

Practical Community Management

Lessons Learned While Working on
Stack Overflow

Nicolas Chabanovsky

Practical Community Management: Lessons Learned While Working on Stack Overflow

Copyright © 2024 by Nicolas Chabanovsky.

All rights reserved. Printed in the United States of America. No part of this book may

be used or reproduced in any manner whatsoever without written permission except

in the case of brief quotations em-bodied in critical articles or reviews.

Сontact information:

nicolas.chabanovsky@gmail.com

practical-cm.com

ISBN: 9798323978502

First Edition: April 2024

mailto:nicolas.chabanovsky@gmail.com
https://practical-cm.com/

Dedication
To volunteers, caring people who spend their lives
on doing good for others without expecting
anything in return.

Contents

Dedication
Contents
Introduction
Part 1
1. Recruiting a critical mass of users
2. Onboarding and engaging early users
3. Development of the ecosystem and monetization of the
community
4. Leaving HashCode and then selling it
Part 2
1. Community is the solution to a pressing social problem
2. From marketing to community management
3. The main driving force of any community is volunteers
4. Communication
5. Community culture
6. Having any goal is better than no goal at all
7. Conflict situations in communities
8. Community metrics
9. Software
10. The rise and fall of International Stack Overflows
Part 3
1. Product and community management
2. Communication
Closing words
I will appreciate your help
Acknowledgments
About the author

Introduction

My story related to online communities began at the end of
2010. When I was working as a software developer at Motorola,
my friends and I launched HashCode.ru, a Q&A website for
Russian-speaking developers inspired by Stack Overflow. Initially,
we launched the site out of curiosity, but after a couple of
months everything changed and we began to work seriously on
building the community. A year and a half later, HashCode had
become one of the most popular Q&A sites for software
developers who speak Russian. In 2014, the site was acquired by
Stack Overflow and became one of the four international Stack
Overflow communities. I continued working on Stack Overflow in
Russian as part of the company. The Russian-speaking
community continued to grow, growing faster than any other
Stack Exchange community at the time. Subsequently, among all
Stack Exchange communities Stack Overflow in Russian became
third by the number of questions per day, the main metric of
activity. After that, I continued to help the community
management team, first as a leader of all international sites, and
then I became fully focused on community data analytics and
community strategy.

While working on Stack Overflow communities, I read every
book on community management I could find. I noticed that
they all shared one common trait: the ideas presented in them
are general. The materials I found mostly dealt with abstract
concepts and did not explain in any way how to apply the
presented knowledge in practice. Let’s face it, there’s a big

difference between knowing that there is such a thing as a sense
of belonging and being clear about the initiatives you need to
run to impact the sense of belonging among users in your
community. Books on community management were interesting
to read, but the practical advice extracted from each of them was
minimal. It seems that now, 10 years later, the situation has not
changed. The community manager still has the same three main
sources of professional applied knowledge: literature on
generally accepted disciplines such as sociology and social
psychology, colleagues, and trial and error. I will assume that not
everyone has the time to acquire knowledge from an abundance
of books, nor does everyone have access to experienced
colleagues.

Community management is not rocket science. I don’t see
why community managers should all gain experience from
making the same mistakes. Progress is only possible when we
learn from each other. This book is my contribution to our
collective step in that direction. The true value of specific
knowledge is revealed only in the context of its application.
Therefore, the basis of the book is the most important and
obscure applied tips, which, in my view, helped the community
management team to grow the Stack Overflow communities the
most.

The book consists of three parts.
When you launch a community, your main goal is to attract

first-time users. The problem is that everyone only wants to
participate in successful communities, but for a community to be
successful, it needs people to participate in it. This is a typical
chicken and egg situation. In the first part of the book, we will
talk about how my friends and I launched HashCode.ru, a copy
of Stack Overflow for Russian-speaking developers and how we

attracted the first users to the community when no one knew
about it.

In the second part of the book, I will succinctly, without
further ado and avoiding fluff, talk about what community
management is. Basic definitions, how to work with volunteers,
what approaches to community growth there are and how to use
them, how to build communication with the users, and much
more. If in the first part, we talked about how to attract first-time
users, then in the second part we will focus on how to make sure
that those who come, stay and help you attract more new users.
Suppose you have ever thought about creating your own online
community, or have already created one, but are having any
difficulty with it. This chapter will most likely be useful to you.

Activity in the Stack Overflow community has been declining
over the past few years. At the time of writing (late 2023), activity
in Stack Overflow is comparable to the level back in 2011 (the
site was launched in late 2008). In my view, the reasons for this
lie in how currently the management of community processes
has not been organized wisely. In the third part of the book, we
are going to look at some of the most critical mistakes that, in
my view, led to the current state of affairs in the community. This
section may be of interest to leaders of community management
teams who are involved in process design in companies whose
main product is the community itself.

While at Stack Overflow I was working on Meta posts, I
usually managed to write about ten pages of text per day. Then I
spent another two to three days cutting down ten pages to one
and a half pages, eliminating all but the absolutely essential
thoughts. This book was written on a similar principle. I tried to
take only the most important and unobvious, excluding common
knowledge to make the book as short as possible, but still
interesting to read.

In the book, I tried to reflect on the result of my 14 years of
experience in building and growing online communities.
Everything I say in the book, I say on my behalf. My views may
differ from those of other members of the Stack Overflow
community management team, the company’s founders, and
the current management. I see great value in this.

My personal goal, as an author, is to make sure that after
reading this book, you fall even more in love with creating and
growing online communities, and your users participate in them
with even greater pleasure.

I hope you enjoy reading the book.

Part 1

To do pull ups, you need to do pull ups

Nobody knows the future because it is not defined. People who
have experience and knowledge can make hypotheses about
what the future will look like, but no one can say for sure
whether your community will be successful or not. The optimal
strategy in this case is to think about whether the community
you are thinking of is worth your time, effort and money, and if
it’s worth it, then launch and grow the community as efficiently
as possible, as quickly as possible, paying minimal attention to
other people’s opinions.

How it got started: Doing the right thing is more
important than doing things right
I started my professional journey as a software developer in a
small company consisting of 5 people. The company’s main
product was a distributed program that could perform various
computing tasks on a large number of machines simultaneously.
It was a kind of advanced technology for that time, so the work
was very interesting, but not stable, since this was not the
primary business for the founders. After working there for about
a year, I decided it was time to move on and get some real
experience working for a big company. My choice fell on
Motorola which had a software development office in St.
Petersburg consisting of more than 700 people.

Working for a large company like Motorola has significant
advantages like being introduced to refined industrial software

development processes and the opportunity to work alongside a
huge number of experienced colleagues. At the same time, you
suffer a huge disadvantage, which largely determined my future
fate. Any employee of a large company is just a small cog inside
a huge mechanism. An employee’s task is to do their highly
specialized part of the job well, forgetting about everything that
goes beyond this scope. In order to somehow continue our
professional development, several guys and I began to meet
regularly to discuss new technologies after work in the office
kitchen over tea. At that time (2009–2010), a lot of interesting
things were happening. Android was starting to gain
momentum. Google began to actively develop its Chrome
browser and an API for it, machine learning began to penetrate
everyday life. At some point, we decided to transform our tea
discussion club into an applied research club. We started doing
small projects on weekends using technologies that we talked
about during the week.
Note: Subsequently, a few commercial projects were launched based
on our research. The ability to experiment with new technologies is
important even in large companies.
Studying new technologies involves a constant search for
information about them. The realities of 2010 were such that it
was difficult to find information about anything. For example, if
you were faced with a problem compiling the code for your
project, finding a solution to the problem could easily take a
whole week. During this time, you usually read the compiler
documentation, email correspondence from other developers
having similar problems posted online, and several dozen
threads on online forums. Finding information was a real manual
art. If you found something once, there was no guarantee that
you could find it again. Information about new technologies was
even more difficult to find. Therefore, within the framework of

our discussion club, we agreed that when someone found
something interesting, they would save this information to a file
on their local computer so that we could further exchange the
accumulated knowledge.

After about six months of our discussion club’s existence, we
began to notice that when we were searching for information
about new technologies of that time (Android, WPF, GWT, etc.),
we always ended up on the same website. It was Stack Overflow.
At one of our tea meetings, we thought, why do we exchange
files with our personal knowledge bases if we can launch a
website like Stack Overflow but just for us in the Russian
language and publish all our findings there? After a short
discussion, that’s what we decided to do. Moreover, at that time,
launching a website in itself was an interesting technical task,
especially for us since we worked on operating systems for
embedded systems. Creating a website was something from
another universe and quite enjoyable. It didn’t seem realistic to
write our own website from scratch, so we found a good open-
source engine and after a month of working on weekends, we
launched the first version of what today is Stack Overflow in
Russian.

Initially, we launched our website just for the sake of sharing
knowledge, but at some point, as a joke, we decided to calculate
approximately how much a typical online forum about
programming in the Russian language earns (and how much we
could earn!) According to our most minimal estimates, the
income was ten times higher than the salary for a developer in a
good company. This was such a huge revelation for us that we
discussed this topic for several more weeks. One day it turned
into the discussion of another question. Why not try to turn our
weekend project into a full-fledged Q&A forum for
programmers? We are experienced software developers and we

can make a high-quality product. What could go wrong? It
seemed to us that if we just tried, the project would become
successful, and we would become if not millionaires at least ten
times higher paid developers.
Note: Further in the book I often mention HashCode as an example
of an online community. It is important to note that everything that
is true for HashCode is true for any international Stack Overflow site
and in most cases is true for Stack Overflow in English itself.

Note: Chances are, unless you are a programmer, you might not
know what Stack Overflow is. Stack Overflow is a Q&A site for
software developers, where anyone can ask their own question or
answer other people’s questions. The Stack Overflow site is part of
the Stack Exchange network, which consists of more than 170 sites
on a variety of topics. When someone says “Stack Overflow” they
default to “Stack Overflow in English”. In addition to Stack Overflow
in English, there are four more Stack Overflow sites in other
languages on the Stack Exchange network. In Portuguese, Japanese,
Russian and Spanish. We call them “international sites” or
“international Stack Overflows”. All international communities are
absolutely self-sufficient and do not depend in any way on Stack
Overflow in English.

1. Recruiting a critical mass of users

Once we decided to make a full-fledged website, we spent a few
more months refining what we had into a version that could be
called an MVP. As soon as the updated website was launched, we
immediately uploaded the accumulated knowledge base onto it
and began to wait for the first happy users of our community… A
day, two days and then one week passed, but no new questions
appeared on the website, no answers, there were not even any
registrations. We began to understand that for the system to
work, simply uploading the knowledge base to the website is not
enough and we needed to do something else. Thus, one of the
most difficult periods in the life of our community began. The
period of initial growth, when it is necessary to solve the chicken
and egg situation: an online community is successful when there
are people who participate in it, but people usually want to
participate in communities that are already successful.

Seed the initial content that encourages users to
take some actions
So, by this time we had a working website with an initial
knowledge base of about two hundred questions. Our main goal
was to attract active users who would ask questions themselves
and answer questions from others without our direct
participation. To achieve this, we decided to pursue two
development strategies: continue writing interesting questions
and answers and create opportunities for users to act.

1. Create interesting content
Folks at Stack Overflow always openly said that their main source
of traffic was search engines, which gave them more than 95% of
all pageviews. The economics of the project was such that Stack
Overflow consisted of two types of questions. The first group
consisted of a huge number of very specific niche questions that
on average received only a few dozen views each. Their second
group consisted of a small number of highly popular questions
that were viewed tens of thousands of times.

In order for search engines to send us users, it was
necessary to create the content that these users were looking
for. Our plan was to create something that was in great demand.
Armed with search query statistics services, we tracked what was
trending at that time and wrote questions and answers on these
topics.

When we were publishing content on our website, we used a
little trick. We posted the content from many different accounts.
There were two reasons for this:

1. When new users come to a website without knowing
anything about it, they infer the culture of
communication and behavioral norms of the community
from the existing content. By publishing content from
different accounts, we showed what kind of culture we
would like to see in the community.

2. Posting Q&A content from one account looks unnatural
and can put people off.

Using multiple accounts to populate a website with initial
content is a common practice. The most important thing in this
case is to be honest with yourself and other people and do not
use accounts created to fill the website to gain votes, reputation
or support your own opinion.
Note: Like attracts like. We were very attentive to the quality of the
content we created, and this greatly helped us in the future. The first
users wrote their posts using a communication style that was very
close to ours. There were practically no violations, moderation took
minimal time.
We posted five to ten questions a day. In addition, I asked my
friends to ask questions on our website when they encountered
any problem at work. At one of these moments, I realized how it
is sometimes difficult for a person to create a post on a public
website. One day, a close friend of mine, with whom I worked at
the same company, was faced with a compilation problem and
asked me to help him. I had already solved a similar problem
and knew the answer. I told him that I would help him on the
website as soon as he asked his question there. I wrote the
answer in a text editor and was ready to post it, but the question
from my friend did not show up until the end of the day. My
friend spent several hours looking for an answer to his problem
on the Internet, not wanting to ask it on a website. Finally, in the
evening he only spent 10 minutes posting a question and
immediately received an answer from me. Why is a person
willing to spend a day searching for an answer to their question
instead of spending 10 minutes writing a question and posting
online? Because asking questions in public online communities is
incredibly stressful.

2. Create opportunities for users to
act
In fact, the goal of any early-stage community is not so much to
create content per se, but to attract new users who are
interested in the community’s topics, so that these users stay on
the website and create new content on their own. For this to
happen, two requirements must be met:

1. There should be opportunities on the website for users
to perform some actions, as a result of which users can
showcase their skills.

2. Users should feel the need to take action here and now.

In the context of our community, the questions and answers we
wrote brought us real users from search engines, but they did
not create the essential requirements for user actions. To start
engaging users in the community, we began intentionally
posting unanswered questions and then engaging the users in
the comments to their posts. We were creating other tasks that
required user actions and looked urgent from the users’ point of
view.

Incentivize one side if your community is a multi-
sided platform
Multi-sided platforms are those systems that require the
participation of several types of actors to function properly. The
main problem with multi-sided platforms is when you want to
grow such a system it is difficult to ensure that the optimal

balance of interests between multiple user groups is maintained.
If you let such a system grow naturally, then there will always be
an imbalance of interests and the system will grow very slowly.
The most common approach to growing a multi-sided system is
to stimulate the interest of one of the sides.

In the context of Q&A websites, if you let a community grow
naturally, you will constantly be faced with a situation where
there are not enough questions for experts to answer to keep
them interested in the community or when there are not enough
experts to answer learners’ questions fast enough so they want
to use the community again. HashCode was a two-sided
platform as well. In creating the final value—a question with an
answer—two types of actors are involved (askers and answer
givers). In the beginning, to keep our community growing, we
incentivized those who answered by asking unanswered
questions. When the community had experts who regularly
visited the site, we moved on to encouraging people to ask
questions.

Be careful, the imbalance on multi-sided platforms is
achieved not so much due to the difference in the number of
users, but in the level of their activity. For example, on
HashCode, one answer giver could help several dozen users with
questions, but I rarely saw anyone who had more than one
question per a day. As a result, to achieve a balance of interests
on HashCode, we needed to have several hundred active askers
for every answer giver.
Note: Online communities do not have to be multi-sided platforms.
For example, Wikipedia is a one-sided platform because in order to
write an article there is no need to wait for someone to suggest
writing it. You can just go ahead and create the article you want to
have on the site.

One way to get people interested in your
community is to tell them how you are working on
it
We launched a project blog almost immediately after the launch
of the community. Before Stack Overflow, programmers had
solved their technical problems online either on forums or
through email correspondence. The idea of a Q&A website with a
knowledge base optimized for reading was a big cultural
innovation. When we introduced HashCode, we were constantly
faced with a misunderstanding of how the website works and
the rules of interaction on the platform. In order to explain it, we
began to post short articles on our blog about the basic
mechanics of the website and moderation of the community and
then we continued with posts about all the main stages of
development that we went through.

Stories about the community enable the users to form a
group identity. Users begin to better understand the community
structure and moderation rules. In addition, projects that
constantly talk about the progress they make inspire more trust
and strengthen faith in their future success. In a blog, you can
write about any technical innovations, project news and the
entire inner workings of developing or choosing your software
and creating community rules. Conduct surveys and make
announcements. Tell the users about other users and interesting
content on the site. Basically, you can write about anything that
has anything to do with the community.

There is one topic that should be avoided. Don’t write about
the industry itself. Stories about the industry will turn your blog
into a news portal. Industry news in and of itself isn’t a bad thing
and can be very interesting, but it won’t help you build a
community. If your goal is to create a community, then any

information posted should relate exclusively to the community
itself (the platform and the users).

Use contextual advertising when no one knows
about your website
A minute of mathematics: In 2014, when HashCode was already
a popular place for finding answers to programming questions,
with 40 thousand questions in the knowledge base, the website
received about 20 thousand page views per day on average,
which resulted in 30 new questions daily. One user viewed about
1.3 pages on average. In other words, 0.5 views per question in
the knowledge base and 1 question per 500–600 unique users.
Thus, in order to receive one question a day from real users, we
needed to have about 1500 questions in the knowledge base, or
attract a large number of people to the website in some other
way.

After several months of working on community content, we
had about 500 questions in our knowledge base. Search engines
sent us real traffic, but it was not enough, nobody registered on
the site; we only dreamed of having questions and answers
posted by some users. To somehow speed up the process, we
decided to use contextual advertising to compensate for the lack
of search traffic.

We chose contextual advertising because it is most effective
at the earliest stage of an online community, while the
community is still unknown. Here’s how it works.

When no one knows about your community, advertising
can be shown to the entire target audience. Everyone
who gets interested in the ads will click on it. The cost of
attracting users is minimal.
When part of the target audience already knows about
the community, in order to receive the same number of
users coming to the site through advertising, it is

necessary to show more advertising or do it in a more
targeted way. This increases the cost of user acquisition.
At some point, most people from the target audience
already know about the community and only a small
portion of those who see the ad will click on it and even
they might already have an account on the website. This
is the moment when the costs of attracting new users
using contextual advertising become unreasonably
high.

By the same logic, the cost of acquiring new users becomes
more expensive when you increase the amount of paid traffic
you want to drive to your website. Advertising can be a very
effective tool but it can also quickly deplete your money without
a return.

When we just started, no one knew about HashCode and we
didn’t need a lot of traffic. Contextual advertising seemed like a
good solution. After some experimentation, we managed to set
up advertising in such a way that we got registrations on the site
for about $1, while every second person registered in the
community posted a question or an answer.

Much of our approach was about promoting specific
experiences that we thought would motivate people to join the
community. For example, we attracted answer givers with
slogans like “new interesting programming questions every day”
and askers with slogans like “get help with your programming
issue for free”. We noticed that specialized words (such as
reserved programming language keywords) in the ad title
generated more clicks, as did a specific call to action in the ad
(such as “ask a question” or “sign up”). Also, when we sent people
from the ad directly to the end page where we expected them to
act we got more actions taken.

What to invest in advertising or content creation?
Initial content of the site sets the context that explains what
future content and in what form you expect to see on the
website. Sending people to a completely empty site is not
effective; people simply will not understand what is required of
them. So, I would not recommend starting an empty website,
turning on ads and expecting people to start filling it. Any
website should have some minimum initial content. Moreover, if
we had the opportunity to buy content cheaply, I think we would
have invested in that rather than in advertising. The truth is that
writing more or less good content is not easy. As a result, in real
life we need to invest in both.

Writing content and getting it into the index of search
engines takes time. In contrast, advertising creates traffic here
and now. As a result, advertising can serve as a temporary
solution until your site is receiving enough search traffic. You
should not rely on advertising in the long term, since the cost of
attracting a user will increase with the popularity of your
community. The sooner you can stop using advertising, the
better it is for the community and your finances.

Personally invite people to your community
Although we set up the ad to work effectively within the budget
we had, it only generated something like 3–5 questions per day.
When we tightened up our advertising campaigns to increase
paid traffic, the price of a posted question immediately soared.
We started looking for other ways to attract people to the
website.

At this point, I told my friends that I ran the community
quite often and now we had advertising experience. We decided
to combine these two approaches and try to invite potential
users in person. The approach was to search for those who

actively posted something about programming in thematic
groups on social networks. The reasoning was that on social
networks all discussions are public so it is easy to identify
proactive people, there is a private messaging feature, and, in
addition, social networks are not designed to solve technical
problems. We expected a lot of people to come to our site if we
invited them.

We decided to approach the task the same way we
approached working with contextual advertising. We created two
personas. The first persona was a question asker. The second
persona was an answer giver answering. Then we drafted a
template message for each person. Next, we went through all
the threads in thematic groups on social media that we were
able to find and if we saw active users who were posting
something about programming, we contacted them. For each
user we customized the template, always greeting the person by
name and writing why we decided to write to them. It took about
an hour to search and send twenty messages, but the result was
amazing. At least half of everyone to whom we sent the message
registered on our website. The nuance was that these were
mostly answer givers who helped others. There were very few
people who often asked questions, and at the very moment we
contacted them they had no questions to ask on our website.
Note: Stack Overflow is an applied knowledge base which means
that it is almost impossible to ask a question simply “for the love of
knowledge.” For a person to ask a question on Stack Overflow, they
need (1) to work on a real project right here and now, (2) to face a
problem that they cannot solve and cannot find an answer on their
own, (3) to overcome all psychological barriers and ask the question
in the community.
From time to time I received replies from people I wrote to. The
answers were completely different. Starting from constructive

criticism and questions about the project, through to obscene
language in protest against sending private messages with an
offer to join the community. If you ever decide to invite people
via private messages to your community, be prepared to
encounter everything from admiration to outright hatred.

Place posters where your target audience gathers
When you’re studying at university, most of what you do is new
to you. In addition, many people begin to take their first steps
towards their careers while studying. Students always have an
abundance of questions, at least in theory. Plus, any interesting
information spreads instantly in the youth environment, where
everyone is closely connected and in constant communication
with each other. Based on those thoughts we assumed that if
someone started successfully using our community to solve
academic programming questions, it could quickly become a
trend and we would greatly increase the level of activity on the
website. We decided that we needed to be present in universities
somehow.
Note: Our second guess was that beginner programmers have not
yet decided on their preferred place to get answers online. If they
become part of our community today and have a good experience
on the site, then in a couple of years we will have a lot of
experienced developers on the website. As I found out later, in fact,
things are somewhat different. Communities at different stages of
development are interesting to different types of users. The type of
users is determined by the current state of a community and the
challenges the users face, and not by the professional qualifications
of the users. When a community moves from one stage to another,
the most active users at the next stage of development slowly replace
the activists at the stage the community is passing.

Working with universities looked promising, but there was one
caveat. Placing an advertisement at a university was not an easy
task. The purpose of universities is to teach, not to monetize
their students. Usually at universities there is no place for paid
advertising at all, there are only bulletin boards on which
teachers post useful information for students. A bulletin board is
usually a real board, on top of which there are glass doors with a
lock, the key to which is kept by the dean who controls
everything that is posted on the boards. Although for the most
part the bulletin boards I saw contained information about the
educational process, from time to time there were also
announcements for internships at companies for students. It
seemed that there was a chance and we decided to try.

I chose one of the faculties at my university as a test, found
the contact details of the dean’s office and wrote an email
containing the essence of the proposal and a request to discuss
everything in person. Unexpectedly, they answered and made an
appointment for a meeting. On the appointed day, I went to the
dean’s office. At first everything was quite hectic, but at some
point the dean put everything aside and began asking about our
community, basic mechanics and how he could help us.
Everything went so well that we were allowed to not only place
posters for free on the bulletin boards, but also they offered to
place the logo of our community on the main page of the faculty
website with a hyperlink! After such success, we decided to scale
the approach to other technical universities in the city. I found
the contact details of the faculties where they taught
programmers, wrote to them, went to personal meetings with
them and, with their permission, placed our posters on all
bulletin boards that I could find.

A few words about our posters. Contextual advertising on
the Internet is a small text block consisting of a title, a short

description and a call to action. Banner advertising offline is a
completely different story. If you limit a poster to just text or a
slogan, the poster will be forgotten as soon as a viewer takes
their eyes off it. Offline banner advertising should be
remembered and evoke associations not only when a person
looks at the poster, but also hours later (a lot of time will pass
between the moment a person sees a poster and the moment
when we want them to recall the information from the poster).
Over many years of evolution, human visual memory has
become geared toward remembering faces. As a result, if you
want your poster to be remembered, add a human face to it. For
example, for our poster, which we placed at universities, we
bought a photograph of a red-haired (in the color of our logo)
smiling woman in business attire giving a “thumbs up” to our site
from a stock image platform. Then we added a title, a call to
action, and a few frequently used keywords from the
programming world to the poster.

We placed posters not only at universities, but also in the
offices of large software companies. The approach at companies
was a little different. Instead of looking for some kind of a
decision maker, I wrote to my friends who worked at those
companies, met with them and asked them to place a poster on
the bulletin board or in the company’s cafeteria, with the
permission of the management, of course (Note that I have
never heard of management at any company that was against
it).

As time had passed, we had reason to believe that several
very active users came precisely from placing the posters at
universities. That fact made this approach a good investment of
our time. I tried to negotiate the placement of posters whenever
it was appropriate. For example, one of the corporate events
that the company where my girlfriend worked at that time was

held in Riga. The employees were allowed to take their
significant other with them and I went on the trip with her. After
arriving in Riga, the first thing I did was find out where the Riga
Technical University was located, printed out our posters and
went to the programming faculty.

Speak about your community at conferences and
meetups
When I contacted universities about placing posters, many
deans greeted us with great enthusiasm. We were asked many
questions about our community and were told about the actual
problems of students. At one university we agreed to try to hold
an offline event, where students would have the opportunity to
ask any programming question they were interested in in real
time. Organizing the event seemed quite simple. All that needed
to be done on our part was to gather experts who could answer
questions. I knew several programming languages well and was
aware of the main trends. To cover the rest of the technologies, I
invited four of my erudite friends.

For such an event to be successful, it is important to have
two things. The first thing is an introductory warm-up speech, a
presentation or a story that will make attendees relax and
engage in the process, something simple and entertaining.
Secondly, one needs to have swag that they give away to active
participants. Swag would add a gamification component and
stimulate the people to be active.

I prepared swag and an introductory presentation. On the
day of the event, I picked up my friends and we went to the
university together. It turned out that the event would take place
in the main assembly hall with a capacity of about a thousand
people. Our team took the stage, and the main page of

HashCode was displayed on a ten-meter-high screen behind us.
The event had begun.

I warmed up the audience with the introductory
presentation, brought swag onto the stage and invited the
students to ask their questions. Oddly enough, the audience did
not have any questions about programming itself (remember,
you can ask applied questions only if you have a specific problem
at hand). Fortunately, we had a “Plan B”, according to which,
each of the experts on the panel told several interesting
technical stories from their field, and then we moved on to
discuss how one can successfully look for their first job in the
industry.

Honestly, the event did not go as we expected. After
weighing the pros and cons, we decided to abandon this type of
partnership with universities. It seemed to us that the format
when the audience needs to ask questions is not effective. In
parallel, we had worked through several other variations of
offline formats. Our conclusion was that being a speaker at an
event is worth the effort only if we present the story of our
community, its structure and the problem solved by it to the
domain experts. The most critical thing in this case is to find a
place where you can access those experts. For example, when
we launched a community of mathematicians, I contacted one of
the best mathematical educational institutions in the city and
agreed to present them with the idea of a community.

Hold joint contests
Seeing the success of working with universities, we decided to
try to expand the community with online partnership programs.

The essence of partnerships is that you need to find a
partner such that you both get more from the partnership than
you invest. To achieve this, you need to look for non-competing

projects with a similar target audience, which most likely is
unaware of your community, and negotiate with these projects
to direct their audience to your website in exchange for
something else (for example, you will send your audience to
their website or pay for swag for the audience of their project). It
is easier to find partners among projects that are trying to grow
or very large companies. The reason is that projects that are
trying to grow usually use all opportunities they have, and large
companies have enough resources and altruism to invest in the
development of the industry itself.

Let’s see how this works using the example of a contest that
we held with the “Developer Jokes” project (not the real name).
Developer Jokes was a group on social networks in which the
authors posted various jokes somehow related to programming.
(I was subscribed to them; their jokes were funny!) The point of
the contest was that for several weeks, every two days we posted
a puzzle question on our website under a special user account.
The administration of Developer Jokes, at the same time as we
did, posted a link to the question on our website in their group
on social networks. The winners, people who answered the
questions correctly first, received from us a t-shirt with the joint
logo of HashCode and Developer Jokes projects. We paid all the
expenses for the swag and for sending them.

Partnerships can be completely arbitrary. For example, at
some point information partnerships had gained momentum.
Most conferences were using this type of partnership. A
conference partner needed to announce the event to their
audience and in return it received something from the
conference organizers. Usually, conference organizers offered to
place the logo of a partner with a link to its website on one of the
pages of the conference website. We actively used information
partnerships to increase the number of backlinks to our website.

Information partnerships did not bring us direct traffic, but in
the eyes of search engines our domain’s trust greatly increased,
which gave us higher positions in search results and more traffic
to existing content.

In conclusion
Making people aware of your community is one of the most
difficult of the launch phase tasks. In addition to everything
described above, we tried many other approaches to promote
our community, from distributing flyers at the entrances to the
business centers of large IT companies to posting answers to
programming questions on third-party sites with a back link to
our website. No one knows what will work for you; there is no
universal solution. There is only one universal truth. No one will
ever know about your wonderful community if you don’t talk
about it to everyone, everywhere and all the time.

2. Onboarding and engaging early
users

In total, my friends and I needed to ask a little more than two
thousand questions before the questions on the site began to be
asked by the users themselves. It’s hard to imagine how
exhausting it had been for us to keep creating content for that
many months. It was a real ultramarathon for our creativity. We
saw every new user in our community who asked or answered
questions as a treasure. We did everything possible to ensure
that the users got the best possible experience from our
community and returned to the website again. Let’s look at the
activities that helped us the most in onboarding and engaging
early users.

Provide feedback to users as quickly as possible
One of the factors that critically influence the experience of a
user is timely feedback on the user’s actions. There are three
types of feedback:

1. Positive feedback is when someone reacts positively to a
given user’s actions.

2. Negative feedback is when someone expresses
disapproval of a given user’s actions.

3. Absence of feedback is a situation when a user does not
receive any reaction from the community to their
actions.

Positive and negative feedback are the basis for user
engagement since they carry information about a user’s actions.
The absence of any reaction to a user’s action or a reaction that
is difficult to interpret is something that should be avoided at all
costs.

Our standards for feedback to the users that we strived for
were an answer within an hour and an edit, comment, and
upvote within thirty minutes.
Note: Since at the very beginning of the community we tried to
answer all the questions that appeared from real users on the site
ourselves, other answer givers had little opportunity to show off their
skills. To compensate for this, we asked questions until the real
answer givers began to answer all the questions faster than we did.
At this point, we stopped writing content on the website completely.

Define and optimize user funnels from landing on
the site to creating content
Growing online communities largely comes down to engaging
users to create content in the community. The more effectively
you convert passive readers into active users who contribute
content to the site, the faster your community will grow.
Note: From a marketing perspective, growing anything comes down
to creating effective funnels. The idea of a funnel is to send people to
your target page and expect some of them to take the action you
want. The more people act, the more effective the funnel is.
The peculiarity of HashCode was that we had two types of users:
those who answer questions and those who ask questions. Each
type of user approached posting content differently. The vast
majority of those who ask questions came to the site from
search engines to a page with a specific question. If none of the
answers to that specific question answered the person’s

question they came to the site with, the person had a choice:
continue searching or ask a question on the site. Thus, for many
people, the question page was the main entry point to the
community. Therefore, we optimized the question page to
contain multiple calls to action for users to start asking
questions on our site.

For those answering questions, our user persona of the
answer giver looked a little different. These are people who are
passionate about programming, lack interesting technical tasks
at work and have some spare time to spend on forums. Besides
landing on a specific question page through search, we saw two
other main funnels for such users: direct visits and visiting the
site through subscription to content.

In the case of direct visits, the best way to engage is to
provide the users with the ability to effectively find content that
interests them. Typically, a full-text search on a site is not a
suitable solution for this. Filtering is needed to allow users to
create a selection of posts based on some categorical
characteristics. On HashCode, we provided users the opportunity
to select content based on question types (unanswered, new,
last week, etc.) and tags. With the move to the Stack Overflow
platform, users got an even more flexible way to select questions
based on their attributes (closed or open, time posted, number
of answers, etc.) Our rule of thumb was that the more flexible
the way one can select content, the more likely they are to find
content that they want and will act on it. When a user was
creating a selection they wanted, we always gave them the
option to save the selection and subscribe to receive updates on
the selection via email or RSS. These subscriptions formed the
second type of funnel for engaging users.

Not all people who come to your site have something to
contribute to the community at the particular moment they

come. At the same time, your goal is the same: To engage users
by making them start creating content in your community. One
popular approach is to welcome each new user and ask them to
write something about themselves in a special place for non-
thematic activities. This allows users to be able to participate and
have a complete and positive experience in your community.
Note: Overall, we can say that a user has an opportunity to act when
(1) they can find content that interests them, (2) the content assumes
that some action is needed and (3) they can show off their skills by
acting.

Strive for high quality content and respectful
behavior of users toward each other
Let’s briefly talk about the quality of content and interpersonal
relationships, which go hand in hand on the Internet. At the time
we launched HashCode, users of the vast majority of online
forums did not see any issue in writing posts illiterately, ornately,
etc. Low-quality posts were very common. The second
characteristic of the Internet forums at that time was that some
people reacted harshly and negatively to these same low-quality
posts, as well as to many other violations. One thing led to
another and then both led to constant drama, causing many
people to fear the mere thought of participating in online
forums.

We looked at the situation and we got the idea that much of
the rudeness on online forums happened due to the difference
in the view of the reality of different types of users. For example,
“oldies” who have been using a forum for a long time sincerely
did not understand how one could post anything on the forum
without reading the community rules, or asking a question that
was almost identical to many existing questions. At the same

time, those posting on the forum for the first time did not see
anything wrong with not knowing some of the nuances of the
rules of a random forum on the Internet, and in general, “they
have always communicated this way with friends and colleagues
and no one ever got angry at them for it”.
Note: I have asked questions on online forums myself many times
and I know that asking a question is much more difficult than
answering it. First of all, psychologically. Imagine that you are in a
classroom at school. Posting a question is similar to when a teacher
calls on you to stand in front of the class and asks you something
you don’t know. I forgot to mention, this is your first day at the new
school! On the other hand, posting an answer feels similar to the
situation when you raise your hand to be asked about something
you certainly know. Those are radically different psychological
experiences.
This may sound counterintuitive, but each side, within its own
reality, was right. We saw our task as bringing two realities into
one. To awaken empathy and compassion in experienced users
towards people with less experience on the site or within the
topic, while at the same time maintaining the quality of content
in the community at the highest level. To accomplish this, we
performed the following activities.

Moderate all posts from new users
First of all, we improved all posts that, in our view, could be
improved in any meaningful way. Grammar, punctuation, clarity
of wording, we paid attention to even the smallest details. Our
goal was to create an “island of knowledge” in the “noisy ocean
of the Internet.”

Editing posts is one of the best ways to help new users
adapt to your community’s standards. When you improve
someone’s post, (1) the author of the post clearly sees what is

required of them in terms of writing, (2) the author of the post
also sees that there are people in your community who are ready
to help others by taking real actions instead of just criticizing
them, and (3) the other users of your community learn ​​how to
behave (editing instead of criticizing) when they see
shortcomings in someone else’s posts.

On HashCode, we moderated the first few posts of each new
user. Here is why. At the moment a new user posts a message on
the site for the first time, they have not yet formed friendly
relations with other users, they do not have any positive
experience participating in the community. In other words, there
is nothing holding a new user to the site. As a result, new users
most likely have no motivation to do anything more than the
absolute minimum. Any negative experience can lead to a
person leaving and never returning to the site. At the same time,
new users do not yet know the rules of your community and as a
result, the first posts of new users are the venues where the
most rule violations from newcomers and rudeness in response
to them from the regular users occur.

It’s best to moderate the first posts personally until you find
volunteers who have a high level of empathy, the time and
desire to help newcomers adapt to your community and
understand the mechanics, tools and rules of the site. Those are
very special people, and they are not easy to find.

Use canned comments
Imagine that a person is taking a bus ride and their foot is
stepped on. How will they react? Most likely, they will smile and
say that no harm was done. Now imagine someone’s reaction if
their foot is stepped on every day, many times during the trip.
What will their reaction be when someone steps on their foot
again? I’m guessing we will not see a smile on their face.

Most of the rudeness on HashCode (as in any other online
community) came down to a few situations when new users
made typical mistakes. These mistakes at some point began to
cause an exaggerated negative reaction among regular users,
solely due to their regularity and typicality. Moderation of such
negativity is mandatory, but only helps to a certain extent. If you
simply introduce a rule that prohibits the negative reaction, the
open negativity will turn into veiled passive aggression. The
reason for this is that it is natural to react negatively to the
violations of a community’s cultural norms or a misuse of the
community.

At first, each user reacts to violations of the community
norms in their own way, but over time, naturally, the reactions of
all regular users get consolidated into one reaction, which the
majority of users adapt to. This adapted reaction will not always
be the best or can even diminish respect for community
members. Therefore, you either need to offer your own version
of the reaction to typical violations that users can use or come to
terms with the version that the users will come to naturally.

On HashCode the most typical mistakes occurred in
questions and caused rudeness in the comments to those
questions. To minimize this rudeness and establish the desired
reaction to those typical mistakes, we asked users to use special
canned comments, which covered the most common situations.
Note: Canned comments on HashCode were available to users
directly via web interface. Just below the comment input field there
was an option to select a specific canned comment from the list.
After selecting the template, the site engine added text to the input
field, but did not send the comment to the server, and the user had
the opportunity to modify the comment if necessary.
A few words about the canned comments themselves. Canned
comments should be written from the perspective of the reader,

that is, the person to whom they are addressed. Comments
should not contain negativity, judgment or criticism. They should
be short and clear. Creating a list of canned comments is a great
task to work on with the regular users themselves. Once you
have a vision for the first few comments, start a public meta-
discussion. In the discussion, suggest your own templates,
explain in which situations which template to use, and allow
users to suggest their own options and improve yours. The
ability to discuss templates and offer suggestions will encourage
adoption by regular users who usually moderate the community.

Storytelling
HashCode was a community of volunteers who used the site
because they saw some value in it. It was impossible to make
volunteers do anything without personal desire. They either
wanted to help us with something on the site, by doing
something a certain way, or nothing happened. Creating canned
comments and software for using them was only the first step.
Next, we needed to convince users to use the proposed
approach. Even now I know of no more effective method of
motivating people to adopt social and software innovations than
through storytelling and we used it a lot.

When writing stories, it is very important to know your
audience and write stories that create empathy in your readers.
The core of the HashCode community was mostly experts who
answered other users’ questions. We were writing the stories
mostly for them. We tried to show the psychological experience
that a new user has when asking a question on the site for the
first time and how this experience affects the quality of those
questions. We talked about the tools users can use to convey to
the authors of low-quality questions what they wanted to
convey. At the same time, we explained how the editing

mechanism works and that editing others’ posts is not only okay
but also the only sure way to create a community in which
everyone writes competently and clearly.
Note: We wrote stories not only about the mechanics of canned
comments, editing and also the importance of treating each other
with respect, regardless of the circumstances. We tried to document
every cultural aspect and every engine mechanic that confused the
users.

What it takes to launch a new community
A year after launching the software developer community, we
followed the Stack Overflow example and started scaling our
Knowledge Network. First, we divided the software developer
community into three: a community of programmers, a
community of system administrators and a community of
advanced PC users, then we launched a community of
mathematicians and immediately after that a community of
Russian language linguists. Subsequently, we launched six more
communities on different topics.

My main conclusion is that any community requires a lot of
human resources at the startup stage. At some point we
introduced a rule for ourselves that we would launch a new
community only if (1) we have a person who can create an initial
content of at least 500 questions and answers, (2) this person is
ready to answer new users’ questions and (3) moderate the
community for at least six months after the launch. If at least
one of the conditions is not met, the community is most likely
doomed.

Why some communities got off and others did not
In total, we launched 11 communities about completely different
topics. Many of them differed strikingly in the pace of growth.

The community of mathematicians got off almost immediately
on autopilot and one month after the launch, real people were
asking and answering questions on the site. It was something
incredible, especially in the context of the community for
software developers, which we worked on for more than six
months in order to get minimal activity on the site. The linguist
community has evolved at about the same pace as the
community of programmers. At the same time, in the
community about fashion no one asked questions even after a
considerable time. A reasonable question arose: Why did some
communities immediately become active, while others did not?

We noted the following criteria that influenced the future
success of a Q&A community on a given topic:

Potential users have access to a computer and the
Internet at the time they encounter a problem.
Availability of time restrictions on receiving an answer to
their questions.
Lack of people to answer a question offline.

In other words, a good topic for a Q&A community is a topic that
implies that a person interested in it works with a computer on a
daily basis, needs an answer here and now, and there is no one
to help them offline.

Let’s take a look at the mathematician community. Usually, a
person who is doing something related to mathematics needs to
solve a problem during a short period while being at home alone
(think of students). In the context of programming, the situation
will be similar except that the time limits are not as strict and
software developers often work in teams, so they can ask their
colleagues offline. Therefore, we can expect that all other things

being equal, a community of programmers will not develop as
dynamically as a community of mathematicians. This is exactly
what we saw.

3. Development of the ecosystem and
monetization of the community

By the time the community was about a year and a half old, all
content on the site was created by the users themselves. Our
organizational tasks were limited to content moderation and
some growth activities for the community. At this point, we were
still working on the project in the evenings and on weekends.
The costs of running the project were minimal. Just some money,
used wisely for the server and advertising only for new
communities.

While it was possible to moderate and grow the community
without compromising the main work and personal life, it was
not possible to develop any larger features. We simply didn’t
have enough time. Thus, over the last year of working on the
community, we have accumulated a list of features we thought
the site should have to grow faster. In addition, we began to
think about what the next step for the project should look like:
How to achieve profits that would cover the operational costs
and could reimburse ourselves for our investment to date and
look forward to a return on that investment in the future

I would quit my job and focus solely on the community for
six months was one option. In this case, we could add new
features to the site and monetize the community. Leaving a
stable job for nowhere was scary, since I had no serious savings.
Besides, I was not quite finished with my university degree.
Writing a thesis project and simultaneously looking for a new job

would not be easy. On the other hand, the project I was working
on at that time at my 9-to-5 job was not interesting to me, and
my professional growth within the company had long since
come to naught. The new features that we planned for
HashCode looked very interesting from the technical point of
view and promising in terms of business success.

It was a difficult choice. Working in a large company
provided stability, and working on our community attracted me
to the opportunity to try something new and hopefully create a
useful product. After weighing all the pros and cons, I wrote a
resignation letter and started learning a new programming
language, Go, in which we decided to develop our new
infrastructure.

Plans for the following six months
When I left my job, we had specific development goals: improve
the site engine, create a site that would connect all the
communities into a network and develop a job listing site.

Connecting communities to a network
Since the launch of HashCode, we have been looking at Stack
Overflow’s approach to scale. We looked closely at everything
that worked well for them and thought about how it could be
reused in our language niche.

In May 2009, Stack Overflow, the community, was divided
into three communities: the community of programmers (Stack
Overflow), system administrators (Server Fault) and advanced
users (Super User). In August 2010, folks launched the site
stackexchange.com, which united all the sites in a network.
Essentially, it was a site that provided a way to overview all
communities. It had a list of all communities, the most

interesting questions from across the network in real time,
leaderboards for each community, etc.

We decided to go in the same direction. A year after the
launch, we divided the community of programmers into three,
and then began to launch new communities on other topics
(mathematics, physics, Russian language, etc.). We needed a
website that would unite all communities into a single network
and enable users to review all communities easily. We did not
expect this site to significantly influence the growth of any one
particular community, but it should make the project holistic.
Plus it would make it easier for us to monitor our communities
and developing that site was a quite straightforward task.

Job listing site
Developing a job listing website was a much more ambitious
task than creating the network site. Developing your own
website from scratch, like any other large system, is very
difficult. The difficulty is not in writing the program code itself,
but in thinking about what the end users need, how to make the
site convenient and not too complicated.

An entire department has been working on Stack Overflow
Careers for years (Stack Overflow Careers was a job listing board
that Stack Overflow had at that time). We saw the only accurate
approach was to reverse engineer the site and program its
minimalistic replica.

Improving the Q&A engine
We used an open-source engine to host our communities. When
we launched, the engine was pretty much the same as Stack
Overflow was at the time. Since then, Stack Overflow has been
actively developing their Q&A site but the open-source project
we used has not. After a year and a half, the engine we were

using began to lag behind in its features. On top of that, since
we had several communities in our network, we needed to make
the communities know about each other. i.e. make it so that the
users had a single profile, shared reputation, etc. on all the sites.

Monetizing the community through the job listing
site
I left my job in October 2011 and spent the next 10 months
writing code without a break. Initially, our plan was to focus on
finalizing the technical infrastructure of the project and once
everything was ready, I would find a new full-time job. I
completed the network site and updated the Q&A engine quite
quickly, but the work on the job listing site took more time than
we initially expected. Instead of completing it in April, we did not
launch HashCode Careers until June.

We never raised funds, building the entire project with our
own money. As a result, along with the development time, our
own spending also increased, which we now needed a return on.
It seemed to us that either we would try to monetize now, or we
simply would lose our investment. I decided to put off looking
for a job and focus on monetizing the project by selling job
listings.

Why a job listing site?
Stack Overflow was never the first or the only Q&A site for
programmers. There have always been other communities. All
the alternatives at that time had one thing in common. They had
difficulty generating income. Some sites even switched to a
business model where visitors pay for accessing site content,
which many community users considered unethical. The Stack
Overflow founders’ idea was to make a site that is completely
free for all programmers and monetize it through third-party
services. Joel Spolsky (one of the founders of Stack Overflow) told
the story many times about how, as an experiment, even before
the launch of Stack Overflow, he tried to monetize his blog
through a banner with job listings, and that made him $90K in

revenue during the first month of the experiment. So, a job
listing site was not an accident. In addition, one project
complements the other. Stack Overflow Careers was adding a
special flavor to the community, and, on the other hand, all job
listings were shown to the core target audience. Thus, Stack
Overflow Careers has been an indispensable part of the Stack
Overflow infrastructure. We were trying to replicate the success
of Stack Overflow in our language niche, and a job listing site
seemed like a good next step for us too.

In addition to that, around the same time we launched
HashCode, another project was launched in our language niche,
a job listing site specializing exclusively in IT related jobs
(programmers, testers, data analysts, etc.) When that project
was one year old, its founders raised $100K in seed money. The
project was well known and looked successful.

There were reasons to believe that the market existed and
that there was an opportunity for small companies like us to
carve out a niche. We saw no reason why we shouldn’t try.

How HashCode Careers turned out
By the end of 2012, six months after the launch of HashCode
Careers, 2,000 people had registered on the site, 800 of them
created their CVs, and 77 job listings were posted. The site was
absolutely free for job seekers; employers paid for everything.
The cost of posting a job listing was $15, and the cost of
accessing the candidate database was $30 per month.

At that time the cost of getting one CV in the database was
about $30 for job listing sites. For us, this cost was reduced to
zero, since all we did was advertise the Careers site in our own
community. On the other hand, we definitely lacked the scale of
HashCode itself and the 800 CVs in the database were of little
interest to most potential customers. For the CV database to be

attractive to employers, it had to contain about 10 times more
candidates, and selling job listings turned out to be very
expensive.

The cost of selling job listings
Our approach to selling job listings was extremely
straightforward. We looked at who was posting job listings on
other similar sites and called these companies with an offer to
post their job listings on our site too. Recruitment managers
were very active in contacting us to ask about our job listing site,
the community, the prices, and many other things. Usually, a
phone call with them took at least half an hour of my time. Not
everyone was ready to work with a project in the early stages of
development so not all of the clients with whom I spoke
purchased job listings on our site. Those who did usually started
with a trial job listing to see how it would go. As a result, it
turned out that to sell a $15 job listing, we needed to spend
several hours of our time consulting with potential clients.

At a certain point, it became clear that things were pretty
much the same for everyone in the industry. Here is a small
example of how recruitment sites worked. We needed to hire a
designer. It was a huge job, so I decided to try using a regular
job listing site rather than a freelance site. I registered on the
site, entered the required data about our company and wrote a
job listing. I got to the very end of the process, all that was left
was to pay, but I didn’t have my corporate credit card at hand. It
was sad but there was nothing I could do. I closed that job site
and posted a free ad on my favorite site for finding freelancers
and forgot about the other job site for a while. For the following
month, every two or three days, the job site manager called me
and asked me to complete the posting. It was a real person. The
manager wanted to understand why I didn’t post my listing right

away, and offered to consult with me on how their site works
and talked about the advantages of working with them. “Is this
all for $15, really?” was going through my head and “How much
staff do you need to have to compete with these guys?”

I talked to several friends who were involved in similar
businesses. In their companies the situation looked similar. It
was not clear to me how we could make a profit in this economy.

An attempt to connect universities and companies
I still had contacts with the administration of various universities.
So, we decided to try to enter the market from the other side.

Universities are a source of junior specialists for many
companies. On the other hand, people go to universities to study
something so that they can find an interesting, well-paid job
afterwards. The typical student employment model then was
that undergraduate students did internships at companies
where they essentially worked part-time. Then, they wrote a
thesis on the topic of the project they were working on and then
continued to work in the company after graduating from their
university.

Students needed jobs, the ultimate goal of universities was
to employ students, and companies needed educated
employees. This created a unique situation in the sense that if
everything goes well, absolutely all parties would get what they
need. The nuance was that it was not trivial to complete a
“transaction”, that is, to make an agreement between the
company and the university to cooperate and somehow tell
students about the available opportunities. There was no
automation. When a company wanted to employ students from
universities, its representatives had to look for contacts from
each department at each university and go to negotiate
personally which is a ton of work.

Our idea was to improve our job listing site to provide
universities and companies with a special module through which
companies could post job listings for specific universities, and
university representatives could refer students to internships
and track their progress in the company. On our part, we would
significantly and quickly increase the base of candidates and
companies that worked with us.

I contacted two universities and three companies. Everyone
expressed real interest, so we put everything aside and finalized
the new module on our job site in a month, and when ready, we
resumed negotiations on a test project launch. Then the
unexpected happened. We and our partner employers were
ready to start right away, but universities began to postpone the
launch of the pilot. It looked like someone at some high level
could not decide when to launch even though the deans saw
high value in working with us. When, after a month, we still had
not received any response from our partner universities, we
decided to abandon the idea altogether. It was time to move on.

The split of the team
Meanwhile, six months had passed since the launch of
HashCode Careers and the reality began to dawn on us that,
most likely, with the available resources and traffic on the main
site, we would not be able to ensure sales of job listings at a level
for the company to break even. When I left my day job at
Motorola, I had a small amount of savings, which I planned to
live on for the next six months. Due to the protracted
development, I had to sell the only thing I had at that time, my
car, and based on the results of the six months that we spent on
monetization, even the money from the sale of the car
evaporated. On top of that, I’d been working 70 hours a week for

the last year. My vital energy and my tolerance for failure also
started to reach the zero mark.

The other problem was that we began to disagree within the
team on the vision for the future of the project. Part of the team
insisted on completely stopping work on the community and
investing everything that was left in developing the Careers
business. Their argument was that HashCode Careers is a real
business that can generate income. We had a high-quality
engine and first rate clients, as well as an example of a similar
startup that raised investments. I had a completely opposite
opinion. The Careers site looked really interesting, but I was
convinced that without a large community of programmers, a
job listing site would not have a chance in the current reality;
selling job listings was extremely expensive and required a large
number of employees.
Note: Interestingly, I encountered a similar situation later, when I
worked for Stack Overflow. Many executives and product managers
at various levels have long prioritized products that directly generate
revenue over community efforts. In my opinion, this approach is
justified only in one case: When the community is growing and does
not require many resources to keep growing. In my view, the logic
here is simple: if the community loses its popularity, all other
company businesses will almost immediately become ineffective or
even unprofitable, since the cost of selling the company’s products
and the complexity of selling the products will increase by an order
of magnitude.

Note: In the summer of 2012, for reasons unknown to us, search
traffic on HashCode began to grow exponentially. After a month of
growth, we were contacted by several venture capital funds who
were willing to invest in the project if it continued to grow.
Unfortunately, growth soon slowed down and we did not receive any

investment. Note to self, I concluded that for any startup, the
essential activity is growth. There will be growth, just like everything
else.
We couldn’t come to an agreement and the team broke up. I
bought the rest of the project and was left to work on the
community alone. Around the same time, Daria, the lady of my
heart, made it clear to me that it was time for me to stop playing
at being a startup guy and start thinking about the future. We
had already graduated from university and it was time to start a
family, so I needed some kind of financial stability. The issue of
monetization had become incredibly critical.

Monetizing community through advertising
Any healthy project, including a community project, must be self-
sufficient, otherwise it will sooner or later close down. At a
minimum, a self-sufficient project should cover all operating
costs (cost of servers, minimum staff, costs of running a legal
entity, etc.). There is another important reason to strive for
commercial success. I believe that commercial success of a
project is an indicator that what we do is not only important to
us, but also is useful to other people.

I was faced with a choice: either bring the project’s
economics to break even or close the project completely. I didn’t
want to shut the community down, so I created a simple plan.
Over the following month, I wanted to close all obligations to
clients on the Careers site and figure out another way to
effectively monetize the community. Then, no matter what
happened, look for a job.

I see two primary types of monetization in online
communities. You either monetize the users (that is, you sell
something to them), or you monetize the result of user
interactions (that is, somehow sell the content created by the

users). Basically, with the job listings site we were selling to
users, so it was time to try to monetize the content of the main
site.

Banner advertising from advertising networks
On our main site we had an advertising unit in the sidebar with a
static banner from the Yandex Direct banner network (the
largest banner network in Ru-net at that time), but we never
seriously worked with advertising, since our focus was on the job
listing site. At the very beginning, we added these banners to the
site as an experiment, to see how much money they could
generate. On average, we got about $0.3 per thousand
impressions from Yandex. It was so little that we postponed
advertising until better times.

When I revisited our banner ads again, the earnings were
very similar. I felt like I needed to do something more effective
than just placing a banner from one of the ad networks to
increase the revenue numbers.
Note: My general conclusion about banner networks is that only the
owners of banner networks make money on banner networks. If you
have a website that you don’t want to clutter up with a lot of
animated blocks that fill the entire screen, it won’t be easy to make
any significant money with banner networks. If you want to make
money from advertising, the only way to do it is to sell advertising
yourself.

Pay-per-impression advertising
To understand how and for how much other sites sell
advertising, I went through the main websites at that time,
which were somehow related to software development. I found
out that many popular sites had a media kit with prices for

advertising in public access. I also took a look at what companies
bought advertising on these sites and in what format.

Logically I divided all advertisers into two large groups. The
first group was small companies developing their only product.
The second group was large established companies that
dominated in their markets, such as Microsoft, Intel, IBM, etc. I
also saw two big types of advertising. The first type was regular
banner advertising. The second type was various special
programs. Although most of the special programs were very
diverse, the idea behind all of them was the same. It consisted of
a special landing page developed for the partner on the site
domain and some special element in the site UI (for example, an
additional button in the main navigation section or a modified
site logo) upon clicking on which a person was taken to the
landing page. Banner advertising was mainly purchased by large
companies, and special programs were purchased by small
companies. Special programs were purchased once, while
banner advertising was purchased by the same companies every
two to three months.

Banner advertising looked like a tasty morsel. It should have
been very easy to work with. All that was required was to add a
graphic banner to the site for a certain amount of impressions.
At the same time, the average check for the banner
advertisement was high. In our language niche at that time, a
thousand impressions were traded for $10. To start working with
it I needed to find the decision makers among advertisers and
invite them to use my site.

I created a list of all the big companies like Microsoft, Intel
and IBM which bought advertising on other sites and started
looking for contact information of their marketing departments’
representatives. Finding contacts was not difficult, it was difficult
to get them to reply. No matter how many times and to whom I

wrote, no one answered me. One day, I was ready to give up, I
had nothing better to do and clicked on a Microsoft banner ad
on one of the sites. The site redirected me to a landing page not
to the same domain, nor to the Microsoft domain, as usually
happened, but to the domain of a large integrator company. I
knew that company was selling software to universities. What I
didn’t understand was why they used advertising banners on the
Internet, because selling software to universities was definitely
done in a completely different way.

As it turned out, this integrator handled almost all sales for
all large companies. Not only to universities, but everywhere. It
was the integrator who was responsible for advertising
placement, and not vendors like Microsoft. From the outside, I
saw it like this: When the headquarters of a software company
somewhere around the world decided that an advertising
campaign for a product was needed, they contacted the
integrator, agreed on the details like budget and gave the go-
ahead to launch the campaign. The integrator’s job was to
maximize the use of the dedicated money, ensuring that all the
requisite metrics are met. I should have contacted the integrator
to sell the advertising, which is what I did after understanding
the issue.

Pay-per-action advertising
In addition to the companies that used banner advertising, I also
wrote to everyone who launched special programs on other
sites. As it turned out, they were not ready to pay per impression
for banner advertising but were happy to cooperate with us if we
agreed on the payment for an action. For example, for a lead we
send on their site, a user filling out a certain form, downloading
their product, etc.

As I found out after working this way, pay-per-action
advertising is not as profitable as paying for impressions. At the
same time, I had full control over the advertising on my site and
could set it up quite effectively. I was able to earn about $2 per
thousand impressions. Another advantage of this approach is
that it is much easier to find companies that are willing to pay
per action than companies that are willing to pay for impressions
and they do not usually limit their budgets while you are sending
them people who are interested in their products.

Summing up
A couple of months after starting to sell advertising, I had a
diversified sales model. For four to six months a year, the site
had banners from large companies, which I placed on a pay-per-
impression basis. They were usually tied to major product
releases. Most of this kind of advertising was placed by the same
integrator. In addition, I worked with several companies that
offered software products for a specific target audience. For
example, an IDE for development in a specific programming
language, or a paid widget library. This type of advertising ran
constantly, as customers paid for specific actions on their sites
like downloading a product. I filled all unsold impressions with
advertising from banner networks like Google AdWords and
Yandex Direct. On each page of the site I had two or three static
banners, which in total brought in an average of $8 per
thousand impressions and the community reached financial self-
sufficiency.

The average check for an advertising campaign in our small
community was about $1,500. Let me remind you that on the job
listing site it was $15, since people usually posted only one trial
job listing. The cost of selling and servicing the deal was
minimal. I just had to find companies that were interested in the

type of users we had in the community, negotiate a partnership
with them, and upon completion of the advertising campaign,
provide a report and an invoice. As a result, to serve one
customer I needed no more than a couple of hours of time. In
addition, the advertising on our site had good conversion rates
and almost all companies became repeat customers.
Note: Working with large companies has its own specifics, which
consist of annual or semi-annual planning. Many companies set
their marketing budget at the beginning of the year, and if the
company has already set a budget and discussed everything with
their integrator, and the integrator has planned advertising on
specific sites, no matter what you do and no matter what results you
show, they will not work with you, since you are not included in the
plan. The only thing you can do is agree on a partnership for the
next year or in six months. In other words, selling advertising to
large companies has a time lag. Additionally, integrators may be
reluctant to work with small sites because they simply may not have
the human resources to service these partnerships on their end.

4. Leaving HashCode and then
selling it

As soon as I managed to figure out how advertising works and
achieve the first sales, I no longer had any critical tasks within
the company. Selling advertising did not take much time, and I
stopped all activity on the job listing site. It was time to turn the
page. I needed to stop working on HashCode full-time and find a
job as a programmer. At the same time, a few freelancers
continued working for the company. These were mostly people
who were involved in creating and moderating content and
engaging users within already launched communities.

After a short period of job hunting and interviewing, I
settled on LG R&D lab, where I would help develop an operating
system for their TVs (to be precise, I was responsible for porting
Google Chromium to WebOS). After working at my own
company, where I had to solve problems for 10–14 hours a day, 6
days a week, an 8-hour 5-day a week job seemed like an endless
paid vacation. No work with freelancers, sales, budget planning,
etc. Everything was extremely simple—just sit and program.

For the first six months of working at LG, I worked as a
programmer during the day, and moonlighting as an
entrepreneur in the evenings and on weekends. My focus within
HashCode was setting community development goals for the
remaining team, selling and servicing the ads deals, and doing a
bit of bug fixing. I think that in general, it is possible to work as a
programmer and run your own company without compromising
the primary work, but you need to be rested and motivated. The

previous year had exhausted me physically and mentally. I felt
that the time had come to turn over yet another page in my life
and to leave the project completely.

I thought that simply closing the project was not the right
thing to do. I felt responsible for the time the users had invested
in the community, people who believed in me and actively
supported development of the project for several years. I
couldn’t let them down. So I wanted to hand over the project to
someone who could take care of the community and revitalize it.
I had two potential buyers for the project in mind.

The first one was Rabodubr (not the real name of the
company). Rabodubr was one of the most popular news sites in
the Russian language at the time dedicated to the IT thematic. It
was collectively maintained by the community. The project was
on the rise and at some point, they launched a dedicated Q&A
site on all IT related topics. I talked to the founders, but we did
not find common ground. I think the reason was that although
Rabodubr had a Q&A website, working on a Knowledge Network
did not fit their profile. Rabodubr was a media platform, not a
knowledge base platform.

The second potential buyer was Stack Overflow itself. At that
time, Stack Overflow was only present in the English language
and proposing to start localizing the site, and especially by
absorbing our community, was a venture. Still, I found Joel
Spolsky’s contact information and wrote him an email. I did not
receive a response and two weeks later I sent a follow-up email.
Unexpectedly, Joel answered almost immediately. The essence of
his answer was something like this: “Thank you for the offer, but
if one day we want to have Stack Overflow in other languages,
we will do everything ourselves.”

“At least I tried…” I thought and continued working on the
community. About six months later, something unusual

happened. Stack Overflow announced the launch of its first
international site, Stack Overflow in Portuguese. The event was
unusual for two reasons. First, at that time there was the belief
that every programmer in the world spoke English. The founders
of Stack Overflow said in one of the project blog posts that they
considered English the de facto language of the industry and
deliberately did not create localized versions of the community.
In addition, from Joel’s answer it seemed to me that the folks did
not plan to launch a localized version of the site six months
before. It was clear that something had changed within the
company. I decided to try writing to Joel again.

Imagine my surprise when he replied to me and referred me
to the VP of Community, to see if we could agree on something.
After that I had several interviews with the VP of Community, and
then with Tim Post, Adam Lear and a few other of my future
colleagues. Unexpectedly, everything went very well and we
found common ground! Folks from Stack Overflow did an audit
of my communities and we agreed that the communities of
programmers and linguists would migrate to the Stack Exchange
platform, the community of mathematicians would continue to
live their lives on the old platform, we would close the remaining
communities, and I would move to work for Stack Overflow to
continue growing communities in the Russian language.

The situation was ambiguous. On one hand, everything was
great. The community got a second chance and I got a monetary
reward for several years of hard work. On the other hand, I was
leaving programming again. I really liked working at LG, I
enjoyed every day I spent in the company. On top of that, I had a
wife on maternity leave and a three-month-old child in my arms.
Working at a startup meant long hours and lack of stability. At
that point in time, I did not know whether I should be happy or
not. Nevertheless, the choice was made, the card was played. In

November 2014 I wrote a letter of resignation and went to pack
my suitcase for a trip to the United States to meet my
colleagues.
Note: When I was already working at Stack Overflow, my colleagues
told me their anecdotal version of why Stack Overflow decided to
launch international communities. It all started when Joel went on
vacation to Brazil, where he decided to meet the community. He was
surprised when so many people there either spoke very little English
or did not speak it at all. It turned out that English was the language
of industry only in an idealized world. In reality, most programmers
are passionate about technology rather than learning languages.
After this, the team saw great opportunities to scale Stack Overflow.
It was decided to launch several international communities for a
test. The chosen languages were Portuguese, Spanish and Japanese.
Folks quickly found a community manager for Stack Overflow in
Portuguese but could not find a person who could speak Spanish
and English fluently, had an understanding of the domain
(programming) and knew how online communities work. The search
for a community manager dragged on for more than six months. It
became obvious that finding a community manager to grow an
international Stack Overflow is not very easy. When I contacted the
folks again, I looked more attractive than before in light of their
experience searching for a Spanish-speaking community manager.
Moreover, I had a unique wealth of knowledge, real experience in
community building and an already developed community. It was
definitely a win-win deal.

Note: It took one year from my first email to Joel Spolsky until the
deal was completed. Which once again proves the rule: Selling
something to companies is a lengthy process.

Note: Don’t be afraid to become “uncompetitive.” When my
HashCode partners and I discussed that I would need to remain
involved in the monetization of the project, I was tormented by the
fear that during this time my qualifications as a software developer
would get rusty, since for at least six months I would have to deal
with sales, not programming. In fact, “loss of qualifications” is only
half the story. The second half is that you in return acquire a huge
number of other skills that are extremely difficult to obtain working
as a software developer in a large company. This includes the ability
to communicate with people and sell, first of all, yourself. Here is my
personal example. Before starting to work on HashCode, I was
thinking about changing jobs and went to interviews from time to
time. Although I was able to solve technical problems at home with
ease, I failed oral interviews in offices when I had to solve something
in front of other people who were right in front of me. I was simply
lost due to my natural shyness and made stupid mistakes. When I
started going through interviews after leaving HashCode, I received
7 offers that I liked within 5 days.

Part 2

Playing in the Premier League

We were building HashCode using our own meager savings. As a
result, I’d spent the last few years cutting my spending on
everything I could. The community was literally assembled from
matchsticks and acorns. We used open-source projects any time
it was possible, developed software ourselves only as a last
resort, and hired freelancers only for the work that was not
economically justified to do ourselves. In my personal life, I also
lived very modestly. I rented a 14-square-meter room, which was
for me a bedroom, a home office and a dining room at the same
time. Although Stack Overflow was a well-known project and I
knew that the folks raised money from a few venture capital
firms, somewhere on a subconscious level I somehow thought
that Stack Overflow was exactly like me, just living in the United
States, working on the community from their bedrooms.
Imagine my surprise when, having arrived to meet the team, I
found myself in a chic office located in the financial district of
New York with a view of the Brooklyn Bridge, with its own
canteen and free drinks. After meeting my amazing new
colleagues, I got the feeling that I was a guy from a street
football team who somehow miraculously won a trip in the
lottery to the training camp of the best team in the Premier
League.

I joined Stack Overflow in November 2014. We spent the
next six months preparing to migrate the HashCode community

to the Stack Overflow platform. On March 31, 2015, we set up a
redirection from hashcode.ru to ru.stackoverflow.com, sent out
physical letters and T-shirts with the Stack Overflow logo to the
top users and an email with the news about the migration to all
other users, and posted the official announcement that
HashCode from now on will be known as Stack Overflow in
Russian. Hooray!

One of the main reasons for selling the community was to
breathe new life into it, but there were others. I also believed
that the deal with Stack Overflow was great because the
acquisition had the potential to solve two problems that I felt
were holding back HashCode’s growth.

The first problem was that some developers looked down on
HashCode. These people were convinced that all “real”
programmers speak English, and those who do not speak
English were simply beginners or just bad programmers. (The
fact that they themselves did not speak English for some reason
did not bother them in any way.) HashCode was created
specifically for Russian-speaking developers. As a result, those
people concluded that only beginners or amateur programmers
participated in the community. In reality, of course, this was not
the case. The second problem was that over the past couple of
years, the engine of Stack Overflow had come a long way, while
our engine had remained almost unchanged. We did not have a
chat system, there were no review queues, no suspicious vote
detection system, and a lot of other essential functionality.

I expected that the Stack Overflow brand would solve the
first problem by “equalizing” the Stack Overflow in English and
Stack Overflow in Russian communities, and the company’s
excellent technical infrastructure would give the community
features that users have been asking for for so long. I thought
that after the migration I would see an increase in activity on the

site simply due to the community becoming part of the Stack
Overflow family.

As it turned out, both hypotheses were wrong. No one
began to love our community more simply because we changed
the name and provided more features on the site. Obviously, the
success of Stack Overflow in English was not in the software or
brand itself. I didn’t understand what exactly the root of the
success of the community was, but I really wanted to figure it
out.
Note: Looking back, it seems quite logical to me that software does
not make a community successful per se. After all, there are many
communities using the same software platform under the hood.
Some of them are successful, others are not, even within the Stack
Exchange network.
When we launched HashCode, we were interested in trying
something new. With a genuine interest in social systems, an
engineering mindset and a huge amount of perseverance, we
were able to build a small self-sufficient community.
Unfortunately, the growth of the community has hit the wall of
our unprofessionalism in community management. At some
point, it became clear to me that in order to play in the Premier
League it is not enough to run fast and hit the ball hard, you
need to know where to run and when to hit, in other words, you
need to understand the game as a whole and in all its smallest
details at the same time. To make Stack Overflow in Russian
successful, I needed to improve my theoretical knowledge about
online communities. I put everything aside and started studying
community management from all the sources I could find access
to.

In retrospect, I can say that community management in
itself is not difficult, but it is counterintuitive. Throughout the
rest of this part of the book we are going to take a look at the

most important discoveries that I made while working at the
company to grow the Stack Overflow communities. It seems to
me that the biggest difficulties with growing communities arise
from missing the very idea of an online community, that is, why
communities are needed and why people participate in them in
the first place. Another big difficulty is that it is hard to realize
that users in online communities are volunteers. Volunteers
won’t do anything they don’t want to do. At the same time, in
developed communities, absolutely everything is done by
volunteers. Therefore, without the ability to ask for help from
users and coordinate their joint efforts, it will not be possible to
grow an online community. The growth of any social system is
associated with the need to develop and introduce new rules to
maintain a given culture in the community. Thus, it is critically
important that the rules you create have support from the
community. Conflicts will arise in absolutely any community. You
should not be afraid of them, but it is important to know how to
resolve them for the benefit of the community. At the end of this
section, we will briefly talk about the role of software and what
health metrics could look like in the context of online
communities.

Let’s get started!

1. Community is the solution to a
pressing social problem

The first step to solving the puzzle of online community growth
for me was mastering the basic theory of sociology and social
psychology. It made it possible to decompose the large task of
growing a community into smaller building blocks that could be
worked on. Below are the main ideas that helped me understand
what made Stack Overflow become the largest community of
software developers on the Internet.

There are two main forces that bring people
together into groups: interest in a topic and a
desire to have close connections with other
people
I define an online community as a group of people connected by
a common goal, interest, or pursuit who interact with each other
in the same environment. All online communities can be divided
into two large groups based on the type of force that pushes
people to participate in the communities.

1. Topic-based communities
Topic-based communities are built on the basis of users’ passion
for a particular topic. The following can be said about topic-
based communities.

People associate themselves with a topic through
participation in the communities dedicated to this topic.
The more relevant users’ background or experience is to
the topic of the community, the more they like the
group.
The more people identify themselves with the topic of a
community, the greater their involvement in the
community.

Any hobby community or community of practice falls into this
category.

2. Relationship-based communities
Relationship-based communities are formed on a desire to build
close relationships with other users of the community. Some of
the properties of the relationship communities.

In relationship-based communities users tend to form
small tightly connected groups.
Users feel attached to other people in the group rather
than the community as a whole.
Off-topic conversations and personal messaging
increase users’ involvement in relationship
communities.

An example of this type of community is forums for mutual
support where people with similar difficulties help each other
not to give up and exchange their experiences in fighting some
shared problems.

Although both types of forces play a large role in engaging
users in any community, each community uses only one of these
two driving forces as the basis for building a group.

For example, the main unifying force on Stack Overflow is
the love for programming. People for the most part come to the
site in order to satisfy their professional interests, and not to
have a chit-chat about life with people they are interested in or
find new friends. At least on the main site.

Successful online communities are meritocracies
Stack Overflow, like most other successful online communities, is
a meritocracy. Meritocracy is a way of organizing a group in

which people are given a place in the group’s social hierarchy
based only on the work they do, regardless of anything else. In
such systems, the rules of the game are clear and the same for
everyone, and everyone can participate.

Do you want to become a community superstar and gain
universal recognition? You are welcome! Here are a couple
hundred unanswered questions. All in your hands!

Extrinsic and intrinsic motivation
There are two types of user motivation in online communities:

Extrinsic motivation. Extrinsic motivation helps stimulate
short-term interest among existing users who are
already interested in the community. Extrinsic
motivation is based on incentives and rewards, which
are divided into two main categories: tangible (swag,
gift cards, etc.) and intangible (special status, additional
privileges on the site, etc.).
Intrinsic motivation. Intrinsic motivation is based on the
feeling of satisfaction and pleasure that a user gets
from the very process of performing an activity.

There are two broad categories of intrinsic motivation:

Personal motivation. Primary components of personal
motivation are a sense of autonomy, the ability to
decide what, when and how to do something, and a
sense of competence, the ability of being good at what
you do.
Social motivation. The most prominent social motivators
are the ability to connect with other members of the

community and being able to share your work with
peers and help them.

Extrinsic motivation always plays a secondary role. Whether
you’re planning to create a new community, increase the number
of users, or increase the engagement of existing users, you need
to think in terms of intrinsic motivation.

What an online community consists of: mission,
tools and social norms
Any online community can be seen as a product that consists of
three main ingredients: the community’s mission, the tools
available to the users, and the social norms of the group.

The community mission is the most important ingredient,
without which everything else is meaningless. Online
communities often arise in response to pressing social problems
that begin to concern many people. Social problems, like any
other problems, can be solved in several ways. So, a community
mission statement describes a proposed solution to a problem
that you invite people to solve with you and other users on your
site. A mission statement answers the question “why” people
should join your community and is the community’s unique
value proposition. The community will attract exactly the kind of
people who care about the problem being solved and who
believe that the solution you propose in your mission statement
is worth working on.

Usually, people form groups only in situations when it is
difficult or impossible to achieve something on their own. The
reason is that the existence of any group is associated with
overhead costs for its creation, management and facilitation of
the interactions between the users. In online communities,
software helps to overcome these barriers. Software tools

determine what opportunities users will have in terms of
interactions with each other, how they will form and manage
groups on the platform to achieve the community’s mission.

Social norms determine the “rules of the game” in a
community. The tools and mission of a community do not
completely determine the behavior of people in a group.
Different communities using the same software may have
completely different cultures, which are determined by social
norms.

Attainable and unattainable missions
A mission of a community can be attainable or unattainable.

Communities with an attainable mission have a very
specific end criteria. When the mission of such a
community gets attained and the original social
problem ceases to exist, the community loses its
relevance and often ceases to exist along with the
problem. They usually are devoted to one-off events. For
instance, the community of volunteers who help with
hosting the Olympics has an attainable mission.
Communities with an unattainable mission are usually
focused on changing people’s behavior, attitudes or
other processes that without constant coordination of
the public effort, risk returning to their original state.
For instance, Wikipedia has an unattainable mission, not
because amateurs cannot create an encyclopedia, but
because for Wikipedia to exist people need to work on it
indefinitely.

Antagonist project as a brief description of what
your community does
Social problems, like any other high-level concepts, are not easy
to explain briefly and succinctly. One way to make the mission
statement of your community more tangible is to find an
antagonist project that currently benefits the most from the
existence of the problem you are attempting to solve. If the
problem you want to solve is real, there are bound to be specific
projects that benefit from the existence of that problem. You can
define your community as something that opposes the chosen
antagonist. In this case, the simplest measure of community

success, especially in the early stages of development, is the
measure of the community’s progress against the antagonist
position.
Note: The use of an antagonist project is based on a feeling of
hatred. Hate and fear are some of the most powerful emotions that
effectively activate people. They should be used in exceptional cases.
If you feel that it is the case, try to find topics that are based on the
users’ desire either to avoid a future that scares them or change the
present reality that they do not like much. Initiatives proposing work
on such topics as these are effective in activating users and are
compelling in their own right.

Stack Overflow is a solution to a pressing social
problem
Before Stack Overflow, there were two main ways to ask
questions about programming online. The first was to ask a
question on one of a dozen online forums. The second was to
ask the question directly to the developers by email. Search
engines indexed all existing discussions on forums, as well as
archives of email correspondence with developers that were
publicly available. Thus, subsequent generations of
programmers who encountered the problem that had been
already discussed had the opportunity to find a ready-made
answer fast.

The problem was that the mechanics of both asking
questions and searching through the available information on
the Internet were not optimal. On forums and by email, people
did not always answer the topic of the question, and many new
questions were asked in replies to some other questions in a
random place in the threads. To understand the context of a
thread, it was necessary to read several pages of text before and

after the post to which the search engine sent you. On top of
that, some people asked the same question on several sites at
the same time, which further clogged the search results. As a
result, when a programmer encountered a problem that they
could not solve, searching for an answer could easily take a
week, during which they would read hundreds of pages of text. I
think it is reasonable to say that the entire Internet at that time
was an unstructured dump of information.

Many companies have tried to solve this problem. One
company was Experts Exchange. Experts Exchange provided a
platform where people could ask and answer questions more
effectively than on forums and developer mailing lists.
Everything would be fine if there weren’t one “but”. Experts
Exchange allowed search engines to index all created content on
the site, but when a real person visited the site, the site only
showed some part of a question, but everything else was
blurred. The site required a paid subscription to access the
remaining content. This clogged the search results with
irrelevant information even more. Dissatisfaction with the
situation among developers had reached its limit.

Let’s sum everything up. Around 2007–2008, there was a
pressing social problem. The Internet was a dump of
information, which took a lot of time to search through. The
problem worried many developers so much that they were ready
to act immediately. Stack Overflow’s solution to this problem was
to work together on a free community knowledge base in the
question-and-answer format, with the end content optimized for
reading. Stack Overflow’s mission, a unique value proposition
and a specific solution to the social problem, is “To build a library
of detailed, high-quality answers to every question about
programming.” (Note that this is an unattainable mission aimed
at changing behavior, the way programmers approach problem

solving on the Internet, and the community could, in theory, last
forever.) Stack Overflow defined itself as the anti-Experts
Exchange. Anyone who felt angry about Experts Exchange could
help in its disappearance from search results by participating on
Stack Overflow. In his blog, Jeff Atwood’ wrote “We’re like
Experts-Exchange, but without all the evil.”

Now let’s look at Stack Overflow in Russian and see why the
community did not grow as rapidly as Stack Overflow in English.
The way Stack Overflow in English was launched was very
different from how and why HashCode was launched. Stack
Overflow in English was launched as a solution to the specific
pressing social problem that we discussed above. On the other
hand, several years after the launch, at a time when we were
actively working on HashCode, the original problem being solved
did not look as critical as before. The Internet was no longer an
unstructured dump of information, Stack Overflow in English
was constantly present in search results, and almost no one
remembered about Experts Exchange anymore.

2. From marketing to community
management
Community management is all about working
with users and not about marketing
After migrating to the Stack Overflow platform, I continued
working on growing Stack Overflow in Russian as I understood
“growth” at that time. Most of the activities that I did came down
to spreading information about the community to the target
audience. These were speeches at conferences, information
partnerships, joint competitions with partner projects, etc. In
other words, I approached community development as a
marketer and thought of the community growth in terms of
“creating funnels” of users. My understanding of what needs to
be done to make the community grow began to change when
Stack Overflow in Spanish got their community manager, and
soon a good friend of mine, Emilio (not their real name),
onboard.

Emilio’s approach was very different from mine. I was
looking for channels with the largest audience reach, Emilio was
making a podcast for his community of dozen people. I spoke at
conferences in front of several hundred people, Emilio helped
first users organize offline local meetings for a couple of people
each. I wrote articles on popular third-party blogging platforms,
and Emilio interacted with active community users one-on-one.
At the beginning, Emilio’s approach seemed very strange to me.
Then Stack Overflow in Spanish started growing like no other
community on the Stack Exchange network. Emilio’s approaches
definitely worked and were very effective. It made me do the

same. I launched a webcast for Stack Overflow in Russian,
started organizing offline meetups and completely abandoned
the terms like “audience” and “reach”.

After working with Emilio for some time, I came to the
conclusion that, in general, marketing is about attracting new
users to an empty community, while community management is
about working with existing users. Marketing is critical at the
stage of launching a community, while no one knows about the
community at all. At the same time, marketing will not help
communicate goals to the community, nor will it help with
engagement or retention of users on the site.

What does a community manager do?
Let’s talk a bit about what companies usually expect from a
person when they hire a community manager. I define
community management as a set of activities that make a
community work efficiently. What a community manager does at
a particular moment largely depends on the state and the needs
of the current community, which is determined by the number of
active users involved. There are three main stages of the lifecycle
of a community during which a community manager needs to
deal with different types of tasks:

Inception. At this stage the primary tasks of a
community manager are to set up the site for others,
start acquiring first users and establish the desired
culture by onboarding new users, moderating the site
and facilitating meta discussions.
Growth. This stage starts when a community reaches its
critical mass of users which means that all tasks in the
community are performed by the users themselves. The

more users the community continues to acquire, the
more social tension and the need for new rules there
will be. At this stage, a community manager needs to
change their focus to critical activities like defining new
rules, proactively looking for volunteers who want to
help organize the community, highlighting desired
behavior, etc.
Maturity. When it becomes clear that users with different
views do not have enough space in the same
community, a community manager needs to focus on
scaling the community by splitting the monolith into
subcommunities and planning their joint integration.
After the split, the community manager should start
helping each of the subcommunities to grow
independently and repeat the cycle.

Three key skills every community manager should
master
To successfully grow a community, a community manager must
be fluent in three key areas.

1. Relationship building
In sociology there is a term, social capital. Simply put, social
capital shows the difference between how much you can
accomplish without your social connections and how much you
can accomplish with your social connections. The greater your
social capital, that is, the better your relationships with
colleagues in the company and activists in the community, the
more you can achieve.

The essence of most community initiatives that you as a
community manager work on are requests to users to help you
with something. You need to identify a group of users who might
want to help you when you ask them and build a good
relationship with them. The better the relationships, the more
time and resources the users will be willing to contribute. Inside
the company the situation looks the same. You will constantly
need colleagues’ help in order to get done what the community
users have asked you for.

2. Communication
Inside Stack Overflow, the company, we often said that a
community manager is a bridge connecting two banks of a river:
the company and the community. The community manager’s job
is to represent the interests of the company among the
community and the interests of the community within the
company. The task on each side is to gather information and
present your most important findings to the other side. To do
this, you need to constantly communicate with people who have
the context, your colleagues and volunteers in the community.

There are two primary communication skills that a
community manager should have. The first is the ability to tell
short and engaging stories that ignite users’ imagination and
spur their actions. The second is the ability to get others to talk.
The more frequently others talk to you, the more willing they will
be to listen to you when you talk to them.

3. Managing conflicts
The biggest danger to communities comes from the community
itself. The name of this danger is drama. Drama drains trust and
any motivation to do anything together, it polarizes users,
making them dislike each other and leave the community.

There can be two sources of conflict in a community.

1. Community users. In any community there will be
misunderstandings between users from time to time
and there will always be difficult people present. The
community manager needs to know how to work with
both and keep the community productive.

2. Employees of the managing company. When working with
online communities, your first priority is to avoid
making mistakes yourself and keep your colleagues
from making mistakes that could lead to conflict
situations with users. When someone from the
managing company makes careless moves that harm
the community (ill-conceived new moderation rules,
public statements that offend some users’ dignity, etc.),
a conflict between the company and community begins.
When a conflict occurs, the energy of volunteers moves
from creating value on the platform to an enmity
towards the company and its employees. Even the most
effective resolution to this kind of conflict rarely brings
the community back to its original state. A lot of users
lose their trust in the managing company and some
users may even leave the community forever.

A sense of belonging
Developing a sense of belonging among users is often the end
goal of many community building activities. I define the sense of
belonging to a group as the feeling that one is accepted and
supported in the group, they are engaged and active, and
identify themselves with the group. Sense of belonging is closely
related to a sense of ownership, that is, when community users
think that this is their community and they, through their actions
or inactions, influence its future.

There are two broad directions of work with the community
that impact users’ sense of belonging.

1. Providing the opportunity to
influence the community
A sense of belonging can only be developed by active users and
is a combination of activities on the main site and meta activities
to maintain and develop the community itself. Meta activities are
only possible if a community is in active development and, thus,
the users have the opportunity to participate in discussions
about the future of the community. This could be a discussion of
new features on the site, a discussion of changing the rules, or
anything else. Important: all discussions in which users come to
a decision must have a result, a change or an explanation of why
change is impossible. Without this, at some point, users will
cease to be active.

Stack Overflow users have been involved in the decision-
making process since day one. For example, the domain name
and logo of the future site were chosen together with the blog
readers of the project founders. When the community was
launched, many of the site’s mechanics, even before
implementation, were put up for discussion with the community
and anyone could offer their own implementation option or
comment on the ones that have been already proposed. Of
course, not all what was proposed by users were accepted for
one reason or another, but users always had the opportunity to
share what they think and get feedback from the developers.

When I started growing Stack Overflow in Russian, the
engine was almost completely finished and no resources were
allocated to improve it. Even though the users did not have the
opportunity to make changes to the site’s logic or implement

new features that our community needed, they could translate
the site user interface, create unique help center articles for the
community, decide what the topic of the community is and what
is not, and much more.

2. Getting participants to know each
other
We feel the sense of belonging not to a domain name, but to a
specific group of people. This is also true for topic-based
communities (like communities of practice). As a general rule,
the better relationship users have with others on the site, the
more engaged they will be in the community. The best strategy
for getting users to know each other is to conduct collective
unifying activities. These could be joint contests aimed at
improving content quality on the site, offline gatherings,
interviewing the best community users for a video blog, posting
on meta about the achievements of specific users, or any other
activity that helps you to share some information about the
users from a positive perspective.

3. The main driving force of any
community is volunteers

While growing HashCode, and later Stack Overflow in Russian, I
did a lot in the community myself. I improved the quality of
posts, removed spam, and asked questions on topics that had
not yet been presented in the community. Things were different
on Stack Overflow in Spanish. Emilio was not an expert in
programming and even if he wanted to, he could not help the
community. Instead, Emilio had a list of tasks that needed to be
done to grow the community. Next, he found users who would
like to help the community with the necessary activities and
asked them for help. It was a fair exchange. Volunteers enjoyed
the activities, got gratitude from other users for helping the
community and high status in the group. On the other hand,
Emilio was gradually gaining a more and more developed
community.

As it turned out, Emilio’s approach is the only way to develop
a healthy community, because the main driving force of any
community should be volunteers. Volunteers are the people who
care about the mission of the community and the community
itself, and who have the time and energy to help with its
development. If you want to grow your community, you need to
carry out initiatives that are interesting to volunteers and useful
to the community. There are three main approaches to creating
and running such initiatives.

1. Design activities yourself and convince users to
participate.

2. Help users to connect and form groups based on the
shared interests.

3. Find leaders among the users and help them with the
initiatives they propose.

Let’s take a look at what each approach looks like.

Designing activities: Be persuasive when inviting
users to participate in initiatives you have
designed
Once you have an understanding of what improvements you
want to make in the community, you can try to convince
volunteers to help you make them happen. The main problem
with this approach is not that there are no people willing to help
improve the community, but that those who want to help are
inactive for one reason or another. For example, users may not
know that the community needs help, be unsure that they have
the skills to help, or be unaware of the importance of each user’s
contribution. The job of a community manager in this case is to
enable people, make them enthusiastic and convince them to
take an active part in one of the suggested initiatives. The key to
this is to be persuasive in your requests.

What do I mean by “be persuasive”? Let me explain with an
example. At the end of 1978, an interesting experiment was
conducted. Psychologist Ellen Langer stood in line to copy some
papers by a copier. She asked to skip in the line. She skipped 60%
of the time if it was a direct request like “Sorry, I have five pages.
Can I use the copier without waiting in line? As soon as she
added a reason she should skip, the success rate increased to
94%. Moreover, the reason could be arbitrary, even absent. For

example, a reason like “Sorry, I have five pages. Can I use the
copier because I need to make multiple copies?” did not add any
information, but she was successful in almost the same 93% of
cases. In other words, we can get completely different results if
we ask people for something in different ways.
Note: Persuasive techniques are based on exploiting the non-rational
component of how people make decisions. This often raises
questions about how ethical it is to discuss this topic. I think the
issue of ethics is largely a personal matter. We are all different,
raised in different cultures. I personally think that healthy
communities bring a lot of benefits to humanity (who has never used
Wikipedia or Stack Overflow?) and users take pleasure in
participating. Building a community is not a trivial task. I personally
don’t see anything unethical in sharing knowledge and discussing
how to build communities effectively and for the benefit of other
people.
In software development, we have design patterns that must be
followed if one wants to make their program code easy to
understand, maintain, and improve. Similarly, in the world of
online communities, there are rules that must be followed in
order to make users participate in ongoing initiatives. Below are
the most important rules to help you create initiatives that
maximize the users’ likelihood of participating in them.

Goal, feedback and public benefits of an initiative are a sufficient
minimum to activate users
To effectively activate users, an initiative that you are proposing
must:

Have a specific end goal, achieving which will be
interesting to the users.

Provide feedback on the progress to the goal of the
initiative.
Clearly explain why the initiative is important to other
people that the work you suggest will result in high
value for the community.

Or simply put, goal-based initiatives that provide users clear
feedback on the work they do and its quality combined with a
socially useful end result are sufficient for most initiatives to get
users to participate.

Users must see the personal value in an initiative and feel that its
end result is valued by general public
A required condition to make volunteers engaged in anything is
that they should clearly see that their contribution is valued by
those they help, as well as by the community at large. If you
want to engage users in a collaborative activity, the outcome of
the initiative must be seen as valued by everyone involved,
including those who get the value from the end result and those
who participate in the activity.

Explain the reasoning behind your requests when reaching out
to regular users
Regular users do care about the end results. Almost every
regular user will assess the initiatives you propose individually.
When you want to engage regular users, arguments and
rationalization are a necessary part of communication.

When reaching out to casual visitors, rely on heuristics
Casual visitors do not tend to do in-depth analysis of the
proposed initiatives. When you want to reach these users, your
communication should be as simple and short as possible.
Reasons and rationale in this case do not create a better

response. Moreover, they sometimes cause users to perceive the
arguments as hidden manipulation.

Additionally, when you talk to casual users, simple and short
requests are effective when communicating initiatives related to:

Something that the users do not have a strong personal
view about.
Something that assumes a small contribution.

Make the work of volunteers visible to the other users
When you want to persuade users to participate in an initiative,
you can use the social proof heuristic. To do this, make sure that
users see that there are other users who take actions you are
asking for in the initiative. Highlight the most active users who
are participating in initiatives in digests, interview them about
their personal experiences, share progress metrics with the
community, etc. The fact that some users are participating gives
the others confidence that the proposed initiative has a chance
to succeed and creates the desire to join themselves.

Ask specific people for specific help
To make your requests more effective, ask specific users for help
with specific well-defined tasks. The smaller the group of people
to whom the requests are addressed, the higher the likelihood
that people will respond to the requests. When asking for help,
create a logical connection between the success of an initiative
and something that the target users value. Ask for help from
those users who are interested in the tasks you suggest working
on and have all the necessary skills to complete.

Other things to consider in the context of initiatives

Help users to connect and form groups based on
the shared interests
Connecting users to others is one of the most powerful ways to
keep people in the community and stimulate their activity. The
more effectively users create connections between each other,
the faster the community will grow. Relationships (the
connections) are created through shared, hopefully, positive
experiences. A user’s feeling of belonging to a group directly
depends on what kind of relationship and with what kind of
people they have.

Usually, connections occur naturally by chance when users
with similar or complementary interests happen to be in the
same place at the same time, have the opportunity to act, and
are not afraid to do so. To accelerate the growth of your
community, you can intentionally bring together users who can
positively influence each other and create opportunities for them
to interact. This approach is called “network weaving”. Below are
the main ideas of how to be successful at it.

Keep an eye on users’ interests and needs that can complement
each other
When you see users who have some needs and other users who
have an interest in meeting those needs, and these users do not
intersect naturally or intersect but not in a timely manner, you
need to help with coordinating. The easiest approach is to
maintain relationships with active regular users and know the
types of activities they prefer to act on. When these activities
appear on the platform, notify the users so they can show off
their skills. This can be done manually by you, by volunteers, or
via some automatization if your platform allows it.

Create opportunities for joint activities

When you see users who, due to the patterns of their
participation, have little overlap with each other in the
community, but who would be interested in getting to know
each other, you need to create opportunities for these users to
be engaged in a shared experience on the platform.

The simplest approach to organizing a shared experience is
to impose time and place limits on some type of activities that
the users are interested in for some period of time. The type of
activities and the place do not really matter, the goal is to do
something useful together.

Typical activities that encourage shared experience:

Contests. The primary requirement is that the contests
are interesting to the selected segment of users. Usually
contests have a theme, clear rules for winning and a
timing. You can use some branded swag as prizes.
Seasonal events are activities dedicated to some widely
recognized public holidays or any important dates for
users.
Improvement activities. Any activities aimed at improving
the structure and quality of content, identifying unfound
violations of the rules, removing unnecessary content,
creating missing content, etc. All kinds of activities that
users would like to do, but never got around to.
Meta-discussions about important aspects of the
platform and the community that users care about and
have personal opinions on.

Tell users about other users
To build deep, trusting relationships, users need to know the
others as real people. This requires users knowing some

interesting things about other users in a way that causes good
feelings and empathy and having a chance to self-disclose about
themselves and their interests. Such conversations rarely occur
naturally, since this topic goes beyond the scope of most online
communities.

Your task is to organize activities that introduce users to
each other without harming the community itself. Here are some
activities that stimulate building relationships:

Highlighting users’ achievements in social media. You
cover almost any event that somehow shows users’
positive contributions.
Hosting offline meetups. If possible, attend them in
person yourself. If you cannot make it, find some
volunteers you trust who are able and willing to
organize the events. Have some swag prepared. If the
meetup is organized by volunteers, send them swag so
that they can distribute it to the attendees. The meetup
can take place anywhere, from the office of some
company to a random cafe. There is no need to have
any strict theme for a meetup. Providing users a way to
get to know each other is the main goal. Take photos
during the event and share a story afterwards.
Creating a media channel dedicated to the users
themselves where you will post stories about the users. It
can be in any popular format like a webcast, podcast,
text blog or something else. Interview active regular
users, giving them an opportunity to talk about
everything that worries them, starting from the current
industry problems up to their pet-projects or their
favorite outdoor activities.

Find leaders among the users and help them with
the initiatives they propose
You can come up with initiatives yourself and invite users to
participate. At the same time, you can approach the task of
growing a community from a different angle and, instead of
thinking through initiatives yourself, look for volunteers in the
community who would like to become community leaders. (Yes,
this is the approach Emilio mostly used.)

The peculiarity of this approach is unpredictability.
Essentially, you invite users to realize themselves on your site
and then you support their endeavors that benefit the
community. At the same time, you have absolutely no control
over what exactly the users want to do at a particular moment.
As a result, there needs to be flexibility in your growth plans. At
the same time, this approach is one of the most effective, since
any initiatives activate the community more successfully if they
are proposed or led by the users.
Note: Initiatives led by users who have popularity, authority, or some
other special social status in the community, as well as by users who
actively help other users, will be especially effective in activating the
community. The rule of thumb here is that the more users feel
empathy towards the author of an initiative, the greater the
activation will be among them.
Here are the most important tips for working with leaders from
the community.

Look for volunteers proactively
There are two primary approaches to the search.

1. Manual search. Look for users who are already doing
what you expect your future volunteers to do. Contact

each of them individually, talk with them about the
needs of the community, and offer them an “official
position” as a volunteer. Users might consider a place in
the social hierarchy of the community as an additional
reward for the work they already do.

2. Ask for help publicly. Reach out to the community in need
of volunteer help. Describe specific tasks to be done,
your expectations for future volunteers and what those
willing to apply should do to express their wish.

Encourage users to become volunteers
All users in any community have unique talents. Your task is to
provide them with opportunities so that they can show off their
talents to the best of their ability. Users may be shy, afraid of
criticism, or don’t know where to start. You need to support the
users morally, instill in them the faith that they will succeed and
should try.

The ability to positively impact many people through
initiatives in your community is an effective motivator that may
encourage users to become more active.

Make it so it is safe for volunteers to make mistakes
Never criticize or give your personal assessment of the initiatives
volunteers propose. Volunteers are not professionals; it is fine
for their initiatives to look amateur. You need to give volunteers
the opportunity to try whatever seems appropriate to them.
There is only one case when it is worth asking volunteers to
postpone launching an initiative, when the initiative is outright
harmful to the community. If you can make sure volunteers
enjoy working on their initiatives, it is already a win.

Volunteers must be autonomous

Avoid initiatives that require a lot of time investment on your
part. If you need to spend a lot of time on providing support for
some initiatives, you won’t be able to help many other people
and won’t have time to plan the next steps to grow the
community. Your time is limited, this approach is not scalable.

Try to provide volunteers with access to all necessary tools
and information they need. If this is not enough and you are
required to do some repetitive activities that take a lot of your
time, kindly ask volunteers to adjust the proposed initiatives.

Recognize volunteers’ contribution to successful initiatives as
much as you can
Social recognition and praise are positive feedback. You need to
regularly tell the community about successful initiatives and
their authors through all media channels you have. The more
volunteers feel that their contribution is recognized fairly the
more likely they will propose and participate in new initiatives.
Visible examples of successful initiatives and public recognition
of the contributors motivate other users to become volunteers
themselves.

If something goes wrong with an initiative, cover for the authors
and volunteers
Some users feel a sense of fear of making an error and are afraid
of situations where they potentially can be publicly criticized.
This keeps the users from becoming volunteers and prevents
users from revealing their talents. If users can sense even the
slightest confirmation of their fears, it will be very difficult for
you to persuade them to become volunteers. Whatever happens,
always support existing volunteers, cover for them publicly and
coach them in private conversations. Volunteers should never

experience any negative feelings of guilt if initiatives they
participate in fail.

One effective approach to accomplish this is to create a
culture in which mistakes are encouraged. The thing that might
help is facilitating public discussions of situations where
something went wrong, without mentioning specific users, with
further proposals for improving the initiative.

Maintain trusting relationships with volunteers
Building trusting relationships involves continuous
communication with volunteers and helping them resolve their
problems. Here are a few topics one can talk about with
volunteers.

Answer all volunteers’ questions, provide feedback
when they ask for it, share your thoughts and
experiences with them.
Give volunteers extra information that is not publicly
available.
Talk with volunteers about the community needs and
new opportunities for initiatives available.
Ask volunteers for feedback about the community and
what future they see for it.

At the applied level, trust takes the form of actions, on both
sides. If you trust your volunteers you will find time to help them
with what they need. If you are trusted by volunteers, they will
become more engaged in the community and help you when
you ask them for help.

4. Communication
Two ways to approach meta discussions with
users: Helping and persuading
Communication is the means by which everything else is
achieved in online communities. On Stack Overflow, most of the
communication with volunteers interested in the community
itself took place on Meta. On Meta we discussed the mechanics
of the site, moderation rules, we shared our ideas about the
vision of the future for the community and received feedback
from the most engaged users. We had two main approaches to
working with users on Meta.

Supporting users by answering their questions. The
practical purpose of answering users’ questions is
support. At the same time, answers to users’ questions
are the most effective way to convey your vision for the
community to the users. The point is that until you are
asked, all your thoughts are considered unsolicited
advice. On the other hand, the ideas expressed in your
answers will look reasonable and most users will follow
your advice, if you are persuasive in your answers. Your
authority as a person who knows how communities
work, is earned precisely through answering users’
questions. For the community management team at
Stack Overflow, answering users’ questions on Meta has
always been the top priority.
Writing proposals for initiatives and announcements of
technical and social innovations that encourage action. It’s

great to have a large, active community where users ask
a lot of questions about the community and your only
job is to guide them in the right direction. In reality, this
will not always be the case. At the beginning of
community development, while there are not many
proactive users yet, you have to propose initiatives
yourself. In addition, in developed communities,
community managers constantly need to share with
users information about new features and make users’
want to adapt them, which is also done by proposing
initiatives on meta.

From my personal experience, of all types of communications,
writing posts about initiatives is the most difficult for community
managers. At the same time, the ability to communicate what
you think the community needs and be persuasive is one of the
most critical skills for a community manager. We have already
considered the question of how to be persuasive, so in this
section, we will look at what a post that suggests working on an
initiative should consist of.

How to write posts that propose initiatives
Technically, there are three main ingredients that each post
about an initiative should have: a story, a theme and a question
or call to action.

Story: If it is worth communicating, it is worth a story
Humans are narrative creatures, we perceive the whole world
around us through stories. Stories allow us to experience
information, as opposed to just consuming it. Stories can
influence our beliefs, views, and behaviors. This will happen if
the author of a post manages to evoke empathy and

compassion in the readers through which they begin to relate
with the emotional experiences the author offers to the readers
in the story.

Here are the best practices for writing stories in the context
of community management.

Stories set the prism through which a reader sees a
post. When working on a story for a post, we choose the
narrative according to what we want a reader to feel
and think after reading the story. Before starting to
write, clearly define what you want readers to think
about.
In posts about initiatives, stories play an auxiliary role to
set the context, while the primary focus should still be
on the initiatives themselves.
When sharing a story that has an example, share a story
of one person. It is hard to imagine an “all-population’s
problem”.
Keep a story short, one paragraph at most. The best
option is to make it in the form of a metaphor.
Introduce the story at the beginning and refer to it
throughout the whole post, if needed.
A story should be positive, inspiring, and unifying. It
may have a picture to illustrate the narrative.
In a perfect world, all the stories you share somehow
correspond to the primary mission of the project.

Theme: The most important thing you want to share
The theme of a post is what we wanted to communicate in the
first place. It is the body of your proposal. Usually, it is in the
form of a statement of a problem that you want to address. The

theme may take up to one page of text, but the shorter, the
better.

The most crucial part of writing is to present the
problem from the readers’ perspective and highlighting
the benefits that they will get out of helping you solve it.
You need to make the readers feel empathetic and
supportive. They should never be presented as the root
cause of the problem. Moreover, there should not be
any blame placed on anyone in the post. You should
present the problem through possibilities that the
readers can accomplish together as a group.
Whatever the end goals of the current initiative, the
problem that you want users to work on should be
presented as a step towards completing the mission of
the community.
If you are suggesting solutions, you need to show why
the solution is a viable approach.
There should be just one theme per post.

Question: Narrowing the discussion
Often in online communities, a discussion starts with a talk
about a certain problem, but quickly turns into a talk about some
off-topic theme with all the consequences it brings. To keep the
discussion healthy, you need to set the boundaries of what is on-
topic for the current discussion and what is not. The best way to
do this is to ask very specific and valid questions at the end.
Vague or open-ended questions allow users to steer the
conversation and feedback away from what we want them to
focus on. The more specific your questions are, the more likely
you will get the results you were looking for.

Phrase questions in a way that makes users provide
positive answers.
Questions should ask for solutions to problems we are
facing, rather than just ask for opinions.
Questions should make users be able to show off their
skills while answering the questions.
Keep the questions relevant to the users so that they
have expertise and knowledge to answer them.
Do not ask more than three closely related questions
per post.

Other best practices for writing posts about community
initiatives

5. Community culture

The culture of an online community is a set of beliefs, values and
norms collectively held within the group. Culture is passed on
from one user to another through their interactions on the site,
through the stories you tell the users about the community, and
through public discussions about the rules themselves. Culture is
one of the three main aspects, in addition to mission and tools,
that determines how your community will look as a final product
to the user. Communities with the same mission and using the
same software can be radically different from each other if they
have different cultures. For example, Stack Overflow in Russian is
much more friendly than Stack Overflow in English. Stack
Overflow in Japanese is more open to joint growth activities than
Stack Overflow in Portuguese. Users on Stack Overflow in
Spanish consistently showed more leadership in the context of
initiatives than users on Stack Overflow in Russian. The reason is
that the culture of each Stack Overflow community was unique.

While working on Stack Overflows, I came up with two main
best practices for creating a community culture.

1. Like attracts like
No one starts participating in a community by reading the help
center. People come to your site looking for the content they
need. By reading existing content on a site, people
unconsciously infer the basic rules of communication in the
community, which are then complimented by their personal
experiences of interacting with other users. It is not enough to
simply describe the desired standards of behavior in the help
center and expect some kind of culture in your community. You
need to constantly moderate the site content and monitor how
users in your community treat each other, so that everyone who
likes the designed culture of your community remains on the site
and those who do not, leave.
Note: Besides moderation, one of the best ways to communicate
desired behavior in a community is through storytelling. For
example, at HashCode our goal was to create and maintain the
culture that we described as the “atmosphere of knowledge”. To
implement this for our community, besides the constant moderation
of the content, we told stories to users, explaining the culture of our
community through different metaphors like “Everything is
acceptable on the site as if you were talking with your fellow
students in front of a university professor.” Through those stories,
most users easily understood what was acceptable and what was
not.

2. Leadership by example
All successful online communities are meritocracies, where
authority is earned through action. If you want someone to do
something in a certain way, start doing it yourself or find
someone who can take your place as a leader and focus the
community’s attention on the leader in every possible way.

In the case of HashCode, “atmosphere of knowledge” was a
cultural innovation for online communities at the time. It took
some time before we found those who shared our views on
things, during which we very actively moderated the site. Seeing
that we walked the walk, most users adapted the approach we
proposed.

The only source of new rules is the real cases in
your community
Community culture is inextricably linked to community rules.
Community rules define how users are expected to behave in a
community. When we had just started HashCode a few rules
were enough to make the group of dozen people follow some
designed behaviors. As the size of the community grew, new
types of interactions appeared and brought new behavioral
patterns, including bad ones. As a result, we started to introduce
new rules that regulated new behaviors that had caused
repeated violations.

When I was growing Stack Overflow in Russian, I had Stack
Overflow in English as a reference. At some point, it seemed
reasonable to me to take time-tested rules from the English-
speaking community and adapt them to our site. As soon as I
introduced the first of such rules, I received a lot of negativity

from regular users who might be affected by the new rule. (The
point of most rules is to prohibit something under certain
circumstances, and no one likes to be prohibited from doing
something that they like to do!) Users saw adding new rules “for
the future” as unfair and were very skeptical about them, people
resisted tne change. I think some users were also frightened by
the very idea of “adding a rule because another community had
it” and the uncertainty that this approach brought. As a result, I
scrapped the rule and have never tried anything like that again.

As I see it now, the working approach to creating community
rules is to have a minimum set of rules when launching a
community and then add new rules only after something has
happened that has already caused some damage. In this case,
there will be users who do not like the situation and they will
help you promote a particular rule and ensure that it is adopted
and followed by the entire community.

Hosting public discussions of the rules makes the
rules legit
In developed and healthy communities all moderation is
performed by the users themselves. For any rule to have an
effect, you need to make volunteers understand the rule and
accept it internally. One of the most effective ways to achieve
this is through public discussion. Rules that were created based
on public discussions in which any user could participate have
great weight and legitimacy. Moderators and users internalize
these rules, follow them and compel others to follow them as
well without any effort from the managing company. For this to
happen, a community manager’s job is to encourage users to
initiate public discussions about any violations they see in the
community, and then they need to do their best to make sure

that the community takes the right direction towards solving the
issues.

This is exactly how Stack Overflow worked. Any user could
ask a question on Meta at any time about moderation in general
or about their specific case. Next, all interested users discussed
the problem together and usually came to some consensus,
which was then implemented.

Not all discussions about violations need to end with a new
“official” community rule. Much of the discussion about social
norms should and will remain in the form of discussions. Keep in
mind that there will always be users who like a formal approach.
They will demand that everything, down to the smallest detail,
be described in the official rules. At the same time, if you start
documenting every nuance of the cultural design, the number of
nuances and exceptional cases that need to be documented will
only increase. To prevent this from happening, the “official” rules
must describe the general idea in such a way that most
reasonable people can easily understand the implications of the
rules.

Here is a list of things that usually need to be documented
on the site as official rules.

Rules that should not change over time. This is
especially important for rules that are based on
community consensus where users’ views are almost
equally divided, and all the proposed solutions have
their own pros and cons. You need to choose one thing,
add it to the help center and then live with the rule. This
helps to keep the community out of unnecessary
disputes.

Unique and counterintuitive rules that may cause
controversy.
The most important rules that shape the culture of your
community that you want to pay special attention to.

The shorter your community’s “official” rules, the more likely it is
that someone will read them. After all, community culture exists
in the minds of users and is transmitted through their
interactions with each other. The help center plays only an
auxiliary function.

If one wants to change a rule, they need to prove
that the change has a beneficial effect on the
community
Imagine that you launched a new community with only the most
basic rules in the help center. A problem arises in the community
that requires a new rule. You start a discussion with users and
see that there are several similar approaches to solving the
problem. What will you do?
Note: The truth is that almost any problem can have multiple
solutions with comparative effectiveness. Therefore, you will
encounter the situation described below all the time.
I assume that you choose the best solution available, commit to
it and follow the new rule created based on the suggestion.

The issue is that since there were multiple solutions to the
problem, no matter which solution you choose, there will be
those in the community who like one of the alternative
approaches more. Sometimes they will propose changing
existing rules or processes to the alternative they like. The
proposed changes will seem logical, since the current approach
has its disadvantages and the alternative approach has its
advantages. If you agree to the proposed changes, you will open

a Pandora’s box of endless debates with users and wasted time
with no ultimate benefit to the community since each approach
initially had roughly the same efficiency.

The only way to avoid this is when you see a proposal to
change existing rules, ask the author of the proposal to prove
that their proposed solution is significantly superior to the
existing one. If this is not the case, do not make the changes, as
they will bring nothing but controversy to the community.

Promote the culture of welcomeness and
kindness
There is one universal rule that should be part of the culture of
any online community. It usually sounds like this: “No matter
what happens, we should always remain human” or “We should
be nice to others and assume good intentions”. This rule is
primarily expressed when users behave with restraint when
something or someone causes them a storm of negative
feelings.

Promoting being kind to others even if they did something
wrong in one’s view is the foundation without which it will be
hard to build a community. Throughout all my time working on
communities, I have never seen a single case where anger and
intolerance caused anything other than increased anger. At the
same time, kindness often causes users to change their behavior
dramatically in response.

Kindness between users sets the foundation for an inclusive,
safe environment where people want to interact with each other.
When users treat one another with respect, it creates positive
connections not only between the users who are directly
involved in a joint activity, but also everyone who observes the
activity.

Here are some suggestions for promoting and maintaining
the community culture of welcoming and kindness.

Delete all rude content as fast as you can. Contact the
violator and explain why you deleted their content and
talk about the importance of treating each other with
respect no matter the circumstances. Motivate
volunteers to do the same.

Identify critical points in the community where most
rudeness occurs. Prepare a set of templates that users
can employ when facing a situation that causes them to
feel negatively. Templates should be both for content
(what to say) and for behavior (what to do). Constantly
talk with regular users explaining that rudeness causes
new users to leave the community, and never leads to a
change in one’s behavior.
Help users experience empathy and compassion. Prepare a
series of stories that show how users whose behavior
causes negativity see the community. Show that these
users have good intentions and would like to learn
about the theme of the community.
Encourage regular users to make edits when they see any
issue with the content. This helps to show what is
expected from users in a particular situation.
Initiate discussions about new rules, help pages, templates,
etc related to the welcoming vibe on your site. It is
impossible to be too kind, especially online.

Reacting negatively to some content or behavior is as natural as
posting content without knowing all the nuances of the rules of a
community. When discussing negative behavior, do not blame
the users who behaved rudely. Your task is to motivate users to
be welcoming and kind, leading by example (i.e. how you treat
users in stressful situations) and provide them with the required
training programs and tools.

6. Having any goal is better than no
goal at all

After migrating HashCode to the Stack Exchange platform, the
community still needed to pass through the formal graduation
process. Graduation on the Stack Exchange network requires
that a community meets certain criteria, one of which is the
percentage of answered questions. At the time of migration, the
percentage of answered questions on Stack Overflow in Russian
did not meet the network standards. At some point, volunteers
from the community created an initiative whose goal was to
increase the metric. The initiative attracted the attention of many
users and within three months the community collectively raised
the percentage of answered questions, so it passed the
threshold.

Recall that a community is a way to solve a specific social
problem. People become part of the community because they
care about the problem being solved by the group and the
mission of the community describes the solution the group is
working on. The problem is that the mission is something big,
and sometimes completely unattainable. For a community to
grow, users need to have something they can achieve here and
now. For example, helping their community go through the
graduation process. This is why any community must constantly
have some goals to work on. We can think of goals as steps that
the community takes to achieve the mission or something that

sets the context of what the community is working on
collectively right now.
Note: You may probably be confused here. How can we take a step
towards achieving an unattainable mission? Very simply, through
achieving the current short-term goals. If a community has an
unattainable mission, then users are working on some process that
needs to be maintained constantly (therefore the mission is
unattainable). In this case, any goal that is aimed at maintaining
this process is a “step towards achieving the mission.” For example,
the mission of Stack Overflow is to build a library of all
programming questions and their answers. I think we all understand
that it is impossible to collect “all” questions about programming,
but if we don’t motivate people to ask and answer questions on the
site, then very soon our community knowledge base will become
irrelevant and we will go back to spending days googling for a
solution to a simple day-to-day problem. Stack Overflow is
developing through achieving goals aimed at maintaining and
optimizing the process of collecting its knowledge base.

Any goals are better than no goals
A community cannot function properly without goals. Users start
losing interest in a community that has no goals and leave it.
Another result of a lack of interesting goals is constant drama or
constant negativity in the community. Interesting goals focus
users’ attention on solving specific applied problems, set the
direction for collective action, and give people strong reasons to
work together and find compromises.

As a community manager, you must set the growth vector
for the community either yourself or with the key volunteers’
help, but you need to do that. Any goals, even the simplest and
not optimal, are better than the absence of them.

Once, Crayfish, Swan, and Pike
Got hired to drag a cart,
Harnessed themselves, all three, and start to move.
It could be pretty light for them,
But to a river Pike is trying to drag,
While Crayfish is pulling back,
And Swan up to the clouds directs its flight.
It Is difficult to say who is to blame.
Which place is now the cart? The same.

– Ivan Krylov

Look for goals that are achievable, finite, and
beneficial to the community to activate and unite
users
The community should always have goals that users can help
achieve. Any goals are better than no goals at all. At the same
time, if you want the community to grow effectively, look for
achievable, finite, and beneficial to the community goals that
activate and unite the users.

Goals should activate and unite users:

Activation. Essentially, by defining goals you are saying,
“It would be great to do this because it will help us get
there. Who’s ready to help?” People who have personal
motivation to achieve the goal become more active and
more involved.
Unity. Users perceive the same reality in different ways,
placing their emphasis on different aspects of the
community. Common goals bring users with different

perspectives together and allow them to move in the
same direction as a group.

Goals should be achievable, finite, and beneficial to the
community:

Achievable. Goals form feedback loops. When users
achieve goals together, everyone experiences a
collective positive experience. Users begin to have more
faith in themselves, other users and the project as a
whole.
Finite. Users must clearly understand if a goal has been
achieved or not, how much and what still needs to be
done to achieve it. Otherwise, users might soon lose
interest.
Beneficial. Our task is to help the community fulfill its
mission. Any initiative that the group undertakes must
be somehow related to the end mission of the
community. Users must have a thorough understanding
of how the community as a whole will benefit if they
invest their time in achieving a goal.

The choice of goals depends very much on the stage of
development of a community. They change dynamically since
what the community can and needs to achieve depends heavily
on the current state of the community, its active users and their
interests.

For example, I once proposed to users of Stack Overflow in
Russian translating questions from English into Russian. To do
this, I needed to have a consensus among the entire community
that it was a good idea. When I started a discussion about
allowing translations the first time, the proposal was met with

criticism, the idea did not take off. A year later, I proposed the
initiative again and it was supported by almost everyone. Users
who did not like the initiative were not active in the community
anymore, and new users saw a lot of benefit in having some
good questions from Stack Overflow in English on our site.
Community is a living organism that changes over time.

7. Conflict situations in communities

Conflicts for online communities are like athletic injuries for
athletes. There is not a single athlete who has not been injured
during their sports career. But injuries are very different. Some
injuries can be treated, go away without a trace and teach the
athletes something. Other more serious injuries, although can
heal to some extent, stay with the athletes until the very end and
are reminded of them from time to time. There is also a third
type of injury that cannot be cured and they force the athletes to
retire. The same is true for conflicts in the community. Some
pass without a trace and make the community more friendly and
united. Others, if not resolved, degenerate into drama and cause
irreparable damage to the community, dividing and turning
people against each other.

Conflict situations in the community cannot be avoided.
There will always be people who are dissatisfied with something
about the current situation, those who think differently than the
majority. There is nothing wrong with that. Moreover, a natural
attribute of a successful community is people whose purpose of
participation is to harm the community. You shouldn’t be afraid
of conflicts, but you definitely need to know how to deal with
them.

Conflicts in online communities
All people are very different. Each of us possesses a unique set
of characteristics, needs and perspectives on things around us
which inevitably introduce a conflicting element into our

interactions. In well-functioning communities, users do not avoid
conflicts; instead, they acquire the skills to address and resolve
them. Making conflict constructive plays a pivotal role in
enabling the community to accomplish its mission, adds
creativity and improves the quality of decision-making.

Usually, conflicts emerge when there is disagreement on an
issue that is very important to people, someone fails to meet
someone else’s expectations, or deviates from social norms that
others follow. In these circumstances, people tend to respond
emotionally, which can result in counterproductive actions.
Therefore, the fundamental aspect of conflict resolution lies in
people’s capacity to manage their own emotions and opt for
constructive methods to address conflicts. Poor conflict
management reduces community performance as the users
tend to focus all their energy on the conflict rather than using it
to create something for themselves and the people around
them. Conflicts cause stress, which can be so high that users
might see only one way out — to leave the community.

Conflict is the gap between what we want to happen and
what actually happens. When conflict happens, it generates a
significant amount of energy. This energy can be harnessed in
two ways: positively, when parties struggle for a shared goal, or
negatively, when parties struggle against each other. Struggling
against is a destructive process when parties must choose one of
two scenarios: either win or lose. To resolve a conflict effectively
we need to use the energy in a positive way.

Destructive conflicts
Destructive conflicts are dangerous as they undermine both
formal and informal relationships between users, adding
psychological unease to communication and potentially driving

users away from the community. Destructive conflicts have
never helped resolve any underlying issues.

Mishandling conflicts may lead individuals to stop sharing
thoughts and ideas due to a fear of criticism. In this case, the
quality and creativity of decisions decrease dramatically.
Destructive conflicts may also contribute to an increase of
abusive and violent behavior in the community.

Destructive conflicts are also referred to as “relational
conflicts”. Relational conflicts are situations when users feel
offended, angry and blame each other for the presence of a
problem.

When users use negative language to describe a conflict,
they often refer to a destructive conflict. In this case, people
either try to avoid the conflict or, when avoidance is not an
option, they respond aggressively, so called “fight-or-flight”
mode.

Constructive conflicts
Constructive conflicts emerge in communities in the form of
disagreement about ideas, values or opinions. Many
communities are purposefully designed to foster constructive
conflicts. In these environments, users engage in open and
respectful discussions to address disagreements and gain
insight into each other’s perspectives. Conflicts become
beneficial.

Constructive conflicts are also referred to as “task conflicts”.
Task conflicts are situations where users come together to solve
a problem that is caused by their natural differences. Every user
in the group concentrates on solving the problem instead of
blaming others.

Keeping conflicts constructive

Any conflict consists of two parts: an event that has actually
happened (fact) and someone’s interpretation of what has
happened (fiction). The frustration does not come from the
events themselves but rather from the stories people tell
themselves about these events. The interpretations, often rooted
in emotion, may not necessarily align with the facts.

In order to keep the conflict constructive, it is vital that the
narrative people tell themselves leads them to empathy towards
the other person. To accomplish that it is critical that one can
control their emotions and before losing their composure, take a
step back, set emotions aside, and seek to deeply understand
the other person’s perspective and what outcome they both
want. This is what makes the difference between escalating a
situation or contributing to a constructive resolution of the
conflict.

It is important that users of your community know all this
and know how to control their emotions. Your task is to educate
them either in advance by storytelling or when a difficult
situation arises by leading the conflict resolution process.

Drama in online communities
Disagreements between a few users, if not handled correctly,
can easily turn into an intense emotional conflict between
almost all active users of a community. If this happens we say
that a conflict is turning into a drama.

There is a book that helped me understand the essence of
the drama and resolve a few of them on international Stack
Overflows over the years. The book is called “Conflict Without
Casualties” by Nate Regier. Here is the main idea of the approach
proposed in the book in a nutshell.

Drama comes from an improper use of the energy that a
conflict generates, when users consciously or unconsciously

start turning against themselves or others. Any drama has two
primary forces. It is either self-justification of one’s destructive
behavior or trying to prove one of four following myths: one can
make the other feel good or bad, the other can make one feel
good or bad. (It is important to understand that while people can
affect how others can potentially feel about a situation, the
others have a choice to make those feelings a reality or simply
let them pass.)

Dr. Stephen Karpman developed the idea that drama is a
collective activity that is based on three defined behavior roles:
persecutor, victim and rescuer. These roles form the drama
triangle. Each role complements the others: victim needs
persecutor or rescuer, without persecutor and their victim there
is no one for the rescuer to save. When we think of what to do or
to say in a particular situation, we choose from behavioral
patterns that we experienced in the past. Thus, sometimes when
we try to help other users, we unconsciously take the missing
role and become part of the issue instead of being a solution.
Please note that the role we take is almost fully determined by
the others’ behaviors.

Persecutor. When a user criticizes, accuses or insults
others, they probably play the role of a persecutor.
Persecutors believe they are right and justified, and
manipulate others into accepting blame or
responsibility. They use the “one can make the other feel
bad” myth to justify their behavior. They are convinced
that they can do anything they want as long as the goal
is achieved. Users who play the persecutor role never
take responsibility for their actions and blame others if
something goes wrong.

Victim. Whatever happens, users who play the victim
role somehow think about themselves as being the root
of all problems. These users avoid all conflict situations
by agreeing, making concessions, and admitting to any
accusations. Victims look like they are repressed or
offended most of the time. They are constantly looking
for sympathy from others. This behavior triggers
persecutors’ anger and reinforces victims’ belief that
“someone can make them feel bad.”
Rescuer. Users who are intruding into others’ affairs with
no reason, giving unsolicited advice, suggesting what to
do and the like, usually play the rescuer role. The over
self-confidence and honest belief that “they can make
others feel good” are the primary driving forces for the
justification of their behavior. By trying to be helpful,
rescuers aim to build positive relationships with fellow
users. The problem is that they fear not being needed,
as a result they rarely want others to grow personally.

The book suggests that there is a way to resolve a drama. It is
сompassionate responsibility. Compassion is the ability to
understand and accept others’ feelings. Compassion combines
caring for others, being empathic and open to different views
and values. One has responsibility when they are given the right
to do what they say and deliver what they promised. A
responsible user fully recognises the consequences of all their
actions and behavior, both good and bad.

Responsibility with no compassion leads to rudeness.
Compassion with no responsibility leads to inaction.

Resolution starts with openness at all times. Openness is
when we approach both our own and others’ emotions with an
open and non-judgmental attitude, regardless of our personal

views on those emotions. Openness helps us build close
connections with others. It creates trust that is needed for users
to start sharing their feelings and thoughts about the problem.
At this step we listen to others, validate their emotions, express
our empathy and share what we think about the problem. This
step makes users think clearly.

When a list of creative solutions to the problem is created,
everyone involved needs to share with others what actions they
would like to take to resolve the conflict without giving advice to
others on what they should do. Then we need to make users
responsible for their commitments by making it clear that
everyone involved need to deliver what they have promised.

At this point everyone should be in alignment. If not, you
need to go to openness again and repeat the cycle.

8. Community metrics

Stack Overflow provides access to almost its full database
through the SQL console at data.stackexchange.com (Stack
Exchange Data Explorer, or SEDE for short). A similar service, but
with access to full data in real-time, is available to company
employees. We used our local SEDE to evaluate the effectiveness
of ongoing initiatives and conduct research. Over time, we have
accumulated a large number of metrics (in fact, SQL queries that
calculated some numbers on certain data points). There were
many metrics and each of them told its own story. Moreover,
seemingly related metrics could show completely different
trends. For example, from 2017 to 2023, the number of
questions asked and answers posted on Stack Overflow had
decreased, but the number of monthly active users had
increased during the similar period (at least, according to its
definition). As a result, we found ourselves in a situation where,
if one wanted, they could arbitrarily prove or disprove any
hypothesis they wanted with the help of data.

A complete lack of metrics is rarely a problem today. The
most critical question for any modern project that uses metrics
to evaluate initiatives is which metrics to use and how to
interpret them in situations where there are many metrics and
some are showing growth while others showing a decline, or
when the metrics show no change but clearly there are
enormous changes underway.

As the company grew in 2020, the problem of interpreting
metrics became critical and I began working on creating a

community health metrics system that could be used by all
community managers and product managers working on Stack
Overflow sites. Community health metrics is a fairly large topic
that goes beyond the scope of this book. Therefore, in this
chapter we will look at only the most important conclusions that
can give you a sense of what the community health metrics
might look like.

Let’s start from the beginning. What are the metrics?

Metrics are the measurements that reduce
uncertainty
A metric is a quantitative measurement of something in some
specific context. The purpose of any metric is to help decision-
makers make better decisions. The difficulty of making a
decision is that usually there is some uncertainty associated with
the decision. We use metrics to reduce that uncertainty. Metrics
do not need to eliminate uncertainty, but they must add some
new information about a phenomenon or data that simplifies
understanding of the phenomenon.

Any metric has associated value and costs
The value of a metric is the difference between two decisions:
one made with a metric and the other made without it. If it is
equal to zero, then there is no point in having the metric, since
the metric does not improve (or does not participate at all in) the
decision.

The costs of a metric are the costs of thinking through,
implementing, and using the metric. Although the cost of
metrics in online communities is kept to a minimum, metrics
require interpretation and attention by a decision maker or an
analyst. Any new metric you add creates yet another data point
and one more thing to look at. If metrics are not created wisely

they add more noise to the data than there was prior to adding
them and overwhelm the decision making person, reducing the
value of having them in the first place.

If a metric has no value, there is no reason to have it.
We can represent uncertainty as a set of possible outcomes

of an event where each outcome has its own probability of
happening and an associated value, positive or negative. When
one thinks of what metrics they need to create the starting
without to look for areas where there is high uncertainty and
high cost of being wrong. Those situations are areas where the
most valuable metrics exist.

There are three types of metrics
In a large company that develops its own software to run their
community, there will most likely be three dedicated groups of
people who will need their own metrics.

Business metrics
The main consumers of these metrics are department directors.
They are usually interested in community dynamics that may
somehow affect the company’s revenue or expenses and the
forecast of these metrics for the future periods.

To get some sense of how these metrics might look, let’s
examine the value a community creates (the value that could be
converted into revenue, I mean). There are two primary types of
value that can be created by an online community.

User actions. We expect users to perform certain actions
that have value in themselves. For example, buying a
product, signing a petition, recommending your service
to friends.

User generated content. By interacting on your platform,
users leave a digital footprint, the content. This content
usually has value in itself and can generate revenue.

To measure business success from the monetary perspective we
can use the difference between the value that the community
creates minus the costs of creating and maintaining the
community itself.

Also, business people usually want to see some high-level
metrics on which the value the community creates depends, like
the number of pageviews or the number of posts created.
Note: When calculating the value created by the community, make
adjustments for community inertia: even if you stop investing into
the community it will continue to create the value for quite some
time. The larger the community, the greater the inertia and the
longer the community can create value with almost zero costs.

Success metrics of specific initiatives and overall community
health metrics
The consumers of these metrics are product managers and
community managers (and probably most of the readers of this
book). Typically, they want data on the health of the community
and how the specific initiatives they are pursuing impact it.

The first step in this is to define what health means for your
community. In general, we say that a system is healthy (or an
initiative is successful) if it efficiently does what it has been
designed for. In other words, with health metrics we measure
efficiency. To start defining health metrics for a system or an
initiative we need to ask ourselves the following questions.

What does health or success mean for the system? If
everything goes well, how will the system look?

The answer to these questions is what needs to be
measured. The resulting metric is the health metric for your
system or an initiative.

For example, let’s look at an abstract community as a whole
and define its health metric. A community is a group of people
united by a common goal or interest. For a community to exist,
people must participate in it. At the same time, constant churn of
users is an integral attribute of any online community. If it
happens that more users leave the community than join, then
the community will sooner or later cease to exist. So that we can
conclude that a community is healthy if it has more people
joining it than people leaving it.

Success metrics of the current community goals
The main consumers of these metrics are the users of a
community. It is critical for users to know where the community
is in achieving goals of the specific community initiatives that
users are working on and the end mission as a result. The main
purpose of this set of metrics is to provide feedback to users on
their actions.

When users have access to data using which they can create
metrics, then users are more likely to create initiatives that they
believe will help the community and track progress, doing
everything on their own. In other words, metrics intended for
community users should be publicly available. The more metrics
and data you can give users access to, the more proactive they
will be.

Measure independent subsystems separately
An online community is a complex system consisting of several
independent subsystems. In order for measurements to be
interpretable and have practical meaning, it is necessary to

measure each independent subsystem separately. Before
creating community metrics, especially product related metrics,
we need to identify all independent high-level subsystems. To
figure out which parts of a particular setup of a community are
independent and which are dependent, we need to try to replace
each part one by one with their analogues. If it is possible to
replace a part without significant changes to other parts it is
independent and must have its own dedicated set of metrics.

For example, Stack Overflow consists of three main
independent parts:

Software
Community
Contents

Here is why those are independent subsystems. One can migrate
a community (the users) and content to a completely new
platform without impacting the project much. One can work on
new content with an existing community or create a new
community around existing content. At the same time, many
different communities with different content can use the exact
same software. Those three parts are interconnected and form a
single whole, though they are not tightly connected to one
another to form a system with clear feedback loops.

Do not be overwhelmed by looking for meaning
of Return on Investment
There is one more important topic to discuss which is Return on
Investment (ROI) and how to calculate it for an online
community. There are a lot of articles that contain thoughts
explaining that is something that any project must have but

none of the experts tells us how exactly to calculate ROI. The
reason is that ROI can only be calculated if community activities
and associated measurements have a link to financial metrics
either directly or indirectly and it is rarely the case for online
communities.

When it is impossible to calculate ROI, you can try to
calculate ROnI, the Risk Of not Investing. In an applied sense,
you can find all the costs that a company would incur to achieve
the same results as you get with the community now. For
example, we can calculate how much it would cost someone to
create and moderate a knowledge base about programming of
the same size as Stack Overflow has and then compare it with
the expenses of having the community management team.

9. Software

In today’s world, developing your own social software is a special
case, which I deliberately leave outside the scope of this book. At
the same time, I would like to emphasize two very important
points.

In online communities, software plays a
secondary role
The most important thing to know about software in the context
of online communities is that the success of an online
community does not depend on the number of features the
software on which the community is run has. The primary reason
for that is that the value that people get from participating in an
online community usually lies outside the physical world. These
are a sense of belonging, feeling of unity, the pleasure of being
able to share ideas with same minded people who appreciate it,
etceteras. To grow a community, one needs to maximize that
value, which has very little connection with software per se. At
the same time, without proper software it will be hard to get the
job done for both the community and the community manager.

Social software is about efficient groups
Social software is all about efficiency of human groups and
usually has three essential goals:

1. Providing tools to achieve the mission, a set of possible
actions users can perform on a platform. Without tools,
users will not be able to do what they are invited to do
on the site.

2. Providing tools for coordinating the common effort. The
more people involved in activities in a community, the
more resources needed to be spent on coordinating the
group so that it does not turn into chaos. This requires
providing users with tools to coordinate collective
activities and self-govern the group.

3. Providing tools for creating and maintaining groups. Tools
aimed at enabling individuals to connect, communicate,
and engage with others and foster their relationships.

Everything that does not fall into the three categories above is
good to have but not essential for a community to operate and
does not contribute to the success of the community per se.

What to look for when choosing a software
platform run a community on
It is difficult to predict what tools a community might need in the
future, but there are the most important aspects that one should
pay attention to before choosing a platform to launch a
community on. Here is my list.

The three places
Sociologists distinguish three distinct social environments where
people operate. The first place is home, where we spend most of
our free time. The second place is the workplace, the place
where we go to do something. The third place is the place of
socialization. In the context of online communities, the first place
is the main site, the second place is a site for meta discussions,
the third place is a site for off-topic conversations. Even though
the end goal of community building is to grow the first place, our
main site, without the second and third places, the growth of the
first place is limited. Be sure to provide your users with all three
places at some point of the community development.
Note: Those places might be parts of the same platform and in the
same format (for example, separate sections on a forum), or on
different platforms in different formats.

The number of customizable parameters
One good way to engage and retain users in a community is to
give people the opportunity to adjust the environment in which
they interact with one another. The more settings to meet the
specific needs of users a platform has (and the more often you
change them), the greater the engagement of the users will be.

The set of content moderation tools

Content moderation is all kinds of actions whose goal is to keep
the content clean and relevant. Any user should be able to take
part in content moderation to some extent, as long as users
want to volunteer their time and you trust them. Usually, content
moderation does not require any special knowledge besides
good writing skills, understanding of community standards and
basic common sense.

The higher the number of users who have access to content
moderation and the more gradual the access to moderation
tools is, the better.
Note: Let me emphasize that moderating content is not the same as
moderating relationships between users. Moderating relationships is
about dealing with interpersonal misunderstandings or even
conflicts. It requires special skills such as empathy, active listening,
conflict resolution, etc, and implies the need to make decisions on
very subjective topics. This type of moderation should be restricted
only to a small group of selected people.

The content health analytics
In large communities it is impossible to view all content posted
on the platform due to its volume. In order to have an objective
estimate of the quality of the content, the platform should
provide some tools that can help evaluate the quality of the
content on the platform.

The ability to create subcommunities
Online communities grow by splitting a larger community into
smaller subcommunities and growing each of them
independently. If you are planning to have a large community
you need to find a platform that provides some ways to create
isolated community spaces based on an existing group and
connect new sub groups into a single whole.

Any subcommunity is a community in itself and, as a result,
the dedicated subcommunity space should provide users the
ability to customize it. The more customization options for
dedicated spaces the platform provides, the more effective the
growth of subcommunities will be.

The number of community roles
People start voluntarily performing some activities if doing so
brings them pleasure in itself. Separating an activity into a
dedicated official role with a special social status is a way to
reward volunteers for their contribution to the community. The
more different dedicated roles you can have on your platform,
the more active users will be in helping you grow your
community.

The type and the number of digital awards for volunteers
In any community, there are always short-term or one-time
activities that do not require a dedicated volunteering role. Like
helping to facilitate a meetup, speaking at a conference on
behalf of the community or participating in a seasonal initiative.
At the same time, any such contributions should be rewarded in
some way. One of the most efficient ways to do that is to reward
volunteers with some special visible digital awards dedicated to
specific initiatives that make the participating volunteers
distinguishable from the rest of the community. The more
customizable digital awards for users the platform provides, the
better.

Automatic backups and data dumps
Before launching a community on the chosen platform, be sure
that you can download all the data from the platform you chose
and re-create the community based on the data dump. Technical

glitches happen all the time and you risk losing everything in an
instant if you don’t have a backup. Additionally, in some rare
cases you may need to change the platform the community
operates on. It is possible only if you can download the full dump
of your data.

Accessing community data using SQL queries
There is no platform that has a user interface for everything you
would want to know about your community. If the platform
provides a way to run SQL queries and download the results for
subsequent analysis, this will make your life much easier and
improve the quality of your decisions.

10. The rise and fall of International
Stack Overflows
If you do it well, it will be well: Stack Overflow in
Russian is one of the fastest growing communities
on the network
There is a big difference between playing football in the yard
with friends and professional sports. Likewise, creating a chat or
Facebook group for friends to organize a birthday party is not
the same as building and managing Stack Overflow, which is
visited by hundreds of millions of people every month. To play in
the Premier League, you need not only to constantly practice,
but also to know what to do, how to do it and what you should
not do at all.

The main activity metric for Q&A sites is the number of
questions asked per day. We launched HashCode at the end of
2010 and by the end of 2011 users asked about 35 questions a
day on the site. Due to our erroneous (marketing) approach and
misguided priorities (on software), this metric did not grow until
mid 2015, when we migrated to the Stack Overflow platform.
Over the following three years of managing the Stack Overflow
in Russian, I posted about 200 questions and 450 answers on
Meta, held a dozen offline meetups in different cities in Russia
and abroad, recorded a dozen episodes of the community
webcast and spent 0 cents on advertising. 35 questions per day
in March 2015 on HashCode turned into 250 questions per day in
May 2018 on Stack Overflow in Russian. Over three years of
active development, the community grew sevenfold and

continued to grow. Stack Overflow in Russian was one of the
fastest growing sites in the Stack Exchange network.

If someone asked me today what the secret of the success
of Stack Overflow in Russian is, I would answer that there is no
secret, but there are key activities that one should focus on. If
you create the right foundation for your community, everything
else will follow.

Here’s the foundation of Stack Overflow in Russian.

Kindness. Without treating each other with kindness and
respect, nothing else matters. We constantly promoted
the idea of being kind and respectful to each other no
matter the circumstances and asked users to assume
the good intentions of others no matter what
happened.
Socialization. All processes in the community will
proceed faster and more efficiently, and users will be
more active if they have good friendships with each
other and with you. In truth, the social capital we talked
about earlier is a characteristic of the entire group, not
just one individual. The higher the social capital of your
community, the more effective the community is.
Communication. One of the most critical applied skills of
a community manager is the ability to engage with a
compelling story, showing users the desired future that
the community can achieve if we all work together.

Let me emphasize that kindness, socialization and
communication are not attributes that can be achieved, they are
processes that must take place in a community on an ongoing
basis.

The end of growth of international Stack
Overflows
From the moment I joined the company until mid-2017, each
international community had its own dedicated community
manager. In the second half of 2017, two international
community managers left the team, and in November of the
same year, the company laid off about 20% of its employees.
After that I first started helping other international Stack
Overflows whenever possible, and in 2018 I officially started
managing all international Stack Overflow communities.

The essence of the approach to growing multiple
communities is no different from growing a single community,
but the method is slightly different. Basically, one needs to take a
step back and “reduce the focus.” Here is what I mean. When you
manage a group of communities, you need to work even more
with the most active volunteers and less with the users of each
of the communities. In our team we called this approach
“moderator management” as opposed to the standard
“community management”. I began to move in this direction as
well. Together with users of the communities, we created
manifestos for international communities, began to collect a list
of initiatives held in each of the communities to share the
experience, hold offline meetups and online contests, and much
more. My colleagues and I truly believed in the success of
international communities. We expected that our four
international sites, under certain circumstances, could grow to
account for 30% of all activity on Stack Overflow in English
together.

Unfortunately, our plans to grow international communities
were not destined to come true. A period of great change began
in the company. During 2019, almost the entire top management

team of the company and many heads of departments were
replaced. This was accompanied by great internal and external
upheavals. It was impossible to do anything new or non-
standard in such an unstable situation. In the first half of 2020,
after cutting another 15% of the company workforce (and
irreparable losses in the community management team), work
on the international sites officially stopped, and my focus
became the moderators of the Stack Exchange network.

Why international sites haven’t taken off fast

How we calculated the volume and size of language niches
The number of questions asked per day is one of the main
activity metrics for Stack Exchange communities. Everything else
depends on the number of questions in a community. Without
questions there will be no answers, without questions and
answers there will be nothing to comment on and nothing to
vote for, etc. Here are two facts. There was a 98% correlation
between the number of questions on the site and incoming
traffic, and over 95% of traffic on Stack Overflow comes from
search engines. Therefore, we guessed the expected maximum
number of questions on Stack Overflow in a specific language
niche through the number of questions per day on Stack
Overflow in English and the proportion of traffic on Wikipedia in
that language.

The idea was that we believed that the number of people
who use Wikipedia in a particular language niche should be
proportional to the use of Stack Overflow in the same language.
If this is true, then the following equation is true as well.
QPDSOen TraffWikiEn = QPDSOLang TraffWikiLang
Where:

QPDSOen is Questions per day on Stack Overflow in
English.
TraffWikiEn is Traffic on Wikipedia in English.
QPDSOLang is Questions per day on Stack Overflow in a
specific language.
TraffWikiLang is Traffic on Wikipedia in a specific
language.

From there:
QPDSOLang = (TraffWikiLang / TraffWikiEn) * QPDSOen
At the time of the active development of international sites,
about 8 thousand questions were asked per day on Stack
Overflow in English, and traffic on Wikipedia in English was
about 50% of the total traffic of the project. From here we get
the following results for the expected maximum QPD on our
international sites.

Community Traffic ratio Expected QPD
In Japanese 2 * 0.072 1152
In Spanish 2 * 0.069 1104
In Russian 2 * 0.053 848
In Portuguese 2 * 0.022 352

By 2017, when we suspended work on international sites, they
were all just at the beginning of their growth curve.

Why didn’t international sites grow as fast as we expected?
There were no silver bullets that could help us, but there were
the most critical issues that have clearly hampered the growth of
international sites.
Lack of a clear powerful mission and an antagonist for
international sites

By the time international sites launched, the Internet was very
different from when Stack Overflow in English was launched. In
particular, Stack Overflow in English had already replaced most
forums in search results for many new technologies and no one
even remembered about Experts Exchange. Although all
international Stack Overflows have a similar mission, it was quite
difficult for users of international sites to feel the problem the
way early users of Stack Overflow in English felt it. International
Stack Overflows were launched for people who have a language
barrier and those who would like to create a knowledge base in
their native language. These are very worthy goals, but their
driving force, which makes people join the group and be active,
is noticeably weaker than the intolerance of Experts Exchange
and cluttered search results.
Note: In my view, the current Stack Overflow in English has lost its
main driving force and is in approximately the same state as
international sites. It seems that many people contribute to Stack
Overflow in English largely out of inertia.
Competition between Stack Overflow in English and
international Stack Overflows
Each international Stack Overflow was launched as a completely
independent community and was not connected in any way with
other international sites and Stack Overflow in English as well.
Some studies say that 75% of all clicks in search results come to
the first three links. Our sites competed with each other for the
top positions in search results and those clicks. Stack Overflow in
English with 10 million questions often won the competition
from international Stack Overflows and thereby taking all search
traffic, consequently cannibalizing the international
communities. If the knowledge bases of all Stack Overflows were
linked, we could manage traffic more efficiently internally,
redirecting it to the correct language site when necessary.

Lack of platform development
The site engine of Stack Overflow was developed based on
specific problems arising when growing the English-speaking
community. After the launch, international sites had their own
unique needs in the form of tools for interface localization, help
center synchronization, knowledge base integration, etcetera.
Most of these requests were not implemented due to lack of
resources. Therefore, on international sites, a lot was done
manually, or not done at all. As I wrote above, software as such
will not make the community successful, but if you have good
software, it will greatly simplify life for the community. In
addition, users’ sense of belonging and sense of ownership arise
when a company and users work together to solve emerging
problems. This cut off the growth of international sites as well.

Part 3

The fall of The Star

I was very lucky. I had the opportunity to go through a journey
with Stack Overflow that was almost nine years long, plus
another four years of working on HashCode on my own. I had
the opportunity to look from the inside at the most important
stages of development of the company and the community. First,
I went through the period of launching and early growth of
HashCode, then the rapid growth of Stack Overflow in Russian,
followed by the work on international sites and then on Stack
Overflow in English, when the community reached a plateau in
the number of questions and answers. I saw how we slowed
down community development as the company tried to find its
way to profitability. Then the period of growth gave way to a
period of serious changes in management and the subsequent
acquisition of the company. Then I left the company when it
became, at least in the context of processes within the company,
a corporation.

In my opinion, the growth of the community was most
tragically affected by changes in the management and the
subsequent transformation of the company. The company,
whose main focus has always been the community, began to
move towards a SaaS-oriented company with a line of software
products for knowledge management: Stack Overflow for Teams
and Stack Overflow Enterprise. The changes affected all parts of
how the company was functioning. At some point, all the

employees who made decisions, including product managers in
specific teams, were experts at developing SaaS solutions, and
there were only literally about a dozen people left with real
experience in community development for the entire company.

The way we developed software has also changed. When the
project was just launched, the original Stack Overflow Q&A
engine was created to solve a specific social problem. When
working on the engine, the developers proceeded from the
problems that arose during the use of the software on a large
scale. Most decisions about the architecture of the engine and
the set of available features were made based on user feedback
and public discussions with the community. When it was time,
we adapted what was rightfully the best Q&A engine in the
world for use within companies, resulting in the products Stack
Overflow for Teams and Stack Overflow Enterprise. In the new
paradigm, everything was turned upside down. Stack Overflow
for Teams and Stack Overflow Enterprise have developed by
leaps and bounds, bypassing the public site. While on the public
website, since the acquisition of the company, I cannot name
any innovations that have had any positive impact on the growth
of the community. In other words, the company’s SaaS products
were actively evolving, while the problems of the public platform
were not addressed at all.

There is an axiom of community management that says that
any social system has two states: growth and death. The Stack
Overflow community has been stagnant for a long time. As a
result, starting from 2020, the decrease in the number of
questions asked per year has been about 15% and by 2023,
there were only 45% questions asked on the site compared to
the number of questions asked in 2016, In 2023, on Stack
Overflow, which every developer in the world knows about, with
a knowledge base of more than 20 million questions, there were

16% fewer questions asked than were asked on Stack Overflow
in 2011, when few people knew about the community.

These and other figures clearly indicate that something
wrong has been happening in the community. In this part, we’ll
look at two of the most critical problems that I think modern
Stack Overflow suffers: how decisions are made within the
company and how the company interacts with the community.

1. Product and community
management

There are no good or bad approaches in business, but there are
suitable and unsuitable ones for solving a specific applied
problem. Like there are nails and bolts. It seems that at some
point something went wrong at Stack Overflow (the company)
and we started hammering nails with electric screwdrivers. As a
result, at the end of the day we did not get the nails driven in
and had screwdrivers that are broken.

It is extremely difficult to grow an online
community with a top-down approach to
management
In 2019, almost the entire top management team of the
company changed. Until this point, the company was run by Joel
Spolsky, one of the company’s founders. Joel preached the
“servant leadership” approach in management, the applied
meaning of which in our context boils down to the following (in
my interpretation, of course). The leaders of a company choose
the direction of development and communicate it all the way
down to individual contributors. Then individual contributors
need to understand and internalize the chosen direction.
Further, since individual contributors have more information
about the state of affairs on the ground, they choose the most
effective way to achieve the goal set by the leaders and
implement the chosen approach. Managers, in turn, help

individual contributors do what they do by removing obstacles
on their way. Simple and effective. As the company grew, the
approach to organizing teams and how resource allocation
changed, but the original idea remained the same: we always
followed the idea of servant leadership.

It is worth noting that servant leadership is an ideal
management approach for community management teams
because in this case the internal processes of a company match
are the same as we usually manage communities: The
management of the company makes sure that community
managers succeed in their endeavors. At the same time,
community managers do their best to support volunteers and
make sure they have what they need. So, if users need anything,
it is the top managers’ goal to provide them with it. In our case,
when we were managing Stack Overflow communities, first, we
communicated to the community the goals that the company
was pursuing at a particular point in time, and then we found
out the needs of volunteers and their general feedback about
the planned activities. If the community management team
could not help the users with their needs on its own, we
communicated the needs up to the product development team,
and even higher, if the product development team could not help
us.

Like all approaches, servant leadership has its pros and
cons, but in general this approach worked for us and community
managers acted as a bridge, representing the interests of the
company within the community, and the interests of the
community within the company. With the change of the
management team in 2019, the approach also changed. Servant
leadership has been replaced by a standard managerial
approach, which I personally call “I’m the boss, you’re a fool.” The
essence of this approach was that the company’s top

management chose not only what we would do but also how
without any room for discussion. The task of middle
management was simplified to communicate specific tasks to
individual contributors. The task of individual contributors was
to carry out the assigned task the way it was defined. There was
complete one-way communication from top to bottom. This style
of managing the company affected the way the community was
managed. Community managers kept representing the interests
of the company within the community, but in the opposite
direction, the bridge led to an abyss. Most likely, the “I’m the
boss, you’re the fool” approach may work in some industries
under certain conditions, but definitely not in an IT company
where incredibly smart people work. Especially not in a company
whose task is to help the community be effective, because the
whole point of growing a community is to help the users to
achieve the mission which assumes two-way communication by
default.

The “I’m the boss, you’re the fool” approach was felt almost
at every single turn. For example, at some point we needed to
write a new help center page. This is a typical task for a junior
community manager, no big deal. When the task arose I didn’t
even pay any attention to it. The page was written by someone
on the team and I was asked to help translate it for international
sites. When I read it, I was surprised that it was written very
poorly: there was no logic in the narrative, there was repetition
of ideas and expression of the author’s personal views. While
translating I corrected the original text, leaving the general idea
the same, and sent the new version to my colleagues so that
they could review it and make changes based on the review.
Unfortunately, some of the managers forbade making any edits
to the text. It turned out that the page was written by a top-level
employee and making changes to their work did not correspond

to the company corporate culture. Why it was impolite to
improve someone’s work as well as why a top-level employee
spent even a minute of their time on doing junior community
management work is still a big question to me.

The company did not become like this overnight, the
changes have been happening gradually. With the new top
management, the middle management also changed. Then
people who were accustomed to the servant leadership
approach, which implied autonomy in decision-making and
critical assessment of approaches to achieving goals, regardless
of who proposed them, began to leave the company. Not
everyone left, the company still had a lot of talented people, but
the number of folks who asked “uncomfortable questions that
did not correspond to the new corporate culture” became fewer
and fewer.

Let me reiterate. The main task of a company that manages
a community is to make the community work effectively. To do
this, the company has community managers who monitor
community dynamics and communicate with most active users,
finding out their problems and, based on this, recommending
developers to make software changes, if necessary. When
decisions are made in a closed circle by top managers and get
sent down for implementation, it becomes impossible to receive
any information from the outside. Having abandoned servant
leadership, the management has built a series of blank walls
around themselves, and the company. On top of that, I
personally do not see how top-level employees, middle
management or even product managers who never talk to users
and do not have domain expertise can make even an educated
guess about what the community needs. This approach is
doomed to fail.

Note: It’s worth noting that Stack Overflow, the company, actually
has two types of businesses: public communities and SaaS products.
I am sharing my experience in working in the department that was
involved in the development of public communities and I have very
little idea of what kind of experience my colleagues had in the
development of SaaS products division. It is quite possible that for
them the chosen management approach seemed more rational than
to me.

The product team and community management
team should have a shared roadmap
Changes in the company’s management in the first half of 2019
affected the structure of the teams. In particular, the team
developing the public website got their own director. This was a
product manager who managed the resources dedicated to the
team. The community management team also got a dedicated
director. In the beginning, everything seemed to be going well.
Each team was engaged in planning, setting priorities, drawing
up a roadmap for the upcoming year and a detailed work plan
for the next quarter. Suddenly problems began to appear
because each team had its own roadmap, the teams had
constant conflicts of interest.

The community management team needed developers to
implement features that were critically needed by the volunteers
and the team itself, but no one allocated these resources, since
the development team planned all its resources in its roadmap.
At the same time, the product development team approached
development in a way that was counterintuitive to the
community. People somehow made their own decisions about
what needed to be developed, developed what was planned, and
delivered the result to users who had completely different needs

and priorities. In other words, the product development team
critically lacked domain expertise, but community managers
were busy implementing their roadmap.

The conflict of interest grew and it became obvious that the
current scheme was not working and it was necessary to unite
the teams somehow. The question became how to do this. In my
view, the choice of who should help whom is quite simple.

The product development team should support the
community management team, that is, develop
software according to the community management
team’s roadmap, if the company’s end product is the
community itself.
The community management team should support the
product development team, that is, help to prioritize,
consult and ensure adoption of the software according
to the product development team’s roadmap if the
company’s end product is software.

The reasons behind the approach where the company’s product
is a community, the ultimate goal and the main value is the
developed community, the software itself plays a secondary role.
If your main product is software, then most likely you do not
have any applied community that works on its own, only a
community of your engine’s customers, the community that
does not generate revenue per se.

Stack Overflow, the company, definitely has a community
and that’s where the company’s greatest value lies.
Unfortunately, when we united the teams, the community
management team began to support the product development
team. Although this was much more efficient than working

separately, it was still a mismatch because the company
continued to implement initiatives that had been planned
internally, rather than what users heeded and had asked for. To
understand why it was the case, let’s look at the structure of the
resulting teams.

The development of a community platform should
be managed by a person with domain expertise
In June 2021, Prosus bought Stack Overflow. The company
acquired the resources to grow and we began actively hiring
people to develop all the products the company had, including
the public communities. Up to this point, the product
development team who worked on the public platform consisted
of only a few people, but now the team had grown to several
sub–teams. Each sub–team consisted of people with different
skills: developers, designers, product managers and community
managers. Within the company, we called these sub teams
“cross-functional” teams. The leader in all groups had to be the
product manager, who made all decisions on the initiatives that
the team worked on unanimously (adjusted for the fact that
many of the tasks that we had to work on came to us from the
top). This method of decision making, as I see it, is another
important reason why the company failed to develop the public
platform.

Let’s get back to the question from the previous section.
What was the end product of Stack Overflow? Were we
developing a SaaS solution? Or were we developing a
community? In my view, the only correct answer in the case of
Stack Overflow (the public platform) is that we were working on
a community. In this case, only the community management
team had context regarding the current needs of users and the

overall situation in the community. Honestly, community
managers were hired to do those jobs in the first place. When
community managers were excluded from decision making, no
one brought that context to the product development team. As a
result, the product development team worked on initiatives that
didn’t gain any traction and didn’t help the community to grow.
Also, guess what will happen if you don’t address users’ current
needs for tool A, and instead you offer them tool B, which has
nothing to do with A, and then try to convince users that what
they really need is actually B, not A? Yes, correct, all you will
achieve is aggressive behavior and a ton of negativity towards
you and the company.

This was exactly what we experienced: the constant
negativity of users on Meta and the low end benefit from the
features being created. I personally can’t think of a single big
feature we developed between 2020 and 2023 that had any
significant positive impact on the community. Don’t get me
wrong. All my colleagues were incredibly talented, and it was a
pleasure to work with them. The problem was precisely in the
approach itself, when the product managers were required to
make decisions in areas about which they had no experience at
all. Once again, if you can’t play with the big dogs you’d better
stay on the porch.

In general, Product Manager and Project Manager do not
need to be the same person. I know many successful teams
where the product manager is engaged in market research and
helps the team with the business component of product
development, while they are not the same person who makes
the final decision. I believe that in successful teams, the decision
should be made by the person who usually has domain
expertise. In companies where the main product is community,

this will most likely be a person from the community
management team who has solid project management skills.

Community managers must peer review each
other’s work
When I started working at Stack Overflow, it was standard
practice throughout the company to review the ideas and work
of colleagues. Typically, everyone formulated their proposals in
the form of “Request for Comments” documents (RFC for short).
After a discussion in RFC format, where anyone could leave a
comment and receive feedback from the author of the
document, an initial specification was written, which, again, was
reviewed by all interested parties. Even all the announcement
posts for Meta were reviewed by the team. I really liked this
approach because it allowed us all to learn from each other and
reduce the number of mistakes we made.

After another series of layoffs, in 2020 the community
management team consisted of only five people, one of whom
was our manager. There was much more work than we could do.
Therefore, we simply selected the most important tasks,
distributed them among the team members and tried to do
everything as well and quickly as possible. In that reality, we had
to abandon RFC and peer review. If anyone had questions or
requests for colleagues, we discussed them on the weekly team
calls. All the folks on the team were highly qualified and
understood the nuances of our community. Basically, the
approach worked.

By the second half of 2021, after Stack Overflow was
acquired by Prosus, the team had grown in size to 13 people.
While scaling the team, we made a grave mistake by continuing
to work on initiatives individually without peer reviews, and,

unfortunately, this culture became entrenched in the team. In
subsequent years, until I left the company, all community
managers worked on initiatives on their own. To understand the
depth of the problem, imagine for a moment what a world
would look like in which developers did not do peer reviews of
each other’s commits? That’s right, it would be a world in which
we had buggy software, and the speed of the personal
development of engineers would be reduced to a minimum.
Although I worked on the community management team and
not a software development team, the result of the lack of peer-
review was the same.

When I worked as a developer at Motorola, the company
constantly hired interns who had to be trained and adapted to
work for a big company. Therefore, for a group of two or three
interns, one senior developer was allocated. The senior set tasks
for the interns and reviewed everything they did. In this way,
interns learned development processes, how to give and receive
feedback from colleagues, as well as programming. Because of
this process the result of interns’ work could be used in the real
product. Most of the colleagues who joined in 2021 were new to
community management, and some had never even participated
in Stack Exchange communities before. In my view, they critically
needed the same care we gave interns at Motorola, with a
mandatory review of the work done by one of the senior
community managers, without which none of their work could
go into the final product.

Stack Overflow had a process called “onboarding buddy”
which meant that everyone new to the company had a dedicated
colleague they could approach with questions if they had any.
But here’s an axiom: The difference between a senior and a
junior is that the senior understands perfectly well what they
don’t know, while the junior thinks that they know almost

everything. Additionally, new employees may be embarrassed to
ask questions. In other words, a junior will rarely approach
anyone with a question and will simply do their work to the best
of their ability. Now, add to all this the absence of peer review
and we get what we have on Stack Overflow today, a serious
decrease of user engagement in the community.

Each member of your team has a unique experience. Peer-
review is a perfect way to share this experience within the team
and as a result improve the final product.

Communities do not grow by coincidence, to grow
a community one needs a plan
When I started working on HashCode, I had minimal funds for
the software development and community building. The entire
starting capital was very modest savings, which I was able to set
aside by working as a programmer for a few years. At the same
time, in some incredible way I managed to create one of the
most popular communities of software developers in our
language niche. Now in front of me there was Stack Overflow,
where since 2020 user activity has been constantly decreasing,
while the company had more resources than ever before. I was
constantly tormented by the question: How can this be possible?

Let’s try to answer this question.
As I see it, the most striking difference in the approach I

followed to grow HashCode and the one that the community
team used on Stack Overflow in recent years was that while we
were working on Stack Overflow, we did a lot of things, but none
of the initiatives were aimed at growing the community per se.
At the same time, when I was working on the HashCode
community, I only did things if I expected them to increase
activity on the site or the number of users in the community.

On international sites the situation was similar. My fellow
community managers and I were solely focused on growing our
communities. Before we started anything, we made plans and
only then got down to business. The basis of planning was to
assess how the possible end result of a particular initiative might
affect the growth of the community and what the likelihood of
the initiative being implemented successfully would be. To
evaluate initiatives, we used a rule-based system through which
we prioritized initiatives and filtered out anything that was
impractical to work on. Here are the most important rules.

Planning rule #1: Almost all activities a community manager
does should be aimed at growing the community
Any social system has only two states. It either grows or dies. If
you do not work on growing your community, it will begin to
stagnate, then degrade and will eventually die one day. Running
initiatives aimed at growth is the only way to keep a community
healthy. Everything you do as a community manager should
always be viewed through the lens of community growth.

Please, note that community growth activities and
marketing are two different things. Marketing is more about
attracting new users. Community growth activities are about
working with volunteers within the community itself.

When planning your work, look at all you do through the
lens of community growth and filter out everything that does not
affect growth.

Planning rule #2: Look for AND instead of choosing OR
I think everyone has at least once encountered a conflict of
interest when it was necessary to achieve many goals at once,
but they had time and resources for one goal only. The standard

solution (the OR approach) in these situations is to weigh the
alternatives and choose the best option.

There is a better way, actually, at least in the field of
community management. A more effective solution (the AND
approach) is to try to find an initiative that allows you to achieve
results in several directions at the same time where the sum of
many not-the-best results exceeds any of the individual
alternatives.

When planning your work, choose the initiatives that give
the greatest result in terms of the sum of progress towards
many goals.

Planning rule #3: Take on initiatives that you can actually deliver
From my personal experience of working on Stack Overflow,
most initiatives that took much longer than they should have or
did not reach the end user at all have one common
characteristic. There were too many cooks in the kitchen when
working on them. In other words, the successful completion of
the initiative depended on too many people working together
successfully.

A lot of delays in collaboration occur because different
departments have different priorities for a given initiative.
Programmers, designers, and community managers may think
of the same task with different priorities. Reducing the number
of people who work on an initiative, especially from different
departments, is the easiest way to increase the likelihood that
your work will reach the end user.

When planning your work, prioritize those initiatives that
require minimal help from outside of your team to complete.

Planning rule #4: Improve rather than create from scratch

Working on something new feels good. Our mind draws an
optimistic forecast for the future success of the endeavor. But
when working on something that already exists, our mind limits
the forecast within the existing numbers. At the same time, the
truth is that a completely new feature can be used by a lot of
people or by no one. Working on something new you risk
wasting all invested resources, whereas the improvement of the
existing system will definitely be used by the current users.

When planning your work, if possible, look for something
that users are already using and you just need to improve the
system. Consider creating something completely new as an
investment that may not return any value.

Planning rule #5: There is always one thing that is more
important than everything else
When resources are scarce, you need to think very carefully
about how you spend them. Identify the most important thing
and work on it until you get it to the product. Look at anything
else only if there are resources left. Multitasking works only in a
narrow set of cases, so we can practically think about
multitasking as a myth.

Planning rule #6: Separate making plans and executing them
Back when I was growing HashCode, I noticed that when I was
working on certain tasks, I unconsciously optimized the task
itself to complete it as quickly as possible. The problem was that
in the long run I needed to implement the original task, not the
optimized one, no matter how long it would take me to
implement it.

There are two easy ways to avoid getting into this situation.
The first is to delegate planning and implementation to different
people. The second, if you are a team of one and wear multiple

hats, then you need to spread out the planning and the
implementation of the plan to different days. During planning, it
is necessary to record in writing everything that needs to be
done, what you want to get as the final result and reasoning why
you are working on the task. When you start executing, turn off
the engineering instinct to optimize the task and stick to the pre-
written plan.

Do your planning on designated days and implement the
plan on other days.

Сommunity grows by dividing into
subcommunities
The number of questions and answers on Stack Overflow grew
until 2014. In 2014, growth stopped and activity on the site
reached a plateau. If you go to Meta and start reading the
discussions for 2012–2014, you can see that with the growth of
activity in the community, there was a growth of questions about
the welcomeness of users and the difficulty of finding interesting
questions to answer. To understand the possible reasons why
this was happening and how these things are connected, let’s
take a look at the design of Stack Overflow.

The design of Stack Overflow is that the entire site is a single
knowledge base, without explicit separation into subsections.
When someone asks a question on Stack Overflow, they ask it to
the entire community. Users who want to help other people can
choose which questions to see and which to ignore by using
tags, the main content filtering tool. In comparison, a standard
non-Q&A online forum consists of subtopics. Each subtopic can
also consist of subtopics, a typical tree branching structure.
When a user asks a question on a forum, they ask it in a specific

subtopic, thereby limiting the number of people who will see the
post to only those who are interested in that subtopic.

Tags gave users on Stack Overflow incredible flexibility in the
way they could filter the content on the site, but introduced a
chaotic question flow and moved all the responsibilities for the
customization of that chaotic flow onto the shoulders of the end
users. By 2014, more than 8 thousand questions were asked on
Stack Overflow per day. That is an incredibly large information
flow, which became simply impossible to work with by using
tags. As a result, users had difficulty finding questions that
interested them.

The second most frequently discussed topic in those years
was the increase of cases when users behaved unwelcoming to
each other. Let’s recall that one of the two strongest internal
motivators of participation in communities is a social motivator,
that is, the opportunity to communicate with other users who
are interesting to us. The axiom is that most people will never be
rude to people whom they know, respect and are interested in.
We are all very different, we grew up in different cultures and
misunderstandings happen, but in general, rudeness in a
community is not normal. There is research done by British
professor Robin Dunbar. He showed that historically, people lived
in communities of up to 150 people. 150 people is the size of a
group in which a person can understand who is who and how
each member of the group relates to other members. The
professor formulated Dunbar’s number, a measurement of the
“cognitive limit to the number of individuals with whom any one
person can maintain stable relationships”.

It can be assumed that in online communities, as the size of
the group grows, we cease to know the people around us and
our self-identification with the group weakens, the sense of
belonging fades away, at the same time, the stress of the users

and following aggression in the group increase. At some point
this usually results in the community reaching its limits in the
number of users who can effectively create value together. Once
the community reaches its limit, no matter how many new
people you add to the community, the size of the community will
not change, since for one reason or another some users will
leave the group. In other words, a plateau in growth can be an
indicator that the community has become “too big” for its users.
If you want your community to continue growing you need to do
something about the size. In practice, every online community
grows according to the same pattern. First, from several people
to several dozen people in one group, then the group is divided
into several subgroups of several people each, and then each
subgroup increases in size to several dozen. Then again, the
division and growth of smaller groups.

Let me emphasize that sub groups, or sub communities, are
full-fledged communities that exist within a larger community.
More strictly, a subcommunity is a group of users who interact in
an environment isolated from the larger community where
specialized rules are in effect. The rules themselves are
determined by the subcommunity users as well as the
environment in which the users interact. For a subcommunity to
function properly, it should have its own place for meta-
discussions and the ability to implement the needed changes
that have been discussed.

Let’s sum it up. The first problem on Stack Overflow at that
time was the large flow of questions, which became impossible
to deal with using the tagging system alone. The second
problem was the large number of strangers on the site, which
makes it impossible to build any relationships between users. In
my view, the solution to both problems described above is to

split Stack Overflow into smaller, more specialized communities.
One size does not really fit all.
Note: In fact, Stack Overflow was once divided into subcommunities.
At the very beginning of its life, after a year of Stack Overflow’s
existence, what was supposed to happen happened. In May 2009,
two new sites, Super User and Server Fault appeared, based on their
separation from Stack Overflow. Subcommunities are not the same
as individual communities, but the motivation behind them is
identical.

2. Communication

Somewhere inside, at the subconscious level, I associate growing
a community with the lean startups methodology. The lean
startup methodology is the process of validating ideas by
analyzing customers’ reactions and feedback on an MVP, and
deciding if the company should keep working on an idea or
pivot. The goal of the approach is to bring products to market as
quickly as possible with minimal risk of them not meeting
customer needs. For online communities, lean methodology
involves discussing your ideas and working with users at an early
stage.

When the founders of Stack Overflow first started working
on the project, they recorded oral discussions in which they
talked over the basics of design of the future site engine, and
then posted the recordings on the Internet. In the comments to
the posts, all interested parties could share their thoughts about
the discussed ideas. When Stack Overflow was launched, all
active development was based on the same principle. Thinking
through the dynamics of the system out loud and subsequent
public discussions of the ideas for future site tools.

Discussing features with the community not only made it
possible to dynamically create the software that users needed to
work effectively, but also had a positive impact on three most
important aspects of user engagement.

Shared identity. By telling how, what and why you do
something, you create the story of your community.

Through stories, users develop a shared identity within
the group.
Sense of ownership. When users have the opportunity to
share their thoughts on an issue and thereby influence
the development of the platform, they feel that the
platform is “theirs”. This also affects their sense of
belonging.
Active participation. People enjoy thinking about
interesting topics, sharing their thoughts, and
discussing them with other smart people.

By 2021, we had somehow moved away from the lean
methodology in working with the community, and platform
development, and community management began to be
conducted as if we were developing not a community, but kind
of a SaaS product. Instead of domain experts thinking through
community dynamics and making assumptions, we moved on to
brainstorming feature ideas with a diverse group of employees
(note that all colleagues were incredibly educated, yes, but
without any meaningful experience in community management).
Instead of public discussions with users and analyzing their
feedback, we began to conduct user research through
interviewing several randomly selected users. Instead of sharing
stories about planned tools, their design and how the tools can
help the community achieve its goals, we began posting
announcements when releasing new software.

There is nothing wrong with brainstorming and releasing
announcements. But there are things that must be done
according to their own nature. Growing community and building
SaaS software require completely different approaches. You
won’t run a marathon at the pace of a sprinter.

Don’t treat a community like an audience.
Audience and community are not the same thing
There is a huge difference between an audience and a
community. By definition, an online community is a group of
people connected by a shared goal, an interest or a purpose and
communicating with each other. In other words, a community is
about people who want to do something together, interact with
each other and are interested in each other. An audience, in turn,
is a group of people interested in something or someone. The
audience’s attention is always focused on one person, particular
brand or other single entity.

Users in a community interact with each other; it is always
two-way communication. Community assumes collective action
that usually leads to creation of value by the users themselves.
The audience does not provide any means to facilitate the
exchange of information between people, the audience only
consumes. If you work with an audience, your primary task is to
create something that is interesting to the audience. If you work
with a community, then your primary task is to energize the
users and in every possible way help them create what is
interesting to them and other community users.

In the case of an audience, the organizers make most
decisions on their own and are completely responsible for
running the show, the people are passive. It is not the case for
Stack Overflow, where users are active, know what they need
and rarely silently agree with imposed decisions from the
outside. They are used to participating in decision making.

User feedback will always be about problems. At
the same time, it is necessary to distinguish
between toxic feedback and helpful feedback

In my last years at Stack Overflow, I began to notice that
colleagues, especially those who had not previously worked with
communities, perceived public meta discussions of the site
design and its features as a negative experience. In my view, one
of the main reasons was that every time they posted an
announcement of a feature, all users’ responses contained
descriptions of some shortcomings in the proposed solution,
which caused anxiety among many of my colleagues.

At the same time, the fact is that kind words do not provide
information that will help make an initiative better. When one
shares their work with a community for feedback, users
intuitively see it as an opportunity to help the author to improve
their ideas. The users begin to look for shortcomings
intentionally and propose their own ideas, even if the current
version looks fine to them. As a result, any place dedicated to
feedback will look as if it is “negative”. In reality this is not the
case. Most people who really don’t like something about the
community quit in the first place when they encountered
something they didn’t like. It is unlikely that they would go as far
as posting feedback for a new feature. The users who provide
feedback, in most cases, are active and loyal members of the
community.

One way or another, most of the feedback in the community
will be about issues, shortcomings or possible improvements.
Some of it will be helpful and some will be toxic. One needs to
differentiate between these two categories.

Toxic feedback is characterized by the fact that it is aimed
at the personality of the author of the post, it contains
accusations, disdain, or humiliates the dignity of others.
Usually, toxic feedback does not contain any specifics.

Helpful feedback is based on verifiable facts, is specific,
relevant to the context being discussed, is respectful,
and often contains specific suggestions for possible
solutions.

Another important aspect to look at is a culture of reasoning in
your community. Toxic feedback in most cases comes down to
the expression of subjective opinions, which can rarely be
supported by logical reasoning. Once you make it mandatory to
provide reasoning for any feedback, the number of toxic
feedback posts will reduce to almost zero.

Any communication with the community should
allow users to show off their skills
There are three important conditions for this to become
possible.

1. It is necessary to share your developments and existing ideas
with users as early as possible.
The correct approach to doing something for a community is to
never wait for the final version of a feature or an idea and share
what you have as soon as you have the minimum. The longer
you wait to share about your work:

The harder it is to mentally hear about shortcomings in
your solution.
The harder it is to implement suggestions.
The harder it is for users to show off their skills and help
you.

It is much easier to listen to feedback when you have invested a
minimum of your time in the current solution. Moreover, the less

invested you are in a particular implementation, the easier it is
to abandon it if the users do not like it or there is an obvious flaw
in the approach.

Developing something useful for a community largely
comes down to working collaboratively with the users. The more
“raw” the ideas you share with the users, the more space there is
for them to show themselves off, and for you to add some of the
users’ ideas to the final product. If users are involved in anything
that makes it to production, then they develop a very strong
sense of ownership of the community and want to invest in it
even more.

2. It is necessary to clearly indicate what kind of feedback you
expect users to provide.
When you post about a new feature or an initiative, you have the
opportunity to set the rules of the game. All you need is to add a
specific question or request to the end of the post, which will
clearly describe exactly what you expect to see from the users.
When you ask the users for something specific, you set strict
boundaries for further discussion and anything beyond these
boundaries will be considered off-topic. You and other active
users can easily moderate feedback in this case.

3. You must be ready to make changes based on the results of
the discussion.
Meta discussions are meaningless if there is no follow-up action
by the end of the discussions.

Communication is all about telling stories that are
focused on users
Colleagues who worked on product development have always
shown interest in Meta. Often they themselves wrote meta posts

about the work they had done. These posts were informative,
detailed with the complexities of the problem being solved and
the chosen solution. The writings were good enough to be used
as posts for scientific journals, but they were often not suitable
for Meta. Here are the two most important reasons.

1. Story should be aligned with the software, and the software
should be aligned with the story.
There is a popular expression “if it is worth communicating, it is
worth a story.” Storytelling may seem like something out of the
world of science fiction books, completely unsuitable for the
announcement of software features. In fact, this is not true.
People are narrative creatures; we perceive the whole world
around us through stories, including software features.

The essence of storytelling for announcements is that we
want to guide users through a planned emotional experience,
creating a logical connection between the problem being solved
and the proposed solution. The protagonist of the story, in most
cases, will be the reader themself, so the introduction of the
protagonist in this case is not necessary. We can start right away
by presenting the reader with a problem that should be familiar
to them in order to create empathy and interest. Then we tell the
reader about the proposed solution, the implementation of the
feature, thereby creating a logical connection in the minds of the
reader. Next, we can share how this solution will benefit the
community overall.

Storytelling about software also works in the opposite
direction, i.e. it might help developers understand whether they
have chosen the right direction for the product. Before you start
developing software, think about what story you are going to tell
the users. If there’s something wrong with your story, for
example, you can’t clearly describe the problem you’re solving,

your solution isn’t optimal, or your solution doesn’t provide
tangible value to users, that’s a red flag for development. In this
case, most likely, you are doing something that is not in line with
the current interests of the community. It will be difficult for you
to “sell” your idea to users when the software is ready and gain
any traction. If you have difficulty explaining why you are
developing a feature, it will be even more difficult for users to
understand why they should use it.

2. Stories should always be about users and extremely rarely
about the company
Communication can be looked at from two points of view: from
the point of view of the community focus of attention and from
the position of the final goal of the community.

Through stories, you control the focus of users’ attention.
Recognition in online communities should go to those who bring
more value to the community. The reason for this is that most
online communities are meritocracies. Company employees do
not directly create value in the community itself, except when
they actively participate as users. Therefore, the focus of all
posts should be on volunteers regardless of anything else.

The ultimate goal of communication is to engage users.
Through storytelling, we develop a shared identity and a sense
of belonging to a group. Users should be able to relate to the
group you are writing about. The more they associate
themselves with the story, the stronger their emotional response
to what you write about and subsequent engagement will be. As
a result, the shortest path to engagement thought stories is to
write about the users themselves.
Note: Feel the difference between two approaches to
communication: “we (employees) decided to do this and did it” and
“you (users) have long asked to do this and we did it for you”.

Note: Stories should be as inclusive as possible, thereby bringing
people together and helping them see something in common in each
other. Common characteristics bring people together.

Closing words

Growing a community is like growing a botanical garden. To
cultivate a community you will need time, knowledge and a lot of
effort, but one wrong step can ruin years of work. A good
botanical garden will have all types of plants from all over the
world, even those that can destroy each other and that require
completely different living conditions. In exactly the same way,
all people, no matter what views on life they have, will find a
place in an online community if they are given a chance to select
the sub groups they are interested in that are isolated from the
rest of the community and have their own local environments.

By working together, people can create amazing projects like
Wikipedia or Stack Overflow, projects that would not be possible
without the joint effort of many people. Create the right climate
in the community and it will begin to bloom, delighting regular
users, casual visitors and the general public.

In theory, there is no difference between theory and
practice, in practice there is. I truly believe that the only way to
learn how to do something is to go out and do it. If you’ve ever
thought about creating a community or making some changes
to an existing one, please don’t put it off until tomorrow! Do it
now. Let’s create communities useful to the world, learn from
our own and others’ mistakes and don’t forget to share our
conclusions with others.

Thank you very much for being with me to the end of the
book! I hope you found the book interesting.

I will appreciate your help

I will be very grateful for your review on Amazon and appreciate
it if you share the link to the book with your friends and
colleagues. Please feel free to leave any comments and
suggestions about the book at practical-cm.com.

Based on the information presented in this book, I created
an online course on building and growing online communities
that is called “Practical Community Management.” The course
is available in the text form at course.practical-cm.com and in
the video format on Udemy at udemy.com/user/nicolas-
chabanovsky. Please check out the course and recommend it to
someone who might benefit from it.

For the last few years I have been working on community
strategy, conducting all kinds of data research and doing
community audits. If you see any opportunities for cooperation,
please send me an email at nicolas.chabanovsky@gmail.com. I
will be very glad to discuss your ideas.

https://practical-cm.com/
https://course.practical-cm.com/
https://www.udemy.com/user/nicolas-chabanovsky/
mailto:nicolas.chabanovsky@gmail.com

Acknowledgments

Thanks to everyone who has been helping me on the way.
Particularly:

To Daria Chembrovskaya, Daniil Chabanovskii and Adnrey
Chabanovskii for being my lighthouse in all the storms
throughout the years.

To Joel Spolsky for buying my company and thus giving me
the opportunity to see the world from a different perspective.

To the community, the amazing people without whom this
book would not have been possible nor would Stack Overflow
itself exist.

Stack Overflow is unique in that the company has an
incredible number of talented people with whom I was lucky to
work. (Folks, you are all the smartest people I have ever worked
with!) I would like to highlight several former colleagues with
whom I crossed paths most often and who made the greatest
contribution to the development of me as a person.

My managers. Juan Garza, Tim Post, Sara Chipps, Philippe
Beaudette.

Colleagues with whom I shared the fate of a community
manager. Joshua Maciel, Gabe, Akiko Abercrombie, Jon Ericson,
Paula Rosenberg, Joshua Heyer, Robert Cartaino, JNat, Kevin
Chang, Cesar Manara, Ana Hevesi, Catherine Kuck, Spencer Vail,
Bert Hall, Taryn Pratt, Miles Crist, Sarah Giskin, Vis S., Bella B.

Colleagues with whom I pushed the data endeavor. Michael
Foree, Nick Pentella, Kendra Little, Anuja Chakravarty,
Constantine Kokkinos, Jessica Clark.

Colleagues who helped me and our communities
enormously by writing the code and setting up the
infrastructure. Adam Lear, Yaakov Ellis, Marco Cecconi, Samo
Prelog, Benjamin Dumke-von der Ehe, Gervasio Marchand.

Colleagues with whom I worked on the product. Jascha Drel,
Cobih Obih, Desiree Darilek, Puneet Mulchandani, Jenny Kim,
Anita Taylor, Jeff Tan, Mithila Fox, Carla España Lynch.

Thank you very much to all my other dear colleagues at
Stack Overflow who taught me everything I know, for their
wisdom, kindness and their love for what they do.

I would like to express my deep gratitude for the help in
proofreading the book and pointing out errors to Jon Ericson,
Anton Menshov, Néstor Tejero Orfila. Guys, your edits were
incredibly helpful.

Special thanks to the book’s editor-in-chief and my friend
Laine Schaublin. The amazing and inexplicable fact about my
work at Stack Overflow is that when I joined the company, I
spoke almost no English. Laine took over my training. She was
able to do something that no one had been able to do before.
After three years of studying with her, I began to speak and write
in English no worse than people for whom it is their first
language. I am incredibly glad that our English classes have
grown into friendship and ten years later we can work on
something cool together! I hope one day we will have a tea party
again.

This entire book was written in immigration, in the beautiful
city of Novi Sad, where I found my second home. Thank you to
all my Serbian friends for their kindness, warmth and care, for
lending a helping hand in difficult times, for giving shelter and
bread.

“Tvrd je orah voćka čudnovata,

ne slomi ga, al’ zube polomi!
Nije vino pošto priđe bješe,
nije svijet ono što mišljaste.”

― Petar II Petrović Njegoš

About the author

Hello my dear reader! My name is Nicolas Chabanovsky. I am an
engineer, serial entrepreneur and online community expert with
more than a decade experience in building and growing online
communities, developing software to host them and measuring
the health of the whole. In my free time, I enjoy reading, cycling
with my boys, and doing CrossFit with my friends.

In 2010 I launched a Q&A community of Russian speaking
software developers, hashcode.ru. By 2012 HashCode grew to
twelve communities on different topics and formed the
Knowledge Network. In 2014 the Knowledge Network, and
hashcode.ru, was acquired by Stack Overflow. In a couple of
years after the acquisition, Stack Overflow in Russian became
one of the most popular Q&As for the Russian speaking
developers. In 2018 I started to lead community growth for all
international Stack Overflow sites. Since 2020 I have focused on
designing health metrics for Stack Overflow and Stack Exchange
sites, data analytics and community strategy.

	Dedication
	Contents
	Introduction
	Part 1
	1. Recruiting a critical mass of users
	2. Onboarding and engaging early users
	3. Development of the ecosystem and monetization of the community
	4. Leaving HashCode and then selling it
	Part 2
	1. Community is the solution to a pressing social problem
	2. From marketing to community management
	3. The main driving force of any community is volunteers
	4. Communication
	5. Community culture
	6. Having any goal is better than no goal at all
	7. Conflict situations in communities
	8. Community metrics
	9. Software
	10. The rise and fall of International Stack Overflows
	Part 3
	1. Product and community management
	2. Communication
	Closing words
	I will appreciate your help
	Acknowledgments
	About the author

