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‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality 
instructional content for undergraduates studying in all areas of computing and 
information science. From core foundational and theoretical material to final-year 
topics and applications, UTiCS books take a fresh, concise, and modern approach 
and are ideal for self-study or for a one- or two-semester course. The texts are 
authored by established experts in their fields, reviewed by an international advi-
sory board, and contain numerous examples and problems, many of which include 
fully worked solutions. 

The UTiCS concept centers on high-quality, ideally and generally quite concise 
books in softback format. For advanced undergraduate textbooks that are likely 
to be longer and more expository, Springer continues to offer the highly regarded 
Texts in Computer Science series, to which we refer potential authors.
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Preface 

The first edition of this book began life as part of Springer’s Essential series, and 
contained ten chapters and approximately 220 pages. The sixth edition had 20 
chapters and approximately 600 pages, and this seventh, and really the last edi-
tion, contains a two extra chapters. Over the intervening editions I have revised 
and extended previous descriptions, introduced new chapters on subjects that I 
believe are relevant to computer graphics, such as differential calculus and inter-
polation, and new subjects that I had to learn about, such as quaternions, statistics, 
Fourier analysis, and geometric algebra. Hopefully, this edition explores enough 
mathematical ideas to satisfy most people working in computer graphics. 

Although the first edition of this book was produced on a humble PC using 
WORD, subsequent editions were produced on an Apple iMac using LATEX. I rec-
ommend to any budding authors that they should learn LATEX, and use Springer’s 
templates to create their first manuscript. Furthermore, today’s computers are 
so fast that I often compile the entire book for the sake of changing a single 
character—it only takes 5 or 6 seconds! 

I have used colour in the text to emphasise the patterns behind certain numbers, 
and in the illustrations to clarify the mathematics. 

It is extremely difficult to ensure that there are no spelling mistakes, missing 
brackets, spurious punctuation marks, and above all, mathematical errors. I truly 
have done my best to correct the text and associated equations, but if I have missed 
some, then I apologise now. 

In all of my books I try to mention the names of important mathematicians 
associated with an invention or discovery, and the period over which they were 
alive. In this book I mention 50 such people, and the relevant dates are attached 
to the first citation. 

Whilst writing this book I have borne in mind what it was like for me when I 
was studying different areas of mathematics for the first time. In spite of reading 
and rereading an explanation several times it could take days before ‘the penny 
dropped’ and a concept became apparent. Hopefully, the reader will find the fol-
lowing explanations useful in developing their understanding of these specific areas 
of mathematics, and enjoy the sound of various pennies dropping!
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I would like to thank Helen Desmond, Editor for Computer Science, for 
allowing me to give up holidays and hobbies in order to complete another book! 

Breinton, UK 
October 2024 

John Vince
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1Introduction 

1.1 Mathematics for Computer Graphics 

Computer graphics contains many areas of specialism such as data visualisation, com-
puter animation, film special effects, computer games and virtual reality. Fortunately, 
not everyone working in computer graphics requires a knowledge of mathematics, 
but those that do, often look for a book that introduces them to some basic ideas 
of mathematics, without turning them into mathematicians. This is the objective of 
this book. Over the following chapters I introduce the reader to some useful mathe-
matical topics that will help them understand the software they work with, and how 
to solve a wide variety of geometric and algebraic problems. These topics include 
numbers systems, algebra, trigonometry, 2D and 3D geometry, vectors, equations, 
matrices, complex numbers, determinants, transforms, quaternions, interpolation, 
curves, patches and calculus. I have written about some of these topics to a greater 
level of detail in other books, which you may be interested in exploring. 

1.2 Understanding Mathematics 

One of the problems with mathematics is its incredible breadth and depth. It embraces 
everything from geometry, calculus, topology, statistics, complex functions to num-
ber theory and propositional calculus. All of these subjects can be studied superfi-
cially or to a mind-numbing complexity. Fortunately, no one is required to understand 
everything, which is why mathematicians tend to specialise in one or two areas and 
develop a specialist knowledge. If it’s any comfort, even Einstein asked friends and 
colleagues to explain branches of mathematics to help him with his theories. 
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2 1 Introduction 

1.3 What Makes Mathematics Difficult? 

‘What makes mathematics difficult?’ is a difficult question to answer, but one that 
has to be asked and answered. There are many answers to this question, and I believe 
that problems begin with mathematical notation and how to read it; how to analyse 
a problem and express a solution using mathematical statements. Unlike learning a 
foreign language–which I find very difficult–mathematics is a language that needs 
to be learned by discovering facts and building upon them to discover new facts. 
Consequently, a good memory is always an advantage, as well as a sense of logic. 

Mathematics can be difficult for anyone, including mathematicians. For example, 
when the idea of .

√−1 was originally proposed, it was criticised and looked down 
upon by mathematicians, mainly because its purpose was not fully understood. Even-
tually, it transformed the entire mathematical landscape, including physics. Similarly, 
when the German mathematician Georg Cantor (1845–1919), published his papers 
on set theory and transfinite sets, some mathematicians hounded him in a disgraceful 
manner. The German mathematician Leopold Kronecker (1823–1891), called Cantor 
a ‘scientific charlatan’, a ‘renegade’, and a ‘corrupter of youth’, and did everything 
to hinder Cantor’s academic career [ 1]. Similarly, the French mathematician and 
physicist Henri Poincaré (1854–1912), called Cantor’s ideas a ‘grave disease’, [ 2] 
whilst the Austrian-British philosopher and logician Ludwig Wittgenstein (1889– 
1951), complained that mathematics is ‘ridden through and through with the per-
nicious idioms of set theory’ [ 3]. How wrong they all were. Today, set theory is a 
major branch of mathematics and has found its way into every math curriculum. So 
don’t be surprised to discover that some mathematical ideas are initially difficult to 
understand–you are in good company. 

1.4 Background to this Book 

During my working life in computer animation I came across a wide range of students 
with an equally wide range of mathematical knowledge. Some students possessed a 
rudimentary background in mathematics, while others had been taught calculus and 
supporting subjects. Teaching such a cohort the mathematics of computer graphics 
was a challenge, to say the least, but somehow I did. By the end of a three-year 
undergraduate course they were competent programmers and could program a wide 
variety of mathematical techniques. The first-edition of this book employed much of 
my teaching material and has been revised and extended. 

1.5 How to Use this Book 

Initially, I’d recommend to any reader to start at the beginning and start reading 
chapters on subjects with which they are familiar. One never knows what may be
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learnt from reading about a familiar subject by a non-mathematician. For those 
readers with a good background in mathematics, should quick read chapters on 
topics covered else-where, and settle down on new topics. However you approach 
this book, I sincerely hope that you discover something new that increases your 
knowledge of the subject. 

1.6 Symbols and Notation 

One of the reasons why many people find mathematics inaccessible is due to its 
symbols and notation. Let’s look at symbols first. The English alphabet possesses a 
reasonable range of familiar character shapes: 

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z 
A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z 

which find their way into every branch of mathematics and physics, and permit us 
to write equations such as: 

. E = mc2

and 
. A = πr2

It is important that when we see an equation, we are able to read it as part of the 
text. In the case of .E = mc2, this is read as ‘.E equals . m, . c squared’, where . E
stands for energy, .m for mass, . c the speed of light, which is multiplied by itself. In 
the case of .A = πr2, this is read as ‘.A equals pi, . r squared’, where .A stands for 
area, . π the ratio of a circle’s circumference to its diameter, and. r the circle’s radius. 
Greek symbols, which happen to look nice and impressive, have also found their 
way into many equations, and often disrupt the flow of reading, simply because we 
don’t know their English names. For example, the English theoretical physicist Paul 
Dirac (1902–1984), derived an equation for a moving electron using the symbols . αi
and . β, which are .4 × 4 matrices, where: 

. αiβ + βαi = 0

and is read as: 

‘the sum of the products alpha-. i beta, and beta alpha-. i , equals zero.’ 

Although we do not come across moving electrons in this book, we do have to be 
familiar with the following Greek symbols:
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.α alpha .ν nu 

.β beta .ξ xi 

.γ gamma .o omicron 

.δ delta .π pi 

.ε epsilon .ρ rho 

.ζ zeta .σ sigma 

.η eta .τ tau 

.θ theta .υ upsilon 

.ι iota .φ phi 

.κ kappa .χ chi 

.λ lambda .ψ psi 

.μ mu .ω omega 

and some upper-case symbols: 

.Γ Gamma .Σ Sigma 

.Δ Delta .Υ Upsilon 

.Θ Theta .Φ Phi 

.Λ Lambda .Ψ Psi 

.Ξ Xi .Ω Omega 

.Π Pi 

Being able to read an equation does not mean that we understand it–but we are a 
little closer than just being able to stare at a jumble of symbols! Therefore, in future, 
when I introduce a new mathematical object, I will tell you how it should be read. 
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2Numbers 

2.1 Introduction 

This chapter revises sets, and the sets of numbers employed in mathematics such as 
natural, integer, rational, irrational, real, algebraic, transcendental, imaginary, com-
plex, quaternions and octonions. It also describes how these numbers behave in the 
context of three laws: commutative, associative and the distributive law. 

As prime numbers find their way into all aspects of cryptography, and who knows 
what else, the chapter introduces the fundamental theorem of arithmetic, prime num-
ber distribution, perfect numbers and Mersenne numbers. The chapter concludes with 
the concept of infinity and some worked examples. 

2.2 Sets 

In mathematics, a collection of elements or members is a set. For example, if . S is 
the set containing the elements .A, B,C, D, E , we can state that: 

. A ∈ S

B ∈ S

C ∈ S

D ∈ S

E ∈ S

where . ∈ stands for ‘is a member of’ whereas: 

. F /∈ S

. /∈ stands for ‘is not a member of’. 

© The Author(s), under exclusive license to Springer-Verlag London Ltd., part of Springer 
Nature 2025 
J. Vince, Mathematics for Computer Graphics, Undergraduate Topics in Computer 
Science, https://doi.org/10.1007/978-1-4471-7550-6_2 

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4471-7550-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4471-7550-6_2&domain=pdf
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2
https://doi.org/10.1007/978-1-4471-7550-6_2


6 2 Numbers  

The set . S is written .S = {A, B,C, D, E}, and to isolate the elements .A, B,C , 
we can say that the set .{A, B,C} is a subset of . S. 

2.3 Counting 

To count the members of a set we perform a one-to-one correspondence {bijection}, 
with the subset of positive integers .{1, 2, 3, . . . , n}. Thus, if we reach 23 in the 
one-to-one correspondence with the positive integers, there are 23 members. This is 
counting in mathematics. 

Our parents normally teach us to count by first memorising the counting words 
one, two, three, four, five, six, seven, eight, nine, ten, etc., and second, associating 
them with our fingers, so that when asked to count the number of elements in a 
picture book, each element is associated with a counting word. When the process is 
complete, the number of elements equals the last counting word reached. However, 
this still assumes that we know the meaning of one, two, three, four, etc. Memorising 
these counting words is only part of the problem–getting them in the correct sequence 
is the real challenge! Later on in this chapter we discover alternative sets of positive 
integers to the base of 10 employed in every-day mathematics. 

A well-ordered set possesses a unique order, such as the set of natural numbers 
. N. Therefore, if. P is the well-ordered set of prime numbers and. N is the well-ordered 
set of natural numbers, we can write: 

. P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . . }
N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, . . . }

By pairing the prime numbers in . P with the numbers in . N, we have:  

. {2, 1}, {3, 2}, {5, 3}, {7, 4}, {11, 5}, {13, 6}, {17, 7}, {19, 8}, {23, 9}, . . .
and we can reason that . 2 is the .1st prime, and . 3 is the .2nd prime, etc. However, we 
still have to declare what we mean by .1, 2, 3, 4, 5, etc., and without getting too 
philosophical, I like the idea of defining them as follows. The word one, represented 
by. 1, stands for one-ness of anything: one finger, one house, one tree, one donkey, etc. 
The word two, represented by. 2, is ‘one more than one.’ The word three, represented 
by . 3, is ‘one more than two,’ and so on. 

We are now in a position to associate some mathematical notation with our num-
bers by introducing the .+ and .= signs. We know that .+ means add, but it also can 
stand for more. We also know that .= means equal, and it can also stand for is the 
same as. Thus the statement: 

. 2 = 1 + 1

is read as ‘two equals one more than one’. 
We can also write: 

.3 = 1 + 2
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which is read as ‘three equals one more than two.’ But as we already have a definition 
for . 2, we can write: 

. 3 = 1 + 2

= 1 + 1 + 1

Developing this idea, and including some extra combinations, we have: 

. 2 = 1 + 1

3 = 1 + 2

4 = 1 + 3 = 2 + 2

5 = 1 + 4 = 2 + 3

6 = 1 + 5 = 2 + 4 = 3 + 3

7 = 1 + 6 = 2 + 5 = 3 + 4

etc.

and can be continued without limit. 

2.4 Zero 

The concept of zero has a well-documented history, which shows that it has been used 
by different cultures over a period of two-thousand years or more. It was the Indian 
mathematician and astronomer Brahmagupta (598-c.–670), who argued that zero 
was just as valid as any natural number, with the definition: the result of subtracting 
any number from itself. However, even today, there is no universal agreement as to 
whether zero belongs to the set . N, consequently, the set .N0 stands for the set of 
natural numbers including zero. 

In today’s positional decimal system, which is a place value system, the digit 
. 0 is a placeholder. For example, .203 stands for: two hundreds, no tens and three 
units. Although.0 ∈ N

0, it does have special properties that distinguish it from other 
members of the set, and Brahmagupta also gave rules showing this interaction. 

If .x ∈ N
0, then the following rules apply: 

. 

addition x + 0 = x
subtraction x − 0 = x

multiplication x × 0 = 0 × x = 0
division 0/x = 0

undefined division x/0

The expression .0/0 is called an indeterminate form, as it is possible to show that 
under different conditions, especially limiting conditions, it can equal anything. So 
for the moment, we will avoid using it until we cover calculus.
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2.5 Negative Numbers 

When negative numbers were first proposed, they were not accepted with open 
arms, as it was difficult to visualise .−5 of something. For instance, if there are 
5 donkeys in a field, and they are all stolen, the field is now empty, and there is 
nothing we can do in the arithmetic of donkeys to create a field of .−3 donkeys. But 
may be we should be using natural numbers to represent the number of donkeys. 
However, in applied mathematics, numbers have to represent all sorts of quantities 
such as temperature, displacement, angular rotation, speed, acceleration, etc., and 
we also need to incorporate ideas such as left and right, up and down, before and 
after, forwards and backwards, etc. Fortunately, negative numbers are perfect for 
representing all of the above quantities and ideas. 

Consider the expression .4 − x , where .x ∈ N
0. When . x takes on certain values, 

we have: 

. 4 − 1 = 3

4 − 2 = 2

4 − 3 = 1

4 − 4 = 0

and unless we introduce negative numbers, we are unable to express the result of 
.4 − 5. Consequently, negative numbers are visualised as shown in Fig. 2.1, where 
the number line shows negative numbers to the left of the natural numbers, which 
are positive, although the .+ sign is omitted for clarity. 

Moving from left to right, the number line provides a numerical continuum from 
large negative numbers, through zero, towards large positive numbers. In any calcu-
lation we could agree that angles above the horizon are positive, and angles below 
the horizon, negative. Similarly, a movement forwards is positive, and a movement 
backwards is negative. So now we are able to write: 

. 4 − 5 = −1

4 − 6 = −2

4 − 7 = −3

etc.

without worrying about creating impossible conditions. 

Fig. 2.1 The number line
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6



2.6 Axioms 9

Table 2.1 Rules for adding and subtracting positive and negative numbers 

.+ .b .−b .− .b . −b

.a .a + b .a − b .a .a − b . a + b

.−a .b − a .−(a + b) .−a .−(a + b) . b − a

Table 2.2 Rules for multiplying and dividing positive and negative numbers 

.× .b .−b ./ .b . −b

.a .ab .−ab .a .a/b . −a/b

.−a .−ab .ab .−a .−a/b . a/b

2.5.1 The Arithmetic of Positive and Negative Numbers 

Once again, Brahmagupta compiled all the rules, Tables 2.1 and 2.2, supporting the 
addition, subtraction, multiplication and division of positive and negative numbers. 
The real fly in the ointment, being negative numbers, which cause problems for 
children, math teachers and occasional accidents for mathematicians. Perhaps, the 
one rule we all remember from our school days is that ‘two negatives make a positive.’ 
We can show that this is true by first assuming that two negatives make a negative: 

. − 2 × −3 = (4 − 6)(4 − 7)

−6 �= 16 − 24 − 28 − 42

which is nonsense. However, if we assume that two negatives make a positive: 

. − 2 × −3 = (4 − 6)(4 − 7)

6 = 16 − 24 − 28 + 42

which is true. Naturally, there is a formal way of proving this. 
Another problem with negative numbers arises when we employ the square-root 

function. As the product of two positive or negative numbers results in a positive 
result, the square-root of a positive number gives rise to a positive and a negative  
answer. For example, .

√
4 = ±2. This means that the square-root function only 

applies to positive numbers. Nevertheless, it did not stop the invention of the imag-
inary unit . i, where .i2 = −1. However, . i is not a number, but an operator, and is 
described later. 

2.6 Axioms 

The following axioms or laws provide a formal basis for mathematics, and in the 
descriptions a binary operation is an arithmetic operation such as: . +, −, ×, /  
which operate on two operands. 
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2.6.1 Commutative Law 

The commutative law in algebra states that when two elements are linked through 
some binary operation, the result is independent of the order of the elements. 
The commutative law of addition is: 

. a + b = b + a 
e.g. 1 + 2 = 2 + 1 

The commutative law of multiplication is: 

. a × b = b × a 
e.g. 1 × 2 = 2 × 1 

Note that subtraction is not commutative: 

. a − b �= b − a 
e.g. 1 − 2 �= 2 − 1 

2.6.2 Associative Law 

The associative law in algebra states that when three or more elements are linked 
together through a binary operation, the result is independent of how each pair of 
elements is grouped. 
The associative law of addition is: 

. a + (b + c) = (a + b) + c 
e.g. 1 + (2 + 3) = (1 + 2) + 3 

The associative law of multiplication is: 

. a × (b × c) = (a × b) × c 
e.g. 1 × (2 × 3) = (1 × 2) × 3 

However, note that subtraction is not associative: 

. a − (b − c) �= (a − b) − c 
e.g. 1 − (2 − 3) �= (1 − 2) − 3 

Which may seem surprising, but at the same time confirms the need for clear axioms. 

2.6.3 Distributive Law 

The distributive law in algebra describes an operation which when performed on a 
combination of elements is the same as performing the operation on the individual 
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elements. The distributive law does not work in all cases of arithmetic. For example, 
multiplication over addition holds: 

. a(b + c) = ab + ac 
e.g. 2(3 + 4) = 6 + 8 

Whereas addition over multiplication does not: 

. a + (b × c) �= (a + b) × (a + c) 
e.g. 3 + (4 × 5) �= (3 + 4) × (3 + 5) 

Although these laws are natural for numbers, they do not necessarily apply to all 
mathematical objects. For instance, the vector product, which multiplies two vectors 
together, is not generally commutative. The same applies for matrix multiplication. 

2.7 The Base of a Number System 

2.7.1 Background 

Over recent millennia, mankind has invented and discarded many systems for repre-
senting number. People have counted on their fingers and toes, used pictures (hiero-
glyphics), cut marks on clay tablets (cuneiform symbols), employed Greek symbols 
(Ionic system) and struggled with, and abandoned Roman numerals (I, V, X, L, C, 
D, M, etc.), until we reach today’s decimal place system, which has Hindu-Arabic 
and Chinese origins. And since the invention of computers we have witnessed the 
emergence of binary, octal and hexadecimal number systems, where 2, 8 and 16 
respectively, replace the 10 in our decimal system. 

The decimal number .23 stands for ‘two tens and three units’, and in English 
is written ‘twenty-three’, in French ‘vingt-trois’ (twenty-three), and in German 
‘dreiundzwanzig’ (three and twenty). Let’s investigate the algebra behind the decimal 
system and see how it can be used to represent numbers to any base. The expression: 

. a × 1000 + b × 100 + c × 10 + d × 1 

where .a, b, c, d take on any value between . 0 and . 9, describes any whole number 
between . 0 and .9999. By including: 

. e × 0.1 + f × 0.01 + g × 0.001 + h × 0.0001 

where .e, f, g, h take on any value between . 0 and . 9, any decimal number between . 0 
and .9999.9999 can be represented. 

Indices bring the notation alive and reveal the true underlying pattern: 

. . . .  a103 + b102 + c101 + d100 + e10−1 + f 10−2 + g10−3 + h10−4 . . .  
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Remember that any number raised to the power 0 equals 1. By adding extra terms 
both left and right, any number can be accommodated. 

In this example, 10 is the base, which means that the values of. a to. h range between 
0 and 9, 1 less than the base. Therefore, by substituting . B for the base we have: 

. . . .  aB3 + bB2 + cB1 + dB0 + eB−1 + f B−2 + gB−3 + hB−4 . . .  

where the values of . a to . h range between 0 and .B − 1. 

2.7.2 Octal Numbers 

The octal number system has .B = 8, and . a to . h range between 0 and 7: 

. . . .  a83 + b82 + c81 + d80 + e8−1 + f 8−2 + g8−3 + h8−4 . . .  

and the first 17 octal numbers are: 

. 18, 28, 38, 48, 58, 68, 78, 108, 118, 128, 138, 148, 158, 168, 178, 208, 218 

The subscript 8 reminds us that although we may continue to use the words ‘twenty-
one’, it is an octal number, and not a decimal. But what is .148 in decimal? Well, it 
stands for: 

. 1 × 81 + 4 × 80 = 12 

Thus .356.48 is converted to decimal as follows: 

. (3 × 82) + (5 × 81) + (6 × 80) + (4 × 8−1) 
(3 × 64) + (5 × 8) + (6 × 1) + (4 × 0.125) 

(192 + 40 + 6) + (0.5) 
238.5 

Counting in octal appears difficult, simply because we have never been exposed to 
it, like the decimal system. If we had evolved with 8 fingers, instead of 10, we would 
be counting in octal! 

2.7.3 Binary Numbers 

The binary number system has .B = 2, and . a to . h are 0 or 1:  

. . . .  a23 + b22 + c21 + d20 + e2−1 + f 2−2 + g2−3 + h2−4 . . .  

and the first 13 binary numbers are: 

.12, 102, 112, 1002, 1012, 1102, 1112, 10002, 10012, 10102, 10112, 11002, 11012 
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Thus .11011.112 is converted to decimal as follows: 

. 

(
1 × 24

) + (
1 × 23

) + (
0 × 22

) + (
1 × 21

) + (
1 × 20

) + (
1 × 2−1

) + (
1 × 2−2

)

(1 × 16) + (1 × 8) + (0 × 4) + (1 × 2) + (1 × 0.5) + (1 × 0.25) 
(16 + 8 + 2) + (0.5 + 0.25) 

26.75 

The reason why computers work with binary numbers–rather than decimal–is due 
to the difficulty of designing electrical circuits that can store decimal numbers in 
a stable fashion. A switch, where the open state represents . 0, and the closed state 
represents . 1, is the simplest electrical component to emulate. No matter how often 
it is used, or how old it becomes, it will always, generally, behave like a switch. The 
main advantage of electrical circuits is that they can be switched on and off trillions 
of times a second, and the only disadvantage is that the encoded binary numbers and 
characters contain a large number of bits, and humans are not familiar with binary. 

2.7.4 Hexadecimal Numbers 

The hexadecimal number system has .B = 16, and .a to .h can be 0 to 15, 
which presents a slight problem, as we don’t have 15 different numerical charac-
ters. Consequently, we use 0 to 9, and the letters .A, B, C, D, E, F to represent 
.10, 11, 12, 13, 14, 15 respectively: 

. . . .  a163 + b162 + c161 + d160 + e16−1 + f 16−2 + g16−3 + h16−4 . . .  

and the first 17 hexadecimal numbers are: 

. 116, 216, 316, 416, 516, 616, 716, 816, 916, A16, B16, C16, D16, E16, F16, 1016, 1116 

Thus .1E .816 is converted to decimal as follows: 

. 

(1 × 16) + (E × 1) + (8 × 16−1) 
(16 + 14) + (8/16) 

30.5 

Although it is not obvious, binary, octal and hexadecimal numbers are closely related, 
which is why they are part of a programmer’s toolkit. Even though computers work 
with binary, it’s the last thing a programmer wants to use. So to simplify the man-
machine interface, binary is converted into octal or hexadecimal. To illustrate this, 
let’s convert the 16-bit binary code .1101011000110001 into octal. 

Using the following general binary integer: 

. a28 + b27 + c26 + d25 + e24 + f 23 + g22 + h21 + i20 

we group the terms into threes, starting from the right, because .23 = 8: 

.

(
a28 + b27 + c26

)
+

(
d25 + e24 + f 23

)
+

(
g22 + h21 + i20

)
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Simplifying: 

. 

26
(
a22 + b21 + c20

) + 23
(
d22 + e21 + f 20

) + 20
(
g22 + h21 + i20

)

82
(
a22 + b21 + c21

) + 81
(
d22 + e21 + f 20

) + 80
(
g22 + h21 + i20

)

82 R + 81S + 80T 

where: 

. R = a22 + b21 + c 
S = d22 + e21 + f 
T = g22 + h21 + i 

and the values of.R, S, T vary between 0 and 7. Therefore, given.1101011000110001, 
we divide the binary code into groups of three, starting at the right, and adding two 
leading zeros: 

. (001)(101)(011)(000)(110)(001) 

For each group, multiply the zeros and ones by .4, 2, 1, right to left: 

. 

(0 + 0 + 1)(4 + 0 + 1)(0 + 2 + 1)(0 + 0 + 0)(4 + 2 + 0)(0 + 0 + 1) 
(1)(5)(3)(0)(6)(1) 

1530618 

Therefore, .11010110001100012 ≡ 1530618, (. ≡ stands for ‘equivalent to’) which is 
much more compact. The secret of this technique is to memorise these patterns: 

. 0002 ≡ 08 
0012 ≡ 18 
0102 ≡ 28 
0112 ≡ 38 
1002 ≡ 48 
1012 ≡ 58 
1102 ≡ 68 
1112 ≡ 78 

Here are a few more examples, with the binary digits grouped in threes: 

.1112 ≡ 78 
101 1012 ≡ 558 
100 0002 ≡ 408 

111 000 111 000 1112 ≡ 707078 
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It’s just as easy to reverse the process, and convert octal into binary. Here are some 
examples: 

. 5678 ≡ 101 110 1112 
238 ≡ 010 0112 

17418 ≡ 001 111 100 0012 

A similar technique is used to convert binary to hexadecimal, but this time we 
divide the binary code into groups of four, because.24 = 16, starting at the right, and 
adding leading zeros, if necessary. To illustrate this, let’s convert the 16-bit binary 
code .1101 0110 0011 0001 into hexadecimal. 

Using the following general binary integer number: 

. a211 + b210 + c29 + d28 + e27 + f 26 + g25 + h24 + i23 + j22 + k21 + l20 

from the right, we divide the binary code into groups of four: 

. 

(
a211 + b210 + c29 + d28

)
+

(
e27 + f 26 + g25 + h24

)
+

(
i23 + j22 + k21 + l20

)

Simplifying: 

. 

28
(
a23 + b22 + c21 + d20

) + 24
(
e23 + f 22 + g21 + h20

) + 20
(
i23 + j22 + k21 + l20

)

162
(
a23 + b22 + c21 + d

) + 161
(
e23 + f 22 + g21 + h

) + 160
(
i23 + j22 + k21 + l

)

162 R + 161S + 160T 

where: 

. R = a23 + b22 + c21 + d 
S = e23 + f 22 + g21 + h 
T = i23 + j22 + k21 + l 

and the values of .R, S, T vary between 0 and 15. Therefore, given .. 110101100011 
.00012, we divide the binary code into groups of fours, starting at the right: 

. (1101)(0110)(0011)(0001) 

For each group, multiply the zeros and ones by .8, 4, 2, 1 respectively, right to left: 

. 

(8 + 4 + 0 + 1)(0 + 4 + 2 + 0)(0 + 0 + 2 + 1)(0 + 0 + 0 + 1) 
(13)(6)(3)(1) 

D63116 

Therefore, .1101 0110 0011 00012 ≡ D63116, which is even more compact than its 
octal value .1530618. 

I have deliberately used whole numbers in the above examples, but they can all be 
extended to include a fractional part. For example, when converting a binary number 
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Table 2.3 The first twenty decimal, binary, octal, and hexadecimal numbers 

Decimal Binary Octal Hex Decimal Binary Octal Hex 

1 1 1 1 11 1011 13 B 

2 10 2 2 12 1100 14 C 

3 11 3 3 13 1101 15 D 

4 100 4 4 14 1110 16 E 

5 101 5 5 15 1111 17 F 

6 110 6 6 16 10000 20 10 

7 111 7 7 17 10001 21 11 

8 1000 10 8 18 10010 22 12 

9 1001 11 9 19 10011 23 13 

10 1010 12 A 20 10100 24 14 

such as .11.11012 to octal, the groups are formed about the binary point: 

. (011).(110)(100) ≡ 3.648 

Similarly, when converting a binary number such as.101010.1001102 to hexadecimal, 
the groups are also formed about the binary point: 

. (0010)(1010).(1001)(1000) ≡ 2A.9816 

Table 2.3 shows the first twenty decimal, binary, octal and hexadecimal numbers. 

2.7.5 Adding Binary Numbers 

When we are first taught the addition of integers containing several digits, we are 
advised to solve the problem digit by digit, working from right to left. For example, 
to add .254 to .561 we write: 

561 
254 
815 

where .4 + 1 = 5, .5 + 6 = 1 with a .carr y = 1, .2 + 5 + carr y = 8. 
Table 2.4 shows all the arrangements for adding two digits with the.carr y shown as 

. 
carr yn. However, when adding binary numbers, the possible arrangements collapse 
to the four shown in Table 2.5, which greatly simplifies the process. 
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Table 2.4 Addition of two decimal integers showing the. carr y 

+ 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 5 6 7 8 9 . 10 

2 2 3 4 5 6 7 8 9 .10 . 11 

3 3 4 5 6 7 8 9 .10 .11 . 12 

4 4 5 6 7 8 9 .10 .11 .12 . 13 

5 5 6 7 8 9 .10 .11 .12 .13 . 14 

6 6 7 8 9 .10 .11 .12 .13 .14 . 15 

7 7 8 9 .10 .11 .12 .13 .14 .15 . 16 

8 8 9 .10 .11 .12 .13 .14 .15 .16 . 17 

9 9 .10 .11 .12 .13 .14 .15 .16 .17 . 18 

Table 2.5 Addition of two 
binary integers showing the 
. carr y 

+ 0 1 

0 0 1 

1 1 . 
10 

For example, to add 124 to 188 as two 16-bit binary integers, we write, showing 
the status of the .carr y bit: 

0000000011111000 . carr y 
0000000010111100 . = 188 
0000000001111100 . = 124 
0000000100111000 . = 312 

Such addition is easily undertaken by digital electronic circuits, and instead of 
having separate circuitry for subtraction, it is possible to perform subtraction using 
the technique of two’s complement. 

2.7.6 Subtracting Binary Numbers 

Two’s complement is a technique for subtracting binary numbers. There are two 
stages to the conversion: inversion, followed by the addition of 1. For example, 24 
in binary is 00 00000000110000, and is inverted by switching every 1 to 0, and 
vice versa: 1111111111100111. Next, we add 1: 1111111111101000, which now 
represents .−24. If this is added to binary 36: 0000000000100100, we have: 
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0000000000100100 = . +36 
1111111111101000 = . −24 
0000000000001100 = . +12 

Note that the last high-order addition creates a.carr y of 1, which is ignored. Here 
is another example, .100 − 30: 

0000000000011110 = . +30 
inversion 1111111111100001 

add 1 0000000000000001 
1111111111100010 = . −30 

add 100 0000000001100100 = . +100 
0000000001000110 = . +70 

2.8 Types of Numbers 

As mathematics evolved, mathematicians introduced different types of numbers to 
help classify equations and simplify the language employed to describe their work. 
These are the various types and their set names. 

2.8.1 Natural Numbers 

The natural numbers .{1, 2, 3, 4, .  .  .} are used for counting, ordering and labelling 
and represented by the set . N. When zero is included, .N0 or .N0 is used: 

. N
0 = N0 = {0, 1, 2, . . .} 

Note that negative numbers are not included. Natural numbers are used to subscript 
a quantity to distinguish one element from another, e.g. . x1, x2, x3, x4, .  .  .  

Very often, we are interested in whether a natural number is divisible by another 
number, without leaving a remainder. Here are some divisibility tests, some of which, 
are very obvious. 

Divisible by 2: if the number ends with 0, 2, 4, 6, or 8. 
This is because the number .abc = 100a + 10b + c, where .100a and .10b are both 
divisible by 2, therefore, .abc is divisible by 2, iff (if and only if) . c is divisible by 2, 
i.e. is 0, 2, 4, 6, 8.  

Divisible by 3: if the number’s digits sum to a multiple of 3. For instance, 135 is 
divisible by 3, as .1 + 3 + 5 = 9, so too, is 16254, because .1 + 6 + 2 + 5 + 4 = 18, 
and .1 + 8 = 9. This is because the number .abc = 99a + 9b + a + b + c, where 
.99a+9b is divisible by 3, therefore,.abc is divisible by 3, iff .a+b+c is divisible by 3. 
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Divisible by 4: if the number formed from the last two digits is divisible by 4. For 
instance, 1324 is divisible by 4, as 24 is divisible by 4. This is because the number 
.abc = 100a + 10b + c, where .100a, and all higher numbers, are divisible by 4, 
therefore, .abc is divisible by 4, iff .10b + c is divisible by 4. If the number is . c, the  
test only applies to . c. 

Divisible by 5: if the number ends with a 0 or 5.  
Divisible by 6: if the number passes the divisibility test for 2 and 3. For instance, 

1464/6=244, and 1464 is an even number and is divisible by 3, because. 1+4+6+4 = 
15. 

Divisible by 7: There is no simple test for divisibility by 7, but here is a starting 
point. Starting with a three-digit number, isolate the right-hand digit, and double it. 
Subtract this result from the two-digit number formed from the left-most digits. If 
this result is divisible by 7, so is the original number. For instance, to test 231 we 
remove the 1, and double it, making 2. We then subtract 2 from 23, which makes 21, 
which is divisible by 7, and 231. This is because every number can be written. 10a+b 
where . b is the right-hand digit. This is isolated and doubled, .2b, leaving behind . a. 
Subtracting .2b from . a gives .a − 2b. We double .10a + b making .20a + 2b, as this  
does not interfere with the original test, and.20a + 2b = 21a − (a − 2b), where. 21a 
is divisible by 7. Therefore, .10a + b is divisible by 7, iff .a − 2b is divisible by 7. 
Sometimes it is quicker to divide by 7! 

Divisible by 8: This is the same test as 4, but the last three digits are examined. For 
instance,.25136 is divisible by 8,.(25136/8 = 3142) as.136/8 = 17. This is because 
the number .abcd = 1000a + 100b + 10c + d, where .1000a and higher digits are 
divisible by 8, therefore, .abcd is divisible by 8, iff .100b + 10c + d is divisible by 8. 
As .10000 is divisible by 16, the technique is extended to four digits. 

Divisible by 9: This is the same test as 3. For instance, .123453 is divisible by 
9, as .1 + 2 + 3 + 4 + 5 + 3 = 18 is divisible by 9. This is because the number 
.abc = 99a + 9b + a + b + c, where .99a + 9b is divisible by 9, therefore, .abc is 
divisible by 9, iff .a + b + c is divisible by 9. 

2.8.2 Integer Numbers 

Integer numbers include the natural numbers, both positive and negative, and zero, 
and are represented by the set . Z: 

. Z = {. . . ,  −2, −1, 0, 1, 2, 3, . . .} 
. Z is used because the word integer in German is ganzen Zahlen. Leopold Kronecker 
apparently criticised Georg Cantor for his work on set theory with the jibe: ‘Die 
ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk’ [ 1]. Which 
translates: ‘God made the integers, and all the rest is man’s work.’ implying that the 
rest are artificial. However, Cantor’s work on set theory and transfinite numbers 
proved to be far from artificial. 
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2.8.3 Rational Numbers 

Any number that equals the quotient of one integer divided by another non-zero 
integer, is a rational number, and represented by the set . Q. For example, . 2, . 

√
16, 

.0.25 are rational numbers because: 

. 2 = 4/2√
16 = 4 = 8/2 

0.25 = 1/4 

Some rational numbers can be stored accurately inside a computer, but many others 
can only be stored approximately. For example, .4/3 produces an infinite sequence 
of threes, and written .1.3, and is truncated when stored as a binary number. 

2.8.4 Irrational Numbers 

An irrational number cannot be expressed as the quotient of two integers. Irrational 
numbers never terminate, nor contain repeated sequences of digits, consequently, they 
are always subject to a small error when stored within a computer. Examples are: 

. 

√
2 = 1.41421356 . . .  (square-root of 2) 
ϕ = 1.61803398 . . .  (golden section) 
e = 2.71828182 . . .  (natural e) 
π = 3.14159265 . . .  (pi) 

2.8.5 Real Numbers 

Rational and irrational numbers comprise the set of real numbers . R. Examples are 
.1.5, .0.004, .12.999 and .23.0. We often use .t ∈ R to mean ‘. t is a real number.’ 

2.8.6 Algebraic and Transcendental Numbers 

Polynomial equations with rational coefficients have the form: 

. f (x) = axn + bxn−1 + cxn−2 + . . .  + C 

such as: 
.y = 3x2 + 2x − 1 
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and their roots (solutions) belong to the set of algebraic numbers. A. A consequence 
of this definition implies that all rational numbers are algebraic, since if: 

. x = 
p 

q 

then: 
. 0 = qx  − p 

which is a polynomial. Numbers that are not roots to polynomial equations are 
transcendental numbers and include most irrational numbers, but not . 

√
2, since 

if: 
. x = 

√
2 

then: 
. 0 = x2 − 2 

which is a polynomial in . x . 
Given a polynomial built from integers, for example: 

. y = 3x3 − 4x2 + x + 23 

if the result is an integer, it is called an algebraic number, otherwise it is a transcen-
dental number. Familiar examples of the latter being .π = 3.141592653 . . .  , and 
.e = 2.718281828 . . .  , which are represented by the following continued fractions: 

. π = 4 

1 + 12 

2 + 32 

2 + 52 

2 + 72 

2 + . . .  

. e = 2 + 1 

1 + 1 

2 + 1 

1 + 1 

1 + 
1 

4 + . . .  

2.8.7 Imaginary Numbers 

Imaginary numbers employ the symbol . i to represent the impossible operation 
. 
√−1. When combined with a real number they form a complex number which 
possesses vector-like properties. An imaginary number such as .bi is defined as: 

.b ∈ R, i2 = −1 
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Imaginary numbers obey all the axioms associated with real numbers: they can 
be added, subtracted, multiplied and divided. For example, given: 

. x = −6i 

y = 3i 

therefore: 

. x + y = −6i + 3i = −3i 

x − y = −6i − 3i = −9i 

xy  = −6i · 3i = −18i2 = 18 
x 

y 
= 

−6i 

3i 
= −2 

Imaginary numbers appear to be an abstract idea created by mathematicians, just 
because it is possible. However, they play a very important role in mathematics, 
and are used to reveal patterns that would otherwise remain unnoticed. But apart 
from this, they are used in the design of electronic circuits, number theory, quantum 
mechanics, power distribution, and anything where waves are involved. 

2.8.8 Complex Numbers 

A complex number has a real and imaginary part: .z = a + bi, and represented by 
the set . C: 

. z = a + bi, z ∈ C, a, b ∈ R, i2 = −1 

Examples are: 

. z = 1 + i 
z = 3 − 2i 

z = −23 + 
√
23i 

Complex numbers obey all the axioms associated with real numbers. For example, 
if we multiply .a + bi by .c + di we have: 

. (a + bi)(c + di) = ac + adi + bci + bdi2 

Collecting up like terms and substituting .−1 for . i2 we get: 

. (a + bi)(c + di) = ac + (ad + bc)i − bd 

which simplifies to: 

. (a + bi)(c + di) = ac − bd + (ad + bc)i 

which is another complex number. 
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For example, given: 

. x = 2 + 3i 
y = 3 + 4i 

then: 

. x + y = (2 + 3i) + (3 + 4i) = 5 + 7i 
x − y = (2 + 3i) − (3 + 4i) = −1 − i 

xy  = (2 + 3i)(3 + 4i) = 6 + 8i + 9i + 12i2 = −6 + 17i 

Something interesting happens when we multiply a complex number by its complex 
conjugate, which is the same complex number but with the sign of the imaginary 
part reversed: 

. (a + bi)(a − bi) = a2 − abi + abi − b2i2 

Collecting up like terms and simplifying we obtain: 

. (a + bi)(a − bi) = a2 + b2 

which is a real number, as the imaginary part is cancelled out by the action of the 
complex conjugate. Given a complex number. y, its complex conjugate is represented 
by . ȳ. This permits us to divide one complex number by another as follows: 

. x = 2 + 3i 
y = 3 + 4i 
ȳ = 3 − 4i 
x 

y 
= 

x 

y 

ȳ 

ȳ 

= 
(2 + 3i) 
(3 + 4i) 

· (3 − 4i) 
(3 − 4i) 

= 
6 − 8i + 9i + 12 

9 + 16 

= 
18 + i 
25 

= 18 25 + 1 25 i 

Chapter 9 provides more information on complex numbers. 

2.8.9 Quaternions and Octonions 

In 1843, the brilliant Irish mathematician and physicist Sir William Rowan Hamil-
ton (1805–1865), invented quaternions, represented by the set . H, in honour of its 
inventor, and became the first non-commutative algebra: 

.q = a + bi + cj + dk 
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where: 
. q ∈ H, a, b, c, d ∈ R, i2 = j2 = k2 = −1 

. ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j, ijk = −1 

The imaginary products are shown in Table 2.6. 
Given two quaternions: 

. x = a + bi + cj + dk 
y = e + f i + gj + hk 

the product .xy  is: 

. xy  = (ae − b f  − cg − dh) + (a f  + be + ch − dg)i 
+ (ag + ce + d f  − bh)j + (ah + de  + bg − c f  )k 

The American mathematician Josiah Willard Gibbs (1839–1903), realised that a 
quaternion’s imaginary part could be isolated and represent quantities with magnitude 
and direction, and 3D vectors were born: 

. v = ai + bj + ck 

Almost immediately quaternions were invented, the hunt began for the next com-
plex algebra, which was discovered simultaneously in 1843 by a colleague of Hamil-
ton, John Thomas Graves (1806–1870), who called them octaves, and by the young 
English mathematician Arthur Cayley (1821–1895), who called them Cayley Num-
bers: 

. z = a + bi + cj + dk + ep + f q + gr + hs 

. a, b, c, d, e, f, g, h ∈ R, i2 = j2 = k2 = p2 = q2 = r2 = s2 = −1 

They are now called octonions, and are not only non-commutative, but non-
associative, which means that in general, given three octonions .A, B, C , then 
.(AB)C �= A(BC). In 1898, the German mathematician Adolf Hurwitz (1859–1919), 
proved that there are only four algebras where it is possible to multiply and divide 
in the accepted sense: .R, C, H, O. Figure 2.2 shows the sets of numbers diagram-
matically. 

Quaternions are used to rotate points about a 3D axis, and if you wish to learn 
more about this subject refer to the author’s books [ 2– 4]. 

Table 2.6 The quaternion’s imaginary products 

.× i j k 

i .−1 k . −j 

j . −k .−1 i 

k j . −i .−1 
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Fig. 2.2 The nested sets of numbers 

2.9 Prime Numbers 

A prime number is defined as a natural number greater than 1 that is not a product 
of two smaller natural numbers The first five prime numbers are .2, 3, 5, 7, 11. We  
can prove that any positive integer must either be a prime, or the product of two or 
more primes, using the following reasoning: 

The set of natural numbers comprises two sets: primes and non-primes. A prime, by 
definition, has no factors, apart from 1 and itself. A non-prime has factors and is called 
composite. However, these factors are natural numbers, which must either be prime 
or non-prime. Eventually, the composite factors must decompose into composite 
primes. 

For example, .72 = 8 × 9, but .8 = 23 and .9 = 32, therefore, .72 = 23 × 32. Even  
starting with.72 = 6 × 12, but .6 = 2 × 3 and.12 = 22 × 3, therefore, .72 = 23 × 32. 
Table 2.7 shows the prime factors for the first 30 numbers. 

2.9.1 The Fundamental Theorem of Arithmetic 

Original work by the Greek mathematician Euclid (Mid-4th to mid-3rd century BC), 
revealed the Fundamental Theorem of Arithmetic (FTAr), also called the Unique 
Factorisation Theorem, which states that every integer greater than 1, is either 
prime or the unique product of primes, and is expressed symbolically as follows. Let 
.p1, p2, p3, . . . ,  pk be prime numbers, and .α1, α2, α3, . . . ,  αk be their associated 
positive integer powers: .pα1 

1 , p
α2 
2 , p

α3 
3 , . . . ,  pαk 

k . We now use the product function 
.
∏

(Pi) to create the product: .pα1 
1 p

α2 
2 p

α3 
3 , . . . ,  pαk 

k , and introduce the variable . i with 
a range of 1 to . k, which permits the FTAr to be written as: 

. n = pα1 
1 p

α2 
2 p

α3 
3 . . .  pαk 

k = 
k∏

i=1 

pαi 
i 

where .
∏

is shorthand for ‘multiply together the associated terms.’ 
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Table 2.7 The prime factors for the first 30 numbers 

Number Factors Number Factors Number Factors 

1 11 11 21 3. ×7 

2 2 12 .22×3 22 2. ×11 

3 3 13 13 23 23 

4 .22 14 2. ×7 24 . 23 × 3 
5 5 15 3. ×5 25 . 52 

6 2. ×3 16 .24 26 . 2 × 13 
7 7 17 17 27 . 33 

8 .23 18 2.×32 28 . 22 × 7 
9 .32 19 19 29 29 

10 2. ×5 20 .22 × 5 30 . 2 × 3 × 5 

For example, 2250 equals the unique product: .213253, and.245 = 5172. To prove 
that these prime products are unique, let’s first assume that they are not, and show 
that this leads to a contradiction. 

Let .n > 1 and equals the product of two prime numbers: .n = p1 p2. Now let’s 
assume that . n also equals the product of two other prime numbers: .q1q2. Therefore: 

. p1 p2 = q1q2 

and 
. p1 = 

q1q2 
p2 

which implies that either .q1/p2 or .q2/ p2 factorises. However, this is impossible 
as .q1 and .q2 are prime, therefore, the original assumption was incorrect. The same 
reasoning may be generalised to any number of prime factors. 

2.9.2 Is 1 a Prime? 

You may notice in Table 2.7 showing factors that 1 is not a prime number, which 
has not always been the case. The reason is due to maintaining the logical integrity 
of the FTAr, which emphasises the uniqueness of the product of primes. If 1 was a 
prime, we would have the following non-unique products: 

. 24 = 23 × 3 
24 = 1 × 23 × 3 

and it doesn’t seem satisfying to make 1 a prime number, and then qualify the FTAr 
with the rider: ‘This only applies for primes greater than 1’. 
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2.9.3 The Goldbach Conjecture 

In 1742, the German mathematician Christian Goldbach (1690–1764), conjectured 
that every even, positive integer greater than 2 could be written as the sum of two 
primes: 

. 4 = 2 + 2 
14 = 11 + 3 
18 = 11 + 7 
20 = 13 + 7 

etc. 

Today, this has become known as the Goldbach conjecture. No one has ever found 
an exception to this conjecture, and no one has ever confirmed it. If you want to know 
more about this topic then consider [ 5]. 

2.9.4 Prime Number Distribution 

As one moves higher through the set of natural numbers, new primes are uncovered. 
But every prime discovered increases the possibility for more composite numbers, 
which overall, creates a falling prime number distribution. Table 2.8 shows that 
there are 10 primes in the first 30 numbers, and further analysis reveals 25 primes in 
the first 100 numbers, after which, they slowly decline, but never disappear. 

The German mathematician Carl Gauss (1777–1855), proved, at the age of four-
teen, that as.x → ∞, (‘. x moves towards infinity’), the function.π(x), which estimates 
the number of primes up to . x , is given by: 

. π(x) ∼ 
x 

ln x 

where .∼ stands for ‘similar to’. 
Testing this for .x = 100: 

. π(100) ∼ 
100 

ln 100 
≈ 

100 

4.60517 
≈ 22 

which is lower than the actual value of 25. However, the French mathematician 
Adrien-Marie Legendre (1752–1833), conjectured the following relationship: 

. π(x) ∼ x 

ln x − B 

where .B = 1.08366. But it appears that the best result is when .B = 1. Testing this 
for .x = 100: 

. π(100) ∼ 100 

ln 100 − 1 
≈ 

100 

3.605 
≈ 28 

which is higher than the actual value of 25. 
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Table 2.8 Examples of primes and prime factors 

2 3 5 7 11 13 17 19 23 29 31 . N 

2 3 

2 3 7 

2 3 5 31 

2 3 5 7 211 

2 3 5 7 11 2,311 

2 3 5 7 11 13 . 30, 031 = 59 × 509 
2 3 5 7 11 13 17 . 510, 511 = 19 × 97 × 277 
2 3 5 7 11 13 17 19 . 9, 699, 691 = 347 × 27, 953 
2 3 5 7 11 13 17 19 23 . 223, 092, 871 = 317 × 703, 763 
2 3 5 7 11 13 17 19 23 29 . 6, 469, 693, 231 = 331 × 571 × 34, 231 
2 3 5 7 11 13 17 19 23 29 31 200,560,490,131 

2.9.5 Infinite Number of Primes 

Euclid also showed that there are is an infinite number of primes. As we know 
that the number of primes is either finite or infinite, we begin by assuming that the 
number is finite, and proving that the assumption is contradicted by an example. We 
begin by declaring that there are . n primes: .p1, p2, p3, · · ·  , pn−1, pn . Next, we  
form the operation .N = p1 × p2 × p3 × . . .  × pn−1 × pn + 1, which can also be 
written using the product operation: 

. N = 
n∏

i=1 

pi + 1 

Now, .N must be prime or have factors: 
1: If .N is prime, then .pn is not the largest prime, as assumed. 
2: If.N has factors, it must be divisible by some prime factor. But this prime factor 

cannot include any of the original primes as there is a remainder of 1. Therefore, . pn 
is not the largest prime, as assumed. Either way, the original assumption is incorrect; 
therefore, there must be an infinite number of primes. Table 2.8 lists some examples 
of these primes and prime factors. 

See [ 6] for an amazing list of prime numbers and related features. Also, readers 
interested in learning more about prime numbers should investigate [ 7]. 

2.9.6 Mersenne Numbers 

Numbers of the form.2k − 1 are called Mersenne numbers, some of which, are also 
prime. The French theologian and mathematician Marin Mersenne (1588–1648), 
became interested in them towards the end of his life, and today they are known as 
Mersenne primes. 
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By the end of the 16th-century, the highest Mersenne prime was 524,287 which 
equals .219 − 1. At the start of the 21st-century, .243,112,609 − 1 was the highest, 
containing approximately 13 million digits! 

Apart from the fact that prime numbers are so mysterious, they are very important 
in public key cryptography, which is central to today’s Internet security systems. 

2.10 Perfect Numbers 

A perfect number equals the sum of its factors. For example, the factors of. 6 are. 1,. 2 
and. 3, whose sum is also. 6. One would imagine that there would be a large quantity of 
small perfect numbers, but the first five are: 6, 28, 496, 8,128 and 33,550,336, which 
are all even. And as the search continues to discover higher values, using computers, 
no odd perfect number has emerged. Euclid proved that if .m is prime, and of the 
form .2k − 1, then .m(m + 1)/2 is an even perfect number. For example, 3 is prime 
and: 

. 3 = 22 − 1 and 
3 × 4 
2 

= 6 

Similarly, 7 is prime and: 

. 7 = 23 − 1 and 
7 × 8 
2 

= 28. 

2.11 Triangular Numbers 

Triangular numbers are best visualised as shown in Fig. 2.3, where successive 
triangular numbers are constructed from equilateral triangles of circles. Thus, the 
sequence is .1, 3, 6, 10, 15, .  .  .  ,  ∞. 

This sequence is generated by .n(n + 1)/2, for  the . nth triangular number. 
The same numbers are found in the binomial theorem.

(n 
2

)
, covered in Chap. 3. 

Fig. 2.3 First five triangular 
numbers 
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2.12 Highest Common Factor 

The highest common factor (hcf) of two natural numbers is the largest natural 
number that divides into both numbers. For example, the hcf of 42 and 28 is 14, as 
.42 = 2 × 3 × 7 and .28 = 2 × 2 × 7. A technique for finding the hcf is to represent 
each number as the product of prime numbers, and then find the string of prime 
products common to both numbers. For example, to find the hcf of 770 and 165 is 
to represent them as .770 = 2 × 5 × 7 × 11 and.165 = 3 × 5 × 11, therefore, the hcf 
is .5 × 11 = 55. 

2.13 Lowest Common Multiple 

The lowest common multiple (lcm) or lowest common denominator of two natural 
numbers is the smallest natural number into which they both divide. For example, 
the lcm of 18 and 24 is 72, because .18 = 2 × 3 × 3 and .24 = 2 × 2 × 2 × 3, and 
.18 × 24/6 = 72. The technique used, is to multiply the two numbers in question, 
and divide by their hcf. 

2.14 Infinity 

Infinity is used to describe the size of unbounded systems. For example, prime 
numbers are infinite, so, too, are the sets of other numbers. Consequently, no matter 
how we try, it is impossible to visualise the size of infinity. Nevertheless, this did not 
stop Georg Cantor from showing that one infinite set could be infinitely larger than 
another. 

Cantor distinguished between those infinite number sets that could be counted, 
and those that could not. For Cantor, counting meant the one-to-one correspondence 
of a natural number with the members of another infinite set. If there is a clear 
correspondence, without leaving any gaps, then the two sets shared a common infinite 
size, called its cardinality using the first letter of the Hebrew alphabet aleph:. ℵ. The  
cardinality of the natural numbers . N is .ℵ0, called aleph-zero. 

Cantor discovered a way of representing the rational numbers as a grid, which 
is traversed diagonally, back and forth, as shown in Fig. 2.4. Some ratios appear 
several times, such as . 2 2 , 

3 
3 , etc., which are not counted. Nevertheless, the one-to-

one correspondence with the natural numbers means that the cardinality of rational 
numbers is also .ℵ0. 

A real surprise was that there are infinitely more transcendental numbers than 
natural numbers. Furthermore, there are an infinite number of cardinalities rising to 
.ℵℵ. Cantor had been alone working in this esoteric area, and as he published his 
results, he shook the very foundations of mathematics, which is why he was treated 
so badly by his fellow mathematicians. 
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Fig. 2.4 Rational number 
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2.15 Worked Examples 

2.15.1 Algebraic Expansion 

Expand .(a + b)(c + d), .(a − b)(c + d) and .(a − b)(c − d). 
Solution 

. (a + b)(c + d) = a(c + d) + b(c + d) 
= ac + ad + bc + bd 

(a − b)(c + d) = a(c + d) − b(c + d) 
= ac + ad − bc − bd 

(a − b)(c − d) = a(c − d) − b(c − d) 
= ac − ad − bc + bd 

2.15.2 Complex Numbers 

Compute .(3 + 2i) + (2 + 2i) + (5 − 3i) and .(3 + 2i)(2 + 2i)(5 − 3i). 
Solution 

. (3 + 2i) + (2 + 2i) + (5 − 3i) = 10 + i 

.(3 + 2i)(2 + 2i)(5 − 3i) = (3 + 2i)(10 − 6i + 10i + 6) 
= (3 + 2i)(16 + 4i) 
= 48 + 12i + 32i − 8 
= 40 + 44i 
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2.15.3 Highest Common Factor 

Find the hcf of 760 and 330. 
Solution 
The hcf of 760 and 330 is to represent them as their prime products . 760 = 2 × 2 × 
2 × 5 × 19 and .330 = 2 × 3 × 5 × 11, therefore, the hcf is .2 × 5 = 10. 

2.15.4 Lowest Common Multiple 

Find the lcm of 36 and 96. 
Solution 
The lcm of 36 and 96 is 288, because.36 = 2×2×3×3 and.96 = 2×2×2×2×2×3, 
and .36 × 96/12 = 288. 

2.15.5 Quaternions 

Compute.(2 + 3i+ 4j+ k) + (6+ 2i+ j+ 2k) and.(2 +3i+ 4j+ k)(6+ 2i+ j+ 2k). 
Solution 

. (2 + 3i + 4j + k) + (6 + 2i + j + 2k) = 8 + 5i + 5j + 3k 

. (2 + 3i + 4j + k)(6 + 2i + j + 2k) = 12 + 4i + 2j + 4k + 18i + 6i2 + 3ij + 6ik 

+ 24j + 8ji + 4j2 + 8jk + 6k + 2ki + kj + 2k2 

= 12 + 4i + 2j + 4k + 18i − 6 + 3k − 6j 
+ 24j − 8k − 4 + 8i + 6k + 2j − i − 2 

= 0 + 29i + 22j + 5k 
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3Algebra 

3.1 Introduction 

This chapter revises the elements of algebra such as notation, rules, indices, loga-
rithms, explicit and implicit functions, intervals, function domains and ranges, odd 
and even functions and power series. The chapter concludes with some worked 
examples. 

3.2 Background 

Some people, including me, find learning a foreign language a real challenge; one 
of the reasons being the inconsistent rules associated with its syntax. For example, 
why is a table feminine in French, ‘la table’, and a bed masculine, ‘le lit’? They both 
have four legs! The rules governing natural language are continuously being changed 
by each generation, whereas mathematics appears to be logical and consistent. The 
reason for this consistency is due to the rules associated with numbers and the way 
they are combined together and manipulated at an abstract level. Such rules, or 
axioms, generally make our life easy, however, as we saw with the invention of 
negative numbers, extra rules have to be introduced, such as ‘two negatives make 
a positive’, which is easily remembered. However, as we explore mathematics, we 
discover all sorts of inconsistencies, such as there is no real value associated with 
the square-root of a negative number. It’s forbidden to divide a number by zero. Zero 
divided by zero gives inconsistent results. Nevertheless, such conditions are easy 
to recognise and avoided. At least in mathematics, we don’t have to worry about 
masculine and feminine numbers! 

As a student, I discovered Principia Mathematica [ 1], a three-volume work 
written by the British philosopher, logician, mathematician and historian Bertrand 
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Russell (1872–1970), and the British mathematician and philosopher Alfred North 
Whitehead (1861–1947), in which the authors attempted to deduce all of mathematics 
using the axiomatic system developed by the Italian mathematician Giuseppe Peano 
(1858–1932). The first volume established type theory, the second was devoted to 
numbers, and the third to higher mathematics. The authors did intend a fourth vol-
ume on geometry, but it was too much effort to complete. It made extremely intense 
reading. In fact, I never managed to get pass the first page! It took the authors almost 
100 pages of deep logical analysis in the second volume to prove that .1 + 1 = 2! 

Russell wrote in his Principles of Mathematics [ 2]: 

The fact that all Mathematics is Symbolic Logic is one of the greatest discoveries of our 
age; and when this fact has been established, the remainder of the principles of mathematics 
consists in the analysis of Symbolic Logic itself. 

Unfortunately, this dream cannot be realised, for in 1931, the Austrian-born, and 
later American logician and mathematician Kurt Gödel (1906–1978), showed that 
even though mathematics is based upon a formal set of axioms, there will always be 
statements involving natural numbers that cannot be proved or disproved. Further-
more, a consistent axiomatic system cannot demonstrate its own consistency. These 
theorems are known as Gödel’s Incompleteness theorems. 

Even though we start off with some simple axioms, it does not mean that everything 
discovered in mathematics is provable, which does not mean that we cannot continue 
our every-day studies using algebra to solve problems. So let’s examine the basic 
rules of algebra and prepare ourselves for the following chapters. 

3.3 Notation 

Modern algebraic notation has evolved over thousands of years where different 
civilisations developed ways of annotating mathematical and logical problems. The 
word algebra comes from the Arabic al-jabr w’al-muqabal meaning ‘restoration 
and reduction.’ In retrospect, it does seem strange that centuries passed before the 
‘equals’ sign (. =) was invented, and concepts such as ‘zero’ (CE 876) were introduced, 
especially as they now seem so important. But we are not at the end of this evolution, 
because new forms of annotation and manipulation will continue to emerge as new 
mathematical objects are invented. 

One fundamental concept of algebra is the idea of giving a name to an unknown 
quantity. For example, m is often used to represent the slope of a 2D line, and. c is the 
line’s .y-coordinate where it intersects the .y-axis. The French mathematician René 
Descartes (1596–1650), formalised the idea of using letters from the beginning of 
the alphabet (.a, b, c, . . . ) to represent arbitrary quantities, and letters at the end of 
the alphabet (.p, q, r, s, t, . . . , x, y, z) to represent quantities such as pressure (. p), 
time (. t) and coordinates (.x, y, z). 

With the aid of the basic arithmetic operators:.+,−,×, / we can develop expres-
sions that describe the behaviour of a physical process or a logical computation. For
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example, the expression.ax + by − d equals zero for a straight line. The variables . x
and. y are the coordinates of any point on the line and the values of . a, . b and. d deter-
mine the position and orientation of the line. The. = sign permits the line equation to 
be expressed as a self-evident statement: 

. 0 = ax + by − d

Such a statement implies that the expressions on the left- and right-hand sides of 
the .= sign are ‘equal’ or ‘balanced’, and in order to maintain equality or balance, 
whatever is done to one side, must also be done to the other. For example, adding . d
to both sides, the straight-line equation becomes: 

. d = ax + by

Similarly, we could double or treble both expressions, divide them by 4, or add 6, 
without disturbing the underlying relationship. When we are first taught algebra, we 
are often given the task of rearranging a statement to make different variables the 
subject. For example, (3.1) can be rearranged such that . x is the subject: 

.y = x + 4

2 − 1
z

(3.1) 

Multiply both sides by .

(
2 − 1

z

)
: 

. y

(
2 − 1

z

)
= x + 4

Subtract 4 from both sides, and swap sides: 

. x = y

(
2 − 1

z

)
− 4

Making . z the subject requires more effort: 

. y = x + 4

2 − 1
z

Multiply both sides by .

(
2 − 1

z

)
: 

. y

(
2 − 1

z

)
= x + 4

Expand the left-hand side: 

.2y − y

z
= x + 4
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Subtract 4 from both sides, and rearrange: 

. 2y − x − 4 = y

z

Multiply both sides by .z/(2y − x − 4): 

. z = y

2y − x − 4

Parentheses are used to isolate part of an expression in order to select a sub-
expression that is manipulated in a particular way. For example, the parentheses 
in .c(a + b) + d ensure that the variables . a and . b are added together before being 
multiplied by . c, and finally added to . d. 

Occasionally, we have to divide a pair of numbers such as.56/3 ≈ 18.6667, where 
the remainder 6 is repeated indefinitely. To remind the reader this is written .18.6. 

3.3.1 Solving the Roots of a Quadratic Equation 

Problem solving is greatly simplified if one has solved it before, and having a good 
memory is always an advantage. In mathematics, we keep coming across problems 
that have been encountered before, apart from different numbers. For example,. (a +
b)(a − b) always equals .a2 − b2, therefore factorising the following is a trivial 
exercise: 

. a2 − 16 = (a + 4)(a − 4)

x2 − 49 = (x + 7)(x − 7)

x2 − 2 =
(
x + √

2
) (

x − √
2
)

A perfect square has the form: 

. a2 + 2ab + b2 = (a + b)2

Consequently, factorising the following is also a trivial exercise: 

. a2 + 4ab + 4b2 = (a + 2b)2

x2 + 14x + 49 = (x + 7)2

x2 − 20x + 100 = (x − 10)2

Now let’s solve the roots of a quadratic equation .ax2 + bx + c = 0, i.e. those 
values of . x that make the equation equal zero. As the equation involves an .x2 term, 
we will exploit any opportunity to factorise it. We begin with the quadratic where 
.a �= 0: 

.ax2 + bx + c = 0
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Subtract . c from both sides to begin the process of creating a perfect square: 

. ax2 + bx = −c

Divide both sides by . a to create an .x2 term: 

. x2 + b

a
x = − c

a

Add.b2/4a2 to both sides to create a perfect square on the left side: 

. x2 + b

a
x + b2

4a2
= b2

4a2
− c

a

Factorise the left side: 

. 

(
x + b

2a

)2

= b2

4a2
− c

a

Make .4a2 the common denominator for the right side: 

. 

(
x + b

2a

)2

= b2 − 4ac

4a2

Take the square root of both sides: 

. x + b

2a
= ±√

b2 − 4ac

2a

Subtract .b/2a from both sides: 

. x = ±√
b2 − 4ac

2a
− b

2a

Rearrange the right side: 

. x = −b ± √
b2 − 4ac

2a
which provides the roots for any quadratic equation. 

The discriminant .
√
b2 − 4ac may be positive, negative or zero. A positive value 

reveals two real roots: 

x1 = 
−b + 

√
b2 − 4ac 
2a 

, x2 = 
−b − 

√
b2 − 4ac 
2a 

(3.2) 

A negative value reveals two complex roots: 

x1 = 
−b + √|b2 − 4ac| i 

2a 
, x2 = 

−b − √|b2 − 4ac| i 
2a 

(3.3)
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Fig. 3.1 Graph of 
.y = x2 + x − 2
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Readers may have noticed the use of . | in (3.3), which are used to indicate that the 
enclosed expression is always positive. And a zero value reveals a single root: 

. x = −b

2a

For example, Fig. 3.1 shows the graph of .y = x2 + x − 2, where we can see that 
.y = 0 at two points: .x = −2 and .x = 1. In this equation: 

. a = 1

b = 1

c = −2

which when plugged into (3.2) confirms the graph: 

. x1 = −1 + √
1 + 8

2
= 1

x2 = −1 − √
1 + 8

2
= −2

Figure 3.2 shows the graph of .y = x2 + x + 1, where at no point does .y = 0. In  
this equation: 

.a = 1

b = 1

c = 1
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Fig. 3.2 Graph of 
.y = x2 + x + 1
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which when plugged into (3.2) confirms the graph by giving complex roots: 

. x1 = −1 + √
1 − 4

2
= − 1

2 +
√
3
2 i

x2 = −1 − √
1 − 4

2
= − 1

2 −
√
3
2 i

Let’s show that .x1 satisfies the original equation: 

. 0 = x21 + x1 + 1

=
(

− 1
2 +

√
3
2 i

)2 − 1
2 +

√
3
2 i + 1

= 1
4 −

√
3
2 i − 3

4 − 1
2 +

√
3
2 i + 1

= 0

.x2 also satisfies the same equation. 
Algebraic expressions also contain a wide variety of functions, such as: 

.
√
x = square root of x

n
√
x = n-th root of x

xn = x to the power n

n! = factorial n

sin x = sine of x

cos x = cosine of x

tan x = tangent of x

log x = logarithm of x

ln x = natural logarithm of x
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Trigonometric functions are factorised as follows: 

. sin2 x − cos2 x = (sin x + cos x)(sin x − cos x)

sin2 x − tan2 x = (sin x + tan x)(sin x − tan x)

sin2 x + 4 sin x cos x + 4 cos2 x = (sin x + 2 cos x)2

sin2 x − 6 sin x cos x + 9 cos2 x = (sin x − 3 cos x)2

3.3.2 Difference of Two Squares 

A useful algebraic identity is the difference of two squares, which works as follows. 
Given two numbers . a and . b, then: 

. (a + b)(a − b) = a2 + ab − ab − b2 = a2 − b2

3.4 Indices 

Indices are used to imply repeated multiplication and create a variety of situations 
where laws are required to explain how the result is to be computed. 

3.4.1 Laws of Indices 

The laws of indices are expressed as follows: 

. am × an = am+n

am

an
= am−n

(am)n = amn

and are verified using some simple examples: 

.23 × 22 = 25 = 32

24

22
= 22 = 4

(
22

)3 = 26 = 64
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From the above laws, it is evident that: 

. a0 = 1

a−p = 1

a p

a
1
q = q

√
a

a
p
q = q

√
a p

3.5 Logarithms 

Two people are associated with the invention of logarithms: the Scottish theolo-
gian and mathematician John Napier (1550–1617), and the Swiss clockmaker and 
mathematician Joost Bürgi (1552–1632). Both men were frustrated by the time they 
spent multiplying numbers together, and both realised that multiplication could be 
replaced by addition using logarithms. Logarithms exploit the addition and subtrac-
tion of indices shown above, and are always associated with a base. For example, 
if .ax = n, then .loga n = x , where . a is the base. Where no base is indicated, it is 
assumed to be .10. Two examples bring the idea to life: 

. 102 = 100 then log 100 = 2

103 = 1, 000 then log 1, 000 = 3

The first example is interpreted as ‘10 has to be raised to the power (index) 2 to 
equal 100.’ The second is interpreted as ‘10 has to be raised to the power 3 to equal 
1000.’ The .log operation finds the power of the base for a given number. Thus a 
multiplication is translated into an addition using logs. Figure 3.3 shows the graph of 
.log x , up to  .x = 100, where we see that .log 20 ≈ 1.3 and .log 50 ≈ 1.7. Therefore, 

Fig. 3.3 Graph of. log x
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Fig. 3.4 Graph of. ln x
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given suitable software, logarithm tables, or a calculator with a .log function, we can 
compute the product .20 × 50 as follows: 

. 20 × 50 = log 20 + log 50 ≈ 1.3 + 1.7 = 3

103 = 1, 000

In general, the two bases used in calculators and software are 10 and.e = 2.71828 . . . . 
To distinguish one type of logarithm from the other, a logarithm to the base 10 is 
written as ‘.log’, and a natural logarithm to the base . e is written ‘. ln’. 

Figure 3.4 shows the graph of .ln x , up to  .x = 100, where we see that . ln 20 ≈ 3
and.ln 50 ≈ 3.9. Therefore, given suitable software, a set of natural logarithm tables 
or a calculator with a .ln function, we can compute the product .20 × 50 as follows: 

. 20 × 50 = ln 20 + ln 50 ≈ 3 + 3.9 = 6.9

e6.9 ≈ 1, 000

From the above notation, it is evident that: 

. log(ab) = log a + log b

log

(
a

b

)
= log a − log b

log(an) = n log a

3.6 Further Notation 

All sorts of symbols are used to stand in for natural language expressions – here are 
some examples: 

. < less than

> greater than
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≤ less than or equal to 
≥ greater than or equal to 
≈ approximately equal to 

≡ equivalent to
�= not equal to 
|x | absolute value of x 

For example, .0 ≤ t ≤ 1 is interpreted as: ‘. t is greater than or equal to 0, and is less 
than or equal to 1’. Basically, this means . t varies between 0 and 1. 

3.7 Functions 

The theory of functions is a large subject, and at this point in the book, I will only 
touch upon some introductory ideas that will help you understand the following 
chapters. 

The German mathematician Gottfried von Leibniz (1646–1716), is credited with 
an early definition of a function, based upon the slope of a graph. However, it was 
the Swiss mathematician Leonhard Euler (pronounced Oiler) (1707–1783), who 
provided a definition along the lines: ‘A function is a variable quantity, whose value 
depends upon one or more independent variables.’ Other mathematicians have intro-
duced more rigorous definitions, which are examined later on in the chapter on 
calculus. 

3.7.1 Explicit and Implicit Equations 

The equation: 
. y = 3x2 + 2x + 4

associates the value of . y with different values of . x . The directness of the equation: 
‘.y =’, is why it is called an explicit equation, and their explicit nature is extremely 
useful. However, simply by rearranging the terms, creates an implicit equation: 

. 4 = y − 3x2 − 2x

which implies that certain values of. x and. y combine to produce the result. 4. Another 
implicit form is: 

. 0 = y − 3x2 − 2x − 4

which means the same thing, but expresses the relationship in a slightly different 
way.
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An implicit equation can be turned into an explicit equation using algebra. For 
example, the implicit equation: 

. 4x + 2y = 12

has the explicit form: 
. y = 6 − 2x

where it is clear what . y equals. 

3.7.2 Function Notation 

The explicit equation: 
. y = 3x2 + 2x + 4

tells us that the value of . y depends on the value of . x , and not the other way around. 
For example, when .x = 1, .y = 9; and when .x = 2, .y = 20. As . y depends upon the 
value of . x , it is called the dependent variable; and as . x is independent of . y, it is  
called the independent variable. 

We can also say that . y is a function of . x , which can be written as: 

. y = f (x)

where the letter ‘. f ’ is the name of the function, and the independent variable is 
enclosed in brackets. We could have also written .y = g(x), .y = h(x), etc.  

Eventually, we have to identify the nature of the function, which in this case is: 

. f (x) = 3x2 + 2x + 4

Nothing prevents us from writing: 

. y = f (x) = 3x2 + 2x + 4

which means: . y equals the value of the function . f (x), which is determined by the 
independent variable . x using the expression .3x2 + 2x + 4. 

An equation may involve more than one independent variable, such as the volume 
of a cylinder: 

. V = πr2h

where . r is the radius, and . h, the height, and is written: 

. V (r, h) = πr2h

3.7.3 Intervals 

An interval is a continuous range of numerical values associated with a variable, 
which can include or exclude the upper and lower values. For example, a variable
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such as . x is often subject to inequalities like .x ≥ a and .x ≤ b, which can also be 
written as: 

. a ≤ x ≤ b

and implies that. x is located in the closed interval .[a, b], where the square brackets 
indicate that the interval includes . a and . b. For example: 

. 1 ≤ x ≤ 20

means that . x is located in the closed interval .[1, 20], which includes . 1 and .20. 
When the boundaries of the interval are not included, then we would state . x > a

and .x < b, which is written: 
. a < x < b

and means that . x is located in the open interval .]a, b[, where the reverse square 
brackets indicate that the interval excludes . a and . b. For example: 

. 1 < x < 10

means that . x is located in the open interval .]1, 10[, which excludes . 1 and .10. 
Closed and open intervals may be combined as follows. If .x ≥ a and.x < b then: 

. a ≤ x < b

and means that . x is located in the half-open interval .[a, b[. For example: 

. 1 ≤ x < 10

means that. x is located in the half-open interval.[1, 10[, which includes. 1, but not.10. 
Similarly: 

. 1 < x ≤ b

means that. x is located in the half-open interval.]1, 10], which includes.10, but not. 1. 
An alternative notation employs parentheses instead of reversed brackets: 

. ]a, b[ = (a, b)

[a, b[ = [a, b)

]a, b] = (a, b]
Figure 3.5 shows open, closed and half-open intervals diagrammatically. 

3.7.4 Function Domains and Ranges 

The following descriptions of function domains and ranges only apply to functions 
with one independent variable: . f (x).
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Fig. 3.5 Closed, open and 
half-open intervals. The 
filled circles indicate that. a
or. b are included in the 
interval 

Returning to the above function: 

. y = f (x) = 3x2 + 2x + 4

The independent variable. x , can take on any value from.−∞ to.+∞, which is called 
the domain of the function. In this case, the domain of. f (x) is the set of real numbers 
. R. The notation used for intervals, is also used for domains, which in this case is: 

. ] − ∞, +∞[
and is open, as there are no precise values for .−∞ and .+∞. 

As the independent variable takes on different values from its domain, so the 
dependent variable, . y or . f (x), takes on different values from its range. Therefore, 
the range of .y = f (x) = 3x2 + 2x + 4 is also the set of real numbers . R. 

The domain of .log x is: 
. ]0, +∞[

which is open, because .x �= 0. Whereas, the range of .log x is: 

. ] − ∞, +∞[
The domain of .

√
x is: 

. [0, +∞[
which is half-open, because .

√
0 = 0, and .+∞ has no precise value. Similarly, the 

range of .
√
x is: 

. [0, +∞[
Sometimes, a function is sensitive to one specific number. For example, in the func-
tion: 

.y = f (x) = 1

x − 1
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when .x = 1, there is a divide by zero, which is meaningless. Consequently, the 
domain of . f (x) is the set of real numbers . R, apart from. 1. 

3.7.5 Odd and Even Functions 

An odd function satisfies the condition: 

. f (−x) = − f (x)

where . x is located in a valid domain. Consequently, the graph of an odd function is 
symmetrical relative to the .x-axis, relative to the origin. For example, .sin α is odd 
because: 

. sin(−α) = − sin α

as illustrated in Fig. 3.6. Other odd functions include: 

. f (x) = ax

f (x) = ax3

An even function satisfies the condition: 

. f (−x) = f (x)

where. x is located in a valid domain. Consequently, the graph of an even function is 
symmetrical relative to the . f (x) axis. For example, .cosα is even because: 

. cos(−α) = cosα

as illustrated in Fig. 3.7. Other even functions include: 

. f (x) = ax2

f (x) = ax4

Fig. 3.6 The sine function is 
an odd function
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Fig. 3.7 The cosine function 
is an even function 

3.7.6 Power Functions 

Functions of the form . f (x) = xn are called power functions of degree . n and are 
either odd or even. If. n is an odd natural number, then the power function is odd, else 
if . n is an even natural number, then the power function is even. 

3.8 Series 

Many constants and functions can be represented as a series of terms, which are 
summed or represented as a product. This is very convenient in computing, as it 
means that accuracy is maximised. The Greek symbol sigma.

∑
is used to stand for 

‘sum’, whereas the Greek symbol pi .
∏

is used for ‘product’. 
Here are a list of such series, which are given without proof. 

.π = 2 · 4
3

· 16
15

· 36
35

· 64
63

. . . = 2
∞∏
k=1

4k2

4k2 − 1

e = 1 + 1

1! + 1

2! + 1

3! + . . . =
∞∑
n=0

1

n!

ex = 1 + x1

1! + x2

2! + x3

3! + . . . =
∞∑
n=0

xn

n!

sin x = x − x3

3! + x5

5! − x7

7! + . . . =
∞∑
n=0

(−1)n

(2n + 1)! x
2n+1

cos x = 1 − x2

2! + x4

4! − x6

6! + . . . =
∞∑
n=0

(−1)n

(2n)! x
2n

sinh x = x + x3

3! + x5

5! + x7

7! + . . . =
∞∑
n=0

x2n+1

(2n + 1)!
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cosh x = 1 + 
x2 

2! + 
x4 

4! + 
x6 

6! + . . .  = 
∞∑
n=0 

x2n 

(2n)! 

3.9 Binomial Theorem 

In mathematics, the term ‘binomial’ means the sum or difference of two terms. When 
the binomial .(a + b) is raised to an integral power, we can invoke the binomial 
theorem. For example, the first six terms are: 

. (a + b)0 = 1

(a + b)1 = 1a + 1b

(a + b)2 = 1a2 + 2ab + 1b2

(a + b)3 = 1a3 + 3a2b + 3ab2 + 1b3

(a + b)4 = 1a4 + 4a3b + 6a2b2 + 4ab3 + 1b4

(a + b)5 = 1a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + 1b5

Any term is expressed by the following: 

. (a + b)n =
(
n

0

)
an +

(
n

1

)
an−1b +

(
n

2

)
an−2b2 + · · · +

(
n

n − 1

)
abn−1 +

(
n

n

)
bn

(3.4) 
Equation (3.4) can be expressed as the sum: 

. (a + b)n =
n∑

i=0

(
n

i

)
an−i bi

where .
(n
i

)
stands for: 

. 

(
n

i

)
= n!

(n − i)!i !
and means ‘the number of combinations of . n elements selected . i at a time.’ For 
example, when .n = 3: 

.

(
3

0

)
= 3 × 2 × 1

(3 × 2 × 1)
= 1

(
3

1

)
= 3 × 2 × 1

(2 × 1) × 1
= 3

(
3

2

)
= 3 × 2 × 1

(1) × 2 × 1
= 3
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Table 3.1 Pascal’s triangle 

n.= 0 1 

n.= 1 1 1 

n.= 2 1 2 1 

n.= 3 1 3 3 1 

n.= 4 1 4 6 4 1 

n.= 5 1 5 10 10 5 1 

n.= 6 1 6 15 20 15 6 1 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
.

(
3 

3

)
= 

3 × 2 × 1 
3 × 2 × 1 

= 1 

which are the coefficients in the expansion .(a + b)3. 
The pattern of coefficients is known as ‘Pascal’s triangle’ and part is shown in 

Table 3.1. Note, that any row of numbers, is closely related to the previous row. 
And even though it has been named after the French mathematician Blaise Pascal 
(1623–1662), the triangle of numbers was known in China many centuries previously. 

3.10 Summary 

The above description of algebra should be sufficient for the reader to understand the 
following chapters. However, one should remember that this is only the beginning 
of a very complex subject. 

3.11 Worked Examples 

3.11.1 Algebraic Manipulation 

Rearrange the following equations to make . y the subject: 

.7 = x + 4

3 − y
, 23 = x + 68

3 + 1
ey

, 23 = x + 68

3 − sin y
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Solution 

. 7 = x + 4

3 − y

3 − y = x + 4

7

y = 3 − x + 4

7

y = 17 − x

7

Solution 

. 23 = x + 68

3 + 1
ey

3 + 1

ey
= x + 68

23
1

ey
= x + 68

23
− 3

= x − 1

23

ey = 23

x − 1

y = ln

(
23

x − 1

)

Solution 

. 23 = x + 68

3 − sin y

3 − sin y = x + 68

23

sin y = 3 − x + 68

23

= 1 − x

23

y = arcsin

(
1 − x

23

)

3.11.2 Solving a Quadratic Equation 

Solve the following quadratic equations, and test the answers: 

.0 = x2 + 4x + 1, 0 = 2x2 + 4x + 2, 0 = 2x2 + 4x + 4
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Solution 

. 0 = x2 + 4x + 1

x = −b ± √
b2 − 4ac

2a

= −4 ± √
16 − 4

2

= −4 ± √
12

2
= −2 ± √

3

Test with .x = −2 + √
3: 

. x2 + 4x + 1 = (−2 + √
3)2 + 4(−2 + √

3) + 1

= 4 − 4
√
3 + 3 − 8 + 4

√
3 + 1

= 0

Test with .x = −2 − √
3: 

. x2 + 4x + 1 = (−2 − √
3)2 + 4(−2 − √

3) + 1

= 4 + 4
√
3 + 3 − 8 − 4

√
3 + 1

= 0

Solution 

. 0 = 2x2 + 4x + 2

x = −b ± √
b2 − 4ac

2a

= −4 ± √
16 − 16

4

= −4

4
= −1

Test with .x = −1: 

.2x2 + 4x + 2 = 2 − 4 + 2

= 0
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Solution 

. 0 = 2x2 + 4x + 4

x = −b ± √
b2 − 4ac

2a

= −4 ± √
16 − 32

4

= −4 ± √−16

4
= −1 ± √−1

= −1 ± i

Test with .x = −1 + i: 

. 2x2 + 4x + 4 = 2(−1 + i)2 + 4(−1 + i) + 4

= 2(1 − 2i − 1) − 4 + 4i + 4

= −4i + 4i

= 0

Test with .x = −1 − i: 

. 2x2 + 4x + 4 = 2(−1 − i)2 + 4(−1 − i) + 4

= 2(1 + 2i − 1) − 4 − 4i + 4

= 4i − 4i

= 0

3.11.3 Factorising 

Factorise the following equations: 

. 4 sin2 x − 4 cos2 x

9 sin2 x + 6 sin x · cos x + cos2 x

25 sin2 x + 10 sin x · cos x + cos2 x

Solution 

.4 sin2 x − 4 cos2 x = (2 sin x + 2 cos x)(2 sin x − 2 cos x)

9 sin2 x + 6 sin x · cos x + cos2 x = (3 sin x + cos x)2

25 sin2 x + 10 sin x · cos x + cos2 x = (5 sin x + cos x)2
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3.11.4 Binomial Theorem 

Show the expansion .(2a + 3b)n for .n = 0 to 3. 

Solution 

. (2a + 3b)0 = 1

(2a + 3b)1 = 2a + 3b

(2a + 3b)2 = 4a2 + 2 × 2 × 3ab + 9b2 = 4a2 + 12ab + 9b2

(2a + 3b)3 = 8a3 + 3 × 4 × 3a2b + 3 × 2 × 9ab2 + 27b3 = 8a3 + 36a2b + 54ab2 + 27b3

References 

1. Russell B, Whitehead AN (1903) Principia mathematica. Cambridge University Press 
2. Russell B (1938) [First published 1903] Principles of mathematics, 2nd edn. WW Norton & Co.



4Trigonometry 

4.1 Introduction 

This chapter covers some basic features of trigonometry such as angular measure, 
trigonometric ratios, inverse ratios, trigonometric identities and various rules, with 
which the reader should be familiar. 

4.2 Background 

The word trigonometry divides into three parts: ‘tri’, ‘gon’, ‘metry’, which means 
the measurement of three-sided polygons, i.e. triangles. It is an ancient subject and 
is used across all branches of mathematics. 

4.3 Units of Angular Measurement 

The measurement of angles is at the heart of trigonometry, and today two units 
of angular measurement have survived into modern usage: degrees and radians. 
The degree (or sexagesimal) unit of measure derives from defining one complete 
rotation as .360◦. Each degree divides into 60 minutes, and each minute divides into 
60 seconds. The number 60 has survived from Mesopotamian days and is rather 
incongruous when used alongside today’s decimal system. The radian, however, is 
natural to mathematics. 

The radian of angular measure does not depend upon any arbitrary constant– 
it is the angle created by a circular arc whose length is equal to the circle’s 
radius. And because the perimeter of a circle is .2πr , .2π radians correspond to one 
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complete rotation. As.360◦ correspond to.2π radians, 1 radian equals.180◦/π , which 
is approximately.57.3◦. The following relationships between radians and degrees are 
worth remembering: 

. 

π

2
rad = 90◦ π rad = 180◦

3π

2
rad = 270◦ 2π rad = 360◦

1 rad ≈ 57.29578◦ 1◦ ≈ 0.017 4533 rad

To convert .x◦ to radians: 
. 
πx◦

180
rad

To convert .x rad to degrees: 

. 
180x

π

◦

4.4 The Trigonometric Ratios 

Ancient civilisations knew that triangles–whatever their size–possessed some inher-
ent properties, especially the ratios of sides and their associated angles. This means 
that if these trigonometric ratios are known in advance, problems involving triangles 
with unknown lengths and angles, can be discovered using these ratios. 

Figure 4.1 shows a point .P with coordinates .(base, height), on a unit-radius 
circle rotated through an angle . θ . As  .P is rotated, it moves into the 2nd quadrant, 
3rd quadrant, 4th quadrant and returns back to the first quadrant. During the rotation, 
the sign of .height and .base change as follows: 

1st quadrant: .height .(+), .base . (+) 
2nd quadrant: .height .(+), .base . (−) 
3rd quadrant: .height .(−), .base . (−) 
4th quadrant: .height .(−), .base . (+) 

Fig. 4.1 The four quadrants 
for the trigonometric ratios
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Fig. 4.2 The graph of 
.height over the four 
quadrants 

Fig. 4.3 The graph of. base
over the four quadrants 

Figures 4.2 and 4.3 plot the changing values of .height and .base over the four 
quadrants, respectively. 

When.radius = 1, the curves vary between. 1 and.−1. In the context of triangles, 
the sides are labelled as follows: 

. hypotenuse = radius

opposi te = height

ad jacent = base

Thus, using the right-angle triangle shown in Fig. 4.4, the trigonometric ratios: 
sine, cosine and tangent are defined as: 

. sin θ = opposi te

hypotenuse
, cos θ = ad jacent

hypotenuse
, tan θ = opposi te

ad jacent
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Fig. 4.4 Sides of a 
right-angle triangle 

Fig. 4.5 A right-angle 
triangle with two unknown 
sides 

The reciprocals of these functions, cosecant, secant and cotangent are also useful: 

. csc θ = 1

sin θ
, sec θ = 1

cos θ
, cot θ = 1

tan θ

As an example, Fig. 4.5 shows a triangle where the hypotenuse and an angle are 
known. The other sides are calculated as follows: 

. 
opposi te

10
= sin 40◦

opposi te = 10 sin 40◦ ≈ 10 × 0.64278 = 6.4278

ad jacent

10
= cos 40◦

ad jacent = 10 cos 40◦ ≈ 10 × 0.7660 = 7.660

The theorem of Pythagoras confirms that these lengths are correct: 

. 6.42782 + 7.6602 ≈ 102

Figure 4.6 shows the graph of the tangent function, which, like the sine and cosine 
functions, is periodic, but with only a period of . π radians.
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Fig. 4.6 Graph of the 
tangent function 

4.4.1 Domains and Ranges 

The periodic nature of .sin θ , .cos θ and.tan θ , means that their domains are infinitely 
large. Consequently, it is customary to confine the domain of .sin θ to: 

. 

[
−π

2
,

π

2

]

and .cos θ to: 
. [0, π ]

The range for both .sin θ and .cos θ is: 

. [−1, 1]
The domain for .tan θ is the open interval: 

. 

]
−π

2
,

π

2

[

and its range is the open interval: 

. ]−∞, ∞[

4.5 Inverse Trigonometric Functions 

The functions .sin θ , .cos θ , .tan θ , .csc θ , .sec θ and .cot θ provide different ratios for 
the angle . θ , and the inverse trigonometric functions convert a ratio back into an 
angle. These are .arcsin, .arccos, .arctan, .arccsc, .arcsec and.arccot, and are sometimes 
written as .sin−1, .cos−1, .tan−1, .csc−1, .sec−1 and.cot−1. For example, .sin 30◦ = 0.5, 
therefore, .arcsin(0.5) = 30◦. Consequently, the domain for .arcsin is the range for 
.sin:
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Fig. 4.7 Graph of the. arcsin
function 

Fig. 4.8 Graph of the. arccos
function 

. [−1, 1]
and the range for .arcsin is the domain for .sin: 

. 

[
−π

2
,

π

2

]

as shown in Fig. 4.7. Similarly, the domain for .arccos is the range for .cos: 

. [−1, 1]
and the range for .arccos is the domain for .cos: 

. [0, π ]
as shown in Fig. 4.8. 

The domain for .arctan is the range for .tan: 

.] − ∞, ∞[
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Fig. 4.9 Graph of the. arctan
function 

and the range for .arctan is the domain for .tan: 

. 

]
−π

2
,

π

2

[

as shown in Fig. 4.9. 
Various programming languages include the atan2 function, which is an . arctan

function with two arguments: atan.2(y, x). The signs of . x and . y provide sufficient 
information to locate the quadrant containing the angle, and gives the atan2 function 
a range of .[0, 2π ]. 

4.6 Trigonometric Identities 

The .sin and .cos curves are identical, apart from being displaced by .90◦, and are 
related by: 

. cos θ = sin(θ + π/2)

Also, simple algebra and the theorem of Pythagoras can be used to derive other 
trigonometric identities such as: 

.
sin θ

cos θ
= tan θ

sin2 θ + cos2 θ = 1

1 + tan2 θ = sec2 θ

1 + cot2 θ = csc2 θ
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4.7 The Sine Rule 

Figure 4.10 shows a triangle labeled such that side . a is opposite angle . A, side  . b is 
opposite angle . B, etc. The  sine rule is: 

. 
a

sin A
= b

sin B
= c

sinC

which can be used to compute the length of an unknown length or angle. For example, 
if .A = 60◦, .B = 40◦, .C = 80◦, and .b = 10, then: 

. 
a

sin 60◦ = 10

sin 40◦

rearranging, we have: 

. a = 10 sin 60◦

sin 40◦ ≈ 13.47

Similarly: 

. 
c

sin 80◦ = 10

sin 40◦
therefore: 

. c = 10 sin 80◦

sin 40◦ ≈ 15.32

4.8 The Cosine Rule 

The cosine rule expresses the .sin2 θ + cos2 θ = 1 identity for the arbitrary triangle 
shown in Fig. 4.10. In fact, there are three versions: 

. a2 = b2 + c2 − 2bc cos A

b2 = c2 + a2 − 2ca cos B

c2 = a2 + b2 − 2ab cosC

Fig. 4.10 A triangle
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Three further relationships also hold: 

. a = b cosC + c cos B

b = c cos A + a cosC

c = a cos B + b cos A

4.9 Compound-Angle Identities 

Compound-angle identities are useful for solving various mathematical problems, 
but apart from this, their proof often contains a strategy that can be used else where. 
In the first example, watch out for the technique of multiplying by . 1 in the form of 
a ratio, and swapping denominators. The technique is rather elegant and suggests 
that the result was known in advance, which probably was the case. Let’s begin by 
finding a way of representing .sin(α + β) in terms of .sin α, cosα, sin β, cosβ. 

With reference to Fig. 4.11: 

. sin(α + β) = FD

AD
= BC + ED

AD

= BC

AD

AC

AC
+ ED

AD

CD

CD

= BC

AC

AC

AD
+ ED

CD

CD

AD
sin(α + β) = sin α cosβ + cosα sin β (4.1) 

To find .sin(α − β), reverse the sign of . β in (4.1): 

. sin(α − β) = sin α cosβ − cosα sin β (4.2) 

Fig. 4.11 The geometry to 
expand.sin(α + β)
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Now let’s expand .cos(α + β) with reference to Fig. 4.11: 

. cos(α + β) = AE

AD
= AB − EC

AD

= AB

AD

AC

AC
− EC

AD

CD

CD

= AB

AC

AC

AD
− EC

CD

CD

AD
cos(α + β) = cosα cosβ − sin α sin β (4.3) 

To find .cos(α − β), reverse the sign of . β in (4.3): 

. cos(α − β) = cosα cosβ + sin α sin β

To expand .tan(α + β), divide  (4.1) by (4.3): 

. 
sin(α + β)

cos(α + β)
= sin α cosβ + cosα sin β

cosα cosβ − sin α sin β

=
sin α cosβ

cosα cosβ
+ cosα sin β

cosα cosβ

cosα cosβ

cosα cosβ
− sin α sin β

cosα cosβ

tan(α + β) = tan α + tan β

1 − tan α tan β
(4.4) 

To find .tan(α − β), reverse the sign of . β in (4.4): 

. tan(α − β) = tan α − tan β

1 + tan α tan β

4.9.1 Double-Angle Identities 

By making .β = α, the three compound-angle identities: 

. sin(α ± β) = sin α cosβ ± cosα sin β

cos(α ± β) = cosα cosβ ∓ sin α sin β

tan(α ± β) = tan α ± tan β

1 ∓ tan α tan β

and provide the starting point for deriving three corresponding double-angle iden-
tities: 

. sin(α ± α) = sin α cosα ± cosα sin α

sin(2α) = 2 sin α cosα
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Similarly: 

. cos(α ± α) = cosα cosα ∓ sin α sin α

cos(2α) = cos2 α − sin2 α

which can be further simplified using .sin2 α + cos2 α = 1: 

. cos(2α) = cos2 α − sin2 α

cos(2α) = 2 cos2 α − 1

cos(2α) = 1 − 2 sin2 α

And for .tan(2α), we have:  

. tan(α + α) = tan α + tan α

1 − tan α tan α

tan(2α) = 2 tan α

1 − tan2 α

4.9.2 Multiple-Angle Identities 

Euler’s trigonometric formula shows how the following multiple-angle identities 
are computed: 

. sin(3α) = 3 sin α − 4 sin3 α

cos(3α) = 4 cos3 α − 3 cosα

tan(3α) = 3 tan α − tan3 α

1 − 3 tan2 α

sin(4α) = 4 sin α cosα − 8 sin3 α cosα

cos(4α) = 8 cos4 α − 8 cos2 α + 1

tan(4α) = 4 tan α − 4 tan3 α

1 − 6 tan2 α + tan4 α

sin(5α) = 16 sin5 α − 20 sin3 α + 5 sin α

cos(5α) = 16 cos5 α − 20 cos3 α + 5 cosα

tan(5α) = 5 tan α − 10 tan3 α + tan5 α

1 − 10 tan2 α + 5 tan4 α

4.9.3 Half-Angle Identities 

Every now and then, it is necessary to compute the half-angle identities from the 
corresponding whole-angle functions. To do this, we rearrange the double-angle 
identities as follows:
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. cos(2α) = 1 − 2 sin2 α

sin2 α = 1 − cos(2α)

2

sin2(α/2) = 1 − cosα

2

sin(α/2) = ±
√
1 − cosα

2
(4.5) 

Similarly: 

. cos2 α = 1 + cos(2α)

2

cos2(α/2) = 1 + cosα

2

cos(α/2) = ±
√
1 + cosα

2
(4.6) 

Dividing (4.5) by (4.6) we have:  

. tan(α/2) =
√
1 − cosα

1 + cosα

4.10 Perimeter Relationships 

Finally, with reference to Fig. 4.10, we come to the perimeter relationships that 
integrate angles with the perimeter of a triangle: 

.s = 1
2 (a + b + c)

sin(A/2) =
√

(s − b)(s − c)

bc

sin(B/2) =
√

(s − c)(s − a)

ca

sin(C/2) =
√

(s − a)(s − b)

ab

cos(A/2) =
√
s(s − a)

bc

cos(B/2) =
√
s(s − b)

ca

cos(C/2) =
√
s(s − c)

ab

sin A = 2

bc

√
s(s − a)(s − b)(s − c)
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sin B = 
2 

ca

√
s(s − a)(s − b)(s − c) 

sin C = 
2 

ab

√
s(s − a)(s − b)(s − c) 

4.11 Worked Examples 

4.11.1 Degrees to Radians 

Convert .20◦ to radians. 
Solution 

. α = 20 × π

180
≈ 0.349066 rad

4.11.2 Sine Rule 

Find the angles . α and . β using the sine rule in Fig. 4.12. 
Solution 
Using the sine rule: 

. 
3

sin α
= 5

sin 90◦
sin α = 3

5

α ≈ 36.870◦

4

sin β
= 5

sin 90◦

Fig. 4.12 A triangle
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Fig. 4.13 A right-angled 
triangle 

sin β = 4 5 
β ≈ 53.130◦ 

4.11.3 Cosine Rule 

Find the angles . α and . β using the cosine rule in Fig. 4.13. 
Solution 
Using the cosine rule: 

. 52 = 132 + 122 − 2 × 13 × 12 cosα

25 = 169 + 144 − 312 cosα

cosα = −288

−312
α ≈ 22.620◦

122 = 52 + 132 − 2 × 5 × 13 cosβ

144 = 25 + 169 − 130 cosβ

cosβ = −50

−130
β ≈ 67.380◦

4.11.4 Compound Angle 

Give an example of .sin(α + β) = sin α cosβ + cosα sin β. 
Solution 
Let .α = 30◦, β = 60◦, then: 

. sin(α + β) = sin α cosβ + cosα sin β

sin(30◦ + 60◦) = sin 30◦ cos 60◦ + cos 30◦ sin 60◦

1 = 0.5 × 0.5 +
√
3
2

√
3
2

1 = 0.25 + 0.75
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4.11.5 Double-Angle Identity 

Give an example of .cos(2α) = cos2 α − sin2 α. 
Solution 
Let .α = 30◦: 

. cos(2α) = cos2 α − sin2 α

cos(2 × 30◦) = cos2 30◦ − sin2 30◦

cos 60◦ = 3
4 − 1

4
1
2 = 1

2

4.11.6 Perimeter Relationship 

Give an example of .sin(A/2) =
√

(s−b)(s−c)
bc . 

Solution 
Let .a = 5, b = 3, c = 4, be the sides of a triangle: 

.s = 1
2 (a + b + c)

= 1
2 (5 + 3 + 4)

= 6

sin(A/2) =
√

(s − b)(s − c)

bc

sin(90◦/2) =
√

(6 − 3)(6 − 4)

3 × 4

sin 45◦ =
√

6
12√

2
2 =

√
2
2



5Coordinate Systems 

5.1 Introduction 

This chapter revises coordinate systems which include Cartesian coordinates, polar, 
spherical polar, cylindrical and barycentric coordinate systems. It also includes the 
distance between two points in space, and the area of simple 2D shapes. It concludes 
with a collection of worked examples. 

5.2 Background 

René Descartes is often credited with the invention of the xy-plane, but Pierre de 
Fermat was probably the first inventor. In 1636 Fermat was working on a treatise 
titled Ad locus planos et solidos isagoge, which outlined what we now call ‘analytic 
geometry’. Unfortunately, Fermat never published his treatise, although he shared 
his ideas with other mathematicians such as Blaise Pascal (1623–1662). At the same 
time, Descartes devised his own system of analytic geometry and in 1637 published 
his results in the prestigious journal Géométrie. In the eyes of the scientific world, 
the publication date of a technical paper determines when a new idea or invention is 
released into the public domain. Consequently, ever since this publication Descartes 
has been associated with the.xy-plane, which is why it is called the Cartesian plane. 

The Cartesian plane is such a simple idea that it is strange that it took so long 
to be discovered. However, although it is true that René Descartes showed how 
an orthogonal coordinate system could be used for graphs and coordinate geometry, 
coordinates had been used by ancient Egyptians, almost 2000 years earlier! If Fermat 
had been more efficient in publishing his research results, the .xy-plane could have 
been called the Fermatian plane! [ 1]. 
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Fig. 5.1 The Cartesian plane 

5.3 The Cartesian Plane 

The Cartesian plane provides a mechanism for locating points with a unique, ordered 
pair of numbers .(x, y) as shown in Fig. 5.1, where .P has coordinates .(3, 2) and 
.Q has coordinates .(−4, −2). The point .(0, 0) is called the origin. As previously 
mentioned, Descartes suggested that the letters . x and . y should be used to represent 
variables, and letters at the other end of the alphabet should stand for numbers. Which 
is why equations such as .y = ax2 + bx + c, are written this way. 

The axes are said to be oriented as the .x-axis rotates anticlockwise towards the 
.y-axis. They could have been oriented in the opposite sense, with the.y-axis rotating 
anticlockwise towards the .x-axis. 

5.4 Function Graphs 

When functions such as: 

linear: . y = mx + c 
quadratic: . y = ax2 + bx + c 

cubic: . y = ax3 + bx2 + cx + d 
trigonometric: . y = a sin x 

are drawn as graphs, they create familiar shapes that permit the function to be eas-
ily identified. Linear functions are straight lines; quadratics are parabolas; cubics 
have an ‘S’ shape; and trigonometric functions often possess a wave-like trace. 
Figure 5.2 shows examples of each type of function.
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Fig. 5.2 Graphs of four 
function types 

5.5 Shape Representation 

The Cartesian plane also provides a way to represent 2D shapes numerically, which 
permits them to be manipulated mathematically. Let’s begin with 2D polygons and 
show how their internal area can be calculated. 

5.5.1 2D Polygons 

A 2D polygon is formed from a chain of vertices (points) as shown in Fig. 5.3. A  
straight line is assumed to connect each pair of neighbouring vertices; intermediate 
points on the line are not explicitly stored. There is no convention for starting a chain 
of vertices, but software will often dictate whether polygons have a clockwise or 
anticlockwise vertex sequence. 

We can now subject this list of coordinates to a variety of arithmetic and mathe-
matical operations. For example, if we double the values of . x and . y and redraw the 

Fig. 5.3 A polygon created 
from a chain of vertices
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Table 5.1 A polygon’s 
coordinates 

.x . y

.x0 . y0 

.x1 . y1 

.x2 . y2 

.x3 . y3 

vertices, we discover that the shape’s geometric integrity is preserved, but its size 
is doubled relative to the origin. Similarly, if we divide the values of . x and . y by 2, 
the shape is still preserved, but its size is halved relative to the origin. On the other 
hand, if we add 1 to every.x-coordinate, and 2 to every.y-coordinate, and redraw the 
vertices, the shape’s size remains the same but is displaced 1 unit horizontally and 2 
units vertically. 

5.5.2 Areas of a Polygonal Shapes 

The area of a polygonal shape is readily calculated from its list of coordinates. For 
example, using the list of coordinates shown in Table 5.1, the area is computed by: 

. area = 1 2 [(x0 y1 − x1y0) + (x1y2 − x2 y1) + (x2 y3 − x3y2) + (x3y0 − x0 y3)] 
You will observe that the calculation sums the results of multiplying an . x by the 

next . y, minus the next . x by the previous . y. When the last vertex is selected, it is 
paired with the first vertex to complete the process. The result is then halved to reveal 
the area. As a simple test, let’s apply this formula to the shape described in Fig. 5.3: 

. area = 1 2 [(1 × 1 − 3 × 1) + (3 × 2 − 3 × 1) + (3 × 3 − 1 × 2) + (1 × 1 − 1 × 3)] 
area = 1 2 [−2 + 3 + 7 − 2] =  3 

which, by inspection, is the true area. The beauty of this technique is that it works 
with any number of vertices and any arbitrary shape. 

Another feature of the technique is that if the set of coordinates is clockwise, 
the area is negative, which means that the calculation computes vertex orientation as 
well as area. To illustrate this feature, the original vertices are reversed to a clockwise 
sequence as follows: 

. area = 1 2 [(1 × 3 − 1 × 1) + (1 × 2 − 3 × 3) + (3 × 1 − 3 × 2) + (3 × 1 − 1 × 1)] 
area = 1 2 [2 − 7 − 3 + 2] = −3 

The minus sign confirms that the vertices are in a clockwise sequence. 
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Fig. 5.4 Calculating the 
distance between two points 

5.5.3 Theorem of Pythagoras in 2D 

The theorem of Pythagoras is used to calculate the distance between two points. 
Figure 5.4 shows two arbitrary points .P1(x1, y1) and .P2(x2, y2). The distance 
.�x = x2 − x1 and .�y = y2 − y1. Therefore, the distance . d between .P1 and .P2 is 
given by: 

. d =
√

(�x)2 + (�y)2 

For example, given .P1(1, 1), P2(4, 5), then . d = 
√
32 + 42 = 5. 

5.5.4 Pythagorean Triples 

A Pythagorean triple states the theorem of Pythagoras using integers. For example, 
these are  the first few:  

. 

32 + 42 = 52, 9 + 16 = 25 
62 + 82 = 102, 36 + 64 = 100 

92 + 122 = 152, 81 + 144 = 225 
52 + 122 = 132, 25 + 144 = 169 
72 + 242 = 252, 49 + 576 = 625 

Pierre de Fermat proposed that there is no integer solution to .an + bn = cn , with 
.n > 2, but he did not provide a solution. The English mathematician Sir Andrew 
John Wiles (1953–), provided a solution in 1994, what is known as Fermat’s Last 
Theorem. 
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5.6 3D Cartesian Coordinates 

Two Cartesian coordinates are required to locate a point on the 2D Cartesian plane, 
and three Cartesian coordinates are required for 3D space. The corresponding axial 
system requires three mutually perpendicular axes; however, there are two ways to 
add the extra .z-axis. Figure 5.5 shows the two orientations, which are described as 
left- and right-handed axial systems. The left-handed system permits us to align 
our left hand with the axes such that the thumb aligns with the.x-axis, the first finger 
aligns with the.y-axis, and the middle finger aligns with the.z-axis. The right-handed 
system permits the same system of alignment, but using our right hand. The choice 
between these axial systems is arbitrary, but one should be aware of the system 
employed by commercial computer graphics packages. The main problem arises 
when projecting 3D points onto a 2D plane, which has an oriented axial system. A 
right-handed system is employed throughout this book, as shown in Fig. 5.6, which 
also shows a point .P with its coordinates. It also worth noting that handedness has 
no meaning in spaces with 4 dimensions or more. 

5.6.1 Theorem of Pythagoras in 3D 

The theorem of Pythagoras in 3D is a natural extension of the 2D rule. In fact, 
it even works in higher dimensions. Given two arbitrary points .P1(x1, y1, z1) and 
.P2(x2, y2, z2), we compute .�x = x2 − x1, .�y = y2 − y1 and.�z = z2 − z1, from  

Fig. 5.5 a A left-handed 
system. b A right-handed 
system 

Fig. 5.6 A right-handed 
axial system showing the 
coordinates of a point.P 
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which the distance . d between .P1 and .P2 is given by: 

. d =
√

(�x)2 + (�y)2 + (�z)2 

and the distance from the origin to a point .P(x, y, z) is simply: 

. d =
√
x2 + y2 + z2 

Therefore, the point .(3, 4, 5) is . 
√
32 + 42 + 52 ≈ 7.07 from the origin. 

5.7 Polar Coordinates 

Polar coordinates are used for handling data containing angles, rather than linear 
offsets. Figure 5.7 shows the convention used for 2D polar coordinates, where the 
point .P(x, y) has equivalent polar coordinates .P(ρ, θ ), where: 

. x = ρ cos θ 
y = ρ sin θ 

ρ =
√
x2 + y2 

θ = arctan(y/x) 

For example, the point .Q(4, 0.8π)  in Fig. 5.7 has Cartesian coordinates: 

. x = 4 cos(0.8π)  ≈ −3.24 

y = 4 sin(0.8π)  ≈ 2.35 

and the point .(3, 4) has polar coordinates: 

. ρ =
√
32 + 42 = 5 

θ = arctan(4/3) ≈ 53.13◦ 

These conversion formulae work only for the first quadrant. The atan2 function 
should be used in a software environment, as it works with all four quadrants. 

Figure 5.8 shows nine Archimedean spirals using polar coordinates, created by: 

.ρ = kθ,  k = 2, 4, 6, 8, 10, 12, 14, 16, 18 
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Fig. 5.7 2D polar 
coordinates 

Fig. 5.8 Nine Archimedean 
spirals 

5.8 Spherical Polar Coordinates 

Figure 5.9 shows one convention used for spherical polar coordinates, where the 
point .P(x, y, z) has equivalent polar coordinates .P(ρ, φ, θ ), where: 

.x = ρ sin φ cos θ 
y = ρ sin φ sin θ 
z = ρ cos φ 

ρ =
√
x2 + y2 + z2 

φ = arccos(z/ρ) 
θ = arctan(y/x) 
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Fig. 5.9 Spherical polar 
coordinates 

For example, the point .(3, 4, 0) has spherical polar coordinates .(5, 90◦, 53.13◦): 

. ρ =
√
32 + 42 + 02 = 5 

φ = arccos(0/5) = 90◦ 

θ = arctan(4/3) ≈ 53.13◦ 

Take great care when using spherical coordinates, as authors often swap. φ with. θ , as  
well as the alignment of the Cartesian axes; not to mention using a left-handed axial 
system in preference to a right-handed system! 

5.9 Cylindrical Coordinates 

Figure 5.10 shows one convention used for cylindrical coordinates, where the point 
.P(x, y, z) has equivalent cylindrical coordinates .P(ρ, θ, z), where: 

. x = ρ cos θ 
y = ρ sin θ 
z = z 

ρ =
√
x2 + y2 

θ = arctan(y/x) 

For example, the point .(3, 4, 6) has cylindrical coordinates .(5, 53.13◦, 6): 

. ρ =
√
32 + 42 = 5 

θ = arctan(4/3) ≈ 53.13◦ 

z = 6 

Again, be careful when using cylindrical coordinates to ensure compatibility. 
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Fig. 5.10 Cylindrical coordinates 

5.10 Homogeneous Coordinates 

Homogeneous coordinates surfaced in the early 19th century where they were inde-
pendently proposed by Möbius, Feuerbach, Bobillier, and Plücker. Homogeneous 
coordinates, define a point in a plane using three coordinates instead of two. This 
means that for a point .(x, y) there exists a homogeneous point .(xt, yt, t) where . t 
is an arbitrary number. For example, the point .(3, 4) has homogeneous coordinates 
.(6, 8, 2), because .3 = 6/2 and .4 = 8/2. But the homogeneous point .(6, 8, 2) is 
not unique to .(3, 4); .(12, 16, 4), .(15, 20, 5) and .(300, 400, 100) are all possible 
homogeneous coordinates for .(3, 4). 

The reason why this coordinate system is called homogeneous is because it is 
possible to transform functions such as . f (x, y) into the form. f (x/t, y/t) without 
disturbing the degree of the curve. To the non-mathematician this may not seem 
anything to get excited about, but in the field of projective geometry it is a very 
powerful concept. 

In 3D, a point .(x, y, z) becomes .(xt, yt, zt, t) and for may applications .t = 1, 
which seems a futile operation, but in matrix theory it is very useful, as we will 
discover. 

5.11 Worked Examples 

5.11.1 Area of a Shape 

Compute the area and orientation of the shape defined by the coordinates in Table 5.2. 
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Table 5.2 Coordinates of the shape 

.x 0 2 2 1 1 0 

.y 0 0 2 2 1 1 

Solution 

. area = 1 2 [(2 × 2 − 0 × 2) + (2 × 2 − 2 × 1) + (1 × 1 − 2 × 1) + (1 × 1 − 1 × 0)] 
= 1 2 (4 + 2 − 1 + 1) 
= 3 

The shape is oriented anticlockwise, as the area is positive. 

5.11.2 Distance Between Two Points 

Find the distance .d12 between .P1(1, 1) and .P2(6, 7), and .d34 between . P3(1, 1, 1) 
and .P4(7, 8, 9). 
Solution 

. d12 =
√

(6 − 1)2 + (7 − 1)2 = 
√
61 ≈ 7.81 

d34 =
√

(7 − 1)2 + (8 − 1)2 + (9 − 1)2 = 
√
149 ≈ 12.21 

5.11.3 Polar Coordinates 

Convert the 2D polar coordinates .(3, π/2) to Cartesian form, and the point . (4, 5) 
to polar form. 
Solution 

. ρ = 3 
θ = π/2 

x = ρ cos θ = 3 cos(π/2) = 0 
y = ρ sin θ = 3 sin(π/2) = 3 

Therefore, .(3, π/2) ≡ (0, 3). 

. x = 4 
y = 5 

ρ =
√
x2 + y2 =

√
42 + 52 ≈ 6.4 

θ = arctan(y/x) = arctan(5/4) ≈ 51.34◦ 

Therefore, .(4, 5) ≈ (6.4, 51.34◦). 
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5.11.4 Spherical Polar Coordinates 

Convert the spherical polar coordinates .(10, π/2, 45◦) to Cartesian form, and the 
point .(3, 4, 5) to spherical form. 
Solution 

. ρ = 10 
φ = π/2 

θ = 45◦ 

x = ρ sin φ cos θ = 10 sin(π/2) cos 45◦ = 10
√
2/2 ≈ 7.07 

y = ρ sin φ sin θ = 10 sin(π/2) sin 45◦ = 10
√
2/2 ≈ 7.07 

z = ρ cos φ = 10 cos(π/2) = 0 

Therefore, .(10, π/2, 45◦) ≈ (7.07, 7.07, 0). 

. x = 3 
y = 4 
z = 5 

ρ =
√
x2 + y2 + z2 =

√
32 + 42 + 52 ≈ 7.07 

φ = arccos(z/ρ) ≈ arccos(5/7.07) = 45◦ 

θ = arctan(y/x) = arctan(4/3) ≈ 53.13◦ 

Therefore, .(3, 4, 5) ≈ (7.07, 45◦, 53.13◦). 

5.11.5 Cylindrical Coordinates 

Convert the 3D cylindrical coordinates.(10, π/2, 5) to Cartesian form, and the point 
.(3, 4, 5) to cylindrical form. 
Solution 

.ρ = 10 
θ = π/2 

z = 5 
x = ρ cos θ = 10 cos(π/2) = 0 
y = ρ sin θ = 10 sin(π/2) = 10 
z = 5 
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Therefore, .(10, π/2, 5) ≈ (0, 10, 5). 

. x = 3 
y = 4 
z = 5 

ρ =
√
32 + 42 = 5 

θ = arctan(4/3) ≈ 53.13◦ 

z = 5 

Therefore, .(3, 4, 5) ≈ (5, 53.13◦, 5). 

Reference 

1. Boyer C, Merzbach U (2011) A history of mathematics. John Wiley & Sons 
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6.1 Introduction 

This chapter introduces the determinant as a mathematical construct that simplifies 
the solution of groups of simultaneous equations. The chapter begins by tracing the 
determinant’s historical development, and the reader is shown how to evaluate the 
determinant’s magnitude for real and complex values. The chapter concludes with 
some worked examples. 

6.2 Background 

When patterns of numbers or symbols occur over and over again, mathematicians 
often devise a way to simplify their description and assign a name to them. For 
example: 

. 

4∏

i=1

pαi
i

is shorthand for: 
. pα1

1 pα2
2 pα3

3 pα4
4

and 

. 

4∑

i=1

pαi
i

is shorthand for: 
. pα1

1 + pα2
2 + pα3

3 + pα4
4
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A determinant is another example of this process, and is a value derived from a 
square matrix of terms, often associated with sets of equations. Such problems were 
studied by the Babylonians around 300 BC and by the Chinese, between 200 BC 
and 100 BC. Since then many mathematicians have been associated with the evolu-
tion of determinants and matrices, including Girolamo Cardano (1501–1576), Jan de 
Witt (1625–1672), Takakazu Seki (1642–1708), Gottfried von Leibniz, Guillaume 
de L’Hôpital (1661–1704), Augustin-Louis Cauchy (1789–1857), Pierre Laplace 
(1749–1827) and Arthur Cayley (1821–1895). To understand the rules used to com-
pute a determinant’s value, we need to understand their origin, which is in the solution 
of sets of linear equations. 

6.3 Linear Equations with Two Variables 

Consider the linear equations with two variables (6.1) and (6.2) where we want to 
find values of . x and . y that satisfy both equations: 

.7 = 3x + 2y (6.1) 

.10 = 2x + 4y (6.2) 

A standard way to resolve this problem is to multiply (6.1) by 2 and subtract (6.2) 
from (6.1), which removes the .y-terms: 

. 14 = 6x + 4y

10 = 2x + 4y

4 = 4x

x = 1

Substituting .x = 1 in (6.1) reveals the value of . y: 

. 7 = 3+ 2y

4 = 2y

y = 2

Therefore, .x = 1 and .y = 2, solves (6.1) and (6.2) as follows:  

. 7 = 3× 1+ 2× 2

10 = 2× 1+ 4× 2

The equations must be linearly independent, otherwise we only have one equation. 
For example, starting with: 

.7 = 3x + 2y

14 = 6x + 4y
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is a futile exercise, as the second equation is double the first, and does not provide 
any extra information. 

To find a general solution to this problem, we start with (6.3) and (6.4): 

.d1 = a1x + b1y (6.3) 

.d2 = a2x + b2y (6.4) 

To remove the .y-term, we multiply (6.3) by .b2 and (6.4) by . b1: 

.d1b2 = a1b2x + b1b2y (6.5) 

.b1d2 = b1a2x + b1b2y (6.6) 

Next, we subtract (6.6) from (6.5): 

. d1b2 − b1d2 = a1b2x − b1a2x

= (a1b2 − b1a2)x

x = d1b2 − b1d2
a1b2 − b1a2

(6.7) 

To find . y, we multiply (6.3) by .a2 and (6.4) by . a1: 

.d1a2 = a2a1x + b1a2y (6.8) 

.a1d2 = a2a1x + a1b2y (6.9) 

Next, we subtract (6.8) from (6.9): 

. a1d2 − d1a2 = a1b2y − b1a2y

= (a1b2 − b1a2)y

y = a1d2 − d1a2
a1b2 − b1a2

(6.10) 

Observe that both (6.7) and (6.10) share the common denominator .a1b2 − b1a2. 
Furthermore, note the positions of .a1, b1, a2 and .b2 in the original equations: 

. a1 b1
a2 b2

and the denominator is formed by cross-multiplying the diagonal terms .a1b2 and 
subtracting the other cross-multiplied terms .b1a2. Placing the four terms between 
two vertical lines creates a second-order determinant whose value equals: 

. 

∣∣∣∣
a1 b1
a2 b2

∣∣∣∣ = a1b2 − b1a2

Although the name was originally given by Carl Gauss, it was the French mathe-
matician Augustin-Louis Cauchy who clarified its current modern identity.
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If the original equations were linearly related by a factor. λ, the determinant equals 
zero: 

. 

∣∣∣∣
a1 b1
λa1 λb1

∣∣∣∣ = a1λb1 − b1λa1 = 0

Observe that the numerators of (6.7) and (6.10) are also second-order determinants: 

. 

∣∣∣∣
d1 b1
d2 b2

∣∣∣∣ = d1b2 − b1d2

and 

. 

∣∣∣∣
a1 d1
a2 d2

∣∣∣∣ = a1d2 − d1a2

which means that equations (6.7) and (6.10) can be written using determinants: 

. x =

∣∣∣∣
d1 b1
d2 b2

∣∣∣∣
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣

y =

∣∣∣∣
a1 d1
a2 d2

∣∣∣∣
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣

And one final piece of algebra permits the solution to be written as: 

.
x∣∣∣∣

d1 b1
d2 b2

∣∣∣∣
= y∣∣∣∣

a1 d1
a2 d2

∣∣∣∣
= 1∣∣∣∣

a1 b1
a2 b2

∣∣∣∣
(6.11) 

Observe another pattern in (6.11) where the determinant is: 

. 

∣∣∣∣
a1 b1
a2 b2

∣∣∣∣

but the .d-terms replace the .x-coefficients: 

. 

∣∣∣∣
d1 b1
d2 b2

∣∣∣∣

and then the .y-coefficients: 

.

∣∣∣∣
a1 d1
a2 d2

∣∣∣∣
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Returning to the original equations: 

. 7 = 3x + 2y

10 = 2x + 4y

and substituting the constants in (6.11), we have: 

. 
x∣∣∣∣
7 2
10 4

∣∣∣∣
= y∣∣∣∣

3 7
2 10

∣∣∣∣
= 1∣∣∣∣

3 2
2 4

∣∣∣∣

which, when expanded reveals: 

. 
x

28− 20
= y

30− 14
= 1

12− 4

. 
x

8
= y

16
= 1

8

making .x = 1 and .y = 2. 
Let’s try another example: 

.11 = 4x + y (6.12) 

.5 = x + y (6.13) 

and substituting the constants in (6.11), we have: 

. 
x∣∣∣∣

11 1
5 1

∣∣∣∣
= y∣∣∣∣

4 11
1 5

∣∣∣∣
= 1∣∣∣∣

4 1
1 1

∣∣∣∣

which, when expanded reveals: 

. 
x

11− 5
= y

20− 11
= 1

4− 1

. 
x

6
= y

9
= 1

3

Therefore, .x = 2 and .y = 3, solves (6.12) and (6.13) as follows: 

. 11 = 4× 2+ 1× 3

5 = 1× 2+ 1× 3

Now let’s see how a third-order determinant arises from the coefficients of three 
equations in three unknowns.
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6.4 Linear Equations with Three Variables 

Consider the linear equations with three variables (6.14), (6.15) and (6.16) where 
we want to find the values of . x , . y and . z that satisfy the three equations: 

.13 = 3x + 2y + 2z (6.14) 

.20 = 2x + 3y + 4z (6.15) 

.7 = 2x + y + z (6.16) 

One way to resolve this problem is to multiply (6.14) by 2 and subtract (6.15), which 
removes the .z-terms: 

. 26 = 6x + 4y + 4z

20 = 2x + 3y + 4z

6 = 4x + y (6.17) 

leaving (6.17) with two unknowns. Next, we take (6.15) and (6.16) and remove the 
.z-term by multiplying (6.16) by 4 and subtracting (6.15): 

. 28 = 8x + 4y + 4z

20 = 2x + 3y + 4z

8 = 6x + y (6.18) 

leaving (6.18) with two unknowns. We are now left with (6.17) and (6.18): 

. 6 = 4x + y

8 = 6x + y

which can be solved using (6.11): 

. 
x∣∣∣∣
6 1
8 1

∣∣∣∣
= y∣∣∣∣

4 6
6 8

∣∣∣∣
= 1∣∣∣∣

4 1
6 1

∣∣∣∣

Therefore: 

. x = 6− 8

4− 6
= 1

y = 32− 36

4− 6
= 2

Substituting .x = 1 and .y = 2 in (6.14) reveals that .z = 3. Therefore, .x = 1, . y = 2
and .z = 3 solves (6.14) (6.15) and (6.16) as follows:
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. 13 = 3× 1+ 2× 2+ 2× 3

20 = 2× 1+ 3× 2+ 4× 3

7 = 2× 1+ 1× 2+ 1× 3

We can generalise (6.11) for three equations using third-order determinants: 

.
x∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣

= y∣∣∣∣∣∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣

= z∣∣∣∣∣∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣

= 1∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣

(6.19) 

Once again, there is an important pattern in (6.19) where the underlying determinant 
is: 

. 

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣

but the .d-terms replace the .x-coefficients: 

. 

∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣

the .d-terms replace the .y-coefficients: 

. 

∣∣∣∣∣∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣

and the .d-terms replace the .z-coefficients: 

. 

∣∣∣∣∣∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣

We must now find a way of computing the value of a third-order determinant, which 
requires the following algebraic analysis of three equations in three unknowns. We 
start with three linear equations: 

.d1 = a1x + b1y + c1z (6.20) 

.d2 = a2x + b2y + c2z (6.21) 

.d3 = a3x + b3y + c3z (6.22) 

and derive one equation in two unknowns from (6.20) and (6.21), and another from 
(6.21) and (6.22).
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We multiply (6.20) by . c2, (6.21) by .c1 and subtract them: 

. c2d1 = a1c2x + b1c2y + c1c2z

c1d2 = c1a2x + b2c1y + c1c2z

c2d1 − c1d2 = (a1c2 − c1a2)x + (b1c2 − b2c1)y (6.23) 

Next, we multiply (6.21) by . c3, (6.22) by .c2 and subtract them: 

. c3d2 = a2c3x + b2c3y + c2c3z

c2d3 = a3c2x + b3c2y + c2c3z

c3d2 − c2d3 = (a2c3 − a3c2)x + (b2c3 − b3c2)y (6.24) 

Simplify (6.23) by letting: 

. e1 = c2d1 − c1d2
f1 = a1c2 − c1a2
g1 = b1c2 − b2c1

Therefore: 

.e1 = f1x + g1y (6.25) 

Simplify (6.24) by letting: 

. e2 = c3d2 − c2d3
f2 = a2c3 − a3c2
g2 = b2c3 − b3c2

Therefore: 

.e2 = f2x + g2y (6.26) 

Now we have two equations in two unknowns: 

. e1 = f1x + g1y

e2 = f2x + g2y

which are solved using: 

.
x

A
= y

B
= 1

C
(6.27)
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where: 

.A =
∣∣∣∣
e1 g1
e2 g2

∣∣∣∣ =
∣∣∣∣
c2d1 − c1d2 b1c2 − b2c1
c3d2 − c2d3 b2c3 − b3c2

∣∣∣∣ (6.28) 

.B =
∣∣∣∣
f1 e1
f2 e2

∣∣∣∣ =
∣∣∣∣
a1c2 − c1a2 c2d1 − c1d2
a2c3 − a3c2 c3d2 − c2d3

∣∣∣∣ (6.29) 

.C =
∣∣∣∣
f1 g1
f2 g2

∣∣∣∣ =
∣∣∣∣
a1c2 − c1a2 b1c2 − b2c1
a2c3 − a3c2 b2c3 − b3c2

∣∣∣∣ (6.30) 

We first compute. A, from which we can derive. B, because the only difference between 
(6.28) and (6.29) is that .d1, d2, d3 become .a1, a2, a3 respectively, and . b1, b2, b3
become.d1, d2, d3 respectively. 

We can derive . C from. A, as the only difference between (6.28) and (6.30) is that 
.d1, d2, d3 become.a1, a2, a3 respectively. Starting with . A: 

. A = (c2d1 − c1d2)(b2c3 − b3c2) − (b1c2 − b2c1)(c3d2 − c2d3)

= b2c2c3d1 − b3c
2
2d1 − b2c1c3d2 + b3c1c2d2

− b1c2c3d2 + b1c
2
2d3 + b2c1c3d2 − b2c1c2d3

= b2c2c3d1 − b3c
2
2d1 + b3c1c2d2 − b1c2c3d2 + b1c

2
2d3 − b2c1c2d3

= c2(b2c3d1 − b3c2d1 + b3c1d2 − b1c3d2 + b1c2d3 − b2c1d3)

A = c2
(
d1(b2c3 − c2b3) − b1(d2c3 − c2d3) + c1(d2b3 − b2d3)

)
(6.31) 

Using the substitutions described above we can derive . B and . C from (6.31): 

.B = c2
(
a1(d2c3 − c2d3) − b1(a2c3 − c2a3) + c1(a2d3 − d2a3)

)
(6.32) 

.C = c2
(
a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3)

)
(6.33) 

We can now rewrite (6.31), (6.32) and (6.33) using determinant notation. At the same 
time, we can drop the .c2 terms as they cancel out when computing . x , . y and . z: 

.A = d1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣ − b1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣ + c1

∣∣∣∣
d2 b2
d3 b3

∣∣∣∣ (6.34) 

.B = a1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣ − d1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣
a2 d2
a3 d3

∣∣∣∣ (6.35) 

.C = a1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣ − b1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣
a2 b2
a3 b3

∣∣∣∣ (6.36)
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As (6.19) and (6.27) refer to the same . x and . y, then: 

.

∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣
= d1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣ − b1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣ + c1

∣∣∣∣
d2 b2
d3 b3

∣∣∣∣ (6.37) 

.

∣∣∣∣∣∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣
= a1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣ − d1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣
a2 d2
a3 d3

∣∣∣∣ (6.38) 

.

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= a1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣ − b1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣
a2 b2
a3 b3

∣∣∣∣ (6.39) 

As a consistent algebraic analysis has been pursued to derive (6.37), (6.38) and 
(6.39), a consistent pattern has surfaced in Fig. 6.1 which shows how the three 
determinants are evaluated. This pattern comprises taking each entry in the top row, 
called a cofactor, and multiplying it by the determinant of entries in rows 2 and 
3, whilst ignoring the column containing the original term, called a first minor. 
Observe that the second term of the top row is switched negative, called an inversion 
correction factor. 

Let’s repeat (6.33) again without the .c2 term, as it has nothing to do with the 
calculation of the determinant: 

.C = a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3) (6.40) 

d1 b1 c1 d1 b1 c1 d1 b1 c1 d1 b1 c1 

d2 b2 c2 = d2 b2 c2 - d2 b2 c2 + d2 b2 c2 

d3 b3 c3 d3 b3 c3 d3 b3 c3 d3 b3 c3 

a1 d1 c1 a1 d1 c1 a1 d1 c1 a1 d1 c1 

a2 d2 c2 = a2 d2 c2 - a2 d2 c2 + a2 d2 c2 

a3 d3 c3 a3 d3 c3 a3 d3 c3 a3 d3 c3 

a1 b1 c1 a1 b1 c1 a1 b1 c1 a1 b1 c1 

a2 b2 c2 = a2 b2 c2 - a2 b2 c2 + a2 b2 c2 

a3 b3 c3 a3 b3 c3 a3 b3 c3 a3 b3 c3 

Fig. 6.1 Evaluating the determinants shown in (6.37), (6.38) and  (6.39)
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a1 b1 c1 C C C  

C = a2 b2 c2 = = =  

a3 b3 c3 -

a1 b1 c1 a1 b1 c1 a1 b1 c1 

C = a2 b2 c2 - a2 b2 c2 + a2 b2 c2 

a3 b3 c3 a3 b3 c3 a3 b3 c3

- + -

a1 b1 c1 a1 b1 c1 a1 b1 c1 

C = - a2 b2 c2 + a2 b2 c2 - a2 b2 c2 

a3 b3 c3 a3 b3 c3 a3 b3 c3 

+ - + 

a1 b1 c1 a1 b1 c1 a1 b1 c1 

C = a2 b2 c2 - a2 b2 c2 + a2 b2 c2 

a3 b3 c3 a3 b3 c3 a3 b3 c3 

Fig. 6.2 The patterns of multipliers with their respective second-order determinants 

It is possible to arrange the terms of (6.40) as a square matrix such that each row and 
column sums to . C : 

. 

a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3)

−a2(b1c3 − c1b3) + b2(a1c3 − c1a3) − c2(a1b3 − b1a3)

a3(b1c2 − c1b2) − b3(a1c2 − c1a2) + c3(a1b2 − b1a2)

which means that there are six ways to evaluate the determinant. C : summing the rows, 
or summing the columns. Figure 6.2 shows this arrangement with the cofactors in 
blue, and the first minor determinants in green. Observe how the signs alternate 
between the terms. 

Having discovered the origins of these patterns, let’s evaluate the original equa-
tions declared at the start of this section using (6.11): 

. 13 = 3x + 2y + 2z

20 = 2x + 3y + 4z

7 = 2x + y + z

.
x∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣

= y∣∣∣∣∣∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣

= z∣∣∣∣∣∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣

= 1∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
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Therefore: 

. 
x∣∣∣∣∣∣

13 2 2
20 3 4
7 1 1

∣∣∣∣∣∣

= y∣∣∣∣∣∣

3 13 2
2 20 4
2 7 1

∣∣∣∣∣∣

= z∣∣∣∣∣∣

3 2 13
2 3 20
2 1 7

∣∣∣∣∣∣

= 1∣∣∣∣∣∣

3 2 2
2 3 4
2 1 1

∣∣∣∣∣∣

computing the determinants using the top row entries as cofactors: 

. 
x

−13+ 16− 2
= y

−24+ 78− 52
= z

3+ 52− 52
= 1

−3+ 12− 8

. 
x

1
= y

2
= z

3
= 1

1
Therefore, .x = 1, .y = 2 and .z = 3 solves (6.14), (6.15) and (6.16) as follows:  

. 13 = 3× 1+ 2× 2+ 2× 3

20 = 2× 1+ 3× 2+ 4× 3

7 = 2× 1+ 1× 2+ 1× 3

6.4.1 Sarrus’s Rule 

The French mathematician Pierre Sarrus (1798–1861), discovered another way, now 
called Sarrus’s rule, to compute the value of a third-order determinant, that arises 
from (6.40): 

. C = a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3)

= a1b2c3 − a1c2b3 − b1a2c3 + b1c2a3 + c1a2b3 − c1b2a3
= a1b2c3 + b1c2a3 + c1a2b3 − a1c2b3 − b1a2c3 − c1b2a3 (6.41) 

The pattern in (6.41) becomes clear in Fig. 6.3, where the first two columns of the 
matrix are repeated, and comprises two diagonal sets of terms: on the left in blue, 
we have the products .a1b2c3, .b1c2a3, .c1a2b3, and on the right in red and orange, 
the products .a1c2b3, .b1a2c3, .c1b2a3. These diagonal patterns provide a useful aide-
mémoire when computing the determinant. Unfortunately, this rule only applies to 
third-order determinants. 

Fig. 6.3 The pattern behind 
Sarrus’s rule

a1 b1 c1 a1 b1 c1 a1 b1 b1 c1 a1 b1 c1 
a2 b2 c2 = a2 b2 c2 a2 b2 - b2 c2 a2 b2 c2 
a3 b3 c3 a3 b3 c3 a3 b3 b3 c3 a3 b3 c3
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6.5 Mathematical Notation 

Having discovered the background of determinants, now let’s explore a formal 
description of their structure and characteristics. 

6.5.1 Matrix 

In the following definitions, a matrix is a square array of entries, with an equal 
number of rows and columns. The entries may be numbers, vectors, complex numbers 
or even partial differentials, in the case of a Jacobian. In general, each entry is 
identified by two subscripts .row .col: 

. arow col

A matrix with . n rows and .m columns has the following entries: 

. 

a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...

an1 an2 . . . anm

The entries lying on the two diagonals are identified as follows: .a11 and .anm lie on 
the main diagonal, and .a1m and .an1 lie on the secondary diagonal. 

6.5.2 Order of a Square Determinant 

The order of a square determinant equals the number of rows or columns. For 
example, a first-order determinant contains a single entry; a second-order determinant 
has two rows and two columns; and a third-order determinant has three rows and 
three columns. 

6.5.3 Value of a Determinant 

A determinant posses a unique, single value derived from its entries. The algorithms 
used to compute this value must respect the algebra associated with solving sets of 
linear equations, as discussed above. 

Pierre-Simon Laplace developed a way to expand the determinant of any order. The 
Laplace expansion is the idea described above and shown in Fig. 6.1, where cofactors 
and first minors or principal minors are used. For example, starting with a fourth-
order determinant, when any row and column are removed, the remaining entries 
create a third-order determinant, called the first minor of the original determinant.
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The following equation is used to control the sign of each cofactor: 

. (−1)row+col

which, for a fourth-order determinant creates: 

. 

∣∣∣∣∣∣∣∣

+ − + −
− + − +
+ − + −
− + − +

∣∣∣∣∣∣∣∣

The Laplace expansion begins by choosing a convenient row or column as the source 
of cofactors. Any zeros are particularly useful, as they cancel out any contribution by 
the first minor determinant. It then sums the products of every cofactor in the chosen 
row or column, with its associated first minor, including an appropriate inversion 
correction factor to adjust the sign changes. The final result is the determinant’s 
value. 

A first-order determinant: 
. 

∣∣a11
∣∣ = a11

A second-order determinant: 

. 

∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

A third-order determinant using the Laplace expansion with cofactors from the 
first row: 

. 

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣ − a12

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣ + a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣

A fourth-order determinant using the Laplace expansion with cofactors from 
the first row: 

.

a11

∣∣∣∣∣∣

a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣
− a12

∣∣∣∣∣∣

a21 a23 a24
a31 a33 a34
a41 a43 a44

∣∣∣∣∣∣
+

a13

∣∣∣∣∣∣

a21 a22 a24
a31 a32 a34
a41 a42 a44

∣∣∣∣∣∣
− a14

∣∣∣∣∣∣

a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣
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Sarrus’s rule is useful to compute a third-order determinant: 

. 

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32−

a11a23a32 − a12a21a33 + a13a22a31

The Laplace expansion works with higher-order determinants, as any first minor 
can itself be expanded using the same expansion. 

6.5.4 Properties of Determinants 

We now summarise various properties of determinants. For example, if a determi-
nant contains a row or column of zeros, the Laplace expansion implies that the value 
of the determinant is zero: 

. 

∣∣∣∣∣∣

0 0 0
2 10 4
2 8 1

∣∣∣∣∣∣
= 0

∣∣∣∣∣∣

3 0 2
2 0 4
2 0 1

∣∣∣∣∣∣
= 0

If a determinant’s rows and columns are interchanged, the Laplace expansion also 
implies that the value of the determinant is unchanged: 

. 

∣∣∣∣∣∣

3 12 2
2 10 4
2 8 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

3 2 2
12 10 8
2 4 1

∣∣∣∣∣∣
= −2

If any two rows, or columns, are interchanged, without changing the order of their 
entries, the determinant’s numerical value is unchanged, but its sign is reversed: 

. 

∣∣∣∣∣∣

3 12 2
2 10 4
2 8 1

∣∣∣∣∣∣
= −2

∣∣∣∣∣∣

12 3 2
10 2 4
8 2 1

∣∣∣∣∣∣
= 2

If the entries of a row or column share a common factor, the entries may be adjusted, 
and the factor placed outside: 

.

∣∣∣∣∣∣

3 12 2
2 10 4
2 8 1

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣

3 6 2
2 5 4
2 4 1

∣∣∣∣∣∣
= −2
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6.6 Worked Examples 

6.6.1 Determinant Expansion 

Evaluate this determinant using the Laplace expansion and Sarrus’s rule: 

. 

∣∣∣∣∣∣

1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣

Solution 
Using the Laplace expansion: 

. 

∣∣∣∣∣∣

1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣
= 1

∣∣∣∣
5 8
6 9

∣∣∣∣ − 2

∣∣∣∣
4 7
6 9

∣∣∣∣ + 3

∣∣∣∣
4 7
5 8

∣∣∣∣

= 1(45− 48) − 2(36− 42) + 3(32− 35)

= −3+ 12− 9

= 0

Using Sarrus’s rule: 

. 

∣∣∣∣∣∣

1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣
= 1× 5× 9+ 4× 8× 3+ 7× 2× 6− 7× 5× 3− 1× 8× 6− 4× 2× 9

= 45+ 96+ 84− 105− 48− 72

= 0

6.6.2 Complex Determinant 

Evaluate the complex determinant: 

. 

∣∣∣∣
4+ 2i 1+ i
2− 3i 3+ 3i

∣∣∣∣

Solution 
Using the Laplace expansion: 

.

∣∣∣∣
4+ 2i 1+ i
2− 3i 3+ 3i

∣∣∣∣ = (4+ 2i)(3+ 3i) − (1+ i)(2− 3i)

= (12+ 18i− 6) − (2− i+ 3)

= 6+ 18i− 5+ i

= 1+ 19i
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6.6.3 Simple Expansion 

Write down the simplest expansion of this determinant with its value: 

. 

∣∣∣∣∣∣

1 2 3
4 5 0
6 7 0

∣∣∣∣∣∣

Solution 
Using the Laplace expansion with cofactors from the third column: 

. 

∣∣∣∣∣∣

1 2 3
4 5 0
6 7 0

∣∣∣∣∣∣
= 3

∣∣∣∣
4 5
6 7

∣∣∣∣ = −6

6.6.4 Simultaneous Equations 

Solve the following equations using determinants: 

. 3 = 2x + y − z

12 = x + 2y + z

8 = 3x − 2y + 2z

Solution 
Using (6.19): 

. 
x∣∣∣∣∣∣

3 1 −1
12 2 1
8 −2 2

∣∣∣∣∣∣

= y∣∣∣∣∣∣

2 3 −1
1 12 1
3 8 2

∣∣∣∣∣∣

= z∣∣∣∣∣∣

2 1 3
1 2 12
3 −2 8

∣∣∣∣∣∣

= 1∣∣∣∣∣∣

2 1 −1
1 2 1
3 −2 2

∣∣∣∣∣∣

Therefore: 

. x =

∣∣∣∣∣∣

3 1 −1
12 2 1
8 −2 2

∣∣∣∣∣∣
∣∣∣∣∣∣

2 1 −1
1 2 1
3 −2 2

∣∣∣∣∣∣

= 18− 16+ 40

12+ 1+ 8
= 42

21
= 2
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. 

y =

∣∣∣∣∣∣

2 3 −1
1 12 1
3 8 2

∣∣∣∣∣∣
∣∣∣∣∣∣

2 1 −1
1 2 1
3 −2 2

∣∣∣∣∣∣

= 32+ 3+ 28

12+ 1+ 8
= 63

21
= 3

z =

∣∣∣∣∣∣

2 1 3
1 2 12
3 −2 8

∣∣∣∣∣∣
∣∣∣∣∣∣

2 1 −1
1 2 1
3 −2 2

∣∣∣∣∣∣

= 80+ 28− 24

24+ 1+ 8
= 84

21
= 4

Therefore, .x = 2, .y = 3 and .z = 4, which satisfy the original equations as follows: 

.3 = 2× 2+ 1× 3− 1× 4

12 = 1× 2+ 2× 3+ 1× 4

8 = 3× 2− 2× 3+ 2× 4



7Vectors 

7.1 Introduction 

This chapter provides a comprehensive introduction to Euclidean vectors. It covers 
a description of vector space, basis vectors, dimension, 2D and 3D vectors, unit 
vectors, position vectors, Cartesian vectors, vector magnitude, vector products, and 
area calculations. The chapter concludes with some worked examples. 

7.2 Background 

Vectors are a relative new invention in the world of mathematics, dating only from 
the 19th century. They enable us to solve complex geometric problems, the dynamics 
of moving objects, and problems involving forces and fields. 

We often only require a single number to represent quantities used in our daily 
lives such as height, age, shoe size, waist and chest measurement. The magnitude 
of these numbers depends on our age and whether we use metric or imperial units. 
Such quantities are called scalars. There are some things that require more than one 
number to represent them: wind, force, weight, velocity and sound are just a few 
examples. For example, any sailor knows that wind has a magnitude and a direction. 
The force we use to lift an object also has a value and a direction. Similarly, the 
velocity of a moving object is measured in terms of its speed (e.g. miles per hour), 
and a direction such as north-west. Sound, too, has intensity and a direction. These 
are represented by vectors. 

Complex numbers seemed to be a likely candidate for representing forces, and 
were being investigated by the Norwegian-Danish mathematician Caspar Wessel 
(1745–1818), the French amateur mathematician Jean-Robert Argand (1768–1822) 
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and the English mathematician John Warren (1796–1852). At the time, complex 
numbers were two-dimensional, and their 3D form was being investigated by the 
Irish mathematician Sir William Rowan Hamilton (1805–1865), who discovered 
them in 1843, calling them quaternions. In 1853, Hamilton published his book 
Lectures on Quaternions [ 1] in which he described names such as vector, transvector 
and provector. Hamilton’s vectors were not widely accepted until in 1901, when 
the American mathematician Edwin Bidwell Wilson (1879–1964), published Vector 
Analysis [ 2], describing modern vector analysis. This was based upon a series of 
lectures delivered earlier by the American scientist Josiah Gibbs (1839–1903). 

Gibbs was not a fan of the imaginary quantities associated with Hamilton’s quater-
nions, but saw the potential of creating a vectorial system from the imaginary i, j and 
k into the unit basis vectors . i, . j and . k, which is what we use today. 

Some mathematicians were not happy with the direction mathematics had taken. 
The German mathematician Hermann Gunther Grassmann (1809–1877), believed 
that his own geometric calculus was far superior to Hamilton’s quaternions, but 
he died without managing to convince any of his fellow mathematicians. Fortu-
nately, the English mathematician and philosopher William Kingdon Clifford (1845– 
1879), recognised the brilliance of Grassmann’s ideas, and formalised what today 
has become known as geometric algebra. 

With the success of Gibbs’ vector analysis, quaternions faded into obscurity, only 
to be rediscovered in the 1970s when they were employed by the flight simulation 
community to control the dynamic behaviour of a simulator’s motion platform. A 
decade later they found their way into computer graphics where they are used for 
rotations about an arbitrary axis. 

Now this does not mean that vector analysis is dead–far from it. Vast quantities of 
scientific software depends upon the vector mathematics developed over a century 
ago, and will continue to employ it for many years to come. Nevertheless, geometric 
algebra is destined to emerge as a powerful mathematical framework that could 
eventually replace vector analysis one day. 

Readers interested in the history of vector analysis should read Michael Crowe’s 
book A History of Vector Analysis [ 3]. 

7.3 Vectors 

As mentioned above, vectors owe their invention to Hamilton’s discovery of quater-
nions, which are four-dimensional objects, composed of a scalar and three imaginary 
terms. i , . j and. k. Gibbs saw that the imaginary component could represent 3D quan-
tities, and by using . i and . j , 2D quantities. Since then, vectors have been embraced 
by mathematicians, and adjusted to become a part of linear algebra.
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7.3.1 Vector Space 

A vector space is the set of vectors that satisfy the axioms of this space, that often 
include being able to add and scale vectors. For this chapter, all vectors are Euclidean 
vectors which are used to represent force, velocity, surface normals, etc. 

7.3.2 Basis Vectors 

A basis is the set of vectors in a vector space that is used to define other vectors. 
Basis vectors are at the heart of any vectorial system, and ultimately determine the 
value of a vector’s components. For example, the standard basis used in this chapter, 
defines a 2D vector by two basis vectors .e1 and . e2, where: 

. e1 = (1, 0)

e2 = (0, 1)

and a 3D vector by three basis vectors . e1, .e2 and . e3, where: 

. e1 = (1, 0, 0)

e2 = (0, 1, 0)

e3 = (0, 0, 1)

We visualise these basis vectors being mutually perpendicular such that .e1 is the 
.x-axis,.e2 is the.y-axis, and.e3 is the.z-axis. These basis vectors permit any 2D vector 
.v = (a, b) to be written uniquely as: 

. v = ae1 + be2

and any 3D vector .w = (a, b, c) to be written as: 

. w = ae1 + be2 + ce3

For example, given .u = (1, 2, 3) and .w = (3, 4, 5), then: 

. u = 1e1 + 2e2 + 3e3
w = 3e1 + 4e2 + 5e3

u + w = (1 + 3)e1 + (2 + 4)e2 + (3 + 5)e3
= 4e1 + 6e2 + 8e3

which uniquely describes the vectors . u, . w and .u + w. 
Naturally, other sets of basis vectors are possible, such as: 

.e1 = (2, 0, 0)

e2 = (0, 3, 0)

e3 = (0, 0, 4)
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and generate the following coordinates for the above example: 

. u = 2e1 + 6e2 + 12e3
w = 6e1 + 12e2 + 20e3

u + w = (2 + 6)e1 + (6 + 12)e2 + (12 + 20)e3
= 8e1 + 18e2 + 32e3

but are unnecessary for our work. 
Later in this chapter, I employ different names for the basis vectors. Instead of 

using . e1, .e2 and . e3, I use . i, . j and . k. 

7.3.3 Dimension of a Vector Space 

A vector space determines the dimension of the associated vectors by controlling 
the number of elements required to define a vector. When a vector requires 2 or 3 
elements, we can visualise them as two- and three-dimensional structures, but four 
dimensions, and more, are impossible to visualise. 

7.3.4 Vector Notation 

As a vector contains two or more numbers, its symbolic name is printed either using 
a bold font, such as . n, or with a normal font with an arrow, such as .

−→n . I prefer the 
bold font. 

When a scalar variable is assigned a value, we use the standard algebraic notation: 

. x = 5

However, a vector has one or more numbers enclosed in brackets, written as a column 
or as a row– in this text column vectors are used: 

. n =
[
2
3

]

A row vector places the components horizontally: 

. n = [2 3]
The difference between the two, is appreciated in the context of matrices. Sometimes 
it is convenient–for presentation purposes–to write a column vector as a row vector, 
in which case, it is written: 

. n = [2 3]T
where the superscript . T reminds us that . n is really a transposed column vector. 

For this chapter, all vectors are assumed to be Euclidean vectors which have a 
standard basis.
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7.3.5 Graphical Representation of Vectors 

An arrow is used to represent a vector as it possesses length and direction, as shown 
in Fig. 7.1. By assigning coordinates to the arrow it is possible to translate the arrow’s 
length and direction into two numbers. For example, in Fig. 7.2 the vector . r has its 
tail defined by .(x1, y1) = (1, 2), and its head by .(x2, y2) = (3, 4). Vector . s has 
its tail defined by .(x3, y3) = (5, 3), and its head by .(x4, y4) = (3, 1). The .x- and 
.y-components for . r are computed as follows: 

. xr = x2 − x1
= 3 − 1

= 2

yr = y2 − y1
= 4 − 2

= 2

1 2 3 4 5  

1 

2 

3 

x 

y 

Fig. 7.1 An arrow with magnitude and direction 

1 2 3 4 5 6  

1 

2 

3 

4 

x 

y 

r 

s 

(x4, y4) 

(x1, y1) 

(x3, y3) 

(x2, y2) 

Fig. 7.2 Two vectors. r and. s have the same magnitude but opposite directions
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The components for . s are computed as follows: 

. xs = x4 − x3
= 3 − 5

= −2

ys = y4 − y3
= 1 − 3

= −2

It is the negative value of .xs and.ys that encode the vector’s direction. In general, 
if the coordinates of a vector’s head and tail are .(xh, yh) and .(xt , yt ) respectively, 
its components .�x and .�y are given by: 

. �x = xh − xt
�y = yh − yt

One can readily see from this notation that a vector does not have an absolute position. 
It does not matter where we place a vector, so long as we preserve its length and 
orientation. 

7.3.6 Magnitude of a Vector 

The magnitude or length of a vector. r is written.‖r‖ and computed using the theorem 
of Pythagoras: 

. ‖r‖ =
√

(�x)2 + (�y)2

and used as follows. Consider a vector defined by: 

. (xh, yh) = (4, 5)

(xt , yt ) = (1, 1)

where the .x- and .y-components are 3 and 4 respectively. Therefore its magnitude 
equals .

√
32 + 42 = 5. The magnitude of a vector is also written with single vertical 

lines .|r|, or double vertical lines .||r||. 
Figure 7.3 shows eight vectors, and their geometric properties are listed in 

Table 7.1. 

7.3.7 3D Vectors 

The above vector examples are in 2D, but it is easy to extend this notation to embrace 
an extra dimension. Figure 7.4 shows a 3D vector . r with its head, tail, components
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-3 -2 -1 1 2 3

-2

-1 

1 

2 

x 

y 

Fig. 7.3 Eight vectors whose coordinates are shown in Table 7.1 

Table 7.1 Values associated with the eight vectors in Fig. 7.3 

.xh .yh .xt .yt .�x .�y . ‖vector‖

.2 .0 .0 .0 .2 .0 . 2

.0 .2 .0 .0 .0 .2 . 2

.−2 .0 .0 .0 .−2 .0 . 2

.0 .−2 .0 .0 .0 .−2 . 2

.1 .1 .0 .0 .1 .1 . 
√
2

.−1 .1 .0 .0 .−1 .1 . 
√
2

.−1 .−1 .0 .0 .−1 .−1 . 
√
2

.1 .−1 .0 .0 .1 .−1 . 
√
2

Fig. 7.4 The vector. r has 
components.�x , .�y, . �z

x x 

y 

y 

z 

Ph 

Pt 

r 

z 

and magnitude annotated. The vector, its components and magnitude are given by: 

..r = [�x �y �z]T
�x = xh − xt
�y = yh − yt
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. �z = zh − zt

‖r‖ =
√

(�x)2 + (�y)2 + (�z)2

All future examples are three-dimensional. 

7.4 Vector Manipulation 

As vectors are different to scalars, there are rules to control how the two mathematical 
entities interact with one another. For instance, we need to consider vector addition, 
subtraction and products, and how a vector is scaled. 

7.4.1 Scaling a Vector 

Given a vector. n, .2 n means that the vector’s components are scaled by a factor of 2. 
For example, given: 

. n =
⎡
⎣3
4
5

⎤
⎦ , then 2n =

⎡
⎣ 6
8
10

⎤
⎦

which seems logical. Similarly, if we divide . n by 2, its components are halved. 
Note that the vector’s direction remains unchanged–only its magnitude changes. In 
general, given: 

. n =
⎡
⎣n1
n2
n3

⎤
⎦ , then λn =

⎡
⎣λn1

λn2
λn3

⎤
⎦ where λ ∈ R

There is no obvious way we can resolve the expression .2 + n, for it is not clear 
which component of . n is to be increased by 2. However, if we can add a scalar to an 
imaginary (e.g. .2+ 3i), why can’t we add a scalar to a vector (e.g. .2+ n)? Well, the 
answer to this question is two-fold: First, if we change the meaning of ‘add’ to mean 
‘associated with’, then there is nothing to stop us from ‘associating’ a scalar with 
a vector, like complex numbers. Second, the axioms controlling our algebra must 
be clear on this matter. Unfortunately, the axioms of traditional vector analysis do 
not support the ‘association’ of scalars with vectors in this way. However, geometric 
algebra does! Furthermore, geometric algebra even permits division by a vector, 
which does sound strange. Consequently, whilst reading the rest of this chapter keep 
an open mind about what is permitted, and what is not permitted. At the end of the 
day, virtually anything is possible, so long as we have a well-behaved axiomatic 
system.
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7.4.2 Vector Addition and Subtraction 

Given vectors . r and . s, .r ± s is defined as: 

. r =
⎡
⎣xr
yr
zr

⎤
⎦ , s =

⎡
⎣xs
ys
zs

⎤
⎦ , then r ± s =

⎡
⎣xr ± xs
yr ± ys
zr ± zs

⎤
⎦

Vector addition is commutative: 

. a + b = b + a

e.g.

⎡
⎣1
2
3

⎤
⎦ +

⎡
⎣4
5
6

⎤
⎦ =

⎡
⎣4
5
6

⎤
⎦ +

⎡
⎣1
2
3

⎤
⎦

However, like scalar subtraction, vector subtraction is not commutative: 

. a − b �= b − a

e.g.

⎡
⎣4
5
6

⎤
⎦ −

⎡
⎣1
2
3

⎤
⎦ �=

⎡
⎣1
2
3

⎤
⎦ −

⎡
⎣4
5
6

⎤
⎦

Let’s illustrate vector addition and subtraction with two examples. Figure 7.5 
shows the graphical interpretation of adding two vectors . r and . s. Note that the tail 
of vector . s is attached to the head of vector . r. The resultant vector .t = r + s is 
defined by adding the corresponding components of . r and . s together. Figure 7.6 
shows a graphical interpretation for .r − s. This time, the components of vector . s are 
reversed to produce an equal and opposite vector. Then it is attached to . r and added 
as described above. 

Fig. 7.5 Vector addition 
. r + s

x 

y 

r 

r+s 
s



112 7 Vectors  

Fig. 7.6 Vector subtraction 
. r − s

x 

y 

r 

r+s 
s

-s 
r - s 

7.4.3 Position Vectors 

Given any point .P(x, y, z), a  position vector . p is created by assuming that .P is 
the vector’s head and the origin is its tail. As the tail coordinates are .(0, 0, 0) the 
vector’s components are .x, y, z. Consequently, the vector’s magnitude .‖p‖ equals 

.

√
x2 + y2 + z2. 

7.4.4 Unit Vectors 

By definition, a unit vector has a magnitude of 1. A simple example is . i, where: 

. i = [1 0 0]T, where ‖i‖ = 1

Unit vectors are extremely useful in the product of two vectors, where their magni-
tudes are required; and if these are unit vectors, the computation is greatly simplified. 

Converting a vector into a unit form is called normalising, and is achieved by 
dividing its components by the vector’s magnitude. To formalise this process, con-
sider a vector.r = [x y z]T, with magnitude.‖r‖ = √

x2 + y2 + z2. The unit form 
of . r is given by: 

. r̂ = 1

‖r‖[x y z]T

This is confirmed by showing that the magnitude of . r̂ is 1: 

.‖r̂‖ =
√(

x

‖r‖
)2

+
(

y

‖r‖
)2

+
(

z

‖r‖
)2

= 1

‖r‖
√
x2 + y2 + z2

‖r̂‖ = 1
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7.4.5 Cartesian Vectors 

A Cartesian vector is constructed from three unit basis vectors: . i, . j and . k, aligned 
with the .x-, .y- and .z-axis, respectively: 

. i = [1 0 0]T, j = [0 1 0]T, k = [0 0 1]T

Therefore, any vector aligned with the .x-, .y- or  .z-axis is a scalar multiple of the 
associated unit vector. For example,.10i is aligned with the.x-axis, with a magnitude 
of 10..20k is aligned with the.z-axis, with a magnitude of 20. By employing the rules 
of vector addition and subtraction, we can compose a vector . r by summing three 
scaled Cartesian unit vectors as follows: 

. r = ai + bj + ck

which is equivalent to: 
. r = [a b c]T

where the magnitude of . r is: 

. ‖r‖ =
√
a2 + b2 + c2

Any pair of Cartesian vectors, such as . r and . s, can be combined as follows: 

. r = ai + bj + ck

s = di + ej + f k

r ± s = (a ± d)i + (b ± e)j + (c ± f )k

7.4.6 Products 

The product of two scalars is very familiar: for example,.6×7 or.7×6 = 42.We often  
visualise this operation as a rectangular area, where 6 and 7 are the dimensions of a 
rectangle’s sides, and 42 is the area. However, a vector’s qualities are its length and 
orientation, which means that any product must include them in any calculation. The 
length is easily calculated, but we must know the angle between the two vectors as 
this reflects their relative orientation. Although the angle can be incorporated within 
the product in various ways, two particular ways lead to useful results. For example, 
the product of. r and. s, separated by an angle. θ could be.‖r‖‖s‖ cos θ or.‖r‖‖s‖ sin θ . 
It just so happens that .cos θ forces the product to result in a scalar quantity, and 
.sin θ creates a vector. Consequently, there are two products to consider: the scalar 
product, and the vector product which are written as .r · s and .r × s respectively.
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7.4.7 Scalar Product 

Figure 7.7 shows two vectors . r and . s that have been drawn, for convenience, with 
their tails touching. Taking. s as the reference vector–which is an arbitrary choice–we 
compute the projection of . r on. s, which takes into account their relative orientation. 
The length of . r on . s is .‖r‖ cos θ . We can now multiply the magnitude of . s by the 
projected length of . r: .‖s‖‖r‖ cos θ . This  scalar product is written: 

.r · s = ‖r‖‖s‖ cos θ (7.1) 

Because of the dot symbol ‘. ·’, the scalar product is also called the dot product. 
Fortunately, everything is in place to perform this task. To begin with, we define 

two Cartesian vectors . r and . s, and proceed to multiply them together using (7.1): 

. r = ai + bj + ck

s = di + ej + f k

r · s = (ai + bj + ck) · (di + ej + f k)

= ai · (di + ej + f k)

+ bj · (di + ej + f k)

+ ck · (di + ej + f k)

= adi · i + aei · j + a f i · k
+ bdj · i + bej · j + b f j · k
+ cdk · i + cek · j + c f k · k

Before we proceed any further, we can see that we have created various dot product 
terms such as . i · i, .i · j, i · k, etc. These terms can be divided into two groups: those 
that reference the same basis vector, and those that reference different basis vectors. 

Using the definition of the dot product (7.1), terms such as .i · i, .j · j and.k · k = 1, 
because the angle between . i and . i, . j and . j, or . k and . k, is . 0◦; and .cos 0◦ = 1. But as 
the other vector combinations are separated by .90◦, and .cos 90◦ = 0, all remaining 

Fig. 7.7 The projection of. r
on. s
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s
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terms collapse to zero, and we are left with: 

. r · s = adi · i + bej · j + c f k · k
But as the magnitude of a unit vector is 1, we can write: 

. r · s = ‖r‖‖s‖ cos θ = ad + be + c f

which confirms that the dot product is indeed a scalar quantity. 
It is worth pointing out that the angle returned by the dot product ranges between 

.0◦ and .180◦. This is because, as the angle between two vectors increases beyond 

.180◦ the returned angle. θ is always the smallest angle associated with the geometry. 

7.4.8 Lambert’s Law 

Lambert’s law states that the intensity of illumination on a diffuse surface is pro-
portional to the cosine of the angle between the surface normal vector and the light 
source direction. Figure 7.8 shows a scenario where a light source is located at 
(20, 20, 40), and the illuminated point is (0, 10, 0). In this situation we are interested 
in calculating .cosβ, which, when multiplied by the light source intensity, gives the 
incident light intensity on the surface. To begin with, we are given the normal vector 
. n̂ to the surface. In this case . n̂ is a unit vector: i.e. .‖n̂‖ = 1: 

. n̂ = [0 1 0]T

The direction of the light source from the surface is defined by the vector . s: 

. s =
⎡
⎣ 20 − 0
20 − 10
40 − 0

⎤
⎦ =

⎡
⎣20
10
40

⎤
⎦

‖s‖ =
√
202 + 102 + 402 ≈ 45.826

‖n̂‖‖s‖ cosβ = 0 × 20 + 1 × 10 + 0 × 40 = 10

1 × 45.826 × cosβ = 10

cosβ = 10

45.826
≈ 0.218

Fig. 7.8 The geometry 
associated with Lambert’s 
law Light Source 

s
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Therefore the light intensity at the point .(0, 10, 0) is .0.218 of the original light 
intensity at .(20, 20, 40), but does not take into account the attenuation due to the 
inverse-square law of light propagation. 

7.4.9 Back-Facing Polygons 

A simple way to identify back-facing polygons relative to the virtual camera, is 
to compute the angle between the polygon’s surface normal and the line of sight 
between the camera and the polygon. If this angle is less than .90◦, the polygon is 
visible; if it equals or exceeds.90◦, the polygon is invisible. This geometry is shown in 
Fig. 7.9. Although it is obvious from Fig. 7.9 that the right-hand polygon is invisible 
to the camera, let’s prove algebraically that this is so. 

For example, if the virtual camera is located at.(0, 0, 0) and the polygon’s vertex 
is .(10, 10, 40). The normal vector is .n = [5 5 − 2]T: 

. n = [5 5 − 2]T
‖n‖ =

√
52 + 52 + (−2)2 ≈ 7.348

The camera vector . c is: 

. c =
⎡
⎣0 − 10
0 − 10
0 − 40

⎤
⎦ =

⎡
⎣−10

−10
−40

⎤
⎦

‖c‖ =
√

(−10)2 + (−10)2 + (−40)2 ≈ 42.426

therefore: 

. ‖n‖‖c‖ cosβ = 5 × (−10) + 5 × (−10) + (−2) × (−40)

7.348 × 42.426 × cosβ = −20

cosβ = −20

7.348 × 42.426
≈ −0.0634

β = cos−1(−0.0634) ≈ 93.64◦

which shows that the polygon is invisible for the camera. 

Fig. 7.9 Back-facing 
polygons 

invisible 

visible 

virtual camera
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7.4.10 The Vector Product 

As mentioned above, the vector product .r×s creates a third vector whose magnitude 
equals .‖r‖‖s‖ sin θ , where . θ is the angle between the original vectors. Figure 7.10 
reminds us that the area of a parallelogram formed by . r and . s equals .‖r‖‖s‖ sin θ . 
Because of the cross symbol ‘. ×’, the vector product is also called the cross product: 

.r × s = t (7.2)

‖t‖ = ‖r‖‖s‖ sin θ 

We will discover that the vector . t is normal (.90◦) to the plane containing the 
vectors . r and . s, as shown in Fig. 7.11, which makes it an ideal way of computing 
the vector normal to a surface. Once again, let’s define two vectors and this time 
multiply them together using (7.2): 

. r = ai + bj + ck

s = di + ej + f k

r × s = (ai + bj + ck) × (di + ej + f k)

= ai × (di + ej + f k)

+ bj × (di + ej + f k)

+ ck × (di + ej + f k)

= adi × i + aei × j + a f i × k

Fig. 7.10 The area of the  
parallelogram formed by. r
and. s
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Fig. 7.11 The vector 
product 

x 

y 

r 

s 
||r||||s||sin 

s 
r 

t



118 7 Vectors  

+ bdj × i + bej × j + b f  j × k 
+ cdk × i + cek × j + c f  k × k 

As we found with the dot product, there are two groups of vector terms: those that 
reference the same basis vector, and those that reference different basis vectors. 

Using the definition for the cross product (7.2), operations such as .i× i, .j× j and 
.k× k result in a vector whose magnitude is 0. This is because the angle between the 
vectors is . 0◦, and .sin 0◦ = 0. Consequently these terms disappear and we are left 
with: 

.r × s = aei × j + a f i × k + bdj × i + b f j × k + cdk × i + cek × j (7.3) 

Sir William Rowan Hamilton struggled for many years when working on quater-
nions to resolve the meaning of a similar result. At the time, he was not using vectors, 
as they had yet to be defined, but the imaginary terms. i ,. j and. k. Hamilton’s problem 
was to resolve the products . i j , . jk, .ki and their opposites . j i , .k j and . ik. What did 
the products mean? He reasoned that .i j = k, . jk = i and .ki = j , but could not 
resolve their opposites. One day in 1843, when he was out walking, thinking about 
this problem, he thought the impossible: .i j = k, but . j i = −k, . jk = i , but .k j = −i , 
and .ki = j, but  .ik = − j . To his surprise, this worked, but it contradicted the com-
mutative multiplication law of scalars where .6× 7 = 7× 6. We now accept that the 
commutative multiplication law is there to be broken! 

Let’s continue with Hamilton’s rules and reduce the cross product terms of (7.3) 
to: 

.r × s = aek − a f j − bdk + b f i + cdj − cei (7.4) 

Equation (7.4) can be tidied up to bring like terms together: 

.r × s = (b f − ce)i + (cd − a f )j + (ae − bd)k (7.5) 

Now let’s repeat the original vector equations to see how (7.5) is computed: 

. r = ai + bj + ck

s = di + ej + f k

r × s = (b f − ce)i + (cd − a f )j + (ae − bd)k (7.6) 

To compute the . i scalar term we consider the scalars associated with the other 
two unit vectors, i.e. . b, . c, . e, and . f , and cross-multiply and subtract them to form 
.(b f − ce). 

To compute the . j scalar term we consider the scalars associated with the other 
two unit vectors, i.e. . a, . c, . d, and . f , and cross-multiply and subtract them to form 
.(cd − a f ). 

To compute the . k scalar term we consider the scalars associated with the other 
two unit vectors, i.e. . a, . b, . d, and . e, and cross-multiply and subtract them to form 
.(ae − bd).
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The middle operation seems out of step with the other two, but in fact it pre-
serves a cyclic symmetry often found in mathematics. Nevertheless, some authors 
reverse the sign of the . j scalar term and cross-multiply and subtract the terms to 
produce .−(a f − cd) which maintains a visual pattern for remembering the cross-
multiplication. Equation (7.6) now becomes: 

.r × s = (b f − ce)i − (a f − cd)j + (ae − bd)k (7.7) 

However, we now have to remember to introduce a negative sign for the. j scalar term! 
We can write (7.7) using determinants as follows: 

. r × s =
∣∣∣∣ b c
e f

∣∣∣∣ i −
∣∣∣∣ a c
d f

∣∣∣∣ j +
∣∣∣∣ a b
d e

∣∣∣∣k
or 

. r × s =
∣∣∣∣ b c
e f

∣∣∣∣ i +
∣∣∣∣ c a
f d

∣∣∣∣ j +
∣∣∣∣ a b
d e

∣∣∣∣k
Therefore, to derive the cross product of two vectors we first write the vectors in the 
correct sequence. Remembering that.r× s does not equal.s× r. Second, we compute 
the three scalar terms and form the resultant vector, which is perpendicular to the 
plane containing the original vectors. 

So far, we have assumed that: 

. r × s = t

‖t‖ = ‖r‖‖s‖ sin θ

where . θ is the angle between . r and . s, and . t is perpendicular to the plane containing 
. r and . s. Now let’s prove that this is the case: 

.

r · s = ‖r‖‖s‖ cos θ = xr xs + yr ys + zr zs

cos2 θ = (xr xs + yr ys + zr zs)2

‖r‖2‖s‖2
‖t‖ = ‖r‖‖s‖ sin θ

‖t‖2 = ‖r‖2‖s‖2 sin2 θ

= ‖r‖2‖s‖2
(
1 − cos2 θ

)

= ‖r‖2‖s‖2
(
1 − (xr xs + yr ys + zr zs)2

‖r‖2‖s‖2
)

= ‖r‖2‖s‖2 − (xr xs + yr ys + zr zs)
2
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. 

=
(
x2r + y2r + z2r

) (
x2s + y2s + z2s

)
− (xr xs + yr ys + zr zs)

2

= x2r
(
y2s + z2s

)
+ y2r

(
x2s + z2s

)
+ z2r

(
x2s + y2s

)
− 2xr xs yr ys − 2xr xs zr zs − 2yr ys zr zs

= x2r y
2
s + x2r z

2
s + y2r x

2
s + y2r z

2
s + z2r x

2
s + z2r y

2
s

− 2xr xs yr ys − 2xr xs zr zs − 2yr ys zr zs

= (yr zs − zr ys)
2 + (zr xs − xr zs)

2 + (xr ys − yr xs)
2

which in determinant form is: 

. ‖t‖2 =
∣∣∣∣ yr zr
ys zs

∣∣∣∣
2

+
∣∣∣∣ zr xr
zs xs

∣∣∣∣
2

+
∣∣∣∣ xr yr
xs ys

∣∣∣∣
2

and confirms that . t is the vector: 

. t =
∣∣∣∣ yr zr
ys zs

∣∣∣∣ i +
∣∣∣∣ zr xr
zs xs

∣∣∣∣ j +
∣∣∣∣ xr yr
xs ys

∣∣∣∣k
All that remains is to prove that . t is orthogonal (perpendicular) to . r and . s, which is 
achieved by showing that .r · t = s · t = 0: 

. r = xr i + yr j + zrk

s = xs i + ysj + zsk

t = (yr zs − zr ys)i + (zr xs − xr zs)j + (xr ys − yr xs)k

r · t = xr (yr zs − zr ys) + yr (zr xs − xr zs) + zr (xr ys − yr xs)

= xr yr zs − xr ys zr + xs yr zr − xr yr zs + xr ys zr − xs yr zr = 0

s · t = xs(yr zs − zr ys) + ys(zr xs − xr zs) + zs(xr ys − yr xs)

= xs yr zs − xs ys zr + xs ys zr − xr ys zs + xr ys zs − xs yr zs = 0

and we have proved that .r × s = t, where .‖t‖ = ‖r‖‖s‖ sin θ and . t is orthogonal to 
the plane containing . r and . s. 

Let’s now consider two vectors . r and . s and compute the normal vector . t. The  
vectors are chosen so that we can anticipate approximately the answer. For the sake 
of clarity, the vector equations include the scalar multipliers 0 and 1. Normally, these 
are omitted. Figure 7.12 shows the vectors . r and . s and the normal vector . t, and 
Table 7.2 contains the coordinates of the vertices forming the two vectors which 
confirms what we expected from Fig. 7.12. 

.r = [(x3 − x2) (y3 − y2) (z3 − z2)]T
s = [(x1 − x2) (y1 − y2) (z1 − z2)]T

P1 = (0, 0, 1)

P2 = (1, 0, 0)

P3 = (0, 1, 0)
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Fig. 7.12 Vector. t is normal to the vectors. r and. s

Table 7.2 Coordinates of the vertices used in Fig. 7.12 

.Vertex .x .y . z

.P1 .0 .0 . 1

.P2 .1 .0 . 0

.P3 .0 .1 . 0

r = −1i + 1j + 0k 
s = −1i + 0j + 1k 

r × s = [1 × 1 − 0 × 0]i 
− [−1 × 1 − (−1) × 0]j 
+ [−1 × 0 − (−1) × 1]k 

t = i + j + k 

Now let’s reverse the vectors to illustrate the importance of vector sequence: 

. s = −1i + 0j + 1k

r = −1i + 1j + 0k

s × r = [0 × 0 − 1 × 1]i
− [−1 × 0 − (−1) × 1]j
+ [−1 × 1 − (−1) × 0]k

t = −i − j − k

which is in the opposite direction to .r × s and confirms that the vector product is 
non-commutative.
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7.4.11 The Right-Hand Rule 

The right-hand rule is an aide mémoire for working out the orientation of the cross 
product vector. Given the operation .r × s, if the right-hand thumb is aligned with . r, 
the first finger with. s, and the middle finger points in the direction of. t. However, we 
must remember that this only holds in 3D. In 4D and above, it makes no sense. 

7.5 Deriving a Unit Normal Vector for a Triangle 

Figure 7.13 shows a triangle with vertices defined in an anticlockwise sequence 
from its visible side. This is the side from which we want the surface normal to 
point. Using the following information we will compute the surface normal using 
the cross product and then convert it to a unit normal vector. 

Create vector . r between .P3 and .P1, and vector . s between .P3 and .P2: 

. r = −1i + 1j + 0k

s = −1i + 0j + 2k

r × s = (1 × 2 − 0 × 0)i

− (−1 × 2 − 0 × −1)j

+ (−1 × 0 − 1 × −1)k

t = 2i + 2j + 1k

‖t‖ =
√
22 + 22 + 12 = √

5

t̂u = 2√
5
i + 2√

5
j + 1√

5
k

The unit vector. t̂u can now be used for illumination calculations in computer graphics, 
and as it has unit length, dot product calculations are simplified. 

Fig. 7.13 The normal vector 
. t is derived from the cross 
product. r × s
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7.6 Surface Areas 

Figure 7.14 shows two vectors . r and . s, where the height .h = ‖s‖ sin θ . Therefore 
the surface area of the associated parallelogram is: 

. area = ‖r‖ h = ‖r‖‖s‖ sin θ

But this is the magnitude of the cross product vector . t. Thus when we calculate 
.r × s, the length of the normal vector . t equals the area of the parallelogram formed 
by. r and. s; which means that the triangle formed by halving the parallelogram is half 
the area: 

. area of parallelogram = ‖t‖
area of triangle = 1

2‖t‖
This makes it relatively easy to calculate the surface area of an object constructed 
from triangles or parallelograms. In the case of a triangulated surface, we simply 
sum the magnitudes of the normals and halve the result. 

7.6.1 Calculating 2D Areas 

Figure 7.15 shows a triangle with vertices .P0(x0, y0), .P1(x1, y1) and . P2(x2, y2)
formed in an anticlockwise sequence. The vectors . r and. s are computed as follows: 

. r = (x1 − x0)i + (y1 − y0)j

s = (x2 − x0)i + (y2 − y0)j

‖r × s‖ = (x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)

= x1(y2 − y0) − x0(y2 − y0) − x2(y1 − y0) + x0(y1 − y0)

= x1y2 − x1y0 − x0y2 + x0y0 − x2y1 + x2y0 + x0y1 − x0y0
= x1y2 − x1y0 − x0y2 − x2y1 + x2y0 + x0y1
= (x0y1 − x1y0) + (x1y2 − x2y1) + (x2y0 − x0y2)

Fig. 7.14 The area of the  
parallelogram formed by two 
vectors. r and. s
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Fig. 7.15 The area of the  
triangle formed by the 
vectors. r and. s
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But the area of the triangle formed by the three vertices is . 12‖r × s‖. Therefore: 
. area = 1

2 [(x0y1 − x1y0) + (x1y2 − x2y1) + (x2y0 − x0y2)]
which is the formula disclosed in Chap. 5! 

7.7 Summary 

Vectors are extremely useful and relatively easy to use. They are vital to rendering 
algorithms and shaders, and most of the time we only need to use the scalar and cross 
products. 

Even if you already knew something about vectors, I hope that this chapter has 
introduced some new ideas and illustrated the role vectors play in computer science. 

7.8 Worked Examples 

7.8.1 Position Vector 

Calculate the magnitude of the position vector . p, for the point .P(4, 5, 6). 
Solution 

.p = [4 5 6]T, therefore, ‖p‖ =
√
42 + 52 + 62 ≈ 8.77
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7.8.2 Unit Vector 

Convert . r to a unit vector. 
Solution 

. r = [1 2 3]T
‖r‖ =

√
12 + 22 + 32 = √

14

r̂ = 1√
14

[1 2 3]T ≈ [0.267 0.535 0.802]T

7.8.3 Vector Magnitude 

Compute the magnitude of .r + s. 
Solution 

. r = 2i + 3j + 4k

s = 5i + 6j + 7k

r + s = 7i + 9j + 11k

‖r + s‖ =
√
72 + 92 + 112 ≈ 15.84

7.8.4 Angle Between Two Vectors 

Find the angle between . r and . s. 
Solution 

. r = [2 0 4]T
s = [5 6 10]T

‖r‖ =
√
22 + 02 + 42 ≈ 4.472

‖s‖ =
√
52 + 62 + 102 ≈ 12.689

Therefore: 

. ‖r‖‖s‖ cos θ = 2 × 5 + 0 × 6 + 4 × 10 = 50

12.689 × 4.472 × cos θ = 50

cos θ = 50

12.689 × 4.472
≈ 0.8811

θ = arccos 0.8811 ≈ 28.22◦

The angle between the two vectors is approximately .28.22◦.
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7.8.5 Vector Product 

To show that the vector product works with the unit vectors . i, . j and . k. 
Solution 

. r = 1i + 0j + 0k

s = 0i + 1j + 0k

and then compute (7.7): 

. r × s = (0 × 0 − 0 × 1)i − (1 × 0 − 0 × 0)j + (1 × 1 − 0 × 0)k

The. i scalar and. j scalar terms are both zero, but the. k scalar term is 1, which makes 
.i × j = k. 

Let’s see what happens when we reverse the vectors. This time we start with: 

. r = 0i + 1j + 0k

s = 1i + 0j + 0k

and then compute (7.7): 

. r × s = (1 × 0 − 0 × 0)i − (0 × 0 − 0 × 1)j + (0 × 0 − 1 × 1)k

The. i scalar and. j scalar terms are both zero, but the. k scalar term is.−1, which makes 
.j × i = −k. So we see that the vector product is antisymmetric, i.e. there is a sign 
reversal when the vectors are reversed. Similarly, it can be shown that: 

. j × k = i

k × i = j

k × j = −i

i × k = −j
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8Matrices 

8.1 Introduction 

This chapter introduces the reader to matrices and covers: notation, vectors, null, 
unit, trace, determinant, transpose, symmetric, antisymmetric matrices, arithmetic 
operations on matrices, inverse, orthogonal matrices, and concludes with some 
worked examples. 

Matrices, like determinants, have their background in algebra and offer another 
way to represent and manipulate equations. Matrices can be added, subtracted and 
multiplied together, and even inverted, however, they must give the same result 
obtained through traditional algebraic techniques. 

8.2 Transforms and Matrices 

Matrix notation was researched by the British mathematician Arthur Cayley around 
1858. Cayley formalised matrix algebra, along with the American mathematicians 
Charles Peirce (1839–1914), and his father, Benjamin Peirce. Previously, Carl Gauss 
had shown that transforms were not generally, commutative, i.e. .T1T2 �= T2T1, 
(where .T1 and .T2 are transforms) and matrix notation clarified such observations. 

Consider the transform.T1, where . x and . y are transformed into .x ′ and .y′ respec-
tively: 

.T1 =
{
x ′ = ax + by
y′ = cx + dy

(8.1) 
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and a second transform.T2, where .x ′ and .y′ are transformed into .x ′′ and .y′′ respec-
tively: 

.T2 =
{
x ′′ = Ax ′ + By′
y′′ = Cx ′ + Dy′ (8.2) 

substituting (8.1) in  (8.2) we get: 

. T3 =
{
x ′′ = A(ax + by) + B(cx + dy)
y′′ = C(ax + by) + D(cx + dy)

which simplifies to: 

.T3 =
{
x ′′ = (Aa + Bc)x + (Ab + Bd)y
y′′ = (Ca + Dc)x + (Cb + Dd)y

(8.3) 

Having derived the algebra for .T3, let’s examine matrix notation, where constants 
are separated from the variables. For example, the transform (8.4): 

.
x ′ = ax + by
y′ = cx + dy

(8.4) 

can be written in matrix form as: 

.

[
x ′
y′

]
=

[
a b
c d

] [
x
y

]
(8.5) 

where (8.5) contains two different structures: two single-column matrices or column 
vectors: 

. 

[
x ′
y′

]
and

[
x
y

]

and a .2 × 2 matrix: 

. 

[
a b
c d

]

Algebraically, (8.4) and (8.5) are identical, which dictates the way (8.5) is converted 
to (8.4). therefore: using (8.5) we have  .x ′ followed by the  ‘. =’ sign, and the sum of 
the products of the top row of constants . a and . b with the . x and . y in the last column 
vector: 

. x ′ = ax + by

Next, we have.y′ followed by the ‘. =’ sign, and the sum of the products of the bottom 
row of constants . c and . d with the . x and . y in the last column vector: 

. y′ = cx + dy

As an example: 

.

[
x ′
y′

]
=

[
3 4
5 6

] [
x
y

]
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is equivalent to: 

. x ′ = 3x + 4y

y′ = 5x + 6y

We can now write .T1 and .T2 using matrix notation: 

.T1 =
[
x ′
y′

]
=

[
a b
c d

] [
x
y

]
(8.6) 

.T2 =
[
x ′′
y′′

]
=

[
A B
C D

] [
x ′
y′

]
(8.7) 

and substituting (8.6) in  (8.7) we have:  

.T3 =
[
x ′′
y′′

]
=

[
A B
C D

] [
a b
c d

] [
x
y

]
(8.8) 

But we have already computed .T3 (8.3), which in matrix form is: 

.T3 =
[
x ′′
y′′

]
=

[
Aa + Bc Ab + Bd
Ca + Dc Cb + Dd

] [
x
y

]
(8.9) 

which implies that: 

. 

[
A B
C D

] [
a b
c d

]
=

[
Aa + Bc Ab + Bd
Ca + Dc Cb + Dd

]

and demonstrates how matrices must be multiplied. Here are the rules for matrix 
multiplication: 

. 

[
A B
· · · · · ·

] [
a · · ·
c · · ·

]
=

[
Aa + Bc · · ·

· · · · · ·
]

1: The top left-hand corner element .Aa + Bc is the product of the top row of the 
first matrix by the left column of the second matrix. 

. 

[
A B
· · · · · ·

] [ · · · b
· · · d

]
=

[ · · · Ab + Bd
· · · · · ·

]

2: The top right-hand element .Ab + Bd is the product of the top row of the first 
matrix by the right column of the second matrix. 

. 

[ · · · · · ·
C D

] [
a · · ·
c · · ·

]
=

[ · · · · · ·
Ca + Dc · · ·

]

3: The bottom left-hand element .Ca + Dc is the product of the bottom row of the 
first matrix by the left column of the second matrix. 

.

[ · · · · · ·
C D

] [ · · · b
· · · d

]
=

[ · · · · · ·
· · · Cb + Dd

]
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4: The bottom right-hand element .Cb + Dd is the product of the bottom row of the 
first matrix by the right column of the second matrix. 

Let’s multiply the following matrices together: 

. 

[
2 4
6 8

] [
3 5
7 9

]
=

[
(2 × 3 + 4 × 7) (2 × 5 + 4 × 9)
(6 × 3 + 8 × 7) (6 × 5 + 8 × 9)

]
=

[
34 46
74 102

]

8.3 Matrix Notation 

Having examined the background to matrices, we can now formalise matrix nota-
tion. 

A matrix is an array of numbers (real, imaginary, complex, etc.) organised in . m
rows and . n columns, where each entry .ai j belongs to the .i-th row and . j-th column: 

. A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn

⎤
⎥⎥⎥⎥⎥⎦

It is also convenient to express the above definition as: 

. A = [ai j ]m n

8.3.1 Matrix Dimension or Order 

The dimension or order of a matrix is the expression.m × n where.m is the number 
of rows, and . n is the number of columns. 

8.3.2 Square Matrix 

A square matrix has the same number of rows as columns: 

.A = [ai j ]n n =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ , e.g.

⎡
⎣ 1 −2 4
6 5 7
4 3 1

⎤
⎦
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8.3.3 Column Vector 

A column vector is a matrix with a single column: 

. 

⎡
⎢⎢⎢⎣
a11
a21
...

am1

⎤
⎥⎥⎥⎦ , e.g.

⎡
⎣ 2

3
23

⎤
⎦

8.3.4 Row Vector 

A row vector is  a matrix with a single row:  

. 
[
a11 a12 · · · a1n

]
, e.g.

[
2 3 5

]

8.3.5 Null Matrix 

A null matrix has all its elements equal to zero: 

. θn = [ai j ]n n =

⎡
⎢⎢⎢⎣
0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎦ , e.g. θ3 =

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦

The null matrix behaves like zero when used with numbers, where we have,. 0+ n =
n + 0 = n and .0 × n = n × 0 = 0, and similarly, .θ + A = A + θ = A and 
.θA = Aθ = θ . For example: 

. 

⎡
⎣ 0 0 0
0 0 0
0 0 0

⎤
⎦

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦ =

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦ =

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦

8.3.6 Unit Matrix 

A unit matrix . In , is a square matrix with the elements on its diagonal .a11 to . ann
equal to 1: 

.In = [ai j ]n n =

⎡
⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦ , e.g. I3 =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦
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The unit matrix behaves like the number. 1 in a conventional product, where we have, 
.1 × n = n × 1 = n, and similarly, .IA = AI = A. For example: 

. 

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦ =

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦

8.3.7 Trace 

The trace of a square matrix is the sum of the elements on its diagonal .a11 to .ann : 

. Tr(A) =
n∑

i=1

aii

For example: 

. A =
⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦ , then Tr(A) = 1 + 5 + 9 = 15

The trace of a rotation matrix can be used to compute the angle of rotation. For 
example, the matrix to rotate a point about the origin is: 

. A =
[
cos θ − sin θ

sin θ cos θ

]

where: 
. Tr(A) = 2 cos θ

which means that: 

. θ = arccos

(
Tr(A)

2

)

The three matrices for rotating points about the .x-, .y- and .z-axis are respectively: 

.Rα,x =
⎡
⎣ 1 0 0
0 cosα − sin α

0 sin α cosα

⎤
⎦

Rα,y =
⎡
⎣ cosα 0 sin α

0 1 0
− sin α 0 cosα

⎤
⎦

Rα,z =
⎡
⎣ cosα − sin α 0
sin α cosα 0
0 0 1

⎤
⎦
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and it is clear that: 

. Tr(Rα,x ) = Tr(Rα,y) = Tr(Rα,z) = 1 + 2 cosα

therefore: 

. α = arccos

(
Tr(Rα,x ) − 1

2

)

8.3.8 Determinant of a Matrix 

The determinant of a matrix is a scalar value computed from the elements of the 
matrix. The different methods for computing the determinant are described in Chap. 
6. For example, using Sarrus’s rule: 

. A =
⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦ then: det A = 45 + 84 + 96 − 105 − 48 − 72 = 0

8.3.9 Transpose 

The transpose of a matrix exchanges all row elements for column elements. The 
transposition is indicated by the letter ‘T’ outside the right-hand bracket: 

. 

⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦
T

=
⎡
⎣a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤
⎦

For example: 

. 

⎡
⎣ 1 2 4
6 5 7
4 3 1

⎤
⎦
T

=
⎡
⎣ 1 6 4
2 5 3
4 7 1

⎤
⎦

and 

. 

⎡
⎣2
3
5

⎤
⎦
T

= [
2 3 5

]

To prove that.(AB)T = BTAT, we could develop a general proof using.n×nmatrices, 
but for simplicity, let’s employ .3 × 3 matrices and assume the result generalises to
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higher dimensions. Given: 

. A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ , AT =

⎡
⎣a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤
⎦

and 

. B =
⎡
⎣b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤
⎦ , BT =

⎡
⎣ b11 b21 b31
b12 b22 b32
b13 b23 b33

⎤
⎦

then: 

. AB =
⎡
⎣ a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33

⎤
⎦

(AB)T =
⎡
⎣ a11b11 + a12b21 + a13b31 a21b11 + a22b21 + a23b31 a31b11 + a32b21 + a33b31
a11b12 + a12b22 + a13b32 a21b12 + a22b22 + a23b32 a31b12 + a32b22 + a33b32
a11b13 + a12b23 + a13b33 a21b13 + a22b23 + a23b33 a31b13 + a32b23 + a33b33

⎤
⎦

and 

. BTAT =
⎡
⎣ b11a11 + b21a12 + b31a13 b11a21 + b21a22 + b31a23 b11a31 + b21a32 + b31a33
b12a11 + b22a12 + b32a13 b12a21 + b22a22 + b32a23 b12a31 + b22a32 + b32a33
b13a11 + b23a12 + b33a13 b13a21 + b23a22 + b33a23 b13a31 + b23a32 + b33a33

⎤
⎦

which confirms that .(AB)T = BTAT. 

8.3.10 Symmetric Matrix 

A symmetric matrix is a square matrix that equals its transpose: i.e. .A = AT. For  
example, . A is a symmetric matrix: 

. A =
⎡
⎣ 1 2 4
2 5 3
4 3 6

⎤
⎦ =

⎡
⎣ 1 2 4
2 5 3
4 3 6

⎤
⎦
T

In general, a square matrix .A = S + Q, where . S is a symmetric matrix, and .Q is an 
antisymmetric matrix. The symmetric matrix is computed as follows. Given a matrix 
. A and its transpose .AT: 

.A =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ , AT =

⎡
⎢⎢⎢⎣
a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤
⎥⎥⎥⎦
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their sum is: 

. A + AT =

⎡
⎢⎢⎢⎣

2a11 a12 + a21 . . . a1n + an1
a12 + a21 2a22 . . . a2n + an2

...
...

. . .
...

a1n + an1 a2n + an2 . . . 2ann

⎤
⎥⎥⎥⎦

By inspection, .A + AT is symmetric, and if we divide throughout by . 2 we have: 

. S = 1
2

(
A + AT

)

which is defined as the symmetric part of . A. For example: 

. A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ , AT =

⎡
⎣a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤
⎦

then: 

. S = 1
2

(
A + AT

)

=
⎡
⎣ a11 (a12 + a21)/2 (a13 + a31)/2

(a12 + a21)/2 a22 a23 + a32
(a13 + a31)/2 (a23 + a32)/2 a33

⎤
⎦

=
⎡
⎣ a11 s3/2 s2/2
s3/2 a22 s1/2
s2/2 s1/2 a33

⎤
⎦

where: 

. s1 = a23 + a32
s2 = a13 + a31
s3 = a12 + a21

Using a real example: 

. A =
⎡
⎣0 1 4
3 1 4
4 2 6

⎤
⎦ , AT =

⎡
⎣0 3 4
1 1 2
4 4 6

⎤
⎦

S =
⎡
⎣0 2 4
2 1 3
4 3 6

⎤
⎦

which equals its own transpose.
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8.3.11 Antisymmetric Matrix 

An antisymmetric matrix is a matrix whose transpose is its own negative: 

. AT = −A

and is also known as a skew-symmetric matrix. 
As the elements of . A and .AT are related by: 

. arow,col = −acol,row

When.k = row = col: 
. ak,k = −ak,k

which implies that the diagonal elements must be zero. For example, this is an 
antisymmetric matrix: 

. A =
⎡
⎣ 0 −2 4

2 0 −3
−4 3 0

⎤
⎦ = −

⎡
⎣ 0 −2 4

2 0 −3
−4 3 0

⎤
⎦
T

The antisymmetric part is computed as follows. Given a matrix . A and its transpose 
.AT: 

. A =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ , AT =

⎡
⎢⎢⎢⎣
a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤
⎥⎥⎥⎦

their difference is: 

. A − AT =

⎡
⎢⎢⎢⎣

0 a12 − a21 . . . a1n − an1
−(

a12 − a21
)

0 . . . a2n − an2
...

...
. . .

...

−(
a1n − an1

) −(
a2n − an2

)
. . . 0

⎤
⎥⎥⎥⎦

It is clear that .A − AT is antisymmetric, and if we divide throughout by . 2 we have: 

. Q = 1
2

(
A − AT

)

For example: 

.A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ , AT =

⎡
⎣a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤
⎦

Q =
⎡
⎢⎣

0
(
a12 − a21

)
/2

(
a13 − a31

)
/2(

a21 − a12
)
/2 0

(
a23 − a32

)
/2(

a31 − a13
)
/2

(
a32 − a23

)
/2 0

⎤
⎥⎦
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and if we maintain some symmetry with the subscripts, we have: 

. Q =
⎡
⎣ 0

(
a12 − a21

)
/2 −(

a31 − a13
)
/2

−(
a12 − a21

)
/2 0

(
a23 − a32

)
/2(

a31 − a13
)
/2 −(

a23 − a32
)
/2 0

⎤
⎦

=
⎡
⎣ 0 q3/2 −q2/2

−q3/2 0 q1/2
q2/2 −q1/2 0

⎤
⎦

where: 

. q1 = a23 − a32
q2 = a31 − a13
q3 = a12 − a21

Using a real example: 

. A =
⎡
⎣0 1 4
3 1 4
4 2 6

⎤
⎦ , AT =

⎡
⎣0 3 4
1 1 2
4 4 6

⎤
⎦

Q =
⎡
⎣0 −1 0
1 0 1
0 −1 0

⎤
⎦

Furthermore, we have already computed: 

. S =
⎡
⎣0 2 4
2 1 3
4 3 6

⎤
⎦

and 

. S + Q =
⎡
⎣0 1 4
3 1 4
4 2 6

⎤
⎦ = A

8.4 Matrix Addition and Subtraction 

As equations can be added and subtracted together, it follows that matrices can also 
be added and subtracted, as long as they have the same dimension. For example: 

.A =
⎡
⎣ 11 22
14 −15
27 28

⎤
⎦ , and B =

⎡
⎣ 2 1

−4 5
1 8

⎤
⎦
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then: 

. A + B =
⎡
⎣ 13 23
10 −10
28 36

⎤
⎦ , A − B =

⎡
⎣ 9 21
18 −20
26 20

⎤
⎦

8.5 Scalar Multiplication 

As equations can be scaled and factorised, it follows that matrixes can also be scaled 
and factorised: 

. λA = λ

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

λa11 λa12 . . . λa13
λa21 λa22 . . . λa23

...
...

. . .
...

λam1 λam2 . . . λamn

⎤
⎥⎥⎥⎦

For example: 

. 2

[
1 2 3
4 5 6

]
=

[
2 4 6
8 10 12

]

8.6 Matrix Products 

We have already seen that matrices can be multiplied together employing rules that 
maintain the algebraic integrity of the equations they represent. And as matrices may 
be vectors, rectangular or square, we need to examine the matrix products that are 
permitted. To keep the notation simple, the definitions and examples are restricted 
to a dimension of 3 or .3 × 3. We begin with row and column vectors. 

8.6.1 Row and Column Vectors 

Given: 

. A = [
a b c

]
, and B =

⎡
⎣ α

β

γ

⎤
⎦

then: 

. AB = [
a b c

] ⎡
⎣ α

β

γ

⎤
⎦ = aα + bβ + cγ

which is a scalar and equivalent to the dot or scalar product of two vectors.
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For example: 

. A = [
2 3 4

]
, and B =

⎡
⎣10
30
20

⎤
⎦

then: 

. AB = [
2 3 4

] ⎡
⎣10
30
20

⎤
⎦ = 20 + 90 + 80 = 190

Whereas: 

. BA =
⎡
⎣b11
b21
b31

⎤
⎦[

a11 a12 a13
] =

⎡
⎣b11a11 b11a12 b11a13
b21a11 b21a12 b21a13
b31a11 b31a12 b31a13

⎤
⎦

For example: 

. BA =
⎡
⎣10
30
20

⎤
⎦[

2 3 4
] =

⎡
⎣20 30 40
60 90 120
40 60 80

⎤
⎦

The products .AA and .BB are not permitted. 

8.6.2 Row Vector and a Matrix 

Given: 

. A = [
a11 a12 a13

]
, and B =

⎡
⎣ b11 b12 b13
b21 b22 b23
bm1 bm2 b33

⎤
⎦

then: 

. AB = [
a11 a12 a13

]⎡
⎣ b11 b12 b13

b21 b22 b23
bm1 bm2 b33

⎤
⎦

=
[
(a11b11 + a12b21 + a13b31) (a11b12 + a12b22 + a13b32) (a11b13 + a12b23 + a13b33)

]

The product .BA is not permitted. 
For example: 

.A = [
2 3 4

]
, and B =

⎡
⎣ 1 2 3
3 4 5
4 5 6

⎤
⎦
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then: 

. AB = [
2 3 4

] ⎡
⎣ 1 2 3
3 4 5
4 5 6

⎤
⎦

= [
(2 + 9 + 16) (4 + 12 + 20) (6 + 15 + 24)

]
= [

27 36 45
]

8.6.3 Matrix and a Column Vector 

Given: 

. A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ , and B =

⎡
⎣b11
b21
b31

⎤
⎦

then: 

. AB =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦

⎡
⎣b11
b21
b31

⎤
⎦ =

⎡
⎣a11b11 + a12b21 + a13b31
a21b11 + a22b21 + a23b31
a31b11 + a32b21 + a33b31

⎤
⎦

The product .BA is not permitted. 
For example: 

. A =
⎡
⎣ 1 2 3
3 4 5
4 5 6

⎤
⎦ , and B =

⎡
⎣2
3
4

⎤
⎦

then: 

. AB =
⎡
⎣ 1 2 3
3 4 5
4 5 6

⎤
⎦

⎡
⎣2
3
4

⎤
⎦ =

⎡
⎣ 2 + 6 + 12
6 + 12 + 20
8 + 15 + 24

⎤
⎦ =

⎡
⎣20
38
47

⎤
⎦

8.6.4 Square Matrices 

To clarify the products, lower-case Greek symbols are used with lower-case letters. 
Here are their names: 

. α = alpha, β = beta, γ = gamma

λ = lambda, μ = mu, ν = nu

ρ = rho, σ = sigma, τ = tau

Given: 

.A =
⎡
⎣ a b c
p q r
u v w

⎤
⎦ , and B =

⎡
⎣α β γ

λ μ ν

ρ σ τ

⎤
⎦
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then: 

. AB =
⎡
⎣ a b c

p q r
u v w

⎤
⎦

⎡
⎣α β γ

λ μ ν

ρ σ τ

⎤
⎦ =

⎡
⎣ aα + bλ + cρ aβ + bμ + cσ aγ + bν + cτ

pα + qλ + rρ pβ + qμ + rσ pγ + qν + rτ
uα + vλ + wρ uβ + vμ + wσ uγ + vν + wτ

⎤
⎦

and 

. BA =
⎡
⎣α β γ

λ μ ν

ρ σ τ

⎤
⎦

⎡
⎣ a b c

p q r
u v w

⎤
⎦ =

⎡
⎣ αa + βp + γ u αb + βq + γ v αc + βr + γw

λa + μp + νu λb + μq + νv λc + μr + νw

ρa + σ p + τu ρb + σq + τv ρc + σr + τw

⎤
⎦

For example: 

. A =
⎡
⎣1 2 3
3 4 5
5 6 7

⎤
⎦ , and B =

⎡
⎣2 3 4
4 5 6
6 7 8

⎤
⎦

then: 

. AB =
⎡
⎣1 2 3
3 4 5
5 6 7

⎤
⎦

⎡
⎣2 3 4
4 5 6
6 7 8

⎤
⎦ =

⎡
⎣ 28 34 40
52 64 76
76 92 112

⎤
⎦

and 

. BA =
⎡
⎣2 3 4
4 5 6
6 7 8

⎤
⎦

⎡
⎣1 2 3
3 4 5
5 6 7

⎤
⎦ =

⎡
⎣31 40 49
49 64 89
67 88 109

⎤
⎦

8.6.5 Rectangular Matrices 

Given two rectangular matrices .A and . B, where .A has a dimension .m × n, the  
product .AB is permitted iff . B has a dimension .n × p. The resulting matrix has a 
dimension .m × p. For example: 

. A =
⎡
⎣a11 a12
a21 a22
a31 a32

⎤
⎦ , and B =

[
b11 b12 b13 b14
b21 b22 b23 b24

]

then: 

.AB =
⎡
⎣ a11 a12
a21 a22
a31 a32

⎤
⎦

[
b11 b12 b13 b14
b21 b22 b23 b24

]

=
⎡
⎣ (a11b11 + a12b21) (a11b12 + a12b22) (a11b13 + a12b23) (a11b14 + a12b24)

(a21b11 + a22b21) (a21b12 + a22b22) (a21b13 + a22b23) (a21b14 + a22b24)
(a31b11 + a32b21) (a31b12 + a32b22) (a31b13 + a32b23) (a31b14 + a32b24)

⎤
⎦
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8.7 Inverse Matrix 

As matrix division is not possible, when two matrices have to be divided, we multiply 
by the inverse matrix. A square matrix.Ann that is invertible satisfies the condition: 

. AnnA−1
nn = A−1

nn Ann = In

where .A−1
nn is unique, and is the inverse matrix of .Ann . For example: 

. A =
[
4 3
5 4

]

then: 

. A−1 =
[

4 −3
−5 4

]

because: 

. AA−1 =
[
4 3
5 4

] [
4 −3

−5 4

]
=

[
1 0
0 1

]

A square matrix whose determinant is 0, cannot have an inverse, and is known as a 
singular matrix. 

We now require a way to compute.A−1, which is rather easy. Consider two linear 
equations: 

.

[
x ′
y′

]
=

[
a b
c d

] [
x
y

]
(8.10) 

Let the inverse of: 

. 

[
a b
c d

]

be: 

. 

[
e f
g h

]

therefore: 

.

[
e f
g h

] [
a b
c d

]
=

[
1 0
0 1

]
(8.11) 

From (8.11) we have:  

.ae + c f = 1 (8.12) 

.be + d f = 0 (8.13) 

.ag + ch = 0 (8.14) 

.bg + dh = 1 (8.15)
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Multiply (8.12) by . d and (8.13) by . c, and subtract: 

. ade + cd f = d

bce + cd f = 0

ade − bce = d

therefore: 

. e = d

ad − bc

Multiply (8.12) by . b and (8.13) by . a, and subtract: 

. abe + bc f = b

abe + ad f = 0

ad f − bc f = −b

therefore: 

. f = −b

ad − bc

Multiply (8.14) by . d and (8.15) by . c, and subtract: 

. adg + cdh = 0

bcg + cdh = c

adg − bcg = −c

therefore: 
. g = −c

ad − bc

Multiply (8.14) by . b and (8.15) by . a, and subtract: 

. abg + bch = 0

abg + adh = a

adh − bch = a

therefore: 
. h = a

ad − bc

We now have values for . e, . f , . g and. h, which are the elements of the inverse matrix. 
Consequently: 

. A =
[
a b
c d

]
, and A−1 =

[
e f
g h

]

then: 

.A−1 = 1

det A

[
d −b

−c a

]
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The inverse matrix permits us to solve a pair or linear equations as follows. Starting 
with: 

. 

[
x ′
y′

]
=

[
a b
c d

] [
x
y

]
= A

[
x
y

]

multiply both sides by the inverse matrix: 

. A−1
[
x ′
y′

]
= A−1A

[
x
y

]

A−1
[
x ′
y′

]
=

[
1 0
0 1

] [
x
y

]
=

[
x
y

]
[
x
y

]
= A−1

[
x ′
y′

]
[
x
y

]
= 1

det A

[
d −b

−c a

] [
x ′
y′

]

Although the elements of.A−1 come from. A, the relationship is not obvious. However, 
if . A is transposed, a pattern is revealed. Given: 

. A =
[
a b
c d

]
, and AT =

[
a c
b d

]

and placing .A−1 alongside .AT, we have:  

. A−1 =
[
e f
g h

]
, and AT =

[
a c
b d

]

The elements of .A−1 share a common denominator.(det A), which is placed outside 
the matrix, therefore: the matrix elements are taken from .AT as follows. For any 
entry .ai j in .A−1, mask out the .i-th row and . j-th column in .AT, and the remaining 
entry is copied to the .i j-th entry in .A−1. In the case of . e, it is . d. For . f , it is . b, with 
a sign reversal.  For . g, it is . c, with a sign reversal, and for . h, it is . a. The sign change 
is computed by the same formula used with determinants: 

. (−1)i+ j

which generates this pattern: 

. 

[+ −
− +

]

You may be wondering what happens when a.3×3 matrix is inverted. Well, the same 
technique is used, but when the .i-th row and . j-th column in .AT are masked out, it 
leaves behind a .2 × 2 determinant, whose value is copied to the .i j-th entry in .A−1, 
with the appropriate sign change. We investigate this later on.
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Let’s illustrate this with an example. Given: 

. 42 = 6x + 2y

28 = 2x + 3y

Let: 

. A =
[
6 2
2 3

]

then .det A = 14, therefore: 

. 

[
x
y

]
= 1

14

[
3 −2

−2 6

] [
42
28

]

= 1

14

[
70
84

]

=
[
5
6

]

which is the solution. 
Now let’s investigate how to invert a .3 × 3 matrix. Given three simultaneous 

equations in three unknowns: 

. x ′ = ax + by + cz

y′ = dx + ey + f z

z′ = gx + hy + j z

they can be written using matrices as follows: 

. 

⎡
⎣ x ′
y′
z′

⎤
⎦ =

⎡
⎣ a b c
d e f
g h j

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ = A

⎡
⎣ x
y
z

⎤
⎦

Let: 

. A−1 =
⎡
⎣ l m n
p q r
s t u

⎤
⎦

therefore: 

.

⎡
⎣ l m n
p q r
s t u

⎤
⎦

⎡
⎣ a b c
d e f
g h j

⎤
⎦ =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ (8.16) 

From (8.16) we can write: 

.la + md + ng = 1 (8.17) 

.lb + me + nh = 0 (8.18) 

.lc + m f + nj = 0 (8.19)
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Multiply (8.17) by . e and (8.18) by . d, and subtract: 

. ael + dem + egn = e

bdl + dem + dhn = 0

ael − bdl + egn − dhn = e

l(ae − bd) + n(eg − dh) = e (8.20) 

Multiply (8.18) by . f and (8.19) by . e, and subtract: 

. b f l + e f m + f hn = 0

cel + e f m + ejn = 0

b f l − cel + f hn − ejn = 0

l(b f − ce) + n( f h − ej) = 0 (8.21) 

Multiply (8.20) by .( f h − ej) and (8.21) by .(eg − dh), and subtract: 

. l(ae − bd)( f h − ej) + n(eg − dh)( f h − ej) = e( f h − ej)

l(b f − ce)(eg − dh) + n(eg − dh)( f h − ej) = 0

l(ae − bd)( f h − ej) − l(b f − ce)(eg − dh) = e f h − e2 j

l(ae f h − ae2 j − bd f h + bdej − be f g + bd f h + ce2g − cdeh) = e f h − e2 j

l(ae f h − ae2 j + bdej − be f g + ce2g − cdeh) = e f h − e2 j

l(a f h + bd j + ceg − aej − cdh − b f g) = f h − ej

l(aej + b f g + cdh − a f h − bd j − ceg) = ej − f h

but.(aej+b f g+cdh−a f h−bd j−ceg) is the Sarrus expansion for.det A, therefore: 

. l = ej − f h

det A

An exhaustive algebraic analysis reveals: 

. l = ej − f h

det A
, m = −bj − ch

det A
, n = b f − ce

det A

p = −d j − g f

det A
, q = aj − gc

det A
, r = −a f − dc

det A

s = dh − ge

det A
, t = −ah − gb

det A
, u = ae − bd

det A

where: 

.A−1 =
⎡
⎣ l m n
p q r
s t u

⎤
⎦ , A =

⎡
⎣ a b c
d e f
g h j

⎤
⎦



8.7 Inverse Matrix 147

However, there does not appear to be an obvious way of deriving .A−1 from. A. But,  
as we discovered with the .2 × 2 matrix, the transpose .AT resolves the problem: 

. A−1 =
⎡
⎣ l m n
p q r
s t u

⎤
⎦ , AT =

⎡
⎣a d g
b e h
c f j

⎤
⎦

The elements for.A−1 share a common denominator.(det A), which is placed outside 
the matrix, therefore: the matrix elements are taken from .AT as follows. For any 
entry .ai j in .A−1, mask out the .i-th row and . j-th column in .AT, and the remaining 
elements, in the form of a .2 × 2 determinant, is copied to the .i j-th entry in .A−1. 
In the case of . l, it is  .(ej − h f ). For  . m, it is  .(bj − hc), with a sign reversal, and 
for . n, it is  .(b f − ec). The sign change is computed by the same formula used with 
determinants: 

. (−1)i+ j

which generates the pattern: 

. 

⎡
⎣+ − +

− + −
+ − +

⎤
⎦

With the above aide-mémoire, it is easy to write down the inverse matrix: 

. A−1 = 1

det A

⎡
⎣ (ej − f h) −(bj − ch) (b f − ce)

−(d j − g f ) (aj − gc) −(a f − dc)
(dh − ge) −(ah − gb) (ae − bd)

⎤
⎦

This technique is known as the Laplacian expansion or the cofactor expansion, 
after Pierre-Simon Laplace. The matrix of minor determinants is called the cofactor 
matrix of . A, which permits the inverse matrix to be written as: 

. A−1 = (cofactor matrix of A)T

det A

Let’s illustrate this solution with an example. Given: 

. 18 = 2x + 2y + 2z

20 = x + 2y + 3z

7 = y + z

therefore: 

.

⎡
⎣ 18
20
7

⎤
⎦ =

⎡
⎣2 2 2
1 2 3
0 1 1

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦

= A

⎡
⎣ x
y
z

⎤
⎦
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and 

. det A = 4 + 2 − 2 − 6 = −2

AT =
⎡
⎣2 1 0
2 2 1
2 3 1

⎤
⎦

therefore: 

. A−1 = − 1
2

⎡
⎣−1 0 2

−1 2 −4
1 −2 2

⎤
⎦

and 

. 

⎡
⎣ x
y
z

⎤
⎦ = − 1

2

⎡
⎣−1 0 2

−1 2 −4
1 −2 2

⎤
⎦

⎡
⎣ 18
20
7

⎤
⎦

=
⎡
⎣2
3
4

⎤
⎦

and the solution is .x = 2, .y = 3, .z = 4. 

8.7.1 Inverting a Pair of Matrices 

Having seen how to invert a single matrix, let’s investigate how to invert a pair of 
matrices. 

Given two matrices . T and . R, the product .TR and its inverse .(TR)−1 must equal 
the identity matrix . I: 

. (TR)(TR)−1 = I

and multiplying throughout by .T−1 we have: 

. T−1TR(TR)−1 = T−1

R(TR)−1 = T−1

Multiplying throughout by .R−1 we have: 

. R−1R(TR)−1 = R−1T−1

(TR)−1 = R−1T−1

therefore: if . T and . R are invertible, then: 

.(TR)−1 = R−1T−1
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Generalising this result to a triple product such as .STR we can reason that: 

. (STR)−1 = R−1T−1S−1

8.8 Orthogonal Matrix 

A matrix is  orthogonal if its transpose is also its inverse, i.e. matrix. A is orthogonal 
if: 

. AT = A−1

For example: 

. A =
[

1√
2

− 1√
2

1√
2

1√
2

]

and 

. AT =
[

1√
2

1√
2

− 1√
2

1√
2

]

and 

. AAT =
[

1√
2

− 1√
2

1√
2

1√
2

] [
1√
2

1√
2

− 1√
2

1√
2

]
=

[
1 0
0 1

]

which implies that .AT = A−1. 
The following matrix is also orthogonal: 

. A =
[
cosβ − sin β

sin β cosβ

]

because: 

. AT =
[

cosβ sin β

− sin β cosβ

]

and 

. AAT =
[
cosβ − sin β

sin β cosβ

] [
cosβ sin β

− sin β cosβ

]
=

[
1 0
0 1

]

Orthogonal matrices play an important role in rotations because they leave the origin 
fixed and preserve all angles and distances. Consequently, an object’s geometric 
integrity is maintained after a rotation, which is why an orthogonal transform is 
known as a rigid motion transform.
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8.9 Diagonal Matrix 

A diagonal matrix is a square matrix whose elements are zero, apart from its diag-
onal: 

. A =

⎡
⎢⎢⎢⎣
a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...

0 0 . . . ann

⎤
⎥⎥⎥⎦

The determinant of a diagonal matrix must be: 

. det A = a11 × a22 × · · · × ann

Here is a diagonal matrix with its determinant: 

. A =
⎡
⎣2 0 0
0 3 0
0 0 4

⎤
⎦

det A = 2 × 3 × 4 = 24

The identity matrix . I is a diagonal matrix with a determinant of . 1. 

8.9.1 Augmented Matrix 

An augmented matrix arises from a system of linear equations, where the value to 
the equations is incorporated with the matrix. For example, the set of linear equations 
(8.22) is represented as matrices in (8.23), where .x = 1, y = 2, z = 3: 

. 2x + 2y + 2z = 12

−3x − y + 2z = 1 (8.22) 

−x − 2y − 2z = −11 

.

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 2 2 2

−3 −1 2
−2 1 2

⎤
⎦

⎡
⎣ 12

1
−11

⎤
⎦ (8.23) 

However, the right-most column vector, can be incorporated with the middle matrix 
to make Gaussian elimination easier (8.24): 

.

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 2 2 2 12

−3 −1 2 1
−1 −2 −2 −11

⎤
⎦ (8.24)



8.9 Diagonal Matrix 151

Equation (8.24) is the augmented matrix, and is solved in Gaussian elimination. For 
example, starting with (8.24), a next step is to place a 1 in column 1: 

. Row1 + Row3 ⇒ Row1⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 1

−3 −1 2 1
−1 −2 −2 −11

⎤
⎦

where the right-most column is part of the matrix update. The augmented matrix 
makes this possible. See Gaussian Elimination for a complete process. 

8.9.2 Gaussian Elimination 

Carl Gauss developed a way of simplifying and solving a system of linear equations 
by back-substitution, now called Gaussian elimination. The technique involves sim-
plifying the augmented matrix representing the equations, by adding and subtracting 
whole or fractional rows, to or from other rows. The technique terminates by creating 
a RREF (the next entry) in the left-hand side of the augmented matrix, and the answer 
is in the right-hand side. 

. 2x + 2y + 2z = 12

−3x − y + 2z = 1

−x − 2y − 2z = −11

. 

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 2 2 2 12

−3 −1 2 1
−1 −2 −2 −11

⎤
⎦

Place a 1 in column 1 on a background of 0s in the first row. 

. Row1 + Row3 ⇒ Row1⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 1

−3 −1 2 1
−1 −2 −2 −11

⎤
⎦

Place a 0 in column 3 of the second row. 

.Row2 + Row3 ⇒ Row2⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 1

−4 −3 0 −10
−1 −2 −2 −11

⎤
⎦
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Place a 0 in column 1 and a . −3 in column 2 of the second row. 

. 4Row1 + Row2 ⇒ Row2⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 1

0 −3 0 −6
−1 −2 −2 −11

⎤
⎦

Place a 1 in column 2 of the second row by dividing the second row by . −3. 

. − 1/3Row2 ⇒ Row2⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 1

0 1 0 2
−1 −2 −2 −11

⎤
⎦

Place a 0 in column 1 in the third row. 

. Row1 + Row3 ⇒ Row3⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 1
0 1 0 2
0 −2 −2 −10

⎤
⎦

Place a 0 in column 2 in the third row. 

. 2Row2 + Row3 ⇒ Row3⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 1
0 1 0 2
0 0 −2 −6

⎤
⎦

Place a 1 in column 3 of the third row by dividing the third row by . −2. 

. − 0.5Row3 ⇒ Row3⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 1
0 1 0 2
0 0 1 3

⎤
⎦

x = 1

y = 2

z = 3

8.9.3 Reduced Row Echelon Form 

The Reduced Row-Echelon Form is a matrix form that exists after Gaussian elim-
ination, and also goes under the initials RREF. The reduced row echelon form 
arises when simplifying systems of linear equations. For example, we know that the
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following equation: 
. 2x + 4y − 6z = 20

can be written: 
. x + 2y − 3z = 10

without disturbing the equation. Therefore, the RREF strategy derives from such 
techniques when working with matrices. 

A matrix is in a reduced row echelon form if it satisfies the following conditions: 
. • The leading in each nonzero row is 1 (called a leading one). 
. • Each column containing a leading one has zeros in all its other entries. 

For example, see the section on Gaussian elimination: 

. 

⎡
⎣ 1 0 0 1
0 1 0 2
0 0 1 3

⎤
⎦

8.10 Worked Examples 

8.10.1 Matrix Inversion 

Invert . A and show that .AA−1 = I2. 

. A =
[
3 5
2 4

]

Solution 
Using: 

. A−1 = 1

det A

[
d −b

−c a

]

then .det A = 2 and: 

. A−1 = 1
2

[
4 −5

−2 3

]

Calculating .AA−1: 

.AA−1 = 1
2

[
3 5
2 4

] [
4 −5

−2 3

]
= 1

2

[
2 0
0 2

]
=

[
1 0
0 1

]
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8.10.2 Identity Matrix 

Invert . A and show that .AA−1 = I3. 

. A =
⎡
⎣2 3 4
1 2 1
5 6 7

⎤
⎦

Solution 
Using Sarrus’s rule for .det A: 

. det A = 28 + 15 + 24 − 40 − 12 − 21 = −6

therefore: 

. AT =
⎡
⎣2 1 5
3 2 6
4 1 7

⎤
⎦

A−1 = − 1
6

⎡
⎣ (14 − 6) −(21 − 24) (3 − 8)

−(7 − 5) (14 − 20) −(2 − 4)
(6 − 10) −(12 − 15) (4 − 3)

⎤
⎦

= − 1
6

⎡
⎣ 8 3 −5

−2 −6 2
−4 3 1

⎤
⎦

and 

. AA−1 = − 1
6

⎡
⎣2 3 4
1 2 1
5 6 7

.

⎤
⎦

⎡
⎣ 8 3 −5

−2 −6 2
−4 3 1

⎤
⎦

= − 1
6

⎡
⎣−6 0 0

0 −6 0
0 0 −6

⎤
⎦

=
⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦

8.10.3 Solving Two Equations Using Matrices 

Solve the following equations using matrices. 

.20 = 2x + 3y

36 = 7x + 2y
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Solution 
Let: 

. A =
[
2 3
7 2

]

therefore: .det A = −17, and: 

. A−1 = − 1
17

[
2 −3

−7 2

]

therefore: 

. 

[
x
y

]
= − 1

17

[
2 −3

−7 2

] [
20
36

]

= − 1
17

[
40 − 108

−140 + 72

]

= − 1
17

[−68
−68

]

=
[
4
4

]

therefore: .x = y = 4. We can prove these values by making sure that they satisfy 
the original equations as follows: 

. 20 = 2x + 3y

= 2 × 4 + 3 × 4

= 20

36 = 7x + 2y

= 7 × 4 + 2 × 4

= 36

8.10.4 Solving Three Equations Using Matrices 

Solve the following equations using matrices. 

. 10 = 2x + y − z

13 = −x − y + z

28 = −x + 2y + z

Solution 
Let: 

.A =
⎡
⎣ 2 1 −1

−1 −1 1
−1 2 1

⎤
⎦
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Using Sarrus’s rule for .det A: 

. det A = −2 − 1 + 2 + 1 − 4 + 1 = −3

therefore: 

. AT =
⎡
⎣ 2 −1 −1

1 −1 2
−1 1 1

⎤
⎦

A−1 = − 1
3

⎡
⎣ (−1 − 2) −(1 + 2) (1 − 1)

−(−1 + 1) (2 − 1) −(2 − 1)
(−2 − 1) −(4 + 1) (−2 + 1)

⎤
⎦

= − 1
3

⎡
⎣−3 −3 0

0 1 −1
−3 −5 −1

⎤
⎦

therefore: 

. 

⎡
⎣ x
y
z

⎤
⎦ = − 1

3

⎡
⎣−3 −3 0

0 1 −1
−3 −5 −1

⎤
⎦

⎡
⎣10
13
28

⎤
⎦

= − 1
3

⎡
⎣ −30 − 39

13 − 28
−30 − 65 − 28

⎤
⎦

= − 1
3

⎡
⎣ −69

−15
−123

⎤
⎦

=
⎡
⎣23

5
41

⎤
⎦

therefore: .x = 23, y = 5, z = 41. We can prove these values by making sure 
that they satisfy the original equations as follows: 

.10 = 2x + y − z

= 2 × 23 + 5 − 41

= 10

13 = −x − y + z

= −23 − 5 + 41

= 13

28 = −x + 2y + z

= −23 + 2 × 5 + 41

= 28
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8.10.5 Solving Two Complex Equations 

Solve the following complex equations using matrices. 

. 7 + 8i = 2x + y

−4 − i = x − 2y

Solution 
Let: 

. A =
[
2 1
1 −2

]

therefore: .det A = −5, and: 

. AT =
[
2 1
1 −2

]

A−1 = − 1
5

[−2 −1
−1 2

]

therefore: 

. 

[
x
y

]
= − 1

5

[−2 −1
−1 2

] [
7 + 8i
−4 − i

]

= − 1
5

[−14 − 16i + 4 + i
−7 − 8i − 8 − 2i

]

= − 1
5

[−10 − 15i
−15 − 10i

]

=
[
2 + 3i
3 + 2i

]

therefore: .x = 2 + 3i, y = 3+ 2i. We can prove these values by making sure that 
they satisfy the original equations as follows: 

.7 + 8i = 2x + y

= 2 × (2 + 3i) + (3 + 2i)

= 4 + 6i + 3 + 2i

= 7 + 8i

−4 − i = x − 2y

= 2 + 3i − 2 × (3 + 2i)

= 2 + 3i − 6 − 4i

= −4 − i
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8.10.6 Solving Three Complex Equations 

Solve the following complex equations using matrices. 

. 0 = x + y − z

3 + 3i = 2x − y + z

−5 − 5i = −x + y − 2z

Solution 
Let: 

. A =
⎡
⎣ 1 1 −1

2 −1 1
−1 1 −2

⎤
⎦

therefore: .det A = 2 − 1 − 2 + 1 − 1 + 4 = 3, and: 

. AT =
⎡
⎣ 1 2 −1

1 −1 1
−1 1 −2

⎤
⎦

A−1 = 1
3

⎡
⎣ (2 − 1) −(−2 + 1) 0

−(−4 + 1) (−2 − 1) −(1 + 2)
(2 − 1) −(1 + 1) (−1 − 2)

⎤
⎦

therefore: 

. 

⎡
⎣ x
y
z

⎤
⎦ = 1

3

⎡
⎣1 1 0
3 −3 −3
1 −2 −3

⎤
⎦

⎡
⎣ 0

3 + 3i
−5 − 5i

⎤
⎦

= 1
3

⎡
⎣ 3 + 3i

−9 − 9i + 15 + 15i
−6 − 6i + 15 + 15i

⎤
⎦

=
⎡
⎣ 1 + i
2 + 2i
3 + 3i

⎤
⎦

therefore: .x = 1 + i, y = 2 + 2i, z = 3 + 3i. We can prove these values by 
making sure that they satisfy the original equations as follows: 

.0 = x + y − z

= (1 + i) + (2 + 2i) − (3 + 3i)

= 3 + 3i − 3 − 3i

= 0

3 + 3i = 2x − y + z

= 2 × (1 + i) − (2 + 2i) + (3 + 3i)
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= 2 + 2i − 2 − 2i + 3 + 3i 
= 3 + 3i 

−5 − 5i = −x + y − 2z 
= −(1 + i) + (2 + 2i) − 2 × (3 + 3i) 
= 1 + i − 6 − 6i 
= −5 − 5i 

8.10.7 Solving Two Complex Equations 

Solve the following complex equations using matrices. 

. 3 + 5i = x i + 2y

5 + i = 3x − yi

Solution 
Let: 

. A =
[
i 2
3 −i

]

therefore: .det A = 1 − 6 = −5, and: 

. AT =
[
i 3
2 −i

]

A−1 = − 1
5

[ −i −2
−3 i

]

therefore: 

.

[
x
y

]
= − 1

5

[ −i −2
−3 i

] [
3 + 5i
5 + i

]

= − 1
5

[−3i + 5 − 10 − 2i
−9 − 15i + 5i − 1

]

= − 1
5

[ −5 − 5i
−10 − 10i

]

=
[
1 + i
2 + 2i

]
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therefore: .x = 1 + i, y = 2 + 2i. We can prove these values by making sure that 
they satisfy the original equations as follows: 

. 3 + 5i = x i + 2y

= i × (1 + i) + 2 × (2 + 2i)

= −1 + i + 4 + 4i

= 3 + 5i

5 + i = 3x − yi

= 3 × (1 + i) − i(2 + 2i)

= 3 + 3i − 2i + 2

= 5 + i

8.10.8 Solving Three Complex Equations 

Solve the following complex equations using matrices. 

. 6 + 2i = x i + 2y − zi

−2 + 6i = 2x − yi + 2zi

2 + 10i = 2x i + yi + 2z

Solution 
Let: 

. A =
⎡
⎣ i 2 −i

2 −i 2i
2i i 2

⎤
⎦

therefore: .det A = 2 − 8 + 2 + 2i + 2i − 8 = −12 + 4i, and: 

.AT =
⎡
⎣ i 2 2i

2 −i i
−i 2i 2

⎤
⎦

A−1 = 1

−12 + 4i

⎡
⎣ (−2i + 2) −(4 − 1) (4i + 1)

−(4 + 4) (2i − 2) −(−2 + 2i)
(2i − 2) −(−1 − 4i) (1 − 4)

⎤
⎦

= 1

−12 + 4i

⎡
⎣ 2 − 2i −3 1 + 4i

−8 −2 + 2i 2 − 2i
−2 + 2i 1 + 4i −3

⎤
⎦
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therefore: 

. 

⎡
⎣ x
y
z

⎤
⎦ = 1

−12 + 4i

⎡
⎣ 2 − 2i −3 1 + 4i

−8 −2 + 2i 2 − 2i
−2 + 2i 1 + 4i −3

⎤
⎦

⎡
⎣ 6 + 2i

−2 + 6i
2 + 10i

⎤
⎦

= 1

−12 + 4i

⎡
⎣ (2 − 2i)(6 + i2) − 3(−2 + 6i) + (1 + 4i)(2 + 10i)

−8(6 + 2i) + (−2 + 2i)(−2 + 6i) + (2 − 2i)(2 + 10i)
(−2 + 2i)(6 + 2i) + (1 + 4i)(−2 + 6i) − 3(2 + 10i)

⎤
⎦

= 1

−12 + 4i

⎡
⎣ 12 + 4i − 12i + 4 + 6 − 18i + 2 + 10i + 8i − 40

−48 − 16i + 4 − 12i − 4i − 12 + 4 + 20i − 4i + 20
−12 − 4i + 12i − 4 − 2 + 6i − 8i − 24 − 6 − 30i

⎤
⎦

= 1

−12 + 4i

⎡
⎣ −16 − 8i

−32 − 16i
−48 − 24i

⎤
⎦

multiply by the conjugate of .−12 + 4i: 

. 

⎡
⎣ x
y
z

⎤
⎦ = −12 − 4i

160

⎡
⎣ −16 − 8i

−32 − 16i
−48 − 24i

⎤
⎦

therefore: 

. x = 1
160 (−12 − 4i)(−16 − 8i)

= 1
160 (192 + 64i + 96i − 32)

= 1
160 (160 + 160i)

= 1 + i

y = 1
160 (−12 − 4i)(−32 − 16i)

= 1
160 (384 + 128i + 192i − 64)

= 1
160 (320 + 320i)

= 2 + 2i

z = 1
160 (−12 − 4i)(−48 − 24i)

= 1
160 (576 + 192i + 288i − 96)

= 1
160 (480 + 480i)

= 3 + 3i

therefore: .x = 1 + i, y = 2 + 2i, z = 3 + 3i. We can prove these values by 
making sure that they satisfy the original equations as follows: 

.6 + 2i = x i + 2y − zi

= i(1 + i) + 2(2 + 2i) − i(3 + 3i)
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= i − 1 + 4 + 4i − 3i + 3

= 6 + 2i

−2 + 6i = 2x − yi + 2zi

= 2(1 + i) − i(2 + 2i) + 2i(3 + 3i)

= 2 + 2i − 2i + 2 + 6i − 6

= −2 + 6i

2 + 10i = 2x i + yi + 2z

= 2i(1 + i) + i(2 + 2i) + 2(3 + 3i)

= 2i − 2 + 2i − 2 + 6 + 6i

= 2 + 10i

8.10.9 Augmented Matrix 

Make the following matrix into an augmented matrix. 

. 

[
x
y

]
=

[
2 4
4 3

] [
12
16

]

Solution 

. 

[
x
y

]
=

[
2 4 12
4 3 16

]

8.10.10 Gaussian Elimination 

Solve the system of linear equations using Gaussian elimination: 

. 2x + 2y + 2z = 30

−y − 2z = −17

−x − 2y − 2z = −26

Solution 
The solution terminates when the augmented matrix contains a RREF. 
Starting with the following augmented matrix. 

.

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 2 2 2 30

0 −1 −2 −17
−1 −2 −2 −26

⎤
⎦
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Place a 1 in column 1 and 0s column 2 and 3 of the first row. 

. Row1 + Row3 ⇒ Row1⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 4

0 −1 −2 −17
−1 −2 −2 −26

⎤
⎦

Place a 1 in column 2 of the second row by reversing the sign of the second row. 

. − Row2 ⇒ Row2⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 4

0 1 2 17
−1 −2 −2 −26

⎤
⎦

Place a 1 in column 3 and a 0 in column 2 of the third row. 

. Row2 + 0.5Row3 ⇒ Row3⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 4

0 1 2 17
−0.5 0 1 4

⎤
⎦

Place a 0 in column 1of the third row. 

. 0.5Row1 + Row3 ⇒ Row3⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 4
0 1 2 17
0 0 1 6

⎤
⎦

Place a 0 in column 3 of the second row. 

.Row2 − 2Row3 ⇒ Row2⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 1 0 0 4
0 1 0 5
0 0 1 6

⎤
⎦

x = 4

y = 5

z = 6



9Complex Numbers 

9.1 Introduction 

In this chapter we investigate complex numbers and show how they can be thought of 
as an ordered pair. We also show how they are represented by a matrix. Many of the 
qualities associated with quaternions are found in complex numbers, which is why 
they are worthy of close examination. Readers interested in this subject may want to 
examine the author’s book Imaginary Mathematics for Computer Science [ 1]. 

9.2 Definition of a Complex Number 

By definition, a complex number is the combination of a real number and an imag-
inary number, and is expressed as: 

. z = a + bi, a, b ∈ �, i2 = −1

The set of complex numbers is . �, which permits us to write .z ∈ �. For example, 
.3+ 4i is a complex number where. 3 is the real part and.4i is the imaginary part. The 
following are all complex numbers: 

. 3, 3 + 4i, −4 − 6i 7i, 5.5 + 6.7i

A real number is also a complex number–it just has no imaginary part. This leads 
to the idea that the set of real numbers is a subset of complex numbers, which is 
expressed as: 

. �⊂ �
where .⊂ means is a subset of. 
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Although some mathematicians place. i before its multiplier:. i4, others place it after 
the multiplier:. 4i, which is the convention used in this book. However, when. i is asso-
ciated with trigonometric functions, it is good practice to place it before the function 
to avoid any confusion with the function’s angle. For example,.sin αi could imply that 
the angle is imaginary, whereas .i sin α implies that the value of .sin α is imaginary. 

Therefore, a complex number can be constructed in all sorts of ways: 

. sin α + i cosβ, 2 − i tan α, 23 + x2i

In general, we write a complex number as .a + bi and subject it to the normal rules 
of real algebra. All that we have to remember is that whenever we encounter . i2 it is 
replaced by .−1. For example: 

. (2 + 3i)(3 + 4i) = 2 × 3 + 2 × 4i + 3i × 3 + 3i × 4i

= 6 + 8i + 9i + 12i2

= 6 + 17i − 12

= −6 + 17i

9.2.1 Addition and Subtraction of Complex Numbers 

The addition and subtraction of two complex numbers is achieved as follows. 
Given two complex numbers: 

. z1 = a1 + b1i

z2 = a2 + b2i

then: 
. z1 ± z2 = (a1 ± a2) + (b1 ± b2)i

where the real and imaginary parts are added or subtracted, respectively. The opera-
tions are closed, so long as .a1, b1, a2, b2 ∈ �. 

For example: 

. z1 = 2 + 3i

z2 = 4 + 2i

z1 + z2 = 6 + 5i

z1 − z2 = −2 + i

9.2.2 Multiplying a Complex Number by a Scalar 

Multiplying a complex number by a scalar using normal algebraic rules. For 
example, the complex number .a + bi is multiplied by the scalar . λ as follows: 

.λ(a + bi) = λa + λbi
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For example: 
. 3(2 + 5i) = 6 + 15i

9.2.3 Product of Complex Numbers 

The product of two complex numbers is achieved as follows. Given two complex 
numbers: 

. z1 = a1 + b1i

z2 = a2 + b2i

their product is: 

. z1z2 = (a1 + b1i)(a2 + b2i)

= a1a2 + a1b2i + b1a2i + b1b2i
2

= (a1a2 − b1b2) + (a1b2 + b1a2)i

which is another complex number and confirms that the operation is closed. For 
example: 

. z1 = 3 + 4i

z2 = 3 − 2i

z1z2 = (3 + 4i)(3 − 2i)

= 9 − 6i + 12i − 8i2

= 9 + 6i + 8

= 17 + 6i

Note that the addition, subtraction and multiplication of complex numbers obey the 
normal axioms of algebra. 

9.2.4 Square of a Complex Number 

The square of a complex number is given by: 

.z = a + bi

z2 = (a + bi)(a + bi)

=
(
a2 − b2

)
+ 2abi
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For example: 

. z = 4 + 3i

z2 = (4 + 3i)(4 + 3i)

=
(
42 − 32

)
+ 2 × 4 × 3i

= 7 + 24i

9.2.5 Norm of a Complex Number 

The norm, modulus or absolute value of a complex number is given by: 

. z = a + bi

|z| =
√
a2 + b2

For example, the norm of .3 + 4i is 5. We’ll see why this is so when we cover the 
polar representation of a complex number. 

9.2.6 Complex Conjugate of a Complex Number 

The complex conjugate of a complex number, is the same complex number, but 
with the sign of the complex part reversed. When this is multiplied by the original 
complex number, it results, always, in a real number: 

. (a + bi)(a − bi) = a2 − abi + abi − b2i2

= a2 + b2

The complex conjugate of the complex number. z is written either with a bar . z̄, or an  
asterisk . z∗, and implies that: 

. zz∗ = a2 + b2 = |z|2
For example: 

. z = 3 + 4i

z∗ = 3 − 4i

zz∗ = 9 + 16 = 25

9.2.7 Divide Complex Numbers 

The complex conjugate provides us with a mechanism to divide complex numbers. 
For example, the quotient: 

.
a1 + b1i

a2 + b2i
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is resolved by multiplying the numerator and denominator by the denominator’s 
complex conjugate .a2 − b2i to create a real denominator: 

. 
a1 + b1i

a2 + b2i
= (a1 + b1i)(a2 − b2i)

(a2 + b2i)(a2 − b2i)

= a1a2 − a1b2i + b1a2i − b1b2i2

a22 + b22

=
(
a1a2 + b1b2
a22 + b22

)
+

(
b1a2 − a1b2
a22 + b22

)
i

For example, to evaluate: 

. 
4 + 3i

3 + 4i

we multiply top and bottom by the complex conjugate .3 − 4i: 

. 
4 + 3i

3 + 4i
= (4 + 3i)(3 − 4i)

(3 + 4i)(3 − 4i)

= 12 − 16i + 9i − 12i2

25

= 24

25
− 7

25
i

9.2.8 Inverse of a Complex Number 

The inverse of a complex number like .z = a + bi, we start with: 

. z−1 = 1

z

Multiplying top and bottom by .z∗ we have: 

. z−1 = z∗
zz∗

But we have previously shown that .zz∗ = |z|2, therefore: 

. z−1 = z∗

|z|2

=
(

a

a2 + b2

)
−

(
b

a2 + b2

)
i

As an example, the inverse of .3 + 4i is: 

.(3 + 4i)−1 = 3

25
− 4

25
i
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Let’s test this result by multiplying .3 + 4i by its inverse: 

. (3 + 4i)

(
3

25
− 4

25
i

)
= 9

25
− 12

25
i + 12

25
i + 16

25
= 1

which confirms the correctness of the result. 

9.2.9 Square-Root of i 

To find the square-root of . ± i we assume that the roots are complex. Therefore, we 
start with: 

. 

√
i = a + bi

i = (a + bi)(a + bi)

= a2 + 2abi − b2

= a2 − b2 + 2abi

Equating real and imaginary parts we have: 

. a2 − b2 = 0

2ab = 1

From this we deduce that: 

. a = b = ±
√
2

2
Therefore, the roots are: 

. 

√
i = ±

√
2

2
(1 + i)

Let’s test this result by squaring each root to ensure the answer is . i: 

. 

(
±

√
2

2

)2

(1 + i)(1 + i) = 1

2
2i = i

To find .
√−i we assume that the roots are complex. Therefore, we start with: 

. 

√−i = a + bi

−i = (a + bi)(a + bi)

= a2 + 2abi − b2

= a2 − b2 + 2abi

Equating real and imaginary parts we have: 

.a2 − b2 = 0

2ab = −1
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From this we deduce that: 

. a = b = ±
√
2

2
i

Therefore, the roots are: 

. 

√−i = ±
√
2

2
i(1 + i)

= ±
√
2

2
(−1 + i)

= ±
√
2

2
(1 − i)

Let’s test this result by squaring each root to ensure the answer is .−i: 

. 

(
±

√
2

2

)2

(1 − i)(1 − i) = −1

2
2i = −i

We use these roots in the next chapter to investigate the rotational properties of 
complex numbers. 

9.3 Ordered Pairs 

So far, we have chosen to express a complex number as .a + bi where we can distin-
guish between the real and imaginary parts. However, one thing we cannot assume 
is that the real part is always first, and the imaginary part second, because . bi + a
is also a complex number. Consequently, two functions are employed to extract the 
real and imaginary coefficients as follows: 

. Re(a + bi) = a

Im(a + bi) = b

and leads us to the idea of representing a complex number by an ordered pair where 
order is guaranteed: 

. a + bi = (a, b)

where. b follows. a to define the order. Thus the set. � of complex numbers is equivalent 
to the set .�2 of ordered pairs .(a, b). 

Writing a complex number as an ordered pair was a great contribution, and first 
made by Hamilton in 1833. Such notation is very succinct and free from any imagi-
nary term, which can be added whenever required.
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9.3.1 Addition and Subtraction of Ordered Pairs 

Given two complex numbers: 

. z1 = a1 + b1i

z2 = a2 + b2i

they are written as ordered pairs: 

. z1 = (a1, b1)

z2 = (a2, b2)

and 
. z1 ± z2 = (a1 ± a2, b1 ± b2)

where the two parts are added or subtracted, respectively. 
For example: 

. z1 = 2 + 3i = (2, 3)

z2 = 4 + 2i = (4, 2)

z1 + z2 = (6, 5)

z1 − z2 = (−2, 1)

9.3.2 Multiplying an Ordered Pair by a Scalar 

We have already seen how a complex number is multiplied by a scalar, which must 
be the same as ordered pairs: 

. λ(a, b) = (λa, λb)

An example is: 
. 3(2, 5) = (6, 15)

9.3.3 Product of Ordered Pairs 

Given two complex numbers: 

. z1 = a1 + b1i

z2 = a2 + b2i

their product is: 
.z1z2 = (a1a2 − b1b2) + (a1b2 + b1a2)i
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Therefore, the product of ordered pairs is: 

. z1 = (a1, b1)

z2 = (a2, b2)

z1z2 = (a1, b1)(a2, b2)

= (a1a2 − b1b2, a1b2 + b1a2)

For example: 

. z1 = (6, 2)

z2 = (4, 3)

z1z2 = (6, 2)(4, 3)

= (24 − 6, 18 + 8)

= (18, 26)

9.3.4 Square of an Ordered Pair 

The square of a complex number is given by: 

. z = a + bi

z2 = (a + bi)(a + bi)

=
(
a2 − b2

)
+ 2abi

Therefore, the square of an ordered pair is: 

. z = (a, b)

z2 = (a, b)(a, b)

=
(
a2 − b2, 2ab

)

For example: 

.z = (4, 3)

z2 = (4, 3)(4, 3)

=
(
42 − 32, 2 × 4 × 3

)

= (7, 24)
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Let’s continue to develop an algebra based upon ordered pairs that is identical to the 
algebra of complex numbers. We start by writing: 

. z = (a, b)

= (a, 0) + (0, b)

= a(1, 0) + b(0, 1)

which creates the unit ordered pairs .(1, 0) and .(0, 1). 
Now let’s compute the product .(1, 0)(1, 0): 

. (1, 0)(1, 0) = (1 − 0, 0)

= (1, 0)

which shows that .(1, 0) behaves like the real number 1. i.e. .(1, 0) = 1. 
Next, let’s compute the product .(0, 1)(0, 1): 

. (0, 1)(0, 1) = (0 − 1, 0)

= (−1, 0)

which is the real number .−1: 
. (0, 1)2 = −1

or 
. (0, 1) = √−1 and is imaginary.

This means that the ordered pair.(a, b), together with its associated rules, represents 
a complex number. i.e. .(a, b) ≡ a + bi. 

9.3.5 Norm of an Ordered Pair 

The norm of an ordered pair, or modulus, or absolute value of . z is written .|z| and 
by definition is: 

. z = (a, b)

|z| =
√
a2 + b2

For example, the norm of .(3, 4) is 5.
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9.3.6 Complex Conjugate of an Ordered Pair 

The complex conjugate of an ordered pair .z = (a, b) is .z∗ = (a, −b). 

. z = (a, b)

z∗ = (a, −b)

zz∗ = (a, b)(a, −b)

= (a2 + b2, ba − ab)

= (a2 + b2, 0)

= a2 + b2 = |z|2

9.3.7 Quotient of an Ordered Pair 

The technique for resolving the quotient of complex numbers: .z1/z2 is to multiply 
the expression by .z∗2/z∗2. Therefore, the quotient of an ordered pair is: 

. 
z1
z2

= (a1, b1)

(a2, b2)

= (a1, b1)

(a2, b2)

(a2, −b2)

(a2, −b2)

= (a1a2 + b1b2, b1a2 − a1b2)(
a22 + b22, 0

)

=
(
a1a2 + b1b2
a22 + b22

,
b1a2 − a1b2
a22 + b22

)

For example, to evaluate: 

. 
(4, 3)

(3, 4)

we multiply top and bottom by the complex conjugate .(3, −4): 

.
(4, 3)

(3, 4)
= (4, 3)(3, −4)

(3, 4)(3, −4)

=
(
12 + 12

25
,
9 − 16

25

)

=
(
24

25
, − 7

25

)
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9.3.8 Inverse of an Ordered Pair 

The inverse of a complex number is .z−1: 

. z−1 = z∗

zz∗
= z∗

|z|2
Therefore, the inverse of an ordered pair is: 

. z = (a, b)

z−1 = (a, −b)

(a, b)(a, −b)

= (a, −b)(
a2 + b2, 0

)

=
(

a

a2 + b2
,

−b

a2 + b2

)

As an illustration, the inverse of .(3, 4) is: 

. (3, 4)−1 =
(

3

25
, − 4

25

)

Let’s test this result by multiplying .(3, 4) by its inverse: 

. (3, 4)

(
3

25
, − 4

25

)
=

(
9

25
+ 16

25
, −12

25
+ 12

25

)

= (1, 0)

9.3.9 Square-Root of i 

To find .
√
i we assume that the roots are complex. Therefore, we start with: 

. 

√
i = (a, b)

i = (a, b)(a, b)

(0, 1) =
(
a2 − b2, 2ab

)

and equating left and right ordered elements we have: 

. a2 − b2 = 0

2ab = 1

From this we deduce that: 

.a = b = ±
√
2

2
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Therefore, the roots are: 

. 

√
i = ±

√
2

2
(1, 1)

Let’s test this result by squaring each root to ensure the answer is . i: 

. 

(
±

√
2

2

)2

(1, 1)(1, 1) = 1

2
(0, 2) = (0, 1)

To find .
√−i we assume that the roots are complex. Therefore, we start with: 

. 

√−i = (a, b)

−i = (a, b)(a, b)

(0, −1) =
(
a2 − b2, 2ab

)

and equating left and right ordered elements we have: 

. a2 − b2 = 0

2ab = −1

From this we deduce that: 

. a = b = ±
√
2

2
i

= ±
√
2

2
(0, 1)(1, 1)

= ±
√
2

2
(−1, 1)

Therefore, the roots are: 

. 

√−i = ±
√
2

2
(1, −1)

Let’s test this result by squaring each root to ensure the answer is .−i: 

. 

(
±

√
2

2

)2

(1, −1)(1, −1) = 1

2
(0, −2) = (0, −1)

It is obvious from the above definitions that ordered pairs provide an alternative 
notation for expressing complex numbers, where the imaginary feature is embedded 
within the product axiom. We will also use ordered pairs to define a quaternion with 
three imaginary terms, which when incorporated within the product axiom remain 
hidden.



178 9 Complex Numbers 

9.4 Matrix Representation of a Complex Number 

As quaternions have a matrix representation, perhaps we should investigate the matrix 
representation for a complex number. 

Although I have only hinted that . i can be regarded as some sort of rotational 
operator, this is the perfect way of visualising it. In Chap. 2 we discovered that 
multiplying a complex number by. i effectively rotates the number.90◦ anticlockwise. 
So for the moment, it can be represented by a rotation matrix of .90◦: 

. i ≡
[
cos 90◦ − sin 90◦
sin 90◦ cos 90◦

]
=

[
0 −1
1 0

]

and the .2 × 2 identity matrix is: 

. 

[
1 0
0 1

]

This permits us to write a complex number as: 

. a + bi = a

[
1 0
0 1

]
+ b

[
0 −1
1 0

]

=
[
a 0
0 a

]
+

[
0 −b
b 0

]

=
[
a −b
b a

]

Note that the matrix representing . i squares to .−1: 

. 

[
0 −1
1 0

] [
0 −1
1 0

]
=

[−1 0
0 −1

]

= −1

[
1 0
0 1

]

However, we must also remember that .i2 = (−i)2 = −1, which is interpreted as 
anticlockwise and clockwise rotations in the complex plane. This is confirmed by: 

. 

[
0 1

−1 0

] [
0 1

−1 0

]
=

[−1 0
0 −1

]

= −1

[
1 0
0 1

]

Now let’s employ matrix notation for all the arithmetic operations used for com-
plex numbers.
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9.4.1 Adding and Subtracting Complex Numbers 

Two complex numbers are added or subtracted as follows: 

. z1 = a1 + b1i

z2 = a2 + b2i

z1 =
[
a1 −b1
b1 a1

]

z2 =
[
a2 −b2
b2 a2

]

z1 ± z2 =
[
a1 −b1
b1 a1

]
±

[
a2 −b2
b2 a2

]

=
[
a1 ± a2 −(b1 ± b2)
b1 ± b2 a1 ± a2

]

For example: 

. z1 = 2 + 3i

z2 = 4 + 2i

z1 =
[
2 −3
3 2

]

z2 =
[
4 −2
2 4

]

z1 ± z2 =
[
2 −3
3 2

]
±

[
4 −2
2 4

]

z1 + z2 =
[
6 −5
5 6

]
= 6 + 5i

z1 − z2 =
[−2 −1

1 −2

]
= −2 + i

9.4.2 Product of Two Complex Numbers 

The product of two complex numbers is computed as follows: 

.z1 = a1 + b1i

z2 = a2 + b2i

z1z2 =
[
a1 −b1
b1 a1

] [
a2 −b2
b2 a2

]

=
[
a1a2 − b1b2 −(a1b2 + b1a2)
a1b2 + b1a2 a1a2 − b1b2

]
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For example: 

. z1 = 6 + 2i

z2 = 4 + 3i

z1z2 =
[
6 −2
2 6

] [
4 −3
3 4

]

=
[
24 − 6 −(18 + 8)
18 + 8 24 − 6

]

=
[
18 −26
26 18

]

9.4.3 Norm Squared of a Complex Number 

The square of the norm is as the determinant of the matrix: 

. z = a + bi

=
[
a −b
b a

]

|z|2 = a2 + b2 =
∣∣∣∣
a −b
b a

∣∣∣∣

9.4.4 Complex Conjugate of a Complex Number 

The complex conjugate of a complex number is: 

. z = a + bi =
[
a −b
b a

]

z∗ = a − bi =
[

a b
−b a

]

The product .zz∗ = a2 + b2: 

.zz∗ =
[
a −b
b a

] [
a b

−b a

]

=
[
a2 + b2 0

0 a2 + b2

]

=
(
a2 + b2

) [
1 0
0 1

]
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For example: 

. z = 3 + 4i =
[
3 −4
4 3

]

z∗ = 3 − 4i =
[

3 4
−4 3

]

zz∗ =
[
3 −4
4 3

] [
3 4

−4 3

]
=

[
25 0
0 25

]

= 25

[
1 0
0 1

]

9.4.5 Inverse of a Complex Number 

The inverse of .2 × 2 matrix . A is given by: 

. A =
[
a11 a12
a21 a22

]

A−1 = 1

a11a22 − a12a21

[
a22 −a12

−a21 a12

]

therefore, the inverse of . z is given by: 

. z = a + bi

z =
[
a −b
b a

]

z−1 = 1

a2 + b2

[
a b

−b a

]

For example: 

.z = 3 + 4i

z =
[
3 −4
4 3

]

z−1 = 1

25

[
3 4

−4 3

]
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9.4.6 Quotient of Two Complex Numbers 

The quotient of two complex numbers is computed as follows: 

. z1 = a1 + b1i

z2 = a2 + b2i
z1
z2

= z1z
−1
2

=
[
a1 −b1
b1 a1

]
1

a22 + b22

[
a2 b2

−b2 a2

]

= 1

a22 + b22

[
a1a2 + b1b2 −(b1a2 − a1b2)
b1a2 − a1b2 a1a2 + b1b2

]

For example: 

. z1 = 4 + 3i

z2 = 3 + 4i
z1
z2

= z1z
−1
2

=
[
4 −3
3 4

]
1

9 + 16

[
3 4

−4 3

]

= 1

25

[
24 7
−7 24

]

9.4.7 Square-Root of i 

To find .
√
i we assume that the roots are complex. Therefore, we start with: 

. 

√
i =

[
a −b
b a

]

i =
[
a −b
b a

] [
a −b
b a

]

[
0 −1
1 0

]
=

[
a2 − b2 −2ab

2ab a2 − b2

]

and equating left and right matrices we have: 

. a2 − b2 = 0

2ab = 1

From this we deduce that: 

.a = b = ±
√
2

2
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Therefore, the roots are: 

. 

√
i = ±

√
2

2

[
1 −1
1 1

]

Let’s test this result by squaring each root to ensure the answer is . i: 

. 

(
±

√
2

2

)2 [
1 −1
1 1

] [
1 −1
1 1

]
= 1

2

[
0 −2
2 0

]
= i

To find .
√−i we assume that the roots are complex. Therefore, we start with 

. 

√−i =
[
a −b
b a

]

−i =
[
a −b
b a

] [
a −b
b a

]

[
0 1

−1 0

]
=

[
a2 − b2 −2ab

2ab a2 − b2

]

and equating left and right matrices we have: 

. a2 − b2 = 0

2ab = −1

From this we deduce that: 

. a = b = ±
√
2

2
i

Therefore, the roots are: 

. 

√−i = ±
√
2

2

[
0 −1
1 0

] [
1 −1
1 1

]
= ±

√
2

2

[
1 1

−1 1

]

Let’s test this result by squaring each root to ensure the answer is . i: 

. 

(
±

√
2

2

)2 [
1 1

−1 1

] [
1 1

−1 1

]
= 1

2

[
0 2

−2 0

]
= −i

9.5 Summary 

We have shown in this chapter that there is a one-to-one correspondence between a 
complex number and an ordered pair, and that a complex number can be represented 
as a matrix, which permits us to compute all complex number operations as matrix 
operations or ordered pairs.
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If this the first time you have come across complex numbers you probably will 
have found them strange on the one hand, and amazing on the other. Simply by 
declaring the existence of . i that squares to .−1, opens up a new number system that 
unifies large areas of mathematics. 

9.6 Worked Examples 

Here are some worked examples that employ the ideas described above. In some 
cases a test is included to confirm the result. 

9.6.1 Adding and Subtracting Complex Numbers 

Add and subtract .z1 and . z2. 
Solution 
Complex Number: 

. z1 = 12 + 6i

z2 = 10 − 4i

z1 + z2 = 22 + 2i

z1 − z2 = 2 + 10i

Ordered Pair: 

. z1 = (12, 6)

z2 = (10, −4)

z1 + z2 = (12, 6) + (10, −4) = (22, 2)

z1 − z2 = (12, 6) − (10, −4) = (2, 10)

Matrix: 

.z1 =
[
12 −6
6 12

]

z2 =
[
10 4
−4 10

]

z1 + z2 =
[
12 −6
6 12

]
+

[
10 4
−4 10

]
=

[
22 −2
2 22

]

z1 − z2 =
[
12 −6
6 12

]
−

[
10 4
−4 10

]
=

[
2 −10

10 2

]
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9.6.2 Product of Complex Numbers 

Compute the product .z1z2. 
Solution 
Complex Number: 

. z1 = 12 + 6i

z2 = 10 − 4i

z1z2 = (12 + 6i)(10 − 4i)

= 144 + 12i

Ordered Pair: 

. z1 = (12, 6)

z2 = (10, −4)

z1z2 = (12, 6)(10, −4)

= (120 + 24, −48 + 60)

= (144, 12)

Matrix: 

. z1 =
[
12 −6
6 12

]

z2 =
[
10 4
−4 10

]

z1z2 =
[
12 −6
6 12

] [
10 4
−4 10

]
=

[
144 −12
12 144

]

9.6.3 Multiplying a Complex Number by . i

Multiply .z1 by . i. 
Solution 
Complex Number: 

.z1 = 12 + 6i

z1i = (12 + 6i)i

= −6 + 12i
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Ordered Pair: 

. z1 = (12, 6)

i = (0, 1)

z1i = (12, 6)(0, 1)

= (−6, 12)

Matrix: 

. z1 =
[
12 −6
6 12

]

i =
[
0 −1
1 0

]

z1z2 =
[
12 −6
6 12

] [
0 −1
1 0

]
=

[−6 −12
12 −6

]

9.6.4 The Norm of a Complex Number 

Compute the norm of . z1. 
Solution 
Complex Number: 

. z1 = 12 + 6i

|z1| =
√
122 + 62 ≈ 13.416

Ordered Pair: 

. z1 = (12, 6)

|z1| =
√
122 + 62 ≈ 13.416

Matrix: 

. z1 =
[
12 −6
6 12

]

|z1| =
∣∣∣∣
12 −6
6 12

∣∣∣∣ =
√
122 + 62 ≈ 13.416

9.6.5 The Complex Conjugate of a Complex Number 

Compute the complex conjugate of the following: 

.2 + 3i, 1, i
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Solution 
Complex Number: 

. (2 + 3i)∗ = 2 − 3i

1∗ = 1

i∗ = −i

Ordered Pair: 

. (2, 3)∗ = (2, −3)

(1, 0)∗ = (1, 0)

(0, 1)∗ = (0, −1)

Matrix: 

. z =
[
2 −3
3 2

]

z∗ =
[

2 3
−3 2

]

1 =
[
1 0
0 1

]

1∗ =
[
1 0
0 1

]

i =
[
0 −1
1 0

]

i∗ =
[

0 1
−1 0

]

9.6.6 The Quotient of Two Complex Numbers 

Compute the quotient 
. (2 + 3i)/(3 + 4i)

Solution 
Complex Number: 

.
2 + 3i

3 + 4i
= (2 + 3i)

(3 + 4i)

(3 − 4i)

(3 − 4i)

= 6 − 8i + 9i + 12

25

= 18

25
+ 1

25
i
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Ordered Pair: 

. 
(2, 3)

(3, 4)
= (2, 3)

(3, 4)

(3, −4)

(3, −4)

= (6 + 12, 1)

(9 + 16, 0)

=
(
18

25
,

1

25

)

Matrix: 

. z1 =
[
2 −3
3 2

]

z2 =
[
3 −4
4 3

]

z1
z2

= z1z
−1
2

= 1

25

[
2 −3
3 2

] [
3 4

−4 3

]

= 1

25

[
18 −1
1 18

]

9.6.7 Divide a Complex Number by . i

Divide .2 + 3i by . i. 
Solution 
Complex Number: 

. 
2 + 3i

0 + i
= (2 + 3i)

(0 + i)

(0 − i)

(0 − i)

= −2i + 3

1
= 3 − 2i

Ordered Pair: 

.
(2, 3)

(0, 1)
= (2, 3)

(0, 1)

(0, −1)

(0, −1)

= (3, −2)

(1, 0)

= (3, −2)
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Matrix: 

. z =
[
2 −3
3 2

]

i =
[
0 −1
1 0

]

i−1 =
[

0 1
−1 0

]

zi−1 =
[
2 −3
3 2

] [
0 1

−1 0

]
=

[
3 2

−2 3

]

9.6.8 Divide a Complex Number by . −i

Divide .2 + 3i by .−i. 
Solution 
Complex Number: 

. 
2 + 3i

0 − i
= (2 + 3i)

(0 − i)

(0 + i)

(0 + i)

= 2i − 3

1
= −3 + 2i

Ordered Pair: 

. 
(2, 3)

(0, −1)
= (2, 3)

(0, −1)

(0, 1)

(0, 1)

= (−3, 2)

1
= (−3, 2)

Matrix: 

.z =
[
2 −3
3 2

]

−i =
[

0 1
−1 0

]

−i−1 =
[
0 −1
1 0

]

z
(
−i−1

)
=

[
2 −3
3 2

] [
0 −1
1 0

]
=

[−3 −2
2 −3

]
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9.6.9 The Inverse of a Complex Number 

Compute the inverse of .2 + 3i. 
Solution 
Complex Number: 

. 
1

2 + 3i
= 1

(2 + 3i)

(2 − 3i)

(2 − 3i)

= 2 − 3i

13

= 2

13
− 3

13
i

Ordered Pair: 

. 
1

(2, 3)
= 1

(2, 3)

(2, −3)

(2, −3)

= (2, −3)

13

=
(

2

13
, − 3

13

)

Matrix: 

. z =
[
2 −3
3 2

]

z−1 = 1

13

[
2 3

−3 2

]

9.6.10 The Inverse of . i

Compute the inverse of . i. 
Solution 
Complex Number: 

. 
1

0 + i
= 1

(0 + i)

(0 − i)

(0 − i)

= −i

1
= −i

Ordered Pair: 

.
1

(0, 1)
= 1

(0, 1)

(0, −1)

(0, −1)

= (0, −1)

(1, 0)
= (0, −1) = −i
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Matrix: 

. i =
[
0 −1
1 0

]

i−1 =
[

0 1
−1 0

]
= −i

9.6.11 The Inverse of . −i

Compute the inverse of .−i. 
Solution 
Complex Number: 

. 
1

0 − i
= 1

(0 − i)

(0 + i)

(0 + i)

= i

1
= i

Ordered Pair: 

. 
1

(0, −1)
= 1

(0, −1)

(0, 1)

(0, 1)

= (0, 1)

(1, 0)
= (0, 1) = i

Matrix: 

. − i =
[

0 1
−1 0

]

−i−1 =
[
0 −1
1 0

]
= i
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10Geometric Transforms 

10.1 Introduction 

This chapter shows how matrices are used to scale, translate, reflect, shear and rotate 
2D shapes and 3D objects. The reader should try to understand the construction of the 
various matrices and recognise the role of each matrix element. After a little practice 
it will be possible to define a wide variety of matrices without thinking about the 
underlying algebra. 

10.2 Background 

A point .P(x, y) is transformed into .P ′(x ′, y′) by manipulating the original coor-
dinates . x and . y using: 

. x ′ = ax + by + e

y′ = cx + dy + f

where .a, b, c, d, e and. f have assigned values. Similarly, a 3D point . P(x, y, z)
is transformed into .P ′(x ′, y′, z′) using: 

. x ′ = ax + by + cz + k

y′ = dx + ey + f z + l

z′ = gx + hy + j z + m

The values for .a, b, c, . . . etc. determine whether the transform translates, shears, 
scales, reflects or rotates a point. 
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Although transforms have an algebraic origin, it is convenient to express them as 
matrices, which provide certain advantages for viewing the transform and for inter-
facing to various types of computer graphics hardware. We begin with an algebraic 
approach and then introduce matrix notation. 

10.3 2D Transforms 

10.3.1 Translation 

Cartesian coordinates provide a one-to-one relationship between number and shape, 
such that when we change a shape’s coordinates, we change its geometry. For exam-
ple, if.P(x, y) is a shape’s vertex, when we apply the operation.x ′ = x+3 we create 
a new point .P ′(x ′, y) three units to the right. Similarly, the translation operation 
.y′ = y + 1 creates a new point .P ′(x, y′) displaced one unit vertically. By applying 
both of these transforms to every vertex on the original shape, the shape is displaced 
as shown in Fig. 10.1. 

10.3.2 Scaling 

Shape scaling is effected by multiplying coordinates as follows: 

. x ′ = 2.5x

y′ = 1.5y

This transform results in a horizontal scaling of 2.5 and a vertical scaling of 1.5 as 
illustrated in Fig. 10.2. Note that a point located at the origin does not change its 
place, so scaling is relative to the origin. 

Fig. 10.1 The translated 
shape results by adding 3 to 
every.x-coordinate, and 1 to 
every.y-coordinate to the 
original shape 
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Fig. 10.2 The scaled shape 
results by multiplying the 
.x-coordinates by 2.5 and the 
.y-coordinates by 1.5 
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10.3.3 Reflection 

To make a reflection of a shape relative to the .y-axis, we simply reverse the sign of 
the .x-coordinates, leaving the .y-coordinates unchanged: 

. x ′ = −x

y′ = y

and to reflect a shape relative to the .x-axis we reverse the .y-coordinates: 

. x ′ = x

y′ = −y

Figure 10.3 shows three reflections derived from the original shape by reversing the 
signs for the x- and y-coordinates. Note that a shape’s vertex order is reversed for 
each reflection. 

Before proceeding, we pause to introduce matrix notation so that we can develop 
further transforms using algebra and matrix algebra side by side. 

Fig. 10.3 The original shape 
gives rise to three reflections 
simply by reversing the signs 
of its coordinates 
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10.4 Transforms as Matrices 

10.4.1 Systems of Matrix Notation 

Over time two systems of matrix notation have evolved: one where the matrix 
multiplies a column vector, as described above, and another where a row vector 
multiplies the matrix: 

. 
[
x ′ y′ ] = [

x y
] [

a c
b d

]
= [

ax + by cx + dy
]

Note how the elements of the matrix are transposed to accommodate the algebraic 
correctness of the transform. There is no preferred system of notation, and you will 
find technical books and papers supporting both. Personally, I prefer a matrix pre-
multiplying a column vector, as it is very similar to the original algebraic equations. 
However, the important thing to remember is that the rows and columns of the matrix 
are transposed when moving between the two systems. 

10.5 Homogeneous Coordinates 

Chapter 8 showed how a pair of equations such as: 

. x ′ = ax + by

y′ = cx + dy

can be written in matrix notation as: 

. 

[
x ′
y′

]
=

[
a b
c d

] [
x
y

]

One immediate problem with this notation is that there is no apparent mechanism to 
add or subtract a constant such as . e or . f : 

. x ′ = ax + by + e

y′ = cx + dy + f

Mathematicians resolved this by using homogeneous coordinates, which appeared 
in the early 19th century where they were independently proposed by the German 
mathematician August Möbius (1790–1868) (who also is associated with a one-sided 
curled band, the Möbius strip), and the German mathematician and physicist Julius 
Plücker (1801–1868). Möbius called them barycentric coordinates, and they have 
also been called areal coordinates because of their area-calculating properties. 

Basically, homogeneous coordinates define a point in a plane using three coordi-
nates instead of two. Initially, Plücker located a homogeneous point relative to the 
sides of a triangle, but later revised his notation to the one employed in contempo-
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rary mathematics and computer graphics. This states that for a point .(x, y) there 
exists a homogeneous point.(xt, yt, t)where. t is an arbitrary number. For example, 
the point .(3, 4) has homogeneous coordinates .(6, 8, 2), because .3 = 6/2 and 
.4 = 8/2. But the homogeneous point.(6, 8, 2) is not unique to.(3, 4); .(12, 16, 4), 
.(15, 20, 5) and .(300, 400, 100) are all possible homogeneous coordinates for 
.(3, 4). 

The reason why this coordinate system is called ‘homogeneous’ is because it is 
possible to transform functions such as . f (x, y) into the form. f (x/t, y/t) without 
disturbing the degree of the curve. To the non-mathematician this may not seem 
anything to get excited about, but in the field of projective geometry it is a very 
powerful concept. 

Figure 10.4 shows a 3D homogeneous space with axes . x , . y and . h, where a point 
.(x, y, 1) is associated with a projected point.(xt, yt, t). The figure shows a triangle 
on the.h = 1 plane, and a similar triangle on the plane.h = t . Thus instead of working 
in two dimensions, we can work on an arbitrary xy-plane in three dimensions. The h-
coordinate of the plane is immaterial because the x- and y-coordinates are eventually 
divided by . t . However, to keep things simple it seems a good idea to choose .t = 1. 
This means that the point .(x, y) has homogeneous coordinates .(x, y, 1) making 
scaling superfluous. 

If we substitute 3D homogeneous coordinates for traditional 2D Cartesian coordi-
nates we must attach. 1 to every .(x, y) pair. When a point .(x, y, 1) is transformed, 
it emerges as .(x ′, y′, 1), and we discard the . 1. This may seem a futile exercise, but 
it resolves the problem of creating a translation transform. 

Consider the following transform on the homogeneous point .(x, y, 1): 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
a b e
c d f
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

Fig. 10.4 2D homogeneous 
coordinates can be visualised 
as a plane in 3D space 
generally where.h = 1, for  
convenience
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This expands to: 

. x ′ = ax + by + e

y′ = cx + dy + f

1 = 1

and solves the above problem of adding a constant. Now let’s move on to see how 
homogeneous coordinates are used in practice. 

10.5.1 2D Translation 

The algebraic and matrix notation for 2D translation is: 

. x ′ = x + tx
y′ = y + ty

or using matrices: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

10.5.2 2D Scaling 

The algebraic and matrix notation for 2D scaling is: 

. x ′ = sx x

y′ = sy y

or using matrices: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
sx 0 0
0 sy 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

The scaling action is relative to the origin, i.e. the point.(0, 0) remains unchanged. 
All other points move away from the origin when.sx > 1, or move towards the origin 
when .sx < 1. To scale relative to another point .(px , py) we first subtract . (px , py)
from .(x, y) respectively. This effectively makes the reference point .(px , py) the 
new origin. Second, we perform the scaling operation relative to the new origin, 
and third, add .(px , py) back to the new .(x, y) respectively to compensate for the 
original subtraction. Algebraically this is: 

.x ′ = sx (x − px ) + px
y′ = sy(y − py) + py
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which simplifies to: 

. x ′ = sx x + px (1 − sx )

y′ = sy y + py(1 − sy)

or as a homogeneous matrix: 

.

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
sx 0 px (1 − sx )
0 sy py(1 − sy)
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ (10.1) 

For example, to scale a shape by . 2 relative to the point .(1, 1) the matrix is: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
2 0 −1
0 2 −1
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

10.5.3 2D Reflections 

The matrix notation for 2D reflecting about the .y-axis is: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

or about the .x-axis: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

However, to make a reflection about an arbitrary vertical or horizontal axis we need 
to introduce some more algebraic deception. 

To make a reflection about the vertical axis .x = 1, we first subtract 1 from the 
.x-coordinate. This effectively makes the.x = 1 axis coincident with the major.y-axis. 
Next, we perform the reflection by reversing the sign of the modified .x-coordinate. 
And finally, we add . 1 to the reflected coordinate to compensate for the original 
subtraction. Algebraically, the three steps are: 

. x1 = x − 1

x2 = −(x − 1)

x ′ = −(x − 1) + 1

which simplifies to: 

.x ′ = −x + 2

y′ = y
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Fig. 10.5 The shape on the 
right is reflected about the 
.x = 1 axis 
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or in matrix form: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 2
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

Figure 10.5 illustrates this process. 
To reflect a point about an arbitrary .y-axis, .x = ax , the following transform is 

required: 

. x ′ = −(x − ax ) + ax = −x + 2ax
y′ = y

or in matrix form: 

.

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 2ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ (10.2) 

Similarly, to reflect a point about an arbitrary .x-axis .y = ay , the following trans-
form is required: 

. x ′ = x

y′ = −(y − ay) + ay = −y + 2ay

or in matrix form: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 0
0 −1 2ay
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

10.5.4 2D Shearing 

A shape is 2D sheared by leaning it over at an angle . β. Figure 10.6 illustrates the 
geometry, and we see that the.y-coordinates remain unchanged but the.x-coordinates 
are a function of . y and .tan β:
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Fig. 10.6 The original 
green, square shape is 
sheared to the right by an 
angle. β, and the horizontal 
shear is proportional to 
. y tan β
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. x ′ = x + y tan β

y′ = y

or in matrix form: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 tan β 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

10.5.5 2D Rotation 

Figure 10.7 shows a point.P(x, y), distance. R from the origin, which is to be rotated 
by an angle . β about the origin to .P ′(x ′, y′). It can be seen that: 

. x ′ = R cos(θ + β)

y′ = R sin(θ + β)

and substituting the identities for .cos(θ + β) and .sin(θ + β) we have: 

.x ′ = R(cos θ cosβ − sin θ sin β)

y′ = R(sin θ cosβ + cos θ sin β)

x ′ = R
( x

R
cosβ − y

R
sin β

)

y′ = R
( y

R
cosβ + x

R
sin β

)

x ′ = x cosβ − y sin β

y′ = x sin β + y cosβ
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Fig. 10.7 The point 
.P(x, y) is rotated through 
an angle. β to. P ′(x ′, y′)

x 

y 
y 

y 

x 

P(x, y) 

P (x , y ) 

R 

R 

or in matrix form: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β 0
sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

For example, to rotate a point through .90◦ the matrix is:  

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

Thus the point.(1, 0) becomes.(0, 1). If we rotate through.360◦ the matrix becomes: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

Such a matrix has a null effect and is called an identity matrix. 
To rotate a point .(x, y) about an arbitrary point .(px , py) we first, subtract 

.(px , py) from the coordinates .(x, y) respectively. This enables us to perform the 
rotation about the origin. Second, we perform the rotation, and third, we add. (px , py)
to compensate for the original subtraction. Here are the steps: 
1. Subtract .(px , py): 

. x1 = (x − px )

y1 = (y − py)

2. Rotate . β about the origin: 

.x2 = (x − px ) cosβ − (y − py) sin β

y2 = (x − px ) sin β + (y − py) cosβ.
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3. Add .(px , py): 

. x ′ = (x − px ) cosβ − (y − py) sin β + px
y′ = (x − px ) sin β + (y − py) cosβ + py

Simplifying: 

. x ′ = x cosβ − y sin β + px (1 − cosβ) + py sin β

y′ = x sin β + y cosβ + py(1 − cosβ) − px sin β

and in matrix form: 

.

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β px (1 − cosβ) + py sin β

sin β cosβ py(1 − cosβ) − px sin β

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ (10.3) 

For example, to rotate a point .90◦ about the point .(1, 1) the matrix operation 
becomes: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
0 −1 2
1 0 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

A simple test is to substitute the point .(2, 1) for .(x, y); which is transformed 
correctly to .(1, 2). 

The algebraic approach in deriving the above transforms is relatively easy. How-
ever, it is also possible to use matrices to derive compound transforms, such as a 
reflection relative to an arbitrary line and scaling and rotation relative to an arbitrary 
point. These transforms are called affine, as parallel lines remain parallel after being 
transformed. Furthermore, the word ‘affine’ is used to imply that there is a strong 
geometric affinity between the original and transformed shape. One can not always 
guarantee that angles and lengths are preserved, as the scaling transform can alter 
these when different . x and . y scaling factors are used. For completeness, we will 
repeat these transforms from a matrix perspective. 

10.5.6 2D Scaling 

The strategy used to scale a point .(x, y) relative to some arbitrary point . (px , py)
is to first, translate .(−px , −py); second, perform the scaling; and third translate 
.(px , py). These three transforms are represented in matrix form as follows: 

.

⎡

⎣
x ′
y′
1

⎤

⎦ = [
translate(px , py)

] [
scale(sx , sy)

] [
translate(−px , −py)

]
⎡

⎣
x
y
1

⎤

⎦
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which expands to: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 px
0 1 py
0 0 1

⎤

⎦

⎡

⎣
sx 0 0
0 sy 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −px
0 1 −py
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

Note the sequence of the transforms, as this often causes confusion. The first trans-
form acting on the point .(x, y, 1) is translate .(−px , −py), followed by scale 
.(sx , sy), followed by translate .(px , py). If they are placed in any other sequence, 
you will discover, like Gauss, that transforms are not commutative! 

We can now combine these matrices into a single matrix by multiplying them 
together. This can be done in any sequence, so long as we preserve the original order. 
Let’s start with scale .(sx , sy) and translate .(−px , −py) matrices. This produces: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 px
0 1 py
0 0 1

⎤

⎦

⎡

⎣
sx 0 −sx px
0 sy −sy py
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

and finally: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
sx 0 px (1 − sx )
0 sy py(1 − sy)
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which is the same as the previous transform (10.1). 

10.5.7 2D Reflection 

2D reflection about the .y-axis is given by: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

Therefore, using matrices, we can reason that a reflection transform about an arbitrary 
axis .x = ax , parallel with the .y-axis, is given by: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ = [
translate(ax , 0)

] [
reflection

] [
translate(−ax , 0)

]
⎡

⎣
x
y
1

⎤

⎦

which expands to: 

.

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦
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We can now combine these matrices into a single matrix by multiplying them together. 
Let’s begin by multiplying the reflection and the translate.(−ax , 0)matrices together. 
This produces: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
−1 0 ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

and finally: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 2ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which is the same as the previous transform (10.2). 

10.5.8 2D Rotation About an Arbitrary Point 

A 2D rotation about the origin is given by: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β 0
sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

Therefore, using matrices, we can develop a rotation about an arbitrary point. (px , py)
as follows: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ = [
translate(px , py)

] [
rotateβ

] [
translate(−px , −py)

]
⎡

⎣
x
y
1

⎤

⎦

which expands to: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 px
0 1 py
0 0 1

⎤

⎦

⎡

⎣
cosβ − sin β 0
sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −px
0 1 −py
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

We can now combine these matrices into a single matrix by multiplying them together. 
Let’s begin by multiplying the rotate .β and the translate .(−px , −py) matrices 
together. This produces: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 px
0 1 py
0 0 1

⎤

⎦

⎡

⎣
cosβ − sin β −px cosβ + py sin β

sin β cosβ −px sin β − py cosβ

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β px (1 − cosβ) + py sin β

sin β cosβ py(1 − cosβ) − px sin β

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which is the same as the previous transform (10.3).
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I hope it is now clear to the reader that one can derive all sorts of transforms either 
algebraically, or by using matrices–it is just a question of convenience. 

10.6 3D Transforms 

Now we come to 3D transforms, where we apply the same reasoning as in two 
dimensions. Scaling and translation are basically the same, but where in 2D we 
rotated a shape about a point, in 3D we rotate an object about an axis. 

10.6.1 3D Translation 

The algebra is so simple for 3D translation that we can simply write the homoge-
neous matrix directly: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

10.6.2 3D Scaling 

The algebra for 3D scaling is: 

. x ′ = sx x

y′ = sy y

z′ = szz

which in matrix form is:  

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

The scaling is relative to the origin, but we can arrange for it to be relative to an 
arbitrary point .(px , py, pz) using the following algebra: 

.x ′ = sx (x − px ) + px
y′ = sy(y − py) + py
z′ = sz(z − pz) + pz
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which in matrix form is:  

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

sx 0 0 px (1 − sx )
0 sy 0 py(1 − sy)
0 0 sz pz(1 − sz)
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

10.6.3 3D Rotation 

In 2D a shape is rotated about a point, whether it be the origin or some other position. 
In 3D an object is rotated about an axis, whether it be the .x-, .y- or  .z-axis, or some 
arbitrary axis. To begin with, let’s look at a 3D rotation transform of a point about one 
of the three orthogonal axes; such rotations are called Euler rotations after Leonhard 
Euler. 

Recall that a general 2D rotation transform is given by: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β 0
sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which in 3D can be visualised as rotating a point.P(x, y, z) on a plane parallel with 
the .xy-plane as shown in Fig. 10.8. In algebraic terms this is written as: 

. x ′ = x cosβ − y sin β

y′ = x sin β + y cosβ

z′ = z

Therefore, the 3D rotation transform is: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cosβ − sin β 0 0
sin β cosβ 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

which basically rotates a point about the .z-axis. 
When rotating about the .x-axis, the .x-coordinates remain constant whilst the .y-

and .z-coordinates are changed. Algebraically, this is: 

.x ′ = x

y′ = y cosβ − z sin β

z′ = y sin β + z cosβ
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Fig. 10.8 Rotating the point 
. P , through an angle. β, about 
the.z-axis 

X 

Y 

Z 

P(x, y, z) 

P ( ) 

or in matrix form: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 cosβ − sin β 0
0 sin β cosβ 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

When rotating about the.y-axis, the.y-coordinate remains constant whilst the.x- and 
.z-coordinates are changed. Algebraically, this is: 

. x ′ = z sin β + x cosβ

y′ = y

z′ = z cosβ − x sin β

or in matrix form: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cosβ 0 sin β 0
0 1 0 0

− sin β 0 cosβ 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

Note that the matrix terms do not appear to share the symmetry seen in the previous 
two matrices. Nothing really has gone wrong, it is just the way the axes are paired 
together to rotate the coordinates. 

The above rotations are also known as yaw, pitch and roll, and great care should 
be taken with these angles when referring to other books and technical papers. Some-
times a left-handed system of axes is used rather than a right-handed set, and the 
vertical axis may be the.y-axis or the.z-axis. Consequently, the matrices representing 
the rotations can vary greatly. In this chapter all Cartesian coordinate systems are 
right-handed, and the vertical axis is always the .y-axis. 

I will define the roll, pitch and yaw angles as follows: 

• .roll is the angle of rotation about the .z-axis. 
• .pitch is the angle of rotation about the .x-axis. 
• .yaw is the angle of rotation about the .y-axis.
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Fig. 10.9 A convention for 
.roll, .pitch and.yaw angles 

yaw X 

Y 

Z 

pitch roll 

Figure 10.9 illustrates these rotations and the sign convention. The homogeneous 
matrices representing these rotations are as follows: 

• rotate .roll about the .z-axis: 

. 

⎡

⎢⎢
⎣

cos roll − sin roll 0 0
sin roll cos roll 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

• rotate .pitch about the .x-axis: 

. 

⎡

⎢
⎢
⎣

1 0 0 0
0 cos pitch − sin pitch 0
0 sin pitch cos pitch 0
0 0 0 1

⎤

⎥
⎥
⎦

• rotate .yaw about the .y-axis: 

. 

⎡

⎢⎢
⎣

cos yaw 0 sin yaw 0
0 1 0 0

− sin yaw 0 cos yaw 0
0 0 0 1

⎤

⎥⎥
⎦

A common sequence for applying these rotations is .roll, .pitch, .yaw, as seen in 
the following transform: 

.

⎡

⎢
⎢
⎣

x ′
y′
z′
1

⎤

⎥
⎥
⎦ = [

yaw
] [

pitch
] [

roll
]

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦
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and if a translation is involved: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = [

translate
] [

yaw
] [

pitch
] [

roll
]

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

When these rotation transforms are applied, the vertex is first rotated about the.z-axis 
(.roll), followed by a rotation about the .x-axis (.pitch), followed by a rotation about 
the .y-axis (.yaw). Euler rotations are relative to the fixed frame of reference. This is 
not always easy to visualise as one’s attention is normally with the rotating frame of 
reference. Let’s consider a simple example where an axial system is subjected to a 
pitch rotation followed by a yaw rotation relative to fixed frame of reference. 

We begin with two frames of reference.XY Z and.X ′Y ′Z ′ mutually aligned. Figure 
10.10 shows the orientation of .X ′Y ′Z ′ after it is subjected to a pitch of .90◦ about 
the.X -axis. And Fig. 10.11 shows the final orientation after .X ′Y ′Z ′ is subjected to a 
yaw of .90◦ about the .Y -axis. 

10.6.4 Gimbal Lock 

Let’s take another example starting from the point where the two axial systems are 
mutually aligned. Figure 10.12 shows the orientation of .X ′Y ′Z ′ after it is subjected 

Fig. 10.10 The. X ′Y ′Z ′
axial system after a .pitch of 
. 90◦

X 

Y 

Z 

pitch = 90 

Fig. 10.11 The. X ′Y ′Z ′
axial system after a .yaw of 
. 90◦

yaw = 90 X 

Y 

Z
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Fig. 10.12 The. X ′Y ′Z ′
axial system after a .roll of 
. 45◦

X 

Y 

Z 

roll = 45 

Fig. 10.13 The. X ′Y ′Z ′
axial system after a .pitch of 
. 90◦

X 

Y 

Z 

pitch = 90 

to a roll of.45◦ about the.Z -axis, and Fig. 10.13 shows the orientation of.X ′Y ′Z ′ after 
it is subjected to a pitch of .90◦ about the .X -axis. Now the interesting thing about 
this orientation is that if we now performed a yaw of .45◦ about the .Y -axis, it would 
rotate the .X ′-axis towards the .X -axis, counteracting the effect of the original roll. 
yaw has become a negative roll rotation, caused by the .90◦ pitch. This situation is 
known as gimbal lock, because one degree of rotational freedom has been lost. Quite 
innocently, we have stumbled across one of the major weaknesses of Euler angles: 
under certain conditions it is only possible to rotate an object about two axes. One 
way of preventing this is to create a secondary set of axes constructed from three 
orthogonal vectors that are also rotated alongside an object or virtual camera. But 
instead of making the rotations relative to the fixed frame of reference, the roll, pitch 
and yaw rotations are relative to the rotating frame of reference. 

10.6.5 Rotating About an Axis 

The above rotations were relative to the .x-, .y-, .z-axis. Now let’s consider rotating 
about an axis parallel to one of these axes. To begin with, we will rotate about an 
axis parallel with the.z-axis, as shown in Fig. 10.14. The scenario is very reminiscent 
of the 2D case for rotating a point about an arbitrary point, and the general transform
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Fig. 10.14 Rotating a point 
about an axis parallel with 
the.x-axis 

x 

y 

z 

P(x, y, z) 

P ( ) 

px 

py 

is given by: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = [

translate(px , py, 0)
] [

rotateβ
] [

translate(−px , −py, 0)
]

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

and the matrix is: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cosβ − sin β 0 px (1 − cosβ) + py sin β

sin β cosβ 0 py(1 − cosβ) − px sin β

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

I hope you can see the similarity between rotating in 3D and 2D: the .x- and 
.y-coordinates are updated while the.z-coordinate is held constant. We can now state 
the other two matrices for rotating about an axis parallel with the.x-axis and parallel 
with the .y-axis: 

• rotating about an axis parallel with the .x-axis: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 cosβ − sin β py(1 − cosβ) + pz sin β

0 sin β cosβ pz(1 − cosβ) − py sin β

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

• rotating about an axis parallel with the .y-axis: 

.

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cosβ 0 sin β px (1 − cosβ) − pz sin β

0 1 0 0
− sin β 0 cosβ pz(1 − cosβ) + px sin β

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦
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10.6.6 3D Reflections 

A 3D reflection occurs with respect to a plane, rather than an axis. The matrix giving 
the reflection relative to the .yz-plane is: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

and the reflection relative to a plane parallel to, and .ax units from the .yz-plane is: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 2ax
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

It is left to the reader to develop similar matrices for the other major axial planes. 

10.7 Change of Axes 

Points in one coordinate system often have to be referenced in another one. For 
example, to view a 3D scene from an arbitrary position, a virtual camera is positioned 
in the world space using a series of transforms. An object’s coordinates, which are 
relative to the world frame of reference, are computed relative to the camera’s axial 
system, and then used to develop a perspective projection. Before explaining how 
this is achieved in 3D, let’s examine the simple case of a change of axes in two 
dimensions. 

10.7.1 2D Change of Axes 

Figure 10.15 shows a point.P(x, y) relative to the.XY -axes, but we require to know 
the coordinates relative to the.X ′Y ′-axes. To do this, we need to know the relationship 
between the two coordinate systems, and ideally we want to apply a technique that 
works in 2D and 3D. If the second coordinate system is a simple translation. (tx , ty)
relative to the reference system, as shown in Fig. 10.15, the point .P(x, y) has 
coordinates relative to the translated system.(x − tx , y − ty): 

.

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦
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Fig. 10.15 The.X ′Y ′ axial 
system is translated. (tx , ty)

X 

Y 
P(x, y) ( ) 

x 

y 

tx 

ty 

Fig. 10.16 The.X ′Y ′ axial 
system is rotated. β

X 

Y 
P(x, y) ( ) 

x 

y 

If the .X ′Y ′-axes are rotated . β relative to the .XY -axes, as shown in Fig. 10.16, 
a point .P(x, y) relative to the .XY -axes becomes .P ′(x ′, y′) relative to the rotated 
axes is given by: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cos(−β) − sin(−β) 0
sin(−β) cos(−β) 0

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which simplifies to: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cosβ sin β 0

− sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

When a coordinate system is rotated and translated relative to the reference system, 
a point .P(x, y) becomes .P ′(x ′, y′) relative to the new axes given by: 

.

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cosβ sin β 0

− sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦
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Fig. 10.17 If the.X ′- and  
.Y ′-axes are assumed to be 
unit vectors, their direction 
cosines form the elements of 
the rotation matrix 

X 

Y 

90 - 

which simplifies to: 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cosβ sin β −tx cosβ − ty sin β

− sin β cosβ tx sin β − ty cosβ

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

10.7.2 Direction Cosines 

Direction cosines are the cosines of the angles between a vector and the Cartesian 
axes, and for unit vectors they are the vector’s components. Figure 10.17 shows two 
unit vectors .X ′ and . Y ′, and by inspection the direction cosines for .X ′ are .cosβ and 
.cos(90◦ − β), which can be rewritten as .cosβ and .sin β, and the direction cosines 
for .Y ′ are .cos(90◦ + β) and.cosβ, which can be rewritten as .− sin β and.cosβ. But  
these direction cosines .cosβ, .sin β, .− sin β and .cosβ are the four elements of the 
rotation matrix used above: 

. 

[
cosβ sin β

− sin β cosβ

]

The top row contains the direction cosines for the.X ′-axis and the bottom row contains 
the direction cosines for the .Y ′-axis. This relationship also holds in 3D. 

As an example, let’s evaluate a simple 2D case where a set of axes is rotated . 45◦
as shown in Fig. 10.18. The appropriate transform is: 

.

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
cos 45◦ sin 45◦ 0

− sin 45◦ cos 45◦ 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

≈
⎡

⎣
0.707 0.707 0

−0.707 0.707 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦
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Fig. 10.18 The vertices of a 
unit square relative to the 
two axial systems 

X 

Y 

(0, 1) 
(1, 1) 

(1, 0) 

The four vertices on a unit square become: 

. (0, 0) → (0, 0)

(1, 0) → (0.707, −0.707)

(1, 1) → (1.1414, 0)

(0, 1) → (0.707, 0.707)

which by inspection of Fig. 10.18 are correct. 

10.7.3 3D Change of Axes 

The ability to reference a collection of coordinates is fundamental in computer graph-
ics, especially in 3D. And rather than investigate them within this section, let’s delay 
their analysis for the next section, where we see how the technique is used for relating 
an object’s coordinates relative to an arbitrary virtual camera. 

10.8 Positioning the Virtual Camera 

Four coordinate systems are used in the computer graphics pipeline: object space, 
world space, camera space and image space. 

• The object space is a domain where objects are modelled and assembled. 
• The world space is where objects are positioned and animated through appropriate 
transforms. The world space also hosts a virtual camera or observer. 

• The camera space is a transform of the world space relative to the camera. 
• Finally, the image space is a projection–normally perspective–of the camera space 
onto an image plane.
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The transforms considered so far are used to manipulate and position objects 
within the world space. What we will consider next is how a virtual camera or observer 
is positioned in world space, and the process of converting world coordinates to 
camera coordinates. The procedure used generally depends on the method employed 
to define the camera’s frame of reference within the world space, which may involve 
the use of direction cosines, Euler angles or quaternions. 

10.8.1 Direction Cosines 

A 3D unit vector has three components .[x y z]T, which are equal to the cosines 
of the angles formed between the vector and the three orthogonal axes. These angles 
are known as direction cosines and can be computed taking the dot product of the 
vector and the Cartesian unit vectors. Figure 10.19 shows the direction cosines and 
the angles. These direction cosines enable any point .P(x, y, z) in one frame of 
reference to be transformed into .P ′(x ′, y′, z′) in another frame of reference as 
follows: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

where: 

• .r11, r12, r13 are the direction cosines of the secondary .x-axis. 
• .r21, r22, r23 are the direction cosines of the secondary .y-axis. 
• .r31, r32, r33 are the direction cosines of the secondary .z-axis. 

To illustrate this operation, consider the scenario shown in Fig. 10.20 with two 
axial systems mutually aligned. Evaluating the direction cosines results in the fol-

Fig. 10.19 The components 
of a unit vector are equal to 
the cosines of the angles 
between the vector and the 
axes 

X 

Y 

Z
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Fig. 10.20 Two axial 
systems mutually aligned 

X 

Y 

Z 

Fig. 10.21 The. X ′Y ′Z ′
axial system after a roll of 
. 90◦

X 

Y 

Z 

lowing matrix transformation: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

which is the identity matrix and implies that .(x ′, y′, z′) = (x, y, z). 
Figure 10.21 shows another scenario where the axes are rolled .90◦, and the asso-

ciated transform is: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

Substituting .(1, 1, 0) for .(x, y, z) produces .(1, −1, 0) for .(x ′, y′, z′) in the 
new frame of reference, which by inspection, is correct. 

If the virtual camera is offset by .(tx , ty, tz) the transform relating points in 
world space to camera space is expressed as a compound operation consisting of a 
translation back to the origin, followed by a change of axial systems. This is expressed 
as: 

.

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦
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Fig. 10.22 The secondary 
axial system is subject to a 
yaw of.180◦ and an offset of 
. (10, 1, 1)

X 

Y 

Z 

(10, 1, 1) 

(0, 1, 1)  (10, 0, 0) 

(0, 0, 0)  (10, -1, 1) 

To illustrate this, consider the scenario shown in Fig. 10.22. The values of. (tx , ty, tz)
are .(10, 1, 1), and the direction cosines are as shown in the following matrix 
operation: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 −10
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

which simplifies to: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 10
0 1 0 −1
0 0 −1 1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

Substituting .(0, 0, 0) for .(x, y, z) in the above transform produces . (10, −1, 1)
for .(x ′, y′, z′), which can be confirmed from Fig. 10.22. Similarly, substituting 
.(0, 1, 1) for .(x, y, z) produces .(10, 0, 0) for .(x ′, y′, z′), which is also correct. 

10.8.2 Euler Angles 

Another approach for locating the virtual camera involves Euler angles, but  we  
must remember that they suffer from gimbal lock. However, if the virtual camera is 
located in world space using Euler angles, the transform relating world coordinates 
to camera coordinates can be derived from the inverse operations. The .yaw, .pitch, 
.roll matrices described above are called orthogonal matrices, as the inverse matrix 
is the transpose of the original rows and columns. Consequently, to rotate through 
angles .−roll, .−pitch and .−yaw, we use:  

• rotate .−roll about the .z-axis: 

.

⎡

⎢⎢
⎣

cos roll sin roll 0 0
− sin roll cos roll 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .
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• rotate .−pitch about the .x-axis: 

. 

⎡

⎢
⎢
⎣

1 0 0 0
0 cos pitch sin pitch 0
0 − sin pitch cos pitch 0
0 0 0 1

⎤

⎥
⎥
⎦

• rotate .−yaw about the .y-axis: 

. 

⎡

⎢⎢
⎣

cos yaw 0 − sin yaw 0
0 1 0 0

sin yaw 0 cos yaw 0
0 0 0 1

⎤

⎥⎥
⎦

The same result is obtained by substituting .−roll, .−pitch, .−yaw in the original 
matrices. As described above, the virtual camera will normally be translated from 
the origin by .(tx , ty, tz), which implies that the transform from the world space to 
the camera space must be evaluated as follows: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = [−roll

] [−pitch
] [−yaw

] [
translate(−tx , −ty, −tz)

]

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

which is represented by a single homogeneous matrix: 

. 

⎡

⎢
⎢
⎣

x ′
y′
z′
1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

where: 

.T11 = cos(yaw) cos(roll) + sin(yaw) sin(pitch) sin(roll)

T12 = cos(pitch) sin(roll)

T13 = − sin(yaw) cos(roll) + cos(yaw) sin(pitch) sin(roll)

T14 = − (
tx T11 + tyT12 + tzT13

)

T21 = − cos(yaw) sin(roll) + sin(yaw) sin(pitch) cos(roll)

T22 = cos(pitch) cos(roll)

T23 = − sin(yaw) sin(roll) + cos(yaw) sin(pitch) cos(roll)

T24 = − (
tx T21 + tyT22 + tzT23

)

T31 = sin(yaw) cos(pitch)

T32 = − sin(pitch)
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T33 = cos(yaw) cos(pitch) 
T34 = − (

tx T31 + tyT32 + tzT33
)

T41 = T42 = T43 = 0 
T44 = 1 

For example, consider the scenario shown in Fig. 10.22 where the following 
conditions prevail: 

. roll = 0◦

pitch = 0◦

yaw = 180◦

tx = 10

ty = 1

tz = 1

The transform is: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 10
0 1 0 −1
0 0 −1 1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

which is identical to the equation used for direction cosines. 
Another scenario is shown in Fig. 10.23 where the following conditions prevail: 

. roll = 90◦

pitch = 180◦

yaw = 0◦

tx = 0.5

ty = 0.5

tz = 11

The transform is: 

. 

⎡

⎢
⎢
⎣

x ′
y′
z′
1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 −1 0 0.5
−1 0 0 0.5
0 0 −1 11
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

Substituting .(1, 1, 1) for .(x, y, z) produces .(−0.5, −0.5, 10) for .(x ′, y′, z′). 
Similarly, substituting .(0, 0, 1) for .(x, y, z) produces .(0.5, 0.5, 10) for 
.(x ′, y′, z′), which can be visually verified from Fig. 10.23.
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Fig. 10.23 The secondary 
axial system is subject to a 
roll of.90◦, a  pitch of. 180◦
and a translation of 
. (0.5, 0.5, 11)

X 

Y 

Z 

(1, 1, 1) 

(0.5, 0.5, 11) 

10.9 Rotating a Point About an Arbitrary Axis 

10.9.1 Matrices 

Let’s consider two ways of developing a matrix for rotating a point about an arbitrary 
axis. The first approach employs vector analysis and is quite succinct. The second 
technique is less analytical and relies on matrices and trigonometric evaluation and 
is rather laborious. Fortunately, they both arrive at the same result! 

Figure 10.24 shows a view of the geometry associated with the task at hand. For 
clarification, Fig. 10.25 shows a cross-section and a plan view of the geometry. 

Fig. 10.24 A view of the  
geometry associated with 
rotating a point about an 
arbitrary axis 

Fig. 10.25 A cross-section 
and plan view of the 
geometry associated with 
rotating a point about an 
arbitrary axis
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The axis of rotation is given by the unit vector: 

. n̂ = ai + bj + ck

.P(xp, yp, z p) is the point to be rotated by angle . α to .P ′(x ′
p, y′

p, z′p). 
.O is the origin, whilst . p and .p′ are position vectors for .P and .P ′ respectively. 

From Figs. 10.24 and 10.25: 

. p′ = −−→
ON + −−→

NQ + −−→
QP ′

To find .
−−→
ON : 

. ‖n‖ = ‖p‖ cos θ = n̂ · p
therefore: 

. 
−−→
ON = n = n̂(n̂ · p)

To find .
−−→
NQ: 

. 
−−→
NQ = NQ

N P
r = NQ

N P ′ r = cosα r

but: 
. p = n + r = n̂(n̂ · p) + r

therefore: 
. r = p − n̂(n̂ · p)

and 
. 
−−→
NQ = [p − n̂(n̂ · p)] cosα

To find .
−−→
QP ′: 

Let: 
. n̂ × p = w

where: 
. ‖w‖ = ‖n̂‖‖p‖ sin θ = ‖p‖ sin θ

but: 
. ‖r‖ = ‖p‖ sin θ

therefore: 
. ‖w‖ = ‖r‖

Now: 

. 
QP ′

N P ′ = QP ′

‖r‖ = QP ′

‖w‖ = sin α

therefore: 
. 
−−→
QP ′ = w sin α = (n̂ × p) sin α

then: 
.p′ = n̂(n̂ · p) + [p − n̂(n̂ · p] cosα + (n̂ × p) sin α
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and 
. p′ = p cosα + n̂(n̂ · p)(1 − cosα) + (n̂ × p) sin α.

Let: 
. K = 1 − cosα

then: 
. p′ = p cosα + n̂(n̂ · p)K + (n̂ × p) sin α

and 

. 

p′ = (xpi + ypj + z pk) cosα + (ai + bj + ck)(axp + byp + cz p)K

+ [(bz p − cyp)i + (cxp − az p)j + (ayp − bxp)k] sin α

= [xp cosα + a(axp + byp + cz p)K + (bz p − cyp) sin α]i
+ [yp cosα + b(axp + byp + cz p)K + (cxp − az p) sin α]j
+ [z p cosα + c(axp + byp + cz p)K + (ayp − bxp) sin α]k

=
[
xp

(
a2K + cosα

)
+ yp(abK − c sin α) + z p(acK + b sin α)

]
i

+
[
xp(abK + c sin α) + yp

(
b2K + cosα

)
+ z p(bcK − a sin α)

]
j

+
[
xp(acK − b sin α) + yp(bcK + a sin α) + z p

(
c2K + cosα

)]
k

and the transform is: 

. 

⎡

⎢⎢
⎣

x ′
p

y′
p

z′p
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

a2K + cosα abK − c sin α acK + b sin α 0
abK + c sin α b2K + cosα bcK − a sin α 0
acK − b sin α bcK + a sin α c2K + cosα 0

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

xp
yp
z p
1

⎤

⎥⎥
⎦

where: 
. K = 1 − cosα

Now let’s approach the problem using transforms and trigonometric identities. 
The following is extremely tedious, but it is a good exercise for improving one’s 
algebraic skills! 

Figure 10.26 shows a point .P(x, y, z) to be rotated through an angle . α to 
.P ′(x ′, y′, z′) about an axis defined by: 

. v = ai + bj + ck

where: . ‖v‖ = 1
The transforms to achieve this operation is expressed as follows: 

.

⎡

⎣
x ′
y′
z′

⎤

⎦ = [T5] [T4] [T3] [T2] [T1]

⎡

⎣
x
y
z

⎤

⎦



10.9 Rotating a Point About an Arbitrary Axis 225

Fig. 10.26 The geometry 
associated with rotating a 
point about an arbitrary axis 

X 

Y 

Z 

P 
v 

a 

b 

c φ 

α 

θ 

which aligns the axis of rotation with the.x-axis, performs the rotation of .P through 
an angle . α about the .x-axis, and returns the axis of rotation back to its original 
position. Therefore: 

.T1 rotates .+φ about the .y-axis 

.T2 rotates .−θ about the .z-axis 

.T3 rotates .+α about the .x-axis 

.T4 rotates .+θ about the .z-axis 

.T5 rotates .−φ about the .y-axis 

where: 

. T1 =
⎡

⎣
cosφ 0 sin φ

0 1 0
− sin φ 0 cosφ

⎤

⎦ , T2 =
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦

T3 =
⎡

⎣
1 0 0
0 cosα − sin α

0 sin α cosα

⎤

⎦ , T4 =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤

⎦

T5 =
⎡

⎣
cosφ 0 − sin φ

0 1 0
sin φ 0 cosφ

⎤

⎦

Let: 

. [T5] [T4] [T3] [T2] [T1] =

⎡

⎢⎢
⎣

E11 E12 E13 0
E21 E22 E23 0
E31 E32 E33 0
0 0 0 1

⎤

⎥⎥
⎦

where by multiplying the matrices together we find that: 

.
E11 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα

E12 = cosφ cos θ sin θ − cosφ sin θ cos θ cosα − sin φ cos θ sin α
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. 

E13 = cosφ sin φ cos2 θ + cosφ sin φ sin2 θ cosα + sin2 φ sin θ sin α

+ cos2 φ sin θ sin α − cosφ sin φ cosα

E21 = sin θ cos θ cosφ − cos θ sin θ cosφ cosα + cos θ sin φ sin α

E22 = sin2 θ + cos2 θ cosα

E23 = sin θ cos θ sin φ − cos θ sin θ sin φ cosα − cos θ cosφ sin α

E31 = cosφ sin φ cos2 θ + cosφ sin φ sin2 θ cosα − cos2 φ sin θ sin α

= − cosφ sin φ cosα

E32 = sin φ cos θ sin θ − sin φ sin θ cos θ cosα + cosφ cos θ sin α

E33 = sin2 φ cos2 θ + sin2 φ sin2 θ cosα − cosφ sin φ sin θ sin α

+ cosφ sin φ sin θ sin α + cos2 φ cosα

From Fig. 10.26 we compute the .sin and .cos of . θ and . φ in terms of . a, . b and . c, and 
then compute their equivalent .sin2 and .cos2 values: 

. cos θ =
√
1 − b2 ⇒ cos2 θ = 1 − b2

sin θ = b ⇒ sin2 θ = b2

cosφ = a√
1 − b2

⇒ cos2 φ = a2

1 − b2

sin φ = c√
1 − b2

⇒ sin2 φ = c2

1 − b2
.

To find .E11: 

. E11 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα

= a2

1 − b2
(1 − b2) + a2

1 − b2
b2 cosα + c2

1 − b2
cosα

= a2 + a2b2

1 − b2
cosα + c2

1 − b2
cosα

= a2 +
(
c2 + a2b2

1 − b2

)
cosα

but: 
.a2 + b2 + c2 = 1 ⇒ c2 = 1 − a2 − b2



10.9 Rotating a Point About an Arbitrary Axis 227

substituting .c2 in .E11: 

. E11 = a2 +
(
1 − a2 − b2 + a2b2

1 − b2

)
cosα

= a2 +
(

(1 − a2)(1 − b2)

1 − b2

)
cosα

= a2 + (1 − a2) cosα

= a2(1 − cosα) + cosα.

Let: 
. K = 1 − cosα

then: 
. E11 = a2K + cosα

To find .E12: 

. E12 = cosφ cos θ sin θ − cosφ sin θ cos θ cosα − sin φ cos θ sin α

= a√
1 − b2

√
1 − b2b − a√

1 − b2
b
√
1 − b2 cosα − c√

1 − b2

√
1 − b2 sin α

= ab − ab cosα − c sin α

= ab(1 − cosα) − c sin α

E12 = abK − c sin α

To find .E13: 

.

E13 = cosφ sin φ cos2 θ + cosφ sin φ sin2 θ cosα + sin2 φ sin θ sin α

+ cos2 φ sin θ sin α − cosφ sin φ cosα

= cosφ sin φ cos2 θ + cosφ sin φ sin2 θ cosα + sin θ sin α − cosφ sin φ cosα

= a√
1 − b2

c√
1 − b2

(1 − b2) + a√
1 − b2

c√
1 − b2

b2 cosα + b sin α

− a√
1 − b2

c√
1 − b2

cosα

= ac + ac
b2

(1 − b2)
cosα + b sin α − ac

(1 − b2)
cosα

= ac + ac
(b2 − 1)

(1 − b2)
cosα + b sin α

= ac(1 − cosα) + b sin α

E13 = acK + b sin α



228 10 Geometric Transforms 

Using similar algebraic methods, we discover that: 

. E21 = abK + c sin α

E22 = b2K + cosα

E23 = bcK − a sin α

E31 = acK − b sin α

E32 = bcK + a sin α

E33 = c2K + cosα

and our original matrix transform becomes: 

. 

⎡

⎢⎢⎢
⎣

x ′
p

y′
p

z′p
1

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

a2K + cosα abK − c sin α acK + b sin α 0

abK + c sin α b2K + cosα bcK − a sin α 0

acK − b sin α bcK + a sin α c2K + cosα 0

0 0 0 1

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

xp
yp
z p
1

⎤

⎥⎥⎥
⎦

where: 
. K = 1 − cosα

which is identical to the transformation derived from the first approach. Now let’s test 
the matrix with a simple example that can be easily verified. We do this by rotating 
a point .P(10, 5, 0), about an arbitrary axis .v = i + j + k, through .360◦, which 
should return it to itself producing .P(10, 5, 0). 

Therefore: 
. α = 360◦, cosα = 1, sin α = 0, K = 0

. a = 1, b = 1, c = 1

and 

. 

⎡

⎢⎢
⎣

10
5
0
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

10
5
0
1

⎤

⎥⎥
⎦

As the matrix is an identity matrix .P ′ = P . 

10.10 Transforming Vectors 

The transforms described in this chapter have been used to transform single points. 
However, a geometric database will not only contain pure vertices, but vectors, which 
must also be subject to any prevailing transform. A generic transform. Q of a 3D point
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is represented by: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = [

Q
]

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

and as a vector is defined by two points we can write: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = [

Q
]

⎡

⎢⎢
⎣

x2 − x1
y2 − y1
z2 − z1
1 − 1

⎤

⎥⎥
⎦

where we see the homogeneous scaling term collapse to zero; which implies that any 
vector .[x y z]T can be transformed using: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
0

⎤

⎥⎥
⎦ = [

Q
]

⎡

⎢⎢
⎣

x
y
z
0

⎤

⎥⎥
⎦

Let’s put this to the test by using a transform from an earlier example. The prob-
lem concerned a change of axial system where a virtual camera was subject to the 
following: 

. roll = 90◦

pitch = 180◦

yaw = 90◦

tx = 2

ty = 2

tz = 0

and the transform is: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 −1 0 2
0 0 1 0

−1 0 0 2
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

The point .(1, 1, 0) is transformed to .(1, 0, 1), as shown in Fig. 10.27. And  the  
vector .[1 1 0]T is transformed to .[−1 0 − 1]T, using the following transform: 

. 

⎡

⎢⎢
⎣

−1
0

−1
0

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 −1 0 2
0 0 1 0

−1 0 0 2
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1
1
0
0

⎤

⎥⎥
⎦

which is correct with reference to Fig. 10.27.
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Fig. 10.27 Vector 
.[1 1 0]T is transformed to 
. [−1 0 − 1]T

X 

Y 

Z 

(2,2,0) 

[1 1 0] 
[-1 0 -1] 

(1,1,0) 

10.11 Determinants 

Before concluding this chapter, I would like to expand upon the role of determinants 
in transforms. 

In Chap. 6 we saw that determinants arise in the solution of linear equations. Now 
let’s investigate their graphical significance. Consider the transform: 

. 

[
x ′
y′

]
=

[
a b
c d

] [
x
y

]

The determinant of the transform is .ad − cb. If we subject the vertices of a unit-
square to this transform, we create the situation shown in Fig. 10.28. The vertices of 
the unit-square are transformed as follows: 

. (0, 0) ⇒ (0, 0)

(1, 0) ⇒ (a, c)

(1, 1) ⇒ (a + b, c + d)

(0, 1) ⇒ (b, d)

From Fig. 10.28 it can be seen that the area of the transformed unit-square.A′ is given 
by: 

. area = (a + b)(c + d) − 2B − 2C − 2D

= (ac + ad + cb + bd) − bd − 2cb − ac

= ad − cb

which is the determinant of the transform. But as the area of the original unit-square 
is 1, the determinant of the transform controls the scaling factor applied to the trans-
formed shape.
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Fig. 10.28 The inner 
parallelogram is the 
transformed unit square 
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Let’s examine the determinants of two transforms: The first 2D transform encodes 
a scaling of 2, and results in an overall area scaling of 4: 

. 

[
2 0
0 2

]

and the determinant is: 

. 

∣∣∣
∣
2 0
0 2

∣∣∣
∣ = 4

The second 2D transform encodes a scaling of 3 and a translation of .(3, 3), and 
results in an overall area scaling of 9: 

. 

⎡

⎣
3 0 3
0 3 3
0 0 1

⎤

⎦

and the determinant is: 

. 3

∣
∣∣∣
3 3
0 1

∣
∣∣∣ − 0

∣
∣∣∣
0 3
0 1

∣
∣∣∣ + 0

∣
∣∣∣
0 3
3 3

∣
∣∣∣ = 9

These two examples demonstrate the extra role played by the elements of a matrix. 

10.12 Perspective Projection 

Of all the projections employed in computer graphics, the perspective projection 
is one most widely used. There are two stages to its computation: the first involves 
converting world coordinates to the camera’s frame of reference, and the second 
transforms camera coordinates to the projection plane coordinates. We have already 
looked at the transforms for locating a camera in world space, and the inverse trans-
form for converting world coordinates to the camera’s frame of reference. Let’s now 
investigate how these camera coordinates are transformed into a perspective projec-
tion.
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Fig. 10.29 The axial system 
used to produce a perspective 
view 

Xc 

(xc,yc,zc)
Yc 
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Ypxp 
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d 

Fig. 10.30 The plan view of 
the camera’s axial system 

Xc (xc,yc,zc) 

Zc 

xp 

d 
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zc 
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Fig. 10.31 The side view of  
the camera’s axial system 

Yc (xc,yc,zc) 

Zc 

yp 

d 

screen 

zc 

yc 
(xp,yp,d) 

We begin by assuming that the camera is directed along the .z-axis as shown in 
Fig. 10.29. Positioned . d units along the .z-axis is a projection screen, which is used 
to capture a perspective projection of an object. Figure 10.29 shows that any point 
.(xc, yc, zc) is transformed to .(xp, yp, d). It also shows that the screen’s .x-axis is 
pointing in the opposite direction to the camera’s.x-axis, which can be compensated 
for by reversing the sign of .xp when it is computed. 

Figure 10.30 shows a plan view of the scenario depicted in Figs. 10.29 and 10.31 
a side view. Next, we reverse the sign of .xp and state:
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. 
xc
zc

= −xp
d

xp = −xc
zc/d

and 

. 
yc
zc

= yp
d

yp = yc
zc/d

This is expressed in matrix form as: 

. 

⎡

⎢⎢
⎣

xp
yp
z p
w

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 0
0 1 0 0
0 0 1/d 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

xc
yc
zc
1

⎤

⎥⎥
⎦

At first the transform seems strange, but if we multiply this out we get: 

. [xp yp z p w]T = [−xc yc zc zc/d]T

and if we remember the idea behind homogeneous coordinates, we must divide the 
terms .xp, .yp, .z p by .w to get the scaled terms, which produces: 

. xp = −xc
zc/d

yp = yc
zc/d

z p = zc
zc/d

= d

which, after all, is rather elegant. Notice that this transform takes into account the sign 
change that occurs with the .x-coordinate. Some algorithms delay this sign reversal 
until the mapping is made to screen coordinates. 

10.13 Summary 

The purpose of this chapter was to introduce the reader to transforms and matrices–I 
hope this has been achieved. This is not the end of the subject, as one can do so much 
with matrices. For example, it would be interesting to see how a matrix behaves when 
some of its elements are changed dynamically.
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10.14 Worked Examples 

10.14.1 2D Scaling Transform 

State the 2D homogeneous matrix to scale by a factor of 2 in the .x-direction and 3 
in the .y-direction. 
Solution 

. 

⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
2 0 0
0 3 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

10.14.2 2D Scale and Translate 

Given matrix .T1 which scales a 2D point by a factor of 2, and .T2 which translates 
a 2D point by .x = 2 and .y = 2, combine them in two possible ways and show that 
the point .(1, 1) is transformed to two different places. 
Solution 

. T1 =
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
2 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

T2 =
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 2
0 1 2
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

T1T2 =
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
2 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣
1 0 2
0 1 2
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

=
⎡

⎣
2 0 4
0 2 4
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

and the point .(1, 1) is transformed to .(6, 6). 

. T2T1 =
⎡

⎣
x ′
y′
1

⎤

⎦ =
⎡

⎣
1 0 2
0 1 2
0 0 1

⎤

⎦

⎡

⎣
2 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

=
⎡

⎣
2 0 2
0 2 2
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

and the point .(1, 1) is transformed to .(4, 4).
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10.14.3 3D Scaling Transform 

State the 3D homogeneous matrix to scale by a factor of 2 in the .x-direction, 3 in 
the .y-direction and 4 in the .z-direction, relative to the point .(1, 1, 1), and compute 
the transformed position of .(2, 2, 2). 
Solution 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

sx 0 0 px (1 − sx )
0 sy 0 py(1 − sy)
0 0 sz pz(1 − sz)
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

Substituting the given values: 

. 

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

2 0 0 −1
0 3 0 −2
0 0 4 −3
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

The point .(2, 2, 2) is transformed to .(3, 4, 5): 

. 

⎡

⎢⎢
⎣

3
4
5
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

2 0 0 −1
0 3 0 −2
0 0 4 −3
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

2
2
2
1

⎤

⎥⎥
⎦

10.14.4 2D Rotation 

Compute the coordinates of the unit square in Table 10.1 after a rotation of .90◦. 

Table 10.1 Original and rotated coordinates of the unit square 

.x .y .x ′ . y′

0 0 0 0 

1 0 0 1 

1 1 –1 1 

0 1 –1 0 
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Solution 
The points are rotated as follows: 

. 

⎡ 

⎣ 
x ′
y′
1 

⎤ 

⎦ = 

⎡ 

⎣ 
cos β − sin β 0 
sin β cos β 0 
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
x 
y 
1 

⎤ 

⎦ 

= 

⎡ 

⎣ 
0 −1 0  
1 0 0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
x 
y 
1 

⎤ 

⎦ 

⎡ 

⎣ 
0 
0 
1 

⎤ 

⎦ = 

⎡ 

⎣ 
0 −1 0  
1 0 0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
0 
0 
1 

⎤ 

⎦ 

⎡ 

⎣ 
0 
1 
1 

⎤ 

⎦ = 

⎡ 

⎣ 
0 −1 0  
1 0 0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
1 
0 
1 

⎤ 

⎦ 

⎡ 

⎣ 
−1 
1 
1 

⎤ 

⎦ = 

⎡ 

⎣ 
0 −1 0  
1 0 0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
1 
1 
1 

⎤ 

⎦ 

⎡ 

⎣ 
−1 
0 
1 

⎤ 

⎦ = 

⎡ 

⎣ 
0 −1 0  
1 0 0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
0 
1 
1 

⎤ 

⎦ 

10.14.5 2D Rotation About a Point 

Derive the 2D homogeneous matrix to rotate .180◦ about .(−1, 0), and compute the 
transformed position of .(0, 0). 
Solution 

. 

⎡ 

⎣ 
x ′
y′
1 

⎤ 

⎦ = 

⎡ 

⎣ 
cos β − sin β px (1 − cos β) + py sin β 
sin β cos β py(1 − cos β) − px sin β 
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
x 
y 
1 

⎤ 

⎦ 

= 

⎡ 

⎣ 
cos 180◦ − sin 180◦ −1(1 − cos 180◦) + 0 sin 180◦ 

sin 180◦ cos 180◦ 0(1 − cos 180◦) + 1 sin 180◦ 

0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
x 
y 
1 

⎤ 

⎦ 

⎡ 

⎣ 
−2 
0 
1 

⎤ 

⎦ = 

⎡ 

⎣ 
−1 0  −2 
0 −1 0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
0 
0 
1 

⎤ 

⎦ 

The point .(0, 0) is rotated to .(−2, 0). 
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10.14.6 Determinant of the Rotate Transform 

Using determinants, show that the rotate transform preserves area. 
Solution 
The determinant of a 2D matrix transform reflects the area change produced by 
the transform. Therefore, if area is preserved, the determinant must equal 1. Using 
Sarrus’s rule: 

. 

∣∣∣∣∣∣

⎡ 

⎣ 
cos β − sin β 0 
sin β cos β 0 
0 0 1  

⎤ 

⎦

∣∣∣∣∣∣
= cos2 β + sin2 β = 1 

which confirms the role of the determinant. 

10.14.7 Determinant of the Shear Transform 

Using determinants, show that the shear transform preserves area. 
Solution 
The determinant of a 2D matrix transform reflects the area change produced by 
the transform. Therefore, if area is preserved, the determinant must equal 1. Using 
Sarrus’s rule: 

. 

∣
∣∣∣∣∣

⎡ 

⎣ 
1 tan  β 0 
0 1 0  
0 0 1  

⎤ 

⎦

∣
∣∣∣∣∣
= 1 

which confirms the role of the determinant. 

10.14.8 Yaw, Pitch and Roll Transforms 

Using the yaw and pitch transforms in the sequence.yaw × pitch, compute how the 
point .(1, 1, 1) is transformed with .yaw = pitch = 90◦. 
Solution 

. 

⎡ 

⎣ 
x ′
y′
1 

⎤ 

⎦ = 

⎡ 

⎢⎢ 
⎣ 

cos yaw 0 sin  yaw 0 
0 1 0 0  

− sin yaw 0 cos yaw 0 
0 0 0 1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

1 0 0 0  
0 cos pitch − sin pitch 0 
0 sin  pitch cos pitch 0 
0 0 0 1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

x 
y 
z 
1 

⎤ 

⎥⎥ 
⎦ 

= 

⎡ 

⎢⎢ 
⎣ 

0 0  1  0  
0 1  0  0  

−1  0 0 0  
0 0  0  1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

1 0  0  0  
0 0  −1 0  
0 1  0  0  
0 0  0  1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

x 
y 
z 
1 

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢ 
⎢ 
⎣ 

1 
−1 
−1 
1 

⎤ 

⎥ 
⎥ 
⎦ = 

⎡ 

⎢ 
⎢ 
⎣ 

0 1  0 0  
0 0  −1 0  

−1 0  0  0  
0 0 0 1  

⎤ 

⎥ 
⎥ 
⎦ 

⎡ 

⎢ 
⎢ 
⎣ 

1 
1 
1 
1 

⎤ 

⎥ 
⎥ 
⎦ 

therefore, .(1, 1, 1) is transformed to .(1, −1, −1). 
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10.14.9 3D Rotation About an Axis 

Derive a homogeneous matrix to rotate .(−1, 1, 0), .270◦ about an axis parallel to 
the .y-axis, and intersecting .(1, 0, 0). 
Solution 

. 

⎡ 

⎢⎢ 
⎣ 

x ′
y′
z′
1 

⎤ 

⎥⎥ 
⎦ = 

⎡ 

⎢⎢ 
⎣ 

cos β 0 sin  β px (1 − cos β) − pz sin β 
0 1 0 0  

− sin β 0 cos β pz(1 − cos β) + px sin β 
0 0 0 1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

x 
y 
z 
1 

⎤ 

⎥⎥ 
⎦ 

= 

⎡ 

⎢⎢ 
⎣ 

cos 270◦ 0 sin 270◦ 1(1 − cos 270◦) − 0 sin 270◦ 

0 1 0 0  
− sin 270◦ 0 cos 270◦ 0(1 − cos 270◦) + 1 sin 270◦ 

0 0 0 1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

x 
y 
z 
1 

⎤ 

⎥⎥ 
⎦ 

= 

⎡ 

⎢⎢ 
⎣ 

0 0  −1 1(1 − 0) 
0 1  0 0  
1 0  0  0(1 − 0) − 1 
0 0  0 1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

x 
y 
z 
1 

⎤ 

⎥⎥ 
⎦ 

= 

⎡ 

⎢⎢ 
⎣ 

0 0  −1 1  
0 1  0 0  
1 0  0  −1 
0 0  0 1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

x 
y 
z 
1 

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢ 
⎢ 
⎣ 

1 
1 

−2 
1 

⎤ 

⎥ 
⎥ 
⎦ = 

⎡ 

⎢ 
⎢ 
⎣ 

0 0  −1 1  
0 1  0 0  
1 0  0  −1 
0 0  0 1  

⎤ 

⎥ 
⎥ 
⎦ 

⎡ 

⎢ 
⎢ 
⎣ 

−1 
1 
0 
1 

⎤ 

⎥ 
⎥ 
⎦ 

The point .(−1, 1, 0) is rotated to .(1, 1, −2). 

10.14.10 3D Rotation Transform Matrix 

Show that the matrix for rotating a point about an arbitrary axis corresponds to the 
three matrices for rotating about the .x-, .y- and .z-axis. 
Solution 

. 

⎡ 

⎢⎢ 
⎣ 

a2 K + cos α abK − c sin α acK + b sin α 0 
abK + c sin α b2 K + cos α bcK − a sin α 0 
acK − b sin α bcK + a sin α c2K + cos α 0 

0 0 0 1  

⎤ 

⎥⎥ 
⎦ 
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Pitch about the .x-axis: .n̂ = i, where .a = 1 and .b = c = 0; .K = 1 − cos α. 

. pitch = 

⎡ 

⎢ 
⎢ 
⎣ 

1 0 0 0  
0 cos α − sin α 0 
0 sin  α cos α 0 
0 0 0 1  

⎤ 

⎥ 
⎥ 
⎦ 

Yaw about the .y-axis: .n̂ = j, where .b = 1 and .a = c = 0; .K = 1 − cos α. 

. yaw = 

⎡ 

⎢⎢ 
⎣ 

cos α 0 sin  α 0 
0 1 0 0  

− sin α 0 cos α 0 
0 0 0 1  

⎤ 

⎥⎥ 
⎦ 

Roll about the .z-axis: .n̂ = k, where .c = 1 and .a = b = 0; .K = 1 − cos α. 

. roll = 

⎡ 

⎢⎢ 
⎣ 

cos α − sin α 0 0  
sin α cos α 0 0  
0 0 1  0  
0 0 0  1  

⎤ 

⎥⎥ 
⎦ 

10.14.11 2D Change of Axes 

Derive a 2D homogeneous matrix to compute.(1, 1) in an axial system with direction 
cosines .cos β = 

√
2/2 and .sin β = −√

2/2. 
Solution 

. 

⎡ 

⎣ 
x ′
y′
1 

⎤ 

⎦ = 

⎡ 

⎣ 
cos β sin β 0 

− sin β cos β 0 
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
x 
y 
1 

⎤ 

⎦ 

= 

⎡ 

⎣ 

√
2/2 −√

2/2 0√
2/2 

√
2/2 0  

0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
1 
1 
1 

⎤ 

⎦ 

⎡ 

⎣ 
0√
2 
1 

⎤ 

⎦ = 

⎡ 

⎣ 

√
2/2 −√

2/2 0√
2/2 

√
2/2 0  

0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
1 
1 
1 

⎤ 

⎦ 

The point .(1, 1) has coordinates .(0, 
√
2) in the rotated axial system. 

10.14.12 3D Change of Axes 

Derive a 3D homogeneous matrix to compute the positions of.(0, 0, 0) and. (0, 1, 0) 
in an axial system with .180◦ yaw, .0◦ pitch, .180◦ roll, and translated by .(10, 0, 0). 
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Solution 

. 

⎡ 

⎢⎢ 
⎣ 

x ′
y′
z′
1 

⎤ 

⎥⎥ 
⎦ = 

⎡ 

⎢⎢ 
⎣ 

T11 T12 T13 T14 
T21 T22 T23 T24 
T31 T32 T33 T34 
T41 T42 T43 T44 

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

x 
y 
z 
1 

⎤ 

⎥⎥ 
⎦ 

where: 

. T11 = cos(yaw) cos(roll) + sin(yaw) sin(pitch) sin(roll) 
T12 = cos(pitch) sin(roll) 
T13 = −  sin(yaw) cos(roll) + cos(yaw) sin(pitch) sin(roll) 
T14 = −(tx T11 + tyT12 + tzT13) 
T21 = −  cos(yaw) sin(roll) + sin(yaw) sin( pitch) cos(roll) 
T22 = cos(pitch) cos(roll) 
T23 = −  sin(yaw) sin(roll) + cos(yaw) sin( pitch) cos(roll) 
T24 = −(tx T21 + tyT22 + tzT23) 
T31 = sin(yaw) cos(pitch) 
T32 = −  sin(pitch) 
T33 = cos(yaw) cos(pitch) 
T34 = −(tx T31 + tyT32 + tzT33) 
T41 = T42 = T43 = 0 
T44 = 1 

Substituting the above values: 

.T11 = cos 180◦ cos 180◦ + sin 180◦ sin 0◦ sin 180◦ = 1 
T12 = cos 0◦ sin 180◦ = 0 
T13 = −  sin 180◦ cos 180◦ + cos 180◦ sin 0◦ sin 180◦ = 0 
T14 = −(−10T11 + 0T12 + 0T13) = 10 
T21 = −  cos 180◦ sin 180◦ + sin 180◦ sin 0◦ cos 180◦ = 0 
T22 = cos 0◦ cos 180◦ = −1 

T23 = −  sin 180◦ sin 180◦ + cos 180◦ sin 0◦ cos 180◦ = 0 
T24 = −(−10T21 + 0T22 + 0T23) = 0 
T31 = sin 180◦ cos 0◦ = 0 
T32 = −  sin 0◦ = 0 
T33 = cos 180◦ cos 0◦ = −1 

T34 = −(−10T31 + 0T32 + 0T33) = 0 
T41 = T42 = T43 = 0 
T44 = 1 
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Therefore: 

. 

⎡ 

⎢⎢ 
⎣ 

10 
0 
0 
1 

⎤ 

⎥⎥ 
⎦ = 

⎡ 

⎢⎢ 
⎣ 

1 0 0 10  
0 −1 0  0  
0 0  −1 0  
0 0 0  1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

0 
0 
0 
1 

⎤ 

⎥⎥ 
⎦ 

and 

. 

⎡ 

⎢⎢ 
⎣ 

10 
−1 
0 
1 

⎤ 

⎥⎥ 
⎦ = 

⎡ 

⎢⎢ 
⎣ 

1 0 0 10  
0 −1 0  0  
0 0  −1 0  
0 0 0  1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

0 
1 
0 
1 

⎤ 

⎥⎥ 
⎦ 

The positions of .(0, 0, 0) and .(0, 1, 0) in the transformed axial system are 
.(10, 0, 0) and .(10, −1, 0) respectively. 

10.14.13 Rotate a Point About an Axis 

Derive a 3D homogeneous matrix to rotate .(1, 0, 0), .180◦ about an axis whose 
parallel vector is .n̂ = 1/

√
2j + 1/

√
2k. 

Solution 
Given: 

. 

⎡ 

⎢⎢⎢⎢ 
⎣ 

x ′
p 

y′
p 

z′p 
1 

⎤ 

⎥⎥⎥⎥ 
⎦ 

= 

⎡ 

⎢⎢⎢⎢ 
⎣ 

a2 K + cos α abK − c sin α acK + b sin α 0 
abK + c sin α b2 K + cos α bcK − a sin α 0 
acK − b sin α bcK + a sin α c2K + cos α 0 

0 0 0 1  

⎤ 

⎥⎥⎥⎥ 
⎦ 

⎡ 

⎢⎢⎢⎢ 
⎣ 

x p 

yp 

z p 

1 

⎤ 

⎥⎥⎥⎥ 
⎦ 

where: 
. K = 1 − cos α 

Therefore: 

. 

⎡ 

⎢⎢ 
⎣ 

−1 
0 
0 
1 

⎤ 

⎥⎥ 
⎦ = 

⎡ 

⎢⎢ 
⎣ 

−1  0 0 0  
0 0  1  0  
0 1  0  0  
0 0  0  1  

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

1 
0 
0 
1 

⎤ 

⎥⎥ 
⎦ 

The rotated point is .(−1, 0, 0). 

10.14.14 Perspective Projection 

Compute the perspective coordinates of a 3D cube stored in Table 10.2 with the 
projection screen distance .d = 20. Sketch the result. 
Solution 

.x p = 
−xc × d 

zc 
, yp = 

yc × d 
zc 

, z p = d 
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Table 10.2 Coordinates of a 3D cube 

Vertex .xc .yc .zc .x p . yp 

1 0 0 10 0 0 

2 10 0 10 –20 0 

3 10 10 10 –20 20 

4 0 10 10 0 20 

5 0 0 20 0 0 

6 10 0 20 –10 0 

7 10 10 20 –10 10 

8 0 10 20 0 10 

Fig. 10.32 A perspective 
sketch of a 3D cube 
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. Vertex 1: x p = 0 × 20/10 = 0 yp = 0 × 20/10 = 0 z p = 20 
Vertex 2: x p = −10 × 20/10 = −20 yp = 0 × 20/10 = 0 z p = 20 
Vertex 3: x p = −10 × 20/10 = −20 yp = 10 × 20/10 = 20 z p = 20 
Vertex 4: x p = 0 × 20/10 = 0 yp = 10 × 20/10 = 20 z p = 20 
Vertex 5: x p = 0 × 20/20 = 0 yp = 0 × 20/20 = 0 z p = 20 
Vertex 6: x p = −10 × 20/20 = −10 yp = 0 × 20/20 = 0 z p = 20 
Vertex 7: x p = −10 × 20/10 = −10 yp = 10 × 20/20 = 10 z p = 20 
Vertex 8: x p = 0 × 20/10 = 0 yp = 10 × 20/20 = 10 z p = 20 

The perspective coordinates are stored in Table 10.2, and Fig. 10.32 shows a sketch 
of the result, with the .x-coordinate reversed. 
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11.1 Introduction 

This chapter contains some historical background to the invention of quaternions, 
and covers the evolution of quaternion algebra. I show how quaternion algebra is 
greatly simplified by treating a quaternion as an ordered pair, and provide examples 
of addition, subtraction, real, pure and unit quaternions. After defining the complex 
conjugate, norm, quaternion product, square and inverse, I show how a quaternion 
is represented by a matrix. The chapter concludes with a summary of the important 
definitions and several worked examples. 

11.2 Some History 

A complex number is defined as: 

. z = a + ib, a, b ∈ �, i2 = −1

Complex numbers can be regarded as a 2D point, which begs the question: is there 
a complex object for a 3D point? After many years of thinking, Sir Willian Rowan 
Hamilton found the answer in the form of a quaternion. 

Note that I use ‘. i’ to define a complex number, and Hamilton uses ‘. i’, ‘. j’ and ‘. k’ 
to define a quaternion. I leave this preference throughout this chapter. 

Hamilton defined a quaternion . q , and its associated rules as: 

. q = s + ia + jb + kc, s, a, b, c ∈ �
where: 

. i2 = j2 = k2 = i jk = −1
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. 
i j = k, jk = i, ki = j
j i = −k, k j = −i, ik = − j

[ 1– 3], but we tend to write quaternions as: 

. q = s + ai + bj + ck

Observe from Hamilton’s rules how the occurrence of .i j is replaced by . k. The  
extra imaginary . k term is key to the cyclic patterns .i j = k, . jk = i , and .ki = j , 
which are very similar to the cross product of two unit Cartesian vectors: 

. i × j = k, j × k = i, k × i = j

In fact, this similarity is no coincidence, as Hamilton also invented the scalar and 
vector products. However, although quaternions provided an algebraic framework to 
describe vectors, one must acknowledge that vectorial quantities had been studied 
for many years prior to Hamilton. 

Hamilton also saw that the .i, j, k terms could represent three Cartesian unit 
vectors. i, . j and. k, which had to possess imaginary qualities. i.e..i2 = −1, etc., which 
didn’t go down well with some mathematicians and scientists who were suspicious 
of the need to involve so many imaginary terms. 

Hamilton’s motivation to search for a 3D equivalent of complex numbers was part 
algebraic, and part geometric. For if a complex number is represented by a couple 
and is capable of rotating points on the plane by .90◦, then perhaps a triple rotates 
points in space by .90◦. In the end, a triple had to be replaced by a a quadruple–a 
quaternion. 

One can regard Hamilton’s rules from two perspectives. The first, is that they 
are an algebraic consequence of combining three imaginary terms. The second, is 
that they reflect an underlying geometric structure of space. The latter interpretation 
was adopted by the Scottish mathematical physicist Peter Guthrie Tait (1831–1901), 
and outlined in his book An Elementary Treatise on Quaternions. Tait’s approach 
assumes three unit vectors .i, j, k aligned with the .x-, .y-, .z-axes respectively: 

The result of the multiplication of. i into. j or. ij is defined to be the turning of. j through a right 
angle in the plane perpendicular to . i in the positive direction, in other words, the operation 
of. i on. j turns it round so as to make it coincide with. k; and therefore briefly.ij = k. 

To be consistent it is requisite to admit that if . i instead of operating on . j had operated on 
any other unit vector perpendicular to . i in the plane .yz, it would have turned it through a 
right-angle in the same direction, so that.ik can be nothing else than.−j. 

Extending to other unit vectors the definition which we have illustrated by referring to . i, it  
is evident that. j operating on. k must bring it round to. i, or.jk = i [ 4]. 

Tait’s explanation is illustrated in Fig. 11.1a–d. Figure 11.1a shows the original 
alignment of .i, j, k. Figure 11.1b shows the effect of turning . j into . k. Figure 11.1c 
shows the turning of . k into . i, and Fig. 11.1d shows the turning of . i in to . j.



11.2 Some History 245

Fig. 11.1 Interpreting the products. jk, ki, ij

So far, there is no mention of imaginary quantities–we just have: 

. 
ij = k, jk = i, ki = j
ji = −k, kj = −i, ik = −j

If we assume that these vectors obey the distributive and associative axioms of 
algebra, their imaginary qualities are exposed. For example: 

. ij = k

and multiplying throughout by . i: 

. iij = ik = −j

therefore: 
. ii = i2 = −1

Similarly, we can show that .j2 = k2 = −1. 
Next: 

. ijk = i(jk) = ii = i2 = −1

Thus, simply by declaring the action of the cross-product, Hamilton’s rules emerge, 
with all of their imaginary features. Tait also made the following observation: 

A very curious speculation, due to Servois, and published in 1813 in Gergonne’s Annales 
is the only one, so far has been discovered, in which the slightest trace of an anticipation 
of Quaternions is contained. Endeavouring to extend to space the form .a + b

√−1 for the 
plane, he is guided by analogy to write a directed unit-line in space the form



246 11 Quaternion Algebra 

. p cosα + q cosβ + r cos γ,

where .α, β, γ are its inclinations to the three axes. He perceives easily that . p, q, r
must be non-reals : but, he asks, “seraient-elles imaginaires réductibles à la forme générale 
.A + B

√−1?” This could not be the answer. In fact they are the .i, j, k of the Quaternion 
Calculus [ 4]. 

So the French mathematician François-Joseph Servois (1768–1847), was another 
person who came very close to discovering quaternions. Furthermore, both Tait and 
Hamilton were apparently unaware of a paper on transformation groups published 
by the French banker and mathematician Olinde Rodrigues (1795–1851) in 1840. 

And it doesn’t stop there: the brilliant mathematician Carl Friedrich Gauss was 
extremely cautious, and nervous of publishing anything too revolutionary, just in case 
he was ridiculed by fellow mathematicians. His diaries reveal that he had anticipated 
non-euclidean geometry ahead of the Russian mathematician Nikolai Lobachevsky 
(1792–1856). And in a short note from his diary in 1819 [ 5] he reveals that he had 
identified a method of finding the product of two quadruples .(a, b, c, d) and 
.(α, β, γ, δ) as: 

. (A, B, C, D) = (a, b, c, d)(α, β, γ, δ)

= (aα − bβ − cγ − dδ, aβ + bα − cδ + dγ,

aγ + bδ + cα − dβ, aδ − bγ + cβ + dα)

At first glance, this result does not look like a quaternion product, but if we transpose 
the second and third coordinates of the quadruples, and treat them as quaternions, 
we have: 

. (A, B, C, D) = (a + ci + bj + dk)(α + γ i + β j + δk)

= aα − cγ − bβ − dδ + a(γ i + β j + δk)

+ α(ci + bj + dk), (bδ − dβ)i + (dγ − cδ) j + (cβ − bγ )k

which is identical to Hamilton’s quaternion product! Furthermore, Gauss also realised 
that the product was non-commutative. However, he did not publish his findings, and 
it was left to Hamilton to invent quaternions for himself, publish his results and take 
the credit. 

In 1881 and 1884, Josiah Willard Gibbs, at Yale University, printed his lecture 
notes on vector analysis for his students. Gibbs had cut the ‘umbilical cord’ between 
the real and vector parts of a quaternion and raised the 3D vector as an independent 
object without any imaginary connotations. Gibbs also took on board the ideas of 
Grassmann, who had been developing his own ideas for a vectorial system since 
1832. Gibbs also defined the scalar and vector products using the relevant parts of 
the quaternion product. Finally, in 1901, a student of Gibbs, Edwin Bidwell Wilson, 
published Gibbs’ notes in book form: Vector Analysis [ 6], which contains the notation 
in use today.
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Quaternion algebra is definitely imaginary, yet simply by isolating the vector 
part and ignoring the imaginary rules, Gibbs was able to reveal a new branch of 
mathematics that exploded into vector analysis. 

Hamilton and his supporters were unable to persuade their peers that quaternions 
could represent vectorial quantities, and eventually, Gibbs’ notation won the day, and 
quaternions faded from the scene. 

In recent years, quaternions have been rediscovered by the flight simulation indus-
try, and more recently by the computer graphics community, where they are used to 
rotate vectors about an arbitrary axis. In the intervening years, various people have 
had the opportunity to investigate the algebra, and propose new ways of harnessing 
its qualities. 

So let’s look at three ways of annotating a quaternion . q: 

.q = s + xi + y j + zk (11.1) 

.q = s + v (11.2) 

. q = [s, v]
where s, x, y, z ∈ �, v ∈ �3
and i2 = j2 = k2 = −1 (11.3) 

The difference is rather subtle. In (11.1) we have Hamilton’s original definition 
with its imaginary terms and associated rules. In (11.2) a ‘. +’ sign is used to add  a  
scalar to a vector, which seems strange, yet works. In (11.3) we have an ordered pair 
comprising a scalar and a vector. 

Now you may be thinking: How is it possible to have three different definitions 
for the same object? Well, I would argue that you can call an object whatever you 
like, so long as they are algebraically identical. For example, matrix notation is used 
to represent a set of linear equations, and leads to the same results as every-day 
equations. Therefore, both systems of notation are equally valid. 

Although I have employed the notation in (11.1) and (11.2) in other publications, 
in this book I have used ordered pairs. So what we need to show is that Hamilton’s 
original definition of a quaternion (11.1), with its scalar and three imaginary terms, 
can be replaced by an ordered pair (11.3) comprising a scalar and a ‘modern’ vector. 

11.3 Defining a Quaternion 

Let’s start with two quaternions .qa and .qb à la  Hamilton: 

. qa = sa + xai + ya j + zak

qb = sb + xbi + yb j + zbk

and the obligatory rules: 
.i2 = j2 = k2 = i jk = −1
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. 
i j = k, jk = i, ki = j
j i = −k, k j = −i, ik = − j

Our objective is to show that .qa and.qb can also be represented by the ordered pairs: 

. qa = [sa, a]
qb = [sb, b], sa, sb ∈ �, a,b ∈ �3

The quaternion product .qaqb expands to: 

. qaqb = [sa, a][sb, b] = [sa + xai + ya j + zak][sb + xbi + yb j + zbk]
= [(sasb − xaxb − ya yb − zazb)

+ (saxb + sbxa + yazb − ybza)i

+ (sa yb + sb ya + zaxb − zbxa) j

+ (sazb + sbza + xa yb − xb ya)k] (11.4) 

Equation (11.4) takes the form of another quaternion, and confirms that the quaternion 
product is closed. 

At this stage, Hamilton turned the imaginary terms .i, j, k into unit Cartesian 
vectors .i, j, k and transformed (11.4) into a vector form. The problem with this 
approach is that the vectors retain their imaginary roots. The author Simon Altmann 
suggests replacing the imaginaries by the ordered pairs: 

. i = [0, i], j = [0, j], k = [0, k]
which are themselves quaternions, and called quaternion units. 

The idea of defining a quaternion in terms of quaternion units is exactly the same 
as defining a vector in terms of its unit Cartesian vectors. Furthermore, it permits 
vectors to exist without any imaginary associations. 

Let’s substitute these quaternion units in (11.4) together with .[1, 0] = 1: 

. [sa, a][sb, b] = [(sasb − xaxb − ya yb − zazb)[1, 0]
+ (saxb + sbxa + yazb − ybza)[0, i]
+ (sa yb + sb ya + zaxb − zbxa)[0, j]
+ (sazb + sbza + xa yb − xb ya)[0, k]] (11.5) 

Next, we expand (11.5) using previously defined rules: 

. [sa, a][sb, b] = [[sasb − xaxb − ya yb − zazb, 0]
+ [0, (saxb + sbxa + yazb − ybza)i]
+ [0, (sa yb + sb ya + zaxb − zbxa)j]
+ [0, (sazb + sbza + xa yb − xb ya)k]] (11.6)
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A vertical scan of (11.6) reveals some hidden vectors: 

. [sa, a][sb, b] = [[sasb − xaxb − ya yb − zazb, 0]
+ [0, sa(xbi + ybj + zbk) + sb(xa i + yaj + zak)

+ (yazb − ybza)i + (zaxb − zbxa)j + (xa yb − xb ya)k]] (11.7) 

Equation (11.7) contains two ordered pairs which can now be combined: 

. [sa, a][sb, b] = [sasb − xaxb − ya yb − zazb
+ sa(xbi + ybj + zbk) + sb(xa i + yaj + zak)

+ (yazb − ybza)i + (zaxb − zbxa)j + (xa yb − xb ya)k] (11.8) 

If we make: 

. a = xa i + yaj + zak

b = xbi + ybj + zbk

and substitute them in (11.8) we get: 

.[sa, a][sb, b] = [sasb − a · b, sab + sba + a × b] (11.9) 

which defines the quaternion product. 
From now on, we don’t have to worry about Hamilton’s rules as they are embedded 

within (11.9). Furthermore, our vectors have no imaginary associations. 
Although Rodrigues did not have access to Gibbs’ vector notation used in (11.9), 

he managed to calculate the equivalent algebraic expression, which was some 
achievement. 

11.3.1 The Quaternion Units 

Using (11.9) we can check to see if the quaternion units are imaginary by squaring 
them: 

. i = [0, i]
i2 = [0, i][0, i]

= [i · i, i × i]
= [−1, 0]

which is a real quaternion and equivalent to .−1, confirming that .[0, i] is imaginary. 
Using a similar expansion we can shown that .[0, j] and .[0, k] have the same 
property.
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Now let’s compute the products .i j, jk and . ki : 

. i j = [0, i][0, j]
= [−i · j, i × j]
= [0, k]

which is the quaternion unit . k. 

. jk = [0, j][0, k]
= [−j · k, j × k]
= [0, i]

which is the quaternion unit . i . 

. ki = [0, k][0, i]
= [−k · i, k × i]
= [0, j]

which is the quaternion unit . j . 
Next, let’s confirm that .i jk = −1: 

. i jk = [0, i][0, j][0, k]
= [0, k][0, k]
= [−k · k, k × k]
= [−1, 0]

which is a real quaternion equivalent to .−1, confirming that .i jk = −1. 
Thus the notation of ordered pairs upholds all of Hamilton’s rules. However, the 

last double product assumes that quaternions are associative. So let’s double check 
to show that .(i j)k = i( jk): 

. i( jk) = [0, i][0, j][0, k]
= [0, i][0, i]
= [−i · i, i × i]
= [−1, 0]

which is correct. 

11.3.2 Quaternion Products 

Although we have yet to discover how quaternions are used to rotate vectors, let’s 
concentrate on their algebraic traits by evaluating an example. 

.qa = [1, 2i + 3j + 4k]
qb = [2, 3i + 4j + 5k]
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The quaternion product .qaqb is: 

. qaqb = [1, 2i + 3j + 4k][2, 3i + 4j + 5k]
= [1 × 2 − (2 × 3 + 3 × 4 + 4 × 5),

1(3i + 4j + 5k) + 2(2i + 3j + 4k)

+ (3 × 5 − 4 × 4)i − (2 × 5 − 4 × 3)j + (2 × 4 − 3 × 3)k]
= [−36, 7i + 10j + 13k − i + 2j − k]
= [−36, 6i + 12j + 12k]

which is another ordered pair representing a quaternion. 
Having shown that Hamilton’s imaginary notation has a vector equivalent, and 

can be represented as an ordered pair, we continue with this notation and describe 
other features of quaternions. Note that we can abandon Hamilton’s rules as they 
are embedded within the definition of the quaternion product, and will surface in the 
following definitions. 

11.4 Algebraic Definition 

A quaternion is the ordered pair: 

. q = [s, v], s ∈ �, v ∈ �3

If we express . v in terms of its components, we have: 

. q = [s, x i + yj + zk], s, x, y, z ∈ �

11.5 Adding and Subtracting Quaternions 

The adding and subtraction of quaternions employ the following rule: 

. qa = [sa, a]
qb = [sb, b]

qa ± qb = [sa ± sb, a ± b]
For example: 

.qa = [0.5, 2i + 3j − 4k]
qb = [0.1, 4i + 5j + 6k]

qa + qb = [0.6, 6i + 8j + 2k]
qa − qb = [0.4, −2i − 2j − 10k]
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11.6 Real Quaternion 

A real quaternion has a zero vector term: 

. q = [s, 0]
The product of two real quaternions is: 

. qa = [sa, 0]
qb = [sb, 0]

qaqb = [sa, 0][sb, 0]
= [sasb, 0]

which is another real quaternion, and shows that they behave just like real numbers: 

. [s, 0] ≡ s

We have already come across this with complex numbers containing a zero imaginary 
term: 

. a + bi = a, when b = 0

11.7 Multiplying a Quaternion by a Scalar 

Intuition suggests that multiplying a quaternion by a scalar should obey the rule: 

. q = [s, v]
λq = λ[s, v], λ ∈ �

= [λs, λv]
For example: 

. q = 3[2, 3i + 4j + 5k]
= [6, 9i + 12j + 15k]

We can confirm our intuition by multiplying a quaternion by a scalar in the form of 
a real quaternion: 

. q = [s, v]
λ = [λ, 0]

λq = [λ, 0][s, v]
= [λs, λv]

which is excellent confirmation.
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11.8 Pure Quaternion 

Hamilton defined a pure quaternion as one having a zero scalar term: 

. q = xi + y j + zk

and is just a vector, but with imaginary qualities. Simon Altmann, and others, believe 
that this was a serious mistake on Hamilton’s part to call a quaternion with a zero 
real term, a vector. 

The main issue is that there are two types of vectors: polar and axial, also called 
a pseudovector. Richard Feynman describes polar vectors as ‘honest’ vectors [ 7] 
and represent the every-day vectors of directed lines. Whereas, axial vectors are 
computed from polar vectors, such as in a vector product. However, these two types 
of vector do not behave in the same way when transformed. For example, given two 
‘honest’, polar vectors. a and. b, we can compute the axial vector: .c = a×b. Next, if 
we subject. a and. b to an inversion transform through the origin, such that. a becomes 
.−a, and . b becomes .−b, and compute their cross product .(−a) × (−b), we still get 
. c! Which implies that the axial vector. c must not be transformed along with. a and. b. 

It could be argued that the inversion transform is not a ‘proper’ transform as it 
turns a right-handed set of axes into a left-handed set. But in physics, laws of nature 
are expected to work in either system. Unfortunately, Hamilton was not aware of this 
distinction, as he had only just invented vectors. However, in the intervening years, 
it has become evident that Hamilton’s quaternion vector is an axial vector, and not a 
polar vector. 

As we will see, in 3D rotations quaternions take the form: 

. q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v
]

where. θ is the angle of rotation and. v is the axis of rotation, and when we set.θ = 180◦, 
we get: 

. q = [0, v]
which remains a quaternion, even though it only contains a vector part. 

Consequently, we define a pure quaternion as: 

. q = [0, v]
The product of two pure quaternions is: 

. qa = [0, a]
qb = [0, b]

qaqb = [0, a][0, b]
= [−a · b, a × b]

which is no longer ‘pure’, as some of the original vector information has ‘tunnelled’ 
across into the real part via the dot product.
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11.9 Unit Quaternion 

Let’s pursue this analysis further by introducing some familiar vector notation. 
Give vector . v, then: 

. v = λv̂, where λ = ‖v‖ and ‖v̂‖ = 1

Combining this with the definition of a pure quaternion we get: 

. q = [0, v]
= [0, λv̂]
= λ[0, v̂]

and reveals the object .[0, v̂] which is called the unit quaternion and comprises a 
zero scalar and a unit vector. It is convenient to identify this unit quaternion as . q̂: 

. q̂ = [0, v̂]
So now we have a notation similar to that of vectors where a vector . v is described in 
terms of its unit form: 

. v = λv̂

and a quaternion . q is also described in terms of its unit form: 

. q = λq̂

Note that . q̂ is an imaginary object as it squares to .−1: 

. q̂2 = [0, v̂][0, v̂]
= [−v̂ · v̂, v̂ × v̂]
= [−1, 0]
= −1

which is not too surprising, bearing in mind Hamilton’s original invention! 

11.10 Additive Form of a Quaternion 

We now come to the idea of splitting a quaternion into its constituent parts: a real 
quaternion and a pure quaternion. Again, intuition suggests that we can write a 
quaternion as: 

.q = [s, v]
= [s, 0] + [0, v]
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and we can test this by forming the algebraic product of two quaternions represented 
in this way: 

. qa = [sa, 0] + [0, a]
qb = [sb, 0] + [0, b]

qaqb = ([sa, 0] + [0, a])([sb, 0] + [0, b])
= [sa, 0][sb, 0] + [sa, 0][0, b] + [0, a][sb, 0] + [0, a][0, b]
= [sasb, 0] + [0, sab] + [0, sba] + [−a · b, a × b]
= [sasb − a · b, sab + sba + a × b]

which is correct, and confirms that the additive form works. 

11.11 Binary Form of a Quaternion 

Having shown that the additive form of a quaternion works, and discovered the unit 
quaternion, we can join the two objects together as follows: 

. q = [s, v]
= [s, 0] + [0, v]
= [s, 0] + λ[0, v̂]
= s + λq̂

Just to recap,. s is a scalar,. λ is the length of the vector term, and. q̂ is the unit quaternion 
.[0, v̂]. 

Look how similar this notation is to a complex number: 

. z = a + bi

q = s + λq̂

where .a, b, s, λ are scalars, . i is the unit imaginary and . q̂ is the unit quaternion. 

11.12 The Complex Conjugate of a Quaternion 

We have already discovered that the conjugate of a complex number .z = a + bi is 
given by: 

.z∗ = a − bi
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and is very useful in computing the inverse of. z. The  quaternion complex conjugate 
plays a similar role in computing the inverse of a quaternion. Therefore, given: 

. q = [s, v]
the quaternion conjugate is defined as: 

. q∗ = [s, −v]
For example: 

. q = [2, 3i − 4j + 5k]
q∗ = [2, −3i + 4j − 5k]

If we compute the product .qq∗ we obtain: 

. qq∗ = [s, v][s, −v]
=

[
s2 − v · (−v), −sv + sv + v × (−v)

]

=
[
s2 + v · v, 0

]

=
[
s2 + v2, 0

]

Let’s show that .qq∗ = q∗q: 

. q∗q = [s, −v][s, v]
=

[
s2 − (−v) · v, sv − sv + (−v) × v

]

=
[
s2 + v · v, 0

]

=
[
s2 + v2, 0

]

= qq∗

Now let’s show that .(qaqb)∗ = q∗
bq

∗
a : 

. qa = [sa, a]
qb = [sb, b]

qaqb = [sa, a][sb, b]
= [sasb − a · b, sab + sba + a × b]

(qaqb)
∗ = [sasb − a · b, −sab − sba − a × b] (11.10)
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Next, we compute .q∗
bq

∗
a : 

. q∗
a = [sa, −a]

q∗
b = [sb, −b]

q∗
bq

∗
a = [sb, −b][sa, −a]

= [sasb − a · b, −sab − sba − a × b] (11.11) 

And as (11.10) equals (11.11), .(qaqb)∗ = q∗
bq

∗
a . 

11.13 Norm of a Quaternion 

The norm of a complex number .z = a + bi is defined as: 

. |z| =
√
a2 + b2

which allows us to write: 
. zz∗ = |z|2

Similarly, the norm of a quaternion . q is defined as: 

. q = [s, v]
= [s, λv̂]

|q| =
√
s2 + λ2

where .λ = ‖v‖ which allows us to write: 

. qq∗ = |q|2

For example: 

. q = [1, 4i + 4j − 4k]
|q| =

√
12 + 42 + 42 + (−4)2

= √
49

= 7

11.14 Normalised Quaternion 

A quaternion with a unit norm is called a normalised quaternion. For example, the 
quaternion .q = [s, v] is normalised by dividing it by .|q|: 

.q ′ = q√
s2 + λ2
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We must be careful not to confuse the unit quaternion with a unit-norm quaternion. 
The unit quaternion is.[0, v̂]with a unit-vector part, whereas a unit-norm quaternion 
is normalised such that .s2 + λ2 = 1. 

I will be careful to distinguish between these two terms as many authors–including 
myself–use the term unit quaternion to describe a quaternion with a unit norm. For 
example: 

. q = [1, 4i + 4j − 4k]

has a norm of . 7, and . q is normalised by dividing by . 7: 

. q ′ = 1
7 [1, 4i + 4j − 4k]

The type of unit-norm quaternion we will be using takes the form: 

. q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

because .cos2 θ + sin2 θ = 1. 

11.15 Quaternion Products 

Having shown that ordered pairs can represent a quaternion and its various manifes-
tations, let’s summarise the products we will eventually encounter. To start, we have 
quaternion products: 

. qaqb = [sa, a][sb, b]
= [sasb − a · b, sab + sba + a × b]

11.15.1 Product of Pure Quaternions 

Given two pure quaternions: 

. qa = [0, a]
qb = [0, b]

their product is: 

.qaqb = [0, a][0, b]
= [−a · b, a × b]
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11.15.2 Product of Unit-Norm Quaternions 

Given two unit-norm quaternions: 

. qa = [sa, a]
qb = [sb, b]

where .|qa | = |qb| = 1. Their product is another unit-norm quaternion, which is 
proved as follows. 

We assume.qc = [sc, c] and show that .|qc| = s2c + c2 = 1 where: 

. [sc, c] = [sa, a][sb, b]
= [sasb − a · b, sab + sba + a × b]

Let’s assume the angle between . a and . b is . θ , which permits us to write: 

. sc = sasb − ab cos θ

c = sabb̂ + sbaâ + ab sin θ
(
â × b̂

)

Therefore: 

. s2c = (sasb − ab cos θ)(sasb − ab cos θ)

= s2a s
2
b − 2sasbab cos θ + a2b2 cos2 θ

Figure 11.2 shows the geometry representing . c. 

. d2 = s2ba
2 + s2ab

2 − 2sasbab cos(π − θ)

= s2ba
2 + s2ab

2 + 2sasbab cos θ

c2 = d2 + a2b2 sin2 θ

= s2ba
2 + s2ab

2 + 2sasbab cos θ + a2b2 sin2 θ

s2c + c2 = s2a s
2
b − 2sasbab cos θ + a2b2 cos2 θ + s2ba

2 + s2ab
2 + 2sasbab cos θ + a2b2 sin2 θ

= s2a s
2
b + a2b2 + s2ba

2 + s2ab
2

= s2a
(
s2b + b2

)
+ a2

(
s2b + b2

)

= s2a + a2

= 1

Therefore, the product of two unit-norm quaternions is another unit-norm quaternion. 
Consequently, multiplying a quaternion by a unit-norm quaternion, does not change
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Fig. 11.2 Geometry for 
. sabb̂+sbaâ+ab sin θ(â× b̂)

its norm: 

. qa = [sa, a]
|qa | = 1

qb = [sb, b]
|qaqb| = |qb|

11.15.3 Square of a Quaternion 

The square of a quaternion is given by: 

. v = x i + yj + zk

q = [s, v]
q2 = [s, v][s, v]

=
[
s2 − v · v, 2sv + v × v

]

=
[
s2 − v · v, 2sv

]

=
[
s2 − x2 − y2 − z2, 2s(x i + yj + zk)

]

For example: 

.q = [7, 2i + 3j + 4k]
q2 =

[
72 − 22 − 32 − 42, 14(2i + 3j + 4k)

]

= [20, 28i + 42j + 56k]
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The square of a pure quaternion is: 

. v = x i + yj + zk

q = [0, v]
q2 = [0, v][0, v]

= [0 − v · v, v × v]
= [0 − v · v, 0]
=

[
−

(
x2 + y2 + z2

)
, 0

]

which makes the square of a pure, unit-norm quaternion equal to .−1, and was one 
of the results, to which some 19th-century mathematicians objected. 

11.15.4 Norm of the Quaternion Product 

In proving that the product of two unit-norm quaternions is another unit-norm quater-
nion we saw that: 

. qa = [sa, a]
qb = [sb, b]
qc = qaqb

|qc|2 = s2a
(
s2b + b2

)
+ a2

(
s2b + b2

)

=
(
s2a + a2

) (
s2b + b2

)

which, if we ignore the constraint of unit-norm quaternions, shows that the norm of 
a quaternion product equals the product of the individual norms: 

. |qaqb|2 = |qa |2|qb|2
|qaqb| = |qa ||qb|

11.16 Inverse Quaternion 

An important feature of quaternion algebra is the ability to divide two quaternions 
.qb/qa , as long as .qa does not vanish. 

By definition, the inverse quaternion .q−1 of . q satisfies: 

.qq−1 = [1, 0] = 1 (11.12)
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To isolate .q−1, we multiply (11.12) by .q∗: 

. |q∗qq−1 = q∗

q|2q−1 = q∗ (11.13) 

and from (11.13) we can write: 

. q−1 = q∗

|q|2
If . q is a unit-norm quaternion, then: 

. q−1 = q∗

which is useful in the context of rotations. Furthermore, as: 

. (qaqb)
∗ = q∗

bq
∗
a

then: 
. (qaqb)

−1 = q−1
b q−1

a

Note that .qq−1 = q−1q: 

. qq−1 = qq∗

|q|2 = 1

q−1q = q∗q
|q|2 = 1

Thus, we represent the quotient .qb/qa as: 

. qc = qb
qa

= qbq
−1
a

= qbq∗
a

|qa |2
For completeness let’s evaluate the inverse of . q where: 

.q =
[
1, 1√

3
i + 1√

3
j + 1√

3
k
]

q∗ =
[
1, − 1√

3
i − 1√

3
j − 1√

3
k
]

|q|2 = 1 + 1
3 + 1

3 + 1
3 = 2

q−1 = q∗

|q|2 = 1
2

[
1, − 1√

3
i − 1√

3
j − 1√

3
k
]



11.17 Matrices 263

It should be clear that .q−1q = 1: 

. q−1q = 1
2

[
1, − 1√

3
i − 1√

3
j − 1√

3
k
] [

1, 1√
3
i + 1√

3
j + 1√

3
k
]

= 1
2

[
1 + 1

3 + 1
3 + 1

3 , 0
]

= 1

11.17 Matrices 

Matrices provide another way to express a quaternion product. For convenience, 
let’s repeat (11.8) again and show it in matrix form: 

. [sa, a] [sb, b] = [sasb − xaxb − ya yb − zazb,

+ sa (xbi + ybj + zbk) + sb(xa i + yaj + zak)

+ (yazb − ybza)i + (zaxb − zbxa)j + (xa yb − xb ya)k]

=

⎡

⎢⎢
⎣

sa −xa −ya −za
xa sa −za ya
ya za sa −xa
za −ya xa sa

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

sb
xb
yb
zb

⎤

⎥⎥
⎦ (11.14) 

Let’s recompute the product .qaqb using the above matrix: 

. qa = [1, 2i + 3j + 4k]

qb = [2, 3i + 4j + 5k]

qaqb =

⎡

⎢
⎢
⎣

1 −2 −3 −4
2 1 −4 3
3 4 1 −2
4 −3 2 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

2
3
4
5

⎤

⎥
⎥
⎦

=

⎡

⎢⎢
⎣

−36
6
12
12

⎤

⎥⎥
⎦

= [−36, 6i + 12j + 12k]

11.17.1 Orthogonal Matrix 

We can demonstrate that the unit-norm quaternion matrix is orthogonal by showing 
that the product with its transpose equals the identity matrix. As we are dealing with
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matrices, .Q will represent the matrix for . q: 

. q = [s, x i + yj + zk]
where 1 = s2 + x2 + y2 + z2

Q =

⎡

⎢⎢
⎣

s −x −y −z
x s −z y
y z s −x
z −y x s

⎤

⎥⎥
⎦

QT =

⎡

⎢⎢
⎣

s x y z
−x s z −y
−y −z s x
−z y −x s

⎤

⎥⎥
⎦

QQT =

⎡

⎢⎢
⎣

s −x −y −z
x s −z y
y z s −x
z −y x s

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

s x y z
−x s z −y
−y −z s x
−z y −x s

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

For this to occur, .QT = Q−1. 

11.18 Basis for an Algebra 

Ordered pairs provide a simple notation for representing quaternions, and allow us to 
represent the real unit 1 as.[1, 0], and the imaginaries.i, j, k as. [0, i], [0, j], [0, k]
respectively. A quaternion then becomes a linear combination of these elements with 
associated real coefficients. Under such conditions, the elements form the basis for 
an algebra over the field of reals. 

Furthermore, because quaternion algebra supports division, and obeys the normal 
axioms of algebra, except that multiplication is non-commutative, it is called a divi-
sion algebra. The German mathematician Ferdinand Georg Frobenius (1849–1917) 
proved that only three such real associative division algebras exist: real numbers, 
complex numbers and quaternions [ 8]. 

The Cayley numbers. �, constitute a real division algebra, but the Cayley numbers 
are 8-dimensional and are not associative, i.e. .a(bc) 	= (ab)c for all .a, b, c ∈ �.
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11.19 Summary 

Quaternions are very similar to complex numbers, apart from the fact that they 
have three imaginary terms, rather than one. Consequently, they inherit some of 
the properties associated with complex numbers, such as norm, complex conjugate, 
unit norm and inverse. They can also be added, subtracted, multiplied and divided. 
However, unlike complex numbers, they anti-commute when multiplied. 

11.19.1 Summary of Definitions 

Quaternion 

. qa = [sa, a] = [sa, xa i + yaj + zak]

qb = [sb, b] = [sb, xbi + ybj + zbk]

Adding and subtracting 

. qa ± qb = [sa ± sb, a ± b]
Product 

. qaqb = [sa, a][sb, b]
= [sasb − a · b, sab + sba + a × b]

=

⎡

⎢
⎢
⎣

sa −xa −ya −za
xa sa −za ya
ya za sa −xa
za −ya xa sa

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

sb
xb
yb
zb

⎤

⎥
⎥
⎦

Square 

. v = x i + yj + zk

q2 = [s, v][s, v]
=

[
s2 − x2 − y2 − z2, 2s(x i + yj + zk)

]

Pure 

.v = x i + yj + zk

q2 = [0, v][0, v]
=

[
−(x2 + y2 + z2), 0

]
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Norm 

. v = λv̂

q = [s, λv̂]
|q| =

√
s2 + λ2

Unit norm 
. |q| =

√
s2 + λ2 = 1

Conjugate 

. q∗ = [s, −v]
(qaqb)

∗ = q∗
bq

∗
a

Inverse 

. q−1 = q∗

|q|2
(qaqb)

−1 = q−1
b q−1

a

11.20 Worked Examples 

Here are some further worked examples that employ the ideas described above. In 
some cases, a test is included to confirm the result. 

11.20.1 Adding and Subtracting Quaternions 

Add and subtract the following quaternions: 

. qa = [2, −2i + 3j − 4k]
qb = [1, −2i + 5j − 6k]

Solution 

.qa + qb = [3, −4i + 8j − 10k]
qa − qb = [1, 0i − 2j + 2k]
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11.20.2 Norm of a Quaternion 

Find the norm of the following quaternions: 

. qa = [2, −2i + 3j − 4k]
qb = [1, −2i + 5j − 6k]

Solution 

. |qa | =
√
22 + (−2)2 + 32 + (−4)2 = √

33

|qb| =
√
12 + (−2)2 + 52 + (−6)2 = √

66

11.20.3 Unit-norm Quaternions 

Convert these quaternions to their unit-norm form: 

. qa = [2, −2i + 3j − 4k]
qb = [1, −2i + 5j − 6k]

Solution 

. |qa | = √
33

|qb| = √
66

q ′
a = 1√

33
[2, −2i + 3j − 4k]

q ′
b = 1√

66
[1, −2i + 5j − 6k]

11.20.4 Quaternion Product 

Compute the product and reverse product of the following quaternions: 

. qa = [2, −2i + 3j − 4k]
qb = [1, −2i + 5j − 6k]

Solution 

.qaqb = [2, −2i + 3j − 4k][1, −2i + 5j − 6k]
= [2 × 1 − ((−2) × (−2) + 3 × 5 + (−4) × (−6)),

+ 2(−2i + 5j − 6k) + 1(−2i + 3j − 4k)

+ (3 × (−6) − (−4) × 5)i − ((−2) × (−6) − (−4) × (−2))j + ((−2) × 5 − 3 × (−2))k]
= [−41, −6i + 13j − 16k + 2i − 4j − 4k]
= [−41, −4i + 9j − 20k]
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. qbqa = [1, −2i + 5j − 6k][2 − 2i + 3j − 4k]
= [1 × 2 − ((−2) × (−2) + 5 × 3 + (−6) × (−4)),

+ 1(−2i + 3j − 4k) + 2(−2i + 5j − 6k)

+ (5 × (−4) − (−6) × 3)i − ((−2) × (−4) − (−6) × (−2))j + ((−2) × 3 − 5 × (−2))k]
= [−41, −6i + 13j − 16k − 2i + 4j + 4k]
= [−41, −8i + 17j − 12k]

Note: The only thing that has changed in this computation is the sign of the cross-
product axial vector. 

11.20.5 Square of a Quaternion 

Compute the square of this quaternion: 

. q = [2, −2i + 3j − 4k]
Solution 

. q2 = [2, −2i + 3j − 4k][2, −2i + 3j − 4k]
= [2 × 2 − ((−2) × (−2) + 3 × 3 + (−4) × (−4)),

+ 2 × 2(−2i + 3j − 4k)]
= [−25, −8i + 12j − 16k]

11.20.6 Inverse of a Quaternion 

Compute the inverse of this quaternion: 

. q = [2, −2i + 3j − 4k]
Solution 

. q∗ = [2, 2i − 3j + 4k]
|q|2 = 22 + (−2)2 + 32 + (−4)2 = 33

q−1 = 1
33 [2, 2i − 3j + 4k]
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12Quaternions in Space 

12.1 Introduction 

In this chapter I show how quaternions are used to rotate vectors about an arbitrary 
axis. We begin by reviewing some of the history associated with quaternions, and 
the development of octonions. 

We then examine various quaternion products to discover their rotational proper-
ties. This begins with two orthogonal quaternions, and moves towards the general 
case of using .qpq−1 where . q is a unit-norm quaternion, and . p is a pure quaternion. 

A technique shows how to express a quaternion product as a matrix. 
We continue to represent a quaternion as an ordered pair, with italic, lower-case 

letters to represent quaternions, and bold lower-case letters to represent vectors. 

12.2 Some History 

Hamilton invented quaternions in October 1843, and by December of the same year, 
his friend, Irish mathematician John Thomas Graves (1806–1870), had invented 
octaves, which would eventually be called octonions. Arthur Cayley had also been 
intrigued by Hamilton’s quaternions, and independently invented octonions in 1845. 
Octonions eventually became known as Cayley numbers rather than octaves, simply  
because Graves did not publish his results until 1848 – three years after Cayley! 

Just as quaternions can be defined in terms of ordered pairs of complex numbers, 
the octaves, or octonions, can be defined as ordered pairs of quaternions. 
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12.3 Quaternion Products 

A quaternion . q is the union of a scalar . s and a vector . v: 

. q = [s, v], s ∈ IR, v ∈ IR3

If we express . v in terms of its components, we have: 

. q = [s, x i + yj + zk], s, x, y, z ∈ IR

When two such quaternions are multiplied together, we obtain a third quaternion: 

. qa = [sa, va]
qb = [sb, vb]

qaqb = [sa, va][sb, vb]
= [sasb − va · vb, savb + sbva + va × vb]

Naturally, if .sa or .sb are zero, as in the case of a pure quaternion, the product is 
simplified. Therefore, in future I will omit any zero terms, to simplify the algebra. 

Hamilton had hoped that a quaternion could be used like a complex rotor, where: 

. Rθ = cos θ + i sin θ

rotates a complex number by . θ . Could a unit-norm quaternion . q be used to rotate 
a vector stored as a pure quaternion . p? Well yes, but only as a special case. To 
understand this, let’s construct the product of a unit-norm quaternion . q and a pure 
quaternion . p. The unit-norm quaternion . q is defined as: 

.q = [s, λv̂], s, λ ∈ IR, v̂ ∈ IR3 (12.1)

‖v̂‖ =  1 
s2 + λ2 = 1 

and the pure quaternion . p stores the vector . p to be rotated: 

. p = [0, p], p ∈ IR3

Let’s compute the product .p′ = qp and examine the vector part of .p′ to see if . p is 
rotated: 

. q = [s, λv̂]
p = [0, p]
p′ = qp

= [s, λv̂][0, p]
= [−λv̂ · p, sp + λv̂ × p] (12.2)
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We can see from (12.2) that the result is a general quaternion with a scalar and a 
vector component. 

12.3.1 Special Case 

The special case referred to above is that. v̂must be perpendicular to. p, which makes 
the dot product term.−λv̂·p in (12.2) vanish, and we are left with the pure quaternion: 

.p′ = [0, sp + λv̂ × p] (12.3) 

Figure 12.1 illustrates this scenario, where . p is perpendicular to . v̂, and .v̂ × p is 
perpendicular to the plane containing . p and . v̂. 

Now as. v̂ is a unit vector,.‖p‖ = ‖v̂×p‖, which means that we have two orthogonal 
vectors, i.e.. p and.v̂×p, with the same length. Therefore, to rotate. p about. v̂, all that 
we have to do is make .s = cos θ and .λ = sin θ in (12.3): 

. p′ = [0, p′]
= [0, cos θp + sin θ v̂ × p]

For example, to rotate a vector about the .z-axis, . q’s vector . v̂ must be aligned with 
the .z-axis as shown in Fig. 12.2. If we make the angle of rotation .θ = 45◦ then: 

. q = [s, λv̂]
= [cos θ, sin θk]
=

[√
2
2 ,

√
2
2 k

]

=
√
2
2 [1, k]

Fig. 12.1 Three orthogonal vectors.p, v̂ and.v̂ × p
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Fig. 12.2 The vector.2i is rotated.45◦ by the quaternion. q =
[√

2
2 ,

√
2
2 k

]

and if the vector to be rotated is .p = 2i, then: 

. p = [0, p]
= [0, 2i]
= 2[0, i]

There are now four product combinations worth exploring:.qp,.pq,.q−1 p and.pq−1. 
It’s not worth considering .qp−1 and .p−1q as .p−1 simply reverses the direction of 
. p. Let’s start with .qp: 

. q =
√
2
2 [1, k]

p = 2[0, i]
p′ = qp

= √
2[1, k][0, i]

= √
2[0, i + j]

and . p has been rotated .45◦ to .p′ = √
2i + √

2j. 
Next, .pq: 

. p = 2[0, i]
q =

√
2
2 [1, k]

p′ = pq

= √
2[0, i][1, k]

= √
2[0, i + i × k]

= √
2[0, i − j]

and . p has been rotated .−45◦ to .p′ = √
2i − √

2j.
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Next, .q−1 p, and as . q is a unit-norm quaternion, .q−1 = q∗: 

. q =
√
2
2 [1, k]

q−1 =
√
2
2 [1, −k]

p = 2[0, i]
p′ = q−1 p

= √
2[1, −k][0, i]

= √
2[0, i − k × i]

= √
2[0, i − j]

and . p has been rotated .−45◦ to .p′ = √
2i − √

2j. 
Finally, .pq−1: 

. p = 2[0, i]
q =

√
2
2 [1, k]

q−1 =
√
2
2 [1, −k]

p′ = pq−1

= √
2[0, i][1, −k]

= √
2[0, i − i × k]

= √
2[0, i + j]

and . p has been rotated .45◦ to .p′ = √
2i + √

2j. Thus, for orthogonal quaternions, . θ
is the angle of rotation, then: 

. qp = pq−1

pq = q−1 p

Before moving on, let’s see what happens to the product .qp when .θ = 180◦: 

. q = [cos θ, sin θk]
= [−1, 0]

p = 2[0, i]
p′ = qp

= 2[−1, 0][0, i]
= 2[0, −i + 0 × i]
= [0, −2i]

and . p has been rotated .180◦ to .p′ = −2i.
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Fig. 12.3 Rotating the vector.p = i + k by the quaternion. q = [
cos θ, sin θ v̂

]

Note that in all the above products, the vector has not been scaled during the 
rotation. This is because . q is a unit-norm quaternion. 

Now let’s see what happens if we change the angle between. v̂ and. p. Let’s reduce 
the angle to .45◦ and retain . q’s unit vector, as shown in Fig. 12.3, such that . v̂ is 
directed along the .z-axis, and .p = i + k. Therefore: 

. v̂ = k

q = [
cos θ, sin θ v̂

]

p = [0, p]
This time we must include the dot product term .− sin θ v̂ · p, as it is no longer 

zero: 

. q = [cos θ, sin θ v̂]
p = [0, p]
p′ = qp

= [cos θ, sin θ v̂][0, p]
= [− sin θ v̂ · p, cos θp + sin θ v̂ × p] (12.4) 

Substituting . v̂, . p and .θ = 45◦ in (12.4), we have: 

. v̂ = k

p = i + k

p′ =
[
−

√
2
2 k · (i + k) ,

√
2
2 (i + k) +

√
2
2 k × (i + k)

]

=
[
−

√
2
2 ,

√
2
2 i +

√
2
2 k +

√
2
2 j

]

=
√
2
2 [−1, i + j + k] (12.5) 

which, unfortunately, is no longer a pure quaternion. Multiplying the vector by a 
non-orthogonal quaternion has converted some of the vector information into the 
quaternion’s scalar component.
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12.3.2 General Case 

Not to worry. Could it be that an inverse quaternion reverses the operation? Let’s see 
what happens if we post-multiply .qp by .q−1. 

Given: 
. q = [cos θ, sin θk]

then: 

. q−1 = [cos θ, − sin θk]

=
[√

2
2 , −

√
2
2 k

]

=
√
2
2 [1, −k]

Therefore, post-multiplying (12.5) by .q−1 we have: 

. qp =
√
2
2 [−1, i + j + k]

q−1 =
√
2
2 [1, −k]

qpq−1 =
√
2
2 [−1, i + j + k]

√
2
2 [1, −k]

= 1
2 [−1, i + j + k][1, −k]

= 1
2 [−1 + 1, k + i + j + k + (i + j + k) × −k)]

= 1
2 [0, i + j + 2k − i + j]

= [0, j + k] (12.6) 

Equation (12.6) is a pure quaternion, with a norm of .
√
2, which is the same as . p. 

However, the vector has been rotated.90◦ rather than.45◦, twice the desired angle, as 
shown in Fig. 12.4. 

If this ‘sandwiching’ of the vector in the form of a pure quaternion by . q and. q−1

is correct, it suggests that increasing . θ to .90◦ should rotate .p = i + k by .180◦ to 
.−i + k. Let’s try this. 

Fig. 12.4 The vector.i + k is rotated.90◦ to.j + k
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Let .θ = 90◦, therefore: 

. q = [cos 90◦, sin 90◦k]
= [0, k]

p = [0, i + k]
qp = [0, k][0, i + k]

= [−1, k × (i + k)]
= [−1, j]

Next, we post-multiply .qp by .q−1: 

. q−1 = [0, −k]
qpq−1 = [−1, j][0, −k]

= [0, k + (j × −k)]
= [0, −i + k]

which confirms our prediction and suggests that .qpq−1 works. 

12.3.3 Double-Angle 

Now let’s show how this double-angle arises. We begin by defining a unit-norm 
quaternion . q: 

. q = [s, λv̂]
where .s2 + λ2 = 1. The vector . p to be rotated is encoded as a pure quaternion: 

. p = [0, p]
and the inverse quaternion .q−1 is: 

. q−1 = [s, −λv̂]
Therefore, the product .qpq−1 is: 

.qpq−1 = [
s, λv̂

] [0, p][s, −λv̂]
= [−λv̂ · p, sp + λv̂ × p

] [s, −λv̂]
= [−λsv̂ · p + λsp · v̂ + λ2(v̂ × p) · v̂,

+ λ2(v̂ · p)v̂ + s2p + λsv̂ × p

− λsp × v̂ − λ2(v̂ × p) × v̂
]

=
[
λ2(v̂ × p) · v̂, λ2(v̂ · p)v̂ + s2p + 2λsv̂ × p − λ2(v̂ × p) × v̂

]
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Note that: 
. (v̂ × p) · v̂ = 0

and 
. (v̂ × p) × v̂ = (v̂ · v̂)p − (p · v̂)v̂ = p − (p · v̂)v̂

Therefore: 

. qpq−1 =
[
0, λ2

(
v̂ · p)

v̂ + s2p + 2λsv̂ × p − λ2p + λ2
(
p · v̂) v̂

]

=
[
0, 2λ2

(
v̂ · p)

v̂ + (
s2 − λ2

)
p + 2λsv̂ × p

]
(12.7) 

Clearly, (12.7) is a pure quaternion as the scalar component is zero. However, it is 
not obvious where the angle doubling comes from. But look what happens when we 
make .s = cos θ and .λ = sin θ : 

. qpq−1 =
[
0, 2 sin2 θ

(
v̂ · p)

v̂ + (
cos2 θ − sin2 θ

)
p + 2 sin θ cos θ v̂ × p

]

= [
0, (1 − cos(2θ))

(
v̂ · p)

v̂ + cos(2θ)p + sin(2θ)v̂ × p
]

The double-angle trigonometric terms emerge! Now, if we want this product to 
actually rotate the vector by. θ , then we must build this in from the outset by halving 
. θ in . q: 

.q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

(12.8) 

which makes: 

.qpq−1 = [
0, (1 − cos θ)

(
v̂ · p)

v̂ + cos θp + sin θ v̂ × p
]

(12.9) 

The product .qpq−1 was discovered by Hamilton who failed to publish the result. 
Cayley, also discovered the product and published the result in 1845 [ 1]. However, 
Altmann notes that ‘in Cayley’s collected papers he concedes priority to Hamil-
ton.’ [ 2], which was a nice gesture. However, the person who had recognised the 
importance of the half-angle parameters in (12.8) before Hamilton and Cayley was 
Rodrigues—who published a solution that was not seen by Hamilton, but apparently, 
was seen by Cayley. 

Let’s test (12.9) using the previous example where we rotated a vector.p = i+ k, 
.θ = 90◦ about the quaternion’s vector .v̂ = k. 

. qpq−1 = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp + sin θ v̂ × p

]

= [
0, (v̂ · p)v̂ + v̂ × p

]

= [0, (k · (i + k))k + j]

= [0, j + k]

which agrees with (12.6). Thus, when a unit-norm quaternion takes the form: 

.q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]
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and a pure quaternion storing a vector to be rotated takes the form: 

. p = [0, p]
the pure quaternion: 

. p′ = qpq−1

stores the rotated vector . p′. Let’s show why this product preserves the magnitude of 
the rotated vector. 

. |p′| = |qp||q−1|
= |q||p||q−1|
= |q|2|p|

and if . q is a unit-norm quaternion, .|q| = 1, then .|p′| = |p|. 
You may be wondering what happens if the product is reversed to.q−1 pq? A guess 

would suggest that the rotation sequence is reversed, but let’s see what an algebraic 
analysis confirms. 

. q−1 pq = [s, −λv̂][0, p][s, λv̂]
= [λv̂ · p, sp − λv̂ × p][s, λv̂]
= [

λsv̂ · p − λsp · v̂,
λ2v̂ × p · v̂ + λ2v̂ · pv̂ + s2p − λsv̂ × p + λsp × v̂ − λ2v̂ × p × v̂

]

=
[
λ2(v̂ × p) · v̂, λ2(v̂ · p)v̂ + s2p − 2λsv̂ × p − λ2(v̂ × p) × v̂

]

Once again: 
. (v̂ × p) · v̂ = 0

and 
. (v̂ × p) × v̂ = p − (p · v̂)v̂

Therefore: 

. q−1 pq =
[
0, λ2(v̂ · p)v̂ + s2p − 2λsv̂ × p − λ2p + λ2(p · v̂)v̂

]

=
[
0, 2λ2(v̂ · p)v̂ + (

s2 − λ2
)
p − 2λsv̂ × p

]

Again, let’s make .s = cos θ and .λ = sin θ : 

. q−1 pq = [
0, (1 − cos(2θ))(v̂ · p)v̂ + cos(2θ)p − sin(2θ)v̂ × p

]

and the only thing that has changed from .qpq−1 is the sign of the cross-product 
term, which reverses the direction of its vector. However, we must remember to 
compensate for the angle-doubling by halving . θ : 

.q−1 pq = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp − sin θ v̂ × p

]
(12.10)
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Fig. 12.5 The point 
.P(0, 1, 1) is rotated.90◦ to 
.P ′(1, 1, 0) about the.y-axis 

Let’s see what happens when we employ (12.10) to rotate .p = i + k, .90◦ about 
the quaternion’s vector .v̂ = k: 

. q−1 pq = [0, (k · (i + k)k) − j]

= [0, −j + k]

which has rotated. p clockwise.90◦ about the quaternion’s vector. Therefore, the rotor 
.qpq−1 rotates a vector counter-clockwise, and .q−1 pq rotates a vector clockwise: 

. qpq−1 = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp + sin θ v̂ × p

]

q−1 pq = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp − sin θ v̂ × p

]

Let’s compute another example. Consider the point .P(0, 1, 1) in Fig. 12.5 which 
is to be rotated .90◦ about the .y-axis. We can see that the rotated point .P ′ has the 
coordinates.(1, 1, 0)which we will confirm algebraically. The point. P is represented 
by its position vector . p in the pure quaternion: 

. p = [0, p]
The axis of rotation is .v̂ = j, and the vector to be rotated is .p = j + k. Therefore: 

. qpq−1 = [
0, (1 − cos θ)(v̂ · p)v̂ + cos θp + sin θ v̂ × p

]

= [0, j · (j + k) j + j × (j + k)]

= [0, i + j]

and confirms that .P is indeed rotated to .(1, 1, 0). 
Now let’s explore how this product is represented in matrix form. 

12.4 Quaternions in Matrix Form 

Having discovered a vector equation to represent .qpq−1, let’s continue and convert 
it into a matrix. We will explore two methods: the first is a simple vectorial method 
which translates the vector equation representing .qpq−1 directly into matrix form. 
The second method uses matrix algebra to develop a rather cunning solution.
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12.4.1 Vector Method 

For the vector method it is convenient to describe the unit-norm quaternion as: 

. q = [s, v]
= [s, x i + yj + zk]

where: 
. s2 + ‖v‖2 = 1

and the pure quaternion as: 

. p = [0, p]
= [0, xpi + ypj + z pk]

A simple way to compute .qpq−1 is to use (12.9) and substitute .‖v‖ for . λ: 

. qpq−1 =
[
0, 2λ2

(
v̂ · p)

v̂ + (
s2 − λ2

)
p + 2λsv̂ × p

]

=
[
0, 2‖v‖2 (

v̂ · p)
v̂ + (

s2 − ‖v‖2)p + 2‖v‖sv̂ × p
]

Next, we substitute . v for .‖v‖v̂: 

. qpq−1 =
[
0, 2 (v · p) v + (

s2 − ‖v‖2)p + 2sv × p
]

Finally, as we are working with unit-norm quaternions to prevent scaling: 

. s2 + ‖v‖2 = 1

and 
. s2 − ‖v‖2 = 2s2 − 1

therefore: 
. qpq−1 =

[
0, 2(v · p)v + (

2s2 − 1
)
p + 2sv × p

]

If we let .p′ = qpq−1, which is a pure quaternion, we have: 

. p′ = qpq−1

= [0, p′]
=

[
0, 2(v · p)v + (

2s2 − 1
)
p + 2sv × p

]

p′ = 2(v · p)v + (
2s2 − 1

)
p + 2sv × p

We are only interested in the rotated vector .p′ comprising the three terms .2(v · p)v, 
.
(
2s2 − 1

)
p and.2sv × p, which can be represented by three individual matrices and 

summed together.
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. 2(v · p)v = 2
(
xxp + yyp + zz p

)(
x i + yj + zk

)

=
⎡
⎣
2x2 2xy 2xz
2xy 2y2 2yz
2xz 2yz 2z2

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

(
2s2 − 1

)
p =

(
2s2 − 1

)
xpi +

(
2s2 − 1

)
ypj +

(
2s2 − 1

)
z pk

=
⎡
⎣
2s2 − 1 0 0

0 2s2 − 1 0
0 0 2s2 − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

2sv × p = 2s
((

yz p − zyp
)
i + (

zxp − xz p
)
j + (

xyp − yxp
)
k
)

=
⎡
⎣

0 −2sz 2sy
2sz 0 −2sx

−2sy 2sx 0

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

Adding these matrices together: 

.p′ =
⎡
⎣
2

(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)
2
(
xy + sz

)
2

(
s2 + y2

) − 1 2
(
yz − sx

)
2
(
xz − sy

)
2
(
yz + sx

)
2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (12.11) 

or 

.p′ =
⎡
⎣
1 − 2

(
y2 + z2

)
2
(
xy − sz

)
2
(
xz + sy

)
2
(
xy + sz

)
1 − 2

(
x2 + z2

)
2
(
yz − sx

)
2
(
xz − sy

)
2
(
yz + sx

)
1 − 2

(
x2 + y2

)

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (12.12) 

where: 
. [0, p′] = qpq−1

Now let’s reverse the product. To compute the vector part of .q−1 pq all that we have 
to do is reverse the sign of .2sv × p: 

.p′ =
⎡
⎣
2

(
s2 + x2

) − 1 2
(
xy + sz

)
2
(
xz − sy

)
2
(
xy − sz

)
2

(
s2 + y2

) − 1 2
(
yz + sx

)
2
(
xz + sy

)
2
(
yz − sx

)
2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (12.13) 

or 

.p′ =
⎡
⎣
1 − 2

(
y2 + z2

)
2
(
xy + sz

)
2
(
xz − sy

)
2
(
xy − sz

)
1 − 2

(
x2 + z2

)
2
(
yz + sx

)
2
(
xz + sy

)
2
(
yz − sx

)
1 − 2

(
x2 + y2

)

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (12.14) 

where: 
.[0, p′] = q−1 pq
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Observe that (12.13) is the transpose of (12.11), and (12.14) is the transpose of 
(12.12). 

12.4.2 Geometric Verification 

Let’s illustrate the action of (12.11) by rotating the point .(0, 1, 1), 90◦ about the 
.y-axis, as shown in Fig. 12.6. The quaternion takes the form: 

. q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

which means that .θ = 90◦ and .v̂ = j, therefore: 

. q =
[
cos 45◦, sin 45◦ ĵ

]

Consequently: 

. s =
√
2
2 , x = 0, y =

√
2
2 , z = 0

Substituting these values in (12.11) gives:  

. p′ =
⎡
⎣
2

(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)
2
(
xy + sz

)
2

(
s2 + y2

) − 1 2
(
yz − sx

)
2
(
xz − sy

)
2
(
yz + sx

)
2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

⎡
⎣
1
1
0

⎤
⎦ =

⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎡
⎣
0
1
1

⎤
⎦

where .(0, 1, 1) is rotated to .(1, 1, 0), which is correct. 
So now we have a transform that rotates a point about an arbitrary axis intersecting 

the origin without the problems of gimbal lock associated with Euler transforms. 
Before moving on, let’s evaluate one more example. Let’s perform a.180◦ rotation 

about a vector .v = i + k. To begin with, we will deliberately forget to convert the . v
into a unit vector, just to see what happens to the final matrix. The quaternion takes 
the form: 

. q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

Fig. 12.6 The point 
.P(0, 1, 1) is rotated.90◦ to 
.P ′(1, 1, 0) about the.y-axis
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but we will use . v as specified. Therefore, with .θ = 180◦: 

. s = 0, x = 1, y = 0, z = 1

Substituting these values in (12.11) gives:  

. p′ =
⎡
⎣
2

(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)
2
(
xy + sz

)
2

(
s2 + y2

) − 1 2
(
yz − sx

)
2
(
xz − sy

)
2
(
yz + sx

)
2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

=
⎡
⎣
1 0 2
0 −1 0
2 0 1

⎤
⎦

⎡
⎣
1
0
0

⎤
⎦

which looks nothing like a rotation matrix, and reminds us how important it is to 
have a unit vector to represent the axis. Let’s repeat these calculations normalising 

the vector to .v̂ =
√
2
2 i +

√
2
2 k: 

. s = 0, x =
√
2
2 , y = 0, z =

√
2
2

Substituting these values in (12.11) gives:  

. p′ =
⎡
⎣
2

(
s2 + x2

) − 1 2 (xy − sz) 2 (xz + sy)
2 (xy + sz) 2

(
s2 + y2

) − 1 2 (yz − sx)
2 (xz − sy) 2 (yz + sx) 2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

⎡
⎣
0
0
1

⎤
⎦ =

⎡
⎣
0 0 1
0 −1 0
1 0 0

⎤
⎦

⎡
⎣
1
0
0

⎤
⎦

which not only looks like a rotation matrix, but has a determinant of . 1 and rotates 
the point .(1, 0, 0) to .(0, 0, 1) as shown in Fig. 12.7. 

Fig. 12.7 The point.P(1, 0, 0) is rotated.180◦ to.P ′(0, 0, 1) about.v̂
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12.5 Multiple Rotations 

Say a vector or frame of reference is subjected to two rotations specified by . q1
followed by. q2. There is a temptation to convert both quaternions to their respective 
matrix and multiply the matrices together. However, this not the most efficient way of 
combining the rotations. It is best to accumulate the multiple rotations as quaternions 
and then convert to matrix notation, if required. 

To illustrate this, consider the pure quaternion . p subjected to the first quaternion 
. q1: 

. q1 pq
−1
1

followed by a second quaternion . q2: 

. q2
(
q1 pq

−1
1

)
q−1
2

which can be expressed as: 
. (q2q1) p (q2q1)

−1

Extra quaternions can be added accordingly. Let’s illustrate this with two examples. 
To keep things simple, the first quaternion .q1 rotates .30◦ about the .y-axis: 

. q1 = [
cos 15◦, sin 15◦j

]

The second quaternion .q2 rotates .60◦ also about the .y-axis: 

. q2 = [
cos 30◦, sin 30◦j

]

Together, the two quaternions rotate.90◦ about the.y-axis. To accumulate these rota-
tions, we multiply them together: 

. q1q2 = [
cos 15◦, sin 15◦j

] [
cos 30◦, sin 30◦j

]

= [
cos 15◦ cos 30◦ − sin 15◦ sin 30◦, cos 15◦ sin 30◦j + cos 30◦ sin 15◦j

]

=
√
2
2 [1, j]

which is a quaternion that rotates .90◦ about the .y-axis. Using the matrix (12.11) we  
have: 

. p′ =
⎡
⎣
2

(
s2 + x2

) − 1 2 (xy − sz) 2 (xz + sy)
2 (xy + sz) 2

(
s2 + y2

) − 1 2 (yz − sx)
2 (xz − sy) 2 (yz + sx) 2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

=
⎡
⎣

0 0 1
0 1 0

−1 0 0

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

which rotates points about the .y-axis by .90◦.
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For a second example, let’s just evaluate the quaternions. The first quaternion . q1
rotates .90◦ about the .x-axis, and .q2 rotates .90◦ about the .y-axis: 

. q1 =
√
2
2 [1, i]

q2 =
√
2
2 [1, j]

p = [0, i + j]
Therefore: 

. q2q1 =
√
2
2 [1, i]

√
2
2 [1, j]

= 1
2 [1, i + j − k]

(q2q1)
−1 = 1

2 [1, −i − j + k]

(q2q1) p = 1
2 [1, i + j − k] [0, i + j]

= 1
2 [−2, (i + j) + i − j]

= [−1, i]

(q2q1) p(q2q1)
−1 = 1

2 [−1, i] [1, −i − j + k]

= 1
2 [−1 + 1, i + j − k + i − j − k]

= [0, i − k]

Thus the point .(1, 1, 0) is rotated to .(1, 0, −1), which is correct. 

12.6 Rotating About an Off-Set Axis 

Now that we have a matrix to represent a quaternion rotor, we can employ it to 
resolve problems such as rotating about an off-set axis using the same techniques 
associated with normal rotation transforms. We use the following notation to rotate 
a point about a fixed axis parallel with the .y-axis: 

. 

⎡
⎢⎢⎣
x ′
y′
z′
1

⎤
⎥⎥⎦ = T(tx , 0, tz)Rβ, yT(−tx , 0, −tz)

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦

Therefore, by substituting the matrix .qpq−1 for .Rβ, y we have: 

.

⎡
⎢⎢⎣
x ′
y′
z′
1

⎤
⎥⎥⎦ = T(tx , 0, tz)

(
qpq−1

)
T(−tx , 0, −tz)

⎡
⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦
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Fig. 12.8 The cube is rotated.90◦ about the axis intersecting vertices 4 and 6 

Let’s test this by rotating our unit cube.90◦ about the axis intersecting vertices 4 and 
6 as shown in Fig. 12.8. The unit-norm quaternion to achieve this is: 

. q = [
cos 45◦, sin 45◦j

]

with the pure quaternion: 
. p = [0, p]

Consequently: 

. s =
√
2
2 , x = 0, y =

√
2
2 , z = 0

and using (12.11) in a homogeneous form we have: 

. p′ =

⎡
⎢⎢⎣
2

(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)
0

2
(
xy + sz

)
2

(
s2 + y2

) − 1 2
(
yz − sx

)
0

2
(
xz − sy

)
2
(
yz + sx

)
2

(
s2 + z2

) − 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xp
yp
z p
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xp
yp
z p
1

⎤
⎥⎥⎦

The other two matrices are: 

.T(−tx , 0, 0) =

⎡
⎢⎢⎣
1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

T(tx , 0, 0) =

⎡
⎢⎢⎣
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
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Multiplying these three matrices together creates: 

. p′T(−tx , 0, 0) =

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0

−1 0 0 1
0 0 0 1

⎤
⎥⎥⎦

T(tx , 0, 0)p
′T(−tx , 0, 0) =

⎡
⎢⎢⎣
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 1 0
0 1 0 0

−1 0 0 1
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 1
0 1 0 0

−1 0 0 1
0 0 0 1

⎤
⎥⎥⎦

.T(tx , 0, 0)p
′T(−tx , 0, 0) =

⎡
⎢⎢⎣

0 0 1 1
0 1 0 0

−1 0 0 1
0 0 0 1

⎤
⎥⎥⎦ (12.15) 

Although not mathematically correct, the following statement shows the matrix 
(12.15) and the array of coordinates representing a unit cube, followed by the rotated 
cube’s coordinates. 

. 

⎡
⎢⎢⎣

0 0 1 1
0 1 0 0

−1 0 0 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 2 1 2 1 2 1 2
0 0 1 1 0 0 1 1
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

⎤
⎥⎥⎦

These coordinates are confirmed by Fig. 12.8. 

12.7 Converting a Rotation Matrix to a Quaternion 

Very often one has a 3D rotation matrix which would be nice to see as a quaternion. 
So let’s see how this can be realised. The matrix transform equivalent to .qpq−1 is: 

.qpq−1 =
⎡
⎣
2

(
s2 + x2

) − 1 2(xy − sz) 2(xz + sy)
2(xy + sz) 2

(
s2 + y2

) − 1 2(yz − sx)
2(xz − sy) 2(yz + sx) 2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (12.16) 

. =
⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦ (12.17) 

Inspection of (12.16) and (12.17) shows that by combining various elements we can 
isolate the terms of a quaternion .s, x, y, z. For example, by adding the diagonal 
terms of (12.17): .a11 + a22 + a33, we obtain:
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. a11 + a22 + a33 =
[
2

(
s2 + x2

)
− 1

]
+

[
2

(
s2 + y2

)
− 1

]
+

[
2

(
s2 + z2

)
− 1

]

= 6s2 + 2
(
x2 + y2 + z2

)
− 3

= 4s2 − 1

therefore: 
. s = 1

2

√
1 + a11 + a22 + a33

To isolate .x, y, z we employ: 

. x = 1

4s

(
a32 − a23

)

y = 1

4s

(
a13 − a31

)

z = 1

4s

(
a21 − a12

)

12.8 Summary 

This chapter has shown how a quaternion is used to rotate a vector about a quater-
nion’s vector. It would have been useful if this could have been achieved by the 
simple product .qp, like complex numbers. But as we saw, this only works when the 
quaternion is orthogonal to the vector. The product.qpq−1—discovered by Hamilton 
and Cayley—works for all orientations between a quaternion and a vector. It is also 
relatively easy to compute. We also saw that the product can be represented as a 
matrix, which can be integrated with other matrices. 

Perhaps one of the most interesting features of quaternions that has emerged in 
this chapter, is that their imaginary qualities are not required in any calculations, 
because they are embedded within the algebra. 

The reverse product .q−1 pq reverses the angle of rotation, and is equivalent to 
changing the sign of the rotation angle in .qpq−1. Consequently, it can be used to 
rotate a frame of reference in the same direction as .qpq−1. 

12.8.1 Summary of Definitions 

Rotating a vector by a quaternion 

.q = [s, v]
s2 + ‖v‖2 = 1

p = [0, p]
qpq−1 =

[
0, 2(v · p)v +

(
2s2 − 1

)
p + 2sv × p

]
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q = [
cos

(
θ 
2

)
, sin

(
θ 
2

)
v̂
]

p = [0, p] 
qpq−1 = [

0, (1 − cos θ)(v̂ · p)v̂ + cos θ p + sin θ ̂v × p
]

Matrix for rotating a vector by a quaternion 

. p′ =
⎡
⎣
1 − 2

(
y2 + z2

)
2(xy − sz) 2(xz + sy)

2(xy + sz) 1 − 2
(
x2 + z2

)
2(yz − sx)

2(xz − sy) 2(yz + sx) 1 − 2
(
x2 + y2

)

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

12.9 Worked Examples 

Here are some further worked examples that employ the ideas described above. 

12.9.1 Special Case Quaternion 

Using the special case of .qp, rotate .[0, j] .90◦ about the . xaxis. 

Solution 
Use .qp to rotate .p = [0, j] .90◦ about the .x-axis. 
For this to work . q must be orthogonal to . p: 

. q = [cos θ, sin θ i]

= [0, i]
and 

. p′ = qp

= [0, i][0, j]
= [0, k]

12.9.2 Rotating a Vector Using a Quaternion 

Use .qpq−1 to rotate .p = [0, j] .90◦ about the .x-axis. 
Solution 
For this to work: 

.q = [
cos

(
θ
2

)
, sin

(
θ
2

)
i
]

=
[√

2
2 ,

√
2
2 i

]

=
√
2
2 [1, i]
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and 

. p′ = qpq−1

=
√
2
2

√
2
2 [1, i] [0, j] [1, −i]

= 1
2 [0, j + k] [1, −i]

= 1
2 [0, (j + k) − j + k]

= [0, k]

12.9.3 Evaluate . qpq−1

Evaluate .qpq−1 for .p = [0, p] and .q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v
]
, where .θ = 360◦. 

Solution 

. q = [−1, 0]

qpq−1 = [−1, 0] [0, p] [−1, 0]

= [
0, −p

]
[−1, 0]

= [
0, p

]

which confirms that the vector remains unmoved, as expected. 

12.9.4 Evaluate .qpq−1 Using a Matrix 

Compute the matrix for .q =
[
1
2 ,

√
3
2 k

]
. 

Solution 
From. q: 

. s = 1
2 , x = 0, y = 0, z =

√
3
2

.p′ =
⎡
⎣
2

(
s2 + x2

) − 1 2
(
xy − sz

)
2
(
xz + sy

)
2
(
xy + sz

)
2

(
s2 + y2

) − 1 2
(
yz − sx

)
2
(
xz − sy

)
2
(
yz + sx

)
2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣
xp
yp
z p

⎤
⎦

=
⎡
⎢⎣

− 1
2 −

√
3
2 0√

3
2 − 1

2 0
0 0 1

⎤
⎥⎦

⎡
⎣
xp
yp
z p

⎤
⎦
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If we plug in the point .(1, 0, 0), it is rotated about the .z-axis by .120◦: 

. 

⎡
⎣

− 1
2√
3
2
1

⎤
⎦ =

⎡
⎢⎣

− 1
2 −

√
3
2 0√

3
2 − 1

2 0
0 0 1

⎤
⎥⎦

⎡
⎣
1
0
0

⎤
⎦
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13Interpolation 

13.1 Introduction 

This chapter covers linear and non-linear interpolation of scalars, and includes 
trigonometric and cubic polynomials. It also includes the interpolation of vectors 
and quaternions. 

13.2 Background 

Interpolation is not a branch of mathematics but rather a collection of techniques 
the reader will find useful when solving computer graphic problems. Basically, an 
interpolant is a strategy for selecting a number between two limits. For example, if the 
limits are 2 and 4, a parameter . t can be used to select the sequence 2.0, 2.2, 2.4, 2.6, 
2.8, 3.0, 3.2, 3.4, 3.6, 3.8, and 4. These numbers could then be used to translate, scale, 
rotate an object, move a virtual camera, or change the position, colour or brightness 
of a virtual light source. 

To implement the above interpolant for different limits we require a general algo-
rithm, which is one of the first exercises of this chapter. We also need to explore 
ways of controlling the spacing between the interpolated values. In animation, for 
example, we often need to move an object very slowly and gradually increase its 
speed. Conversely, we may want to bring an object to a halt, making its speed less 
and less. The interpolant function includes a parameter within its algorithm, which 
permits any interpolated value to be created at will. The parameter can depend upon 
time, or operate over a distance in space. 
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13.3 Linear Interpolation 

A linear interpolant generates equal spacing between the interpolated values for 
equal changes in the interpolating parameter. In the above example the increment 0.2 
is calculated by subtracting the first number from the second and dividing the result 
by 10, i.e. .(4 − 2)/10 = 0.2. Although this works, it is not in a very flexible form, 
so let’s express the problem differently. 

Given two numbers .n1 and . n2, which represent the start and final values of the 
interpolant, we require an interpolated value controlled by a parameter . t that varies 
between . 0 and . 1. When .t = 0, the result is . n1, and when .t = 1, the result is . n2. A  
solution to this problem is given by: 

. n = n1 + t (n2 − n1)

for when .n1 = 2, .n2 = 4 and .t = 0.5: 

. n = 2 + 1
2 (4 − 2) = 3

which is a halfway point. Furthermore, when.t = 0,.n = n1, and when.t = 1,.n = n2, 
which confirms that we have a sound interpolant. However, it can be expressed 
differently: 

.n = n1(1 − t) + n2t (13.1) 

which shows what is really going on, and forms the basis for further development. 
Figure 13.1 shows the graphs of .n = 1 − t and .n = t over the range .0 ≤ t ≤ 1. 

With reference to (13.1), we see that as . t changes from 0 to 1, the .(1 − t) term 
varies from 1 to 0. This attenuates the value of .n1 to zero over the range of . t , while 
the . t term scales .n2 from zero to its actual value. Figure 13.2 illustrates these two 
actions with .n1 = 1 and .n2 = 5. 

Observe that the terms .(1 − t) and . t sum to unity – this is not a coincidence. 
This type of interpolant ensures that if it takes a quarter of . n1, it balances it with 
three-quarters of . n2, and vice versa. Obviously we could design an interpolant that 
takes arbitrary portions of .n1 and . n2, but would lead to arbitrary results. 

Fig. 13.1 The graphs of 
.n = 1 − t and.n = t over the 
range. 0 ≤ t ≤ 1
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Fig. 13.2 The orange line 
shows the result of linearly 
interpolating between 1 and 
5 
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Fig. 13.3 Interpolating 
between the points. (1, 1)
and. (4, 5)
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Although this interpolant is extremely simple, it is widely used in computer graph-
ics software. Just to put it into context, consider the task of moving an object between 
two locations .(x1, y1, z1) and .(x2, y2, z2). The interpolated position is given by: 

. 

x = x1(1 − t) + x2t
y = y1(1 − t) + y2t
z = x1(1 − t) + z2t

⎫
⎬

⎭
0 ≤ t ≤ 1

The parameter . t could be generated from two frame values within an animation. 
What is assured by this interpolant, is that equal steps in . t result in equal steps in 
. x , . y, and . z. Figure 13.3 illustrates this linear spacing with a 2D example where we 
interpolate between the points .(1, 1) and .(4, 5). Note the equal spacing between 
the intermediate interpolated points. 

We can write (13.1) in matrix form as follows: 

. n = [(1 − t) t]
[
n1
n2

]

or as: 

. n = [t 1]
[−1 1

1 0

] [
n1
n2

]

The reader can confirm that this generates identical results to the algebraic form.
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13.4 Non-linear Interpolation 

A linear interpolant ensures that equal steps in the parameter . t give rise to equal 
steps in the interpolated values; but it is often required that equal steps in . t give 
rise to unequal steps in the interpolated values. We can achieve this using a variety 
of mathematical techniques. For example, we could use trigonometric functions or 
polynomials. To begin with, let’s look at a trigonometric solution. 

13.4.1 Trigonometric Interpolation 

In Chap. 4 we noted that .sin2 t + cos2 t = 1, which satisfies one of the requirements 
of an interpolant: the terms must sum to 1. If. t varies between 0 and.π/2,.cos2 t varies 
between 1 and 0, and.sin2 t varies between 0 and 1, which can be used to modify the 
two interpolated values .n1 and .n2 as follows: 

.n = n1 cos
2 t + n2 sin

2 t, 0 ≤ t ≤ π
2 (13.2) 

The interpolation curves are shown in Fig. 13.4. 
If .n1 = 1 and .n2 = 3 in (13.2), we obtain the curves shown in Fig. 13.5. If we  

apply this interpolant to two 2D points in space: .(1, 1) and .(4, 5), we obtain a 
straight-line interpolation, but the distribution of points is non-linear, as shown in 
Fig. 13.6. In other words, equal steps in . t give rise to unequal distances in space. 

Fig. 13.4 The curves for 
.n = cos2 t and. n = sin2 t
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Fig. 13.5 The orange curve 
interpolates between 1 and 3 

0 0.25 0.5 
0 

1 

2 

3 

n = cos2t 

n = 3sin2t 

t 

n 

n = cos2t+3sin2t



13.4 Non-linear Interpolation 299

Fig. 13.6 Interpolating 
between two points. (1, 1)
and. (4, 5)

0 1 2 3 4 50 

1 

2 

3 

4 

5 

t=0 

x 

y 

t=0.25 

t=0.5 

t=0.75 
t=1 

The main problem with this approach is that it is impossible to change the nature 
of the curve—it is a sinusoid, and its slope is determined by the interpolated values. 
One way of gaining control over the interpolated curve is to use a polynomial, which 
is the subject of the next section. 

13.4.2 Cubic Interpolation 

To begin with, let’s develop a cubic blending function that will be similar to the 
previous sinusoidal one. This can then be extended to provide extra flexibility. A 
cubic polynomial will form the basis of the interpolant: 

. v1 = at3 + bt2 + ct + d

and the final interpolant will be of the form: 

. n = [v1 v2]
[
n1
n2

]

The task is to find the values of the constants associated with the polynomials.v1 and 
. v2. The requirements are: 

1. The cubic function .v2 must grow from 0 to 1 for .0 ≤ t ≤ 1. 
2. The slope at a point . t must equal the slope at the point .(1− t). This ensures slope 
continuity over the range of the function. 
3. The value .v2 at any point . t must also produce .(1 − v2) at .(1 − t). This ensures 
curve continuity. 
.• To satisfy the first requirement: 

. v2 = at3 + bt2 + ct + d

and when .t = 0, .v2 = 0 and .d = 0. Similarly, when .t = 1, .v2 = a + b + c. 
.• We now need some calculus, which is described in a later chapter. To satisfy the
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second requirement, differentiate .v2 to obtain the slope: 

. 
dv2
dt

= 3at2 + 2bt + c = 3a(1 − t)2 + 2b(1 − t) + c

and equating constants we discover .c = 0 and .0 = 3a + 2b. 
.• To satisfy the third requirement: 

. at3 + bt2 = 1 − [a(1 − t)3 + b(1 − t)2]
where we discover .1 = a + b. But .0 = 3a + 2b, therefore .a = 2 and .b = 3. 
Therefore: 

.v2 = −2t3 + 3t2 (13.3) 

To find the curve’s mirror curve, which starts at 1 and collapses to 0 as. t moves from 
0 to 1, we subtract  (13.3) from 1:  

. v1 = 2t3 − 3t2 + 1

Therefore, the two polynomials are: 

.v1 = 2t3 − 3t2 + 1 (13.4) 

.v2 = −2t3 + 3t2 (13.5) 

and are shown in Fig. 13.7. They are used as interpolants as follows: 

. n = v1n1 + v2n2

or in matrix form: 

. n = [2t3 − 3t2 + 1 − 2t3 + 3t2]
[
n1
n2

]

n = [t3 t2 t 1]

⎡

⎢
⎢
⎣

2 −2
−3 3
0 0
1 0

⎤

⎥
⎥
⎦

[
n1
n2

]

(13.6) 

If we let .n1 = 1 and .n2 = 3 we obtain the curves shown in Fig. 13.8. And  if  we  
apply the interpolant to the points.(1, 1) and.(8, 3) we obtain the line shown in Fig. 
13.9. This interpolant can be used to blend any pair of numbers together. 

Now let’s examine the scenario where we interpolate between two points .P1 and 
.P2, and have to arrange that the interpolated curve is tangential with a vector at 
each point. Such tangent vectors forces the curve into a desired shape, as shown 
in Fig. 13.11. Unfortunately, calculus is required to compute the slope of the cubic 
polynomial, which is covered in a later chapter. 

As this interpolant can be applied to 2D and 3D points, .P1 and .P2 are repre-
sented by their position vectors .P1 and .P2, which are unpacked for each Cartesian 
component.
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Fig. 13.7 Two cubic 
polynomials 
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Fig. 13.8 Interpolating 
between 1 and 3 using a 
cubic interpolant 
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Fig. 13.9 A cubic 
interpolant between points 
.(1, 1) and. (8, 3)
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We now have two position vectors .P1 and.P2 and their respective tangent vectors 
.s1 and . s2. The requirement is to modulate the interpolating curve in Fig. 13.8 with 
two further cubic curves. One that blends out the tangent vector .s1 associated with 
.P1, and the other that blends in the tangent vector .s2 associated with.P2. Let’s begin 
with a cubic polynomial to blend .s1 to zero: 

.vout = at3 + bt2 + ct + d
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.vout must equal zero when .t = 0 and .t = 1, otherwise it will disturb the start and 
end values. Therefore .d = 0, and: 

. a + b + c = 0

The rate of change of .vout relative to . t (i.e. .dvout/dt) must equal 1 when .t = 0, so  
it can be used to multiply . s1. When .t = 1, .dvout/dt must equal 0 to attenuate any 
trace of . s1: 

. 
dvout
dt

= 3at2 + 2bt + c

but.dvout/dt = 1 when.t = 0, and.dvout/dt = 0 when.t = 1. Therefore,.c = 1, and: 

. 3a + 2b + 1 = 0

Using (13.6) implies that .b = −2 and.a = 1. Therefore, the polynomial .vout has the 
form: 

.vout = t3 − 2t2 + t (13.7) 

Using a similar argument, one can prove that the function to blend in .s2 equals: 

.vin = t3 − t2 (13.8) 

Graphs of (13.4), (13.5), (13.7) and (13.8) are shown in Fig. 13.10. The complete 
interpolating function looks like: 

. n = [2t3 − 3t2 + 1 − 2t3 + 3t2 t3 − 2t2 + t t3 − t2]

⎡

⎢
⎢
⎣

P1
P2
s1
s2

⎤

⎥
⎥
⎦

and unpacking the constants and polynomial terms we obtain: 

. n = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

P1
P2
s1
s2

⎤

⎥
⎥
⎦

Fig. 13.10 The four 
Hermite interpolating curves 
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This type of interpolation is called Hermite interpolation, after the French math-
ematician Charles Hermite (1822–1901). Hermite also proved in 1873 that ‘. e’ is  
transcendental. 

Now let’s illustrate Hermite interpolation with a 2D example. It is also very easy 
to implement the same technique in 3D. Figure 13.11 shows how two points . (0, 0)
and.(1, 1) are to be connected by a cubic curve that responds to the initial and final 
tangent vectors. At the start point .(0, 0) the tangent vector is .[−5 0]T, and at the 
final point .(1, 1) the tangent vector is .[0 − 5]T. The . x and . y interpolants are: 

. x = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
1

−5
0

⎤

⎥
⎥
⎦

y = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
1
0

−5

⎤

⎥
⎥
⎦

which become: 

. x = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

−7
13
−5
0

⎤

⎥
⎥
⎦ = −7t3 + 13t2 − 5t

y = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

−7
8
0
0

⎤

⎥
⎥
⎦ = −7t3 + 8t2

When these polynomials are plotted over the range .0 ≤ t ≤ 1 we obtain the curve 
shown in Fig. 13.11. 

We have now reached a point where we are starting to discover how paramet-
ric polynomials can be used to generate space curves, which is the subject of the 

Fig. 13.11 A Hermite curve 
between the points. (0, 0)
and.(1, 1) with tangent 
vectors.[−5 0]T and 
.[0 − 5]T not drawn to scale
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next chapter. So, to conclude this chapter on interpolants, we will take a look at 
interpolating vectors. 

13.5 Interpolating Vectors 

So far we have been interpolating between a pair of numbers. Now the question 
arises: can we use the same for interpolating vectors? We can if we interpolate both 
the magnitude and direction of a vector. However, if we linearly interpolate only the 
.x- and .y-components of two vectors, the in-between vectors would neither respect 
their orientation nor their magnitude. But if we defined two 2D vectors as.l1, θ1 and 
.l2, θ2, where . l is the magnitude and . θ the rotated angle, then a linearly interpolated 
vector is given by: 

l = l1(1 − t) + l2t 
θ = θ1(1 − t) + θ2t 

and the .x- and .y-components of the interpolated vector are: 

. lx = l cos θ

ly = l sin θ

Figure 13.12 shows the trace of interpolating between vector .2, 45◦ and vector 
.3, 135◦. The half-way point, when.t = 0.5, generates the vector.2.5, 90◦. The  same  
technique can be used with 3D vectors using the equivalent polar notation. 

We can interpolate between .x- .y- and .z-coordinates if we respect the magnitude 
and orientation of the encoded vectors using the following technique. Figure 13.13 
shows two unit vectors .v1 and.v2 separated by an angle . θ . The interpolated vector . v
is defined as a proportion of .v1 and a proportion of . v2: 

. v = av1 + bv2

Fig. 13.12 The trace of 
interpolating between 
vectors.2, 45◦ and.3, 135◦
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Fig. 13.13 Vector. v is 
derived from part. a of of. v1
and part. b of. v2

Let’s define the values of. a and. b such that they are a function of the separating angle 
. θ . Vector . v is .tθ from.v1 and.(1− t)θ from. v2, and it is evident from Fig. 13.13 that 
using the sine rule: 

.
a

sin[(1 − t)θ ] = b

sin(tθ)
(13.9) 

and furthermore: 

. m = a cos(tθ)

n = b cos[(1 − t)θ ]
where: 

.m + n = 1 (13.10) 

From (13.9): 

. b = a sin(tθ)

sin[(1 − t)θ ]
and from (13.10) we get: 

. a cos(tθ) + a sin(tθ) cos[(1 − t)θ ]
sin[(1 − t)θ ] = 1

Solving for . a we find: 

. a = sin[(1 − t)θ ]
sin θ

b = sin(tθ)

sin θ

Therefore, the final interpolant is: 

.v = sin[(1 − t)θ ]
sin θ

v1 + sin(tθ)

sin θ
v2 (13.11)
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To see how (13.11) operates, let’s consider a simple exercise of interpolating 
between two unit vectors .[1 0]T and .[−1/

√
2 1/

√
2]T. The angle between the 

vectors . θ is .135◦. (13.11) is used to interpolate the .x- and the .y-components indi-
vidually: 

. vx = sin[(1 − t)135◦]
sin 135◦ × (1) + sin(t135◦)

sin 135◦ ×
(
− 1√

2

)

vy = sin[(1 − t)135◦]
sin 135◦ × (0) + sin(t135◦)

sin 135◦ × 1√
2

Figure 13.14 shows the interpolating curves and Fig. 13.15 shows a trace of the 
interpolated vectors. 

Two observations to note with (13.11): 
. • The angle . θ is the angle between the two vectors, which, if not known, can be 
computed using the dot product. 
. • Secondly, the range of . θ is given by .0 ≤ θ ≤ 180◦, but when .θ = 180◦ the 
denominator collapses to zero. 

So far, we have only considered unit vectors. Now let’s see how the interpolant 
reacts to vectors of different magnitudes. As a test, we can input the following vectors 
to (13.11): 

. v1 = [2 0]T, and v2 = [0 1]T

0 0.5  1

-0.5 

0.5 

1 

t 

vx 

vy 
v 

Fig. 13.14 Curves of.vx and.vy using (13.11)
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Fig. 13.16 Interpolating between the vectors.[2 0]T and. [0 1]T

The separating angle .θ = 90◦, and the result is shown in Fig. 13.16. Note how  the  
initial length of .v1 reduces from 2 to 1 over .90◦. It is left to the reader to examine 
other combinations of vectors. There is one more application for this interpolant, and 
that is with quaternions. 

13.6 Interpolating Quaternions 

It just so happens that the interpolant used for vectors also works with quaternions. 
Which means that, given two quaternions .q1 and . q2, the  interpolated quaternion 
. q is given by: 

.q = sin[(1 − t)θ ]
sin θ

q1 + sin(tθ)

sin θ
q2 (13.12) 

The interpolant is applied individually to the four terms of the quaternion. 
When interpolating vectors, . θ is the angle between the two vectors. If this is not 

known, it can be derived using the dot product formula: 

. cos θ = v1 · v2
‖v1‖‖v2‖

= x1x2 + y1y2 + z1z2
‖v1‖‖v2‖

Similarly, when interpolating quaternions, . θ is computed by taking the 4-D dot 
product of the two quaternions: 

. cos θ = q1 · q2
|q1||q2|

= s1s2 + x1x2 + y1y2 + z1z2
|q1||q2|

If we are using unit quaternions: 

. cos θ = s1s2 + x1x2 + y1y2 + z1z2 (13.13)
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We are now in a position to demonstrate how to interpolate between a pair of quater-
nions. For example, say we have two quaternions .q1 and .q2 that rotate .0◦ and . 90◦
about the .z-axis respectively: 

. q1 =
[
cos

(
0◦
2

)
, sin

(
0◦
2

)
(0i + 0j + 1k)

]

q1 =
[
cos

(
90◦
2

)
, sin

(
90◦
2

)
(0i + 0j + 1k)

]

which become: 

. q1 = [1, 0i + 0j + 0k]
q2 ≈ [0.7071, 0i + 0j + 0.7071k]

Any interpolated quaternion is found by the application of (13.12). But first, we 
need to find the value of . θ using (13.13): 

. cos θ ≈ 0.7071

θ = 45◦

Now when .t = 0.5, the interpolated quaternion is given by: 

. q ≈ sin(45◦/2)
sin 45◦ [1, 0i + 0j + 0k] + sin(45◦/2)

sin 45◦ [0.7071, 0i + 0j + 0.7071k]
≈ 0.541196[1, 0i + 0j + 0k] + 0.541196[0.7071, 0i + 0j + 0.7071k]
≈ [0.541196, 0i + 0j + 0k] + [0.382683, 0i + 0j + 0.382683k]
≈ [0.923879, 0i + 0j + 0.382683k]

Although it is not obvious, this interpolated quaternion is also a unit quaternion, 
as the square root of the sum of the squares is 1. It should rotate a point about the 
.z-axis, halfway between.0◦ and.90◦, i.e..45◦. We can test that this works with a simple 
example. 

Take the point .(1, 0, 0) and subject it to the standard quaternion operation: 

. P′ = qPq−1

To keep the arithmetic work to a minimum, we substitute .a = 0.923879 and . b =
0.382683. Therefore: 

.q = [a, 0i + 0j + bk]
q−1 = [a, −0i − 0j − bk]
P′ = [a, 0i + 0j + bk][0, 1i + 0j + 0k][a, −0i − 0j − bk]

= [0, ai + bj + 0k][a, −0i − 0j − bk]
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= [0, (a2 − b2)i + 2abj + 0k] 
P′ ≈ [0, 0.7071i + 0.7071j + 0k] 

Therefore, .(1, 0, 0) is rotated to .(0.7071, 0.7071, 0), which is correct! 

13.7 Summary 

This chapter has covered some very interesting, yet simple ideas about changing one 
number into another. In the following chapter we will develop these ideas and see 
how we design algebraic solutions to curves and surfaces.



14Curves and Patches 

14.1 Introduction 

In this chapter we investigate the foundations of curves and surface patches. This is a 
very large and complex subject and it will be impossible to delve too deeply. However, 
we can explore many of the ideas that are essential to understanding the mathematics 
behind 2D and 3D curves and how they are developed to produce surface patches. 
Once you have understood these ideas you will be able to read more advanced texts 
and develop a wider knowledge of the subject. 

14.2 Bézier Curves 

Two people, working for competing French car manufacturers, are associated with 
what are now called Bézier curves: the French physicist and mathematician Paul 
de Casteljau (1930–2022), who worked for Citröen, and the French engineer Pierre 
Bézier (1910–1999), who worked for Rénault. De Casteljau’s work was slightly 
ahead of Bézier’s, but because of Citröen’s policy of secrecy it was never published, 
so Bézier’s name has since been associated with the theory of polynomial curves 
and surfaces. Casteljau started his research work in 1959, but his reports were only 
discovered in 1975, by which time Bézier had become known for his special curves 
and surfaces. 

In the previous chapter we saw how polynomials are used as interpolants and 
blending functions. We will now see how these form the basis of parametric curves 
and patches. To begin with, let’s start with the humble circle. 
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Fig. 14.1 The circle is 
drawn by tracing out a series 
of points on the 
circumference 

r 
y 

x 
t 

x 

y 

14.3 The Circle 

The circle has a very simple equation: 

. x2 + y2 = r2

where . r is the radius and .(x, y) is a point on the circumference. Although this 
equation has its uses, it is not very convenient for drawing the curve. What we really 
want are two functions that generate the coordinates of any point on the circumference 
in terms of some parameter . t . Figure 14.1 shows a scenario where the .x- and .y-
coordinates are given by: 

. 
x = r cos t
y = r sin t

}
0 ≤ t ≤ 2π

By varying the parameter . t over the range . 0 to .2π , we trace out the curve of the 
circumference. In fact, by selecting a suitable range of . t we can isolate any portion 
of the circle’s circumference. 

14.4 The Ellipse 

The equation for an ellipse is: 

.
x2

r2maj

+ y2

r2min

= 1
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Fig. 14.2 An ellipse 
showing the major and minor 
radii 

rmax x 

y 

rmin 

and its parametric form is: 

. 
x = rmaj cos t
y = rmin sin t

}
0 ≤ t ≤ 2π

where .rmaj and .rmin are the major and minor radii respectively, and .(x, y) is a 
point on the circumference, as shown in Fig. 14.2. We now examine a very useful 
parametric curve called a Bézier curve. 

14.5 Bézier Curves 

14.5.1 Bernstein Polynomials 

Bézier curves employ Bernstein polynomials which were described by the Russian 
mathematician Sergei Bernstein (1880–1968) in 1912. They are expressed as follows: 

.Bn
i (t) =

(
n

i

)
t i (1 − t)n−i (14.1) 

where .

(
n

i

)
is shorthand for the number of selections of . i different items from . n

distinguishable items when the order of selection is ignored, and equals: 

.

(
n

i

)
= n!

(n − i)!i ! (14.2) 

where, for example,. 3! (factorial 3) is shorthand for.3×2×1. When (14.2) is evaluated 
for different values of . i and . n, we discover the pattern of numbers shown in Table 
14.1. This pattern of numbers is known as Pascal’s triangle. In western countries 
they are named after a 17th century French mathematician, even though they had 
been described in China as early as 1303 in Precious Mirror of the Four Elements by 
the Chinese mathematician Chu Shih-chieh. The pattern represents the coefficients 
found in binomial expansions. For example, the expansion of .(x + a)n for different
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Table 14.1 Pascal’s triangle 

. i

.n .0 .1 .2 .3 .4 .5 . 6 

0 1 

1 1 1 

2 1 2 1 

3 1 3 3 1 

4 1 4 6 4 1 

5 1 5 10 10 5 1 

6 1 6 15 20 15 6 1 

Table 14.2 Expansion of the terms. t and. (1 − t) 

. i 

.n 0 1 2 3 4 

1 .t . (1 − t) 
2 .t2 .t (1 − t) . (1 − t)2 

3 .t3 .t2(1 − t) .t (1 − t)2 . (1 − t)3 

4 .t4 .t3(1 − t) .t2(1 − t)2 .t (1 − t)3 . (1 − t)4 

values of . n is: 

. (x + a)0 = 1 
(x + a)1 = 1x + 1a 

(x + a)2 = 1x2 + 2ax + 1a2 

(x + a)3 = 1x3 + 3ax2 + 3a2x + 1a3 

(x + a)4 = 1x4 + 4ax3 + 6a2x2 + 4a3x + 1a4 

which reveal Pascal’s triangle as coefficients of the polynomial terms. Thus the. 

(
n 

i

)

term in (14.1) is nothing more than a generator for Pascal’s triangle. The powers of 
. t and.(1 − t) in (14.1) appear as shown in Table 14.2 for different values of . n and. i . 
When the two sets of results are combined we get the complete Bernstein polynomial 
terms shown in Table 14.3. One very important property of these terms is that they 
sum to unity, which is an important feature of any interpolant. 

The sum of .(1 − t) and . t is 1, therefore: 

.[(1 − t) + t]n = 1 (14.3) 
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Table 14.3 The Bernstein polynomial terms 

. i 

.n 0 1 2 3 4 

1 .1t . 1(1 − t) 
2 .1t2 .2t (1 − t) . 1(1 − t)2 

3 .1t3 .3t2(1 − t) .3t (1 − t)2 . 1(1 − t)3 

4 .1t4 .4t3(1 − t) .6t2(1 − t)2 .4t (1 − t)3 . 1(1 − t)4 

Fig. 14.3 Graphs of the 
quadratic Bernstein 
polynomials 
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which is why we can use the binomial expansion of.(1− t) and. t as interpolants. For 
example, when .n = 2 we obtain the quadratic form: 

.(1 − t)2 + 2t (1 − t) + t2 = 1 (14.4) 

Figure 14.3 shows the graphs of the three polynomial terms of (14.4). The . (1 − t)2 
graph starts at 1 and decays to zero, whereas the .t2 graph starts at zero and rises to 
1. The .2t (1 − t) graph starts at zero reaches a maximum of 0.5 and returns to zero. 
Thus the central polynomial term has no influence at the end conditions, where. t = 0 
and .t = 1. We can use these three terms to interpolate between a pair of values as 
follows: 

. v = v1(1 − t)2 + 2t (1 − t) + v2t2 

If .v1 = 1 and .v2 = 3 we obtain the curve shown in Fig. 14.4. However, there is 
nothing preventing us from multiplying the middle term .2t (1 − t) by any arbitrary 
number . vc: 

.v = v1(1 − t)2 + vc2t (1 − t) + v2t2 (14.5) 

For example, if .vc = 3, we obtain the graph shown in Fig. 14.5, which is totally 
different to the curve in Fig. 14.4. As Bézier observed, the value of .vc provides an 
excellent mechanism for determining the rate of change between two values. Figure 
14.6 shows a variety of graphs for different values of . vc. A very interesting effect 
occurs when the value of .vc is set midway between .v1 and . v2. For example, when 
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Fig. 14.4 Bernstein 
interpolation between the 
values 1 and 3 
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Fig. 14.5 Bernstein 
interpolation between the 
values  1 and 3 with. vc = 3 

0 0.25 0.5 0.75 1 
0 

1 

2 

3 

t 

v 

v = (1-t)2+6t(1-t)+3t2 

Fig. 14.6 Bernstein 
interpolation between the 
values 1 for different values 
of. vc 
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.v1 = 1, .v2 = 3 and .vc = 2, we obtain linear interpolation between .v1 and . v2, as  
shown in Fig. 14.5. 

14.5.2 Quadratic Bézier Curves 

Quadratic Bézier curves are formed by using Bernstein polynomials to interpolate 
between the.x-,.y- and.z-coordinates associated with the start- and end-points forming 
the curve. For example, we can draw a 2D quadratic Bézier curve between . (1, 1) 
and .(4, 3) using the following equations: 
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Fig. 14.7 Quadratic Bézier 
curve between.(1, 1) and 
.(4, 3), with.(3, 4) as the 
control vertex 
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.x = 1(1 − t)2 + xc2t (1 − t) + 4t2 (14.6) 

.y = 1(1 − t)2 + yc2t (1 − t) + 3t2 (14.7) 

But what should be the values of.(xc, yc)? Well, this is entirely up to us; the position 
of this control vertex determines how the curve moves between .(1, 1) and .(4, 3). 

A Bézier curve possesses interpolating and approximating qualities: the interpo-
lating feature ensures that the curve passes through the end points, while the approx-
imating feature shows how the curve passes close to the control point. To illustrate 
this, if we make .xc = 3 and .yc = 4 we obtain the curve shown in Fig. 14.7, which 
shows how the curve intersects the end-points, but misses the control point. It also 
highlights two important features of Bézier curves: the convex hull property, and the 
end slopes of the curve. 

The convex hull property implies that the curve is always contained within the 
polygon connecting the start, end and control points. In this case the curve is inside 
the triangle formed by the vertices .(1, 1), .(3, 4) and.(4, 3). The slope of the curve 
at.(1, 1) is equal to the slope of the line connecting the start point to the control point 
.(3, 4), and the slope of the curve at.(4, 3) is equal to the slope of the line connecting 
the control point .(3, 4) to the end point .(4, 3). Naturally, these two qualities of 
Bézier curves can be proved mathematically. 

14.5.3 Cubic Bernstein Polynomials 

Before moving on, there are two further points to note: 
. • No restrictions are placed upon the position of .(xc, yc)—it can be anywhere. 
. • Simply including .z-coordinates for the start, end and control vertices creates 3D 
curves. 

One of the drawbacks with quadratic curves is that they are perhaps, too simple. 
If we want to construct a complex curve with several peaks and valleys, we would 
have to join together a large number of such curves. A cubic curve, on the other 
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Fig. 14.8 The cubic 
Bernstein polynomial curves 
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hand, naturally supports one peak and one valley, which simplifies the construction 
of more complex curves, and takes us to cubic Bernstein polynomials. 

When .n = 3 in (14.3) we obtain the following terms: 

. [(1 − t) + t]3 = (1 − t)3 + 3t (1 − t)2 + 3t2(1 − t) + t3 

which can be used as a cubic interpolant, as: 

. v = v1(1 − t)3 + vc13t (1 − t)2 + vc23t2(1 − t) + v2t3 

Once more, the terms sum to unity, and the convex hull and slope properties also 
hold. Figure 14.8 shows the graphs of the four polynomial terms. 

This time we have two control values .vc1 and .vc2. These are set to any value, 
independent of the values chosen for .v1 and . v2. To illustrate this, let’s consider an 
example of blending between values 1 and 3, with .vc1 and .vc2 set to 2.5 and . −2.5 
respectively. The blending curve is shown in Fig. 14.9. 

The next step is to associate the blending polynomials with.x- and.y-coordinates: 

.x = x1(1 − t)3 + xc13t (1 − t)2 + xc23t2(1 − t) + x2t3 (14.8) 

.y = y1(1 − t)3 + yc13t (1 − t)2 + yc23t2(1 − t) + y2t3 (14.9) 
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Fig. 14.10 A cubic Bézier 
curve 
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Fig. 14.11 A cubic Bézier 
line 
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Evaluating (14.8) and (14.9) with the following points: 

. (x1, y1) = (1, 1), (x2, y2) = (4, 3) 
(xc1, yc1) = (2, 3), (xc2, yc2) = (3, −2) 

we obtain the cubic Bézier curve shown in Fig. 14.10, which also shows the guidelines 
between the end and control points. 

Just to show how consistent Bernstein polynomials are, let’s set the values to 

. (x1, y1) = (1, 1), (x2, y2) = (4, 3) 
(xc1, yc1) = (2, 1.6), (xc2, yc2) = (3, 2.3) 

where .(xc1, yc1) and .(xc2, yc2) are points one-third and two-thirds respectively, 
between the start and final values. As we found in the quadratic case, where the 
single control point was halfway between the start and end values, we obtain linear 
interpolation as shown in Fig. 14.11. 

As mathematicians are interested in expressing a formula succinctly, there is an 
elegant way of abbreviating Bernstein polynomials. Equations (14.6) and (14.7) 
describe the three polynomial terms for generating a quadratic Bézier curve and 
(14.8) and (14.9) describe the four polynomial terms for generating a cubic Bézier 
curve. To begin with, quadratic equations are called second-degree equations, and 
cubics are called third-degree equations. In the original Bernstein formulation: 
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. Bn 
i (t) =

(
n 

i

)
t i (1 − t)n−i 

. n represents the degree of the polynomial, and. i , which has values between 0 and. n, 
creates the individual polynomial terms. These terms are then used to multiply the 
coordinates of the end and control points. If these points are stored as a vector. P, the  
position vector .p(t) for a point on the curve is written: 

.p(t) = 
n∑

i=0

(
n 

i

)
t i (1 − t)n−i Pi , 0 ≤ i ≤ n (14.10) 

or 

.p(t) = 
n∑

i=0 

Bn 
i (t)Pi , 0 ≤ i ≤ n (14.11) 

For example, a point .p(t) on a quadratic curve is represented by: 

. p(t) = 1t0(1 − t)2P0 + 2t1(1 − t)1P1 + 1t2(1 − t)0P2 

You will discover (14.10) and (14.11) used in more advanced texts to describe Bézier 
curves. Although they initially appear intimidating, you should now find them rela-
tively easy to understand. 

14.6 A Recursive Bézier Formula 

Note that (14.10) explicitly describes the polynomial terms needed to construct the 
blending terms. With the use of a recursive Bézier formula (a recursive function is 
a function that calls itself), it is possible to arrive at another formulation that leads 

towards an understanding of B-splines. To begin, we need to express .

(
n 

i

)
in terms 

of lower terms, and because the coefficients of any row in Pascal’s triangle are the 
sum of the two coefficients immediately above, we can write: 

. 

(
n 

i

)
=

(
n − 1 

i

)
+

(
n − 1 
i − 1

)

Therefore, we can write: 

.Bn 
i (t) =

(
n − 1 

i

)
t i (1 − t)n−i +

(
n − 1 
i − 1

)
t i (1 − t)n−i 

Bn 
i (t) = (1 − t)Bn−1 

i (t) + t Bn−1 
i−1 (t) 
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As with all recursive functions, some condition must terminate the process; in this 
case, it is when the degree is zero. Consequently, .B0 

0 (t) = 1 and .Bn 
j (t) = 0 for 

. j < 0. 

14.7 Bézier Curves Using Matrices 

As we have already seen, matrices provide a very compact notation for algebraic 
formulae. So let’s see how Bernstein polynomials lend themselves to this form of 
notation. Recall (14.4) which defines the three terms associated with a quadratic 
Bernstein polynomial. These are expanded to: 

. 1 − 2t + t2, 2t − 2t2, t2 

and written as the product: 

. 

[
t2 t 1

] ⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

This means that (14.5) can be written: 

. v =
[
t2 t 1

] ⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣ 
v1 
vc 

v2 

⎤ 

⎦ 

or 

. p(t) =
[
t2 t 1

] ⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣ 
P1 
Pc 

P2 

⎤ 

⎦ 

where .p(t) points to any point on the curve, and .P1, .Pc and .P2 point to the start, 
control and end points respectively. 

A similar development is used for a cubic Bézier curve, which has the following 
matrix formulation: 

. p(t) =
[
t3 t2 t 1

]
⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 3 0 0  
1 0 0  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

P1 
Pc1 
Pc2 
P2 

⎤ 

⎥⎥⎦ 

There is no doubt that Bézier curves are very useful, and they find their way into 
all sorts of applications. But, perhaps their one weakness is that whenever an end or 
control vertex is repositioned, the entire curve is modified. So let’s examine another 
type of curve that prevents this from happening—B-splines. But before we consider 
this form, let’s revisit linear interpolation between multiple values. 
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Fig. 14.12 Linearly 
interpolating between several 
values 

14.7.1 Linear Interpolation 

To linearly interpolate between two numbers.v0 and. v1, we use the following inter-
polant: 

. v(t) = v0(1 − t) + v1t, 0 ≤ t ≤ 1 

But say we have to interpolate continuously between three values on a linear basis, i.e. 
.v0, v1, v2, with the possibility of extending the technique to any number of values. 
One solution is to use a sequence of parameter values . t1, . t2, . t3 that are associated 
with the given values of . v, as shown in Fig. 14.12. For the sake of symmetry: 

.v0 is associated with the parameter range . t0 to . t2. 

.v1 is associated with the parameter range . t1 to . t3. 

.v2 is associated with the parameter range . t2 to . t4. 

This sequence of parameters is called a knot vector. The only assumption we make 
about the knot vector is that .t0 ≤ t1 ≤ t2 ≤, etc. 

Now let’s invent a linear blending function .B1 
i (t) whose subscript . i is used to 

reference values in the knot vector. We want to use the blending function to compute 
the influence of the three values on any interpolated value .v(t) as follows: 

.v(t) = B1 
0 (t)v0 + B1 

1 (t)v1 + B1 
2 (t)v2. (14.12) 

It’s obvious from this arrangement that.v0 will influence.v(t) only when. t is between 
. t0 and . t2. Similarly, .v1 and .v2 will influence .v(t) only when . t is between . t1 and . t3, 
and . t2 and . t4 respectively. 

To understand the action of the blending function let’s concentrate upon one 
particular value .B1 

1 (t). When . t is less than . t1 or greater than . t3, the function . B1 
1 (t) 

must be zero. When .t1 ≤ t ≤ t3, the function must return a value reflecting the 
proportion of .v1 that influences .v(t). During the span .t1 ≤ t ≤ t2, .v1 has to be 
blended in, and during the span .t1 ≤ t ≤ t3, .v1 has to be blended out. The blending 
in is effected by the ratio: 

.

(
t − t1 
t2 − t1

)
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and the blending out is effected by the ratio: 

. 

(
t3 − t 
t3 − t2

)

Thus .B1 
1 (t) has to incorporate both ratios, but it must ensure that they only become 

active during the appropriate range of . t . Let’s remind ourselves of this requirement 
by subscripting the ratios accordingly: 

. B1 
1 (t) =

(
t − t1 
t2 − t1

)
1,2 

+
(

t3 − t 
t3 − t2

)
2,3 

We can now write the other two blending terms .B1 
0 (t) and .B1 

2 (t) as: 

. B1 
0 (t) =

(
t − t0 
t1 − t0

)
0,1 

+
(

t2 − t 
t2 − t1

)
1,2 

B1 
2 (t) =

(
t − t2 
t3 − t2

)
2,3 

+
(

t4 − t 
t4 − t3

)
3,4 

You should be able to see a pattern linking the variables with their subscripts, and 
the possibility of writing a general linear blending term.B1 

i (t) as: 

. B1 
i (t) =

(
t − ti 

ti+1 − ti

)
i,i+1 

+
(

ti+2 − t 
ti+2 − ti+1

)
i+1,i+2 

This enables us to write (14.12) in a general form as: 

. v(t) = 
2∑

i=0 

B1 
i (t)vi 

But there is still a problem concerning the values associated with the knot vector. 
Fortunately, there is an easy solution. One simple approach is to keep the differences 
between. t1,. t2 and. t3 whole numbers, e.g. 0, 1 and 2. But what about the end conditions 
.t0 and . t4? To understand the resolution of this problem let’s examine the action of 
the three terms over the range of the parameter . t . The three terms are: 

.

[(
t − t0 
t1 − t0

)
0,1 

+
(

t2 − t 
t2 − t1

)
1,2

]
v0 (14.13) 

.

[(
t − t1 
t2 − t1

)
1,2 

+
(

t3 − t 
t3 − t2

)
2,3

]
v1 (14.14) 

.

[(
t − t2 
t3 − t2

)
2,3 

+
(

t4 − t 
t4 − t3

)
3,4

]
v2 (14.15) 

and I propose to initialise the knot vector as shown in Table 14.4: 
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Table 14.4 Knot vector 

.t0 .t1 .t2 .t3 . t4 

0 0 1 2 2 

. • Remember that the subscripts of the ratios are the subscripts of . t , not the values 
of . t . 

. • Over the range .t0 ≤ t ≤ t1, i.e. 0 to 0. Only the first ratio in (14.13) is active and 
returns . 0 0 . The algorithm must detect this condition and take no action. 

. • Over the range .t1 ≤ t ≤ t2. i.e. 0 to 1. The first ratio of (14.13) is active again, 
and over the range of . t blends out . v0. The first ratio of (14.14) is also active, 
and over the range of . t blends in . v1. 

. • Over the range .t2 ≤ t ≤ t3. i.e. 1 to 2. The second ratio of (14.14) is active, 
and over the range of . t blends out . v1. The first ratio of (14.15) is also active, 
and over the range of . t blends in . v2. 

. • Finally, over the range .t3 ≤ t ≤ t4. i.e. 2 to 2. The second ratio of (14.15) is  
active and returns . 0 0 . The algorithm must detect this condition and take no action. 

This process results in a linear interpolation between . v0, .v1 and . v2. If  (14.13), 
(14.14) and (14.15) are applied to coordinate values, the result is two straight lines. 
This seems like a lot of work just to draw two lines, but the beauty of the technique 
is that it will work with any number of points, and can be developed for quadratic 
and higher order interpolants. 

The New Zealand mathematician Alexander Aitken (1895–1967), developed the 
following recursive interpolant: 

. pr 
i (t) =

(
ti+r − t 
ti+r − ti

)
pr−1 

i (t) +
(

t − ti 
ti+r − ti

)
pr−1 

i+1 (t)

{
r = 1, ..  n 
i = 0, ..  n − r 

which interpolates between a series of points using repeated linear interpolation. 

14.8 B-Splines 

B-splines, like Bézier curves, use polynomials to generate a curve segment. But, 
unlike Bézier curves, B-splines employ a series of control points that determine the 
curve’s local geometry. This feature ensures that only a small portion of the curve is 
changed when a control point is moved. 

There are two types of B-splines: rational and non-rational splines, which divide 
into two further categories: uniform and non-uniform. Rational B-splines are formed 
from the ratio of two polynomials such as: 
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. x(t) = 
X (t) 
W (t) 

, y(t) = 
Y (t) 
W (t) 

, z(t) = 
Z(t) 
W (t) 

Although this appears to introduce an unnecessary complication, the division by a 
second polynomial brings certain advantages: 

. • They describe perfect circles, ellipses, parabolas and hyperbolas, whereas non-
rational curves can only approximate these curves. 

. • They are invariant of their control points when subjected to rotation, scaling, 
translation and perspective transformations, whereas non-rational curves lose this 
geometric integrity. 

. • They allow weights to be used at the control points to push and pull the curve. 

An explanation of uniform and non-uniform types is best left until you understand 
the idea of splines. So, without knowing the meaning of uniform, let’s begin with 
uniform B-splines. 

14.8.1 B-Spline Basis Functions 

A B-spline is constructed from a string of curve segments whose geometry is deter-
mined by a group of local control points. These curves are known as piecewise poly-
nomials. A curve segment does not have to pass through a control point, although 
this may be desirable at the two end points. 

Cubic B-splines are very common, as they provide a geometry that is one step away 
from simple quadratics, and possess continuity characteristics that make the joins 
between the segments invisible. In order to understand their construction consider 
the scenario in Fig. 14.13. Here we see a group of .(m + 1) control points .P0, .P1, 
.P2, …, .Pm which determine the shape of a cubic curve constructed from a series of 
curve segments . S0, . S1, . S2, …, .Sm−3. 

Pi 

Pi+1 

Pi+2 

Pi+3 

Pi+4 

Pi+5 

Si 
Si+1 

Si+2 Si+3 

Fig. 14.13 The construction of a uniform non-rational B-spline curve 
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Fig. 14.14 The B-spline 
basis functions 
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As the curve is cubic, curve segment .Si is influenced by . Pi , .Pi+1, .Pi+2, .Pi+3, 
and curve segment .Si+1 is influenced by .Pi+1, .Pi+2, .Pi+3, .Pi+4. And as there are 
.(m + 1) control points, there are .(m − 2) curve segments. 

A single segment .Si (t) of a B-spline curve is defined by: 

. Si (t) = 
3∑

r=0 

Pi+r Br (t), 0 ≤ t ≤ 1 

where: 

.B0(t) = 1 6
(
−t3 + 3t2 − 3t + 1

)
= 1 6 (1 − t)3 (14.16) 

.B1(t) = 1 6
(
3t3 − 6t2 + 4

)
(14.17) 

.B2(t) = 1 6
(
−3t3 + 3t2 + 3t + 1

)
(14.18) 

.B3(t) = 1 6 t3 (14.19) 

These are the B-spline basis functions and are shown in Fig. 14.14. 
Although it is not apparent, these four curve segments are part of one curve. The 

basis function.B3(t) starts at zero and rises to.0.16 at .t = 1. It is taken over by. B2(t) 
at .t = 0, which rises to .0.6 at .t = 1. The next segment is .B1(t) and takes over at 
.t = 0 and falls to .0.16 at .t = 1. Finally, .B0(t) takes over at .0.16 and falls to zero at 
.t = 1. Equations (14.16)–(14.19) are represented in matrix form by: 

.Q1(t) = 1 6
[
t3 t2 t 1

]
⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 0 3 0  
1 4 1  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

Pi 

Pi+1 
Pi+2 
Pi+3 

⎤ 

⎥⎥⎦ (14.20) 

Let’s now illustrate how (14.20) works. We first identify the control points . Pi , 
.Pi+1, .Pi+2, etc. Let these be .(0, 1), .(1, 3), .(2, 0), .(4, 1), .(4, 3), .(2, 2) and 
.(2, 3). They can be seen in Fig. 14.15 connected together by straight lines. If we 
take the first four control points: .(0, 1), (1, 3), (2, 0), (4, 1), and subject the 
.x- and .y-coordinates to the matrix in (14.20) over the range .0 ≤ t ≤ 1 we obtain 
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Fig. 14.15 Four curve 
segments forming a B-spline 
curve 
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the first B-spline curve segment shown in Fig. 14.15. If we move along one control 
point and take the next group of control points .(1, 3), (2, 0), (4, 1), (4, 3), we  
obtain the second B-spline curve segment. This is repeated a further two times. 

Figure 14.15 shows the four curve segments, and it is obvious that even though 
there are four discrete segments, they join together perfectly. This is no accident. 
The slopes at the end points of the basis curves are designed to match the slopes of 
their neighbours and ultimately keep the geometric curve continuous. 

14.8.2 Geometric Continuity 

In order to explain continuity, it is necessary to employ differentiation. Therefore, 
you may wish to read the chapter on calculus before continuing. 

Constructing curves from several segments can only succeed if the slope of the 
abutting curves match. As we are dealing with curves whose slopes are changing 
everywhere, it will be necessary to ensure that even the rate of change of slopes is 
matched at the join. This aspect of curve design is called geometric continuity and 
is determined by the continuity properties of the basis function. Let’s explore such 
features. 

The first level of curve continuity .C0, ensures that the physical end of one basis 
curve corresponds with the following, e.g..Si (1) = Si+1(0). We know that this occurs 
from the basis graphs shown in Fig. 14.14. The  second level of curve continuity .C1, 
ensures that the slope at the end of one basis curve matches that of the following 
curve. This is confirmed by differentiating the basis functions (14.16)–(14.19): 

.B ′
0(t) = 1 6

(
−3t2 + 6t − 3

)
(14.21) 

.B ′
1(t) = 1 6

(
9t2 − 12t

)
(14.22) 

.B ′
2(t) = 1 6

(
−9t2 + 6t + 3

)
(14.23) 

.B ′
3(t) = 1 6 3t2 (14.24) 
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Table 14.5 Continuity properties of cubic B-splines 

.t .t . t 

.C0 .0 .1 .C1 .0 .1 .C2 .0 . 1 

.B3(t) .0 .1/6 .B ′
3(t) .0 .0.5 .B ′′

3 (t) .0 . 1 

.B2(t) .1/6 .2/3 .B ′
2(t) .0.5 .0 .B ′′

2 (t) .1 . −2 

.B1(t) .2/3 .1/6 .B ′
1(t) .0 .−0.5 .B ′′

1 (t) .−2 . 1 

.B0(t) .1/6 .0 .B ′
0(t) .−0.5 .0 .B ′′

0 (t) .1 . 0 

Evaluating (14.21)–(14.24) for  .t = 0 and .t = 1, we discover the slopes 
.0.5, 0, −0.5, 0 for the joins between .B3, .B2, .B1, .B0. The  third level of curve 
continuity .C2, ensures that the rate of change of slope at the end of one basis curve 
matches that of the following curve. This is confirmed by differentiating (14.21)– 
(14.24): 

.B ′′
0 (t) = −t + 1 (14.25) 

.B ′′
1 (t) = 3t − 2 (14.26) 

.B ′′
2 (t) = −3t + 1 (14.27) 

.B ′′
3 (t) = t (14.28) 

Evaluating (14.25)–(14.28) for .t = 0 and .t = 1, we discover the values . 1, 2, 1, 0 
for the joins between.B3,.B2,.B1,.B0. These combined continuity results are tabulated 
in Table 14.5. 

14.8.3 Non-uniform B-Splines 

Uniform B-splines are constructed from curve segments where the parameter spac-
ing is at equal intervals. Non-uniform B-splines, with the support of a knot vector, 
provide extra shape control and the possibility of drawing periodic shapes. Unfor-
tunately an explanation of the underlying mathematics would take us beyond the 
introductory nature of this text, and readers are advised to seek out other books 
dealing in such matters. 

14.8.4 Non-uniform Rational B-Splines 

Non-uniform rational B-splines (NURBS) combine the advantages of non-uniform 
B-splines and rational polynomials: they support periodic shapes such as circles, and 
they accurately describe curves associated with the conic sections. They also play 
a very important role in describing geometry used in the modeling of computer 
animation characters. 
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NURBS surfaces also have a patch formulation and play a very important role in 
surface modelling in computer animation and CAD. However, tempting though it is 
to give a description of NURBS surfaces here, they have been omitted because their 
inclusion would unbalance the introductory nature of this text. 

14.9 Surface Patches 

14.9.1 Planar Surface Patch 

The simplest form of surface geometry consists of a patchwork of polygons or tri-
angles, where three or more vertices provide the basis for describing the associated 
planar surface patch. For example, given four vertices.P00,.P10,.P01,.P11 as shown 
in Fig. 14.16, a point .Puv can be defined as follows. To begin with, a point along the 
edge .P00–.P10 is defined as: 

. Pu1 = (1 − u)P00 + u P10 

and a point along the edge .P01–.P11 is defined as: 

. Pu2 = (1 − u)P01 + u P11 

Therefore, any point .Puv is defined as: 

. Puv = (1 − v)Pu1 + vPu2 

= (1 − v)[(1 − u)P00 + u P10] +  v[(1 − u)P01 + u P11] 
= (1 − u)(1 − v)P00 + u(1 − v)P10 + v(1 − u)P01 + uvP11 

and is written in matrix form as: 

. Puv = [1 − u u]
[

P00 P01 
P10 P11

] [
1 − v 

v

]

which expands to: 

. Puv = [u 1]
[−1 1  

1 0

] [
P00 P01 
P10 P11

] [−1 1  
1 0

] [
v 
1

]

Let’s illustrate this with an example. Given the following four points: . P00 = 
(0, 0, 0), .P10 = (0, 0, 4), .P01 = (2, 2, 1), .P11 = (2, 2, 3), we can write the 
coordinates of any point on the patch as: 

.xuv = [u 1]
[−1 1  

1 0

] [
0 2  
0 2

] [−1 1  
1 0

] [
v 
1

]

yuv = [u 1]
[−1 1  

1 0

] [
0 2  
0 2

] [−1 1  
1 0

] [
v 
1

]
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Fig. 14.16 A flat  patch  
defined by. u and. v 
parameters 

P00 P10 

P01 P11 

Puv 

u 

v 

zuv = [u 1]
[−1 1  

1 0

] [
0 1  
4 3

] [−1 1  
1 0

] [
v 
1

]

.xuv = 2v (14.29) 

.yuv = 2v (14.30) 

.zuv = u(4 − 2v) + v (14.31) 

By substituting values of .u and .v in (14.29)–(14.31) between the range 
.0 ≤ (u, v)  ≤ 1, we obtain the coordinates of any point on the surface of the patch. 

If we now introduce the ideas of Bézier control points into a surface patch defini-
tion, we provide a very powerful way of creating smooth 3D surface patches. 

14.9.2 Quadratic Bézier Surface Patch 

Bézier proposed a matrix of nine control points to determine the geometry of a 
quadratic surface patch, as shown in Fig. 14.17. Any point on the patch is defined 
by: 

. Puv =
[
u2 u 1

] ⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣ 
P00 P01 P02 
P10 P11 P12 
P20 P21 P22 

⎤ 

⎦ 

⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣ 
v2 

v 
1 

⎤ 

⎦ 

The individual .x-, .y- and .z-coordinates are obtained by substituting the .x-, .y- and 
.z-values for the central .P matrix. 

Let’s illustrate the process with an example. Given the following points: 

.P00 = (0, 0, 0), P01 = (1, 1, 0), P02 = (2, 0, 0) 
P10 = (0, 1, 1), P11 = (1, 2, 1), P12 = (2, 1, 1) 
P20 = (0, 0, 2), P21 = (1, 1, 2), P22 = (2, 0, 2) 
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Fig. 14.17 A quadratic 
Bézier surface patch 

P00 
P20 

P10 

P21 

P22 

P11 

P01 

P02 

P12 

we can write: 

. xuv =
[
u2 u 1

] ⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣0 1  2  
0 1  2  
0 1  2  

⎤ 

⎦ 

⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣ 
v2 

v 
1 

⎤ 

⎦ 

xuv =
[
u2 u 1

] ⎡ 

⎣ 
0 0 0  
0 0 0  
0 2 0  

⎤ 

⎦ 

⎡ 

⎣ 
v2 

v 
1 

⎤ 

⎦ 

xuv = 2v 

yuv =
[
u2 u 1

] ⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣0 1  0  
1 2 1  
0 1  0  

⎤ 

⎦ 

⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣ 
v2 

v 
1 

⎤ 

⎦ 

yuv =
[
u2 u 1

] ⎡ 

⎣ 
0 0  −2 
0 0 2  

−2 2  0  

⎤ 

⎦ 

⎡ 

⎣ 
v2 

v 
1 

⎤ 

⎦ 

yuv = 2
(

u + v − u2 − v2
)

zuv =
[
u2 u 1

] ⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣0 0 0  
1 1 1  
2 2 2  

⎤ 

⎦ 

⎡ 

⎣ 
1 −2 1  

−2 2 0  
1 0  0  

⎤ 

⎦ 

⎡ 

⎣ 
v2 

v 
1 

⎤ 

⎦ 

zuv =
[
u2 u 1

] ⎡ 

⎣ 
0 0 0  
0 0 2  
0 0 0  

⎤ 

⎦ 

⎡ 

⎣ 
v2 

v 
1 

⎤ 

⎦ 

zuv = 2u 

Therefore, any point on the surface patch has coordinates: 

.xuv = 2v, yuv = 2
(

u + v − u2 − v2
)

, zuv = 2u 
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Table 14.6 The.x-, .y-, .z-coordinates for different values of. u and. v 

. v 
.0 .0.5 . 1 

.0 .(0, 0, 0) .(1, 0.5, 0) . (2, 0, 0) 
.u .0.5 .(0, 0.5, 1) .(1, 0.5, 1) . (2, 0.5, 1) 

.1 .(0, 0, 2) .(1, 0.5, 2) . (2, 0, 2) 

Table 14.6 shows the coordinate values for different values of . u and. v. In this exam-
ple, the .y-coordinates provide the surface curvature, which could be enhanced by 
modifying the .y-coordinates of the control points. 

14.9.3 Cubic Bézier Surface Patch 

As we saw earlier in this chapter, cubic Bézier curves require two end-points, and 
two central control points. In the cubic Bézier surface patch formulation a . 4 × 4 
matrix is required as follows: 

. Puv =
[
u3 u2 u 1

]
⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 3 0 0  
1 0 0  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

P00 P01 P02 P03 
P10 P11 P12 P13 
P20 P21 P22 P23 
P30 P31 P32 P33 

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 3 0 0  
1 0 0  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

v3 

v2 

v 
1 

⎤ 

⎥⎥⎦ 

which is illustrated with an example. 
Given the points: 

. P00 = (0, 0, 0), P01 = (1, 1, 0), P02 = (2, 1, 0), P03 = (3, 0, 0) 
P10 = (0, 1, 1), P11 = (1, 2, 1), P12 = (2, 2, 1), P13 = (3, 1, 1) 
P20 = (0, 1, 2), P21 = (1, 2, 2), P22 = (2, 2, 2), P23 = (3, 1, 2) 
P30 = (0, 0, 3), P31 = (1, 1, 3), P32 = (2, 1, 3), P33 = (3, 0, 3) 

we can write the following matrix equations: 

.xuv =
[
u3 u2 u 1

]
⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 3 0 0  
1 0 0  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

0 1  2 3  
0 1  2 3  
0 1  2 3  
0 1  2 3  

⎤ 

⎥⎥⎦ 
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⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 3 0 0  
1 0 0  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

v3 

v2 

v 
1 

⎤ 

⎥⎥⎦ 

xuv =
[
u3 u2 u 1

]
⎡ 

⎢⎢⎣ 

0 0 0 0  
0 0 0 0  
0 0 0 0  
0 0 3 0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

v3 

v2 

v 
1 

⎤ 

⎥⎥⎦ 

xuv = 3v 

yuv =
[
u3 u2 u 1

]
⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 3 0 0  
1 0 0  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

0 1 1  0  
1 2 2 1  
1 2 2 1  
0 1 1  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 3 0 0  
1 0 0  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

v3 

v2 

v 
1 

⎤ 

⎥⎥⎦ 

yuv =
[
u3 u2 u 1

]
⎡ 

⎢⎢⎣ 

0 0 0 0  
0 0 0  −3 
0 0 0 3  
0 −3 3  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

v3 

v2 

v 
1 

⎤ 

⎥⎥⎦ 

. yuv = 3
(
u + v − u2 − v2

)

. zuv =
[
u3 u2 u 1

]
⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 3 0 0  
1 0 0  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

0 0 0 0  
1 1 1 1  
2 2 2 2  
3 3 3 3  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

−1 3  −3 1  
3 −6 3 0  

−3 3 0 0  
1 0 0  0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

v3 

v2 

v 
1 

⎤ 

⎥⎥⎦ 

zuv =
[
u3 u2 u 1

]
⎡ 

⎢⎢⎣ 

0 0 0 0  
0 0 0 0  
0 0 0 3  
0 0 0 0  

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

v3 

v2 

v 
1 

⎤ 

⎥⎥⎦ 

.zuv = 3u 
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Table 14.7 The.x-, .y-, .z-coordinates for different values of. u and. v 

. v 
.0 .0.5 . 1 

.0 .(0, 0, 0) .(1.5, 0.75, 0) . (3, 0, 0) 
.u .0.5 .(0, 0.75, 1.5 .(1.5, 1.5, 1.5) . (3, 0.75, 1.5) 

.1 .(0, 0, 3) .(1.5, 0.75, 3) . (3, 0, 3) 

Therefore, any point on the surface patch has coordinates: 

. xuv = 3v, yuv = 3
(

u + v − u2 − v2
)

, zuv = 3u 

Table 14.7 shows the coordinate values for different values of . u and. v. In this exam-
ple, the .y-coordinates provide the surface curvature, which could be enhanced by 
modifying the .y-coordinates of the control points. 

Complex 3D surfaces are readily modelled using Bézier patches. One simply 
creates a mesh of patches such that their control points are shared at the joins. Surface 
continuity is controlled using the same mechanism for curves. But where the slopes 
of trailing and starting control edges apply for curves, the corresponding slopes of 
control tiles apply for patches. 

14.10 Summary 

This subject has been the most challenging one to describe. On the one hand, the 
subject is vital to every aspect of computer graphics, and on the other, the reader 
is required to wrestle with cubic polynomials and a little calculus. However, I do 
hope that I have managed to communicate some essential concepts behind curves 
and surfaces, and that you will be tempted to implement some of the mathematics. 



15Analytic Geometry 

15.1 Introduction 

This chapter explores some basic elements of geometry and analytic geometry that 
are frequently encountered in computer graphics. For completeness, I have included a 
short review of important elements of Euclidean geometry with which you should be 
familiar. Perhaps the most important topics that you should try to understand concern 
the definitions of straight lines in space, 3D planes, and how points of intersection 
are computed. Another useful topic is the role of parameters in describing lines and 
line segments, and their intersection. 

15.2 Background 

In the third century BCE, Euclid laid the foundations of geometry that have been taught 
in schools for centuries. In the 19th century, mathematicians such as Bernhard Rie-
mann (1809–1900) and Nikolai Lobachevsky transformed this Euclidean geometry 
with ideas such as curved space, and spaces with higher dimensions. Although none 
of these developments affect computer graphics, they do place Euclid’s theorems in 
a specific context: a set of axioms that apply to flat surfaces. We have probably all 
been taught that parallel lines never meet, and that the internal angles of a triangle 
sum to .180◦, but these are only true in specific situations. As soon as the surface 
or space becomes curved, such rules break down. So let’s review some rules and 
observations that apply to shapes drawn on a flat surface. 
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Fig. 15.1 Examples of 
adjacent, supplementary, 
opposite and complementary 
angles 

15.2.1 Angles 

By definition, .360◦ or .2π [radians] measure one revolution. You should be familiar 
with both units of measurement, and how to convert from one to the other. Figure 
15.1 shows examples of adjacent / supplementary angles (sum to .180◦), opposite 
angles (equal), and complementary angles (sum to .90◦). 

15.2.2 Intercept Theorems 

The intercept theorems are attributed to the Greek philosopher and mathemati-
cian Thales of Miletus (c.624–c.546 BC) and involve intersecting and parallel lines. 
Figures 15.2 and 15.3 show two scenarios that give rise to the following observations: 

. • First intercept theorem: 

. 
a + b

a
= c + d

c
,

b

a
= d

c

. • Second intercept theorem: 

. 
a

b
= c

d

Fig. 15.2 The first intercept 
theorem 

a c 

b 

d 

c 
a 

d 
b
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Fig. 15.3 The second 
intercept theorem 

a 

c 

b 

d 

c 

a 

d 

b 

Fig. 15.4 A rectangle with a 
height to width ratio equal to 
the golden section 

10.0 

6.18 

15.2.3 Golden Section 

The golden section is widely used in art and architecture to represent an ‘ideal’ ratio 
for the height and width of an object. Its origins stem from the interaction between 
a circle and triangle and give rise to the following relationship: 

. b = a

2

(√
5 − 1

)
≈ 0.618a

The rectangle in Fig. 15.4 has proportions: 

. height = 0.618 × width

15.2.4 Interior and Exterior Angles of a Triangle 

The rules associated with interior and exterior angles of a triangle are very useful in 
solving all sorts of geometric problems. Figure 15.5 shows two diagrams identifying 
interior and exterior angles. We can see that the sum of the interior angles is .180◦, 
and that the exterior angles of a triangle are equal to the sum of the opposite angles: 

.α + β + θ = 180◦

α′ = θ + β

β ′ = α + θ

θ ′ = α + β
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Fig. 15.5 Relationship 
between interior and exterior 
angles 

Fig. 15.6 The three medians 
of a triangle intersect at its 
centre of gravity 

Fig. 15.7 An isosceles 
triangle 

15.2.5 Centre of Gravity of a Triangle 

A median is a straight line joining a vertex of a triangle to the mid-point of the 
opposite side. When all three medians are drawn, they intersect at a common point, 
which is also the triangle’s centre of gravity. The centre of gravity divides all the 
medians in the ratio .2 : 1. Figure 15.6 illustrates this arrangement. 

15.2.6 Isosceles Triangle 

Figure 15.7 shows an isosceles triangle, which has two equal sides of length . l and 
equal base angles . α. The triangle’s altitude and area are: 

.h =
√
l2 −

( c
2

)2
, A = 1

2ch
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15.2.7 Equilateral Triangle 

An equilateral triangle has three equal sides of length . l and equal angles of .60◦. 
The triangle’s altitude and area are: 

. h =
√
3
2 l, A =

√
3
4 l2

15.2.8 Right Triangle 

Figure 15.8 shows a right triangle with its obligatory right angle. The triangle’s 
altitude and area are: 

. h = ab

c
, A = 1

2ab

15.2.9 Theorem of Thales 

Figure 15.9 illustrates the theorem of Thales, which states that the right angle of a 
right triangle lies on the circumcircle over the hypotenuse. 

Fig. 15.8 A right triangle 

Fig. 15.9 The theorem of 
Thales
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15.2.10 Theorem of Pythagoras 

Although the theorem of Pythagoras is named after Pythagoras, there is substantial 
evidence to show that it was known by the Babylonians a millennium earlier. How-
ever, Pythagoras is credited with its proof. Figure 15.10 illustrates the well-known 
relationship: 

. a2 = b2 + c2

from which one can show that: 

. sin2 θ + cos2 θ = 1

15.2.11 Quadrilateral 

Quadrilaterals have four sides and include the square, rectangle, trapezoid, parallel-
ogram and rhombus, whose interior angles sum to.360◦. As the square and rectangle 
are familiar shapes, we will only consider the other three. 

15.2.12 Trapezoid 

Figure 15.11 shows a trapezoid which has one pair of parallel sides . h apart. The 
mid-line .m and area are given by: 

. m = 1
2 (a + b)

A = mh

Fig. 15.10 The theorem of 
Pythagoras states that 
.a2 = b2 + c2
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Fig. 15.11 A trapezoid with 
one pair of parallel sides 

Fig. 15.12 A parallelogram 
formed by two pairs of 
parallel lines 

15.2.13 Parallelogram 

Figure 15.12 shows a parallelogram, which is formed from two pairs of intersecting 
parallel lines, so it has equal opposite sides and equal opposite angles. The altitude, 
diagonal lengths and area are given by: 

. h = b sin α

d1,2 =
√
a2 + b2 ± 2a

√
b2 − h2

A = ah

15.2.14 Rhombus 

Figure 15.13 shows a rhombus, which is a parallelogram with four sides of equal 
length . a. The area is given by: 

. A = a2 sin α = 1
2d1d2

15.2.15 Regular Polygon 

Figure 15.14 shows part of a regular.n-gon with outer radius.Ro, inner radius.Ri and 
edge length . an . Table 15.1 shows the relationship between the area, . an , .Ri and . Ro

for different polygons.
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Fig. 15.13 A rhombus is a parallelogram with four equal sides 

Fig. 15.14 Part of a regular gon showing the inner and outer radii and the edge length 

Table 15.1 The area.An , edge length. an , inner radius.Ri , and outer radius.Ro for different polygons 

.n .an = 2Ri tan(180◦/n) .Ri = Ro cos(180◦/n) . R2
o = R2

i + 1
4a

2
n

.n .An = n
4 a

2
n cot(180

◦/n) .An = n
2 R

2
o sin(360

◦/n) . An = nR2
i tan(180

◦/n)

5 .a5 = 2Ri

√
5 − 2

√
5 .Ri = Ro 

4 (
√
5 + 1) . Ro = Ri (

√
5 − 1) 

5 .A5 = a
2 
5 
4

√
25 + 10

√
5 .A5 = 5 8 R

2 
o

√
10 + 2

√
5 . A5 = 5R2 

i

√
5 − 2

√
5 

6 .a6 = 2 3 Ri 
√
3 .Ri = Ro 

2 

√
3 . Ro = 2 3 Ri 

√
3 

6 .A6 = 3 2 a
2 
6 

√
3 .A6 = 3 2 R

2 
o 

√
3 . A6 = 2R2 

i 

√
3 

8 .a8 = 2Ri (
√
2 − 1) .Ri = Ro 

2

√
2 + 

√
2 . Ro = Ri

√
4 − 2

√
2 

8 .A8 = 2a2 8
(√

2 + 1
)

.A8 = 2R2 
o 

√
2 . A8 = 8R2 

i

(√
2 − 1

)

10 .a10 = 2 5 Ri

√
25 − 10

√
5 .Ri = Ro 

4

√
10 + 2

√
5 . Ro = Ri 5

√
50 − 10

√
5 

10 .A10 = 5 2 a
2 
10

√
5 + 2

√
5 .A10 = 5 4 R

2 
o

√
10 − 2

√
5 .A10 = 2R2 

i

√
25 − 10

√
5 
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15.2.16 Circle 

The circumference . C and area . A of a circle are given by: 

. C = πd = 2πr 
A = πr2 = 1 4 πd

2 

where the diameter .d = 2r . 
An annulus is the area between two concentric circles as shown in Fig. 15.15, 

and its area . A is given by: 

. A = π
(
R2 − r2

)
= 1 4 π

(
D2 − d2

)

where .D = 2R and . d = 2r 
Figure 15.16 shows a sector of a circle, whose area is given by: 

. A = α◦ 

360◦ πr
2 

Figure 15.17 shows a segment of a circle, whose area is given by: 

. A = 1 2r
2(α − sin α), where α is in radians 

Fig. 15.15 An annulus 
formed from two concentric 
circles 

Fig. 15.16 A sector of a 
circle defined by the angle.α 
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Fig. 15.17 A segment of a 
circle defined by the angle. α 

The area of an ellipse with major and minor radii . a and . b is: 

. A = πab 

15.3 2D Analytic Geometry 

In this section we briefly examine familiar descriptions of geometric elements and 
ways of computing intersections. 

15.3.1 Equation of a Straight Line 

The well-known equation of a straight line is: 

. y = mx + c 

where .m is the slope and . c the intersection with the .y-axis, as shown in Fig. 15.18. 
This is called the normal form. 

Fig. 15.18 The normal form 
of the straight line is 
.y = mx + c 
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Given two points .(x1, y1) and .(x2, y2) we can state that for any other point 
.(x, y): 

. 
y − y1 
x − x1 

= 
y2 − y1 
x2 − x1 

which yields: 

. y = (x − x1) 
y2 − y1 
x2 − x1 

+ y1 

Although these equations have their uses, the more general form is much more 
convenient: 

. ax + by + c = 0 

As we shall see, this equation possesses some interesting qualities. 

15.3.2 The Hessian Normal Form 

Figure 15.19 is the Hessian normal form of a straight line, and shows a line whose 
orientation is controlled by a normal unit vector.n = [a b]T. If.P(x, y) is any point 
on the line, then. p is a position vector where.p = [x y]T and. d is the perpendicular 
distance from the origin to the line. Therefore: 

. 
d

‖p‖ = cos α 

and 
. d = ‖p‖ cos α 

But the dot product .n · p is given by: 
. n · p = ‖n‖‖p‖ cos α = ax + by 

which implies that: 
. ax + by = d‖n‖

Fig. 15.19 The orientation 
of a line can be controlled by 
a normal vector. n and a 
distance.d 
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and because .‖n‖ =  1 we can write: 

. ax + by − d = 0 

where .(x, y) is a point on the line, . a and . b are the components of a unit vector 
normal to the line, and. d is the perpendicular distance from the origin to the line. The 
distance. d is positive when the normal vector points away from the origin, otherwise 
it is negative. For example, let’s find the equation of a line whose normal vector is 
.[3 4]T and the perpendicular distance from the origin to the line is 1. 

We begin by normalising the normal vector to its unit form. Therefore, if 
.n = [3 4]T, . ‖n‖ =  

√
32 + 42 = 5, the equation of the line is: 

. 
3 
5 x + 4 5 y − 1 = 0 

Similarly, let’s find the Hessian normal form of .y = 2x + 1. Rearranging the 
equation we get: 

. 2x − y = −1 

which gives a negative distance. If we want the normal vector to point away from 
the origin we multiply by .−1: 

. − 2x + y − 1 = 0 

Normalise the normal vector to a unit form: 

. i.e.
√

(−2)2 + 12 = 
√
5 

. − 2√
5 
x + 1√

5 
y − 1√

5 
= 0 

Therefore, the perpendicular distance from the origin to the line, and the unit normal 
vector are respectively: 

. 
1√
5 

and
[−2√

5 
1√
5

]T 

As the Hessian normal form involves a unit normal vector, we can incorporate the 
vector’s direction cosines within the equation: 

. x cos α + y sin α − d = 0 

where . α is the angle between the normal vector and the .x-axis. 

15.3.3 Space Partitioning 

The Hessian normal form provides a very useful way of partitioning space into two 
zones: the partition that includes the normal vector, and the opposite partition. This 
is illustrated in Fig. 15.20. 

Given the equation: 
.ax + by − d = 0 
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Fig. 15.20 The Hessian 
normal form of the line 
equation partitions space into 
two zones 

a point .(x, y) on the line satisfies the equation. But if the point .(x, y) is in the 
partition in the direction of the normal vector, it creates the inequality: 

. ax + by − d > 0 

Conversely, if.(x, y) is in the partition opposite to the direction of the normal vector 
creates the inequality: 

. ax + by − d < 0 

This space-partitioning feature of the Hessian normal form is useful in clipping lines 
against polygonal windows. 

15.3.4 The Hessian Normal Form from Two Points 

Given two points .(x1, y1) and.(x2, y2) we compute the values of . a, . b and. d for the 
Hessian normal form from two points as follows. 

The vector joining the two points is .v = [Δx Δy]T where: 
. Δx = x2 − x1 
Δy = y2 − y1

‖v‖ =
√

Δ2 
x + Δ2 

y 

The unit vector normal to . v is .n = [−Δ′
y Δ′

x ]T, where: 

.Δ′
x = 

Δx

‖v‖
Δ′

y = 
Δy

‖v‖
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Therefore, let .p = [x y]T be any point on the line, and using the Hessian Normal 
Form, we can write: 

. n · p = −Δ′
y x + Δ′

x y = −Δ′
y x1 + Δ′

x y1 

and 
. − Δ′

y x + Δ′
x y + (Δ′

y x1 − Δ′
x y1) = 0 (15.1) 

For example, given the following points: .(x1, y1) = (0, 1) and . (x2, y2) = 
(1, 0); then .Δ′

x = 1/
√
2 and .Δ′

y = −1/
√
2. Therefore, using (15.1): 

. 
x√
2 

+ 
y√
2 

+
(
0 × −1√

2 
− 1 × 1√

2

)
= 0 

x√
2 

+ 
y√
2 

− 
1√
2 

= 0 

15.4 Intersection Points 

15.4.1 Intersecting Straight Lines 

Given two intersecting straight lines of the form: 

. a1x + b1y + d1 = 0 
a2x + b2 y + d2 = 0 

the intersection point .(xi , yi ) is given by: 

. xi = 
b1d2 − b2d1 
a1b2 − a2b1 

yi = 
d1a2 − d2a1 
a1b2 − a2b1 

or using determinants: 

. xi =

∣∣∣∣
b1 d1 
b2 d2

∣∣∣∣
∣∣∣∣
a1 b1 
a2 b2

∣∣∣∣

yi =

∣∣∣∣
d1 a1 
d2 a2

∣∣∣∣
∣∣∣∣
a1 b1 
a2 b2

∣∣∣∣

If the denominator is zero, the equations are linearly dependent, indicating that there 
is no intersection. 
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15.4.2 Intersecting Line Segments 

We are often concerned with intersecting line segments in computer graphics as 
they represent the edges of shapes and objects. So let’s investigate how to compute the 
intersection of two 2D-line segments. Figure 15.21 shows two line segments defined 
by their end points .P1, .P2, .P3, .P4 and respective position vectors . p1, . p2, .p3 and . p4. 
We can write the following vector equations to identify the point of intersection: 

.pi = p1 + t (p2 − p1) (15.2) 

.pi = p3 + s(p4 − p3) (15.3) 

where parameters. s and. t vary between 0 and 1. For the point of intersection, we can 
write: 

. p1 + t (p2 − p1) = p3 + s(p4 − p3) 

Therefore, the parameters . s and . t are given by: 

.s = 
(p1 − p3) + t (p2 − p1) 

p4 − p3 
(15.4) 

.t = 
(p3 − p1) + s(p4 − p3) 

p2 − p1 
(15.5) 

From (15.5) we can write: 

. t = 
(x3 − x1) + s(x4 − x3) 

x2 − x1 

t = 
(y3 − y1) + s(y4 − y3) 

y2 − y1 

which yields: 

.s = 
x1(y3 − y2) + x2(y3 − y1) + x3(y2 − y1) 
(x2 − x1)(y4 − y3) − (x4 − x3)(y2 − y1) 

(15.6) 

Fig. 15.21 Two line 
segments with their 
associated position vectors 
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Similarly: 

.t = 
x1(y4 − y3) + x3(y1 − y4) + x4(y3 − y1) 
(x4 − x3)(y2 − y1) − (x2 − x1)(y4 − y3) 

(15.7) 

Let’s test (15.6) and (15.7) with two examples to illustrate how the equations are 
used in practice. The first example demonstrates an intersection condition, and the 
second demonstrates a touching condition. 

Figure 15.22a shows two line segments intersecting, with an obvious intersection 
point of .(1.5, 0). The coordinates of the line segments are: 

. (x1, y1) = (1, 0), (x2, y2) = (2, 0) 
(x3, y3) = (1.5, −1), (x4, y4) = (1.5, 1) 

therefore: 

. t = 
1(1 − (−1)) + 1.5(0 − 1) + 1.5(−1 − 0) 
(0 − 0)(1.5 − 1.5) − (2 − 1)(1 − (−1)) 

= 0.5 

and 

. s = 
1(−1 − 0) + 2(0 − (−1)) + 1.5(0 − 0) 
(1 − (−1))(2 − 1) − (1.5 − 1.5)(0 − 0) 

= 0.5 

Substituting . s and . t in (15.2) and (15.3) we get .(xi , yi ) = (1.5, 0) as predicted. 
Figure 15.22b shows two line segments touching at .(1.5, 0). The coordinates of 

the line segments are: 

. (x1, y1) = (1, 0), (x2, y2) = (2, 0) 
(x3, y3) = (1.5, 0), (x4, y4) = (1.5, 1) 

therefore: 

. t = 
1(1 − 0) + 1.5(0 − 1) + 1.5(0 − 0) 
(0 − 0)(1.5 − 1.5) − (2 − 1)(1 − 0) 

= 0.5 

and 

. s = 
1(0 − 0) + 2(0 − 0) + 1.5(0 − 0) 

(1 − 0)(2 − 1) − (1.5 − 1.5)(0 − 0) 
= 0 

The zero value of . s confirms that the lines touch, rather than intersect, and . t = 0.5 
confirms that the touching takes place halfway along the line segment. 

15.5 Point Inside a Triangle 

We often require to test whether a point is inside a triangle, outside or touching. 
Let’s examine two ways of performing this operation. The first is related to finding 
the area of a triangle. 
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Fig. 15.22 a Shows two line 
segments intersecting b 
Shows two line segments 
touching 

Fig. 15.23 The area of the  
triangle is computed by 
subtracting the smaller 
triangles from the 
rectangular area 

15.5.1 Area of a Triangle 

Let’s declare a triangle formed by the anti-clockwise points .P1(x1, y1), . P2(x2, y2) 
and .P3(x3, y3) as shown in Fig. 15.23. The  area of the triangle is given by: 

. A = (x2−x1)(y3−y1)− 1 
2 (x2−x1)(y2−y1)− 1 

2 (x2−x3)(y3−y2)− 1 
2 (x3−x1)(y3−y1) 

which simplifies to: 

. A = 1 2 [x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)] 
and this can be further simplified to: 

. A = 1 2

∣∣∣∣∣∣
x1 y1 1 
x2 y2 1 
x3 y3 1

∣∣∣∣∣∣

Figure 15.24 shows two triangles with opposing vertex sequences. If we calculate 
the area of the top triangle with anticlockwise vertices, we obtain: 

.A = 1 2 [1(2 − 4) + 3(4 − 2) + 2(2 − 2)] =  2 
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Fig. 15.24 The top triangle 
has anti-clockwise vertices, 
and the bottom triangle 
clockwise vertices 

Fig. 15.25 If the point.Pt is 
inside the triangle, it is 
always to the left as the 
boundary is traversed in an 
anti-clockwise direction 

whereas the area of the bottom triangle with clockwise vertices is: 

. A = 1 2 [1(2 − 0) + 3(0 − 2) + 2(2 − 2)] = −2 

which shows that the technique is sensitive to vertex direction. We can exploit this 
sensitivity to test if a point is inside or outside a triangle. 

Consider the scenario shown in Fig. 15.25, where the point.Pt is inside the triangle 
.(P1, P2, P3). 

. • If the area of triangle .(P1, P2, Pt ) is positive, .Pt must be to the left of the 
line .(P1, P2). 

. • If the area of triangle .(P2, P3, Pt ) is positive, .Pt must be to the left of the 
line .(P2, P3). 

. • If the area of triangle .(P3, P1, Pt ) is positive, .Pt must be to the left of the 
line .(P3, P1). 

If all the above tests are positive,.Pt is inside the triangle. Furthermore, if one area 
is zero and the other areas are positive, the point is on the boundary, and if two areas 
are zero and the other positive, the point is on a vertex. 

Let’s now investigate how the Hessian normal form provides a similar function. 
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15.5.2 Hessian Normal Form 

We can determine whether a point is inside, touching or outside a triangle by rep-
resenting the triangle’s edges in the Hessian normal form, and testing in which 
partition the point is located. If we arrange that the normal vectors are pointing 
towards the inside of the triangle, any point inside the triangle will create a positive 
result when tested against the edge equation. In the following calculations there is no 
need to ensure that the normal vector is a unit vector, therefore (15.1) can be written: 

. − Δy x + Δx y + (Δy x1 − Δx y1) = 0 

To illustrate this, consider the scenario shown in Fig. 15.26 where a triangle is formed 
by the points .(1, 1), .(3, 1) and .(2, 3). With reference to (15.1) we compute the 
three line equations. 

The line between .(1, 1) and .(3, 1): 

. Δx = 2 
Δy = 0 

−0 × x + 2 × y − 2 × 1 = 0 
2y − 2 = 0 

The line between .(3, 1) and .(2, 3): 

. Δx = −1 

Δy = 2 
−2 × x − 1 × y + (2 × 3 + 1 × 1) = 0 

−2x − y + 7 = 0 

The line between .(2, 3) and .(1, 1): 

. Δx = −1 

Δy = −2 

2 × x − 1 × y + (−2 × 2 − 1 × 3) = 0 
2x − y − 1 = 0 

Thus the three line equations for the triangle are: 

.2y − 2 = 0 
−2x − y + 7 = 0 
2x − y − 1 = 0 
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Fig. 15.26 The triangle is  
represented by three line 
equations expressed in the 
Hessian normal form. Any 
point inside the triangle is 
found by evaluating their 
equations 

We are only interested in the signs of the equations: 

. 2y − 2 (15.8) 

. − 2x − y + 7 (15.9) 

. 2x − y − 1 (15.10) 

which can be tested for any arbitrary point.(x, y). If they are all positive, the point is 
inside the triangle. If one expression is negative, the point is outside. If one expression 
is zero, the point is on an edge, and if two expressions are zero, the point is on a 
vertex. 

Just as a quick test, consider the point .(2, 2). The three expressions (15.8) to  
(15.10) are positive, which confirms that the point is inside the triangle. The point 
.(3, 3) is obviously outside the triangle, which is confirmed by two positive results 
and one negative. Finally, the point .(2, 3), which is a vertex, creates one positive 
result and two zero results. 

15.6 Intersection of a Circle with a Straight Line 

The equation of a circle has already been given in the previous chapter, so we will 
now consider how to compute its intersection of a circle with a straight line. We  
begin by testing the equation of a circle with the normal form of the line equation: 

. x2 + y2 = r2 and y = mx + c 

By substituting the line equation in the circle’s equation we discover the two inter-
section points: 

.x1,2 = 
−mc ± √

r2(1 + m2) − c2 
1 + m2 (15.11) 
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Fig. 15.27 The intersection 
of a circle with a straight line 

.y1,2 = 
c ± m

√
r2(1 + m2) − c2 
1 + m2 (15.12) 

Let’s test this result with the scenario shown in Fig. 15.27. Using the normal form 
of the line equation we have: 

. y = x + 1, m = 1, and c = 1 

Substituting these values in (15.11) and (15.12) yields: 

. x1,2 = −1, 0, y1,2 = 0, 1 

The actual points of intersection are .(−1, 0) and .(0, 1). 
Testing the equation of the circle with the general equation of the line. ax+by+c = 

0 yields intersections given by: 

.x1,2 = 
−ac ± b

√
r2(a2 + b2) − c2 
a2 + b2

(15.13) 

.y1,2 = 
−bc ± a

√
r2(a2 + b2) − c2 
a2 + b2

(15.14) 

The general form of the line equation .y = x + 1 is: 

. x − y + 1 = 0 where a = 1, b = −1 and c = 1 

Substituting these values in (15.13) and (15.14) yields: 

. x1,2 = −1, 0, and y1,2 = 0, 1 

which gives the same intersection points found above. 
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Finally, using the Hessian normal form of the line .ax + by − d = 0 yields 
intersections given by: 

.x1,2 = ad ± b
√
r2 − d2 (15.15) 

.y1,2 = bd ± a
√
r2 − d2 (15.16) 

The Hessian normal form of the line equation .x − y + 1 = 0 is: 

. − 0.707x + 0.707y − 0.707 ≈ 0 

where .a ≈ −0.707, b ≈ 0.707 and .d ≈ 0.707. Substituting these values in (15.15) 
and (15.16) yields: 

. x1,2 = −1, 0 and y1,2 = 0, 1 

which gives the same intersection points found above. One can readily see the compu-
tational benefits of using the Hessian normal form over the other forms of equations. 

15.7 3D Geometry 

3D straight lines are best described using vector notation, and readers are urged 
to develop strong skills in these techniques if they wish to solve problems in 3D 
geometry. Let’s begin this short survey of 3D analytic geometry by describing the 
equation of a straight line. 

15.7.1 Equation of a Straight Line 

We start by using a vector. b to define the orientation of the line, and a point. a in space 
through which the line passes. This scenario is shown in Fig. 15.28. Given another 
point .P on the line we can define a vector .tb between . a and . P , where . t is a scalar. 

Fig. 15.28 The line 
equation is based upon the 
point. a and the vector.b 
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The position vector . p for .P is given by: 

. p = a + tb 

from which we can obtain the coordinates of the point . P: 

. x p = xa + t xb 
yp = ya + t yb 
z p = za + t zb 

For example, if .b = [1 2  3]T and .a = (2, 3, 4), then by setting .t = 1 we can 
identify a second point on the line: 

. x p = 2 + 1 = 3 
yp = 3 + 2 = 5 
z p = 4 + 3 = 7 

In fact, by using different values of . t we can slide up and down the line with ease. 
If we have two points.P1 and.P2, such as the vertices of an edge, we can represent 

the line equation using the above vector technique: 

. p = p1 + t (p2 − p1) 

where .p1 and .p2 are position vectors to their respective points. Once more, we can 
write the coordinates of any point .P as follows: 

. x p = x1 + t (x2 − x1) 
yp = y1 + t (y2 − y1) 
z p = z1 + t (z2 − z1) 

15.7.2 Intersecting Two Straight Lines 

Given two straight lines we can test for a point of intersection, but must be prepared 
for three results: 

. • A real intersection point. 

. • No intersection point. 

. • An infinite number of intersections (identical lines). 

If the line equations are of the form: 

.p = a1 + rb1 
p = a2 + rb2 
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for an intersection we can write: 

. a1 + rb1 = a2 + sb2 

which yields: 

.xa1 + r xb1 = xa2 + sxb2 (15.17) 

.ya1 + r yb1 = ya2 + syb2 (15.18) 

.za1 + r zb1 = za2 + szb2 (15.19) 

We now have three equations in two unknowns, and any value of. r and. s must hold for 
all three equations. We begin by selecting two equations that are linearly independent 
(i.e. one equation is not a scalar multiple of the other) and solve for . r and . s, which 
must then satisfy the third equation. If this final substitution fails, then there is no 
intersection. If all three equations are linearly dependent, they describe two parallel 
lines, which can never intersect. 

To check for linear dependency we rearrange (15.17) to (15.19) as follows: 

.r xb1 − sxb2 = xa2 − xa1 (15.20) 

.r yb1 − syb2 = ya2 − ya1 (15.21) 

.r zb1 − szb2 = za2 − za1 (15.22) 

If the determinant .Δ of any pair of these equations is zero, then they are dependent. 
For example, (15.20) and (15.21) form the determinant: 

. Δ =
∣∣∣∣
xb1 −xb2 
yb1 −yb2

∣∣∣∣

which, if zero, implies that the two equations can not yield a solution. As it is impos-
sible to predict which pair of equations from (15.20) to (15.22) will be independent, 
let’s express two independent equations as follows: 

. ra11 − sa12 = b1 
ra21 − sa22 = b2 

which yields: 

. r = 
a22b1 − a12b2 

Δ 

s = 
a21b1 − a11b2 

Δ 
where: 

.Δ =
∣∣∣∣
a11 a12 
a21 a22

∣∣∣∣
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Solving for . r and . s we obtain: 

.r = 
yb2(xa2 − xa1) − xb2(ya2 − ya1) 

xb1yb2 − yb1xb2 
(15.23) 

.s = 
yb1(xa2 − xa1) − xb1(ya2 − ya1) 

xb1yb2 − yb1xb2 
(15.24) 

As a quick test, consider the intersection of the lines encoded by the following 
vectors: 

. a1 = 

⎡ 

⎣ 
0 
1 
0 

⎤ 

⎦ , b1 = 

⎡ 

⎣ 
3 
3 
3 

⎤ 

⎦ , a2 = 

⎡ 

⎣ 
0 
0.5 
0 

⎤ 

⎦ , b2 = 

⎡ 

⎣ 
2 
3 
2 

⎤ 

⎦ 

Substituting the .x- and .y-components in (15.23) and (15.24) we discover: 

. r = 1 3 and s = 1 2 

but for these to be consistent, they must satisfy the .z-component of the original 
equation: 

. r zb1 − szb2 = za2 − za1 
. 
1 
3 × 3 − 1 2 × 2 = 0 

which is correct. Therefore, the point of intersection is given by either: 

. pi = a1 + rb1, or 

pi = a2 + sb2 

Let’s try both, just to prove the point: 

. xi = 0 + 1 3 3 = 1, xi = 0 + 1 2 2 = 1 
yi = 1 + 1 3 3 = 2, yi = 1 2 + 1 2 3 = 2 
zi = 0 + 1 3 3 = 1, zi = 0 + 1 2 2 = 1 

Therefore, the point of intersection point is .(1, 2, 1): 
Now let’s take two lines that don’t intersect, and also exhibit some linear depen-

dency: 

. a1 = 

⎡ 

⎣ 
0 
1 
0 

⎤ 

⎦ , b1 = 

⎡ 

⎣ 
2 
2 
0 

⎤ 

⎦ , a2 = 

⎡ 

⎣ 
0 
2 
0 

⎤ 

⎦ , b2 = 

⎡ 

⎣ 
2 
2 
1 

⎤ 

⎦ 

Taking the.x- and.y-components we discover that the determinant. Δ is zero, which 
has identified the linear dependency. Taking the.y- and.z-components the determinant 
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is non-zero, which permits us to compute . r and . s using: 

. r = 
zb2(ya2 − ya1) − yb2(za2 − za1) 

yb1zb2 − zb1yb2 

s = 
zb1(ya2 − ya1) − yb1(za2 − za1) 

yb1zb2 − zb1yb2 

r = 
1(2 − 1) − 2(0 − 0) 

2 × 1 − 0 × 2 
= 1 2 

s = 
0(2 − 1) − 2(0 − 0) 

2 × 1 − 0 × 2
= 0 

But these values of . r and . s must also apply to the .x-components: 

. r xb1 − sxb2 = xa2 − xa1 

. 
1 
2 × 2 − 0 × 2 �= 0 

which they clearly do not, therefore the lines do not intersect. 
Now let’s proceed with the equation of a plane, and then look at how to compute 

the intersection of a line with a plane using a similar technique. 

15.8 Equation of a Plane 

We now consider four ways of representing an equation of a plane: the Cartesian 
form, general form, parametric form and a plane from three points. 

15.8.1 Cartesian Form of the Plane Equation 

One popular method of representing a plane equation is the Cartesian form, which 
employs a vector normal to the plane’s surface and a point on the plane. The equation 
is derived as follows. 

Let . n be a nonzero vector normal to the plane and .P0(x0, y0, z0) a point on 
the plane. .P(x, y, z) is any other point on the plane. Figure 15.29 illustrates the 
scenario. The normal vector is defined as: 

. n = ai + bj + ck 

and the position vectors for .P0 and .P are: 

.p0 = x0i + y0j + z0k 
p = x i + yj + zk 
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Fig. 15.29 The vector. n is 
normal to the plane, which 
contains a point.P0..P is any 
other point on the plane 

respectively. From Fig. 15.29 we observe that: 

. q = p − p0 

and as . n is orthogonal to . q: 
. n · q = 0 

therefore: 
. n · (p − p0) = 0 

which expands into: 
.n · p = n · p0 (15.25) 

Writing (15.25) in its Cartesian form we obtain: 

. ax + by + cz = ax0 + by0 + cz0 

but.ax0 + by0 + cz0 is a scalar quantity associated with the plane and can be replaced 
by . d. Therefore: 

.ax + by + cz = d (15.26) 

which is the Cartesian form of the plane equation. 
The value of . d has the following geometric interpretation. 

In Fig. 15.29 the perpendicular distance from the origin to the plane is: 

. h = ‖p0‖ cos α 

therefore: 
. n · p0 = ‖n‖‖p0‖ cos α = h‖n‖

therefore, the plane equation is also expressed as: 

.ax + by + cz = h‖n‖ (15.27) 

Dividing (15.27) by .‖n‖ we obtain: 

. 
a

‖n‖ x + 
b

‖n‖ y + 
c

‖n‖ z = h 
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Fig. 15.30 A plane  
represented by the normal 
vector. n and a point 
. P0(0, 1, 0) 

where: 
. ‖n‖ =

√
a2 + b2 + c2 

This means that when a unit normal vector is used, . h is the perpendicular distance 
from the origin to the plane. Let’s investigate this equation with an example. 

Figure 15.30 shows a plane represented by the normal vector .n = j + k and a 
point on the plane .P0(0, 1, 0). Using  (15.26) we have:  

. 0x + 1y + 1z = 0 × 0 + 1 × 1 + 1 × 0 = 1 

therefore, the plane equation is: 
. y + z = 1 

If we normalise the equation to create a unit normal vector, we have: 

. 
y√
2 

+ 
z√
2 

= 
1√
2 

where the perpendicular distance from the origin to the plane is .1/
√
2. 

15.8.2 General Form of the Plane Equation 

The general form of the equation of a plane is expressed as: 

. Ax + By  + Cz  + D = 0 

which means that the Cartesian form is translated into the general form by making: 

.A = a, B = b, C = c, D = −d 
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15.8.3 Parametric Form of the Plane Equation 

Another way is to represent a plane equation parametrically is to employ two 
vectors and a point that lie on the plane. Figure 15.31 illustrates a scenario where 
vectors . a and . b, and the point .T (xt , yt , zt ) lie on a plane. We now identify any 
other point on the plane .P(x p, yp, z p) with its associated position vector . p. The  
point . T also has its associated position vector . t. 

Using vector addition we can write: 

. c = λa + εb 

where . λ and . ε are two scalars such that . c locates the point .P . We can now write: 

.p = t + c (15.28) 

therefore: 

. x p = xt + λxa + εxb 
yp = yt + λya + εyb 
z p = zt + λza + εzb 

which means that the coordinates of any point on the plane are formed from the 
coordinates of the known point on the plane, and a linear mixture of the components 
of the two vectors. Let’s illustrate this vector approach with an example. 

Figure 15.32 shows a plane containing the vectors.a = i and.b = k, and the point 
.T (1, 1, 1) with its position vector.t = i+ j + k . By inspection, the plane is parallel 
with the .xz-plane and intersects the .y-axis at .y = 1. 

From (15.28) we can write: 

. p = t + λa + εb 

where . λ and . ε are arbitrary scalars. 

Fig. 15.31 A plane  is  
defined by the vectors. a and 
. b and the point.T (xt , yt , zt ) 
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Fig. 15.32 The plane is 
defined by the vectors. a and 
. b and the point. T (1, 1, 1) 

For example, if .λ = 2 and .ε = 1: 

. x p = 1 + 2 × 1 + 1 × 0 = 3 
yp = 1 + 2 × 0 + 1 × 0 = 1 
z p = 1 + 2 × 0 + 1 × 1 = 2 

Therefore, the point .(3, 1, 2) is on the plane. 

15.8.4 Converting from the Parametric to the General Form 

It is possible to convert from the parametric form to the general form of the plane 
equation using the following formulae: 

. λ = 
(a · b)(b · t) − (a · t)‖b‖2

‖a‖2‖b‖2 − (a · b)2

ε = 
(a · b)(a · t) − (b · t)‖a‖2

‖a‖2‖b‖2 − (a · b)2 

The resulting point .P(x p, yp, z p) is perpendicular to the origin. 
If vectors . a and . b are unit vectors, . λ and . ε become: 

.λ = 
(a · b)(b · t) − a · t 

1 − (a · b)2
(15.29) 

.ε = 
(a · b)(a · t) − b · t 

1 − (a · b)2
(15.30) 

. P’s position vector . p is also the plane’s normal vector. Therefore: 

.x p = xt + λxa + εxb 
yp = yt + λya + εyb 
z p = zt + λza + εzb 
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The normal vector is: 
. p = x pi + ypj + z pk 

and because .‖p‖ is the perpendicular distance from the plane to the origin we can 
state: 

. 
x p
‖p‖ x + 

yp
‖p‖ y + 

z p
‖p‖ z = ‖p‖

or in the general form of the plane equation: 

. Ax + By  + Cz  + D = 0 

where: 
. A = 

x p
‖p‖ , B = 

yp
‖p‖ , C = 

z p
‖p‖ , D = −‖p‖

As an example, Fig. 15.33 shows a plane inclined .45◦ to the .y- and .z-axis and 
parallel with the .x-axis. The vectors for the parametric equation are: 

. a = j − k 
b = i 
t = k 

Substituting these components in (15.29) and (15.30) we have:  

. λ = 
(0)(0) − (−1) × 1 

2 × 1 − (0)
= 0.5

ε = 
(0)(−1) − (0) × 2 

2 × 1 − (0)
= 0 

Therefore: 

. x p = 0 + 0.5 × 0 + 0 × 1 = 0 
yp = 0 + 0.5 × 1 + 0 × 0 = 0.5 
z p = 1 + 0.5 × (−1) + 0 × 0 = 0.5 

Fig. 15.33 The vectors. a 
and. b are parallel to the 
plane and the point. (0, 0, 1) 
is on the plane 
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The point .(0, 0.5, 0.5) has position vector . p, where: 

. ‖p‖ =
√
02 + 0.52 + 0.52 = 

√
2 
2 

the plane equation is: 

. 0x + 
0.5√
2/2 

y + 
0.5√
2/2 

z − 
√
2/2 = 0 

which simplifies to: 
. y + z − 1 = 0 

15.8.5 Plane Equation from Three Points 

Very often in computer graphics problems we need to find the plane equation from 
three points. To begin with, the three points must be distinct and not lie on a line. 
Figure 15.34 shows three points . R, . S and . T , from which we create two vectors 
.u = −→RS  and .v = −→RT . The vector product .u × v then provides a vector normal to 
the plane containing the original points. We now take another point .P(x, y, z) and 
form a vector .w = −→RP . The scalar product .w · (u × v) = 0 if .P is in the plane 
containing the original points. This condition can be expressed as a determinant and 
converted into the general equation of a plane. The three points are assumed to be in 
an anticlockwise sequence viewed from the direction of the surface normal. 

We begin with: 

. u × v =
∣∣∣∣∣∣
i j k  
xu yu zu 
xv yv zv

∣∣∣∣∣∣

Fig. 15.34 The vectors used 
to determine a plane 
equation from three points 
.R, S and.T 
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As. w is perpendicular to .u × v: 

. w · (u × v) =
∣∣∣∣∣∣
xw yw zw 
xu yu zu 
xv yv zv

∣∣∣∣∣∣
= 0 

Expanding the determinant we obtain: 

. xw

∣∣∣∣
yu zu 
yv zv

∣∣∣∣ + yw
∣∣∣∣
zu xu 
zv xv

∣∣∣∣ + zw
∣∣∣∣
xu yu 
xv yv

∣∣∣∣ = 0 

which becomes: 

. (x − xR)

∣∣∣∣
yS − yR zS − zR 
yT − yR zT − zR

∣∣∣∣ + (y − yR)

∣∣∣∣
zS − zR xS − xR 
zT − zR xT − xR

∣∣∣∣

+ (z − zR)

∣∣∣∣
xS − xR yS − yR 
xT − xR yT − yR

∣∣∣∣ = 0 

This can be arranged in the form.ax + by + cz + d = 0 where: 

. a =
∣∣∣∣
yS − yR zS − zR 
yT − yR zT − zR

∣∣∣∣ , b =
∣∣∣∣
zS − zR xS − xR 
xT − zR xT − xR

∣∣∣∣

c =
∣∣∣∣
xS − xR yS − yR 
xT − xR yT − yR

∣∣∣∣ , d = −(axR + byR + czR) 

or 

. a =
∣∣∣∣∣∣
1 yR zR 
1 yS zS 
1 yT zT

∣∣∣∣∣∣
, b =

∣∣∣∣∣∣
xR 1 zR 
xS 1 zS 
xT 1 zT

∣∣∣∣∣∣
, c =

∣∣∣∣∣∣
xR yR 1 
xS yS 1 
xT yT 1

∣∣∣∣∣∣
d = −(axR + byR + czR) 

As an example, consider the three points .R(0, 0, 1), S(1, 0, 0), T (0, 1, 0). 
Therefore: 

. a =
∣∣∣∣∣∣
1 0  1  
1 0  0  
1 1 0

∣∣∣∣∣∣
= 1, b =

∣∣∣∣∣∣
0 1 1  
1 1 0  
0 1  0

∣∣∣∣∣∣
= 1, c =

∣∣∣∣∣∣
0 0 1  
1 0 1  
0 1  1

∣∣∣∣∣∣
= 1 

d = −(1 × 0 + 1 × 0 + 1 × 1) = −1 

and the plane equation is: 
.x + y + z − 1 = 0 
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15.9 Intersecting Planes 

When two non-parallel planes intersect, they form a straight line at the intersection, 
which is parallel to both planes. This line can be represented as a vector, whose 
direction is revealed by the vector product of the planes’ surface normals. However, 
we require a point on this line to establish a unique vector equation; a useful point is 
chosen as .P0 , whose position vector .p0 is perpendicular to the line. 

Figure 15.35 shows two planes with normal vectors .n1 and .n2 intersecting to 
create a line represented by. n3, whilst .P0(x0, y0, z0) is a particular point on.n3 and 
.P(x, y, z) is any point on the line. 

We start the analysis by defining the surface normals: 

. n1 = a1i + b1j + c1k 
n2 = a2i + b2j + c2k 

next we define . p and . p0: 

. p = x i + yj + zk 
p0 = x0i + y0j + z0k 

Now we state the plane equations in vector form: 

. n1 · p + d1 = 0 
n2 · p + d2 = 0 

The geometric significance of the scalars.d1 and.d2 has already been described above. 
Let’s now define the line of intersection as: 

. p = p0 + λn3 

where . λ is a scalar. 
As the line of intersection must be orthogonal to .n1 and . n2: 

. n3 = a3i + b3j + c3k = n1 × n2 

Fig. 15.35 Two intersecting 
planes create a line of 
intersection 
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Now we introduce .P0 as this must satisfy both plane equations, therefore: 

.n1 · p0 = −d1 (15.31) 

.n2 · p0 = −d2 (15.32) 

and as .P0 is such that .p0 is orthogonal to . n3: 

.n3 · p0 = 0 (15.33) 

Equations (15.31)–(15.33) form three simultaneous equations, which reveal the point 
.P0. These are represented in matrix form as: 

. 

⎡ 

⎣ 
−d1 
−d2 
0 

⎤ 

⎦ = 

⎡ 

⎣ 
a1 b1 c1 
a2 b2 c2 
a3 b3 c3 

⎤ 

⎦ 

⎡ 

⎣ 
x0 
y0 
z0 

⎤ 

⎦ 

or 

. 

⎡ 

⎣ 
d1 
d2 
0 

⎤ 

⎦ = −  

⎡ 

⎣ 
a1 b1 c1 
a2 b2 c2 
a3 b3 c3 

⎤ 

⎦ 

⎡ 

⎣ 
x0 
y0 
z0 

⎤ 

⎦ 

therefore: 

. 
x0∣∣∣∣∣∣

d1 b1 c1 
d2 b2 c2 
0 b3 c3

∣∣∣∣∣∣

= y0∣∣∣∣∣∣
a1 d1 c1 
a2 d2 c2 
a3 0 c3

∣∣∣∣∣∣

= z0∣∣∣∣∣∣
a1 b1 d1 
a2 b2 d2 
a3 b3 0

∣∣∣∣∣∣

= 
−1 

DET  

which enables us to state: 

. x0 = 
d2

∣∣∣∣
b1 c1 
b3 c3

∣∣∣∣ − d1
∣∣∣∣
b2 c2 
b3 c3

∣∣∣∣
DET  

y0 = 
d2

∣∣∣∣
a3 c3 
a1 c1

∣∣∣∣ − d1
∣∣∣∣
a3 c3 
a2 c2

∣∣∣∣
DET  

. z0 = 
d2

∣∣∣∣
a1 b1 
a3 b3

∣∣∣∣ − d1
∣∣∣∣
a2 b2 
a3 b3

∣∣∣∣
DET  

where: 

. DET  =
∣∣∣∣∣∣
a1 b1 c1 
a2 b2 c2 
a3 b3 c3

∣∣∣∣∣∣
The line of intersection is then given by: 

. p = p0 + λn3 

If .DET  = 0 the line and plane are parallel. 



370 15 Analytic Geometry 

Fig. 15.36 Two intersecting 
planes creating a line of 
intersection coincident with 
the.y-axis 

To illustrate this, let the two intersecting planes be the xy-plane and the yz-plane, 
which means that the line of intersection will be the y-axis, as shown in Fig. 15.36. 

The plane equations are .z = 0 and .x = 0, therefore: 

. n1 = k 
n2 = i 

and . d1 = d2 = 0. 
We now compute . n3, .DET  , . x0, . y0, . z0: 

. n3 =
∣∣∣∣∣∣
i j  k  
0 0  1  
1 0  0

∣∣∣∣∣∣
= j 

DET  =
∣∣∣∣∣∣
0 0 1  
1 0 0  
0 1  0

∣∣∣∣∣∣
= 1 

x0 = 
0

∣∣∣∣
0 1  
1 0

∣∣∣∣ − 0
∣∣∣∣
0 0  
1 0

∣∣∣∣
1

= 0 

y0 = 
0

∣∣∣∣
0 0  
0 1

∣∣∣∣ − 0
∣∣∣∣
0 0  
1 0

∣∣∣∣
1

= 0 

z0 = 
0

∣∣∣∣
0 0  
0 1

∣∣∣∣ − 0
∣∣∣∣
1 0  
0 1

∣∣∣∣
1

= 0 

Therefore, the line equation is .p = λn3, where .n3 = j, which is the .y-axis. 

15.9.1 Intersection of Three Planes 

Three mutually intersecting planes will intersect at a point as shown in Fig. 15.37, 
and we can find this point by using a similar strategy to the one used in two intersecting 
planes by creating three simultaneous plane equations using determinants. 
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Fig. 15.37 Three mutually 
intersecting planes 

Figure 15.37 shows the common point .P(x, y, z) . The three planes can be 
defined by the following equations: 

. a1x + b1y + c1z + d1 = 0 
a2x + b1y + c2z + d2 = 0 
a3x + b1y + c3z + d3 = 0 

which means that they can be rewritten as: 

. 

⎡ 

⎣ 
−d1 
−d2 
−d3 

⎤ 

⎦ = 

⎡ 

⎣ 
a1 b1 c1 
a2 b2 c2 
a3 b3 c3 

⎤ 

⎦ 

⎡ 

⎣ 
x 
y 
z 

⎤ 

⎦ 

or 

. 

⎡ 

⎣ 
d1 
d2 
d3 

⎤ 

⎦ = −  

⎡ 

⎣ 
a1 b1 c1 
a2 b2 c2 
a3 b3 c3 

⎤ 

⎦ 

⎡ 

⎣ 
x 
y 
z 

⎤ 

⎦ 

or in determinant form: 

. 
x∣∣∣∣∣∣

d1 b1 c1 
d2 b2 c2 
d3 b3 c3

∣∣∣∣∣∣

= y∣∣∣∣∣∣
a1 d1 c1 
a2 d2 c2 
a3 d3 c3

∣∣∣∣∣∣

= z∣∣∣∣∣∣
a1 b1 d1 
a2 b2 d2 
a3 b3 d3

∣∣∣∣∣∣

= 
−1 

DET  

where: 

.DET  =
∣∣∣∣∣∣
a1 b1 c1 
a2 b2 c2 
a3 b3 c3

∣∣∣∣∣∣
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Fig. 15.38 Three planes 
intersecting at a point. P 

Therefore, we can state that: 

. x = −

∣∣∣∣∣∣
d1 b1 c1 
d2 b2 c2 
d3 b3 c3

∣∣∣∣∣∣
DET  

y = −

∣∣∣∣∣∣
a1 d1 c1 
a2 d2 c2 
a3 d3 c3

∣∣∣∣∣∣
DET  

z = −

∣∣∣∣∣∣
a1 b1 d1 
a2 b2 d2 
a3 b3 d3

∣∣∣∣∣∣
DET  

If .DET  = 0, two of the planes at least, are parallel. Let’s test these equations 
with a simple example. 

The planes shown in Fig. 15.38 have the following equations: 

. x + y + z − 2 = 0 
z = 0 

y − 1 = 0 

therefore: 

.DET  =
∣∣∣∣∣∣
1 1 1  
0 0 1  
0 1  0

∣∣∣∣∣∣
= −1 

x = −

∣∣∣∣∣∣
−2 1 1  
0 0  1  

−1 1 0

∣∣∣∣∣∣
−1

= 1 
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y = −

∣∣∣∣∣∣
1 −2 1  
0 0 1  
0 −1 0

∣∣∣∣∣∣
−1

= 1 

z = −

∣∣∣∣∣∣
1 1  −2 
0 0  0  
0 1  −1

∣∣∣∣∣∣
−1

= 0 

which means that the intersection point is .(1, 1, 0), which is correct. 

15.9.2 Angle Between Two Planes 

Calculating the angle between two planes is relatively easy and can be found by 
taking the dot product of the planes’ normals. Figure 15.39 shows two planes with 
. α representing the angle between the two surface normals .n1 and . n2. 

Let the plane equations be: 

. ax1 + by1 + cz1 + d1 = 0 
ax2 + by2 + cz2 + d2 = 0 

therefore, their surface normals are: 

. n1 = a1i + b1j + c1k 
n2 = a2i + b2j + c2k 

Taking the dot product of .n1 and . n2: 

. n1 · n2 = ‖n1‖ ‖n2‖ cos α 

and 

. α = cos−1
(

n1 · n2
‖n1‖ ‖n2‖

)

Fig. 15.39 The angle 
between two planes is the 
angle between their surface 
normals 



374 15 Analytic Geometry 

Fig. 15.40 . α is the angle 
between two planes 

For example, Fig. 15.40 shows two planes with normal vectors .n1 and . n2. 
The plane equations are: 

. x + y + z − 1 = 0 
z = 0 

therefore: 

. n1 = i + j + k 
n2 = k 

therefore: 

. ‖n1‖ =  
√
3

‖n2‖ =  1 

and 
. α = cos−1

(
1√
3

)
≈ 54.74◦ 

15.9.3 Angle Between a Line and a Plane 

The angle between a line and a plane is calculated using a similar technique used 
for calculating the angle between two planes. If the line equation employs a direction 
vector, the angle is determined by taking the dot product of this vector and between 
the plane’s normal. Figure 15.41 shows such a scenario where. n is the plane’s surface 
normal and . v is the line’s direction vector. 

Let the plane equation be: 

. ax + by + cz + d = 0 

then its surface normal is: 
.n = ai + bj + ck 
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Fig. 15.41 . α is the angle 
between the plane’s surface 
normal and the line’s 
direction vector 

Fig. 15.42 The required 
angle is between. a and. b 

Let the line’s direction vector be . v and .T (xt yt , zt ) is a point on the line, then any 
point on the line is given by the position vector . p: 

. p = t + λv 

therefore, we can write: 

. n · v = ‖n‖ ‖v‖ cos α 

α = cos−1
(

n · v
‖n‖ ‖v‖

)

When the line is parallel to the plane .n · v = 0. 
Consider the scenario illustrated in Fig. 15.42 where the plane equation is: 

. x + y + z − 1 = 0 

therefore, the surface normal is given by . n: 

. n = i + j + k 

and the line’s direction vector is . a: 

.a = i + j 
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Fig. 15.43 The vectors 
required to determine 
whether a line and plane 
intersect 

therefore: 

. ‖n‖ =  
√
3

‖a‖ =  
√
2 

and 
. α = cos−1

(
2√
6

)
≈ 35.26◦ 

15.9.4 Intersection of a Line with a Plane 

Given a line and a plane, they will either intersect, or not, if they are parallel. Either 
way, both conditions can be found using some simple vector analysis, as shown in 
Fig. 15.43. The objective is to identify a point .P that is on the line and the plane. 

Let the plane equation be: 

. ax + by + cz + d = 0 

where: 
. n = ai + bj + ck 

.P is a point on the plane with position vector: 

. p = x i + yj + zk 

therefore: 
. n · p + d = 0 

Let the line equation be: 
. p = t + λv 

where: 
. t = xt i + yt j + ztk 

and 
.v = xvi + yvj + zvk 
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Fig. 15.44 .P identifies the 
intersection point of the line 
and the plane 

therefore, the line and plane will intersect for some . λ such that: 

. n · (t + λv) + d = n · t + λn · v + d = 0 

Therefore: 

. λ = 
−(n · t + d) 

n · v 
for the intersection point. The position vector for .P is .p = t + λv. 

If .n · v = 0 the line and plane are parallel. 
Let’s test this result with the scenario shown in Fig. 15.44. 
Given the plane: 

. x + y + z − 1 = 0 
Xn = i + j + k 

and the line: 
. p = t + λv 

where: 

. t = 0 
v = i + j 

then: 

. λ = 
−(1 × 0 + 1 × 0 + 1 × 0 − 1) 

1 × 1 + 1 × 1 + 1 × 0
= 0.5 

and the point of intersection is .P(0.5, 0.5, 0). 
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15.10 Summary 

Mixing vectors with geometry is a powerful analytical tool, and helps us solve many 
problems associated with computer graphics, encountered in rendering, modelling, 
collision detection and physically-based animation. Unfortunately, there has not been 
space to investigate every topic, but hopefully, what has been covered, will enable 
the reader solve other problems with greater confidence. 



16Statistics 

16.1 Introduction 

This chapter revises some statistical techniques and concepts, with which, the reader 
should be familiar. It covers data sets, frequency tables, stem and leaf diagrams, 
frequency histograms, scatter diagrams, mean, median, mode, range, variance, stan-
dard deviation, normal distribution, normal distribution tables, covariance, correla-
tion, regression and the least squares fit. The chapter concludes with some worked 
examples. 

16.2 What Is Statistics? 

Statistics comprises a collection of mathematical techniques associated with data 
sets belonging to populations. Such populations may be complete or sampled, but 
in either case, we are interested in drawing a conclusion about the population, and 
if possible, knowing the degree of confidence associated with this conclusion. If a 
population is sampled, we must expect any conclusion to vary randomly from sample 
to sample. 

16.3 Presentation of Data 

The presentation of data depends upon the nature of the data. For example, the 
use of frequency tables, stem and leaf diagrams, frequency histograms, and scatter 
diagrams, are best used for particular types of data. These are described next, and 
are intended to complement the standard graphical techniques. 
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16.3.1 Data Sets 

Before covering the ways of displaying data, a brief word about data sets. A data 
set is nothing more than a set of data, either the population itself, or a sample of the 
population. I will tend to employ set notation when defining a data set. 

16.3.2 Frequency Table 

A frequency table displays how many times a particular feature of a data set occurs. 
For example, say the weight (kg) of similar objects is recorded as follows: 

. W = 105 104 100 105 105 102 103 100 105 100 102

100 104 105 103 101 102 100 102 103 104 104

or using set notation: 

. W = {105, 104, 100, 105, 105, 102, 103, 100, 105, 100, 102,
100, 104, 105, 103, 101, 102, 100, 102, 103, 104, 104} (16.1) 

A frequency table of (16.1) is shown in Table 16.1, where each column records 
the number of times a particular number occurs. 

Next, we consider another data set concerned with the mark out of 100, for a group 
of students studying computer science. The set . S of marks are as follows: 

. S = {57, 80, 72, 56, 70, 50, 49, 83, 81, 69, 56, 63, 62, 41, 44, 59, 56, 64, 73, 69,
55, 64, 60, 44, 72, 70, 69, 66, 61, 62, 83, 68, 59, 68, 71, 66, 39, 45, 53, 55}

(16.2) 

A frequency table of (16.2) is shown in Table 16.2. In both examples, the very 
nature of the table, hides a feature of the data. 

Table 16.1 A frequency table of (16.1) 

.x .100 .101 .102 .103 .104 . 105

. f 5 1 4 3 4 5 

Table 16.2 A frequency table of (16.2) 

.x .30 .40 .50 .60 .70 . 80

. f 1 5 10 14 6 4
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Table 16.3 A stem and leaf diagram of (16.1) 

.10 .0 .0 .0 .0 . 0

.10 . 1

.10 .2 .2 .2 . 2

.10 .3 .3 . 3

.10 .4 .4 .4 . 4

.10 .5 .5 .5 .5 . 5

Table 16.4 A sorted stem and leaf diagram of (16.2) 

.3 . 9

.4 .1 .4 .4 .5 . 9

.5 .0 .3 .5 .5 .6 .6 .6 .7 .9 . 9

.6 .0 .1 .2 .2 .3 .4 .4 .6 .6 .8 .8 .9 .9 . 9

.7 .0 .0 .1 .2 .2 . 3

.8 .0 .1 .3 . 3

16.3.3 Stem and Leaf Diagram 

A stem and leaf diagram records 13 as two elements: stem . | leaf, i.e. 1 . | 3. Such 
a diagram of (16.1) is shown in Table 16.3. The diagram does not lend itself to the 
data set, and does not add anything to the frequency table. 

A similar diagram of (16.2) is shown in Table 16.4, which is much more useful, 
perhaps because the data are sorted. 

16.3.4 Frequency Histogram 

A frequency histogram shows the data set as a histogram. Figure 16.1 shows a 
frequency histogram of (16.1), which for me, communicates the data set. 

A frequency histogram can be drawn in different ways, and in each way would 
reflect the nature of the original set of data. 

16.3.5 Scatter Diagram 

A scatter diagram is a diagram linking an independent variable with a dependent 
variable. For example, Fig. 16.2 shows a scatter diagram where there is an approxi-
mate linear relationship between . x and . y.
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Fig. 16.1 A frequency 
histogram of (16.1) 
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Fig. 16.2 A scatter diagram 
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16.4 Mean, Median, Mode and Range 

The mean, median and mode generate a single number to represent a data set. This 
number attempts to show something about the data, which generally decides which 
one should be used. 

16.4.1 Mean 

There are two types of mean: population mean and sample mean. When using the 
data set for the entire population, we use the following formula: 

.μ = 1

N

N∑

i=1

xi
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where .N is the size of the population. The population mean of the 40 computer 
science students is: 

. μ = 1

40

40∑

i=1

si

= 2484

40
= 62.1

which is in the row beginning with 6 in the sorted stem and leaf Table 16.4. 
When presented with a sample of a data set taken from a population, we call it . x

instead of . μ: 

. x = 1

n

n∑

i=1

xi

where: 

. xi is a member of the data set data set.

n is the number of sample elements.

The mean of the sample .3, 4, −2, 0, 5, 4 is calculated as follows: 

. x = 3 + 4 − 2 + 0 + 5 + 4

6
= 14

6
= 2.3

Remember that .
∑

is a ‘capital sigma’ and stands for the ‘the sum of’. 
Using a frequency table, where the frequency of a particular number is referenced, 

as in Table 16.1, the population mean is evaluated as follows: 

. μ = 5 × 100 + 101 + 4 × 102 + 3 × 103 + 4 × 104 + 5 × 105

5 + 1 + 4 + 3 + 4 + 5

= 500 + 101 + 408 + 309 + 416 + 525

22

= 2259

22
≈ 102.68

16.4.2 Median 

The median of a data set is the middle value separating the two equal data sets. 
Naturally, this is a particular value for an odd data set, but has to be halved for an 
even data set:
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Fig. 16.3 The difference 
between mode, median and 
mean 

Mode MedianMean 

50% 50% 

. n is odd, median(n) = x(n+1)/2

n is even, median(n) = x(n/2) + x((n/2)+1)

2

For example, if . n is 5, and the data is .6, 7, 8, 10, 12, the median is 8. Whereas, 
if . n is 8, and the data are .2, 4, 7, 8, 12, 16, 20, 22, the median is . 8+12

2 = 10. 
Notice that before starting calculating the median, the data must be sorted. 

16.4.3 Mode 

The mode of a data set identifies the most frequent value of the data set. 
Figure 16.3 shows the mode, median and mean for an imaginary data set. Data 

may be such that there is no mode, or more than two. 

16.4.4 Range 

The range of a data set .X is given by: 

. R = xmax − xmin

For example, given the data set .X = {6, 8, 12, 16, 20}, where .xmax = 20 and 
.xmin = 6, and . R = 14.

16.5 Random Variable 

A random variable is a quantity that cannot be defined with any certainty, and per-
haps, is best defined using a probability distribution. Random variables can be divided 
into two groups: discrete and continuous, either possessing their own probability dis-
tribution. Discrete distributions arise from counting exercises. For example, in the
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recent Covid-19 epidemic, data was generally, made available every day showing 
the accumulated deaths on a country-wide basis. Such data is described as discrete 
as it was accrued by counting the number of people dying every day. Continuous 
distributions arise from experiments where something is monitored, like a smart 
gas or electricity meter, which displays the consumption of gas and electricity for a 
particular period. For the moment, we’ll only consider discrete random variables. 

16.6 Variance 

Let’s assume a discrete random variable .X with values .x1, x2, x3, . . . , xn . For .X to 
take on a particular value is called the expected value or expectation of . X , and 
equals the mean of . X . It is written .E[X ], and defined as: 

. E[X ] = 1

n

n∑

i=1

xi = x1 + x2 + x3 + · · · + xn
n

where E.[X ] ≡ μ. 
There are two ways of defining variance of a random variable. X . The first is equal 

to the mean of the square of .X minus the square of the mean of . X . i.e. 

.Var(X) = E[X2] − E[X ]2 (16.3) 

Equation (16.3) is also written: 

.Var(X) = E[(X − E[X ])2] (16.4) 

Equations (16.3) and (16.4) are shown to be equivalent as follows: 

. Var(X) = E[(X − E[X ])2]
= E[X2 − 2XE[X ] + E[X ]2]
= E[X2] − 2E[X ]E[X ] + E[X ]2
= E[X2] − E[X ]2

For example, using (16.4) where .X = {30, 36, 42, 40, 44, 48}. The expected 
mean of .X is: 

. μ = 1

6

6∑

i=1

xi

= 240

6
= 40

Next, we compute .x − μ and .(x − μ)2 for each member of .X in Table 16.5.
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Table 16.5 A table showing.x − μ and.(x − μ)2 for each. x

.x .30 .36 .42 .40 .44 . 48

.x − μ . −10 . −4 2 0 4 8 

.(x − μ)2 100 16 4 0 16 64 

Table 16.6 A table showing. x and. x2

.x .30 .36 .42 .40 .44 . 48

.x2 900 1296 1764 1600 1936 2304 

The variance of .X is: 

. Var(X) = 1

6

6∑

i=1

(xi − μ)2

= 100 + 16 + 4 + 0 + 16 + 64

6

= 200

6
= 33.3

Next, let’s show that using (16.3) gives the same result. 

Table 16.6 shows . x and . x2. Taking the mean of .X2 we have: 

. E[X2] = 900 + 1296 + 1764 + 1600 + 1936 + 2304

6
= 1633.3

E[X ]2 = μ2 = 402 = 1600

E[X2] − E[X ]2 = 1633.3 − 1600 = 33.3

which agrees with the value of variance computed with .Var(X) = E[(X − E[X ])2]. 
Variance is also known by .S2, .σ 2 and .V(X). . σ is ‘lower-case sigma’. 
The second definition of variance relies on the definition of standard deviation, 

and is defined as follows: the variance of the random variable. X is the expected value 
of the squared deviation from the mean of . X : 

. Var(X) = E[(X − E[X ])2]
where .E[X ] = μ, which is Eq. (16.4).
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16.6.1 Variance with a Probability Distribution 

To calculate the variance of a discrete random variable with a probability function, 
we incorporate the probability function with our definition of variance, and leave out 
the multiplication by .1/n: 

. Var(X) =
n∑

i=1

pi · (xi − μ)2

where .pi is the probability function whose sum is 1, . μ is the expected value for the 
mean of . X , .xi is a value of . X , . n is the number of values in .X and . p. 

For example, let’s calculate the variance of the value of rolling a fair six-sided 
die. We know from our definition of the die that the probability function that: 

. p = { 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

}

and 

. μ = 1

6

∑
(1 + 2 + 3 + 4 + 5 + 6)

= 21

6

= 7

2

therefore: 

. Var(X) =
6∑

i=1

pi ·
(
xi − 7

2

)2

= 1

6

6∑

i=1

(
xi − 7

2

)2

= 1

6

[(
−5

2

)2

+
(

−3

2

)2

+
(

−1

2

)2

+
(
1

2

)2

+
(
3

2

)2

+
(
5

2

)2
]

= 1

6

[
25

4
+ 9

4
+ 1

4
+ 1

4
+ 9

4
+ 25

4

]

= 1

6
· 70
4

= 2.916

The variance of rolling a true die is approximately 2.92 [ 1]. 
Let’s imagine that the die is faulty, and never shows a 3, but a 6 instead. How does 

this affect the variance?
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To begin with, we must calculate a new expected value of . X : 

. μ = 1

6

∑
(1 + 2 + 6 + 4 + 5 + 6)

= 24

6
= 4

Next, we need a new probability function, one that reflects the untrue die: 

. p = { 1
6 ,

1
6 , 0,

1
6 ,

1
6 ,

2
6

}

therefore: 

. Var(X) =
6∑

i=1

pi · (xi − 4)2

=
[
1

6
(−3)2 + 1

6
(−2)2 + 0 (1)2 + 1

6
(0)2 + 1

6
(1)2 + 2

6
(2)2

]

=
[
9

6
+ 4

6
+ 0 + 0 + 1

6
+ 8

6

]

= 22

6
= 3.6

The variance of rolling a faulty die is approximately 3.67. 

16.7 Standard Deviation 

The standard deviation is a measure of the dispersion of the sampled data. A low 
standard deviation indicates that the data are close to the mean, whereas a high 
standard deviation indicates that the data are away from the mean. The standard 
deviation of a random variable .X is given by: 

. σ = √
Var(X)

For the data set shown in Table 16.6 where.X = {30, 36, 42, 40, 44, 48}, and the 
variance equals .33.3, the standard deviation is the square-root of .33.3, and equals 
approximately .5.77. 

The standard deviation is written: 

.σ =
√√√√1

n

n∑

i=1

(xi − μ)2
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where . μ is the expected mean of . X , .xi is a value in .X and. n is the number of values 
in the data set. 

Note that the squaring operation used in computing the variance, ensures that it 
is always positive. 

As an illustration of standard deviation, consider the data set.X = {1, 4, 5, 4, 1}, 
whose expected mean equals .μ = 3. The variance of .X is computed using Table 
16.7. The numbers in .X have been chosen to make .μ = 3. 

The standard deviation of . X : 

. σ =
√√√√1

5

5∑

i=1

(xi − μ)2

=
√
4 + 1 + 4 + 1 + 4

5
≈ 1.67

the standard deviation of .X is approximately 1.67. 
Now let’s consider the data set .Y = {3, 4.5, 5, 4.5, 3}, whose expected mean 

equals .μ = 4. The values of . Y have been chosen to make .μ = 4. 
The variance of . Y is computed using Table 16.8. 
The standard deviation of . Y : 

. σ =
√√√√1

5

5∑

i=1

(yi − μ)2

=
√
1 + 0.25 + 1 + 0.25 + 1

5
≈ 0.8367

the standard deviation of . Y is approximately 0.8367. 
Thus a data set with values close to the mean, has a lower standard deviation. 

Table 16.7 A table showing.x − μ and.(x − μ)2 for each. x

.x .1 .4 .5 .4 . 1

.x − μ . −2 1 2 1 2 

.(x − μ)2 4 1 4 1 4 

Table 16.8 A table showing.y − μ and.(y − μ)2 for each. y

.y .3 .4.5 .5 .4.5 . 3

.y − μ . −1 0.5 1 0.5 . −1 

.(y − μ)2 1 0.25 1 0.25 1
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Please note that the above examples form the complete population, and it is normal 
to divide by . n, the number of data points. When the data are taken randomly from 
a complete population, one divides by .n − 1 to give what is called an unbiased 
estimate of the variance. Readers wishing to know more about this subject should 
investigate [ 2]. 

16.8 Normal Distribution 

A normal distribution is a mathematical function that shows the characteristics of 
some populations. A variety of ways exist to generate these curves, but the one we 
should know about is the Gaussian distribution [ 3]: 

. f (x) = 1

σ
√
2π

e
− 1

2

(
x−μ
σ

)2
(16.5) 

Equation (16.5) is known as a Gaussian distribution. 
The equation for the curve shown in Fig. 16.4 is (16.6) and is known as the 

standard normal distribution or unit normal distribution: 

.ϕ(x) = e− x2
2√

2π
(16.6) 

which peaks at 0.4, and is . ±1 standard deviation from the mean when .±x = 1, and 
. ±2 standard deviations from the mean when.±x = 2, etc. It has a total area of 1, and 
is used to solve probability problems where it is assumed that the data are normally 
distributed. . ϕ stands for ‘phi’, which is often written as . φ. 

Fig. 16.4 A Gaussian function
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Approximately.68%.(2×34.1)of values drawn from a standard normal distribution 
are within .±1σ away from the mean; approximately .95% .(2 × 47.7) of values are 
within .±2σ ; and approximately .99.7%.(2 × 49.8) of values are within .±3σ . 

For example, a set of students studying computer science are normally distributed 
with a mean mark of .65% and a standard deviation of .10%. Let a group of students 
chosen randomly from the set. What is the probability of the group of students having 
a mark less than .55%, and greater than .85%? 

Knowing that the set of students is normally distributed permits us to solve the 
problem. .55% is one standard deviation from the mean of .65%, which represents 
.34.1% of the data. As the total area of the standard normal distribution equals 1, there 
must be .15.9% beneath the first standard deviation, therefore the answer is .0.159. 
.85% is two standard deviations above the mean, there must be .2.3% above the first 
two standard deviations, therefore the answer is .0.023. 

Let’s find for the same group of students the probability of exceeding .65% but 
less than .75%. .75% is one standard deviation above the mean, which covers . 34.1%
of the standard normal curve, therefore the answer is .0.341. 

16.8.1 Normal Distribution Table 

A Normal Distribution Table provides the area of the Standard Normal Distribu-
tion curve left of the central mean, for solving problems where fractional values of 
standard deviations [ 4]. 

Table 16.9 shows such a table, but only includes halves of standard deviations. 
For example, a set of students studying computer science are normally distributed 

with a mean mark of .65% and a standard deviation of .10%. Let a group of students 
chosen randomly from the set. What is the probability of the student group has a 
mark less than .50%? 

Knowing that the set of students is normally distributed permits us to solve the 
problem. .50% is 1.5 standard deviations from the mean of .65%, and looking up 
Table 16.9 shows that the entry for .−1.5 is .0.0668. Therefore the answer is .0.0668. 

Table 16.9 A Standard Normal Distribution Table 

.Z ..00 ..01 ..02 ..03 ..04 ..05 ..06 ..07 ..08 . .09

.−3.5 ..0002 ..0002 ..0002 ..0002 ..0002 ..0002 ..0002 ..0002 ..0002 . .0002

.−3.0 ..0014 ..0013 ..0012 ..0012 ..0012 ..0011 ..0011 ..0011 ..0010 . .0010

.−2.5 ..0062 ..0060 ..0059 ..0057 ..0055 ..0054 ..0052 ..0051 ..0049 . .0048

.−2.0 ..0228 ..0222 ..0217 ..0219 ..0207 ..0202 ..0197 ..0192 ..0188 . .0183

.−1.5 ..0668 ..0655 ..0643 ..0630 ..0618 ..0606 ..0594 ..0582 ..0571 . .0559

.−1.0 ..1587 ..1563 ..1539 ..1515 ..1492 ..1469 ..1446 ..1423 ..1401 . .1379

.−0.5 ..3085 ..3050 ..3015 ..2981 ..2946 ..2912 ..2877 ..2843 ..2810 . .2776

.−0.0 ..5000 ..4960 ..4920 ..4880 ..4841 ..4801 ..4761 ..4721 ..4681 ..4641
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16.9 Covariance and Correlation 

16.9.1 Covariance 

Covariance in statistics is a measure of how much two random variables vary 
together, whereas variance measures how much a single variable varies. Figure 16.5 
shows three types of covariance. A large negative covariance results when a small 
value in .X corresponds with a high value in . Y , and a high value in .X corresponds 
with a small value in. Y . This results in points having a negative slope. A large positive 
covariance results when a small value in.X corresponds with a small value in. Y , and 
a high value in .X corresponds with a high value in . Y . This results in points having 
a positive slope. A near zero covariance results when there is no correspondence 
between .X and . Y [ 5]. 

Covariance is defined for discrete random variables by: 

. Cov(X, Y ) = 1

n

n∑

i=1

(xi − μX )(yi − μY )

where. X and. Y are the discrete random variables,.μX is the expected mean of. X , . μY

is the expected mean of . Y , .xi is a value in . X , .yi is a value in . Y , and.1/n is the equal 
probability in .xi or . yi . 

For example, to calculate the covariance of .X = {2, 2.5, 3.5, 4} and . Y =
{8, 9, 10, 13}. 

The expected mean of .X is .μX = 3, and the expected mean of . Y is .μY = 10. 
Next, we compute .x − μX and .y − μY for each member of .X and . Y , in  

Table 16.10. 
Finally, we sum.(x − μX )(y − μY ) and divide by 4: 

. Cov(X, Y ) = 2 + 0.5 + 0 + 3

4
= 5.5

4
= 1.375

The covariance is positive, therefore .X and . Y are positively related, with a value of 
.1.375. 

Fig. 16.5 Three types of 
covariance
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Table 16.10 A table used to calculate the covariance of.X and. Y

.x .2 .2.5 .3.5 . 4

.y .8 .9 .10 . 13

.x − μX . −1 . −0.5 0.5 1 

.y − μY . −2 . −1 0 3 

.(x − μX )(y − μY ) 2 0.5 0 3 

One should be careful computing covariance as its value is influenced by the axis 
units. For example, say we want to find the relationship between some goods and 
their prices. We could compute the covariance using pounds or pence, and get two 
different values. 

16.9.2 Correlation 

Correlation determines whether two random variables are linearly related, and per-
haps the most useful quantity is Pearson’s product-moment correlation coefficient 
(PPMCC), also called the correlation coefficient. 

The English mathematician Karl Pearson (1857–1936), is credited with creating 
the discipline of mathematical statistics and the coefficient, which bears his name. 

The population correlation coefficient.ρX,Y between two random variables.X and 
. Y is defined as: 

. ρX,Y = Corr(X,Y ) = Cov(X,Y )

σXσY
= E[(X − μX )(Y − μY )]

σXσY
, if σXσY > 0

where: 

. μX is the expected mean of X.

μY is the expected mean of Y.

σX is the standard deviation of X.

σY is the standard deviation of Y.

Let’s find the correlation coefficient of .X = {2, 2.5, 3.5, 4} and . Y =
{8, 9, 10, 13} in the previous example where .Cov(X, Y ) = 1.375, and the expected 
mean for .μX = 3 and .μY = 10. Next, we must find the standard deviations . σX

and .σY . 
The standard deviation of .X using Table 16.11 is calculated as follows: 

.σX =
√√√√1

4

4∑

i=1

(xi − 3)2

=
√
1 + 0.25 + 0.25 + 1

4
≈ 0.79
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Table 16.11 A table for calculating the standard deviation of.X and. Y

.x .2 .2.5 .3.5 . 4

.y .8 .9 .10 . 13

.x − μX . −1 . −0.5 0.5 1 

.(x − μX )2 1 0.25 0.25 1 

.y − μY . −2 . −1 0 3 

.(y − μY )2 4 1 0 9 

The standard deviation of . Y using Table 16.11 is calculated as follows: 

. σY =
√√√√1

4

4∑

i=1

(yi − 10)2

=
√
4 + 1 + 0 + 9

4
≈ 1.87

the standard deviation of .X and . Y is approximately .0.79 and .1.87 respectively. 
Dividing .1.375 by .σX = 0.79 and .σY = 1.87 we have: 

. ρX,Y = 1.375

0.79 × 1.87
≈ 0.93

therefore, the correlation coefficient .ρX,Y ≈ 0.93, which confirms that .X and . Y are 
related. 

Let’s calculate the correlation coefficient for two random variables that are almost 
unrelated: .X = {1, 2, 3, 4} and .Y = {4, 0, 3, 1} using Table 16.12 as follows: 

. μX = 10

4
= 2.5

μY = 8

4
= 2

Cov(X, Y ) = 1

4

4∑

i=1

(xi − μX )(yi − μY ) = −3

4
= −0.75

The standard deviation of . X : 

. σX =
√√√√1

4

4∑

i=1

(xi − μX )2

=
√
5

4
≈ 1.12

the standard deviation of .X is approximately 1.12.
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Table 16.12 A table showing calculations for Cov.(X, Y ) and the standard deviation 

.x .1 .2 .3 . 4

.y .4 .0 .3 . 1

.x − μX . −1.5 . −0.5 0.5 1.5 

.y − μY 2 . −2 1 . −1 

.(x − μX )(y − μY ) . −3 1 0.5 . −1.5 

.(x − μX )2 2.25 0.25 0.25 2.25 

.(y − μY )2 4 4 1 1 

The standard deviation of . Y : 

. σY =
√√√√1

4

4∑

i=1

(yi − μY )2

=
√
10

4
≈ 1.58

the standard deviation of . Y is approximately 1.58. Therefore, the correlation coeffi-
cient is: 

. 
−0.75

1.12 × 1.58
≈ −0.424

which is almost unrelated. 

16.10 Regression 

Regression analysis is a statistical technique where we attempt to discover the degree 
of association between two variables. For example, we may perform an experiment 
which generates values of a dependent variable from values of a set of independent 
variables. This results in a set of values that may have an underlying association that 
links the values together with a straight line, a quadratic curve, or a higher degree 
polynomial. 

Simple regression analysis permits us to create a straight line equation, which, 
within reason, allows us to predict how the model behaves for different combination 
of values. Such an equation, creates a regression line linking the two variables 
.y = f (x), where . x is the independent variable, and . y is the dependent variable. 
Consequently, the regression line represented by.y = f (x) is known as a regression 
line of . y on . x .
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16.10.1 Least Squares 

Figure 16.6 shows points.P1, P2 and.Pn that are the result of some experiment. The 
object is to draw a straight line with equation .y = mx + c, such that it minimises 
the square of the vertical lines between any two points .Pn and .Qn . Consequently, 
the technique is called the line of least squares. For example, the point .Q1 has 
coordinates .(x1, mx1 + c), .Q2 has coordinates .(x2, mx2 + c), and for any point 
.Qn(xn, mxn + c). The distances of the lines joining any two points are: 

. y1 − c − mx1, y2 − c − mx2, y3 − c − mx3, . . . , yn − c − mxn

The square of these distances is taken to ensure that they are always positive. 
Partial differentiation is used to solve this problem, and those readers wishing to 

investigate this should look at [ 6]. For us, the solution to the least squares problem 
is: 

. (μx , μy) = (mean of x,mean of y)

y = mx + c

m =
∑

xy
n −

∑
x

n

∑
y

n
∑

x2

n −
(∑

x
n

)2

m = Sxy
σ 2
x

= Cov(X, Y )

Var(X)

a = μY − bμX

where.y = mx+c is the straight line equation of the least squares,.Cov(X,Y )/Var(X), 
and . c = μY − mμX .

Fig. 16.6 A diagram  for  
least squares
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Let’s test this with an example. Table 16.13 shows the relevant computations, 
there are 4 points with coordinates: 

. X = {1, 3, 5, 7}
Y = {0.5, 3, 2, 4}

μX = 4

μY = 2.375

Cov(X, Y ) = 5.625 + 0.625 + 0.375 + 4.875

4
= 2.875

Var(X) = 9 + 1 + 1 + 9

4
= 5

m = 2.875

5
= 0.575

c = 2.375 − 0.575 × 4 = −0.075

y = 0.575x − 0.075

Figure 16.7 shows the original 4 points, and the best fit equation,.y = 0.575x−0.075. 
The Worked Example reverses the y-coordinates. For a complete discussion on 

this algorithm refer to [ 7]. 

Table 16.13 A table for calculating Cov.(X, Y ) and Var. (X)

.x .1 .3 .5 . 7

.y .0.5 .3 .2 . 4

.x − μX . −3 . −1 1 3 

.y − μY . −1.875 . −0.625 0.375 1.625 

.(x − μX )(y − μY ) 5.625 0.625 0.375 4.875 

.(x − μX )(x − μX ) 9 1 1 9

-1 0 1 2 3 4 5 6 7 8

-1 

1 

2 

3 

4 

Fig. 16.7 A straight line through 4 points using least squares
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16.11 Summary 

Statistics is a very large subject, and hopefully this short chapter has given you a 
flavour of the subject. 

16.12 Worked Examples 

16.12.1 Frequency Table 

Use a frequency table to display . X . 

. X = {206, 203, 200, 204, 206, 201, 203, 200, 205, 200, 202,
201, 205, 204, 203, 202, 202, 200, 203, 204, 205, 202}

Solution 
Table 16.14 shows a frequency table of . X . 

16.12.2 Stem and Leaf Diagram 

Use a stem and leaf diagram to display a sorted . Y . 

. Y = {56, 79, 73, 55, 71, 49, 51, 82, 81, 68, 57, 64, 60, 44, 46, 58, 54, 62, 75, 68,
53, 66, 59, 46, 71, 70, 67, 68, 59, 63, 81, 69, 57, 69, 69, 68, 38, 46, 51, 55}

Solution 
Sort . Y : 

. Y ′ = (38, 44, 46, 46, 46, 49, 51, 51, 53, 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 62,

63, 64, 66, 67, 68, 68, 68, 68, 69, 69, 69, 70, 71, 71, 73, 75, 79, 81, 81, 82)

Table 16.15 shows a sorted stem and leaf diagram of . Y . 

Table 16.14 A frequency table of. X

.x .200 .201 .202 .203 .204 .205 . 206

. f 4 2 4 4 3 3 2
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Table 16.15 A sorted stem and leaf diagram of. Y

.3 . 8

.4 .4 .6 .6 .6 . 9

.5 .1 .1 .3 .4 .5 .5 .6 .7 .7 .8 .9 . 9

.6 .0 .2 .3 .4 .6 .7 .8 .8 .8 .8 .9 .9 . 9

.7 .0 .1 .1 .3 .5 . 9

.8 .1 .1 . 2

Fig. 16.8 A frequency 
histogram of. Y

30 40 50 60 70 80 

3 

15 

6 

9 

12 

16.12.3 Frequency Histogram 

Use a frequency histogram to display . Y . 

. Y = {56, 79, 73, 55, 71, 49, 51, 82, 81, 68, 57, 64, 60, 44, 46, 58, 54, 62, 75, 68,
53, 66, 59, 46, 71, 70, 67, 68, 59, 63, 81, 69, 57, 69, 69, 68, 38, 46, 51, 55}

Solution 
Sort . Y : 

. Y ′ = (38, 44, 46, 46, 46, 49, 51, 51, 53, 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 62,

63, 64, 66, 67, 68, 68, 68, 68, 69, 69, 69, 70, 71, 71, 73, 75, 79, 81, 81, 82)

Figure 16.8 shows a frequency histogram of . Y . 

16.12.4 Mean 

Calculate the mean of . Y . 

.Y = {56, 79, 73, 55, 71, 49, 51, 82, 81, 68, 57, 64, 60, 44, 46, 58, 54, 62, 75, 68,
53, 66, 59, 46, 71, 70, 67, 68, 59, 63, 81, 69, 57, 69, 69, 68, 38, 46, 51, 55}
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Solution 

. μ = 1

40

40∑

i=1

yi

= 2423

40
= 60.575

The mean of . Y is approximately 60.58. 

16.12.5 Median 

Calculate the median of . Y . 

. Y = {56, 79, 73, 55, 71, 49, 51, 82, 81, 68, 57, 64, 60, 44, 46, 58, 54, 62, 75, 68,
53, 66, 59, 46, 71, 70, 67, 68, 59, 63, 81, 69, 57, 69, 69, 68, 38, 46, 51, 55}

Solution 
Sort . Y : 

. Y ′ = (38, 44, 46, 46, 46, 49, 51, 51, 53, 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 62,

63, 64, 66, 67, 68, 68, 68, 68, 69, 69, 69, 70, 71, 71, 73, 75, 79, 81, 81, 82)

There are 40 numbers in . Y , which is even. Therefore: 

. median(Y ′) = y′
(20) + y′

(21)

2

= 62 + 63

2
= 62.5

The median of . Y is 62.5. 

16.12.6 Mode 

Calculate the mode of . Y . 

.Y = {56, 79, 73, 55, 71, 49, 51, 82, 81, 68, 57, 64, 60, 44, 46, 58, 54, 62, 75, 68,
53, 66, 59, 46, 71, 70, 67, 68, 59, 63, 81, 69, 57, 69, 69, 68, 38, 46, 51, 55}
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Solution 
Sort . Y : 

. Y ′ = (38, 44, 46, 46, 46, 49, 51, 51, 53, 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 62,

63, 64, 66, 67, 68, 68, 68, 68, 69, 69, 69, 70, 71, 71, 73, 75, 79, 81, 81, 82)

The mode of . Y is 68. 

16.12.7 Range 

Calculate the range of . Y . 

. Y = {56, 79, 73, 55, 71, 49, 51, 82, 81, 68, 57, 64, 60, 44, 46, 58, 54, 62, 75, 68,
53, 66, 59, 46, 71, 70, 67, 68, 59, 63, 81, 69, 57, 69, 69, 68, 38, 46, 51, 55}

Solution 
Sort . Y : 

. Y ′ = (38, 44, 46, 46, 46, 49, 51, 51, 53, 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 62,

63, 64, 66, 67, 68, 68, 68, 68, 69, 69, 69, 70, 71, 71, 73, 75, 79, 81, 81, 82)

The range of . Y is . 82 − 38 = 44.

16.12.8 Variance 

Calculate the variance of . X . 

. X = {50, 55, 56, 71, 73, 79}
Solution 

. μ = 1

6

6∑

i=1

xi

= 384

6
= 64

The mean of .X is 64. 
Next, we compute .x − μ and .(x − μ)2 for each member of .X in Table 16.16. 
The variance of .X is: 

.Var(X) = 1

6

6∑

i=1

(xi − μ)2
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Table 16.16 A table showing the calculations for variance 

.x .50 .55 .56 .71 .73 . 79

.x − μ . −14 . −9 . −8 7 11 15 

.(x − μ)2 196 81 64 49 121 225 

= 
196 + 81 + 64 + 49 + 121 + 225 

6 

= 
736 

6 
= 122.6 

The variance of .X is approximately .122.67. 

16.12.9 Standard Deviation 

Calculate the standard deviation of . X . 

. X = {52, 55, 56, 58, 61, 66}
Solution 

. μ = 1

6

6∑

i=1

xi

= 348

6
= 58

The expected mean of .X is 58. 
Next, we compute .x − μ and .(x − μ)2 for each member of .X in Table 16.17. 

. Var(X) = 1

6

6∑

i=1

(xi − μ)2

= 36 + 9 + 4 + 0 + 9 + 64

6

= 122

6
= 20.3

The variance of .X is .20.3, and the standard deviation is approximately 4.51.
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Table 16.17 A table showing the calculations for standard deviation 

.x .52 .55 .56 .58 .61 . 66

.x − μ . −6 . −3 . −2 0 3 8 

.(x − μ)2 36 9 4 0 9 64 

16.12.10 Normal Distribution 

A set of students studying maths are normally distributed with a mean mark of . 60%
and a standard deviation of .10%. Let a group of students chosen randomly from the 
set. What is the probability of the group of students having a mark less than .50%, 
and greater than .80%? 

Solution 
.50% is one standard deviation from the mean of .60%, which represents .34.1% of 
the data. As the total area of the standard normal distribution equals 1, there must 
be .15.9% beneath the first standard deviation, therefore the answer is .0.159. . 80%
is two standard deviations above the mean, there must be .2.3% above the first two 
standard deviations, therefore the answer is .0.023. 

16.12.11 Normal Distribution Table 

A set of students studying maths are normally distributed with a mean mark of . 60%
and a standard deviation of .10%. Let a group of students chosen randomly from the 
set. What is the probability of the group of students having a mark less than .55%? 

Solution 
.55% is one-half standard deviation from the mean of.60%, and looking up Table 16.9 
shows that the entry for .−0.5 is .0.3085. Therefore the answer is .0.3085. 

16.12.12 Covariance 

Calculate the covariance of .A = {2, 2.5, 3.5, 4} and .B = {13, 10, 9, 8}. 
Solution 
.μA = 3, and .μB = 10. Next, we compute .a − μA and .b − μB for each member of 
. A and . B, in Table 16.18. 

Finally, we sum.(a − μA)(b − μB) and divide by 4: 

. Cov(A, B) = −3 − 0 − 0.5 − 2

4
= −5.5

4
= −1.375

The covariance is negative, therefore. A and. B are negatively related, with a value of 
approximately .−1.375.
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Table 16.18 A table showing the calculations for covariance 

.a .2 .2.5 .3.5 . 4

.b .13 .10 .9 . 8

.a − μA . −1 . −0.5 0.5 1 

.b − μB 3 0 . −1 . −2 

.(a − μA)(b − μB) . −3 0 . −0.5 . −2 

Table 16.19 A table showing calculations for Cov.(X, Y ) and the standard deviation 

.x .10 .2 .8 . 4

.y .4 .10 .3 . 7

.x − μX 4 . −4 2 . −2 

.y − μY . −2 4 . −3 1 

.(x − μX )(y − μY ) . −8 . −16 . −6 . −2 

.(x − μX )2 16 16 4 4 

.(y − μY )2 4 16 9 1 

16.12.13 Correlation Coefficient 

Calculate the correlation coefficient for two random variables: . X = {10, 2, 8, 4}
and .Y = {4, 10, 3, 7}. 
Solution 
Using Table 16.19 as follows: 

. μX = 24

4
= 6

μY = 24

4
= 6

Cov(X, Y ) = 1

4

4∑

i=1

(xi − μX )(yi − μY ) = −32

4
= −8

The standard deviation of . X : 

. σX =
√√√√1

4

4∑

i=1

(xi − μX )2

=
√
40

4
≈ 3.16

The standard deviation of .X is approximately 3.16.
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The standard deviation of . Y : 

. σY =
√√√√1

4

4∑

i=1

(yi − μY )2

=
√
30

4
≈ 2.74

The standard deviation of .Y is approximately 2.74. Therefore, the correlation 
coefficient is: 

. 
−8

3.16 × 2.74
≈ −0.924

The correlation coefficient is approximately .−0.924. 

16.12.14 Least Squares 

Calculate the equation of a straight line the passes through the points stored in. X and 
. Y using the least squares algorithm. 

. X = {1, 3, 5, 7}
Y = {4, 2, 3, 0.5}

Solution 
Table 16.20 contains the relevant calculations. 

. μX = 4

μY = 2.375

Cov(X, Y ) = −4.875 − 0.375 − 0.625 − 5.625

4
= −2.875

Var(X) = 9 + 1 + 1 + 9

4
= 5

m = −2.875

5
= −0.575

c = 2.375 + 0.575 × 4 = 4.675

y = −0.575x + 4.675

Figure 16.9 shows the original 4 points, and the best fit equation,. y = −0.575x +
4.675.
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Table 16.20 Calculations for the covariance and variance of.X and. Y

.x .1 .3 .5 . 7

.y .4 .2 .3 . 0.5

.x − μX . −3 . −1 1 3 

.y − μY 1.625 0.375 . −0.625 . −1.875 

.(x − μX )(y − μY ) . −4.875 . −0.375 . −0.625 . −5.625 

.(x − μX )(x − μX ) 9 1 1 9

-1 0 1 2 3 4 5 6 7 8

-1 

1 

2 

3 

4 

Fig. 16.9 A straight line through 4 points using least squares 
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17Barycentric Coordinates 

17.1 Introduction 

Cartesian coordinates are a fundamental concept in mathematics and are central to 
computer graphics. Such rectangular coordinates are just offsets relative to some 
origin. Other coordinate systems also exist such as polar, spherical and cylindrical 
coordinates, and they too, require an origin. Barycentric coordinates, on the other 
hand, locate points relative to existing points, rather than to an origin and are known 
as local coordinates. 

17.2 Background 

The German mathematician August Möbius is credited with their discovery. ‘barus’ 
is the Greek entomological root for ‘heavy’, and barycentric coordinates were orig-
inally used for identifying the centre of mass of shapes and objects. It is interesting 
to note that the prefixes ‘bari’, ‘bary’ and ‘baro’ have also influenced other words 
such as baritone, baryon (heavy atomic particle) and barometer. 

Although barycentric coordinates are used in geometry, computer graphics, rel-
ativity and global time systems, they do not appear to be a major topic in a typical 
math syllabus. Nevertheless, they are important and I would like to describe what 
they are and how they can be used in computer graphics. 

The idea behind barycentric coordinates can be approached from different direc-
tions, and I have chosen mass points and linear interpolation. But before we begin 
this analysis, it will be useful to investigate a rather elegant theorem known as Ceva’s 
Theorem, which we will invoke later in this chapter. 
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17.3 Ceva’s Theorem 

The Italian mathematician Giovanni Ceva (1647–1734) is credited with a theorem 
associated with the concurrency of lines in a triangle. It states that: In a triangle 
.ΔABC , the lines.AA′,.BB ′ and.CC ′, where. A′,.B ′ and.C ′ are points on the opposite 
sides facing vertices. A, . B and. C respectively, are concurrent (intersect at a common 
point) if, and only if: 

. 
AC ′

C ′B
· BA′

A′C
· CB ′

B ′A
= 1

Figure 17.1 shows such a scenario. 
There are various ways of proving this theorem, and Alfred Posamentier provides 

one [ 1]; but perhaps the simplest proof is as follows. 
Figure 17.2 shows triangle.ΔABC with line.AA′ extended to. R and.BB ′ extended 

to . S, where line .SR is parallel to line .AB. The resulting geometry creates a number 
of similar triangles: 

Fig. 17.1 The geometry 
associated with Ceva’s 
Theorem 

Fig. 17.2 The geometry for 
proving Ceva’s Theorem
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.ΔABA′ : ΔRCA′ ⇒ A′C
BA′ = CR

AB
(17.1) 

.ΔABB ′ : ΔCSB ′ ⇒ B ′A
CB ′ = AB

SC
(17.2) 

.ΔBPC ′ : ΔCSP ⇒ C ′B
SC

= C ′P
PC

(17.3) 

.ΔAC ′P : ΔRCP ⇒ AC ′

CR
= C ′P

PC
(17.4) 

From (17.3) and (17.4) we get: 

. 
C ′B
SC

= AC ′

CR

which can be rewritten as: 

.
C ′B
AC ′ = SC

CR
(17.5) 

The product of (17.1), (17.2) and (17.5) is:  

.
A′C
BA′ · B

′A
CB ′ · C

′B
AC ′ = CR

AB
· AB

SC
· SC

CR
= 1 (17.6) 

Rearranging the terms of (17.6) we get: 

. 
AC ′

C ′B
· BA′

A′C
· CB ′

B ′A
= 1

which is rather an elegant relationship. 

17.4 Ratios and Proportion 

Central to barycentric coordinates are ratios and proportion, so let’s begin by revising 
some fundamental formulae used in calculating ratios. 

Imagine the problem of dividing £100 between two people in the ratio .2 : 3. The  
solution lies in the fact that the money is divided into 5 parts .(2 + 3), where 2 parts 
go to one person and 3 parts to the other person. In this case, one person receives 
£40 and the other £60. At a formal level, we can describe this as follows. 

A scalar . A can be divided into the ratio .r : s using the following expressions: 

. 
r

r + s
A and

s

r + s
A

Note that: 
.

r

r + s
+ s

r + s
= 1
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and 
. 1 − r

r + s
= s

r + s

Furthermore, the above formulae can be extended to incorporate any number of ratio 
divisions. For example, . A can be divided into the ratio .r : s : t by the following: 

. 
r

r + s + t
A,

s

r + s + t
A and

t

r + s + t
A

similarly: 

. 
r

r + s + t
+ s

r + s + t
+ t

r + s + t
= 1

These expressions are very important as they show the emergence of barycentric coor-
dinates. For the moment though, just remember their structure and we will investigate 
some ideas associated with balancing weights. 

17.5 Barycentric Coordinates 

We begin by calculating the centre of mass—the centroid—of two masses. Consider 
the scenario shown in Fig. 17.3 where two masses.mA and.mB are placed at the ends 
of a massless rod. 

If .mA = mB a state of equilibrium is achieved by placing the fulcrum mid-way 
between the masses. If the fulcrum is moved towards .mA, mass  .mB will have a 
turning advantage and the rod rotates clockwise. 

To calculate a state of equilibrium for a general system of masses, consider the 
geometry illustrated in Fig. 17.4, where two masses .mA and .mB are positioned . xA
and .xB at .A and .B respectively. When the system is in balance we can replace the 
two masses by a single mass .mA +mB at the centroid denoted by . x̄ (pronounced ‘x 
bar’). 

Fig. 17.3 Two masses fixed 
at the ends of a massless rod 

Fig. 17.4 The geometry 
used for equating turning 
moments
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A balance condition arises when the LHS turning moment equals the RHS turning 
moment. The turning moment being the product of a mass by its offset from the 
fulcrum. Equating turning moments, equilibrium is reached when: 

. mB(xB − x̄) = mA(x̄ − xA)

mBxB − mB x̄ = mAx̄ − mAxA
(mA + mB)x̄ = mAxA + mBxB

.x̄ = mAxA + mBxB
mA + mB

= mA

mA + mB
xA + mB

mA + mB
xB (17.7) 

For example, if .mA = 6 and .mB = 12, and positioned at .xA = 0 and . xB = 12
respectively, the centroid is located at: 

. x̄ = 6
18 × 0 + 12

18 × 12 = 8

Thus we can replace the two masses by a single mass of .18 located at .x̄ = 8. 
Note that the terms in (17.7) .mA/(mA + mB) and .mB/(mA + mB) sum to 1 

and are identical to those used above for calculating ratios. They are also called the 
barycentric coordinates of . x̄ relative to the points . A and . B. 

Using the general form of (17.7) any number of masses can be analysed using: 

. x̄ =

n∑

i=1
mi xi

n∑

i=1
mi

where.mi is a mass located at . xi . Furthermore, we can compute the .y-component of 
the centroid . ȳ using: 

. ȳ =

n∑

i=1
mi yi

n∑

i=1
mi

and in 3D the .z-component of the centroid . z̄ is: 

. z̄ =

n∑

i=1
mi zi

n∑

i=1
mi

To recap, (17.7) states that: 

.x̄ = mA

mA + mB
xA + mB

mA + mB
xB
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Fig. 17.5 The geometry 
used for equating turning 
moments 

therefore, we can write: 

. ȳ = mA

mA + mB
yA + mB

mA + mB
yB

which allows us to state: 

. P̄ = mA

mA + mB
A + mB

mA + mB
B

where . A and. B are the position vectors for the mass locations . A and. B respectively, 
and . P̄ is the position vector for the centroid . P̄ . 

If we extend the number of masses to three:.mA,.mB and.mC , which are organised 
as a triangle, then we can write: 

.P̄ = mA

mA + mB + mC
A + mB

mA + mB + mC
B + mC

mA + mB + mC
C (17.8) 

The three multipliers of . A, . B and . C are the barycentric coordinates of .P̄ relative 
to the points . A, . B and. C . Note that the number of coordinates is not associated with 
the number of spatial dimensions, but the number of reference points. 

Now consider the scenario shown in Fig. 17.5. If  .mA = mB = mC then we can 
determine the location of . A′, .B ′ and .C ′ as follows: 

1. We begin by placing a fulcrum under. Amid-way along.BC as shown in Fig. 17.6. 
The triangle will balance because .mB = mC and .A′ is . 

1
2a

from. C and .
1
2a from. B. 

2. Now we place the fulcrum under . B mid-way along .CA as shown in Fig. 17.7. 
Once more the triangle will balance, because.mC = mA and.B ′ is. 12b from. C and 
.
1
2b from. A. 

3. Finally, we do the same for . C and .AB. Figure 17.8 shows the final scenario. 

Ceva’s Theorem confirms that the medians .AA′, .BB ′ and .CC ′ are concurrent at 
.P̄ because: 

.
AC ′

C ′B
· BA′

A′C
· CB ′

B ′A
=

1
2c
1
2c

·
1
2a
1
2a

·
1
2b
1
2b

= 1
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Fig. 17.6 Balancing the 
triangle along. AA′

Fig. 17.7 Balancing the 
triangle along. BB ′

Fig. 17.8 .P̄ is the centroid 
of the triangle 

Arbitrarily, we select the median.C ′C . At.C ′ we have an effective mass of. mA +mB

and .mC at . C . For a balance condition: 

. (mA + mB) × C ′ P̄ = mC × P̄C

and as the masses are equal, .C ′ P̄ must be . 
1
3 along the median .C ′C . 

If we use (17.8) we obtain: 

. P̄ = 1
3A + 1

3B + 1
3C

which locates the coordinates of the centroid correctly. 
Now let’s consider another example where .mA = 1, .mB = 2 and .mC = 3, as  

shown in Fig. 17.9. For a balance condition .A′ must be .
3
5a from.B and .

2
5a from. C .
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Fig. 17.9 How the masses 
determine the positions of 
. A′, .B ′ and. C ′

Equally, .B ′ must be . 14b from .C and . 34b from . A. Similarly, .C ′ must be . 23c from . A
and .

1
3c from. B. 

Ceva’s Theorem confirms that the lines .AA′, .BB ′ and .CC ′ are concurrent at . P̄
because: 

. 
AC ′

C ′B
· BA′

A′C
· CB ′

B ′A
=

2
3c
1
3c

·
3
5a
2
5a

·
1
4b
3
4b

= 1

Arbitrarily select .C ′C . At  .C ′ we have an effective mass of .3 .(1 + 2) and 3 at . C , 
which means that for a balance condition .P̄ is mid-way along .C ′C . Similarly, .P̄ is 
. 
1
6 along .A′A and . 

1
3 along .B ′B. 

Once more, using (17.8) in this scenario we obtain: 

. P̄ = 1
6A + 1

3B + 1
2C

Note that the multipliers of . A, . B and .C are identical to the proportions of .P̄ along 
.A′A, .B ′B and .C ′C . Let’s prove why this is so. 

Figure 17.10 shows three masses with the triangle’s sides divided into their various 
proportions to derive . P̄ . 

On the line.A′Awe have.mA at. A and effectively.mB+mC at. A′, which means that 
.P̄ divides .A′A in the ratio .mA/(mA +mB +mC ) : (mB +mC )/(mA +mB +mC ). 

On the line .B ′B we have .mB at .B and effectively .mA + mC at .B ′, which means 
that. P̄ divides.B ′B in the ratio.mB/(mA+mB+mC ) : (mA+mC )/(mA+mB+mC ). 

Fig. 17.10 How the masses 
determine the positions of 
. A′, .B ′ and.C ′
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Similarly, on the line.C ′C we have.mC at. C and effectively.mA +mB at.C ′, which 
means that .P̄ divides .C ′C in the ratio . mC/(mA + mB + mC ) : (mA + mB)/(mA +
mB + mC ). 

To summarise, given three masses.mA, .mB and.mC located at. A, . B and. C respec-
tively, the centroid .P̄ is given by: 

.P̄ = mA

mA + mB + mC
A + mB

mA + mB + mC
B + mC

mA + mB + mC
C (17.9) 

If we accept that .mA, .mB and .mC can have any value, including zero, then the 
barycentric coordinates of .P̄ will be affected by these values. For example, if . mB =
mC = 0 and .mA = 1, then .P̄ will be located at .A with barycentric coordinates 
.(1, 0, 0). Similarly, if .mA = mC = 0 and .mB = 1, then .P̄ will be located at . B
with barycentric coordinates .(0, 1, 0). And  if .mA = mB = 0 and .mC = 1, then . P̄
will be located at . C with barycentric coordinates .(0, 0, 1). 

Now let’s examine a 3D example as illustrated in Fig. 17.11. The figure shows 
three masses 4, 8 and 12 and their equivalent mass 24 located at .(x̄, ȳ, z̄). 

The magnitude and coordinates of three masses are shown in Table 17.1, together 
with the barycentric coordinate . ti . The column headed . ti expresses the masses as 
fractions of the total mass: i.e.: 

. ti = mi

m1 + m2 + m3

and we see that the centroid is located at .(5, 5, 3). 

Fig. 17.11 Three masses can be represented by a single mass located at the centroid 

Table 17.1 The magnitude and coordinates of three masses 

.mi .ti .xi .yi .zi .ti xi .ti yi . ti zi

12 .
1
2 8 6 2 4 3 1 

8 .
1
3 2 3 3 .

2
3 1 1 

4 .
1
6 2 6 6 .

1
3 1 1 

.x̄ = 5 .ȳ = 5 .z̄ = 3
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Having discovered barycentric coordinates in weight balancing, let’s see how they 
emerge in linear interpolation. 

17.6 Linear Interpolation 

Suppose that we wish to find a value mid-way between two scalars .A and . B. We  
could proceed as follows: 

. V = A + 1 2 (B − A) 
= 1 2 A + 1 2 B 

which seems rather obvious. Similarly, to find a value one-third between .A and . B, 
we can write: 

. V = A + 1 3 (B − A) 
= 2 3 A + 1 3 B 

Generalising, to find some fraction . t between . A and . B we can write: 

.V = (1 − t)A + t B (17.10) 

For example, to find a value . 
3 
4 between 10 and 18 we have: 

. V = (
1 − 3 4

) × 10 + 3 4 × 18 = 16 

Although this is a trivial formula, it is very useful when interpolating between two 
numerical values. Let us explore (17.10) in greater detail. 

To begin with, it is worth noting that the multipliers of . A and . B sum to 1: 

. (1 − t) + t = 1 

Rather than using.(1 − t) as a multiplier, it is convenient to make a substitution such 
as .s = 1 − t , and we have: 

. V = s A  + t B  

where: 
. s = 1 − t 

and 
. s + t = 1 

Equation (17.10) is called a linear interpolant as it linearly interpolates between 
. A and .B using the parameter . t . It is also known as a lerp. The  terms . s and . t are the 
barycentric coordinates of .V as they determine the value of .V relative to . A and . B . 

Now let’s see what happens when we substitute coordinates for scalars. We start 
with 2D coordinates .A(xA, yA) and .B(xB , yB ), and position vectors . A, . B and .C 
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Fig. 17.12 The position of V 
slides between A and B as t 
varies between 0 and 1 

and the following linear interpolant: 

. V = sA + tB 

where: 
. s = 1 − t 

and 
. s + t = 1 

then: 

. xV = sxA + t xB 
yV = syA + t yB 

Figure 17.12 illustrates what happens when . t varies between 0 and 1. 
The point. V slides along the line connecting. A and. B. When.t = 0,. V is coincident 

with . A, and when .t = 1, .V is coincident with . B. You should not be surprised that 
the same technique works in 3D. 

Now let’s extend the number of vertices to three in the form of a triangle as shown 
in Fig. 17.13. This time we will use. r , . s and. t to control the interpolation. We would 
start as follows: 

. V = rA + sB + tC 

where . A, . B and. C are the position vectors for . A, . B and. C respectively, and . V is the 
position vector for the point . V . 

Let: 
. r = 1 − s − t 

and 
.r + s + t = 1 
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Fig. 17.13 The position of V 
moves between A, B and C 
depending on the value r, s 
and t 

Once more, we begin with 2D coordinates .A(xA, yA), .B(xB , yB ) and . C(xC , yC ) 
where: 

. xV = r xA + sxB + t xC 
yV = r yA + syB + t yC 

When: 

. r = 1, V is coincident with A 

s = 1, V is coincident with B 

t = 1, V is coincident with C 

Similarly, when: 

. r = 0, V is located on the edge BC 

s = 0, V is located on the edge CA  

t = 0, V is located on the edge AB  

For all other values of. r , . s and. t , where.r + s + t = 1 and.0 ≤ r, s, t ≤ 1,.V is inside 
triangle .ΔABC , otherwise it is outside the triangle. 

The triple .(r, s, t) are barycentric coordinates and locate points relative to . A, . B 
and . C , rather than an origin. For example, the barycentric coordinates of . A, .B and 
. C are .(1, 0, 0), .(0, 1, 0) and .(0, 0, 1) respectively. 

All of the above formulae work equally well in three dimensions, so let’s inves-
tigate how barycentric coordinates can locate points inside a 3D triangle. However, 
before we start, let’s clarify what we mean by inside a triangle. Fortunately, barycen-
tric coordinates can distinguish points within the triangle’s three sides; points coin-
cident with the sides; and points outside the triangle’s boundary. The range and 
value of the barycentric coordinates provide the mechanism for detecting these three 
conditions. 
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Fig. 17.14 A 3D triangle 

As an example, Fig. 17.14 illustrates a scenario with the points .P1(x1, y1, z1), 
.P2(x2, y2, z2) and.P3(x3, y3, z3). Using barycentric coordinates we can state that 
any point .P0(x0, y0, z0) inside or on the edge of triangle .ΔP1 P2 P3 is defined by 

. x0 = r x1 + sx2 + t x3 

y0 = r y1 + sy2 + t y3 

z0 = r z1 + sx2 + t z3 

where .r + s + t = 1 and .0 ≤ r, s, t, ≤ 1. 
If the triangle’s vertices are .P1(0, 2, 0), .P2(0, 0, 4) and .P3(3, 1, 2) then we 

can choose different values of . r , . s and . t to locate .P0 inside the triangle. However, I 
would also like to confirm that .P0 lies on the plane containing the three points. To 
do this we require the plane equation for the three points, which can be derived as 
follows. 

Given .P1(x1, y1, z1), .P2(x2, y2, z2) and .P3(x3, y3, z3), and the target plane 
equation .ax + by + cz + d = 0, then: 

.a =

∣
∣
∣
∣
∣
∣
∣

1 y1 z1 

1 y2 z2 

1 y3 z3

∣
∣
∣
∣
∣
∣
∣

b =

∣
∣
∣
∣
∣
∣
∣

x1 1 z1 

x2 1 z2 

x3 1 z3

∣
∣
∣
∣
∣
∣
∣

c =

∣
∣
∣
∣
∣
∣
∣

x1 y1 1 

x2 y2 1 

x3 z2 1

∣
∣
∣
∣
∣
∣
∣

d = −(ax1 + by1 + cz1) 
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thus: 

. a =
∣
∣
∣
∣
∣
∣

1 2  0  
1 0  4  
1 1 2

∣
∣
∣
∣
∣
∣
= 0 

b =
∣
∣
∣
∣
∣
∣

0 1  0  
0 1 4  
3 1 2

∣
∣
∣
∣
∣
∣
= 12 

c =
∣
∣
∣
∣
∣
∣

0 2 1  
0 0 1  
3 1 1

∣
∣
∣
∣
∣
∣
= 6 

d = −24 

therefore, the plane equation is: 

.12y + 6z = 24 (17.11) 

If we substitute a point .(x0, y0, z0) in the LHS of (17.11) and obtain a value of 24, 
then the point is on the plane. 

Table 17.2 shows various values of . r , . s and . t , and the corresponding position of 
.P0. The table also confirms that.P0 is always on the plane containing the three points. 

Now we are in a position to test whether a point is inside, on the boundary or 
outside a 3D triangle. 

We begin by writing the three simultaneous equations defining.P0 in matrix form: 

. 

⎡ 

⎣ 
x0 
y0 
z0 

⎤ 

⎦ = 

⎡ 

⎣ 
x1 x2 x3 
y1 y2 y3 
z1 z2 z3 

⎤ 

⎦ 

⎡ 

⎣ 
r 
s 
t 

⎤ 

⎦ 

Table 17.2 The barycentric coordinates of. P0 

.r .s .t .x0 .y0 .z0 . 12y0 + 6z0 
1 0 0 0 2 0 24 

0 1 0 0 0 4 24 

0 0 1 3 1 2 24 

. 
1 
4 . 

1 
4 . 

1 
2 .1 1 2 1 2 24 

0 . 
1 
2 . 

1 
2 .1 1 2 . 

1 
2 3 24 

. 
1 
2 . 

1 
2 0 0 1 2 24 

. 
1 
3 . 

1 
3 . 

1 
3 1 1 2 24 
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therefore: 

. 
r

∣
∣
∣
∣
∣
∣

x0 x2 x3 
y0 y2 y3 
z0 z2 z3

∣
∣
∣
∣
∣
∣

= s
∣
∣
∣
∣
∣
∣

x1 x0 x3 
y1 y0 y3 
z1 z0 z3

∣
∣
∣
∣
∣
∣

= t
∣
∣
∣
∣
∣
∣

x1 x2 x0 
y1 y2 y0 
z1 z2 z0

∣
∣
∣
∣
∣
∣

= 1
∣
∣
∣
∣
∣
∣

x1 x2 x3 
y1 y2 y3 
z1 z2 z3

∣
∣
∣
∣
∣
∣

and 

. r =

∣
∣
∣
∣
∣
∣

x0 x2 x3 
y0 y2 y3 
z0 z2 z3

∣
∣
∣
∣
∣
∣

DET  

s =

∣
∣
∣
∣
∣
∣

x1 x0 x3 
y1 y0 y3 
z1 z0 z3

∣
∣
∣
∣
∣
∣

DET  

t =

∣
∣
∣
∣
∣
∣

x1 x2 x0 
y1 y2 y0 
z1 z2 z0

∣
∣
∣
∣
∣
∣

DET  

DET  =
∣
∣
∣
∣
∣
∣

x1 x2 x3 
y1 y2 y3 
z1 z2 z3

∣
∣
∣
∣
∣
∣

Using the three points .P1(0, 2, 0), .P2(0, 0, 4), .P3(3, 1, 2) and arbitrary 
positions of .P0, the values of . r , . s and . t identify whether .P0 is inside or outside 
triangle .ΔABC . For example, the point .P0(0, 2, 0) is a vertex and is classified 
as being on the boundary. To confirm this we calculate . r , . s and . t , and show that 
.r + s + t = 1: 

.DET  =
∣
∣
∣
∣
∣
∣

0 0 3  
2 0 1  
0 4 2

∣
∣
∣
∣
∣
∣
= 24 

r =

∣
∣
∣
∣
∣
∣

0 0 3  
2 0 1  
0 4 2

∣
∣
∣
∣
∣
∣

24 
= 1 

s =

∣
∣
∣
∣
∣
∣

0 0 3  
2 2 1  
0 0 2

∣
∣
∣
∣
∣
∣

24 
= 0 

t =

∣
∣
∣
∣
∣
∣

0 0 0  
2 0 2  
0 4 0

∣
∣
∣
∣
∣
∣

24 
= 0 
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therefore .r + s + t = 1, but both . s and . t are zero which confirms that the point 
.(0, 2, 0) is on the boundary. In fact, as both coordinates are zero it confirms that 
the point is located on a vertex. 

Now let’s deliberately choose a point outside the triangle. For example,. P0(4, 0, 3) 
is outside the triangle, which is confirmed by the corresponding values of . r , . s and. t : 

. r =

∣
∣
∣
∣
∣
∣

4 0 3  
0 0 1  
3 4 2

∣
∣
∣
∣
∣
∣

24 
= − 2 

3 

s =

∣
∣
∣
∣
∣
∣

0 4 3  
2 0 1  
0 3  2

∣
∣
∣
∣
∣
∣

24 
= 3 4 

t =

∣
∣
∣
∣
∣
∣

0 0 4  
2 0 0  
0 4 3

∣
∣
∣
∣
∣
∣

24 
= 4 3 

therefore: 
. r + s + t = − 2 

3 + 3 4 + 4 3 = 1 5 12 

which confirms that the point .(4, 0, 3) is outside the triangle. Note that .r < 0 and 
.t > 1 , which individually confirm that the point is outside the triangle’s boundary. 

17.7 Convex Hull Property 

We have already shown that it is possible to determine whether a point is inside or 
outside a triangle. But remember that triangles are always convex. So can we test 
whether a point is inside or outside any polygon? Well the answer is no, unless the 
polygon is convex. The reason for this can be understood by considering the concave 
polygon shown in Fig. 17.15. 

Fig. 17.15 A concave 
polygon 
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Let the barycentric coordinates for a point .P0 be: 

. P0 = rA + sB + tC + uD 

where.r + s + t + u = 1. When.t = 0,.P0 can exist anywhere inside triangle.ΔAB  D. 
Thus, if any vertex creates a concavity, it will be ignored by barycentric coordinates. 

17.8 Areas 

Barycentric coordinates are also known as areal coordinates due to their area divid-
ing properties. For example, in Fig. 17.16 the areas of the three internal triangles are 
in proportion to the barycentric coordinates of the point . P . 

To prove this, let .P have barycentric coordinates: 

. P = rA + sB + tC 

where: 
. r + s + t = 1, and 0 ≤ (r, s, t) ≤ 1 

If we use the notation .area(ΔABC) to represent the area of the triangle formed 
from the vertices. A,. B and. C then.area(ΔABC) is the sum of the areas of the smaller 
triangles: 

. area(ΔABC) = area(ΔAB  P) + area(ΔBC P) + area(ΔCAP) 

But the area of any 2D triangle .ΔP1 P2 P3 is: 

. area(ΔP1 P2 P3) = 1 2

∣
∣
∣
∣
∣
∣

x1 y1 1 
x2 y2 1 
x3 y3 1

∣
∣
∣
∣
∣
∣

Fig. 17.16 The areas of the 
internal triangles are directly 
proportional to the 
barycentric coordinates of.P 
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therefore: 

. area(ΔAB  P) = 1 2

∣
∣
∣
∣
∣
∣

xA yA 1 
xB yB 1 
xP yP 1

∣
∣
∣
∣
∣
∣

but: 
. xP = r xA + sxB + t xC 

and 
. yP = r yA + syB + t yC 

therefore: 

. area(ΔAB  P) = 1 2

∣
∣
∣
∣
∣
∣

xA yA 1 
xB yB 1 

r xA + sxB + t xC r yA + syB + t yC 1

∣
∣
∣
∣
∣
∣

which expands to: 

. area(ΔAB  P) = 1 2

[
xA yB + r xB yA + sxB yB + t xB yC + r xA yA + sxB yA + t xC yA 

−r xA yA − sxA yB − t xA yC − xB yA − r xA yB − sxB yB − t xC yB

]

= 1 2

[
xA yB − xB yA + r (xB yA − xA yB ) + s(xB yA − xA yB ) 

+t (xB yC − xC yB ) + t (xC yA − xA yC )

]

= 1 2

[
xA yB − xB yA + (1 − t)(xB yA − xA yB ) + t (xB yC − xC yB ) 

+t (xC yA − xA yC )

]

= 1 2 [−t xB yA + t xA yB + t xB yC − t xC yB + t xC yA − t xA yC ] 

and simplifies to: 

. area(ΔAB  P) = 1 2 t

∣
∣
∣
∣
∣
∣
∣

xA yA 1 

xB yB 1 

xC yC 1

∣
∣
∣
∣
∣
∣
∣

= t × area(Δ ABC) 

therefore: 
. t = 

area(ΔAB  P) 
area(ΔABC) 

similarly: 

. area(ΔBC P) = 1 2 r

∣
∣
∣
∣
∣
∣
∣

xA yA 1 

xB yB 1 

xC yC 1

∣
∣
∣
∣
∣
∣
∣
= r × area(ΔABC) 

. r = 
area(ΔBC P) 
area(ΔABC) 

and 

. area(ΔCAP) = 1 2 s

∣
∣
∣
∣
∣
∣
∣

xA yA 1 

xB yB 1 

xC yC 1

∣
∣
∣
∣
∣
∣
∣
= s × area(ΔABC) 

.s = 
area(ΔCAP) 
area(ΔABC) 
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Fig. 17.17 The inscribed 
circle in triangle. ΔABC  

Thus, we see that the areas of the internal triangles are directly proportional to the 
barycentric coordinates of . P. 

This is quite a useful relationship and can be used to resolve various geometric 
problems. For example, let’s use it to find the radius and centre of the inscribed circle 
for a triangle. We could approach this problem using classical Euclidean geome-
try, but barycentric coordinates provide a powerful analytical tool for resolving the 
problem very quickly. Consider triangle .ΔABC with sides . a, . b and . c as shown in 
Fig. 17.17. The point . P is the centre of the inscribed circle with radius . R. From our 
knowledge of barycentric coordinates we know that: 

. P = rA + sB + tC 

where: 
.r + s + t = 1 (17.12) 

We also know that the area properties of barycentric coordinates permit us to state 

. area(ΔBC P) = r × area(ΔABC) = 1 2 aR  

area(ΔCAP) = s × area(ΔABC) = 1 2 bR  

area(ΔAB  P) = t × area(ΔABC) = 1 2 cR  

therefore: 

. r = aR  

2 × area(ΔABC) 
, s = bR  

2 × area(ΔABC) 
, t = cR  

2 × area(ΔABC) 

substituting . r , . s and . t in (17.12) we get: 

. 
R 

2 × area(ΔABC) 
(a + b + c) = 1 

and 
. R = 

2 × area(ΔABC) 
a + b + c 

Substituting . R in the definitions of . r , . s and . t we obtain: 

.r = a 

a + b + c 
s = b 

a + b + c 
t = c 

a + b + c 
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Fig. 17.18 The inscribed 
circle for a triangle 

and 

. xP = r xA + sxB + t xC 
yP = ryA + syB + t yC 

To test this solution, consider the right-angled triangle in Fig. 17.18, where . a =√
200, .b = 10, .c = 10 and .area(ΔABC) = 50. Therefore: 

. R = 2 × 50 
10 + 10 + 

√
200 

≈ 2.929 

and 

. r = 
√
200 

34.1421 
≈ 0.4142, s = 10 

34.1421 
≈ 0.2929, t = 

10 

34.1421 
≈ 0.2929 

therefore: 

. xP = 0.4142 × 0 + 0.2929 × 10 + 0.2929 × 0 ≈ 2.929 

yP = 0.4142 × 0 + 0.2929 × 0 + 0.2929 × 0 ≈ 2.929 

Therefore, the inscribed circle has a radius of 2.929 and a centre with coordinates 
.(2.929, 2.929). 

Let’s explore another example where we determine the barycentric coordinates 
of a point using virtual mass points. 

Figure 17.19 shows triangle .ΔABC where . A′, .B′ and .C ′ divide .BC, .CA  and . AB  
respectively, in the ratio .1 : 2. The objective is to find the barycentric coordinates of 
. D, . E and . F, and the area of triangle .ΔDE  F  as a proportion of triangle .ΔABC. 

We can approach the problem using mass points. For example, if we assume. D is 
the centroid, all we have to do is determine the mass points that create this situation. 
Then the barycentric coordinates of . D are given by (17.8). We proceed as follows. 

The point . D is on the intersection of lines .CC ′ and .AA′. Therefore, we begin by 
placing a mass of 1 at. C. Then, for line.BC to balance at.A′ a mass of 2 must be placed 
at . B. Similarly, for line .AB  to balance at .C ′ a mass of 4 must be placed at . A. This  
configuration is shown in Fig. 17.20. 
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Fig. 17.19 Triangle. ΔABC  
with sides divided in the 
ratio. 1 : 2 

Fig. 17.20 The masses 
assigned to. A, . B and. C to 
determine. D 

Fig. 17.21 The masses 
assigned to. A, . B and. C to 
determine. E 

The total mass is .7 = (1 + 2 + 4), therefore: 

. D = 4 7 A + 2 7 B + 1 7 C 

The point . E is on the intersection of lines .BB′ and .AA′. Therefore, we begin by 
placing a mass of 1 at. A. Then, for line.CA  to balance at.B′ a mass of 2 must be placed 
at . C. Similarly, for line .BC to balance at .A′ a mass of 4 must be placed at . B. This  
configuration is shown in Fig. 17.21. The total mass is still 7, therefore: 

.E = 1 7 A + 4 7 B + 2 7 C 
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Fig. 17.22 The masses 
assigned to. A, . B and. C to 
determine. D 

From the symmetry of the triangle we can state that: 

. F = 2 7 A + 1 7 B + 4 7 C 

Thus we can locate the points and using the vector equations: 

. D = 4 7 A + 2 7 B + 1 7 C 

E = 1 7 A + 4 7 B + 2 7 C 

F = 2 7 A + 1 7 B + 4 7 C 

The important feature of these equations is that the barycentric coordinates of . D, 
. E and . F are independent of . A, . B and . C they arise from the ratio used to divide the 
triangle’s sides. 

Although it was not the original intention, we can quickly explore what the 
barycentric coordinates of . D, .E and .F would be if the triangle’s sides had been 
.1 : 3 instead of .1 : 2. Without repeating all of the above steps, we would proceed as 
follows. 

The point . D is on the intersection of lines .CC ′ and .AA′. Therefore, we begin by 
placing a mass of 1 at. C. Then, for line.BC to balance at.A′ a mass of 3 must be placed 
at . B. Similarly, for line .AB  to balance at .C ′ a mass of 9 must be placed at . A. This  
configuration is shown in Fig. 17.22. The total mass is .13 = (1 + 3 + 9), therefore, 

.D = 9 
13 A + 3 13 B + 1 13 C 

E = 1 
13 A + 9 13 B + 3 13 C 

F = 3 
13 A + 1 13 B + 9 13 C 
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We could even develop the general equations for a ratio .1 : n. It is left to the reader 
to show that: 

. D = n2 

n2 + n + 1 
A + n 

n2 + n + 1 
B + 1 

n2 + n + 1 
C 

E = 1 

n2 + n + 1 
A + n2 

n2 + n + 1 
B + n 

n2 + n + 1 
C 

F = n 

n2 + n + 1 
A + 1 

n2 + n + 1 
B + n2 

n2 + n + 1 
C 

As a quick test for the above equations, let.n = 1, which make. D,. E and. F concurrent 
at the triangle’s centroid: 

. D = 1 3 A + 1 3 B + 1 3 C 

E = 1 3 A + 1 3 B + 1 3 C 

F = 1 3 A + 1 3 B + 1 3 C 

which is rather reassuring! 
Now let’s return to the final part of the problem and determine the area of triangle 

.ΔDE  F  in terms of .Δ ABC. The strategy is to split triangle .ΔABC into four triangles: 

.ΔBC F, .ΔCAD, .ΔAB  E  and .ΔDE  F  as shown in Fig. 17.23. 
Therefore: 

. area(ΔABC) = area(ΔBC F) + area(ΔCAD) + area(ΔAB  E) + area(ΔDE  F) 

and 
.1 = 

area(ΔBC F) 
area(ΔABC) 

+ 
area(ΔCAD) 
area(ΔABC) 

+ 
area(ΔAB  E) 
area(ΔABC) 

+ 
area(ΔDE  F) 
area(ΔABC) 

(17.13) 

But we have just discovered that the barycentric coordinates are intimately connected 
with the ratios of triangles. For example, if. F has barycentric coordinates. (rF , sF , tF ) 
relative to the points . A, . B and . C respectively, then: 

. rF = 
area(ΔBC F) 
area(ΔABC) 

Fig. 17.23 Triangle. ΔABC  
divides into four triangles 
.ΔAB  E , .ΔBC F , . ΔCAD  
and.ΔDE  F  
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And if . D has barycentric coordinates .(rD , sD , tD ) relative to the points . A, . B and . C 
respectively, then: 

. sD = 
area(ΔCAD) 
area(ΔABC) 

Similarly, if . E has barycentric coordinates .(rE , sE , tE ) relative to the points . A, . B and 
. C respectively, then: 

. tE = 
area(ΔAB  E) 
area(ΔABC) 

Substituting . rF , .sE and .tD in (17.8) we obtain: 

. 1 = rF + sD + tE + 
area(ΔDE  F) 
area(ΔABC) 

From (17.12) we see that: 
. rF = 2 7 , sD = 2 7 , tE = 2 7 

therefore: 
. 1 = 6 7 + 

area(ΔDE  F) 
area(ΔABC) 

and 
. area(ΔDE  F) = 1 7 area(ΔABC) 

which is rather neat! 
Before we leave this example, let’s state a general expression for the . area(ΔDE  F) 

for a triangle whose sides are divided in the ratio.1 : n. Once again, I’ll leave it to the 
reader to prove that: 

. area(ΔDE  F) = 
n2 − 2n + 1 
n2 + n + 1 

× area(ΔABC) 

Note that when .n = 1, .area(ΔDE  F) = 0, which is correct. 
[Hint: The corresponding values of . rF , .sD and .tE are .n/(n2 + n + 1).] 

17.9 Volumes 

We have now seen that barycentric coordinates can be used to locate a scalar within 
a 1D domain, a point within a 2D area, so it seems logical that the description should 
extend to volumes, which is the case. 

To demonstrate this, consider the tetrahedron shown in Fig. 17.24. The volume of 
a tetrahedron is give by: 

. V = 1 6

∣
∣
∣
∣
∣
∣
∣

x1 y1 z1 
x2 y2 z2 
x3 y3 z3

∣
∣
∣
∣
∣
∣
∣

where .[x1 y1 z1]T, .[x2 y2 z2]T and .[x3 y3 z3]T are the three vectors extending 
from the fourth vertex to the other three vertices. However, if we locate the fourth 



17.9 Volumes 431 

Fig. 17.24 A tetrahedron 

vertex at the origin, .(x1, y1, z1), .(x2, y2, z2) and .(x3, y3, z3) become the coordinates 
of the three vertices. 

Let’s locate a point .P(xP , yP , zP ) inside the tetrahedron with the following 
barycentric definition: 

.P = rP1 + sP2 + tP3 + uP0 (17.14) 

where. P,. P1,. P2,.P3 and.P0 are the position vectors for. P,. P1,. P2,.P3 and.P0 respectively. 
The fourth barycentric term.uP0 can be omitted as .P0 has coordinates .(0, 0, 0). 

Therefore, we can state that the volume of the tetrahedron formed by the three 
vectors . P, .P2 and .P3 is given by: 

.V = 1 6

∣
∣
∣
∣
∣
∣
∣

xP yP zP 
x2 y2 z2 
x3 y3 z3

∣
∣
∣
∣
∣
∣
∣

(17.15) 

Substituting (17.14) in (17.15) we obtain: 

.V = 1 6

∣
∣
∣
∣
∣
∣
∣

r x1 + sx2 + t x3 ry1 + sy2 + t y3 r z1 + sz2 + t z3 
x2 y2 z2 
x3 y3 z3

∣
∣
∣
∣
∣
∣
∣

(17.16) 

which expands to: 

. V = 1 6

[
y2z3(r x1 + sx2 + t x3) + x2 y3(r z1 + sz2 + t z3) + x3z2(ry1 + sy2 + t y3) 

−y3z2(r x1 + sx2 + t x3) − x3 y2(r z1 + sz2 + t z3) − x2z3(ry1 + sy2 + t y3)

]

= 1 6 

⎡ 

⎢ 
⎣ 

r (x1 y2z3 + x2 y3z1 + x3 y1z2 − x1 y3z2 − x3 y2z1 − x2 y1z3) 
+s(x2 y2z3 + x2 y3z2 + x3 y1z2 − x2 y3z2 − x3 y1z2 − x2 y2z3) 
+t (x3 y2z3 + x2 y3z3 + x3 y3z2 − x3 y3z2 − x3 y2z3 − x2 y3z3) 

⎤ 

⎥ 
⎦ 

and simplifies to: 

.V = 1 6 r

∣
∣
∣
∣
∣
∣
∣

x1 y1 z1 
x2 y2 z2 
x3 y3 z3

∣
∣
∣
∣
∣
∣
∣
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This states that the volume of the smaller tetrahedron is . r times the volume of the 
larger tetrahedron.VT , where. r is the barycentric coordinate modifying the vertex not 
included in the volume. By a similar process we can develop volumes for the other 
tetrahedra: 

. V (P, P2, P4, P3) = rVT 
V (P, P1, P3, P4) = sVT 
V (P, P1, P2, P4) = tVT 
V (P, P1, P2, P3) = uVT 

where .r + s + t + u = 1. Similarly, the barycentric coordinates of a point inside the 
volume sum to unity. 

Let’s test the above statements with an example. Given . P1(0, 0, 1), P2(1, 0, 0), 
.P3(0, 1, 0) and.P

(
1 
3 , 

1 
3 , 

1 
3

)
which is located inside the tetrahedron, the volume of the 

tetrahedron .VT is: 

. VT = 1 6

∣
∣
∣
∣
∣
∣
∣

0 0 1  

1 0 0  

0 1  0

∣
∣
∣
∣
∣
∣
∣
= 1 6 

. r = 
V (P, P2, P4, P3) 

VT 
= 6 6

∣
∣
∣
∣
∣
∣
∣
∣

2 
3 − 1 

3 − 1 
3 

− 1 
3 − 1 

3 − 1 
3 

− 1 
3 

2 
3 − 1 

3

∣
∣
∣
∣
∣
∣
∣
∣

= 1 3 

s = 
V (P, P1, P3, P4) 

VT 
= 6 6

∣
∣
∣
∣
∣
∣
∣
∣

− 1 
3 − 1 

3 
2 
3 

− 1 
3 

2 
3 − 1 

3 

− 1 
3 − 1 

3 − 1 
3

∣
∣
∣
∣
∣
∣
∣
∣

= 1 3 

t = 
V (P, P1, P2, P4) 

VT 
= 6 6

∣
∣
∣
∣
∣
∣
∣
∣

− 1 
3 − 1 

3 
2 
3 

2 
3 − 1 

3 − 1 
3 

− 1 
3 − 1 

3 − 1 
3

∣
∣
∣
∣
∣
∣
∣
∣

= 1 3 

u = 
V (P, P1, P2, P3) 

VT 
= 6 6

∣
∣
∣
∣
∣
∣
∣
∣

− 1 
3 − 1 

3 
2 
3 

2 
3 − 1 

3 − 1 
3 

− 1 
3 

2 
3 − 1 

3

∣
∣
∣
∣
∣
∣
∣
∣

= 0 

The barycentric coordinates .(r, s, t, u) confirm that the point is located at the centre 
of triangle .ΔP1 P2 P3. Note that the above determinants will create a negative volume 
if the vector sequences are reversed. 

17.10 Bézier Curves and Patches 

In Chap. 14 we examined Bézier curves and patches which are based on Bernstein 
polynomials: 

.Bn 
i (t) =

(
n 

i

)

t i (1 − t)n−i 
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We discovered that these polynomials create the quadratic terms: 

. (1 − t)2, 2t (1 − t), t2 

and the cubic terms: 
. (1 − t)3, 3t (1 − t)2, 3t2(1 − t), t3 

which are used as scalars to multiply sequences of control points to create a para-
metric curve. Furthermore, these terms sum to unity, therefore they are also another 
form of barycentric coordinates. The only difference between these terms and the 
others described above is that they are controlled by a common parameter. t. Another 
property of Bézier curves and patches is that they are constrained within the convex 
hull formed by the control points, which is also a property of barycentric coordinates. 

17.11 Summary 

Barycentric coordinates provide another way to locate points in space, which permit 
them to be used for ratios and proportion, areas, volumes, and centres of gravity. 

Reference 

1. Posamentier A (2008) Advanced Euclidean geometry. Blackwell 
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18.1 Introduction 

This can only be a brief introduction to geometric algebra as the subject really 
demands an entire book. Those readers who wish to pursue the subject further should 
consult the author’s books [ 1, 2]. 

18.2 Background 

Although geometric algebra introduces some new ideas, the subject should not be 
regarded as difficult. If you have read and understood the previous chapters, you 
should be familiar with vectors, vector products, transforms, and the idea that the 
product of two transforms is sensitive to the transform sequence. For example, in 
general, scaling an object after it has been translated, is not the same as translating 
an object after it has been scaled. Similarly, given two vectors . r and . s their vector 
product .r × s creates a third vector . t, using the right-hand rule, perpendicular to the 
plane containing . r and . s. However, just by reversing the vectors to .s × r, creates a 
similar vector but in the opposite direction .−t. 

We regard vectors as directed lines or oriented lines, but if they exist, why shouldn’t 
oriented planes and oriented volumes exist? Well, the answer to this question is that 
they do, which is what geometric algebra is about. Unfortunately, when vectors were 
invented, geometric algebra was overlooked, and it has taken a further century for it 
to emerge through the work of William Kingdon Clifford and the theoretical physicist 
David Hestenes (1933–). So let’s continue and discover an exciting new algebra that 
will, in time, be embraced by the computer graphics community. 
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Nature 2025 
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18.3 Symmetric and Antisymmetric Functions 

It is possible to classify functions into two categories: symmetric (even) and anti-
symmetric (odd) functions. For example, given two symmetric functions . f (x) and 
. f (x, y): 

. f (−x) = f (x)

and 
. f (y, x) = f (x, y)

an example being .cos x where .cos(−x) = cos x . Figure 18.1 illustrates how the 
cosine function is reflected about the origin. However, if the functions are antisym-
metric: 

. f (−x) = − f (x)

and 
. f (y, x) = − f (x, y)

an example being .sin x where .sin(−x) = − sin x . Figure 18.2 illustrates how the 
sine function is reflected about the origin. 

Fig. 18.1 The graph of the 
symmetric cosine function
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Fig. 18.2 The graph of the 
antisymmetric sine function
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The reason why we have covered symmetric and antisymmetric functions is that 
they play an important role in geometric algebra. Now let’s continue with this intro-
duction and explore some important trigonometric foundations. 

18.4 Trigonometric Foundations 

Figure 18.3 shows two line segments . a and . b with coordinates .(a1, a2), . (b1, b2)
respectively. The lines are separated by an angle. θ , and we will compute the expres-
sions .ab cos θ and .ab sin θ , as these play an important role in geometric algebra. 

Using the trigonometric identities: 

. sin(θ + φ) = sin θ cosφ + cos θ sin φ (18.1) 

. cos(θ + φ) = cos θ cosφ − sin θ sin φ (18.2) 

and the following observations: 

. cosφ = a1
a

, sin φ = a2
a

, cos(θ + φ) = b1
b

, sin(θ + φ) = b2
b

we can rewrite (18.1) and (18.2) as:  

.
b2
b

= a1
a

sin θ + a2
a

cos θ (18.3) 

.
b1
b

= a1
a

cos θ − a2
a

sin θ (18.4) 

Fig. 18.3 Two line segments 
. a and. b separated by.+θ
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To isolate .cos θ we multiply (18.3) by .a2 and (18.4) by . a1: 

.
a2b2
b

= a1a2
a

sin θ + a22
a

cos θ (18.5) 

.
a1b1
b

= a21
a

cos θ − a1a2
a

sin θ (18.6) 

Adding (18.5) and (18.6) we obtain: 

. 
a1b1 + a2b2

b
= a21 + a22

a
cos θ = a cos θ

therefore: 
. ab cos θ = a1b1 + a2b2

To isolate .sin θ we multiply (18.3) by .a1 and (18.4) by . a2: 

.
a1b2
b

= a21
a

sin θ + a1a2
a

cos θ (18.7) 

.
a2b1
b

= a1a2
a

cos θ − a22
a

sin θ (18.8) 

Subtracting (18.8) from (18.7) we obtain: 

. 
a1b2 − a2b1

b
= a21 + a22

a
sin θ = a sin θ

therefore: 
. ab sin θ = a1b2 − a2b1

If we form the product of. b’s projection on. awith. a, we get.ab cos θ whichwe have  
shown equals.a1b1+a2b2. Similarly, if we form the product.ab sin θ we compute the 
area of the parallelogram formed by sweeping. a along. b, which equals.a1b2 − a2b1. 
What is noteworthy, is that the product .ab cos θ is independent of the sign of the 
angle . θ , whereas the product .ab sin θ is sensitive to the sign of . θ . Consequently, if 
we construct the lines. a and. b such that. b is rotated.−θ relative to. a as shown in Fig. 
18.4, .ab cos θ = a1b1 + a2b2, but  .ab sin θ = −(a1b2 − a2b1). The antisymmetric 
nature of the sine function reverses the sign of the area. 

Having shown that area is a signed quantity just by using trigonometric identities, 
let’s explore how vector algebra responds to this idea. 

18.5 Vectorial Foundations 

When we form the algebraic product of two 2D vectors . a and . b: 

.a = a1i + a2j

b = b1i + b2j
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Fig. 18.4 Two line segments 
. a and. b separated by. −θ

we obtain: 
.ab = a1b1i2 + a2b2j2 + a1b2ij + a2b1ji (18.9) 

and it is clear that .a1b1i2 + a2b2j2 has something to do with .ab cos θ , and . a1b2ij +
a2b1ji has something to do with .ab sin θ . The product .ab creates the terms . i2, . j2, . ij
and . ji, which are resolved as follows. 

18.6 Inner and Outer Products 

I like to believe that mathematics is a game—a game where we make the rules. Some 
rules might take us nowhere; others might take us so far in a particular direction and 
then restrict any further development; whilst other rules might open up a fantastic 
landscape that would have remained hidden had we not stumbled upon them. There 
are no ‘wrong’ or ‘right’ rules—there are just rules where some work better than 
others. Fortunately, the rules behind geometric algebra have been tested for over a 
hundred years, so we know they work. But these rules were not hiding somewhere 
waiting to be discovered, they arose due to the collective intellectual endeavour of 
many mathematicians over several decades. 

Let’s begin with the products. ij and. ji in (18.9) and assume that they anticommute: 
.ji = −ij. Therefore: 

.ab = a1b1i2 + a2b2j2 + (a1b2 − a2b1)ij (18.10) 

and if we reverse the product to .ba we obtain: 

.ba = a1b1i2 + a2b2j2 − (a1b2 − a2b1)ij (18.11) 

From (18.10) and (18.11) we see that the product of two vectors contains a symmetric 
component: 

.a1b1i2 + a2b2j2
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and an antisymmetric component: 

. (a1b2 − a2b1)ij

It is interesting to observe that the symmetric component has .0◦ between its vector 
pairs (.i2 or . j2), whereas the antisymmetric component has .90◦ between its vector 
pairs (. i and. j). Therefore, the sine and cosine functions play a natural role in our rules. 
What we are looking for are two functions that, when given our vectors. a and. b, one 
function returns the symmetric component and the other returns the antisymmetric 
component. We call these the inner and outer functions respectively. 

It should be clear that if the inner function includes the cosine of the angle between 
the two vectors it will reject the antisymmetric component and return the symmetric 
element. Similarly, if the outer function includes the sine of the angle between the 
vectors, the symmetric component is rejected, and returns the antisymmetric element. 

If we declare the inner function as the inner product: 

.a · b = ‖a‖‖b‖ cos θ (18.12) 

then: 

. a · b = (a1i + a2j) · (b1i + b2j)

= a1b1i · i + a1b2i · j + a2b1j · i + a2b2j · j
= a1b1 + a2b2

which is perfect! 
Next, we declare the outer function as the outer product using the wedge ‘. ∧’ 

symbol; which is why it is also called the wedge product: 

.a ∧ b = ‖a‖‖b‖ sin θ i ∧ j (18.13) 

Note that product includes a strange .i ∧ j term. This is included as we just can’t 
ignore the . ij term in the antisymmetric component: 

. a ∧ b = (a1i + a2j) ∧ (b1i + b2j)

= a1b1i ∧ i + a1b2i ∧ j + a2b1j ∧ i + a2b2j ∧ j

= (a1b2 − a2b1)i ∧ j

which enables us to write: 

.ab = a · b + a ∧ b (18.14) 

.ab = ‖a‖‖b‖ cos θ + ‖a‖‖b| sin θ i ∧ j (18.15)
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18.7 The Geometric Product in 2D 

Clifford named the sum of the two products the geometric product, which means 
that (18.14) reads: The geometric product .ab is the sum of the inner product ‘a dot 
b’ and the outer product ‘a wedge b’. Remember that all this assumes that . ji = −ij
which seems a reasonable assumption. 

Given the definition of the geometric product, let’s evaluate . i2: 

. ii = i · i + i ∧ i

Using the definition for the inner product (18.12) we have:  

. i · i = 1 × 1 × cos 0◦ = 1

whereas, using the definition of the outer product (18.13) we have:  

. i ∧ i = 1 × 1 × sin 0◦ i ∧ i = 0

Thus .i2 = 1 and .j2 = 1, and .aa = ‖a‖2: 
. aa = a · a + a ∧ a

= ‖a‖‖a‖ cos 0◦ + ‖a‖‖a‖ sin 0◦i ∧ j

aa = ‖a‖2

Now let’s evaluate . ij: 
. ij = i · j + i ∧ j

Using the definition for the inner product (18.12) we have:  

. i · j = 1 × 1 × cos 90◦ = 0

whereas using the definition of the outer product (18.13) we have:  

. i ∧ j = 1 × 1 × sin 90◦ i ∧ j = i ∧ j

Thus .ij = i ∧ j. But what is .i ∧ j? Well, it is a new object and is called a ‘bivector’ 
and defines the orientation of the plane containing . i and . j. 

As the order of the vectors is from . i to . j, the angle is .+90◦ and . sin(+90)◦ =
1. Whereas, if the order is from . j to . i the angle is .−90◦ and .sin(−90◦) = −1. 
Consequently: 

. ji = j · i + j ∧ i

= 0 + 1 × 1 × sin(−90◦)i ∧ j

ji = −i ∧ j

Thus the bivector.i∧ j defines the orientation of a surface as anticlockwise, whilst 
the bivector .j∧ i defines the orientation as clockwise. These ideas are shown in Fig. 
18.5.
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Fig. 18.5 An anticlockwise 
and clockwise bivector 

So far, so good. Our rules seem to be leading somewhere. The inner product 
(18.12) is our old friend the dot product, and does not need explaining. However, the 
outer product (18.13) does require some further explanation. 

The equation: 
. ab = 9 + 12i ∧ j

simply means that the geometric product of two vectors . a and . b creates a scalar, 
inner product of 9, and an outer product of 12 on the .ij-plane. 

For example, given: 

. a = 3i

b = 3i + 4j

then: 

. ab = 3i · (3i + 4j) + 3i ∧ (3i + 4j)

= 9 + 9i ∧ i + 12i ∧ j

ab = 9 + 12i ∧ j

The 9 represents .‖a‖‖b‖ cos θ , whereas the 12 represents an area .‖a‖‖b‖ sin θ on 
the .ij-plane. The angle between the two vectors . θ is given by: 

. θ = cos−1 ( 3
5

)

However, reversing the product, we obtain: 

. ba = (3i + 4j) · 3i + (3i + 4j) ∧ 3i

= 9 + 9i ∧ i + 12j ∧ i

ab = 9 − 12i ∧ j

The sign of the outer (wedge) product has flipped to reflect the new orientation of 
the vectors relative to the accepted orientation of the basis bivectors. 

So the geometric product combines the scalar and wedge products into a single 
product, where the scalar product is the symmetric component and the wedge product 
is the antisymmetric component. Now let’s see how these products behave in 3D.
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18.8 The Geometric Product in 3D 

Before we consider the geometric product in 3D we need to introduce some new 
notation, which will simplify future algebraic expressions. Rather than use i, j and k 
to represent the unit basis vectors let’s employ. e1,.e2 and.e3 respectively. This means 
that (18.15) can be written: 

. ab = ‖a‖‖b‖ cos θ + ‖a‖‖b‖ sin θ e1 ∧ e2

We begin with two 3D vectors: 

. a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3

therefore, their inner product is: 

. a · b = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3)

= a1b1 + a2b2 + a3b3

and their outer product is: 

. a ∧ b = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= a1b2e1 ∧ e2 + a1b3e1 ∧ e3 + a2b1e2 ∧ e1 + a2b3e2 ∧ e3
+ a3b1e3 ∧ e1 + a3b2e3 ∧ e2

.a∧b = (a1b2−a2b1)e1∧e2+(a2b3−a3b2)e2∧e3+(a3b1−a1b3)e3∧e1 (18.16) 

This time we have three unit-basis bivectors:.e1 ∧ e2,.e2 ∧ e3,.e3 ∧ e1, and three asso-
ciated scalar multipliers:.(a1b2 − a2b1), .(a2b3 − a3b2), .(a3b1 − a1b3) respectively. 

Continuing with the idea described in the previous section, the three bivectors 
represent the three planes containing the respective vectors as shown in Fig. 18.6, 
and the scalar multipliers are projections of the area of the vector parallelogram onto 
the three bivectors as shown in Fig. 18.7. The orientation of the vectors . a and . b
determine whether the projected areas are positive or negative. 

You may think that (18.16) looks familiar. In fact, it looks very similar to the cross 
product .a × b: 

.a × b = (a1b2 − a2b1)e3 + (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 (18.17) 

This similarity is no accident. For when Hamilton invented quaternions, he did not 
recognise the possibility of bivectors, and invented some rules, which eventually 
became the cross product! Later in this chapter we discover that quaternions are 
really bivectors in disguise.
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Fig. 18.6 The 3D bivectors 

Fig. 18.7 The projections on 
the three bivectors 

We can see that a simple relationship exists between (18.16) and (18.17): 

. e1∧e2 and e3
e2∧e3 and e1
e3∧e1 and e2

the wedge product bivectors are perpendicular to the vector components of the cross 
product. So the wedge product is just another way of representing the cross product. 
However, the wedge product introduces a very important bonus: it works in space of 
any dimension, whereas, the cross product is only comfortable in 3D. Not only that, 
the wedge (outer product) is a product that creates volumes, hypervolumes, and can 
also be applied to vectors, bivectors, trivectors, etc.
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18.9 The Outer Product of Three 3D Vectors 

Having seen that the outer product of two 3D vectors is represented by areal pro-
jections onto the three basis bivectors, let’s explore the outer product of three 3D 
vectors. 

Given: 

. a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3
c = c1e1 + c2e2 + c3e3

then: 

. a ∧ b ∧ c = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3) ∧ (c1e1 + c2e2 + c3e3)

= [(a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1]
∧ (c1e1 + c2e2 + c3e3)

At this stage we introduce another axiom: the outer product is associative. This means 
that .a ∧ (b ∧ c) = (a ∧ b) ∧ c. Therefore, knowing that .a ∧ a = 0: 

. a ∧ b ∧ c = c3(a1b2 − a2b1)e1 ∧ e2 ∧ e3 + c1(a2b3 − a3b2)e2 ∧ e3 ∧ e1
+ c2(a3b1 − a1b3)e3 ∧ e1 ∧ e2.

But we are left with the products .e1 ∧ e2 ∧ e3, .e2 ∧ e3 ∧ e1 and.e3 ∧ e1 ∧ e2. Not  to  
worry, because we know that .a ∧ b = −b ∧ a. Therefore: 

. e2 ∧ e3 ∧ e1 = −e2 ∧ e1 ∧ e3 = e1 ∧ e2 ∧ e3

and 
. e3 ∧ e1 ∧ e2 = −e1 ∧ e3 ∧ e2 = e1 ∧ e2 ∧ e3

Therefore, we can write .a ∧ b ∧ c as: 

. a ∧ b ∧ c = c3(a1b2 − a2b1)e1 ∧ e2 ∧ e3 + c1(a2b3 − a3b2)e1 ∧ e2 ∧ e3
+ c2(a3b1 − a1b3)e1 ∧ e2 ∧ e3

or 

. a ∧ b ∧ c = [c3(a1b2 − a2b1) + c1(a2b3 − a3b2) + c2(a3b1 − a1b3)] e1 ∧ e2 ∧ e3

or using a determinant: 

. a ∧ b ∧ c =
∣
∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣∣∣∣∣
e1 ∧ e2 ∧ e3

which is the well-known expression for the volume of a parallelpiped formed by 
three vectors.
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The term .e1 ∧ e2 ∧ e3 is a trivector and reminds us that the volume is oriented. 
If the sign of the determinant is positive, the original three vectors possess the same 
orientation of the three basis vectors. If the sign of the determinant is negative, the 
three vectors possess an orientation opposing that of the three basis vectors. 

18.10 Axioms 

One of the features of geometric algebra is that it obeys the same axioms of every-
day scalars: 
Axiom 1: The associative rule: 

. a(bc) = (ab)c

Axiom 2: The left and right distributive rules: 

.. a(b + c) = ab + ac

(b + c)a = ba + ca

The next four axioms describe how vectors interact with a scalar . λ: 
Axiom 3: 

. (λa)b = λ(ab) = λab

Axiom 4: 
. λ(φa) = (λφ)a

Axiom 5: 
. λ(a + b) = λa + λb

Axiom 6: 
. (λ + φ)a = λa + φa

The next axiom that is adopted is: 
Axiom 7: 

. a2 = ‖a‖2
which has already emerged as a consequence of the algebra. However, for non-
Euclidean geometries, this can be set to .a2 = −‖a‖2, which does not concern us 
here. 

18.11 Notation 

Having abandoned. i,. j,. k for. e1,. e2,. e3, it is convenient to convert geometric products 
.e1e2 . . . en to .e12...n . For example, .e1e2e3 ≡ e123. Furthermore, we must get used to 
the following substitutions: 

.eieie j = e j
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e21 = −e12 
e312 = e123 
e112 = e2 
e121 = −e2 

18.12 Grades, Pseudoscalars and Multivectors 

As geometric algebra embraces such a wide range of objects, it is convenient to 
grade them as follows: scalars are grade 0, vectors are grade 1, bivectors are grade 2, 
and trivectors are grade 3, and so on for higher dimensions. In such a graded algebra 
it is traditional to call the highest grade element a pseudoscalar. Thus in 2D the 
pseudoscalar is .e12 and in 3D the pseudoscalar is . e123.

One very powerful feature of geometric algebra is the idea of a multivector, 
which is a linear combination of a scalar, vector, bivector, trivector or any other 
higher dimensional object. For example the following are multivectors: 

. A = 3 + (2e1 + 3e2 + 4e3) + (5e12 + 6e23 + 7e31) + 8e123
B = 2 + (2e1 + 2e2 + 3e3) + (4e12 + 5e23 + 6e31) + 7e123

and we can form their sum: 

. A + B = 5 + (4e1 + 5e2 + 7e3) + (9e12 + 11e23 + 13e31) + 15e123

or their difference: 

. A − B = 1 + (e2 + e3) + (e12 + e23 + e31) + e123

We can even form their product .AB, but at the moment we have not explored the 
products between all these elements. 

We can isolate any grade of a multivector using the following notation: 

. 〈multivector〉g
where . g identifies a particular grade. For example, say we have the following mul-
tivector: 

. 2 + 3e1 + 2e2 − 5e12 + 6e123

we extract the scalar term using: 

.〈2 + 3e1 + 2e2 − 5e12 + 6e123〉0 = 2
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the vector term using: 

. 〈2 + 3e1 + 2e2 − 5e12 + 6e123〉1 = 3e1 + 2e2

the bivector term using: 

. 〈2 + 3e1 + 2e2 − 5e12 + 6e123〉2 = −5e12

and the trivector term using: 

. 〈2 + 3e1 + 2e2 − 5e12 + 6e123〉3 = 6e123

It is also worth pointing out that the inner vector product converts two grade 1 
elements, i.e. vectors, into a grade 0 element, i.e. a scalar, whereas the outer vector 
product converts two grade 1 elements into a grade 2 element, i.e. a bivector. Thus 
the inner product is a grade lowering operation, while the outer product is a grade 
raising operation. These qualities of the inner and outer products are associated with 
higher grade elements in the algebra. This is why the scalar product is renamed as the 
inner product, because the scalar product is synonymous with transforming vectors 
into scalars. Whereas, the inner product transforms two elements of grade . n into a 
grade .n − 1 element. 

18.13 Redefining the Inner and Outer Products 

As the geometric product is defined in terms of the inner and outer products, it  
seems only natural to expect that similar functions exist relating the inner and outer 
products in terms of the geometric product. Such functions do exist and emerge when 
we combine the following two equations: 

.ab = a · b + a ∧ b (18.18) 

.ba = a · b − a ∧ b (18.19) 

Adding and subtracting (18.18) and (18.19) we have:  

.a · b = 1
2 (ab + ba) (18.20) 

.a ∧ b = 1
2 (ab − ba) (18.21) 

Equations (18.20) and (18.21) and used frequently to define the products between 
different grade elements.
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18.14 The Inverse of a Vector 

In traditional vector analysis we accept that it is impossible to divide by a vector, but 
that is not so in geometric algebra. In fact, we don’t actually divide a multivector by 
another vector but find a way of representing the inverse of a vector. For example, 
we know that a unit vector . â is defined as: 

. â = a
‖a‖

and using the geometric product: 

. â2 = a2

‖a‖2 = 1

therefore: 

. b = a2b
‖a‖2

and exploiting the associative nature of the geometric product we have: 

.b = a(ab)

‖a‖2 (18.22) 

Equation (18.22) is effectively stating that, given the geometric product .ab we can 
recover the vector . b by pre-multiplying by .a−1: 

. 
a

‖a‖2

Similarly, we can recover the vector . a by post-multiplying by .b−1: 

. a = (ab)b
‖b‖2

For example, given two vectors: 

. a = e1 + 2e2
b = 3e1 + 2e2

their geometric product is: 
. ab = 7 − 4e12

Therefore, given .ab and . a, we can recover . b as follows: 

.b = e1 + 2e2
5

(7 − 4e12)

= 1
5 (7e1 − 4e112 + 14e2 − 8e212)

= 1
5 (7e1 − 4e2 + 14e2 + 8e1)

b = 3e1 + 2e2
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Similarly, give .ab and . b, . a is recovered as follows: 

. a = (7 − 4e12)
3e1 + 2e2

13
= 1

13 (21e1 + 14e2 − 12e121 − 8e122)

= 1
13 (21e1 + 14e2 + 12e2 − 8e1)

a = e1 + 2e2

Note that the inverse of a unit vector is the original vector: 

. â−1 = â
‖â‖2 = â

18.15 The Imaginary Properties of the Outer Product 

So far we know that the outer product of two vectors is represented by one or more 
unit basis vectors, such as: 

. a ∧ b = λ1e12 + λ2e23 + λ3e31

where, in this case, the .λi terms represent areas projected onto their respective unit 
basis bivectors. But what has not emerged is that the outer product is an imaginary 
quantity, which is revealed by expanding .e212: 

. e212 = e1212

but as: 
. e21 = −e12

then: 

. e1(21)2 = −e1(12)2

= −e21e
2
2

e212 = −1

Consequently, the geometric product effectively creates a complex number! Thus in 
a 2D scenario, given two vectors: 

.a = a1e1 + a2e2
b = b1e1 + b2e2
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their geometric product is: 

. ab = (a1b1 + a2b2) + (a1b2 − a2b1)e12

and knowing that .e12 = i , then we can write .ab as: 

.ab = (a1b1 + a2b2) + (a1b2 − a2b1)i (18.23) 

However, this notation is not generally adopted by the geometric community. The 
reason being that. i is normally only associated with a scalar, with which it commutes. 
Whereas in 2D,.e12 is associated with scalars and vectors, and although scalars present 
no problem, under some conditions, it anticommutes with vectors. Consequently, an 
upper-case . I is used so that there is no confusion between the two elements. Thus 
(18.23) is written as: 

. ab = (a1b1 + a2b2) + (a1b2 − a2b1)I

where: 
. I 2 = −1

It goes without saying that the 3D unit basis bivectors are also imaginary quantities, 
so is .e123. 

Multiplying a complex number by. i rotates it.90◦ on the complex plane. Therefore, 
it should be no surprise that multiplying a 2D vector by.e12 rotates it by.90◦. However, 
because vectors are sensitive to their product partners, we must remember that pre-
multiplying a vector by .e12 rotates a vector clockwise and post-multiplying rotates 
a vector anti-clockwise. 

Whilst on the subject of rotations, let’s consider what happens in 3D. We begin 
with a 3D vector: 

. a = a1e1 + a2e2 + a3e3

and the unit basis bivector.e12 as  shown inFig.  18.8. Next we construct their geometric 
product by pre-multiplying . a by .e12: 

. e12a = a1e12e1 + a2e12e2 + a3e12e3

Fig. 18.8 The effect of 
pre-multiplying a vector by a 
bivector
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which becomes: 

. e12a = a1e121 + a2e122 + a3e123
= −a1e2 + a2e1 + a3e123
= a2e1 − a1e2 + a3e123

and contains two parts: a vector .(a2e1 − a1e2) and a volume .a3e123. 
Figure 18.8 shows how the projection of vector . a is rotated clockwise on the 

bivector .e12. A volume is also created perpendicular to the bivector. This enables us 
to predict that if the vector is coplanar with the bivector, the entire vector is rotated 
.−90◦ and the volume component will be zero. 

By post-multiplying . a by .e12 creates: 

. ae12 = −a2e1 + a1e2 + a3e123

which shows that while the volumetric element has remained the same, the projected 
vector is rotated anticlockwise. 

You may wish to show that the same happens with the other two bivectors. 

18.16 Duality 

The ability to exchange pairs of geometric elements such as lines and planes involves 
a dual operation, which in geometric algebra is relatively easy to define. For example, 
given a multivector . A its dual .A∗ is defined as: 

. A∗ = IA

where. I is the local pseudoscalar. For 2D this is .e12 and for 3D it is .e123. Therefore, 
given a 2D vector: 

. a = a1e1 + a2e2

its dual is: 

. a∗ = e12(a1e1 + a2e2)

= a1e121 + a2e122
= a2e1 − a1e2

which is another vector rotated .90◦ clockwise. 
It is easy to show that .(a∗)∗ = −a, and two further dual operations return the 

vector back to . a. 
In 3D the dual of a vector .e1 is: 

.e123e1 = e1231 = e23
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which is the perpendicular bivector. Similarly, the dual of .e2 is .e31 and the dual of 
.e3 is .e12. 

For a general vector .a1e1 + a2e2 + a3e3 its dual is: 

. e123(a1e1 + a2e2 + a3e3) = a1e1231 + a2e1232 + a3e1233
= a3e12 + a1e23 + a2e31

The duals of the 3D basis bivectors are: 

. e123e12 = e12312 = −e3
e123e23 = e12323 = −e1
e123e31 = e12331 = −e2

18.17 The Relationship Between the Vector Product and the 
Outer Product 

We have already discovered that there is a very close relationship between the 
vector product and the outer product, and just to recap. Given two vectors: 

. a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3

then: 

.a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (18.24) 

and 

. a ∧ b = (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1 + (a1b2 − a2b1)e1 ∧ e2

or 

.a ∧ b = (a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12 (18.25) 

If we multiply (18.25) by .I123 we obtain: 

.I123(a ∧ b) = (a2b3 − a3b2)e123e23 + (a3b1 − a1b3)e123e31 + (a1b2 − a2b1)e123e12
= −(a2b3 − a3b2)e1 − (a3b1 − a1b3)e2 − (a1b2 − a2b1)e3
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which is identical to the cross product (18.24) apart from its sign. Therefore, we can 
state: 

. a × b = −I123(a ∧ b)

18.18 The Relationship Between Quaternions and Bivectors 

Hamilton’s rules for the imaginaries. i , . j and. k are shown in Table 18.1, whilst Table 
18.2 shows the rules for 3D bivector products. 

Although there is some agreement between the table entries, there is a sign reversal 
in some of them. However, if we switch to a left-handed axial system the bivectors 
become.e32, .e13, .e21 and their products are as shown in Table 18.3. 

If we now create a one-to-one correspondence (isomorphism) between the two 
systems: 

. i ↔ e32, j ↔ e13, k ↔ e21

there is a true correspondence between quaternions and a left-handed set of bivectors. 

18.19 Reflections and Rotations 

One of geometric algebra’s strengths is the elegance it brings to calculating reflections 
and rotations. Unfortunately, there is insufficient space to examine the derivations 
of the formulae, but if you are interested, these can be found in the author’s books 
[ 1, 2]. Let’s start with 2D reflections. 

Table 18.1 Hamilton’s 
quaternion product rules 

.i . j . k

.i .−1 .k . − j 

. j .−k .−1 . i 

.k . j .−i . −1 

Table 18.2 3D bivector 
product rules 

.e23 .e31 . e12 

.e23 .−1 .−e12 . e31 

.e31 .e12 .−1 . −e23 

.e12 .−e31 .e23 . −1 

Table 18.3 Left-handed 3D 
bivector product rules 

.e32 .e13 . e21 

.e32 .−1 .e21 . −e13 

.e13 .−e21 .−1 . e32 

.e21 .e13 .−e32 .−1 
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Fig. 18.9 The reflection of a 
2D vector 

18.19.1 2D Reflections 

Given a line, whose perpendicular unit vector is . m̂ and a vector . a its reflection .a′ is 
given by: 

. a′ = m̂a m̂ 

which is rather elegant! For example, Fig. 18.9 shows a scenario where: 

. m̂ = 1√
2 
(e1 + e2) 

a = e1 

therefore: 

. a′ = 1√
2 
(e1 + e2)(e1) 1√2 

(e1 + e2) 

= 1 2 (1 − e12)(e1 + e2) 
= 1 2 (e1 + e2 + e2 − e1) 

a′ = e2 

Note that in this scenario a reflection means a mirror image about the perpendicular 
vector. 

18.19.2 3D Reflections 

Let’s explore the 3D reflections shown in Fig. 18.10 where: 

.a = e1 + e2 − e3 
m̂ = e2 
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Fig. 18.10 The reflection of 
a 3D vector 

therefore: 

. a′ = e2(e1 + e2 − e3)e2 
= e212 + e222 − e232 
= −e1 + e2 + e3 

As one might expect, it is also possible to reflect bivectors, trivectors and higher-
dimensional objects, and for reasons of brevity, they are summarised as follows: 

Reflecting about a line: 

. scalars: invariant 

vectors: v′ = m̂v m̂ 

bivectors: B′ = m̂B m̂ 

trivectors: T′ = m̂T m̂ 

Reflecting about a mirror: 

. scalars: invariant 

vectors: v′ = −  ̂mv m̂ 

bivectors: B′ = m̂B m̂ 

trivectors: T′ = −  ̂mT m̂ 

18.19.3 2D Rotations 

Figure 18.11 shows a plan view of two mirrors .M and .N separated by an angle . θ . 
The object of the exercise is to discover the position of a point after being rotated 
a 2D rotation. The point .P is in front of mirror .M and subtends an angle . α, and 
its reflection .PR exists in the virtual space behind .M and also subtends an angle . α 
with the mirror. The angle between .PR and .N must be .θ − α, and its reflection .P ′
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Fig. 18.11 Rotating a point 
by a double reflection 

Fig. 18.12 Rotating a point 
by a double reflection 

must also lie .θ − α behind . N . By inspection, the angle between .P and the double 
reflection .P ′ is .2θ . 

If we apply this double reflection transform to a collection of points, they are 
effectively all rotated.2θ about the origin where the mirrors intersect. The only slight 
drawback with this technique is that the angle of rotation is twice the angle between 
the mirrors. 

Instead of using points, let’s employ position vectors and substitute normal unit 
vectors for the mirrors’ orientation. For example, Fig. 18.12 shows the same mirrors 
with unit normal vectors . m̂ and . n̂. After two successive reflections, .P becomes .P ′, 
and using the relationship: 

. v′ = −  ̂mv m̂ 

we compute the reflections as follows: 

. pR = −  ̂mp m̂ 

p′ = −n̂pR n̂ 

p′ = n̂ m̂p m̂n̂ 

which is also rather elegant and compact. However, we must remember that .P is 
rotated twice the angle separating the mirrors, and the rotation is relative to the 
origin. Let’s demonstrate this technique with an example. 
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Fig. 18.13 Rotating a point 
by. 180◦ 

Figure 18.13 shows two mirrors .M and .N with unit normal vectors . m̂, . n̂ and 
position vector . p: 

. m̂ = e2 
n̂ = −e1 
P = (1, −1) 
p = e1 − e2 

As the mirrors are separated by .90◦ the point .P is rotated .180◦: 

. p′ = n̂ m̂p m̂n̂ 

= −e1e2(e1 − e2)e2(−e1) 
= e12121 − e12221 
= −e1 + e2 

P ′ = (−1, 1) 

18.20 Rotors 

Quaternions are the natural choice for rotating vectors about an arbitrary axis, and 
although it may not be immediately obvious, we have already started to discover 
geometric algebra’s equivalent. 

We begin with: 
. p′ = n̂ m̂p m̂n̂ 

and substitute . R for .n̂ m̂ and . R̃ for . m̂n̂, therefore: 

. p′ = Rp R̃ 

where . R and . R̃ are called rotors which perform the same function as a quaternion. 
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Because geometric algebra is non-commutative, the sequence of elements, be they 
vectors, bivectors, trivectors, etc., is very important. Consequently, it is very useful 
to include a command that reverses a sequence of elements. The notation generally 
employed is the tilde .(˜) symbol: 

. R = n̂ m̂ 

R̃ = m̂n̂ 

Let’s unpack a rotor in terms of its angle and bivector as follows: 
The bivector defining the plane is . m̂ ∧ n̂ and . θ is the angle between the vectors. 

Let: 

. R = n̂ m̂ 

R̃ = m̂n̂ 

where: 

. n̂ m̂ = n̂ · m̂ − m̂ ∧ n̂ 
m̂n̂ = n̂ · m̂ + m̂ ∧ n̂ 

n̂ · m̂ = cos θ 

m̂ ∧ n̂ = B̂ sin θ 

Therefore: 

. R = cos θ − B̂ sin θ 

R̃ = cos θ + B̂ sin θ 

We now have an equation that rotates a vector . p through an angle .2θ about an axis 
defined by . B̂: 

. p′ = Rp R̂ 

or 
. p′ = (cos θ − B̂ sin θ)p(cos θ + B̂ sin θ)  

We can also express this such that it identifies the real angle of rotation . α: 

.p′ = (cos(α/2) − B̂ sin(α/2))p
(
cos(α/2) + B̂ sin(α/2)

)
(18.26) 

Equation (18.26) references a bivector, which may make you feel uncomfortable! But 
remember, it simply identifies the axis perpendicular to its plane. Let’s demonstrate 
how (18.26) works with two examples. 
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Fig. 18.14 Rotating a vector 
by. 90◦ 

Figure 18.14 shows a scenario where vector . p is rotated .90◦ about .e2 which is 
perpendicular to . B̂, where: 

. α = 90◦ 

a = e2 
p = e1 + e2 
B̂ = e31 

Therefore: 

. p′ = (cos 45◦ − e31 sin 45◦)(e1 + e2)(cos 45◦ + e31 sin 45◦) 

=
(√

2 
2 − 

√
2 
2 e31

)
(e1 + e2)

(√
2 
2 + 

√
2 
2 e31

)

=
(√

2 
2 e1 + 

√
2 
2 e2 − 

√
2 
2 e3 − 

√
2 
2 e312

) (√
2 
2 + 

√
2 
2 e31

)

= 1 2 (e1 − e3 + e2 + e231 − e3 − e1 − e312 − e31231) 
p′ = e2 − e3 

Observe what happens when the bivector’s sign is reversed to .−e31: 

. p′ = (cos 45◦ + e31 sin 45◦)(e1 + e2)(cos 45◦ − e31 sin 45◦) 

=
(√

2 
2 + 

√
2 
2 e31

)
(e1 + e2)

(√
2 
2 − 

√
2 
2 e31

)

=
(√

2 
2 e1 + 

√
2 
2 e2 + 

√
2 
2 e3 + 

√
2 
2 e312

) (√
2 
2 − 

√
2 
2 e31

)

= 1 2 (e1 + e3 + e2 + e231 + e3 − e1 + e312 − e31231) 
p′ = e2 + e3 

the rotation is clockwise about . e2. 
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Figure 18.15 shows another scenario where vector . p is rotated .120◦ about the 
bivector . B, where: 

. m = e1 − e3 
n = e2 − e3 
α = 120◦ 

p = e2 + e3 
B = m ∧ n 

= (e1 − e3) ∧ (e2 − e3) 
B = e12 + e31 + e23 

Next, we normalise . B to . B̂: 

. B̂ = 
1√
3 
(e12 + e23 + e31) 

therefore: 

. p′ = (cos 60◦ − B̂ sin 60◦)p(cos 60◦ + B̂ sin 60◦) 

=
(
1 
2 − 1√

3 
(e12 + e23 + e31) 

√
3 
2

)
(e2 + e3)

(
1 
2 + 1√

3 
(e12 + e23 + e31) 

√
3 
2

)

=
(
1 
2 − 

e12 
2 

− 
e23 
2 

− 
e31 
2

)
(e2 + e3)

(
1 
2 + 

e12 
2 

+ 
e23 
2 

+ 
e31 
2

)

= 1 4 (e2 + e3 − e1 − e123 + e3 − e2 − e312 + e1) (1 + e12 + e23 + e31) 
= 1 2 (e3 − e123)(1 + e12 + e23 + e31) 
= 1 2 (e3 + e312 − e2 + e1 − e123 − e12312 − e12323 − e12331) 
= 1 2 (e3 − e2 + e1 + e3 + e1 + e2) 

p′ = e1 + e3 

These examples show that rotors behave just like quaternions. Rotors not only rotate 
vectors, but they can be used to rotate bivectors, and even trivectors, although, as one 
might expect, a rotated trivector remains unaltered in 3D. 

18.21 Applied Geometric Algebra 

This has been a very brief introduction to geometric algebra, and it has been impos-
sible to cover all the algebra’s features. However, if you have understood the above 
topics, you will have understood some of the fundamental ideas behind the algebra. 
Let’s now consider some practical applications for geometric algebra. 
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Fig. 18.15 Rotating a vector 
by. 120◦ 

Fig. 18.16 The sine rule  

The sine rule states that for any triangle .�ABC with angles . α, . β and . θ , and 
respective opposite sides . a, . b and . c, then: 

. 
a 

sin α 
= b 

sin β 
= c 

sin θ 

This rule can be proved using the outer product of two vectors, which we know 
incorporates the sine of the angle between two vectors: 

. ‖a ∧ b‖ = ‖a‖‖b‖ sin α 

With reference to Fig. 18.16, we can state the triangle’s area as: 

. area of �ABC = 1 2‖ −  c ∧ a‖ =  1 2‖c‖‖a‖ sin β 
area of �BCA = 1 2‖ −  a ∧ b‖ =  1 2‖a‖‖b‖ sin θ 
area of �CAB = 1 2‖ −  b ∧ c‖ =  1 2‖b‖‖c‖ sin α 

which means that: 

.‖c‖‖a‖ sin β = ‖a‖‖b‖ sin θ = ‖b‖‖c‖ sin α 
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Fig. 18.17 The cosine rule 

. 
‖a‖
sin α 

= ‖b‖
sin β 

= ‖c‖
sin θ 

The cosine rule states that for any triangle .�ABC with sides . a, . b and . c, then: 

. a2 = b2 + c2 − 2bc cos α 

where . α is the angle between . b and . c. 
Although this is an easy rule to prove using simple trigonometry, the geometric 

algebra solution is even easier. 
Figure 18.17 shows a triangle .�ABC constructed from vectors . a, . b and . c. From  

Fig. 18.16: 
.a = b − c (18.27) 

Squaring (18.27) we obtain: 

. a2 = b2 + c2 − (bc + cb) 

But: 
. bc + cb = 2b · c = 2‖b‖‖c‖ cos α 

therefore: 
. ‖a‖2 = ‖b‖2 + ‖c‖2 − 2‖b‖‖c‖ cos α 

Figure 18.18 shows a scenario where a line with direction vector. v̂ passes through 
a point. T . The objective is to locate another point. P perpendicular to. v̂ and a distance 
. δ from. T . The solution is found by post-multiplying. v̂ by the psuedoscalar.e12, which 
rotates . v̂ through an angle of .90◦. 

As . v̂ is a unit vector: 
. 
−→
T P  = δv̂e12 

therefore: 

.p = t + −→T P  
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Fig. 18.18 A point P 
perpendicular to a point T on 
a line  

Fig. 18.19 A point P 
perpendicular to a point T on 
a line  

and 

.p = t + δv̂e12 (18.28) 

For example, Fig. 18.19 shows a 2D scenario where: 

. v̂ = 1√
2 
(e1 + e2) 

T = (4, 1) 
t = 4e1 + e2 
δ = 

√
32 

Using (18.28): 

.p = t + δv̂e12 
= 4e1 + e2 + 

√
32 1√

2 
(e1 + e2)e12 

= 4e1 + e2 + 4e2 − 4e1 
p = 5e2 
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Fig. 18.20 Reflecting a 
vector about a vector 

Fig. 18.21 Reflecting a 
vector about a vector 

and 
. P = (0, 5) 

If . p is required on the other side of the line, we pre-multiply . v̂ by .e12: 

. p = t + δe12v̂ 

which is the same as reversing the sign of . δ. 
Reflecting a vector about another vector happens to be a rather easy problem for 

geometric algebra. Figure 18.20 shows the scenario where we see a vector. a reflected 
about the normal to a line with direction vector . v̂. 

We begin by calculating . m̂: 
. m̂ = v̂e12 (18.29) 

then reflecting . a about . m̂: 
. a′ = m̂a m̂ 

substituting . m̂ we have: 
.a′ = v̂e12av̂e12 (18.30) 
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As an illustration, consider the scenario shown in Fig. 18.21 where: 

. v̂ = 1√
2 
(e1 + e2) 

a = −e1 

Therefore, using (18.29): 

. m̂ = 1√
2 
(e1 + e2)e12 

m̂ = 1√
2 
(e2 − e1) 

and using (18.30): 

. a′ = 1√
2 
(e2 − e1)(−e1) 1√2 

(e2 − e1) 

= 1 2 (e12 + 1)(e2 − e1) 
= 1 2 (e1 + e2 + e2 − e1) 

a′ = e2 

In computer graphics we often need to test whether a point is above, below or 
on a planar surface. If we already have the plane equation for the surface it is just 
a question of substituting the test point in the equation and investigating its signed 
value. But here is another way using geometric algebra. For example, if a bivector 
is used to represent the orientation of a plane, the outer product of the test point’s 
position vector with the bivector computes an oriented volume. Figure 18.22 shows 
a bivector .a ∧ b and a test point .P with position vector . p relative to the bivector. 

Let: 

a ∧ b ∧ p is +ve, then P is ‘above’ the bivector 
a ∧ b ∧ p is −ve, then P is ‘below’ the bivector 
a ∧ b ∧ p is zero, then P is coplanar with the bivector. 

The terms ‘above’ and ‘below’ mean in the bivector’s positive and negative half-
space respectively. 

As an example, consider the scenario shown in Fig. 18.23 where the plane’s 
orientation is represented by the bivector .a ∧ b, and three test points . P , .Q and . R. 

Fig. 18.22 Point relative to 
a bivector 
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Fig. 18.23 Three points 
relative to a bivector 

If .P = (0, 1, 0), .Q = (0, −1, 0), .R = (1, 0, 0): 

. a = e1 + e3 
b = e1 

then: 

. p = e2 
q = −e2 
r = e1 

and 

. a ∧ b ∧ p = (e1 + e3) ∧ e1 ∧ e2 
= e123 

a ∧ b ∧ q = (e1 + e3) ∧ e1 ∧ (−e2) 
= −e123 

a ∧ b ∧ r = (e1 + e3) ∧ e1 ∧ e1 
= 0 

We can see that the signs of the first two volumes show that .P is in the positive 
half-space, .Q is in the negative half-space, and . R is on the plane. 

18.22 Summary 

Geometric algebra is a new and exciting subject and is destined to impact upon the 
way we solve problems in computer games and animation. Hopefully, you have found 
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this chapter interesting, and if you are tempted to take the subject further, then look 
at the author’s books. 
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19Calculus: Derivatives 

19.1 Introduction 

Calculus is a very large subject, and calculus books have a reputation for being 
heavy. Therefore, to minimise this book’s weight, and provide a gentle introduction 
to the subject, I have selected specific topics from my book [ 1], and condensed them 
into two chapters. 

One branch of calculus is concerned with a function’s derivative, which describes 
how fast a function changes relative to its independent variable. In this chapter, I 
show how limits are used in this process. We begin with some historical background, 
and then look at small numerical quantities, and how they can be ignored if they 
occur in certain products, but remain important in quotients. 

19.2 Background 

Over a period of 350 years or more, calculus has evolved conceptually and in notation. 
Up until recently, calculus was described using infinitesimals, which are numbers so 
small, they can be ignored in certain products. However, it was Cauchy and the 
German mathematician Karl Weierstrass (1815–1897), who showed how limits can 
replace infinitesimals. 

19.3 Small Numerical Quantities 

The adjective small is a relative term, and requires clarification in the context of 
numbers. For example, if numbers are in the hundreds, and also contain some decimal 
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component, then it seems reasonable to ignore digits after the .3rd decimal place for 
any quick calculation. For instance, 

. 100.000003 × 200.000006 ≈ 20, 000

and ignoring the decimal part has no significant impact on the general accuracy of 
the answer, which is measured in tens of thousands. 

To develop an algebraic basis for this argument let’s divide a number into two 
parts: a primary part . x , and some very small secondary part .δx (pronounced delta 
. x). In one of the above numbers, .x = 100 and .δx = 0.000003. Given two such 
numbers, .x1 and . y1, their product is given by: 

. x1 = x + δx

y1 = y + δy

x1y1 = (x + δx)(y + δy)

= xy + x · δy + y · δx + δx · δy

Using .x1 = 100.000003 and .y1 = 200.000006 we have: 

. x1y1 = 100 × 200 + 100 × 0.000006 + 200 × 0.000003 + 0.000003 × 0.000006

= 20, 000 + 0.0006 + 0.0006 + 0.00000000018

= 20, 000 + 0.0012 + 0.00000000018

= 20, 000.00120000018

where it is clear that the products .x · δy, .y · δx and .δx · δy contribute very little to 
the result. Furthermore, the smaller we make .δx and . δy, their contribution becomes 
even more insignificant. Just imagine if we reduce.δx and.δy to the level of quantum 
phenomenon, e.g. .10−34, then their products play no part in every-day numbers. 
But there is no need to stop there, we can make .δx and .δy as small as we like, e.g. 
.10−100,000,000,000. Later on we employ the device of reducing a number towards zero, 
such that any products involving them can be dropped from any calculation. 

Even though the product of two numbers less than one is an even smaller number, 
care must be taken with their quotients. For example, in the above scenario, where 
.δy = 0.000006 and .δx = 0.000003: 

. 
δy

δx
= 0.000006

0.000003
= 2

so we must watch out for such quotients. 
From now on I will employ the term derivative to describe a function’s rate of 

change relative to its independent variable. I will now describe two ways of computing 
a derivative, and provide a graphical interpretation of the process. The first way uses 
simple algebraic equations, and the second way uses a functional representation. 
Needless to say, they both give the same result.
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19.4 Equations and Limits 

19.4.1 Quadratic Function 

Here is a simple algebraic approach using limits to compute the derivative of a 
quadratic function. Starting with the function .y = x2, let  . x change by .δx , and let 
.δy be the corresponding change in . y. We then have: 

. y = x2

y + δy = (x + δx)2

= x2 + 2x · δx + (δx)2

δy = 2x · δx + (δx)2

Dividing throughout by .δx we have: 

. 
δy

δx
= 2x + δx

The ratio.δy/δx provides a measure of how fast. y changes relative to. x , in increments 
of .δx . For example, when .x = 10: 

. 
δy

δx
= 20 + δx

and if .δx = 1, then .δy/δx = 21. Equally, if .δx = 0.001, then .δy/δx = 20.001. By  
making.δx smaller and smaller,.δy becomes equally smaller, and their ratio converges 
towards a limiting value of 20. 

In this case, as .δx approaches zero, .δy/δx approaches .2x , which is written: 

. lim
δx→0

δy

δx
= 2x

Thus in the limit, when .δx = 0, we create a condition where .δy is divided by 
zero – which is a meaningless operation. However, if we hold onto the idea of a 
limit, as .δx → 0, it is obvious that the quotient .δy/δx is converging towards .2x . 
The subterfuge employed to avoid dividing by zero is to substitute another quotient 
.dy/dx to stand for the limiting condition: 

. 
dy

dx
= lim

δx→0

δy

δx
= 2x

.dy/dx (pronounced dee . y dee . x) is the derivative of .y = x2, i.e. .2x . For instance, 
when .x = 0, .dy/dx = 0, and when .x = 3, .dy/dx = 6. The derivative .dy/dx , is  
the instantaneous rate at which . y changes relative to . x .
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If we had represented this equation as a function: 

. f (x) = x2

f ′(x) = 2x

where . f ′(x) is another way of expressing .dy/dx . 
Now let’s introduce two constants into the original quadratic equation to see what 

effect, if any, they have on the derivative. We begin with: 

. y = ax2 + b

and increment . x and . y: 

. y + δy = a(x + δx)2 + b

= a
(
x2 + 2x · δx + (δx)2

)
+ b

δy = a
(
2x · δx + (δx)2

)

Dividing throughout by .δx : 

. 
δy

δx
= a(2x + δx)

and the derivative is: 

. 
dy

dx
= lim

δx→0

δy

δx
= 2ax

Thus we see the added constant. b disappears (i.e. because it does not change), whilst 
the multiplied constant . a is transmitted through to the derivative. 

19.4.2 Cubic Equation 

Now let’s repeat the above analysis for a cubic equation .y = x3: 

. y = x3

y + δy = (x + δx)3

= x3 + 3x2 · δx + 3x(δx)2 + (δx)3

δy = 3x2 · δx + 3x(δx)2 + (δx)3

Dividing throughout by .δx : 

. 
δy

δx
= 3x2 + 3x · δx + (δx)2

Employing the idea of infinitesimals, one would argue that any term involving . δx
can be ignored, because its numerical value is too small to make any contribution 
to the result. Similarly, using the idea of limits, one would argue that as .δx is made 
increasingly smaller, towards zero, any term involving .δx rapidly disappears.
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Using limits, we have: 

. lim
δx→0

δy

δx
= 3x2

or 

. 
dy

dx
= lim

δx→0

δy

δx
= 3x2

We could also show that if .y = ax3 + b then: 

. 
dy

dx
= 3ax2

This incremental technique can be used to compute the derivative of all sorts of 
functions. 

If we continue computing the derivatives of higher-order polynomials, we discover 
the following pattern: 

. y = x2,
dy

dx
= 2x

y = x3,
dy

dx
= 3x2

y = x4,
dy

dx
= 4x3

y = x5,
dy

dx
= 5x4

Clearly, the rule is: 

. y = xn,
dy

dx
= nxn−1

but we need to prove why this is so. The solution is found in the binomial expansion 
for .(x + δx)n , which can be divided into three components: 

1. Decreasing terms of . x . 
2. Increasing terms of .δx . 
3. The terms of Pascal’s triangle. 

For example, the individual terms of .(x + δx)4 are: 

Decreasing terms of x : x4 x3 x2 x1 x0 

Increasing terms of δx : (δx)0 (δx)1 (δx)2 (δx)3 (δx)4 

The terms of Pascal’s triangle: 1 4 6 4 1 

which when combined produce: 

.x4 + 4x3(δx) + 6x2(δx)2 + 4x(δx)3 + (δx)4
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Thus when we begin an incremental analysis: 

. y = x4

y + δy = (x + δx)4

= x4 + 4x3(δx) + 6x2(δx)2 + 4x(δx)3 + (δx)4

δy = 4x3(δx) + 6x2(δx)2 + 4x(δx)3 + (δx)4

Dividing throughout by .δx : 

. 
δy

δx
= 4x3 + 6x2(δx)1 + 4x(δx)2 + (δx)3

In the limit, as .δx slides to zero, only the second term of the original binomial 
expansion remains: 

. 4x3

The second term of the binomial expansion .(x + δx)n is always of the form: 

. nxn−1

which is the proof we require. 

19.4.3 Functions and Limits 

In order to generalise the above findings, let’s approach the above analysis using 
a function of the form .y = f (x). We begin by noting some arbitrary value of its 
independent variable and note the function’s value. In general terms, this is . x and 
. f (x) respectively. We then increase . x by a small amount .δx , to give  .x + δx , and 
measure the function’s value again: . f (x + δx). The function’s change in value is 
. f (x + δx)− f (x), whilst the change in the independent variable is.δx . The quotient 
of these two quantities approximates to the function’s rate of change at . x : 

.
f (x + δx) − f (x)

δx
(19.1) 

By making.δx smaller and smaller towards zero, (19.1) converges towards a limiting 
value expressed as: 

.
dy

dx
= lim

δx→0

f (x + δx) − f (x)

δx
(19.2) 

which can be used to compute all sorts of functions. For example, to compute the 
derivative of .sin x we proceed as follows: 

.y = sin x

y + δy = sin(x + δx)
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Using the identity .sin(A + B) = sin A cos B + cos A sin B, we have:  

. y + δy = sin x cos(δx) + cos x sin(δx)

δy = sin x cos(δx) + cos x sin(δx) − sin x

= sin x(cos(δx) − 1) + cos x sin(δx)

Dividing throughout by .δx we have: 

. 
δy

δx
= sin x

δx
(cos(δx) − 1) + sin(δx)

δx
cos x

In the limit as .δx → 0, .(cos(δx) − 1) → 0 and .sin(δx)/δx = 1, and: 

. 
dy

dx
= d(sin x)

dx
= cos x

Before moving on, let’s compute the derivative of .cos x : 

. y = cos x

y + δy = cos(x + δx)

Using the identity .cos(A + B) = cos A cos B − sin A sin B, we have:  

. y + δy = cos x cos(δx) − sin x sin(δx)

δy = cos x cos(δx) − sin x sin(δx) − cos x

= cos x(cos(δx) − 1) − sin x sin(δx)

Dividing throughout by .δx we have: 

. 
δy

δx
= cos x

δx
(cos(δx) − 1) − sin(δx)

δx
sin x

In the limit as .δx → 0, .(cos(δx) − 1) → 0 and .sin(δx)/δx = 1 (see Appendix A) 
and: 

. 
dy

dx
= d(cos x)

dx
− sin x

We will continue to employ this strategy to compute the derivatives of other functions 
later on. 

19.4.4 Graphical Interpretation of the Derivative 

To illustrate this limiting process graphically, consider the scenario in Fig. 19.1 
where the sample point is . P . In this case the function is . f (x) = x2 and . P’s coor-
dinates are .

(
x, x2

)
. We identify another point . R, displaced .δx to the right of . P , 

with coordinates .
(
x + δx, x2

)
. The point .Q on the curve, vertically above . R, has 

coordinates .
(
x + δx, (x + δx)2

)
. When .δx is relatively small, the slope of the line 

.PQ approximates to the function’s rate of change at . P , which is the graph’s slope. 
This is given by:
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Fig. 19.1 Sketch of 
. f (x) = x2

. slope = QR

PR
= (x + δx)2 − x2

δx

= x2 + 2x(δx) + (δx)2 − x2

δx

= 2x(δx) + (δx)2

δx
= 2x + δx

We can now reason that as .δx is made smaller and smaller, .Q approaches . P , and 
.slope becomes the graph’s slope at . P . This is the limiting condition: 

. 
dy

dx
= lim

δx→0
(2x + δx) = 2x

Thus, for any point with coordinates.
(
x, x2

)
, the slope is given by.2x . For example, 

when .x = 0, the slope is 0, and when .x = 4, the slope is 8, etc. 

19.4.5 Derivatives and Differentials 

Given a function . f (x), the ratio .d f/dx represents the instantaneous change of . f
for some . x , and is called the first derivative of . f (x). For linear functions, this is 
constant, for other functions, the derivative’s value changes with. x and is represented 
by a function. 

The elements.d f ,.dy and.dx are called differentials, and historically, the derivative 
used to be called the differential coefficient, but has now been dropped in favour of 
derivative. One can see how the idea of a differential coefficient arose if we write, 
for example: 

. 
dy

dx
= 3x

as 
.dy = 3x dx
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In this case, .3x acts like a coefficient of .dx , nevertheless, we will use the word 
derivative. It is worth noting that if .y = x , then .dy/dx = 1, or .dy = dx . The  two  
differentials are individual algebraic quantities, which permits us to write statements 
such as: 

. 
dy

dx
= 3x, dy = 3x dx, dx = dy

3x

Now let’s find .dy/dx , for:  

. y = 6x3 − 4x2 + 8x + 6

Differentiating . y: 

. 
dy

dx
= 18x2 − 8x + 8

which is the instantaneous change of . y relative to . x . When .x = 1, . dy/dx = 18 −
8 + 8 = 18, which means that . y is changing 18 times faster than . x . Consequently, 
.dx/dy = 1/18. 

19.4.6 Integration and Antiderivatives 

If it is possible to differentiate a function, it seems reasonable to assume the exis-
tence of an inverse process to convert a derivative back to its associated function. 
Fortunately, this is the case, but there are some limitations. This inverse process is 
called integration and reveals the antiderivative of a function. Many functions can 
be paired together in the form of a derivative and an antiderivative, such as .2x with 
. x2, and .cos x with .sin x . However, there are many functions where it is impossible 
to derive its antiderivative in a precise form. For example, there is no simple, finite 
functional antiderivative for.sin x2 or.(sin x)/x . To understand integration, let’s begin 
with a simple derivative. 

If we are given: 

. 
dy

dx
= 18x2 − 8x + 8

it is not too difficult to reason that the original function could have been: 

. y = 6x3 − 4x2 + 8x

However, it could have also been: 

. y = 6x3 − 4x2 + 8x + 2

or 
.y = 6x3 − 4x2 + 8x + 20
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or with any other constant. Consequently, when integrating the original function, the 
integration process has to include a constant: 

. y = 6x3 − 4x2 + 8x + C

The value of. C is not always required, but it can be determined if we are given some 
extra information, such as .y = 10 when .x = 0, then .C = 10. 

The notation for integration employs a curly ‘S’ symbol . 
∫
, which may seem 

strange, but is short for sum and will be explained later. So, starting with: 

. 
dy

dx
= 18x2 − 8x + 8

we rewrite this as: 
. dy = (18x2 − 8x + 8)dx

and integrate both sides, where .dy becomes . y and the right-hand-side becomes: 

. 

∫ (
18x2 − 8x + 8

)
dx

although brackets are not always used: 

. y =
∫

18x2 − 8x + 8 dx

This equation reads: “. y is the integral of .18x2 − 8x + 8dee x.” The .dx reminds us 
that . x is the independent variable. In this case we can write the answer: 

. dy = 18x2 − 8x + 8 dx

y =
∫

18x2 − 8x + 8 dx

= 6x3 − 4x2 + 8x + C

where . C is some constant. 
For example, let’s find . y, given: 

. dy = 6x2 + 10x dx

Integrating: 

. y =
∫

6x2 + 10x dx

= 2x3 + 5x2 + C

Now let’s find . y, given: 
.dy = dx .
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Integrating: 

. y =
∫

1 dx

= x + C

The antiderivatives for the sine and cosine functions are written: 

. 

∫
sin x dx = − cos x + C

∫
cos x dx = sin x + C

which you may think obvious, as we have just computed their derivatives. How-
ever, the reason for introducing integration alongside differentiation, is to make you 
familiar with the notation, and memorise the two distinct processes, as well as lay 
the foundations for the next chapter. 

19.5 Function Types 

Mathematical functions come in all sorts of shapes and sizes. Sometimes they are 
described explicitly where . y equals some function of its independent variable(s), 
such as: 

. y = x sin x

or implicitly where . y, and its independent variable(s) are part of an equation, such 
as: 

. x2 + y2 = 10

A function may reference other functions, such as: 

. y = sin
(
cos2 x

)

or 
. y = xsin x

There is no limit to the way functions can be combined, which makes it impossible 
to cover every eventuality. Nevertheless, we will explore some useful combinations 
that prepare us for any future surprises. 

First, we examine how to differentiate different types of functions, that include 
sums, products and quotients, which are employed later on to differentiate spe-
cific functions such as trigonometric, logarithmic and hyperbolic. Where relevant, I 
include the appropriate antiderivative to complement its derivative.
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19.6 Differentiating Groups of Functions 

So far we have only considered simple individual functions, which, unfortunately, do 
not represent the equations found in mathematics, science, physics or even computer 
graphics. In general, the functions we have to differentiate include sums of functions, 
functions of functions, function products and function quotients. Let’s explore these 
four scenarios. 

19.6.1 Sums of Functions 

A function normally computes a numerical value from its independent variable(s), 
and if it can be differentiated, its derivative generates another function with the same 
independent variable. Consequently, if a function contains two functions of . x , such 
as . u and . v, where: 

. y = u(x) + v(x)

which can be abbreviated to: 
. y = u + v

then: 

. 
dy

dx
= du

dx
+ dv

dx

where we just sum their individual derivatives. 
As an example, find .dy/dx , given: 

. u = 2x6

v = 3x5

y = u + v

y = 2x6 + 3x5

Differentiating . y: 

. 
dy

dx
= 12x5 + 15x4

Similarly, find .dy/dx , given: 

. u = 2x6

v = sin x

w = cos x

y = u + v + w

y = 2x6 + sin x + cos x

Differentiating . y: 

.
dy

dx
= 12x5 + cos x − sin x
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Fig. 19.2 Graph of 
. y = 2x6 + sin x + cos x
((blue), and its derivative, 
. 
dy
dx = 12x5 + cos x − sin x
(green) 

Figure 19.2 shows a graph of .y = 2x6 + sin x + cos x and its derivative . y =
12x5 + cos x − sin x . Differentiating such functions is relatively easy, so too, is 
integrating. Given: 

. 
dy

dx
= du

dx
+ dv

dx

then: 

. y =
∫

du

dx
dx +

∫
dv

dx
dx

=
∫ (

du

dx
+ dv

dx

)
dx

For example, let’s find . y, given: 

. 
dy

dx
= 12x5 + cos x − sin x

Integrating: 

. dy = (
12x5 + cos x − sin x

)
dx

y =
∫

12x5 dx +
∫

cos x dx −
∫

sin x dx

= 2x6 + sin x + cos x + C

19.6.2 Function of a Function 

One of the advantages of modern mathematical notation is that it lends itself to 
unlimited elaboration without introducing any new symbols. For example, the poly-
nomial.3x2+2x is easily raised to some power by adding brackets and an appropriate 
index:.

(
3x2 +2x

)2. Such an object is a function of a function, because the function 
.3x2 + 2x is subjected to a further squaring function. The question now is: how are 
such functions differentiated? Well, the answer is relatively easy, but does introduce 
some new ideas.
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Imagine that Heidi swims twice as fast as John, who in turn, swims three times as 
fast as his dog, Monty. It should be obvious that Heidi swims six.(2× 3) times faster 
than Monty. This product rule, also applies to derivatives, because if. y changes twice 
as fast as . u, i.e. .dy/du = 2, and . u changes three times as fast as . x , i.e. .du/dx = 3, 
then . y changes six times as fast as . x : 

. 
dy

dx
= dy

du
· du
dx

To differentiate: 

. y =
(
3x2 + 2x

)2

we substitute: 
. u = 3x2 + 2x

then: 
. y = u2

and 

. 
dy

du
= 2u

= 2
(
3x2 + 2x

)

= 6x2 + 4x

Next, we require .du/dx : 

. u = 3x2 + 2x

du

dx
= 6x + 2

therefore, we can write: 

. 
dy

dx
= dy

du
· du
dx

=
(
6x2 + 4x

)
(6x + 2)

= 36x3 + 36x2 + 8x

This result is easily verified by expanding the original polynomial and differentiating: 

.y =
(
3x2 + 2x

)2

=
(
3x2 + 2x

) (
3x2 + 2x

)

= 9x4 + 12x3 + 4x2

dy

dx
= 36x3 + 36x2 + 8x
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Fig. 19.3 Graph of 

.y = (
3x2 + 2x

)2 (blue), and 
its derivative 
. 
dy
dx = 36x3 + 36x2 + 8x
(green) 

Figure 19.3 shows a graph of .y = (
3x2 + 2x

)2
and its derivative .. y = 36x3+

.36x2 + 8x . 
Now let’s differentiate .y = sin(ax), which is a function of a function. 

Substitute . u for .ax : 

. y = sin u

dy

du
= cos u

= cos(ax)

Next, we require .du/dx : 

. u = ax

du

dx
= a

therefore, we can write: 

. 
dy

dx
= dy

du
· du
dx

= cos(ax) · a
= a cos(ax)

Consequently, given: 

. 
dy

dx
= cos(ax)

then: 

.dy = cos(ax) dx

y =
∫

cos(ax) dx

= 1
a sin(ax) + C
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Similarly, given: 

. 
dy

dx
= sin(ax)

then: 

. dy = sin(ax) dx

y =
∫

sin(ax) dx

= − 1
a cos(ax) + C

To differentiate.y = sin
(
x2

)
, which is also a function of a function, we substitute 

. u for . x2: 

. y = sin u

dy

du
= cos u

= cos
(
x2

)

Next, we require .du/dx : 

. u = x2

du

dx
= 2x

therefore, we can write: 

. 
dy

dx
= dy

du
· du
dx

= cos
(
x2

) · 2x
= 2x cos

(
x2

)

Figure 19.4 shows a graph of .y = sin
(
x2

)
and its derivative .y = 2x cos

(
x2

)
. In  

general, there can be any depth of functions within a function, which permits us to 
write the chain rule for derivatives: 

. 
dy

dx
= dy

du
· du
dv

· dv

dw
· dw

dx

19.6.3 Function Products 

Function products occur frequently in every-day mathematics, and involve the prod-
uct of two, or more functions. Here are three simple examples:
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Fig. 19.4 Graph of.y = sin
(
x2

)
(blue), and its derivative,. dydx = 2x cos

(
x2

)
(green) 

. y =
(
3x2 + 2x

) (
2x2 + 3x

)

y = sin x cos x

y = x2 sin x

When it comes to differentiating function products of the form: 

. y = uv

it seems natural to assume that: 

.
dy

dx
= du

dx
· dv

dx
(19.3) 

which unfortunately, is incorrect. For example, in the case of: 

. y =
(
3x2 + 2x

) (
2x2 + 3x

)

differentiating using the above rule (19.3) produces: 

. 
dy

dx
= (6x + 2)(4x + 3)

= 24x2 + 26x + 6

However, if we expand the original product and then differentiate, we obtain: 

.y =
(
3x2 + 2x

) (
2x2 + 3x

)

= 6x4 + 13x3 + 6x2

dy

dx
= 24x3 + 39x2 + 12x
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which is correct, but differs from the first result. Obviously, (19.3) must be wrong. 
So let’s return to first principles and discover the correct rule. 

So far we have incremented the independent variable – normally . x – by  .δx to 
discover the change in . y – normally . δy. Next, we see how the same notation can be 
used to increment functions. 

Given the following functions of . x , . u and . v, where: 

. y = uv

if . x increases by .δx , then there will be corresponding changes of .δu, .δv and . δy, in  
. u, . v and . y respectively. Therefore: 

. y + δy = (u + δu)(v + δv)

= uv + uδv + vδu + δuδv

δy = uδv + vδu + δuδv

Dividing throughout by .δx we have: 

. 
δy

δx
= u

δv

δx
+ v

δu

δx
+ δu

δv

δx

In the limiting condition: 

. 
dy

dx
= lim

δx→0

(
u

δv

δx

)
+ lim

δx→0

(
v
δu

δx

)
+ lim

δx→0

(
δu

δv

δx

)

As.δx → 0, then .δu → 0 and .
(
δu δv

δx

) → 0. Therefore: 

.
dy

dx
= u

dv

dx
+ v

du

dx
(19.4) 

Applying (19.4) to the original function product: 

.u = 3x2 + 2x

v = 2x2 + 3x

y = uv

du

dx
= 6x + 2

dv

dx
= 4x + 3

dy

dx
= u

dv

dx
+ v

du

dx

=
(
3x2 + 2x

)
(4x + 3) +

(
2x2 + 3x

)
(6x + 2)

=
(
12x3 + 17x2 + 6x

)
+

(
12x3 + 22x2 + 6x

)

= 24x3 + 39x2 + 12x
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Fig. 19.5 Graph of 
. y = (

3x2 + 2x
)(
2x2 + 3x

)
(blue), and its derivative 
. 
dy
dx = 24x3 + 39x2 + 12x
(green) 

which agrees with our previous prediction. Figure 19.5 shows a graph of . y =(
3x2 + 2x

) (
2x2 + 3x

)
and its derivative .y = 24x3 + 39x2 + 12x . 

Now let’s differentiate .y = sin x cos x using (19.4). 

. y = sin x cos x

u = sin x

du

dx
= cos x

v = cos x

dv

dx
= − sin x

dy

dx
= u

dv

dx
+ v

du

dx
= sin x(− sin x) + cos x cos x

= cos2 x − sin2 x

= cos(2x)

Using the identity .sin(2x) = 2 sin x cos x , we can rewrite the original function as 

. y = sin x cos x

= 1
2 sin(2x)

dy

dx
= cos(2x)

which confirms the above derivative. Now let’s consider the antiderivative of.cos 2x . 
Given: 

.
dy

dx
= cos(2x)
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Fig. 19.6 Graph of 
.y = sin x cos x (blue), and 
its derivative. dydx = cos(2x)
(green) 

then: 

. dy = cos(2x) dx

y =
∫

cos(2x) dx

= 1
2 sin(2x) + C

= sin x cos x + C

Figure 19.6 shows a graph of .y = sin x cos and its derivative .y = cos(2x). 

Let’s differentiate .y = x2 sin x , using  (19.4): 

. y = x2 sin x
u = x2

du

dx
= 2x

v = sin x
dv

dx
= cos x

dy

dx
= u

dv

dx
+ v

du

dx
= x2 cos x + 2x sin x

Figure 19.7 shows a graph of .y = x2 sin x and its derivative .x2 cos x + 2x sin x . 

19.6.4 Function Quotients 

Next, we investigate how to differentiate function quotients. We begin with two 
functions of . x , . u and . v, where: 

. y = u

v

which makes . y also a function of . x .
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Fig. 19.7 Graph of 
.y = x2 sin x (blue), and its 
derivative 
. y = x2 cos x + 2x sin x
(green) 

We now increment . x by.δx and measure the change in . u as .δu, and the change in 
. v as . δv. Consequently, the change in . y is . δy: 

. y + δy = u + δu

v + δv

δy = u + δu

v + δv
− u

v

= v(u + δu) − u(v + δv)

v(v + δv)

= vδu − uδv

v(v + δv)

Dividing throughout by .δx we have: 

. 
δy

δx
=

v
δu

δx
− u

δv

δx
v(v + δv)

As.δx → 0, .δu, .δv and .δy also tend towards zero, and the limiting conditions are: 

. 
dy

dx
= lim

δx→0

δy

δx

v
du

dx
= lim

δx→0
v
δu

δx

u
dv

dx
= lim

δx→0
u

δv

δx

v2 = lim
δx→0

v(v + δv)

therefore: 

.
dy

dx
=

v
du

dx
− u

dv

dx
v2
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To illustrate this, let’s differentiate . y, given: 

. y = x3 + 2x2 + 3x + 6

x2 + 3

Substitute .u = x3 + 2x2 + 3x + 6 and .v = x2 + 3, then: 

. 
du

dx
= 3x2 + 4x + 3

dv

dx
= 2x

dy

dx
=

(
x2 + 3

) (
3x2 + 4x + 3

) − (
x3 + 2x2 + 3x + 6

)
2x

(
x2 + 3

)2

=
(
3x4 + 4x3 + 3x2 + 9x2 + 12x + 9

) − (
2x4 + 4x3 + 6x2 + 12x

)

x4 + 6x2 + 9

= x4 + 6x2 + 9

x4 + 6x2 + 9
= 1

which is not a surprising result when one sees that the original function has the 
factors: 

. y =
(
x2 + 3

)
(x + 2)

x2 + 3
= x + 2

whose derivative is 1. Figure 19.8 shows a graph of . y = (
x2 + 3

)
(x + 2)/

(
x2 + 3

)
and its derivative .y = 1. 

Fig. 19.8 Graph of 
. y = (

x2+3
)
(x+2)/

(
x2+3

)

and its derivative,. dydx = 1
(dashed)
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19.7 Differentiating Implicit Functions 

Functions conveniently fall into two types: explicit and implicit. An explicit function, 
describes a function in terms of its independent variable(s), such as: 

. y = a sin x + b cos x

where the value of . y is determined by the values of . a, . b and . x . On the other hand, 
an implicit function, such as: 

. x2 + y2 = 25

combines the function’s name with its definition. In this case, it is easy to untangle 
the explicit form: 

. y =
√
25 − x2

So far, we have only considered differentiating explicit functions, so now let’s exam-
ine how to differentiate implicit functions. Let’s begin with a simple explicit func-
tion and differentiate it as it is converted into its implicit form. 

Let: 
. y = 2x2 + 3x + 4

then: 

. 
dy

dx
= 4x + 3

Now let’s start the conversion into the implicit form by bringing the constant . 4 over 
to the left-hand side: 

. y − 4 = 2x2 + 3x

differentiating both sides: 

. 
dy

dx
= 4x + 3

Bringing . 4 and .3x across to the left-hand side: 

. y − 3x − 4 = 2x2

differentiating both sides: 

. 
dy

dx
− 3 = 4x

dy

dx
= 4x + 3

Finally, we have: 
.y − 2x2 − 3x − 4 = 0
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differentiating both sides: 

. 
dy

dx
− 4x − 3 = 0

dy

dx
= 4x + 3

which seems straight forward. The reason for working through this example is to 
remind us that when . y is differentiated we get .dy/dx . 

Let’s find .dy/dx , given: 
. y + sin x + 4x = 0

Differentiating the individual terms: 

. y + sin x + 4x = 0

dy

dx
+ cos x + 4 = 0

dy

dx
= − cos x − 4.

y + x2 − cos x = 0

dy

dx
+ 2x + sin x = 0

dy

dx
= −2x − sin x

But how do we differentiate.y2+x2 = r2? Well, the important difference between this 
implicit function and previous functions, is that it involves a function of a function. 
. y is not only a function of . x , but is squared, which means that we must employ the 
chain rule described earlier: 

. 
dy

dx
= dy

du
· du
dx

Therefore, given: 

. y2 + x2 = r2

2y
dy

dx
+ 2x = 0

dy

dx
= −2x

2y

= −x√
r2 − x2

This is readily confirmed by expressing the original function in its explicit form and 
differentiating: 

. y =
(
r2 − x2

) 1
2

which is a function of a function.
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Let .u = r2 − x2, then: 

. 
du

dx
= −2x

As.y = u
1
2 , then: 

. 
dy

du
= 1

2u
− 1

2

= 1

2u
1
2

= 1

2
√
r2 − x2

However: 

. 
dy

dx
= dy

du
· du
dx

= −2x

2
√
r2 − x2

= −x√
r2 − x2

which agrees with the implicit differentiated form. 
As another example, let’s find .dy/dx , given: 

. x2 − y2 + 4x = 6y

Differentiating the individual terms: 

. 2x − 2y
dy

dx
+ 4 = 6

dy

dx

Rearranging the terms, we have: 

. 2x + 4 = 6
dy

dx
+ 2y

dy

dx

= dy

dx
(6 + 2y)

dy

dx
= 2x + 4

6 + 2y

If, for example, we have to find the slope of .x2 − y2 + 4x = 6y at the point .(4, 3), 
then we simply substitute .x = 4 and .y = 3 in .dy/dx to obtain the answer . 1.
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Finally, let’s find .dy/dx , given: 

. xn + yn = an

nxn−1 + nyn−1 dy

dx
= 0

dy

dx
= −nxn−1

nyn−1

dy

dx
= − xn−1

yn−1

19.8 Differentiating Exponential and Logarithmic Functions 

19.8.1 Exponential Functions 

Exponential functions have the form .y = ax , where the independent variable is 
the exponent. Such functions are used to describe various forms of growth or decay, 
from the compound interest law, to the rate at which a cup of tea cools down. One 
special value of . a is .2.718282.., called . e, where: 

. e = lim
n→∞

(
1 + 1

n

)n

Raising . e to the power . x : 

. ex = lim
n→∞

(
1 + 1

n

)nx

which, using the Binomial Theorem, is: 

. ex = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

If we let: 

. y = ex

dy

dx
= 1 + x + x2

2! + x3

3! + x4

4! + · · ·
= ex .

which is itself. Figure 19.9 shows graphs of .y = ex and .y = e−x . 
Now let’s differentiate .y = ax . We know from the rules of logarithms that: 

. log xn = n log x
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Fig. 19.9 Graphs of. y = ex

and. y = e−x

therefore, given: 
. y = ax

then: 
. ln y = ln ax = x ln a

therefore: 
. y = ex ln a

which means that: 
. ax = ex ln a

Consequently: 

. 
d

dx
ax = d

dx
ex ln a

= ln a ex ln a

= ax ln a

Similarly, it can be shown that: 

.y = e−x ,
dy

dx
= −e−x

y = eax ,
dy

dx
= aeax

y = e−ax ,
dy

dx
= −ae−ax

y = ax ,
dy

dx
= ln a ax

y = a−x ,
dy

dx
= − ln a a−x
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The exponential antiderivatives are written: 

. 

∫
ex dx = ex + C

∫
e−x dx = −e−x + C

∫
eax dx = 1

a
eax + C

∫
e−ax dx = −1

a
e−ax + C

∫
ax dx = 1

ln a
ax + C

∫
a−x dx = − 1

ln a
a−x + C

19.8.2 Logarithmic Functions 

Given a function of the form: 
. y = ln x

then: 
. x = ey

Therefore: 

. 
dx

dy
= ey

= x

dy

dx
= 1

x

Thus: 

. 
d

dx
ln x = 1

x

Figure 19.10 shows the graph of .y = ln x and its derivative .y = 1/x . Conversely: 

. 

∫
1

x
dx = ln |x | + C

When differentiating logarithms to a base . a, we employ the conversion formula: 

.y = loga x

= (ln x)(loga e)
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Fig. 19.10 Graph of 
.y = ln x (blue), and its 
derivative,. dydx = 1

x (green) 

Fig. 19.11 Graph of 
.y = log10 x (blue), and its 
derivative,. dydx ≈ 0.4343

x
(green) 

whose derivative is: 

. 
dy

dx
= 1

x
loga e

When.a = 10, then .log10 e = 0.4343 . . . and: 

. 
d

dx
log10 x ≈ 0.4343

x

Figure 19.11 shows the graph of .y = log10 x and its derivative .y ≈ 0.4343/x . 

19.9 Differentiating Trigonometric Functions 

We have only differentiated two trigonometric functions: .sin x and .cos x , so let’s  
add .tan x , .csc x , .sec x and .cot x to the list, as well as their inverse forms. 

19.9.1 Differentiating tan 

Rather than return to first principles and start incrementing . x by.δx , we can employ 
the rules for differentiating different function combinations and various trigonometric 
identities. In the case of .tan(ax), this can be written as: 

. tan(ax) = sin(ax)

cos(ax)
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Fig. 19.12 Graph of 
.y = tan x (blue), and its 
derivative,. dydx = 1 + tan2 x
(green) 

and employ the quotient rule: 

. 
dy

dx
=

v
du

dx
− u

dv

dx
v2

Therefore, let .u = sin(ax) and .v = cos(ax), and: 

. 
dy

dx
= a cos(ax) cos(ax) + a sin(ax) sin(ax)

cos2(ax)

= a
(
cos2(ax) + sin2(ax)

)

cos2(ax)

= a

cos2(ax)

= a sec2(ax)

= a
(
1 + tan2(ax)

)

Figure 19.12 shows the graph of .y = tan x and its derivative .y = 1 + tan2 x . 

It follows that: 
. 

∫
sec2(ax) dx = 1

a
tan(ax) + C

19.9.2 Differentiating csc 

Using the quotient rule: 

.y = csc(ax)

= 1

sin(ax)
dy

dx
= 0 − a cos(ax)

sin2(ax)
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Fig. 19.13 Graph of 
.y = csc x (blue), and its 
derivative, 
.
dy
dx = − csc x cot x (green) 

= 
−a cos(ax) 
sin2(ax) 

= − a 

sin(ax) 
· cos(ax) 
sin(ax) 

= −a csc(ax) · cot(ax) 
Figure 19.13 shows the graph of .y = csc x and its derivative .y = − csc x cot x . 

It follows that: 

. 

∫
csc(ax) · cot(ax) dx = −1

a
csc(ax) + C

19.9.3 Differentiating sec 

Using the quotient rule: 

. y = sec(ax)

= 1

cos(ax)
dy

dx
= −(−a sin(ax))

cos2(ax)

= a sin(ax)

cos2(ax)

= a

cos(ax)
· sin(ax)
cos(ax)

= a sec(ax) · tan(ax)
Figure 19.14 shows the graph of .y = sec x and its derivative .y = sec x tan x .
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Fig. 19.14 Graph of 
.y = sec x (blue), and its 
derivative,. dydx = sec x tan x
(green) 

It follows that: 

. 

∫
sec(ax) · tan(ax) dx = 1

a
sec(ax) + C

19.9.4 Differentiating cot 

Using the quotient rule: 

. y = cot(ax)

= 1

tan(ax)

dy

dx
= −a sec2(ax)

tan2(ax)

= − a

cos2(ax)
· cos

2(ax)

sin2(ax)

= − a

sin2(ax)

= −a csc2(ax)

= −a
(
1 + cot2(ax)

)

Figure 19.15 shows the graph of .y = cot x and its derivative .y = −(1 + cot2 x). 

It follows that: 

.

∫
csc2(ax) dx = −1

a
cot(ax) + C
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Fig. 19.15 Graph of 
.y = cot x (blue), and its 
derivative, 
.
dy
dx = −(1 + cot2 x) (green) 

19.9.5 Differentiating arcsin, arccos and arctan 

These inverse functions are solved using a clever strategy. 
Let: 

. x = sin y

then: 
. y = arcsin x

Differentiating the first expression, we have: 

. 
dx

dy
= cos y

dy

dx
= 1

cos y

and as .sin2 y + cos2 y = 1, then: 

. cos y =
√
1 − sin2 y =

√
1 − x2

and 

. 
d

dx
arcsin x = 1√

1 − x2

Using a similar technique, it can be shown that: 

.
d

dx
arccos x = − 1√

1 − x2

d

dx
arctan x = 1

1 + x2
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It follows that: 

. 

∫
dx√
1 − x2

= arcsin x + C
∫

dx

1 + x2
= arctan x + C

19.9.6 Differentiating arccsc, arcsec and arccot 

Let: 
. y = arccsc x

then: 

. x = csc y

= 1

sin y
dx

dy
= − cos y

sin2 y

dy

dx
= − sin2 y

cos y

= − 1

x2
x√

x2 − 1
d

dx
arccsc x = − 1

x
√
x2 − 1

Similarly: 

. 
d

dx
arcsec x = 1

x
√
x2 − 1

d

dx
arccot x = − 1

x2 + 1

It follows: 

.

∫
dx

x
√
x2 − 1

= arcsec |x | + C
∫

dx

x2 + 1
= −arccot x + C
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19.10 Differentiating Hyperbolic Functions 

Trigonometric functions are useful for parametric, circular motion, whereas hyper-
bolic functions arise in equations for the absorption of light, mechanics and in inte-
gral calculus. Figure 19.16 shows graphs of the unit circle and a hyperbola whose 
respective equations are: 

. x2 + y2 = 1

x2 − y2 = 1

where the only difference between them is a sign. The parametric form for the 
trigonometric, or circular functions and the hyperbolic functions are respectively: 

. sin2 θ + cos2 θ = 1

cosh2 x − sinh2 x = 1

The three hyperbolic functions have the following definitions: 

. sinh x = ex − e−x

2

cosh x = ex + e−x

2

tanh x = sinh x

cosh x
= e2x − 1

e2x + 1

and their reciprocals are: 

. cosech x = 1

sinh x
= 2

ex − e−x

sech x = 1

cosh x
= 2

ex + e−x

coth x = 1

tanh x
= e2x + 1

e2x − 1

Other useful identities include: 

. sech 2x = 1 − tanh2 x

cosech 2x = coth2 x − 1

The coordinates of .P and .Q in Fig. 19.16 are given by .P(cos θ, sin θ) and 
.Q(cosh x, sinh x). 

Table 19.1 shows the names of the three hyperbolic functions, their reciprocals 
and inverse forms. As these functions are based upon.ex and.e−x , they are relatively 
easy to differentiate.
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Fig. 19.16 Graphs of the unit circle.x2 + y2 = 1 and the hyperbola. x2 − y2 = 1

Table 19.1 Hyperbolic function names 

Function Reciprocal Inverse function Inverse reciprocal 

.sinh .cosech .arsinh . arcsch 

.cosh .sech .arcosh . arsech 

.tanh .coth .artanh . arcoth 

19.10.1 Differentiating sinh, cosh and tanh 

Table 19.2 shows the rules for differentiating hyperbolic functions, and Table 19.3 
the rules for differentiating inverse, hyperbolic functions. 
Table 19.4 shows some of the rules for integrating hyperbolic functions, and 
Table 19.5 the rules for integrating inverse, hyperbolic functions. 

Table 19.2 Differentiating 
hyperbolic functions 

.y . dy/dx  

.sinh x . cosh x 

.cosh x . sinh x 

.tanh x . sech2 x 

.cosech x . − cosech x · coth x 

.sech x . − sech x · tanh x 

.coth x .− cosech2 x 
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Table 19.3 Differentiating 
inverse hyperbolic functions 

.y . dy/dx  

.arsinh x .. 
1√

1 + x2 

.arcosh x .. 
1√

x2 − 1 

.artanh x .. 
1 

1 − x2 

.arcsch x . − 1 

x
√
1 + x2 

.arsech x . − 1 

x
√
1 − x2 

.arcoth x . − 1 

x2 − 1 

Table 19.4 Integrating 
hyperbolic functions 

. f (x) . 
∫

f (x) dx  

.sinh x . cosh x + C 

.cosh x . sinh x + C 

.sech2 x . tanh x + C 

Table 19.5 Integrating 
inverse hyperbolic functions 

. f (x) . 
∫

f (x) dx  

. 
1√

1 + x2 
. arsinh x + C 

. 
1√

x2 − 1 
. arcosh x + C 

. 
1 

1 − x2
.artanh x + C . 

19.11 Higher Derivatives 

There are three parts to this section: The first part shows what happens when a function 
is repeatedly differentiated; the second shows how these higher derivatives resolve 
local minimum and maximum conditions; and the third section provides a physical 
interpretation for these derivatives. Let’s begin by finding the higher derivatives of 
simple polynomials. 

19.12 Higher Derivatives of a Polynomial 

We have previously seen that polynomials of the form: 

.y = axr + bxs + cxt . . .  
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Fig. 19.17 Graph of 
.y = 3x3 + 2x2 − 5x (blue), 
and its derivative 
. 
dy  
dx  = 9x2 + 4x − 5 (green) 

are differentiated as follows: 

. 
dy  

dx  
= raxr−1 + sbxs−1 + tcxt−1 . . .  

For example, given: 
. y = 3x3 + 2x2 − 5x 

then: 

. 
dy  

dx  
= 9x2 + 4x − 5 

which describes how the slope of the original function changes with . x . 
Figure 19.17 shows the graph of .y = 3x3 + 2x2 − 5x and its derivative . y = 

9x2 + 4x − 5, and we can see that when .x = −1 there is a local maximum, where 
the function reaches a value of 4, then begins a downward journey to 0, where the 
slope is .−5. Similarly, when .x � 0.55, there is a point where the function reaches 
a local minimum with a value of approximately .−1.65. The slope is zero at both 
points, which is reflected in the graph of the derivative. 

Having differentiated the function once, there is nothing to prevent us differen-
tiating a second time, but first we require a way to annotate the process, which is 
performed as follows. At a general level, let . y be some function of . x , then the first 
derivative is: 

. 
d 

dx  
(y) 

The second derivative is found by differentiating the first derivative: 

. 
d 

dx

(
dy  

dx

)

and is written: 

. 
d2 y 

dx2 

Similarly, the third derivative is: 

. 
d3y 

dx3 
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and the . nth derivative: 

. 
dn y 

dxn 

When a function is expressed as . f (x), its derivative is written . f ′(x). The second 
derivative is written . f ′′(x), and so on for higher derivatives. 

Returning to the original function, the first and second derivatives are: 

. 
dy  

dx  
= 9x2 + 4x − 5 

d2 y 

dx2 
= 18x + 4 

and the third and fourth derivatives are: 

. 
d3y 

dx3 
= 18 

d4 y 

dx4 
= 0 

Figure 19.18 shows the original function and the first two derivatives. The graph 
of the first derivative shows the slope of the original function, whereas the graph of 
the second derivative shows the slope of the first derivative. These graphs help us 
identify a local maximum and minimum. By inspection of Fig. 19.18, when the first 
derivative equals zero, there is a local maximum or a local minimum. Algebraically, 
this is when: 

. 
dy  

dx  
= 0 

9x2 + 4x − 5 = 0 

Solving this quadratic in . x we have: 

. x = 
−b ± 

√
b2 − 4ac 
2a 

Fig. 19.18 Graph of 
.y = 3x3 + 2x2 − 5x (blue), 
its first derivative 
. 
dy  
dx  = 9x2 + 4x − 5 (green), 
and its second derivative 
. 
d2 y 
dx2 

= 18x + 4 red 



508 19 Calculus: Derivatives 

where .a = 9, .b = 4, .c = −5: 

. x = 
−4 ± 

√
16 + 180 
18 

x1 = −1, x2 = 0.5 

which confirms our earlier analysis. However, what we don’t know, without referring 
to the graphs, whether it is a minimum, or a maximum. 

19.13 Identifying a Local Maximum or Minimum 

Figure 19.19 shows a function containing a local maximum of. 5 when.x = −1. Note  
that as the independent variable . x , increases from .−2 towards . 0, the slope of the 
graph changes from positive to negative, passing through zero at .x = −1. This is  
shown in the function’s first derivative, which is the straight line passing through the 
points .(−2, 6), (−1, 0) and .(0, −6). A natural consequence of these conditions 
implies that the slope of the first derivative must be negative: 

. 
d2 y 

dx2 
= −ve 

Figure 19.20 shows another function containing a local minimum of .−5 when 
.x = −1. Note that as the independent variable . x , increases from .−2 towards . 0, 
the slope of the graph changes from negative to positive, passing through zero at 
.x = −1. This is shown in the function’s first derivative, which is the straight line 
passing through the points .(−2, −6), (−1, 0) and .(0, 6). A natural consequence 
of these conditions implies that the slope of the first derivative must be positive: 

. 
d2 y 

dx2 
= +ve 

We can now apply this observation to the original function for the two values of 
. x , .x1 = −1, x2 = 0.5: 

. 
dy  

dx  
= 9x2 + 4x − 5 

d2 y 

dx2 
= 18x + 4 

.x = −1, 
d2 y 

dx2 
= 18 × (−1) + 4 = −14 

x = 0.5, 
d2 y 

dx2 
= 18 × (0.5) + 4 = 14 
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Fig. 19.19 A function 
containing a local maximum 
(blue), and its first derivative 
(green) 

Fig. 19.20 A function 
containing a local minimum 
(blue), and its first derivative 
(green) 

Which confirms that when .x = −1 there is a local maximum, and when .x = 0.5, 
there is a local minimum, as shown in Fig. 19.17. 

Now let’s find the local minimum and maximum for . y, given: 

. y = −3x3 + 9x 

The first derivative is: 

. 
dy  

dx  
= −9x2 + 9 

and second derivative: 

. 
d2 y 

dx2 
= −18x 

as shown in Fig. 19.21. For a local maximum or minimum, the first derivative equals 
zero: 

. − 9x2 + 9 = 0 

which implies that .x = ±1. 
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Fig. 19.21 Graph of 
.y = −3x3 + 9x (blue), its 
first derivative. y = −9x2 + 9 
(green) and its second 
derivative.y = −18x red 

The sign of the second derivative determines whether there is a local minimum or 
maximum. 

. 
d2 y 

dx2 
= −18x 

= −18 × (−1) = +ve 

= −18 × (+1) = −ve 

therefore, when.x = −1 there is a local minimum, and when.x = +1 there is a local 
maximum, as confirmed by Fig. 19.21. 

19.14 Partial Derivatives 

Up to this point we have used functions with one independent variable, such as 
.y = f (x). However, we must be able to compute derivatives of functions with more 
than one independent variable, such as.y = f (u, v, w). The technique employed is 
to assume that only one variable changes, whilst the other variables are held constant. 
This means that a function can possess several derivatives – one for each independent 
variable. Such derivatives are called partial derivatives and employ a new symbol 
. ∂ , which can be read as ‘partial dee’. 

Given a function . f (u, v, w), the three partial derivatives are defined as 

. 
∂ f 
∂u 

= lim 
h→0 

f (u + h, v, w)  − f (u, v, w)  
h 

∂ f 
∂v 

= lim 
h→0 

f (u, v  + h, w)  − f (u, v, w)  
h 

∂ f 
∂w 

= lim 
h→0 

f (u, v, w  + h) − f (u, v, w)  
h 
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For example, a function for the volume of a cylinder is: 

. V (r, h) = πr2h 

where . r is the radius, and . h is the height. Say we wish to compute the function’s 
partial derivative with respect to . r . First, the partial derivative is written: 

. 
∂V 

∂r 

Second, we hold. h constant, whilst allowing. r to change. This means that the function 
becomes: 

.V (r, h) = kr2 (19.5) 

where .k = πh. Thus the partial derivative of (19.5) with respect to . r is: 

. 
∂V 

∂r 
= 2kr 

= 2π hr 

Next, by holding . r constant, and allowing . h to change, we have: 

. 
∂ V 
∂h 

= πr2 

Sometimes, for purposes of clarification, the partial derivatives identify the constant 
variable(s): 

. 

(
∂V 

∂r

)

h 
= 2π hr

(
∂V 

∂h

)

r 
= πr2 

Partial differentiation is subject to the same rules for ordinary differentiation – we just 
to have to remember which independent variable changes, and those held constant. 
As with ordinary derivatives, we can compute higher-order partial derivatives. 

As an example, let’s find the second-order partial derivatives of . f , given: 

. f (u, v)  = u4 + 2u3v2 − 4v3 

The first partial derivatives are: 

. 
∂ f 
∂u 

= 4u3 + 6u2v2 

∂ f 
∂v 

= 4u3v − 12v2 
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and the second-order partial derivatives are: 

. 
∂2 f 

∂u2 
= 12u2 + 12uv2 

∂2 f 

∂v2 
= 4u3 − 24v 

Now let’s find the second-order partial derivatives of . f , given: 

. f (u, v)  = sin(4u) cos(5v) 

the first partial derivatives are: 

. 
∂ f 
∂u 

= 4 cos(4u) cos(5v) 

∂ f 
∂v 

= −5 sin(4u) sin(5v) 

and the second-order partial derivatives are: 

. 
∂2 f 

∂u2 
= −16 sin(4u) cos(5v) 

∂2 f 

∂v2 
= −25 sin(4u) cos(5v) 

In general, given . f (u, v)  = uv, then: 

. 
∂ f 
∂u 

= v 

∂ f 
∂v 

= u 

and the second-order partial derivatives are: 

. 
∂2 f 

∂u2 
= 0 

∂2 f 

∂v2 
= 0 

Similarly, given . f (u, v)  = u/v, then: 

. 
∂ f 
∂u 

= 
1 

v 
∂ f 
∂v 

= −  
u 

v2 
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and the second-order partial derivatives are: 

. 
∂2 f 

∂u2 
= 0 

∂2 f 

∂v2 
= 

2u 

v3 

Finally, given . f (u, v)  = uv , then: 

. 
∂ f 
∂u 

= vuv−1 

whereas, .∂ f /∂v requires some explaining. First, given: 

. f (u, v)  = uv 

taking natural logs of both sides, we have: 

. ln f (u, v)  = v ln u 

and 
. f (u, v)  = ev ln u 

Therefore: 

. 
∂ f 
∂v 

= ev ln u ln u 

= uv ln u 

The second-order partial derivatives are: 

. 
∂2 f 

∂u2 
= v(v − 1)uv−2 

∂2 f 

∂v2 
= uv ln2 u 

19.14.1 Visualising Partial Derivatives 

Functions of the form .y = f (x) are represented by a 2D graph, and the function’s 
derivative . f ′(x) represents the graph’s slope at any point . x . Functions of the form 
.z = f (x, y) can be represented by a 3D surface, like the one shown in Fig. 19.22, 
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Fig. 19.22 Surface of 
.z = 2.5x2 − 2.5y2 using a 
right-handed axial system 
with a vertical.z-axis 

which is .z(x, y) = 2.5x2 − 2.5y2. The two partial derivatives are: 

. 
∂z 

∂ x 
= 8x 

∂z 

∂y 
= −4y 

where .∂ z/∂ x is the slope of the surface in the .x-direction, as shown in Fig. 19.23, 
and .∂ z/∂y is the slope of the surface in the .y-direction, as shown in Fig. 19.24. 

The second-order partial derivatives are: 

. 
∂2z 

∂x2 
= 8 = +ve 

∂2z 

∂y2 
= −4 = −ve 

As .∂2z/∂x2 is positive, there is a local minimum in the .x-direction, and as . ∂2z/∂y2 

is negative, there is a local maximum in the.y-direction, as confirmed by Fig. 19.23. 

19.14.2 Mixed Partial Derivatives 

We have seen that, given a function of the form . f (u, v), the partial derivatives 
.∂ f/∂u and .∂ f /∂v provide the relative instantaneous changes in . f and . u, and . f 
and. v, respectively, whilst the second independent variable remains fixed. However, 
nothing prevents us from differentiating .∂ f /∂u with respect to . v, whilst keeping . u 
constant: 

. 
∂ 
∂v

(
∂ f 
∂u

)
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Fig. 19.23 . ∂ z 
∂ x describes the 

slopes of these contour lines 

Fig. 19.24 . ∂ z 
∂ y describes the 

slopes of these contour lines 

which is also written as: 

. 
∂2 f 

∂v∂u 

and is a mixed partial derivative. 
As an example, let’s find the mixed partial derivative of . f , given: 

. f (u, v)  = u3v4 

Therefore: 

. 
∂ f 
∂u 

= 3u2v4 

and 

. 
∂2 f 

∂v∂u 
= 12u2v3 
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It should be no surprise that reversing the differentiation gives the same result. Let: 

. f (u, v)  = u3v4 

then: 

. 
∂ f 
∂v 

= 4u3v3 

and 

. 
∂2 f 

∂u∂v 
= 12u2v3 

Generally, for continuous functions, we can write: 

. 
∂2 f 

∂u∂v 
= 

∂2 f 

∂v∂u 

Let’s look at two examples. The formula for the volume of a cylinder is given by 
.V (r, h) = πr2h, where . r and . h are the cylinder’s radius and height, respectively. 
The mixed partial derivative is computed as follows. 

. V (r, h) = πr2h 
∂V 

∂r 
= 2πhr 

∂2V 

∂h∂r 
= 2πr 

or 

. V (r, h) = πr2h 
∂V 

∂h 
= πr2 

∂2V 

∂r∂h 
= 2πr 

Given: 
. f (u, v)  = sin(4u) cos(3v) 

then: 

. 
∂ f 
∂u 

= 4 cos(4u) cos(3v) 

∂2 f 

∂v∂u 
= −12 cos(4u) sin(3v) 

or 

. 
∂ f 
∂v 

= −3 sin(4u) sin(3v) 

∂2 f 

∂u∂v 
= −12 cos(4u) sin(3v) 
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19.15 Chain Rule 

Earlier, we came across the chain rule for computing the derivatives of functions 
of functions. For example, to compute the derivative of .y = sin

(
x2

)
we substitute 

.u = x2, then 

. y = sin u 
dy  

du  
= cos u 

= cos
(
x2

)

Next, we compute .du/dx : 

. u = x2 

du 

dx  
= 2x 

and .dy/dx  is the product of the two derivatives using the chain rule: 

. 
dy  

dx  
= 

dy  

du  
· du 
dx  

= cos
(
x2

)
2x 

= 2x cos
(
x2

)

But say we have a function where. w is a function of two variables. x and. y, which in 
turn, are a function of . u and . v. Then we have: 

. w = f (x, y) 
x = r(u, v)  
y = s(u, v)  

With such a scenario, we have the following partial derivatives: 

. 
∂w 
∂x 

, 
∂w 
∂ y 

∂w 
∂u 

, 
∂w 
∂v 

∂ x 
∂u 

, 
∂ x 
∂v 

∂y 

∂u 
, 

∂y 

∂v 
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These are chained together as follows: 

. 
∂w 
∂u 

= 
∂w 
∂x 

· ∂x 
∂u 

+ 
∂w 
∂y 

· ∂y 
∂u 

(19.6) 

. 
∂w 
∂v 

= 
∂w 
∂x 

· ∂x 
∂v 

+ 
∂w 
∂y 

· ∂y 
∂v 

(19.7) 

Here is an example of the chain rule. Find .∂w/∂u and .∂w/∂v, given: 

. w = f (2x + 3y) 
x = r

(
u2 + v2

)

y = s
(
u2 − v2

)

Therefore: 

. 
∂w 
∂x 

= 2, 
∂w 
∂ y 

= 3 

∂x 

∂u 
= 2u, 

∂x 

∂v 
= 2v 

∂y 

∂u 
= 2u, 

∂y 

∂v 
= −2v 

and plugging these into (19.6) and (19.7) we have:  

. 
∂w 
∂u 

= 
∂w 
∂x 

∂x 

∂u 
+ 

∂w 
∂y 

∂y 

∂u 

= 2 × 2u + 3 × 2u 
= 10u 

∂w 
∂v 

= 
∂w 
∂x 

∂x 

∂v 
+ 

∂w 
∂y 

∂y 

∂v 
= 2 × 2v + 3 × (−2v) 
= −2v 

Thus, when .u = 2 and .v = 1: 

. 
∂w 
∂u 

= 20, and 
∂w 
∂v 

= −2 

19.16 Total Derivative 

Given a function with three independent variables, such as .w = f (x, y, t), where 
.x = g(t) and .y = h(t), there are three primary partial derivatives: 

. 
∂w 
∂x 

, 
∂w 
∂ y 

, 
∂w 
∂t 
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which show the differential change of . w with. x , . y and. t respectively. There are also 
three derivatives: 

. 
dx  

dt  
, 

dy  

dt  
, 

dt  

dt  

where.dt/dt  = 1. The partial and ordinary derivatives can be combined to create the 
total derivative which is written: 

. 
dw 
dt  

= 
∂w 
∂x 

dx  

dt  
+ 

∂w 
∂y 

dy  

dt  
+ 

∂w 
∂t 

.dw/dt  measures the instantaneous change of. w relative to. t , when all three indepen-
dent variables change. 

Let’s find .dw/dt , given: 

. w = x2 + xy  + y3 + t2 

x = 2t 
y = t − 1 

Therefore: 

. 
dx  

dt  
= 2 

dy  

dt  
= 1 

∂w 
∂x 

= 2x + y = 4t + t − 1 = 5t − 1 

∂w 
∂y 

= x + 3y2 = 2t + 3(t − 1)2 = 3t2 − 4t + 3 

∂w 
∂t 

= 2t 

dw 
dt  

= 
∂w 
∂x 

dx  

dt  
+ 

∂w 
∂ y 

dy  

dt  
+ 

∂w 
∂t 

= (5t − 1)2 + (
3t2 − 4t + 3

) + 2t = 3t2 + 8t + 1 

and the total derivative equals: 

. 
dw 
dt  

= 3t2 + 8t + 1 

and when .t = 1, .dw/dt  = 12. 
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19.17 Summary 

This chapter has shown how limits provide a useful tool for computing a function’s 
derivative. Basically, the function’s independent variable is disturbed by a very small 
quantity, typically .δx , which alters the function’s value. The quotient: 

. 
f (x + δx) − f (x) 

δx 

is a measure of the function’s rate of change relative to its independent variable. By 
making .δx smaller and smaller towards zero, we converge towards a limiting value 
called the function’s derivative. Unfortunately, not all functions possess a derivative, 
therefore we can only work with functions that can be differentiated. 

We have seen how to differentiate generic functions such as sums, products, quo-
tients and a function of a function, and we have also seen how to address explicit 
and implicit forms. These techniques were then used to differentiate exponential, 
logarithmic, trigonometric and hyperbolic functions, which will be employed in 
later chapters to solve various problems. Where relevant, integrals of certain func-
tions have been included to show the intimate relationship between derivatives and 
antiderivatives. 

Hopefully, it is now clear that differentiation is like an operator—in that it describes 
how fast a function changes relative to its independent variable in the form of another 
function. 
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20.1 Introduction 

In this chapter I develop the idea that integration is the inverse of differentiation, and 
examine standard algebraic strategies for integrating functions, where the derivative 
is unknown; these include simple algebraic manipulation, trigonometric identities, 
integration by parts, integration by substitution and integration using partial fractions. 

20.2 Indefinite Integral 

In the previous chapter we have seen that given a simple function, such as: 

. y = sin x + 23

dy

dx
= cos x

and the constant term 23 disappears. Inverting the process, we begin with: 

. dy = cos x dx

and integrating: 

. y =
∫

cos x dx

= sin x + C

An integral of the form: 

. 

∫
f (x) dx
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is known as an indefinite integral; and as we don’t know whether the original func-
tion contains a constant term, a constant. C has to be included. Its value remains unde-
termined unless we are told something about the original function. In this example, 
if we are told that when .x = π/2, .y = 24, then: 

. 24 = sin
(
π/2

) + C

= 1 + C

C = 23

20.3 Integration Techniques 

20.3.1 Continuous Functions 

Functions come in all sorts of shapes and sizes, which is why we have to be very 
careful before they are differentiated or integrated. If a function contains any form of 
discontinuity, then it cannot be differentiated or integrated. For example, the square-
wave function shown in Fig. 20.1 cannot be differentiated as it contains discontinu-
ities. Consequently, to be very precise, we identify an interval .[a, b], over which a 
function is analysed, and stipulate that it must be continuous over this interval. For 
example, . a and . b define the upper and lower bounds of the interval such that: 

. a ≤ x ≤ b

then we can say that for . f (x) to be continuous: 

. lim
h→0

f (x + h) = f (x)

Fig. 20.1 A discontinuous 
square-wave function
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Even this needs further clarification as . h must not take . x outside of the permitted 
interval. So, from now on, we assume that all functions are continuous and can be 
integrated without fear of singularities. 

20.3.2 Difficult Functions 

There are many functions that cannot be differentiated and represented by a finite 
collection of elementary functions. For example, the derivative . f ′(x) = (sin x)/x
does not exist, which precludes the possibility of its integration. Figure 20.2 shows 
this function, and even though it is continuous, its derivative and integral can only 
be approximated. Similarly, the derivative . f ′(x) = √

x sin x does not exist, and 
also precludes the possibility of its integration. Figure 20.3 shows this continuous 
function. So now let’s examine how most functions have to be rearranged to secure 
their integration. 

Fig. 20.2 Graph of 
. y = (sin x)/x

Fig. 20.3 Graph of 
.y = √

x sin x
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20.3.3 Trigonometric Identities 

Sometimes it is possible to simplify the integrand by substituting a trigonometric 
identity. To illustrate this, let’s evaluate .

∫
sin2 x dx ,.

∫
cos2 x dx ,.

∫
tan2 x dx and 

.
∫
sin(3x) cos x dx . 

The identity .sin2 x = 1
2 (1 − cos(2x)) converts .sin2 x into a double-angle form: 

. 

∫
sin2 x dx = 1

2

∫
1 − cos(2x) dx

= 1
2

∫
dx − 1

2

∫
cos(2x) dx

= 1
2 x − 1

4 sin(2x) + C

Figure 20.4 shows the graphs of .y = sin2 x and .y = 1
2 x − 1

4 sin(2x). 
The identity .cos2 x = 1

2 (cos(2x) + 1) converts .cos2 x into a double-angle form: 

. 

∫
cos2 x dx = 1

2

∫
cos(2x) + 1 dx

= 1
2

∫
cos(2x) dx + 1

2

∫
dx

= 1
4 sin(2x) + 1

2 x + C

Figure 20.5 shows the graphs of .y = cos2 x and .y = 1
4 sin(2x) + 1

2 x . 
The identity .sec2 x = 1 + tan2 x , permits us to write: 

. 

∫
tan2 x dx =

∫
sec2 x − 1 dx

=
∫

sec2 x dx −
∫

dx

= tan x − x + C

Fig. 20.4 The graphs of 
.y = sin2 x (green), and 
.y = 1

2 x − 1
4 sin(2x) (blue)
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Fig. 20.5 The graphs of 
.y = cos2 x (green), and 
.y = 1

4 sin(2x) + 1
2 x (blue) 

Fig. 20.6 The graphs of 
.y = tan2 x (green), and 
.y = tan x − x (blue) 

Figure 20.6 shows the graphs of .y = tan2 x and .y = tan x − x . 

Finally, to evaluate .
∫
sin(3x) cos x dx we use the identity: 

. 2 sin a cos b = sin(a + b) + sin(a − b)

which converts the integrand’s product into the sum and difference of two angles: 

. sin(3x) cos x = 1
2 (sin(4x) + sin(2x))∫

sin(3x) cos x dx = 1
2

∫
sin(4x) + sin(2x) dx

= 1
2

∫
sin(4x) dx + 1

2

∫
sin(2x) dx

= − 1
8 cos(4x) − 1

4 cos(2x) + C

Figure 20.7 shows the graphs of.y = sin(3x) cos x and.y = − 1
8 cos(4x)− 1

4 cos(2x).
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Fig. 20.7 The graphs of 
.y = sin(3x) cos x (green), 
and 
. y = − 1

8 cos(4x)− 1
4 cos(2x)

(blue) 

20.3.4 Exponent Notation 

Radicals are best replaced by their equivalent exponent notation. For example, to 
evaluate: 

. 

∫
2
4
√
x
dx

we proceed as follows: 
The constant . 2 is moved outside the integral, and the integrand is converted into 

an exponent form: 

. 2
∫

1
4
√
x
dx = 2

∫
x− 1

4

= 2

(
x

3
4

3
4

)
+ C

= 2
(
4
3 x

3
4

)
+ C

= 8
3 x

3
4 + C

Figure 20.8 shows the graphs of .y = 2/ 4
√
x and .y = 8x

3
4 /3. 

20.3.5 Completing the Square 

Where possible, see if an integrand can be simplified by completing the square. For  
example, to evaluate: 

. 

∫
1

x2 − 4x + 8
dx

we proceed as follows: 
We have already seen that: 

.

∫
1

1 + x2
dx = arctan x + C
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Fig. 20.8 The graphs of.y = 2/ 4
√
x (green), and.y = 8x

3
4 /3 (blue) 

and it’s not too difficult to prove that: 

. 

∫
1

a2 + x2
dx = 1

a
arctan

( x
a

)
+ C

Therefore, if we can manipulate an integrand into this form, then the integral will 
reduce to an .arctan result. The following needs no manipulation: 

. 

∫
1

4 + x2
dx = 1

2 arctan
( x
2

)
+ C

However, the original integrand has.x2−4x+8 as the denominator, which is resolved 
by completing the square: 

. x2 − 4x + 8 = 4 + (x − 2)2

Therefore: 

. 

∫
1

x2 − 4x + 8
dx =

∫
1

22 + (x − 2)2
dx

= 1
2 arctan

(
x − 2

2

)
+C

Figure 20.9 shows the graphs of .y = 1/(x2 − 4x + 8) and .y = 1
2 arctan

( x−2
2

)
. 

To evaluate: 

. 

∫
1

x2 + 6x + 10
dx

we factorize the denominator: 

.

∫
1

x2 + 6x + 10
dx =

∫
1

12 + (x + 3)2
dx

= arctan(x + 3) + C
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Fig. 20.9 The graphs of.y = 1/(x2 − 4x + 8) (green), and.y = 1
2 arctan

( x−2
2

)
(blue) 

Fig. 20.10 The graphs of.y = 1/(x2 + 6x + 10) (green), and.y = arctan(x + 3) (blue) 

Figure 20.10 shows the graphs of .y = 1/(x2 + 6x + 10) and .y = arctan(x + 3). 

20.3.6 The Integrand Contains a Derivative 

An integral of the form: 

. 

∫
f (x) f ′(x) dx

is relatively easy to integrate. For example, let’s evaluate: 

.

∫
arctan x

1 + x2
dx
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Knowing that: 

. 
d

dx
arctan x = 1

1 + x2

let .u = arctan x , then: 

. 
du

dx
= 1

1 + x2

and 

. 

∫
arctan x

1 + x2
dx =

∫
u du

= 1
2u

2 + C

= 1
2 (arctan x)

2 + C

Figure 20.11 shows the graphs of .y = arctan x
1+x2

and .y = 1
2 (arctan x)

2. 
An integral of the form: 

. 

∫
f ′(x)
f (x)

dx

is also relatively easy to integrate. For example, let’s evaluate: 

. 

∫
cos x

sin x
dx

Knowing that: 

. 
d

dx
sin x = cos x

let .u = sin x , then: 

. 
du

dx
= cos x

Fig. 20.11 The graphs of.y = arctan x
1+x2

(green), and.y = 1
2 (arctan x)2 (blue)
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Fig. 20.12 The graphs of.y = cos x/ sin x (green), and.y = ln | sin x | (blue) 

and 

. 

∫
cos x

sin x
dx =

∫
1

u
du

= ln |u| + C

= ln | sin x | + C

Figure 20.12 shows the graphs of .y = cos x/ sin x and .y = ln | sin x |. 

20.3.7 Converting the Integrand into a Series of Fractions 

Integration is often made easier by converting an integrand into a series of frac-
tions. For example, to integrate: 

. 

∫
4x3 + x2 − 8 + 12x cos x

4x
dx

we divide the numerator by .4x : 

. 

∫
4x3 + x2 − 8 + 12x cos x

4x
dx =

∫
x2 dx +

∫
x

4
dx −

∫
2

x
dx +

∫
3 cos x dx

= 1
3 x

3 + 1
8 x

2 − 2 ln |x | + 3 sin x + C

Figure 20.13 shows the graphs of .y = (
4x3 + x2 − 8 + 12x cos x

)
/4x and 

.y = 1
3 x

3 + 1
8 x

2 − 2 ln |x | + 3 sin x .
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Fig. 20.13 The graphs of .y = (4x3 + x2 − 8 + 12x cos x)/4x (green), and . y = 1
3 x

3 + 1
8 x

2 −
2 ln |x | + 3 sin x (blue) 

20.3.8 Integration by Parts 

Integration by parts is based upon the rule for differentiating function products 
where: 

. 
d

dx
uv = u

dv

dx
+ v

du

dx

therefore: 

. uv =
∫

uv′ dx +
∫

vu′ dx

which rearranged, gives: 

. 

∫
uv′ dx = uv −

∫
vu′ dx

Thus, if an integrand contains a product of two functions, we can attempt to integrate 
it by parts. For example, let’s evaluate: 

. 

∫
x sin x dx

In this case, we try the following: 

. u = x and v′ = sin x

therefore: 
.u′ = 1 and v = C1 − cos x
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Integrating by parts: 

. 

∫
uv′ dx = uv −

∫
vu′ dx

∫
x sin x dx = x(C1 − cos x) −

∫
(C1 − cos x)(1) dx

= C1x − x cos x − C1x + sin x + C

= −x cos x + sin x + C

Figure 20.14 shows the graphs of .y = x sin x and .y = −x cos x + sin x . 

Note the problems that arise if we make the wrong substitution: 

. u = sin x and v′ = x

therefore: 
. u′ = cos x and v = 1

2 x
2 + C1

Integrating by parts: 

. 

∫
uv′ dx = uv −

∫
vu′ dx

∫
x sin x dx = sin x

(
1
2 x

2 + C1

)
−

∫ (
1
2 x

2 + C1

)
cos x dx

which requires to be integrated by parts, and is even more difficult, which suggests 
the substitution was not useful. 

Now let’s evaluate: 

. 

∫
x2 cos x dx

In this case, we try the following: 

. u = x2 and v′ = cos x

Fig. 20.14 The graphs of 
.y = x sin x (green), and 
.y = −x cos x + sin x (blue)
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therefore: 
. u′ = 2x and v = sin x + C1

Integrating by parts: 

. 

∫
uv′ dx = uv −

∫
vu′ dx

∫
x2 cos x dx = x2(sin x + C1) − 2

∫
(sin x + C1)(x) dx

= x2 sin x + C1x
2 − 2C1

∫
x dx − 2

∫
x sin x dx

= x2 sin x + C1x
2 − 2C1

(
1
2 x

2 + C2

)
− 2

∫
x sin x dx

= x2 sin x − C3 − 2
∫

x sin x dx

At this point we come across .
∫
x sin x dx , which we have already solved: 

. 

∫
x2 cos x dx = x2 sin x − C3 − 2(−x cos x + sin x + C4)

= x2 sin x − C3 + 2x cos x − 2 sin x − C5

= x2 sin x + 2x cos x − 2 sin x + C

Figure 20.15 shows the graphs of.y = x2 cos x and.y = x2 sin x+2x cos x−2 sin x . 

Now let’s evaluate: 

. 

∫
x ln x dx

In this case, we try the following: 

. u = ln x and v′ = x

Fig. 20.15 The graphs of.y = x2 cos x (green), and.y = x2 sin x + 2x cos x − 2 sin x (blue)
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therefore: 

. u′ = 1

x
and v = 1

2 x
2

Integrating by parts: 

. 

∫
uv′ dx = uv −

∫
vu′ dx

∫
x ln x dx = 1

2 x
2 ln x −

∫ (
1
2 x

2
)

1

x
dx

= 1
2 x

2 ln x − 1
2

∫
x dx

= 1
2 x

2 ln x − 1
4 x

2 + C

Figure 20.16 shows the graphs of .y = x ln x and .y = 1
2 x

2 ln x − 1
4 x

2. 

Finally, let’s evaluate: 

. 

∫ √
1 + x2 dx

Although this integrand does not look as though it can be integrated by parts, if we 
rewrite it as: 

. 

∫ √
1 + x2(1) dx

then we can use the formula. 
Let: 

. u =
√
1 + x2 and v′ = 1

therefore: 
. u′ = x√

1 + x2
and v = x

Fig. 20.16 The graphs of.y = x ln x (green), and.y = 1
2 x

2 ln x − 1
4 x

2 (blue)
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Integrating by parts: 

. 

∫
uv′ dx = uv −

∫
vu′ dx

∫ √
1 + x2 dx = x

√
1 + x2 −

∫
x2√
1 + x2

dx

Now we simplify the right-hand integrand: 

. 

∫ √
1 + x2 dx = x

√
1 + x2 −

∫
(1 + x2) − 1√

1 + x2
dx

= x
√
1 + x2 −

∫
1 + x2√
1 + x2

dx +
∫

1√
1 + x2

dx

= x
√
1 + x2 −

∫ √
1 + x2 dx + arsinh x + C1

Now we have the original integrand on the right-hand side, therefore: 

. 2
∫ √

1 + x2 dx = x
√
1 + x2 + arsinh x + C1

∫ √
1 + x2 dx = 1

2 x
√
1 + x2 + 1

2 arsinh x + C

Figure 20.17 shows the graphs of .y = √
1 + x2 and .y = 1

2 x
√
1 + x2 + 1

2 arsinh x . 

20.3.9 Integration by Substitution 

Integration by substitution is based upon the chain rule for differentiating a function 
of a function, which states that if . y is a function of . u, which in turn is a function of 

Fig. 20.17 The graphs of.y = √
1 + x2 (green), and.y = 1

2 x
√
1 + x2 + 1

2 arsinh x (blue)



536 20 Calculus: Integration 

. x , then: 

. 
dy

dx
= dy

du

du

dx

For example, let’s evaluate: 

. 

∫
x2

√
x3 dx

This is easily solved by rewriting the integrand: 

. 

∫
x2

√
x3 dx =

∫
x

7
2 dx

= 2
9 x

9
2 + C

However, introducing a constant term within the square-root requires integration by 
substitution. For example: 

. evaluate
∫

x2
√
x3 + 1 dx

First, we let .u = x3 + 1, then: 

. 
du

dx
= 3x2 or dx = du

3x2

Substituting . u and .dx in the integrand gives: 

. 

∫
x2

√
x3 + 1 dx =

∫
x2

√
u

du

3x2

= 1
3

∫ √
u du

= 1
3

∫
u

1
2 du

= 1
3 · 2

3u
3
2 + C

= 2
9

(
x3 + 1

) 3
2 + C

Figure 20.18 shows the graphs of .y = x2
√
x3 + 1 and .y = 2

9

(
x3 + 1

) 3
2 . 

Now let’s evaluate: 

. 

∫
2 sin x · cos x dx

Integrating by substitution we let .u = sin x , then: 

.
du

dx
= cos x or dx = du

cos x
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Fig. 20.18 The graphs of.y = x2
√
x3 + 1 (green), and.y = 2

9

(
x3 + 1

) 3
2 (blue) 

Fig. 20.19 The graphs of.y = 2 sin x · cos x (green), and.y = sin2 x (blue) 

Substituting . u and .dx in the integrand gives: 

. 

∫
2 sin x · cos x dx = 2

∫
u cos x

du

cos x

= 2
∫

u du

= u2 + C1

= sin2 x + C

Figure 20.19 shows the graphs of .y = 2 sin x · cos x and .y = sin2 x . 
To evaluate: 

. 

∫
2ecos 2x sin x · cos x dx

we integrate by substitution, and let .u = cos(2x), then: 

.
du

dx
= −2 sin(2x) or dx = − du

2 sin(2x)
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Fig. 20.20 The graphs of.y = 2ecos(2x) sin x · cos x (green), and.y = − 1
2 e

cos(2x) (blue) 

Substituting a double-angle identity, . u and .du: 

. 

∫
2ecos 2x sin x · cos x dx = −

∫
eu sin(2x)

du

2 sin(2x)

= − 1
2

∫
eu du

= − 1
2e

u + C

= − 1
2e

cos(2x) + C

Figure 20.20 shows the graphs of .y = 2ecos(2x) sin x · cos x and .y = − 1
2e

cos(2x). 
To evaluate: 

. 

∫
cos x

(1 + sin x)3
dx

we integrate by substitution, and let .u = 1 + sin x , then: 

. 
du

dx
= cos x or dx = du

cos x

. 

∫
cos x

(1 + sin x)3
dx =

∫
cos x

u3
du

cos x

=
∫

u−3 du

= − 1
2u

−2 + C

= − 1
2 (1 + sin x)−2 + C

= − 1

2(1 + sin x)2
+ C

Figure 20.21 shows the graphs of .y = cos x/(1+ sin x)3 and.y = − 1
2 (1+ sin x)−2. 

To evaluate: 

.

∫
sin(2x) dx
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Fig. 20.21 The graphs of.y = cos x/(1 + sin x)3 (green), and.y = − 1
2 (1 + sin x)−2 (blue) 

Fig. 20.22 The graphs of.y = sin(2x) (green), and.y = − 1
2 cos(2x) (blue) 

we integrate by substitution, and let .u = 2x , then: 

. 
du

dx
= 2 or dx = du

2

. 

∫
sin(2x) dx = 1

2

∫
sin u du

= − 1
2 cos u + C

= − 1
2 cos(2x) + C

Figure 20.22 shows the graphs of .y = sin(2x) and .y = − 1
2 cos(2x). 

20.3.10 Partial Fractions 

Integration by partial fractions is used when an integrand’s denominator contains 
a product that can be split into two fractions. For example, it should be possible to



540 20 Calculus: Integration 

convert: 

. 

∫
3x + 4

(x + 1)(x + 2)
dx

into: 

. 

∫
A

x + 1
dx +

∫
B

x + 2
dx

which individually, are easy to integrate. Let’s compute . A and . B: 

. 
3x + 4

(x + 1)(x + 2)
= A

x + 1
+ B

x + 2

3x + 4 = A(x + 2) + B(x + 1)

= Ax + 2A + Bx + B

Equating constants and terms in . x : 

.4 = 2A + B (20.1) 

.3 = A + B (20.2) 

Subtracting (20.2) from (20.1), gives .A = 1 and .B = 2. Therefore: 

. 

∫
3x + 4

(x + 1)(x + 2)
dx =

∫
1

x + 1
dx +

∫
2

x + 2
dx

= ln(x + 1) + 2 ln(x + 2) + C

Figure 20.23 shows the graphs of .y = 3x+4
(x+1)(x+2) and .y = ln(x + 1) + 2 ln(x + 2). 

Now let’s evaluate: 

. 

∫
5x − 7

(x − 1)(x − 2)
dx

Fig. 20.23 The graphs of.y = 3x+4
(x+1)(x+2) (green), and.y = ln(x + 1) + 2 ln(x + 2) (blue)
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Integrating by partial fractions: 

. 
5x − 7

(x − 1)(x − 2)
= A

x − 1
+ B

x − 2

5x − 7 = A(x − 2) + B(x − 1)

= Ax + Bx − 2A − B

Equating constants and terms in . x : 

. − 7 = −2A − B (20.3) 

.5 = A + B (20.4) 

Subtracting (20.3) from (20.4), gives .A = 2 and .B = 3. Therefore: 

. 

∫
5x − 7

(x − 1)(x − 2)
dx =

∫
2

x − 1
dx +

∫
3

x − 2
dx

= 2 ln(x − 1) + 3 ln(x − 2) + C

Figure 20.24 shows the graphs of.y = 5x−7
(x−1)(x−2) and.y = 2 ln(x − 1)+ 3 ln(x − 2). 

Finally, let’s evaluate: 

. 

∫
6x2 + 5x − 2

x3 + x2 − 2x
dx

using partial fractions: 

. 
6x2 + 5x − 2

x3 + x2 − 2x
= A

x
+ B

x + 2
+ C

x − 1

6x2 + 5x − 2 = A(x + 2)(x − 1) + Bx(x − 1) + Cx(x + 2)

= Ax2 + Ax − 2A + Bx2 − Bx + Cx2 + 2Cx

Fig. 20.24 The graphs of.y = 5x−7
(x−1)(x−2) (green), and.y = 2 ln(x − 1) + 3 ln(x − 2) (blue)
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Fig. 20.25 The graphs of.y = 6x2+5x−2
x3+x2−2x

(green), and.y = ln x + 2 ln(x + 2) + 3 ln(x − 1) (blue) 

Equating constants, terms in . x and . x2: 

. − 2 = −2A (20.5) 

.5 = A − B + 2C (20.6) 

.6 = A + B + C (20.7) 

Manipulating (20.5), (20.6) and (20.7): .A = 1, .B = 2 and .C = 3, therefore: 

. 

∫
6x2 + 5x − 2

x3 + x2 − 2x
dx =

∫
1

x
dx +

∫
2

x + 2
dx +

∫
3

x − 1
dx

= ln x + 2 ln(x + 2) + 3 ln(x − 1) + C

Figure 20.25 shows the graphs of .y = 6x2+5x−2
x3+x2−2x

and . y = ln x + 2 ln(x + 2) +
3 ln(x − 1). 

20.4  Area Under  a Graph  

The ability to calculate the area under a graph is one of the most important discov-
eries of integral calculus. Prior to calculus, area was computed by dividing a zone 
into very small strips and summing the individual areas. The accuracy of the result is 
improved simply by making the strips smaller and smaller, taking the result towards 
some limiting value. In this section, I show how integral calculus provides a way to 
compute the area between a function’s graph and the .x- and .y-axis.
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20.5 Calculating Areas 

Before considering the relationship between area and integration, let’s see how area 
is calculated using functions and simple geometry. 

Figure 20.26 shows the graph of .y = 1, where the area . A of the shaded zone is: 

. A = x, x > 0

For example, when .x = 4, .A = 4, and when .x = 10, .A = 10. An interesting 
observation is that the original function is the derivative of . A: 

. 
d A

dx
= 1 = y

Figure 20.27 shows the graph of .y = 2x . The area . A of the shaded triangle is: 

. A = 1
2base × height

= 1
2 x × 2x

= x2

Fig. 20.26 Area of the 
shaded zone is. A = x

Fig. 20.27 Area of the 
shaded zone is. A = x2

y 

x 

y = 2x 

A = x2 

x
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Fig. 20.28 Graph of 
. y = √

r2 − x2

Thus, when.x = 4, .A = 16. Once again, the original function is the derivative of . A: 

. 
d A

dx
= 2x = y

which is no coincidence. 
Finally, Fig. 20.28 shows a circle where .x2 + y2 = r2, and the curve of the first 

quadrant is described by the function: 

. y =
√
r2 − x2, 1 ≤ x ≤ r

The total area of the shaded zones is the sum of the two parts.A1 and.A2. To simplify 
the calculations the function is defined in terms of the angle . θ , such that: 

. x = r sin θ

and 
. y = r cos θ

Therefore: 

. A1 = 1
2r

2θ

A2 = 1
2 (r cos θ)(r sin θ) = 1

4r
2 sin(2θ)

A = A1 + A2

= 1
2r

2 (
θ + 1

2 sin(2θ)
)

To show that the total area is related to the function’s derivative, let’s differentiate. A
with respect to . θ : 

. 
d A

dθ
= 1

2r
2 (1 + cos(2θ)) = r2 cos2 θ

But we want the derivative .
d A
dx , which requires the chain rule: 

.
d A

dx
= d A

dθ

dθ

dx
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Fig. 20.29 Relationship 
between.y = f (x) and. A(x)

y 

x 

y = f(x) 

A(x) 

x 

A 

x + xa 

where: 

. 
dx

dθ
= r cos θ

or 

. 
dθ

dx
= 1

r cos θ

therefore: 

. 
d A

dx
= r2 cos2 θ

r cos θ
= r cos θ = y

which is the equation for the quadrant. 
Hopefully, these three examples provide strong evidence that the derivative of the 

function for the area under a graph, equals the graph’s function: 

. 
d A

dx
= f (x)

which implies that: 

. A =
∫

f (x) dx

Now let’s prove this observation using Fig. 20.29, which shows a continuous 
function .y = f (x). Next, we define a function .A(x) to represent the area under the 
graph over the interval .[a, x]. .δA is the area increment between. x and.x + δx , and: 

. δA ≈ f (x) · δx

We can also reason that: 

. δA = A(x + δx) − A(x) ≈ f (x) · δx

and the derivative .
d A
dx is the limiting condition: 

.
d A

dx
= lim

δx→0

A(x + δx) − A(x)

δx
= lim

δx→0

f (x) · δx

δx
= f (x)
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thus: 

. 
d A

dx
= f (x)

whose antiderivative is: 

. A(x) =
∫

f (x) dx

The function .A(x) computes the area over the interval .[a, b] and is represented by: 

. A(x) =
∫ b

a
f (x) dx

which is called the integral or definite integral. 
Let’s assume that.A(b) is the area under the graph of. f (x) over the interval.[0, b], 

as shown in Fig. 20.30, and is written: 

. A(b) =
∫ b

0
f (x) dx

Similarly, let .A(a) be the area under the graph of . f (x) over the interval .[0, a], as  
shown in Fig. 20.31, and is written: 

. A(a) =
∫ a

0
f (x) dx

Figure 20.32 shows that the area of the shaded zone over the interval .[a, b] is 
calculated by: 

. A = A(b) − A(a)

which is written: 

. A =
∫ b

0
f (x) dx −

∫ a

0
f (x) dx

Fig. 20.30 .A(b) is the area 
under the graph.y = f (x), 
. 0 ≤ x ≤ b

y 

x 

y = f(x) 

b 

A(b)
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Fig. 20.31 .A(a) is the area 
under the graph.y = f (x), 
. 0 ≤ x ≤ a

y 

x 

y = f(x) 

A(a) 

a 

Fig. 20.32 .A(b) − A(a) is 
the area under the graph 
.y = f (x), . a ≤ x ≤ b

y 

x 

y = f(x) 

A(b)-A(a) 

a b  

and is contracted to: 

.A =
∫ b

a
f (x) dx (20.8) 

The fundamental theorem of calculus states that the definite integral: 

. 

∫ b

a
f (x) dx = F(b) − F(a)

where: 

. F(a) =
∫

f (x) dx, x = a

F(b) =
∫

f (x) dx, x = b

In order to compute the area beneath a graph of . f (x) over the interval .[a, b], we  
first integrate the graph’s function: 

.F(x) =
∫

f (x) dx
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Fig. 20.33 Area under the 
graph is. 

∫ 4
1 1 dx

and then calculate the area, which is the difference: 

. A = F(b) − F(a)

To illustrate how (20.8) is used in the context of the earlier three examples, let’s 
calculate the area over the interval .[1, 4] for .y = 1, as shown in Fig. 20.33. We  
begin with: 

. A =
∫ 4

1
1 dx

Next, we integrate the function, and transfer the interval bounds employing the sub-

stitution symbol . 

∣∣∣∣
4

1
, or square brackets .

[ ]4
1
. Using . 

∣∣∣∣
4

1
, we have:  

. A =
∣∣∣∣
4

1
x

= 4 − 1

= 3

or using .

[ ]4
1
, we have:  

. A =
[
x

]4
1

= 4 − 1

= 3

I will continue with square brackets. 
Now let’s calculate the area over the interval .[1, 4] for .y = 2x , as shown  in  

Fig. 20.34. We begin with: 

.A =
∫ 4

1
2x dx
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Fig. 20.34 Area under the 
graph is. 

∫ 4
1 2x dx

Next, we integrate the function and evaluate the area: 

. A =
[
x2

]4
1

= 16 − 1

= 15

Finally, let’s calculate the area over the interval .[0, r ] for .y = √
r2 − x2, which 

is the equation for a circle, as shown in Fig. 20.35. We begin with: 

.A =
∫ r

0

√
r2 − x2 dx (20.9) 

Unfortunately, (20.9) contains a function of a function, which is resolved by substi-
tuting another independent variable. In this case, the geometry of the circle suggests: 

. x = r sin θ

Fig. 20.35 Area under the 
graph is.

∫ r
0

√
r2 − x2 dx
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therefore: 
. 

√
r2 − x2 = r cos θ

and 

.
dx

dθ
= r cos θ (20.10) 

However, changing the independent variable requires changing the interval for the 
integral. In this case, changing .0 ≤ x ≤ r into .θ1 ≤ θ ≤ θ2: 

When .x = 0, .r sin θ1 = 0, therefore .θ1 = 0. 
When .x = r , .r sin θ2 = r , therefore .θ2 = π/2. 
Thus, the new interval is .[0, π/2]. 
Finally, the .dx in (20.9) has to be changed into .dθ , which using (20.10) makes: 

. dx = r cos θ dθ

Now we are in a position to rewrite the original integral using . θ as the independent 
variable: 

. A =
∫ π

2

0
(r cos θ)(r cos θ) dθ

= r2
∫ π

2

0
cos2 θ dθ

= r2

2

∫ π
2

0
1 + cos(2θ) dθ

= r2

2

[
θ + 1

2 sin(2θ)

] π
2

0

= r2

2

(π

2

)

= πr2

4

which makes the area of a full circle .πr2. 

20.6 Positive and Negative Areas 

Area in the real world is always regarded as a positive quantity—no matter how it is 
measured. In mathematics, however, area is often a signed quantity, and is determined 
by the clockwise or anticlockwise direction of vertices. As we generally use a left-
handed Cartesian axial system in calculus, areas above the.x-axis are positive, whilst 
areas below the.x-axis are negative. This can be illustrated by computing the area of 
the positive and negative parts of a sine wave.
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Fig. 20.36 The two areas 
associated with a sine wave 

Figure 20.36 shows a sketch of a sine wave over one cycle, where the area above 
the .x-axis is labelled .A1, and the area below the .x-axis is labelled .A2. These areas 
are computed as follows: 

. A1 =
∫ π

0
sin x dx

=
[

− cos x

]π

0

= 1 + 1

= 2

However, .A2 gives a negative result: 

. A2 =
∫ 2π

π

sin x dx

=
[

− cos x

]2π
π

= −1 − 1

= −2

This means that the area is zero over the bounds . 0 to .2π : 

.A2 =
∫ 2π

0
sin x dx

=
[

− cos x

]2π
0

= −1 + 1

= 0
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Fig. 20.37 The accumulated area of a sine wave 

Consequently, one must be very careful using this technique for functions that are 
negative in the interval under investigation. Figure 20.37 shows a sine wave over the 
interval .[0, π ] and its accumulated area. 

20.7 Area Between Two Functions 

Figure 20.38 shows the graphs of .y = x2 and .y = x3, with two areas labelled . A1
and.A2. .A1 is the area trapped between the two graphs over the interval.[−1, 0] and 
.A2 is the area trapped between the two graphs over the interval .[0, 1]. These areas 
are calculated very easily: in the case of .A1 we sum the individual areas under the 
two graphs, remembering to reverse the sign for the area associated with .y = x3. 

Fig. 20.38 Two areas between.y = x2 and.y = x3
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For .A2 we subtract the individual areas under the two graphs. 

. A1 =
∫ 0

−1
x2 dx −

∫ 0

−1
x3 dx

=
[
x3

3

]0
−1

−
[
x4

4

]0
−1

= 1
3 + 1

4

= 7
12

A2 =
∫ 1

0
x2 dx −

∫ 1

0
x3 dx

=
[
x3

3

]1
0
−

[
x4

4

]1
0

= 1
3 − 1

4

= 1
12

Note, that in both cases the calculation is the same, which implies that when we 
employ: 

. A =
∫ b

a
[ f (x) − g(x)] dx

. A is always the area trapped between . f (x) and .g(x) over the interval .[a, b]. 
Let’s take another example, by computing the area . A between .y = sin x and the 

line .y = 0.5, as shown in Fig. 20.39. The horizontal line intersects the sine curve at 
.x = 30◦ and .x = 150◦, marked in radians as .0.5236 and .2.618 respectively. 

. A =
∫ 150◦

30◦
sin x dx −

∫ 5π/6

π/6
0.5 dx

=
[

− cos x

]150◦

30◦
− 1

2

[
x

]5π/6

π/6

=
(√

3

2
+

√
3

2

)
− 1

2

(
5π

6
− π

6

)

= √
3 − π

3
≈ 0.685

20.8 Areas with the y-Axis 

So far we have only calculated areas between a function and the .x-axis. So let’s 
compute the area between a function and the.y-axis. Figure 20.40 shows the function 
.y = x2 over the interval .[0, 4], where .A1 is the area between the curve and the
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Fig. 20.39 The area 
between.y = sin x and 
. y = 0.5

Fig. 20.40 The areas 
between the.x-axis and the 
.y-axis 

.x-axis, and .A2 is the area between the curve and .y-axis. The sum .A1 + A2 must 
equal .4 × 16 = 64, which is a useful control. Let’s compute .A1. 

. A1 =
∫ 4

0
x2 dx

=
[
x3

3

]4
0

= 64
3

= 21.3

which means that .A2 = 42.6. To compute.A2 we construct an integral relative to. dy

with a corresponding interval. If .y = x2 then .x = y
1
2 , and the interval is .[0, 16]: 

.A2 =
∫ 16

0
y

1
2 dy

=
[

2
3 y

3
2

]16
0
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= 2 3 64 
= 42.6 

20.9 Area with Parametric Functions 

When working with functions of the form .y = f (x), the area under its curve and 
the .x-axis over the interval .[a, b] is: 

. A =
∫ b

a
f (x) dx

However, if the curve has a parametric form where: 

. x = fx (t) and y = fy(t)

then we can derive an equivalent integral as follows. 
First: We need to establish equivalent limits .[α, β] for . t , such that: 

. a = fx (α) and b = fx (β)

Second: Any point on the curve has corresponding Cartesian and parametric coordi-
nates: 

. x and fx (t)

. y = f (x) and fy(t)

Third: 

. x = fx (t)

dx = f ′
x (t)dt

A =
∫ b

a
f (x) dx

=
∫ β

α

fy(t) f
′
x (t) dt

therefore: 

.A =
∫ β

α

fy(t) f
′
x (t) dt (20.11) 

Let’s apply (20.11) using the parametric equations for a circle: 

.x = −r cos t

y = r sin t
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Fig. 20.41 The parametric 
functions for a circle 

as  shown in Fig.  20.41. Remember that the Cartesian interval is .[a, b] left to right, 
and the polar interval .[α, β], must also be left to right, which is why .x = −r cos t . 
Therefore: 

. f ′
x t = r sin t

fy(t) = r sin t

A =
∫ β

α

fy(t) f
′
x (t) dt

=
∫ π

0
r sin t · r sin t dt

= r2
∫ π

0
sin2 t dt

= r2

2

∫ π

0
1 − cos(2t) dt

= r2

2

[
t + 1

2 sin(2t)

]π

0

= πr2

2

which makes the area of a full circle .πr2. 

20.10 The Riemann Sum 

The German mathematician Bernhard Riemann (1826–1866) (pronounced ‘Ree-
man’) made major contributions to various areas of mathematics, including integral 
calculus, where his name is associated with a formal method for summing areas and 
volumes. Through the Riemann Sum, Riemann provides an elegant and consistent 
notation for describing single, double and triple integrals when calculating area and
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volume. Let’s see how the Riemann sum explains why the area under a curve is the 
function’s integral. 

Figure 20.42 shows a function. f (x) divided into eight equal sub-intervals where: 

. Δx = b − a

8

and 
. a = x0 < x1 < x2 < · · · < x7 < x8 = b

In order to compute the area under the curve over the interval .[a, b], the interval 
is divided into some large number of sub-intervals. In this case, eight, which is not 
very large, but convenient to illustrate. Each sub-interval becomes a rectangle with 
a common width .Δx and a different height. The area of the first rectangular sub-
interval shown shaded, can be calculated in various ways. We can take the left-most 
height . f (x0) and form the product . f (x0)Δx , or we can take the right-most height 
. f (x1) and form the product . f (x1)Δx . On the other hand, we could take the mean 
of the two heights .( f (x0) + f (x1))/2 and form the product .( f (x0) + f (x1))Δx/2. 
A solution that shows no bias towards either left, right or centre, is to let . f (x∗

i ) be 
anywhere in a specific sub-interval .Δxi , then the area of the rectangle associated 
with the sub-interval is . f (x∗

i )Δxi , and the sum of the rectangular areas is given by: 

. A =
8∑

i=1

f (x∗
i )Δxi

Dividing the interval into eight equal sub-intervals will not generate a very accurate 
result for the area under the graph. But increasing it to eight-thousand or eight-
million, will take us towards some limiting value. Rather than specify some specific 
large number, it is common practice to employ . n, and let . n tend towards infinity, 
which is written: 

.A =
n∑

i=1

f (x∗
i )Δxi (20.12) 

Fig. 20.42 The graph of 
function. f (x) over the 
interval.[a, b]
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The right-hand side of (20.12) is called a Riemann sum, of which there are many. 
For the above description, I have assumed that the sub-intervals are equal, which is 
not a necessary requirement. 

If the number of sub-intervals is . n, then: 

. Δx = b − a

n

and the definite integral is defined as: 

. 

∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗
i )Δxi

20.11 Summary 

In this chapter we have discovered the double role of integration. Integrating a func-
tion reveals another function, whose derivative is the function under investigation. 
Simultaneously, integrating a function computes the area between the function’s 
graph and the .x- or  .y-axis. Although the concept of area in every-day life is an 
unsigned quantity, within mathematics, and in particular calculus, area is a signed 
quality, and one must be careful when making such calculations.
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21.1 Introduction 

This chapter shows how certain waveforms are approximated by a series of cosine 
and sine functions, called a Fourier Series. The idea was proposed by the French 
mathematician Joseph Fourier (1768–1830), who claimed that any function of a 
variable, whether continuous or discontinuous, can be expanded into a series of 
sines of multiples of the variable [ 1]. Today, this claim has been slightly tempered 
by mathematicians. 

This chapter is based upon my favourite book on mathematics Mathematics: From 
the Birth of Numbers [ 2]. 

21.2 Mathematical Foundations 

Fourier suggested that certain waveforms are represented by an infinite series of 
cosine and sine waves defined by: 

. f (x) = a0
2

+
∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx) (21.1) 

Equation (21.1) is often written as: 

. f (x) = a0
2

+
∞∑

n=1

an cos(nx) + bn sin(nx) (21.2) 
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where: 

. f (x) is a function for frequency f and is

continuous over the interval [−π ≤ x ≤ π ].
a0 is a constant.

n identifies the Fourier series term.

an is the amplitude of the cosine term.

bn is the amplitude of the sine term.

To find an expression for.a0 we integrate. f (x) in (21.2) over the interval. [−π ≤ x ≤
π ]: 

. 

∫ π

−π
f (x) dx = a0

2

∫ π

−π
1 dx +

∞∑

n=1

(∫ π

−π
an cos(nx) dx +

∫ π

−π
bn sin(nx) dx

)

=
[a0x

2

]π

−π
+

∞∑

n=1

[
an
n

sin(nx) − bn
n

cos(nx)

]π

−π

= a0π +
∞∑

n=1

{
an
n

[sin(nπ) − sin(−nπ)] − bn
n

[cos(nπ) − cos(−nπ)]
}

= a0π +
∞∑

n=1

{
an
n

[0] − bn
n

[0]
}

= a0π

a0 = 1

π

∫ π

−π
f (x) dx

We can find an expression for .an where .n ≥ 1, by first multiplying . f (x) in (21.2) 
by .cos(nx) and then integrating with respect to . x over the interval .[−π ≤ x ≤ π ]. 
This results in: 

. an = 1

π

∫ π

−π

f (x) · cos(nx) dx

Similarly, we can find an expression for .bn where .n ≥ 1, by first multiplying . f (x)
in (21.2) by  .sin(nx) and then integrating with respect to . x over the interval . [−π ≤
x ≤ π ]. This results in: 

. bn = 1

π

∫ π

−π

f (x) · sin(nx) dx

21.3 Discontinuous Functions 

A square wave is an excellent example of a discontinuous function, as shown  in  
Fig. 21.1, where the function is 0 over the interval .[−π ≤ x ≤ 0], and is 1 over the
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Fig. 21.1 Sketch of a square wave 

interval .[0 ≤ x ≤ π ]. The function is discontinuous at .x = −π , .x = 0 and .x = π , 
and has a period of .2π . 

Over the interval .[0 ≤ x ≤ π ], the  value of . a0, .an and .bn are: 

. a0 = 1

π

∫ π

0
1 dx = 1

an = 1

π

∫ π

0
1 · cos(nx) dx = 0

bn = 1

π

∫ π

0
1 · sin(nx) dx

= 1

π

−1

n

[
cos(nx)

]π

0

= 1

nπ

[
cos(nx)

]0

π

= 0 (for even n)

= 2

nπ
(for odd n)

These values confirm that the series contains only a constant term, and sine terms: 

. f (x) = 1

2
+ 2

π

[
sin(x)

1
+ sin(3x)

3
+ sin(5x)

5
+ sin(7x)

7
+ · · ·

]
x = kπ where k ∈ Z

Figure 21.2 shows this function by adding the extra terms. Figure 21.3 shows the 
function up to .

sin(23x)
23 . 

21.4 Even and Odd Functions 

As function products are involved in the definitions of . a0, .an and . bn , it helps 
develop a Fourier series if a function is described as even or odd over the interval
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Fig. 21.2 Superimposed graphs with each colour showing an extra term in the series 

Fig. 21.3 The Fourier series up to. 
sin(23x)

23

Fig. 21.4 Even and odd functions 

.[−π ≤ x ≤ π ]. Figure 21.4 shows an even function .y = a(x), and an odd function 

.y = b(x), with the areas marked +ve and . −ve. Areas are often used for predicting 
the nature of a Fourier series. 

We know that an even function is defined by . f (−x) = f (x), which makes 
the cosine function an even function. Conversely, an odd function is defined by 
. f (−x) = − f (x), which makes the sine function an odd function. Table 21.1 shows 
the product of two such functions, where we note that the product of two even 
functions, or two odd functions, is an even function. The product of an even and odd 
function is an odd function. These results are quickly confirmed by noting that. cos2 x
and .sin2 x are even functions, whilst .cos(x) · sin(x) is odd.
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Table 21.1 The product of even and odd functions 

Product Even Odd 

Even Even Odd 

Odd Odd Even 

21.4.1 Even Functions 

We begin by assuming that. f (x) is an even function over the interval.[−π ≤ x ≤ π ], 
and we will show that the Fourier series for . f (x) only contains cosine terms. What 
follows is the values of . a0, .an and . bn . 

Starting with: 

. f (x) = a0
2

+
∞∑

n=1

an cos(nx) + bn sin(nx)

then: 

. a0 = 1

π

∫ π

−π

f (x) dx

As. f (x) is an even function, the area of. f (x) over the interval.[−π ≤ x ≤ 0] equals 
the area of . f (x) over the interval .[0 ≤ x ≤ π ], therefore: 

. a0 = 2

π

∫ π

0
f (x) dx

Similarly, .an is given by: 

. an = 1

π

∫ π

−π

f (x) · cos(nx) dx

= 2

π

∫ π

0
f (x) · cos(nx) dx

The last constant is . bn , where: 

. bn = 1

π

∫ π

−π

f (x) · sin(nx) dx

which contains the product of an even and odd function, and produces an odd function. 
The integral of an odd function, with a period of.2π , over the interval. [−π ≤ x ≤ π ]
is zero, therefore: 

.bn = 0
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Thus, if . f (x) is an even function, the Fourier terms are given by: 

. f (x) = a0
2

+
∞∑

n=1

an cos(nx)

21.4.2 Odd Functions 

Next, if. f (x) is an odd function over the interval.[−π ≤ x ≤ π ], then we will show 
that the Fourier series for . f (x) only contains sine terms. What follows is how we 
calculate . a0, .an and . bn . 

Starting with: 

. f (x) = a0
2

+
∞∑

n=1

an cos(nx) + bn sin(nx)

then: 

. a0 = 1

π

∫ π

−π

f (x) dx

As. f (x) is an odd function, the area of . f (x) over the interval .[−π ≤ x ≤ π ] equals 
zero, then: 

. a0 = 0

The value of .an is given by: 

. an = 1

π

∫ π

−π

f (x) · cos(nx) dx

and as. f (x) is odd, and the cosine is even, the resulting function is odd. The integral 
of an odd function over the interval .[−π ≤ x ≤ π ] is zero, therefore: 

. an = 0

The last constant is . bn , where: 

. bn = 1

π

∫ π

−π

f (x) · sin(nx) dx

which contains the product of two odd functions, and produces an even function, 
therefore: 

.bn = 1

π

∫ π

−π

f (x) · sin(nx) dx

= 2

π

∫ π

0
f (x) · sin(nx) dx
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Thus, if . f (x) is an odd function, the Fourier terms are given by: 

. f (x) =
∞∑

n=1

bn sin(nx)

We have shown that if . f (x) is an odd function, the Fourier series only contains the 
sine terms. 

21.4.3 The Fourier Series for a Triangular Function 

A triangular function shown in Fig. 21.5 is described by: 

. f (x) = a0
2

+
∞∑

n=1

an cos(nx)

a0 = 2

π

∫ π

0
f (x) dx

an = 2

π

∫ π

0
f (x) · cos(nx) dx

bn = 0

The waveform has a period of .2π and an amplitude of . π . As we are integrating over 
the interval .[0 ≤ x ≤ π ], we only have to describe . f (x) over this interval, which is 
the straight line . f (x) = x , or more accurately . f (x) = |x |. 

The values of .a0 and .an are given by: 

. a0 = 2

π

∫ π

0
|x | dx

= 2

π

[
x2

2

]π

0

= π

Fig. 21.5 A triangular function
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an = 
2 

π

∫ π 

0 
|x | ·  cos(nx) dx  

This integral is evaluated by parts where we use: 

. 

∫ π

0
uv′ dx = uv −

∫ π

0
vu′ dx

We begin by letting .u = |x | and .v′ = cos(nx), where .u′ = 1 and .v = sin(nx)
n . 

Integrating by parts: 

. 
2

π

∫ π

0
uv′ dx = 2

π

[
uv −

∫ π

0
vu′ dx

]

= 2

π

[
x · sin(nx)

n
−

∫ π

0

sin(nx)

n
dx

]

= 2

π

[
x · sin(nx)

n
+ cos(nx)

n2

]π

0

= 0 + 2

πn2
·
[
cos(nx)

]π

0

= 0 (for even n)

= − 4

πn2
(for odd n)

Therefore: 

. f (x) = π

2
− 4

π

(
cos(x)

1
+ cos(3x)

32
+ cos(5x)

32
+ cos(7x)

72
+ · · ·

)
x = kπ where k ∈ Z

where we see that. f (x) is composed entirely of odd cosine terms. Figure 21.6 shows 
this function containing 4 Fourier terms. 

Fig. 21.6 A triangular function represented by 4 Fourier terms
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Fig. 21.7 A sawtooth function 

21.4.4 Fourier Series for a Sawtooth Function 

A sawtooth function is shown in Fig. 21.7, where . f (x) has a period of .2π and 
.[−π < x ≤ π ]. 

The sawtooth function . f (x) is discontinuous and an odd function, therefore, 
.a0 = 0, and .an = 0. 

. f (x) = |x |
. bn = 2

π

∫ π

0
|x | · sin(nx) dx

This integral is evaluated by parts where we use: 

. 

∫ π

0
uv′ dx = uv −

∫ π

0
vu′ dx

We begin by letting .u = |x | and .v′ = sin(nx), where .u′ = 1 and .v = − cos(nx)
n . 

Integrating by parts: 

.
2

π

∫ π

0
uv′ dx = 2

π

[
uv −

∫ π

0
vu′ dx

]

= 2

π

[
− x · cos(nx)

n
+

∫ π

0

cos(nx)

n
dx

]

= 2

π

[
− x · cos(nx)

n
+ sin(nx)

n2

]π

0

= − 2

nπ

[
x · cos(nx)

]π

0

bn = 2

n
(−1)n−1

= 2

n
(for odd n)

= −2

n
(for even n)
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Fig. 21.8 A sawtooth function represented by 8 Fourier terms 

f (x) = 
∞∑

n=1 

2 

n 
(−1)n−1 · sin(nx) 

Therefore: 

. f (x) = 2

(
sin(x)

1
− sin(2x)

2
+ sin(3x)

3
− sin(4x)

4
+ · · ·

)

where we see that . f (x) is composed entirely of sine terms. Figure 21.8 shows this 
function containing 8 Fourier terms. 

21.5 Summary 

Hopefully, this short chapter is sufficient to show that certain functions can be repre-
sented by a series of sine and/or cosine terms, and will inspire readers to learn more 
about this interesting topic. 
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22Worked Examples 

22.1 Introduction 

This chapter examines a variety of problems encountered in computer graphics and 
develops mathematical strategies for their solution. Such strategies may not be the 
most efficient, however, they will provide the reader with a starting point, which may 
be improved upon. 

22.2 Area of Regular Polygon 

Given a regular polygon with. n sides, side length. s, and radius. r of the circumscribed 
circle, its area can be computed by dividing it into. n isosceles triangles and summing 
their total area. 

Figure 22.1 shows one of the isosceles triangles .OAB formed by an edge . s and 
the centre .O of the polygon. From Fig. 22.1 we observe that: 

. 
s

2h
= tan

(π

n

)

therefore: 

. h = s

2
cot

(π

n

)

area(ΔOAB) = sh

2
= s2

4
cot

(π

n

)

but there are . n such triangles, therefore: 

. area = ns2

4
cot

(π

n

)
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Fig. 22.1 One of the isosceles triangles forming a regular polygon 

Table 22.1 Area of first 
6 regular polygons 

.n . area

3 0.433 

4 1 

5 1.72 

6 2.598 

7 3.634 

8 4.828 

Table 22.1 shows the area for the first six regular polygons with .s = 1. 

22.3 Area of any Polygon 

Figure 22.2 shows a polygon with the following vertices in anticlockwise sequence, 
and from Table 22.2, the area is 9.5. 

The area of a polygon is given by: 

. area = 1
2

n−1∑
i=0

(xi yi+1(mod n) − yi xi+1(mod n))

= 1
2 (0 × 0 + 2 × 1 + 5 × 3 + 4 × 3 + 2 × 2 − 2 × 2

− 0 × 5 − 1 × 4 − 3 × 2 − 3 × 0)

area = 1
2 (33 − 14) = 9.5

Table 22.2 Polygon coordinates 

.x 0 2 5 4 2 

.y 2 0 1 3 3
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Fig. 22.2 A five-sided  
irregular polygon 

22.4 Dihedral Angle of a Dodecahedron 

The dodecahedron is a member of the five Platonic solids, which are constructed from 
regular polygons. The dihedral angle is the internal angle between two touching faces. 
Figure 22.3 shows a dodecahedron with one of its pentagonal sides. 

Figure 22.4 illustrates the geometry required to fold two pentagonal sides through 
the dihedral angle . γ . 

The point .P has coordinates: 

. P(x, y, z) = (sin 72◦, 0, − cos 72◦)

and for simplicity, we will use a unit vector to represent an edge, therefore: 

. ‖v1‖ = ‖v2‖ = 1

The coordinates of the rotated point .P ′ are given by the following transform: 

. 

⎡
⎣
x ′
y′
z′

⎤
⎦ =

⎡
⎣
cos γ − sin γ 0
sin γ cos γ 0
0 0 1

⎤
⎦

⎡
⎣

sin 72◦
0

− cos 72◦

⎤
⎦

Fig. 22.3 A dodecahedron 
with one of its pentagonal 
sides
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Fig. 22.4 The dihedral angle 
. γ between two pentagonal 
sides 

where: 

. x ′ = cos γ sin 72◦

y′ = sin γ sin 72◦

z′ = − cos 72◦

But: 
. v1 · v2 = ‖v1‖‖v2‖ cos θ = xx ′ + yy′ + zz′

therefore: 
. cos θ = cos γ sin2 72◦ + cos2 72◦

but .θ = 108◦ (internal angle of a regular pentagon), therefore: 

. cos γ = cos 108◦ − cos2 72◦

sin2 72◦ = cos 72◦

cos 72◦ − 1

The dihedral angle .γ ≈ 116.56505◦. 
A similar technique can be used to calculate the dihedral angles of the other 

Platonic objects. 

22.5 Vector Normal to a Triangle 

Very often in computer graphics we have to calculate a vector normal to a plane 
containing three points. The most effective tool to achieve this is the vector product. 
For example, given three points .P1(5, 0, 0), .P2(0, 0, 5) and .P3(10, 0, 5), we  
can create two vectors . a and . b as follows: 

. a =
⎡
⎣
x2 − x1
y2 − y1
z2 − z1

⎤
⎦ , b =

⎡
⎣
x3 − x1
y3 − y1
z3 − z1

⎤
⎦

therefore: 
.a = −5i + 5k, b = 5i + 5k



22.7 General Form of the Line Equation fromTwo Points 573

The normal vector . n is given by: 

. n = a × b =

∣∣∣∣∣∣∣

i j k
−5 0 5

5 0 5

∣∣∣∣∣∣∣
= 50j

22.6 Area of a Triangle Using Vectors 

The vector product is also useful in calculating the area of a triangle using two of 
its sides as vectors. For example, using the same points and vectors in the previous 
example: 

. area = 1
2‖a × b‖ = 1

2

∣∣∣∣∣∣∣

i j k
−5 0 5

5 0 5

∣∣∣∣∣∣∣
= 1

2‖50j‖ = 25

22.7 General Form of the Line Equation from Two Points 

The general form of the line equation is given by: 

. ax + by + c = 0

and it may be required to compute this equation from two known points. For example, 
Fig. 22.5 shows two points .P1(x1, y1) and .P2(x2, y2), from which it is possible to 
determine .P(x, y). 

Fig. 22.5 A line formed 
from two points.P1 and.P2
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From Fig. 22.5: 

. 
y2 − y1
x2 − x1

= y − y1
x − x1

(y2 − y1)(x − x1) = (x2 − x1)(y − y1)

(y2 − y1)x − (y2 − y1)x1 = (x2 − x1)y − (x2 − x1)y1
(y2 − y1)x + (x1 − x2)y = x1y2 − x2y1

therefore: 
. a = y2 − y1 b = x1 − x2 c = −(x1y2 − x2y1)

If the two points are .P1(1, 0) and .P2(3, 4), then: 

. (4 − 0)x + (1 − 3)y − (1 × 4 − 3 × 0) = 0

and 
. 4x − 2y − 4 = 0

22.8 Angle Between Two Straight Lines 

Given two line equations it is possible to compute the angle between the lines using 
the scalar product. For example, if the line equations are: 

. a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

their normal vectors are .n = a1i + b1j and .m = a2i + b2j respectively, therefore: 

. n · m = ‖n‖‖m‖ cosα

and the angle between the lines . α is given by: 

. α = cos−1
(

n · m
‖n‖‖m‖

)

Figure 22.6 shows two lines with equations: 

. 2x + 2y − 4 = 0

2x + 4y − 4 = 0

therefore: 

.α = cos−1
(

2 × 2 + 2 × 4√
22 + 22

√
22 + 42

)
≈ 18.435◦
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Fig. 22.6 Two lines 
intersecting at an angle. α

22.9 Test if Three Points Lie on a Straight Line 

Figure 22.7 shows three points .P1, .P2 and .P3 which lie on a straight line. There are 
all sorts of ways to detect such a condition. For example, we could assume that the 
points are the vertices of a triangle, and if the triangle’s area is zero, then the points 
lie on a line. Here is another approach. 

Given.P1(x1, y1),.P2(x2, y2),.P3(x3, y3) and.r = −−→
P1P2 and.s = −−→

P1P3, the  three  
points lie on a straight line when .s = λr where . λ is a scalar. 

Let the points be: 

. P1(0, −2), P2(1, −1), P3(4, 2)

then: 
. r = i + j, and s = 4i + 4j

and 
. s = 4r

therefore, the points lie on a straight line as confirmed by the diagram. 
Another way is to compute: 

. 

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
0 −2 1
1 −1 1
4 2 1

∣∣∣∣∣∣
= 0

Fig. 22.7 Three points on a 
common line
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which is twice the area of  .ΔP1P2P3, and as this equals zero, the points must be 
co-linear. 

22.10 Position and Distance of the Nearest Point on a Line to a 
Point 

Suppose we have a line and some arbitrary point . P , and we require to find the 
nearest point on the line to . P . Vector analysis provides a very elegant way to solve 
such problems. Figure 22.8 shows a line and a point .P and the nearest point . Q
on the line. The nature of the geometry is such that the line connecting .P to .Q is 
perpendicular to the reference line, which is exploited in the analysis. The objective 
is to determine the position vector . q. 

We start with the line equation: 

. ax + by + c = 0

and declare .Q(x, y) as the nearest point on the line to . P . 
The normal to the line must be: 

. n = ai + bj

and the position vector for .Q is: 

. q = x i + yj

Therefore: 
.n · q = −c (22.1) 

. r is parallel to . n, therefore: 
.r = λn (22.2) 

where . λ is some scalar. 

Fig. 22.8 .Q is the nearest 
point on the line to.P
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Taking the scalar product of (22.2): 

.n · r = λn · n (22.3) 

but as: 

.r = q − p (22.4) 

.n · r = n · q − n · p (22.5) 

Substituting (22.1) and (22.3) in  (22.5) we obtain: 

. λn · n = −c − n · p
therefore: 

. λ = −(n · p + c)

n · n
From (22.4) we get: 

.q = p + r (22.6) 

Substituting (22.2) in  (22.6) we obtain the position vector for . Q: 

. q = p + λn

The distance .PQ must be the magnitude of . r: 

. PQ = ‖r‖ = λ‖n‖
Let’s test this result with an example where the answer can be predicted. 

Figure 22.9 shows a line whose equation is .x + y − 1 = 0, and the associated 
point is .P(1, 1). By inspection, the nearest point is .Q

( 1
2 ,

1
2

)
and the distance 

.PQ ≈ 0.7071. 
From the line equation: 

. a = 1, b = 1, c = −1

therefore: 

. λ = −2 − 1

2
= − 1

2

and 

. xQ = xP + λxn = 1 − 1
2 × 1 = 1

2

yQ = yP + λyn = 1 − 1
2 × 1 = 1

2

The nearest point is .Q
( 1
2 ,

1
2

)
and the distance is: 

.PQ = ‖λn‖ = 1
2‖i + j‖ ≈ 0.7071
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Fig. 22.9 .Q is the nearest 
point on the line to. P

22.11 Position of a Point Reflected in a Line 

Suppose that instead of finding the nearest point on a line we require the reflection. Q
of .P in the line. Once more, we set out to discover the position vector for . Q. Figure 
22.10 shows the vectors used in the analysis. We start with the line equation: 

. ax + by + c = 0

and declare .T (x, y) as the nearest point on the line to .O with .t = x i + yj as its 
position vector. 

From the line equation: 
. n = ai + bj

therefore: 
.n · t = −c (22.7) 

We note that .r + r′ is orthogonal to . n, therefore: 

. n · (r + r′) = 0

and 
.n · r + n · r′ = 0 (22.8) 

Fig. 22.10 The vectors 
required to find the reflection 
of.P in the line
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We also note that .p − q is parallel to . n, therefore: 

. p − q = r − r′ = λn

where . λ is some scalar, therefore: 

.λ = r − r′

n
(22.9) 

From the figure we note that: 
.r = p − t (22.10) 

Substituting (22.7) in  (22.10): 

.n · r = n · p − n · t = n · p + c (22.11) 

Substituting (22.8) and (22.11) in  (22.9): 

. λ = n · r − n · r′

n · n = 2n · r
n · n

λ = 2(n · p + c)

n · n
and the position vector is: 

. q = p − λn

Let’s again test this formula with a scenario that can be predicted in advance. 
Given the line equation: 

. x + y − 1 = 0

and the point .P(1, 1), the reflection must be the origin, as shown in Fig. 22.11. 
Now let’s confirm this prediction. From the line equation: 

. a = 1, b = 1, c = −1

and 

. xP = 1

yP = 1

λ = 2 × (2 − 1)

2
= 1

therefore: 

. xQ = xP − λxn = 1 − 1 × 1 = 0

yQ = yP − λyn = 1 − 1 × 1 = 0

and the reflection point is .Q(0, 0).
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Fig. 22.11 .Q is the 
reflection of.P in the line 

22.12 Intersection of a Line and a Sphere 

In ray tracing and ray casting it is necessary to detect whether a ray (line) intersects 
objects within a scene. Such objects may be polygonal, constructed from patches, 
or defined by equations. In this example, we explore the intersection between a line 
and a sphere. 

There are three possible scenarios: the line intersects, touches or misses the sphere. 
It just so happens, that the cosine rule proves very useful in setting up a geometric 
condition that identifies the above scenarios, which are readily solved using vector 
analysis. 

Figure 22.12 shows a sphere with radius . r located at . C . The line is represented 
parametrically, which lends itself to this analysis. The objective is to discover whether 
there are points in space that satisfy both the line equation and the sphere equation. 
If there is a point, a position vector will locate it. 

The position vector for . C is: 

. c = xci + ycj + zck

and the equation of the line is: 
. p = t + λv

where . λ is a scalar, and: 
.‖v‖ = 1 (22.12) 

Fig. 22.12 The vectors 
required to locate a possible 
intersection
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For an intersection at . P: 

. ‖q‖ = r

‖q‖2 = r2

‖q‖2 − r2 = 0

Using the cosine rule: 

.‖q‖2 = ‖λv‖2 + ‖s‖2 − 2‖λv‖‖s‖ cos θ (22.13) 

.‖q‖2 = λ2‖v‖2 + ‖s‖2 − 2‖v‖‖s‖λ cos θ (22.14) 

Substituting (22.12) in  (22.14): 

.‖q‖2 = λ2 + ‖s‖2 − 2‖s‖λ cos θ (22.15) 

Now let’s identify .cos θ : 
. s · v = ‖s‖‖v‖ cos θ

therefore: 
. cos θ = s · v

‖s‖ (22.16) 

Substituting (22.16) in  (22.15): 

. ‖q‖2 = λ2 − 2s · vλ + ‖s‖2

therefore: 
.‖q‖2 − r2 = λ2 − 2s · vλ + ‖s‖2 − r2 = 0 (22.17) 

Equation (22.17) is a quadratic in . λ where: 

.λ = s · v ±
√

(s · v)2 − ‖s‖2 + r2 (22.18) 

and 
. s = c − t

The discriminant of (22.18) determines whether the line intersects, touches or misses 
the sphere. 

The position vector for .P is given by: 

. p = t + λv

where: 
. λ = s · v ±

√
(s · v)2 − ‖s‖2 + r2

and 
. s = c − t

For a miss condition: 
.(s · v)2 − ‖s‖2 + r2 < 0
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Fig. 22.13 Three lines that 
miss, touch and intersect the 
sphere 

For a touch condition: 
. (s · v)2 − ‖s‖2 + r2 = 0

For an intersect condition: 

. (s · v)2 − ‖s‖2 + r2 > 0

To test these formulae we will create all three scenarios and show that the equations 
are well behaved. 

Figure 22.13 shows a sphere with three lines represented by their direction vectors 
.λv1, .λv2 and .λv3. The sphere has radius .r = 1 and is located at .C with position 
vector: 

. c = i + j

whilst the three lines.L1,.L2 and.L3 miss, touch and intersect the sphere respectively. 
The lines are of the form: 

. p = t + λv

therefore: 

. p1 = t1 + λv1
p2 = t2 + λv2
p3 = t3 + λv3

where: 

. t1 = 2i, v1 = 1√
2
i + 1√

2
j

t2 = 2i, v2 = j

t3 = 2i, v3 = − 1√
2
i + 1√

2
j

and 
.c = i + j
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Let’s substitute the lines in the original equations: 
.L1: 

. s = −i + j

(s · v)2 − ‖s‖2 + r2 = 0 − 2 + 1 = −1

the negative discriminant confirms a miss condition. 

.L2: 

. s = −i + j

(s · v)2 − ‖s‖2 + r2 = 1 − 2 + 1 = 0

the zero discriminant confirms a touch condition, therefore.λ = 1 and the touch point 
is: .P2(2, 1, 0) which is correct. 

.L3: 

. s = −i + j

(s · v)2 − ‖s‖2 + r2 = 2 − 2 + 1 = 1

the positive discriminant confirms an intersect condition, therefore: 

. λ = 2√
2

± 1 = 1 + √
2 or

√
2 − 1

The intersection points are given by the two values of . λ: 
when . λ = 1 + √

2

. xP = 2 +
(
1 + √

2
) (

− 1√
2

)
= 1 − 1√

2

yP = 0 +
(
1 + √

2
)

1√
2

= 1 + 1√
2

zP = 0

when . λ = √
2 − 1

. xP = 1 +
(√

2 − 1
) (

− 1√
2

)
= 1 + 1√

2

yP = 0 +
(√

2 − 1
)

1√
2

= 1 − 1√
2

zP = 0

The intersection points are: 

. P3′
(
1 − 1√

2
, 1 + 1√

2
, 0

)

P3
(
1 + 1√

2
, 1 − 1√

2
, 0

)

which are correct.
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22.13 Sphere Touching a Plane 

A sphere will touch a plane if the perpendicular distance from its centre to the plane 
equals its radius. The geometry describing this condition is identical to finding the 
position and distance of the nearest point on a plane to a point. 

Figure 22.14 shows a sphere located at. P with position vector. p. A potential touch 
condition occurs at . Q, and the objective of the analysis is to discover its position 
vector . q. Given the following plane equation: 

. ax + by + cz + d = 0

its surface normal is: 
. n = ai + bj + ck

The nearest point .Q on the plane to a point .P is given by the position vector: 

.q = p + λn (22.19) 

where: 

. λ = −n · p + d

n · n
the distance: 

. PQ = ‖λn‖
If. P is the centre of the sphere with radius. r , and position vector. p, the touch point 

is also given by (22.19) when: 

. PQ = ‖λn‖ = r

Let’s test the above equations with a simple example, as shown in Fig. 22.15, 
which shows a sphere with radius .r = 1 and centred at .P(1, 1, 1). 

The plane equation is: 
. y − 2 = 0

therefore: 
. n = j

Fig. 22.14 The vectors used 
to detect when a sphere 
touches a plane
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Fig. 22.15 A sphere 
touching a plane 

and 
. p = i + j + k

therefore: 
. λ = −(1 − 2) = 1

which equals the sphere’s radius and therefore the sphere and plane touch. 
The touch point is: 

. xQ = 1 + 1 × 0 = 1

yQ = 1 + 1 × 1 = 2

zQ = 1 + 1 × 0 = 1

Q = (1, 2, 1)

22.14 Summary 

Unfortunately, problem solving is not always obvious, and it is possible to waste 
hours of analysis simply because the objective of the solution has not been well 
formulated. Hopefully, though, the reader has discovered some of the strategies used 
in solving the above geometric problems, and will be able to implement them in 
other scenarios. At the end of the day, practice makes perfect!



ALimit of . (sin θ)/θ  

This appendix proves that: 

. lim 
θ→0 

sin θ 
θ 

= 1, where θ is in radians 

From high-school mathematics we know that .sin θ ≈ θ , for small values of . θ . For  
example: 

. sin 0.1 ≈ 0.099833 
sin 0.05 ≈ 0.04998 
sin 0.01 ≈ 0.0099998 

and 

. 
sin 0.1 

0.1 
≈ 0.99833 

sin 0.05 

0.05 
≈ 0.99958 

sin 0.01 

0.01 
≈ 0.99998 

Therefore, we can reason that in the limit, as .θ → 0: 

. lim 
θ →0 

sin θ 
θ 

= 1 

Figure A.1 shows a graph of .(sin θ)/θ , which confirms this result. However, this is 
an observation, rather than a proof. So, let’s pursue a geometric line of reasoning. 

From Fig. A.2 we see as the circle’s radius is unity, .OA  = OB  = 1, and 
.AC = tan θ . As part of the strategy, we need to calculate the area of the trian-
gle .�OAB, the sector .OAB  and the .�OAC : 
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Fig. A.1 Graph of. (sin θ)/θ  

Fig. A.2 Unit radius circle 
with trigonometric ratios 

y 

xA 

1 

DO 

C 

B 

sin 

cos 

tan 

. area(�OAB) = area(�OD  B) + area(�DAB) 
= 1 2 cos θ sin θ + 1 2 (1 − cos θ)  sin θ 
= 1 2 cos θ sin θ + 1 2 sin θ − 1 2 cos θ sin θ 
= 1 2 sin θ 

area of sector OAB  = 
θ 
2π 

π(1)2 = 1 2 θ 

area(�OAC) = 1 2 (1) tan θ = 1 2 tan θ 

From the geometry of a circle, we know that: 

. 
1 
2 sin θ <  1 2 θ <  1 2 tan θ 

sin θ <  θ <  
sin θ 
cos θ 

1 < 
θ 

sin θ 
< 

1 

cos θ 

1 > 
sin θ 

θ 
> cos θ 
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and as .θ → 0, .cos θ → 1 and . 
sin θ 

θ 
→ 1. This holds, even for negative values of . θ , 

because: 

. 
sin(−θ)  

−θ 
= 

− sin θ 
−θ 

= 
sin θ 

θ 
Therefore: 

. lim 
θ →0 

sin θ 
θ 

= 1 



BIntegrating . cosn θ 

We start with: 

. 

∫
cosn x dx  =

∫
cos x cosn−1 x dx  

Let .u = cosn−1 x and .v′ = cos x , then: 

. u′ = −(n − 1) cosn−2 x sin x 

and 
. v = sin x . 

Integrating by parts: 

. 

∫
uv′ dx  = uv −

∫
v u′ dx  + C

∫
cosn−1 x cos x dx  = cosn−1 x sin x +

∫
sin x (n − 1) cosn−2 x sin x dx  + C 

= sin x cosn−1 x + (n − 1)
∫

sin2 x cosn−2 x dx  + C 

= sin x cosn−1 x + (n − 1)
∫

(1 − cos2 x) cosn−2 x dx  + C 

= sin x cosn−1 x + (n − 1)
∫

cosn−2 dx  − (n − 1)
∫

cosn x dx  + C 

n
∫

cosn x dx  = sin x cosn−1 x + (n − 1)
∫

cosn−2 dx  + C
∫

cosn x dx  = 
sin x cosn−1 x 

n
+ 

n − 1 
n

∫
cosn−2 dx  + C 

where . n is an integer, .�= 0. 
Similarly: 

. 

∫
sinn x dx  = −  

cos x sinn−1 x 

n
+ 

n − 1 
n

∫
sinn−2 dx  + C 
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For example 

.

∫
cos3 x dx  = 

sin x cos2 x 

3
+ 2 3 sin x + C 
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adding matrix, 179 
addition, 166 
complex conjugate, 168 
conjugate matrix, 180 
definition, 165 
division, 168 
inverse, 169 
inverse matrix, 181 
matrix, 178 
modulus, 168 
norm, 168, 180 
ordered pair, 171 
product, 167 
product matrix, 179 
quotient matrix, 182 
square, 167 
subtracting matrix, 179 
subtraction, 166 

Composite number, 25 
Compound-angles, 63 
Continuity, 327, 469 
Continuous 
functions, 522 
random variable, 384 

Control 
point, 317, 326 
vertex, 317 

Convex hull, 317, 422 
Coordinates 
barycentric, 407 
Cartesian, 71 
cylindrical, 79, 82 
polar, 77, 81 
spherical polar, 78, 82 

Correlation, 393 
coefficient, 393 

Cosecant, 58 
Cosine, 58 
rule, 62, 463 

Cotangent, 58 
Counting, 6 
Covariance, 392 
Cross product, 117 
Cubic 
Bernstein polynomials, 317 
Bézier surface patch, 332 
equation, 472 
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function, 72 
interpolant, 318 
interpolation, 299 

Curves and patches, 311 
Cylindrical coordinates, 79, 82 

D 
Data set, 380 
Decimal 
number, 11 
system, 7 

Definite integral, 546 
Degree, 55 
Dependent 
variable, 44 

Derivative, 469, 476 
graphical interpretation, 475 
partial, 510 
total, 518 

Descartes, René, 34, 71 
Determinant, 85, 133, 230 
complex, 100 
first-order, 98 
fourth-order, 98 
properties, 99 
second-order, 87, 98 
third-order, 89, 96, 98 
value, 97 

Diagonal matrix, 150 
Difference of two squares, 40 
Differential, 476 
Differentiating, 480 
arccos function, 501 
arccot function, 502 
arccsc function, 502 
arcsec function, 502 
arcsin function, 501 
arctan function, 501 
cosh function, 504 
cot function, 500 
csc function, 498 
exponential functions, 494 
function of a function, 481 
function products, 484 
function quotients, 488 
hyperbolic functions, 503 
implicit functions, 491 
logarithmic functions, 496 
partial, 511 
sec function, 499 
sine function, 483 

sinh function, 504 
sums of functions, 480 
tan function, 497 
tanh function, 504 
trigonometric functions, 497 

Dihedral angle of a dodecahedron, 571 
Dirac, Paul, 3 
Direction cosines 
2D, 215 
3D, 217 

Discontinuous function, 560 
Discrete, random variable, 384, 387 
Dispersion, 388 
Distance between two points, 75, 76 
Distributive law, 10 
Divisibility tests, 18 
Division 
algebra, 264 
complex number, 168 

Dodecahedron, 571 
Domain, 45, 59 
Dot product, 114 
Double-angle, 278, 279 
identities, 64 

Duality, 452 

E 
Elements, 5, 6 
Ellipse equation, 312 
Equation 
explicit, 43 
implicit, 43 
linear, 86 

Equilateral triangle, 339 
Euclid, 25, 28, 29 
Euler 
angles, 219 
rotations, 207 

Euler, Leonhard, 43 
Even function, 47, 563 
Expectation, 385 
Expected value, 385 
Explicit equation, 43 
Exterior angle, 337 

F 
Fermat 
last theorem, 76 

Fermat, Pierre de, 71, 76 
Feynman, Richard, 253 
Finite set, 6 
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First minor, 94 
Fourier, Joseph, 559 
Fourier series, 559 
Fourth-order determinant, 98 
Frequency 
histogram, 381 
table, 380 

Frobenius, Ferdinand Georg, 264 
Function, 43, 474 
continuous, 522 
cubic, 72, 472 
discontinuous, 560 
domain, 45 
even, 47, 563 
graph, 72 
linear, 72 
notation, 44 
odd, 47, 564 
odd even, 561 
power, 48 
quadratic, 72, 471 
range, 45 
second derivative, 510 
triangular, 565 
trigonometric, 72 

Function of a function 
differentiating, 481 

Fundamental theorem of arithmetic, 25 
Fundamental theorem of calculus, 547 

G 
Gauss, Carl, 27, 87, 127 
Gaussian 
distribution, 390 
elimination, 151 

General form of a line equation, 573 
Geometric 
algebra, 435 
continuity, 327 
product in 2D, 441 
product in 3D, 443 
transform, 193 

Gibbs, Josiah, 24, 104 
Gibbs, Josiah Willard, 246 
Gimbal lock, 210 
Gödel, Kurt, 34 
Goldbach, Christian, 27 
Goldbach conjecture, 27 
Golden section, 337 
Grades, 447 
Grassmann, Hermann Günther, 104, 246 

Graves, John, 24, 271 

H 
Half-angle 
identities, 65 

Half-open interval, 44 
Hamilton’s rules, 243, 454 
Hamilton, William Rowan, 23, 104, 118, 279 
Hermite, Charles, 303 
Hermite interpolation, 303 
Hessian normal form, 345, 353 
Hestenes, David, 435 
Hexadecimal number, 13 
Higher derivatives, 505 
Highest common factor, 30 
Homogeneous coordinates, 80, 196 

I 
Identity matrix, 202 
Image space, 216 
Imaginary number, 21 
Implicit equation, 43 
Incompleteness theorems, 34 
Indefinite integral, 521 
Independent 
variable, 44 

Indeterminate form, 7 
Indices, 40 
laws of, 40 

Infinitesimals, 469 
Infinity, 30 
of primes, 28 

Inner product, 439, 448 
Integer, 19 
number, 6 

Integral 
definite, 546 
indefinite, 521 

Integrating, 477 
arccos function, 501 
arccot function, 502 
arccsc function, 502 
arcsec function, 502 
arcsin function, 501 
arctan function, 501 
by parts, 531 
by substitution, 535 
completing the square, 526 
cot function, 500 
csc function, 498 
difficult functions, 523 
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exponential function, 496 
integrand contains a derivative, 528 
logarithmic function, 496 
partial fractions, 539 
radicals, 526 
sec function, 499 
tan function, 497 
techniques, 522 
trigonometric identities, 524 

Intercept theorems, 336 
Interior angle, 337 
Interpolating 
quaternions, 307 
vectors, 304 

Interpolation, 295 
cubic, 299 
linear, 296, 416 
non-linear, 298 
trigonometric, 298 

Intersecting 
circle and line, 354 
line and sphere, 580 
line segments, 349 
planes, 368 
straight lines, 348, 357 

Interval, 44 
closed, 44 
half-open, 44 
open, 44 

Inverse 
complex number, 169 
matrix, 142 
of a vector, 449 
quaternion, 261, 268 
trigonometric function, 59 

Irrational number, 20 
Isosceles triangle, 338 

K 
Kronecker, Leopold, 2, 19 

L 
Lambert’s law, 115 
Laplace 
expansion, 97, 147 

Laplace, Pierre-Simon, 86, 97, 147 
Least squares, 396 
Legendre, Adrien-Marie, 27 
Leibniz, Gottfried, 43, 86 
Lerp, 416 
L’Hôpital, Guillaume de, 86 

Lighting calculations, 115 
Limits, 469, 474 
Linear 
equations, 86, 90 
function, 72 
interpolation, 296, 316, 322, 416 

Linearly independent, 86 
Lobachevsky, Nikolai, 246, 335 
Local coordinates, 407 
Logarithms, 41 
Lowest common multiple, 30 

M 
Mass points, 410, 426 
Matrices, 97, 127, 196, 263 
addition, 137 
antisymmetric, 136 
augmented, 150 
determinant, 133 
diagonal, 150 
dimension, 130 
inverse, 142 
multiplication, 129 
notation, 130, 196 
null, 131 
order, 130 
orthogonal, 149 
products, 138 
rectangular, 141 
scalar multiplication, 138 
singular, 142 
skew-symmetric, 136 
square, 95, 130, 140 
subtraction, 137 
symmetric, 134 
trace, 132 
transpose, 133 
unit, 131 

Maxima, 508 
Mean, 382 
population, 382 
sample, 382 

Median, 338, 383 
Members, 5, 6 
Mersenne, Marin, 28 
Mersenne prime, 28 
Minima, 508 
Mixed partial derivative, 514 
Möbius, August, 196, 407 
Mode, 384 
Multiple-angle 
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identities, 65 
Multivectors, 447 

N 
Napier, John, 41 
Natural number, 18 
Nearest point to a line, 576 
Negative number, 8 
Non-associative algebra, 24 
Non-commutative algebra, 23, 24 
Non-linear interpolation, 298 
Non-rational B-splines, 324 
Non-uniform 
B-splines, 328 
rational B-splines, 328 

Non-Uniform Rational B-Splines (NURBS), 
329 

Norm 
complex number, 168, 180 
ordered pair, 174 
quaternion, 257, 267 
quaternion product, 261 

Normal distribution, 390 
table, 391 

Normalised quaternion, 257 
Notation, 3 
Null matrix, 131 
Number 
algebraic, 20 
arithmetic, 9 
binary, 12 
Cayley, 24 
complex, 22 
composite, 25 
hexadecimal, 13 
imaginary, 21 
integer, 6, 19 
irrational, 20 
line, 8 
Mersenne, 28 
natural, 18 
negative, 8, 9 
octal, 12 
perfect, 29 
positive, 8, 9 
prime, 25 
rational, 6, 20 
real, 6, 20 
transcendental, 21 
triangular, 29 

O 
Object space, 216 
Octal number, 12 
Octave, 24, 271 
Octonion, 23 
Odd function, 47, 564 
One-to-one correspondence, 30 
Open interval, 44 
Ordered pair, 171, 248, 251 
absolute value, 174 
addition, 172 
complex conjugate, 175 
inverse, 176 
modulus, 174 
multiplying by a scalar, 172 
norm, 174 
product, 171, 172 
quotient, 175 
square, 173 
subtraction, 172 

Oriented axes, 72 
Origin, 72 
Orthogonal 
matrices, 149, 219, 263 

Outer product, 439, 448 
3D, 445 
imaginary properties, 450 

P 
Parallelogram, 341 
Partial derivative, 510 
chain rule, 517 
first, 512 
mixed, 514 
second, 512 
visualising, 513 

Pascal, Blaise, 50, 71 
Pascal’s triangle, 50, 313, 474 
Pearson, Karl, 393 
Pearson’s product-moment coefficient, 393 
Peirce, Benjamin, 127 
Peirce, Charles, 127 
Perimeter relationships, 66 
Perspective projection, 231 
Pitch, 208, 219 
Placeholder, 7 
Planar surface patch, 329 
Plane equation, 360 
Cartesian form, 360 
from three points, 366 
general form, 362 
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parametric form, 363 
Plücker, Julius, 196 
Poincaré, Henri, 2 
Point inside a triangle, 350, 420 
Point reflected in a line, 578 
Polar 
coordinates, 77, 81 
vector, 253 

Polynomial equation, 20 
Population mean, 382 
Position vector, 112 
Power 
functions, 48 

Prime 
number distribution, 27 
numbers, 25 

Probability 
variance, 387 

Product 
complex number, 167 
pure quaternion, 258 
quaternion, 258, 267 
unit-norm quaternion, 259 

Pseudoscalars, 447 
Pseudovector, 253 
Pure quaternion, 253 
product, 258 

Pythagorean triples, 75 

Q 
Quadratic 
Bézier curve, 316 
Bézier surface patch, 330 
equation, 36 
function, 72, 471 

Quadrilateral, 340 
Quaternion, 23, 243, 271, 454 
addition, 251, 266 
additive form, 254 
algebra, 264 
binary form, 255 
conjugate, 255 
interpolating, 307 
inverse, 261, 268 
matrix, 263, 281 
norm, 257, 267 
normalised, 257 
product, 249, 250, 258, 259, 267, 272 
pure, 253 
square, 260, 268 
subtraction, 251 

unit, 248, 249, 254 
unit-norm, 258, 267 

Quotient 
quaternion, 262 

R 
Radian, 55, 336 
Radius of the inscribed circle, 425 
Random variable, 384 
Range, 45, 59, 384 
Rational 
B-splines, 324 
coefficients, 20 
number, 6, 20 

Ratios, 409 
Real 
quaternion, 252 

Real number, 6, 20 
Rectangular matrix, 141 
Recursive Bézier curve, 320 
Reduced Row Echelon Form (RREF), 152 
Reflecting a vector, 465 
Reflections, 454 
Regression, 395 
line, 395 

Regular polygon, 341 
Rhombus, 341 
Riemann, Bernhard, 335, 556 
Riemann sum, 556 
Right-hand rule, 122 
Right triangle, 339 
Rodrigues, Olinde, 246, 279 
Roll, 208, 219 
Rotating about an axis, 211, 222 
Rotation, 454 
matrix, 178 

Rotors, 458 
Row vector, 106, 131, 138, 196 
Russell, Bertrand, 34 

S 
Sample mean, 382 
Sarrus, Pierre, 96 
Sarrus’s rule, 96, 133 
Scalar product, 113, 114 
Secant, 58 
Second derivative, 510 
Second-order determinant, 87 
Seki, Takakazu, 86 
Series, 48 
Servois, François-Joseph, 246 
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Set, 5, 6 
well-ordered, 6 

Sine, 58 
differentiating, 483 
rule, 62, 461 

Singular matrix, 142 
Skew-symmetric matrix, 136 
Space partitioning, 346 
Sphere touching a plane, 584 
Spherical polar coordinates, 78, 82 
Square 
complex number, 167 
quaternion, 260, 268 

Square determinant 
order, 97 

Square matrix, 95, 130, 140 
Square-root of i 
complex number, 170 
matrix, 182 
ordered pair, 176 

Squarewave function, 560 
Standard deviation, 388 
Standard normal distribution, 390 
Statistics, 379 
Stem and leaf diagram, 381 
Straight line equation, 356 
Subset, 6 
Subtracting 
complex numbers, 166 
matrices, 179 
ordered pairs, 172 
quaternions, 251 

Surface patch, 329 
Symmetric 
functions, 436 
matrix, 134 

T 
Tait, Peter Guthrie, 244 
Tangent, 58 
Thales, 336 
Theorem of 
Pythagoras, 58, 75, 76, 340 
Thales, 339 

Third-order determinant, 89, 96 
3D 
complex numbers, 118 
coordinates, 76 
reflections, 455 
rotation transform, 207 
transforms, 206 

vector, 108 
Three intersecting planes, 370 
Total derivative, 518 
Trace, 132 
Transcendental number, 21 
Transform 
affine, 203 
2D, 194 
2D reflection, 195, 199, 204 
2D rotation about a point, 205 
2D scaling, 194, 198 
2D shearing, 200 
2D translation, 194, 198 
3D reflection, 213 
3D scaling, 206 
3D translation, 206 

Transforming vectors, 228 
Transpose matrix, 133 
Trapezoid, 340 
Triangle 
centre of gravity, 338 
equilateral, 339 
isosceles, 338 
right, 339 

Triangular 
function, 565 
numbers, 29 

Trigonometric 
function, 56, 72 
identities, 61 
interpolation, 298 
inverse function, 59 
ratios, 56 

Trigonometry, 55 
Trivector, 446, 447 
2D 
analytic geometry, 344 
polygons, 73 
reflections, 455 
rotations, 456 
scaling transform, 203 

Two’s complement, 17 

U 
Uniform B-splines, 325 
Unique factorisation theorem, 25 
Unit 
matrix, 131 
normal distribution, 390 
normal vector, 122 
quaternion, 254 
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vector, 112 
Unit-norm 
quaternion, 258, 259, 267 

V 
Variance, 385 
probability, 387 

Vector, 104 
addition, 111 
basis, 105 
Cartesian, 113 
column, 106, 128, 131, 138, 196 
dimension, 106 
interpolating, 304 
magnitude, 108 
normalising, 112 
normal to a triangle, 572 
position, 112 
product, 113, 117 
row, 106, 131, 138, 196 
scaling, 110 
space, 105 
subtraction, 111 
3D, 108 
transforming, 228 

unit, 112 
Vertices, 73 
Virtual camera, 216 
Volume of a tetrahedron, 430 

W 
Warren, John, 104 
Weierstrass, Karl, 469 
Well-ordered set, 6 
Wessel, Caspar, 103 
Whitehead, Alfred North, 34 
Wiles, Sir Andrew John, 76 
Wilson, Edwin Bidwell, 104, 246 
Wittgenstein, Ludwig, 2 
Witt, Jan de, 86 
World space, 216 

X 
XY-plane, 71 

Y 
Yaw, 208, 219 

Z 
Zero, 7 
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