
for. To access the search function, click the magnifying glass icon near the
right end of the toolbar. It’ll bring up a search box at the top of the list of
blocks, as shown in Figure 3-3.

Getting Started with GNU Radio 27

Figure 3-3: The search button and search box

Our goal for this flowgraph is to build a stream of unchanging numbers
and then display them graphically. The Constant Source produces a stream of
numbers with a constant value, so you’ll start by adding one of these to your
project. Click the search button (or use ctrl-F) and type constant into the
search box. With each character you type, the block list is filtered accord-
ingly. After you type a few characters, you’ll see Constant Source at the top of
the list. Click the block name and drag it into your workspace, as shown in
Figure 3-4.

Figure 3-4: Adding the first block to the flowgraph

28 Chapter 3

Although it’s not necessary, it’s a good idea to drag the Constant Source
block to the left side of the workspace. By convention, flowgraphs are read
from left to right, with source blocks appearing on the far left and sink
blocks appearing on the far right.

Next, add a Throttle block to the right of Constant Source. For now, we
won’t get into the details of what this block does, but just know that it pre-
vents your computer from running much faster, and consequently hotter,
than necessary. Use your newly acquired search button skills to replace the
search box text with throttle, and double-click the Throttle block to place it
in the workspace.

The last block to add to your flowgraph is the QT GUI Time Sink. This
is one of those instrumentation blocks that will allow you to visualize the
digital data stream in your flowgraph. Modify the search box text to qt gui
time s (capitalization doesn’t matter) and select the block. Your workspace
should now look like Figure 3-5 (note that from now on, we’ll usually show
only the workspace portion of GNU Radio Companion, not the entire inter-
face in the figures).

Figure 3-5: The flowgraph with three blocks

Don’t worry if the blocks aren’t in exactly the same positions as they are
in the figure. Positioning won’t affect how the flowgraph functions. If you
do want to move your blocks around, however, you can do so by clicking and
dragging them. While it won’t affect functionality, it’s a good habit to orga-
nize your flowgraph neatly so it’s as easy as possible to see what’s going on.
Having the blocks haphazardly strewn about the workspace is a lot like writ-
ing source code with randomly indented lines: it’s not great.

Getting Started with GNU Radio 29

Connecting Blocks
The next step is to connect the blocks together so that data can flow from
the source to the sink. First, connect Constant Source and Throttle. Click the
port on the right side of the Constant Source block labeled Out, then click
the port on the left side of the Throttle block labeled In. Did you see the
connection appear? This is how you’ll make all the connections in your
flowgraphs: by clicking from the output port of one block to the input port
of another.

Notice that the connection isn’t just represented with a line. There’s
also an arrow to show the direction of data flow. In this case, the data is
flowing out of the source block.

Finish your flowgraph by connecting the right port of the Throttle block
to the sole tab of the QT GUI Time Sink. When you’re done, you should have
something like the flowgraph in Figure 3-6.

Figure 3-6: The completed flowgraph

You’ve just built your first flowgraph. Congratulations!

Saving and Running the Flowgraph
Just like you would any document you edit on a computer, you need to save
the file containing your flowgraph. Click FileSave or press ctrl-S and
then save the file as source_sink.grc using the dialog that comes up. Finally,
it’s time to run the flowgraph. Click the Execute icon on the toolbar, as
shown in Figure 3-7.

30 Chapter 3

Error indicator Execute

Console

Figure 3-7: The Error indicator and Execute buttons

If there are errors in your flowgraph, the Execute button will be grayed
out. Also, some part (or parts) of the flowgraph will be colored red, which
will help you figure out which block (or blocks) is the culprit and how to fix
it. After a moment of computation, GNU Radio Companion will bring up a
display window showing you a constant waveform with a value of 0, as shown
in Figure 3-8.

Figure 3-8: The output from your first flowgraph

Getting Started with GNU Radio 31

Take a moment to gaze upon the beautiful waveform. If the display
window is smaller than you prefer, feel free to click and drag a corner of
the window to resize it. When you’re ready, close the window by clicking the
X in the upper-right corner. Closing the display window also terminates the
execution of the flowgraph.

Changing Block Properties
A line at 0 isn’t too exciting, is it? To make your flowgraph marginally
more interesting, you can modify the Constant Source. To change a block’s
behavior, double-click the block and update its properties, so go ahead
and double-click Constant Source and then change the value of the Constant
property to 3.14. If it looks like Figure 3-9, click OK.

Figure 3-9: The Constant Source properties window

The flowgraph will now look the same as before, but with one excep-
tion. Notice how the rendering of the Constant Source block in the workspace
has changed to reflect the new value, as shown in Figure 3-10. GNU Radio
Companion blocks typically re-render in the workspace to show what prop-
erties are currently set within the block. This makes it much easier to see
what your flowgraph is doing without having to click into each block to see
its properties.

32 Chapter 3

Figure 3-10: The modified flowgraph with a new Constant Source value

Execute the flowgraph again, and you’ll see the window shown in
Figure 3-11.

Figure 3-11: The modified flowgraph output

You modified the Constant Block, but the output doesn’t look any differ-
ent. What happened? Well, one problem is that you’re zoomed in too much
to see the line at 3.14. Zoom out by scrolling up with your mouse wheel
until you see a second line, as shown in Figure 3-12.

Getting Started with GNU Radio 33

Figure 3-12: The modified flowgraph output, zoomed out

The output has changed as expected, with a constant line drawn at 3.14.
Well, sort of. The line at 3.14, called Signal 1, makes sense, but what’s this
other line called Signal 2, and why is it at 0? The short answer is that you’ve
just had your very first complex number sighting in GNU Radio. Unlike the
typical numbers we deal with in everyday life, complex numbers have two
parts, and you’re seeing both of them here. We’ll run into complex num-
bers again before long, but for now we don’t need to dive into them any
deeper.

Between Input and Output
You’ve seen how to get data into your flowgraph with source blocks and how
to get it out with sink blocks. What do you do in between? The short answer
is math! Most of the other blocks in GNU Radio Companion are devoted to
performing mathematical operations to modulate, demodulate, filter, or
otherwise manipulate signals as they move from input to output. To get a
feel for how it works, update your flowgraph so that the constant signal is
modified by a mathematical function.

Click FileOpen to open your source_sink.grc file (if you don’t still have
it open). Then click FileSave As and resave it as simple_multiply.grc. Next,
type multiply into your search window and double-click the Multiply Const
block to add it to your flowgraph.

This block provides one of the simplest mathematical functions pos-
sible between your source and sink: it multiplies the incoming signal by a

34 Chapter 3

constant value and outputs the result. Before you can use it, however, you
need to eliminate the connection that already exists between Throttle and
QT GUI Time Sink. Right-click the line connecting the two blocks, and select
Delete from the context menu. Alternatively, you can left-click the connec-
tion to select it and then press delete.

With the old connection out of the way, connect the Throttle output to
the input of the Multiply Const and the Multiply Const output to the QT GUI
Time Sink input, as shown in Figure 3-13. You can make the connections in
any order.

Figure 3-13: A simple flowgraph with multiplication

By default, Multiply Const multiplies the incoming data by a con-
stant value of 1. Change the multiplier to 2 by double-clicking the block
and updating the Constant property. The window should then look like
Figure 3-14.

Getting Started with GNU Radio 35

Figure 3-14: The Multiply Const window

After clicking OK, run the flowgraph again. You’ll need to zoom out
even more (remember to scroll up), but when you do, you’ll see that the new
value of Signal 1 is twice the previous one, as shown in Figure 3-15.

Figure 3-15: The output of the multiply flowgraph

36 Chapter 3

Multiplying by two isn’t exactly rocket science, but it illustrates an
important point: between the input and output, all you’re really doing is
math. Before long, you’ll be packing all sorts of interesting things between
your sources and sinks.

Conclusion
At this point, you’ve got a very basic understanding of how to use GNU
Radio Companion. This includes how to add blocks to a flowgraph as well
as how to connect and configure them. You can delve much deeper into the
capabilities of GNU Radio Companion, but you know enough right now to
build your first radio. So let’s do it!

4
C R E A T I N G A N A M R E C E I V E R

In this chapter, we’ll dive right into build-
ing your first software-defined radio: an

amplitude-modulated (AM) receiver. Like an
AM car radio, it will be able to take in AM radio

signals and convert them to listenable audio. Rather
than work with live radio signals, however, we’ll test out
the radio with a file containing captured radio data.
This way you won’t have to worry about any hardware
just yet.

At this early stage of your SDR journey, there are two main things you
need to learn: how to use GNU Radio Companion and the theory behind
how SDRs are built. This chapter will focus on the former. As such, for
now, we’ll mostly gloss over the radio theory behind the receiver we build.
Without this theory, some of the steps you take may not make sense yet, and
it may feel like you’re following a rote set of instructions, almost like build-
ing a model airplane. Rest assured, though: the intention is not to give you

38 Chapter 4

simple cookbook instructions and send you on your way. We’ll keep coming
back to this project in the next few chapters to dig into the details of how
the AM receiver, and radios in general, work.

Open up GNU Radio Companion and let’s get started!

Setting Up the Variables and Entries
Create a new flowgraph by clicking FileNewQT GUI or by pressing
ctrl-N. This will bring up a mostly empty starting flowgraph with just two
blocks already in the workspace. Every new flowgraph starts with both of
these blocks. The first is the Options block, which contains some basic docu-
mentation and settings for the flowgraph. The other is a Variable block,
representing the variable called samp_rate. In general, you’ll employ these
Variable blocks to store values used throughout the flowgraph, just like
defining variables in text-based programming languages like C or Python.
As you might guess, this particular variable has something to do with the
sample rate for the flowgraph.

Although not strictly necessary, it’s good practice to add some basic
information to the Options block. Double-click the block and then change
the Title to AM Receiver and the Description to My first AM radio receiver.

Next, add a QT GUI Entry block to the flowgraph, as shown in Figure 4-1.
(Remember, you can find new blocks using ctrl-F and the search box.)

Figure 4-1: Adding a QT GUI Entry

Like a Variable block, a QT GUI Entry stores a value for use through-
out the flowgraph. Unlike a Variable block, however, you can change a QT
GUI Entry block’s value in real time while the flowgraph is running. We
tend to put our Variable and QT GUI Entry blocks together at the top of the
flowgraph, but this isn’t necessary. The flowgraph will function the same
regardless of the position of the blocks in your workspace.

Double-click the new QT GUI Entry block to bring up its properties window.
Change the ID to freq and the Default Value to 880e3. This is exponential
notation for 880,000. It’s a common programming-language way of render-
ing 880 × 103. You can think of the value after the e as the number of zeros
that GNU Radio Companion will add to the end of the number before the e.
Exponential notation is especially useful for large numbers, making them
much easier to read. For instance, 600000000 is not as clear at first glance as
600e6. Remember this notation. You’ll be using it a lot.

There’s just one problem with what you’ve typed: if you click the Apply
button, you’ll see an error at the bottom telling you that the Default Value
is invalid, as shown in Figure 4-2.

Creating an AM Receiver 39

Figure 4-2: The QT GUI Entry error

The problem here is related to data types. You learned that flowgraphs
can be thought of as numbers flowing out of sources, through blocks, and
into sinks, but you haven’t learned anything about what kind of numbers
those are. Just as in programming languages like Python, Java, or C++,
there are different types of data in GNU Radio Companion. As you can see
on your screen (and in Figure 4-2), the Type property of the QT GUI Entry
block is set to Integer, meaning it can accept positive or negative numbers
without a decimal point, like 17 or -1293. It turns out, however, that exponen-
tial notation produces a floating point–typed value: a number with some
digits after the decimal point, such as 3.14159 or -8.9. To make the Type of
the QT GUI Entry compatible with the Default Value we’ve given it, click the
pull-down menu containing Integer and instead select Float. Then click
Apply, and the error should go away, as shown in Figure 4-3.

40 Chapter 4

Figure 4-3: The corrected QT GUI Entry block

Click OK and note that the rendering of the block in the workspace
changes to reflect the value you’ve entered. This is useful because even as
our radio flowgraph gets progressively more complicated, you can see a lot
about how it works from a top-level view, all at a glance.

Next, you’ll add a second QT GUI Entry with a different ID and Default
Value. Instead of adding it like before, though, you can simply copy and
paste the first one by clicking the existing QT GUI Entry and pressing ctrl-C
(or selecting EditCopy from the menu bar), followed by ctrl-V (or
EditPaste). Notice that the new block appears with freq_0 as its ID, as
shown in Figure 4-4.

Figure 4-4: Copying the QT GUI Entry block

Creating an AM Receiver 41

Double-click the new block and set its ID to center_freq with a Default
Value of 900e3. Because you copied the block, it already has its Type set to
Float. When you’re done, your flowgraph should look like Figure 4-5.

Figure 4-5: The second QT GUI Entry, configured

Notice that we’ve moved the new QT GUI Entry up to the top with the
other blocks. Again, you may find it useful to keep all the Variable and
QT GUI Entry blocks together at the top of the flowgraph.

Adding a Source of Radio Data
Next, we’ll add a source block to bring radio data into the flowgraph. First,
grab a File Source block and add it to the workspace. This will allow you to
use a file as the radio data input to the flowgraph, so you won’t require any
SDR hardware. The file contains actual raw radio data that an enterprising
SDR aficionado captured from the airwaves and stored for later use. If
you were building a fully working radio, you’d use a different source block
instead of the File Source. This alternative source would interface with your
SDR hardware and provide real-time radio data to your flowgraph.

As before, double-click the newly placed block to set up its properties.
In the File selection, click the three dots, then navigate to the location of
the project files you downloaded earlier from https://nostarch.com/practical​
-sdr. Select the one named ch_04/am_ broadcast_02_c900k_s400k.iq. You’ll
see a warning in the lower portion of the properties window telling you that
a port isn’t connected, but you’ll fix that in a moment, so don’t worry about
it. At this point your property window should look similar to Figure 4-6.
Click OK to return to the workspace.

https://nostarch.com/practical-sdr
https://nostarch.com/practical-sdr

42 Chapter 4

Figure 4-6: The File Source block properties

Now’s a good time to save the project, so press ctrl-S or select File
Save. We can give it any legal Linux filename, but let’s use first_am_rx.grc
(rx is shorthand for receiver). When working on your flowgraphs, remember
to save early and often.

N O T E 	 From now on, we’re going to assume you know how to search for blocks and add them
to the design. We’ll also assume you know how to bring up the properties listing for
a block and change the relevant values. As such, we’ll stop spelling out each step of
these processes.

Processing the Signals
The next several blocks we’ll add will work together to process the radio
signal from the File Source. Again, in this chapter we won’t focus much on
the details of what these blocks are doing or how exactly they work; we’ll
explore those questions later in the book. For now, our concern is building
a working flowgraph.

First, place a Signal Source block into your workspace. You’ll use this to
generate an infinitely repeating sequence of values representing a sinusoid.

Creating an AM Receiver 43

In the block’s properties, you’re going to do something a little different: for
the Frequency property, you aren’t going to enter a simple number. Instead,
type center_freq - freq, as shown in Figure 4-7.

Figure 4-7: The Signal Source properties

Can you see what you just did here? Instead of entering a fixed number
for a property, you can enter variables. And not just variables, but math-
ematical expressions involving multiple variables. In fact, as you’ll see later,
you can enter almost any legal Python expression as a property for a block
and it will work. This will turn out to be very useful.

In this case, you’re setting the frequency of the Signal Source using the
two QT GUI Entry blocks you created. Specifically, you’re subtracting the value
of the block with ID freq from the value of the block with ID center_freq.
Notice that when you click OK and go back to your workspace view, you
don’t see the math expression you just typed, but simply the number that
results from it, as shown in Figure 4-8.

44 Chapter 4

Figure 4-8: Adding the Signal Source

In the workspace, the Signal Source frequency is listed as 20k, or 20,000.
This is equal to the center_freq default value of 900e3 (900,000) minus the
freq default value of 880e3 (880,000).

Next, place a Multiply block in the workspace and connect its inputs
to your two sources (make sure you don’t grab the wrong block, since
there are a lot with the word Multiply in them). Remember how to connect
blocks? Simply click the output port of the first block (in this case, one of
the sources) and then click an input port of the second (in this case, the
Multiply block). Clicking in reverse order also works. But which ports are
the Multiply inputs? If you look closely at the text inside the tabs, you’ll see
that two of them say in0 and in1. That’s them! In general, the inputs will
be on the left and the outputs on the right, but sometimes blocks will be
rotated and this will no longer be true. When you’re done, the flowgraph
should look like Figure 4-9.

Creating an AM Receiver 45

Figure 4-9: Adding and connecting the Multiply block

As you add and connect more blocks, it’s good to take a moment here
and there to tweak the positioning to tidy up your flowgraph. Just click and
drag the blocks where you want them to go. As you do so, notice that the
connections you’ve made are sticky and will follow your blocks wherever you
drag them. This neatening process isn’t required but can make your flow-
graph much easier to read.

Next, add a Low Pass Filter block, setting the Cutoff Freq to 5e3 and the
Transition Width to 1e3, as shown in Figure 4-10. Leave all the rest of the
properties alone.

46 Chapter 4

Figure 4-10: The Low Pass Filter properties

Filters like this block remove or reduce certain frequencies from a sig-
nal. They’re an extremely important concept that we’ll explore in detail
in Chapter 5. Connect the Low Pass Filter input to the Multiply output. You
should now have a workspace similar to Figure 4-11.

So far, here’s what’s happening in the flowgraph: the File Source block
brings in data, which is then processed using the other three blocks (the
Signal Source, Multiply, and Low Pass Filter). As we’ll discuss in Chapter 6,
these three blocks comprise the AM radio’s tuner. They’re what will allow
you to focus in on individual radio channels within the source data.

Creating an AM Receiver 47

Figure 4-11: Adding the Low Pass Filter block

At this stage, the Low Pass Filter block’s label should be red, while the
other block labels are black. This happens because GNU Radio Companion
actively checks your flowgraph for errors as you build it, and any blocks with
illegal conditions have their title displayed in red text. The illegal condition
in this case is that the Low Pass Filter block’s output isn’t hooked up to any-
thing. Other common illegal conditions include missing or invalid proper-
ties or multiple outputs connected to the same input.

Now place an AM Demod block and set its Channel Rate to samp_rate and
its Audio Decimation to 1, as shown in Figure 4-12.

48 Chapter 4

Figure 4-12: The AM Demod block properties

The AM Demod block will demodulate the incoming radio signal, extract-
ing a human-understandable audio signal from it. We’ll explore how its
settings work in Chapter 6. Connect its input to the Low Pass Filter output,
as shown in Figure 4-13.

Creating an AM Receiver 49

Figure 4-13: Adding the AM Demod block

If you’re following along on your computer, notice that the input port
of the AM Demod block is blue, while its output port is orange. This is sig-
nificant: the colors represent the type of data that flows into or out of the
block. Orange ports mean floating-point numbers are flowing, while blue
ports mean complex numbers. This is definitely not the right time to get
into complex numbers, so for now, just be aware that connections can only
be made between ports of the same color.

Next, place a Rational Resampler block and set its Interpolation to 32 and
the Decimation to 400, as shown in Figure 4-14.

50 Chapter 4

Figure 4-14: The Rational Resampler properties

The Rational Resampler block will adjust the sample rate of the audio
signal so that your sound card can play it. Connect its input to the AM Demod
output, like you see in Figure 4-15.

But not so fast! The connection should appear on your screen as a red
arrow. Something is wrong, and there was a hint as to what a couple of para-
graphs ago.

You can’t connect ports of different colors. Thinking again in terms
of programming languages, this would be like passing a string parameter
to a function that’s expecting an integer. To fix the problem, open up the
Rational Resampler properties again and note the Type property is currently
Complex->Complex (Complex Taps). Instead, select Float->Float (Real Taps), then
click OK. You should now see that the Rational Resampler block’s ports are
orange, and the connection from the AM Demod to the Rational Resampler
should have changed from red to black.

Creating an AM Receiver 51

Figure 4-15: Adding the Rational Resampler block

We’re almost done with the flowgraph. Take a moment to think about
what might be missing. You have a source (two of them actually), and you
have some blocks that process the data coming in from that source. But
what are you going to do with your processed data stream? You need to
dump it into a sink!

The Output
To output the data from the flowgraph, select an Audio Sink and add it to
your workspace. This block will “play” the data through your computer’s
sound card so that you can hear the sounds being broadcast. Double-click
the block and select a value of 32kHz from the pull-down menu for the
Sample Rate property. Then connect the output of the Rational Resampler
to the input of the Audio Sink. With a bit of flowgraph tweaking, you could
select a different sample rate, but most computer audio hardware supports
the 32 kHz rate.

There’s one last thing to do: change the sample rate for the flowgraph.
Did you notice how most of the blocks have a Sample Rate of 32k displayed?
This is because all the blocks had a default Sample Rate property equal to

52 Chapter 4

samp_rate. If you remember, a Variable block was present when you started
the project. It had an ID of samp_rate and a value of 32000. Double-click this
variable and change its value to 400e3, then watch what happens. You can
also see the result in Figure 4-16.

Figure 4-16: The completed flowgraph

Changing a single Variable block caused changes to ripple throughout
the design such that all the blocks now have a sample rate of 400k. All but
the last one, anyway.

Run the flowgraph to see if it works. As in the last chapter, just click the
toolbar icon that looks like a play button. If you hover over the button, it
will say “Execute the flowgraph.”

When you execute, some text will start scrolling by in the console win-
dow pane. Then, after a few seconds, you should hear some music. There’s
a bit of static, as you may have heard on other AM radios, but there are
clearly identifiable voices. The music will loop after a few seconds because
there’s not a lot of data in the File Source, and it’s set to repeat. If you don’t
hear any audio, try adjusting the speakers on your computer.

Creating an AM Receiver 53

If you experience choppy audio and are running GNU Radio Companion
in a virtual machine, open the properties window of the Audio Sink and change
the Device Name to sysdefault, as you can see in Figure 4-17. If you aren’t work-
ing in a VM, this isn’t advised.

Figure 4-17: The Audio Sink setup for virtual machines

As the flowgraph runs, a window will pop up with the two QT GUI Entry
elements in it, as shown in Figure 4-18. This is the execution window.

54 Chapter 4

Figure 4-18: The flowgraph execution window

As mentioned early in this project, you can change these QT GUI Entry
values while the radio is running, whereas to change an ordinary Variable
block, like samp_rate, you’ll have to stop the flowgraph, change the value,
and run it again. In the execution window, change the value of freq to 750k,
then press enter. After a moment, you’ll hear a different repeating chunk
of audio. That’s because you’ve now tuned to a different radio station! You
can also find stations at 710k, 750k, and 1000k, as well as a few fainter ones at
950k and 1090k.

Take a moment to think about what you just experienced. The person
who created the input file you used didn’t just record the audio from an
AM station. That’s pretty easy to do. They recorded the raw radio signal
from that station, from which your flowgraph extracted recognizable audio.
What’s more, they didn’t just record the radio signal broadcast on a single
AM channel. They recorded the signals on a whole bunch of channels so
that you can tune to any of them whenever you want.

This input file (and your flowgraph) provides your first glimpse of an
extraordinary SDR capability: the ability to capture raw radio data and pro-
cess it at will.

Conclusion
In this chapter, you built a simple AM radio receiver in GNU Radio
Companion. Without going into a lot of detail yet, let’s peel back one layer
of the onion on your radio design. At a very high level, here’s what your
AM radio receiver flowgraph is doing:

	 	Injecting prerecorded radio data into the flowgraph

	 2. Tuning to a specific AM radio channel while filtering out other
AM radio channels

	 3.	Demodulating the signal of your desired channel

	 4.	Doing some magical thing called resampling

	 5.	Playing the resulting audio on your computer speakers

Creating an AM Receiver 55

The blocks responsible for each of these five tasks are highlighted in
Figure 4-19.

1

2
3

5

4

Figure 4-19: Breaking down the flowgraph by task

The File Source brings the data into the flowgraph 1. The Signal Source,
Multiply, and Low Pass Filter blocks work together to tune the signal 2,
which is then demodulated as it passes through the AM Demod block 3. Then
the signal is resampled by the Rational Resampler 4 before being output by
the Audio Sink 5.

You probably have a few questions. How does a filter work? What does
it even mean to resample? How on earth does multiplying a radio signal by
a sinusoid tune anything? You’ll get the answers these questions in the next
few chapters, partly so you can understand how your AM radio flowgraph
works, but even more so because the answers will illuminate some critical
radio concepts.

PART II
I N S I D E T H E R E C E I V E R

5
S I G N A L P R O C E S S I N G

F U N D A M E N T A L S

Now that you know your way around GNU
Radio, this chapter will explore some of the

basic radio and signal theory underpinning
the AM receiver you built in Chapter 4. We’ll

discuss the concepts of frequency and gain and then see
how these two concepts come together in one of the
most commonly used signal processing tools: filters. You
may have noticed that your AM receiver from the last
chapter contained a filter block, and this is not at all
unusual. As you move forward learning to build dif-
ferent types of radios with GNU Radio, you’ll find that
nearly all of them will contain at least one filter, so it’s
important to understand how filtering works.

60 Chapter 5

Frequency
Physicists define frequency as the number of oscillations of a periodic phenom-
enon per unit time. You can think of a periodic phenomenon as any event
that repeats over and over with a consistent timing. Frequency is typically mea-
sured in hertz (Hz), where 1 Hz is equal to one cycle per second. Notably, this
definition of hertz doesn’t specify the thing doing the cycling. This is because
frequency is a property of all sorts of phenomena. For example, you may asso-
ciate frequency with stations on your radio dial, the specifications of your wire-
less router or mobile phone, or perhaps the speed of your computer processor,
probably given as some number of gigahertz (GHz) or megahertz (MHz).

From the standpoint of radio theory, we’re most interested in the fre-
quencies of radio waves, but there’s another useful occurrence of frequency
that you probably already have a pretty good instinctual handle on: sound.
In this section, we’ll explore the concept of frequency through the more
intuitive lens of sound waves. As we do, keep in mind that much of what
you’ll learn applies to radio waves as well.

Exploring the Audible Spectrum
The typical human ear can detect sounds roughly between 20 Hz and
20 kHz (depending on age and the number of heavy metal concerts
attended). We call this range of frequencies the audible spectrum. The fre-
quency we’re considering here represents how many times per second the
air vibrates when a particular sound is present. Higher-frequency air vibra-
tions than 20 kHz exist, but we call them ultrasonic. Your dog can hear some
of these frequencies, but you can’t. Lower-frequency air vibrations than
20 Hz exist as well, but we call them subsonic and likewise can’t hear them.
Figure 5-1 summarizes the whole range of sound wave frequencies.

Subsonic Bass Midrange High end Ultrasonic

Frequency (Hz)

20 250 5,000 20,000

Figure 5-1: Audio frequencies, including the audible spectrum

Between the subsonic and ultrasonic extremes, the audible spectrum of
frequencies encompasses a wide variety of sounds. In the bass range, there
are low-pitched (low-frequency) sounds that are like a low rumble. At the
high end, there are high-frequency sounds that resemble piercing shrieks.
And there’s the midrange in between.

Generating a Tone

We’ll begin a hands-on exploration of frequency and the audible spectrum
by generating a simple audio tone. Conveniently, we can use GNU Radio to

Signal Processing Fundamentals 61

work with audio frequencies, just as we can with radio frequencies. The soft-
ware sees the audio data as nothing more than a bunch of numbers and has
no way of knowing that the numbers didn’t come from a radio, so let’s go
back to GNU Radio Companion and pretend for a moment that it’s actually
GNU Audio Companion.

Start a new flowgraph and place a Signal Source block, then set the
Output Type to Float, the Frequency to 500, and the Amplitude to 0.1.
This block will generate a stream of floating-point numbers that can be
interpreted as a simple 500 Hz audio signal. In general, any audio signal,
whether a real-world signal generated by a microphone’s output voltage
or a synthetic one like we’re using here, can be represented by a stream of
floating-point numbers. This is why we’ll be using the Float type for the
audio waveforms in this chapter, in contrast to the Complex type we’ll use
elsewhere for radio signals.

Add an Audio Sink and connect it to the Signal Source so that you can hear
the signal. Then save this flowgraph as single_tone.grc. When you’re done,
you should have something like Figure 5-2.

Figure 5-2: The single-tone flowgraph

When you execute this flowgraph, you should be able to hear a single sus-
tained note. This is the sound of a 500 Hz tone. Looking back at Figure 5-1’s
frequency range diagram, 500 Hz falls within the midrange. Listening to the
sound of the tone, this should be unsurprising: it isn’t especially low pitched,
nor is it particularly high pitched.

N O T E 	 If you can’t hear anything when you execute the flowgraph, try using headphones.
Also, if you’re running on a virtual machine, try setting the Device Name property of
the Audio Sink to sysdefault.

62 Chapter 5

Visualizing the Tone

You’ve heard what a 500 Hz tone sounds like, but what does its waveform
look like? To find out, add a QT GUI Time Sink block to the flowgraph, set
its Type to Float, and connect it to the Signal Source output, as shown
in Figure 5-3.

Figure 5-3: A simple tone with a QT GUI Time Sink block

Notice that GNU Radio Companion lets you attach the same output to
multiple block inputs. In this case, the Signal Source output goes to both the
QT GUI Time Sink and the Audio Sink to provide both audio and visual repre-
sentations of the signal. It’s a good habit to add different types of monitors
and displays throughout your flowgraph so you can be sure that you’re get-
ting the signals you expect at each point.

When you execute the flowgraph again, along with hearing the tone,
you should see a window appear with a repeating, curving shape, as shown
in Figure 5-4. This is what the output of our Signal Source looks like, plotted
against a time axis.

What you have here is a sinusoid, much like the ones we discussed in
Chapter 1, gradually alternating between –0.1 and +0.1. Any pure, single-
frequency tone, such as this one at 500 Hz, is sinusoidal in nature. The
explanation why is long and mathematical. For now, you’ll have to take it
on faith that sine waves produce pure tones.

Signal Processing Fundamentals 63

Figure 5-4: The QT GUI Time Sink display of a simple tone

You can see only about 30 milliseconds (ms), or 0.03 seconds, of the
signal in the plot, but based on the way it’s repeating, there’s no reason to
expect that displaying a larger period of time would show anything differ-
ent. To get a closer look at the signal, you can zoom into the waveform in
two ways. Rolling the scroll wheel of your mouse up and down will zoom
in and out vertically. You might remember doing this in your first project in
Chapter 3. You can also zoom by left-clicking your mouse anywhere on the
display and holding the button while drawing a box. When you release the
mouse button, the window will change to display the contents of the box
you drew. Try it now: zoom in on a single oscillation, or sequence of “up”
and “down,” to get the image you see in Figure 5-5.

64 Chapter 5

Figure 5-5: Zooming in on the simple tone

To zoom back out, simply click the right mouse button. You can actually
zoom in multiple times by drawing a zoom box and then drawing another
zoom box inside of the zoomed display. The right mouse button will just
undo the most recent zoom operation. This nested zooming can be useful
for complex signals.

Varying the Tone’s Frequency

We’ll now try varying the frequency of the generated tone to get an idea of
what different parts of the audible frequency range sound like. It would be
easiest if you could adjust the frequency of the tone while the flowgraph is

Signal Processing Fundamentals 65

running rather than stopping, editing, and restarting the flowgraph with
each change. In Chapter 4 we used the QT GUI Entry to provide this function-
ality, but this time we’ll use a different block with a handier user interface.
Add a QT GUI Range to the flowgraph, changing the ID to freq, the Default
Value to 500, the Start to 100, the Stop to 32000, and the Step to 100. This
block will let you control the value of freq graphically using a slider. The
extra properties (Start, Stop, Step) define the range and granularity of the
slider. Next, in the Signal Source block, change the Frequency to freq. When
you’re done, your workspace should look like Figure 5-6.

Figure 5-6: A simple tone set using a QT GUI Range block

When the Signal Source generates a signal, it will now look to the QT
GUI Range for the signal’s frequency, which you’ll be able to vary in real
time. Rerun the flowgraph, and you’ll have a single window containing
the time display and a slider for the frequency control, as shown in
Figure 5-7.

66 Chapter 5

Figure 5-7: The flowgraph execution window with frequency control

Try changing the value of freq by clicking and dragging the slider left
and right. The sound of the generated tone should vary accordingly. As the
frequency value changes, it might be necessary to zoom in or out to get a
better look at the waveform. Also, keep in mind that both your sound card
and your ears are imperfect, so you may not hear a tone when the frequency
is very low or above 10,000 Hz.

Does the behavior of your flowgraph make sense? Depending on how
thoroughly you played around with the frequency, the answer may be “Sort
of?” If you have a very expensive sound card and exceptionally good hear-
ing, the behavior should make sense up to 16,000 Hz: as the frequency
increases, the tone gets higher and the sinusoid oscillates faster, going up
and down more times in the same time period. If you keep going higher,
however, something strange will happen: the tone will get progressively
lower in pitch the higher you raise the frequency. What’s going on here?

One clue is to look at the sample rate of the blocks. Remember that
in Chapter 2 we said the sample rate needs to be fast enough relative to

Signal Processing Fundamentals 67

the signals being sampled. In this case, all the blocks in the flowgraph
are sampled at 32 kHz, and the funny business starts when the sinusoid is
approximately half that value. We won’t do the math yet, but now we have
some evidence that sampling twice as fast as the signals in the flowgraph is
a good idea. At least twice as fast.

At this point you might be thinking, “So what?” We’ve made some
annoying sounds and looked at some squiggly lines. What does this have to
do with radios? Well, as you’ll see in a moment, quite a bit. The frequency
of a signal is a crucial property that we can use to identify, characterize,
isolate, and process that signal. It doesn’t matter whether you’re working
with audio signals, radio signals, or any other kind of signal; they all have
frequencies, and they can all be treated the same way. To better understand
how to use a signal’s frequency to interact with that signal, we need to talk
about an associated and very important concept in signal theory: welcome
to the frequency domain.

Visualizing Signals in the Frequency Domain
So far we’ve been graphing audio signals in the time domain, watching how
the waveform fluctuates over time, but it’s also possible to graph an audio
signal in the frequency domain. In this new and different type of visualiza-
tion, frequency, not time, is depicted on the x-axis, and the graph indicates
which frequencies are present in a given signal. Examining the frequency
domain reveals that most sounds, with the exception of pure tones, are
made up of a whole bunch of different frequencies that are simultaneously
in play. The same is true for radio signals.

If you think about it, most of the sounds you encounter in normal life
don’t seem at all like the pure tones you just generated. They sound funda-
mentally different, and yet there’s still this idea of sounds that are low, like a
thumping subwoofer, and sounds that are high, some so high you can’t even
hear them (imagine a dog whistle). Also, consider that some sounds are low
and high at the same time. When you’re listening to music, for example,
you can often hear the lower-pitched bass portions at the same time as mid-
range singing and higher-pitched instruments.

If that rumbly bass sound coming out of the subwoofer isn’t a pure tone
like we’ve been making, then it must be something else, and yet it still must
have certain frequency characteristics in order to sound low. If you exam-
ined the bass sound in the time domain, you’d find that it has a more intri-
cately shaped waveform than the simple sinusoid of a pure tone. Examine it
in the frequency domain, and you’d find that the sound contains multiple
predominantly low frequencies, not just a single one. These multiple fre-
quencies are what set the rumbly sound apart from a pure tone, and the
fact that the frequencies are predominantly low is what makes the rumble
seem low to us.

Viewing a sound in the frequency domain requires a mathematical tool
that can break the sound down into its constituent frequencies. This math-
ematical tool is called the Fourier transform, and crucially it can be applied

68 Chapter 5

not just to sounds but to any kind of signal, including radio signals. We’re
too high up on the outer skin of the onion to talk about the mathematics
behind the brainchild of Joseph Fourier, but here’s a general explanation: we
take a numerical representation of a signal, which you’ll recall is just some
value changing over time, and apply a mathematical operation to the signal
to create a breakdown of all the frequencies it contains. Understanding how
this works is central to understanding how SDRs can take in the whole mess
of radio information bouncing around in the air and extract the particular
signal you want.

Strictly speaking, Fourier transforms are for continuous signals; remem-
ber the signals with smooth curves? There’s a counterpart called the discrete
Fourier transform (DFT) that can do the same thing for sampled data, or the
kind of digital data used in the SDR world. Because there are several ways
to do the math for the DFT, we’ll further specify the most common algo-
rithm: the fast Fourier transform (FFT). Viewing the FFT of real-world radio
data is a common use of an SDR. SDR systems accomplish this by taking
in a continuous radio signal, sampling it, running it through an FFT, and
finding out which frequencies are present in that signal and how prominent
each frequency is.

Viewing Simple Tones

Let’s build a flowgraph to explore the frequency domain. Start with your
last project (single_tone.grc), and resave it as single_tone_fft.grc (click Save As
and provide the new filename). Then add a QT GUI Frequency Sink block and
connect it to the Signal Source. This block will graph the output signal in
the frequency domain, using an FFT to show what frequencies are present
in the signal. The connection’s red arrow is a warning that the input and
output types don’t match. After changing the QT GUI Frequency Sink block’s
Type parameter to Float and the Spectrum Width to Half, the flowgraph
should look like Figure 5-8.

Signal Processing Fundamentals 69

Figure 5-8: A simple tone with an added frequency display

Execute the flowgraph, and you’ll see a frequency plot in addition to
the time plot and frequency-adjustment slider. We’re now viewing the sig-
nal in both the time domain and the frequency domain. At first, you’ll see
a single spike fairly close to the left side of the frequency plot, as shown
in Figure 5-9.

70 Chapter 5

Figure 5-9: A simple tone with time and frequency plots

If you click and drag a box around the frequency plot spike to zoom in,
you’ll see that it resides at 0.5 kHz. This is shown in Figure 5-10.

Another way to express 0.5 kHz is 500 Hz, the default frequency set for
the Signal Source, so it makes sense we’re seeing a spike there. This is experi-
mental validation of the earlier assertion that sinusoids produce pure tones
with a single frequency. Is there any signal at 1,000 Hz or 100 Hz? No, the
frequency plot shows nothing at those (and all other) values.

One complication is that the peak in the frequency plot isn’t perfectly
sharp. You could say that there’s signal not just at 500 Hz but also some
between 400 and 600 Hz. Even though the plot peaks at 500, the signal
doesn’t disappear until you get out of that 400 to 600 Hz range. This isn’t
because there are actually multiple frequencies present in the tone. Instead,
it’s because the FFT algorithm generating the frequency plot isn’t mathemat-
ically perfect, but rather an approximation. Don’t believe it? Let’s prove it!

Signal Processing Fundamentals 71

Figure 5-10: Zooming in on the frequency plot

Use the middle mouse button (scroll wheel) to click anywhere on the
frequency plot. A context menu will pop up. Select Control Panel to bring
up some extra control options for your frequency plot. Click the drop-
down menu under FFT, and you should see numbers ranging from 32 up
to 32768. Choose 4096. The plot may automatically zoom back out, so go
ahead and zoom back in, as shown in Figure 5-11.

72 Chapter 5

Figure 5-11: The frequency plot with an FFT size of 4096

Increasing the FFT size has yielded a narrower frequency spike; it now
goes between about 470 and 530 Hz. The frequency plot is therefore more
accurate, but this comes at the cost of requiring your CPU to do more
computations. Feel free to experiment with different FFT sizes to see what
happens.

Plotting More Complex Sounds

Now let’s look at a sound with a bit more complexity: a chord containing
three different tones. We’ll see how this sound differs from a single pure
tone in both the time domain and the frequency domain. Save your exist-
ing flowgraph as cmajor.grc. Next, modify your flowgraph to use three Signal

Signal Processing Fundamentals 73

Source blocks instead of one, each with a different frequency. The easiest
way to do this is to break all the outgoing connections from your current
Signal Source. Then copy it and paste it twice. Set the frequency of the
first Signal Source to 523.25, the second to 1318.5, and the third to 1568. Next,
delete the QT GUI Entry block since we don’t need it anymore. When you’re
done, you’ll have something like Figure 5-12.

Figure 5-12: Three signal sources

To combine these three tones into one signal, we need to add them
together. Find the Add block and add it to the flowgraph (be careful not to
use the Add Const block by mistake). It has only two inputs by default. To add
a third, change the block’s Num Inputs property to 3. While you’re at it,
change the IO Type to float, as shown in Figure 5-13.

74 Chapter 5

Figure 5-13: The Add block properties

Notice how blocks like Add that have both float and complex functionality
(for the Type parameter) all seem to default to complex? This is a clue to the
fact that most of the time we’ll be working with complex numbers. Slicing
deep into the onion to get to the theory of complex numbers will only bring
tears at this point (the onion analogy never gets old), so we’ll keep to our
gradual peeling. But be aware that complex numbers are common in GNU
Radio and that we’ll discuss them eventually.

Click OK to return to the workspace view, and you’ll see that the block
has sprouted another input. Now connect each of the Signal Source out-
puts to one of the Add block inputs. Then connect the Add block output to
all three of the sinks: the Audio Sink, the QT GUI Time Sink, and the QT GUI
Frequency Sink. When you’re done, things will look like Figure 5-14.

Signal Processing Fundamentals 75

Figure 5-14: The C major chord flowgraph

Execute the flowgraph and you’ll hear a richer sound than the previous
tone. This isn’t shocking, since you’re now putting three tones together. For
your information, what you’re hearing is a C major chord. We’ve just sepa-
rated some of the notes by a few octaves to make them easier to distinguish.
Figure 5-15 shows what the chord looks like in the time and frequency
domains.

76 Chapter 5

Figure 5-15: The C major flowgraph execution window

On the time domain plot, notice that the waveform is more compli-
cated than the simple sinusoid you saw earlier for the single tone. This con-
firms the assertion that sounds containing multiple frequencies have more
complicated waveforms. On the frequency domain plot, notice that there
are three peaks rather than just one. If you zoom in on the three peaks,
you’ll see that they occur around the three frequencies you’d expect, the
ones used for the Signal Source blocks: 523.25 Hz, 1,318.5 Hz, and 1,568 Hz.
You can also see this in Figure 5-16.

Signal Processing Fundamentals 77

Figure 5-16: A zoomed-in frequency plot of the C major chord

If you’d like to verify the frequencies of each of these peaks (and you
should), hover your mouse over any part of the QT GUI plot and you’ll
see the x and y values at your cursor. In the case of the frequency plot, the
x is the value of the horizontal (frequency) axis and will give you a good
approximation of the frequency of each peak. The y value displayed over
the cursor is something with a unit of dB, short for decibels. We’ll discuss
what decibels mean later in the chapter.

Seeing the three peaks in the frequency plot may not seem like a big
deal, since the three tones in the C major chord started out as separate
Signal Source blocks, but it’s important to recognize what’s happened here.
When the three tones passed into the Add block, they were merged into a
single signal (as evidenced by the resulting complicated waveform in the
time domain plot). In the process, the individual frequencies of the three
tones effectively became indistinguishable without the help of some math-
ematics. Specifically, in order to create the frequency plot of this merged
signal, the QT GUI Frequency Sink had to conduct an FFT, allowing you to
identify the individual frequencies contained in the signal.

Plotting Real-World Sounds

Real-world sounds, like people talking, dogs barking, car engines revving,
or even musical instruments playing, are made up of far more than the
three frequencies of our computer-generated C major chord. To prove it,
we’ll analyze a recording of a human voice. Resave your current flowgraph
as voice_fft.grc. We’ll come back to the C major chord project later in the
chapter, so don’t forget where you put that file.

78 Chapter 5

Next, left-click and drag to select all the Signal Source blocks and the Add
block, and press delete to get rid of them all. In their place, add a Wav File
Source block and connect it to each of the three sinks. This block will inject
the audio from an existing WAV file into the flowgraph. Open the block’s
properties and navigate to the location of the project files you downloaded
earlier from https://nostarch.com/practical-sdr. Select the one named ch_05/
HumanEvents_s32k.wav. When you’re done, your workspace will look like
Figure 5-17.

Figure 5-17: A flowgraph to display a voice signal

When you execute this new flowgraph, you’ll hear a voice repeating
over and over. You’ll also see that the time and frequency domain displays
are quite a bit busier than those for the simple tone and C major chord.
Although the plots bounce around a lot, you can see a representative snap-
shot of these displays in Figure 5-18.

https://nostarch.com/practical-sdr

Signal Processing Fundamentals 79

Figure 5-18: The time and frequency plots of the voice signal

The time domain plot shows a great deal of what looks like random
movement, an indication that real-world sounds have much more complex
waveforms than simple sinusoids, but the more important thing here is
the frequency plot. Look at how many peaks the plot has, and notice how
spread out the frequencies are in just this simple recording of a human
voice. You can see that most of the signal is composed of low to medium
frequencies, but there are a few higher ones in there as well. The frequency
plot also moves around a fair amount, shifting while jumping up and down.

N O T E 	 Try recording some sounds of your own in WAV format and see what they look like.
You’ll need to configure your audio recording software to use a 32 kHz sampling rate
so your WAV file will work with this flowgraph.

It may not be obvious how exactly the FFT gets its job done, but hope-
fully it’s becoming a bit clearer what that job is and how important it is.
From now on, when we think about signals, we will often be thinking about
the frequencies present in those signals. The more you work with the fre-
quency domain, the more you’ll build the intuitions necessary to design
your GNU Radio flowgraphs and to debug them when they don’t quite do
what you intend.

80 Chapter 5

In this section, you’ve created some flowgraphs allowing you to visu-
ally examine some signals. But ultimately you’ll want to do more than just
look at signals, right? You’ll also want to be able to change the signals you
encounter with your SDR. There are many ways to process signals, but we’ll
start by looking at two of the most foundational methods: gain and filtering.

Gain
Applying gain to a signal simply means making it bigger, but without chang-
ing the signal’s shape. For example, if you have a signal with a maximum
level of 3, we would say that its amplitude is 3 (this will work with any type
of unit). If you increase the size of the signal at every point in time so that
it now has an amplitude of 6, then your gain is 2. If you were to increase
the signal’s size from 3 to 9, your gain would be 3. Mathematically, we can
express this as follows:

gain =
output size
input size

Don’t worry too much about how to compute a specific number for the
input size; that can get somewhat involved for complicated waveforms, and
we really don’t need that kind of detail to build software-defined radio sys-
tems. Just consider that applying a gain to a signal will increase that signal
at every point in time by that same multiplier.

When it comes to audio signals, applying a gain corresponds to making
the audio louder or softer. For radio signals, applying gain will sometimes
have a similar effect, but rather than the result being something your ears
can sense, the gain will make the signal more prominent to a radio receiver.

Applying a Gain to a Signal
To see firsthand how gain works, we’ll use GNU Radio Companion to apply
a gain to a signal. Open a new project and save it as gain.grc. Next, add a
Signal Source, setting its Output Type to Float and its amplitude to 0.01.
After that, add a Multiply Const block, setting the IO Type to Float and the
Constant property to gain_val. Then add an Audio Sink. Finally, insert two
copies of a QT GUI Time Sink, and for both set their Type properties to Float,
the Y Min values to -0.1, and the Y Max values to 0.1.

Now that all your blocks have been placed, you can connect them.
Start by routing the Signal Source output to the Multiply Const input and the
Multiply Const output to the Audio Sink input. Then attach one of the QT GUI
Time Sink blocks to the output of the Signal Source and the other to the out-
put of the Multiply Const block. When you’re done, your project should look
like Figure 5-19.

Signal Processing Fundamentals 81

Figure 5-19: The partially completed simple gain project

What’s going on here? The Signal Source block generates a small 1,000 Hz
sinusoid. It goes into the Multiply Const block, where every point in the signal
will be multiplied by whatever the value of gain_val happens to be. This is
where you apply the gain to the signal, and thanks to the pair of time sinks,
you’ll be able to look at the signal both before and after the multiplication
process (as well as hear it on your computer speakers or headphones thanks
to the Audio Sink). Hardware and software entities whose purpose is to pro-
vide gain to a signal are typically referred to as amplifiers. Be aware, though,
that many other types of nonamplifier blocks may have some gain associated
with them, alongside other forms of signal processing.

To make the flowgraph work, we need to provide a value for gain_val,
preferably one that can be changed during execution. We’ll once again
use a QT GUI Range to control the gain with a slider. Set its ID to gain_val, its
Default Value to 1, its Start value to 0.1, its Stop value to 10, and its Step
value to 0.1. You can leave the other properties alone.

Before running the flowgraph, change the Name property of the first
QT GUI Time Sink (the one connected to the Signal Source) to Input, and set the
Name of the other QT GUI Time Sink to Output. This will print an informative
title on the top of each waveform plot in the execution window. It’s gener-
ally a good idea to label your instrumentation blocks if you’re going to have
more than one of them. If all your QT GUI blocks were unnamed, you might
find it difficult to determine which signal is contained in which display.

One more thing before running the flowgraph: we’ll be making the
output signal quite a bit bigger at times throughout this experiment, so it
will be easier to adjust the y-axis scale of the instrumentation blocks ahead
of time. This way, you won’t have to worry about zooming in or out during
execution. To do this, double-click each of the QT GUI Time Sink blocks and
change the Y Min property to -0.1 and the Y Max property to 0.1. When
you’re done, you should have something like Figure 5-20.

82 Chapter 5

Figure 5-20: The completed simple gain project

After executing the flowgraph, you should hear a tone and also see two
tiny but identical sinusoids, like in Figure 5-21.

Figure 5-21: A gain of 1

Signal Processing Fundamentals 83

The input and output signals are identical because gain_val defaults to 1,
and applying a gain of 1 to a signal doesn’t change it. After all, the signal is
just a series of numbers, and multiplying a number by 1 doesn’t change that
number.

Now try changing your gain. You can do this in four ways:

•	 Click the slider element and drag it left or right.

•	 Enter a new number into the text box at the right side of the QT GUI
Range element.

•	 Click the up or down arrows next to that text box.

•	 Click the text box or the slider and then press the up or down
arrow keys.

Use one of these methods to increase gain_val to 5. As a result, you
should see the output sinusoid grow by a factor of 5, as in Figure 5-22. The
tone should also get louder.

Figure 5-22: A gain of 5

Can you also see how the output waveform shrinks when you move the
slider to the left? In fact, you can even make the output smaller than the
input signal by setting gain_val to something less than 1. For example, try
moving the slider down to 0.3 to see the signal shrink to 30 percent of its
original size, as in Figure 5-23. Applying a gain that reduces the size of a
signal is typically called attenuation.

84 Chapter 5

Figure 5-23: An attenuation of 30 percent

If you’re feeling adventurous, go ahead and substitute the ch_05/
HumanEvents_s32k.wav file from the previous section (or one you recorded
yourself) for the signal source in the current flowgraph and play around
with the gain settings. Although the file doesn’t have a steadily repeating
waveform like the simple sinusoid, you’ll still find that the output wave-
form’s peaks get higher or lower as you turn the gain up or down. You’ll
also hear the audio get louder and softer as you change the gain. One warn-
ing, though: if you set the gain too high, the audio may start to get choppy
and distorted, as there are limits to how large of a signal can be sent to your
sound card without issues.

Before we move on, consider that in the last few examples you’ve seen
a few different math-related blocks applied to signals, and each one has
worked a bit differently. When we generated the C major chord, we used
an Add block, which can have a variable number of inputs; in that case, we
needed three. This time, to apply a gain, we used a Multiply Const block,
which can have only one input. Can you see why one block permits multiple
inputs and the other doesn’t? In the first case, we were combining 3 differ-
ent signals, or streams of numbers, by adding them together at each point
in time; we could just as easily do the same for 2 signals, or 5, or 20. In the
second case, we were concerned only with multiplying one signal, or data
stream, by a single constant number defined as a property in the block.
There’s no place for additional inputs in that process; it’s just the one signal
being manipulated. If you look at the library of blocks available, however,
you’ll see that there’s also a Multiply block and an Add Const block, essentially

Signal Processing Fundamentals 85

the counterparts of the two blocks we used. The Multiply block, which can
have several inputs, allows you to combine different signals by multiplying
the number streams together at each point in time. Meanwhile, the Add
Const block can have only a single input and is used to add a single constant
number to one signal.

Thinking in Decibels
Gain is most often measured in decibels, or dB for short. Decibels are a
logarithmic measurement, similar to the Richter scale used for measuring
earthquakes. With the Richter scale, any increase of 1 on the scale equates
to a factor-of-10 increase in earthquake magnitude: an 8.0 earthquake is
10 times stronger than a 7.0 earthquake, a 4.0 earthquake is 10 times stron-
ger than a 3.0 earthquake, a 6.7 earthquake is 10 times stronger than a 5.7
earthquake, and so on. Similarly, because decibels are logarithmic, a small
increase expressed in decibels can translate to a very large increase in gain.

To explore how decibels work, we’ll add some instrumentation blocks
that measure in units of dB to the previous gain project and see how those
blocks respond to changes in gain. Specifically, we’ll add some QT GUI
Frequency Sinks, since their y-axes are given in dB. But first, resave the proj-
ect as gain_db.grc, then right-click each of the QT GUI Time Sink blocks and
select Disable. Notice that the blocks turn gray when you do this, along
with their connections, as shown in Figure 5-24. This feature allows you to
make quick changes to a flowgraph that you can easily undo by re-enabling
the blocks.

Figure 5-24: The gain flowgraph with disabled QT GUI Time Sink blocks

Now add a QT GUI Frequency Sink block, changing its Type property
to Float, its Spectrum Width to Half, and its Number of Inputs to 2. After
changing the number of inputs, the block will add a second input port.

86 Chapter 5

Connect the two input ports in place of the disabled time sinks, with in0
connected to the Signal Source output and in1 to the Multiply Const output.
While you’re at it, change the Stop value of your QT GUI Range to 100. When
you’re done, you should have something like Figure 5-25.

Figure 5-25: The gain flowgraph modified for decibel measurements

You’ll now be able to observe the effect of changing the gain in terms
of dB. When you run the flowgraph, at first you’ll see only one FFT spike
because the input and output spikes will be on top of each other. They’ll
both have a peak at about –55 dB, as in Figure 5-26. (Remember that you
can hover your mouse over a peak to get a quick measurement.)

Signal Processing Fundamentals 87

Figure 5-26: A gain of 1 in decibels

We expect the input and output spikes to be the same at this stage; again,
multiplying any data by 1 should result in identical data. Now change the
gain_val to 10 and examine what happens. The peak labeled Data 1, which cor-
responds to the output signal, should jump from –55 dB to about –35 dB. This
makes for an increase of 20 dB, as shown in Figure 5-27.

88 Chapter 5

Figure 5-27: A gain of 10 in decibels

What do you think will happen when you change the gain to 100? What
about 0.1? Try it!

The takeaway here is that increasing the signal’s amplitude by a factor
of 10 results in a change of 20 dB on the y-axis of your frequency plot. Put
another way, an increase of 20 dB on your plot means you’ve applied a fac-
tor of 10 gain to the original signal. Furthermore, subtracting 20 dB means
attenuating the signal to 10 percent of its input value, as you saw when you
plugged in a gain value of 0.1 (see Figure 5-28). In that case, the decibel
level went from –55 at the input to –75 at the output.

Signal Processing Fundamentals 89

Figure 5-28: An attenuation of 0.1 in decibels

Decibels are a convenient way of keeping track of the gain in a system,
especially when several different gain operations are applied to a signal.
Consider the diagram in Figure 5-29.

Figure 5-29: A chain of linear gains

90 Chapter 5

Here, a signal passes through four different gains between the input
and output: first a gain of 4, then a gain of 500, then an attenuation of
0.025, and finally an attenuation of 0.16. To determine the net result, we
have to multiply these linear gain values together. Pulling out your calcula-
tor, you’ll see that this mess resolves to a simple gain of 8 (where 4 × 500
× 0.025 × 0.16 = 8).

Now consider Figure 5-30, where the same series of gain operations is
rendered in decibels.

Figure 5-30: A chain of decibel gains

When the gains are expressed in decibels, all we have to do is add them
together to determine the net effect, which is much easier than multiplica-
tion. In this case, adding the decibel gains of the entire signal chain yields a
total gain of 18 dB (where 12 + 54 – 32 – 16 = 18).

Since gain will be given to you in dB most of the time in the radio
world, it’s helpful to start thinking in these terms. Down the road, this
will be important when you configure the hardware gain of your software-
defined radio, as well as if you decide to add some hardware amplifiers to
your SDR systems. Gain and decibels also play a central role in filtering sig-
nals, which we’ll look at next.

DECIBEL S IN R E A L-WOR L D R A DIO S YS T EMS

We’ve established that a factor of 10 (10x) gain corresponds to an increase of
20 dB . However, when working with real-world radio systems, both software-
defined and conventional, a gain of 10x is equivalent to 10 dB, not 20 dB . The
key to this discrepancy is the distinction between the amplitude and power of
a signal .

Radio engineers typically work with power and have defined decibels
accordingly: a 10x increase in power corresponds to a +10 dB gain . Signal
amplitude, however, isn’t the same thing as signal power, and a 10x change in
amplitude doesn’t correspond to a 10x change in power . Without getting into
the physics, just be aware that a 10x change in signal amplitude produces a
20 dB change in power . (If you want to investigate the math and physics, the
squaring of voltage to get power is where to start looking . But that’s beyond the
scope of this book .)

The key takeaway is this: when working in GNU Radio, you’ll most often
see the 20 dB figure associated with a 10x gain, but later on, when you’re
working with radio hardware, expect to see the 10 dB power gain figure .

Signal Processing Fundamentals 91

Filters
A filter is a processing technique that selectively removes some parts of a
signal but not others. Think about a water filter for a moment. You pour
impure water through it, and the filter (hopefully) stops most of the impuri-
ties from going through, while allowing the water to pass. On the far side of
the filter, you have your desired object: pure water.

Real-world radio signals are a lot like that impure water. Ideally, you
could put an antenna up in the air and the only signal that it would pick
up would be the one you want, but unfortunately, nearly the opposite is
the case. You’ll get not only the signal you want but also a massive amount
of other signals, along with noise and interference (topics we’ll explore in
Chapter 8). All of this comes into the receiver simultaneously. Filters help
isolate just the signal you want, while getting rid of nearly everything else.
You put a big mass of radio energy into a filter and design the filter so that
it separates what you want (your signal) from the stuff you don’t want (other
signals, noise, interference, and so on).

Most of the filters you’ll use are based on frequency. Earlier we talked
about how signals can be broken down into their component frequencies
via the Fourier transform. Taking this viewpoint, any given signal will be
made up of a number of frequencies, some of which you might want and
others which you may not. You can design a filter to reduce the frequencies
you don’t want, while preserving the ones you do. Another way to think
about this is that the filter applies a gain to the signal, but the gain varies
depending on frequency. For the frequencies you want to pass through
unaffected, called the passband, the gain is 1. For the frequencies you want
to get rid of, called the stopband, the gain is 0—in theory, anyway. In prac-
tice, filters aren’t quite that perfect, as we’ll discuss later in the chapter.

There are four main types of frequency-based filters: low-pass filters,
high-pass filters, band-pass filters, and band-reject filters. They vary based
on which frequencies they eliminate and which they preserve. We’ll con-
sider each kind in turn.

Low-Pass Filters
A low-pass filter allows the lower-frequency parts of an input signal to pass
through mostly unchanged, but it stops most of the higher-frequency parts
of the signal from getting through. Consider the FFT in Figure 5-31, with
parts of the signal spread across both low and high frequencies.

92 Chapter 5

Frequency

Signal strength

2 kHz

Low High

Figure 5-31: An FFT of a signal split into “low” and “high” frequencies

Let’s say that any frequencies in this signal above 2 kHz are “high” and
any frequencies below that are “low,” as Figure 5-31 indicates. Note that
there’s nothing in physics or mathematics that stipulates where to draw this
line between low and high; it’s an arbitrary decision based wholly on what
we, the filter designers, intend to do. In one context 2.5 kHz may be too
high, but in another context it might be exactly the frequency we want. The
dividing line between the low frequencies we want and the high ones we
don’t want is called the cutoff frequency.

The goal of the low-pass filter is simply to reduce the part of the signal
above the cutoff frequency (2 kHz) as much as possible while affecting the
part below the cutoff as little as possible. In a perfect world, the filter would
produce the output FFT shown in Figure 5-32.

Frequency

Signal strength

2 kHz

Low High

Figure 5-32: An FFT after perfect low-pass filtering

In this ideal low-pass filter, all the frequencies below the cutoff are com-
pletely unaffected; they’re exactly as strong as they were before. Meanwhile,
all the frequencies above the cutoff have been completely removed.

Think about this from an audio standpoint. You’re listening to some
music but are annoyed by a high-pitched humming sound. When you

Signal Processing Fundamentals 93

run your music signal into an FFT, as normal people do when trouble-
shooting their audio quality issues, you might see something like the plot
in Figure 5-33.

Figure 5-33: An FFT of audio with a humming problem

Notice the large peak in the frequency plot at around 14 kHz. That’s
the annoying hum, whereas the music mostly ranges from 150 Hz to
12 kHz. Running the signal through a properly designed low-pass filter
should be able to eliminate the higher frequency of the hum while leaving
the lower frequencies of the music largely unaffected.

To see how a low-pass filter works in practice, we’ll return to our C major
chord flowgraph from a few sections back (cmajor.grc) and try filtering out all
but the lowest note. Open the file and resave it as cmajor_lpf.grc.

Recall that the three tones in the C major chord have frequencies of
523.25 Hz, 1,318.5 Hz, and 1,568 Hz. Our goal is to add a filter that leaves
just the 523.25 Hz tone, while eliminating the upper two tones. Start by
breaking the connections between the Add block output and the inputs to
the three sinks. Then add a Low Pass Filter block and set its FIR Type to
Float->Float (Decimating), its Cutoff Freq to cutoff, and its Transition Width
to transition_width (we’ll explore these last two properties in detail soon).
Then connect the filter between the Add block and each of the three sink
blocks. Your flowgraph now consists of an interesting input signal, a filter,
and ways to both hear and see the effects of the filter. It should look some-
thing like Figure 5-34.

94 Chapter 5

Figure 5-34: The incomplete low-pass filter flowgraph

At this point the Low Pass Filter block should have some red text in it,
proof that the flowgraph isn’t done yet. We need to assign values to the
variables used in the filter. To do so, add a QT GUI Entry with an ID of cutoff,
a Type of Float, and a Default Value of 10e3. Then add a second QT GUI Entry
with an ID of transition_width, a Type of Float, and a Default Value of 1000.
When you’re done, the red text will have disappeared and your flowgraph
should look like Figure 5-35.

Signal Processing Fundamentals 95

Figure 5-35: The complete low-pass filter flowgraph

When you execute the flowgraph, your ears should tell you that nothing
has changed. The frequency plot should also show that all three tones are
still there, as shown in Figure 5-36.

Figure 5-36: The initial low-pass filter output

96 Chapter 5

The signal is unchanged because we set the initial value of the filter’s
cutoff frequency to 10,000 Hz. Remember, the cutoff is the frequency where
the filtering takes effect. In this case, the cutoff is higher than all three fre-
quencies present in the signal, so all three tones have been allowed to pass
through the filter.

To isolate the lowest-frequency tone, 523.25 Hz, you’ll need to set a
cutoff that is higher than that but lower than the next highest frequency,
1,318.5 Hz. (Although we render these numbers with commas, you should
not include commas when entering values into the GNU Radio Companion
interface or execution windows.) Accordingly, change the cutoff value in
the flowgraph execution window to 600 and press enter. When you do, the
sound should change quite a bit, and so should the two plots of the output
signal, as shown in Figure 5-37.

Figure 5-37: The low-pass filter output: success!

You should now hear a single low tone. (Once again, you may need head-
phones to make it out.) Looking at the graphical output, the FFT shows the
low-frequency peak is intact, while the other two are substantially reduced.

Notice that the higher frequencies haven’t been eliminated entirely.
However, let me remind you that the y-axis of the FFT display is measured
in decibels. The upper two peaks are about 40 dB lower than the first peak.
Thinking back to our discussion of decibels, each 20 dB represents a gain
factor of 10, so our filter has reduced the unwanted frequencies by about
10 × 10, or 100. In other words, we’ve reduced the higher two notes of the

Signal Processing Fundamentals 97

chord to less than 1 percent of their initial size. The lingering traces of
these higher frequencies won’t be a problem.

Another useful indicator of the success of the filter is the shape of the
waveform in the time domain. As you can see in Figure 5-37, it looks like a
clean sinusoid rather than the more complicated waveform of the complete
chord. This simple, sinusoidal shape is just what you’d expect if you had
indeed filtered out everything but a single tone.

Before moving on, try changing the filter settings to pass the lower two
tones while eliminating the highest one. If you have trouble getting this to
work, look at ch_05/solutions/cmajor_lpf2.grc in the book’s companion files
for the answer.

High-Pass Filters
A high-pass filter reduces the frequencies below a certain cutoff while letting
frequencies above the cutoff pass through unchanged, making it the oppo-
site of a low-pass filter. To see how it works, we’ll try filtering out all but the
highest tone in the C major chord.

Resave your low-pass filter flowgraph as cmajor_hpf.grc. Then delete the
Low Pass Filter and add a High Pass Filter in its place. Set the filter’s FIR Type
to Float->Float (Decimating), the Cutoff Freq to cutoff, and the Transition
Width to transition_width. Make sure you restore the connections that were
removed along with the old filter block, resulting in a flowgraph like in
Figure 5-38.

Figure 5-38: A high-pass filter

98 Chapter 5

When you first execute the flowgraph, you won’t be able to hear any-
thing, and you should see that all three peaks in the frequency plot have
been heavily reduced in size, as shown in Figure 5-39.

Figure 5-39: The incorrect high-pass filter

All three tones have been filtered out because the filter’s cutoff fre-
quency defaulted back to 10,000 Hz. The filter considers anything above
that a “high” frequency and allows it to pass through. Conversely, it consid-
ers anything below 10,000 Hz (including all three tones in the chord) to be
a “low” frequency that should be eliminated.

The tone we want to keep has a frequency of 1,568 Hz, while the next
highest tone has a frequency of 1,318.5 Hz. Try changing the cutoff to 1500,
just below the highest note, and see what happens. In theory, this should
pass the highest note and only the highest note. However, you might notice
the suboptimal result shown in Figure 5-40.

Signal Processing Fundamentals 99

Figure 5-40: The high-pass filter is better, but not good enough yet.

Looking at the frequency plot, although the low note has been reduced
quite a bit, the middle note is still pretty strong. If you zoom in, as in
Figure 5-41, and hover your mouse over the middle peak, you can see that
it’s at around –44 dB, only about 7 dB lower than it was on the input side.

100 Chapter 5

Figure 5-41: Zooming in on the insufficient high-pass filter

You can see more evidence of the suboptimal filtering by looking at
the time domain waveform and noticing that the sinusoid is growing and
shrinking in size. It isn’t perfectly regular, like we’d expect from a pure
tone. Depending on your level of musical skill, you may also hear that
there’s more than one note playing.

You can play around with the cutoff value and improve the filter
slightly, but to really eliminate the middle tone, you need to consider
another property of the filter: the transition width.

We told you earlier that the frequencies you want to keep are called
the passband, while the frequencies you want to eliminate comprise the
stopband. I also told you that in practice filters are less than perfect. In
fact, there’s a third region between the passband and the stopband called
the transition band, where the filter is partially, but not fully, effective at sup-
pressing the unwanted frequencies. The transition width setting of a GNU
Radio Companion filter block controls the size of the transition band. The
wider the transition width, the less effective the filter will be at reducing
frequencies near the cutoff. To illustrate, Figure 5-42 shows a plot of the
gain of a filter.

Signal Processing Fundamentals 101

Figure 5-42: The transition width of a filter

In the passband of the filter shown in Figure 5-42, the gain is 1, while
in the stopband the gain is roughly 0. In between, in the transition band,
the gain gradually changes from 1 to 0. In this transition region, some fil-
tering occurs, but it’s suboptimal, and it worsens the closer you get to the
cutoff frequency. The farther away from the cutoff, the better the filtering.

Returning to our flowgraph, the default transition width, set by one of
our QT GUI Entry blocks, is 1,000 Hz. This means that when we set the cutoff
frequency to 1,500 Hz, the transition band ranges from 1,500 Hz down to
500 Hz. The lowest note of the chord (523.25 Hz) is just barely inside the
transition band and is filtered very effectively. Unfortunately, the middle
note (1,318.5 Hz) is near the high end of the transition band, as shown
in Figure 5-43.

Figure 5-43: A signal in the transition band

102 Chapter 5

Since the middle note in the chord falls within the transition band and
is much closer to the passband than the stopband, its filtering is especially
poor. The best way to fix this is to leave the cutoff frequency at 1,500 Hz
and reduce the size of the transition band by shrinking the transition_width
value. Any number that creates a transition band that excludes 1,318.5 Hz
will work. For example, a transition width of 100 Hz produces the output
in Figure 5-44.

Figure 5-44: The high-pass filter: success!

Now the middle peak in the frequency plot has been lowered about
60 dB, or by a factor of 1,000. Much better! You should also hear a clearer,
simpler tone and see a clean sinusoid in the time domain plot.

You might be tempted to choose an extremely small value for the tran-
sition width (say, 0.000001 Hz) to create an almost-perfect filter. However,
due to the nature of digital signal processing algorithms, the narrower the
transition width, the more work the computer must do to implement the
filter. A transition width of essentially 0 would take too much computational
power to implement. In general, it’s not a good idea to make the transition
width much narrower than you need.

Band-Pass Filters
A band-pass filter has a pair of cutoff frequencies, with the passband between
them. Frequencies less than the lower cutoff frequency and higher than
the upper cutoff are eliminated (after accounting for the transition bands,

Signal Processing Fundamentals 103

anyway). Let’s try using one to filter out the top and bottom notes of the C
major chord, while leaving the middle note in place.

Save your current flowgraph as cmajor_bpf.grc, then replace the High
Pass Filter with a Band Pass Filter. When you try to configure its properties,
you’ll notice something: there are two cutoff frequencies. Set them to low
_cutoff and high_cutoff. As before, also change the FIR Type to Float -> Float
(Decimating), and use transition_ width for the Transition Width property.
You’ll also need to change the first QT GUI Entry block’s ID property from
cutoff to low_cutoff and its Default Value to 200 (in Hz). Then make a copy
of that QT GUI Entry and change the new block’s ID to high_cutoff and its
Default Value to 2000. Finally, change the Default Value to 100 for the QT GUI
Entry associated with the transition width. If you don’t reduce the transition
width, you’ll get some illegal initial values for your Band Pass Filter block
and it won’t work correctly, even after you change values in the execution
window. When you’re finished, your flowgraph should look like Figure 5-45.

Figure 5-45: A band-pass filter

When you execute the flowgraph, you’ll hear all three tones and see all
three signals in your FFT plot. If you think about the initial cutoff values you
set, this may not be surprising. The passband is between 200 and 2,000 Hz,
and all three tones lie within that range. Take a moment and think about
how to get your flowgraph working, filtering out the low and high tones
while leaving the middle tone intact.

104 Chapter 5

There’s more than one way to solve this, but our solution consists of a
low_cutoff of 1,000 Hz, a high_cutoff of 1,350 Hz, and the transition_width
left at 100 Hz. These numbers produce the output seen in Figure 5-46.

Figure 5-46: The band-pass filter: success!

Notice that the middle peak in the frequency plot has remained high,
while the other two are substantially reduced. In the time domain plot, we
once again have the simple sinusoidal waveform of a pure tone.

Band-Reject Filters
A band-reject filter has two cutoff frequencies. It suppresses, or attenuates, all
frequencies between the low and high cutoff frequencies, while preserving
those frequencies below the low cutoff and above the high cutoff, making
it the opposite of a band-pass filter. In the world outside GNU Radio, band-
reject filters may be called notch filters.

As an exercise, try using a Band Reject Filter block to eliminate the
middle note of the C major chord while leaving the top and bottom notes
intact. The Band Reject Filter block has all the same properties as a Band Pass
Filter. If you set your low_cutoff to 600 Hz, your high_cutoff to 1,500 Hz, and
leave the transition_width at 100 Hz, you should have success. You can also
see the ch_05/solutions/cmajor_brf.grc file for the solution.

Signal Processing Fundamentals 105

Although you’ve worked only with audio signals in this chapter, per-
haps you can see how useful these filters will be for passing radio signals of
interest while stopping signals you don’t want to receive. One of the most
important parts of a radio is its tuner, and filters are integral to the tuning
process, as you’ll see in the next chapter.

Creating an Equalizer
An equalizer is a system that adjusts the gain of a signal independently in
different frequency ranges. If you’ve ever heard someone talk about “turn-
ing up the bass” or “turning up the treble” of some audio, they were talking
about using an equalizer. A typical home audio system’s equalizer will have
several sliders that adjust the volume of the audio, with each slider operat-
ing only within a certain frequency range. For example, if you have the left-
most slider pushed to maximum and all the rest to minimum, you’ll hear
only the lowest (bass) frequencies of your music. The equalizer will apply
maximum gain to the low frequencies and zero gain to any frequencies
higher than that.

How would you go about building an equalizer in GNU Radio Com-
panion? Assume it should have three sliders that control the low range,
midrange, and high range of some audio. Further assume that the low
range covers from 20 Hz to 400 Hz, that the midrange is from 400 Hz to
2,600 Hz, and that the high range is from 2,600 Hz to 10 kHz. For input to
your equalizer, you can either use the ch_05/HumanEvents_s32k.wav from
earlier in this chapter or record your own audio.

Note that all the filter blocks we’ve been using in this chapter have a
Gain setting. This setting applies a gain to the output of the filter block.
Elsewhere in the chapter, we’ve left the gain at 1, meaning the passband
remains unaltered, but if you set the gain to something higher than 1, the
passband would be boosted, even as the stopband is filtered out.

With that in mind, try using filter blocks to build an equalizer in GNU
Radio Companion. If you get stuck, take a look at Figure 5-47 or at the
ch_05/solutions/equalizer.grc flowgraph in your example folder.

106 Chapter 5

Figure 5-47: An equalizer

The key to creating an equalizer is to join what you’ve learned about fil-
tering and gain with the technique of combining signals with the Add block.
The three filters separate the input into low, mid, and high ranges. Each of
these ranges has a unique gain applied to it, allowing you to make it more
or less prominent. Finally, the three ranges are combined through addition
and sent to the Audio Sink for listening and QT GUI Frequency Sink for viewing.

Conclusion
In this chapter, you learned more about what frequency is and saw how to use
FFTs to view signals in the frequency domain. You learned how to apply gain
to a signal and how gain can be measured in decibels. Finally, you learned
how frequency and gain both play a role in filters, processing techniques that
eliminate some frequencies from a signal while preserving others.

Now that you have these concepts under your belt, you have the tools
to start dissecting the AM receiver you built in Chapter 4, which is exactly
what we’ll do next. Although that AM radio may not have seemed like such
a big deal, you’ll find most of its components in any other radio receiver you
eventually build in GNU Radio Companion.

6
H O W A N A M R E C E I V E R W O R K S

In this chapter, we’ll take a closer look at
the AM radio you built in Chapter 4. With

the last chapter’s lesson in signal processing
under your belt, you’re now better equipped to

understand how it works. You’ll learn how the receiver
is able to tune to a particular radio signal in the input
data, how that signal is demodulated to extract an
audio signal, and how that audio signal is resampled so
it can be passed to your sound card.

Much of what we’ll be doing in this chapter will involve adding QT GUI
sinks to various points in the flowgraph to get a look at what’s happening
to the radio data at each point. To get started, find the am_rx.grc AM radio
project we built in Chapter 4, and create a copy named second_am_rx.grc.
You can do this by opening the file in GNU Radio Companion and saving
it with the new name, or you can copy the file in the Linux filesystem. To
recap, Figure 6-1 shows how the flowgraph looked at the end of Chapter 4.

108 Chapter 6

Figure 6-1: The AM radio flowgraph revisited

Over the course of the chapter, we’ll start from the beginning, or the
left side, of your flowgraph and follow the signals as they flow through to
the Audio Sink block on the right. We’ll begin by looking at the original
source data.

Examining the Input Radio Frequency Data
The input RF data can show you a lot about radio signals if you examine
it with the right tools. Add a QT GUI Frequency Sink to your flowgraph and
connect it to the output of the File Source. Remember, radio data is enter-
ing our flowgraph from this block via a file filled with captured RF data.
This new QT GUI sink will allow you to see the frequencies contained in
the radio data. Continuing the good habit of helpful labeling, set the new
block’s Name to RF Input. When you’re done, your flowgraph will look like
Figure 6-2.

How an AM Receiver Works 109

Figure 6-2: The AM flowgraph with a frequency sink

Notice that the output tab on the File Source block is blue, indicating
that the data coming from our input file is of complex type. Therefore,
unlike in many of the previous exercises, you don’t need to change the Type
of the Frequency Sink to Float. This isn’t simply a special case; in general, all
radio data is complex. You’ll learn why in Chapter 11, but for now, recog-
nize that your radio data will start out complex and typically transition to a
floating-point format as you move closer to your sinks.

Execute the flowgraph to take a look at a fast Fourier transform of the
radio data. You’ll see something like Figure 6-3.

110 Chapter 6

Figure 6-3: An FFT of the flowgraph input

The FFT shows that lots of frequencies are contained in the RF data,
but if you look closely, you’ll notice that a few peaks stand out above the
rest, occurring at suspiciously even frequency intervals. This kind of spac-
ing is what we’d expect to see in raw AM radio data: several stations trans-
mitting at the same time on different frequencies and creating sharp peaks.
We’d also expect those peaks to occur at multiples of 10 kHz, just like the
AM radio stations that broadcast in your city. After all, each AM station’s
number, such as 880 or 750, corresponds to that station’s broadcast fre-
quency in kHz (880 kHz or 750 kHz).

The evenly spaced peaks make sense, but there’s something funny going
on with the plot’s horizontal axis: it shows that the data contains frequencies
ranging from –200 kHz to 200 kHz. Even if we set aside the question of what
on earth a negative frequency is, this range doesn’t make much sense. You
might recall that the default value of freq in the flowgraph is 880e3, meaning
you’re tuning to a frequency of 880 kHz when you execute the flowgraph.
Why aren’t we seeing higher frequencies like 880 kHz in the plot?

To understand what’s going on, we should first explain something about
the radio data we’re getting from the File Source block. Its frequency range
doesn’t extend all the way down to 0 Hz, as you might expect. The frequen-
cies are much more limited than that. The file contains data only for the
range from 700 kHz to 1,100 kHz. This range might make a little more
sense if we tell you that it’s 900 kHz ± 200 kHz and if we remind you that
our flowgraph has a variable called center_freq that we set to 900e3.

The original hardware that captured the data can receive it only over
a limited range of frequencies, rather than all frequencies starting from
0 Hz. The frequency range for which a radio receiver can grab data is
called its input bandwidth. In this case, the receiver had an input bandwidth

How an AM Receiver Works 111

of 400 kHz. When this RF data was originally captured, the input band-
width was centered at 900 kHz, resulting in captured data from 700 kHz to
1,100 kHz. We’ve set center_freq to 900e3 to match the flowgraph to the con-
ditions that existed when the data was captured.

Returning to our FFT, notice that the range of frequencies shown,
–200 kHz to 200 kHz, correctly corresponds to our 400 kHz input band-
width. However, the center frequency is given as 0 Hz rather than 900 kHz.
This discrepancy has to do with the nature of the sampled radio data. Even
though it might seem as if the center frequency of the received radio signals
should somehow be embedded in the raw data, it’s actually not.

For now, realize that you need to provide a frequency reference to the
QT GUI Frequency Sink so that it knows where the center frequency is. You
could do that by changing the block’s Center Frequency (Hz) property to
900e3 (900 kHz). An even better idea is to change the property to center_freq,
so the block will automatically adjust to any changes you ever make to that
value. In either case, this change will redraw the horizontal axis of the dis-
play without changing the flowgraph’s data in any way. When you make the
change and rerun, you’ll see something like Figure 6-4.

Figure 6-4: An FFT of the RF input data with a corrected center frequency

Now you have an accurate representation of your raw radio data rela-
tive to the horizontal axis. We can see frequencies ranging from 700 kHz
to 1,100 kHz. Notice how one of the peaks occurs at 880 kHz. This corre-
sponds to the frequency of the station to which you’re currently listening,
the one specified by the value of freq. Additionally, each of the peaks in
the display corresponds to a different broadcast transmission to which you
can tune.

112 Chapter 6

Take a close look at this plot, as it’s enormously informative and some-
thing you’ll be using in nearly every radio receiver that you ever design.
The plot shows you how many signals are present in the capture range and
the frequencies they occupy. The magnitude of this plot at any given point
on the x-axis shows you how much RF energy is present at that frequency:
larger spikes correspond to more powerful signals. The plot also reveals
useful information about noise levels and signal bandwidths, but we won’t
be ready to talk about those until Chapter 8.

Above all, thanks to our FFT, we’re not limited to haphazardly spinning
a dial back and forth to find a station. Instead, we can tune directly to any
of the peaks we see. In fact, go ahead and tune to some of the other peaks
right now by changing the freq value. We’ll look at how this tuning process
works next.

Tuning
You can think of tuning as focusing in on one specific signal while exclud-
ing any others. This is what happens when you operate an AM radio. You
spin the dial (or press the digital buttons) until you get the channel for a
specific station. The radio then produces the audio for that station, while
ignoring all the other channels that might be out there.

Your AM receiver flowgraph implements tuning as a two-step process.
First, it shifts the input radio signals so that the one you want is centered at
0 Hz in the frequency domain. It does this by multiplying the input data by a
sinusoid of a certain frequency. Next, it filters out anything that’s not the zero-
centered signal you want. To illustrate, imagine the data an SDR receives at
any given moment. The FFT might look something like Figure 6-5.

Target channel0 Hz
Frequency

Signal strength

Figure 6-5: An FFT of input radio data

The input data contains three different signals, each represented by a
spike in the FFT. Say you want to tune to the middle spike, which we’ll call
the target signal. You would first shift the frequency of your input radio data
so that the target signal is centered around 0 Hz, as shown in Figure 6-6.

How an AM Receiver Works 113

0 Hz

Signal strength

Frequency

Figure 6-6: Shifted radio data

Notice that the shape of the FFT hasn’t changed at all. It’s simply shifted
position along the x-axis of the plot so that the target signal’s peak is located
at exactly 0 Hz, rather than at some higher frequency. After making this
shift, you would filter everything but the zero-centered target signal, leaving
the FFT shown in Figure 6-7. This is your tuned signal! Everything else has
essentially been eliminated.

Tuned
signal

Signal strength

0 Hz

Frequency

Figure 6-7: Shifted and filtered radio data

Tuning is an essential part of nearly every radio you’ll ever build, so it’s
crucial that you have a firm understanding of how it works. For the rest of
this section, we’ll conduct some experiments in GNU Radio Companion
to give you a hands-on understanding of the tuning process. We’ll look at
each of the two steps, frequency shifting and filtering, in turn, then put
them together to see how tuning happens in your AM receiver flowgraph.

Frequency Shifting
We’ll begin with the first step in the tuning process: frequency shifting. As
you’ll see in this section, the way to shift the frequency of some radio data
is to multiply it by a complex-typed sinusoid. We’ll demonstrate how this
works with a simple experiment in GNU Radio Companion. Set aside your
AM radio for now, and create a new project called freq_shift.grc.

114 Chapter 6

N O T E 	 GNU Radio Companion can have multiple projects open at the same time in different
tabs, so there’s no need to close your AM receiver before creating this new project.

In your new project, drop down a File Source and set its File property to
ch_06/rf_input_c0_s32k.iq. This file, included in the project files accompany-
ing this book, contains synthetic radio data that you’ll shift around in the
frequency domain using tuning techniques. Next, add a Throttle block and
connect its input to the output of the File Source. We’ll explain more about
this block in a moment, but in short, it will keep your computer from work-
ing too hard. Then, add a QT GUI Frequency Sink and connect its input to the
Throttle block output. This way you’ll be able to look at the data coming out
of the input file before you do any processing. Finally, add some appropri-
ate content to your Options block, after which your flowgraph will look some-
thing like Figure 6-8.

Figure 6-8: A partial flowgraph for the frequency shifter

When you run the flowgraph, you’ll see a single peak in the frequency
domain, as in Figure 6-9.

How an AM Receiver Works 115

Figure 6-9: Raw input data for the frequency shifter

Next, we’ll want to multiply the file data by a sinusoid with a variable
frequency. You may recall that we’ve already created a variable-frequency
sinusoid in our AM receiver flowgraph using a Signal Source block and a QT
GUI Entry to control the block’s frequency property. We’ll do the same thing
here. Add a Signal Source with a Frequency set to freq. Leave all the other
properties at their default values. Notice that this means your sinusoid will
be of complex type, rather than the floating-point sinusoids you’ve seen pre-
viously. You’ll need to define the freq value, so do that with a QT GUI Entry,
setting the ID to freq and leaving the Default Value at 0.

Now that we have a variable-frequency sinusoid, we need to multiply
it by the input data. Add a Multiply block, connecting one of the inputs to
the Throttle output and the other to the Signal Source output. Next, add a
second QT GUI Frequency Sink, connect it to the Multiply output and give it a
Name of Shifted. This will allow you to see the results of the multiplication.
Finally, change the Name property of the first QT GUI Frequency Sink to Input.
When you’re done, the flowgraph should look like Figure 6-10.

116 Chapter 6

Figure 6-10: A complete frequency shifter flowgraph

Let’s take a step back and think about what’s happening in this flow-
graph. You have some RF data streaming in from a file, each sample of
which is being multiplied by a sample of a sinusoid. The sinusoid has an
initial frequency of 0 Hz, but that can be changed at runtime. To view the
results of all this, you have a pair of frequency plots to show you the RF
data both before and after the shifting process. Go ahead and view the
results right now by executing the flowgraph. It should produce a plot like
Figure 6-11.

Figure 6-11: The initial shifter output

How an AM Receiver Works 117

Not a lot of change, is there? Multiplying by 0 Hz leaves the RF data as
is. Now try changing the value of freq to 1000. Figure 6-12 shows the result.

Figure 6-12: A 1 kHz frequency shift

See what happened? If you hover your mouse over the peaks in both
plots, you’ll see that the input peak is centered around 3.5 kHz, while the
shifted peak is around 4.5 kHz. Feel free to try plugging in other frequency
values for the sinusoid (they must be integers, since we left the Type prop-
erty of the QT GUI Entry as Integer). What you’ll see is that the frequency plot
of the input shifts an amount equal to the frequency of the sinusoid.

This phenomenon isn’t specific to the signal we have here; it’s actu-
ally a general principle. You can take any complex RF data, multiply it by a
complex sinusoid of frequency f, and you’ll get the same complex RF data
shifted in frequency by f. We won’t get into the mathematics of how this
works, but the principle holds true regardless of the frequencies involved.
Multiply by a 4 kHz complex sinusoid, and the frequency shifts 4 kHz to
the right. Multiply by a 9,341 Hz signal, and it shifts 9,341 Hz to the right.
Multiply it by a –1 kHz signal, and it shifts 1 kHz to the left.

Wait, did we say –1 kHz? Yes! We know the idea of negative frequencies
can be hard to visualize, but we’re going to ask you to take their existence
on faith as mathematically valid and to accept that multiplying RF data by
a sinusoid with a negative frequency produces a leftward shift in all the fre-
quencies present. And that’s how we’ll shift our peak frequency of 3,500 Hz
down to 0 Hz: we’ll multiply by a negative frequency. Specifically, plug -3500
into the freq box, and you’ll get the output you see shown in Figure 6-13.
Notice that the peak of the shifted FFT is now centered around 0 Hz.

118 Chapter 6

Figure 6-13: A centered frequency plot

To generalize what we’ve just seen, the first step of tuning to a fre-
quency is to multiply the input RF data by a sinusoid whose frequency is
–1 times the frequency to which you want to tune. Want to tune to a 5,400 Hz
signal? Use a sinusoid with a frequency of –5,400 Hz. Want to tune to a
–4 MHz signal? Use a +4 MHz sinusoid. Again, try not to think too much
about what the negative frequencies actually represent right now and just
think of them as a useful mathematical tool.

Filtering
The second step in the tuning process is to take your frequency-shifted RF
data and filter out everything but your target signal. That brings us to our
old friend the filter. As we discussed in Chapter 5, filters eliminate frequen-
cies you don’t want, while passing (or preserving) ones that you desire.

Thanks to the frequency-shifting operation we just discussed, you now
have the frequencies you want centered at 0 Hz. This should be good, right?
You just need to pick a filter that passes the frequencies near zero and elimi-
nates all the other ones. But wait a minute; this isn’t quite the same as our
previous filter exercises. You now have negative frequencies, some of which
you’d like to preserve. What will a filter do with those?

How an AM Receiver Works 119

It turns out that filters operating on complex data, like the data you have
here, will affect negative frequencies in the same way as positive ones. For
example, a low-pass filter will pass frequencies between 0 Hz and the cutoff
frequency, and it will also pass frequencies between 0 Hz and –1 times the
cutoff frequency. Meanwhile, it will remove frequencies greater than the cut-
off frequency and less than –1 times the cutoff frequency. This is exactly what
you need. After the frequency shift, you have a peak centered at 0 Hz, with a
little bit of your signal on the left side of zero and little bit on the right side.
All you need to do is send the data through a low-pass filter and pick the right
cutoff frequency.

Start with your frequency-shifting flowgraph and rename it tuner.grc.
If all goes well, this flowgraph will have both components of the tuner,
the frequency shifting and the filtering. Change the File property in the
File Source to ch_06/tuner_test_c0_s1M.iq. This file will be a bit more interest-
ing than the last one, but it was also captured at a different sample rate
(if you’re curious, you can see that we embedded it into the filename itself
with s1M). To account for this new sample rate, change the Variable with
ID of samp_rate to have a Value of 1e6. Then add a Low Pass Filter with its
input connected to the output of the Multiply block, and a QT GUI Time Sink
connected to the output of the Low Pass Filter. We embedded some test pat-
terns in the input file data that will be visible in the time domain, so this
new sink will let you see if your tuner is working correctly. The test patterns
will be relatively small, however, so to see them clearly, we’ll configure the
QT GUI Time Sink to automatically set the y-axis of the plot by changing the
Autoscale property to Yes.

Next, we have to set the properties of the low-pass filter. Since you don’t
yet know what kind of value to use for the cutoff frequency, it’s a good idea
to use a QT GUI Entry so you can adjust the value as the simulation runs. Go
ahead and create a QT GUI Entry with an ID of cutoff, a Type of Float, and a
Default Value of 100e3. Then double-click Low Pass Filter and set the Cutoff
Freq to cutoff.

You also need to set the filter’s transition width. You could create a sepa-
rate QT GUI Entry for this, but we’re going to let you in on a little secret: when
you’re doing a lot of laboratory SDR work, where the signals are pretty clear,
you don’t have to be all that careful with your transition width. As a rule of
thumb, you can start off by setting it to one-tenth of your cutoff frequency
and change it only if you run into problems. The one-tenth will usually give
you decent filtering without overworking your CPU. As such, go ahead and
set your Transition Width property to cutoff/10, just as in Figure 6-14.

120 Chapter 6

Figure 6-14: The Low Pass Filter properties

Entering in that simple expression may seem like a small thing, but it
means you can change the filter’s behavior with a single operation (updat-
ing the value of cutoff), rather than adjusting both the cutoff and transition
width every time you want to try something new. As we’ll further discuss in
Chapter 7, designing your flowgraphs with these types of expressions makes
them much easier to operate.

Finally, let’s revisit the frequency shifting portion of the flowgraph for
a moment. Right now, the sinusoid has a frequency set directly by the freq
value, which shifts the RF data to the left (for negative values of freq) or the
right (for positive values of freq). Rather than specify the amount you want
to shift the RF data, however, it would be more intuitive if you could just
specify the frequency you want to tune to, then have that frequency shift
to the center. This is essentially the reverse of what you’re currently doing.
To make it happen, first change the ID of the QT GUI Entry from freq to tune
_freq, then change its Type to Float. (You’ll be using some bigger numbers
for tuning now, and you’ll see in a moment that some floating-point nota-
tion simplifies entering these larger numbers.) Then change the Frequency
property of the Signal Source to -1 * tune_freq. This way, entering in a value
for tune_freq will cause the data to recenter on that frequency. When you’re
done, your flowgraph will look like Figure 6-15.

How an AM Receiver Works 121

Figure 6-15: A tuning flowgraph

Upon execution, you’ll see that the new input file contains three peaks,
each with a different width (Figure 6-16). You can also see that the time
domain plot just shows waveforms moving around randomly, without the
consistent shape we might expect in a test pattern. This makes sense, since
we haven’t tuned to anything yet.

Figure 6-16: The initial output for the tuner flowgraph

122 Chapter 6

Let’s try to adjust the tune_freq and cutoff values to tune to the three
different signals. The first thing to do is take note of some information
about the input RF data. By hovering your mouse over each signal peak,
you can see that the three peaks in the frequency plot have frequencies
of 230 kHz, 350 kHz, and 435 kHz. You can also use your mouse to get a
pretty good estimate of the width of each peak. The first peak seems to be
about 20 kHz wide, while the other two are about 60 kHz wide.

We’ll tune the lowest frequency first. In the flowgraph execution win-
dow, enter 230k into the tune_freq box. After hitting enter, observe that
the Shifted waveform now has the first peak centered around zero, as
shown in Figure 6-17. If you get an error in the console area of GNU Radio
Companion when you press enter, make sure you set the Type of the QT GUI
Entry for tune_freq to Float.

N O T E 	 It’s a quirk of GNU Radio Companion that block properties use exponential notation,
while values entered into QT GUI widgets during execution use metric units like k, M,
G, and the like. That’s why you entered 230k into the tune_freq box rather than 230e3.

Figure 6-17: Centering the first peak

You should see a triangular-shaped signal appear in the time domain
plot, but it doesn’t look very clean, so you’ll also need to adjust your cutoff
frequency. As noted, the first peak seems to be 20 kHz wide, so you might
think that 20 kHz is a decent cutoff value. Remember two things, though:
the signal peak is centered at zero, and the complex low-pass filter passes
frequencies from the –cutoff to the +cutoff frequencies. Therefore, it would

How an AM Receiver Works 123

be better to use 10 kHz as the cutoff, in which case the filter will pass
everything from –10 kHz to +10 kHz, for a total of 20 kHz. With very clear
signals, it’s not always catastrophic to have a wider filter than necessary, as
you’d end up with the same result if you used 20 kHz for the cutoff, but it’s
important to understand where the numbers are coming from.

Once you set the cutoff to 10k, the triangular wave should clean up sig-
nificantly, as shown in Figure 6-18.

Figure 6-18: Tuning to the first peak

The time domain signal you’re looking at is a complex triangle wave,
which we’re using as a simple test pattern to show you that the tuner is
functioning correctly. It’s only possible to see one cycle of this waveform,
though, and it would be nicer to zoom out on the horizontal axis to see
more of it. To do this, click your middle mouse button anywhere in the
time domain plot to bring up a context menu with numerous options. Click
Number of Points, and you’ll be shown a dialog box populated with 1024.
Changing this to a larger number will display more samples on the plot,
essentially zooming out in the horizontal direction. For example, try dou-
bling the number by entering 2048, and you’ll get a wider view of your signal
in time, as shown in Figure 6-19.

124 Chapter 6

Figure 6-19: Tuning to the first signal

Next, tune to the second signal by changing tune_freq to 350k. The time
domain waveform will change to something with a sharper upward ramp
and a slower downward ramp than the triangle wave (Figure 6-20).

Figure 6-20: Tuning to the second signal, with poor filtering

As you may recall, however, the second and third peaks are wider than
the first, so you’ll need to update your cutoff value. When you change it to

How an AM Receiver Works 125

30k (half of the peaks’ 60k width) and press enter, you’ll see the waveform
get a bit sharper, as shown in Figure 6-21.

Figure 6-21: Tuning to the second signal, with better filtering

This waveform is known in electronics as a sawtooth wave, with a sharp
rise and a slow ramp-down.

Finally, change the tune_freq to 435k to see the last signal’s test pattern
(Figure 6-22).

Figure 6-22: Tuning to the third signal

126 Chapter 6

Your last waveform is a complex square wave. Feel free to play around
with the tuning and cutoff values to get a feel for what they do.

Accounting for Real-World Frequencies
When you’re working with real-world radio data in an SDR flowgraph, as in
your AM receiver project, you have to keep two sets of frequencies in your
head: those corresponding to real-world physics and those that GNU Radio
sees. This adds a complication to the tuning process for real-world data, in
contrast to the tuning exercises we’ve just worked through.

Take a look back at the input FFTs in Figures 6-9 and 6-16. In both of
these exercises, the input files had frequency plots ranging from negative
frequencies through zero and on to positive frequencies. Despite our reas-
surances about negative frequencies being mathematically viable, SDRs
don’t really capture RF data at negative frequencies. The actual radio sig-
nals you’ll encounter in the real world will have positive frequencies that
are typically quite a bit greater than zero. We saw this in the frequency
plot of the input radio data for the full AM receiver (Figure 6-4). Once we
adjusted the horizontal axis of the plot, it showed us that the data starts
at 700 kHz and goes up to 1,100 kHz. Unlike the zero-centered plots, this
is representative of what’s going on in the physical world. The frequency
values shown in Figure 6-4 match the actual physics in play at the time the
file was captured. For example, the signal you’re tuning to by entering 880e3
(or 880000 as it’s displayed in the execution window) was actually present at
880 kHz when we received it with our SDR and streamed it to the file.

Once those RF signals are captured by the SDR hardware, processed,
and sent to the computer, however, their frequency characteristics are
changed. No matter which frequencies you originally configure your SDR
to receive, the computer will always see zero-centered data. That’s why the
QT GUI Frequency Sink connected to the input data originally showed the fre-
quency plot centered around 0 Hz, as you saw in Figure 6-3.

If you wanted, you could just agree with GNU Radio Companion and
treat everything as zero-centered with respect to frequency. However, it’s
useful to be able to work with signals as if they occupy the frequencies that
correspond to their actual physics. Working with signals in the frequency
domain is more intuitive when your plots show those signals at their real-
world frequencies. Without that, you’d have to constantly keep two sets of
values in your head as you examine frequency plots and enter tuning values.

This is why there’s a center_freq value in the AM receiver flowgraph. It
allows you to have the best of both worlds: the real-world frequencies that
make sense to you and the zero-centered frequencies that make sense to
GNU Radio. All user-focused inputs and outputs (the QT GUI elements)
use real-world frequencies. The tuning-related blocks (in this case, just the
Signal Source) use the center_freq value to provide an offset, converting the
real-world numbers to zero-centered numbers. Specifically, we accomplish
this by setting the frequency of the Signal Source using the expression
center_freq - freq. When you want to tune to 880 kHz, this expression will
evaluate to 900e3 - 880e3 = 20e3. This has the net result of shifting the radio

How an AM Receiver Works 127

data 20 kHz to the right, centering the desired signal around 900 kHz in
real-world terms, or around 0 Hz in GNU Radio terms.

N O T E 	 If you want to see what the AM receiver flowgraph looks like without all this double
bookkeeping, change the Default Value of center_freq to 0 and the Default Value of
freq to 20e3. Everything will function just as it did before, but all the user inputs and
displays will see the same zero-centered world that GNU Radio sees.

This idea of multiple simultaneous frequency values (the real-world fre-
quency and the GNU Radio frequency) can be difficult to get used to. The
more you work with radio flowgraphs, however, the clearer it will become.

Tuning the AM Receiver
We’re now ready to return to the AM radio flowgraph to see how the tun-
ing process works in context. We’ll add two FFTs to the flowgraph so you
can see the results of each stage of the tuning. Add the first QT GUI Frequency
Sink to the output of the Multiply block, with a Name of Shifted, and the sec-
ond to the Low Pass Filter output, with a Name of Filter Out. When you’re
done, you should have something like Figure 6-23.

Figure 6-23: An AM radio with extra GUI sinks

128 Chapter 6

Executing the flowgraph shows you how each stage of the tuner works.
Figure 6-24 shows the execution window.

Figure 6-24: The AM radio tuner frequency plots

On the RF Input plot, you see the captured SDR data coming from the
file, realistically centered around 900 kHz. Notice the peak we want to tune
to, at 880 kHz, just to the left of the center of the plot. In the Shifted plot,
that peak has been shifted to the center of the frequency axis. This second
plot’s horizontal axis is centered around 0 Hz, since you didn’t change
the plot’s Center Frequency (Hz) property. Once you’ve gone through the
frequency-shifting phase of tuning, it makes sense to start thinking of your
data as zero-centered. You’re finally on the same page as your software!

Finally, the Filter Out plot shows the effects of low-pass filtering your
centered RF data. You can see the peak and a 5 kHz range on either side

How an AM Receiver Works 129

(remember the cutoff frequency?), but all the rest of the RF data is gone.
This includes all the other signal peaks, as well as the frequencies between
them. Failing to filter out those other signal peaks is the aural equivalent
of listening to many people talking at the same time. We want our radio
receiver to listen only for a single voice. And as you’ll see in Chapter 8, the
RF energy between those signal peaks is just noise. We don’t want that either.

Try tuning to a few of the other signals you can see in the Input RF
flowgraph and watch how the tuner operates. Then congratulate your-
self on learning the art of tuning, one of the most significant concepts in
radio communications.

Demodulation
Once you tune your AM receiver to a particular signal, the next step is to
demodulate the signal. Recall that we discussed amplitude modulation and
demodulation in Chapter 1. Specifically, we looked at a simple example where
a faster (higher-frequency) carrier wave was modulated based on a slower
(lower-frequency) sinusoidal signal. It looked something like Figure 6-25.

Figure 6-25: AM modulation

In this time-domain plot, we can see that the waveform fluctuates up
and down in evenly spaced intervals, according to the frequency of the car-
rier wave. But instead of each peak having the same height, the height var-
ies from peak to peak, tracing the shape of the lower-frequency sinusoid.
This is the effect of amplitude modulation: the amplitude (height) of the
carrier wave is changed based on the current level of the signal we wish
to transmit.

Returning to your flowgraph, once the data emerges from the low-pass
filter, you have a single AM radio signal. All the other signals and noise

130 Chapter 6

have been filtered out. Your AM signal consists of a carrier wave at a certain
constant frequency that has been modulated in the same way as the simple
example in Figure 6-25. Instead of changing the carrier wave’s amplitude
based on a simple sinusoid, however, the amplitude was changed based on
a more elaborate audio waveform generated by a microphone into which
someone was talking.

Demodulating this signal manually would require a fairly complicated
design, with scary things called “envelope detectors” or “product detectors.”
Fortunately, GNU Radio has a simple block that just takes care of all that
for you: the AM Demod block. This block takes a single AM modulated signal
(which you have) and outputs the audio waveform it contains (which you
want). The AM Demod is the next block in your second_am_rx.grc flowgraph,
appearing right after the Low Pass Filter.

Taking a close look at the flowgraph, you can see that a signal of Complex
type goes into the AM Demod from the Low Pass Filter, while a signal of Float
type comes out. You can tell this from the color of the input/output tabs:
the AM Demod has a blue input tab (Complex) and an orange output tab (Float).
You can actually divide up the entire flowgraph into two parts hinging
around the AM Demod: the Complex portion on the input side and the Float
portion on the output side (see Figure 6-26).

Figure 6-26: A flowgraph divided

As mentioned earlier, radio data tends to be complex. We also men-
tioned that audio data will be composed of real numbers (numbers with
decimal points that aren’t complex), which are typically represented in

How an AM Receiver Works 131

computers by floating-point types. Often demodulators will serve as the
dividing line between the “radio” side of things and the “rest-of-the-world
output” side of things, which in this case is our audio. As the data passes
through the demodulator, its type is converted from Complex to Float.

Viewing the Modulated and Demodulated Signals
Now that we know what the AM Demod block is doing, let’s use some instru-
mentation blocks to look at the data going into and out of the block. You
already have a QT GUI Frequency Sink connected to the output of the Low Pass
Filter. Add another one to your flowgraph, connect it to the AM Demod block
output, set its Name to Demod Out, and set its Type property to Float. Before
running the flowgraph, you might also want to disable the RF Input and
Shifted GUI blocks; you don’t need them anymore. When you’re done, you’ll
have something like Figure 6-27.

Figure 6-27: A flowgraph to display the AM demodulator output

Think about what this new frequency plot will show you when you run
the flowgraph. With your first glance at the execution window in Figure 6-28,
you might think, “Not much!”

132 Chapter 6

Figure 6-28: The AM demodulator output

The main thing you should notice is how the signal bounces up and
down periodically. This is because the audio will get louder and softer at
times, and this intensity is reflected in both the modulated and demodu-
lated versions of the signal. This is a characteristic of amplitude modulation:
larger audio signal, larger carrier; smaller audio signal, smaller carrier.

Setting the AM Demod Block Properties
The AM Demod block has several properties that we set when we built the AM
receiver flowgraph in Chapter 4. We’ll look briefly at the meaning of those
properties now:

Channel rate   This is simply another name for the sample rate. We set
it to 400k using the samp_rate variable.

Audio decimation   We’ll look at decimation in the next section.
For now, understand that setting this property to 1 means it will have
no effect.

Audio pass   This is another term for cutoff frequency. The AM Demod block
contains its own low-pass filter to get rid of any noise that may be part
of the input or that might be generated by the demodulation process.
This property sets the cutoff frequency for that internal low-pass filter.
The default value for this property was 5e3, or 5 kHz. This is set to work
with standard broadcast AM signals, which are mandated by govern-
ment regulators to behave in specific ways. Unless you’re building a

How an AM Receiver Works 133

custom AM transmitter and receiver that behave differently than stan-
dard AM broadcasts, you’ll never need to change this.

Audio stop This is another way of describing the transition width of
the AM Demod block’s low-pass filter. Instead of defining the size of the
transition zone, the audio stop just defines where it ends (in this case,
5,500 Hz). Arithmetically, the audio stop minus the audio pass is equal
to the transition width. This is illustrated in Figure 6-29.

Figure 6-29: The audio pass and audio stop of an AM Demod block

We’ll get into other types of modulation and demodulation besides AM
in a later chapter. For now, let’s be grateful for how powerful these GNU
Radio blocks are and move on to the last stage in your AM radio.

Resampling
Now that you’ve tuned to an AM radio signal and demodulated it to pro-
duce an audio signal, the last step in your flowgraph is to resample the
audio so your computer’s sound card can play it. Resampling means chang-
ing the sample rate of a signal. This step is necessary because the sample
rate of the audio signal coming out of the AM Demod block is 400 kHz, as
shown by the block’s Channel Rate property, but 400 kHz is too fast for the
audio cards in most computers. In fact, the Audio Sink at the end of the flow-
graph has a default sample rate of 32 kHz.

Here’s the first rule of sample rates in GNU Radio: they need to match
when going from one block to another. Put another way, the input sample rate to
any block must be the same as the output sample rate of the block to which
it’s connected. Thanks to this rule, we can’t simply connect the AM Demod
block to the Audio Sink. The sample rates don’t match. We need to resample
the data, meaning change the sample rate, by adding a resampler between
the two blocks. This block won’t change the underlying character of the
data, but it will convert the sample rate from 400 kHz to 32 kHz.

134 Chapter 6

There are two basic types of resampling: decimation and interpolation.
Decimation reduces the sample rate, while interpolation increases it. In our
case, we’ll actually need a combination of both.

Decimation
Decimation converts from a higher to a lower sample rate by simply getting
rid of some of the samples. To see how this works, think about the number
of samples that are taken over a fixed period of time. For example, if your
sample rate were 1 ksps (otherwise known as 1,000 samples per second),
you would have 1,000 samples in a 1-second interval. To cut the sample
rate in half, you could simply throw away every other sample, leaving 500
samples over that same 1-second time interval. Since 500 samples divided by
1 second yields 500 samples per second, you can see that you’ve halved the
sample rate for that 1-second period. Now, rather than just doing this for
a single second, imagine that you always throw away every other sample. If
you do, then you can see how the sample rate would be halved, as shown in
Figure 6-30.

Figure 6-30: Decimation

Cutting the sample rate in half is the same as decimating the signal
by 2. As the figure illustrates, data enters the resampler as a stream of
evenly spaced samples, and it leaves the resampler as a more widely spaced
stream of samples, having been decimated by 2.

Let’s create a simple project to see what this looks like in practice.
Name this new project decimation.grc. One note before you begin: the Type
for all blocks used in this flowgraph will be Float, so please configure each
block as such. To save a bit of time, you can select a block and press the up
arrow or down arrow key to cycle through block data types. To go from
Complex to Float, simply press the down arrow once.

First, add a Signal Source and connect its output to a Throttle block.
Other than the Type, use the default settings for both of these blocks.
Then, feed the Throttle output into a Keep 1 in N block, changing the Type
to Float and the N property to 4. This block will decimate the incoming
signal by a factor of 4. Finally, add two QT GUI Time Sink blocks to view the
test signal before and after decimation. Connect the first to the output of
the Throttle block, setting the Name to 32 ksps Input and the Number of
Points to 128. Then click the Config tab and set the Line 1 Marker to Circle.
Connect the second time sink to the output of the Keep 1 in N block. Set
the Name to Decimated Output, the Sample Rate to 8000, and the Number
of Points to 32. As with the first sink, also set the Line 1 Marker to Circle.
When you’re done, your flowgraph should look like Figure 6-31. (Fiddling
around with the number of points and the markers of the time sinks isn’t

How an AM Receiver Works 135

necessary from a functional standpoint; it’s solely to make the output in this
learning exercise look clearer.)

Figure 6-31: A decimation flowgraph

When you run the flowgraph, you’ll see the image in Figure 6-32.

Figure 6-32: The decimation output

136 Chapter 6

In these time sinks, each sample of the signal is represented by a dot,
and GNU Radio helpfully draws a curve connecting these dots to show
you the shape of the waveform. Notice how the Decimated Output has the
same general shape as the 32 ksps Input, but it has fewer samples over the
same time period. Specifically, it has one-fourth as many samples, since
the decimation drops the sample rate from 32 ksps to 8 ksps (32,000 / 4 
= 8,000).

You can decimate any signal this way, but be careful that you don’t
decimate too much, or you’ll run afoul of the problem we encountered
when we first discussed digital sampling in Chapter 2: distortion due to
undersampling. We’ll return to this issue in Chapter 11. For now, we’ll
assert that the sampling rate in our simple test project, 8,000 samples per
second, is sufficient, since it’s still significantly faster than the 1 kHz signal
we’re sampling.

Go ahead and try some different decimation values in the Keep 1 in N
block to ensure it behaves as you expect. Note, however, that you can deci-
mate only by an integer value. It makes sense to decimate by 7, for example,
because you can keep every seventh sample and throw the rest away, reduc-
ing the effective sample rate by a factor of 7. The same method can’t be
used to decimate by 7.5, though; you can’t keep 1 sample and throw away
the next 6.5 without additional processing. As you try different decima-
tion values, just remember that you’ll have to adjust the Sample Rate and
Number of Points of the Decimated Output time sink to produce the same rich
visual aesthetic you saw here.

T HE T HROT T L E BLOCK

We’ve now used the Throttle block in a few flowgraphs without really explain-
ing why. Let’s take a moment to look at what it does. In short, it keeps your com-
puter from working harder than necessary.

If you tried building some of the previous flowgraphs without a Throttle,
they would most likely seem to work fine. You might sense some sluggishness
from your computer, but otherwise it probably wouldn’t have seemed much dif-
ferent. If you brought up your System Monitor, however, you would have seen at
least one of your CPUs working as hard as it could.

It turns out that the sample rates you specify in your GNU Radio flow-
graphs aren’t exactly what they seem. Sometimes, the computer is actually
going much faster. For the 32 ksps rate in the decimation.grc flowgraph, for
example, we would expect our blocks to complete the math for the flowgraph
once every 31.25 microseconds (1 divided by 32 kHz). Modern computers,
however, can perform billions of operations per second, so they can easily do
all the flowgraph’s calculations at a much faster rate than once every 31.25
microseconds.

How an AM Receiver Works 137

What does the computer do once it’s finished one cycle’s worth of calcula-
tions early? When we run a flowgraph that contains an interface to the physical
world, such as an SDR-interfacing block or an Audio Sink block, the computer
heeds the sample rate and will sit around idling until it’s time to process the next
data sample . But when everything in the flowgraph is synthetic, as in decimation
.grc, something a little strange happens . Since there’s no SDR hardware or
sound card that’s expecting data at a specific point in time, GNU Radio doesn’t
really need to wait for anything . It’s essentially just running a simulation, so
why not run it as fast as possible, regardless of the sample rate? That’s exactly
what your computer does, greedily hogging resources you’d like to use for other
operations, like moving your mouse around and clicking things .

The solution is to simply add a Throttle block somewhere in the flow-
graph . It forces data to slow down to whatever rate the block specifies . That’s
all you need to do to keep your CPU safe and sane . We find it easiest to put
the Throttle right after one of the source blocks, but theoretically, it could go
anywhere . For example, in decimation.grc, the Throttle could instead come
after the Keep 1 in N block .

Interpolation
Interpolation increases the sample rate by creating extra samples between
the existing samples in a signal. Each extra sample is added by estimating
what value the original signal would have had at that point in time. For
example, if your signal had a value of 3 at 1 ms and 7 at 2 ms, an interpola-
tion algorithm might estimate the value at 1.5 ms to be 5 (Figure 6-33).

Figure 6-33: Interpolation

138 Chapter 6

One warning about interpolation: you aren’t actually capturing any new
information about the sampled signal with interpolation. You haven’t made
any additional measurements of any real signals. You’ve just performed a
mathematical trick that helps you match the sample rates between your dif-
ferent flowgraph blocks.

Resampling in the AM Receiver
Let’s now return to your AM radio and see how we can resample the demodu
lated audio signal to be suitable for output. The audio signal starts with a
sample rate of 400 kHz and needs to be converted to the typical sample
rate of 32 kHz for your sound card. At first it may seem obvious that we
need to decimate. But by how much? Dividing 400 by 32, we get 12.5, which
is a problem. We just said a few paragraphs ago that we can’t decimate by
noninteger values.

Our solution is to use a Rational Resampler block. This block allows for
fractional resampling, or resampling by a noninteger value. The block does
this by combining decimation and interpolation to achieve the same result
as a fractional decimation. An easy way to do the math is to use the old
sample rate in kHz for the decimation value and the desired sample rate in
kHz for the interpolation value. In our case, that’s 400 for the decimation
value and 32 for the interpolation value. This means that the rate of the
incoming signal, sampled at 400 kHz, will be divided by 400 and multiplied
by 32, leaving you with an output rate of 32 kHz; that’s exactly what we need
to send the signal on to the Audio Sink so that we can hear it!

There are other reasons to change the sampling rate within a project
besides matching the rate required to output a signal to your sound card.
A common reason is to reduce the computational load of your flowgraph.
A slower sample rate means fewer numbers going through that part of
the flowgraph. Fewer numbers mean fewer computations per second are
required, thus reducing the CPU load on your computer. It’s a good prac-
tice to decimate when you can for the sake of computational efficiency.

Conclusion
Pause for a moment to consider what you’ve accomplished to this point:

•	 You’ve installed GNU Radio, which is a great start.

•	 You’ve learned about basic radio concepts such as gain, frequency,
filtering, and modulation, and you’ve seen them in action.

•	 You’ve built and debugged simple flowgraphs.

•	 You’ve gotten to know the basic parts of a software-defined radio
by building and analyzing an AM receiver.

The AM radio receiver you built may not have been the most compli-
cated radio system imaginable, but throughout the rest of this book you’ll

How an AM Receiver Works 139

see how to build increasingly more advanced analog receivers using the
same basic framework. Some of the pieces will be a bit different, but there
will be more similarities than you might expect. Even if you switch from
analog to digital receivers, the similarities won’t end: those radios are struc-
tured with a lot of the same pieces as well. Because this framework is so
crucial to understand, we’ll continue your journey in the next chapter with
a new kind of analog receiver.

7
B U I L D I N G A N F M R A D I O

In this chapter, you’ll see how to build a dif-
ferent type of analog receiver: an FM broad-

cast receiver. Along the way, you’ll get more
practice working with GNU Radio. You’ll meet

some powerful new blocks and practice using variables
and expressions to make your flowgraphs more flexible.

You’ll develop the FM receiver in two stages. First, you’ll make the abso-
lute minimum of changes necessary to convert your AM receiver flowgraph
from Chapter 4 into an FM receiver. The conversion will actually require
very little modification to achieve, which illustrates the incredible modular-
ity of software-defined radio; different SDR-based receivers have a lot in
common with each other. After getting your basic FM flowgraph working,
you’ll then make a number of improvements to it. The result will be a basic
but powerful SDR receiver framework that can form the basis for a multi-
tude of analog (and digital!) SDR receivers. You’ll be able to integrate hard-
ware into this framework to run your receiver on live broadcasts, as we’ll
explore in Chapter 9. That’s probably what many of you have been waiting
for, and we’re almost there.

142 Chapter 7

The FM in the FM receiver you’ll create in this chapter is short for
frequency modulation. Like amplitude modulation, this is a technique for
embedding the characteristics of one signal into another signal. We’ll talk
about the theory behind how FM modulation and demodulation work in
Chapter 10. For now, let’s dive into building the FM radio project.

Converting from AM to FM
Your FM radio receiver will start with a source of radio frequency (RF) data,
which will be fed into tuning and filtering stages to isolate the signal that
you want. This signal will then be demodulated to produce the originally
transmitted signal. After some resampling, you’ll then play the audio. These
are exactly the same steps you took previously to make your AM receiver! The
only fundamental difference between your FM radio and your AM radio will
be the demodulation step. There will, however, be a couple of smaller tweaks
along the way.

Start by opening your AM radio receiver flowgraph (or you can start with
ch_07/am_rx.grc, included in your downloaded project bundle) and save it
with a new filename. At first, the flowgraph should look like Figure 7-1. We’ll
only be swapping out the AM Demod block, while the rest of the flowgraph will
just require some parameter changes.

Figure 7-1: The AM receiver flowgraph again

Building an FM Radio 143

You’ll start making changes at the input side, beginning with the File
Source and moving toward the output side. Open the File Source block and
set the File property to ch_07/fm_c96M_s8M.iq. To properly process the
RF data coming from this file, we need to know the center frequency and
sample rate the SDR was operating at when the data was captured. The file-
name contains two clues: c96M denotes a center frequency of 96 MHz, while
s8M tells us the SDR’s sample rate was 8 Msps.

N O T E 	 You won’t always have these parameters embedded in the filename, but you will need
to know what they are somehow. Our advice: choose a filename with this type of for-
mat if you’re creating it, or change the name of a file you’re using if it doesn’t have
this information in it. You may think you won’t lose that sticky note with these two
parameters scribbled on it, but you shouldn’t risk it.

The AM receiver flowgraph had different values for these parameters,
so let’s update those now. Change the center_freq Default Value to 96e6 and
the samp_rate Value to 8e6. Also, go ahead and set the Default Value of freq
to 94.9e6. There are a number of signals in this file, and 94.9 MHz is one of
them, so this change gives you a head start on the tuning process. When
you’re done, your flowgraph should look like Figure 7-2.

Figure 7-2: The receiver flowgraph with a modified File Source and other updates

144 Chapter 7

Notice that the workspace’s visual rendering of the Signal Source block
has updated to show a Frequency of 1.1M based on the freq and center_freq
values you’ve entered. This happens automatically thanks to the way you
set up the Signal Source block with a variable as the frequency parameter;
there’s no need to change anything in the Signal Source to support the new
freq and center_freq values. As we discussed in Chapter 6, the way to think
of this 1.1M is that the file was originally captured with the SDR centered
on 96 MHz, but after capture, the data is stripped of its original frequency
information and will be interpreted by GNU Radio as if centered at 0 Hz.
In that zero-centered universe, the broadcast signal originally at 94.9 MHz
is now at –1.1 MHz. Multiplying the RF data by a complex sinusoid with fre-
quency 1.1 MHz will shift the target signal to 0 Hz, otherwise known as the
center. A tuning scenario with these values is shown in Figure 7-3, with both
sets of frequencies labeled.

96 MHz

0 MHz

94.9 MHz

–1.1 MHz

Hardware frequencies

GNU Radio frequencies

Frequencies

Signal strength

Multiply by 1.1 MHz sinusoid

Figure 7-3: Comparing hardware and GNU Radio frequencies during tuning

The next block to look at is the Low Pass Filter. Recall that once you’ve
centered your target signal, you want to filter out all but a limited range of
frequencies centered around zero. We set the cutoff frequency of this filter
based on the width of frequencies we expect the target signal to occupy.
Later we’ll define this quantity more carefully and call it bandwidth, but for
now, take it on faith that a conservative estimate for the width of an FM
broadcast signal is 150 kHz.

In light of this, you might be tempted to set the Cutoff Freq of the Low
Pass Filter to 150e3. Recall, however, that this complex low-pass filter will
pass frequencies between the negative cutoff frequency and the positive cut-
off frequency. If you set the cutoff to 150e3, you’ll pass the frequencies from
–150 kHz up to +150 kHz, for a total bandwidth of 300 kHz. This is too wide
and will have the effect of letting through a bunch of extra noise, and pos-
sibly other signals, that you should be filtering out. Your system might work
with this setup, especially if the signal you want is very loud and clear and
if there are no other signals close by in frequency. Still, we wouldn’t recom-
mend unnecessarily letting this extra noise into your system. Instead, set

Building an FM Radio 145

the value of the Cutoff Freq to 75e3, which will result in a 150 kHz range of
frequencies passing through the filter. Also change the Transition Width to
7.5e3 (our one-tenth rule of thumb). Finally, change the Decimation to 20.

This last change will simplify the rest of the flowgraph a bit. The origi-
nal flowgraph ran at a sample rate of 400 ksps right up until the end, when
it dropped down to 32 ksps so that the Audio Sink would work properly. Since
the first blocks of your new flowgraph are running much faster than before,
we’ll have to account for this difference at some point. Dropping the sample
rate of the data exiting the Low Pass Filter down to 400 ksps will allow the
latter part of the flowgraph to run at the same sample rate as before, mini-
mizing the changes you’ll need to make to the subsequent blocks. Why a
value of 20? Because 8 Msps, or 8,000 ksps (the sample rate of the .iq file),
divided by 20 is 400 ksps. When you complete your property changes, your
flowgraph should look like Figure 7-4.

Figure 7-4: The receiver flowgraph with updated low-pass filter parameters

Next up is the demodulator step. You’ll need an entirely new block
for this stage, so delete the AM Demod and add a WBFM Receive block in its
place, connecting its inputs and outputs in the same way. Set the block’s
Quadrature Rate to 400e3 (this is just another name for the sample rate) and
the Audio Decimation to 1 (we don’t want to change the sample rate any
further). When you’re done, your flowgraph should look like Figure 7-5.

146 Chapter 7

Figure 7-5: Adding the WBFM Receive block

The beginning of the flowgraph is running at a sample rate of 8 Msps,
but the Rational Resampler is still being fed a demodulated audio signal
sampled at 400 ksps, just as before. Also as before, you’re sending data to
the Audio Sink at 32 ksps. This means we don’t need to change anything else.
Your flowgraph should work with no more changes required!

Before running the flowgraph, check your computer’s audio levels and
make sure they’re below 50 percent. This flowgraph drives the Audio Sink
with a much stronger signal than the AM receiver, and there’s no point in
waking up the neighborhood. Also, driving your audio card with too strong
a signal can result in unpleasant distortion. When you’re at a reasonable
level, execute the flowgraph. You should hear a voice talking almost imme-
diately. The audio will repeat very quickly because the captured file is only
a few seconds in duration. As we’ll see later, captured RF files can get very
large, so we made this one small enough not to be unwieldy.

Building an FM Radio 147

At this point, you have a functional FM receiver—congratulations! As
you’ve seen, it isn’t all that different from your original AM receiver. The
key takeaway is that SDR-based receivers share a great deal in common with
each other. If you’re already looking ahead to digital radios, a lot of what we
do in the next book will depend on this basic receiver structure.

Improving the FM Receiver
You’ve gotten your FM receiver working, but you’re not done. There are
several things you can do to make the flowgraph better, and we’re going
to start on that now. The final FM receiver flowgraph is going to be func-
tionally equivalent to what you already have, but it will have these key
enhancements:

•	 A new block to do all the tuning steps in one place

•	 A cleaner and more powerful set of variable definitions

•	 A graphical slider for volume control

We’ll also add an instrumentation block so you can easily view the RF
data and tune to different frequencies.

Tuning More Effectively
The current tuning implementation works, but there’s a cleaner way. Right
now, it takes three different blocks (the Signal Source, the Multiply, and the
Low Pass Filter) to tune the signal, but GNU Radio has a single block that
combines all this functionality. It’s called the Frequency Xlating FIR Filter
block—quite a mouthful. This block will perform all the same tasks as the
existing tuner: frequency shifting, filtering, and decimation.

Start by deleting your existing tuner, removing the Signal Source, the
Multiply, and the Low Pass Filter blocks. Then add a Frequency Xlating FIR
Filter to your flowgraph, connecting its input to the File Source and its out-
put to the WBFM Receive. As you add this block, be careful not to mistakenly
add the Frequency Xlating FFT Filter instead. This other block will sometimes
work, but it’s typically much more computationally intensive. When you’re
done, the flowgraph should look like Figure 7-6.

148 Chapter 7

Figure 7-6: The FM receiver flowgraph with a Frequency Xlating FIR Filter block

The technique you used in your original tuner to frequency-shift the RF
data has several different names. In the hardware world, we’d call it complex
mixing. If we just look at the flowgraph math, we might term it complex
sinusoidal multiplication. Another description, though, is frequency translation.
Hence, the first part of the new block’s name tells us that it translates, or
shifts, the frequency of the input data. Xlating is just a slight abbreviation
of translating.

The second half of the name refers to a type of filter. A finite impulse
response (FIR) filter is a specific way of implementing a filter on sampled data.
The theory behind these FIR filters is beyond the scope of this book; you
can find a lot of great resources online if you’re interested. For tuning pur-
poses, we’ll be building a low-pass filter using an FIR scheme, but you don’t
need to know how FIR filters work to make that happen—GNU Radio does
the work for you.

We need to set three properties on the Frequency Xlating FIR Filter
block. The first is the Center Frequency, which controls how to shift the
frequency of the input RF data. Its name can be a little confusing at first
because we already have something called center_freq in our flowgraph. It’s
natural to assume these are the same things, but they aren’t. As we proceed,
you’ll see how they differ.

GNU Radio assumes that the input data is centered around 0 Hz.
The Center Frequency property directs the block to recenter the RF data
around a different frequency. Let’s illustrate this using the same example
shown earlier in Figure 7-3. If we use –1.1 MHz for the Center Frequency

Building an FM Radio 149

value, the RF data will shift to the right such that the –1.1 MHz point will
now be in the center. Figure 7-7 shows this example with both the GNU
Radio frequencies and the hardware frequencies.

96 MHz

0 MHz

94.9 MHz

–1.1 MHz

Hardware frequencies

GNU Radio frequencies

Frequencies

Signal strength

Set Center Frequency to –1.1 MHz to
recenter RF data here

Figure 7-7: Tuning with the Frequency Xlating FIR Filter

This is similar to how we did frequency shifting before, but the shift
quantity now has the opposite sign. Using the original, three-block method
on our example, we would have multiplied the RF data by a complex
sinusoid with frequency of +1.1 MHz to center on the target signal, rather
than selecting –1.1 MHz for the Center Frequency property. With the old
method, we specified the amount of frequency to shift (+1.1 MHz). The new
method requires us to select the frequency to center on (–1.1 MHz). The
sign on the value is the only difference, as shown in Figure 7-8.

96 MHz

0 MHz

94.9 MHz

–1.1 MHz

Hardware frequencies

GNU Radio frequencies

Frequencies

Signal strength

Three-part tuner
multiplies by +1.1 MHz

New tuner selects
–1.1 MHz

Figure 7-8: A comparison of tuning methods

There’s one additional complication, however: although the computer
sees flowgraph data as centered at 0 Hz, we humans generally prefer to

150 Chapter 7

think in terms of real-world frequencies. In other words, we should pres-
ent the real-world frequencies to the flowgraph’s human user, while doing
arithmetic so the flowgraph has the zero-centered values it needs to work.
This means we need to compute the Center Frequency property for the
tuner using an expression of the hardware frequency variables: freq and
center_freq. Recall that this center_freq value denotes the frequency at which
the SDR hardware was originally configured to capture the RF data we have
in the file. The freq variable represents the actual hardware frequency to
which we’d like to tune.

With this in mind, double-click the Frequency Xlating FIR Filter block and
set the Center Frequency to freq - center_freq. Then click OK. Notice that
this is simply the opposite of what we did in the three-block approach, where
we set the frequency of the Signal Source block to center_freq - freq. Switching
the variables in the expression gives us a value with the correct sign.

The next tuner function we need to configure is the low-pass filter.
Before entering anything for that, you should create two more variables.
First, copy and paste the samp_rate Variable block, and change the ID of
this copy to chan_width and the Value to 150e3. This channel width variable
denotes the range of frequencies we want to pass through the filter. It’s not
quite the same as the Cutoff Freq property on the old Low Pass Filter block;
the filter passes frequencies between the negative cutoff and the positive
cutoff, whereas the channel width describes the entire range of frequencies,
both positive and negative. The channel width is therefore twice as large
as the cutoff frequency, as shown in Figure 7-9. We use this value rather
than the cutoff frequency because it’s a bit more intuitive to think in terms
of widths, rather than half-widths.

Channel width = 150 kHz

Signal strength

Frequencies
–cutoff = –75 kHz cutoff = +75 kHz

Figure 7-9: Cutoff frequency versus channel width

Next, copy and paste the chan_width variable to create another duplicate.
Change the ID of the duplicate to transition_width and the value to chan
_width/20. This is simply applying our rule of thumb that a decent transition
width is one-tenth the cutoff frequency. Since the channel width is twice
the cutoff frequency, we divide by 20 instead of 10.

Now to make use of our two new variables. Without going into pages of
digital filter theory, we will just tell you that the function of an FIR filter is

Building an FM Radio 151

driven by a set of mathematical quantities called taps. We definitely do not
want to figure out how to calculate these taps by hand, so bear with us as
we invoke a little bit of magic. Double-click Frequency Xlating FIR Filter and
enter the following into the Taps property field:

firdes.low_pass(1, samp_rate, chan_width/2, transition_ width)

You’ve just done some Python programming! All this does is call a GNU
Radio function that generates the taps for a low-pass filter. You’re passing
the function four arguments in the parentheses. The first is the filter gain.
We intend only to filter, not apply any gain, so we’ve set this to 1. The sec-
ond argument is the sample rate of the data entering the block. This is the
samp_rate variable you’ve already defined. The third argument is the cutoff
frequency of the filter. As you saw in Figure 7-9, the channel width is twice
the cutoff frequency. Conversely, the cutoff frequency is half the channel
width, so we’ve entered chan_width/2 here. Finally, the last argument is the
transition width. We created a variable earlier for exactly this purpose,
which we’ve entered here as transition_width.

After the Taps field, the last property to set is the Decimation. Change
this to 20 to match the previous decimation, which reduced the 8 Msps rate
at the block’s input down to the 400 ksps output rate.

Now that you’ve replaced the tuner and updated the Frequency Xlating
FIR Filter properties, your flowgraph should look like Figure 7-10.

Figure 7-10: The FM receiver with a configured Frequency Xlating FIR Filter property

152 Chapter 7

Execute the flowgraph to ensure that it still works. Even though this is a
much more compact tuner, it should function identically to the more cum-
bersome method we used previously.

Updating Variables Automatically
Next, we’ll expand our use of variables to make the flowgraph more flex-
ible. Everything currently works, but what if you decided you wanted to dec-
imate down to a different sample rate than 400 ksps? You’d have to update
the properties of three different blocks to implement this change. Tweaking
the behavior of your flowgraphs will be common as you debug and opti-
mize their performance. The process is far more efficient if you can make
a change by updating the value of a single variable, rather than adjusting
multiple blocks.

In this case, the key is to think not in terms of decimation, but in terms
of the reduced sample rate that we actually want exiting the Frequency
Xlating FIR Filter. We’ll create a variable for that purpose. Copy and paste
the transition_width variable, change the new variable’s ID to working_samp
_rate, and set its Value to 400e3. We’ll use this new quantity several times
throughout the flowgraph to control the sample rates.

First, change the Decimation property of the Frequency Xlating FIR
Filter to int(samp_rate/working_samp_rate). Rather than hardcode the decima-
tion, this expression computes it based on the starting sample rate of the
flowgraph (samp_rate) and the sample rate desired downstream of the tuner
(working_samp_rate). Recall that decimation can be done only by integer val-
ues. Because any Python division operation will result in a floating-point
value, we use the int() syntax to cast it, or force Python to consider it as an
integer. The block properties should now look like Figure 7-11.

Building an FM Radio 153

Figure 7-11: The Frequency Xlating FIR Filter property window

The Frequency Xlating FIR Filter now automatically computes its decima-
tion, but the downstream blocks still have hardcoded sample rates. To fix
this, change the Quadrature Rate of the WBFM Receive block to working_samp
_rate. Then double-click the Rational Resampler and change the Decimation
to int(working_samp_rate/1000). This will produce an integer-valued decima-
tion of 400, which in conjunction with the Interpolation of 32 will produce a
32 ksps output data stream. After clicking OK, the flowgraph won’t look any
different from Figure 7-10, except for the new variable. The difference is that
changing a single variable in your flowgraph will now cause the properties of
three different blocks to automatically update to their necessary values.

154 Chapter 7

Execute your flowgraph again to ensure that nothing has broken.
Then change the value of working_samp_rate to 200e3 and note how the entire
flowgraph immediately updates to account for this new value. As shown in
Figure 7-12, both Decimation properties and the Quadrature Rate have
all updated to reflect the modification. Execute the flowgraph yet again to
prove to yourself that what you’ve done works as well as we’re claiming it will.

Figure 7-12: Changing the working sample rate to 200 ksps

You can change working_samp_rate back to 400e3 before continuing if
you’d like your flowgraph to match exactly the screenshots for the rest of
this chapter. If you want to leave it at 200e3, that’s okay, too. Well-designed
flowgraphs don’t only work with a single, magical set of values. They should
work for any values that make sense.

Controlling the Volume
The last enhancement we’ll make to the flowgraph is adding a real-time
volume control. Up to now, you’ve used QT GUI Entry blocks to control your
flowgraphs while they’re running, but GNU Radio Companion provides
several other GUI widgets that control variable values in real time. Another
common widget is the QT GUI Range, which uses a slider graphic to control
the value of the underlying variable. We’ll use one of these widgets to adjust
the output volume.

Building an FM Radio 155

Add a QT GUI Range to the flowgraph and set its properties as follows:

ID   volume

Type   float

Default Value   5

Start   0

Stop   11

Step   1

Figure 7-13 shows the complete property settings for the block.

Figure 7-13: The QT GUI Range property window

You now have a variable called volume that you can use in your flow-
graph. It will have a default value of 5 when the flowgraph starts, but it
will provide a slider interface allowing you to select any value between the
start (0) and stop (11) points. Because the step size is 1, you can select any
whole number between those points. (Alternatively, if the step size had
been 2, the only selectable values would be 0, 2, 4, 6, 8, and 10.)

To integrate the volume control into the flowgraph, break the connec-
tion between the Rational Resampler and the Audio Sink. Then add a Multiply
Const block, setting the IO Type to float and the Constant property to
volume/10. Finally, connect its input to the Rational Resampler output and its
output to the Audio Sink input, as shown in Figure 7-14.

156 Chapter 7

Figure 7-14: The FM receiver with volume control

Run the flowgraph. You should hear the voice again, but this time the
sound level will be a bit lower. That’s because you’re attenuating, or applying
gain less than 1, to the audio signal before outputting it to your sound card.
Specifically, the attenuation is five-tenths, or 0.5—half of the original volume.
You should also see a graphical volume slider, as shown in Figure 7-15.

Building an FM Radio 157

Figure 7-15: The QT GUI Range slider in action

Drag the volume slider back and forth and note the change in sound
level. Moving it to 10 should result in the same audio level you had before
adding the slider. Moving it to 0 should mute the audio entirely.

158 Chapter 7

Tuning to Other Signals
At this point, you’ve tuned only to a single frequency in the RF data, but
there are many more. Let’s add an instrumentation block to help find other
signals in the data. Add a QT GUI Frequency Sink, change its Center Frequency
(Hz) property to center_freq, and connect it to the File Source. Then press
the right arrow key and notice that the block rotates 90 degrees clockwise.
Press the right arrow key again to rotate another 90 degrees, effectively
switching its input port to the opposite side. This doesn’t change the block’s
function in any way, but having the block’s input port on the right instead of
the left can produce a cleaner-looking flowgraph, as shown in Figure 7-16.

Figure 7-16: The final FM receiver with a QT GUI Frequency Sink

Execute the flowgraph again, and you’ll now see a frequency plot of
the RF data. Search the plot for signal peaks other than the default tun-
ing of 94.9 MHz. As shown in Figure 7-17, you’ll find signals at 92.5 MHz,
95.7 MHz, 98.1 MHz, and more. Notice that these frequencies correspond
to stations you’d typically tune to on an FM radio, where they might be
referred to simply as 95.2, 95.7, or 98.1.

Building an FM Radio 159

Figure 7-17: FM signals in the frequency domain

Take note of the frequencies corresponding to the peaks in the plot.
Then try tuning to some of them using the QT GUI Entry that controls the
freq variable. Enjoy exploring this FM radio data!

Conclusion
From one perspective, we didn’t make huge changes to your AM receiver
in this chapter. We simply converted your flowgraph to an FM receiver
and then optimized its design. Looking at it another way, however, you’ve
learned some extraordinary things. You’ve seen how to use more sophisti-
cated GNU Radio blocks to make your flowgraph more efficient, and you’ve
expanded your use of variables to make the design more generalizable. In
the process, you’ve gotten a glimpse of the incredible flexibility of software-
defined radio—it took only a few tweaks to go from AM to FM.

The core of your final receiver flowgraph, consisting of a Frequency
Xlating FIR Filter and a demodulator, provides a framework for numerous
analog and digital receivers. The clean and powerful management of vari-
ables in this final flowgraph will also make your projects much easier to
modify and debug, saving you many hours of grief during your SDR endeav-
ors. This will help in the coming chapters as we transition from software-
only projects to projects that incorporate SDR hardware.

PART III
W O R K I N G W I T H S D R H A R D W A R E

8
T H E P H Y S I C S O F R A D I O S I G N A L S

In this chapter, we’ll go into more detail
about radio signals: what they are, how they

travel, how much “space” they take up, and
the noise that makes it harder for them to do

their job. Earlier chapters played somewhat fast and
loose with these ideas on the theory that it was better
to get off the ground quickly by learning with actual
GNU Radio projects rather than spend hundreds of
pages plowing through dry mathematical and engineer-
ing definitions. Now we’re ready to tighten up some of
these concepts.

Before proceeding, we want to invoke the onion model again. We’ll still
only be going so deep into these definitions, and they’ll rarely be presented
with the same mathematical formality of an engineering or physics text-
book. By clearing up these concepts in a more general way, the goal is for

164 Chapter 8

you to more easily be able to make sense of radio-related materials you find
online or in print, as well as converse with others on radio frequency (RF)
topics. Remember, the word “fun” is part of “fundamentals” for a reason:
once you understand these fundamentals, it’s much easier to have fun with
SDRs. Fortunately, you now know your way around GNU Radio, so you can
work directly with the concepts behind these definitions, rather than just
have us recite them to you.

Electromagnetic Waves
In Chapter 1 you learned that a signal consists of a physical property chang-
ing in a way such that it conveys information. The changing physical prop-
erties that make up radio signals belong to electromagnetic waves. Engineers
categorize electromagnetic waves based on their frequency, arranging them
along the electromagnetic spectrum. We focus on frequency as the defining
property because it determines how a wave interacts with the environment,
including how well it will penetrate structures; whether various layers of the
atmosphere will absorb it, reflect it, or bend it; and even whether it will be
visible to the human eye. The categories of the electromagnetic spectrum
are shown in Figure 8-1, lined up from the lowest frequencies on the left to
the highest on the right.

Figure 8-1: The electromagnetic spectrum, including the RF spectrum

You may recognize some of these groupings as radio related, while
others are clearly not. For example, electromagnetic waves with frequen-
cies roughly between 430 THz and 790 THz (terahertz are just 1,000 GHz,
or 1 trillion hertz) are what you know as visible light. Unless you possess
special mutant powers, everything you’re seeing right now is brought to you
by electromagnetic waves within that frequency range. Likewise, waves with
frequencies between 3 × 1016 Hz and 3 × 1019 Hz are considered X-rays, the
kind used in medical devices and airport luggage scanners. Go even higher
than that and you’ll find the kind of waves that can transform fictional
experimental physicists into something very, very angry.

We’re primarily concerned with the radio portion of the electro-
magnetic spectrum, which is highlighted on the left side of Figure 8-1.
According to the Internal Telecommunications Union (ITU), a communi-
cations technologies group, the RF spectrum ranges from very low frequen-
cies to 3 GHz. A common definition for the minimum radio frequency is
3 kHz, although some contend it should be 3 Hz. The question of how low

The Physics of Radio Signals 165

is “very low” doesn’t turn out to be very significant for most applications
because radio waves are progressively harder to use at extremely low fre-
quencies. As such, only specialized communications systems, like those in
submarines or underground mines, use frequencies below 1 kHz.

Immediately above 3 GHz are what many call “microwaves.” Here we
have another issue with definitions, since lots of wireless communications
systems that we think of as radio technology, including Wi-Fi, use these
microwave frequencies. Also, satellite systems and 5G cellular communica-
tions systems can use something called millimeter wave frequencies, which are
much, much higher than 3 GHz. For the purpose of this book, however,
we’ll limit ourselves to a subset of the radio spectrum: from around 1 MHz
to 1 GHz. GNU Radio isn’t limited to this range, but the SDR hardware you
might want to use is another question. We’ll explore the frequency limita-
tions of SDR platforms in Chapter 11.

Keep in mind that the terms defining the different portions of the
electromagnetic spectrum are largely human distinctions. Radio waves are
labeled as such because they tend to travel in ways useful to wireless com-
munication. There’s no reason we can’t build systems to send and receive
communications on vastly higher frequencies than the RF spectrum, how-
ever. In fact, that’s what fiber optic systems do; they modulate data onto a
wave of light.

Propagation
Propagation describes how electromagnetic waves travel. When these waves
encounter something, do they bend? Are they absorbed into the object? Are
they reflected? The answers to these questions play a large role in determin-
ing whether a radio transmission will reach its intended recipient.

If radio transmissions were to occur only in a vacuum, with no obstacles
of any kind between the transmitter and the receiver, then propagation
would be much simpler to predict. In the real world, however, we have
buildings, hills, valleys, weather, different atmospheric layers, the shape of
the Earth, solar flares, meteor showers, and a host of other complicating
factors. Radio waves of different frequencies interact with these factors in
radically different ways. As a result, radio designers choose a frequency that
best handles the factors expected to impact their specific case.

For example, radio waves at some frequencies can transmit to distant
receivers by reflecting off the upper layers of the atmosphere and back
down to Earth, bypassing a range limitation that would otherwise be
imposed by the curvature of the planet. This is why you will sometimes pick
up AM radio stations broadcasting from distant cities that might seem out
of range. On the other hand, radio waves of other frequencies are much
better when trying to communicate in dense urban areas. This is one of the
reasons your cell phone communicates on very different frequencies than
your car’s radio.

Mathematically modeling the propagation of radio waves in real-world
scenarios can be astoundingly difficult, but the general propagation charac-
teristics of different ranges of frequencies are well known.

166 Chapter 8

Frequency Bands
Radio engineers divide the RF spectrum into different frequency bands, ranges
of frequencies that are best suited to particular applications. Table 8-1 pro-
vides a basic list of RF bands, including the common abbreviations and uses
for each one.

Table 8-1: RF Bands

Frequencies Bands Uses

3–30 Hz
30–300 Hz
300 Hz to 3 kHz

ELF
SLF
ULF

Underwater communications, mineshaft
communications

3–30 kHz VLF Atomic clock broadcasts, heart rate monitors

30–300 kHz LF AM longwave broadcasting, RFID, amateur radio

300 kHz to 3 MHz MF AM broadcast, amateur radio

3–30 MHz HF Shortwave broadcast, amateur radio, RFID, marine
communications

30–300 MHz VHF FM broadcast, television, amateur radio, pagers

300 MHz to 3 GHz UHF Television, mobile phones, Wi-Fi, Bluetooth, GPS,
amateur radio, pagers, home automation

3–30 GHz
30–300 GHz

SHF
THF

Wi-Fi, amateur radio, satellite communications,
mobile phones

There’s a lot going on in the RF spectrum. For the purposes of this
book, though, we’re not going to concern ourselves with the extremely low
and extremely high portions of the RF spectrum. This is because those
bands typically require antennas that are extremely long (miles in some
cases) or extremely specialized (like parabolic dishes). Additionally, the
transmit and receive hardware often require some fairly exotic components
not found in traditional software-defined radio hardware.

Many of the applications we’re most interested in will be in the medium-
frequency (MF), high-frequency (HF), very high-frequency (VHF), and
ultra-high-frequency (UHF) bands. Speaking very generally, HF signals can
have much longer ranges but only under the right environmental condi-
tions. VHF signals typically propagate only along line-of-sight paths. UHF
signals are also line-of-sight, but they’re able to accommodate very high
data rates when used for digital signals.

Again, these are gross generalizations, but they should help you see that
different bands are best suited for different situations.

The Physics of Radio Signals 167

WAV EL ENGT H V S. F R EQUENCY

Remember when we told you the frequency range of visible light was 430 to
790 THz? If you look this up in a physics textbook, you’ll probably see the
range referred to using a different characteristic, wavelength . This is the length
of a single oscillation of a wave . Visible light has a range of wavelengths from
380 nm (nanometers, or billionths of a meter) to 700 nm .

Some parts of the radio spectrum are traditionally labeled by frequency
and others by wavelength, so it’s important to know the difference between
these two properties . For an electromagnetic wave of a single frequency, the
intensity of both its electric and magnetic components oscillates back and forth,
as shown here:

Magnetic

Electric

Distance

One wavelength

The oscillating pattern of an electromagnetic wave

This is our sinusoidal waveform, a consistently recurring entity in math and
physics . The wavelength is simply the distance traveled by the wave between
each cycle of the waveform, as shown in the figure .

Physics 101 tells us that the distance (d) traveled is equal to the speed (v)
multiplied by the time (t):

d = vt

The wave will traverse a distance equal to a single wavelength (λ) in the time it
takes the wave to oscillate once (toscillation):

λ = vtoscillation

The time it takes to oscillate once is simply the reciprocal of the frequency
(imagine flipping cycles per second and you get seconds per cycle):

(continued)

λ = v
f

168 Chapter 8

The units for wavelength are then distance per cycle or, more commonly,
just distance . Since electromagnetic waves travel through the air at the speed
of light (please, physics purists, don’t get hung up on the tiny difference
between light’s speed in a vacuum versus air), we get our formal equation
for wavelength:

Here λ is the wavelength, f is the frequency, and c is the speed of light, or
3 × 108 meters per second . Sometimes it’s easier to think of the speed of light
as 300 million meters per second, or 300 × 106 . The equation is telling us that
the wavelength of any electromagnetic wave is equal to the speed of light (in
meters per second) divided by the number of oscillations it’s making per second
(in Hertz, or cycles per second) . This yields the number of meters per cycle,
which is another way to think about a wavelength . Here’s an example using an
FM radio signal at 100 MHz:

300 × 106 meters/secλ = = 3 meters/cycle
100 × 106 cycles/sec

You can also convert wavelength to frequency by reorganizing the equa-
tion as follows:

f = c
λ

If you needed to determine the frequency of a 1 m wavelength, you would there-
fore do it as follows:

300 × 106 meters/secf = = 300 × 106 cycles/sec = 300 MHz
1 meter/cycle

Most of the time you won’t need to do these calculations, but every once in
a while you may run across an RF document that talks about wavelength rather
than frequency . If you need to convert that wavelength to a frequency (or vice
versa), there’s your math .

Bandwidth
If the RF spectrum is divided into bands, the term bandwidth refers to the
span of a range of frequencies. In particular, bandwidth describes how
large of a frequency range a real-world radio signal occupies. Put another
way, the bandwidth specifies how much of the limited space in the RF spec-
trum your signal takes up. In our FM receiver flowgraph from Chapter 7,

λ c= f

The Physics of Radio Signals 169

bandwidth first enters the picture in the tuner, implemented by the
Frequency Xlating FIR Filter block highlighted in Figure 8-2.

Figure 8-2: An FM receiver with the tuner highlighted

The filter has a cutoff frequency of 75 kHz, and because this filter is
operating on a complex number stream, it’s actually filtering from –75 kHz
to +75 kHz, as shown in Figure 8-3. This 150 kHz filter passband is chosen
to match the FM signal’s expected bandwidth, and it’s controlled by the
chan_width value fed to the Frequency Xlating FIR Filter.

Figure 8-3: A passband for a complex low-pass filter

170 Chapter 8

The FM signal you receive must “fit” inside the filter’s passband, which
we select based on the signal bandwidth (150 kHz, in this case) as shown in
Figure 8-4(a). If the signal were unexpectedly wider than the filter’s band-
width, as in Figure 8-4(b), the filter would distort it by chopping off the
higher-frequency components of the signal. This would degrade the perfor-
mance of your receiver or cause it to fail altogether.

Figure 8-4: A signal and valid filter passband (a) compared to a signal and insufficiently
large filter passband (b)

The Physics of Radio Signals 171

A closely related concept to bandwidth is channel width, the formal spec-
ification for how much of the RF spectrum a type of signal is authorized
to consume. Consider the spacing on your FM radio dial. All the stations
in the United States are located at odd multiples of 200 kHz: 94.7 MHz,
94.9 MHz, 95.1 MHz, and so on. Each station, or channel, is assigned a
width of 200 kHz, as shown in Figure 8-5.

Figure 8-5: An FM channel map

Bandwidth is a physics issue; it’s a physical property of the signal in
question. Channel width, on the other hand, is a human (and often legal)
construct, separate from the physics of actual RF signals. In theory, a signal
is supposed to fit inside the channel defined for it. That is, the bandwidth
should be no larger than the channel width, like in Figure 8-6(a). But what
if, for example, an FM transmitter is poorly designed or malfunctions,
and its output signal ends up having a wider bandwidth? You might see
something like the scenario in Figure 8-6(b), where the bandwidth exceeds
the channel width. In this case, the signal could start to interfere with the
neighboring channels.

172 Chapter 8

Figure 8-6: A signal positioned correctly within a channel (a) versus a signal
exceeding its channel width (b)

Is this second scenario impossible? No, in fact, it actually happens on
rare occasions. Is it illegal? Well, the Federal Communications Commission
(FCC), or your country’s regulatory body, sure doesn’t like it.

Correctly designed radio systems operate such that the bandwidth of
their transmitted signal is contained within an expected range of frequen-
cies. What happens when the channel width is smaller than the signal that
needs to be transmitted? This isn’t a theoretical question but rather one
that applies to every AM radio transmission. To see why, assume that the
amount of bandwidth a modulated signal consumes is at least as large as
the bandwidth of the signal going into the modulator on the transmit side.
Assume also that the modulated bandwidth is proportional to that of the
input signal. (There’s more going on with this relationship, which we’ll
explore in Chapter 10, but assume this much for now.) Then recall that
audio signals range between 20 Hz and 20 kHz, resulting in a 19.98 kHz
bandwidth of a theoretically perfect audio signal. As you saw in your AM radio
project from Chapter 4, however, the channel spacing between AM sta-
tions is only 10 kHz.

The Physics of Radio Signals 173

How do AM broadcasters fit 19.98 kHz of signal into 10 kHz channels?
Let’s find out by taking a closer look at the bandwidth of an audio signal.
Create a new flowgraph and save it as bandwidth.grc. Add a Wav File Source
and link its File property to ch_05/HumanEvents_s32k.wav. Then add a Low
Pass Filter, setting its FIR Type to Float->Float (Decimating), its Cutoff Freq to
cutoff, and its Transition Width to cutoff/10. Next, add an Audio Sink and
a QT GUI Frequency Sink, with the latter’s Type set to Float and its Spectrum
Width to Half. To give us runtime control over the filter, add a QT GUI Range
with an ID of cutoff, a Default Value of 16e3, a Start value of 500, a Stop
value of 16e3, and a Step value of 500. Finally, connect the Wav File Source to
the Low Pass Filter input and the Low Pass Filter output to both the QT GUI
Frequency Sink and the Audio Sink. When you’re done, the flowgraph should
look like Figure 8-7.

Figure 8-7: An audio filtering flowgraph

By default this flowgraph will stream in an audio clip, filter out the
frequencies greater than 16 kHz, and display the resulting fast Fourier
transform while playing the filtered audio on your sound card. While
the flowgraph runs, we’ll also have control over the filter cutoff. Run the
flowgraph, which should produce some familiar sounds as well as the FFT
shown in Figure 8-8.

174 Chapter 8

Figure 8-8: An audio FFT with a 16 kHz low-pass filter cutoff

The initial 16 kHz cutoff is close to the 20 kHz maximum frequency for
audible sound, and thus the filter passes nearly all of the audio spectrum
by default. (As it turns out, this file contains only frequency components up
to 16 kHz, but the explanation for that will have to wait until Chapter 11.)
Because the filter is not removing anything from the audio, the sound qual-
ity should be fairly normal.

Now lower the audio_cutoff value to make the low-pass filtering more
extreme. This simulates the effect of a radio broadcaster narrowing the
bandwidth of their input signal. First, try 10 kHz, which will result in a fre-
quency plot like that of Figure 8-9.

The Physics of Radio Signals 175

Figure 8-9: Demodulated audio after 10 kHz low-pass filtering

You should see the FFT change as you lower the cutoff value, but
do you hear a difference in the audio? Maybe, maybe not. To our ears,
there’s a muffling effect, but it’s very slight. Now try changing the cutoff to
5 kHz. You should now hear a definite muffling effect. How about 3 kHz?
Even more muffling. You can still make out some of the words, even when
you have only the portion of the signal at or below 1 kHz, as you see in
Figure 8-10, but the narrower the bandwidth of the audio signal, the poorer
the signal’s quality (or fidelity, if we want the precise word).

176 Chapter 8

Figure 8-10: Demodulated audio after 1 kHz low-pass filtering

Based on our earlier assumption, the lower the input signal’s band-
width, the lower the modulated signal’s bandwidth as well. AM radio sta-
tions take advantage of this by filtering the input signal enough to fit within
the prescribed channel width, but not so much that the result sounds hor-
rible. Filtering the input signal before modulating it is key to this process.
Otherwise, the higher frequencies in the input signal (the ones you’ve
decided you don’t need) will still be present in the input to the modula-
tor. Consequently, they’ll cause the modulator output to consume a higher
bandwidth. We’ll get a closer look at this issue when we build a transmitter
flowgraph in Chapter 13.

Noise
A significant portion of your time working with SDR hardware, or any
kind of radio, will be devoted to fighting noise, by which we mean anything
your receiver senses that’s not the transmission you want. Noise on the RF
spectrum is a lot like the noise that constantly bombards us in the audio
spectrum. Close your eyes for a moment, wherever you are, and listen. No
matter how quiet your room, park bench, or subway car might be, there will
still be some level of audible noise. Maybe part of that noise is the hum of a

The Physics of Radio Signals 177

refrigerator or the fans on your computer. It could also be a dog barking or
cars passing by. It could even be the blood pulsing in your own ears. A per-
fectly quiet room doesn’t exist with respect to the audio spectrum, nor does
it exist with respect to the RF spectrum.

When a radio receiver tries to sense, or “hear,” a transmission, other trans-
missions may interfere, much like the barking dog or another person talking.
There could also be electrical equipment radiating electromagnetic waves. In
fact, the compressor in your refrigerator is simultaneously generating both
audio and electromagnetic noise, and the 60 Hz AC power going into your
home or office generates RF noise that isn’t so much different from the audio
hum made by many appliances. Then there’s noise generated by the imperfect
components in your radio itself. Not so different, really, from the blood rush-
ing through your ears. All these things combine to create an RF cacophony,
like the sounds of a busy city all blurred together.

Do you know what happens when you eliminate all the audio noise
around you, as when you enter an anechoic chamber, a room specially designed
to get rid of all outside noise? At that point, you’ll start hearing sounds com-
ing from your own body, like your breathing and heartbeat. You might even
find that you have a tiny bit of tinnitus you didn’t know about. This is similar
to the effect of internal noise in an SDR system, generated by the SDR hard-
ware and the computer to which it’s connected.

Viewing RF Noise
Let’s look at a real-world example of RF noise. Create a new flowgraph and
save it as file_viewer.grc; we’ll use this to view the RF activity in our FM input
file. This file of real-world RF data inevitably contains noise. Think for a
moment how you would build this flowgraph with just a few blocks and give
it a try without reading further.

Add the following three blocks: a File Source, a Throttle, and a QT GUI
Frequency Sink. Connect them in the order listed, then link the File property
of the source to ch_07/fm_c96M_s8M.iq and the Center Frequency (Hz) prop-
erty of the sink to 96e6. Finally, set the samp_rate Variable block value to 8e6
to match the file’s sample rate. When you’re finished, the flowgraph should
look like that shown in Figure 8-11.

Figure 8-11: An FM receiver flowgraph with FFT attached to the source

178 Chapter 8

Run the flowgraph and you’ll see something like the frequency plot
in Figure 8-12.

Figure 8-12: A frequency plot of the FM flowgraph RF input

The peaks in the frequency display represent FM stations, but what’s
going on in between? Noise, of course! This is what the RF cacophony looks
like when viewed in the frequency domain. Basically, it’s a minimum level of
RF energy that’s always present, even in the absence of a human-made sig-
nal. This level isn’t still, however, but rather jumps up and down at random.
We don’t use the word “random” lightly. In fact, you can simulate the effects
of noise in GNU Radio using a block called a Noise Source. It’s essentially a
random number generator that adds the random values it produces to your
signal, reducing its clarity.

Finding the Signal-to-Noise Ratio
While you’ll do what you can to minimize the noise level in your flow-
graphs, the absolute value of the noise isn’t actually critical by itself. The
thing you most care about is the signal-to-noise ratio (SNR), or how easily you
can see your target signal relative to the noise. To go back to our audio
analogy, it’s not hard to listen to someone talking while in a loud, crowded
room if the speaker is using a megaphone. Conversely, even in a very quiet
room, it could be hard to hear someone if the speaker is whispering softly
enough. It’s the loudness of the voice relative to the noise level in the room
that matters.

Looking back at the frequency plot of the FM radio input data, the
signals are quite distinct relative to the noise. In fact, the strongest stations
are broadcasting more than 20 dB higher than the noise level, as shown
in Figure 8-13.

The Physics of Radio Signals 179

Figure 8-13: A frequency plot of the FM flowgraph RF input showing signal strength
and noise level

While 20 dB may not sound like a big number, recall from Chapter 5
that decibels are a logarithmic value. A 20 dB difference therefore means
the FM signal power is 100 times stronger than the noise level.

This 20 dB value is a rough estimate of the SNR for our system. It might
sound odd to refer to the outcome of a subtraction operation as a ratio, but
subtracting one logarithmic value from another is mathematically the same
as dividing the pre-logarithmic values. Formally speaking, then, the SNR is
equal to the strength of the signal (in dB) minus the strength of the noise
(in dB).

Conclusion
In this chapter you learned that radio signals are carried on electromag-
netic waves, the frequency of which determines how they propagate. You
also saw how a signal’s bandwidth represented the amount of frequency it
consumes in the RF spectrum. Finally, you saw what noise looks like, as well
as the importance of the SNR. With these concepts under your belt, you’re
finally ready to connect your GNU Radio flowgraphs to SDR hardware and
work with RF signals in real time.

9
G N U R A D I O F L O W G R A P H S

W I T H S D R H A R D W A R E

The wait is over: in this chapter you’ll learn
to interface with a real radio. You’ll adapt

your FM receiver flowgraph to work with
actual SDR hardware so it can take in and pro-

cess live radio frequency data.
Up to now, we’ve focused on the software part of software-defined radio.

The inputs and outputs of your flowgraphs have largely been computer-
related entities. You’ve extracted RF data from files and processed the data
with your flowgraphs, or you’ve generated mathematically pure waveforms
with signal sources and used them to illustrate a variety of concepts. On the
output side, you’ve sent all of your flowgraph data to GNU Radio sinks that
let you visualize your results, or you’ve sent the output to the sound card on
your computer.

While we’ve been able to ease the learning process by working with
known good data files and mathematical constructs, it’s time to start work-
ing with the real thing: actual radio hardware. As usual, we’ll dive in head-
first, then figure out what we did afterward. As you perform the conversion
to hardware, keep an eye out for the parts of the flowgraph you need to

182 Chapter 9

change, as well as the parts that remain the same. You may be surprised
to see how little the previous file-driven FM receiver flowgraph needs to
change to support hardware input, but there are a few hardware-specific
settings you’ll need to understand.

For the purposes of this chapter, we’re going to assume that you have
a HackRF SDR and tailor the instructions accordingly. However, we’ll also
explain how the setup process differs for other SDRs, such as an Ettus USRP
device or PlutoSDR, at the end of the chapter. If you have another type of
SDR, you should be able to figure out which source block to use instead of
the blocks discussed here and how to configure it via a quick web search.

Creating a Hardware-Enabled Flowgraph
We’ll start by converting your existing FM receiver flowgraph into one that
can interface with an actual HackRF SDR. First, open the ch_09/fm_rx.grc
project. As you can see both on your screen and in Figure 9-1, it’s function-
ally the same as the FM radio you built in Chapter 7.

Figure 9-1: An FM receiver flowgraph with file input

GNU Radio Flowgraphs with SDR Hardware 183

You’ll need to modify this flowgraph so that it gets its data from a real
SDR rather than a file. Delete the existing File Source block, then add a
Soapy HackRF Source, connecting its output to both the Frequency Xlating
FIR Filter and QT GUI Sink inputs. As you can see in Figure 9-2, this new
block is replacing the previous File Source as a supplier of radio data to
the flowgraph.

Figure 9-2: An FM receiver flowgraph with hardware input

You may notice that this new block’s Center Freq is already set to a
value, but it’s not the 96 MHz that we need. Open the Soapy HackRF Source
block’s properties, click the RF Options tab, then change Bandwidth to
samp_rate and the Center Freq (Hz) to center_freq. This tells the SDR which
frequency to center on when capturing RF data. When you’re done, the
block’s properties should look like Figure 9-3.

184 Chapter 9

Figure 9-3: The properties window for the Soapy HackRF Source block

You’re finished! All you had to do is swap your input sources, and your
flowgraph will be hardware-enabled.

Setting Up the Hardware
You’re ready to hook up your SDR hardware. First, attach your antenna to
the HackRF board. (I’m assuming you have an ANT500, but other anten-
nas will work.) It’s best to attach the antenna to an SDR before powering it
on because transmitting a signal without an antenna installed can damage
your SDR. Even if you have no plans to use your SDR to transmit, this is still
important, as you might end up transmitting unintentionally. For example,
maybe you’ll press the wrong button or select the wrong GNU Radio prop-
erty. Accidents happen! To be safe, always connect the antenna first.

Where do you put it? Conveniently, there’s a port on the HackRF labeled
“ANTENNA” (see Figure 9-4).

GNU Radio Flowgraphs with SDR Hardware 185

Figure 9-4: A HackRF board with an ANTENNA port in the bottom-left corner

The ANT500 antenna has a connector with a roughly similar size but a
different shape (Figure 9-5). These are called SubMiniature version A (SMA)
connectors. The antenna’s connector is SMA-male, and the HackRF’s con-
nector is SMA-female. We’ll take a further look at the world of connectors
in Chapter 12.

Figure 9-5: An ANT500 antenna connector

186 Chapter 9

Carefully align the small pin on the antenna connector with the corre-
sponding hole on the HackRF connector, then gently screw the outer hous-
ing of the antenna connector onto the threads of the HackRF connector, as
shown in Figure 9-6. It’s not so different from hooking up the coaxial con-
nectors used by a cable TV or modem.

Figure 9-6: Attaching the ANT500 to the HackRF

Next, attach the HackRF to your computer via a USB cable. You’ll need
a standard male USB type A connector (the big kind) on the computer end
and a micro-USB type B connector (the little kind) on the HackRF end.
Once everything is connected, several of the lights on the HackRF should
come on, as pictured in Figure 9-7.

GNU Radio Flowgraphs with SDR Hardware 187

Figure 9-7: The HackRF LEDs

If at any point the HackRF is unresponsive when you attempt to oper-
ate it, push the RESET button on the left side of the board. This will often
allow it to recover from malfunctioning states. Stay away from the DFU
button, though. Holding this down while doing other things can put your
board into a mode you don’t want right now. You should push this button
only if you need to update your HackRF board’s firmware.

Operating the Hardware SDR Receiver
Now that you’ve got your board plugged in and its lights turned on, you can
try out the radio. Going back to GNU Radio Companion, click Execute to
run the flowgraph. Some text similar to the following should appear in the
console window to tell you about the connection that GNU Radio has made
with your HackRF board (the exact details may differ):

Generating: "/home/paul/book/01_field_exp_sdr/ch_09/solutions/top_block.py"

Executing: /usr/bin/python3 -u

/home/paul/book/01_field_exp_sdr/ch_09/solutions/top_block.py
[INFO] Opening HackRF One #0 14d463dc2f6778e1...

188 Chapter 9

Next, you should hear either intelligible audio or the sound of static,
depending on your default tuning and the radio stations available in your
area. If your default value for freq (one of the QT GUI Entry blocks) happens
to coincide with a broadcast station, then you’ll hear something that sounds
like FM radio—either music or speech. Most likely, however, you’ll need to
tune the radio to a station. You should already have an idea how to do that
from Chapter 6 when you practiced tuning with a raw RF input file.

Recall that the peaks you see in a frequency display represent stronger
RF intensity. In the FM band, the only likely causes of these peaks are FM
broadcast signals. Hover your mouse over one of the peaks and look at the
frequency displayed. If you’re in the United States, this frequency should
be an odd multiple of 100 kHz. Enter that frequency into the freq input
box near the top of the screen to hear the audio from that signal. Running
this flowgraph in my local area produces the frequency plot shown in
Figure 9-8, but your particular display will vary based on the FM broadcast
signals present in your area.

Figure 9-8: The FM receiver execution window

Take some time to poke around the FM band and see how many sta-
tions you can pick up. Keep in mind that the only difference between this
hardware-driven radio and the purely software-driven models we saw earlier
is the source of the input data. Here you’re taking live input from the world
around you via your SDR, whereas before you were taking input from a file
of prerecorded RF data.

GNU Radio Flowgraphs with SDR Hardware 189

N O T E 	 If you believe you’re tuned to a radio station but you’re still picking up noise or static,
you may need to reposition the computer, SDR, and connecting cable.

Using USRP Hardware
The instructions outlined for the HackRF require only a few modifications to
work with different SDR hardware. For example, to use an Ettus USRP, insert
a UHD:USRP Source block into your flowgraph instead of a Soapy HackRF Source,
and connect it in the same way you saw in Figure 9-2. Then double-click this
new block to bring up its properties. Like the Soapy HackRF Source, it has sev-
eral tabs along the top. Click the RF Options tab, then set the following:

•	 Ch0: Center Frequency to center_freq

•	 Ch0: Gain Value to 40

•	 Ch0: Antenna to RX2 (this is the default)

In the end, your properties window should look like Figure 9-9.

Figure 9-9: The UHD:USRP Source block properties

When completed, your flowgraph will look similar to the HackRF ver-
sion, just with a different source block (see Figure 9-10).

190 Chapter 9

Figure 9-10: An FM receiver flowgraph with Ettus USRP hardware input

Before running this flowgraph, ensure that you have your antenna
attached to the RX2 port on your USRP hardware.

Using Other Hardware
If you have another SDR, such as a PlutoSDR, bladeRF, or LimeSDR, you
must first make sure that you’ve installed drivers for your hardware. Check
with the manufacturer of your SDR hardware for installation instructions.

After that, replace the Soapy HackRF Source in your flowgraph with the
source block corresponding to your hardware, connecting its output in
exactly the same way. You’ll then need to configure the block’s properties
according to your device’s documentation. The properties may have slightly
different names, but they will utilize the samp_rate and center_freq values.
You’ll typically need to supply a hardware gain value as well. Keep in mind
that some platforms may not support an 8 Msps sample rate, so you may
need to reduce that.

Conclusion
In this chapter you finally got to plug in some hardware! A key point we
hope you realized in the process is that you can easily swap between dif-
ferent sources of radio data in your receiver flowgraphs. This could be

GNU Radio Flowgraphs with SDR Hardware 191

switching between different files containing captured radio data or, as we’ve
done here, switching between a file and live radio data from an SDR sink.
The remainder of the flowgraph requires little to no changes.

Now that you’ve tried your hand at receiving radio signals with real
hardware, you may be wondering about transmitting as well. For that, we’ll
first take a closer look at how modulation works in the next chapter.

10
M O D U L A T I O N

In previous chapters, we used demodulation
in AM and FM receiver flowgraphs to extract

discernible audio signals from incoming RF
data. In this chapter, we’ll explore the opposite

process: using modulation to turn a discernible signal
into transmittable RF data. We won’t actually transmit
anything, but once you understand how modulation
works, you’ll be better prepared to send out signals with
your SDR.

We discussed modulation at a very high level in Chapter 1, noting how
it involves using a property of one signal (the information you want to com-
municate) to manipulate a property of another signal (the carrier, usually a
basic sinusoid). There are three aspects of the carrier that you can change:
its amplitude, frequency, and phase. We’ll define each of these types of
modulation in this chapter and use GNU Radio flowgraphs to illustrate how
they work. Our focus will be on modulating analog signals, although we’ll

194 Chapter 10

touch briefly on digital signals as well. Before we get to that, however, we’ll
start by discussing the input to the modulator: the baseband signal.

Baseband Signals
The simplest description of the baseband is that it’s the information we actu-
ally want our radio receivers to receive. In the case of our recent AM and FM
projects, for example, the baseband is some audio data. From the transmit-
ter’s perspective, you can think about the baseband signal as the waveform
we’re trying to send over the radio, before we do any kind of modulating.

The band part of the term baseband is a clue that we’re talking about a
range of frequencies. In fact, another way to think about the baseband is
that it’s a signal that ranges in frequency between 0 Hz and some cutoff.
The cutoff frequency varies depending on the specifics of the radio system
in question, meaning that the frequency range of one baseband signal will
differ from that of another.

To see what this “0 Hz to a cutoff” definition looks like in practice, let’s
revisit our FM receiver from Chapter 7 and add a frequency plot showing
the baseband. Open up the ch_10/fm_rx.grc file, which contains a copy of that
project. Then add a QT GUI Frequency Sink and connect it to the output of the
WBFM Receive block. Set the sink’s Bandwidth property to working_samp_rate,
its Type to Float, and its Spectrum Width to Half. Note that the Spectrum
Width property won’t be available until after you’ve set the Type. The flow-
graph should now look like Figure 10-1.

Modulation 195

Figure 10-1: An FM receiver flowgraph to view a frequency plot of the demodulated signal

Because the frequency sink is coming out of the WBFM Receive block
(the demodulator in this flowgraph), it gives us a view of the baseband: the
desired signal after it’s been demodulated. When you execute the flow-
graph, the plot should look something like Figure 10-2.

196 Chapter 10

Figure 10-2: A frequency domain plot of the baseband (demodulated) signal

This frequency plot meets the requirements of a baseband signal
because it ranges from 0 Hz up to a cutoff. In this case, the baseband cor-
responds to an audio signal (note that the signal flows into an Audio Sink
after resampling and gain) containing human voices talking. Human voices
almost always have most of their signal energy concentrated in the lower
portion of the audio spectrum, and indeed we can see in the plot that the
highest levels are near 0 Hz. Strictly speaking, the frequency plot shows the
signal extending all the way up to almost 200 kHz, well above the high end
of the audio spectrum (20 kHz). This part of the signal is simply noise and
can safely be ignored.

If our radio was receiving digital rather than analog data, the baseband
waveform would look much different and could contain much-higher-
frequency components than the voice data shown in Figure 10-2. Regardless
of the underlying information contained in the baseband signal, however,
the key is that the baseband signal will be both the input to the modulator
on the transmitter and the output from the demodulator on the receiver.

N O T E 	 In forms of telecommunications where many digital communication signals (voice,
data, video, and so on) can occur simultaneously in a channel, the term baseband
usually describes the information contained in a single channel. This definition
is similar in some ways to how we’ve been using the term, but there are some impor-
tant differences.

Now that we know something about the baseband signals going into
modulators, we can turn our attention to the modulators themselves.

Modulation 197

Amplitude Modulation
Amplitude modulation entails scaling the amplitude of the carrier signal down
when the baseband signal is low and up when the baseband signal is high. For
example, Figure 10-3 shows a slower-moving baseband signal (Mod Input)
overlaid on top of a faster-moving amplitude-modulated carrier signal (Mod
Output). Notice how the AM signal’s strength rises and falls according to
the shape of the baseband.

Figure 10-3: A baseband input and the resulting amplitude-modulated waveform

You can think of amplitude modulation as applying variable gain to
your carrier: smaller modulator input, smaller gain; larger input, larger
gain. Mathematically, this is represented as follows:

m(t) = bbin(t) × c(t)

Here m is the modulator output, bbin is the baseband input to the modula-
tor, and c is the carrier. All three of these are functions of time t, meaning
their values change as the microseconds tick by. Don’t worry if the math or
the function notation is foreign to you; the takeaway here is that the modu-
lator output at any point in time could be produced by simply multiplying
the baseband signal level by the carrier.

198 Chapter 10

This would be pretty easy to build in GNU Radio, but unfortunately,
there’s a problem. We’ll use a flowgraph to identify this problem and then
discuss how to fix it. Open the flowgraph found in ch_10/amp_mod_begin​
.grc, which contains a very simple simulated radio system, consisting of a
modulator and a demodulator. The modulator input is the baseband signal,
the information we’re trying to send. The output of the demodulator, the
receiver output in this simple system, should be the same as the baseband
signal we start with. The entire flowgraph is shown in Figure 10-4.

Figure 10-4: A flawed amplitude modulator

The baseband waveform in this example is a triangle wave, a waveform
that transitions linearly from its minimum value (0 for the moment) to
its maximum value (1) and back again. It looks like a ramp pattern that
repeatedly ascends and descends. It’s a much simpler waveform than would
typically be used as a modulator input, but it will be useful for observing
the behavior of the amplitude modulation process. The waveform, gener-
ated by a Signal Source block, is a floating-point signal, as we would expect a
“real-world” baseband signal to be.

For now, the amplitude modulator consists of a Float to Complex block,
which converts the floating-point samples exiting the Signal Source to com-
plex samples (see the “Float to Complex” box for more on this block). Then
the baseband ramp signal is multiplied by the cosine output of a second
Signal Source, the carrier. When this cosine wave is multiplied by smaller val-
ues, it shrinks; when it’s multiplied by larger values, it grows.

Modulation 199

F LOAT TO COMPL E X

The Float to Complex block performs type conversion, converting each sample
from one data type to another. This is similar to “casting” in traditional program-
ming languages like C++. The Float to Complex block has two floating-point
inputs and a single complex output. Each pair of input samples is combined
into a single complex sample on the output. In mathematical terms, the first
floating-point input is called the real part and the second input is called the
imaginary part of the resulting complex number. Because the second input is
left unconnected in the flowgraph in Figure 10-4, the block assumes 0 values
for the imaginary part. The complex-typed output is therefore mathematically
equivalent to the single real floating-point input.

The modulated signal leaves the Multiply block and enters the Complex to
Mag block, which performs the AM demodulation. The result should be the
recovered baseband signal. Unlike the AM Demod block we used in our earlier
AM receivers, which also has built-in filtering, the Complex to Mag block per-
forms just the demodulation and nothing else.

Execute the flowgraph and you’ll see an output like that in Figure 10-5.

Figure 10-5: The initial amplitude modulator output

200 Chapter 10

This looks pretty good, right? The modulated carrier shrinks and grows
along with the size of the input baseband signal. And the demodulator out-
put looks the same as the baseband input. There’s a problem, however. The
simple multiplication works because our baseband signal is taking on only
positive values, since the Signal Source block’s triangle pattern, by default,
goes from 0 to 1 and back again. In a typical system, however, the baseband
signal will take on both positive and negative values, and this complicates
the process.

Working with Negative Baseband Values
When the baseband signal includes negative values, it won’t be demodu-
lated properly. To expose the issue, open up the baseband Signal Source
block and change its Amplitude property to 2 * amplitude. (Here amplitude is
a QT GUI Range block set to 1 by default.) Also change the Offset property to
-1 * amplitude. This will produce a waveform that has the same triangular
shape as before but transitions from –1 to +1. The resulting flowgraph can
be seen in Figure 10-6.

Figure 10-6: An amplitude modulator with realistic baseband input

Execute the flowgraph, and the output should look like Figure 10-7.

Modulation 201

Figure 10-7: Erroneous amplitude modulator output

At first glance, you might just think the demodulated waveform is oscil-
lating twice as fast as the baseband signal. But on closer inspection, you can
see that the demodulated signal isn’t going below 0. The negative portions
of the original signal aren’t being recovered by the demodulation process,
but instead are being represented as if they’re positive. You’re witnessing
phase reversal. To understand what’s going on here, we’re going to have to
look more closely at sinusoids.

Compare the two overlapping waveforms shown in Figure 10-8. One is a
sinusoid, and the other is that same sinusoid multiplied by –1.

202 Chapter 10

Figure 10-8: Two sinusoids with different phases

Visually, note that the difference between the two is that they’re verti-
cally flipped. Another way to describe the difference is that the two are
horizontally shifted with respect to each other. There’s a term for that hori-
zontal shift: phase. Without getting too mathematical about it, the phase of
a sinusoid has to do with its position on the horizontal axis. Shift the wave-
form to the left or to the right, and you’ve changed its phase.

One of the sinusoids in Figure 10-8 has been shifted horizontally by an
amount equal to half of the waveform’s total period. When the phase shifts
by this amount, the waveform’s phase is said to be reversed. Another way to
reverse the phase is to multiply the original sinusoid by a negative value,
which also produces the vertical flip seen in the figure.

Returning to our flowgraph, the demodulator doesn’t have any aware-
ness of the phase of the signal passed into it. It produces a result based
solely on the size of the sinusoid applied to its input. As such, it sees both
sinusoids in Figure 10-8 as the same, producing an identical output for
both. This means that the current amplitude modulation scheme has no
way of distinguishing between positive and negative baseband values.

A properly configured amplitude modulator avoids applying negative
inputs to the multiplier by first shifting the baseband waveform upward on
the vertical axis. If the baseband signal has a minimum value of –1, for exam-
ple, we would simply add 1 to it before multiplying, so its new minimum value
is 0. This would result in a new amplitude modulation equation of:

m(t) = (1 + bbin(t)) × c(t)

Modulation 203

To add this feature to the flowgraph, break the connection between the
Throttle and Float to Complex blocks and insert an Add Const block between
them. Give the new block an IO Type of Float and a Constant value of 1.
Then, to accommodate the larger signal passing through the flowgraph,
change the Y Min and Y Max properties of the QT GUI Time Sink labeled
Demod Out to 0 and 2, respectively. Also change the Modulated Signal QT
GUI Time Sink block’s Y Min and Y Max properties to -2 and 2. When com-
plete, the flowgraph should look like Figure 10-9.

Figure 10-9: The corrected amplitude modulator

Run the flowgraph, and you should see something like Figure 10-10.

204 Chapter 10

Figure 10-10: The corrected amplitude modulator output

The demodulator output now resembles the baseband input, transition-
ing between 0 and 2. But we’re not out of the woods yet: the problem can
still reemerge if the baseband signal gets too strong.

Avoiding Overmodulation
Adding 1 to the baseband signal prevents phase reversal when the signal
ranges from –1 to 1, but what if the signal dips below –1? The phase reversal
will come back. When the input to a modulator falls outside its legal range (in
our current case, it goes below –1), it creates a situation called overmodulation.
The result of the overmodulation is phase reversal, which introduces errors
when demodulation occurs. To see this in action, use the QT GUI Range slider to
change the amplitude value from 1 to 1.2 while the flowgraph is executing. The
result is a baseband input that goes from –1.2 to +1.2, which produces the out-
put seen in Figure 10-11.

Modulation 205

Figure 10-11: The amplitude modulator output with phase reversal

Notice how the phase reversal begins when the baseband input goes
below –1. This is when the overmodulation produces the phase reversal
effect. The key to avoiding overmodulation is to ensure the modulator
input doesn’t drop below –1, causing negative values to enter the multiplier
(remember that we’re adding 1 before multiplying). If you need to work
with a baseband signal that has values less than –1, apply attenuation until
this is no longer the case before trying to modulate it. For example, con-
sider the excessively large signal shown in the top half of Figure 10-12 that
transitions between –5 and +5.

206 Chapter 10

Figure 10-12: Attenuating a signal to keep it above the minimum safe level

The signal falls well below the safe level of –1. To fix that, we could apply
a 5 times (5x) attenuation using a Multiply Const block with a Constant value
of 0.2. This would produce the signal shown on the bottom of Figure 10-12,
which no longer dips below –1. The attenuated signal is now safe to pass
along to the modulator.

Frequency Modulation
Frequency modulation entails altering the frequency of the carrier signal
based on the value of the baseband signal. In this scheme, the frequency
of the carrier speeds up when the input signal increases in size, and it slows
down when the input signal decreases in size. The FM radios we imple-
mented in Chapters 7 and 9 used this technique.

To explore how frequency modulation works, we’ll use another pre-
made flowgraph. Open ch_10/fm_mod.grc, which will bring up the flowgraph
seen in Figure 10-13.

Modulation 207

Figure 10-13: The frequency modulator flowgraph

This flowgraph contains only a modulator, rather than a modulator and
a demodulator, since we won’t be breaking anything like we did with the AM
flowgraph. The important thing is to visualize the effect of frequency modu-
lation on the carrier signal. In a more realistic scenario, this flowgraph might
function as a transmitter, with the modulated signal passing to some kind of
SDR sink for transmission to the world through your SDR hardware.

The baseband signal is a triangle wave from a Signal Source, this one
transitioning between –1 and +1. The frequency of this wave is very slow:
0.2 Hz, or 5 seconds per oscillation. While a baseband signal moving this
slowly is unusual, it will make it easy to visually track the behavior of the
modulator. You can think of this block as steadily twisting a knob all the
way from the minimum to the maximum setting and then all the way back
down again.

208 Chapter 10

The baseband input feeds into a Frequency Mod block, which performs
the modulation. Notice that there isn’t a separate Signal Source block explic-
itly creating a carrier signal at a particular frequency, like we had in the
AM flowgraph. This isn’t a mistake: the Frequency Mod block creates its own
carrier for modulation, with a frequency of 0 Hz. A zero-frequency carrier
may sound odd, but in fact, it’s perfectly normal in an SDR flowgraph. It’s a
feature that distinguishes SDRs from most hardware-based systems.

Using a Zero-Frequency Carrier
In the most basic hardware radio transmitters, the baseband signal (the thing
you’re trying to send) will directly modulate the carrier. For example, a sim-
ple 433 MHz transmitter using frequency modulation would increase the fre-
quency of a 433 MHz carrier as the baseband signal grew larger and decrease
the carrier’s frequency as the baseband signal grew smaller. Software-defined
radio systems, however, don’t perform modulation at the real-world carrier
frequency, but instead compute the results of the modulation operation in an
area of spectrum mathematically centered around 0 Hz.

Once all the flowgraph operations are completed, these zero-centered
samples are sent to an SDR sink for physical transmission. The SDR hard-
ware then uses the zero-centered data to generate a transmitted waveform
at the intended carrier frequency. The center frequency property of your
hardware sink (Soapy, USRP, or similar, as you saw in Chapter 9) then
determines the physical frequency your radio will actually use. For example,
if your transmitter flowgraph generates a signal with a frequency of +1 MHz
and sends this to an SDR sink with a center frequency of 433 MHz, the flow-
graph signal would be physically transmitted at 434 MHz (433 + 1). Likewise,
if the output signal is at –2 MHz in the flowgraph, it would appear in the
real world at 431 MHz (433 – 2).

This modulation and transmission logic mirrors what we’ve done with
receivers and demodulators in previous chapters: the real-world frequencies
captured by your SDR are determined by your SDR’s center frequency prop-
erty and will be denominated in MHz or GHz. The flowgraph itself, however,
uses zero-centered frequencies. We’ll discuss this further in Chapter 13
when we cover hardware transmission in detail. For now, let’s return to the
flowgraph and watch the frequency modulation process in action.

N O T E 	 The AM modulator in the previous section could have operated on a zero-frequency
carrier as well. We chose not to build it that way since it’s harder to see how amplitude
modulation works without a visible carrier.

Execute the flowgraph, and you’ll see three different plots, as shown in
Figure 10-14.

Modulation 209

Figure 10-14: The frequency modulator execution window

The top plot shows the baseband input, which is slowly moving up and
down (so slowly that it just looks like a horizontal line in the screenshot). If
you count it out, you can see it move through one complete cycle in about
5 seconds. Feel free to use a stopwatch if you want to be sure.

The middle plot shows the waveform of the modulator output. The
waveform’s frequency is constantly changing, with the sinusoid oscillating
faster and slower. It moves a bit like an accordion, squeezing together at
higher frequencies and stretching out at lower ones. This movement tracks
the change in the input level: when the input reaches its maximum value
(+1), the modulator outputs the highest frequency; as the input passes
through 0, the modulator outputs the lowest frequency; and when the input
reaches its minimum value (–1), the modulator outputs what appears to be
the highest frequency again.

This behavior may seem counterintuitive; why doesn’t the frequency
of the modulated output reach its slowest at the lowest input level? The
Frequency Mod block produces an output sinusoid with a frequency propor-
tional to the input level. If you give it a relatively high value, it outputs a rel-
atively high-frequency sinusoid. If you give it an input value of 0, it outputs
a waveform with a frequency of 0 (one that doesn’t oscillate at all). Finally,
when provided an input value less than 0, the Frequency Mod block outputs a
sinusoid with a negative frequency.

At first glance, the time domain representation of negative frequencies
doesn’t look much different from the representation of positive frequen-
cies. They are mathematically distinct, however, and this distinction can
be seen on the frequency plot of the modulator output, the bottom plot

210 Chapter 10

in Figure 10-14. In this plot, the frequency spike perfectly tracks the input
level, moving right and left as the input moves up and down and passing
through zero in the middle.

This illustrates a key difference between AM and FM. An amplitude-
modulated signal always appears at the chosen carrier frequency, though
its size varies. A frequency-modulated signal will appear at the carrier fre-
quency only if the modulator input is 0. In all other cases, it will be either
greater than (for positive inputs) or less than (for negative inputs) the car-
rier frequency.

Interpreting Waterfall Plots
We’ve been viewing the results of frequency modulation using time- and
frequency-domain plots, but there’s another kind of plot that encompasses
both time and frequency, providing a revealing view of what’s going on dur-
ing modulation: the waterfall plot. This type of plot shows frequency along the
x-axis and time along the y-axis, creating a scrolling representation of the fast
Fourier transform of a signal, like a seismograph for radio signals. The plot
uses color to indicate the strength of the signal at a given frequency.

Perhaps you’ve already noticed the QT GUI Waterfall Sink block listed
alongside the other QT GUI sinks. We’ll try that block out now. Open
ch_10/fm_waterfall.grc, a flowgraph containing the FM modulator as well as
time, frequency, and waterfall sinks (Figure 10-15).

Figure 10-15: A frequency modulator flowgraph with a waterfall sink

Modulation 211

When you run the flowgraph, you should see an execution window like
Figure 10-16. The waterfall plot is the top plot in the window.

Figure 10-16: The frequency modulator execution window with a waterfall plot

Observe how the waterfall plot display scrolls upward, essentially adding
a time axis to the ordinary frequency plot shown in the bottom of the execu-
tion window. The colors in the waterfall plot correspond to the vertical axis
of the frequency plot, with the brighter, redder colors signifying greater FFT
values and darker, more blue colors representing lower values. The frequency
peak moves back and forth as the waterfall plot scrolls, tracing out a triangu-
lar pattern. You can see your actual baseband signal in the waterfall.

Waterfall plots are particularly useful when you’re trying to detect short
transmission pulses that you might otherwise miss on your frequency- or
time-domain plots. You don’t have to catch the lightning-fast blip on the
FFT; you can just see a couple dots on the waterfall as they drift on by.

Adjusting Modulator Sensitivity
We’ve established that during frequency modulation, the modulator’s out-
put frequency changes based on the level of the baseband input, but we
haven’t established how much the frequency changes by. This is because the
degree of change depends on the sensitivity of the modulator. This param-
eter of the Frequency Mod block determines how much frequency change will
occur for a given input change.

To illustrate the effect of the modulator’s sensitivity, the ch_10/fm​
_waterfall.grc flowgraph has a QT GUI Entry block controlling this parameter.
Execute the flowgraph again, then use the textbox at the top of the

212 Chapter 10

execution window to increase the sensitivity from 1 to 2. Figure 10-17 shows
the result.

Figure 10-17: The frequency modulator execution window with a sensitivity of 2

First, notice how this change affects the frequency plot. With the
higher sensitivity, the spike now moves over a wider stretch of frequencies.
Meanwhile, in the time domain, the modulator output moves so fast that it’s
difficult to make out the individual waveform cycles. On the waterfall plot,
the sensitivity change shows up as a much wider triangular range.

Now try decreasing the sensitivity to 0.2. Figure 10-18 shows the result.

Modulation 213

Figure 10-18: The frequency modulator execution window with a sensitivity of 0.2

With the lower sensitivity, there’s a corresponding reduction in the spike’s
range of movement in the frequency plot and the range of the triangular pat-
tern in the waterfall plot. In the time domain, the modulator output moves so
slowly that we’re no longer seeing an entire cycle of the waveform.

Another way to understand the effect of the sensitivity parameter is to
look at an associated characteristic of frequency modulation: the deviation.
This measures the maximum change in frequency relative to the carrier
frequency. For example, if you’re looking at an FM signal with a carrier
frequency of 101.5 MHz and you observe it ranging from 101.4 MHz to
101.6 MHz, the deviation of the signal would be 0.1 MHz, or 100 kHz.

214 Chapter 10

The relationship between the Frequency Mod block’s Sensitivity property
and the deviation is dependent on the sample rate and the maximum size
of the input signal. It’s often easier to scale your input signals so that they
range from –1 to +1. In this simplified case, the sensitivity can be computed
from the sample rate and the desired deviation (represented with Δ, the
Greek letter delta):

2π × Δ
sensitivity =

sample rate

For example, if your flowgraph had a sample rate of 1 Msps and you desired
a deviation of 10 kHz, your sensitivity would be:

2π × Δ 2π × (10 × 103)
sensitivity = = = 0.0628

sample rate (1 × 106)

Rather than hardcode this value into your flowgraph, however, it’s
a better idea to create a variable containing the desired deviation (call
it deviation) and then enter the following for the Frequency Mod block’s
Sensitivity property:

(2 * 3.1415 * deviation) / samp_rate

This approach allows you to change the sample rate or deviation of your
flowgraph without having to manually recompute the sensitivity.

When choosing a deviation, you should mainly consider the trade-off
between two factors: bandwidth consumption and ease of tuning. The
bandwidth of your signal is a minimum of two deviations wide: one devia-
tion above the carrier frequency and one deviation below the carrier
frequency. (It’s actually a bit wider than that due to the bandwidth of the
baseband signal being modulated, but we’re not going to get into the math-
ematical weeds on this right now). A large deviation therefore results in a
large bandwidth, which means a greater risk of interfering with, or being
interfered by, other signals.

On the other hand, if your deviation is very small, tuning becomes
more of a challenge. Your receiver must be able to tune to a frequency that
falls within the transmitted signal’s bandwidth. A very small bandwidth
means a very small window into which you must “aim” your tuner. This is
especially important if your transmitter or receiver uses relatively cheap
hardware. Such hardware typically has poor frequency accuracy, which
results in tuning errors. Additionally, a larger deviation makes it easier for
the receiver to demodulate the signal in a noisy environment.

Modulation 215

Phase Modulation
The last basic modulation type is phase modulation (PM). As discussed ear-
lier in the chapter, the phase of a waveform refers to its position along the
x-axis in the time domain. Therefore, with PM, we don’t use the baseband
signal to make the carrier bigger and smaller (like in AM), nor do we use it
to make our carrier oscillate faster or slower (like in FM). Instead, we shift
the carrier forward or backward in time as the baseband signal gets bigger
or smaller.

We’ll use another premade flowgraph to demonstrate PM. Open ch_10/
phase_mod.grc to view a flowgraph with a baseband input and a phase modu-
lator, as shown in Figure 10-19.

Figure 10-19: The phase modulator flowgraph

The flowgraph begins with the same slow triangle wave Signal Source
for the baseband input, oscillating between –1 and +1. This input feeds a
Phase Mod block, which generates a complex-valued signal corresponding to
the modulator output we want. It’s hard to see this phase-modulated signal,
however, because its frequency is 0. To help visualize it, we’ve multiplied
it by a 1 kHz sinusoidal carrier (the second Signal Source) to boost its fre-
quency by 1,000. Then both the 1 kHz sinusoid and the Multiply output are
fed into a QT GUI Time Sink so we can see them together in the same plot.

216 Chapter 10

N O T E 	 We haven’t seen a GUI sink with multiple inputs before. If you ever want to add this
kind of sink to your flowgraph, change the Number of Inputs property to 2 (or more),
and the block will sprout that many inputs.

Execute the flowgraph and you’ll see something like the display in
Figure 10-20.

Figure 10-20: The phase modulator output

In the upper plot, you can see the familiar triangle signal moving
slowly up and down. As with the FM flowgraph, it’s so slow that it looks like
a straight line in the figure. The lower plot shows a visual representation of
PM. The stationary sinusoid represents the unmodulated carrier (the 1 kHz
sinusoid before it goes through the Multiply block). The moving sinusoid is
the modulated carrier. It shifts to the left when the baseband signal is posi-
tive and to the right when the baseband is negative.

When the modulated signal is to the left of the original carrier input,
it’s said to be leading the input, since a left shift on the time axis means
the waveform is happening earlier in time. This is the case shown in
Figure 10-20. Conversely, when the modulated signal is to the right of the
original carrier, it’s said to be lagging the input, since a rightward shift puts
the waveform later in time. This case is shown in Figure 10-21.

Modulation 217

Figure 10-21: The phase modulator output lagging the carrier

For positive inputs, the modulated output leads the input by greater margins
as the input gets larger. For negative inputs, the opposite occurs; the output
lags the input in proportion to the magnitude of the negative input signal.

As with the Frequency Mod block, the Phase Mod block includes a Sensitivity
property, which determines how much phase shift occurs for a given change
in input level. Phase isn’t typically used for analog modulation, however, so
it’s not critical to understand the mathematical specifics of how different
sensitivities translate to different phase shifts.

N O T E 	 You may notice that the phase modulator flowgraph doesn’t also contain a demodula-
tor. This is because implementing phase demodulation using GNU Radio’s recom-
mended scheme is actually quite complicated, and thus beyond the scope of this book.

A Word on Digital Modulation
Not all signals transmitted by a radio will be analog signals, such as voice
or the gradually transitioning waveforms we’ve been using in this chapter.
What if you wanted to send a signal containing digital information instead?
Does that change the modulation process?

218 Chapter 10

Think about how digital signals are generated and interpreted in the
world of wired electronics. In a 3.3-volt (V) system, for example, a digital zero
might be represented by 0 V and a one by 3.3 V, as shown in Figure 10-22.

Figure 10-22: A simple digital waveform

This is a pretty simple waveform: it’s either a higher value or a lower
value at any given time, with nothing in between. We can apply any of the
three modulation types we explored in this chapter to this waveform. For
example, think for a moment what kind of modulated waveform would
result if you fed this digital signal to the input of an amplitude modulator.
When intending to communicate a zero, the system reduces the amplitude
of the carrier to its minimum allowable size. If you scale the waveform cor-
rectly, this amplitude will be zero. Then, when the system intends to com-
municate the higher level, it outputs the carrier at its maximum amplitude.
An example of this can be seen in Figure 10-23.

Figure 10-23: An amplitude-modulated digital waveform

Modulation 219

You could use this system to transmit digital values, and that actually
happens. This is possibly the simplest type of digital modulation scheme,
and it’s widely used for low-cost RF communication. It’s referred to as on-off
keying, or OOK. Despite having a different name, it’s just a special case of
amplitude modulation.

Digital modulation schemes are a topic for another book. For now, the
thing to recognize is that digital modulation is built on special cases of
analog modulation. If you want more of a sneak peek at what it looks like to
transmit digital signals using frequency or phase modulation, go ahead and
change the baseband waveform property in any of the previous flowgraphs
from a triangle to a square wave, and rerun the flowgraph.

Choosing a Modulation Scheme
We’ve discussed three types of modulation in this chapter: amplitude, fre-
quency, and phase. Perhaps you’re wondering how to choose between them.
Furthermore, why do we even need all of these different modulation schemes
in the first place? Are RF engineers just inventing different techniques to
keep themselves employed?

Certainly not (and never mention that conspiracy theory again). In fact,
each type of modulation has its own strengths and weaknesses that make
it better suited for certain applications. For an everyday illustration of how
these modulation schemes differ, look no further than our old friend the
car radio.

Think about the difference in audio quality between an AM and an
FM radio station. You’d probably say that the FM station sounds better.
But perhaps you also remember that on an interstate trip, you lose the FM
stations a couple dozen miles from your home city, while the AM stations
hold on quite a bit longer. They also tend to disappear in quite different
ways: the FM stations quickly go from crystal clear, to cutting in and out, to
completely gone. The AM stations, on the other hand, become progressively
more static-laden and can slowly fade in and out at the edge of their cover-
age range. While the frequencies used to transmit these signals play a part
in the range difference, the modulation schemes also play a part.

Most of the issue here has to do with the different frequency bands AM
and FM broadcasts use; the lower frequencies of AM broadcasts propagate
farther than the higher frequencies of FM broadcasts. Some of this effect
is modulation related, however. Although FM is far more immune to noise
when the signal is relatively strong, it’s actually more susceptible to noise
at low signal levels. An AM signal will get noisier as it weakens, with the
noise directly showing up in the audio as the SNR drops. Because the noise
doesn’t directly affect the frequency of a signal, an FM signal will be very
clear, almost until the FM receiver is no longer able to make sense of it,
after which it will typically cut in and out and then disappear. This is one
reason amateur radio operators choose variants of AM rather than FM to
transmit over extremely long distances. Conversely, to transmit over rela-
tively short distances, FM is often the better choice.

220 Chapter 10

Meanwhile, different variants of PM are especially well suited for digital
transmissions, which come with their own considerations. To make matters
even more complicated, some digital modulation schemes use a combina-
tion of AM and PM, but that’s a topic for another day.

Conclusion
This chapter has demystified the modulation process, using flowgraphs to
illustrate what’s happening during amplitude, frequency, and phase modu-
lation. Ultimately, modulation is nothing more than GNU Radio perform-
ing mathematical operations on the baseband signal (the one we’re trying
to send). The key considerations are which modulation type to use and how
to set the modulation parameters. For example, we’ve seen in this chapter
how to attenuate a baseband signal to keep it within a range of –1 to 1 for
AM and how to use the sensitivity parameter during FM to control the
bandwidth of the resulting signal.

In the next chapter we’ll take a closer look at how SDR hardware actu-
ally works. Coupled with your understanding of modulation, this deep dive
will help you feel confident using your SDR to both receive and transmit.

11
S D R H A R D W A R E U N D E R

T H E H O O D

In this chapter, we’ll explore how SDR
hardware like the HackRF One is able to

take in radio frequency signals from the out-
side world and turn them into data that your

computer can work with. When we first encountered
SDR hardware in Chapter 9, using it in GNU Radio
Companion was relatively simple: you just dropped in
a block to talk to the hardware and configured a few
of the block’s properties. To have the most success with
SDR, however, it’s helpful to have a deeper understand-
ing of how these devices work and how best to use them.

222 Chapter 11

Classic Radios vs. SDR
To understand how SDR hardware works, it’s useful to first examine the
old-school, fixed-function style of radio design. We aren’t going to spend a
lot of time looking under the hood of traditional radios, but a quick peek
will help clarify some important radio terms. Figure 11-1 shows a block
diagram for a traditional receiver. You’ll often see this kind of receiver
described as superheterodyne (or superhet for short).

Figure 11-1: A basic superheterodyne radio

One pleasant surprise should be that none of the receiver’s components
are a complete mystery at this stage. You’ve seen amplifiers, filters, and
demodulators before in this book. You’ve also seen mixers, though you may
have forgotten that mixer is just another word for multiplier. This really isn’t
so different from the much simpler radio model in Figure 11-2 that we’ve
been using to understand SDR.

Figure 11-2: A basic radio model

Leaving out the gain (amplifier) stages for a moment, both systems have
a similar structure. They both tune by downshifting the signal and then
filtering it. Both systems then use a demodulator to recover the informa-
tion signal, which is the original signal that the transmitter was intended to
communicate. The only real differences are in some of the details, particu-
larly that little IF abbreviation on the blocks in the middle of Figure 11-1.

SDR Hardware Under the Hood 223

It stands for intermediate frequency, and unlike our previous flowgraphs, this
frequency isn’t 0 Hz. Instead, superheterodyne radios use a variable local
oscillator to downshift the incoming RF signal to a fixed lower frequency;
no matter what station you’re tuning into, the IF will always be the same.
This downshifting step, known as heterodyning, is the defining characteristic
of the superhet radio design.

Why is this intermediate frequency necessary? It’s difficult to create a
hardware radio where every stage has a varying range of signal frequencies
passing through it. Shifting to a fixed intermediate frequency means that
only the initial stages of the design have to work with variable frequencies.
After that, all processing can be done with fixed frequencies. In other words,
you don’t have to realign all the downstream electronics every time you
tune to a new signal, and this makes the radio much simpler and cheaper to
design. Figure 11-3 divides the superhet design into two sections: the stages
that support variable frequencies (left box) and the fixed-frequency stages
(right box).

Figure 11-3: The variable- and fixed-frequency portions of a superhet radio

We don’t need to spend much more time with this model. The main
point is to observe how much simpler it is to implement receivers using
software-defined radio. If you’re trying to replicate the function of an exist-
ing radio and you read about its intermediate frequency, just know that
you don’t need to worry about that. Thanks to the SDR hardware, you can
assume a “direct conversion” from RF frequencies down to 0 Hz, without
needing to consider any kind of intermediate frequency.

N O T E If you look at the block diagram for your specific SDR hardware, you may find that it
contains a superheterodyne structure with an intermediate frequency. The HackRF
One contains such a structure, for example. There are sometimes engineering reasons
for using this topology in SDR hardware designs, but you don’t need to worry about
how the engineers designed your SDR to use it. Whatever design choices they made,
your SDR looks to you, the user, like a direct conversion device.

224 Chapter 11

IQ Sampling
Arguably the main purpose of SDR hardware is to generate a stream of
complex numbers that represent a portion of the RF spectrum. Once you
have those numbers, you can set your computer loose on them, demodu-
lating, decoding, and doing anything else you want to do. This means we
need to consider something we’ve been avoiding until now: How do we get
complex-valued signals from real-world phenomena?

The answer is a technique called IQ sampling, or sometimes quadrature
sampling. This technique is the cornerstone of SDR. It uses two analog-to-
digital converters (ADCs) to measure (sample) two different versions of the
incoming waveform. Specifically, the first ADC samples the in-phase (I)
version of the signal, while the second samples the quadrature (Q) ver-
sion, which has a different phase. Sampling these two different phases
of the same signal produces a set of complex values that provide a more
useful representation of the signal than values from just one ADC could.
Additionally, these complex values encompass both positive and negative
frequency components.

The mathematics behind IQ sampling could fill a whole book on digi-
tal signal processing and are beyond the scope of our current discussion.
Instead, this section will give you a simplified, high-level view of how the
process works and provide a foundation to build on should you choose to
research the topic yourself. There are several great tutorials about IQ sam-
pling on the Web, with plenty of mathematics, if you’re so inclined.

IQ Signals
Before getting to the sampling part of IQ sampling, let’s look at the I and
Q signals themselves. The key difference is that the quadrature version of
a signal is 90 degrees out of phase with the in-phase version. (The quad
in quadrature refers to the fact that 90 degrees is one-quarter of a full
360-degree cycle of a sinusoid.) Without getting into the mathematics, the
process of multiplying a signal by a sinusoid can produce changes in phase
as well as the changes in frequency we’ve already seen. We produce the I
component by multiplying the input RF signal by a cosine wave. The cosine
function is mathematically defined to have zero phase, and as such, it pro-
duces the in-phase portion. We produce the Q component by multiplying
the input RF signal by a sine wave. A sine wave is always 90 degrees out of
phase with its associated cosine wave, so it gives us the quadrature portion.
Figure 11-4 shows the two sinusoids and their phase difference. Notice how
the sine wave peaks a quarter of a cycle after the cosine wave.

SDR Hardware Under the Hood 225

Figure 11-4: The phase relationship between cosine and sine waves

The block diagram in Figure 11-5 shows how these two different sinu-
soids work in parallel in an IQ sampler to produce the I and Q components
of the input.

Figure 11-5: The mixing stage of an IQ sampler

The cosine and sine wave are both set to the center frequency (the fre-
quency to which the SDR is tuned). Each sinusoid is multiplied by the input
signal using a mixer, which has the same down-conversion effect as the
mixer in the superheterodyne design from Figure 11-1. The math behind
these hardware mixers is a bit more complicated than the software multipli-
ers we’ve used in our flowgraphs, but the key point here is that the two mix-
ers shift the input RF energy down to 0 Hz, albeit with two different phases.

226 Chapter 11

Analog-to-Digital Conversion
So much for the IQ part of IQ sampling. For the sampling part, a pair of
ADCs sample the I and Q waveforms to produce the complex digital data
your flowgraphs will need. You might think we could do that immediately
after the signals emerge from the mixers, as in Figure 11-6.

Figure 11-6: IQ sampling in concept

This almost works, but there’s a problem we need to address. The ADCs
can only convert their inputs accurately from analog to digital over a lim-
ited frequency range, known as the capture window. If signal energy with a
frequency outside this capture window enters the ADC, it will distort the
signal you’re trying to convert. We alluded to this problem in Chapter 2
when we said that in a properly functioning ADC, the target signal must
not be moving too fast to capture. Unfortunately, the I and Q inputs to the
ADCs have all the RF energy picked up by the antenna over an infinite fre-
quency range. Even though that energy has been downshifted by the mix-
ers, much of it still remains at high enough frequencies to be outside the
capture window, and so this extraneous RF energy will distort the analog-
to-digital conversion process.

The size of an ADC’s capture window is determined by the Nyquist-
Shannon sampling theorem. This theorem is often summarized as “you need to
sample at twice the frequency of the analog input signal to avoid problems.”
A more precise definition of the theorem states that a digital sampling
system can only capture a faithful representation of an analog input signal
if the input signal is band-limited to half the sampling rate. Band-limited
simply means that the frequency components of the input signal must all
fall within a finite range. In this case, the upper limit of that range is fs/2,
where fs is the sampling rate. This limit is also called the Nyquist frequency.

SDR Hardware Under the Hood 227

Because we’re talking about IQ samples, which contain information about
both the positive and negative frequencies, the lower limit of the capture
window is –fs/2.

Figure 11-7 shows a frequency plot of a well-behaved signal that sits
within the safe capture window of the ADC. The plot has no frequency
components greater than fs/2, nor does it have any frequency components
less than –fs/2, so the signal will be sampled correctly.

Figure 11-7: Sampling a signal within the capture window

Figure 11-8 shows another example frequency plot. This time the signal
has too high a frequency and falls outside the capture window. It won’t be
sampled correctly.

Figure 11-8: Attempting to sample a signal outside the capture window

What happens when the signal frequency is higher than the Nyquist
frequency? Something called aliasing.

228 Chapter 11

Aliasing

Aliasing is a phenomenon that causes frequencies higher than the Nyquist
frequency (fs/2) to be rendered as if they were frequencies lower than the
Nyquist frequency when a signal is sampled. Once again, we alluded to this
problem earlier in the book. In Chapter 5, when we were playing with basic
sinusoids, we observed that as a sinusoid’s frequency rises, the resulting
tone eventually becomes too high to hear. But then, as the frequency con-
tinues to rise, the tone reemerges and, paradoxically, gets lower and lower.
That was aliasing in action.

To see the effect in more detail, let’s try a little experiment. You’ll run
a flowgraph that intentionally breaks the conditions demanded by the
Nyquist theorem and see what happens. Open ch_11/nyquist.grc. This flow-
graph, also shown in Figure 11-9, generates a variable-frequency sinusoid,
which goes into a Keep 1 in N block, after which it is displayed in QT GUI Sink,
a multifunction display block containing a tabbed interface with several dif-
ferent types of plots.

Figure 11-9: A flowgraph for Nyquist experiments

We used the Keep 1 in N block before in the decimation flowgraph
from Chapter 6. It performs decimation by passing along only one out of
every N samples from its input to its output. In this project, N has been set
to 32, meaning that samples exit the block at a rate of 1,000 samples per sec-
ond, 32 times slower than the 32,000 samples per second rate of the Signal
Source. The Nyquist frequency (fs/2) for any blocks downstream of the Keep
1 in N block is half of 1,000 Hz (that is, 500 Hz).

SDR Hardware Under the Hood 229

The QT GUI Range block allows you to change the frequency of the input
signal, and consequently the Keep 1 in N block output, from legal values
less than the Nyquist frequency (499 Hz) to illegal values greater than or
equal to the Nyquist frequency (500 Hz and up). When you execute the
flowgraph, you should initially see a single peak at 0.2 kHz (200 Hz), which
is the default value of freq. Figure 11-10 shows this output.

Figure 11-10: The initial output for the Nyquist flowgraph

At first, as you slide the freq control to the right, you should see the
peak move to the right. Then it should straddle the right and left sides of
the plot when you reach 500 Hz, as in Figure 11-11. You’re now on the edge
of legal territory, no longer generating valid samples.

230 Chapter 11

Figure 11-11: The flowgraph output when the signal is at the Nyquist frequency

Keep increasing the slider to 600 Hz. The aliased frequency should com-
pletely roll off the right edge of the window and start shifting to the right from
the window’s left edge. When you reach 600 Hz, the frequency plot should
show the aliased signal’s frequency is –400 Hz, as shown in Figure 11-12.

If you further increase the freq slider to 700 Hz, the peak will continue
to move to the right, to –300 Hz. The rightward shift will continue until you
get all the way to 1,500 Hz, after which another rollover will occur and the
peak will jump back to the left edge of the window.

SDR Hardware Under the Hood 231

Figure 11-12: The flowgraph output when the signal is past the Nyquist frequency

In Chapter 5, we noted that the pitch of the tone started to decrease
when aliasing started. You might therefore be surprised to see the aliased
frequency continually moving from left to right as you turn up the slider. In
fact, what was happening in Chapter 5 was that the frequency of the tone
had “rolled over” into the negative frequencies, much like we’re seeing here.
For real-valued signals, positive and negative frequencies sound the same,
so moving from the left edge of the window toward the right resulted in
the absolute value of the tone’s frequency dropping until it hit 0 Hz. From
there, the pitch would rise again.

Now slowly drag the slider to the right until freq is set to 1100. Observe
how the peak moves from the left side of the frequency plot, past zero, and
continues right until it reaches 100 Hz.

Lest you think this strange behavior in the frequency plot is merely
some quirk in the way the fast Fourier transform is computed, switch over
to the Time Domain tab of the execution window. Then click and drag to
zoom in on a small portion of the display, as shown in Figure 11-13.

232 Chapter 11

Figure 11-13: The time domain output when the signal is past the Nyquist frequency

Next, click the imag label to hide the imaginary part of the complex
waveform, leaving only the real part. This should reveal a simple sinusoid,
as shown in Figure 11-14.

Figure 11-14: Zooming in on the time domain output when the signal is past the
Nyquist frequency

The period of this waveform is about 10 ms, which corresponds to a fre-
quency of 100 Hz, even though you’re generating an 1,100 Hz signal, which
should have a period of about 0.9 ms. This is the aliasing effect in action.
When the 1,100 Hz signal is sampled, it gets mistaken for a lower frequency.
It’s as if the signal’s frequency is taking on an “alias” of 100 Hz.

This experiment illustrates why you need to band-limit your signals
before sampling them, making sure the ADC inputs don’t contain por-
tions that have a higher frequency than half the sample rate. Without this

SDR Hardware Under the Hood 233

precaution, you’ll have all sorts of aliased frequencies undergoing the kind
of frequency shift you just witnessed. The shifted frequencies will overlay
your real signal and cause the real signal to be distorted. The frequency
domain perspective of this situation is shown in Figure 11-15.

Figure 11-15: A frequency domain representation of aliasing

In the last step of our experiment, the sample rate was 1 ksps and
the sinusoid being sampled had a frequency of 1,100 Hz. The signal was
then significantly higher than the Nyquist frequency (fs/2) of 500 Hz,
and therefore aliasing occurred. One way to think of aliasing is that in a
sampled system, you’re only able to work with a range of frequencies equal
to your sample rate (from –fs/2 up to +fs/2). If you ever exceed the Nyquist
frequency, then the signal energy at those “too-high” frequencies will “roll
over” the edge of the range and appear again on the opposite side. If you
continue increasing the frequency of the input signal, it will move further
to the right until hitting the +fs/2 limit and rolling over again.

Try moving the slider around to get a feel for how aliasing provides an
inaccurate representation of the real input signal. In general, however, you
won’t have to predict the results of aliasing: you just want to avoid it.

Filtering

To ensure the input signal is band-limited, the SDR hardware must use a
low-pass filter with a cutoff no greater than the Nyquist frequency (fs/2) to
eliminate those pesky higher-than-Nyquist frequencies. In particular, the
SDR hardware must use an analog filter because the filtering must occur before
it performs sampling, taking digital options off the table. Properly filtering
before sampling eliminates possible aliasing, as shown in Figure 11-16. As
long as the signal components above the Nyquist frequency fall within the
stopband of the filter, they won’t alias into your signals during sampling.

234 Chapter 11

Figure 11-16: A frequency domain representation of low-pass filtering to eliminate aliasing

This filtering step was the missing piece of the IQ sampling block dia-
gram from Figure 11-6. Adding in two low-pass filters, one for the I compo-
nent and one for the Q, gives us the updated block diagram in Figure 11-17.

Figure 11-17: An updated IQ sampling block diagram

Typically, the sampling rate of an SDR is variable, so the low-pass filter
cutoff in the IQ sampler is also variable to match. For some SDRs, you won’t
have to explicitly set the bandwidth in GNU Radio, as they will automati-
cally adjust to match the sample rate. For the Soapy sources, however, you
should manually configure the bandwidth to match the sample rate. We did
this in Chapter 9 by setting the Bandwidth property in the RF Options tab
to samp_rate.

SDR Hardware Under the Hood 235

SDR Bandwidth and Sample Rates
An SDR’s bandwidth (that is, the range of frequencies the SDR can cap-
ture) is equivalent to the sample rate. You saw this when operating the FM
hardware receiver flowgraph in Chapter 9. That flowgraph had a sample
rate of 8 Msps, and the QT GUI Frequency Sink showed an 8 MHz range
of frequencies.

The connection between bandwidth and sample rate matches the sam-
pling theory we just discussed. We’ve established that an IQ sampler cap-
tures an amount of spectrum equal to the Nyquist frequency on the positive
part of the horizontal axis, as well as an equivalent amount of spectrum on
the negative side, as shown in Figure 11-18. Since the Nyquist frequency is
equal to half the sampling rate, the total capture bandwidth (two Nyquist
frequencies) is equal to the sampling rate itself.

Figure 11-18: An IQ sampler frequency plot with an annotation of the total bandwidth

The relationship between sampling rate and bandwidth is perhaps the
most important concept to remember from this chapter. Setting the sample
rate and center frequency for your SDR establishes the capture window, or
range of frequencies that will be converted to IQ data for your flowgraph.
This region has a size (bandwidth) equal to the sample rate and is centered
on the SDR’s center frequency.

Identifying Bandwidth Limits
Three main factors limit the bandwidth of an SDR system: the speed of its
ADCs, the speed of the SDR-to-PC interface, and the speed of the computer
that’s doing the GNU Radio processing. The first two are hard limits. The
specification for your SDR will reflect both of these considerations in
the maximum sampling rate of the device. For example, the HackRF speci-
fies a maximum sampling rate of 20 Msps, a value determined by the sam-
ple rate of its ADCs as well as its USB 2.0 interface.

The third limitation, your computer speed, is more variable and harder
to quantify. It depends on your CPU speed, the performance of your

236 Chapter 11

storage media, whether you have other programs running at the same time
as GNU Radio, and the flowgraph you’re running. The maximum speed
of your flowgraph will depend on what kind of computational bottlenecks
it has and how well equipped your computer is to handle those types of
bottlenecks. It may or may not be less than the speed of your SDR.

Experiencing Overflow
When data enters your flowgraph faster than the blocks in the flowgraph can
process it, the result is an overflow condition. To see this effect in action, open
the ch_11/fm_rx_ovf_hackrf.grc flowgraph, which can be seen in Figure 11-19.

Figure 11-19: A flowgraph designed to produce overflows

This flowgraph is similar to your previous hardware-based FM radio
receiver, but with the samp_rate increased to 20e6 (instead of 8e6) and a QT GUI
Entry to dynamically control the transition width of your tuning filter. Also,
the Default value of the transition width is smaller than the previous value.
Before executing, set the Default Value for the freq variable to a frequency
corresponding to a known FM station in your area. It may be hard to tune
after the flowgraph runs, for reasons you’ll see in a second.

SDR Hardware Under the Hood 237

Unlike the previous projects, we can’t tell you what will happen when
you execute this flowgraph. Even if you’re running a solidly mainstream
computer as of 2025, you should see and hear moderate problems. The GUI
will appear, displaying 20 MHz of bandwidth, complete with the expected
FM radio peaks, as shown in Figure 11-20.

Figure 11-20: The FM receiver execution window with 20 MHz of bandwidth

Unless you have a very fast computer, however, you should hear notice-
ably choppy audio. You should also see some interesting output in the con-
sole pane at the bottom left of the main GNU Radio Companion window,
similar to the following:

Generating: "/home/paul/book/01_field_exp_sdr/ch_11/fm_rx_ovf_hackrf.py"

Executing: /usr/bin/python3 -u
/home/paul/book/01_field_exp_sdr/ch_11/fm_rx_ovf_hackrf.py

[INFO] Opening HackRF One #0 14d463dc2f6778e1...
OsOOsOOsOOsOOsOOsOOsOaUOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOO
sOOsOOsOOsOOsOOsOOsOaUOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOs
OosOOsOOsOOsOOsOOsOOsOaUOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsO
OsOOsOOsOOsOOsOOsOOsOOsOaUOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOO
sOOsOOsOOsOOsOOsOOsOOsOOsOaUOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOs
OosOOsOOsOOsOOsOOsOOsOOsOOsOaUOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsO
OsOOsOOsOOsOOsOOsOOsOOsOOsOOsOaUOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOOsOO
--snip--

238 Chapter 11

A capital O in the console pane indicates that your flowgraph is experienc-
ing an overflow condition. You may also see a lowercase a or s. If a small hand-
ful of these characters appear intermittently, they may just be little hiccups
that don’t noticeably affect the flowgraph’s function. If, however, you see a
consistent stream of these characters, as shown here, you have a problem: your
computer isn’t processing fast enough to keep up with the incoming data.

If you don’t experience significant overflow behavior, reduce the
value of transition_width to 4000. As mentioned in Chapter 5, smaller filter
transitions require the CPU to work harder. This change should produce
overflow events, even on a very fast CPU. For those of you using extremely
powerful machines, however, you’ll need to turn up the heat even further to
see an overflow condition. But how do you do that? The HackRF spec says
you can’t sample faster than the 20 Msps rate we’re already using, so what
can you do to make this flowgraph more computationally challenging?

Think about one of the rules we discussed in Chapter 2: “Never sample
faster than you need to.” Thanks to this rule, we’ve learned to decimate a
flowgraph’s data stream at the earliest opportunity so that blocks down-
stream can operate more slowly. In fact, the current flowgraph has only three
blocks running at the initial 20 Msps sample rate: the Soapy HackRF Source, the
Frequency Xlating FIR Filter, and a QT GUI Sink (highlighted in Figure 11-21).

Figure 11-21: The portion of the flowgraph running at 20 Msps

Everything downstream from these three blocks runs 50 times slower, at
the working_samp_rate value of 400 ksps. If you want to make this flowgraph

SDR Hardware Under the Hood 239

more difficult to run, all you need to do is violate best practices and run
the downstream blocks faster than necessary. For example, try changing
the working_samp_rate property to 1e6. This will drive a change to the down-
stream sample rates, bringing some blocks up to 1 Msps (Figure 11-22).

Figure 11-22: The flowgraph with a needlessly high downstream sample rate

When you run the updated flowgraph, you’ll almost definitely hear
completely garbled audio (or no audio) and see a very fast stream of O and s
characters in the console, even if you’re running on a very fast machine.
This flowgraph is much harder for the computer to handle because all but
the very last part is running 2.5 times faster than before. Hopefully this
shows you how large of a difference a well-designed flowgraph can make
over a carelessly constructed one.

Up to now, we’ve focused almost entirely on receiving, but a similar set
of constraints hold for the transmit side of an SDR as well. Instead of over-
flowing when your computer is too slow, however, you’ll have something
called underflow. When transmitting, the SDR needs data coming from the
computer at whatever sample rate you’ve selected for your SDR sink block.
When the computer can’t keep up, the SDR has nothing to transmit for a
time, so it can only send “dead air.” When this happens, the console pane
will start displaying U characters. As with O characters, a small handful of

240 Chapter 11

these won’t be fatal, but a swift progression of them means the signal you’re
trying to transmit has been seriously compromised and will need to be
redesigned for better efficiency.

N O T E 	 A similar phenomenon to a transmission underflow is an audio underrun issue,
where the audio playback hardware doesn’t receive data fast enough. GNU Radio
Companion will indicate this by displaying aU characters in the console pane.

Preventing Overflow
If you’re having overflow (or underflow) problems, you need to either
reduce the computational load of your flowgraph or increase the computa-
tional power of your computer. We recommend the following troubleshoot-
ing steps, in order:

	 1.	Optimize the sample rates throughout the flowgraph, reducing them
anywhere you can by decimation.

	 2. Reduce the sample rate of the flowgraph’s sources if possible. For exam-
ple, does an FM radio really need to work with 20 MHz of spectrum
at the same time? The radio still works if you sample only at 8 MHz or
even slower.

	 3.	

	 4. Close other applications or processes that don’t need to be running.
These may be slowing down your computer, stealing CPU cycles from
GNU Radio. Similarly, rebooting may help.

If all else fails, you may need to upgrade your computer. Installing
a faster CPU will typically provide the largest benefit. Having a solid-
state drive (SSD) as opposed to a mechanical hard disk will also allow for
much faster writes to your hard drive if your flowgraph is streaming large
amounts of data to disk.

Gain and SDR Hardware
Besides IQ sampling, another major function SDR hardware carries out is
applying gain. This isn’t the software-implemented, mathematical kind of
gain we’ve discussed in the context of GNU Radio flowgraphs, but rather
the result of amplifiers built out of hardware. This is necessary because
many radio signals that SDR users try to receive are faint and require a
great deal of gain to detect. On the transmit side, SDR users also need gain
to boost the strength of the signals they send.

In many SDRs these gains are set using a single value, typically in deci-
bels. In the HackRF, however, the gain occurs in three stages.

SDR Hardware Under the Hood 241

The Three Gain Stages
Figure 11-23 shows the three gain stages of the HackRF. These stages are
specifically for the receive side of SDR operations. The transmit side goes
through similar stages, albeit in reverse.

Figure 11-23: The HackRF receive-side amplifiers

The first stage is the RF gain, which boosts the raw signal just after it’s
picked up by the antenna and before any kind of signal processing or sam-
pling. This is a broadband gain stage, meaning there’s no filtering prior
to it. Rather, the entire RF spectrum supported by the HackRF (1 MHz to
6 GHz) runs through this stage. Another way to say this is that no filtering is
done before this gain stage, except the natural filtering that occurs due to
the HackRF’s limitations. (Nothing has infinite bandwidth.)

There are only two settings for the RF gain: 0 dB or 14 dB. You can
enter other values into the RF Gain property of the Soapy HackRF Source
block in your receiver flowgraph, but GNU Radio Companion will round
your number to the nearest legal value. You need to be careful with the RF
gain stage because the higher value could damage your SDR. It takes a very
strong signal to do this, much stronger than the FM broadcasts we’ve previ-
ously picked up. However, if you’re working with a transmitter situated very
close to your SDR’s antenna (for example, your transmitter and receiver
antennas are on the desk next to each other), damage is a possibility. Keep
in mind that this is broadband gain, meaning you don’t have to be tuning
the SDR to the potentially damaging signal for it to hurt your hardware.
For this reason, it’s a good idea to set your RF gain to 0 dB when you sus-
pect there might be powerful transmitters close by.

The next gain stage is the IF gain. As we hinted earlier, the HackRF,
like a traditional fixed-function radio, downshifts the incoming signal to an
intermediate frequency before further processing, since there can be engi-
neering benefits to doing so. You don’t have to worry about this intermediate
frequency at all in your flowgraphs, but nevertheless it exists internally in the
hardware, and the signal is further amplified after this downshift occurs.

On the HackRF, the IF gain can be set between 0 dB and 40 dB in
increments of 8 dB. Unlike the RF gain stage, this gain is merely amplifying
internal signals and can’t cause any actual damage to your SDR. If turned
up too high, however, it can cause distortion. The HackRF design team rec-
ommends that you start with an IF gain of 16 dB and increase if necessary
up to the maximum.

The final gain stage is the baseband (BB) gain. This stage is applied to
both the I and Q signals, just before they enter the ADCs. There’s a lot of

242 Chapter 11

adjustability here, as the HackRF supports values between 0 dB and 62 dB
in 2 dB increments. The official recommendation is to start the BB gain at
16 dB, just like the IF gain, and to increase it in tandem with the IF gain as
needed. Once you hit 40 dB and the IF gain maxes out, you can continue to
increase the BB gain if necessary.

Notice how each successive gain stage offers both greater gain and
increased flexibility as we go from the SDR input to the computer interface.
This is because the frequency and bandwidth requirements are lessened
as we pass through the different stages, which is a product of the HackRF’s
use of an intermediate frequency. As mentioned earlier, it’s much easier to
implement hardware that operates at limited frequencies and over smaller
bandwidths.

T R A NSMIT G A IN S TAGES

For transmission, the HackRF goes through a similar sequence of gain stages
as receiving. The difference is that the stages take place in reverse order and
there’s no BB gain stage, as shown in the following diagram:

When a signal is output to your SDR hardware for transmission, the digi-
tal signal is converted to analog by a digital-to-analog converter (DAC). The
resulting analog signal then goes through an IF gain stage at the intermediate
frequency. Then it goes through a final RF stage before being passed along to
the antenna.

In addition to this hardware gain, it is also possible to control the strength
of your transmitted signal by scaling the size of the samples you send to your
SDR sink. Inserting a Multiply Const block with a Constant of 0.1, for example,
would reduce the output power by a factor of 10, or 10 dB. Just ensure that you
don’t exceed the maximum specified value for input to your SDR sink, which is
typically 1 for both parts of each complex sample.

We’ll cover transmit gain in more detail in Chapter 13 when you build your
first transmitter.

SDR Hardware Under the Hood 243

How to Set the Gain
There are three general principles for setting the gain in your SDR, and
juggling them is often a careful balancing act:

•	 Ensure that your cumulative gain is high enough for the ADCs to con-
vert the analog signal to a sufficiently accurate digital representation.

•	 Don’t apply too much gain at any given stage, or you may cause distor-
tion in the signal.

•	 Be careful about setting the gain so high that you damage your SDR.

These directives may appear somewhat contradictory; the first point cer-
tainly seems to be at odds with the other two. This is why there’s something
of an art to radio operation.

Based on these principles, you should typically follow a flow like this
when you’re trying to receive a signal:

	 1.	Set the initial gain to a low level. This will help keep your SDR safe.

	 2.	

	 3.	

	 4.	Once you’ve observed a spike corresponding to the target signal, con-
tinue to gradually increase the gain. Doing so will increase both the size
of the spike and the surrounding noise level, but at first the spike will
get bigger rather quickly. Recall that the difference between the signal
peak and the noise level is the signal-to-noise ratio (SNR). Continue to
increase the gain until the peak stops increasing faster than the noise
level. At this point, you can stop. You’ve maximized the SNR.

	 5.	

If these steps don’t work, you likely have an antenna problem (which
we’ll discuss in the next chapter) or you’re trying to receive a signal that’s
either too weak or too noisy. In other words, the SNR is too low.

How Gain Affects a Signal
You might be wondering why the gain affects the signal peak and noise level
the way it does. Perhaps counterintuitively, the goal of applying receive gain
isn’t solely to make the signal larger. A larger signal by itself doesn’t help
because the gain affects the noise as well as the target signal. As you turn
up the gain, the noise gets worse just as much as the signal gets better.

244 Chapter 11

The purpose of receive gain in an SDR is to help the ADC work better.
The maximum input an ADC can measure is called the full-scale input. If a
given signal is very small relative to the full-scale input, the ADC will capture
relatively little information about the signal. For example, imagine an 8-bit
ADC with a full-scale input ranging from –1.0 to +1.0. Such an ADC would
produce 28 = 256 different output values, with its maximum output corre-
sponding to +1.0 and its minimum corresponding to –1.0. Now imagine a
very small input signal is applied to this ADC, as shown in Figure 11-24.

Figure 11-24: Sampling a very, very small signal

The very small sinusoid in the figure only ranges from +0.015 to –0.015.
Because its range is so narrow, the sinusoid is converted to a relatively small
number of digital values; it’s all just –2s, –1s, 0s, 1s, and 2s. It may be an
8-bit ADC on paper, but it’s producing only 5 different measurements out of
the 256 possibilities, so its practical resolution is only 2 or 3 bits. With such
a low effective resolution, the ADC can’t accurately measure the signal or
provide much information about it. This measurement error manifests as
noise, resulting in a worsened SNR.

SDR Hardware Under the Hood 245

On the other hand, if the signal is large enough to be close to the ADC’s
full scale, the conversion produces values like those shown in Figure 11-25.

Figure 11-25: Sampling a signal near the ADC’s full scale

In this case, the analog signal ranges from +0.8 to –0.8, or 80 percent
of the full range. As such, the ADC is able to use a much greater number of
values to describe the signal, providing significantly more detail. The mea-
surement error is much smaller than the signal values, and the resulting
SNR can be much better.

If you turn up the receive gain too high, however, another problem can
occur: clipping. This is when the gain is so high that it produces an ADC
input greater than full scale. Figure 11-26 shows an example of clipping,
where the input exceeds the maximum and minimum full-range inputs of
+1.0 and –1.0.

246 Chapter 11

Figure 11-26: Clipping when a signal exceeds the ADC’s full range

The ADC samples are correct until the input signal reaches its upper-
most values, at which point the ADC can’t output any higher measurements.
(The same thing happens on the low end.) Lacking any other options, the
ADC outputs the maximum (or minimum) value it can, which is no longer
a meaningful measurement of the signal. This introduces distortion into
the ADC conversion values and can prevent you from recovering a faithful
representation of the original signal.

A Better SDR Model
With everything we’ve discussed so far in this chapter, we have all the
information we need to draw a more detailed model of how SDR hardware
works. Figure 11-27 shows a block diagram of the HackRF board we’ve been
using for this book. There may be slight variations on the gain stages for
other SDR designs, but overall, the structure should largely be similar.

Figure 11-27: A more detailed model of the HackRF SDR

SDR Hardware Under the Hood 247

The signal from the antenna feeds directly into the RF gain stage. This
in turn is downshifted to the intermediate frequency. This IF signal is then
amplified by the IF gain stage before the I and Q signals are generated by a
pair of sinusoids phase-shifted 90 degrees from one another. The resulting
I and Q signals are low-pass filtered to prevent aliasing and then amplified
by a third BB gain stage. Finally, these filtered and amplified I and Q sig-
nals are sent to a pair of ADCs for conversion.

A bit of digital computation is still required to transform the raw ADC
output into a format that can be sent over the USB port. Once that’s done,
the HackRF driver on the host PC sends a complex number stream to the
Soapy HackRF Source in GNU Radio for you to process to your heart’s content.

It’s important to stress that all of this is going on under the hood of
your SDR hardware, without your intervention. You don’t have to worry
too much about technical details behind the hardware to use it as a basic
receiver or transmitter. However, understanding your hardware’s inner
workings may be helpful as you work on more sophisticated SDR projects.

DC Offset
We’ve discussed how SDR hardware works, but there’s one last aspect of
your hardware that you need to be aware of: DC offset. This is a false spike
that can occur exactly in the middle of a receiver’s frequency plot. In the
hardware FM receiver flowgraph from Chapter 9, for example, this spike
was fairly pronounced. It’s highlighted in Figure 11-28.

Figure 11-28: The DC spike in a HackRF frequency plot

The spike is caused by a real physical phenomenon, but it isn’t related
to the RF signals you’re trying to capture. It occurs at 0 Hz regardless of

248 Chapter 11

the RF input and is due to imperfections in the SDR’s amplifiers, filter, and
ADC circuitry, along with a mathematical quirk in the FFT computation.

In a perfect world, if you applied a static 0 V input to an amplifier cir-
cuit with a gain of 10, you’d see 0 V on the output, as shown in Figure 11-29.
Multiply 0 by 10 and you still get 0.

Figure 11-29: An ideal amplifier

In a real-world amplifier, however, you’ll see an output slightly differ-
ent from 0. Imperfections in the amplifier circuitry create an offset error, in
which the input signal is interpreted as slightly higher or lower than it actu-
ally is. Let’s say this offset error turns the incoming 0 V signal into 0.01 V.
Then the amplifier multiples this 0.01 V signal by 10, so the offset error
causes an output voltage of 0.1 V, as shown in Figure 11-30.

Figure 11-30: A nonideal amplifier with an
input of 0 V

Even if the input signal is nonzero, you’ll see the same offset error rela-
tive to what the output should be. In Figure 11-31, for example, the input is
0.2 V, but rather than the ideal 2.0 V output, the 0.01 V input offset causes
the output to be 0.1 V higher, at 2.1 V.

Figure 11-31: A nonideal amplifier with an
input of 0.2 V

Strictly speaking, engineers differentiate between different types of
offset more formally than we’ve done here, but that’s deeper than we need
to go. The key factor for SDRs is that the primary offset looks like a con-
stant value that’s been added to all your signals. Engineers call an electrical
quantity that doesn’t change over time a direct current (DC) quantity, so this
offset effect is called a DC offset.

SDR Hardware Under the Hood 249

What’s the frequency of a DC, or constant, voltage? Since it doesn’t
change, its frequency is 0 cycles per second. This is why you have the spike
at 0 Hz, right in the center of your frequency plot, between the negative
and positive frequencies. This is often referred to as the DC spike.

The DC spike doesn’t represent a legitimate RF signal, and it will distort
any signal that’s located at 0 Hz, so you need to work around it. In practice,
it’s best to avoid setting your SDR’s center frequency right at the frequency
of the signal you’re trying to capture. Instead, you should set the center
frequency to one side or the other. In Figure 11-32, for example, the target
signal is at 433.9 MHz, but the center frequency has been set to 433.5 MHz.
This is called offset tuning.

Figure 11-32: The DC spike alongside a target signal

Although the DC offset is involved in all this, as it’s creating the spike
we’re trying to avoid, that’s not the offset referenced by “offset tuning.”
Rather, the term refers to a frequency offset, which is the difference between
the SDR center frequency and the frequency to which you want your receiver
to tune. Another way to describe this is the difference between the hardware
frequency (center_freq) and the software tuning frequency (freq).

There are more complicated methods to avoid the DC spike, such as
using calibration to minimize the offset error, but it’s usually easier to just
move the spike out of the way, frequency-wise. Up to now, all our radio
receiver flowgraphs have done this by using offset tuning; we just didn’t
point out that it was happening. For example, the AM receiver flowgraph
from Chapter 4, shown again in Figure 11-33, performs offset tuning using
the complex sinusoidal multiplication highlighted by the rectangle labeled
“Shifter.” This multiplication ensures that input RF data will be shifted by
20 kHz, centering the target signal rather than the DC spike. The target
signal then goes through the subsequent low-pass filter, while the spike
is eliminated.

250 Chapter 11

Figure 11-33: Offset tuning in the AM receiver flowgraph

The FM hardware receiver flowgraph from Chapter 9, shown again
in Figure 11-34, performed the same operation but with a different block,
Frequency Xlating FIR Filter.

Figure 11-34: Offset tuning in the FM hardware receiver flowgraph

SDR Hardware Under the Hood 251

When working with IQ data from a File Source, it’s crucial to have a
fixed value for your center_freq variable corresponding to the center fre-
quency to which the SDR was set when it originally captured the data.
(This value has been embedded in the names of our IQ files, immediately
following the c character.) If you have an incorrect center_freq value, your
flowgraph will present an incorrect interpretation of the frequencies of the
signals in the IQ data.

If you’re working with live IQ data from an SDR, you can set your c enter
_freq value in a more useful way. Open ch_11/fm_hackrf.grc, which is the same
FM hardware flowgraph we built in Chapter 9 and is shown in Figure 11-34.
Then change the value of center_freq to freq - samp_rate/4. This ensures a cen-
ter frequency value that’s offset from your desired tuning frequency by one-
quarter of the sample rate, as shown in Figure 11-35.

Figure 11-35: The relationship between SDR settings and tuning values

Notice the position of the software tuning frequency (freq) within the
capture range, halfway between the center of the capture window and the
Nyquist frequency. Computing your SDR’s center frequency in this way
forces the DC spike out of the way of your signal, guaranteeing that freq will
be a legal value within the capture range but one that doesn’t fall on the
spike. Because of the automatic computation, you can now change your tun-
ing frequency (freq) to any other value supported by your SDR’s frequency
range, and the center frequency will automatically recompute to support it.

Important SDR Specs
Now that you’re equipped with a general understanding of how SDRs work,
let’s look at the specifications commonly listed for them. We’ll tell you what
to look for in an SDR and how the specs affect what you can do:

Operating frequency The range of frequencies that you can receive
and transmit with your SDR. With respect to GNU Radio, this is the

252 Chapter 11

range of legal values that you can enter for the Center Frequency prop-
erty of your SDR source or sink. For the HackRF One, this range goes
from 1 MHz to 6 GHz, meaning the HackRF can receive and transmit
along the entirety of the HF, VHF, and UHF bands, as well as parts of
the MF band on the low end and the SHF band on the high end. The
low-end limitation means you’ll have trouble receiving about half of the
AM broadcast band, which ranges from around 500 kHz to 1.6 MHz.
The high-end limitation will impact you if you plan on working with sat-
ellite transmissions or some 5G cellular communications. Impressively,
the HackRF and many other SDRs will operate at all 3G and 4G tele-
phony frequencies, as well as many Wi-Fi frequencies.

Full duplex or half duplex   Describes whether the SDR can transmit
and receive at the same time. If you’re using the HackRF One, a half-
duplex device, you must choose to either transmit or receive at any given
time. If you’d like to do both, you must either switch from one mode to
the other or use two HackRF devices. Full-duplex devices, which can
transmit and receive simultaneously, tend to be more expensive.

Number of channels   Many higher-end SDRs contain multiple full-
duplex channels, allowing you to implement multiple transmitters and
receivers that can operate simultaneously.

Sampling rate   Defines what range of sampling rates you can use. In
some cases, it even specifies the sampling rates you must use, rather
than a continuous range. The HackRF One’s ADCs are specified to
operate between 2 Msps and 20 Msps. The device will also work at rates
lower than 2 Msps, but you may get some aliasing from adjacent signals
due to analog effects that you can’t fix in your flowgraph. Best practice
is to sample at a minimum of 2 Msps and immediately decimate if you’d
like a lower rate.

Resolution   The number of bits produced by the ADCs on the receive
side or the number of bits utilized by the DACs on the transmit side.
When you sample a signal, there’s always some amount of error convert-
ing the analog signal to a digital value. The HackRF has an 8-bit resolu-
tion, meaning it converts each analog value it sees into one of 256 (28)
different digital values. A higher-performing SDR may have a resolution
of 12, meaning it will produce one of 4,096 (212) different digital values.
Clearly the latter will provide a more accurate representation of the origi-
nal analog signal. Because the inaccuracy is random, the error that does
occur looks just like noise. The formal term for this error is therefore
quantization noise. Higher resolution means less of this kind of noise.

RX gain   The receive-side gain we talked about earlier in the chapter.
There will be some maximum value to which this can be set in the SDR
source block in GNU Radio. Your SDR will likely have a single gain con-
trol, but it may consist of multiple gain stages, as it is for the HackRF One.

TX gain   The transmit-side gain, which will also have a maximum
value and may consist of more than one gain stage.

SDR Hardware Under the Hood 253

RF output power   This will likely be a set of different values depend-
ing on the frequency at which you’re transmitting. The HackRF One,
for example, can produce 30 mW of transmission power at lower fre-
quencies, but this slowly drops as frequency increases. By the time you
get to 4 GHz, the maximum power drops to less than 1 mW.

System power   Your SDR may have a specific power consumption given
in watts or a specific supply current given in milliamperes (mA). Most
often, though, what you care about is whether you can power your SDR
from the USB bus without an external power adapter. With most afford-
able SDRs like HackRF devices, the answer is yes.

Interface   Many SDRs will interface to your computer via USB. Some
more expensive devices, however, use an Ethernet connection (1 GB/s or
10 GB/s). When attached to a network, these Ethernet-enabled SDRs can
be accessed by multiple computers a great distance away. Other expen-
sive SDRs use PCIe or M.2 connectors, so they must be plugged directly
into the motherboard of a desktop PC or specially designed computer.

Antenna connector   Typically an SMA connector, as on the HackRF
board. Some other SDRs, like certain RTL-SDR dongles, use an MCX
connector. We’ll discuss RF connectors more in the next chapter.

Clock input   This port can be used to supply a better clock signal to
your SDR than the one the SDR generates on its own. By better, we mean
more accurate in an absolute sense, as well as more stable over time and
with temperature changes. We won’t be needing this feature for any of
the exercises in this book.

Clock output   When operating multiple SDRs simultaneously to imple-
ment a complex communication system, it can be helpful to have them
running off the same clock. Connecting the CLKOUT port of one SDR
to the CLKIN of another will synchronize the two devices.

Although all of these specifications are important, the most important
for lower-priced SDRs are operating frequency range and sampling rate.
As you climb in SDR price, also look for better resolution ADCs/DACs and
additional channels.

Conclusion
In this chapter, we examined the inner workings of your SDR hardware.
We talked about IQ sampling, the technique the hardware uses to convert
radio signals to digital data. You saw how an SDR’s capture window has a
bandwidth equal to its sample rate and centered at its center frequency, and
you also learned how to set the receive gain for your SDR and avoid overrun
errors. Finally, we walked you through several definitions that will be useful
when you evaluate SDR hardware for use or acquisition.

Our look at SDR hardware isn’t complete, however; in the next chapter
we’ll consider antennas, connectors, and other peripheral devices needed
for SDR systems.

12
P E R I P H E R A L H A R D W A R E

You’ve learned enough to start using your
SDR with GNU Radio, but the more radio

frequency (RF) work you do, the more you’ll
have to think not just about your SDR itself but

also about peripheral hardware like your antenna, con-
nectors, and so on. In this chapter we’ll outline the
peripheral devices you need to be most effective in your
SDR use. The chapter isn’t meant to be exhaustive but
should equip you to handle most basic and intermedi-
ate projects. We’ll also discuss overlooked factors that
can affect your SDR’s performance, such as the specifi-
cations of your computer itself, and we’ll look at some
hardware-based solutions for reducing noise in your
radio systems.

256 Chapter 12

Antennas
The most important SDR peripheral is your antenna. You’ve already been
using an antenna, the ANT500, in previous chapters, but we haven’t spent
any time explaining what it’s doing and why it works. Perhaps you have an
intuitive understanding that an antenna is a device that transmits or picks
up signals from the air. If you’re old enough, you might even have some
practical experience manually tuning an antenna, though you probably
didn’t think too much of it, as you were fiddling with rabbit-eared antennas
to improve the picture on your favorite 1980s television show featuring a
Hawaiian shirt–clad private investigator. Now let’s turn that general intu-
ition into practical knowledge you can apply to your SDR experiments.

First, though, a familiar disclaimer: this isn’t a physics textbook. There
won’t be a deep dive into electromagnetic field theory, and we won’t be
deriving Maxwell’s equations. That would be further beyond the scope of
this book than even the topic of IQ sampling. The main goal is to help you
understand a few basic characteristics of a handful of different antenna
types. We’ll be applying the lightest of scratches to the surface here, but
enough for you to get a lot of basic work done.

We’ll start with a little bit of physics, specifically electric fields and mag-
netic fields. You’ve encountered both in your daily life. Ever felt the hairs
stand up on your arm when near a static-riddled blanket or other fabric?
That’s an electric field at work. Meanwhile, refrigerator magnets are prob-
ably one of many interactions you’ve had with magnetic fields. But we don’t
want to consider electric and magnetic fields in isolation; the key for radio
is in how the two interact.

A couple of interesting things happen when you create an electric field
across a wire, for instance, by connecting a battery. First, it causes an elec-
tric current to flow. Second, the moving charges that make up that current
generate a magnetic field. Another interesting thing happens when you
place a magnet near a wire and then move it around. The resulting changes
in the magnetic field generate an electric field in the wire. In other words,
electric changes trigger magnetic changes and vice versa!

A very interesting thing happens when you run a changing current
through a specially designed wire. The moving electrical charge in the wire
creates a changing magnetic field. That changing magnetic field in turn
generates a changing electric field, and so on ad infinitum. This is called an
electromagnetic wave, and radio waves are a specific type of electromagnetic
wave. Such waves will propagate (we’ve heard that term before) away from
the wire at the speed of light.

An antenna is nothing more than that “specially designed wire” just
mentioned. There are a few different antenna characteristics and designs,
and we’ll go through those at a high level in the next couple of sections.
Before we move on, though, consider another question: What do you think
happens when we run a changing current through a wire that hasn’t been
specially designed as an antenna? In fact, such a wire is also an antenna,
just a relatively bad one. This means that any wires carrying changing cur-
rents (which is almost all the wires in a powered-up electronic system) will

Peripheral Hardware 257

be sending out electromagnetic waves in all sorts of random directions.
What does this mean for us SDR practitioners? More noise. Like we didn’t
have enough already.

Characteristics
You need to consider several different factors when selecting an antenna.
The most important are frequency, bandwidth, gain, and directivity. We’ll
also say a word about impedance, but for the most common SDR antennas,
this will be a straightforward issue.

Frequency

Antennas are typically designed for a specific range of frequencies. The
inconvenient thing that physics has mandated, however, is that an antenna’s
physical size is directly proportional to the wavelength, or inversely propor-
tional to the frequency, for which it is designed. A general rule of thumb is
that most antennas will be about one-fourth to one-half the size of the wave-
length for which they’re designed.

Clever design can shrink this size, and if the signal is particularly
strong, an optimal design is unnecessary. For example, the wavelength of
FM broadcast signals is about 3 meters. But did you notice that you were
able to pick up FM signals regardless of whether your telescoping antenna
was extended to one-fourth wavelength (about 2.5 feet)? FM broadcast
signals are so powerful that they can often be picked up with a suboptimal
antenna. Still, the general rule is this: the higher the frequency, the smaller
the antenna; the lower the frequency, the larger the antenna. This holds for
both receiving and transmitting.

Bandwidth

Antennas can be designed with wider or narrower bandwidths. There are
advantages and disadvantages to each. If you have a wider bandwidth, you
can receive a greater variety of signals. If you have a narrower bandwidth,
though, you can better ignore any noise or unwanted signals coming in on
frequencies outside your narrow bandwidth. You can think of an antenna’s
bandwidth as a band-pass filter on the very front end of your receiver or at
the final stage of your transmitter.

Gain

Larger and more complex antenna designs will pick up a stronger signal
than smaller and simpler ones. We express this difference by attributing
gain to the antenna. This gain is measured in dBi, which stands for “deci-
bels relative to an isotropic antenna.” You can think of an isotropic antenna
as a standard reference antenna that radiates equally in every direction.

You can’t simply add the antenna gain in dBi to the rest of your radio’s
gain stages (in dB) to compute a total system gain. Instead, dBi allow you to
determine how much gain you’ll be adding to a system by using one antenna
versus another. Simply compare the antennas’ dBi values to each other.

258 Chapter 12

Directivity

If you have a simple, straight antenna pointing upward, it will radiate
equally in all horizontal directions as well as pick up signals from any hori-
zontal direction. This is why straight antennas are called omnidirectional.
The term can be a bit misleading: while an omnidirectional antenna works
equally well all 360 degrees around the plane perpendicular to where it’s
pointing, it doesn’t necessarily work so well in the direction the antenna is
actually pointing (vertically, in this example). Whatever direction you point
the antenna in, its optimal plane of operation will be perpendicular to that
direction, as shown in Figure 12-1.

Figure 12-1: The directivity of a simple antenna

Other types of antennas are more directional, meaning they’ll radiate
more strongly in particular directions (for example, the direction in which
they’re pointing). On the receive side, these directional antennas will pick
up signals more readily from some directions than others. Meanwhile, some
antenna radiation and reception patterns are more complicated than simply
“everywhere” or “point at the target.” We’ll explore this further when we
look at specific antennas later in the chapter.

Impedance

Impedance is a term describing how hard it is to push electrical current
through something. An antenna’s impedance therefore tells us how hard it is
to push current through the antenna. Since we’re mostly concerned with off-
the-shelf antennas and relatively short cable lengths, we don’t need to spend
a lot of time with impedance. The issue becomes more of a concern if you’re
trying to build your own antenna or use a more unusual antenna type.

Peripheral Hardware 259

That said, you do need to make sure the impedance of your off-the-shelf
antenna matches the impedance of your SDR’s antenna port. Otherwise,
you’ll lose a lot of power going in and out of your SDR, which will reduce
its effectiveness at both receiving and transmitting. For the HackRF One,
as well as most SDRs, the optimal impedance is 50 ohms (Ω). Fortunately,
many antennas are designed for a 50 Ω impedance, so if you want to use a
specific antenna type, this shouldn’t be a major factor.

Types
There’s an enormous variety of antenna designs out there, as a quick inter-
net search will show you. In this section, we’ll consider a few basic types,
which should cover most of the situations you’ll encounter. If you’d like a
more in-depth look at this topic, a web search of ham radio antennas will
be informative.

Whip and Telescoping

The simplest antenna type is probably a whip antenna, sometimes called a
monopole. It consists of a fixed length of straight conducting material, often
flexible and sometimes covered in a protective coating. An example is
shown in Figure 12-2.

Figure 12-2: A whip antenna

Because of their fixed length, whip antennas are optimized to a partic-
ular frequency. They have a fairly wide bandwidth and are omnidirectional,
so you don’t need to worry about aiming them at your target. Because they
transmit and receive best in the perpendicular direction, however, it is usu-
ally best to orient them vertically. These whip antennas have moderate gain,
roughly 2 dBi in perpendicular directions (about 1.6 times greater than the
anisotropic antenna).

Telescoping antennas, such as the ANT500 shown in Figure 12-3, are sim-
ply variable-length monopole antennas.

260 Chapter 12

Figure 12-3: Telescoping antennas, retracted (left) and
extended (right)

You tune a telescoping antenna by extending or retracting it to match
the one-quarter wavelength of the desired operating frequency. In other
respects, telescoping antennas behave like whip antennas.

Dipole

Dipole antennas, like the one shown in Figure 12-4, have a T shape. This
shape causes them to have significantly different characteristics than the
previous types. First, the bandwidth is typically much smaller than for a
monopole. This is good if your antenna is matched with your target fre-
quency, but it means you’ll have less flexibility to handle situations where
the target frequency is different.

Peripheral Hardware 261

Figure 12-4: A dipole antenna

Most dipole antennas that you encounter will be either a quarter-wave
or half-wave. This means each of the two crossbar portions will be either a
quarter-wavelength or a half-wavelength in size. If such a dipole antenna
is oriented horizontally, meaning the crossbar of the T is parallel to the
ground, then the antenna will behave directionally. This orientation is
shown in Figure 12-5.

Figure 12-5: A dipole antenna parallel to the ground

262 Chapter 12

An optimal horizontal orientation will produce about 5 dBi greater
gain, or 3 dB greater than an equivalently sized monopole, but only in the
directions perpendicular to the antenna. Signals coming from (or going to)
a direction parallel to the crossbar of the T will have significantly less gain
than an equivalent monopole. Figure 12-6 shows the gain pattern.

Figure 12-6: Dipole antenna gains relative to orientation

The dipole essentially sacrifices gain to the sides in favor of gain to the
front and back. Because you’ll also be getting less noise from those sideways
directions, you may experience a better signal-to-noise ratio with a dipole
than with a monopole.

Loop

Loop antennas are typically very compact, even for long wavelengths. They’re
often used when the equivalent monopole or dipole antenna would be
unreasonably large. In fact, nearly all AM radio receiver antennas are of
this type, such as the one shown in Figure 12-7.

Peripheral Hardware 263

Figure 12-7: An AM loop antenna

Loop antennas are directional, receiving signals best along the axis of
the coil, when the loop is facing the target, as shown in Figure 12-8. Small
loop antennas aren’t suitable for transmission in most cases.

Direction of
maximum gain

Figure 12-8: Loop antenna directivity

Other

There are a host of more elaborate antenna designs, each with its own combi-
nation of bandwidth, directionality, and gain. Perhaps the most common of
these other designs is the yagi antenna, such as the one shown in Figure 12-9.

264 Chapter 12

Figure 12-9: A yagi antenna

Yagis are complex assemblies of many pieces, resulting in a highly direc-
tional, high-gain antenna. If they look familiar, it’s because they used to be
in common use on rooftops for television reception.

If you search around a bit for antennas, you’ll also encounter some-
thing called an active antenna. These antennas can use any kind of physical
topology but integrate an amplifier to provide extra gain for receiving sig-
nals. These antennas require a supply voltage to power the amplifier, which
can be applied externally or through the antenna connector itself. The
HackRF One provides 50 mA of current to power these active antennas,
but not all SDRs include this functionality.

Peripheral Hardware 265

Polarization
For several of the antennas in the last section, we talked a bit about how
the direction in which you point your antenna often matters. It turns out
that the rotational orientation of your antenna also matters. If you imagine
standing right behind the receiver, we’re talking about the rotation of the
transmitting antenna from your visual perspective. This is because radio
waves are polarized, meaning that the electromagnetic wave has its electric
and magnetic components each on specific axes. Again, imagine a radio
wave shooting right at you. The electric component of the wave will always
be oriented perpendicularly to the magnetic component. (To review what
this looks like, see the image in “Wavelength vs. Frequency” on page 167.)

The specific tilt of a transmitting antenna will determine the polar-
ization of the resulting radio waves. If a receiving antenna is oriented in
the same way as the transmitting antenna, it will have maximum gain. If
one antenna is rotated with respect to the other, gain will suffer to the
extent that the orientations are different. In theory, a receiving antenna
90 degrees out of orientation from the transmitting antenna won’t sense
the transmitted signal at all. In practice, though, this doesn’t happen. The
orientations will never be exactly out of alignment, and waves scattered off
intervening objects will also muddy the polarization, rendering it imperfect.

Ultimately, polarization means about the same thing to you that it
meant to kids in the 1980s tuning their televisions: if your received signal is
too weak, you may improve it by tweaking the rotation of your antenna.

An Antenna Experiment
Now that you know a bit about how antennas work, let’s see what happens
when you make changes to your antenna while running your FM radio proj-
ect from Chapter 9. First, make sure all your SDR hardware is connected
properly. The ANT500 should be screwed into the ANTENNA port of the
HackRF One, which should in turn be connected via USB to the computer
running GNU Radio Companion. Once you’ve verified this, open and run
ch_12/fm_hackrf.grc. This flowgraph is identical to those we used previously
for FM reception.

Try retracting the antenna all the way to its shortest state, then tune the
radio to the strongest signal you see by entering its frequency into the freq
variable. In the example shown in Figure 12-10, we’ve set it to 94.9 MHz,
corresponding to the highest peak on our frequency plot. Your strongest
peak will likely be different.

266 Chapter 12

Figure 12-10: The FM receiver flowgraph output with the antenna retracted

Take note of the signal strength by hovering your cursor over the dot-
ted green horizontal line. It moves around, so just try to get it in the middle
of its jittering. On our plot it was around –58 dB. Now extend the antenna
by one segment and watch what happens to the signal strength. In our test-
ing, as shown in Figure 12-11, the size of the peak changes.

Peripheral Hardware 267

Figure 12-11: The FM receiver flowgraph output with the antenna partially extended

In this case, the power increased very slightly to about –55 dB. Now
go ahead and extend the antenna all the way to its maximum length. Our
results are shown in Figure 12-12.

268 Chapter 12

Figure 12-12: The FM receiver flowgraph with the antenna fully extended

You’ll likely see the signal strength jump up quite a bit. On our rig it
went nearly to –40 dB. This correlates quite well with the claim we made
earlier that antennas typically operate better when sized to a quarter or half
the target wavelength.

What’s the wavelength of an FM broadcast signal? As discussed in
Chapter 8, we calculate this by dividing the speed of light by the signal’s
frequency. One quick way to do the math is to recognize that the speed
of light, 3 × 108 meters per second, can also be written as 300 × 106, or
300 million meters per second. The frequency of a typical FM radio sig-
nal is about 100 MHz, or 100 million cycles per second. The wavelength
of an FM broadcast signal is then 300 million meters per second divided
by roughly 100 million cycles per second, which yields 3 meters per cycle.
One-quarter of 3 meters is about 29.5 inches. Fully extended, the ANT is
just over 33 inches, very close to a quarter wavelength.

You can also tweak the antenna more precisely if you do the compu-
tation for the exact frequency you want. In our case, that would be 300
divided by 94.9; your station will probably be different. The quarter wave-
length for our station’s frequency is 31.1 inches. Indeed, when we shorten
the antenna slightly, to just over 31 inches, the signal is boosted a tiny bit
more, increasing by about 0.5 dB.

Peripheral Hardware 269

Take a minute to consider the magnitude of the changes you’ve wit-
nessed here. The poorly designed, excessively short antenna we started with
gave us about –58 dB of signal strength, while a more optimized antenna
gave –40 dB. Simply extending the antenna length provided an 18 dB
improvement. That’s more than 10 times greater, as you may recall from
our discussion of decibels in Chapter 5.

How Computers Affect SDRs
One piece of peripheral SDR hardware is so obvious that you might forget
to consider it: the computer itself. Given that we’re talking about software -
defined radios, it’s only natural that the software will be affected by the
hardware on which it runs. The following are the key computing concerns:

Computation speed   If your computer is too slow, you’ll experience
underflow and overflow conditions, compromising your ability to send
and receive signals. You can often mitigate these problems by optimiz-
ing the performance of your flowgraph.

Interface speed   If your USB or Ethernet interface can’t support the
necessary transfer rates, you’ll again have overflow and underflow
issues. These can only be fixed by addressing interface congestion or by
reducing the sample rate of the SDR, thereby reducing the flowgraph’s
data rate. Be careful when using a device with a USB 3 interface that
you don’t connect it to a USB 2 port, or you will likely face these issues.
You may also run into interface speed issues when running your soft-
ware in a virtual machine, as the virtual machine software drivers may
not be able to keep up with the data speeds your SDR requires.

Storage capacity   When working with SDRs, we often capture data
and store it to a file for later analysis. Raw IQ files can grow very large,
however, easily climbing to multiple gigabytes in size. If your computer
is equipped only with a small drive, we recommend purchasing addi-
tional storage. This could be either a second solid-state drive (SSD),
a mechanical rotating hard drive, a USB thumb drive, or even an SD
card. Whichever media you choose, take care to ensure that the transfer
speed of the drive is higher than the rate of data you intend to capture.

Noise   Your computer will inflict noise upon your SDR in two primary
ways. First, you may experience power supply noise, which is carried
through the USB cable to your SDR. Since most SDRs are powered by
the USB bus, this effect is difficult to eliminate entirely. Second, the
computer will radiate electromagnetic interference (EMI), which will
be picked up by the SDR.

We’ll look at the methods for minimizing your computer’s noise impact,
as well as other kinds of noise, in the next section.

270 Chapter 12

Mitigating Noise
We’ve discussed noise in previous chapters, and you know it’s a bad thing,
but what do you do about it? Here are several adjustments you can make to
your peripheral hardware to reduce the noise getting into your system. Most
of these tips focus on the receive side, but a few are relevant to transmission
as well:

Antenna orientation   If you have a directional antenna like a dipole,
the direction the antenna is pointing can make a big difference. See
if you can find an orientation that reduces your noise level while still
pointing the high-gain surface of the antenna toward your target sig-
nal. The goal is to orient the antenna such that the SNR is maximized.

Power source   The power supplies of most computers are very noisy,
especially those of desktop computers. This can also be problematic
with cheap, third-party laptop chargers. If you’re using a laptop, you
may see an improvement in your noise levels when you unplug your
charger; battery-powered hardware is typically the lowest-noise option.

Shielded cables   If you’re running a length of cable between your
antenna and SDR instead of attaching the antenna directly, be sure to
use a shielded cable. This essentially provides a layer of metallic mate-
rial near the outside of the cable that prevents the inside from picking
up noise.

Ferrite chokes   To reduce any power supply noise that may be creep-
ing up your USB cable, use ferrite chokes. These are essentially filters
that can be added to a cable externally. You can either buy a cable with
chokes built into each end, as shown on the left of Figure 12-13, or buy
the chokes separately and clamp them onto any cable, as shown on the
right. Either option is relatively inexpensive.

Figure 12-13: A USB cable with a built-in ferrite choke (left) and one with a separate ferrite choke
attached (right)

Peripheral Hardware 271

Beyond these measures, one of the simplest things you can do to reduce
noise is to just move your SDR. Because the noise radiated by a nearby noise
source will drop off rapidly with distance, moving your radio away from
it will often improve matters. To see this effect in action, try executing a
simple flowgraph that directs the SDR output into a QT GUI sink and watch
the noise levels change in real time as you move the SDR around.

Connectors
Another piece of peripheral hardware to consider is the connector linking
your antenna to your SDR. There’s a dizzying variety of different connec-
tor types out there. If you’re using the HackRF One and the ANT500, you
don’t need to worry about it, as they’re already compatible. If at some point,
however, you decide to start working with different antennas, you may have
problems plugging them into your SDR.

In this section, we’ll survey the main types of connectors you may
encounter. First, though, it’s important to highlight the distinction between
male and female connectors. With nearly every connector type in existence,
a proper connection is made when a male connector is inserted or screwed
into a female connector. When seeking out a connector or adapter, make
sure that you’re connecting not only to the right type but also to the cor-
rect gender.

SMA   This is a common connector type for low-power RF devices. The
HackRF One uses a female SMA connector to attach to an antenna
with a male SMA connector. A connection is made by inserting and
then rotating the antenna-side connector in a manner similar to the
coax cable you use for your television. Both male and female SMA con-
nectors are shown in Figure 12-14.

Figure 12-14: Male (left) and female (right)
SMA connectors

MCX   This is a much smaller connector type used by some RTL-SDR
dongles, as well as other SDRs. To attach, you simply plug it in, with
no rotation required. Figure 12-15 shows both genders of the MCX
connector.

272 Chapter 12

Figure 12-15: Female (left) and male (right) MCX connectors

RCA   You may have seen these before in home entertainment systems,
shown in Figure 12-16, but some antennas use RCA connectors as well.
This is another simple plug-in connector with no rotation needed.

Figure 12-16: Male (top) and female (bottom) RCA connectors

Peripheral Hardware 273

Coaxial   These are the same as the connectors your television likely
uses for cable or an antenna. As these are threaded connectors, you
must insert and then rotate. Figure 12-17 shows male and female
coax connectors.

Figure 12-17: Female (left) and male (right) coax connectors

BNC   Typically used for more expensive RF equipment, BNC connec-
tors also have an insert-and-rotate mechanism. Instead of a threaded
screw requiring many rotations, however, the BNC connector locks into
place after a half-turn. Both connectors are shown in Figure 12-18.

Figure 12-18: Female (left) and male
(right) BNC connectors

SO-239   This is another type of insert-and-rotate connector, similar to
coax. Figure 12-19 shows an example.

274 Chapter 12

Figure 12-19: A female
SO-239 connector

RP-SMA   There’s one final connector type worth mentioning, one with
an odd look and an odd history. Thanks to the Federal Communications
Commission (FCC) not wanting you to remove the antenna from your
Wi-Fi router and replace it with a different one, they dictated that all
Wi-Fi devices sold in the United States cannot be compatible with the
standard SMA form factor. Thus was born the RP-SMA connector, stand-
ing for reverse-polarity SMA. This connector hybridizes the male and
female aspects of the original SMA connector. One side contains the
male central plug and the female inner threaded sleeve, while the other
side has a female central receptacle and a male outer threaded sleeve.
Figure 12-20 shows a female RP-SMA connector.

Figure 12-20: A female
RP-SMA connector

When purchasing SMA hardware, be careful to verify it’s true SMA
and not RP-SMA. If you do need to connect RP-SMA, or any other type of
non-SMA connector, you can always use an adapter, as we’ll discuss in the
next section.

Building an SDR Toolkit
We’ve considered several different types of SDR peripherals, but you defi-
nitely don’t need to rush out and get them all right now. The longer you
work with SDRs, however, the more you’ll appreciate having access to a
toolkit filled with useful hardware. The following suggested items are listed
roughly in priority order, though you’ll need to tailor your toolkit to your

Peripheral Hardware 275

own requirements. Hopefully this section will get you thinking about what
you’ll need. Fortunately, most of the peripherals discussed are cheap and
easy to find online.

Antennas
You can get a lot of mileage out of the ANT500 that likely came with your
HackRF One. Because you can adjust the length of the antenna to tune it to
a wide variety of frequencies, it’s one of the best general-purpose antennas
out there.

If you plan on working with specific RF bands and need greater direc-
tivity or gain, you should also acquire a dipole antenna designed for your
target band. However, dipoles become quite large as the frequency drops,
so they’ll become progressively less portable below 100 MHz.

If you need to work in kHz frequencies, plan on getting a loop antenna
for receiving. Since these are simply coils of wire with a radius determined
by the target frequency, you can also build one yourself; there are several
tutorials online showing you how.

Adapters
If you plan on using other antennas, you’ll likely need a supply of adapters to
successfully plug them into your SDR’s SMA connector. You can accomplish
this in one of two ways. First, you can purchase several adapters that have
SMA male connectors on one end and a connector compatible with your tar-
get antenna on the other. The adapter shown in Figure 12-21, for example,
has a male SMA connector on the left and a female coax connector on the
right. Simply attach your adapter between your antenna and your SDR.

Figure 12-21: A male-SMA-to-female-coax adapter

The other option is to purchase a kit that contains a number of adapter
halves that screw together to build any adapter combination you like. The
second option is more expensive than most people need, but it provides the
most flexibility.

Either path you choose, you’ll most likely need to support adapters for
SMA-female to the following male connectors: RP-SMA, MCX, and RCA.

276 Chapter 12

It’s best to keep the number of adapters chained together as low as possible,
since each adapter in the chain causes some signal loss.

Upconverters
You may have noticed that the HackRF One only works at RF frequencies
greater than about 1 MHz. This means you can’t just plug it in and start
working with lower-frequency signals, like the lower part of the AM broad-
cast band or certain amateur radio bands. An upconverter is a hardware solu-
tion to this problem. It behaves just like the downconverters we’ve built into
every one of our radios so far, but instead of shifting the frequency down,
it shifts the frequency up. By taking signals that are less than 1 MHz and
shifting them into a frequency range above 1 MHz, the upconverter allows
the HackRF One to operate on those signals. Like the upconverter shown
in Figure 12-22, these devices will typically have SMA inputs and outputs.

Figure 12-22: An upconverter

Attach your antenna to the upconverter’s input and connect your SDR
to its output. You ’ll also need to apply power, often through a USB cable.

Baluns
A balun is a tool that allows a balanced device, like your SDR, to connect
efficiently with an unbalanced device, such as certain antennas. Hence,
bal + un = balun. In this context, unbalanced simply means the device has a
single signal wire plus a ground wire, whereas balanced means that both of
the wires carry signals relative to each other. Baluns are especially useful
when connecting your SDR to homemade antennas, which can sometimes
be as simple as a long wire.

Peripheral Hardware 277

Miscellaneous Items
In addition to the major items already mentioned, you should also have a
USB cable with a ferrite choke. Also, an SMA-male-to-SMA-female cable
can act as an extension cord for your antenna, allowing you to put the
antenna farther away from your SDR. This way, you can place your antenna
in a more advantageous position, farther away from RF interference, though
at the cost of a small reduction in signal strength.

Beyond the basic peripherals that we’ve covered, the following items
could also come in handy in either advanced usage or special scenarios:

Low-noise amplifier (LNA)   This is a hardware gain stage between
your antenna and an SDR in receive mode. LNAs provide additional
gain for detecting and demodulating weak signals. Most are designed
for a limited frequency range, so make sure to check that any LNA you
buy covers your target frequencies.

Low-noise block downconverter (LNB)   This device takes signals at
frequencies too high for an SDR to process and shifts them down to
within the SDR’s operating range. These very high frequencies are
typically used by satellites or some 5G systems. Think of an LNB as the
high-frequency counterpart of the upconverter.

GPS antenna   This is an active antenna specially designed for receiv-
ing GPS signals, which are rather weak and hard to pick up with an
ordinary antenna. You will need to apply DC power to this antenna, typ-
ically through the SMA port. The HackRF One can power this antenna
without any extra components, but other SDRs may require a bias tee,
which applies DC power to an SMA connection.

Bias tee   This is a wire connecting your SDR to your antenna and will
carry the RF power you intend to transmit or receive, but it can also
carry a DC voltage to power downstream amplifiers connected to your
antenna. If your SDR does not include this DC capability, you can add it
with a bias tee, which contains two signal ports and a power connection.

RF attenuator   This reduces the RF power to which your SDR is
exposed. High levels of RF power can damage your SDR components.
If you think this could be a possibility, you can attach an attenuator
between the receive antenna and the SDR. These devices are available
in several different attenuation levels, depending on how much reduc-
tion is required. Additionally, they will be rated for a maximum power
level, so if your receiver is very close to a powerful transmitter, take care
to ensure your attenuator can handle the RF power that will be pres-
ent. Finally, your attenuators will have a specified frequency range over
which they’re designed to operate.

RF limiter   This caps the RF power that passes through to your SDR
but does not otherwise reduce it. You can think of this device as inactive
when the RF level is below the limiter’s power threshold but restrains
the power level from exceeding that threshold if greater power levels
are present. In addition to the limiting threshold, these devices will also

278 Chapter 12

have a specified frequency range and maximum power over which they
can operate.

You probably don’t need these specialized components immediately.
We’ve mentioned them so you’re aware they exist in case your SDR experi-
ments take you in directions where they come in handy.

Conclusion
This chapter explored different kinds of antennas and how to use them. We
also considered other items you might want to gather for your personal SDR
toolkit, such as adaptors, upconverters, and baluns. You don’t need to run
out and buy the whole kit at once, but you should now have an idea of what’s
available and how it will help you. We’ve also discussed some strategies for
mitigating noise and looked at how your computer’s performance can affect
your SDR.

Now that you’re familiar with antennas and other SDR peripherals,
you’re ready for the final step in your beginning SDR journey: transmission.

13
T R A N S M I T T I N G

Nearly everything we’ve done so far in this
book has involved receiving signals, but what

about transmitting? In this chapter we’ll build
a flowgraph that will generate the data required

to transmit a broadcast FM signal. We will not, however,
hook this flowgraph to a physical SDR. Doing so could
be a violation of the law, as it could essentially jam legiti-
mate FM broadcasts. Instead, we’ll execute the flow-
graph in software-only mode, running the transmitter’s
output directly into an FM receiver flowgraph to verify
it’s working. We’ll discuss some of the legal and practi-
cal ramifications of transmitting in this chapter as well.

280 Chapter 13

Building an FM Modulator
Let’s build a transmitter! Start by creating a new flowgraph named fm_tx.grc
and changing the value of the default samp_rate variable to 8e6. Then create
the four variables listed in Table 13-1.

Table 13-1: Transmitter Flowgraph Variables

Block ID Value

Variable 1 center_freq 100e6

Variable 2 working_samp_rate 320000

Variable 3 audio_samp_rate 32000

Variable 4 t_width chan_width/20

Also create a QT GUI Entry block with an ID of freq_tx, a Type of Float, and
a Default Value of 98.1e6. Finally, create a second QT GUI Entry with an ID of
chan_width, a Type of Float, and a Default Value of 150e3. When you’re done,
you’ll have a lot of variables and an Options block, as shown in Figure 13-1.

Figure 13-1: The transmitter variables

These variables define all the different frequency and sample rate char-
acteristics we’ll need as we build the flowgraph. You’ve seen most of them
before, but we’ll do a quick recap of each as you use it.

Setting the Audio Source
Since broadcast FM is a voice medium, we’ll use an audio-related source for
transmission. If you wish, you can record your own audio, or you can use
the ch_05/HumanEvents_s32k.wav file from the book’s downloads. Add a
Wav File Source block, direct it to your chosen file, and set its Repeat option
to Yes.

Broadcast FM uses a modulation scheme formally known as wideband
FM, or WBFM. This differentiates it from narrow-band FM, or NBFM, which
uses less bandwidth but has poorer audio quality. The maximum deviation
of WBFM, or the amount the frequency can change as the baseband signal
modulates the carrier, is 75 kHz. This means we’ll need to do the FM modula-
tion at a sample rate at least twice as high as that (remember Nyquist?). To be

Transmitting 281

safe, we’ll go a bit further and use a working_samp_rate of 320,000. You saw this
variable before in the FM receiver project, and you’ll see in a moment that it’s
doing the same thing here that it did there: defining a lower sample rate than
the SDR’s higher sample rate, represented by samp_rate. The next block in the
flowgraph will run at this lower sample rate to minimize CPU load.

Modulating the Signal
Next, we’ll use a WBFM Transmit block to handle the modulation. Connect
the block’s input to the Wave File Source block’s output, and set its proper-
ties as follows:

Audio Rate: audio_samp_rate

Quadrature Rate: working_samp_rate

Tau: 75e-6

Max Deviation: 75e3

Preemphasis High Corner Freq: -1.0

The last three properties should already have the correct values, which
are default settings for the broadcast FM standard. The Tau and Preemphasis
High Corner Freq properties relate to a little WBFM modulation trick
called preemphasis. This technique slightly boosts the higher frequencies in
the baseband signal, which results in a better signal-to-noise ratio and thus
better audio quality. A WBFM receiver will employ the opposite technique,
deemphasis, to put the baseband signal back where it was. As we’ve already dis-
cussed, the Max Deviation property controls how much the carrier frequency
can change due to the modulation. It’s equal to 75 kHz, just as we expected.

The Quadrature Rate is the sample rate of the outgoing modulated
waveform, while the Audio Rate is the rate for the incoming baseband (the
audio signal). This block expects this Quadrature Rate to be an integer
multiple of the Audio Rate, which is why we chose our working_samp_rate
variable to be exactly 10 times greater.

Upconverting the Signal
Now that we have the modulated signal, we need to upconvert it to the
correct frequency before sending it out. We’ll use a Multiply block and
a sinusoid carrier. These blocks need to run at a sample rate of 8 Msps.
Therefore, before we can implement the upconversion, we need to boost
the sample rate of the data yet again. Create a Rational Resampler block, con-
nect its input to the WBFM Transmit output, and set its properties like so:

Type: Complex->Complex (Complex Taps)

Interpolation: int(samp_rate/working_samp_rate)

Decimation: 1

This boosts the sample rate by a factor of 25, bringing the data up to
the value of samp_rate, which is 8e6. With that, create a Multiply block and

282 Chapter 13

pass the Rational Resampler output into one of its inputs. Then connect the
other Multiply input to a Signal Source block configured as follows:

Sample Rate: samp_rate

Waveform: Cosine

Frequency: freq_tx - center_freq

Amplitude: 1

The output of this sequence of blocks is the upconverted, modulated
signal. Were you to try and transmit this signal, you would hook it up to a
Soapy HackRF Sink with a Center Frequency of center_freq and run the flow-
graph. The signal would then be physically transmitted at the frequency
defined by freq_tx (again, the flowgraph operates with zero-centered fre-
quencies, and the SDR hardware upconverts the zero-centered frequency to
the center_freq specified in the SDR sink).

As mentioned before, actually transmitting the signal may be illegal.
Rather than run that risk, we’ll instead hook up the FM transmitter to an
FM receiver flowgraph. First, though, let’s see what the transmitter output
looks like by passing the output of the Multiply block into a QT GUI Sink with
the following properties:

Center Frequency: center_freq

Bandwidth: samp_rate

Show RF Freq: Yes

Your flowgraph should now look like the one shown in Figure 13-2.

Figure 13-2: The complete transmitter flowgraph

Transmitting 283

Run the flowgraph, and you’ll see an output like Figure 13-3.

Figure 13-3: The transmitter flowgraph output

Rather than a nice clean spike at the 98.1 MHz transmission frequency,
there are several other spikes as well. They’re significantly lower and
wouldn’t cause any trouble, but a basic principle of radio is to ensure that
any transmissions are well behaved, consuming the bandwidth necessary
and not straying outside into unnecessary frequencies. Therefore, we will
show you how to address this problem should you encounter larger and
more problematic-sized spikes in the future.

Where did these extraneous spikes come from? If you apply some QT GUI
Sinks earlier in the flowgraph, you’ll find that the problems start right after
the second Rational Resampler. It turns out that interpolation isn’t just like
decimation in reverse. Simple interpolation will introduce distortion into a
signal, and the greater the degree of interpolation, the greater the distortion.

284 Chapter 13

Filtering After Interpolation
To eliminate the distortion spikes, it’s best practice to filter a signal after
any significant degree of interpolation. Fortunately, the Rational Resampler
block has built-in filtering capabilities. Have you ever noticed the block’s
Taps property? Like the Taps property in the Frequency Xlating FIR Filter
block discussed in Chapter 7, it sets the values (called taps) needed to
implement a finite impulse response (FIR) low-pass filter. There’s only one
caveat: for the filtering to work properly, you can only interpolate with the
block, not decimate. The Decimation property must therefore be set to 1.
Fortunately, the ratio between the samp_rate (8e6) and the working_samp_rate
(320000) is a simple integer, 25, so decimation isn’t necessary.

With this in mind, we’ll change the Rational Resampler block to filter the
signal after interpolation. Update the Taps field of the Rational Resampler as
follows: firdes.low_pass(1, samp_rate, chan_width/2, t_width).

Much like in Chapter 7, we set the Taps property using a Python func-
tion called firdes.low_pass(), which calculates the taps for a low-pass filter.
We specify that the filter should have a gain of 1 and operate at the samp
_rate, with a cutoff frequency of half the chan_width and a transition width
of t_width. We use the chan_width variable because its value (150e3) is the
expected bandwidth of the WBFM output. Any signal energy at a higher
frequency than 75 kHz, or lower than –75 kHz isn’t part of the modulated
audio and is thus distortion that we want to filter. The transition_width is
again computed based on our simple one-tenth rule of thumb.

When you execute the flowgraph, the frequency plot of the transmitter
output should now look like Figure 13-4. Looks like the filters removed
the distortion.

Transmitting 285

Figure 13-4: The transmitter output with updated Rational Resampler blocks

286 Chapter 13

Transmission Logistics
Remember the warning that you shouldn’t run the transmitter flowgraph
through your SDR? Good. It’s generally unlawful to transmit on the FM
broadcast band without a license. If you look closely into the rules, however,
you’ll find there are some exemptions. As such, running the transmitter
isn’t completely outside the realm of possibility, as long as you have a firm
understanding of what you’re doing and you’re very careful to keep the
transmitter operating in such a way that it falls into an exempted category.
Before we move on to verifying the transmitter is working in software, we
should therefore take a moment to discuss the legal and practical issues
that arise when using your SDR to transmit.

W A R N I N G 	 While this section is meant to give you a quick overview of the legal issues around
transmitting, it’s definitely not legal advice. If you run afoul of the Federal
Communications Commission (FCC) due to your transmissions, don’t point to this
book as authoritative legal counsel. It is not.

Legal Issues
The FCC has governing authority in the United States over how the radio
spectrum may be used, and other nations have similar authorities. The FCC
divides the RF spectrum into several broad categories. One is the licensed
spectrum, where companies can purchase or lease the rights to use specific
frequencies from the government. This includes cellular telephone compa-
nies as well as broadcast radio and broadcast television organizations.

Next, there are the bands that have been set aside for amateur use.
Licensed ham radio operators may use these bands, depending on the spe-
cific license that they hold. Even licensed hams, however, must still adhere
to rules regarding transmission power and other aspects of how they use
the spectrum.

Finally, there’s the unlicensed spectrum, which doesn’t require any kind of
licensing or cost to operate within. There are still rules governing usage of
these unlicensed bands, however. Once again, transmission power is of pri-
mary concern. Another key constraint relates to the duty cycle, which defines
the percentage of time a transmitter is actively transmitting. A transmitter
with a duty cycle of 100 percent, for example, is continuously emitting radio
signals, while a duty cycle of 50 percent means it’s emitting radio energy
half the time and emitting no radio energy the other half.

If you consult the relevant FCC regulations for the unlicensed spec-
trum, you’ll often find a table listing pairs of maximum power levels and
duty cycles. If you transmit with a lower duty cycle, you’ll be allowed to use
a higher power level. Accordingly, if you need to transmit more frequently
(that is, with a higher duty cycle), you’ll need to reduce your power level.

Practical Issues
Say you’ve spent a lot of time browsing the FCC’s website and decided you
understand the exemptions well enough to safely and legally operate a

Transmitting 287

private radio station, with very low power, on the broadcast FM band. You’ve
done all that research to ensure the FCC won’t hit you with a daily $10,000
pirate radio fine. What next? There are several practical considerations
that go into using your SDR as a transmitter, including how to set up your
antenna and set the transmit gain.

Antenna Selection and Location

Which antenna would you choose for a low-power FM transmitter? Since
you’d probably want an omnidirectional transmission, the ANT500 would
work just fine. Extending the antenna all the way would give you roughly
one-quarter wavelength and consequently decent gain.

Depending on the nearby landscape, you may need to elevate your
antenna a bit to increase its range. On the other hand, since you wouldn’t
need or want to transmit great distances, you should avoid elevating the
antenna any more than is necessary to achieve line-of-sight to your expected
receivers. For some bands, you’d need to consider whether to keep your
receivers and transmitters outdoors, though the roughly 100 MHz signals in
our flowgraph will penetrate most buildings.

Transmit Gain

Our discussion of SDR gain in Chapter 11 focused almost entirely on the
receive side of things, but SDR hardware implements gain on the transmit
side as well. To recap, the HackRF One transmitter has two hardware gain
stages, shown in Figure 13-5.

Figure 13-5: The transmit gain stages for the HackRF One

The RF gain is an on-off property with a value of either 0 or 14 dB,
while the IF gain ranges from 0 to 47 dB in 1 dB increments. You can also
create a third gain stage in software by inserting a Multiply Const block just
before the Soapy HackRF Sink. One problem, though: the Soapy HackRF Sink is
only intended to handle a range of values between roughly –1 and +1 (there
are complex numbers involved here, and we’re being imprecise for the sake
of simplicity). It won’t produce a legal output outside this range. As long
as the peak amplitude of the signal going into the sink doesn’t exceed this
range, you’ll be able to increase the gain in software. If the signal’s maxi-
mum amplitude is already close to the edge of this range, adding gain in
software may cause clipping and distortion.

If you’re building a flowgraph that physically transmits, you should start
the two transmit gain values (RF and IF) of the Soapy HackRF Sink at 0 dB

288 Chapter 13

and see if your receiver is able to pick up a usable signal. You can verify
this by viewing a frequency plot of the output of your receiver’s Soapy HackRF
Source. Look for a spike at the expected frequency. If you don’t see a spike,
increase the RF gain to 14 dB and check again. Finally, slowly increase the
IF gain value until your receiver starts working. You should see the spike at
your target frequency increase in size as you increase the gain.

Even though this is just a thought experiment, it illustrates a good
rule of thumb: don’t use more power than you need to get the job done.
Because the HackRF One’s maximum output power is relatively low, your
transmission range is likely to be fairly limited unless you have a well-
positioned antenna with high gain. Even so, follow best practices and try
not to turn up your power higher than necessary. Excessive power has
several drawbacks. First, it increases the risk of damage to your hardware.
Second, you may transmit farther than necessary and possibly interfere
with someone else’s transmissions. Third, you have a greater likelihood
of distortion causing your transmission to spill out of your intended band
into adjacent frequencies, again potentially interfering with others.

Testing the FM Transmitter
To say nothing of the legal issues, we’re going to assume that you don’t have
two SDRs: one to run the FM transmitter and another to test it with an FM
receiver. Instead, we’ll finish off the transmitter project (and this book!) by
adding a software FM receiver to the flowgraph to verify that the transmit-
ter portion is working correctly. In fact, even if you had the necessary hard-
ware to run both the transmitter and the receiver, it’s still a good idea to
simulate both ends of the system in software whenever possible so you can
find and eliminate errors before getting the hardware involved.

To understand how the simulated transmitter-receiver system will work,
first imagine building hardware versions of each radio. When you operate
them both, the entire system would look something like Figure 13-6.

Figure 13-6: A high-level view of a hardware-based WBFM system

On the transmit side, the input signal goes through the transmit flow-
graph for processing, and the result is sent to an SDR for transmission via
an antenna. On the receive side, another antenna picks up a signal and
passes it through an SDR into the receive flowgraph, which processes the
captured RF data to produce an output signal that ideally matches the
original input. Conceptually, what we’re going to do now is cut out the SDR
hardware and connect the transmitter directly to the receiver, making this
connection entirely inside the flowgraph. At a high level, the resulting sys-
tem will look like Figure 13-7.

Transmitting 289

Figure 13-7: A high-level view of a simulated WBFM system

Our goal, then, is to add the software components of our previous
hardware FM receiver flowgraph (see Chapter 9) to the current transmitter
flowgraph.

Recovering the Signal
The first step in a receiver is to tune to the incoming signal. Fortunately,
most of the variables you’ll need have been defined already on the transmit-
ter side. You’ll just need a new GUI control to control the receiver’s tuner.
Add a QT GUI Entry and configure it as follows:

ID: freq_rx

Type: Float

Default Value: 98.1e6

Previously, our FM receiver’s Soapy HackRF Source fed into a Frequency
Xlating FIR Filter block, so we’ll use one of those. Add the block to the flow-
graph, connect its input to the Multiply block’s output, and adjust the follow-
ing settings:

Decimation: int(samp_rate/working_samp_rate)

Taps: firdes.low_pass(1, samp_rate, chan_width, t_width)

Center Frequency: freq_rx - center_freq

Sample Rate: samp_rate

This implements tuning by downshifting, filtering, and decimating
the received signal. From there, we can demodulate, filter, and resample
it to extract the original audio signal. For the demodulation, connect the
Frequency Xlating FIR Filter output to the input of a WBFM Receive and set the
latter as follows:

Quadrature Rate: working_samp_rate

Audio Decimation: int(working_samp_rate/audio_samp_rate)

The output from the WBFM Receive block will now contain demodulated
audio, with its sample rate reduced by a factor of 10, from 320 ksps down to
a rate of 32 ksps. In order to hear the output, connect the WBFM Receive to
an Audio Sink with a sample rate of 32 kHz. The flowgraph should now look
like Figure 13-8.

290 Chapter 13

Figure 13-8: The combined transmitter-plus-receiver flowgraph

You can see the transmit portion on the left half and the receive por-
tion on the right half of the figure. Be sure to compare the receive portion
to your previous FM receiver flowgraph to verify that they’re equivalent.

Running the Flowgraph
Run the flowgraph. Since the default QT GUI Entry values for freq_tx and
freq_rx are the same, the receiver is tuned to the same frequency as the
transmitter. You should therefore hear some audio, though you may have to
increase either the volume value in the flowgraph or the volume of your com-
puter’s speakers. If the audio is clear, you’ve got a working transmitter.

While you’re here, though, try retuning your receiver to a different
channel. Set freq_rx to any value that seems interesting, but leave freq_tx
alone. This means that your transmitter is still sending out a signal at
98 MHz, but your receiver will be tuned to a different frequency. For most
of the other frequencies you might randomly choose, you should hear
either nothing or a bit of static. But try something specific: set freq_rx to
98.4M, as in Figure 13-9.

Transmitting 291

Figure 13-9: The frequency plot of the WBFM transmitter with intentionally bad tuning

Hmmm . . . why are you still hearing audio when you’re tuned to a dif-
ferent frequency? Even though it’s somewhat distorted, the sound should
still be recognizable. Because of this, you might think that your flowgraph
is flawed in some way. Strangely, though, this effect is happening more for
the opposite reason: your flowgraph is insufficiently flawed!

Two things are working together to cause this effect. First, the WBFM
modulation process causes a significant amount of harmonic distortion. This
means that in addition to the modulated signal at the intended frequency,
there will also be much smaller copies of that signal, known as harmonics,
on each side of the target frequency. In fact, there won’t be just one copy on
each side, but an infinite series of copies at regularly spaced frequency
intervals that tend to diminish in strength as you get farther from the target
frequency, as illustrated in Figure 13-10.

292 Chapter 13

Figure 13-10: A frequency-domain representation of harmonics

Typically these harmonics wouldn’t be an issue. They’re already rela-
tively small, and they’re diminished further by the filter in our second
Rational Resampler block. As small as these harmonics are, however, the WBFM
Receive block seems to detect them. That’s where the second issue comes to
light. Because the transmitter-receiver flowgraph is operating in an artificial
environment almost completely free of noise, the signal-to-noise ratio of
these harmonics is still significant. Normally the receiver would be picking
up all sorts of noise from the environment that would drown the harmonics
out, but the only noise in an all-software system is computation and quan-
tization noise. Because all the math is being done with 32-bit floating-point
values, this mathematical noise is almost nonexistent. How much noise is
there? Look at the QT GUI Sink on the output of your transmitter, and scroll
down with your mouse wheel until you see something like Figure 13-11.

Transmitting 293

Figure 13-11: The simulation’s noise floor

When you scroll down, you’ll begin to see the evenly spaced peaks from
the extra harmonics. You should also see the noise floor all the way down
near –200 dB. This is an incredibly low value, one that doesn’t occur naturally
on Earth. As such, it doesn’t take much of a signal, or a harmonic, to be
greater than –200 dB.

294 Chapter 13

Modeling Noise
We’ve discussed how the lack of noise is causing the flowgraph to behave
oddly. What can we do about it? How about trying to make the flowgraph
a little bit more like reality by adding some artificial noise between the
transmit and receive portions? This noise should be set to a level similar to
that encountered in a real SDR system. When you operated your previous
hardware-based FM receiver, you should have seen a noise floor at roughly
–80 dB, so we’ll try for that.

Break the connection between the Multiply and Frequency Xlating FIR
Filter blocks. Then create a Noise Source block with the following settings:

Noise Type: Uniform

Amplitude: 0.01

The amount of noise this block generates is determined by the Amplitude
property, although we unfortunately can’t set this in decibels. We’ve given you
the value of 0.01, which corresponds to the –80 dB noise level we’re looking
for. If you want a different level, try setting the Amplitude property dynami-
cally with a QT GUI Entry and iteratively input values until you get the noise
floor you want. The function of the Noise Type property is beyond the scope
of this book.

Next, create an Add block with two inputs. Connect the first input to
the Noise Source block’s output and the second input to the Multiply block’s
output. Then pass the Add output into the Frequency Xlating FIR Filter block
input. In effect, this combines the noise with the intended transmission
before the resulting RF data is picked up by the receiver.

Finally, move the QT GUI Sink connection to the output of the Add block
so that you can see the signal plus the noise rather than just the pristine
signal. When you’re done, you’ll have something like Figure 13-12.

Transmitting 295

Figure 13-12: The final WBFM flowgraph with noise modeling

Execute the flowgraph and make sure the freq_rx value is set back to
98.1e6. You should now see the noise on either side of the signal has increased
to more normal levels, as in Figure 13-13. Looks a lot more like the FM
receiver flowgraph when you ran it with hardware, doesn’t it?

296 Chapter 13

Figure 13-13: The final WBFM frequency plot with noise

Despite the noise, you should still hear the audio playing. This means
the noise hasn’t impacted the proper function of your transmitter or receiver.
When you tune to a different frequency, however, by changing freq_rx to
98.4M (or any other empty frequency), you should no longer hear the distorted
audio, just the sound of static. The signal-to-noise ratio of the extra harmonics
is too low for the harmonics to be distinguishable from the noise.

The key lesson here is that you should always add noise to your simu-
lated flowgraphs to ensure that your radio will work as expected when you
plug in actual SDR hardware.

Conclusion
In this chapter, you built your first transmitter and learned how to legally test
it in a somewhat-realistic simulation environment. Furthermore, you saw how
you would implement your transmitter with SDR hardware and how to adjust
the gain. You also got some non–legally binding advice on what to consider
when operating a hardware radio to ensure compliance with the rules.

You’ve made it to the end of your introductory SDR journey! You should
now be able to build basic transmitters and receivers with GNU Radio
Companion. You’ve been introduced to the basic theory underpinning
these radios. And finally, you’ve seen how to use SDR devices and what kind
of hardware accessories might be useful.

I N D E X

A
active antennas, 264, 277
adapters, 271, 275–276
ADCs. See analog-to-digital converters
Add blocks

equalizers, 106
low-pass filters, 93–94
modeling noise, 294–295
plotting complex sounds, 72–77, 84

Add Const blocks
amplitude modulation, 203
Multiply blocks versus, 84–85
Multiply Const blocks versus, 84–85

aliasing, 228–233
AM. See amplitude modulation; AM

radio systems
AM Demod blocks

AM receiver creation, 47–50, 55
converting AM to FM, 145
demodulation, 130
setting properties, 132–133
viewing demodulated signals, 131

AM radio systems, 5–9, 37–55
adding radio data sources, 41–42
amplitude modulation, 8–9
converting AM to FM, 142–147
output, 51–54
receivers, 107–139

demodulation, 129–133
input RF data, 108–112
resampling, 133–138
tuning, 112–129

setting up the variables and entries, 38–41
signal processing, 42–51

AM Demod blocks, 47–49
Low Pass Filter blocks, 45–47
Multiply blocks, 44–45
Rational Resampler blocks, 49–51
Signal Source blocks, 42–44

signals, 6–8
tuning, 6

amplifiers, 81
active antennas, 264
DC offset, 248
low-noise amplifiers, 277
traditional radios versus SDRs, 222–223

amplitude, 8
amplitude modulation (AM), 8–9, 197–206.

See also AM radio systems
avoiding overmodulation, 204–206
choosing between modulation schemes,

219–220
flawed modulators, 198
negative baseband values, 200–204
phase reversal, 201–202
waveform, 197

analog-to-digital converters (ADCs), 12–15, 19,
224–234

aliasing, 228–233
arbitrary waveforms, 14–15
filtering, 233–234
sinusoids, 13–14
square waves, 12–13

anechoic chambers, 177
ANT500, xxi, 259–260, 275, 287

experimenting with, 265–269
setting up, 184–186

antennas, 256–269, 275
baluns, 276
characteristics of

bandwidth, 257
directivity, 258
frequency, 257
gain, 257, 287–288
impedance, 258–259
size, 257

connecting, 184–186, 253
electric and magnetic fields, 256

298 Index

antennas (continued)
electromagnetic waves, 256–257
experimenting with, 265–269
GPS, 277
location of, 287
mitigating noise, 270
polarization, 265
selection of, 287
types of, 259–264, 277

active, 264, 277
dipole, 260–262
loop, 262–263
telescoping, 259–260
whip, 259
yagi, 263–264

application-specific integrated circuits
(ASICs), xix

attenuation, 83–84, 86–90, 156, 205–206
band-reject filters, 104
RF attenuators, 277

Audio Sink blocks
AM receiver creation, 51, 53
applying gain to signals, 80–81
bandwidth, 173
generating tones, 61
plotting complex sounds, 74–75
signal recovery, 289–290
visualizing tones, 61–62

audio underrun, 240

B
baluns, 276
band-limited signals, 226, 233
Band Pass Filter blocks, 103
band-pass filters, 102–104
Band Reject Filter blocks, 104
band-reject (notch) filters, 104
bandwidth, 144, 168–176, 235–240

antennas, 257
channel width versus, 171–172
identifying limits, 235–236
overflow, 236–240
passband, 169–170
sampling rate and, 235

baseband, 194–196
negative values, 200–204

baseband (BB) gain, 241–243, 247
bias tees, 277

bladeRFs, 190
blocks, 23–33. See also flowgraphs;

names of specific blocks
adding to flowgraphs, 26–28
changing properties, 31–33
connecting, 29
copying, 40–41
data types, 39
deleting connections, 34
finding, 24, 26–27
moving around, 28
port colors, 49–50, 109
sinks, 26
sources, 25–26

BNC connectors, 273

C
capture window, 226–227
carrier signal, 5. See also

amplitude modulation
zero-frequency carriers,

208–210
channel width, 171

bandwidth versus, 171–172
cutoff frequency versus, 150–151

classic radios, xvii–xviii, 222–223
clipping, 245–246
clock input/output ports, 253
coaxial connectors, 273
complex mixing, 148
complex sinusoidal multiplication, 148,

249–250
Complex to Mag blocks, 198–199
computers

connecting SDR hardware to, 186
interface speed, 269
noise, 269–271
speed of, 269
storage capacity, 269

connectors, 184–186, 253, 271–274
BNC, 273
coaxial, 273
male and female, 271
MCX, 271–272
RCA, 272
RP-SMA, 274
SMA, 271
SO-239, 273–274

Index 299

Constant Source blocks, 26
adding to flowgraphs,

27–28
changing properties, 31–32
connecting blocks, 29

cosine waves, 198, 224–225
cutoff frequency, 92, 96

audio pass property, 132
band-pass filters and, 102–103
band-reject filters and, 104
baseband, 194
channel width versus, 150–151
converting AM to FM, 144–145

D
DACs. See digital-to-analog converters
data types, 39
decibels (dB)

gain, 85–90
real-world radio systems, 90

decibels relative to an isotropic
antenna (dBi), 257

decimation, 134–136, 228
deemphasis, 281
demodulation, 5, 9, 129–133. See also

modulation
AM Demod block properties,

132–133
viewing demodulated signals,

131–132
digital modulation, 217–219
digital-to-analog converters (DACs), 16,

19, 242
dipole antennas, 260–262, 275
direct current (DC)

offset, 247–251
quantity, 248
spike, 247, 249, 251

directivity of antennas, 258
discrete Fourier transforms (DFTs), 68
duty cycle, 286

E
electromagnetic spectrum, 164–165
electromagnetic waves, 164–168

antennas, 256–257
frequency bands, 166
polarization, 265

propagation, 165
wavelength versus frequency,

167–168
equalizers, 105–106
Ettus USRPs, 189–190

F
fast Fourier transforms (FFTs), 68–80.

See also frequency plots;
time plots

band-pass filters, 103–104
bandwidth, 173–176
DC offset, 247
decibels, 86–87
frequency shifting, 117–118
input RF data, 109–112
low-pass filters, 91–96
noise, 177–178
plotting

complex sounds, 72–77
real-world sounds, 77–80
simple tones, 68–72
waterfall plots, 211

tuning, 112–113, 127–128
Federal Communications Commission

(FCC), 172, 274, 286–287
ferrite chokes, 270, 277
fidelity, 175
field-programmable gate arrays

(FPGAs), xix
File Source blocks, 26

AM receiver creation, 42, 46, 52, 55
converting AM to FM, 143
DC offset, 251
FM receiver tuning, 147, 158
frequency shifting, 114
input RF data, 108–110
noise, 177

filters and filtering, 46, 91–105, 118–126
after interpolation, 284–285
analog-to-digital conversion, 233–234
band-pass, 102–104
band-reject, 104–105
high-pass, 97–102
low-pass, 91–97, 119–122

finite impulse response (FIR) filters,
148–151

Float to Complex blocks, 198–199, 203

300 Index

flowgraphs, 21, 23–25. See also blocks;
names of specific blocks and
flowgraph goals

blocks
adding to flowgraphs, 26–28
changing properties of, 31–33
connecting, 29
sink, 26
source, 25–26

changing sample rate, 51–52
errors in, 30, 47
execution window, 53–54
input and output, 33–36
mathematical functions, 33–36
saving and running, 29–31

FM radio systems, 141–159
converting AM to FM, 142–147
improving receivers, 147–159
automatic variable updating,

152–154
effective tuning, 147–152
finding other signals, 158–159
volume control, 154–157
transmitters, 280–286

audio source, 280–281
filtering after interpolation,

284–285
signal modulation, 281
signal upconversion, 281–283

Fourier, Joseph, 68
Fourier transforms, 67–68. See also fast

Fourier transforms
fractional resampling, 138
frequency, 60. See also frequency plots

aliasing, 229–230
antennas, 257, 266–268
audible spectrum

generating tones, 60–61
varying frequency, 64–67
visualizing tones, 62–64

band-pass filters, 103–104
bandwidth, 173–176
bands, 166, 219
baseband, 196
complex sounds, 72–77
DC offset, 247
decibels, 86–89
demodulation, 132

FM transmitters, 283, 285, 291,
293, 296

HackRF SDR operation, 188
high-pass filters, 98–100, 102
input RF data, 109–112
low-pass filters, 92–96, 121–125
modulation

adjusting modulator
sensitivity, 212–213

waterfall plots, 211
zero-frequency carriers, 209

noise, 178–179
oversampling, 237
real-world sounds, 77–80
simple tones, 68–72
tuning, 127–128, 159
visualizing signals in frequency

domain, 67–80
complex sounds, 72–77
real-world sounds, 77–80
simple tones, 68–72

Frequency Mod blocks, 207–209, 211, 214
frequency modulation (FM), 142,

206–214. See also FM
radio systems

adjusting modulator sensitivity,
211–214

building modulators, 280–286
audio source, 280–281
filtering after interpolation,

284–285
signal modulation, 281
signal upconversion, 281–283

choosing between modulation
schemes, 219–220

waterfall plots, 210–211
zero-frequency carriers, 208–210

frequency offset, 249
frequency plots, 67–72. See

also fast Fourier
transforms; frequency

frequency shifting, 113–118
frequency translation, 148
Frequency Xlating FFT Filter

blocks, 147
Frequency Xlating FIR Filter blocks

automatic variable updating,
152–154

Index 301

bandwidth, 169
DC offset, 250
hardware-enabled flowgraphs, 183
improving tuning effectiveness,

147–151
modeling noise, 294–295
oversampling, 238
signal recovery, 289–290

full duplex, 252
full-scale input, 244

G
gain, 80, 240–246

antennas, 257, 287–288
attenuation, 83
decibels, 85–90
effect on signals, 80–85, 243–246
setting, 243
stages of, 241–242

GNU Radio, 21–36. See also names of
specific flowgraph goals

blocks, 23–26
adding to flowgraphs, 26–28
changing properties, 31–33
connecting, 29
deleting connections, 34
sinks, 26
sources, 25–26

flowgraphs, 21, 23
adding blocks to, 26–28
connecting blocks, 29
creating, 24, 26
errors in, 30
example of, 25
mathematical functions,

33–36
saving and running, 29–31

GNU Radio Companion GUI,
23–26

installing, 22–23
simulations, xx

GPS antennas, 277

H
HackRFs, xxi, 246

antennas
active, 264
attaching, 184–186

experimenting with, 265–269
impedance, 259
transmit gain, 287–288

connectors, 271
gain stages, 241–242, 246–247
operating, 187–188
resetting, 187
setting up, 184–187

connecting to
computer, 186

lights, 186–187
specifications, 251–253
superheterodyne structure, 223
upconverters, 276
updating firmware, 187

half duplex, 252
hardware, 181–191, 246. See also

antennas; HackRFs
bandwidth and sample rates,

235–240
identifying bandwidth limits,

235–236
overflow, 236–240

bladeRFs, 190
creating hardware-enabled

flowgraphs, 182–184
DC offset, 247–251
Ettus USRPs, 189–190
gain, 240–246
IQ sampling, 224–234

analog-to-digital conversion,
226–234

IQ signals, 224–225
LimeSDRs, 190
modulation, 193–220

amplitude, 197–206
baseband signals, 194–196
choosing between schemes,

219–220
digital, 217–219
frequency, 206–214
phase, 215–217

peripherals, 255–278
antennas, 256–269
computers, 269
connectors, 271–274
noise mitigation, 270–271
toolkit, 274–278

302 Index

hardware (continued)
PlutoSDRs, 190
requirements for activities in

book, xxi
specifications

antenna connector, 253
clock, 253
full duplex or half duplex, 252
interface, 253
number of channels, 252
operating frequency, 251–252
resolution, 252
RF output power, 253
RX gain, 252
sampling rate, 252
system power, 253
TX gain, 252

hardware-defined radios, SDRs
compared to, xvii–xviii

harmonics, 291–293, 296
distortion, 291

hertz (Hz), 60
heterodyning, 223
high-frequency (HF) signals, 166
High Pass Filter blocks, 97
high-pass filters, 97–102

I
impedance, 258–259
input bandwidth, 110–111
instrumentation blocks, 26
intermediate frequency (IF), 222–223

gain, 241–242, 247, 287–288
Internal Telecommunications Union

(ITU), 164
interpolation, 137–138, 283–284
IQ (quadrature) sampling, 224–234

analog-to-digital conversion,
226–234

aliasing, 228–233
filtering, 233–234

IQ signals, 224–225

K
Keep 1 in N blocks

aliasing, 228–229
decimation, 134–137

kilohertz (kHz), 6

L
leading and lagging, 216–217
licensed spectrum, 286
LimeSDRs, xxi, 190
Linux, installing GNU Radio on, 22
loop antennas, 262–263, 275
low-noise amplifiers (LNAs), 277
low-noise block downconverters

(LNBs), 277
Low Pass Filter blocks, 93–94

AM receivers, 45–47, 55, 119–120
bandwidth, 173
converting AM to FM, 144–145

low-pass filters, 91–97, 119–125

M
macOS, installing GNU Radio on, 22–23
MCX connectors, 271–272
medium-frequency (MF) signals, 166
microwave frequencies, 165
millimeter wave frequencies, 165
modulation, 5. See also demodulation

amplitude, 8–9, 197–206
avoiding overmodulation,

204–206
flawed modulators, 198
negative baseband values,

200–204
phase reversal, 201–202
waveform, 197

baseband signals, 194–196
choosing between schemes,

219–220
digital, 217–219
frequency, 142, 206–214

adjusting modulator
sensitivity, 211–214

building modulators, 280–286
waterfall plots, 210–211
zero-frequency carriers,

208–210
phase, 215–217

monopole (whip) antennas, 259
Multiply blocks

Add Const blocks versus, 84–85
amplitude modulation, 198–199
AM receivers, 44–45

Index 303

filtering, 119
FM transmitters, 281–282
frequency shifting, 115–116
signal processing, 44–45

Multiply Const blocks
Add Const blocks versus, 84–85
gain, 242

applying to signals, 80–85
transmit, 287

input and output, 33–35
overmodulation, 206
phase modulation, 215–216
volume control, 155–156

N
narrow-band FM (NBFM), 280
noise, 129, 176–179

mitigating, 270–271
modeling for testing purposes,

294–296
signal-to-noise ratio, 178–179
sources of, 269
viewing, 177–178

Noise Source blocks, 178, 294–295
notch (band-reject) filters, 104
number of channels, 252
Nyquist frequency, 226–233, 235
Nyquist-Shannon sampling theorem, 226

O
offset error, 248–249
onion analogy, xx, 54, 74, 163
online resources

Factoria Labs, 23
GNU Radio website, 22
project and input data files, xxiii,

41, 78
on-off keying (OOK), 219
operating frequency, 251–253
Options blocks, 38, 114, 280
overflow, 236–240
overmodulation, 204–206

P
passband

bandwidth, 91, 169–170
equalizers, 105
filters, 100–103

periodic phenomena, 60
peripherals, 255–278

antennas
characteristics of, 257–259
experimenting with, 265–269
polarization, 265
types of, 259–264

computers, 269
connectors, 271–274
noise mitigation, 270–271
toolkit, 274–278

adapters, 271, 275–276
antennas, 275
baluns, 276
upconverters, 276

Phase Mod blocks, 215–217
phase modulation (PM), 215–217,

219–220
phase reversal, 201–202, 204–205
PlutoSDRs, xxi, 190
polarization, 265
power sources, mitigating noise

from, 270
preemphasis, 281
propagation, 165

Q
QT GUI Entry blocks

adjusting frequency modulator
sensitivity, 211

AM receiver creation, 38–41, 43,
53–54

filtering, 119–120, 122
band-pass, 103
high-pass, 101
low-pass, 94–95

FM transmitters, 280
frequency shifting, 115–116
modeling noise, 294
oversampling, 236
signal recovery, 289–290

QT GUI Frequency Sink blocks
bandwidth, 173, 235
baseband, 194–195
decibels, 85–86
frequency shifting, 114–116
gain, 243
hardware-enabled flowgraphs, 183

304 Index

QT GUI Frequency (continued)
input RF data, 108–109, 111
noise, 177
oversampling, 238
plotting complex sounds, 74–77
plotting simple tones, 68–69
tuning, 126–127, 158
viewing modulated and

demodulated signals,
131

QT GUI Range blocks
aliasing, 228–229
applying gain to signals, 81
bandwidth, 173
decibels, 86
overmodulation, 204
varying frequency of tones, 65
volume control, 154–157

QT GUI Time Sink blocks
adding to flowgraphs, 28
amplitude modulation, 203–204
applying gain to signals, 80–82
connecting to other blocks, 29
decibels, 85
decimation, 134–135
filtering, 119
input and output, 34
phase modulation, 215
plotting complex sounds, 74–75
visualizing tones, 62–63

QT GUI Waterfall Sink blocks, 210
quadrature sampling. See IQ sampling

R
radio frequency (RF)

attenuators, 277
gain, 241–243, 246–247, 287–288
limiters, 277–278
output power, 253

radio systems, 3–10. See also AM radio
systems; FM radio systems

simple
modulation, 5
receivers, 3–10
signals, 4–5
transmitters, 5–6, 19

traditional versus SDRs, xvii–xviii,
222–223

Rational Resampler blocks
AM receivers, 49–51, 55, 138
automatic variable updating,

153–154
converting AM to FM, 146
FM transmitters, 281–285
signal recovery, 289–290
volume control, 155–156

RCA connectors, 272
receivers

AM, 37–55, 107–139
demodulation, 129–133
input RF data, 108–112
resampling, 133–138
tuning, 112–129

digital signal processing, 11–20
FM, 141–159

automatic variable updating,
152–154

effective tuning, 147–152
finding other signals, 158–159
volume control, 154–157

GNU Radio, 21–36
signal processing, 59–106
simple systems, 3–10, 19

resampling, 133–138
AM receivers, 138
decimation, 134–136
interpolation, 137–138

resolution, 252
RP-SMA connectors, 274
RX gain, 252

S
sampling, 11–16

analog-to-digital conversion,
12–15

digital-to-analog conversion, 16
IQ, 226–234
period, 16
rates, 16–18, 51–52, 235–240

bandwidth and, 235
hardware specifications, 252
overflow, 236–240

undersampling, 17–18
sawtooth waves, 125
SDRs. See software-defined radios
shielded cables, 270

Index 305

signal physics, 163–179
bandwidth, 168–176

channel width versus, 171–172
passband, 169–170

electromagnetic waves, 164–168
electromagnetic spectrum,

164–165
frequency bands, 166
propagation, 165
wavelength versus frequency,

167–168
noise, 176–179

signal processing, 11–20, 59–106
AM radio systems, 42–51
equalizers, 105–106
filters, 91–105

band-pass, 102–104
band-reject, 104–105
high-pass, 97–102
low-pass, 91–97

frequency, 60–80
audible spectrum, 60–67
visualizing signals in the

frequency domain, 67–80
gain, 80–90

applying to signals, 80–85
decibels, 85–90

sampling, 11–18
analog-to-digital conversion,

12–15
digital-to-analog conversion, 16
sample rate, 16–18

simple SDR systems, 18–19
Signal Source blocks, 26

AM receivers, 42–44
amplitude modulation, 198

negative baseband values,
200

applying gain to signals, 80–81
converting AM to FM, 144
FM modulators, 282
frequency modulation, 207–208
frequency shifting, 115
generating tones, 61
plotting complex sounds, 72–77
plotting real-world sounds, 78
varying frequency, 65
visualizing tones, 61–62

signals, 4. See also signal physics; signal
processing

AM radio systems, 6–9
carrier, 5, 7
information communicated by, 4–5
simple radio systems, 4–5
square wave, 12–13

signal-to-noise ratio (SNR), 178–179,
219, 243–245, 270

sinks, 26. See also names of specific sink
blocks

sinusoids (sine waves), 7
analog-to-digital conversion, 13–14
phase reversal, 202
sample rates, 16–18
visualizing tones, 62–63

SMA connectors, 271, 275
SO-239 connectors, 273–274
Soapy HackRF Sink blocks, 282, 287
Soapy HackRF Source blocks

gain, 241, 247, 288
hardware-enabled flowgraphs,

183–184
oversampling, 238

software-defined matter, xix
software-defined radios

developmental history of, xix
hardware

function of, 221–253
interfacing with, 181–191
modulation, 193–220
peripherals, 255–278
transmitting signals, 279–296

hardware-defined radios
compared to, xvii–xviii

onion analogy, xx, 54, 74, 163
prototyping RF components of

new products, xix–xx
receivers

AM, 37–55, 107–139
FM radio systems, 141–159
GNU Radio, 21–36
signal processing, 11–20,

59–106
simple systems, 3–10, 19

signal physics, 163–179
simple systems, 18–19
simulated, xx

306 Index

software-defined radios (continued)
transmitters, xviii–xix

simple systems, 19
transmitting signals, 279–296

use cases, xviii–xix
sources, 25–26. See also names of specific

source blocks
square waves, 12–13
stopband, 91, 100–102, 105
subsonic frequencies, 60
superheterodyne (superhet) radios,

222–223
system power, 253

T
telescoping antennas, 259–260
terahertz (THz), 164
Throttle blocks

adding to flowgraphs, 28
connecting to other blocks, 29
decimation, 134–135
frequency shifting, 112
function of, 136–137
noise, 177

time plots, 68–80. See also fast
Fourier transforms

band-pass filters, 103–104
complex sounds, 72–77
decimation, 135
demodulation, 129
frequency modulation

adjusting modulator
sensitivity, 212–213

waterfall plots, 211
zero-frequency carriers, 209

gain, 81–84, 244–246
high-pass filters, 98–102
low-pass filters, 95–96, 121–125
real-world sounds, 77–80
simple tones, 68–72

toolkit, 274–278
adapters, 271, 275–276
antennas, 275
baluns, 276
upconverters, 276

traditional radios, xvii–xviii
versus hardware, 222–223

transition width, 100–102

transmitters, xviii–xix, 279–296
FM, 280–286

audio source, 280–281
filtering after interpolation,

284–285
signal modulation, 281
signal upconversion, 281–283

logistics, 286–288
legal issues, 286
practical issues, 286–288

simple systems, 5–6, 19
testing, 288–289

modeling noise, 294–296
running flowgraph, 290–293
signal recovery, 289–290

tuning, 6, 112–129
AM receivers, 127–129
filtering, 118–126
FM radio systems

finding other signals, 158–159
improving effectiveness,

147–152
frequency shifting, 113–118
real-world frequencies, 126–127

TX gain, 252

U
UHD:USRP Source blocks, 189–190
ultra-high-frequency (UHF) signals, 166
ultrasonic frequencies, 60
underflow, 239–240, 269
unlicensed spectrum, 286
upconverters, 276, 281–283

V
Variable blocks, 38, 52, 54, 150, 177
very high-frequency (VHF)

signals, 166
virtual machines (VMs)

choppy audio, 52
installing GNU Radio on, 23

volume control, 154–157

W
waterfall plots, 210–211
wavelength, 167

distance, 168
frequency versus, 167–168

Index 307

Wav File Source blocks, 78, 173, 280
WBFM Receive blocks

automatic variable updating,
153–154

baseband, 194–195
converting AM to FM, 145–146
signal recovery, 289–292

WBFM Transmit blocks, 281
whip (monopole) antennas, 259

wideband FM (WBFM), 280
Windows, installing GNU Radio on,

22–23

Y
yagi antennas, 263–264

Z
zero-frequency carriers, 208–210

Practical SDR is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

RESOURCES
Visit https://nostarch.com/practical-sdr for errata and more information.

More no-nonsense books from NO STARCH PRESS

OPEN CIRCUITS
The Inner Beauty of Electronic
Components
BY windell oskay AND
eric schlaepfer
304 pp., $39.99
isbn 978-1-7185-0234-5
hardcover, full color

GETTING STARTED
WITH FPGAs
Digital Circuit Design, Verilog,
and VHDL for Beginners
BY russell merrick
320 pp., $49.99
isbn 978-1-7185-0294-9

ETHICAL HACKING
A Hands-on Introduction to
Breaking In
BY daniel g. graham
376 pp., $49.99
isbn 978-1-7185-0187-4

THE HARDWARE HACKING
HANDBOOK
Breaking Embedded Security
with Hardware Attacks
BY jasper van woudenberg
AND colin o’flynn
512 pp., $49.99
isbn 978-1-59327-874-8

ARDUINO WORKSHOP,
2ND EDITION
A Hands-on Introduction with
65 Projects
BY john boxall
432 pp., $34.99
isbn 978-1-7185-0058-7

PRACTICAL IoT HACKING
The Definitive Guide to Attacking
the Internet of Things
BY fotios chantzis ET AL.

464 pp., $49.99
isbn 978-1-7185-0090-7

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
sales@nostarch.com

WEB:
www.nostarch.com

®

https://nostarch.com/practical-sdr
www.nostarch.com

	Cover
	Title Page
	Copyright
	Dedication
	About the Authors
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Introduction
	A Week in SDR��������������������
	SDR and Hardware Development�����������������������������������
	This Book’s Approach���������������������������
	Who This Book Is For���������������������������
	What You’ll Need�����������������������
	What’s in This Book��������������������������
	Online Resources�����������������������

	Part I: Building a Basic Receiver
	1. What is a Radio?
	A Simple Radio Model���������������������������
	Signals��������������
	Modulation�����������������

	A Slightly More Complicated Radio Model��
	AM Radio Signals�����������������������
	Amplitude Modulation���������������������������

	Conclusion�����������������

	2. Computers and Signals
	Digital Sampling�����������������������
	Analog-to-Digital Conversion�����������������������������������
	Digital-to-Analog Conversion�����������������������������������

	Sample Rate������������������
	SDRs from 50,000 Feet����������������������������
	Conclusion�����������������

	3. Getting Started with GNU Radio
	Installing GNU Radio���������������������������
	Linux������������
	Windows and macOS������������������������
	A Virtual Machine������������������������

	GNU Radio Companion��������������������������
	Sources��������������
	Sinks������������

	Hello, SDR�����������������
	Adding Blocks to a Flowgraph�����������������������������������
	Connecting Blocks������������������������
	Saving and Running the Flowgraph���������������������������������������
	Changing Block Properties��������������������������������

	Between Input and Output�������������������������������
	Conclusion�����������������

	4. Creating an AM Receiver
	Setting Up the Variables and Entries���
	Adding a Source of Radio Data������������������������������������
	Processing the Signals�����������������������������
	The Output�����������������
	Conclusion�����������������

	Part II: Inside the Receiver
	5. Signal Processing Fundamentals
	Frequency����������������
	Exploring the Audible Spectrum�������������������������������������
	Visualizing Signals in the Frequency Domain��

	Gain�����������
	Applying a Gain to a Signal����������������������������������
	Thinking in Decibels���������������������������

	Filters��������������
	Low-Pass Filters�����������������������
	High-Pass Filters������������������������
	Band-Pass Filters������������������������
	Band-Reject Filters��������������������������

	Creating an Equalizer����������������������������
	Conclusion�����������������

	6. How an AM Receiver Works
	Examining the Input Radio Frequency Data���
	Tuning�������������
	Frequency Shifting�������������������������
	Filtering����������������
	Accounting for Real-World Frequencies��
	Tuning the AM Receiver�����������������������������

	Demodulation�������������������
	Viewing the Modulated and Demodulated Signals��
	Setting the AM Demod Block Properties��

	Resampling�����������������
	Decimation�����������������
	Interpolation��������������������
	Resampling in the AM Receiver������������������������������������

	Conclusion�����������������

	7. Building an FM Radio
	Converting from AM to FM�������������������������������
	Improving the FM Receiver��������������������������������
	Tuning More Effectively������������������������������
	Updating Variables Automatically���������������������������������������
	Controlling the Volume�����������������������������
	Tuning to Other Signals������������������������������

	Conclusion�����������������

	Part III: Working with SDR Hardware
	8. The Physics of Radio Signals
	Electromagnetic Waves����������������������������
	Propagation������������������
	Frequency Bands����������������������

	Bandwidth����������������
	Noise������������
	Viewing RF Noise�����������������������
	Finding the Signal-to-Noise Ratio��

	Conclusion�����������������

	9. GNU Radio Flowgraphs with SDR Hardware
	Creating a Hardware-Enabled Flowgraph��
	Setting Up the Hardware������������������������������
	Operating the Hardware SDR Receiver��
	Using USRP Hardware��������������������������
	Using Other Hardware���������������������������
	Conclusion�����������������

	10. Modulation
	Baseband Signals�����������������������
	Amplitude Modulation���������������������������
	Working with Negative Baseband Values��
	Avoiding Overmodulation������������������������������

	Frequency Modulation���������������������������
	Using a Zero-Frequency Carrier�������������������������������������
	Interpreting Waterfall Plots�����������������������������������
	Adjusting Modulator Sensitivity��������������������������������������

	Phase Modulation�����������������������
	A Word on Digital Modulation�����������������������������������
	Choosing a Modulation Scheme�����������������������������������
	Conclusion�����������������

	11. SDR Hardware Under the Hood
	Classic Radios vs. SDR�����������������������������
	IQ Sampling������������������
	IQ Signals�����������������
	Analog-to-Digital Conversion�����������������������������������

	SDR Bandwidth and Sample Rates�������������������������������������
	Identifying Bandwidth Limits�����������������������������������
	Experiencing Overflow����������������������������
	Preventing Overflow��������������������������

	Gain and SDR Hardware����������������������������
	The Three Gain Stages����������������������������
	How to Set the Gain��������������������������
	How Gain Affects a Signal��������������������������������

	A Better SDR Model�������������������������
	DC Offset����������������
	Important SDR Specs��������������������������
	Conclusion�����������������

	12. Peripheral Hardware
	Antennas���������������
	Characteristics����������������������
	Types������������
	Polarization�������������������

	An Antenna Experiment����������������������������
	How Computers Affect SDRs��������������������������������
	Mitigating Noise�����������������������
	Connectors�����������������
	Building an SDR Toolkit������������������������������
	Antennas���������������
	Adapters���������������
	Upconverters�������������������
	Baluns�������������
	Miscellaneous Items��������������������������

	Conclusion�����������������

	13. Transmitting
	Building an FM Modulator�������������������������������
	Setting the Audio Source�������������������������������
	Modulating the Signal����������������������������
	Upconverting the Signal������������������������������
	Filtering After Interpolation������������������������������������

	Transmission Logistics�����������������������������
	Legal Issues�������������������
	Practical Issues�����������������������

	Testing the FM Transmitter���������������������������������
	Recovering the Signal����������������������������
	Running the Flowgraph����������������������������
	Modeling Noise���������������������

	Conclusion�����������������

	Index
	Back Cover

Accessibility Report

		Filename:

		12_9781718502550_web_out_out.pdf

		Report created by:

		kkkmn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn 0mn m nn', sushil@antares.co.in

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 0

		Passed: 29

		Failed: 1

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Failed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

