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Preface

This textbook is written for an introductory, or beginning, course in
differential equations. It is more concise than most textbooks at this level.
The reason is that most books are encyclopedic, and this enables them
to also be used in more advanced courses. The approach taken here is to
concentrate on the intended audience, and leave the additional material to
textbooks written explicitly for the more advanced, or specialized, courses
(and there are some very good ones available). It should also be pointed
out that the greater length means that they are more expensive.

One of the principal objectives of the text is fairly simple, and it
is, given a differential equation, find the solution. Most of the text is
dedicated to doing exactly this. The reason there is more than one chapter
is that the way you solve the equation depends on what type of equation
it is. A second important objective is to be able to determine the basic
geometrical properties of the solution, and to be able to do this from the
differential equation. This is important because real-world problems often
involve equations that are difficult to solve, or you can solve them but the
formula for the solution is complicated. In such cases, to be able to infer
the basic properties of the solution directly from the differential equation
is invaluable. If you want an example of what this means, read Section
2.4.

There are students, even very good ones, who do not read a lot of
what is written in a mathematics textbook. If you are one of them, here
are some tips. First, any text that is in bold font, make sure you read
what it says. As a second tip, the table below is a listing of the 10 most
often used words or phrases in the text related to differential equations.
Given that there are only about 230 pages of text, these words are used
a lot. Make sure, when the word or phrase is first used, that you know
what it means.

The prerequisites for this text vary with the chapter. The basic re-
quirement is calculus, and it is essential that this includes integration
rules such as integration by parts and partial fractions. The material re-
quiring the calculus of vector-valued functions is in Chapters 4 and 5, and
at the end of Chapter 6. These chapters also require an understanding
of a few of the elementary properties of matrices, and a short summary

v



vi Preface

Word or Expression Used

solution(s) 840

differential equation(s) 270

linear/nonlinear 220

steady state 220

stable/unstable/stability 205

eigenvalue(s) 160

general solution 185

homogeneous/inhomogeneous 110

initial value problem/IVP 105

initial condition(s) 105

Table 1. Approximate number of times the word, or phrase, is used in this textbook.

of what you need to know is given in Appendix A. It is not necessary to
have taken a course in matrix algebra. However, there is a fundamental
connection between differential equations and linear algebra, and this con-
nection is used throughout this textbook. The material is written so it is
self-contained, so a previous course in linear algebra is not necessary. You
will see comments, such as “if you recall from linear algebra,” which are
used to indicate where the connections are, but the material required for
differential equations is then written out explicitly. Occasionally there
are facts, or results, from linear algebra that are needed and they are
stated without proof. This is also done with other topics, and in such
cases references are often given where you can find out more about the
subject.

A computer, or computer software, are not required anywhere in this
text. There are, however, a small number of exercises that require you to
evaluate a mathematical expression using a calculator.

There is a web-page for the text, and it is reachable via the author’s
GitHub repository (github.com/HolmesRPI/IntroDiffEqs). It includes
plots needed for some of the exercises, videos, and, assuming there are
any, a listing of the typos.

I would like to thank Peter Kramer for numerous, very useful, sugges-
tions on how to improve the text. Also, as usual, I would like to thank
those who developed and have maintained TeXShop, a free and very good
TeX previewer.

Mark H. Holmes
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
June, 2023



Chapter 1

Introduction

We begin with a question: why are most students who are majoring
in engineering or science required to take an entire course dedicated to
something called differential equations?

We’ll start to answer this by giving a couple of examples where they
arise, and this will also provide an opportunity to introduce some of the
terminology used in the subject.

Example 1: Rate Laws

These describe the fluctuations, or changes, in something. The something
in this case could be the concentration of a chemical, a population of
animals, or perhaps the temperature of an object. As a simple example,
a radioactive isotope is unstable, and will decay by emitting a particle,
transforming into another isotope. The assumption usually used to model
such situations is that the rate of decrease in the amount of radioactive
isotope is proportional to the amount currently present. To translate this
into mathematical terms, let N(t) designate the amount of the radioactive
material present at time t. In this case we obtain the rate equation

dN

dt
= −kN, for 0 < t, (1.1)

where k is a positive constant. This is a differential equation for N .
Usually one knows the amount N0 of the isotope at the beginning, which
gives us the requirement that

N(0) = N0. (1.2)

Introduction to Differential Equations, M. H. Holmes, 2023
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2 Chapter 1. Introduction

This is known as an initial condition. Together, (1.1) and (1.2) form
what is called an initial value problem (IVP). �

Example 2: Mechanics

One of the biggest generators of differential equations is Newton’s second
law, which states that F = ma. Any situation, electrical, mechanical or
otherwise, involving non-static forces will almost inevitability result in
having to solve a differential equation. To illustrate, consider the simple
case of dropping an object off a building. If x(t) is the distance of the
object from the ground, then its velocity is v = x′(t), and its acceleration
is a = x′′(t). If the forces on the object are gravity Fg = −mg, and air
resistance Fr = −cv, then F = Fg+Fr. Together, these expressions result
in the following differential equation for x(t):

m
d2x

dt2
= −mg − c

dx

dt
. � (1.3)

The differential equations in (1.1) and (1.3) have a few things in com-
mon, such as there is one independent variable, t, and one dependent vari-
able, N and x. There are also differences, and an example is that (1.3)
involves the second derivative and (1.1) only involves the first derivative.
It is important to be able to recognize these differences as they are often
used in this textbook to determine how to solve the problem.

1.1 Terminology for Differential Equations

Problems involving differential equations can involve a single equation,
or several equations. They can also have one independent variable, or
several. There are other differences, and to help illustrate some of the
possibilities we will use the following examples.

Example 1:
d2y

dt2
− 2

dy

dt
+ 4ty = 0 Example 2:

∂u

∂t
− 2

∂u

∂x
= u3

Example 3:
du

dt
= u+ v + 1

dv

dt
= −u+ v

Dependent variable(s): This is the variable(s) being solved for.

Example 1: y Example 2: u Example 3: u and v
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Independent variable(s): These are usually time (t) and/or space (x).

Example 1: t Example 2: x and t Example 3: t

Order: The order of the highest derivative in the equation (or equations).

Example 1: second-order Example 2: first-order
Example 3: first-order

Linear or Nonlinear: A differential equation is linear if it is a linear
expression of the dependent variable and its derivatives, otherwise
it is nonlinear.

Example 1: linear Example 2: nonlinear (because of the u3)
Example 3: linear

ODE or PDE: If there is one independent variable, then it is an ordi-
nary differential equation (ODE). If there is more than one inde-
pendent variable, then it is a partial differential equation (PDE).

Example 1: ODE Example 2: PDE Example 3: ODEs

Homogeneous or Inhomogeneous: A linear differential equation is
homogeneous if the identically zero function is a solution. Oth-
erwise, it is inhomogeneous.

Example 1: homogeneous since y ≡ 0 is a solution

Example 2: inapplicable since the equation is not linear

Example 3: inhomogeneous since u ≡ 0 and v ≡ 0 is not a solution

1.2 Solutions and Non-Solutions of Differential Equations

One of the central questions of this textbook is how to find the solution
of a differential equation. The examples below are about the reverse
situation, where a function is given and the question is whether it is a
solution of a particular differential equation.

Example 1: Show that y = te−2t is a solution of y′ = −2y + e−2t.

Answer: Since

y′ = e−2t − 2te−2t = (1− 2t)e−2t,

−2y + e−2t = −2te−2t + e−2t = (1− 2t)e−2t,

it follows that y′ = −2y + e−2t (i.e., y is a solution). �
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Example 2: For what value(s) of r and c, if any, is y = cert a solution
of the IVP: y′ + y = 0, where y(0) = 3?

Answer: Since y′ = rcert, then from the differential equation we
require that rcert+ cert = 0. This can be written as (r+1)cert = 0.
Given that ert is never zero, we conclude that either c = 0 or else
r = −1. From the initial condition y(0) = 3, we need c = 3, and so
this means that r = −1. �

Example 3: For what value(s) of r, if any, is y = ert a solution of the
equation y′′ − y′ − 6y = 0?

Answer: Since y′ = rert, and y′′ = r2ert, then from the differential
equation we require that (r2− r− 6)ert = 0. Given that ert is never
zero, we conclude that r2−r−6 = 0. Solving this, we get that r = 3
and r = −2 are the only values for which y = ert is a solution. �

Example 4: For what value(s) of r and c, if any, is y = ert a solution of
y′ = 2y3?

Answer: Since y′ = rert, then from the differential equation we
require that rert = 2e3rt. Given that ert is never zero, we need
r = 2e2rt. The left hand side is constant. The only way to have
the right hand side a constant is to take r = 0. In this case, the
differential equation becomes 0 = 2. This is not possible, and so the
answer is that no values result in a solution. �

Exercises

1. Show that the given function y(t) is a solution of the given differential
equation.

a) y = e2t − 1, y′ = 2y + 2

b) y = te−t, y′ + y = e−t

c) y = cos(3t), y′′ = −9y

d) y = e3t, y′′ + y′ − 12y = 0

e) y = et + 1, y′′ + 2y′ − 3y = −3

f) y = 1
1+t , y′ + y2 = 0

g) y = tan
(

1
3 t+ 1

)

, 3y′ = 1 + y2

h) y = ln(1 + t2) , y′ = 2te−y

2. For what value(s) of r, if any, is y = ert a solution of the differential
equation?

a) y′ = −2y

b) 3y′ = y

c) y′ = y + 1

d) y′′ + 4y′ = 0

e) 2y′′ + 5y′ − 3y = 0

f) y′′ − 4y′ + 4y = 0

g) y′′ + y′ + y = e−3t

h) y′′ − 3y′ + y = 1

i) y′ = −2y3

j) y′ = y2



Exercises 5

3. For what value of r and c is y = cert a solution of the IVP?

a) y′ = −2y, y(0) = 1

b) y′ + y = 0, y(0) = −1

c) 3y′ − y = 0, y(0) = 3

d) y′ − y = 0, y(0) = −1

e) 5y′ = −2y, y(0) = −7

f) y′ + 4y = 0, y(0) = 3

4. The following are linear and homogeneous first-order differential equa-
tions. The given function y1(t) is a solution, and you are to show that
y = cy1 is a solution for any value of the constant c.

a) y′ = 2y, y1 = e2t

b) y′ + y = 0, y1 = e−t

c) y′ − 4y = 0, y1 = e4t

d) 3y′ = y, y1 = et/3

5. The following are linear and homogeneous second-order differential
equations. The given functions y1(t) and y2(t) are solutions, and you
are to show that y = c1y1 + c2y2 is a solution for any value of the
constants c1 and c2.

a) y′′ − 3y′ + 2y = 0,
y1 = e2t, y2 = et

b) y′′ − y′ − 2y = 0,
y1 = e2t, y2 = e−t

c) y′′ + y′ = 0,
y1 = e−t, y2 = 1

d) y′′ + 2y′ + 5y = 0,
y1 = e−t cos(2t)
y2 = e−t sin(2t)

Important Conclusion: Problems 4 and 5 are demonstrations of the
fact that if y1(t) and y2(t) are solutions of a linear and homogeneous
differential equation, then c1y1(t)+c2y2(t) is a solution of the equation
for any value of c1 and c2. This is known as the principle of super-
position, and it holds for all linear homogeneous differential equations
(ODEs or PDEs). Moreover, as demonstrated in the following exercise,
this does not (usually) hold for a nonlinear differential equation.

6. Both y1(t) and y2(t) are solutions of the given nonlinear differential
equation. Show that (i) y = c1y1(t) is not a solution unless c1 = 1,
and (ii) y = c1y1+ c2y2 is not a solution if c1 and c2 are both nonzero.

a) y′ = t/(1 + y),
y1 = −1 + t, y2 = −1− t

b) y′ =
√
1 + y,

y1 =
1
4 t

2 + t, y2 =
1
4 t

2 + 2t+ 3

7. Fill out the table on the next page. Assume that any constants in the
equation(s) are nonzero. Also, in the last column, the answer Inap-
plicable (IA) is possible. Reference for Schrödinger’s equation image:
Eigler [2020].
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Chapter 2

First-Order Equations

This chapter concerns solving differential equations of the form

dy

dt
= f(t, y),

where f(t, y) and the partial derivative fy(t, y) are continuous. There
are no known analytical methods that can solve the general version of
this problem. Consequently, assumptions have to be made on f(t, y) to
be able to derive a solution. The two more useful assumptions are that
f(t, y) is separable and the other is that it is linear. Both are considered
in this chapter. The fact is, however, that for many real world problems
it is not possible to solve the differential equation by hand. Consequently,
the ability to determine the properties of the solution, without actually
solving the problem, becomes essential. What this entails is introduced
in Section 2.4.

2.1 Separable Equations

To introduce this method we begin by considering the differential equation

dy

dt
= 3y2. (2.1)

We are going to treat the derivative as if it were a fraction, and rewrite
the above equation as

dy

y2
= 3dt. (2.2)

So, the variables have been separated in the sense that all of the y terms
are on the left hand side, and the t terms are on the right. We now

Introduction to Differential Equations, M. H. Holmes, 2023
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8 Chapter 2. First-Order Equations

integrate both sides, which gives
∫

dy

y2
=

∫

3dt.

Carrying out the integrations, and including the usual integration con-
stant, we have

−1

y
= 3t+ c. (2.3)

Solving this for y, we obtain the solution

y = − 1

3t+ c
. (2.4)

The last step is to check on whether the separation of variables step might
involve dividing by zero. This happens for (2.2) when y = 0. Moreover,
the constant function y = 0 is a solution of (2.1), and it is not included
in (2.4). Consequently, another solution of the differential equation is

y = 0 . (2.5)

The method used to solve (2.1) is rather simple, but it contains the
questionable step of splitting the derivative to obtain (2.2). To explain
why this is possible, note that (2.1) can be written as y−2 dy

dt = 3. Using

the chain rule, this can be written as − d
dt(y

−1) = 3. Integrating this
equation yields (2.3). So, the splitting the derivative step is effectively a
compact version of using the chain rule.

2.1.1 General Version

To explain how the method can be used for other problems, suppose the
differential equation to solve is

dy

dt
= f(t, y). (2.6)

The method requires that it is possible to find a factorization of the form
f(t, y) = F (t)G(y). This means that it is possible to write the differential
equation as

dy

dt
= F (t)G(y). (2.7)

Separating variables gives

dy

G(y)
= F (t)dt,

and integrating we get
∫

dy

G(y)
=

∫

F (t)dt. (2.8)
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In theory, you carry out the above integrations, and then solve for y.
How difficult this might be depends on how complicated the y integral
is, and the examples that follow illustrate some of the complications that
can arise. It is also important to note that the above method requires
that G(y) 6= 0. Consequently, in addition to the solutions that come from
(2.8), you must include as solutions any constant that satisfies G(y) = 0.

Example 1: Find all solutions, obtained using separation of variables,
of 4y′ = −y3.

Answer: Since f(t, y) = −1
4y

3, we can take F (t) = 1
4 and G(y) =

−y3. So, (2.8) becomes

−
∫

dy

y3
=

∫

1

4
dt.

Integrating gives us
1

2y2
=

1

4
t+ c,

which is rewritten as

y2 =
2

t+ 4c
.

From this we obtain the two solutions

y = ±
√

2

t+ 4c
. (2.9)

To check on the G(y) = 0 solutions, solving G(y) = 0 gives y = 0.
This constant function is not included in the above expressions for
y, so it is a third solution of the equation. �

Example 2: Find the solution of the IVP: 4y′ = −y3, where y(0) = −3.

Answer: The three solutions of the differential equation were de-
rived in the previous example. Because the initial condition requires
the solution to be negative, the solution we need is

y = −
√

2

t+ 4c
.

Setting y = −3 and t = 0 in this equation gives 3 = 1/
√
2c, which

means that c = 1/18. Therefore, the solution is

y = −
√

18

9t+ 2
. �
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Example 3: Is y′ + y = t a separable equation?

Answer: No. For this equation, f(t, y) = t−y, and it is not possible
to factor this as f(t, y) = F (t)G(y). How to solve this equation is
explained in the next section. �

Example 4: Solve
dw

dx
=

x

1 + w
, where w(0) = −2.

Answer: In this problem the independent variable is x and the
dependent variable is w. Separating variables, so (1+w)dw = xdx,
and then integrating gives

∫

(1 + w)dw =

∫

xdx.

Carrying out the integrations we get that

w +
1

2
w2 =

1

2
x2 + c.

To satisfy the initial condition, substitute w = −2 and x = 0 into
the above equation, from which we get that c = 0. This leaves
w + 1

2w
2 = 1

2x
2, or equivalently, w2 + 2w − x2 = 0. This is a

quadratic equation in w, and solving it we get the two solutions

w = −1±
√

1 + x2.

The initial condition is needed to determine which sign to use, and
since w(0) = −2 then we need the minus sign. Therefore, the solu-
tion of the IVP is w = −1−

√
1 + x2. �

Example 5: Solve y′ = − y

1 + y
, where y(0) = 1.

Answer: Separating variables yields

1 + y

y
dy = −dt.

Since (1 + y)/y = 1/y + 1, and y(0) > 0, then integrating we get
that

y + ln y = −t+ c.

It is not possible to solve this for y as in the previous examples,
without resorting to more advanced mathematical methods. For
this reason, this is an example of what is called an implicit solu-
tion, and they are very common when solving nonlinear differential
equations. Even so, it is still possible to find c from the initial con-
dition. Substituting y = 1 and t = 0 into the above equation we get



2.1. Separable Equations 11

that c = 1. Therefore, the solution of the IVP is defined implicitly
through the equation

y + ln y = −t+ 1. � (2.10)

A few comments need to be made about separation of variables before
ending this section.

Integration Constant: The integration constant plays an essential role
in the solution of a differential equation. It is useful to be aware that
there are different ways you can write it. As an example, instead of
(2.9), you can write the solution as

y = ±
√

2

t+ c̄
,

where c̄ = 4c. Similarly, if the solution is found to be

y =
3t− 2c+ 4

t+ 2c− 4
,

you can write it as

y =
3t− c̄

t+ c̄
, (2.11)

where c̄ = 2c− 4. For both of these examples, the solution contains
one undetermined constant, just as in the original version of each
solution. It should also be mentioned that this simplification is often
used when giving the answers to the exercises. Moreover, instead of
(2.11), the answer will likely be written as

y =
3t− c

t+ c
.

Linear or Nonlinear: The method works on linear and nonlinear first-
order differential equations. However, it does not work on every
linear or nonlinear equation.

Non-uniqueness of Factorization: The factorization f(t, y) = F (t)G(y)
is not unique. For example, for f(t, y) = y + ty you can take
F (t) = 1 + t and G(y) = y. You can also take F (t) = 1

2(1 + t)
and G(y) = 2y. It makes no difference which one you use, it is just
required that f(t, y) = F (t)G(y). Any such factorization will lead,
eventually, to the same, or an equivalent, solution of the differential
equation.



12 Chapter 2. First-Order Equations

Existence and Uniqueness: When solving an IVP there is always the
question of whether there is a solution (existence), or whether there
is more than one solution (uniqueness). As it turns out, there are
problems that have no solution (see Exercise 6(a)), or have multiple
solutions (see Exercise 6(b)). It is possible to guarantee a unique
solution by augmenting the continuity assumption we have made
on f(t, y) and fy(t, y). The formal statement of the requirements,
and the conclusions, are contained in what is known as the Picard-
Lindelöf theorem. This is beyond the purview of this text, but it
can be found in most upper-division textbooks on ODEs.

Exercises

1. Find all of the solutions, obtained using separation of variables, of the
given differential equation.

a) y′ = −3y4

b) y′ = y3e−t

c) y′ + y2 sin t = 0

d) 2y′ = t/(y − 3)

e) y′ = −(2 + t)ey

f) (1 + t)y′ = −e3y

g) y′ = −e2t+4y

h) y′ = −2y

i) y′ + (1 + 3y)3 = 0

j) y′ = y2 + 4y + 4

k) 2y′ = y2 − 6y + 9

l) 3y′ = y2 + 1

m) y′ + tey = te−y

n) y′ − e−y = 1

o) y′ = t(y + 1/y)

2. Find the solution of the IVP.

a) y′ = −3y3, y(0) = 5

b) y′ = −2y3, y(0) = 0

c) (1 + t)y′ = 3 + y, y(0) = 4

d) (4 + et)y′ + ety2 = 0, y(0) = 1

e) y′ = te−y, y(0) = −1

f) y′ =
1

2 + y
, y(0) = 0

g) y′ = 1 + cos(y), y(0) = π/2

h) y′ = y2 − 5y, y(0) = 1

i) y′ + e−2y = 1, y(0) = 1

j) y′ = 1/(e−y + ey), y(0) = 0

k) y′ =
√

1− y2, y(0) = 0
Hint: y′ ≥ 0

3. Find the solution of the IVP. In these problems, the independent vari-
able is not t and the dependent variable is not y.

a)
dq

dr
= −7q3, q(0) = −1

b)
dp

dr
= −4p3, p(0) = 0

c) 3
dh

dτ
= 2 + h, h(0) = 2

d)
dh

dx
= h2 − 3h, h(0) = 2

e) (1+e−r)
dz

dr
+z2 = 0, z(0) = 6

f) 4
dw

dτ
= τ3e−2w , w(0) = 0

g) (θ + 1)3
dr

dθ
= r2, r(0) = 2

h)
dr

dθ
=

2θ

1 + r
, r(0) = 0
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4. Find the solution of the IVP in implicit form.

a) y′ = 1 +
1

y
, y(0) = 1

b) y′ =
3

1 + y4
, y(0) = −1

c) y′ =
1 + y

2 + y
, y(0) = 5

d)
dp

dr
=

ep

1 + ep
, p(0) = 2

x-axis

y-
ax

is

Figure 2.1. Cable hanging between two poles, as described in Exercise 5.

5. A cable is hung between two poles as illustrated in Figure 2.1. The
poles are located at x = −L and x = L, and each has height h.
The curve y(x) minimizes the cable’s potential energy. From this, one
obtains the equation

a
d2y

dx2
=

√

1 +
(dy

dx

)2
, for − L < x < L,

where a is a positive constant. Because of the symmetry in the prob-
lem, y′(0) = 0.

a) Letting w(x) = y′(x), rewrite the differential equation as a first-
order equation involving w and w′. Also, what is w(0)?

b) Solve the problem in part (a) for w.

c) Integrate y′(x) = w(x), and use the condition y(L) = h, to deter-
mine y(x). The solution you are finding is an example of what is
called a catenary.

6. The following illustrate some of the complications that can arise when
solving differential equations.

a) Consider the IVP: ty′ = y + 1, where y(0) = 1. Try solving this
and show that there is no solution (at least when using separation
of variables).

b) Show that there are an infinite number of solutions of ty′ = y + 1,
where y(0) = −1.

c) Solve y′ = 1
2y

3, where y(0) = 1. Explain why there is no solution
for t ≥ 1. This is known as finite blowup.
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2.2 Integrating Factor

The equation to be solved is

y′ + p(t)y = g(t). (2.12)

What is important here is that this equation is linear, as well as first-
order. Also, our earlier assumption that f(t, y) and the partial derivative
fy(t, y) are continuous reduces to the assumption that p(t) and g(t) are
continuous for t ≥ 0.

The solution will be derived using two formulas from calculus. The
first is the product rule, which states that

d

dt
(µy) = µ(t)y′(t) + µ′(t)y(t). (2.13)

The second is the Fundamental Theorem of Calculus, which states that if

d

dt
(µy) = q(t),

then

µy =

∫ t

0
q(s)ds+ c. (2.14)

The first step is the observation that the left hand side of (2.12) re-
sembles the right hand side of (2.13). To make it so they are exactly the
same we need to multiply the differential equation by µ(t), which gives us

µy′ + µpy = µg. (2.15)

What we need, to get this to work, is that µ must be such that

µ′ = pµ. (2.16)

It will make the formula for the solution a bit simpler if we require

µ(0) = 1. (2.17)

The differential equation (2.16) is separable, and one finds that the solu-
tion that satisfies (2.17) is

µ(t) = e
∫ t

0
p(r)dr. (2.18)

With this choice for µ, the differential equation for y in (2.15) can be
written as

d

dt
(µy) = µg. (2.19)

From (2.14) we get that

µy =

∫ t

0
µ(s)g(s)ds+ c,
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where c is the usual integration constant. The solution of (2.12) is there-
fore

y(t) =
1

µ(t)

[ ∫ t

0
µ(s)g(s)ds+ c

]

. (2.20)

The function µ(t), which is given in (2.18), is said to be an integrating
factor for the original differential equation.

There are two important special cases to mention. First, suppose that
the problem has an initial condition, say y(0) = y0. Since µ(0) = 1, then
from (2.20) the solution of the resulting IVP is

y(t) =
1

µ(t)

[ ∫ t

0
µ(s)g(s)ds+ y0

]

. (2.21)

The second special case arises for the homogeneous equation y′+p(t)y = 0.
Setting g = 0 in (2.20), gives us the solution

y(t) = ce−
∫ t

0
p(r)dr. (2.22)

If y(0) = y0, then the resulting solution is

y(t) = y0e
−

∫ t

0
p(r)dr. (2.23)

Example 1: Solve y′ + 3y = e2t.

Answer: Since p = 3, then

∫ t

0
p(r)dr =

∫ t

0
3dr = 3t.

From (2.18), the integrating factor is µ = e3t. So, since g(t) = e2t,
then from (2.20),

y(t) = e−3t

[ ∫ t

0
e3se2sds+ c

]

= e−3t

[ ∫ t

0
e5sds+ c

]

.

Carrying out the integration,

y(t) = e−3t

[

1

5
e5s
∣

∣

∣

t

s=0
+ c

]

= e−3t

[

1

5
e5t − 1

5
+ c

]

=
1

5
e2t + c̄e−3t,

where c̄ = c− 1/5 is an arbitrary constant. �
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Example 2: Solve 2y′ − ty = 6, where y(0) = 5.

Answer: Since p = −t/2, then from (2.18), µ = e−t2/4. Given that
g = 3, then from (2.21) we have

y(t) = et
2/4

[ ∫ t

0
3e−s2/4ds+ 5

]

.

The integral in the above expression can not be written in terms of
elementary functions, and so that is the final answer. �

Example 3: Solve
dh

dz
− 4h = 2z, where h(0) = −1.

Answer: In this problem the independent variable is z and the
dependent variable is h. The formula for the solution can still be
used, we just need to make the appropriate substitutions. Since
p = −4, then

∫ z

0
p(r)dr =

∫ z

0
−4dr = −4z.

From (2.18), the integrating factor is µ = e−4z. So, since g(z) = 2z,
then from (2.21),

h(z) = e4z
[ ∫ z

0
2se−4sds− 1

]

= −1

8
(4z + 1)− 7

8
e4z. �

2.2.1 General and Particular Solutions

We have shown that the solution of the linear differential equation

y′ + p(t)y = g(t), (2.24)

is

y(t) =
1

µ(t)

[ ∫ t

0
µ(s)g(s)ds+ c

]

. (2.25)

Any, and all, solutions of (2.24) are included in this formula, and for this
reason (2.25) is said to be the general solution.

A useful observation about (2.25) is that it can be written as

y(t) = yp(t) + yh(t), (2.26)

where

yp(t) =
1

µ(t)

∫ t

0
µ(s)g(s)ds, (2.27)
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and
yh(t) =

c

µ(t)
= ce−

∫ t

0
p(r)dr . (2.28)

The formulas for yp and yh are not important here. What is important is
that yp is a solution of the differential equation (2.24). It does not contain
the arbitrary constant, and for this reason it is said to be a particular
solution. In contrast, the function yh(t), which contains an arbitrary
constant, is a solution of the differential equation

y′ + p(t)y = 0. (2.29)

This is the homogeneous equation coming from (2.24). Consequently,
yh(t) is said to be the general solution of the associated homoge-
neous equation.

Example 4: In Example 1 we found that the general solution is

y(t) =
1

5
e2t + c̄e−3t,

where c̄ is an arbitrary constant. In this case, a particular solution
is yp =

1
5e

2t, and the general solution of the associated homogeneous
equation is yh = c̄e−3t. �

The observation in the previous paragraph that the general solution
can be written as the sum of a particular solution and the general solution
of the associated homogeneous equation holds for all linear differential
equations (not just those that are first-order). Because we are able to de-
rive a formula for the solution, which is given in (2.25), this observation
is not really needed to solve first-order linear differential equations. How-
ever, for second-order equations, which will be studied in the next chapter,
this observation serves a fundamental role in finding the solution.

2.2.2 Interesting But Tangentially Useful Topics

The following topics are worth knowing about. However, you can skip this
material, if you wish, as it is not required to solve any of the problems in
this chapter.

Method of Undetermined Coefficients

Most first-order linear differential equations that arise in applications have
constant coefficients, which means that they can be written as

y′ + ay = g(t), (2.30)

where a is a constant. Examples are y′ + 3y = 5 and y′ − 2y = e3t. It
is likely that the Instructor for your course can solve these in their head,
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and they simply write down the solution. You should not be impressed,
thinking they are using (2.25) to do this. Rather, they are using the
method of undetermined coefficients. This method is explained in Section
3.7 for second-order equations, but it works on first-order equations as
well. The reason it is easier is that it avoids having to integrate anything,
and you therefore do not need to remember integration rules to find the
solution. If you want to pursue this idea a bit more, after reading Section
3.7, you should look at Exercise 5 on page 61.

Connections with Linear Algebra

For those who have taken a course in linear algebra, there is a connec-
tion between that subject and linear differential equations that is worth
knowing about. To explain, a central problem in linear algebra is to solve
Ax = b, where A is a m × n matrix. It’s possible to prove that if there
is a solution of this equation, then it has the form x = xp + xh, where
xp is a particular solution and xh is the general solution of the associated
homogeneous equation Ax = 0. This is basically the same statement we
made for the solution of the linear differential equation (2.24). The key
property these equations have in common is that they are both linear. A
consequence of this is that the principle of superposition can be used (see
page 5) when solving the associated homogeneous equation. We will make
use of this fact in every chapter of this textbook, except for Chapter 5.
This illustrates the beauty, and profundity, of mathematical abstraction.
Namely, it is possible to make rather significant conclusions about the so-
lution of an equation, irrespective of whether it is algebraic or differential,
simply from the basic properties these equations have in common.

Exercises

1. Find the general solution of the given differential equation.

a) y′ + 3y = 0

b) y′ − 2y = t

c) 4y′ − y = 6 + 2t

d) y′ = −y + 2et − 1

e) (3t+ 2)y′ + 3y = sin(4t) + 5

f) (2 + t)y′ + y = 1

g) y′ − 3y = 1 +
√
t

h) 2y′ + y = t
1+t

2. Find the solution of the IVP.

a) y′ − y = 4 , y(0) = −1

b) y′ + 4y = 24t, y(0) = 0

c) 5y′ + y = 0, y(0) = 2

d) 2y′ = y + 3e−t − 4, y(0) = 1

e) (5 + t)y′ + y = −1, y(0) = 2

f) 3y′ + ty = −2, y(0) = 0
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3. Find the solution of the IVP. In these problems, the independent vari-
able is not t and the dependent variable is not y.

a)
dq

dz
+ 2q = 4 , q(0) = −1

b)
dp

dx
+ 4p = −8x, p(0) = 0

c) 2
dw

dτ
− w = 3e2τ , w(0) = 0

d)
dz

dτ
= 4z + 1 + τ , z(0) = 0

e) (x+ 7)
dh

dx
+ h = −1, h(0) = 2

f) (5z+1)
dh

dz
+5h = 3, h(0) = −1

4. Find a particular solution, and the general solution to the associated
homogeneous equation, of the following differential equations.

a) y′ − 2y = 6

b) y′ + y = 3e−t

c) 7y′ − y = e2t + 3

d) y′ + 2ty = 1

5. Find the value of y0 so that the solution of the IVP is bounded as
t → ∞.

a) y′ − y = 1 + 5 cos(2t), where y(0) = y0

b) y′ − 3y = sin t+ 3 cos t, where y(0) = y0

6. A Maxwell viscoelastic material is one for which the stress T (t) and
the strain-rate r(t) satisfy

T + τ
dT

dt
= κr,

where τ and κ are positive constants. By solving this equation for T ,
and assuming T0 = T (0), show that

T = T0e
−t/τ +

κ

τ

∫ t

0
e(s−t)/τr(s)ds.

7. The Bernoulli equation is w′ = p(t)w + q(t)wn, which is nonlinear if
n 6= 0, 1. What is significant is that it can be solved by making the
substitution w = y1/(1−n), which results in a linear equation for y(t).
This was discovered by Leibniz, although it is not clear he was aware
of the solution (2.20) for a linear equation [Parker, 2013].

a) If w′ = w − 5w3, where w(0) = 1, what IVP does y satisfy?

b) Solve the IVP for y, and then transform back to determine the
function w.

c) One of Bernoulli’s brothers solved the Bernoulli equation by as-
suming that w(t) = u(t)v(t), where u satisfies u′ = pu, for
u(0) = 1. Use this method to solve w′ = w − 5w3, where
w(0) = 1. This approach is the precursor to what is now known
as the method of variation of parameters.
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2.3 Modeling

The principal objective of the examples to follow is to show how a dif-
ferential equation is the mathematical consequence of the assumptions
about a physical system.

2.3.1 Mixing

Typical mixing problems involve a continuously stirred tank, as illustrated
in Figure 2.2. As an example, suppose that water, containing salt, is
flowing into a well-stirred tank. At the same time, the mixture in the
tank is flowing out. The goal is to determine how much salt is in the tank
as a function of t.

Figure 2.2. Schematic of a continuous stirred tank.

The quantities of interest in this problem are:

Q(t): This is the amount of salt in the tank at time t. If the volume of
water in the tank is V , and c is the concentration of salt in the water,
then Q = cV .

Rin: This is the rate that salt is flowing into the tank. If the incoming
volumetric flow rate is Fin, and cin is the concentration of salt in the
incoming water, then Rin = cinFin.

Rout: This is the rate that salt is flowing out of the tank. If the outgoing
volumetric flow rate is Fout, then Rout = cFout.

If the initial amount of salt in the tank is Q0, then the resulting IVP for
Q is:

dQ

dt
= Rin −Rout,

Q(0) = Q0.
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Example 1

Suppose that salt water, containing 1/2 lbs of salt per gal, is poured into
a tank at 2 gal/min. Also, the water flows out of the tank at the same
rate. If the tank starts out with 100 gal of water, with 10 lbs of salt per
gal, find a formula for the total amount of salt in the tank.

Setup

inflow: Since Fin = 2, and cin = 1/2, then Rin = 1.

outflow: Since the mixture flows out at 2 gal/min, then the volume of
water in the tank stays at 100 gal. Also, since Fout = 2 and c =
Q/100, then Rout =

1
50Q.

t = 0: Given that at the start there are 10 lbs of salt per gal, Q(0) = 1000.

The resulting IVP for Q is:

dQ

dt
= 1− 1

50
Q, (2.31)

Q(0) = 1000. (2.32)

Note that because of the way the variables have been defined, Q is mea-
sured in pounds and t is measured in minutes.

Solution

Using separation of variables, or the integrating factor solution (2.21),
one finds that Q(t) = 50 + 950e−t/50.

Question: What is the eventual concentration of salt in the tank?

Answer using solution: Since limt→∞Q(t) = 50, then the eventual con-
centration is 50/V = 1

2 lbs/gal.

Answer using physical reasoning: The concentration in the tank will even-
tually be the same as the concentration for the incoming flow, and
so the answer is 1

2 lbs/gal.

Answer using math reasoning: It is possible to determine the eventual
concentration directly from the differential equation, without know-
ing the solution. How this is done is explained in Section 2.4 (also,
see Exercise 6 in that section). �

Example 2

Salt water, containing 3 lbs of salt per gal, flows into a 50 gal drum at 2
gal/sec. If the drum initially contains 10 gal of pure water, find a formula
for Q as a function of t.
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Comments about this problem: There is no outflow, so the volume of
water will increase. However, it’s a 50 gal drum, so eventually it will fill
and start running over. When this occurs there is outflow, at a rate equal
to the incoming rate. To account for this, the problem needs to be split
into two phases, one where the volume is increasing, and the second when
it is a constant.

Solution

Phase 1: In this case, Rin = 6, Rout = 0, and Q(0) = 0. The resulting
IVP is

dQ

dt
= 6

Q(0) = 0

The solution is Q(t) = 6t. Also, the volume of water in the tank is
V = 10 + 2t. So, this solution for Q holds for V ≤ 50, which means that
t ≤ 20.

Phase 2: As before, Rin = 6. For the outflow, the rate is 2 gal/sec and
the concentration in the outflow is Q/50. This means that Rout = Q/25.
Now, this phase starts at t = 20, and the amount of salt in the tank at
the start is 120 (this comes from the solution for Phase 1). This means
that the problem to solve is

dQ

dt
= 6− 1

25
Q, for 20 < t,

Q(20) = 120.

What is different about this problem is the time interval, which is not the
usual 0 ≤ t. However, this does not interfere with our solution methods,
and the solution can be found using an integrating factor or separation of
variables. One finds that the general solution of the differential equation
is

Q(t) = 150 +Ae−t/25.

From the requirement that Q(20) = 120 it follows that A = −30e4/5.

The Solution: Combining the Phase 1 and Phase 2 solutions, we get

Q(t) =

{

6t if 0 ≤ t ≤ 20,

150− 30e(20−t)/25 if 20 < t. �

2.3.2 Newton’s Second Law

Suppose an object with mass m is moving along the x-axis. Letting
x(t) be its position, then its velocity is v = dx

dt , and its acceleration is
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a = d2x
dt2

= dv
dt . If the object is acted on by a force F , then from Newton’s

second law, which states that F = ma, we have that

m
dv

dt
= F. (2.33)

What sort of differential equation this might be depends on how F de-
pends on v. Once (2.33) is solved for v, then the position is determined
by integrating the equation

dx

dt
= v. (2.34)

Typically, the initial velocity v(0) and initial position x(0) are given,
and these are used to determine the integration constants obtained when
solving the problem.

Vertical Motion

The object is assumed to be moving vertically, either up or down (see Fig-
ure 2.3). In this case, x(t) is the distance of the object from the ground.
It is also assumed that it is acted on by gravity, Fg, and a drag force, Fd.
Consequently, the total force is F = Fg+Fd. As for what these forces are:

Gravitational force: Assuming the gravitational field is uniform, then
Fg = −mg, where g is the gravitational acceleration constant. The minus
sign is because the force is in the downward direction.

Drag force: As long as the object is not moving very fast, the drag is
proportional to the velocity (see Exercise 10). In this case, Fd = −cv,
where c is a positive constant. The minus sign is because the force is in
the opposite direction to the direction of motion (so, Fd points upward if
the object is falling).

Units and Values: In the exercises, the value to use for g is usually stated.
If it is not given, then you should leave g unevaluated. Whatever value is
used, it is only approximate. If a more physically realistic value is needed,
then you should probably use the Somigliana equation. Finally, weight

Figure 2.3. Forces on a falling object.
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is a force, so for an object that weighs w lbs, its mass can be determined
from the equation w = mg.

Example: Suppose a ball with a mass of 2 kg is dropped, from rest,
from a height of 1000m. Assume that the forces acting on the object are
gravity, and a drag force due to air resistance, with c = 1

2 kg/s. Assume
that g = 10m/s2.

Question 1: What is the resulting IVP for v, and what problem must be
solved to find x?
Answer: Since F = Fg+Fd = −mg− cv, where m = 2 and c = 1/2,
then from (2.33) the differential equation is

dv

dt
= −10− 1

4
v. (2.35)

Since the object is dropped from rest, then the initial condition is
v(0) = 0. Once v is known, then x is found by integrating (2.34),
and using the fact that x(0) = 1000. Also, note that v is measured
in meters per second, t is measured in seconds, and x in meters.

Question 2: What is the solution of the IVP, and the resulting solution
for x?
Answer: Using the integrating factor solution (2.21), it is found
that the general solution is v = −40 + ce−t/4. Applying the initial
condition we get that

v = 40(−1 + e−t/4). (2.36)

Integrating x′ = 40(−1 + e−t/4), yields x = 40(−t − 4e−t/4) + c.
Since x(0) = 1000, then c = 1160. So, x = 40(−t− 4e−t/4) + 1160.

Question 3: What is the terminal velocity vT of the object?
Answer: The terminal velocity is defined as

vT = lim
t→∞

v(t).

Consequently, from (2.36), we get that vT = −40m/s. It is also
possible to determine vT without solving the IVP, and how this is
done is explained in Section 2.4.

Question 4: When does the object hit the ground?
Answer: It hits the ground when x = 0, which means that it is the
value of t that satisfies t+ 4e−t/4 = 29. This can be solved using a
computer, but it is possible to obtain an approximate value fairly
easily. Assuming it takes several seconds to hit the ground, then
the 4e−t/4 term should be relatively small. For example, at t = 10,
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4e−t/4 ≈ 0.3, and at t = 20, 4e−t/4 ≈ 0.03. Consequently, as an
approximation, we can replace the equation t + 4e−t/4 = 29 with
t = 29. In comparison, the numerically computed value is about
28.997 s. �

2.3.3 Logistic Growth or Decay

An assumption often made for the growth of the population of a species is
that the population grows at a rate proportional to the current population.
If P (t) is the population at time t, then this assumption results in the
equation P ′ = kP . The solution is P (t) = P (0)ekt, which means that
there is exponential growth in the population. This is not sustainable in
the real world, and it is more realistic to assume that the rate of growth
slows down as the population increases. In fact, if the population is very
large, the population should decrease instead of increase. A simple model
for this is to assume that k = r

(

1 − P
N

)

, where r and N are positive
constants. The resulting differential equation is

dP

dt
= r
(

1− P

N

)

P, (2.37)

which is known as the logistic equation. This nonlinear equation can be
solved using separation of variables, and partial fractions. Doing this, in
the case of when 0 < P < N ,

N

(N − P )P
dP = rdt (2.38)

⇒
∫

( 1

P
+

1

N − P

)

dP =

∫

rdt

⇒

ln
P

N − P
= rt+ c

⇒
P

N − P
= ert+c.

From this, we get
P = (N − P )c̄ert, (2.39)

where c̄ = ec is a positive constant. Doing the same thing for the case of
when N < P , one again gets (2.39) except that c̄ is a negative constant.
Moreover, for the divide by zero case of when P = 0, you get (2.39) but
c̄ = 0. In other words, except for when P = N , (2.39) holds with the
understanding that c̄ is an arbitrary constant. Solving (2.39) for P yields

P =
Nc̄ert

1 + c̄ert
, (2.40)
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Figure 2.4. The logistic function (2.40), for −∞ < t < ∞, in the case of
when P (0) < N .

where c̄ is an arbitrary constant. If P (0) = P0, and if P0 6= N , then
one finds that c̄ = P0/(N − P0). When P (0) = N , this is a divide by
zero situation in (2.38), and the resulting solution is just the constant
P (t) = N .

The solution we have derived in (2.40) is known as the logistic function
or the logistic curve. When plotted for −∞ < t < ∞ it has a S, or
sigmoidal, shape as shown in Figure 2.4. It is one of those functions that
appears in so many applications that it deserves its own graph in this
textbook (hence Figure 2.4). �

2.3.4 Newton’s Law of Cooling

The assumption is that the rate of change of the temperature of an object
is proportional to the difference between its temperature and the ambient
temperature (i.e., the temperature of its surroundings). This is often
referred to as Newton’s law of cooling, but it also applies to heating an
object.

To write down the mathematical form of this statement, we introduce
the following:

T (t): This is the temperature of the object at time t.

Ta: This is the ambient temperature.

k: This is the proportionality coefficient.

If the initial temperature of the object is T0, then the resulting IVP for
T is:

dT

dt
= −k(T − Ta), (2.41)

T (0) = T0. (2.42)

This problem can be solved using the integrating factor solution (2.21), or
by using separation of variables. It is found that T = Ta + (T0 − Ta)e

−kt.



2.3. Modeling 27

Example 1: Cooling a Cup of Coffee

According to the National Coffee Association, the ideal temperature for
brewing coffee is 200◦ F, and to get the most flavor out of it, you should
drink it when the coffee is between 120 and 140◦ F.

Question 1: If the room temperature is 70◦ F, what is the solution of the
resulting IVP for T?

Answer: Since T0 = 200 and Ta = 70, then

T = 70 + 130e−kt. (2.43)

Question 2: If the temperature is 180◦ F after 2 minutes, determine k.

Answer: From (2.43), 180 = 70+130e−2k. From this one finds that
k = 1

2 ln(13/11)
1

min .

Question 3: When should you start drinking the coffee (according to the
National Coffee Association)?

Answer: The time when T = 140 occurs when 140 = 70 + 130e−kt,
from which one finds that

t = 2
ln(13/7)

ln(13/11)
min. (2.44)

Question 4: What is the computed value for the answer for Question 3?

Answer: It is t ≈ 7.4 minutes. �

Example 2: Nonlinear Cooling

Experimentally it has been observed that for certain fluids the k in (2.41)
is not constant. To account for this, according to what is known as the
Dulong-Petit law of cooling, the k in (2.41) is replaced with k(T −Ta)

1/4.
The resulting differential equation is

dT

dt
= −k(T − Ta)

5/4.

This requires cooling, and so it requires T ≥ Ta.

Question: As in Example 1, suppose that the room temperature is 70◦ F
and T (0) = 200◦ F. What is the solution of the resulting IVP?

Answer: Separating variables,

− dT

(T − 70)5/4
= kdt.
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Integrating this equation and then solving for T ,

4

(T − 70)1/4
= kt+ c

⇒
(T − 70)1/4 =

4

kt+ c
⇒

T = 70 +
( 4

kt+ c

)4
.

Since T (0) = 200, then the above equation gives us that 130 =
(4/c)4. Solving this we obtain c = 4/1301/4. �

Reality Check : The models that are considered here are used to illustrate
how, and where, differential equations arise. As with all models, simplify-
ing assumptions are made to obtain the resulting mathematical problem.
Many of these assumptions are not considered or accounted for in our
examples, and the same is true for the exercises. As a case in point, New-
ton’s Law of Cooling is usually limited to cases of when |T − Ta| is not
very large, and its applicability depends on whether the heat flow is due
to conduction, convection, or radiation. Said another way, if you want to
impress your family at Thanksgiving by using the solution of the cook-
ing a turkey exercise (see below), just make sure to check on the turkey
temperature regularly to make sure your predictions are correct.

Exercises

In answering the following questions, do not numerically evaluate numbers
such as

√
2, π/3, e2, ln(4/3), etc. The exception to this is when the

question explicitly asks you to compute the answer.

1. The IVP for radioactive decay was derived in Example 1, on page 1.

a) What is the solution of the IVP for a radioactive material?

b) If 12mg of a radioactive material decays to 9mg in one day, find k.

c) The half-life of a radioactive material is the time required for it to
reach one-half of the original amount. What is the half-life of the
material in part (b)?

2. Radiocarbon dating uses the decay of carbon-14 to estimate how long
ago something died. The assumption is that the amount of carbon-
14 satisfies the radioactive decay problem derived in Example 1, on
page 1.

a) What is the solution of the IVP for a radioactive material?
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b) The half-life of a radioactive material is the time required for it to
reach one-half of the original amount. The half-life of carbon-14 is
5,730 years. Use this to determine k.

c) The amount of carbon-14 is the same in all living organisms. When
an organism dies the amount starts to undergo radioactive decay.
So, for radioactive dating you know N0, as well as the current value
of N . Explain how knowing N0, N , and k can be used to determine
t (which is the time that has passed since the organism died).

d) Measurements in 1991 determined that the amount of carbon-14
in the Temple Scroll, which is one of the Dead Sea scrolls found
at Qumran, to be 186.18. The amount in living organisms is 238.
Determine (i.e., compute) what two years the scroll could have been
written in. Note that in the BC/AD system there is no year zero,
so it goes from 1 BC to 1 AD.
Comments: In this problem, the amount of carbon-14 refers to the
amount relative to carbon-12. Also, the organism is the parchment
from the scroll, and the testing is described in Bonani et al. [1992].

Mixing

3. A tank contains 100L of salt water with a concentration of 2 g/L. To
flush the salt out, pure water is poured in at 4 L/min, and the mixture
in the tank flows out at the same rate.

a) What is the resulting IVP for the total amount Q(t) of salt in the
tank?

b) Solve the IVP determined in part (a).

c) How long does it take until the amount of salt in the tank is 1% of
its original amount?

4. A tank contains 20 L of fresh water. Suppose water, containing 1
4 g/L

of salt, starts to flow into the tank at 2 L/min, and the well-stirred
mixture flows out at the same rate.

a) What is the resulting IVP for the amount Q(t) of salt in the tank?

b) Solve the IVP determined in part (a).

c) How much salt is in the tank after one hour?

5. Ten years ago, a factory started operation in a pristine valley. The
valley’s volume is 106m3. Each year the factory releases 105m3 of
exhaust through its smoke stacks, and this exhaust contains 1000 kg of
pollutants. Assume that the well-mixed polluted air leaves the valley
at 105m3/yr.

a) What is the IVP for the amount of pollutant in the valley?

b) How much pollutant is in the valley now?
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6. A small lake contains 60,000 gal of pure water. There is an inlet stream
of pure water into the lake, as well as an outlet stream, both flowing
at a rate of 100 gal/min. Suppose someone starts pouring water into
the lake at the rate of 10 gal/min that contains 5 lbs/gal of a chemical,
and they do this for 8 hours. While this happens the inlet stream of
pure water is unchanged, and the outflow rate from the lake remains
at 100 gal/min.

a) What is the formula for the volume of the lake while the person is
pouring?

b) For t < 8, what IVP must be solved to determine the amount of
the chemical in the lake?

c) How much of the chemical is in the lake when the person stops
pouring?

d) Once the person stops pouring, what IVP must be solved to deter-
mine how much of the chemical is in the lake?

Newton’s Second Law

7. A mass of 10 kg is shot upward from the surface of the Earth with a
velocity of 100m/s. In addition to gravity, assume that there is a drag
force Fd = −cv, where c = 5kg/s. Assume that g = 10m/s2.

a) Write down the IVP for v, and then find its solution.

b) Find x.

c) How high does the object get?

8. A skydiver weighing 176 lbs drops from a plane that is at an altitude
of 5000 ft. Assume that g = 32 ft/s2.

a) Before the parachute opens, the forces on the skydiver are gravity
and a drag force Fd = −cv. Assuming v(0) = 0, write down the
IVP for v, and then find the solution.

b) It is claimed that the terminal velocity of a person falling is−120mph.
Use this to determine c.

c) If the parachute is opened after 10 s of free fall, what is the speed
of the skydiver when it opens?

d) Find the distance the skydiver falls before the parachute opens.

e) When the parachute is open, the drag force increases by a factor
of 8 from the free fall drag force. What is the resulting terminal
velocity of the skydiver?

9. A spherical object sinking to the bottom of a lake is acted on by three
forces: a drag force Fd = −cv, a buoyant force Fb, and gravity Fg.
According to Archimedes’ principle, the buoyant force is equal to the
weight of the water that is displaced by the sphere.
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a) What is the formula for Fb in terms of the sphere’s radius a, the
water density ρ, and g?

b) The differential equation for the velocity of the sphere has the form
mv′ = A− cv. What is A?

c) Assuming the sphere is released from rest, solve the resulting IVP
for v.

d) Find a formula for the terminal velocity in terms of c, a, ρ, and g.
What condition must be satisfied if the sphere is sinking?

e) Assume the object is released a distance L from the bottom of the
lake. Also assume that it takes a while for it to hit the bottom. Use
an approximation similar to the one used in Question 4 on page 24
to derive an approximate formula for the time it takes it to hit the
bottom.
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Figure 2.5. Drag force on a smooth sphere as a function of the speed [Roos
and Willmarth, 1971, NASA, 2020]. The function Fd is used in Exercise 10.

10. A spherical object falling in the atmosphere is acted on by gravity, Fg,
and a drag force Fd. It is assumed that Fd = −cv(1− βv), where v is
the velocity. Both c and β are positive constants.

a) Assuming the sphere is dropped from rest, what is the resulting
IVP for v?

b) Solve the IVP for v.

c) Find a formula for the terminal velocity in terms of m, c, β, and g.

d) The constants in Fd are c = 6πRµ and β = Rρ/(9πµ), where R is
the radius of the sphere, ρ is the air density, and µ is the air viscosity.
For a baseball falling in the atmosphere, R = 0.037, µ = 1.8×10−5,
and ρ = 1.2 (using kg, m, s units). Also, m = 0.14 and assume that
g = 9.8. Compute the terminal velocity. How does this compare to
what is the speed of a typical fastball in professional baseball?
Comment: The drag force used in this problem is close to what is
observed experimentally. To demonstrate this, the experimentally
determined values of the drag, and the values determined using Fd,
are shown in Figure 2.5 as a function of the speed |v|. This data
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also shows that the assumption Fd = −cv is only valid if the speed
is no more than about 10−2m/s.

Logistic Growth or Decay

11. It is often found that a population will grow exponentially if the popu-
lation is very small, and it will decrease exponentially if the population
is very large. A model for this is due to Beverton and Holt, and the
equation to solve is

P ′ = r
1− P

N

1 + P
N

P,

where r and N are positive constants.

a) Assuming that P (0) = 1
2N , solve the resulting IVP for P .

b) What is the limiting population P (∞) = limt→∞ P (t)?

12. The population of fish in a large lake can be modeled using the logistic
equation. If, in addition, the fish are caught at a constant rate h, the
equation for the population becomes

P ′ = r
(

1− P

N

)

P − h,

where r and N are positive constants. In this problem take r = 4,
h = 750, and N = 1000. Also, P (0) = 1000.

a) Solve the IVP for P .

b) What is the limiting population? In other words, what is P (∞) =
limt→∞ P (t)?

Cooling or Heating

13. Suppose coffee has a temperature of 200◦ F when freshly poured, and
the room temperature is 72◦ F. In this exercise use Newton’s law of
cooling.

a) What IVP does the temperature of the coffee satisfy?

b) What is the solution of the IVP?

c) If the coffee cools to 136◦ F in five minutes, what is k?

d) When does the coffee reach a temperature of 150◦ F?

14. Redo the previous exercise but use the Dulong-Petit law of cooling.

15. To cook a turkey you are to put it into a 350◦F oven, and cook it
until it reaches 165◦F. In answering the following questions, assume
Newton’s law of cooling is used.

a) Suppose the turkey starts out at room temperature, which is 70◦F.
What IVP does the temperature satisfy?
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b) Suppose that after two hours in the oven, the temperature of the
turkey is 140◦F. How much longer before it is done?

c) Suppose the turkey is taken from the refrigerator, which is set to
40◦F, and put directly into the oven. How much longer does it take
to cook than when the turkey starts out at room temperature? The
value for k is the same as in part (b).

16. A homicide victim was discovered at 1 p.m. in a room that is kept at
70◦F. When discovered, the temperature of the body was 90◦F, and
one hour later it had dropped to 85◦F.

a) Assuming Newton’s Law of Cooling, and normal body temperature
is 98.6◦F, how long had the person been dead when the body was
discovered?

b) Compute the time of death. Round your answer so it just gives the
hour and minute (e.g., 7:13 a.m. or 5:32 p.m.).

17. Suppose that in Newton’s Law of Cooling that k is found to depend
on temperature. A common assumption is that k = k0 + k1(T − Ta),
where k0 and k1 are positive constants.

a) What is the resulting differential equation for T?

b) To find T it makes things easier to introduce the variable S(t) =
T (t)− Ta. Rewrite the differential equation in part (a) in terms of
S. Also, if T (0) = T0, what is S(0)?

c) Solve the resulting IVP in part (b) for S, and then use this to show
that

T = Ta +
k0ce

−k0t

1− k1ce−k0t
,

where c = S0/(k0 + k1S0) and S0 = T0 − Ta.

d) Using (2.43), it was found you have to wait about 7.4 minutes to
drink the coffee. Taking k0 = 1

2 ln(13/11) and k1 = 0.01, compute
how long you need to wait using the solution for T from part (c).

2.4 Steady States and Stability

All of the applications considered in the previous section have one thing in
common: the solution eventually approaches a constant value, or steady
state. This is not unusual, as this is what often happens. What is of
interest here is whether it is possible to determine the eventual steady
state without actually having to solve the problem.

To illustrate, as explained in the previous section, the population P (t)
of a species is determined by solving

P ′ = f(P ), (2.45)
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Figure 2.6. Solution of (2.45) and (2.46) in the case of when P (0) = 0.1,
and when P (0) = 4.5. The dashed red lines are the steady state values.

where, for this example, we will take

f(P ) = 2(3− P )P. (2.46)

The solution of this equation is given in (2.40), and it is plotted in Figure
2.6 for the case of when P (0) = 0.1, and when P (0) = 4.5. It shows that
for both initial values, the population approaches, asymptotically, P = 3.
In both cases the approach is monotonic, either increasing or decreasing.

What is important for this discussion is that it is possible to determine
the general behavior of the solution seen in Figure 2.6 without solving the
problem. This requires the following three observations:

Steady States: If the solution does asymptotically approach a constant
value P , then P = P must be a solution of the differential equation.
This means that it is required that f(P ) = 0. From this and (2.46)
we get the two values P = 0 and P = 3. These are called steady
states for this equation.

Unstable: Even though the initial value P (0) = 0.1 is close to the steady
state P = 0, the solution moves away from P = 0. This happens
because of f(P ). To explain, the function f(P ) is plotted in Figure
2.7. It shows that f(P ) > 0 for 0 < P < 3. So, in this interval
P ′(t) > 0, and this means that P is increasing. Similarly, since
f(P ) < 0 for 3 < P , then P is decreasing in this interval. The
arrows in Figure 2.7 indicate the corresponding movement of P . The
conclusion we derive from the arrows is that if P (0) is anywhere in
0 < P < 3, then the solution will move away from the steady state
P = 0. Because of this, the steady state is said to be unstable.

Stable: The second conclusion we make from the arrows in Figure 2.7 is
that if P (0) is anywhere in 0 < P < 3, then the solution increases
towards the steady state P = 3. Moreover, if P (0) is anywhere in
3 < P , then the solution decreases towards the steady state P = 3.
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Figure 2.7. The function f(P ) in (2.46). The two steady states are shown
by the reds dots. The arrows indicate the direction P moves in the respective interval.

A consequence of this is that, no matter what initial condition we
pick near P = 3,

lim
t→∞

P (t) = 3.

For this reason, P = 3 is said to be an asymptotically stable
steady state.

The key to what guarantees that the steady state P = 3 is asymptot-
ically stable is that f(P ) is positive to the left of P = 3, and negative to
the right of it. In other words, f(P ) is a deceasing function at P = 3.
Consequently, if f ′(3) < 0 then P = 3 is asymptotically stable. A similar
test can be made for an unstable steady state.

2.4.1 General Version

The reasoning used in the above example is easily extended to more gen-
eral differential equations. To do this, assume that the equation is

y′ = f(y), (2.47)

where f ′(y) is a continuous function of y. Because f(y) is assumed to
not depend explicitly on t, the equation is said to be autonomous. So,
y′ = 1 + y3 is autonomous, but y′ = t+ y3 is not.

Steady State. y = Y is a steady state for (2.47) if it is constant and
f(Y ) = 0.

Stability Theorem. A steady state y = Y is asymptotically stable if
f ′(Y ) < 0 and it is unstable if f ′(Y ) > 0.

The idea underlying asymptotic stability is that if y(0) is any point close
to Y , then

lim
t→∞

y(t) = Y. (2.48)
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To explain this more mathematically, a steady state is either stable or
unstable. It is stable if you can control how far the solution gets from Y
by picking y(0) close to Y . Specifically, given any ε > 0, you can find a
δ > 0 so that |y(t)− Y | < ε if |y(0)− Y | < δ. If this is not possible then
Y is unstable. So, the steady state P = 0 in Figure 2.7 is unstable as it
is not possible to find P (0)’s near P = 0 that will result in the solution
staying near P = 0.

In addition, a stable steady state is either asymptotically stable, which
means that the limit (2.48) holds, or it is said to be neutrally stable. The
latter occur, for example, for the steady states of y′ = 0. Neutrally stable
steady states are not considered in this chapter but will be in Chapters 4
and 5.

The case of when y(0) = Y merits a comment. No matter if the steady
state is stable or unstable, if y(0) = Y , then y(t) = Y is a solution of the
resulting IVP. Consequently, what is of interest is what the solution does
if you start close, but not exactly at, a steady state.

Example 1: Find the steady states, and determine their stability, for

y′ = y2 − y − 6.

Answer: The steady states are found by solving y2− y− 6 = 0, and
from this we get Y = 3 and Y = −2. To determine their stability,
since f(y) = y2 − y − 6, then f ′(y) = 2y − 1. Since f ′(3) = 5 > 0,
then Y = 3 is unstable, and since f ′(−2) = −5 < 0, then Y = −2
is asymptotically stable. �

2.4.2 Sketching the Solution

As demonstrated in the above example, the stability theorem makes it is
relatively simple to determine if a steady state is stable or unstable. It
is also relatively easy to sketch the solution, and the following example
illustrates how this is done. Moreover, as you will see, this is done using
nothing more than the sketch of the function f(y).

Example 2: Sketch the solution of y′ = f(y), where f(y) is given in
Figure 2.8.

Answer: To do this it is necessary to know y(0). Before picking this value,
we first see what can be determined about the solution.

Steady States: The steady states are the points where f(y) = 0. From
Figure 2.8, this happens when y = −2, y = 1, and y = 3. These are
identified using red dots in the figure. From the graph it is evident
that f ′(−2) < 0 and f ′(3) < 0, and this means that y = −2 and
y = 3 are asymptotically stable. Similarly, since f ′(1) > 0, then
y = 1 is unstable.
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-4 -3 -2 -1 0 1 2 3 4

0

Figure 2.8. The sketch of the function f(y) for Example 2.

Increasing or Decreasing: If f(y) > 0, then the solution is increasing, and
if f(y) < 0, then the solution is deceasing. The respective y intervals
where this happens are shown in Figure 2.8 using arrows.

We will now use the above conclusions to sketch the solution.

y(0) = 1.3: This point is located between two steady states, specifically,
1 < y(0) < 3. According to Figure 2.8, y(t) increases monotonically
in this interval, and asymptotically approaches y = 3. A curve with
these properties is shown in Figure 2.9.

y(0) = 0.8: In this case, the point is located between two steady states,
namely, −2 < y(0) < 1. From Figure 2.8, y(t) decreases monoton-
ically in this interval, and asymptotically approaches y = −2. A
curve with these properties is shown in Figure 2.9.

0
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Figure 2.9. Solution curves obtained using the information in Figure 2.8.
The dashed red lines are the steady state values.
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0

0

Figure 2.10. The sketch of the function f(y) for Example 3.

y(0) = −4: For this initial condition, according to the information in Fig-
ure 2.8, y(t) increases monotonically, and asymptotically approaches
y = −2. A curve with these properties is shown in Figure 2.9. �

In the above example, each initial condition resulted in the solution
approaching one of the steady states. As illustrated in the next example,
this does not always happen.

Example 3: For y′ = y, find the steady states, determine their stability,
and then sketch the solution when y(0) = 0.1, and when y(0) =
−0.1.

Answer: Since f(y) = y then y = 0 is the only steady state. Also,
since f ′(y) = 1 > 0, the steady state is unstable. The corresponding
intervals where y is increasing or decreasing are shown in Figure
2.10 using arrows. The resulting solution curves for the given initial
conditions are shown in Figure 2.11. For both initial conditions the
solution moves away from y = 0. In the case of when y(0) = 0.1,
y(t) → ∞ as t → ∞. This is because y′(t) > 0, so the solution curve
is strictly monotonically increasing. The solution does not level off,
like the y(0) = 1.3 curve in Figure 2.9, because there is no steady

0

0

Figure 2.11. Solution curves obtained using the information in Figure 2.10.
The dashed red line is the steady state value.
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state for y > 0. For a similar reason, when y(0) = −0.1, y(t) → −∞
as t → ∞. �

The sketching procedure used in Examples 2 and 3 leaves some things
undetermined. For example, nothing was said about how steep the curves
are, or whether they are concave up or down. It is possible to determine
this using Figures 2.8 and 2.10, but this level of analysis is not considered
in this text.

2.4.3 Parting Comments

A few closing comments about the material in this section are in order.

1. What is defined as a steady state here is sometimes called a critical
point, or an equilibrium point. Referring to them as a steady state
is consistent with what is used for time independent solutions of
partial differential equations.

2. The stability theorem does not cover the case of when f ′(Y ) = 0.
However, the graphical method, as in Figure 2.7, can still be used.

3. When a solution moves away from an unstable steady state, it does
not necessarily approach the closest stable steady state. An example
of this is shown in Figure 2.9. Although Y = 3 is closer to the initial
point y(0) = 0.8, f(y) is negative for −2 < y < 1, and this means
the solution must decrease.

Exercises

1. For each equation, verify that Y = 0 is a steady state. Determine if it
is unstable or asymptotically stable.

a) y′ = sin(1− ey)

b) y′ = y5 − 3y2 + y

c) y′ = −ey sin(y)

d) y′ = (1 + y9) ln(1 + y)

2. For each differential equation, find the steady states and determine if
they are asymptotically stable or unstable.

a) y′ = y2 + y − 2

b) y′ = 3 + 2y − y2

c) y′ = y3 − y

d) y′ = 4y − y3

e) y′ = e−y − 2

f) y′ = y4 − 3y2 − 4

g) y′ = e2y − 4ey + 3

h) y′ = (1 + y)− (1 + y)3

i) y′ = (1 + y2)−1 − (1 + y)−1

j) y′ = ln(6 + y)− ln(y2)
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3. Sketch the solution curve for each of the given initial conditions.

a) y′ = y2 + y − 2
y(0) = −3; y(0) = 0

b) y′ = y3 − y
y(0) = 3/4; y(0) = −1/4

c) y′ = 4y − y3

y(0) = 1/2; y(0) = 3

d) y′ = e−y − 2
y(0) = 1; y(0) = 2

e) y′ = y4 − 3y2 − 4
y(0) = 1; y(0) = −3

f) y′ = e2y − 4ey + 3
y(0) = −1; y(0) = ln 2

4. Sketch the solution of y′ = f(y) based on the information provided.
Assume that f(y) is zero only at y = −2 and y = 3.

a) f(2) = −4,
y(0) = 1

b) f ′(−2) = 1,
y(0) = 0

c) f ′(3) = 2,
y(0) = −1

5. This problem concerns the steady states and stability for y′ = f(y),
where f(y) is one of the functions plotted in Figure 2.12. You should
assume the only solutions of f(y) = 0 are the locations shown in the
plot. For the respective plot, do the following: (i) find the steady states
and determine if they are asymptotically stable or unstable, and (ii)
sketch the solution when y(0) = α, y(0) = β, and y(0) = γ.

a) For plot (a), with α = −2.5, β = 0, γ = 2.5.

b) For plot (b), with α = −2.5, β = 0, γ = 2.5.

c) For plot (c), with α = −2.5, β = 0, γ = 2.5.

d) For plot (d), with α = −2.5, β = −0.5, γ = 1.5.

6. For the mixing problem given in (2.31), (2.32), sketch the solution
without using the formula for the solution. Make sure to explain how
you do this.
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y-axis

0f(y
)

a)

-3 -2 -1 0 1 2 3
y-axis

0f(y
)

b)

-3 -2 -1 0 1 2 3
y-axis

0f(y
)

c)

-3 -2 -1 0 1 2 3
y-axis

0f(y
)

d)

Figure 2.12. Plots of f(y) used in Exercise 5.
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7. For the population problem in Exercise 11, on page 32, sketch the so-
lution without using the formula for the solution. Use this to answer
part (b) of that exercise.

8. For the drag on a sphere, as described in Exercise 10 on page 31, de-
termine the terminal velocity without solving the IVP. In other words,
answer part (c) using only part (a) of that exercise.

9. This problem concerns solving y′ = −√
1 + y, where y(0) = 0.

a) Using separation of variables, what is the solution? It helps to
note, from the differential equation, that y′(0) = −1.

b) Using the method outlined in Example 2, sketch the solution.

c) Sketch the solution you found in part (a). Assuming your sketch
in part (b) is correct, is there anything wrong with your solution
in part (a)? If so, how should it be modified? Does your sketch
from part (b) need to be modified as well?

10. The population of fish in a lake can be modeled using the logistic
equation. However, assuming that the fish are caught at a constant
rate h, the equation for the population becomes

P ′ = r
(

1− P

N

)

P − h,

where r and N are positive constants.

a) Assuming that the loss due to fishing is small enough that 0 <
h < rN/4, find the two steady states for the equation. Label these
values as P1 and P2, where P1 < P2.

b) Determine whether P1 and P2 are unstable or asymptotically stable.

c) Letting f(P ) be the right hand side of the differential equation,
sketch f(P ) for 0 ≤ P < ∞. With this, answer the question in
Exercise 12(b) on page 32.

d) Assuming that P1 < P (0) < P2, sketch the solution. Do the same
for the case of when P2 < P (0).

e) Sketch the solution if 0 < P (0) < P1. In doing this remember that
P (t) can not be negative. Note that you will find that there is a
time te where extinction occurs, and the differential equation does
not apply to the fish population for te < t.

11. The solution of a differential equation is shown in Figure 2.13. Explain
why it can not be the plot of the solution of the following differential
equations. You only need to provide one reason (even though there
might be several).
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a) y′ = 1 + y2

b) y′ = y − 4

c) y′ = (y − 4)(y − 3)(y − 1)

d) y′ = (y − 2)(4− y)

0 1 2 3 4 5 6 7 8
0 

2 

4 

Figure 2.13. Plot used in Exercise 11. The starting point is y(0) = 2.

12. The following refer to the solution of (2.47), where f(y) is continuous.
Sketch a function f(y) so the stated conditions hold. Make sure to pro-
vide a short explanation of why your function satisfies the conditions
stated. If it is not possible to find such a function, explain why.

a) The solution is strictly monotone increasing for y < 0, is strictly
monotone decreasing for y > 0, and there are no steady states.

b) The only asymptotically stable steady state is Y = 0, and the only
unstable steady states are Y = −1 and Y = 1.

c) The only asymptotically stable steady state is Y = 0, and the only
unstable steady states are Y = 1 and Y = 2.

13. This problem concerns what is known as one-sided stability, or semi-
stability. The differential equation considered is

y′ = 2(3− y)2.

a) Show that there is one steady state Y , and f ′(Y ) = 0.

b) Sketch f(y) for −∞ < y < ∞. Use this to explain why, except
when y = Y , y is an increasing function of t.

c) Using the same reasoning as for the population example, explain
why, if y(0) < Y , then limt→∞ y(t) = Y . However, if y(0) > Y ,
then limt→∞ y(t) = ∞.

d) Use the results from part (c) to explain why this is an example of
one-sided stability.



Chapter 3

Second-Order Linear

Equations

The general version of the differential equations considered in this
chapter can be written as

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = f(t), (3.1)

where p(t), q(t), and f(t) are given. One of the reasons this equation gets
its own chapter is Newton’s second law, which, if you recall, is F = ma.
To explain, if y(t) is the displacement, then the acceleration is a = y′′,
and this gives us the differential equation my′′ = F . In this chapter we
are considering problems when F is a linear function of velocity y′ and
displacement y. Later, in Chapter 5, we will consider equations where the
dependence is nonlinear. It is because of the connections with the second
law that f(t) in (3.1) is often referred to as the forcing function.

In the previous chapter, for first-order linear differential equations, we
very elegantly derived a formula for the general solution. This will not
happen for second-order equations. All of the methods derived in this
chapter are, in fact, just good, or educated, guesses on what the answer
is. There are non-guessing methods, and one example involves using a
Taylor series expansion of the solution. An illustration of how this is
done can be found in Exercise 8 on page 54.

To use a guessing approach, it becomes essential to know the math-
ematical requirements for what can be called a general solution. This is
where we begin.

Introduction to Differential Equations, M. H. Holmes, 2023
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3.1 Initial Value Problem

A typical initial value problem (IVP) consists of solving (3.1), for t > 0,
with the initial conditions

y(0) = α, and y′(0) = β, (3.2)

where α and β are given numbers. Because our solution methods involve
guessing, it is important that we know when to stop guessing and conclude
we have found the solution. This is why the next result is useful.

Existence and Uniqueness Theorem. If p(t), q(t), and f(t) are con-
tinuous for t ≥ 0, then there is exactly one smooth function y(t) that
satisfies (3.1) and (3.2).

In stating that y(t) is a smooth function, it is meant that y′′(t) is defined
and continuous for t ≥ 0. Those interested in the proof of the above
theorem, or the theoretical foundations of the subject, should consult
Coddington and Carlson [1997].

So, according to the above theorem, if we find a smooth function that
satisfies the differential equation and initial conditions, then that is the
solution, and the only solution, of the IVP.

3.2 General Solution of a Homogeneous Equation

The associated homogeneous equation for (3.1) is

d2y

dt2
+ p(t)

dy

dt
+ q(t)y = 0. (3.3)

We need to spend some time discussing what it means to be the general
solution of this equation. So, consider Exercise 5(a), in Section 1.2. As-
suming you did this exercise, you found that given solutions y1 = e2t and
y2 = et of y′′ − 3y′ + 2y = 0, then

y(t) = c1y1(t) + c2y2(t) (3.4)

is a solution for any value of c1 and c2. What is important here is that this
is a general solution of the differential equation. Roughly speaking, this
means that any, and all, solutions of the differential equation are included
in this formula. A more precise statement is that, no matter what the
values of α and β, there are values for c1 and c2 so that (3.4) satisfies the
differential equation (3.3) as well as the given initial conditions in (3.2).

This gives rise to the question: what is required so a solution like the
one in (3.4) can be claimed to be a general solution? The answer is given
in the next result.
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General Solution Theorem. The function y(t) = c1y1(t) + c2y2(t),
where c1 and c2 are arbitrary constants, is a general solution of (3.3)
if the following are true:

1. y1(t) and y2(t) are solutions of (3.3), and

2. y1(0)y
′
2(0)− y′1(0)y2(0) 6= 0.

To explain where these two requirements come from, the first one guar-
antees that y(t) is a solution of (3.3) no matter what the values of c1 and
c2. As for the initial conditions (3.2), they require that

c1y1(0) + c2y2(0) = α,

c1y
′
1(0) + c2y

′
2(0) = β.

Solving these equations, one gets

c1 =
αy′2(0)− βy2(0)

y1(0)y′2(0)− y′1(0)y2(0)
,

with a similar expression for c2. So, as long as y1(0)y
′
2(0) 6= y′1(0)y2(0)

it is possible to find c1 and c2 so the initial conditions are satisfied (no
matter what the values of α and β). In other words, y(t) is a general
solution.

Example: Show that y = c1e
−3t+ c2e

t is a general solution of y′′+2y′−
3y = 0.

Answer: In this case, y1(t) = e−3t and y2(t) = et. It is not hard to
show that they are solutions of the differential equation (see Section
1.2). To check on the second requirement, note that y′1 = −3e−3t

and y′2 = et. So, y1(0)y
′
2(0)− y′1(0)y2(0) = 4 6= 0. Therefore, y is a

general solution. �

3.2.1 Linear Independence and the Wronskian

It is possible to restate the General Solution Theorem given above as:
“The function y(t) = c1y1(t) + c2y2(t), where c1 and c2 are arbitrary
constants, is a general solution of (3.3) if y1(t) and y2(t) are linearly inde-
pendent solutions of (3.3).” The requirement that y1 and y2 are linearly
independent means that the only constants c1 and c2 that satisfy

c1y1(t) + c2y2(t) = 0, ∀ t ≥ 0, (3.5)

are c1 = 0 and c2 = 0. This is, effectively, the same definition of linear
independence used in linear algebra. The difference is that we have func-
tions rather than vectors. If it is possible to find either c1 6= 0 or c2 6= 0
so (3.5) holds, then y1 and y2 are said to be linearly dependent. Also,
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in (3.5), the symbol ∀ is a mathematical shorthand for “for all” or “for
every.”

The question arises about how the “independent solutions” version of
the theorem is the same as the “y1(0)y

′
2(0)− y′1(0)y2(0) 6= 0” version. To

explain, given two solutions y1 and y2 of (3.3), one way to determine if
they are independent is to use what is called the Wronskian of y1 and y2.
This is defined as

W (y1, y2) ≡ det

(

y1 y2

y′1 y′2

)

. (3.6)

For those unfamiliar with determinants, this can be written as

W (y1, y2) ≡ y1y
′
2 − y2y

′
1. (3.7)

The usefulness of this function is due, in part, to the next result.

Independent Solutions Test. If y1 and y2 are solutions of (3.3), then
y1 and y2 are independent if, and only if, W (y1, y2) is nonzero.

The Wronskian comes into this problem because (3.5) must hold on the
interval 0 ≤ t < ∞. So, (3.5) can be differentiated, which gives us the
equation c1y

′
1 + c2y

′
2 = 0. This, along with (3.5), provides two equations

for c1 and c2. It is not hard to show that if W (y1, y2) 6= 0, then the
only solution to these two equations is c1 = c2 = 0. Consequently, if
W (y1, y2) 6= 0, then y1 and y2 are independent.

Now, as shown in Exercise 5, either W (y1, y2) is identically zero or else
it is never zero. Given that y1(0)y

′
2(0)−y′1(0)y2(0) is the value ofW (y1, y2)

at t = 0, then from the Independent Solutions Test we conclude that y1(t)
and y2(t) are linearly independent if, and only if, y1(0)y

′
2(0)−y′1(0)y2(0) 6=

0. So, the two versions of the theorem are equivalent.

Exercises

1. Assuming ω 6= 0, show that y = c1e
ωt + c2e

−ωt is a general solution of
y′′ − ω2y = 0.

2. Show y = c1e
−αt+ c2te

−αt is a general solution of y′′+2αy′+α2y = 0.

3. Assuming b 6= 0, show that y1 = 1 and y2 = e−bt are independent
solutions of y′′ + by′ = 0.

4. Assuming ω 6= 0, show that y1 = cos(ωt) and y2 = sin(ωt) are inde-
pendent solutions of y′′ + ω2y = 0.

5. If y1 and y2 are solutions of (3.3), show that d
dtW + p(t)W = 0. Use

this to derive Abel’s formula, which is that

W (y1, y2) = W0e
−

∫ t

0
p(r)dr,

where W0 = y1(0)y
′
2(0)− y′1(0)y2(0) is the value of W at t = 0.
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3.3 Solving a Homogeneous Equation

The solution of the homogeneous equation

d2y

dt2
+ b

dy

dt
+ cy = 0 (3.8)

can be found by assuming that y = ert. With this, y′ = rert, and y′′ =
r2ert, and so (3.8) becomes (r2 + br + c)ert = 0. Since ert is never zero,
we conclude that

r2 + br + c = 0. (3.9)

This is called the characteristic equation for (3.8). It is easily solved
using the quadratic formula, which gives us that

r =
1

2

(

− b±
√

b2 − 4c
)

. (3.10)

There are three possibilities here:

1. there are two real-valued r’s: this happens when b2 − 4c > 0,

2. there is one r: this happens when b2 − 4c = 0, and

3. there are two complex-valued r’s: this happens when b2 − 4c < 0.

The case of when the roots are complex-valued requires a short introduc-
tion to complex variables, and so it is done last.

3.3.1 Two Real Roots

When there are two real-valued roots, say, r1 and r2, then the two cor-
responding solutions of (3.8) are y1 = er1t and y2 = er2t. It is left as an
exercise to show they are independent. Therefore, the resulting general
solution of (3.8) is

y = c1e
r1t + c2e

r2t.

3.3.2 One Real Root and Reduction of Order

When there is only one root, the second solution can be found using
what is called the reduction of order method. To explain, if you know a
solution y1(t), it is possible to find a second solution by assuming that
y2(t) = w(t)y1(t). In our case, we know that y1(t) = ert, where r =
−b/2, is a solution. So, to find a second solution it is assumed that
y(t) = w(t)ert. Substituting this into (3.8), and simplifying, yields the
differential equation

w′′ + (2r + b)w′ + r2 + br + c = 0.

Since r = −b/2, and 4c = b2, then the above differential equation reduces
to just w′′ = 0. Integrating this once gives w′ = d1 and then integrating
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again yields w = d1t+ d2, where d1 and d2 are arbitrary constants. With
this our second solution is y = (d1t+d2)e

rt. A solution that is independent
of y1 = ert is obtained by taking d1 = 1 and d2 = 0, which means
that y2 = tert. The fact that they are independent follows from the
Independence Test since W (y1, y2) = 2ert is nonzero. Therefore, the
resulting general solution of (3.8) is

y = c1e
rt + c2te

rt.

3.4 Complex Roots

An example of a differential equation that generates complex-valued roots
is

y′′ + 4y′ + 13y = 0. (3.11)

Assuming y = ert, we obtain the characteristic equation r2+4r+13 = 0.
The two solutions of this are r1 = −2 + 3i and r2 = −2− 3i. Proceeding
as in the case of two real-valued roots, the conclusion is that the resulting
general solution of (3.11) is

y = c1e
r1t + c2e

r2t

= c1e
(−2+3i)t + c2e

(−2−3i)t. (3.12)

Because complex numbers are used in the exponents, if this expression is
used as the general solution, then c1 and c2 must be allowed to also be
complex-valued.

Although solutions as in (3.12) are used, particularly in physics, there
are other ways to write the solution that do not involve complex numbers.
Even if (3.12) is used, there is still the question of how to evaluate an
expression such as e3i. For this reason, a short introduction to complex
variables is needed.

3.4.1 Euler’s Formula and its Consequences

The key for working with complex exponents is the following formula.

Euler’s Formula. If θ is real-valued then

eiθ = cos θ + i sin θ. (3.13)

It is not possible to overemphasize the importance of this formula. It is
one of those fundamental mathematical facts that you must memorize.
For those who might wonder how this formula is obtained, it comes from
writing down the Maclaurin series of eiθ, cos θ, and sin θ, and then showing
that they satisfy (3.13).
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As it must, (3.13) is consistent with the usual rules involving arith-
metic, algebra, and calculus. The examples below provide illustrations of
this fact.

Example 1: Since, by definition, i =
√
−1, then i2 = −1, i3 = −i, and

i4 = 1. Also,

(a+ ib)2 = (a+ ib)(a+ ib)

= a2 − b2 + 2iab.

It is useful to be able to identify the real and imaginary part of a
complex number. So, if r = a+ ib, and a and b are real, then

Re(r) = a, and Im(r) = b.

As an example, Re(5 − 16i) = 5, and Im(5 − 16i) = −16. Finally,
two complex numbers are equal only when their respective real and
imaginary parts are equal. So, for example, to state that eiθ =
1
2

√
2(1 − i) requires that, using Euler’s formula, cos θ = 1

2

√
2 and

sin θ = −1
2

√
2. �

Example 2: eiπ = cosπ + i sinπ = −1.

This shows that the exponential function can be negative. More-
over, since eiπ = −1 then, presumably, ln(−1) = iπ (i.e., you can
take the logarithm of a negative number). This is true, but there are
complications related to the periodicity of the trigonometric func-
tions, and to learn more about this you should take a course in
complex variables. �

Example 3: eiπ/2 = cosπ/2 + i sinπ/2 = i. �

Example 4: Assuming θ and ϕ are real-valued, then

eiθeiϕ = (cos θ + i sin θ)(cosϕ+ i sinϕ)

= cos θ cosϕ− sin θ sinϕ+ i(cos θ sinϕ+ sin θ cosϕ)

= cos(θ + ϕ) + i sin(θ + ϕ)

= ei(θ+ϕ). �

Example 5: Assuming r is real-valued, then

d

dt
eirt =

d

dt
(cos rt+ i sin rt)

= −r sin rt+ ir cos rt

= ir(cos rt+ i sin rt)

= ireirt. �



50 Chapter 3. Second-Order Linear Equations

The next step is to extend Euler’s formula to a general complex num-
ber. With this in mind, let z = x + iy, where x and y are real-valued.
Using the usual law of exponents,

ez = ex+iy = exeiy

= ex
(

cos y + i sin y
)

. (3.14)

The above expression is what we need for solving differential equations.

3.4.2 Second Representation

We return to the general solution given in (3.12). With (3.14), we get the
following

y = c1e
(−2+3i)t + c2e

(−2−3i)t

= c1e
−2t
(

cos 3t+ i sin 3t
)

+ c2e
−2t
(

cos 3t− i sin 3t
)

= (c1 + c2)e
−2t cos 3t+ i(c1 − c2)e

−2t sin 3t.

We have therefore shown that the general solution can be written as

y(t) = d1e
−2t cos 3t+ d2e

−2t sin 3t. (3.15)

It is not difficult to check that the functions y1 = e−2t cos 3t and y2 =
e−2t sin 3t are solutions of (3.11), and they have a nonzero Wronskian.
Moreover, since y1 and y2 do not involve complex numbers, then d1 and
d2 in the above formula are arbitrary real-valued constants.

3.4.3 Third Representation

There is a third way to write the general solution that can be useful when
studying vibration, or oscillation, problems. This comes from making the
observation that given the values of d1 and d2 in (3.15), we can write them
as a point in the plane (d1, d2). Using polar coordinates, it is possible to
find R and ϕ so that d1 = R cosϕ and d2 = R sinϕ. In this case,

y = d1e
−2t cos 3t+ d2e

−2t sin 3t

= Re−2t
(

cosϕ cos 3t+ sinϕ sin 3t
)

= Re−2t cos(3t− ϕ). (3.16)

This last expression is the formula we are looking for. In this representa-
tion of the general solution, R and ϕ are arbitrary constants with R ≥ 0.
The advantage of this form of the general solution is that it is much easier
to sketch the solution, and to determine its basic properties. Its downside
is that it can be a bit harder to find R and ϕ from the initial conditions
than the other two representations.
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3.5 Summary for Solving a Homogeneous Equation

To solve
y′′ + by′ + cy = 0, (3.17)

where b and c are constants, assume y = ert. This leads to solving the
characteristic equation r2+br+c = 0, and from this the resulting general
solution is given below.

Two Real Roots: r = r1, r2 (with r1 6= r2).

y = c1e
r1t + c2e

r2t (3.18)

One Real Root: r = λ.

y = c1e
λt + c2te

λt (3.19)

Complex Roots: r = λ± iµ (with µ 6= 0). Any of the following can be
used:

y = c1e
(λ+iµ)t + c2e

(λ−iµ)t, where c1, c2 are complex-valued, (3.20)

y = d1e
λt cos(µt) + d2e

λt sin(µt), where d1, d2 are real-valued, (3.21)

y = Reλt cos(µt− ϕ), where R,ϕ are constants with R ≥ 0. (3.22)

In what follows, (3.21) is used. The exception is in Section 3.10, where
(3.22) is preferred because it is easier to sketch.

Example 1: Find a general solution of y′′ + 2y′ − 3y = 0.

Answer: The assumption that y = ert leads to the characteristic
equation r2 + 2r − 3 = 0. The solutions of this are r = −3 and
r = 1. Therefore, a general solution is y = c1e

−3t + c2e
t. �

Example 2: Find the solution of the IVP: y′′ + 2y′ = 0 where y(0) = 3
and y′(0) = −4.

Answer: The assumption that y = ert leads to the characteristic
equation r2 + 2r = 0. The solutions of this are r = −2 and r = 0.
Therefore, a general solution is y = c1e

−2t + c2. To satisfy y(0) = 3
we need c1 + c2 = 3, and for y′(0) = −4 we need −2c1 = −4.
This gives us that c1 = 2, and c2 = 1. Therefore, the solution is
y = 2e−2t + 1. �

Example 3: Find the solution of the IVP: y′′ − 2y′ + 26y = 0 where
y(0) = 1 and y′(0) = −4.

Answer: The characteristic equation is r2 − 2r + 26 = 0, and the
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solutions of this are r = 1 + 5i and r = 1 − 5i. Using (3.21), since
λ = 1 and µ = 5, the general solution has the form

y = d1e
t cos(5t) + d2e

t sin(5t).

To satisfy the initial conditions we need to find y′, which for our
solution is

y′ = (d1 + 5d2)e
t cos(5t) + (−5d1 + d2)e

t sin(5t).

So, to satisfy y(0) = 1 we need d1 = 1, and for y′(0) = −4 we need
d1+5d2 = −4. This means that d2 = −1, and therefore the solution
of the IVP is y = et cos(5t)− et sin(5t). �

Example 4: Find the solution of the IVP: y′′ − 9y = 0 where y(0) = −2
and y(t) is bounded for 0 ≤ t < ∞.

Answer: The assumption that y = ert leads to the quadratic equa-
tion r2 = 9. The solutions of this are r = −3 and r = 3. Therefore,
a general solution is y = c1e

−3t + c2e
3t. To satisfy y(0) = 1 we

need c1 + c2 = −2. As for boundedness, e−3t is a bounded function
0 ≤ t < ∞ but e3t is not. This means we must take c2 = 0. The
resulting solution is y = −2e−3t. �

As you might have noticed, in the above examples the formula for
the roots in (3.10) was not used. The reason is that it is much easier
to remember the way the characteristic equation is derived (by assuming
y = ert, etc) than by trying to remember the exact formula for the roots.

Exercises

1. Assuming that z1 = 1 + i, and z2 = e2+iπ
6 , find Re(z) and Im(z):

a) z = z1 − 8

b) z = 2iz1

c) z = z2

d) z = z1 + 4z2

e) z = z1z2

f) z = (z2)
6

2. Assuming θ and ϕ are real-valued, show that the following hold:

a)
1

i
= −i

b)
1

a+ ib
=

a− ib

a2 + b2

c) eiθ 6= 0, ∀θ
d) e−iθ =

1

eiθ

e) (eiθ)2 = e2iθ

f) ei(θ+2π) = eiθ

g) ei(θ−ϕ) =
eiθ

eiϕ

h)
∫

eiθdθ = −ieiθ + c

i) cos θ = 1
2

(

eiθ + e−iθ
)

j) sin θ = 1
2i

(

eiθ − e−iθ
)



Exercises 53

3. Find the general solution of the given differential equation.

a) y′′ + y′ − 2y = 0

b) 2y′′ + 3y′ − 2y = 0

c) y′′ + 3y′ = 0

d) 4y′′ − y = 0

e) y′′ = 0

f) y′′ − 6y′ + 9y = 0

g) 4y′′ + 4y′ + y = 0

h) 4y′′ + y = 0

i) y′′ − 2y′ + 2y = 0

j) y′′ + 2y′ + 5y = 0

4. Find the solution of the IVP.

a) y′′ − y′ − 2y = 0, y(0) = 0, y′(0) = −1

b) 2y′′ + 3y′ − 2y = 0, y(0) = −10, y′(0) = 0

c) y′′ + 3y′ = 0, y(0) = −1, y′(0) = −1

d) 5y′′ − y′ = 0, y(0) = −1, y′(0) = −1

e) 3y′′ − y = 0, y(0) = 3, y(t) is bounded for 0 ≤ t < ∞
f) y′′ − 3

2y
′ − y = 0, y(0) = 5, y(t) is bounded for 0 ≤ t < ∞

g) y′′ + 2y′ + y = 0, y(0) = −1, y′(0) = 0

h) y′′ + 9y = 0, y(0) = −1, y′(0) = −1

i) y′′ + 2y′ + 5y = 0, y(0) = −1, y′(0) = −1

j) y′′ − y′ + 13
36y = 0, y(0) = 2, y′(0) = 1

5. The roots of the characteristic equation are given. You are to find the
original differential equation (of the form given in (3.17)). If only one
value is given, that is the only root.

a) r = −1, 1

b) r = 3, 5

c) r = ±2

d) r = 0, 2

e) r = 1

f) r = 0

g) r = 2± 5i

h) r = ±2i

6. Use the method of reduction of order to find a second solution y2(t),
and then show it is linearly independent of the given solution y1(t).

a) (t+ 1)2y′′ − 4(t+ 1)y′ + 6y = 0, y1(t) = (t+ 1)2

b) (t+ 3)y′′ − y′ + 4(t+ 3)3y = 0, y1(t) = sin(t2 + 6t)

c) (t+ 1)y′′ − (t+ 2)y′ + y = 0, y1(t) = et

7. Answer the following questions by either providing one example show-
ing it is true, or explaining why it is not possible.

a) Is it possible to find values for b and c so that the solution of (3.17)
is such that limt→∞ y = 0, no matter what the initial conditions?

b) Is it possible to find values for b and c so that the solution of (3.17)
is a bounded function of t, no matter what the initial conditions?

c) Is it possible to find values for b and c so that the solution of (3.17)
is a periodic function of t, no matter what the initial conditions?
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8. Suppose y(t) satisfies the IVP: y′′−2y′+2y = 0, where y(0) = −1 and
y′(0) = 0.

a) Without solving the IVP, determine y′′(0).

b) Without solving the IVP, determine y′′′(0), y′′′′(0), and y′′′′′(0).

c) Explain how it is possible to determine the Maclaurin series ex-
pansion of y(t) directly from the differential equation and initial
conditions.

3.6 Solution of an Inhomogeneous Equation

We now turn to the problem of solving the inhomogeneous second-order
differential equation

d2y

dt2
+ b

dy

dt
+ cy = f(t). (3.23)

As with the homogeneous equation, the first task is to explain what form
a general solution will have.

Equation (3.23) shares a property with all linear inhomogeneous dif-
ferential equations. Namely, the general solution can be written as

y(t) = yp(t) + yh(t), (3.24)

where yp is a particular solution of the differential equation, and yh(t)
is the general solution of the associated homogeneous equation.
That the solution can be written in this way was discussed for linear
first-order equations in Section 2.2.1. As you recall, we had solved the
problem and then made the observation that the solution can be writ-
ten as in (3.24). For the second-order problems we are now considering,
the situation is reversed, and we will use (3.24) to construct the general
solution.

The associated homogeneous equation for (3.23) is just

d2y

dt2
+ b

dy

dt
+ cy = 0. (3.25)

How to find the general solution of this has been discussed in some detail,
and formulas for the solution are given in Section 3.5.

So, what remains is to determine how to find a particular solution of
(3.23). As you should recall, a particular solution is any smooth function
that satisfies the differential equation. Since any function will do, we are
not really picky on how this function is determined. In fact, our go-to
method is nothing more than guessing what a particular solution might
be. For those who prefer a more systematic approach, an alternative
method is derived in Section 3.9. The guessing method, what is called
the method of undetermined coefficients, is considered first.
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3.6.1 Non-Uniqueness of a Particular Solution

A particular solution is only required to be a solution of the differential
equation. It is possible, for any given differential equation, to have two
rather different looking functions both be particular solutions. As an
example, both y = 1 − t and y = 1 − t + 3et − 5e−2t are particular
solutions of y′′ + y′ − 2y = 4t. To explain what’s going on here, the
general solution of the differential equation is

y = 1− t+ c1e
t + c2e

−2t,

where c1 and c2 are arbitrary constants. A particular solution of this
equation is a solution with particular choices for c1 and c2. For the two
particular solutions given earlier, the first has c1 = c2 = 0 and the second
has c1 = 3 and c2 = −5.

For the most part, when trying to find a particular solution we will
be looking for the case of when c1 = c2 = 0.

3.7 The Method of Undetermined Coefficients

The objective is to be able to find a solution, any solution, that satisfies

d2y

dt2
+ b

dy

dt
+ cy = f(t). (3.26)

Depending on f(t), it is often possible to simply guess a solution. To
illustrate, suppose the equation to solve is

y′′ + y′ + 2y = 5e3t. (3.27)

This equation is asking for a function y which if you differentiate it as
indicated and add the results together, then you get 5e3t. A function
that will generate e3t in this way is e3t. In other words, it is reasonable
to expect that a particular solution will have the form y = Ae3t. Since
y′ = 3Ae3t and y′′ = 9Ae3t, then from the differential equation we require
that 14Ae3t = 5e3t. This will hold by taking A = 5/14, and therefore a
particular solution is yp =

5
14e

3t.

Example 1: Find a particular solution of

y′′ − 2y′ + y = 2 cos 4t. (3.28)

Answer: The functions which will, if you differentiate them once or
twice, generate cos(4t) are cos(4t) and sin(4t). So, the assumption
is that a particular solution can be found of the form

y = A cos 4t+B sin 4t. (3.29)
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Since y′ = −4A sin 4t+4B cos 4t, and y′′ = −16A cos 4t−16B sin 4t,
then (3.28) requires that

(−15A− 8B) cos 4t+ (−15B + 8A) sin 4t = 2 cos 4t. (3.30)

The respective coefficients of the cos 4t and sin 4t terms on the left
and right hand sides must be equal. This means that:

cos 4t : −15A− 8B = 2
sin 4t : −15B + 8A = 0 .

Solving, we get that A = −30/289, and B = −16/289. Therefore,
a particular solution of (3.28) is

yp = − 30

289
cos 4t− 16

289
sin 4t. � (3.31)

The key observation coming from the last example is that if you be-
lieve a function needs to be included in the guess for yp, then all of its
derivatives must be included. So, looking at (3.28) you would expect that
cos(4t) needs to be part of the guess, which means you must also in-
clude sin(4t). You do not need to include 4 sin(4t), or −4 sin(4t), because
sin(4t) is multiplied by an arbitrary constant in the guess (3.29), and this
can account for any constant factors that might be generated by taking
a derivative.

There are two situations when this guessing approach runs into trou-
ble. One is easily fixable and this is demonstrated in the next example.
The other situation is not fixable, and the cause of the difficulty is illus-
trated in Example 7 below.

Example 2: Find a particular solution of

y′′ + 4y = 3 cos 2t.

Answer: Given what happened in the last example, you would ex-
pect that to find a particular solution you would assume that

y = A cos 2t+B sin 2t.

However, both cos 2t and sin 2t are solutions of the associated ho-
mogeneous equation. Because of this, the guess would give us that
y′′ + 4y = 0, no matter what the values are for A and B. The fix is
to take the guess, and for the terms that are solutions of the associ-
ated homogeneous equation, multiply them by t. So, the modified
guess for this example would be

y = t(A cos 2t+B sin 2t).
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To check that this works, since

y′ = A cos 2t+B sin 2t+ t(−2A sin 2t+ 2B cos 2t),

and

y′′ = 2(−2A sin 2t+ 2B cos 2t) + t(−4A cos 2t− 4B sin 2t),

then from the differential equation we get

2(−2A sin 2t+ 2B cos 2t) = 3 cos 2t.

Equating the coefficients of the cos 2t and sin 2t terms we get that
−4A = 0 and 4B = 3. Therefore, A = 0, B = 3

4 , and a particular
solution is yp =

3
4 t sin 2t. �

When using the method of undetermined coefficients, the step that
requires the most thought is getting the guess correct. After that, it
is relatively straightforward to find the coefficients. Consequently, in the
examples below, only the appropriate guess is determined. In these exam-
ples, yh(t) is the general solution of the associated homogeneous equation,
and f(t) is the forcing function.

Example 3: What guess should be made for y′′ − y′ − 6y = t3 + 2?

Answer: Since f(t) = t3 + 2, then f ′ = 3t2, f ′′ = 6t, and f ′′′ = 6.
So, a complete guess is y = At3 + Bt2 + Ct + D. It remains to
make sure that none of the functions in this guess is a solution of
the associated homogeneous equation. Since yh = c1e

3t + c2e
−2t,

and the guess does not include e3t or e−2t, then our guess is, indeed,
complete. �

Example 4: What guess should be made for y′′ − y′ − 6y = te−5t?

Answer: The initial guess is y = Ate−5t. However, y′ = A(e−5t −
5te−5t), and this includes a new function e−5t. This must be in-
cluded in the guess, and so a complete guess is y = Ate−5t+Be−5t.
Finally, since yh = c1e

3t+ c2e
−2t, and the guess does not include e3t

or e−2t, then our guess is, indeed, complete. �

Example 5: What guess should be made for y′′ − y′ − 6y = 4t2 + 1 −
sin(πt)?

The guess for f(t) = 4t2 + 1 is y = A0t
2 + A1t+ A2, and the guess

for f(t) = sin(πt) is y = B0 sinπt + B1 cosπt. So, for the equation
as given, a guess is

y = A0t
2 +A1t+A2 +B0 sinπt+B1 cosπt.

Finally, since yh = c1e
3t+ c2e

−2t, and the guess does not include e3t

or e−2t, then our guess is, indeed, complete. �
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if f(t) contains then yp(t) contains all of the following

eat eat

cos(ωt) or sin(ωt) cos(ωt), sin(ωt)

tn tn, tn−1, · · · , 1

tneat tneat, tn−1eat, · · · , eat

eat cos(ωt) or eat sin(ωt) eat cos(ωt), eat sin(ωt)

Table 3.1. Guesses when using the method of undetermined coefficients. Note
that the exponent n must be a non-negative integer. Also, adjustments are needed if
yp(t) contains a solution of the associated homogeneous equation (see Examples 2 and
6 in Section 3.7, and Example 3 in Section 3.8).

Example 6: What guess should be made for y′′ + 4y′ + 4y = 5e−2t?

Answer: The initial guess is y = Ae−2t. However, for this equation,
yh = c1e

−2t + c2te
−2t and one of these functions appears in the

guess. The first modification y = Ate−2t also appears in yh, and
this means we need to multiply by t again. Therefore, the complete
guess is y = At2e−2t. �

Example 7: What guess should you make if f(t) = ln(1 + t)?

Answer: The initial guess is y = A ln(1 + t). Its derivatives are
y′ = A/(1 + y), y′′ = −A/(1 + y)2, y′′′ = 2A/(1 + t)3, etc. Unlike
the other examples, the list of different derivative functions does not
stop. In such cases, the method of undetermined coefficients should
not be used. So, the answer to the question is, there is no guess and
the method described in Section 3.9 should be used. �

In Example 1, we ended up with the equation

(−15A− 8B) cos 4t+ (−15B + 8A) sin 4t = 2 cos 4t, ∀t ≥ 0. (3.32)

To find A and B we equated the coefficients of the cos 4t and sin 4t terms
in this equation. This can be done because these functions are linearly
independent. However, this approach does not require that you prove the
functions are independent. Rather, if you think they might be, and you
then determine values for A and B so (3.32) is satisfied based on this
assumption, then you have found a particular solution.
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3.7.1 Summary Table

Most textbooks on differential equations have a table for various guesses
that you should make for the method of undetermined coefficients. It is
much easier to just remember the rules used in formulate the guess, and
the earlier examples should be reviewed for the particulars. However,
some do find a table useful, and one is provided in Table 3.1. A few
comments need to be made about what is listed. First, if f(t) contains
tn, as well as tn−1, or tn−2, or tn−2, etc, then the guess for tn is all that you
need (see Example 5 above, or Example 1 in the next section). Second,
when solving (3.8), if one the functions in the left column is a solution
of the associated homogeneous differential equation the guess must be
modified. The needed modification was explained earlier (see Examples
2 and 6 above, or Example 3 in the next section).

3.8 Solving an Inhomogeneous Equation

As stated earlier, the general solution of

d2y

dt2
+ b

dy

dt
+ cy = f(t), (3.33)

can be written as
y(t) = yp(t) + yh(t), (3.34)

where yp is a particular solution, and yh is the general solution of the
associated homogeneous equation. We now know how to find yp and yh,
and so we consider a few examples.

Example 1: Find a general solution of y′′ − 3y′ + 2y = 5t2 − 3.

Step 1: Find yh. The associated homogeneous equation is y′′ −
3y′+2y = 0. Assuming y = ert, one gets the characteristic equation
r2 − 3r + 2 = 0. The roots are r = 1 and r = 2, and so yh =
c1e

t + c2e
2t.

Step 2: Find yp. The guess is y = At2 + Bt + C, which means
that y′ = 2At+B and y′′ = 2A. Inserting these into the differential
equation we get that

2At2 + (−6A+ 2B)t+ 2A− 3B + 2C = 5t2 − 3.

The coefficients of the respective tn terms on the left and right hand
sides must be equal. This means that:

t2 : 2A = 5
t1 : −6A+ 2B = 0
t0 : 2A− 3B + 2C = −3 .
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Solving, we get that A = 5/2, B = 15/2, and C = 29/4.

Step 3: The general solution is

y =
5

2
t2 +

15

2
t+

29

4
+ c1e

t + c2e
2t. �

Example 2: Find the solution of the IVP: y′′−4y′+5y = 10−e3t where
y(0) = 3/2 and y′(0) = 0.

Step 1: Find yh. The associated homogeneous equation is y′′ −
4y′+5y = 0. Assuming y = ert, one gets the characteristic equation
r2 − 4r + 5 = 0. The roots are r = 2 ± i, and so yh = c1e

2t cos t +
c2e

2t sin t.

Step 2: Find yp. The guess is y = A + Be3t, which means that
y′ = 3Be3t and y′′ = 9Be3t. Inserting these into the differential
equation we get that

2Be3t + 5A = 10− e3t.

Equating the coefficients of the respective functions, 2B = −1 and
5A = 10. Solving, we get that A = 2 and B = −1/2.

Step 3: The general solution is y = 2− 1
2e

3t+c1e
2t cos t+c2e

2t sin t.

Step 4: To satisfy y(0) = 3/2 we need 3/2+c1 = 3/2, so c1 = 0. For
y′(0) = 0 we need −3/2 + c2 = 0, giving c2 = 3/2. The conclusion
is that the solution of the IVP is

y = 2− 1

2
e3t +

3

2
e2t sin t. �

Example 3: Find a general solution of y′′ − 2y′ = −3t2.

Step 1: Find yh. The associated homogeneous equation is y′′ −
2y′ = 0. Assuming y = ert, one gets the characteristic equation
r2 − 2r = 0. The roots are r = 0 and r = 2, and so yh = c1 + c2e

2t.

Step 2: Find yp. The initial guess is y = At2+Bt+C. However, one
of the terms in this guess is a solution of the homogeneous equation,
and so the guess must be modified to y = t(At2+Bt+C). Inserting
this into the differential equation we get that

6At+ 2B − 2(3At2 + 2Bt+ C) = −3t2.

Equating the coefficients of the respective powers of t, we get that
−6A = −3, 6A−4B = 0, and 2B−2C = 0. Solving yields A = 1/2,
B = 3/4, and C = 3/4.

Step 3: The general solution is therefore

y =
1

4
t(2t2 + 3t+ 3) + c1 + c2e

2t. �
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Exercises

1. Find a particular solution of the given differential equation.

a) y′′ − y′ − 6y = 6et

b) y′′ + 3y′ + 2y = sinπt

c) y′′ + 4y′ − 5y = 25t2

d) 5y′′ − y′ = e−t + 3 cos 2t

e) 3y′′ − 5y′ − 2y = 8t3 − 16t

f) 8y′′ − 2y′ − y = 4 + 65 sin 2t

g) y′′ + 4y = 5tet

h) y′′ − 5y′ − 6y = 30t sin(3t)

i) y′′ − 2y′ + 5y = 5t2 + 4

j) y′′ + 2y′ + 10y = 3et + 1

k) y′′ − 3y′ = 9t3 − 6

l) 3y′′ + y′ − 2y = 12e−2t − 2et

m)y′′ − 8y′ + 17y = e4t sin t

n) y′′ − 5y′ − 6y = −6 sin(t+ 7)

o) y′′ + 3y′ + 2y = 20 sin2 t

p) 4y′′ + y′ = 65 sin(t) cos(t)

2. Find the general solution of the given differential equation from Exer-
cise 1.

3. Find the solution of the given IVP.

a) y′′ + y′ − 2y = 12t, y(0) = 0, y′(0) = 0

b) y′′ + 4y = 8t2, y(0) = 1, y′(0) = 0

c) y′′ − y′ = 2 sin t, y(0) = 1, y′(0) = −2

d) y′′ + 3y′ = 9t, y(0) = 1, y′(0) = 0

e) y′′ + 4y′ + 4y = 4e2t, y(0) = 0, y′(0) = 0

f) 4y′′ − y = 4e−t/2 + 1, y(0) = 1, y′(0) = −1

g) y′′ + 9y = −6 sin(3t), y(0) = 1, y′(0) = 4

h) y′′ + 2y′ + 5y = 4e−t, y(0) = 2, y′(0) = 0

i) 2y′′ − 2y′ + y = 5 cos t, y(0) = −1, y′(0) = −1

4. For the following, determine a complete guess that can be used to find
a particular solution (you do not need to find the coefficients).

a) y′′ + y′ − 2y = t5 − t2

b) y′′ + 4y = t cos t

c) y′′ + 4y = t+ sin 2t

d) y′′ − y′ = 1 + sin t

e) y′′ + 3y′ = 1 + e−3t

f) y′′ + y′ + 2y = t3e−2t

g) y′′ − y′ + 6y = e−t cos 3t

h) 4y′′ − y = −2(t− 1)7

i) y′′ − 2y′ + 2y = et−5 cos t

j) y′′ + 4y = cos(2t+ 3)

5. The idea underlying undetermined coefficients has nothing to do with
the differential equation being second-order. What is required is a
linear differential equation with constant coefficients. As an example,
for the first-order equation y′ + y = e2t, the associated homogeneous
equation is y′ + y = 0. So, yh = ce−t. A particular solution is found
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by assuming that y = Ae2t, from which one gets A = 1/3. The general
solution is therefore y = 1

3e
2t + ce−t. Finding the solution in this way

is easier than using an integrating factor (which is the way it is done in
Example 1 of Section 2.2). Find the general solution of the following
first-order equations using the method of undetermined coefficients.

a) y′ − 6y = 2et

b) 3y′ + 2y = sinπt

c) y′ + 3y = 2t

d) 5y′ − y = e−t + 3t

e) y′ − 4y = 10t sin 2t

f) y′ − 6y = 14te−t + 2

g) 3y′ + 2y = e−t cos(t)

h) y′ − 2y = cos(2t+ 5)

3.9 Variation of Parameters

When the method of undetermined coefficients works, it is relatively easy
to use it to find a particular solution. However, as illustrated in Example
7 of Section 3.7, it does not always work. In such cases, the method of
variation of parameters can be used. Interestingly, this method is also
based on a guess. Namely, to find a particular solution of

d2y

dt2
+ b

dy

dt
+ cy = f(t), (3.35)

it is assumed that
y = u1(t)y1(t) + u2(t)y2(t), (3.36)

where y1 and y2 are independent solutions of the associated homogeneous
equation. As you should notice, the guess (3.36) resembles the general
solution of the associated homogeneous equation. However, instead of
arbitrary constants, there are now unknown functions u1 and u2. Our job
is to find these functions. Although it might not appear to be significant
right now, we are looking for a single function, yp, yet our guess contains
two unknown functions. This means that we have the option to pick
one of these two functions anyway we wish. We will use this option to
advantage to find yp.

Our task is simple in that (3.36) must be a solution of (3.35). So, in
preparation for substituting (3.36) into (3.35) note that

y′ = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2.

We now use the option of picking u1 or u2 anyway we want. The specific
choice is that

u′1y1 + u′2y2 = 0. (3.37)

So y′ = u1y
′
1 + u2y

′
2, and y′′ = u1y

′′
1 + u′1y

′
1 + u2y

′′
2 + u′2y

′
2. Substituting

these into (3.35), we get that

u′1y
′
1 + u′2y

′
2 + u1(y

′′
1 + by′1 + cy1) + u2(y

′′
2 + by′2 + cy2) = f. (3.38)
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Using the fact that y1 and y2 are solutions of the associated homogeneous
equation, then the above equation reduces to

u′1y
′
1 + u′2y

′
2 = f. (3.39)

Therefore, to find u1 and u2, we must solve (3.37) and (3.39). This is
fairly easy. First, from (3.37), u′2 = −u′1y1/y2. Inserting this into (3.39)
we get that

(y2y
′
1 − y1y

′
2)u

′
1 = y2f.

This can be written as

−W (y1, y2)u
′
1 = y2f,

where W (y1, y2) is the Wronskian as defined in (3.6). Solving this gives
us that

u1(t) = −
∫ t

0

y2(s)f(s)

W (y1(s), y2(s))
ds. (3.40)

Inserting this into u′2 = −u′1y1/y2., and integrating, we obtain

u2(t) =

∫ t

0

y1(s)f(s)

W (y1(s), y2(s))
ds. (3.41)

The integration constants have not been included in (3.40) and (3.41) as
we are looking for a particular solution (versus the general solution of the
equation).

Therefore, the particular solution we have found is

yp(t) = −y1(t)

∫ t

0

y2(s)f(s)

W (y1(s), y2(s))
ds+ y2(t)

∫ t

0

y1(s)f(s)

W (y1(s), y2(s))
ds.

(3.42)

Example 1: Find a particular solution of y′′ − 3y′ + 2y = t using varia-
tion of parameters.

Step 1: Find y1 and y2. The associated homogeneous equation is
y′′ − 3y′ + 2y = 0. Assuming y = ert, one gets the characteristic
equation r2 − 3r + 2 = 0. The roots are r = 1 and r = 2, and so
y1 = et and y2 = e2t.

Step 2: Find u1. Since W = y1y
′
2 − y2y

′
1 = e3t, and f = t, then

from (3.40),

u1(t) = −
∫ t

0

e2ss

e3s
ds = −

∫ t

0
se−sds.

Using integration by parts yields u1 = (1 + t)e−t − 1.
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Step 3: Find u2. From (3.41), and using integration by parts,

u2(t) =

∫ t

0

ess

e3s
ds =

∫ t

0
se−2sds =

1

4

[

1− (2t+ 1)e−2t
]

.

Step 4: Collecting our results,

yp =
[

(1 + t)e−t − 1
]

et +
1

4

[

1− (2t+ 1)e−2t
]

e2t

=
1

2
t+

3

4
− et +

1

4
e2t. �

3.9.1 The Solution of an IVP

It is not hard to show that yp(t), given in (3.42), satisfies yp(0) = 0 and
y′p(0) = 0. Therefore, the solution of the IVP

d2y

dt2
+ b

dy

dt
+ cy = f(t),

where y(0) = y0 and y′(0) = y′0, is

y(t) = c1y1(t) + c2y2(t) + yp(t), (3.43)

where c1 and c2 are found by solving

c1y1(0) + c2y2(0) = y0, (3.44)

c1y
′
1(0) + c2y

′
2(0) = y′0. (3.45)

It needs to be remembered that yp(t) appearing in (3.43) is the particular
solution given in (3.42).

Example 2: Find the solution of the IVP: y′′+4y =
√
t, where y(0) = 1,

and y′(0) = 0.

Step 1: Find y1 and y2. The associated homogeneous equation is
y′′ +4y = 0. Assuming y = ert, one gets the characteristic equation
r2 = −4. The roots are r = ±2i, and so y1 = cos 2t and y2 = sin 2t.

Step 2: Find u1. Since W = y1y
′
2 − y2y

′
1 = 2, and f =

√
t, then

from (3.40),

u1(t) = −
∫ t

0

1

2

√
s sin(2s)ds.

The answer is left as a definite integral because it is not possible to
express it in terms of elementary functions.

Step 3: Find u2. From (3.41),

u2(t) =

∫ t

0

1

2

√
s cos(2s)ds.
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Step 4: Solve (3.44) and (3.45). One finds that c1 = 1 and c2 = 0.
Step 5: Therefore, from (3.42) and (3.43), the solution is

y = cos(2t) +
1

2

∫ t

0

√
s
[

sin(2t) cos(2s)− cos(2t) sin(2s)
]

ds

= cos(2t) +
1

2

∫ t

0

√
s sin

(

2(t− s)
)

ds. �

A couple of comments need to be made about (3.43). First, it is the
solution of the IVP, irrespective of what continuous function f(t) is used.
It can also be adapted so it is the solution for more general problems
(see Exercise 3). A drawback is that it can require more work to find
the solution. As a case in point, it is much easier to do Example 1
using undetermined coefficients. However, for Example 2, undetermined
coefficients does not work, and this means that (3.43) is the method of
choice. The recommendation is to first consider whether undetermined
coefficients can be used, as it is usually fairly simple to carry out. It
also has the advantage that it is easier to remember than the variation of
parameters formula.

Exercises

1. Using variation of parameters, find a particular solution of the given
differential equation.

a) 2y′′ + 3y′ − 2y = 25e−2t

b) y′′ − 2y′ + 2y = 6

c) y′′ + y′ − 2y = 3 ln(1 + t)

d) y′′ + 3y′ = 3t3/2 + 9

e) 5y′′ − y′ = 2
1+t

f) 4y′′ − y = 4 sin(1 + t2)

2. Find the solution of the IVP where the differential equation comes
from the previous problem, and the initial conditions are y(0) = 1 and
y′(0) = 0.

3. The formula for a particular solution given in (3.42) applies to the more
general problem of solving y′′+p(t)y′+q(t)y = f(t). In this case, y1 and
y2 are independent solutions of the associated homogeneous equation
y′′ + p(t)y′ + q(t)y = 0. In the following, show that y1 and y2 satisfy
the associated homogeneous equation, and then determine a particular
solution of the inhomogeneous equation.

a) t2y′′ − t(t+ 2)y′ + (t+ 2)y = 2t3; y1(t) = t, y2(t) = tet

b) ty′′ − (t+ 1)y′ + y = t2e2t; y1(t) = 1 + t, y2(t) = et

c) t2y′′ − 3ty′ + 4y = t5/2; y1(t) = t2, y2(t) = t2 ln t
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4. The Bessel equation of order p is t2y′′ + ty′ + (t2 − p2)y = 0. In this
problem assume that p = 1

2 .

a) Show that y1 = sin t/
√
t and y2 = cos t/

√
t are linearly independent

solutions for 0 < t < ∞.

b) Use the result from part (a), and the preamble in Exercise 3, to find
a particular solution of t2y′′ + ty′ + (t2 − 1/4)y = t3/2 cos t.

3.10 Linear Oscillator

We are now going to consider the problem that comes from the mass,
spring, and dashpot illustrated in Figure 3.1. The differential equation is

mu′′ + cu′ + ku = 0, (3.46)

where u(t) is the displacement of the mass from its rest position, with
positive in the upward direction. In this case, the velocity of the mass is
v = u′, and its acceleration is a = u′′.

The physical interpretation of the terms in (3.46), and the basic prop-
erties of the solution, are described in the following pages.

Figure 3.1. Mass-spring-dashpot system.

3.10.1 The Spring Constant

To begin, a spring of length ℓ is suspended as illustrated in Figure 3.2.
An object with mass m is then attached, which stretches the spring a
distance L. The forces on the object in this case are gravity, Fg, and
the restoring force from the spring, Fs. The gravitational force is just
Fg = −mg, where g is the gravitational acceleration constant. The spring
force is determined using Hooke’s law, which states that the restoring
force is proportional to how much the spring is stretched. To translate
this into a mathematical formula, according to Hooke’s law, Fs = kL,
where k is the proportionally constant known as the spring constant.

The total force on the mass is F = Fs + Fg. According to Newton’s
second law, F = ma. Since the mass is at rest (so, a = u′′ = 0), we get
that Fs + Fg = 0. From this we obtain

k =
mg

L
. (3.47)

So, by measuring L, we can determine k from the above formula.
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Figure 3.2. Left: The original spring. Middle: The situation after the mass
is attached, and at rest. Right: Displacement u(t) of the mass from its rest position.

3.10.2 Simple Harmonic Motion

Now, with the mass attached, we set it in motion. For example, as il-
lustrated in Figure 3.2, the mass is pushed up and then released. The
equation governing the motion is, again, determined from Newton’s sec-
ond law. As before, the gravitational force is Fg = −mg. From Hooke’s
law, the restoring force due to the spring is Fs = k(L− u), where u(t) is
the displacement of the mass from its rest position. Since F = ma, and
the force in this problem is F = Fg + Fs, we get the following differential
equation

mu′′ + ku = 0. (3.48)

To find the general solution of (3.48), from the assumption that u = ert

the characteristic equation is found to be mr2+k = 0. This produces the
roots r = ±ω0i, where

ω0 =

√

k

m
. (3.49)

From (3.22), the general solution can be written as

u = R cos(ω0t− ϕ), (3.50)

where R ≥ 0. This periodic function corresponds to what is called simple
harmonic motion. In this context, the coefficient R is the amplitude,
ω0 is the natural frequency, and the period is T = 2π/ω0. The argu-
ment θ = ω0t − ϕ of the cosine is called the phase, and −ϕ is the phase
shift, or the phase constant.

In terms of initial conditions, it is usual to specify the initial displace-
ment and the initial velocity. Together, these correspond to

u(0) = u0, and u′(0) = u′0, (3.51)

where u0 and u′0 are given. To satisfy these, from (3.50), we get that

R cos(ϕ) = u0, (3.52)

R sin(ϕ) =
u′0
ω0

. (3.53)
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Figure 3.3. The initial conditions as expressed in (3.52) and (3.53), located
using the black dot, and the value of R and ϕ.

Finding R: Using the identity cos2(ϕ) + sin2(ϕ) = 1, it follows that

R =

√

u20 +
(u′0
ω0

)2
. (3.54)

Finding ϕ: The value for ϕ depends on whether u0 and u′0 are positive
or negative, as illustrated in Figure 3.3. Because sin θ and cos θ are
2π-periodic, the value for ϕ is not unique. Usually we will use the
value that satisfies −π < ϕ ≤ π. So, from Figure 3.3, if u0 = 0
and u′0 > 0, then ϕ = π/2. Similarly, if u0 = 0 and u′0 < 0, then
ϕ = −π/2. In the case of when u0 6= 0, you can take the ratio of
(3.53) with (3.52) to obtain

tan(ϕ) =
u′0

ω0u0
.

The principal value of the arctan function is denoted as Arctan, and it
satisfies −π

2 < Arctan(s) < π
2 . This is the value most calculators, or

programs like MATLAB or Python, give when evaluating arctan(s).
So, setting s = u′0/(ω0u0), the resulting value of ϕ is shown in Figure
3.4. For example, if u0 > 0, then ϕ = Arctan(s), and if u0 < 0 and
u′0 > 0, then ϕ = Arctan(s) + π.

Figure 3.4. The value of ϕ using the principal value of the arctan function,
where s = u′

0/(ω0u0).
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Figure 3.5. Simple harmonic motion solution for Example 1.

Example 1: A 9kg mass is attached to a spring, stretching it 10
9 m. The

mass is then set into motion by pulling it down 2m and releasing it with
an upward velocity of 1m/s. Assume that g = 10m/s2.

Question 1: What is the value of the spring constant?
Answer: Since m = 9kg and L = 10

9 m, then from (3.47) we get
that k = 81 kg/s2 .

Question 2: Find the resulting simple harmonic motion, and then sketch
the solution.
Answer: The initial conditions are u(0) = −2, and u′(0) = 1. Also,
from (3.49), ω0 = 3, and this means, using (3.50), that the general
solution is u = R cos(3t − ϕ). From (3.54), the amplitude is R =√
37/3. As for ϕ, from Figure 3.4, ϕ = Arctan(−1/6) + π. The

resulting solution is shown in Figure 3.5. In this case, the period is
T = 2π/ω0 = 2π/3.

Question 3: When is the first time that u(t) = R?
Answer: The solution is u = R cos θ, where the phase is θ = 3t−ϕ.
Given that π/2 < ϕ < π, the linear function θ(t) is shown in Figure
3.6. Now, cos θ = 1 when θ = 0,±2π,±4π, · · · . According to Figure
3.6, for t ≥ 0, the first possible value is θ = 0 and this occurs when
t = ϕ/3. This is labeled as t1 in Figure 3.5. �

Figure 3.6. Phase function θ for Example 1.
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It is worth mentioning that the curve in Figure 3.5 can be sketched
just knowing the initial conditions. The reason is that the solution of a
simple harmonic motion problem is just a cosine curve that has amplitude
R. So, in Figure 3.5 the solution starts at u = −2 and has a positive slope
since u′(0) = 1. The curve then oscillates between the lines u = R and
u = −R, where R is known from the initial conditions. What you do not
know is the period T . In fact, as shown in (3.49), the natural frequency,
and therefore the period, are independent of the initial conditions.

3.10.3 Damping

We will now include a damping mechanism. It is assumed that the damp-
ing force is proportional to the velocity. For the mass-spring system the
resistance is usually illustrated as a dashpot, as shown in Figure 3.1. Ir-
respective of exactly what mechanism is involved, the result is that the
damping force is Fd = −cv, where v = u′ is the velocity, and c is the
damping constant and it is non-negative. From the equation F = ma,
and the fact that F = Fs + Fg + Fd, the resulting differential equation is

mu′′ + cu′ + ku = 0. (3.55)

Finding the general solution is straightforward. Assuming u = ert,
then the resulting characteristic equation is mr2 + cr + k = 0. The roots
are

r =
1

2m

(

− c±
√

c2 − 4mk
)

. (3.56)

Just as in Section 3.5, there are three cases to consider. The only differ-
ence now is that certain terminology is introduced to identity the cases.

Over-damped: This means that the damping constant is large enough
that c2 > 4mk. In this case both roots are real-valued, and the resulting
general solution is

u = c1e
r1t + c2e

r2t, (3.57)

where r1 =
1
2m

(

− c+
√
c2 − 4mk

)

and r2 =
1
2m

(

− c−
√
c2 − 4mk

)

. It
is worth noting that the roots are both negative. Therefore, no matter
what the initial conditions,

lim
t→∞

u = 0. (3.58)

Critically damped: This means that the damping constant has just
that right value that c2 = 4mk. So, there is one root, and the resulting
general solution is

u = (c1 + c2t)e
rt, (3.59)

where r = −c/(2m). So, as for the previous case, no matter what the
initial conditions, (3.58) holds.
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Figure 3.7. Response of a damped mass-spring system, depending on the
strength of damping that is present. The dashed red curves in the two lower graphs are
the functions ±Reλt, where λ = −c/(2m).

Under-damped: This means that the damping constant is small enough
that c2 < 4mk. The roots are complex-valued, and the resulting general
solution is

u = Reλt cos(µt− ϕ), (3.60)

where λ = −c/(2m), and µ =
√
4mk − c2/(2m). The solution is not

periodic, but it is oscillatory with an amplitude Reλt that decays to
zero (assuming, of course, that c > 0). Consequently, no matter what
the initial conditions, (3.58) holds.

One conclusion coming from the above discussion is that because of
damping, no matter what the initial conditions, the solution decays ex-
ponentially to zero. The role of damping, and how it affects the solution,
is explored in the next examples.

Example 2: For a mass-spring-dashpot system, suppose that m = 2,
k = 1, and c = 1. Also, assume that the initial conditions are u(0) = 1,
and u′(0) = 2.

Question 1: What is the solution?
Answer: From (3.56), the roots are r = (−1± i

√
7)/4. So, this is a
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case of under-damping, with λ = −1/4 and µ =
√
7/4. From (3.60),

the general solution is

u = Re−t/4 cos

(

1

4

√
7t− ϕ

)

. (3.61)

To satisfy the initial conditions, we need R cosϕ = 1, and R sinϕ =
9/
√
7. From this we get that R = 2

√

22/7, and ϕ = Arctan(9/
√
7).

Question 2: Sketch the solution.
Answer: From (3.61), we know that the solution oscillates between
Re−t/4 and −Re−t/4. These are the red dashed curves in Figure 3.7
(the under-damped plot). Since u′(0) > 0, then the solution starts
out at u(0) = 1, and moves upward. From that point on it simply
bounces back and forth between the red dashed curves.

Question 3: When is the first time that u(t) = 0?
Answer: Writing the solution as u = Re−t/4 cos θ, the phase func-
tion is θ = 1

4

√
7t−ϕ. Sketching this as in Figure 3.6, but now with

0 < ϕ < π/2, it is seen that the first time cos θ = 0 is when θ = π/2.
Consequently, t = 2[π + 2Arctan(9/

√
7)]/

√
7. �

Example 3: For a given mass-spring-dashpot system, how does the so-
lution change as the damping coefficient changes?

Answer: Taking m = 2, k = 1, then r =
(

− c ±
√
c2 − 8

)

/4. Us-
ing the initial conditions u(0) = 1, and u′(0) = 2, the resulting
solution is shown in Figure 3.7, for different values for the damp-
ing constant. The values used give rise to: over-damping (c = 6),
critically damped (c =

√
2), under-damped (c = 1), and weakly

damped (c = 1/40). To say it is weakly damped means that it
is under-damped, and c is so small that the solution resembles the
periodic solution of an undamped oscillator, at least at the begin-
ning. Eventually, the damping does reduce the amplitude enough
to be noticeable.

For over-damping, and critical damping, except near the beginning,
the solution simply decays monotonically to zero. In comparison,
for both under-damped cases the solution oscillates as it decays to
zero. In both cases the solution bounces back and forth between
the two dashed red curves, which are just the functions Reλt and
−Reλt. �

3.10.4 Forced Motion and Resonance

It is often the case that the mass is subjected to an external force f(t).
This would arise, for example if someone was pushing on the mass, similar
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to what happens when you push someone in a swing. In this case, the
total force is F = Fs+Fg+Fd+f(t), and the resulting differential equation
is

mu′′ + cu′ + ku = f(t). (3.62)

Of particular interest is the case of when the forcing is periodic and
there is no damping (so, c = 0). The specific equation to solve is

mu′′ + ku = F0 cosωt, (3.63)

where ω is the driving frequency, and F0 is the amplitude, of the forcing
(both ω and F0 are positive). Assuming u(0) = u′(0) = 0, the resulting
solution is

u =



















F0

k −mω2

(

cos(ωt)− cos(ω0t)
)

, if ω 6= ω0,

F0

2
√
km

t sin(ω0t), if ω = ω0,

(3.64)

where ω0 is given in (3.49).
What is of interest here is that, when the system is driven at its

natural frequency ω0, the solution is an oscillatory function whose ampli-
tude F0t/(2

√
km) becomes unbounded as t increases. This happens even

though the amplitude of the forcing is constant. This is an example of
what is called resonance. An example of a resonant solution is shown in
Figure 3.8(upper).

Resonance is a particularly important phenomena in science and en-
gineering, and it is often something that is to be avoided. As an example,

0 100 200 300 400
-65

0

65

u(
t)

0 100 200 300 400
t

-12

0

12

u(
t)

Figure 3.8. Upper: Resonant solution given in (3.64) when ω = ω0 = 1/3,
F0 = 1, m = 9 and k = 1. The red dashed lines correspond to ±F0t/(2

√
km). Lower:

Solution when a dashpot, with c = 1/4, is included. The red dashed lines correspond to
±R, where R is given in (3.66).
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a wing on an airplane can go into a flapping motion. This can be mod-
eled as a forced simple harmonic oscillator, and under certain conditions
the wing can start to go into resonance. This is known as flutter, and
the resulting large oscillations can lead to the wing breaking off (which
can be upsetting to those in the airplane). What is a concern is that
this will happen no matter what the value of F0, as long as it’s nonzero.
So, even a very small force, what would normally be considered to be
inconsequential, can lead to extremely large oscillations.

Stopping Resonance

One way to avoid resonance is to include a damping mechanism in the
system. With the dashpot we introduced earlier, the equation to solve is

mu′′ + cu′ + ku = F0 cosωt. (3.65)

The forcing no longer contains a solution of the associated homogeneous
equation, and so resonance will not occur. However, it is often the case
that the damping is weak. This means that if ω = ω0, then the solution
will start out like it’s going into resonance, but eventually the damping
will stop this. An example of what happens is shown in Figure 3.8, lower.

This brings us to the question to be considered. Using the flutter
example, the question is: we don’t want the wings to break off, so just
how large do the oscillations get before the damping stops this? To an-
swer this, it is the particular solution that is responsible for the growing
oscillations. So, for the weakly damped case we are considering, only the
particular solution is considered. To find the particular solution of (3.65),
the assumption that u = A cosωt+B sinωt leads to the requirement that
A and B satisfy

m(ω2
0 − ω2)A+ cωB = F0,

−cωA+m(ω2
0 − ω2)B = 0.

From this one obtains

A =
m(ω2

0 − ω2)

c2ω2 +m2(ω2
0 − ω2)2

F0, B =
c ω

c2ω2 +m2(ω2
0 − ω2)2

F0.

Now, to determine the amplitude of the resulting oscillation, it makes
things easier to write the solution in the form u = R cos(ωt − ϕ). This
requires that R cosϕ = A and R sinϕ = B, and therefore

R =
√

A2 +B2 =
1

√

c2ω2 +m2(ω2
0 − ω2)2

F0. (3.66)

The amplitude R is plotted in Figure 3.9 as a function of the driving
frequency ω in the particular case of when F0 = 1, m = 1, and k = 1/2.
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Figure 3.9. The amplitude (3.66) of the forced, but damped, oscillator, as a
function of the driving frequency. Note that ω0 is the natural frequency of the undamped
oscillator.

What is seen is that the smaller the damping coefficient c, the more peaked
the response becomes. Also, the peak response occurs at a frequency
smaller than the natural frequency ω0, but this difference decreases as c
is reduced.

Our flutter question is answered by determining what driving fre-
quency ω gives the largest value for R. Taking the derivative of R with
respect to ω, and setting it to zero gives us that ω = ωM , where

ωM =
√

ω2
0 − ω2

c (3.67)

and ωc = c/(
√
2m). The resulting maximum for R is therefore

RM =
1

c
√

ω2
0 − 1

2ω
2
c

F0. (3.68)

Now, suppose that for the flutter problem it is found experimentally that
the wings won’t break off if the amplitude of the oscillation satisfies R ≤
Rb. Based on our calculations, this means that the damping coefficient c
must be large enough that RM ≤ Rb.

Reality Check : The resonance phenomena considered here is not possible
for the mass-spring system envisioned in Figure 3.2. As the oscillations
grow, as predicted by (3.64), they will eventually get to the point that
the mass will start banging up against the upper support. Presumably,
as the amplitude grows, our linear model is no longer valid, and a more
physically realistic, nonlinear, model is necessary. Even so, the linear
model is useful as it provides information about the onset of resonance.

Units and Values: In the exercises, the value to use for g is usually stated.
If it is not given, then you should leave g unevaluated. Whatever value is
used, it is only approximate. If a more physically realistic value is needed,
then you should probably use the Somigliana equation. Finally, weight
is a force, so for an object that weighs w lbs, its mass can be determined
from the equation w = mg.
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Exercises

In answering the following questions, do not numerically evaluate numbers
such as

√
2, π/3, e2, ln(4/3), etc. The exception to this is when the

question explicitly asks you to compute the answer.

1. Write the following in the form u = R cos(ω0t− ϕ).

a) u = cos 3t+ sin 3t

b) u =
√
3 cosπt− sinπt

c) u = −1
3

√
3 cos t+ sin t

d) u = −4 cos 2t− 4 sin 2t

2. Assuming u = R cos(ω0t − ϕ), you are to use the given initial condi-
tions to determine R and ϕ. You can assume that ω0 = 1.

a) u(0) = 0, u′(0) = 2

b) u(0) = 0, u′(0) = −2

c) u(0) = 2, u′(0) = 2

d) u(0) = −2, u′(0) = −2

e) u(0) = 1, u′(0) = −
√
3

f) u(0) = −1, u′(0) =
√
3

3. You are to sketch the simple harmonic oscillator curve that has the
following initial conditions. Make sure to state the value of R (the
value of T is not determinable from the information given).

a) u(0) = 2, u′(0) = −1

b) u(0) = 0, u′(0) = −2

c) u(0) = 1, u′(0) = 0

d) u(0) = −2, u′(0) = −2

4. A block weighing 2 lb stretches a spring 6 in. Assume that the mass
is pulled down an additional 3 in and then released from rest. Assume
that g = 32 ft/s2.

a) What IVP does u(t) satisfy?

b) What is the solution of the IVP?

c) What is the natural frequency, period, and amplitude of the motion?

d) Sketch the solution for 0 ≤ t ≤ 3T .

e) Is the restoring force in the spring ever zero? What is the minimum
value of the force in the spring?

5. A mass of 100 gm stretches a spring 5
6 m. Assume that the mass is

pulled down a distance of 1m, and then set in motion with an upward
velocity of 2m/s. Assume that g = 10m/s2.

a) What IVP does u(t) satisfy?

b) What is the solution of the IVP?

c) What is the natural frequency, period, and amplitude of the motion?

d) When does the mass first return to its steady state position?

e) Sketch the solution for 0 ≤ t ≤ 3T .

f) What is the first time the force F is zero?
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6. A mass of 1 kg stretches a spring 10 cm. Assume that the mass is
pushed upward a distance of 5 cm, and then set in motion with a
downward velocity of 50 cm/s. Assume that g = 10m/s2.

a) What IVP does u(t) satisfy?

b) What is the solution of the IVP?

c) What is the natural frequency, period, and amplitude of the motion?

d) Sketch the solution for 0 ≤ t ≤ 3T .

e) What is the largest value of the restoring force in the spring? When
is the first time it equals this value?

7. According to Archimedes’ principle, an object that is completely or
partially submerged in water is acted on by an upward (buoyant) force
equal to the weight of the displaced water. You are to use this for
the following situation: A cubic block of wood, with side l and mass
density ρ, is floating in water. If the block is slightly depressed and then
released, it oscillates in the vertical direction. Derive the differential
equation of motion and determine the period of the motion. In doing
this let ρ0 be the mass density of the water, and assume that ρ0 > ρ.

8. In a mass-spring system, suppose the mass is pulled down a distance
d and released from rest.

a) If the resulting natural frequency is 10 s−1 when d = 0.1m, what is
the natural frequency when d = 0.2m?

b) Suppose the amplitude of the motion is 0.1m. Is it possible to
change the initial velocity, keeping d unchanged, so the amplitude
of the motion is 0.2m?

c) Suppose the natural frequency is 10 s−1 when d = 0.1m. Is it
possible to change the initial velocity, keeping d unchanged, so the
natural frequency is 20 s−1?

Damping

9. A block weighing 16 lb stretches a spring 6 in. The mass is attached
to a viscous damper with a damping constant of 2 lbs·s/ft. Assume
that the mass is set in motion from its equilibrium position with a
downward velocity of 4 in/s. Also, assume that g = 32 ft/s2.

a) What IVP does u(t) satisfy?

b) What is the solution of the IVP?

c) Sketch the solution for 0 ≤ t ≤ π
√
15/5.

d) What is the largest value of u(t)?

10. Suppose you construct a mass-spring-dashpot system as shown in Fig-
ure 3.1. In this problem assume that g = 10m/s2.
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a) If the spring is stretched 1
10 m by a force of 1

2 N, what is the spring
constant?

b) If the dashpot exerts a force of −3N when the velocity is 1m/s,
what is the damping constant?

c) Suppose the mass is 1
2 kg, and it is pulled up 1m from its rest

position and given an initial downward velocity of 2m/s. What
IVP does u(t) satisfy?

d) What is the solution of the IVP?

e) Sketch the solution for 0 ≤ t ≤ 10π.

11. The general solution for the under-damped case is given in (3.60).
Suppose the initial conditions are u(0) = u0 and u′(0) = u′0.

a) Show that

R =

√

u20 +

(

u′0 − λu0
µ

)2

.

b) How does Figure 3.3 change?

c) What are R and ϕ if u′0 = 0?

12. It is often stated that “the key difference between critical damping and
overdamping is that critical damping provides the quickest approach
to zero amplitude.” However, this statement is not true. This problem
investigates this for the case of when m = 1, k = 4, u(0) = 1, and
u′(0) = −4.

a) Find the solution when c = 5, which is the over-damped case, and
when c = 4, which is the critically damped case. Sketch both
solutions on the same axes. Explain why the statement is not true.

b) Solve the two problems in part (a) but use the general initial condi-
tions u(0) = u0 and u′(0) = u′0. Use this to explain how to modify
the statement so that it is true.

13. It is usually stated that negative damping is unstable. For the mass-
spring-dashpot system, negative damping means that c is negative.
From the solution, explain why the system is unstable for any nonzero
initial conditions.

Resonance and Forced Motion

14. A block weighing 4 lb stretches a spring 1.5 in. Assume that the block
is acted on by a periodic forcing as in (3.63), with F0 = 3 lb and
ω = 16 /sec. At the start, the block is not moving and it is at its rest
position. Assume that g = 32 ft/s2.

a) What IVP does u(t) satisfy?

b) What is the solution of the IVP?
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c) Sketch the solution for 0 ≤ t ≤ π.

15. Suppose that a spring-mass system is at rest but, starting at t = 0,
the mass is subjected to a force of 5 cos 3tN. Assume that the mass is
2 kg, and the spring constant is 18 kg/s2.

a) What IVP does u(t) satisfy?

b) What is the solution of the IVP?

c) Sketch the solution for 0 ≤ t ≤ 4π.

16. Suppose the forcing in (3.65) is replaced with F0 sinωt. Does this
change (3.66)?

17. This exercise considers what happens when the forcing in (3.65) con-
sists of a combination of driving frequencies.

a) Suppose the forcing is

F0 cosω0t+ F1 cosω1t+ F2 cosω2t,

where the Fi’s are nonzero, and the ωi’s are all different, with ω0

given in (3.49). Does resonance still occur?

b) Suppose the forcing is F0 cosω0t cosω1t, where F0 is nonzero, ω1 6=
ω0, and ω0 given in (3.49). Does resonance still occur?

3.11 Euler Equation

Although second-order equations with constant coefficients are the ones
that most often arise in applications, there is a notable exception to this
statement. This is the Euler equation, which is

x2
d2y

dx2
+ bx

dy

dx
+ cy = 0, (3.69)

where b and c are constants. The reason this equation arises as often as
it does is that it comes from using polar coordinates when solving what
is known as Laplace’s equation (see Section 7.8.2).

A complication that arises with (3.69) is that it is not a second-order
differential equation when x = 0. For this reason, x = 0 is referred to
as a singular point for the equation. This is an issue as it is often the
case that the interval used when solving Euler’s equation has the form
0 ≤ x < L. What condition, if any, you can impose at x = 0 is a question
we will consider below.

In what follows it is assumed that x > 0. Solving (3.69) is rather easy,
as one just assumes a solution of the form y = xr. Since y′ = rxr−1 and
y′′ = r(r − 1)xr−2, then from (3.69 ) we get that

r(r − 1) + br + c = 0, (3.70)
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The solutions of this quadratic equation are

r =
1

2

(

1− b±
√

(1− b)2 − 4c
)

. (3.71)

Just as in Section 3.3, what happens next depends on the values of r
obtained from this solution.

Two Real Roots

When there are two real-valued roots, say, r1 and r2, then the two cor-
responding solutions of (3.13) are y1 = xr1 and y2 = xr2 . It is left as an
exercise to show they are independent. Therefore, the resulting general
solution of (3.13) is

y = c1x
r1 + c2x

r2 , (3.72)

where c1 and c2 are arbitrary constants.

One Real Root

When there is only one root, then you use reduction of order. This means
that to find a second solution, assume that y = w(x)xr. Proceeding as
in Section 3.3.2, one finds that w = lnx. Therefore, the resulting general
solution of (3.13) is

y = c1x
r + c2 ln(x)x

r,

where c1 and c2 are arbitrary constants.

Complex Roots

In this case, the roots can be written as r = λ± iµ, where

λ =
1

2
(1− b), (3.73)

and

µ =
1

2

√

4c− (1− b)2. (3.74)

It is assumed here that 4c > (1 − b)2. Writing the general solution as
in (3.72), and then separating into real and complex parts using Euler’s
formula, one finds that the resulting general solution can be written as

y = d1x
λ cos(µ lnx) + d2x

λ sin(µ lnx), (3.75)

where d1 and d2 are arbitrary constants.
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3.11.1 Examples

Example 1: Find the solution of x2y′′ + 2xy′ − 6y = 0, for 0 < x < 2,
that is bounded for 0 < x < 2 and satisfies y(2) = 1.

Answer: Substituting in y = xr, one gets the equation r2+r−6 = 0.
The solutions of this are r = −3, and r = 2. So, the general solution
of the differential equation is y = c1x

−3 + c2x
2. The requirement

that y is bounded means that c1 = 0. As for y(2) = 1, we need
c2 = 1/4. Therefore, the solution is

y(x) =
1

4
x2. �

Example 2: Find the general solution of 4x2y′′+17y = 0, for 0 < x < ∞.

Answer: Substituting in y = xr, one gets the equation 4r2 − 4r +
17 = 0. The solutions of this are r = 1

2 ± 2i. So, from (3.75), the
general solution is

y = d1
√
x cos(2 lnx) + d2

√
x sin(2 lnx). �

Exercises

1. Assuming x > 0, find the general solution of the following Euler equa-
tions.

a) x2y′′ − 3xy′ + 4y = 0

b) x2y′′ − 5xy′ + 10y = 0

c) 6x2y′′ + 7xy′ − y = 0

d) x2y′′ + y = 0

e) x2y′′ − 3xy′ + 13y = 0

f) 5x2y′′ + 12xy′ + 2y = 0

g) x2y′′ + xy′ = 0

h) x2y′′ − 2xy′ = 0

i) x2y′′ − xy′ − n(n+ 2)y = 0,
where n is a positive integer

2. Find the solution of the following problems. Before doing these prob-
lems, you might want to review Exercise 3, on page 65.

a) x2y′′ − 2xy′ + 2y = x3ex, where y(1) = 0, and y′(1) = 0

b) x2y′′ − 4xy′ + 4y = −2x2 + 1, where y(1) = 0, and y′(1) = 0

c) x2y′′ − xy′ + y = lnx, where y(1) = 0, and y′(1) = 0

d) xy′′ + y′ = x, where y(1) = 1, and y′(1) = −1

e) (x− 1)2y′′ + (x− 1)y′ − y = 0, where y(2) = 1, and y′(2) = 0

3.12 Guessing the Title of the Next Chapter

Since Chapter 2 is about first-order equations, and this chapter is about
second-order equations, you might expect the next chapter to be about
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third-order equations. This was often how older textbooks were written,
where the next chapter would be titled Higher-Order Equations, or some-
thing similar. Although it is possible to find applications that involve
higher-order equations, such as viscoelasticity, they are not that com-
mon. Moreover, the usual method for solving higher-order equations is
to first rewrite them in system form. This is certainly the approach used
when solving them numerically. Well, as it turns out, the next chapter is
about linear systems and the following chapter is on nonlinear systems.
So, although third-order and higher equations are not considered in this
text, the methods used to solve them are.



Chapter 4

Linear Systems

This chapter, and the one that follows, consider problems that involve
two or more first-order ordinary differential equations. Together the equa-
tions form what is called a first-order system. These are very common.
To explain why, it is worth considering a couple of examples.

Example 1: Mechanics

As stated on several occasions earlier in this text, one of the biggest
generators of differential equations is Newton’s second law, which states
that F = ma. To demonstrate its connection with a system of differential
equations, let x(t) denote the position of an object. The velocity is then
v = x′(t), and the acceleration is a = x′′(t). So, F = ma can be written
as mv′ = F . Along with the equation x′ = v, the resulting system is

dx

dt
= v,

dv

dt
=

1

m
F.

As an example, for a uniform gravitation field, and including air resis-
tance, then F = −mg − cv (see Section 2.3.2). In this case, the system
becomes

x′ = v,

v′ = −g − c

m
v.

This is a linear first-order system for x and v. It is also inhomogeneous
since x ≡ 0 and v ≡ 0 is not a solution. �

Introduction to Differential Equations, M. H. Holmes, 2023
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Example 2: Epidemics

Epidemics, such as the black death, COVID-19, and cholera, have come
and gone throughout human history. Given the catastrophic nature of
these events there is a long history of scientific study trying to predict
how and why they occur. One of particular prominence is the Kermack-
McKendrick model for epidemics. This assumes the population can be
separated into three groups. One is the population S(t) of those suscepti-
ble to the disease, another is the population I(t) that is ill, and the third
is the population R(t) of individuals that have recovered. A model that
accounts for the susceptible group getting sick, the subsequent increase in
the ill population, and the eventual increase in the recovered population
is the following set of equations [Holmes, 2019]

dS

dt
= −k1SI,

dI

dt
= −k2I + k1SI,

dR

dt
= k2I.

Given the three groups, and the letters used to designate them, this is an
example of what is known as a SIR model in mathematical epidemiology.
For us, this is an example of a nonlinear first-order system for S, I, and
R. The reason it is nonlinear is the SI term that appears in the first two
equations.

As you might expect, solving a nonlinear system can be challenging.
So, in this chapter, we will concentrate on linear systems. In the next
chapter, nonlinear problems are considered.

4.1 Linear Systems

To get things started, consider the problem of solving

x′ = ax+ by, (4.1)

y′ = cx+ dy. (4.2)

This is a first-order, linear, homogeneous system. In these equations, x(t)
and y(t) are the dependent variables, and a, b, c, and d are constants.
This can be written in system form as

d

dt

(

x

y

)

=

(

a b

c d

)(

x

y

)

.

A simpler way to write this is as

d

dt
x = Ax, (4.3)
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where the vector is

x =

(

x

y

)

,

and the matrix is

A =

(

a b

c d

)

. (4.4)

The equation in (4.3) plays a central role throughout this chapter. Written
in this way, we could be dealing with 20 equations, or 200 equations, and
not just the two in (4.1) and (4.2).

For those a bit rusty on the basic rules for working with matrices and
vectors, a short summary is provided in Appendix A.

Before getting into the discussion of how to solve (4.3), it is worth
considering what we already know about the solution.

4.1.1 Example: Transforming to System Form

In Section 3.5, Example 1, we found that for

y′′ + 2y′ − 3y = 0 (4.5)

the roots of the characteristic equation are r1 = −3 and r2 = 1. The
resulting independent solutions are y1 = e−3t and y2 = et. In this exam-
ple, the differential equation, along with its solutions, are translated into
vector form.

a) Write (4.5) as a linear first-order system as in (4.3).

The standard way to do this is to let v = y′, so the differential equation
can be written as v′ + 2v − 3y = 0, or equivalently, v′ = 3y − 2v. This,
along with the equation y′ = v, gives us the system

y′ = v,

v′ = 3y − 2v.

In other words, we have an equation of the form (4.3), where

x =

(

y

v

)

, and A =

(

0 1

3 −2

)

.

b) Write the two linearly independent solutions in vector form.

For y1 = e−3t, then v1 = y′1 = −3e−3t. Letting x1 be the solution vector
coming from y1, then

x1 =

(

y1

v1

)

=

(

e−3t

−3e−3t

)

=

(

1

−3

)

e−3t = a1e
r1t,
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where r1 = −3 and

a1 =

(

1

−3

)

.

Similarly, since v2 = y′2 = et, then letting x2 be the vector version of y2,

x2 =

(

y2

v2

)

=

(

et

et

)

=

(

1

1

)

et = a2e
r2t,

where r2 = 1 and

a2 =

(

1

1

)

.

c) Write the general solution in vector form.

The general solution for the second-order equation is y = c1y1 + c2y2.
From this, we get that v = y′ = c1y

′
1 + c2y

′
2. Therefore, the general

solution vector is

x =

(

y

v

)

=

(

c1y1 + c2y2

c1y
′
1 + c2y

′
2

)

=

(

c1y1

c1y
′
1

)

+

(

c2y2

c2y
′
2

)

= c1x1 + c2x2. � (4.6)

A very useful observation to make about the above example is that
the linearly independent solutions have the form x = aert, where a is
a constant vector. In fact, when the time comes to solve (4.3) we will
simply assume that x = aert, and then find r and a. Also, note that
for the single linear equation x′ = ax, there is one linearly independent
solution. As the above example shows, for two linear first-order equations
there are two linearly independent solutions. Consequently, it should not
be a surprise to find out that for n linear first-order equations there are
n linearly independent solutions.

4.1.2 General Version

We are going to consider solving homogeneous linear first-order systems.
Assuming there are n dependent variables, then the system can be written
as

x′1 = a11x1 + a12x2 + · · · a1nxn
x′2 = a21x1 + a22x2 + · · · a2nxn
...

...
...

x′n = an1x1 + an2x2 + · · · annxn,
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where the aij ’s are constants. This can be written as

d

dt
x = Ax, (4.7)

where A is an n× n matrix, and x is an n-vector, given, respectively, as

A =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann











and x =













x1

x2
...

xn













.

For an initial value problem, an n-vector x0 would be given, and the
condition to be satisfied would be x(0) = x0.

Because (4.7) is linear and homogeneous, the principle of superposition
holds (see page 5). Therefore, if x1 and x2 are solutions of (4.7), then

x = c1x1 + c2x2

is a solution for any values of the constants c1 and c2.
As a final comment, the inhomogeneous equation d

dtx = Ax+ f is not
considered in this chapter, but it is considered in Section 6.8.

Exercises

1. Write the following as x′ = Ax, making sure to identify the entries in
x and A. If initial conditions are given, write them as x(0) = x0.

a) u′ = u− v
v′ = 2u− 3v

b) 2u′ = −u
3v′ = u+ v

c) x′ = x− y + 2z
y′ = x
z′ = −x+ 5y

d) u′ = u− v
v′ = 2u− 3v
u(0) = −1, v(0) = 0

e) x′ = 2x− z
y′ = x+ y + z
3z′ = 2y + 6z
x(0) = −1, y(0) = 0, z(0) = 3

2. For the following: i) Write the equation in the form x′ = Ax. ii) Find
the general solution of the second-order equation and then write it in
vector form as x = c1x1 + c2x2, where x1 = a1e

r1t and x2 = a2e
r2t.

Make sure to identify a1, a2, r1 and r2.

a) y′′ + 2y′ − 3y = 0

b) 4y′′ + y = 0

c) 4u′′ + 3u′ − u = 0

d) u′′ + 4u′ = 0
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3. Show that the given vector x is a solution of the differential equation.
Also, what initial condition does x satisfy?

a) x′ =

(

1 2

2 −2

)

x , x =

(

4

2

)

e2t

b) x′ =

(

2 0

0 −3

)

x , x =

(

1

0

)

e2t +

(

0

2

)

e−3t

c) x′ =

(

1
2 1

−1 1
2

)

x , x =

(

cos t

− sin t

)

et/2

4. The vectors x1 and x2 are solutions of the given differential equation.
Show that x = c1x1 + c2x2 is a solution no matter what the values of
c1 and c2.

a) x′ =

(

1 2

2 −2

)

x , x1 =

(

2

1

)

e2t, x2 =

(

1

−2

)

e−3t

b) x′ =

(

3 1

2 2

)

x , x1 =

(

1

−2

)

et, x2 =

(

1

1

)

e4t

5. This problem considers some of the connections between a second-order
equation and a first-order system.

a) Assuming that c 6= 0, show that (4.1), (4.2) can be reduced to the
second-order linear equation

y′′ − (a+ d)y′ + (ad− bc)y = 0.

b) Using the result from part (a), transform y′′ + 2y′ − 3y = 0 into a
first-order system where none of the entries in A are zero.

c) Using part (a), and the example in Section 4.1.1, find the general
solution of the differential equation in Exercise 3(a).

4.2 General Solution of a Homogeneous Equation

The problem considered here is

d

dt
x = Ax, for t > 0. (4.8)

From (4.6), as well as Exercise 2 in the previous section, we have an idea
of what the general solution of this equation looks like. Namely, if we are
able to find n linearly independent solutions x1(t), x2(t), . . ., xn(t), then
the general solution can be written as

x(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t), (4.9)
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where c1, c2, . . ., cn are arbitrary constants.
The requirement to be linearly independent is a simple generalization

of the definition given in Section 3.2. Namely, x1(t), x2(t), . . ., xn(t) are
linearly independent if, and only if, the only constants c1, c2, . . ., cn
that satisfy

c1x1 + c2x2 + · · ·+ cnxn = 0, ∀ t ≥ 0, (4.10)

are c1 = 0, c2 = 0, . . ., cn = 0. In the above equation, 0 is the zero
vector, which means that all of its components are zero. Also, the symbol
∀ is a mathematical shorthand for “for all” or “for every.”

In the last chapter the Wronskian was used to determine indepen-
dence. It is possible to also use the Wronskian with (4.8), but this is not
particularly useful for larger n. There is an easier way to show indepen-
dence, and this will be explained in Section 4.4.

The general solution of (4.8) is found by assuming that x = aert,
where a is a constant vector. Differentiating this expression, x′ = raert,
and so (4.8) becomes raert = A(aert). Since ert is never zero we can
divide by it, which gives us the equation

Aa = ra. (4.11)

What we want are nonzero solutions of this equation, and so we require
that a 6= 0. This problem for r and a is called an eigenvalue problem,
where r is an eigenvalue, and a is an associated eigenvector. This
is one of the core topics covered in linear algebra. We do not need to
know the more theoretical aspects of this problem, but we certainly need
to know how to solve it. So, for completeness, the more pertinent aspects
of an eigenvalue problem are reviewed next.

It is worth pointing out that it is possible to solve (4.8) without using
eigenvalues and eigenvectors, and how this is done is explained in Section
6.8.

4.3 Review of Eigenvalue Problems

Given an n×n matrix A, its eigenvalues r and the associated eigenvectors
a are found by solving

Aa = ra. (4.12)

It is required that a is not the zero vector. There are no conditions placed
on r, and it can be real or complex valued.

In preparation for solving the above equation, it is first rewritten as
Aa− ra = 0, or equivalently as

(A− rI)a = 0. (4.13)
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The n×n matrix I is known as the identity matrix and it is defined as

I ≡











1 0 · · · 0
0 1 · · · 0
...

... · · · ...
0 0 · · · 1











.

For example, when n = 2 and n = 3,

I =

(

1 0

0 1

)

and I =







1 0 0

0 1 0

0 0 1






.

In linear algebra it is shown that for the equation (4.13) to have a
nonzero solution, it is necessary that the matrix A − rI be singular, or
non-invertible. What this means is that the determinant of this matrix
is zero. This gives rise to the following method for solving the eigenvalue
problem.

Eigenvalue Algorithm. The procedure used to solve the eigenvalue prob-
lem consists of two steps:

1. Find the r’s by solving

det(A− rI) = 0. (4.14)

This is known as the characteristic equation, and the left-hand-
side of this equation is an nth degree polynomial in r.

2. For each eigenvalue r, find the associated eigenvectors by finding the
nonzero solutions of

(A− rI)a = 0. (4.15)

In this textbook we are mostly interested in systems involving two equa-
tions. For those who might not remember, the determinant of a 2 × 2
matrix is defined as

det

(

a11 a12

a21 a22

)

≡ a11a22 − a12a21.

In the second step of the algorithm, when solving (4.15), we are inter-
ested in finding the vectors that can be used to form the general solution
of this equation. To say this more mathematically, we want to find lin-
early independent solutions. In n dimensions, it is not possible to have
more than n linearly independent vectors. Consequently, n is the max-
imum number of linearly independent eigenvectors you can find for an
n× n matrix A.
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The following examples all involve 2× 2 matrices. What is illustrated
are the various situations that can arise with eigenvalue problems. In
these examples, the eigenvector will be written in component form as

a =

(

a

b

)

. (4.16)

Example 1: Two Real Eigenvalues

For

A =

(

2 1

1 2

)

,

we get that

A− rI =

(

2 1

1 2

)

− r

(

1 0

0 1

)

=

(

2− r 1

1 2− r

)

.

Since det(A − rI) = (2 − r)2 − 1 = r2 − 4r + 3, then the characteristic
equation (4.14) is r2−4r+3 = 0. Solving this we get that the eigenvalues
are r1 = 3 and r2 = 1. For r1, (4.15) takes the form

(

−1 1

1 −1

)(

a

b

)

=

(

0

0

)

.

In component form, we have that

−a+ b = 0,

a− b = 0.

The solution is b = a, and so the eigenvectors are

a =

(

a

b

)

=

(

a

a

)

= aa1, (4.17)

where

a1 =

(

1

1

)

. (4.18)

For the second eigenvalue r2 = 1, one finds that the eigenvectors have the
form a = aa2, where a is an arbitrary nonzero constant and

a2 =

(

1

−1

)

.
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The eigenvectors a1 and a2 are independent. To show this, note that

c1a1 + c2a2 = c1

(

1

1

)

+ c2

(

1

−1

)

=

(

c1 + c2

c1 − c2

)

.

So, if c1a1 + c2a2 = 0, then c1 + c2 = 0 and c1 − c2 = 0. From the last
equation, c1 = c2, and inserting this into the first equation yields 2c2 = 0.
So, c2 = 0, and this also means that c1 = 0. Therefore, a1 and a2 are
independent. �

There is an important observation that needs to be made here. In the
above example it was shown that eigenvectors for different eigenvalues are
linearly independent. This is always true, and this is important enough
that it needs to be stated more prominently.

Different Eigenvalues Test. If a1, a2, · · · , ak are eigenvectors corre-
sponding to different eigenvalues for a matrix A, then these vectors are
linearly independent.

The above test applies irrespective of whether the eigenvalues are real or
complex valued. It also is not limited to a 2× 2 matrix, and holds in the
general case of when the matrix is n× n.

Example 2: One Eigenvalue But Two Independent Eigenvectors

When

A =

(

3 0

0 3

)

,

the characteristic equation is (r − 3)2 = 0. So the only eigenvalue is
r1 = 3. In this case,

A− rI =

(

0 0

0 0

)

. (4.19)

This means that all vectors are solutions of (4.15). In other words, the
solutions are

a =

(

a

b

)

=

(

a

0

)

+

(

0

b

)

= aa1 + ba2,

where

a1 =

(

1

0

)

and a2 =

(

0

1

)

. (4.20)
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To check on independence, we are not able to use the Different Eigen-
values Test given above because a1 and a2 are eigenvectors for the same
eigenvalue. To use the definition, note that

c1a1 + c2a2 = c1

(

1

0

)

+ c2

(

0

1

)

=

(

c1

c2

)

.

So, if c1a1 + c2a2 = 0, then we conclude that c1 = c2 = 0. Therefore, a1
and a2 are independent. �

Example 3: Complex-Valued Eigenvalues

For the matrix

A =

(

1 2

−1
2 1

)

,

the characteristic equation is r2 − 2r + 2 = 0. The resulting eigenvalues
are r = 1 + i and r = 1− i. Proceeding as usual, for r1,

A− r1I =

(

i 2

−1
2 i

)

.

This means that (4.15) requires that −ia + 2b = 0, or equivalently, a =
−2ib. So, the eigenvectors are

a =

(

a

b

)

= b

(

−2i

1

)

= ba1,

where

a1 =

(

−2i

1

)

.

Similarly, for r2 = 1− i, one finds that the eigenvectors are

a = ba2,

where

a2 =

(

2i

1

)

.

Finally, because a1 and a2 are eigenvectors for different eigenvalues, they
are independent. �

There is an observation that needs to be made here. In the above
example, the eigenvalues have the form r1 = λ+iµ and r2 = λ−iµ, where
λ and µ are real numbers, with µ 6= 0. Because of this, the eigenvalues
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are said to be complex conjugates. When a matrix only contains real
numbers, and it has complex eigenvalues, the eigenvalues must occur as
complex conjugates. Moreover, you should notice that the respective
eigenvectors a1 and a2 are also complex conjugates (if you change i to −i
in a1, you get a2). This is useful information as it means that once you
know a1, you immediately know a2.

Example 4: Only One Independent Eigenvector

The matrix

A =

(

3 1

0 3

)

,

has one eigenvalue r = 3 (similar to Example 2). In this case (4.15)
becomes

A− rI =

(

0 3

0 0

)

. (4.21)

This means that b = 0. Consequently, the eigenvectors have the form

a =

(

a

0

)

= a

(

1

0

)

= aa1,

where

a1 =

(

1

0

)

.

In the previous three examples involving 2 × 2 matrices we found two
linearly independent eigenvectors. This matrix is different as there is only
one. An n× n matrix that has fewer than n independent eigenvectors is
said to be defective. So, the matrix of this example is defective, while
the matrices for the three previous examples are not defective. �

Exercises

1. Determine whether the two vectors are linearly independent.

a) a1 =

(

1

2

)

, a2 =

(

2

1

)

b) a1 =

(

1

−1

)

, a2 =

(

−3

3

)

c) a1 =

(

2

−8

)

, a2 =

(

−1

4

)

d) a1 =

(

−5

10

)

, a2 =

(

1

2

)

2. The following matrices have two real-valued eigenvalues. Find the
eigenvalues, and two linearly independent eigenvectors.
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a)

(

2 1

4 −1

)

b)

(

−2 −7

1 6

)

3. The following matrices have complex-valued eigenvalues. Find the
eigenvalues, and two linearly independent eigenvectors.

a)

(

2 −4

1 2

)

b)

(

2 13

−1 −4

)

4. Show that the following matrices are defective.

a)

(

3 −2

2 −1

)

b)

(

−1 1

−9 5

)

4.4 Solving a Homogeneous Equation

As stated earlier, given an n×n matrix A, to find the general solution of

d

dt
x = Ax, (4.22)

you start by assuming that x = aert, where a is a constant vector. Sub-
stituting this into the differential equation, and simplifying, leads to the
eigenvalue problem

Aa = ra. (4.23)

If A is not defective, then there are n linearly independent eigenvectors
a1, a2, . . ., an. Letting r1, r2, . . ., rn be their respective eigenvalues, then
the general solution of (4.22) can be written as

x = c1a1e
r1t + c2a2e

r2t + · · ·+ cnane
rnt, (4.24)

where the ci’s are arbitrary constants.
The vectors xj = aje

rjt used in the above formula for the general
solution are linearly independent. The reason is that the test for inde-
pendence in (4.10) must hold at t = 0. Since the aj ’s are independent, it
follows that the cj ’s are all zero. Consequently, the vectors xj are linearly
independent.

With the formula for the general solution in (4.24), all that is left to
do is consider how to rewrite it when the eigenvalues are complex and to
also determine what to do when the matrix is defective. A summary of
what follows in given in Section 4.5.

4.4.1 Complex-Valued Eigenvalues

As usual, when the roots are complex-valued there are options as to how
the general solution can be written. It is certainly possible to just use the
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expression in (4.24). However, it is often easier to rewrite the solution so
as to avoid the use of complex variables. It is easiest to explain how this
is done using an example.

Example

The matrix in the differential equation,

x′ =

(

1 2

−1
2 1

)

x,

is the one considered in Example 3 of the previous section. The eigenval-
ues are r = 1 + i and r = 1− i. Using the eigenvectors found earlier, the
general solution can be written as

x = c1

(

−2i

1

)

e(1+i)t + c2

(

2i

1

)

e(1−i)t.

Because complex numbers are used for the r’s, both c1 and c2 must be
allowed to be complex-valued.

Given that x is real-valued, the coefficients c1 and c2 must be complex
conjugates. In other words, if c1 = α+ iβ, where α and β are real-valued,
then it must be that c2 = α − iβ. We are going to separate the solution
into real and imaginary parts, which for the eigenvectors means that

(

−2i

1

)

=

(

0

1

)

+ i

(

−2

0

)

, and

(

2i

1

)

=

(

0

1

)

− i

(

−2

0

)

.

It makes things a bit easier to write these as

(

−2i

1

)

= p+ iq, and

(

2i

1

)

= p− iq,

where

p =

(

0

1

)

, and q =

(

−2

0

)

.

Now, using Euler’s formula (3.13), we have that

x = (α+ iβ)(p+ iq)et(cos t+ i sin t) + (α− iβ)(p− iq)et(cos t− i sin t)

= d1(p cos t− q sin t)et + d2(p sin t+ q cos t)et

= d1

(

2 sin t

cos t

)

et + d2

(

−2 cos t

sin t

)

et,

where d1 = 2α and d2 = −2β are arbitrary real-valued constants. �
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General Formula

To summarize what was done in the above example, suppose that A is a
2×2 matrix with complex-valued eigenvalues r1 = λ+ iµ and r2 = λ− iµ,
where λ and µ are real-valued with µ 6= 0. Also, suppose that a1 = p+iq,
where p and q are vectors containing only real numbers, is an eigenvector
for r1. In this case, a2 = p−iq is an eigenvector for r2. Moreover, instead
of writing the general solution as

x = c1a1e
r1t + c2a2e

r2t,

it can be written as

x(t) = d1b1e
λt + d2b2e

λt,

where

b1 = p cos(µt)− q sin(µt),

b2 = p sin(µt) + q cos(µt),

and d1 and d2 are arbitrary real-valued constants.

4.4.2 Defective Matrix

The other case to consider is what to do when there are not enough
linearly independent eigenvectors, which means that A is defective. So,
suppose that A is a 2 × 2 matrix that has one eigenvalue r, and a is its
associated eigenvector. Based on the way we fixed the single root solution
in Chapter 3, you might expect for the vector version you should assume
a solution of the form x = btert. However, this does not work, and to
find a second independent solution, the assumption is that

x = atert + bert.

To find b, the above expression is substituted into the differential equation
to obtain

Ab = rb+ a,

or equivalently

(A− rI)b = a. (4.25)

It is useful to know that we don’t need all solutions of this equation.
Rather, all we need is just one of them. Once this is determined, the
general solution is

x = c1ae
rt + c2(ta+ b)ert.
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4.5 Summary for Solving a Homogeneous Equation

Assuming that A is 2×2, then the general solution of x′ = Ax is as given
below.

I) When A is not defective.

• If A has real eigenvalues r1 and r2, with respective eigenvectors
a1 and a2, then

x = c1a1e
r1t + c2a2e

r2t. (4.26)

This expression can be used when r1 = r2 (in this case, just make
sure a1 and a2 are independent).

• If A has complex eigenvalues r = λ ± iµ (with µ 6= 0), with
respective eigenvectors p± iq, then

x(t) = d1b1e
λt + d2b2e

λt, (4.27)

where

b1 = p cos(µt)− q sin(µt),

b2 = p sin(µt) + q cos(µt).

II) When A is defective, with eigenvalue r and eigenvector a, then

x = c1ae
rt + c2(ta+ b)ert, (4.28)

where b is any solution of

(A− rI)b = a. (4.29)

Example 1 (real eigenvalues): Find the general solution of

x′ =

(

0 1

2 1

)

x.

Step 1: Find the eigenvalues and eigenvectors. Using the eigenvalue
algorithm, from (4.14),

det(A− rI) = 0 ⇒ det

(

−r 1

2 1− r

)

= 0

⇒ r2 − r − 2 = 0

⇒ r = −1, 2.
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For r = −1, then from (4.15),

(A− rI)a = 0 ⇒
(

1 1

2 2

)

a = 0 ⇒ a+ b = 0.

So, b = −a, and this means that

a =

(

a

b

)

=

(

a

−a

)

= aa1,

where

a1 =

(

1

−1

)

.

In a similar manner, one finds that for r = 2, an eigenvector is

a2 =

(

1

2

)

.

Step 2: Since this is a non-defective matrix with real eigenvalues,
the general solution is

x = c1

(

1

−1

)

e−t + c2

(

1

2

)

e2t. �

Example 2 (complex eigenvalues): Find the solution of the IVP:

x′ =

(

2 1

−2 0

)

x, where x(0) =

(

0

1

)

.

Step 1: Find the eigenvalues and eigenvectors. Using the eigenvalue
algorithm, from (4.14), you find that the eigenvalues are r1 = 1 + i
and r2 = 1− i. To determine the eigenvector for r1, we have that

A− r1I =

(

2− (1 + i) 1

−2 −(1 + i)

)

=

(

1− i 1

−2 −(1 + i)

)

.

So, writing a as in (4.16), then (A − r1I)a = 0 can be written in
component form as

(1− i)a+ b = 0

−2a− (1 + i)b = 0.

Both equations lead to the conclusion that b = −(1 − i)a. So, the
eigenvectors are

a =

(

a

b

)

= a

(

1

−1 + i

)

= aa1.
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As explained earlier, it makes things easier to write a1 = p + iq,
which means that

(

1

−1 + i

)

= p+ iq,

where

p =

(

1

−1

)

, and q =

(

0

1

)

.

Moreover, because the eigenvector for r2 = 1 − i is the complex
conjugate of a1, then a2 = p− iq.

Step 2: Find the general solution. Since there are complex eigen-
values, from (4.27), the general solution is

x = d1b1e
t + d2b2e

t,

where

b1 =

(

1

−1

)

cos t−
(

0

1

)

sin t,

and

b2 =

(

1

−1

)

sin t+

(

0

1

)

cos t.

Step 3: Satisfy the initial condition. Setting t = 0 in the general
solution, we get that

d1

(

1

−1

)

+ d2

(

0

1

)

=

(

0

1

)

.

This can be written in component form as

d1 = 0

−d1 + d2 = 1.

So, d1 = 0 and d2 = 1.

Step 4: The resulting solution is

x(t) =

[(

1

−1

)

sin t+

(

0

1

)

cos t

]

et. �

Example 3 (defective matrix): Find the solution of the IVP:

x′ =

(

1 1

−1 3

)

x, where x(0) =

(

−1

2

)

.
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Step 1: Find the eigenvalues and eigenvectors. Using the eigenvalue
algorithm, from (4.14), you find the single eigenvalue r = 2, with
eigenvector

a =

(

1

1

)

.

To find a second independent solution, from (4.29) we must solve

(

−1 1

−1 1

)

b =

(

1

1

)

.

A solution of this is

b =

(

0

1

)

.

Step 2: Find the general solution. Using (4.28), the general solu-
tion is

x = c1

(

1

1

)

e2t + c2

[

t

(

1

1

)

+

(

0

1

)]

e2t.

Step 3: Satisfy the initial condition. Setting t = 0 in the general
solution, we get that

c1

(

1

1

)

+ c2

(

0

1

)

=

(

−1

2

)

.

This gives us c1 = −1 and c1 + c2 = 2. So, c2 = 3.

Step 4: The resulting solution is

x =

[

3t

(

1

1

)

+

(

−1

2

)]

e2t. �

Exercises

1. Find a general solution of the following differential equations.

a) x′ =

(

−1 6

1 0

)

x

b) x′ =

(

0 1
4

1 0

)

x

c) x′ =

(

2 1

6 3

)

x

d) x′ =

(

2 0

−1 2

)

x
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e) x′ =

(

−2 0

0 −2

)

x

f) x′ =

(

1 5

−2 −1

)

x

g) x′ =

(

4 −8

4 −4

)

x

h) x′ =

(

1 1
4

−5 0

)

x

i) x′ =

(

2 −6

3 −4

)

x

j) x′ =

(

0 0

0 0

)

x

2. Find the solution of the initial value problem x′ = Ax, where the
differential equation is given in the previous problem, and the initial

condition is x(0) =
(

4
−1

)

.

3. A solution of x′ = Ax is given below. What are the eigenvalues of A,
and what are corresponding eigenvectors?

a) x(t) =

(

1

1

)

e3t + 2

(

1

−1

)

et

b) x(t) =

(

1

0

)

e−5t +

(

1

3

)

c) x(t) =

(

e−2t

3e4t

)

d) x(t) =

(

e−8t − e−t

3e−t

)

4. The general solution (4.24), and the eigenvalue algorithm given in Sec-
tion 4.3, can be used for any dimension n. In this exercise you are to
find the general solution for the case of when n = 3.

a) x′ =







0 1 1

1 0 1

1 1 0






x

b) x′ =







1 1 2

0 2 0

0 1 1






x

c) x′ =







−2 2 0

0 1 0

4 2 −1






x

d) x′ =







−1 0 0

0 1 2

0 2 −1






x

5. Two tanks containing salt water are connected as shown in Figure 4.1.
In the lower connecting pipe, water is pumped from tank 1 into tank
2 at a rate of N liters/min, and in the upper pipe water in pumped
from tank 2 into tank 1 at the same rate. Assume that y1(t) and y2(t)
are the amounts of salt in the respective tank at time t, and the total
volume of water in each tank is V liters. You should assume that the
pipes are so short that whatever water, or salt, in them can be ignored.
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Figure 4.1. Two tanks containing salt water as described in Exercise 5. The
pipes connecting the tanks are used to pump salt water between the tanks.

a) Show that the resulting differential equations are

y′1 = −N

V
y1 +

N

V
y2

y′2 =
N

V
y1 −

N

V
y2

b) Assume that N = 2 liters/min, V = 100 liters, and the initial con-
ditions are: y1(0) = 10 gm and y2(0) = 0. Find y1(t) and y2(t).

c) What are the limiting values of y1 and y2 as t → ∞? Explain why
this answer is obvious given how the tanks are configured.

4.6 Phase Plane

For differential equations involving 2×2 matrices, there are different ways
the solution can be portrayed. As an example, the general solution of the
differential equation

x′ =

(

2 1

1 2

)

x,

is

x(t) = c1

(

1

1

)

e3t + c2

(

1

−1

)

et, (4.30)

or, in component form,

x(t) = c1e
3t + c2e

t,

y(t) = c1e
3t − c2e

t.

Given values for c1 and c2, using the component form, graphing the solu-
tion simply involves plotting x and y as functions of t. In contrast, with
the vector version (4.30), the solution traces out a curve in the x,y-plane,
with t being the parameter that generates the curve. The x,y-plane is
referred to as the phase plane, and the curves that can be generated
using (4.30) are known as integral curves.
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4.6.1 Examples

Two Positive Eigenvalues.

The solution (4.30) involves two positive eigenvalues, r1 = 3 and r2 =
1. The resulting integral curves generated by (4.30) are shown in Table
4.1(a). Each curve corresponds to a specific choice for c1 and c2, and the
arrows indicate the direction for increasing t. Together, the integral curves
provide what is called a phase portrait for the equation. Any equation
with two positive eigenvalues will produce a phase portrait that is roughly
similar to the one for this example. A non-defective matrix with only one
eigenvalue, which is positive, will also have a roughly similar phase plane,
except the blue curves will be straight lines.

To explain how the phase portrait is constructed, you start by consid-
ering what happens when c2 = 0, and then when c1 = 0.

c2 = 0 : Since x = c1

(

1
1

)

e3t, then x = c1e
3t and y = c1e

3t. In other

words, y = x. This is the red line in Table 4.1(a) with positive
slope. Because e3t increases with t, the solution moves outward,
away from the origin. So, the arrows on the line point outward. The
key observation here is that the line is determined by the eigenvector

a1 =
(

1
1

)

, and the direction on the line is determined by the positivity

of the corresponding eigenvalue r1 = 3.

c1 = 0 : Since x = c2

(

1
−1

)

et, then x = c2e
t and y = −c2e

t. In other

words, y = −x. This is the red line in Table 4.1(a) with negative
slope. Because et increases with t, the solution moves outward, away
from the origin. So, the arrows on the line point outward. The key
observation here is that the line is determined by the eigenvector a2 =
(

1
−1

)

, and the direction on the line is determined by the positivity

of the corresponding eigenvalue r2 = 1.

c1 6= 0 and c2 6= 0 : The general solution (4.30) consists of the addition of
the two components we just considered, and some of the resulting
integral curves are shown with the blue curves in Table 4.1(a). The
arrows on the curves point outward, away from the origin, because
both eigenvalues are positive. Also, since r1 > r2, each solution curve
increases faster in the direction determined by a1, and this is the
reason that the blue curves bend the way they do. Finally, note that
if you run time backwards, so t → −∞, then, from (4.30), x → 0.
That is why all of the blue curves look like they are emanating from
the origin. �
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a) r1 > 0, r2 > 0 b) r1 > 0, r2 < 0

source saddle

-10 -5 0 5 10
x-axis

-5

0

5

y-
ax

is

-10 -5 0 5 10
x-axis

-5

0

5

y-
ax

is
c) r1 < 0, r2 < 0 d) r = ±iµ

sink center

-10 -5 0 5 10
x-axis

-5

0

5

y-
ax

is

-8 -4 0 4 8
x-axis

-5

0

5

y-
ax

is

e) r = λ± iµ with λ > 0 f) r = λ± iµ with λ < 0

spiral source spiral sink

-1 0 1
x-axis

-1

0

1

y-
ax

is

-1 0 1
x-axis

-1

0

1

y-
ax

is

Table 4.1. Examples of integral curves and how they depend on the eigenval-
ues of A. Each curve corresponds to a specific choice for the constants appearing in
the general solution. The arrows indicate the direction for increasing t. It is assumed
here that µ 6= 0.
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One Positive and One Negative Eigenvalue.

An example of this arises with the differential equation

x′ =

(

−1 3

2 0

)

x,

which has eigenvalues r1 = 2 and r2 = −3. The general solution is found
to be

x(t) = c1

(

1

1

)

e2t + c2

(

3

−2

)

e−3t. (4.31)

The resulting integral curves are shown in Table 4.1(b). Any equation
with one positive, and one negative, eigenvalue will produce a phase por-
trait that is roughly similar to the one for this example.

As with the previous example, the phase portrait is constructed by
considering what happens when c2 = 0, and then when c1 = 0.

c2 = 0 : Since x = c1

(

1
1

)

e2t, then x = c1e
2t and y = c1e

2t. In other

words, y = x. This is the red line in Table 4.1(b) with positive
slope. Because e2t increases with t, the solution moves outward,
away from the origin. So, the arrows on the line point outward. The
key observation here is that the line is determined by the eigenvector

a1 =
(

1
1

)

, and the outward direction on the line is determined by the

positivity of the corresponding eigenvalue r1 = 2.

c1 = 0 : Since x = c2

(

3
−2

)

e−3t, then x = 3c2e
t and y = −2c2e

t. In other

words, y = −2x/3. This is the red line in Table 4.1(b) with negative
slope. Because e−3t decreases with t, the solution moves inward,
toward from the origin. So, the arrows on the line point inward. The
key observation here is that the line is determined by the eigenvector

a2 =
(

3
−2

)

, and the inward direction on the line is determined by

the negativity of the corresponding eigenvalue r2 = −3.

c1 6= 0 and c2 6= 0 : The general solution (4.30) consists of the addition of
the two components we just considered, and some of the resulting
integral curves are shown with the blue curves in Table 4.1(b). To
explain the arrows, the contribution of c2a2e

−3t goes to zero as t
increases, but c1a1e

2t becomes unbounded. A consequence is that a
solution curve will asymptotically approach the red line y = x. �

Two Negative Eigenvalues.

An example of this arises with the differential equation

x′ =

(

−2 2
1
2 −2

)

x,
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which has eigenvalues r1 = −1 and r2 = −3. The general solution is
found to be

x(t) = c1

(

2

1

)

e−t + c2

(

−2

1

)

e−3t. (4.32)

The resulting phase portrait is shown in Table 4.1(c). Any equation with
two negative eigenvalues will produce a phase portrait that is roughly
similar to the one for this example. A non-defective matrix with one
eigenvalue, which is negative, will also have a roughly similar phase plane,
except the blue curves will be straight lines.

The construction of the phase portrait is very similar to what was done
for the two positive eigenvalues case. The principal difference is that the
eigenvalues are now negative, so the movement along the integral curves
is towards the origin. �

Imaginary Eigenvalues.

When the eigenvalues are imaginary, the integral curves are concentric
ellipses centered at the origin (see Exercise 7). To demonstrate this,
consider the differential equation

x′ =

(

−2 4

−2 2

)

x.

The eigenvalues are r1 = 2i and r2 = −2i, and the general solution, from
(4.27), is

x(t) = d1

[(

2

1

)

cos 2t−
(

0

1

)

sin 2t

]

+d2

[(

2

1

)

sin 2t+

(

0

1

)

cos 2t

]

. (4.33)

Some of the ellipses generated by this solution are shown in Table 4.1(d).
The question is, is the movement around each ellipse clockwise, or

counter-clockwise? This can be determined from the differential equation.
For this example, x′ = −2x+4y, which means that when an ellipse crosses
the x-axis (so y = 0), x′ = −2x. Consequently, along the positive x-axis,
x′ < 0. The direction of the arrows must be consistent with this, and so
the rotation is clockwise. More about the direction of rotation, as well as
the tilt of the ellipse, is discussed in Exercise 5. �

Complex Eigenvalues.

When the eigenvalues have nonzero real and imaginary parts the integral
curves are spirals centered at the origin (see Exercise 7). As an example,

x′ =

(

2 1

−10 0

)

x,
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has eigenvalues r1 = 1 + 3i and r2 = 1 − 3i. The general solution, from
(4.27), is

x(t) = d1

[(

1

−1

)

cos 3t−
(

0

3

)

sin 3t

]

et

+ d2

[(

1

−1

)

sin 3t+

(

0

3

)

cos 3t

]

et. (4.34)

Similarly, for the differential equation

x′ =

(

−2 1

−10 0

)

x,

the eigenvalues are r1 = −1 + 3i and r2 = −1− 3i. The general solution
is

x(t) = d1

[(

1

1

)

cos 3t−
(

0

3

)

sin 3t

]

e−t

+ d2

[(

1

1

)

sin 3t+

(

0

3

)

cos 3t

]

e−t. (4.35)

The resulting integral curves for these two examples are shown in Table
4.1 (lower row). The one on the left comes from (4.34). The outward
motion in this case is because the real part of the eigenvalue is positive.
The one of the right comes from (4.35), and the inward motion is because
the real part of the eigenvalue is negative.

The spiral curves seen in these two graphs are explainable from the
formula for the solution. The solution contains cosµt and sinµt terms,
and these are responsible for the motion around the origin. This is similar
to what happens when r = ±iµ. However, these terms are multiplied by
eλt, and this causes the radial distance from the origin to either increase,
when λ > 0, or decrease, when λ < 0. �

4.6.2 Connection with an IVP

To illustrate the role the phase plane can play when solving an initial
value problem, suppose the problem to solve is

x′ =

(

−1 3

2 0

)

x, (4.36)

where

x(0) =

(

6

−3

)

. (4.37)
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Figure 4.2. The solid blue curve is the solution (4.38), and the solid blue dot
is the location of the initial condition (4.37). The dashed blue curves, and the red lines,
are integral curves for (4.36).

This is the same differential equation used for the phase plane example in
Table 4.1(b), and the general solution is given in (4.31). From the initial
condition, the solution is found to be

x(t) =
3

5

(

1

1

)

e2t +
9

5

(

3

−2

)

e−3t. (4.38)

The plot of this curve in the phase plane is shown in Figure 4.2. The
integral curves for the differential equation, which appear in Table 4.1, are
also included in the figure. As this shows, the solution of the initial value
problem is simply a portion of one of its integral curves. The starting
point is determined by the initial condition, and the resulting solution
follows the respective integral curve for increasing t.

The above observation is true in general. Namely, the integral curves
in Table 4.1 are illustrations of the various solutions you can get with the
respective differential equation. Which curve, or how much of the curve,
you get depends on the location of the initial condition.

Exercises

1. Phase portraits are shown in Figure 4.3, with arrows on some of the
curves. Do, or answer, the following: (i) Draw arrows on the other
curves. (ii) What properties of the eigenvalues result in the integral
curves shown in the phase portrait? (iii) Three different initial condi-
tions are shown by the black dots. For each one, sketch the solution
for the resulting IVP.
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Figure 4.3. Integral curves, and location of three initial conditions, for Exercise 1.

2. The eigenvalues for the following equations are real-valued. You are
to sketch the phase portrait as follows: (i) Draw the (red) lines that
are determined from the eigenvectors, and include the four arrows. (ii)
In each of the four quadrants determined by the red lines, include two
integral curves, with arrows.

a) x′ =

(

3 −1

−1 3

)

x

b) x′ =

(

−6 3

−4 1

)

x

c) x′ =

(

3 2

−4 −3

)

x

d) x′ =

(

4 −2

3 −3

)

x
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3. The eigenvalues for the following equations are imaginary. You are to
sketch the phase portrait as follows: draw three concentric ellipses cen-
tered at the origin with arrows indicating the direction of motion. You
should use the information in Figure 4.4 when sketching the ellipses.

a) x′ =

(

−1 2

−2 1

)

x

b) x′ =

(

3 6

−3 −3

)

x

c) x′ =

(

2 1

−6 −2

)

x

d) x′ =

(

−3 −1

12 3

)

x

4. The eigenvalues for the following equations are complex-valued. You
are to sketch the phase portrait as follows: draw three spiral curves,
with arrows indicating the direction of motion. You should use the
information in Figure 4.5 when sketching the spirals.

a) x′ =

(

−1 −4

2 3

)

x

b) x′ =

(

−1 2

−4 3

)

x

c) x′ =

(

−2 8

−2 −2

)

x

d) x′ =

(

−2 −4

4 −2

)

x

5. For the matrix A in (4.4), if the eigenvalues are imaginary, and a 6= 0,
then the elliptical integral curves are either tilted left, or tilted right,
as illustrated in Figure 4.4. This exercise determines which one you
get. This is done using the point where the ellipse crosses the positive
x-axis (shown by a red dot in each figure). From (4.1), at the red dot
(so y = 0), x′ = ax and y′ = cx.

a) If a > 0, then at the red dot, x′ > 0. Use this to explain why the
solution moves clockwise when the ellipse is left-tilted and counter-
clockwise when right-tilted.

b) How does the answer in part (a) change when a < 0?

0
x-axis

0

y-
ax

is

0
x-axis

0

y-
ax

is

Figure 4.4. Left-tiled (on the left) and right-tilted (on the right) ellipses when
there are imaginary eigenvalue (see Exercise 5).
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c) For the left-tilted ellipse, if a > 0 explain why it must be that c < 0,
while if a < 0 then it must be that c > 0. Show that the opposite
happens for the right-titled ellipse. This explains the labeling ac < 0
and ac > 0 in Figure 4.4.

d) Determine if a and c for Figure 4.3(e) are positive or negative.

6. Spirals are either left (sinistral) or right (dextral) handed as shown in
Figure 4.5. This exercise determines which one you get. This is done
using the point where the spiral crosses the positive x-axis (shown by
a red dot in each figure). From (4.1), at the red dot (so y = 0), x′ = ax
and y′ = cx. For the matrix A given in (4.4), assume the eigenvalues
are λ ± iµ. It is possible to show that µ 6= 0 requires that c 6= 0 (you
do not need to prove this).

a) If c > 0, then at the red dot, y′ > 0, and if c < 0, then at the red
dot, y′ < 0. Use this to show that you get a left-handed spiral if
λc > 0 and a right-handed spiral if λc < 0.

b) Determine if c for Figure 4.3(c) is positive or negative. What about
for Figure 4.3(d)?

7. This exercise involves the proof of some of the statements made about
the integral curves when the eigenvalues are complex-valued. The ma-
trix A is given in (4.4), and it is assumed that µ 6= 0.

a) Assuming that d1 and d2 are not both zero, from (4.27) and the
identity cos2(µt) + sin2(µt) = 1, show that

(p22 + q22)x
2 − 2p1p2xy + p21y

2 = k2e2λt,

where p1 = b, p2 = λ− a, q2 = µ, and k is a positive constant.

b) In part (a), what equation is obtained when there are imaginary
eigenvalues? Explain why this verifies the statement that when
there are imaginary eigenvalues the solution curve is an ellipse cen-
tered at the origin.

0
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Figure 4.5. Left-handed (on the left) and right-handed (on the right) spirals
(see Exercise 6).
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c) Show that to have a circular curve requires b 6= 0 and c = −b.

d) Explain why you get a spiral in the case of when λ 6= 0.

4.7 Stability

The phase plane can be useful for visualizing stability or instability of
a steady state solution. To explain how, recall from Section 2.4 that a
steady state is a constant that satisfies the differential equation. So, for
the equation x′ = Ax, a steady state is a constant vector xs that satisfies
Axs = 0. To avoid complications, it will be assumed that A is invertible,
which means that the only steady state solution is xs = 0. It is useful to
know that A is invertible if, and only if, r = 0 is not an eigenvalue for A.

The definitions of unstable and asymptotically stable are effectively
the same as in Section 2.4. Namely, a steady state xs is asymptotically
stable if any initial value x(0) chosen near xs results in

lim
t→∞

x(t) = xs. (4.39)

The steady state is unstable if, no matter how close to xs you restrict
the choice for x(0), it is always possible to find an initial value x(0) that
results in the solution x(t) becoming unbounded as t increases.

It is easy to determine stability using the phase plane. For example,
in Table 4.1(a), when r1 > 0 and r2 > 0, the arrows on the integral
curves indicate movement out away from the origin. Consequently, this
is an example of when xs = 0 is unstable. Conversely, when r1 < 0 and
r2 < 0, the flow in towards the origin, and this means xs = 0 is asymp-
totically stable. In fact, looking at the various possibilities in Table 4.1,
you conclude that if A has an eigenvalue with Re(r) > 0, then the steady
state in unstable. Similarly, if the eigenvalues of A are both negative, or
if Re(r) < 0, then the steady state is asymptotically stable.

The conclusions in the previous paragraph were made using the phase
portraits in Table 4.1. For those that prefer more rigorous derivations,
then the formulas for the general solutions given in Section 4.5 can be
used.

Our classification of a steady state being unstable or asymptotically
stable does not include what happens when the eigenvalues are imaginary.
As shown in Table 4.2(d), the solution does not decay to zero, or blowup,
but simply encircles the origin. So, the steady state is stable but it is not
asymptotically stable. In this case, xs is said to be neutrally stable.

The other case we are missing here is what happens when the matrix is
defective. From (4.28), the conclusion we had earlier still holds. Namely,
if r < 0, then we have asymptotically stability, and if r > 0, then we have
instability.
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The above discussion is summarized in the following theorem.

Stability Theorem for a Linear System. For x′ = Ax, if r = 0 is
not an eigenvalue for the 2× 2 matrix A, then the following hold:

1. If all of the eigenvalues of A satisfy Re(r) < 0, then xs = 0 is an
asymptotically stable steady state.

2. If A has one or more eigenvalues with Re(r) > 0, then xs = 0 is
an unstable steady state.

3. If the eigenvalues of A are imaginary, then xs = 0 is a neutrally
stable steady state.

The first two conclusions in the above theorem hold when A is n × n.
The third one, however, needs to restated as follows: if A has imagi-
nary eigenvalues, all of which are non-defective, and all eigenvalues satisfy
Re(r) ≤ 0, then xs = 0 is a neutrally stable steady state.

For those who might be wondering what happens when r = 0 is an
eigenvalue, the solution of Ax = 0 is no longer just xs = 0. In fact, any
and all eigenvectors for r = 0 are steady state solutions. It is possible to
examine the various cases that arise in this situation related to stability,
but this will not be considered in this text.

In addition to their stability, steady states are often identified by the
geometric properties of the solution near the steady state. So, for example,
because of the outward direction of the flow in Figure 4.1(a), the steady
state is called a source. In contrast, because of the inward flow in Figure
4.1(c), the steady state is called a sink. For similar reasons, the flow in
Figure 4.1(e) is a spiral source, and the one in Figure 4.1(f) is a spiral
sink. Finally, the steady state in Figure 4.1(b) is a saddle, and the one
in Figure 4.1(d) is a center.

Example 1: Determine the stability of the steady state xs = 0 for

x′ =

(

1 3

2 −4

)

x.

Answer: The characteristic equation for the matrix is r2+3r−10 =
0, and from this it follows that the eigenvalues are r = −5 and r = 2.
Given that there is at least one eigenvalue that is positive, xs = 0
is unstable. Moreover, since it has one positive, and one negative,
eigenvalue, the steady state is a saddle point. �

Example 2: Determine the stability of the steady state xs = 0 for

x′ =

(

−1 −2

2 0

)

x.
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Answer: The characteristic equation for the matrix is r2+r+4 = 0,
and from this it follows that the eigenvalues are r = 1

2(−1± i
√
15).

Given that both have negative real part, then xs = 0 is asymp-
totically stable. Moreover, since the eigenvalues are complex with
negative real part, the steady state is a spiral sink. �

Example 3: Find the steady state, and determine its stability for

u′ =

(

1 1

1 −1

)

u+

(

2

4

)

. (4.40)

Steady State: Since a steady state is a constant vector that satisfies
the differential equation, then we require that

(

1 1

1 −1

)

u = −
(

2

4

)

.

Solving this for u, one finds the steady state

us =

(

−3

1

)

.

Stability : Letting u = us + x, and substituting this into the differ-
ential equation, one finds that x′ = Ax, where A is the matrix in
(4.40). If xs = 0 is unstable, then so is us. Similarly, if xs = 0
is asymptotically stable, then us asymptotically stable. Now, the
characteristic equation for A is r2 − 2 = 0. From this, the eigen-
values are found to be r = ±

√
2. Given that one is positive, xs is

unstable, and therefore us is unstable. Moreover, since it has one
positive, and one negative, eigenvalue, us is a saddle point. �

Exercises

1. Determine whether xs = 0 is an asymptotically stable, unstable, or
neutrally stable steady state for the following differential equations.
Also, state whether the steady state is a sink, source, spiral sink, spiral
source, saddle, or center.

a) x′ =

(

−1 6

1 0

)

x

b) x′ =

(

1 2

−3 −4

)

x

c) x′ =

(

3 1

1 3

)

x

d) x′ =

(

2 1

3 4

)

x

e) x′ =

(

−1 −1

6 −6

)

x

f) x′ =

(

1 1
4

−5 0

)

x
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g) x′ =

(

2 5

−5 −6

)

x h) x′ =

(

0 −9

1 0

)

x i) x′ =

(

1 −4

1 −1

)

x

2. Write the following as x′ = Ax, and then determine whether xs = 0
is an asymptotically stable, unstable, or neutrally stable steady state.

a) The simple harmonic oscillator given in (3.48).

b) The damped oscillator given in (3.55), with c > 0.

c) It is usually stated that negative damping is unstable. For the mass-
spring-dashpot system, negative damping means that c is negative.
Is the system unstable in this case?

3. Find the steady state us, and determine its stability, for the following
differential equations. Also, state whether the steady state is a sink,
source, spiral sink, spiral source, saddle, or center.

a) u′ =

(

1 3

0 −1

)

u+

(

1

0

)

b) u′ =

(

−2 1

1 −2

)

u+

(

−2

1

)

c) u′ =

(

−3 −1

2 −1

)

u−
(

1

2

)

d) u′ =

(

1 −1

4 1

)

u+

(

1

−1

)

4. This exercise contains useful information to determine the stability of
xs = 0 without having to calculate eigenvalues. Assume that A is
given in (4.4) and that det(A) 6= 0. Also, the trace of a matrix is the
sum of the numbers on the diagonal. The formula is tr(A) = a+ d.

a) Show that the eigenvalues ofA are 1
2

[

tr(A)±
√

[tr(A)]2 − 4det(A)
]

.

b) Explain why r = 0 is not an eigenvalue for A.

c) Show that if tr(A) > 0, then xs is unstable.

d) Show that if det(A) < 0, then xs is unstable.

e) Show that if tr(A) = 0, and det(A) > 0, then xs is neutrally stable.

f) Show that if tr(A) < 0 and det(A) > 0, then xs is asymptotically
stable.

5. Determine whether xs = 0 is an asymptotically stable, unstable, or
neutrally stable steady state for the following differential equations.

a) x′ =







−1 1 2

0 −2 0

0 1 1






x b) x′ =







−3 0 0

1 −1 5

4 0 −2






x
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c) x′ =







−2 0 0

0 1 −4

0 1 1






x

d) x′ =







1 0 4

0 −1 0

−4 0 1






x

e) x′ =







−2 0 0

0 1 2

0 −5 −1






x

f) x′ =







−5 0 2

0 −2 0

−5 0 1






x

4.8 Modeling

Many of the modeling problems we have considered in the earlier chap-
ters can be extended so they result in a system of differential equations.
For example, this happens for the mixing problem associated with the
connected tanks shown in Figure 4.1, and this is explored in Exercise 5
on page 102. Below are exercises that investigate extensions arising with
the oscillator material from Section 3.10.

Exercises

1. For the mass-spring dashpot system shown in Figure 4.6, let u(t) be
the vertical displacement of the mass. Using F = ma one finds that
the differential equations to solve are (Holmes [2019])

u′ =
1

k
f ′ +

1

c
f

mu′′ = −f.

The task is to find the displacement u(t) and the force f(t). Assume
that the initial conditions are u(0) = u0, u

′(0) = 0, and f(0) = ku0.
The configuration in Figure 4.6 is associated with a Maxwell material
in viscoelasticity, while Figure 3.1 is for a Kelvin-Voigt material.

a) Setting v = u′, write the above two differential equations as a first-
order system for v and f . What are the initial conditions?

b) Taking k = 1, c = 1, m = 1, and u0 = 1, find v(t) and f(t).

c) Determine u(t).

Figure 4.6. Coupled mass-spring-dashpot system considered in Exercise 1.
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2. Two masses m1 and m2 are connected by springs as shown in Figure
6.6. Let u1(t) and u2(t) be the vertical displacements of the upper and
lower mass, respectively. Using Hooke’s law, the spring forces on m1

are −k1u1 and k2(u2−u1), while the spring force onm2 is −k2(u2−u1).
The resulting differential equations are

m1u
′′
1 = −k1u1 + k2(u2 − u1),

m2u
′′
2 = −k2(u2 − u1).

a) Show that the differential equations can be written in system form
as u′′ = −Ku, where the displacement vector u(t) has components
u1(t) and u2(t). This is a second-order linear system for u(t). For
the record, K is called the stiffness matrix (per unit mass).

b) Assuming u = aert, show that the differential equation in part (a)
reduces to Ka = −r2a. This shows that −r2 is an eigenvalue for
K, with corresponding eigenvector a.

c) Takingm1 = 2, m2 = 1, k1 = 4, and k2 = 2, find the two eigenvalues
for K, and their associated eigenvectors.

d) If λ is an eigenvalue you found in part (c), then from part (b),

r = ±
√
−λ. This results in the two solutions u = ae

√
−λt and u =

ae−
√
−λt. These, along with the two solutions for the other eigen-

value, gives the general solution u = c1a1e
√
−λ1t + c2a1e

−
√
−λ1t +

c3a2e
√
−λ2t + c4a2e

−
√
−λ2t. What does this reduce to using the val-

ues from part (c)?

e) Using your answer in part (d), determine the solution u when
u1(0) = 0, u′1(0) = 1, u2(0) = 0, and u′2(0) = 0.

Figure 4.7. Coupled mass-spring system considered in Exercise 2.



Chapter 5

Nonlinear Systems

This chapter considers problems that involve two first-order ordinary
differential equations, at least one of which is nonlinear. These problems
are usually difficult enough that finding a formula for the solution is not
possible. Consequently, most of the chapter does not concern solving
these problems, but instead concentrates on developing ways to determine
the properties of the solution. What this means will be explained as the
methods are derived. We begin with examples that illustrate the problems
we will be considering.

Example 1: Pendulum

The equation for the angular deflection of a pendulum is (see Figure 5.1)

ℓ
d2θ

dt2
= −g sin θ, (5.1)

where the initial angle θ(0) and the initial angular velocity θ ′(0) are as-
sumed to be given. Also, ℓ is the length of the pendulum and g is the grav-
itational acceleration constant. Introducing the angular velocity v = θ ′

then the equation can be written as the first-order system

θ ′ = v, (5.2)

v′ = −α sin θ, (5.3)

where α = g/ℓ. Although (5.2) is linear, (5.3) is nonlinear because of the
term sin θ. Consequently, together (5.2), (5.3) form a nonlinear first-order
system for θ and v. �

Introduction to Differential Equations, M. H. Holmes, 2023
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Figure 5.1. Angular deflection of a pendulum.

Example 2: Measles

A model for the spread of a disease, like measles, is

dS

dt
= αN − (βI + α)S,

dI

dt
= βIS − (α+ γ)I.

In these equations, S(t) is the number of people susceptible to the disease,
and I(t) is number that are ill. The nonlinearity, which is due to the term
IS, appears in both equations. �

Nonlinear systems are usually not solvable using elementary functions.
What is possible it to ask questions about the solution that are signifi-
cant and answerable. As an example, with measles, a reasonable question
would be: what would it take to eliminate the disease from the popula-
tion? This requires that I → 0 as t → ∞ (and the faster this happens
the better). In more mathematical terms, we want I = 0 to be an asymp-
totically stable steady state. How to modify the stability of I = 0, with
the goal of quickly eliminating the disease, will be considered in Section
5.2.2.

A question arising with the pendulum is, does it ever stop moving?
Given the physical assumptions used in the derivation of the equation it
is reasonable to expect that it does not stop and, in fact, the solution
is expected to be periodic. So, we would like to know if it is possible
to show that the solution is periodic, and in the process determine the
period without actually solving the problem.

5.1 Non-Linear Systems

The problems in this chapter can be written in component form as

u′ = f(u, v), (5.4)

v′ = g(u, v). (5.5)
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In these equations, u(t) and v(t) are the dependent variables, and f and
g are given functions of u and v. It is assumed that the equations are
autonomous, which means that f and g do not depend explicitly on t.

The vector form of (5.4), (5.5) is

dy

dt
= f(y), (5.6)

where

y =

(

u

v

)

, and f =

(

f(u, v)

g(u, v)

)

.

For an initial value problem, an initial condition of form

y(0) =

(

u0

v0

)

. (5.7)

would also be given.

Example: For the nonlinear system

u′ = v − 1

2
u, (5.8)

v′ = −1

2
v + 2u(2− u2), (5.9)

we have that

f =

(

v − 1
2u

−1
2v + 2u(2− u2)

)

.

There are no known simple mathematical methods that can be used
to find the solution of this system (by hand). However, it is easily
solved using a computer, and four example curves are shown in
Figure 5.2. In all four cases, the solution ends up at one of two
points. In this chapter we will not attempt to find the solution
curves but we will be very interested in determining these two points
and finding the reason why the solution approaches them. �

-3 -2 -1 0 1 2 3
u-axis

-5

0

5

v-
ax

is

Figure 5.2. Solution curves of (5.8), (5.9) in the u,v-plane for four different
initial conditions (shown with the solid dots). The arrows indicate the direction for
increasing t.
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5.1.1 Steady-State Solutions

For y′ = f(y), a steady state solution ys is a constant vector that
satisfies f(ys) = 0. In component form, the requirements are that

f(us, vs) = 0, (5.10)

g(us, vs) = 0. (5.11)

Solving for us and vs is not straightforward. In fact, given that f(u, v)
and g(u, v) can be almost anything, there is no method that always works
for solving these equations. The recommendation is to pick one of the
equations, and use it to solve for u in terms of v, or v in terms of u. The
equation to pick for this is usually the one that is easiest to solve. This
solution is then substituted into the other equation, and you then have
one equation and one unknown (see Example 1). It is also not uncommon
that you need to be opportunistic, and take advantage of certain terms
in the equation to help simply the equations (see Example 2).

Example 1: Find the steady states of

du

dt
= 3− u− v − uv,

dv

dt
= uv − 2v.

Answer: The equations to solve are

3− u− v − uv = 0,

uv − 2v = 0.

The second equation looks the easiest to work with. Factoring it as
v(u− 2) = 0, we get two solutions: v = 0 and u = 2. Taking v = 0,
then from the first equation we get that u = 3. For u = 2, from the
first equation we get that v = 1/3. Therefore, we have found two
steady states: (us, vs) = (3, 0), and (us, vs) = (2, 1/3). �

Example 2: Assuming α is a positive constant, find the steady states of

du

dt
= 1− (1 + α)u+ u2v,

dv

dt
= u− u2v.

Answer: The equations to solve are

1− (1 + α)u+ u2v = 0,

u− u2v = 0.
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It is possible to use the approach from the previous example, but it
is easier to look a little closer at these equations. They both contain
the term u2v. In fact, from the second equation u2v = u. Using this
information in the first equation, we get that u = 1/α. From the
second equation, it follows that v = α. Therefore, we have found
that the only steady state is: (us, vs) = (1/α, α). �

Example 3: Find the steady states of

x′ = x− x2 − xy,

y′ = 2y − y2 − 3xy.

Answer: The equations to solve are

x− x2 − xy = 0,

2y − y2 − 3xy = 0.

Factoring the first equation as x(1−x−y) = 0, then either x = 0 or
x = 1− y. If x = 0, then from the second equation y = 0 or y = 2,
giving us the two steady states (0, 0) and (0, 2). When x = 1 − y,
the second equation reduces to y(1 − 2y) = 0, which has solutions
y = 0 and y = 1/2. This gives us two more steady states, which are
(1/2, 1/2) and (1, 0). �

Example 4: For the system

x′ = x− y,

y′ = (x− y)3,

the steady states are any points that satisfy y = x. �

Example 5: The system

x′ = x+ y,

y′ = 1,

does not have a steady state solution because it is not possible for
y′ = 0. �

We are going to avoid the situation in Example 4. Specifically, in
the problems we will consider, there can be multiple steady states, but
they are discrete points as in Examples 1, 2, and 3. The way this will be
stated is that the steady states are isolated, which means that there is a
nonzero distance d so that the distance between any two steady states for
the problem is at least d.
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Exercises

1. Write the following as y′ = f(y), making sure to identify the entries in
y and f . If initial conditions are given, write them as y(0) = y0.

a) u′ = u2 − v
v′ = 2u− 3v

b) u′ = u2 + v2

2v′ = sin(u)

c) u′ = eu − v
v′ = uv
u(0) = −1, v(0) = 0

d) Van der Pol oscillator
u′′ + (1− u2)u′ + u = 0

e) Toda oscillator
u′′ + eu − 1 = 0

f) Duffing oscillator
u′′ + u+ u3 = 0
u(0) = 1, u′(0) = −1

g) Michaelis-Menten system
S′ = −k1ES + k−1(E0 − E),
E′ = −k1ES+(k2+k−1)(E0−E)
S(0) = 1, E(0) = 2

h) Predator-prey
x′ = ax− bxy
y′ = −cy + dxy

i) Projectile (nonuniform field)

y′′ = − gR2

(R+ y)2

y(0) = 0, y′(0) = 3

j) Orbital motion

r′′ =
α2

r3
− µ

r2
r(0) = 1, r′(0) = 2

2. Find the steady state solutions of the following.

a)

{

u′ = 1− 2u− v − uv

v′ = 3uv − v

b)

{

u′ = v − u2

v′ = v + u3

c)

{

u′ = 4− uv2

v′ = −v + uv2

d)

{

S′ = 2S − S2 − 2SP
1+S

P ′ = 2SP
1+S − P

e)

{

S′ = −IS + 5− I − S

I ′ = IS − I

f)

{

s′ = c− s2

c′ = 1 + sc

g)

{

x′ = sin(y) + sin(x)

y′ = 3y2 + x4

h)

{

x′ = xy

y′ = (2− x− y)(1 + y)

i)

{

x′ = x(4− x− y)

y′ = y(6− y − 3x)

j)

{

u′ = v + u(u2 + v2)

v′ = −u+ v(u2 + v2)

5.2 Stability

The question considered now is central to this chapter, and it is whether
a steady state is achievable. What this means is that the steady state is
asymptotically stable. To explain how we are going to determine stability,
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Figure 5.3. Solution of (5.12),(5.13) for different initial conditions. The
blue curve approaches the steady state (1, 0), while the red curve approaches the steady
state (0, 2).

consider the problem of solving

x′ = x− x2 − xy, (5.12)

y′ = 2y − y2 − 3xy. (5.13)

This is the problem from Example 3 in the previous section, and we found
that there are four steady states: (0, 0), (0, 2), (1, 0), and (1/2, 1/2). One
approach for providing insight about stability is to solve the problem
numerically. This is easy to do, and two computed solution curves are
shown in Figure 5.3. The four steady states are also shown, using black
circles and squares. The curves are consistent with what is expected if
(0, 2) and (1, 0) are asymptotically stable. Also, since both curves start
near (0, 0), yet move away from it, it would not be a surprise to find out
that (0, 0) is an unstable steady state.

Solving the problem numerically is so easy that it possible to solve the
problem for many different initial conditions, and check if the solution
approaches one of the various steady states. The results from such a
calculation are shown in Figure 5.4. What is found is that there are,
apparently, two asymptotically stable steady states, (0, 2) and (1, 0). The
calculations also identity the regions for the initial conditions that result
in the solution ending up at the respective steady state. The two regions
determined from this computation are called the domain of attraction for
the respective steady state. It also needs to be pointed out that initial
conditions located in the white region (approximately the third quadrant
in Figure 5.4), produce solutions that do not approach a steady state.
In this example they simply become unbounded, but in other nonlinear
problems you can get interesting solutions like limit cycles or strange
attractors.

Our goal is not to be able to determine the shaded regions shown
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Figure 5.4. An initial condition (x(0), y(0)) located in one of the shaded
regions results in the solution of (5.12),(5.13) ending up at the steady state in that
shaded region. The two steady states are shown by the dark circles.

in Figure 5.4, but, rather, to show that there is a small region around
the respective steady state with the same property as the shaded region.
Namely, for any initial condition in that small region, the solution of the
resulting IVP will end up at the steady state. In this case, the steady
state is said to be asymptotically stable. What we are doing now is the
two dimensional version of what we did in Section 2.4, and the nonlinear
version of what was done in Section 4.7.

5.2.1 Derivation of the Stability Conditions

The differential equation is y′ = f(y), and this can be written in compo-
nent form as

u′ = f(u, v), (5.14)

v′ = g(u, v). (5.15)

Assume that (us, vs) is a steady-state, which means that us and vs are
constants that satisfy

f(us, vs) = 0,

g(us, vs) = 0.

The reason for considering stability comes from this question: If we start
the solution near (us, vs), what happens?

There are three possible conclusions coming from this question: the
steady state is unstable, it is asymptotically stable, or it is neutrally
stable. What these are can be explained using a ball and bowl (see Figure
5.5). The force on the ball is gravity. For the bowl, the steady state is at
the bottom, and for the inverted bowl it is at the top. For the inverted
bowl, if you release the ball from rest, no matter where you place it (other
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Figure 5.5. Ball in a bowl, on the left, and a ball on an inverted bowl, on the right.

than exactly at the top), the ball will roll away. The conclusion is that
the steady state is unstable. For the bowl, you can control how far the
ball will get from the steady state (the bottom) by placing it close to
the bottom and giving it only a small initial velocity. Consequently, the
steady state is stable. Because the only force is gravity, the ball will roll
around in the bowl forever. This means the steady state is neutrally
stable. If the problem also includes damping, such as friction, then the
ball will slow down and eventually come to rest at the bottom. In this
case the steady state is asymptotically stable. Note that including
damping for the inverted bowl will not change the fact that the top is an
unstable steady state.

For those that prefer a more mathematical definition, the idea under-
lying asymptotic stability is that if y(0) is any point close to the steady
state ys, then

lim
t→∞

y(t) = ys. (5.16)

As stated above, a steady state is stable if you can control how far the
solution gets from ys by picking y(0) close to ys. Specifically, given any
ε > 0, you can find a δ > 0 so that if ||y(0)−ys|| < δ, then ||y(t)−ys|| < ε.
If this is not possible then ys is unstable. The key word here is “any.”
For stability, any y(0) satisfying ||y(0) − ys|| < δ must work, while for
instability there just needs to be one y(0) that satisfies ||y(0) − ys|| < δ
but ||y(t)−ys|| < ε is not satisfied. If ys is stable, and (5.16) holds, then
it is asymptotically stable. Otherwise it is said to be neutrally stable.
Note that this version of the definition of stability requires that u and v
have the same physical dimensions so that ||y|| =

√
u2 + v2 is defined.

Linear Approximation

To answer the stability question, assume that the initial position (u(0), v(0))
is very close to (us, vs). To determine what happens, we will use what
is called the linear approximation in multivariable calculus. This states
that if f(u, v) and g(u, v) are differentiable at (us, vs), then each can ap-
proximated using their respective tangent plane. In particular,

f(u, v) ≈ f(us, vs) + fu(us, vs)(u− us) + fv(us, vs)(v − vs),

g(u, v) ≈ g(us, vs) + gu(us, vs)(u− us) + gv(us, vs)(v − vs).
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In the above expressions, fu = ∂f
∂u , fv = ∂f

∂v , gu = ∂g
∂u , gv = ∂g

∂v . It should
be pointed out that this approximation is also a direct consequence of
Taylor’s theorem, and this can be used to derive more accurate approxi-
mations if needed.

By assumption, f(us, vs) = 0 and g(us, vs) = 0. Consequently, the
linear approximation of (5.14) and (5.15) near the steady state is

u′ = fu(us, vs)(u− us) + fv(us, vs)(v − vs),

v′ = gu(us, vs)(u− us) + gv(us, vs)(v − vs).

This can be written in system form as

y′ = Js(y − ys), (5.17)

where

y =

(

u

v

)

, ys =

(

us

vs

)

,

and

Js =

(

fu(us, vs) fv(us, vs)

gu(us, vs) gv(us, vs)

)

.

The matrix Js is known as the Jacobian matrix of f evaluated at ys.
To put the problem into the form covered in the last chapter, let

x = y − ys. With this, (5.17) becomes

x′ = Ax, (5.18)

where A = Js. The general solution of this is given in Section 4.5. For
what we are doing it is not necessary to distinguish between real or com-
plex valued eigenvalues. Using the formulas in Section 4.5, and remem-
bering that y = ys + x, we conclude that if Js is not defective, then

y = ys + c1a1e
r1t + c2a2e

r2t, (5.19)

and if it is defective, then

y = ys + c1ae
rt + c2(ta+ b)ert. (5.20)

Whether the ert terms in (5.19) or (5.20) go to zero, or blow up, as
t → ∞, depends on whether Re(r) is positive or negative. To determine
this, it is easiest to go through the various possibilities individually.

• If all of the eigenvalues of Js satisfy Re(r) < 0, then the exponentials
in (5.19) and (5.20) go to zero as t → ∞. So, ys is asymptotically
stable
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• If one, or more, of the eigenvalues of Js satisfies Re(r) > 0, then
at least one of the exponentials in (5.19) and (5.20) blows up as
t → ∞. So, ys is unstable.

There is a notable hole in the above list in that there is no conclusion
for the case of when both eigenvalues are imaginary. As explained in
Section 4.7, for a linear problem this leads to the conclusion of neutral
stability. There are neutrally stable steady states for nonlinear systems,
as illustrated with the ball and bowl example earlier, but the linear ap-
proximation is inadequate to determine this.

As a final comment, the only assumption needed to guarantee that the
above conclusions hold is that the first and second partial derivatives of
f(u, v) and g(u, v) are continuous. Those interested in a mathematically
rigorous proof of this should consult Stuart and Humphries [1998] or Perko
[2001].

Phase Plane

The above derivation for the stability conditions can provide us with in-
formation about the solution curves near a steady state. The reason is
that the reduced equation in (5.18) is the same one considered in the last
chapter. This enables us, in certain cases, to apply the phase plane solu-
tions shown in Table 4.1 (page 105) to the nonlinear system. To explain
how, suppose you have a steady state that the above test determines is
unstable or asymptotically stable. As stated earlier, we are only consid-
ering isolated steady states, and to guarantee this happens it is assumed
that r = 0 is not an eigenvalue of Js. Now, in the vicinity of the steady
state, we have that y ≈ ys + x. This means that the phase portrait for
y is similar to one of those in Table 4.1, but it is centered at y = ys

rather than at x = 0. Which one is determined by the eigenvalues of Js.
Demonstrations of this will be included in the examples that follow.

5.2.2 Summary

For the nonlinear system

u′ = f(u, v)

v′ = g(u, v),

the associated Jacobian matrix J is given as

J =









∂f

∂u

∂f

∂v

∂g

∂u

∂g

∂v









.
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The eigenvalues of J are used to determine stability, as explained in the
next theorem.

Linearized Stability Theorem. Given a steady state ys, and letting
Js be the Jacobian matrix evaluated at ys:

• If all of the eigenvalues of Js satisfy Re(r) < 0, then ys is asymp-
totically stable.

• If one, or more, of the eigenvalues of Js satisfies Re(r) > 0, then
ys is unstable.

This assumes that the second partial derivatives of f(u, v) and g(u, v) are
continuous at, and in the immediate vicinity of, ys.

Not every possibility is included in the above theorem. As an example, no
conclusion can be made when there are only imaginary eigenvalues. Any
case that is not covered by the theorem will be referred to as indeterminate
in this chapter.

For those with good memories, there are a few easy to use shortcuts
that avoid computing eigenvalues. If you are interested in what they are,
see Exercise 6.

It is worth pointing out that even though we are considering systems
with two equations (so, n = 2), the above theorem holds when there are n
equations. In fact, for n = 1 the above theorem reduces to the one given
in Section 2.4.1 (page 35).

Finally, if the above theorem determines that a steady state is un-
stable or asymptotically stable, and r = 0 is not an eigenvalue, then the
eigenvalues and eigenvectors of Js can be used to determine the phase
portrait of the solution near the steady state. This is done in the same
way as for the examples shown in Table 4.1. The principal difference now
is that it is centered at y = ys rather than at x = 0. Therefore, the clas-
sification of steady states into a source, sink, spiral source, spiral sink,
or saddle, as given on page 114, is applicable to the nonlinear systems
considered here.

5.2.3 Examples

Example 1: Determine the stability of the steady states of

u′ = v − 1

2
u,

v′ = −1

2
v + 2u(2− u2).
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This is the system that produced the solution curves shown in Figure
5.2.

Step 1: Find the steady states. The equations to solve are

v − 1

2
u = 0,

−1

2
v + 2u(2− u2) = 0.

From the first equation, v = u/2. With this the second equation be-
comes u(u2 − 15/8) = 0. Consequently, there are three steady states:
(u, v) = (−2α,−α), (0, 0), (2α, α), where α = 1

8

√
30.

Step 2: Determine the Jacobian matrix.

J =









∂f

∂u

∂f

∂v

∂g

∂u

∂g

∂v









=

(

−1
2 1

2(2− 3u2) −1
2

)

.

Step 3: Check on the stability of each steady state.

(2α, α): In this case

Js =

(

−1
2 1

−29
4 −1

2

)

,

and this has eigenvalues r1 = (−1 + i
√
29)/2 and r2 = (−1− i

√
29)/2.

Since both satisfy Re(r) < 0, this steady state is asymptotically stable.
In addition, since the eigenvalues are complex, and Re(r) < 0, the
phase portrait near this steady state should be a spiral sink. To check,
the region in Figure 5.2 that is near (2α, α) is shown in Figure 5.6.
As expected, the solution curves spiral into the steady state, as they
should for a spiral sink.

0.6 1 1.4
u-axis

-0.3

2

v-
ax

is

Figure 5.6. Solution curves of (5.8), (5.9) in the u,v-plane near the steady
state (2α, α) in Example 1.
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(0, 0): In this case

Js =

(

−1
2 1

4 −1
2

)

,

and this has eigenvalues r1 = 3/2 and r2 = −5/2 . Since r1 > 0 then
this steady state is unstable. Also, since r2 < 0 < r1, then this is a
saddle point and the phase portrait near (0, 0) will resemble the one in
Figure 4.1(b) or in Figure 4.3(b).

(−2α,−α): In this case

Js =

(

−1
2 1

−29
4 −1

2

)

,

and this has eigenvalues r1 = (−1 + i
√
29)/2 and r2 = (−1 + i

√
29)/2.

Since both satisfy Re(r) < 0, this steady state is asymptotically stable.
As with (2α, α), this is a spiral sink. �

Example 2: Determine the stability of the steady states of

x′ = x− x2 − xy,

y′ = 2y − y2 − 3xy.

This is the system that produced the solution curves shown in Figure
5.3.

Answer: In Section 5.1.1, Example 3, we found that there are four
steady states: (0, 0), (0, 2), (1/2, 1/2) and (1, 0). To determine their
stability, the Jacobian is

J =









∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y









=

(

1− 2x− y −x

−3y 2− 2y − 3x

)

.

(0, 2): In this case

Js =

(

−1 0

−6 −2

)

.

The eigenvalues are r1 = −1 and r2 = −2, and since they are both neg-
ative, the steady state is asymptotically stable. Moreover, since both
are negative, the phase portrait near this steady state will resemble
those for a sink. Sketching the phase portrait was explained in Section
4.6. Briefly, eigenvectors of Js, for r1 and r2 are, respectively,

a1 =

(

−1

6

)

, and a2 =

(

0

1

)

.
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Figure 5.7. Phase portrait near the steady state (0, 2) for Example 2.

The two red lines shown in Figure 5.7 are determined by these eigen-
vectors. The arrows point toward the steady state as both eigenvalues
are negative. Typical integral curves are shown in blue. The result is
a phase portrait for a sink.

(1/2, 1/2): In this case

Js =

(

−1/2 −1/2

−3/2 −1/2

)

,

and this has eigenvalues r1 = (−1+
√
3)/2 and r2 = (−1−

√
3)/2. Since

r1 > 0, it follows that this steady state is unstable. As for the phase
portrait near this steady state, since r2 < 0 < r1, then this steady
state is a saddle point. To sketch the phase portrait, the eigenvectors
of Js, for r1 and r2 are, respectively,

a1 =

(

−1
3

√
3

1

)

, and a2 =

(

1
3

√
3

1

)

.

The two red lines determined by these vectors are shown in Figure
5.8. Typical integral curves are shown in blue. So, the curves have the
pattern expected for a saddle.

Determining the stability of the remaining two steady states is left as
an exercise. �

Example 3: As introduced at the beginning of the chapter, a model for
the spread of a disease, like measles, is

dS

dt
= αN − (βI + α)S,

dI

dt
= βIS − (α+ γ)I,
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Figure 5.8. Solution curves of Example 2 in the x,y-plane near the steady
state (1/2, 1/2).

where N is the total number of individuals in the population (it is
constant). The coefficients, α, β, and γ, are positive constants. It is
not hard to show that the two steady states are (S, I) = (N, 0) and
(S, I) = (Se, Ie), where

Se =
α+ γ

β
and Ie =

α

α+ γ
(N − Se) .

The first steady state, (N, 0), corresponds to the case of when the dis-
ease is eliminated, and everyone ends up in the S group. The other
steady state, (Se, Ie), is an example of what is known as an epidemic
equilibrium, and this is something that is usually avoided if at all pos-
sible. Said another way, we want this steady state to be unstable.

To determine the stability of the steady states, note that

J =









∂f

∂S

∂f

∂I

∂g

∂S

∂g

∂I









=

(

−(βI + α) −βS

βI βS − (α+ γ)

)

.

(S, I) = (N, 0): In this case

Js =

(

−α −βN

0 βN − (α+ γ)

)

.

The eigenvalues of this matrix are −α and β(N − Se). Therefore, if
N < Se, then this steady state is asymptotically stable, and if N > Se,
then it is unstable.

(S, I) = (Se, Ie): One finds that this steady state is unstable if N < Se,
and it is asymptotically stable if N > Se.
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Measles: In the study of infectious diseases it is conventional to intro-
duce a variable R0, where R0 > 1 means the epidemic steady state is
asymptotically stable, and it is unstable if R0 < 1. For our problem,
R0 = N/Se, which means that

R0 =
βN

α+ γ
.

The parameter α is the birth rate in the population and γ is associ-
ated with the rate at which people get well. As for β, it reflects how
contagious the disease is (a larger β means it is more contagious). For
measles, α = 1/50, γ = 100, and β = 1800/N [Engbert and Drepper,
1994], in which case R0 ≈ 18. This is far from having R0 < 1, and this
is a reflection of the fact that measles is one of the most contagious
diseases known. As a final comment, in this problem, an unstable epi-
demic steady state means that the solution will approach the disease
free steady state. However, this does not necessarily happen for other
nonlinear systems. Determining this requires information about the
domain of attraction for the steady state, which was discussed at the
beginning of this section. �

Exercises

1. For the following find the steady states, and then determine whether
they are asymptotically stable, unstable, or indeterminate. Also, ex-
cept for the indeterminate cases, state whether the steady state is a
sink, source, spiral sink, spiral source, or saddle. Any parameters ap-
pearing in the equations should be assumed to be positive.

a)

{

u′ = 1 + v

v′ = u+ v3

b)

{

u′ = v − u

v′ = v + u3

c)

{

x′ = x2 − y

y′ = 2x− 3y

d)

{

S′ = −2ES + E0 − E

E′ = −2ES + 2(E0 − E)

e)

{

u′ = 1− 2u− v − uv

v′ = 3uv − v

f)

{

u′ = 4− uv2

v′ = −v + uv2

g)

{

r′ = s− r

s′ = 2− r − s2

h)

{

x′ = x2 + y2

2y′ = sin(x)

i)

{

x′ = ex − y

y′ = xy

j)

{

u′ = eu − ev

v′ = u+ v − 2
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k)

{

x′ = ax− bxy

y′ = −cy + dxy

l)

{

S′ = 2S − S2 − 2SP
1+S

P ′ = 2SP
1+S − P

m)

{

S′ = −1
2IS + 1− I − S

I ′ = 1
2IS − I

n)

{

r′ = (r − 1)(s+ 2)

s′ = −(r + 1)(s+ 3)

2. For the following: (i) find the steady state, (ii) find the linear approx-
imation of the system near the steady state, and then (iii) sketch the
phase portrait in the vicinity of the steady state as follows: draw the
(red) lines that are determined from the eigenvectors of Js, including
the arrows for these lines, then in each of the four quadrants deter-
mined by the red lines, include two integrals curves, with arrows.

a)

{

u′ = v − u

v′ = v + u3

b)

{

u′ = 1 + v

v′ = u+ v3

c)

{

u′ = 4− uv2

v′ = −v + uv2

d)

{

S′ = −2ES + E0 − E

E′ = −2ES + 2(E0 − E)

3. Graphically locate the steady states in the x,y-plane. Also, determine
whether they are asymptotically stable, unstable, or indeterminate.

a)

{

x′ = x2 + y2 − 4

y′ = −y + x3
b)

{

x′ = −y + x

y′ = y − cos(x)

4. Each nonlinear system produces one of the four plots in Figure 5.9.
Determine which system goes with which plot. Make sure to explain
why.

a)

{

x′ = x(y − x)

y′ = 2− y − x2

b)

{

x′ = x(x− y)

y′ = 2− y − x2

c)

{

x′ = x(x− y)

y′ = x2 + y − 2

d)

{

x′ = x(y − x)

y′ = x2 + y − 2

5. Suppose that y = Y is a steady state solution of y′′ + cy′ + g(y) = 0.
So, y = Y is a constant and g(Y ) = 0.

a) Show that Y is unstable if c < 0.

b) Suppose that c > 0. Show that Y is asymptotically stable if g′(Y ) >
0, and it is unstable if g′(Y ) < 0.

6. In this problem, assume that

Js =

(

a b

c d

)

.
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Figure 5.9. Solution curves for the systems in Exercise 4. The colored dot
is the initial condition.

The trace of a matrix is the sum of the numbers on the diagonal. The
formula is tr(Js) = a+ d. Also, the determinant is det(Js) = ad− bc.

a) Show that the eigenvalues of Js are
1
2

[

tr(Js)±
√

[tr(Js)]2 − 4det(Js)
]

.

b) Show that if tr(Js) > 0, then ys is unstable.

c) Show that if det(Js) < 0, then ys is unstable.

d) Show that if det(Js) > 0 and tr(Js) < 0, then ys is asymptotically
stable.

7. A model for how a joke moves through a population involves three
groups: S is the population that either has not heard the joke, or does
not remember it, T is the population of those who know the joke and
they will tell it to others, and R is the population who know the joke
but will not tell it to others (they are not good joke tellers or they
don’t think it’s all that funny). As shown in Holmes [2019],

dS

dt
= −2αST + β(N − S),

dT

dt
= αST − βT,

where N is the total number of individuals in the population (it is
constant). The coefficients α and β are positive constants. Also, once
S and T are determined, then R = N − T − S.

a) There are two steady states, what are they?

b) One of the steady states has T = 0. When is it asymptotically
stable?
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c) One of the steady states has T 6= 0. When is it asymptotically
stable?

d) The α is the telling parameter, so a larger α means the joke is
being told more often. Similarly, β is the forgetting parameter, so
a larger β means the joke is being forgotten faster. Based on your
answers from parts (b) and (c), under what conditions will the joke
disappear from the population?

5.3 Periodic Solutions

With the stability test derived in the previous section, we have a fairly
good tool for determining if, and when, the solution of a nonlinear system
will come to rest. The next question concerns what can be learned about
periodic solutions. This is needed as periodicity plays an important role
in our lives, and examples are the sleep-wake cycle and the periodic events
associated with the Earth’s rotation.

To begin, it’s best to define what is meant by periodicity. A solution
of y′ = f(y) is periodic if there is a positive number T so that

y(t+ T ) = y(t), ∀t ≥ 0. (5.21)

The smallest positive T , if it exists, is the period.
We will only consider problems that come from Newton’s second law.

Specifically, if u(t) is the displacement, and F is a function of u, then
F = ma gives us the differential equation

mu′′ = F (u). (5.22)

Letting v = u′, then the above equation can be written in system form as

u′ = v, (5.23)

v′ =
1

m
F (u). (5.24)

It is not hard to show that if u(t) is periodic with period T , then the
velocity v(t) is also periodic with period T . Consequently, (5.21) is sat-
isfied, and so the solution is periodic. Examples of what are, or are not,
periodic are explored in more depth in Exercise 3.

We will first find a way to determine the solution curve in the phase
plane directly from the differential equation and initial conditions. Once
that is done, we will then be able to determine the period T , as well as
other properties of the solution.

Example: Mass-Spring

In Section 3.10, it was shown that the displacement u(t) of a mass in
a spring-mass system satisfies mu′′ + ku = 0. The general solution of
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Figure 5.10. Elliptical path, given in (5.26), that is followed by the solution
of the mass-spring IVP. The blue dot is the location of the initial condition.

this equation can be written as u = R cos(ω0t − ϕ), and v = u′ =
−ω0R sin(ω0t − ϕ), where ω0 =

√

k/m. Consequently, the solution is
periodic, with period T = 2π/ω0. The key observation here is that, using
the identity cos2 θ + sin2 θ = 1,

( u

R

)2
+
( v

ω0R

)2
= 1,

or equivalently

u2 +
1

ω2
0

v2 = R2. (5.25)

This is an equation for an ellipse in the u,v-plane. As an example, suppose
that m = 1, k = 4, and the initial conditions are u(0) = 1 and v(0) = 0.
In this case, u = cos(2t), v = −2 sin(2t), and from (5.25), the ellipse is

u2 +
1

4
v2 = 1. (5.26)

This curve is shown in Figure 5.10. Because the period is T = π, the
solution goes around the ellipse and returns to the starting point (1, 0) at
t = π, 2π, 3π, . . ..

To see what can be learned from the system form of the problem, the
equations are

u′ = v,

v′ = −ω2
0u.

This can be used to determine the direction of the arrows in Figure 5.10.
Since v′ = −ω2

0u, using the initial condition given earlier, v′(0) = −ω2
0.

The fact that this is negative means that v must decrease as it leaves
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the initial point, and so the direction of motion is clockwise around the
curve. Note that it is not possible for the solution to reverse direction on
the curve because this would require that there is a point on the curve
where u′ = 0 and v′ = 0. Such a point corresponds to a steady state, and
the only steady state for this problem is the origin. �

The important conclusion coming from the above example is that,
no matter what time t you select, the solution is located somewhere on
the curve shown in Figure 5.10. Having a closed curve like this is a
requirement for the solution to be periodic. The reason is that a solution
traces out a curve in the phase plane, whether the solution is periodic or
not (see Table 4.1 for examples). For the solution to be periodic, it must
return to its original position, and that is why a closed curve as in Figure
5.10 is required. What is shown below is how to determine this curve
without actually knowing what the solution is.

5.3.1 Closed Solution Curves and Hamiltonians

It is possible to find the equation for the closed curve without too much
trouble if the differential equation comes from Newton’s second law, F =
ma. To explain, if u(t) is the displacement, and F is a function of u, then
F = ma gives us the differential equation mu′′ = F (u). Multiplying this
by the velocity u′, and remembering that v = u′, we get that

mvv′ = F (u)u′. (5.27)

The key is to observe that the left hand side can be written as

d

dt

(1

2
mv2

)

.

To do the same for the right hand side, let V (u) be such that V ′(u) =
−F (u). In this case, the right hand side of (5.27) can be written as

F (u)u′ = −dV

du

du

dt
= − d

dt
V (u).

What we have done is to rewrite (5.27) as

d

dt

(1

2
mv2 + V (u)

)

= 0. (5.28)

Integrating this equation,

1

2
mv2 + V (u) = c. (5.29)

The value of the constant c is determined from the initial conditions.
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There is a physical interpretation of the equation we have derived that
is worth knowing about. The left hand side of (5.29) is

H(u, v) =
1

2
mv2 + V (u). (5.30)

This function is a Hamiltonian for the differential equation. In this in-
stance it is the total mechanical energy of the system, and it consists of
the sum of the kinetic energy, 1

2mv2, and a potential energy, V (u). What
we have shown in (5.29) is that the total energy is constant. So, the solu-
tion moves along a constant energy curve determined by the Hamiltonian
and the initial conditions.

Not every forcing function F (u) will result in (5.29) being a closed
curve. Moreover, it is typical that when F (u) is nonlinear, that not all
initial conditions, if any, will yield a closed curve. Examples of these
situations are given below.

Finally, as is often the case in mathematics, it is not recommended that
you memorize the formula given in (5.29). It is better that you remember
how it is derived. Namely, you multiply the second-order equation by the
velocity, and then rewrite the terms as derivatives.

Example: Mass-Spring Revisited

Starting with the equation

mu′′ + ku = 0,

we multiply by u′ and obtain

mvv′ + kuu′ = 0.

This can be written as

d

dt

(1

2
mv2 +

1

2
ku2
)

= 0.

This means that
1

2
mv2 +

1

2
ku2 = c,

where c is an arbitrary constant. Taking, as in the last example, u(0) = 1,
v(0) = 0, m = 1, and k = 4, and substituting these values into the above
equation we find that c = 2. Consequently, the above equation becomes

u2 +
1

4
v2 = 1. (5.31)

This is exactly the same equation (5.26) we derived earlier using the
known solution to the problem. What is significant is that we have found
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this curve without first finding the solution of the problem. �

It was mentioned earlier that not every forcing function will result in
a closed curve. For the above mass-spring problem the spring force is
F = −km. This is attractive, in the sense that it pulls the mass back
towards the rest position u = 0. If the force is repelling, so F = km,
then instead of (5.31), you get u2 − 1

4v
2 = 1. This is an equation for a

hyperbola, which is not a close curve.

Example: Pendulum

The equation for the angular deflection of a pendulum can be written as

d2θ

dt2
= −α sin θ. (5.32)

where α = g/ℓ. Introducing the angular velocity v = θ′, then we obtain
the first-order system

θ′ = v, (5.33)

v′ = −α sin θ. (5.34)

In this example, assume that α = 4, and that the initial conditions are
θ(0) = π/4 and v(0) = 0. To determine the closed solution curve, we
multiply (5.32) by the velocity v = θ′, giving us

vv′ = −4θ′ sin θ.

Writing this as
d

dt

1

2
v2 =

d

dt

(

4 cos θ
)

,

and then integrating gives us the equation

1

2
v2 − 4 cos θ = c.

With the initial conditions we find that c = −2
√
2, and so the equation

for the curve takes the form

v2 − 8 cos θ = −4
√
2. (5.35)

The curve obtained from this equation is shown in Figure 5.11.
The direction of the arrows can be determined from the v′ equation

(5.34). Namely, since v′(0) = −α sin(θ(0)) = −2
√
2, and this is negative,

then v must decrease as it leaves the initial point. Therefore, the direction
of motion is clockwise around the curve.
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Figure 5.11. Path followed by the solution of the pendulum example.
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Figure 5.12. Solution curves for θ(t) and v(t) for the pendulum solution
shown in Figure 5.11.

It is possible to determine various properties of the solution from
(5.35). For example, the maximum velocity vM occurs when v′ = 0.
Since v′ = −4 sin θ, then from Figure 5.11 it is apparent that the only
solution is θ = 0. In this case, from (5.35), v2 = 4(2 −

√
2). Therefore,

vM = 2
√

2−
√
2.

Finally, to illustrate the periodicity of the individual components of
the solution, both θ and v are plotted in Figure 5.12 as functions of t.
An interesting question is whether it is possible to determine the period
of these functions without knowing the solution. It is, and how this is
possible will be explained in the next section �

Example: Librating versus Circulating Motion

For a pendulum, if the initial velocity is large enough, then the mass will
go all the way around, pass through θ = π (or, θ = −π) and return to
where it started. It will continue to do this indefinitely. This motion is
periodic, but it does not satisfy the definition of a periodic solution given
in (5.21). In mechanics it is called a circulating, or rotating, motion. In
contrast, the tick-toc type of periodic motion considered in the previous
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example is referred to as libration.
The integral curves for the pendulum are shown in Figure 5.13. The

closed, solid blue, curves correspond to the periodic solutions discussed
earlier. The dashed curves are some of the possible circulating solutions.
On these curves, the angular coordinate θ increases monotonically if v > 0,
and decreases monotonically if v < 0. In the physical plane this corre-
sponds to the mass continually making complete circuits around the pivot
point (i.e., it is making a circulating motion).

The red curves in Figure 5.13 form what is known as the separatrix
for the pendulum. If you start at a point on the separatrix, the solution
will approach the vertical, unstable, steady state. �

5.3.2 Finding the Period

Once the closed curve formed by the periodic solution is known, it is
possible to find the period. As usual, it is easiest to explained how this
is done using examples.

Example: Mass-Spring

The equation for the curve is given in (5.31). Solving this for v yields v =
±2

√
1− u2. Which sign you use depends on what part of the curve you

are considering. In Figure 5.10 the two u intercepts are u = ±1. So, for
the lower part of the curve connecting (1, 0) to (−1, 0), v is negative, and
so v = −2

√
1− u2. Since v = u′, then we have the first-order differential

equation
du

dt
= −2

√

1− u2.

This equation is separable, which yields
∫

du√
1− u2

=

∫

−2dt.

-3 -2 - 0 2 3
-6

0

6

v

Figure 5.13. Phase portrait for the pendulum equations (5.33), (5.34), when α = 4.
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Carrying out the integrations,

arcsin(u) = −2t+ c.

Given that u = 1 at t = 0, then c = π/2.
To determine the period, we solve the above equation for t to obtain

t =
1

2

(π

2
− arcsin(u)

)

.

It is now possible to determine how long it takes for the solution to move
along the lower half of the curve and arrive at (−1, 0). Namely, letting
u = −1 in the above equation we get that

t =
1

2

(π

2
− arcsin(−1)

)

=
π

2
.

To compute the time to transverse the upper part of the curve, you can
either use the separation of variables approach or you can use the sym-
metry of the solution curve. Both yield the result that the time is π/2.
Therefore, the period is the sum, which means that T = π. This agrees
with what we found earlier using the exact solution to the problem. �

Example: Pendulum

The equation for the curve is given in (5.35). Solving this for v yields

v = ±2
√

2 cos θ −
√
2. The lower part of the solution curve, shown in

Figure 5.11, goes from (π/4, 0) to (−π/4, 0). On this part of the curve

v = −2
√

2 cos θ −
√
2, which gives us the first-order differential equation

dθ

dt
= −2

√

2 cos θ −
√
2 .

This equation is separable, which yields

∫

dθ
√

2 cos θ −
√
2
= −2t+ c.

In anticipation of imposing the initial condition, the above integral is
written as

∫ θ

θ0

dr
√

2 cos r −
√
2
= −2t+ c.

Now, given that θ(0) = π/4, then θ0 = π/4 and c = 0. The above
equation then takes the form

∫ θ

π/4

dr
√

2 cos r −
√
2
= −2t.
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The time to reach θ = −π/4 is therefore

t = −1

2

∫ −π/4

π/4

dr
√

2 cos r −
√
2

=
1

2

∫ π/4

−π/4

dr
√

2 cos r −
√
2
.

Using the separation of variables approach, or using the symmetry of the
solution curve, the time to transverse the upper part of the curve is the
same as the above value. Therefore, the period T for the pendulum is

T =

∫ π/4

−π/4

dr
√

2 cos r −
√
2
. (5.36)

So, we have a formula for the period that does not require knowing the
solution. The complication is that it is an improper integral, of the type
often referred to in a calculus textbook as “Type II,” which means the
integrand becomes infinite at the endpoints. It is not possible to carry out
the integration in terms of elementary functions, but it is easy to evaluate
it using a computer. Doing so, one finds that T = 3.267 . . .. �

We have been able to determine a great deal about the properties
of a periodic solution, without actually knowing what the solution is.
As stated earlier, this is significant as most of the nonlinear problems
that give rise to a periodic solution can not be solved explicitly using
elementary functions. Consequently, they are almost always solved nu-
merically. Our results complement what can be learned numerically, as
we have been able to derive analytical formulas for the period, the closed
curve, and other components of the solution. This makes it much easier
to determine how the solution changes when the initial conditions, or the
parameters appearing in the equations, are changed.

Exercises

1. Find a Hamiltonian function H(u, v) for each of the following.

a) 2u′′ + 3e2u − 3 = 0

b) u′′ +
u

1 + 5u2
= 0

c) 5u′′ + 7u+ 6u9 = 0

d) u′′ + 4u
√
1 + u2 = 0

2. It is common to define the potential energy relative to a steady state
solution u = us. This means that the arbitrary constant in the po-
tential energy is determined so that V (us) = 0. For the equations in
Exercise 1, what is the kinetic energy and the potential energy relative
to the steady state?
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3. This problem considers periodic, and non-periodic, solutions of y′ =
f(y).

a) Explain why any steady state is a periodic solution of this equation.

b) Suppose that yb, given below, is a solution. Is it a periodic solution?

yb =

(

sin t

sin(3t)

)

yc =

(

sin t

sin(πt)

)

c) Suppose that yc, given above, is a solution. Is it a periodic solution?

d) Show that if u(t) is periodic with period T , then v(t) = u′(t) is also
periodic with period T .

e) Suppose that v = u′. Give an example where v(t) is periodic, but
u(t) is not periodic.

4. In this problem assume that the curve coming from (5.29) has the form
shown in Figure 5.14. Also, assume u = us is a steady state value.

a) Explain why the maximum, and minimum, velocity occurs when
u = us. How many steady states are there for this problem?

b) Use the fact that there are two u-intercepts to explain why it is not
possible that V (u) = u3.

c) If F ′(us) < 0, explain why V (u) has a local minimum at u = us.

d) Using what you learned in parts (a)-(c), sketch V (u). In doing this
assume that F ′(us) < 0 and V (us) = 0.

5. The problem concerns a Duffing oscillator, and the differential equation
is u′′+u+u3 = 0. Assume the initial conditions are u(0) = 1 and v(0) =
0. This equation comes from a mass-spring system, as shown in Figure
3.2, where the restoring force of the spring is nonlinear (specifically,
it’s cubic) rather than the linear form assumed using Hooke’s law.

a) The path followed by the solution is shown in Figure 5.15. Find the
equation for this closed curve.

b) Find the steady-state, show that it is not on the curve you found
in part (a).
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Figure 5.14. Path followed by the solution for Exercise 4.
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0
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Figure 5.15. Path followed by the solution of the Duffing oscillator in Exercise 5.

c) Draw arrows on the curve indicating the direction of motion. Make
sure to explain how you determine this.

d) What is the maximum velocity?

e) What is the minimum displacement?

f) Find a formula, similar to the one in (5.36), for the period.

6. The problem concerns what is known as a Morse oscillator, and the
differential equation is

u′′ + 2
(

1− e−u
)

e−u = 0.

Assume the initial conditions are u(0) = 1 and v(0) = 0. This equation
arises when studying the vibrational energy of a diatomic molecule.

a) The path followed by the solution is shown in Figure 5.16. Find the
equation for this closed curve.

b) Find the steady-state, show that it is not on the curve you found
in part (a).

c) Draw arrows on the curve indicating the direction of motion. Make
sure to explain how you determine this.

d) What is the maximum velocity?

e) What is the minimum displacement?

f) Find a formula, similar to the one in (5.36), for the period.

0
u-axis

0

v-
ax

is

Figure 5.16. Path followed by the solution of the Morse oscillator in Exercise 6.
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7. This problem concerns the generalization of the Hamiltonian to the
general system in (5.4), (5.5). Assume that there is a function H(u, v)
so that

∂H

∂v
= f(u, v) and

∂H

∂u
= −g(u, v). (5.37)

Also, assume that f and g are smooth functions of u and v.

a) Explain why (5.37) requires that fu = −gv. If this holds then (5.4),
(5.5) is said to be a Hamiltonian system.

b) Show that the H(u, v) given in (5.30) satisfies (5.37).

c) Use (5.37) to show that d
dtH = 0. So, H(u, v) = c, where c is a

constant, and in this sense H(u, v) is a Hamiltonian for the system.

d) Find a Hamiltonian for u′ = v2 − u, v′ = v − 2u.

e) Under what condition is the linear system y′ = Ay, where

A =

(

a b

c d

)

,

a Hamiltonian system? Assuming this holds, find H(u, v).

5.4 Motion in a Central Force Field

The problem of interest concerns the motion in three dimensions of a
particle that is subjected to a radial force F. The specific assumption is
that

F =
1

r
f(r)x, (5.38)

where x(t) is the position of the particle and r = ||x||. From Newton’s
second law, the resulting differential equation is

mx′′ =
1

r
f(r)x, (5.39)

where m is the mass of the particle. As for the initial conditions, it
is assumed that the initial position x(0) = x0 and the initial velocity
x′(0) = v0 are given. To avoid some uninteresting situations, it is assumed
that x0 × v0 6= 0.

The force F can be thought of as coming from the interaction with a
particle located at the center. For example, if the force is gravity, then
f(r) = −k/r2, where k = GMm. In contrast, if the particles are charged
and the force is electrostatic, then f(r) = −k/r2, where k = −qQ/4πε0.
The definition of the various constants making up k is not important here,
other than to know that it is possible for k to be positive or negative. In
particular, it is positive for a gravitational force, and for an electrostatic
force if the charges of the particles are opposite. It is negative for an
electrostatic force if the charges of the particles are the same.
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Figure 5.17. A particle, the red dot, orbits a particle located at the origin.
The orbit curve lies in a plane containing the origin and has normal n, where n is
parallel to p = x0 × v0.

The solution of (5.39) can be shown to lie in a plane that has a normal
vector n that is parallel to p = x0 × v0 (see Exercise 6). We will orient
the coordinate system so the z-axis is in the n direction, which means
that the solution of (5.39) is confined to the x,y-plane. To take advantage
of this, we will use polar coordinates and write x(t) = r(t) cos θ(t) and
y(t) = r(t) sin θ(t). After some routine change of variables calculations
one finds that (5.39) reduces to

m
[

r′′ − r(θ′)2
]

= f(r), (5.40)

d

dt

[

r2(θ′)
]

= 0. (5.41)

The last equation gives us that r2θ′ = p, where p is a constant, and this
means that the first equation reduces to

mr′′ = f(r) +
mp2

r3
. (5.42)

This is a force balance equation, where f(r) is the force introduced earlier
and mp2/r3 is an outward directed force due to angular momentum.

The second-order differential equation (5.42) can be written as a first-
order nonlinear system by letting v = r′, giving

r′ = v, (5.43)

v′ =
1

m
f(r) +

p2

r3
. (5.44)

It is worth knowing that in the derivation of (5.42), it is found that
p = ||x0 × v0||. So, p is a positive constant that is known from the initial
conditions.

5.4.1 Steady States

The steady states, if there are any, satisfy v = 0 and r3f(r) +mp2 = 0.
Assuming that f(r) = −k/r2, then to be a steady state it is required that
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Figure 5.18. Two possible elliptical curves coming from (5.47). The u-
intercepts for each ellipse are u− and u+.

kr = mp2. This means we need k > 0, and the resulting steady state is
r = rs, where

rs =
mp2

k
.

Also, since r2θ′ = p, then θ = ωt + θ0, where ω = k2/m2p3. The corre-
sponding solution is a circular orbit in the x,y-plane, with radius r = rs
and period 2π/ω.

To check the stability, note that

J =

(

0 1

2k
mr3s

− 3p2

r4s
0

)

=

(

0 1

−p2/r4s 0

)

.

From this one finds that the eigenvalues are ±ip/r2s , which means that the
stability of the steady state is indeterminate using the Linearized Stability
Theorem.

5.4.2 Periodic Orbit

The next question is whether the solution is periodic. Said another way,
we would like to know if the particle orbits the particle that is located
at the origin. To find the closed curve formed by the solution, if there is
one, we multiply (5.42) by r′. From this, and remembering that we have
taken f(r) = −k/r2, it is found that

1

2
mv2 +

mp2

2r2
− k

r
= c, (5.45)

where c is a constant determined by the initial conditions. Completing
the square, we get that

v2 + p2
(1

r
− 1

rs

)2
= c20, (5.46)

where c20 = v20 + p2
(

1/r0 − 1/rs

)2
, r(0) = r0, and v(0) = v0.

To answer the question about a periodic orbit, it will make things
easier if we let u = 1/r. So, (5.46) takes the form

v2 + p2
(

u− us

)2
= c20, (5.47)



152 Chapter 5. Nonlinear Systems

where us = 1/rs. This is an equation for an ellipse in the u,v-plane with
center (u, v) = (us, 0). Two representative elliptical paths obtained from
this equation are shown in Figure 5.18. Since u = 1/r, then u must
be positive. This means that the dashed portion of the ellipse on the
left is not possible physically. To determine whether the ellipse has only
positive values, we can use the u intercepts. Setting v = 0 in (5.47) yields
u± = us ± c0/p. As shown in Exercise 7, to have u− > 0 it is required
that k > mr(0)3[θ′(0)]2. Therefore, as long as the initial angular velocity
θ′(0) is not too large, the particle will orbit the particle at the origin.

To demonstrate what a solution curve looks like, the numerical solu-
tion of the central force problem in (5.42) is shown in Figure 5.19. The
orbital path in the r,v-plane is on the left. The physical path, in the
x,y-plane, is shown on the right.

The question arises as what happens when you get an ellipse like the
one on the left in Figure 5.18. Irrespective of which point you start at
on the solid curve, and no matter which direction you go on the curve, u
approaches zero. In other words, r → ∞. Physically, what is happening
is that the angular momentum is so large that an orbit is not possible,
and the particle simply escapes whatever hold the particle at the origin
might have on it. It is also evident from Figure 5.18, contrary to what
is often shown in cartoons, that the particle does not make several orbits
around the origin before escaping. In fact, the particle is incapable of
making even one complete orbit.

Exercises

1. Suppose the law of gravity results in f(r) = −k/r3, where k > 0. You
can assume that k 6= mp2.

a) Are there any steady state solutions? If so, check on their stability.
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Figure 5.19. Numerical solution of (5.42) in the case of when the solution is
periodic. The initial position, and direction of motion, are shown on each curve. The
two time points used to place the direction arrows on the left are the same time points
used on the right.
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b) Assuming there is a periodic solution, determine its equation in the
u,v-plane.

c) Use your result from part (b) to explain why there is no periodic
solution of this problem.

2. Suppose the law of gravity results in f(r) = −kr, where k > 0. Note
that this is assuming that gravity acts like an elastic spring.

a) Are there any steady state solutions? If so, check on their stability.

b) Assuming there is a periodic solution, determine its equation in the
r,v-plane.

c) The solution curve is shown in Figure 5.20 in the case of when
r(0) = r0 and v(0) = 0. Show that the second r intercept is at
r0(rs/r0)

2, where rs is the steady state you found in part (a).

d) Where is the steady state located in Figure 5.20?

3. This problem concerns the solution shown in Figure 5.19.

a) In Figure 5.19(left), where is rs located?

b) In Figure 5.19(right), sketch in the circular orbit derived in Section
5.4.1.

4. What initial conditions correspond to someone throwing a baseball so
that it encircles the Earth at a constant height, and then returns to
the person who threw it? Some of the results from Exercise 7 might
be useful here. Assume the Earth is a smooth sphere with radius R.

5. This exercise explores the usefulness of making the change of variables
from r, t to u, τ , where u(τ) = 1/r and τ = θ(t). This is an approach
often used in physics textbooks.

a) Show that r′(t) = −pu′(τ), and r′′(t) = −p2u2u′′(τ).

b) The mathematical requirement for the change of variables to be
valid is that θ(t) is a strictly monotonic function of t. Explain why
this holds in this problem.

c) Using the results from part (a), show that (5.42) takes the form

u′′ + u = − 1

mp2u2
f
(1

u

)

.
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Figure 5.20. Solution curve for the problem in Exercise 2.
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d) Assuming that f(r) = −k/r2, find the general solution of the result-
ing differential equation in part (c). In doing this, use (3.22) when
writing down the general solution of the associated homogeneous
equation. Also, what is the resulting formula for r?

e) Use the results from Exercise 7 to show that u(0) = 1/x0 and
u′(0) = −x′0/(x0y

′
0). Use these to find the two arbitrary constants

in your solution in (d).

6. Let p = x × x′. In this exercise you will likely need to review the
properties of the cross product you learned in calculus.

a) Show that p′ = 0. This means that p is a constant vector, and
so, from the initial conditions, p = x0 × v0. It is assumed that
x0 × v0 6= 0.

b) Explain why p · x = 0 and p · x′ = 0. Why does this mean that
x and x′ are in the plane that is perpendicular to p, and which
contains the origin?

c) Assuming x = (r(t) cos θ(t), r(t) sin θ(t), 0), show that p = r2θ′k,
where k is the unit vector pointing in the positive z-direction.

d) The plane has normal p as well as normal −p. Which one is used
when orientating the positive z-axis in such a way that r2θ′ > 0?

7. This problem determines how the initial conditions for (5.38) con-
tribute to the reduced problem for the orbit. Assume that x0 =
(x0, 0, 0)

T and v0 = (x′0, y
′
0, 0)

T , where x0, x
′
0, and y′0 are given with

x0 and y′0 both positive. The superscript T indicates transpose. Also,
assume that f(r) = −k/r2 and θ(0) = 0.

a) Show that p = x0y
′
0.

b) Show that the initial conditions for (5.42) are r(0) = x0, r
′(0) = x′0.

c) Show that u− > 0 reduces to the requirement that k > mx0(y
′
0)

2.
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Laplace Transform

We have found that to solve y′′+by′+cy = 0 you assume that y = ert,
and for x′ = Ax you assume that x = aert. What is notable here is the
exponential dependence of the solution on t. It is possible to extend this
assumption in such a way that it is possible to solve a wide variety of
more complicated problems, such as those involving partial differential
equations. This chapter concerns one such extension.

6.1 Definition

The generalization we are interested in called the Laplace transform, and
its definition is given next.

Laplace Transform. Given a function y(t), for 0 ≤ t < ∞, its Laplace
transform Y (s) is defined as

Y (s) ≡
∫ ∞

0
y(t)e−stdt. (6.1)

It will be useful to have a more compact notation for the integral in this
expression, and this will be done by writing the above formula as

Y (s) ≡ L(y). (6.2)

The Laplace variable s is analogous to the r used in the assumption y = ert

or x = aert. Consequently, it should not be a surprise to find out that
the variable s is, in general, complex-valued.

Improper integrals similar to the one appearing in (6.1) are covered in
the Techniques of Integration chapter in your standard calculus textbook.

Introduction to Differential Equations, M. H. Holmes, 2023
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As you should recall, they are defined using a limit, which in this case is

Y (s) = lim
T→∞

∫ T

0
y(t)e−stdt.

There is a slight complication here because s is complex-valued. For this
reason, use of the limit is postponed until Sections 6.5 and 6.6. Instead,
the first part of this chapter concentrates on the operational use of Laplace
transforms, with the goal of solving differential equations. After that,
applications to distributions and linear systems are considered.

The key tool in what follows is Table 6.1 (on page 158). For the
functions y(t) listed in the third column of that table, their corresponding
Laplace transform Y (s) is given in the second column.

Example 1: If y(t) = sin 2t, find Y (s).

Answer: Noting that y(t) is given in Property 10 of the table, with
a = 0 and ω = 2, then its Laplace transform is

Y (s) =
2

s2 + 4
.

This can also be written as

L(sin 2t) = 2

s2 + 4
. � (6.3)

6.1.1 Linearity Property

Because of the way it’s defined, the Laplace transform inherits the basic
properties of integration. Of particular importance is linearity. Namely,
if c1 and c2 are constants, then

L
(

c1y1 + c2y2
)

= c1L(y1) + c2L(y2). (6.4)

Another way to write this is, if y(t) = c1y1(t) + c2y2(t), then

Y (s) = c1Y1(s) + c2Y2(s), (6.5)

where Y1 and Y2 are the Laplace transforms for y1 and y2, respectively.
Because the Laplace transform has this property, it is said to be a linear
operator. The usefulness of the linearity of the Laplace transform is why
it is listed as Property 1 in Table 6.1.

Example 2: If y(t) = 3t− 2e−4t, find Y (s).

Answer: According to (6.4),

L
(

3t− 2e−4t
)

= 3L
(

t
)

− 2L
(

e−4t
)

.
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From Property 9, with n = 1 and a = 0, we have that L
(

t
)

=
1/s2. Similarly, from Property 8, with a = 4, L

(

e−4t
)

= 1/(s+ 4)2.
Therefore,

Y (s) =
3

s2
− 2

(s+ 4)2
. � (6.6)

It is possible to extend the usefulness of Table 6.1 by using some of the
properties of a Laplace transform. Exercise 2 considers one of particular
note.

Exercises

1. Find the Laplace transform of the following functions.

a) y = −e5t

b) y = 3 + 4t

c) y = 2t+ 7e−t

d) y = e−2t − 4te7t

e) y = 4t2

f) y = (t− 3)2

g) y = 4(t+ 1)2

h) y = −10 cos(8t)

i) y = 5 + 2e3t sin(4t)

j) y = 3et + 4 cos(2t)

k) y = cos(t) sin(2t)

l) y = sin2(5t)

2. If n is a positive integer, then L
(

tny
)

= (−1)n dn

dsnL
(

y
)

. So,

L
(

ty
)

= − d

ds
L
(

y
)

, and L
(

t2y
)

=
d2

ds2
L
(

y
)

. (6.7)

For example, since L(cos t) = s
s2+1

, then L(t cos t) = − d
ds

(

s/(s2+1)) =

(s2 − 1)/(s2 + 1)2. In a similar manner, find the Laplace transform of
the following functions:

a) t sin(3t) b) 6t cos(7t) c) t2 cos(t) d) te−2t sin(5t)

3. Assuming that a1, a2, · · · , an are given numbers, determine the Laplace
transform of the following:

a)

n
∑

k=0

akt
k b)

n
∑

k=0

ake
−kt c)

n
∑

k=1

ak sin(kπt)

6.2 Inverse Laplace Transform

As will be seen when we get around to solving differential equations, we
will use the Laplace transform to change the problem from solving for y
to solving for Y . It is actually fairly easy to do this. Once Y is known,
it is then necessary to determine y. This requires us to know how to find
the inverse Laplace transform, and this will be done using Table 6.1.
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Y (s) = L(y) y(t) = L−1(Y )

1. aY (s) + bV (s) ay(t) + bv(t)

2. W (s)Y (s)

∫ t

0
w(t− r)y(r)dr

3. sY (s) y′(t) + y(0)

4.
1
s Y (s)

∫ t

0
y(r)dr

5. e−asY (s) y(t− a)H(t− a) for a > 0

6. Y (s+ a) e−aty(t)

7.
1
s e

−as H(t− a) for a > 0

8.
1

s+a e−at

9.
n!

(s+a)n+1 tne−at for n = 1, 2, 3, . . .

10.
ω

(s+a)2+ω2 e−at sin(ωt)

11.
s+a

(s+a)2+ω2 e−at cos(ωt)

[

c+ (ac+ d)t
]

eat if s1 = s2 = a

12.
cs+d

(s−s1)(s−s2)
1

a−b

[

(ac+ d)eat − (bc+ d)ebt
]

if
s1 = a
s2 = b

eat
[

c cos(bt) + ac+d
b sin(bt)

]

if
s1 = a+ ib
s2 = a− ib

13. e−as δ(t− a) for a > 0

14.
1

(s+b)n e−as 1
(n−1)! (t−a)n−1e−b(t−a)H(t−a) for

a > 0,
n = 1, 2, 3, . . .

15.
1
s e

−asY (s) H(t− a)

∫ t−a

0
y(r)dr for a > 0

Table 6.1. Laplace and inverse Laplace transforms. The function H(x) is
defined in (6.25), and δ(t) is defined in Section 6.7.1.
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Using the L(y) notation, the inverse Laplace transform is written as
L−1(Y ). For example, from (6.3),

L(sin 2t) = 2

s2 + 4
,

so the inverse transform is

L−1
( 2

s2 + 4

)

= sin 2t .

Similarly, from (6.6),

L−1
( 3

s2
− 2

(s+ 4)2

)

= 3t− 2e−4t .

The above formula is an illustration that the linearity property applies to
the inverse transform. The formula is

L−1
(

c1Y1 + c2Y2
)

= c1L−1(Y1) + c2L−1(Y2).

This is used for many, if not most, of the examples in this chapter.

Example 1: If Y (s) =
3
s2 − 7s

s2+25 , find y(t).

Answer: Using the linearity property,

L−1(Y ) = L−1
( 3

s2
− 7s

s2 + 25

)

= 3L−1
( 1

s2

)

− 7L−1
( s

s2 + 25

)

.

From Property 9 in Table 6.1, with n = 1 and a = 0,

L−1
( 1

s2

)

= t.

Similarly, from Property 11, with a = 0, and ω = 5,

L−1
( s

s2 + 25

)

= cos(5t).

Therefore,

y(t) = L−1(Y ) = 3t− 7 cos(5t). �

Example 2: Find the inverse transform of

Y (s) =
2

(s2 + 1)(s2 + 4)
.
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Answer: To use a direct approach, we will break Y (s) down into
simpler components by using partial fractions. This is done as fol-
lows:

2

(s2 + 1)(s2 + 4)
=

As+B

s2 + 1
+

Cs+D

s2 + 4

=
(A+ C)s3 + (B +D)s2 + (4A+ C)s+ 4B +D

(s2 + 1)(s2 + 4)
.

Equating like powers of s in the numerators, we get that A+C = 0,
B +D = 0, 4A+ C = 0, and 4B +D = 2. Solving these equations
one finds that A = 0, B = 2/3, C = 0, and D = −2/3. So, using
Table 6.1,

L−1
( 2

(s2 + 1)(s2 + 4)

)

=
2

3
L−1

( 1

s2 + 1

)

− 2

3
L−1

( 1

s2 + 4

)

=
2

3
sin t− 1

3
sin 2t.

There is another way to derive this result, that does not use partial
fractions, and this is shown in Section 6.3. �

Exercises

1. Find the inverse Laplace transform of the following functions.

a) Y =
2

s2+9

b) Y =
3

(s+4)2 +
5

s−1

c) Y =
1

s2+3s−4

d) Y =
s+1

s2+2s+5

e) Y =
2s−3
s2−4

f) Y =
2s−3

s2+2s+10

g) Y =
7s

(s2+9)(s2+16)

h) Y =
15s

(s2−1)(s2−16)

i) Y =
2

s2+4 − 3
s2+9

j) Y =
1

(s−1)2 +
2

(s+2)3 +
6

(s−3)4

k) Y =
2s2

s4−1

l) Y =
7s

s2+1 − 3
s2

m)Y =
2

s(s−1)(s−2)

n) Y =
12

s3−8

2. Find the inverse Laplace transform of the following functions using
Property 4 of Table 6.1.

a) Y =
9

s(s2+9) b) Y =
16

s(s+4)2 c) Y =
2

s(s−1)(s−2)
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6.3 Properties of the Laplace Transform

What follows is the derivation of Properties 2 and 3 in Table 6.1. They
are important as they will be needed when solving differential equations.

6.3.1 Transformation of Derivatives

One of the hallmarks of the Laplace transform, as with most integral
transforms, is that it converts differentiation into multiplication. To ex-
plain what this means, using integration by parts (with u = e−st and
dv = y′(t)dt), we have the following:

L(y′(t)) =
∫ ∞

0
y′(t)e−stdt

= ye−st
∣

∣

∣

∞

t=0
+ s

∫ ∞

0
ye−stdt

= sL(y)− y(0). (6.8)

It has been assumed that limt→∞ y(t)e−st = 0 (this limit is discussed
in more depth in Section 6.6). It has also been assumed that y′(t) is
piecewise continuous, and y(t) is continuous, for t ≥ 0.

The above formula can be used to find the transform of higher deriva-
tives. As an example, for the second derivative, since y′′ = (y′)′, we have
that

L(y′′) = sL(y′)− y′(0)

= s
[

sL(y)− y(0)
]

− y′(0)

= s2L(y)− y′(0)− sy(0). (6.9)

The new requirements here are that limt→∞ y′(t)e−st = 0, y′′(t) is piece-
wise continuous, and y′(t) is continuous, for t ≥ 0.

There are similar formulas for the Laplace transform of the higher
derivatives, but they are not needed in this text.

Example 1: Find the Laplace transform of y′ + 3y, where y(0) = 2.

Answer: Using the linearity of the transform, and the derivative
formula (6.8),

L(y′ + 3y) = L(y′) + 3L(y)
= sL(y)− y(0) + 3L(y)
= (s+ 3)Y (s)− 2. �
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6.3.2 Convolution Theorem

A common integral that arises when solving differential equations is a
convolution integral of the form

y(t) =

∫ t

0
w(t− τ)f(τ)dτ. (6.10)

Taking the Laplace transform of this equation we obtain

L(y) =
∫ ∞

0

∫ t

0
w(t− τ)f(τ)e−stdτdt

=

∫ ∞

0

∫ ∞

τ
w(t− τ)f(τ)e−stdtdτ.

In the last line above, interchanging the order of integration used the fact
that 0 < t < ∞, 0 < τ < t is equivalent to 0 < τ < ∞, τ < t < ∞. Now,
making the change of variables t = r+ τ in the inner integral, we get that

L(y) =
∫ ∞

0

∫ ∞

0
w(r)f(τ)e−s(r+τ)drdτ

=

∫ ∞

0

(

f(τ)e−sτ

∫ ∞

0
w(r)e−srdr

)

dτ

= W (s)F (s).

Using the inverse transform this can be written as

L−1(W (s)F (s)) =

∫ t

0
w(t− τ)f(τ)dτ, (6.11)

where w(t) = L−1(W ) and f(t) = L−1(F ). This is Property 2, in Table
6.1, and it is known as the convolution theorem.

Example 2: Use the convolution theorem to find the inverse transform
of

2

(s2 + 1)(s2 + 4)
.

Answer: Taking W (s) = 2/(s2 + 1) and F (s) = 1/(s2 + 4), then
w(t) = 2 sin t and f(t) = 1

2 sin(2t). So, from (6.11) and the identity
2 sin θ sinφ = cos(θ − φ)− cos(θ + φ),

L−1
( 2

(s2 + 1)(s2 + 4)

)

=

∫ t

0
sin(t− τ) sin(2τ)dτ

=
1

2

∫ t

0

(

cos(t− 3τ)− cos(t+ τ)
)

dτ

=
2

3
sin(t)− 1

3
sin(2t) . �
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Exercises

1. Find the Laplace transform in terms of Y (s).

a) L
(

y′ − 4y
)

, where y(0) = 1

b) L
(

2y′ + 7y
)

, where y(0) = −2

c) L
(

y′′ + 5y
)

, where y(0) = 1 and y′(0) = −1

d) L
(

y′′ + 3y′ − 2y
)

, where y(0) = 1 and y′(0) = −3

e) L
(

4y′′ + 2y′
)

, where y(0) = −1 and y′(0) = 1

2. Use the convolution theorem, as given in (6.11), to find the inverse
transform.

a)
1

(s−1)(s2+1) , taking W (s) =
1

s−1 and F (s) =
1

s2+1

b)
s

(s2+1)2 , taking W (s) =
s

s2+1 and F (s) =
1

s2+1

c)
5

(s+1)(s2+4)

d)
1

(s2+1)(s2−1)

e)
1

s3(s2+1)

f)
1

s(s2+1)

6.4 Solving Differential Equations

The examples to follow illustrate how to use the Laplace transform to
solve a linear initial value problem. As you will see, it is fairly easy to
transform the equation and then solve for Y (s). Most of the work is done
trying to determine the inverse transform to find y(t).

Example 1: Solve y′ + 3y = e2t, where y(0) = 2.

Answer: The first step is to take the Laplace transform of the dif-
ferential equation, which gives

L(y′ + 3y) = L(e2t).

Using the linearity of the transform, and the derivative formula
(6.8),

L(y′ + 3y) = L(y′) + 3L(y)
= sL(y)− y(0) + 3L(y) (6.12)

= (s+ 3)Y (s)− 2.

Also, using Property 8 from Table 6.1,

L(e2t) = 1

s− 2
.
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The transformed problem is therefore (s+3)Y − 2 = 1/(s− 2), and
from this we get that

Y =
1

s+ 3

(

2 +
1

s− 2

)

.

Consequently, using Table 6.1 (Properties 8 and 12),

y = L−1(Y ) = 2L−1
( 1

s+ 3

)

+ L−1
( 1

(s+ 3)(s− 2)

)

= 2e−3t +
1

5

(

e2t − e−3t
)

=
9

5
e−3t +

1

5
e2t. �

Example 2: Solve y′′ + y′ − 2y = − sin t, where y(0) = 1 and y′(0) = 1.

Answer: Taking the Laplace transform of the differential equation

L(y′′ + y′ − 2y) = L(− sin t).

Using the linearity of the transform, and the derivative formulas
(6.8) and (6.9),

L(y′′ + y′ − 2y) = L(y′′) + L(y′)− 2L(y)
= s2Y − y′(0)− sy(0) + sY − y(0)− 2Y (6.13)

= (s2 + s− 2)Y − s− 2.

Since, using Property 10 in Table 6.1, L(sin t) = 1/(s2 + 1), then
the transformed problem is

(s2 + s− 2)Y − s− 2 = − 1

s2 + 1
.

Solving for Y gives us

Y =
1

s− 1
− 1

(s2 + 1)(s2 + s− 2)
. (6.14)

Taking the inverse transform, and using linearity,

y = L−1
( 1

s− 1

)

− L−1
( 1

(s2 + 1)(s2 + s− 2)

)

.

Using Table 6.1, Property 8,

L−1
( 1

s− 1

)

= et.
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For the other inverse transform, we will use partial fractions. The
assumption is that

1

(s2 + 1)(s2 + s− 2)
=

As+B

s2 + 1
+

Cs+D

s2 + s− 2

=
(A+ C)s3 + (A+B +D)s2 + (−2A+B + C)s− 2B +D

(s2 + 1)(s2 + s− 2)
.

Equating like powers of s in the numerators, we get that A+C = 0,
A + B + D = 0, −2A + B + C = 0, and −2B + D = 1. Solving
these equations one finds that A = −1/10, B = −3/10, C = 1/10,
and D = −2/5. So, using Table 6.1, Properties 10 (for A), 9 (for
B), and 11 (for C and D),

L−1
( 1

(s2 + 1)(s2 + s− 2)

)

= L−1
(As+B

s2 + 1

)

+ L−1
( Cs+D

s2 + s− 2

)

= A cos t+B sin t+
1

2

[

(C +D)et + (2C −D)e−2t
]

. (6.15)

Therefore, the solution is

y =
1

10
cos t+

3

10
sin t+

1

15
e−2t +

5

6
et. �

Three comments need to be made about the above examples. First,
both can be solved much easier using the method of undetermined coef-
ficients. The Laplace transform was used to illustrate how it can be used
to solve such problems. Second, the question invariability comes up as to
what is the easiest way to determine the inverse transform. For example,
you can use the convolution theorem or partial fractions to obtain (6.15).
There is often no clear answer to which one to use, and it often depends
on what you are the most comfortable with and what is applicable. As it
turns out, except perhaps when taking a course in differential equations,
very few people work out even slightly complicated inverse transforms by
hand. Instead, they either buy a book of tables, such as Oberhettinger
and Badii [1973], or, even more likely, they use a symbolic computing
system like Maple or Mathematica.

The third comment has to do with whether the solution of the IVP
satisfies the conditions required to take the Laplace transform (the con-
ditions are discussed in Section 6.6). If there is any concern about this, it
is always possible to simply check that the derived solution satisfies the
IVP.

6.4.1 The Transfer Function

In engineering, when solving a linear differential equation, it is common to
introduce what is known as the transfer function W (s). To explain what
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this is, for the mixing, vertical motion, and cooling problems in Section
2.3, the resulting differential equation can be written as

y′ + ay = f(t), (6.16)

where f(t) is an external input function. Similarly, the oscillator problems
in Section 3.10 produce equations of the form

my′′ + cy′ + ky = f(t), (6.17)

where f(t) is an external forcing function. If you take the Laplace trans-
form of (6.16) or (6.17), and assume homogeneous initial conditions, you
end up with an expression of the form

Y (s) = W (s)F (s), (6.18)

where F (s) = L(f). In this sense, W (s) is the transfer function from the
input F (s) to the output Y (s).

Example 3: Find the transfer function for y′ + 3y = f(t).

Answer: Because the transfer function requires a homogeneous ini-
tial condition, we take y(0) = 0. With this, after taking the Laplace
transform of the differential equation, we get (s + 3)Y = F . This
means that Y = 1

s+3F , and so the transfer function is W (s) =
1/(s+ 3). �

Example 4: Find the transfer function for y′′ + y′ − 2y = ln(1 + t2).

Answer: The required homogeneous initial conditions are y(0) = 0
and y′(0) = 0. With this, after taking the Laplace transform of the
differential equation, we get (s2+s−2)Y = F , where F = L(ln(1+
t2)). Consequently, the transfer function is W (s) = 1/(s2 + s− 2).
�

Once you know the transfer function, then a particular solution of the
differential equation can be written down using the convolution theorem.
Namely, using (6.11) a particular solution of (6.16), or of (6.17), is

yp(t) =

∫ t

0
w(t− τ)f(τ)dτ, (6.19)

where w(t) = L−1(W ). It is important to note that yp(t) satisfies the
initial conditions used to determine W (s). So, for Example 3, yp(0) = 0,
while for Example 4, yp(0) = 0 and y′p(0) = 0.
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Solving an IVP

The above solution is useful as it can be used to solve the IVP when
the initial conditions are not zero. This is because the solution can be
written as y(t) = yp(t) + yh(t), where yp(t) is given in (6.19) and yh(t)
is the solution of the associated homogeneous differential equation that
satisfies the initial conditions. This is similar to the approach used in
Section 3.9.1. Moreover, it is not necessary to use the Laplace transform
to find yh(t). An example of solving an IVP in this way is given next.

Example 5: Solve y′′ − 2y′ − 3y =
√
t, where y(0) = 1 and y′(0) = −1.

Step 1: Find W (s). To find the transfer function for y′′−2y′−3y =
f(t), the homogeneous initial conditions to use are y(0) = 0 and
y′(0) = 0. Taking the Laplace transform of the differential equation
one finds that W (s) = 1/(s2 − 2s− 3).

Step 2: Find yp. Using Property 12 from Table 6.1, w(t) =
L−1(W ) = (e3t − e−t)/4. So, from (6.19),

yp(t) =
1

4

∫ t

0

[

e3(t−τ) − e−t+τ
]√

τdτ.

The integral can not be written in terms of elementary functions,
and so the answer is left in integral form. Also, based on the com-
ment following (6.19), in this problem yp(0) = 0 and y′p(0) = 0. The
significance of this is that we are going to write the solution of the
IVP as y(t) = yp(t) + yh(t). So, y(0) = yp(0) + yh(0) = yh(0) and
y′(0) = y′p(0) + y′h(0) = y′h(0). This means to satisfy y(0) = 1 we
require yh(0) = 1, and similarly we require y′h(0) = −1.

Step 3: Find yh. The IVP to solve is y′′ − 2y′ − 3y = 0, where
y(0) = 1 and y′(0) = −1. Assuming that y = ert, and proceeding
as in Section 3.5, one ends up finding that yh(t) = e−t.

Step 4: The solution is y = yp + yh. In other words,

y(t) = e−t +
1

4

∫ t

0

[

e3(t−τ) − e−t+τ
]√

τdτ. �

6.4.2 Comments and Limitations on Using the Laplace Transform

It is useful to know some of the limitations on using the Laplace transform
to solve a differential equation. First, the differential equation must be
linear. As the examples illustrate, the Laplace transform can be used
irrespective of the order of the equation. It can also be used to solve partial
differential equations, delay equations, and integral equations. However,
in all cases, the equations are linear.
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A second limitation is that the differential equation should have con-
stant coefficients. For example, the Laplace transform will not be suc-
cessful when trying to solve y′ + ety = 0 or y′′ + (1 + t)2y′ + 5y = 0.
Occasionally you will come across an equation with non-constant coeffi-
cients that can be solved using a Laplace transform, and an example is
Airy’s equation y′′+ ty = 0. You might try finding the Laplace transform
of this equation to see why the coefficients are “just right” so that the
method works.

Exercises

1. Use the Laplace transform to find the solution of the IVP.

a) 2y′ + y = 1, y(0) = 2

b) 3y′ = −y + e−t, y(0) = 1
2

c) y′′ + y′ − 2y = 0, y(0) = 0, y′(0) = −1

d) y′′ − 6y′ + 9y = 0, y(0) = 0, y′(0) = 2

e) 5y′′ − y′ = 0, y(0) = −1, y′(0) = −1

f) 4y′′ + y = 0, y(0) = −1, y′(0) = −1

g) y′′ − 2y′ + 2y = 0, y(0) = −1, y′(0) = −1

h) y′′ + 2y′ + 5y = 0, y(0) = 0, y′(0) = −6

2. Use the Laplace transform to find the solution of the IVP.

a) y′′ + y′ − 2y = 12t, y(0) = 0, y′(0) = 0

b) y′′ + 4y = 8t2, y(0) = 0, y′(0) = 0

c) y′′ − y′ = 2 sin t, y(0) = 0, y′(0) = 0

d) y′′ + 3y′ = 3t+ 1, y(0) = 0, y′(0) = 0

e) y′′ − 2y′ + 5y = 5− 4e−t, y(0) = 0, y′(0) = 0

3. For the following, find the transfer function W (s) and then write down
the resulting particular solution. You do not need to evaluate the
integral.

a) y′ + 3y = ln(1 + 3t)

b) y′′ + 9y =
√
1 + t

c) 2y′′ + 3y′ − 2y = 1/(1 + t)

d) y′′ + 2y′ + 5y = sin(1 + t2)

4. Proceeding as in Example 5, find the solution of the following IVPs.

a) y′ + 3y = ln(1 + 3t), where y(0) = 1

b) y′′ + 9y =
√
1 + t, where y(0) = 1 and y′(0) = 0

c) 2y′′ + 3y′ − 2y = 1/(1 + t), where y(0) = 2 and y′(0) = −3

d) y′′ + 2y′ + 5y = sin(1 + t2), where y(0) = 0 and y′(0) = 2
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6.5 Jump Discontinuities

It is not unusual to have functions with jump discontinuities. What a
jump discontinuity means is that y(t) is not continuous at the point,
but the limits of y(t) from the left and right are defined and finite (the
two limits do not need to be equal). A simple example, with a jump
discontinuity at t = 2, is

y(t) =

{

3 if 0 ≤ t ≤ 2,

−1 if 2 < t.
(6.20)

It is informative to determine the Laplace transform of this function using
the definition. The steps involved are:

Y (s) =

∫ ∞

0
y(t)e−stdt

=

∫ 2

0
y(t)e−stdt+

∫ ∞

2
y(t)e−stdt

=

∫ 2

0
3e−stdt−

∫ ∞

2
e−stdt

= −4

s
e−2s +

3

s
. (6.21)

The last step requires the assumption that Re(s) > 0.
One might expect that the inverse transform of (6.21) is (6.20). This

is true everywhere but at the point of discontinuity. At a point t = a
where the original function y(t) has a jump discontinuity, L−1(Y ) equals
the average in the jump in y(t) at that point. The formula is, for a > 0,

L−1(Y )
∣

∣

∣

t=a
=

1

2

[

y(a+) + y(a−)
]

. (6.22)

To illustrate, for (6.20), at t = 2 the average in the jump is equal to
1
2

[

y(2+) + y(2−)
]

= 1
2(3− 1) = 1. Therefore, the inverse transform is

L−1(Y ) =











3 if 0 ≤ t < 2,

1 if t = 2,

−1 if 2 < t.

(6.23)

This can be written in a more compact form as

L−1(Y ) = 3− 4H(t− 2), (6.24)

where H(x) is the Heaviside step function and is defined as

H(x) ≡











0 if x < 0,
1
2 if x = 0,

1 if 0 < x.

(6.25)
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Figure 6.1. Heaviside step function H(x) as defined in (6.25).

The function H(x) is shown in Figure 6.1. Note that this has built into
its definition the value at a jump that is needed for the inverse Laplace
transform.

As the above example illustrates, if you only know the Laplace trans-
form of y(t), it is not possible to determine its value at the jump. For
example, in (6.20) if you change y(t) so y(2) = 0, or y(2) = 10, the Laplace
transform is still given in (6.21). The function in (6.23) is the answer that
comes from the formula for the inverse Laplace transform given in (6.30).
This situation will arise in this chapter any time the function y(t) has a
jump discontinuity.

Example: If Y =
2
s +

5
se

−3s−6
se

−4s, find and then sketch y.

Answer: Using the linearity property,

L−1(Y ) = L−1
(2

s
+

5

s
e−3s − 6

s
e−4s

)

= 2L−1
(1

s

)

+ 5L−1
(1

s
e−3s

)

− 6L−1
(1

s
e−4s

)

.

From Property 8 in Table 6.1, with a = 0,

L−1
(1

s

)

= 1.

From Property 7, with a = 3 and a = 4,

L−1
(1

s
e−3s

)

= H(t− 3), and L−1
(1

s
e−4s

)

= H(t− 4).

Therefore,
y(t) = 2 + 5H(t− 3)− 6H(t− 4). (6.26)

So, the solution starts out at y = 2, it has a jump of 5 at t = 3, so
y = 7, and then it has another jump of −6 at t = 4, so y = 1. At
the jumps, y(3) = 1

2(2 + 7) = 9
2 , and y(4) = 1

2(7 + 1) = 4. The plot
of this function is given in Figure 6.2. �
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Figure 6.2. The function y(t) given in (6.26).

Exercises

1. Sketch the function for 0 ≤ t, and then find its Laplace transform.

a) y = H(t− 6)

b) y = H(t− 1)−H(t− 3)

c) y = 3H(t− 2)− 4H(t− 5)

d) y = 3− 2H(t− 1)

e) y = t− (t− 1)H(t− 1)

f) y = sin(t− 3)H(t− 3)

g) y = 1− 2H(t− 1) + 2H(t− 2)−H(t− 3)

h) y = t− 2(t− 1)H(t− 1) + 2(t− 3)H(t− 3)− (t− 4)H(t− 4)

2. Find the inverse Laplace transform of the following functions.

a) Y =
s+1

(s+1)2+9e
−3s

b) Y =
(

1
s2 − 1

s3

)

e−2s

c) Y =
1
s

(

e−s − e−2s + e−3s
)

d) Y =
2
s − 1

s2 +
4
s3 − 7

s4

e) Y =
5s+1
s2 e−5s

f) Y =
5s+1
s2+1e

−6s

3. Suppose that y(t) is periodic with period T > 0. So, y(t + T ) = y(t)
for all t ≥ 0.

a) Show that
∫ ∞

T
y(t)e−stdt = e−sTY (s).

b) Writing
∫∞
0 y(t)e−stdt =

∫ T
0 y(t)e−stdt+

∫∞
T y(t)e−stdt, use the re-

sult from part (a) to show that

L(y) = 1

1− e−sT

∫ T

0
y(t)e−stdt.

4. The following functions are periodic with period T . Sketch the function
for 0 ≤ t ≤ 3T , and then use the result of Exercise 3(b) to find the
Laplace transform. Also, provide an explanation for where the name
of the wave comes from.

a) Square wave: T = 2, and y(t) = H(t)−H(t− 1), for 0 ≤ t < 2.
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b) Sawtooth wave: T = 1, and y(t) = t, for 0 ≤ t < 1.

c) Triangle wave: T = 2, and y(t) = tH(t) − 2(t − 1)H(t − 1), for
0 ≤ t < 2.

d) Bang-bang wave: T = 2, and y(t) = H(t)−2H(t−1), for 0 ≤ t < 2.

5. The floor function y(t) = ⌊t⌋ is the greatest integer less than or equal
to t. So, ⌊5.3⌋ = 5 and ⌊7.0⌋ = 7.

a) Writing ⌊t⌋ = t− g(t), what are: g(0), g(0.1), g(0.8), and g(1)?

b) Sketch g(t) for 0 ≤ t < 5. Use this to explain why g(t) is periodic.

c) Use the result from Exercise 3(b) to find L(⌊t⌋).
6. It is sometimes useful to use a power series to determine an inverse

transform. For example, the geometric series is (1−z)−1 = 1+z+z2+
z3+· · · . Taking z = e−s, you get (1−e−s)−1 = 1+e−s+e−2s+e−3s+· · · .
In this problem you are to use a Maclaurin series to find the inverse
Laplace transform.

a) Y =
1

s(1−e−s) , use the geometric series for (1 − z)−1. Also, sketch

y(t) for 0 ≤ t < 4.

b) Y =
1

s(1+e−2s) , use the geometric series for (1− z)−1. Also, sketch

y(t) for 0 ≤ t < 8.

c) Y =
1

s
√
1+e−s , use the series for (1 + z)−1/2. Also, sketch y(t) for

0 ≤ t < 4.

d) Y =
1
s

√

1 + (1/s), use the series for
√
1 + z.

6.6 Mathematical Foundations

Much of the material in this section concerns the mathematical require-
ments needed to carry out the integration in (6.1).

For the improper integral in (6.1) to exist, a condition must be im-
posed on the complex variable s. To explain, if y(t) = e3t, then using the
definition of an improper integral and (6.1)

Y (s) = lim
T→∞

∫ T

0
e3te−stdt = lim

T→∞

∫ T

0
e(3−s)tdt

= lim
T→∞

[

1

3− s
e(3−s)T − 1

3− s

]

. (6.27)

Clearly, we need s 6= 3. As for the limit, it is useful to know that, given
a nonzero complex number z,

lim
T→∞

ezT =

{

0 if Re(z) < 0,

does not exist if Re(z) ≥ 0.
(6.28)
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The proof of this comes directly from Euler’s formula, as expressed in
(3.14). For (6.27), z = 3− s and this means that for the limit to exist we
need Re(3− s) < 0, or equivalently, we need Re(s) > 3. In this case,

Y (s) =
1

s− 3
.

The requirement that Re(s) > 3 gives rise to what is known as the half-
plane of convergence for the Laplace transform.

Example: If y(t) = sin 2t, find Y (s).

Answer: Using (6.1), and integration by parts (with u = e−st and
dv = sin 2t dt),

Y (s) =

∫ ∞

0
sin(2t)e−stdt

= −1

2
cos(2t)e−st

∣

∣

∣

∞

t=0
− s

2

∫ ∞

0
cos(2t)e−stdt

=
1

2
− s

2

∫ ∞

0
cos(2t)e−stdt.

To guarantee that cos(2t)e−st has a finite limit as t → ∞, it has
been assumed that Re(s) > 0. Using integration by parts again,
you find that

Y (s) =
1

2
− s2

4
Y (s).

Solving for Y , we get that Y = 2/(s2+4). Using the L(y) notation,
we have that

L(sin 2t) = 2

s2 + 4
.

The half plane of convergence in this case is Re(s) > 0. �

The second mathematical requirement concerns the smoothness of
y(t). For the problems considered in this textbook, it is enough to as-
sume that y(t) is continuous for 0 ≤ t < ∞, except possibly for a few
jump discontinuities. To state that y(t) has a jump discontinuity at t = a
means that y(t) is not continuous at the point, but the limits of y(t) from
the left, y(a−), and from the right, y(a+), are defined and finite. This
is the requirement when a > 0. To have a jump discontinuity at t = 0
means y(0+) is defined and finite, but it is not equal to y(0). What we
will assume is that over any interval 0 ≤ t ≤ T , y(t) is continuous except
for possibly a finite number of jump discontinuities. In this case, y(t) is
said to be piecewise continuous for t ≥ 0. Several examples of piecewise
continuous functions can be found in Section 6.5.
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The final requirement on y(t) is to guarantee that the improper inte-
gral in (6.1) converges. This will happen if there is a real number α so
that

lim
t→∞

y(t)eαt = 0. (6.29)

If this holds, then y(t) is said to have exponential order. As examples, any
polynomial function in t, any linear combination of sin(ωt) and cos(ωt),
and any linear combination of terms of the form eωt have exponential
order. On the other hand, et

2

and et
3

do not have exponential order.
It is not hard to prove the following theorem for the convergence of

the improper integral using what is called the limit comparison test in
calculus.

Laplace Transform Convergence Theorem. Assume that y(t) is piece-
wise continuous for 0 ≤ t < ∞, and (6.29) holds. With this, the Laplace
transform L(y) exists for Re(s) > α and it converges absolutely.

It should be pointed out that there are functions that are not piecewise
continuous but have a Laplace transform, and an example is given in
Exercise 3.

Given that the mathematical underpinnings of the Laplace transform
are being discussed, it is worth stating the formula for the inverse trans-
form. It is in the form of a line integral in the complex plane, and it
is

L−1(Y ) ≡ 1

2πi

∫ c+i∞

c−i∞
Y (s)estds, (6.30)

where the endpoints of the integral are associated with the contour shown
in Figure 6.3. To find an inverse transform that is not determinable from a
table, one generally is faced with evaluating this integral. Needless to say,
these can be interesting, and often challenging, mathematical problems.

The integral in (6.30) is where the jump formula (6.22) comes from.
It also leads to the statement that L−1(Y )

∣

∣

t=0
= 1

2y(0
+). This is not

Figure 6.3. The straight line contour, shown in red, used in the line integral
(6.30). The half plane of convergence for Y (s) is assumed to be Re(s) > α.
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the value used when solving differential equations. The reason is that the
solution must be continuous at t = 0, and so we want the inverse transform
that satisfies L−1(Y )

∣

∣

t=0
= y(0+). Using this value is permitted because

the value of a function at a single point does not affect the value of its
integral.

Many of the formulas for the inverse transform have been stated with-
out proof. If you are interested in learning about the more theoretical
aspects of the subject, you might want to consult Davies [2002] or Schiff
[1999].

Exercises

1. By carrying out the integration in (6.1), find the Laplace transform
and its half plane of convergence of the following functions:

a) y = −e5t

b) y = 4t2
c) y = 3 cos(4t)

d) y = te−2t

2. Sketch the function for 0 ≤ t, then find its Laplace transform and its
half plane of convergence.

a) y = (t− 1)H(t− 1)

b) y =

{

2t if 0 ≤ t ≤ 1
2 if 1 < t

c) y = t
(

H(t− 1)−H(t− 3)
)

d) y = [H(t− 2)]2

e) y =

{

sin t if 0 ≤ t ≤ 4π
0 if 4π < t

f) y = 4H(3− t)

3. a) Let y(t) = t−1/2 for t > 0. Explain why, no matter what (finite)
value you assign to y(0), the resulting function is not piecewise
continuous for 0 ≤ t < ∞. Does it have exponential order?

b) It is possible to show that
∫∞
0 e−x2

dx = 1
2

√
π. Use this to show

that L(t−1/2) =
√

π/s, for Re(s) > 0.

c) Show that L(t1/2) =
√

π/(2s3/2), for Re(s) > 0.

4. a) Prove Property 6 in Table 6.1. Specifically, show that L(e−aty) =
Y (s+ a).

b) Show that if a > 0, then L(y(at)) = Y (s/a)/a.

5. Assume that y(t) has exponential order and it is continuous except
for a jump discontinuity at t = a, where a > 0. Also, assume y′(t) is
piecewise continuous. Show that

L(y′) = sY (s)− y(0)− e−as
[

y(a+)− y(a−)
]

.
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6.7 Solving Equations with Non-Smooth Forcing

The next example considers how to solve a differential equation with a
discontinuous forcing function. This is a situation that is not uncommon
in applications.

Example: Solve y′′ + 3y′ + 2y = f(t), where y(0) = 1, y′(0) = −1, and

f(t) =

{

2 if 0 ≤ t ≤ 3,

0 if 3 < t.

Answer: Taking the Laplace transform of the differential equation,

L(y′′ + 3y′ + 2y) = L(f). (6.31)

Using the linearity of the transform, and the derivative formulas
(6.8) and (6.9),

L(y′′ + 3y′ + 2y) = L(y′′) + 3L(y′) + 2L(y)
= s2Y − y′(0)− sy(0) + 3

(

sY − y(0)
)

+ 2Y

= (s2 + 3s+ 2)Y − s− 2.

Also, L(f) =
∫ 3
0 2e−stdt = 2

(

1−e−3s
)

/s. Consequently, from (6.31),
we have that

(s+ 1)(s+ 2)Y = s+ 2 +
2

s

(

1− e−3s
)

,

which means that

Y =
1

s+ 1
+

2

s(s+ 2)(s+ 1)

(

1− e−3s
)

. (6.32)

To determine the inverse transform, using Property 8 from Table
6.1, L−1(1/(s+ 1)) = e−t. Also, from Property 12,

L−1
( 1

(s+ 2)(s+ 1)

)

= e−t − e−2t.

Consequently, using Properties 4 and 15 (respectively),

L−1
( 2

s(s+ 2)(s+ 1)

(

1− e−3s
)

)

= L−1
( 2

s(s+ 2)(s+ 1)

)

− L−1
( 2

s(s+ 2)(s+ 1)
e−3s

)

= 2

∫ t

0
(e−r − e−2r)dr + 2H(t− 3)

∫ t−3

0
(e−r − e−2r)dr)

= −2e−t + e−2t + 1 +H(t− 3)(1− 2e3−t + e−2t+6).
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The resulting solution is therefore

y = 1 + e−2t − e−t −
(

1 + e−2(t−3) − 2e−(t−3)
)

H(t− 3). �

A comment needs to be made about the mathematical correctness
of the solution we just derived. Namely, y(t) and y′(t) are defined and
continuous for 0 ≤ t < ∞, but y′′(t) is not continuous at t = 3 (it is,
however, continuous everywhere else). This throws into question whether
the differential equation y′′ + 3y′ + 2y = f(t) is defined at t = 3. The
way this needs to be interpreted is that the differential equation holds for
0 < t < 3, and then again for 3 < t < ∞. The discontinuity in the forcing
function effectively resets the problem at t = 3. One approach to dealing
with this is to break the problem into two IVPs, one for 0 < t < 3, and
another for 3 < t < ∞. By using the Laplace transform we have been
able to avoid having to do this. This is possible because the continuity
requirements to use (6.9) are satisfied for this problem.

6.7.1 Impulse Forcing

The idea underlying impulse forcing is that the force is fairly intense but it
occurs over a short time interval. Writing the interval as t0−ε < t < t0+ε,
we are considering the situation of when the forcing has the form

f(t) =











0 if 0 ≤ t ≤ t0 − ε,

d(t) if t0 − ε < t < t0 + ε,

0 if t0 + ε ≤ t.

(6.33)

With this, the solution of y′ = f , where y(0) = 0, is

y =











0 if 0 ≤ t ≤ t0 − ε,
∫ t
t0−ε d(r)dr if t0 − ε < t < t0 + ε,

D if t0 + ε ≤ t,

(6.34)

where

D =

∫ t0+ε

t0−ε
d(r)dr.

We are assuming that the forcing interval is very short, but D is large
enough to be meaningful. To put this in physical terms, it is as if we are
hitting the system with a hammer.

There is a mathematical idealization for a concentrated force that
makes solving the problem easier than trying to use a formulation as in
(6.33). This is done by introducing what is known as the delta function,
which is given next.
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Delta Function. The delta function δ(t) is defined to have the following
properties:

1. Given any t0,
δ(t− t0) = 0, when t 6= t0. (6.35)

2. Given any continuous function g(t), and assuming a < t0 < b:

∫ b

a
δ(t− t0)g(t)dt = g(t0), (6.36)

and

∫ t0

a
δ(t− t0)g(t)dt =

∫ b

t0

δ(t− t0)g(t)dt =
1

2
g(t0) . (6.37)

As an example of how the delta function is used, instead of using
(6.33), the forcing is assumed to have the form f(t) = Dδ(t − t0). This
means we are assuming that there is a delta forcing at t0 with strength D.
With this, the differential equation becomes

y′ = Dδ(t− t0), (6.38)

where y(0) = 0. It is worth pointing out here that, from (6.36), δ(t) has
the physical dimension of 1/time. So, D has the same physical dimensions
as y. In any case, the solution of this IVP is

y =

∫ t

0
Dδ(r − t0)dr.

To evaluate this, first note that if 0 ≤ t < t0, then from (6.35), y(t) = 0.
If t = t0, then from (6.37), y(t0) = D/2. Lastly, when t0 < t, then from
(6.36), y(t) = D. Consequently, the solution is

y =











0 if 0 ≤ t < t0,
1
2D if t = t0,

D if t0 < t.

(6.39)

Except for the very small time interval t0− ε < t < t0+ ε, this solution is
the same as the one in (6.34). Moreover, the above solution is consistent
with what is obtained using (6.30).

The rationale for the stated properties of the delta function can be
explained by considering the case of when d is constant. The assumption is
that the total force D, what is known as the impulse, remains fixed as the
time interval decreases (see Figure 6.4). This requires that d = D/(2ε).
In other words, the magnitude of the force increases as the time interval



6.7. Solving Equations with Non-Smooth Forcing 179

Figure 6.4. A fixed impulse, applied over the time interval t0−ε < t < t0+ε,
used to explain the stated properties of the delta function.

decreases. Consequently, in the limit, the forcing is zero if t 6= t0 and it is
infinite at t = t0. This explains (6.35), and it also explains why you will
see the statement that δ(0) = ∞. This limit can also be used to explain
(6.36). Finally, it is being assumed that the impulse forcing is symmetric
about t0, as it is in the case of when d is constant, and this gives us (6.37).

Example 1: If f(t) = 5δ(t− 1)− 9δ(t− 2) + δ(t− 3), find L(f).
Answer: Using linearity and Property 13 in Table 6.1,

L(f) = 5L
(

δ(t− 1)
)

− 9L
(

δ(t− 2)
)

+ L
(

δ(t− 3)
)

= 5e−s − 9e−2s + e−3s. �

Example 2: Solve y′′ + y = 2δ(t− 15), where y(0) = 0 and y′(0) = 0.

Answer: Taking the Laplace transform of the differential equation
gives L(y′′+y) = L(2δ(t−15)). Using the linearity of the transform,
and the derivative formula (6.9), we get that

s2Y − sy(0)− y′(0) + Y = 2e−15s .

From the given initial conditions, and solving for Y ,

Y =
2

s2 + 1
e−15s .

Since

L−1
( 2

s2 + 1

)

= 2 sin t,

then using Property 5, from Table 6.1,

y = 2 sin(t− 15)H(t− 15). �

Example 3: Evaluate
∫ t
−∞ δ(r)dr, for −∞ < t < ∞.
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Answer: This can be answered by considering three cases. First, if
t < 0, then δ(r) = 0 for −∞ < r ≤ t, and we conclude the integral
is zero. If t > 0, then from (6.36) with g(t) = 1, the integral is equal
to one. Finally, when t = 0, from (6.37) we get the value of 1/2.
Therefore, we have that

H(t) =

∫ t

−∞
δ(r)dr.

In this sense we can write that

H ′(t) = δ(t). �

Example 4: For the mixing problem in Example 1 on page 21, suppose
that after 2 minutes that 5 lbs of salt are dropped into the tank.
What is the resulting IVP for Q?

Answer: To answer this, consider the simpler situation of when
there is no inflow or outflow, and the tank contains salt water with
Q0 lbs of salt. Also, suppose that at t = t0 an additional D lbs of
salt are dropped in. It’s assumed that the salt dissolves instantly.
In this case, the total amount of salt in the tank can be written
as Q(t) = Q0 + DH(t − t0). From this it follows that Q′(t) =
Dδ(t − t0). Consequently, for the mixing problem, the differential
equation (2.32) changes to

dQ

dt
= 1− 1

50
Q+ 5δ(t− 2).

The initial condition is unchanged. �

Mathematical Tidbits

As you likely noticed, δ(t) is not actually a function. The more accurate
statement is that it is a distribution, or a generalized function. There are
various ways to obtain a mathematically rigorous definition of δ(t), using
limits or test functions. How limits are used was explained very briefly
earlier. This will not be pursued any further, but the question does arise
as to what is permitted when using the delta function. As demonstrated
in Example 1, linear combinations of delta functions are allowed. It is
also possible to both differentiate and integrate a delta function. What
should be avoided is using a discontinuous g(t) in (6.36), and Exercise 7 is
an example why. Also, what is not allowed, generally, involves nonlinear
operations. So, expressions such as δ(t− 1)δ(t− 2), δ(t− 1)/δ(t− 2), and
sin(δ(t−1)) are not allowed. If you are interested in the various properties
of the delta function, you might look at its Wikipedia page.
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The nonstandard nature of the delta function amplifies a complication
with the Laplace transform at t = 0 that needs to be mentioned. It is
not uncommon in certain applications to use the forcing function f(t) =
δ(t), which means that it is located at t = 0. This puts it at the lower
point of integration for the Laplace transform. The resulting integral can
be evaluated using (6.37), giving L

(

δ(t)
)

= 1/2. However, it is almost
universally stated that L

(

δ(t)
)

= 1. One way to explain this involves
continuity, in the sense that this is what you obtain from Property 13, in
Table 6.1, when letting a → 0+. On the other hand, one gets L

(

δ(t)
)

= 0
when interpreting (6.1) using the conventional definition of an improper
integral at t = 0. This has lead those determined to obtain L

(

δ(t)
)

= 1 to
find some rather creative ways to redefine the Laplace transform. What
this involves is not considered here, but if you are interested in learning
more about this issue, you should consult Hoskins [2009].

Exercises

1. Use the Laplace transform to find the solution of the IVP.

a) y′ + 4y = 3H(t− 1), y(0) = 1

b) 2y′ − y = 1−H(t− 4), y(0) = −1

c) y′ + y = 2δ(t− 3), y(0) = −1

d) y′ − 4y = 2H(t− 2)− δ(t− 1), y(0) = 0

e) y′′ − y′ − 6y = 3H(t− 5), y(0) = 0, y′(0) = 0

f) y′′ + 4y = 3H(t− 4)− 3H(t− 2), y(0) = 0, y′(0) = 0

g) y′′ − 4y′ = 3δ(t− 1), y(0) = 0, y′(0) = 0

h) y′′ + y = δ(t− 3)− 2δ(t− 2), y(0) = 0, y′(0) = 0

2. Suppose the mixing problem is as described in Example 1 on page 21
except that 5 lbs of salt are dropped into the tank at t = 2min. Solve
the resulting IVP for Q(t), and then sketch the solution.

3. Suppose that a population P (t) of fish in a lake, left to themselves,
will grow exponentially. This means that the population obeys the law
P ′(t) = kP (t). Assume that k = 2, and P (0) = 100. Note that time is
measured in years.

a) Suppose that at the end of each year that 500 fish are removed from
the lake. How does this change the differential equation? What is
the resulting IVP for P (t)?

b) What is the solution of the IVP?

c) The lake is capable of supporting 8,000 fish. In what year does it
reach this limit?
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4. This exercise considers the vertical motion problems from Section 2.3.
Assume that a ball with a mass of 2 kg is dropped, from rest, from
a height of 1000m. The forces acting on the object are gravity, and
a drag force due to air resistance, with c = 1

2 kg/s. Assume that
g = 10m/s2.

a) Suppose that after falling for 10 sec that the object is hit with an
upward force that is equivalent to a delta forcing with strength 70
N. What is the resulting IVP for v?

b) What is the solution of the IVP?

c) What is the resulting solution for x?

5. This exercise reconsiders the cooking the turkey problem in Exercise
15 on page 32. In that problem it was found that k = 1

120 ln(4/3),
but is recommended that you leave k unevaluated until part (c). Also,
time is measured in minutes.

a) Suppose that the temperature of the oven is accidentally turned
down to 150◦F two hours after the turkey had been put into the over,
but turned back up to 350◦F one hour later. What IVP does the
temperature satisfy? Assume that the oven temperature changes
immediately when the temperature control is adjusted.

b) What is the solution of the IVP?

c) How long does it take to cook the turkey?

6. Show that the following identities hold for the delta function. Do
this by showing that when the left and right sides of the equation are
inserted into (6.35)-(6.37), that they produce the same result.

a) δ(a(t− t0)) =
1
aδ(t− t0), for a > 0

b) δ(t0 − t) = δ(t− t0)

c) If g(t) is continuous, then g(t)δ(t− t0) = g(t0)δ(t− t0) .

7. In quantum physics there are occasions when the coefficients of the
differential equation contain delta functions. The point of this exercise
is to demonstrate that care is needed in such situations.

a) Consider the problem of solving y′(t) = δ(t − t0)y(t), for t > 0,
where t0 > 0 and y(0) = 1. Using separation of variables, find the
solution. Make sure to determine its value for 0 ≤ t < t0, for t = t0,
and for t0 < t. This is the correct solution of this problem.

b) By simply integrating the differential equation in part (a), and then
using the initial condition, one gets that

y(t) = 1 +

∫ t

0
y(r)δ(r − t0)dr.
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Not thinking too hard about the situation, and using (6.35)-(6.37),
explain how you might conclude that

y =











1 if 0 ≤ t < t0,

2 if t = t0,

3 if t0 < t.

This differs from the solution for part (a). Where is the error made
in the derivation of the above solution?

6.8 Solving Linear Systems

The Laplace transform can be used to solve a linear system of differential
equations, and this is often the approach taken for what are known as
state space models in engineering. It is relatively easy to do this, and to
explain why, suppose we want to solve

x′ = ax+ by + f(t), (6.40)

y′ = cx+ dy + g(t), (6.41)

where x(0) = x0 and y(0) = y0. Taking the Laplace transform of each
equation, and using (6.8), we get

sX − x0 = aX + bY + F, (6.42)

sY − y0 = cX + dY +G, (6.43)

where X, Y , F , and G are the Laplace transforms of x, y, f , and g, re-
spectively. What we have shown is that if the original differential equation
is written as x′ = Ax+ f , then the transformed equation is

sX− x0 = AX+ F, (6.44)

where X = L(x), F = L(f), and x0 = x(0). This is the form obtained in
the general case of when there are n equations, and A is an n×n constant
matrix.

The next step is to solve for X and Y , and then attempt to find the
inverse transforms. How hard it is to find the inverse transforms depends
on f and g.

Example 1: Using the Laplace transform, solve

x′ = x− y,

y′ = 4x− 2y,

where x(0) = 1 and y(0) = −1.
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Answer: From (6.42) and (6.43) the transformed equations are

sX − 1 = X − Y,

sY + 1 = 4X − 2Y.

From the first equation, Y = 1 + (1 − s)X, and after substituting
this into the second equation, and simplifying, one finds that

X =
s+ 3

s2 + s+ 2
.

Since s2 + s + 2 = (s − s1)(s − s2), where s1 = (−1 + i
√
7)/2 and

s2 = (−1− i
√
7)/2, then from Property 12 of Table 6.1,

x = L−1(X) = e−t/2

(

cos(ωt) +
5

2ω
sin(ωt)

)

,

where ω =
√
7/2. To find y we can either find the inverse transform

for Y , or we can use the first differential equation. The latter option
is easiest, and so

y = x− x′

= e−t/2

(

− cos(ωt) +
11

2ω
sin(ωt)

)

. �

Example 2: Using the Laplace transform, solve

x′ = 3x− 6y + f(t),

y′ = x− 4y + g(t),

where x(0) = 0 and y(0) = 0. Also, f(t) and g(t) are continuous
functions.

Answer: From (6.42) and (6.43) the transformed equations are

sX = 3X − 6Y + F,

sY = X − 4Y +G.

From the second equation, X = (s+4)Y −G, and after substituting
this into the first equation, and simplifying, one finds that

Y =
s− 3

s2 + s− 6
G(s) +

1

s2 + s− 6
F (s) .

The convolution theorem is going to be used in finding the inverse
transform, and in preparation for this note that, using Property 12
of Table 6.1,

L−1
( 1

s2 + s− 6

)

= L−1
( 1

(s− 2)(s+ 3)

)

=
1

5

(

e2t − e−3t
)

,
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and

L−1
( s− 3

s2 + s− 6

)

=
1

5

(

6e−3t − e2t
)

.

So, using the convolution theorem, which is Property 2 of Table 6.1,

L−1
( 1

s2 + s− 6
F (s)

)

=

∫ t

0

1

5

(

e2(t−r) − e−3(t−r)
)

f(r)dr,

and

L−1
( s− 3

s2 + s− 6
G(s)

)

=

∫ t

0

1

5

(

6e−3(t−r) − e2(t−r)
)

g(r)dr.

Therefore, the solution is

y(t) =
1

5

∫ t

0

(

e2(t−r) − e−3(t−r)
)

f(r)dr

+
1

5

∫ t

0

(

6e−3(t−r) − e2(t−r)
)

g(r)dr.

To find x you can either find the inverse transform for X, or you
can use the second differential equation (similar to what was done
in the previous example). �

6.8.1 Chapter 4 versus Chapter 6

In Chapter 4 we solved problems as in Example 1 using an eigenvalue ap-
proach. In contrast, using the Laplace transform avoids this and it solves
the problem directly. Moreover, in Example 2, using the Laplace trans-
form the inhomogeneous problem was solved with little fanfare. This was
not done in Chapter 4 as it would have involved introducing either unde-
termined coefficients or variation of parameters. The apparent conclusion
is that linear systems are more easily solved using the Laplace transform
than the eigenvalue approach. This is true for systems with two equations
and the reason is that it is relatively easy to solve for X and Y . However,
for larger systems the advantage switches to the eigenvalue approach. The
reason is that larger systems are almost always solved numerically (i.e.,
using a computer). The eigenvalue approach provides a representation of
the solution (4.24), and it is relatively easy to compute the terms in that
expression. In contrast, from (6.44),

X =
(

sI−A
)−1

(F+ x0).

This requires finding the inverse matrix and then trying to determine the
inverse transform of the resulting formula for X. There are ways this can
be done, such as using a geometric series expansion for (sI −A)−1, but
how this is carried out is beyond the purview of this textbook. Those
interested might want to look at Friedland [2005] and Cohen [2007].
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Exercises

1. Use the Laplace transform to find the solution of the IVP, with x(0) =
(

4
−1

)

.

a) x′ =

(

−1 6

1 0

)

x

b) x′ =

(

0 1
4

1 0

)

x

c) x′ =

(

3 1

1 3

)

x

d) x′ =

(

2 1

6 3

)

x,

e) x′ =

(

2 0

−1 2

)

x

f) x′ =

(

1 1

−4 1

)

x

2. Use the Laplace transform to find the solution of the IVP, where the
initial condition is x(0) = 0.

a) x′ =

(

0 1

2 1

)

x+

(

1

6t

)

b) x′ =

(

2 1

6 3

)

x+

(

10t

−4

)

c) x′ =

(

2 0

−1 2

)

x+

(

4t

0

)

d) x′ =

(

2 1

−2 0

)

x+

(

2t

2t

)

3. As defined in Section 6.4.1, the transfer function W(s) is obtained
from (6.44) by setting x0 = 0 and solving for X. The result is W(s) =
(sI−A)−1. Find the transfer function for the following systems.

a) x′ =

(

−1 6

1 0

)

x

b) x′ =

(

0 1
4

1 0

)

x

c) x′ =

(

2 0

−1 2

)

x

d) x′ =

(

1 −4

1 1

)

x

4. Two tanks containing salt water are connected as shown in Figure 6.5.
In the lower connecting pipe water is pumped from tank 1 into tank
2 at a rate of N liters/min, and in the upper pipe water in pumped
from tank 2 into tank 1 at the same rate. Assume that y1(t) and y2(t)
are the amounts of salt in the respective tank at time t, and the total
volume of water in each tank is V liters. You should assume that the
pipes are so short that whatever water, or salt, in them can be ignored.

a) Show that the resulting differential equations are

y′1 = −N

V
y1 +

N

V
y2

y′2 =
N

V
y1 −

N

V
y2
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Figure 6.5. Two tanks containing salt water as considered in Exercises 4 and
5. The pipes connecting the tanks are used to pump salt water between the tanks.

b) Take the Laplace transform of the equations in part (a), and then
solve for Y1(s). In doing this take N = 2 liters/min and V =
100 liters. Also, assume y1(0) = 10 gm and y2(0) = 0.

c) Find y1(t) and y2(t).

d) What are the limiting values of y1 and y2 as t → ∞? Explain why
this answer is obvious given how the tanks are configured.

5. Consider the two tanks described in Exercise 4. What is different now
is that salt water containing 2 gm of salt per liter is poured into tank
1 at 3 liter/min. Also, the salt water in tank 1 flows out through a
drain at the bottom at the rate of 3 liter/min.

a) Explain why the volume in each tank does not change. The differ-
ential equation for y2 is the same as in Exercise 4(a). How does the
differential equation for y1 change?

b) Take the Laplace transform of the equations in part (a), and then
solve for Y1(s). In doing this take N = 2 liters/min and V =
100 liters. Also, assume y1(0) = 10 gm and y2(0) = 0.

c) Find y1(t) and y2(t).

d) What are the limiting values of y1 and y2 as t → ∞? Explain why
this answer is obvious given how the tanks are configured.

6. Two masses m1 and m2 are connected by springs as shown in Figure
6.6. Let u1(t) and u2(t) be the vertical displacements of the upper and
lower mass, respectively. Using Hooke’s law, the spring forces on m1

are −k1u1 and k2(u2−u1), while the spring force onm2 is −k2(u2−u1).

a) Show that the resulting differential equations are

m1u
′′
1 = −k1u1 + k2(u2 − u1)

m2u
′′
2 = −k2(u2 − u1)

b) Take the Laplace transform of the equations in part (a), and then
solve for U1(s). In doing this take m1 = 2, m2 = 1, k1 = 4,
and k2 = 2. Also, assume the initial conditions are: u1(0) = 0,
u′1(0) = 1, u2(0) = 0, and u′2(0) = 0.

c) Find u1(t) and u2(t).
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Figure 6.6. Coupled mass-spring system considered in Exercise 6.

7. Consider the mass-spring dashpot system shown in Figure 6.7. Letting
u(t) be the vertical displacement of the mass, using F = ma one finds
that the differential equations to solve are (Holmes [2019])

u′ =
1

k
f ′ +

1

c
f

mu′′ = −f.

The task is to find the displacement u(t) and the force f(t). Assume
that the initial conditions are u(0) = u0, u

′(0) = 0, and f(0) = ku0.

a) Setting v = u′, write the two differential equations in terms of v
and f . What are the initial conditions?

b) Take the Laplace transform of the differential equations in part (a)
and then solve for V (s). In doing this take k = 1, m = 1, and
u0 = 1.

c) Taking c = 1, find v(t).

d) Determine u(t). Also, explain how to determine f(t) (you do not
need to actually find this function).

e) In Section 3.10.3, the oscillatory solutions occur for smaller values
of c (what was referred to as under-damped and weakly damped).
Using your results from part (b), what values of c give rise to an
oscillatory solution?

Figure 6.7. Coupled mass-spring-dashpot system considered in Exercise 7.



Chapter 7

Partial Differential

Equations

A partial differential equation is simply a differential equation with
more than one independent variable. It is typical that the independent
variables are time (t) and space (x). If u(x, t) is the dependent variable,
then examples of partial differential equations (PDEs) are

Advection Equation: ut + aux = 0

Diffusion Equation: ut = Duxx

Wave Equation: utt = c2uxx.

Each of these PDEs is linear and homogeneous. Also, the advection equa-
tion is first order, while the other two are second order.

Subscripts are used in the above PDEs to indicate partial differentia-
tion. There are two other ways this can be done that are very common.
First, there is the form used in calculus, and examples are

∂u

∂t
,

∂u

∂x
,

∂2u

∂t2
,

∂2u

∂t∂x
,

∂2u

∂x2
.

A more contemporary notation is to abbreviate the above expressions,
and write

∂tu , ∂xu , ∂2
t u , ∂t∂xu , ∂2

xu .

All three forms will be used in this chapter.
In this chapter, at the start, the method of separation of variables is

used to solve PDEs. Later, in Section 7.7, it will be shown how separation
of variables leads to another approach, called the Galerkin method. It is
also possible to use the Laplace transform to solve many of the problems
considered in this chapter, although that will not be pursued here.

Introduction to Differential Equations, M. H. Holmes, 2023

189



190 Chapter 7. Partial Differential Equations

7.1 Balance Laws

The PDEs listed above are the mathematical consequence of a balance
law, much like the ODEs obtained for simple harmonic motion in Section
3.10, and the various modeling examples in Section 2.3. For example,
the wave equation describes the vertical displacement u(x, t) of an elastic
string. The PDE in this case is a force balance equation coming from
Newton’s second law F = ma, where the acceleration is a = utt and F is
the vertical component of the restoring force in the string due to its being
stretched.

In contrast, the diffusion equation can be used to determine the den-
sity, or concentration, of objects moving along the x-axis due to Brownian
motion. The balance law in this case is the requirement that the total
number of objects is constant, which means that if one region experiences
an increase, then this is balanced by a decrease in other regions. In older
textbooks this equation is usually identified as the heat equation. How-
ever, it has far more applicability than heat propagation, and since about
1950 it is more often referred to as the diffusion equation.

Explaining the physical and mathematical assumptions underlying the
derivation of PDEs is outside the purview of this textbook. If you are
interested in this you should consult Holmes [2019].

7.2 Boundary Value Problems

The PDEs listed above involve the spatial variable x. Consequently, it
is worth first considering how to solve an ODE involving x. A typical
example is to find the function u(x) that satisfies

u′′ − 4u = 0, for 0 < x < 2, (7.1)

where

u(0) = 1, (7.2)

and

u(2) = −3. (7.3)

This is called a boundary value problem (BVP), and it consists of a
differential equation and two boundary conditions, one at each end
of the spatial interval. Because this involves a linear differential equation
with constant coefficients, the methods developed in Chapter 3 can be
used to solve it. So, assuming that u = erx, and then substituting this
into the differential equation (7.1), you obtain the characteristic equation
r2 = 4. The two solutions are r1 = −2 and r2 = 2, which means that the
general solution of (7.1) is

u = c1e
−2x + c2e

2x.
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To satisfy the boundary condition at x = 0 we need c1 + c2 = 1 and
to satisfy the boundary condition at x = 2 we need c1e

−4 + c2e
4 = −3.

Solving these two equations yields

c1 =
e4 + 3

e4 − e−4
and c2 = − e−4 + 3

e4 − e−4
.

The other methods derived in Chapter 3 are easily modified to solve
BVPs. As will be demonstrated in Example 1, the method of undeter-
mined coefficients can be used to solve a BVP. However, a complication
can arise as it is possible for the boundary conditions to be incompati-
ble with the differential equation. If this happens then the BVP has no
solution, and Example 2 is a demonstration of when this can happen.

Example 1: Solve u′′ − 3u′ + 2u = 4x, where u(0) = 3 and u(4) = 0.

Step 1: The associated homogeneous equation is u′′−3u′+2u = 0.
Assuming u = erx, one gets the characteristic equation r2−3r+2 =
0. The roots are r = 1 and r = 2, and so uh = c1e

x + c2e
2x.

Step 2: To find a particular solution, we assume that u = Ax+B.
From the differential equation, we get that

−3A+ 2(Ax+B) = 4x.

The coefficients of the respective xn terms on the left and right hand
sides must be equal, and so we get that:

x1 : 2A = 4
x0 : −3A+ 2B = 0 .

Solving these two equation yields A = 2 and B = 3.

Step 3: The general solution is

u = 2x+ 3 + c1e
x + c2e

2x.

Step 4: For u(0) = 3 we need c1+ c2 = 0, and for u(4) = 0 we need
11+ c1e

4+ c2e
8 = 0. Consequently, c1 = −c2 = 11/(e4(e4−1)), and

the resulting solution is

u = 2x+ 3 +
11

e4(e4 − 1)

(

ex − e2x
)

. �

Example 2: Show that u′′ + u = 0, where u(0) = 1 and u(π) = −3, has
no solution.

Ans : Assuming u = erx gives r2 = −1, from which we get the
general solution u = c1 cosx+ c2 sinx. To satisfy u(0) = 1 we need
c1 = 1 and to satisfy u(π) = −3 we need c1 = 3. This is not
possible, and so the BVP has no solution. It is worth noting that
if u(π) = −3 is replaced with u(π) = −1 then there are an infinite
number of solutions. �



192 Chapter 7. Partial Differential Equations

7.2.1 Eigenvalue Problems

We are going to have to consider a particular type of BVP when we solve
a PDE. An example is the problem of solving

u′′ − λu = 0, for 0 < x < 1, (7.4)

where
u(0) = 0, (7.5)

and
u(1) = 0. (7.6)

The function u(x) ≡ 0 is a solution, but what we want to know is whether
there are nonzero solutions. To be specific, is it possible to find values
of the constant λ so there are solutions that are not identically zero?
This is the same question asked when solving the eigenvalue problem
Aa = λa. In other words, finding u(x) and λ is an eigenvalue problem.
In this context, the u’s are called eigenfunctions, and the λ’s are the
eigenvalues. A distinctive difference from the matrix eigenvalue problem
is that there can be an infinite number of eigenvalues for an eigenvalue
BVP.

Finding λ and u is not hard. As usual, assuming that u = erx, then
the characteristic equation coming from (7.4) is r2 − λ = 0. This means
that r = ±

√
λ. Assuming λ is a real number then we have the following

three cases:

λ > 0 : In this case, the general solution is u = ae
√
λx+be−

√
λx. To satisfy

u(0) = 0 we need a+b = 0, and for u(1) = 0 we need ae
√
λ+be−

√
λ =

0. So, b = −a, and this means that a(e
√
λ − e−

√
λ) = 0. Since

e
√
λ 6= e−

√
λ when λ > 0, the conclusion is that a = 0, and this

means we just get the zero solution.

λ = 0 : The general solution of (7.4) is u = a + bx. To satisfy u(0) = 0
we need a = 0, and for u(1) = 0 we need a + b = 0. So, a = b = 0
and this means we just get the zero solution.

λ < 0 : Setting λ = −k2, where k > 0, then r = ±ik. This means that
the general solution of (7.4) is

u(x) = a cos(kx) + b sin(kx).

To satisfy u(0) = 0 we need a = 0. To satisfy u(1) = 0 we need
b sin(k) = 0. To obtain a not identically zero solution for u(x) we
take k so that sin(k) = 0. This holds if any one of the following
values are used:

k = π, 2π, 3π, . . . .
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The conclusion is that the eigenfunctions are

un(x) = bn sin(nπx), (7.7)

where bn is an arbitrary nonzero constant, and the associated eigenvalues
are

λn = −(nπ)2, (7.8)

for n = 1, 2, 3, . . ..

Skipping the Two Real Roots Case

An observation can be made that will simplify solving an eigenvalue prob-
lem. In the above example, when there were two real-valued solutions for
r, we ended up with the zero solution. This always happens when using
the boundary conditions (7.5) and (7.6). In fact, it always happens for
any of the boundary conditions considered in this textbook. As a sam-
pling of what sort of boundary conditions this can include, look at those
in Exercise 3. So, in this textbook, the two real roots case can be skipped.
For example, if the characteristic equation is r2 = −λ, then to skip the
two real roots case it will be assumed that λ ≥ 0. Similarly, if the char-
acteristic equation is r2+λr+4 = 0, then r = 1

2(−λ±
√
λ2 − 16), and so

skipping the two real roots case means that it is assumed that λ2−16 ≤ 0.

Example 3: Find the eigenvalues and eigenfunctions of u′′−4u′+λu = 0,
for 0 < x < 2, where u(0) = 0 and u′(2) = 2u(2).

Answer: Assuming u = erx, then from the differential equation the
characteristic equation is r2 − 4r + λ = 0. From this we get that

r = 2±
√
4− λ.

Skipping the two real roots case, it is assumed that 4 − λ ≤ 0, or
equivalently λ ≥ 4.

λ = 4 : In this case r = 2, and from (3.19) we get that the general
solution is u = ae2x + bxe2x. To satisfy u(0) = 0 we need
a = 0. For u′(2) = 2u(2) we need 5be4 = 4be4, which means
that b = 0. So, we just get the zero solution.

λ > 4 : Setting 4 − λ = −k2, where k > 0, then r = 2 ± ik. From
(3.21), the general solution is

u(x) = ae2x cos(kx) + be2x sin(kx).

To satisfy u(0) = 0 we need a = 0. To satisfy u′(2) = 2u(2) we
need 2be4 sin(2k) = 2be4 sin(2k) + be4 cos(2k). To obtain a not
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identically zero solution we take k so that cos(2k) = 0. This
holds if k = π

4 ,
3π
4 , 5π4 , . . ., which can be written as:

kn = (2n− 1)
π

4
, for n = 1, 2, 3, · · · .

The resulting eigenfunctions are un(x) = bne
2x sin(knx), and

the associated eigenvalues are λn = 4 + k2n. �

Rayleigh Quotient

It is possible to show that the eigenvalues for the above BVP must be
negative, without having to first derive the formula for them. This can
be done using what is called the Rayleigh quotient, and this is explained
in Exercise 4. In fact, the steps in this exercise can be modified to also
prove that the eigenvalues must be real-valued, which is an assumption
we made in solving the eigenvalue problem.

The Rayleigh quotient is more than a theoretical tool as it plays an im-
portant role when studying mechanical vibrations as well as when finding
quantum energy levels. It is also used extensively in scientific computing
when solving eigenvalue problems.

Exercises

1. Solve the given BVP.

a) u′′ − 16u = 0, for 0 < x < 1; u(0) = 0 and u(1) = 1.

b) u′′ − 9u = 0, for 0 < x < 1; u(0) = 0 and u′(1) = −3.

c) u′′ − 2u′ + 5u = 0, for 0 < x < 2; u(0) = 0 and u(2) = 1.

d) u′′ − u = 5, for 0 < x < 2; u(0) = 0 and u(2) = 0.

e) u′′ + u′ = 2x, for 0 < x < 1; u′(0) = 0 and u(1) = −1.

f) u′′ − 6u′ + 8u = 8 sin(4x) + 24 cos(4x), for 0 < x < π; u(0) = 0 and
u(π) = 1.

2. Show that the given BVP has no solution.

a) u′′ + 9u = 0, for 0 < x < π; u(0) = 2 and u(π) = 1.

b) 4u′′ + u = 0, for 0 < x < π; u(0) = −1 and u′(π) = 4.

c) 4u′′ + π2u = 0, for 0 < x < 1; u′(0) = 0 and u(1) = −3.

3. Find the eigenvalues and eigenfunctions of the given BVP. You can use
the “skip the two real roots” simplification, just make sure to state the
resulting assumption on λ.

a) u′′ = λu, for 0 < x < 1; u(0) = 0 and u′(1) = 0.

b) u′′ = λu, for 0 < x < 4; u′(0) = 0 and u′(4) = 0.

c) u′′ + λu′ + u = 0, for 0 < x < 4; u(0) = 0 and u(4) = 0.
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d) u′′ + 2u′ = λu, for 0 < x < 1; u(0) = 0 and u(1) = 0.

e) u′′ + λu = 0, for 0 < x < 1; u(0) = u(1) and u′(0) = u′(1). These
are called periodic boundary conditions.

4. This exercise explores the usefulness of what is known as the Rayleigh
quotient for the eigenvalue problem (7.4)-(7.6).

a) If you multiply (7.4) by u, and then integrate over the interval, you
get

∫ 1
0 (uu

′′ − λu2)dx = 0. From this show that

λ = −
∫ 1
0 (u

′)2dx
∫ 1
0 u2dx

.

This is the Rayleigh quotient for this problem.

b) Use part (a) to explain why, given an eigenfunction u(x), that the
associated eigenvalue must be negative.

c) The fundamental eigenvalue corresponds to the case of n = 1 in
(7.7). Taking b1 = 1, sketch u1(x) for 0 ≤ x ≤ 1. On the same
axes, also sketch w(x) = 4x(1− x).

d) Part (c) shows that w(x) can be used as an approximation of u1(x).
Use w(x) in the Rayleigh quotient to obtain an approximation for
λ1. This is often used in quantum and classical mechanics to esti-
mate an eigenvalue without actually solving the differential equa-
tion.

7.3 Separation of Variables

The solution method will be introduced by using it to solve a problem
involving the diffusion equation. This requires a correctly formulated
problem, and the one considered is to find the function u(x, t) that satisfies

D
∂2u

∂x2
=

∂u

∂t
, for

{

0 < x < L,
0 < t.

(7.9)

In this equation, the positive constant D is the called the diffusion coef-
ficient. To complete the formulation we will prescribe the values of u at
the two endpoints, where x = 0 and x = L, and at the beginning, when
t = 0. Specifically, for boundary conditions it is assumed that

u(0, t) = 0, (7.10)

and
u(L, t) = 0. (7.11)

For the initial condition, it is assumed that

u(x, 0) = g(x), for 0 < x < L, (7.12)
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where g(x) is a given function.
The fact that u ≡ 0 is a solution of the PDE and the boundary

conditions is required for the method of separation of variables to work.
The reason is that this will enable us to use the principle of superposition.
So, if the left boundary condition is changed to, say, u(0, t) = 1, or the
PDE is changed to, say, Duxx = ut + x, then separation of variables
will not work. What is necessary in these cases is to first transform the
problem into one where u ≡ 0 is a solution of the PDE and boundary
conditions. How this is done is considered in Sections 7.6 and 7.7.

7.3.1 Separation of Variables Assumption

The assumption is simply that

u(x, t) = F (x)G(t). (7.13)

Substituting this into the PDE (7.9) gives DF ′′(x)G(t) = F (x)G′(t).
Separating variables yields

D
F ′′(x)

F (x)
=

G′(t)

G(t)
. (7.14)

Now comes the key observation. The only way a function of x can equal
a function of t, since x and t are independent, is that the function of x is
a constant, the function of t is a constant, and the constants are equal.
In other words, there is a constant λ so that

D
F ′′(x)

F (x)
= λ ,

and
G′(t)

G(t)
= λ .

These can be rewritten as

DF ′′(x) = λF (x) . (7.15)

and
G′(t) = λG(t) . (7.16)

The λ appearing here is called, not surprisingly, the separation con-
stant.

7.3.2 Finding F (x) and λ

The separation of variables assumption must be applied to the boundary
conditions. So, to have u(0, t) = 0, we need F (0)G(t) = 0. For this to
happen, and for u to not be identically zero, we require that F (0) = 0.
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Similarly, we need F (L) = 0. Consequently, all-together, the function
F (x) must satisfy

DF ′′(x) = λF (x) , for 0 < x < L, (7.17)

where
F (0) = 0 and F (L) = 0, (7.18)

The solution of this BVP depends on whether λ is zero or not. So, we
have two cases to consider.

λ = 0 : In this case (7.17) is F ′′ = 0, and so F (x) = a + bx. To satisfy
F (0) = 0 we need a = 0, and for F (L) = 0 we need b = 0. So, we
just get the zero solution in this case.

λ 6= 0 : Assuming F (x) = erx, then (7.17) reduces to Dr2 = λ. We will
skip the two real roots case, which means we only consider λ < 0.
Setting λ = −k2, where k > 0, then Dr2 = −k2. This means that
r = ±ik/

√
D. The resulting general solution of (7.17) is

F (x) = a cos(kx/
√
D) + b sin(kx/

√
D).

To satisfy F (0) = 0 we need a = 0. To satisfy F (L) = 0 we need
b sin(kL/

√
D) = 0. To obtain a function F (x) that is not identically

zero, we take k so that sin(kL/
√
D) = 0. This holds if any one of

the following values are used:

kL/
√
D = π, 2π, 3π, . . . ,

or equivalently

k =
π
√
D

L
,
3π

√
D

L
,
3π

√
D

L
, . . . . (7.19)

The conclusion is that the not identically zero solutions of (7.17) and
(7.18) are

Fn(x) = bn sin
(nπx

L

)

, (7.20)

and

λn = −D
(nπ

L

)2
, (7.21)

for n = 1, 2, 3, . . .. Also, bn is an arbitrary constant.

7.3.3 Finding G(t)

For λ = λn, the general solution of (7.16) is

Gn(t) = ane
λnt, (7.22)

where an is an arbitrary constant. The function Gn(t) is not required to
satisfy the initial condition (7.12); that condition will be satisfied once we
determine the general solution.
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7.3.4 The General Solution

We have shown that for any given n, the function un(x, t) = Fn(x)Gn(t)
is a solution of the PDE that satisfies the boundary conditions. Because
the PDE and boundary conditions are homogeneous, and the problem is
linear, the principle of superposition can be used (see page 5). There-
fore, the resulting general solution, that satisfies the PDE and boundary
conditions, is

u(x, t) =
∞
∑

n=1

un(x, t),

or equivalently

u(x, t) =

∞
∑

n=1

bne
λnt sin

(nπx

L

)

, (7.23)

where bn is an arbitrary constant, and λn is given in (7.21). In writing
this down, the constant an in (7.22) has been absorbed into the bn.

7.3.5 Satisfying the Initial Condition

It remains to satisfy the initial condition, which is u(x, 0) = g(x). Ac-
cording to our solution in (7.23), we need

∞
∑

n=1

bn sin
(nπx

L

)

= g(x). (7.24)

This is the equation that is used to determine the bn’s. However, the
left-hand-side is an example of what is known as a Fourier series. More
specifically, it is an example of a Fourier sine series. There are some
significant mathematical questions that arise here, one of which is whether
the series converges. This, and some related questions, are addressed in
the next section. For the moment, we simply state the conclusion. If g(x)
is continuous, except perhaps for a few jump discontinuities, then

bn =
2

L

∫ L

0
g(x) sin

(nπx

L

)

dx. (7.25)

7.3.6 Examples

Example 1: Suppose that D = 1, L = 2, and g(x) = 3 sin(πx). In this
case, from (7.21), λn = −(nπ/2)2, and the resulting general solution
(7.23) is

u(x, t) =
∞
∑

n=1

bne
−n2π2t/4 sin

(nπx

2

)

.
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To satisfy the initial condition, it helps to notice that g(x) is one
of the sine functions in the series. To make this more evident, the
requirement that u(x, 0) = g(x) means that we need

∞
∑

n=1

bn sin
(nπx

2

)

= 3 sin(πx),

or equivalently

b1 sin
(πx

2

)

+b2 sin(πx)+b3 sin
(3πx

2

)

+b4 sin(2πx)+· · · = 3 sin(πx).

To satisfy this equation, take b2 = 3 and set all the other bn’s to
zero. Therefore, the solution is

u(x, t) = 3e−π2t sin(πx). (7.26)

This solution is shown in Figure 7.1, both as time slices and as the
solution surface for 0 ≤ t ≤ 0.24. �
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Figure 7.1. Solution of the diffusion equation in Example 1. Shown is the
solution surface as well as the solution profiles at specific time values.
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Example 2: Suppose that in the previous example,

g(x) = 3 sin
(πx

2

)

− 4 sin
(3πx

2

)

+ 5 sin(2πx).

This is an example of when g(x) involves the sum of three of the
sine functions in the series. The requirement is that

∞
∑

n=1

bn sin
(nπx

2

)

= 3 sin
(πx

2

)

− 4 sin
(3πx

2

)

+ 5 sin(2πx).

To satisfy this we take b1 = 3, b3 = −4, b4 = 5, and all the other
bn’s are zero. The resulting solution is

u(x, t) = 3e−π2t/4 sin
(πx

2

)

− 4e−9π2t/4 sin
(3πx

2

)

+ 5e−4π2t sin(2πx). �

Example 3: Suppose that D = 1, L = 1, and

g(x) =

{

1 if 1
3 ≤ x ≤ 2

3 ,

0 otherwise.
(7.27)

In this case, it is necessary to use (7.25) to find the bn’s. Carrying
out the integration

bn = 2

∫ 2/3

1/3
sin(nπx)dx

=
2

nπ

(

cos(nπ/3)− cos(2nπ/3)
)

.

As for the solution, since λn = −(nπ)2, then

u(x, t) =

∞
∑

n=1

bne
−n2π2t sin(nπx). (7.28)

This solution is shown in Figure 7.2 for 0 ≤ t ≤ 0.1. �

Exercises

1. You are to find the solution of the diffusion problem for the following
initial conditions. Assume that L = 1 and D = 3. Note that you
should be able to answer this question without using integration.

a) g(x) = −4 sin(5πx).
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Figure 7.2. Solution of the diffusion equation in Example 3. Shown is the
solution surface as well as the solution profiles at specific time values.

b) g(x) = 6 sin(11πx).

c) g(x) = sin(πx) + 8 sin(4πx)− 10 sin(7πx).

d) g(x) = − sin(3πx) + 7 sin(8πx) + 2 sin(15πx).

e) g(x) = 4 sin(2πx) cos(πx).

2. You are to find the solution of the diffusion problem for the following
initial conditions. Assume that L = 2 and D = 4.

a) g(x) = 1

b) g(x) = 2 + x

c) g(x) = cos(πx)

d) g(x) =

{ −1 if 0 ≤ x ≤ 1

0 otherwise

e) g(x) =

{

1 if 0 ≤ x ≤ 1
3

2 otherwise

3. Find the solution of

9
∂2u

∂x2
=

∂u

∂t
, for

{

0 < x < 3,
0 < t,

where u(0, t) = 0, u(3, t) = 0, and u(x, 0) = −5x.
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4. Find the solution of

10 ∂2
xu = ∂tu , for

{

0 < x < 2,
0 < t,

where u(0, t) = 0, u(2, t) = 0, and u(x, 0) =

{

1 if 1
2 ≤ x ≤ 3

2

0 otherwise.

5. Find the general solution of the following.

a) uxx = ut, for 0 < x < 1, with the boundary conditions u(0, t) = 0
and ux(1, t) = 0.

b) 4uxx = ut, for 0 < x < 1, with the boundary conditions ux(0, t) = 0
and u(1, t) = 0.

c) (1 + t)∂2
xu = ∂tu, for 0 < x < 1, with the boundary conditions

u(0, t) = 0 and u(1, t) = 0.

d) uxx = ut + e−tu, for 0 < x < 1, with the boundary conditions
u(0, t) = 0 and u(1, t) = 0.

6. Find the solution of the problem for the given initial condition.

a) Exercise 5(a), with u(x, 0) = 3 sin
(

πx
2

)

− 7 sin
(

9πx
2

)

.

b) Exercise 5(b), with u(x, 0) = −5 cos
(

3πx
2

)

− 2 cos
(

11πx
2

)

.

c) Exercise 5(c), with u(x, 0) = 14 sin(10πx) + 30 sin(18πx).

d) Exercise 5(d), with u(x, 0) = −24 sin(3πx)− 12 sin(15πx).

7. Find the resulting ODEs obtained using separation of variables on the
given PDE.

a) (1 + x)uxx + tu = 7ut, assuming u = F (x)G(t)

b) r2urr + rur + uθθ = 0, assuming u = R(r)Θ(θ)

c) ∂x(e
x∂xu) = (1 + x2)∂tu, assuming u = F (x)G(t)

d) uzz + 3zuz = uyy + 9u, assuming u = Z(z)Y (y)

e) u2x + u2t = e−tu2, assuming u = F (x)G(t)

7.4 Sine and Cosine Series

To satisfy the initial condition for the diffusion problem considered in the
previous section, we were required to find the bn’s so that

g(x) =
∞
∑

n=1

bn sin
(nπx

L

)

, for 0 < x < L. (7.29)

This is an example of a Fourier sine series. Finding the bn’s is not hard.
However, this requires knowing what restrictions must be placed on g(x),
and so, this is where we begin.

One of the requirements is that g(x) is piecewise continuous for 0 ≤
x ≤ L. As explained in Section 6.3, this means that g(x) is continuous
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except, possibly, for a finite number of jump discontinuities. To state
that g(x) has a jump discontinuity at x = a means that g(x) is not
continuous at x = a, but the limits of g(x) from the left, g(a−), and from
the right, g(a+), are defined and finite. This is the requirement when
0 < a < L. For x = 0, then g(0+) must be defined and finite, but it is not
required to equal g(0). Similarly, for x = L, g(L−) must be defined and
finite, but it is not required to equal g(L). As an example, the function
in (7.27) has a jump discontinuity at x = 1/3 and at x = 2/3.

A consequence of the assumption that g(x) is piecewise continuous is
that the integral in (7.25) is well-defined.

7.4.1 Finding the bn’s

The working hypothesis is that the sine series converges, and we can
integrate it term-by-term. The reason for this assumption is that the
key for finding the coefficients is the integration formula: if m and n are
positive integers, then

∫ L

0
sin
(nπx

L

)

sin
(mπx

L

)

dx =











L

2
if m = n,

0 if m 6= n.

(7.30)

The derivation of this formula is often done when covering integration
techniques for trigonometric integrals in calculus, and it involves using
the identity sin ax sin bx = 1

2

[

cos(a− b)x− cos(a+ b)x
]

.
To illustrate how (7.30) is used, suppose we want to find the value for,

say, b7. Multiplying (7.29) by sin(7πx/L), and then integrating yields

∫ L

0
g(x) sin

(7πx

L

)

dx =

∞
∑

n=1

bn

∫ L

0
sin
(7πx

L

)

sin
(nπx

L

)

dx.

According to (7.30), all of the integrals on the right are zero except when
n = 7. Consequently,

∫ L

0
g(x) sin

(7πx

L

)

dx =
L

2
b7,

or equivalently

b7 =
2

L

∫ L

0
g(x) sin

(7πx

L

)

dx.

A similar result is obtained for the other bn’s, and the resulting formula
is

bn =
2

L

∫ L

0
g(x) sin

(nπx

L

)

dx. (7.31)
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7.4.2 Convergence Theorem

Proving a sine series converges requires more than just using the ratio
test, which is the way you prove a power series converges. The proof is
beyond the scope of this textbook, but the result is important for our
using a sine series when solving PDEs.

Sine Series Convergence Theorem. Assume that g(x) and g′(x) are
piecewise continuous for 0 ≤ x ≤ L, and the bn’s are given in (7.31).

For 0 < x < L: If g(x) is continuous at x, then

∞
∑

n=1

bn sin
(nπx

L

)

= g(x), (7.32)

and if g(x) has a jump discontinuity at x, then

∞
∑

n=1

bn sin
(nπx

L

)

=
1

2

[

g(x+) + g(x−)
]

. (7.33)

At x = 0 or x = L: The sine series is zero when x = 0 or x = L.

In words, the theorem states that the sine series equals the function g(x)
at points in the interval where g(x) is continuous, and it equals the average
in the jump of g(x) at a jump discontinuity. At the endpoints, no matter
what the value of g(0) or g(L), the series sums to zero.

7.4.3 Examples

Finding a sine series is rather uneventful as it is simply a matter of eval-
uating the given formulas. The only concern is how hard it is to evaluate
the integrals to find the coefficients. So, in the examples below, a more
practical question is also considered. Namely, how many terms of the
series do you have to add together to obtain an accurate approximation
of the function g(x)? As will be seen, the answer depends on whether
the function is continuous, and whether it has the right values at the
endpoints.

Example 1: Taking L = 3, suppose

g(x) =

{

x if 0 ≤ x ≤ 2 ,

1 if 2 < x ≤ 3.

Sketch the function that the sine series converges to for 0 ≤ x ≤ 3.

Answer: It is recommended that you first sketch g(x), which is
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Figure 7.3. The function that the sine series sums to in Example 1.

done in the top plot in Figure 7.3. The function that the sine
series converges to is the same except at jump discontinuities, and
possibly at the endpoints. For this g(x), at x = 2 the series sums
to the average 1

2 [g(2
+) + g(2−)] = 1

2(1 + 2) = 3
2 . At both endpoints

it sums to zero. The sketch of the resulting function is given in the
bottom plot in Figure 7.3. �

Example 2: For 0 ≤ x ≤ 1, find the sine series of

g(x) =

{

3x if 0 ≤ x ≤ 1
3 ,

3
2(1− x) if 1

3 < x ≤ 1.

Answer: Using (7.31), and integrating by parts,

bn = 6

∫ 1/3

0
x sin(nπx)dx+ 3

∫ 1

1/3
(1− x) sin(nπx)dx

=
9

π2n2
sin(nπ/3).

Because g(x) is continuous, and g(0) = g(1) = 0, we have that

g(x) =
∞
∑

n=1

9

π2n2
sin(nπ/3) sin(nπx), for 0 ≤ x ≤ 1. (7.34)
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Figure 7.4. Comparison between the function g(x) in Example 2, shown with
the dashed blue curve, and the sine series approximation in (7.35), shown using a solid
red curve.

When computing the value of the sine series it is necessary to pick
an N , and then use the approximation

g(x) ≈
N
∑

n=1

9

2π2n2
sin(nπ/3) sin(nπx). (7.35)

The accuracy of this is shown in Figure 7.4. It is evident that for
smaller values of N the approximation is not very good, but it is
not bad for N = 27. �

Example 3: For 0 ≤ x ≤ 1, find the sine series of

g(x) =

{

1 if 0 ≤ x ≤ 1
4 ,

0 otherwise.

Also, sketch the function the sine series converges to for 0 ≤ x ≤ 1.
Answer: Using (7.31),

bn = 2

∫ 1/4

0
sin(nπx)dx =

2

nπ

[

1− cos(nπ/4)
]

.

From this we have that, except for x = 0 and x = 1/4,

g(x) =
∞
∑

n=1

2

nπ

[

1− cos(nπ/4)
]

sin(nπx). (7.36)
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Figure 7.5. The function the sine series in Example 3 converges to for 0 ≤ x ≤ 1.

At x = 0 the series is zero, and at x = 1/4 the series sums to 1/2,
which is the average in the jump of g(x) at this point. The resulting
function is shown in Figure 7.5.

The resulting approximation is, given N ,

g(x) ≈
N
∑

n=1

2

nπ

[

1− cos(nπ/4)
]

sin(nπx). (7.37)

The accuracy of this is shown in Figure 7.6. Because of the jump in
the function, the sine series requires a larger value of N than needed
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Figure 7.6. Comparison between the function g(x) for Example 3, shown
with the blue curve, and the sine series approximation in (7.37), shown using the red
curve.
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in Example 2 to provide an accurate approximation. However, even
with a larger N , the series has difficulty in the immediate vicinity of
the jump. It has the same problem near x = 0 since the series is zero
at x = 0 but g(0) = 1. The larger oscillations near the jump points
are associated with what is called Gibbs phenomenon. As can
be seen in the figure, the region where these oscillations occur can
be reduced by taking larger values of N . However, the maximum
overshoot and undershoot on either side of the jump do not go to
zero. Instead, for 0 < x < L, they approach a value that is equal to
about 9% of the jump in the function. Because jump discontinuities
arise so often in applications, there has been considerable research
into how to remove the over and under shoots in the Fourier series
solution. One of the more well known methods involves filtering
them out, and an example is Fejér summation. More about this can
be found in Jerri [1998]. �

7.4.4 Cosine Series

Using separation of variables, it is not uncommon to end up with a cosine
series rather than a sine series. In this case, the initial condition requires
finding the an’s that satisfy

g(x) =
1

2
a0 +

∞
∑

n=1

an cos
(nπx

L

)

, for 0 < x < L. (7.38)

The convergence theorem for this is very similar to the one for the sine
series. First, the needed integration formula is, if m and n are integers,

∫ L

0
cos
(nπx

L

)

cos
(mπx

L

)

dx =



















L if m = n = 0,

L

2
if m = n 6= 0,

0 if m 6= n.

(7.39)

The derivation of this formula is a straightforward calculation using the
identity cos ax cos bx =

(

cos(a − b)x + cos(a + b)x
)

/2. This formula is
used in the same way the one for the sine series was used. Namely, if you
want to determine, say, a4, you multiply (7.38) by cos(4πx/L) and then
integrate over the interval 0 ≤ x ≤ L. The resulting formula, for general
n, is

an =
2

L

∫ L

0
g(x) cos

(nπx

L

)

dx. (7.40)

This brings us to the next result.
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Cosine Series Convergence Theorem. Assume that g(x) and g′(x)
are piecewise continuous for 0 ≤ x ≤ L, and the an’s are given in (7.40).
If g(x) is continuous at x, then

1

2
a0 +

∞
∑

n=1

an cos
(nπx

L

)

= g(x). (7.41)

If g(x) has a jump discontinuity at x, and 0 < x < L, then

1

2
a0 +

∞
∑

n=1

an cos
(nπx

L

)

=
1

2

[

g(x+) + g(x−)
]

. (7.42)

At x = 0, the series sums to g(0+), and at x = L, the series sums to
g(L−).

In words, the theorem states that the cosine series equals the function
g(x) at points in the interval where g(x) is continuous, and it equals the
average in the jump of g(x) at a jump discontinuity. At the endpoints, it
sums to the respective limit of g(x) at the endpoint.

Example 4: For 0 ≤ x ≤ 1, find the cosine series of

g(x) =

{

x+ 1 if 0 ≤ x ≤ 1
2 ,

2 if 1
2 < x ≤ 1.

Answer: Using (7.40), if n 6= 0,

an = 2

∫ 1

0
g(x) cos(nπx)dx

= 2

∫ 1/2

0
(x+ 1) cos(nπx)dx+ 2

∫ 1

1/2
2 cos(nπx)dx

0 0.5 1
x-axis
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Figure 7.7. The function the cosine series in Example 4 converges to for 0 ≤ x ≤ 1.
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Figure 7.8. Comparison between the function g(x) for Example 4, shown
with the blue curve, and the cosine series approximation in (7.44), shown using the red
curve.

=
2

n2π2

(

cos
(nπ

2

)

− 1
)

− 1

nπ
sin
(nπ

2

)

,

and when n = 0, a0 = 13/4. From this we have that, except for
x = 1/2,

g(x) =
13

8
+

∞
∑

n=1

[ 2

n2π2

(

cos
(nπ

2

)

− 1
)

− 1

nπ
sin
(nπ

2

)

]

cos(nπx).

(7.43)
At x = 1/2 the series sums to the average in the jump in g(x), and
so it equals 7/4. The resulting function is shown in Figure 7.7.

The resulting approximation is, given N ,

g(x) ≈ 13

8
+

N
∑

n=1

[ 2

n2π2

(

cos
(nπ

2

)

− 1
)

− 1

nπ
sin
(nπ

2

)

]

cos(nπx).

(7.44)
The accuracy of this is shown in Figure 7.8. As happened with
the sine series, in the immediate vicinity of the jump the series
oscillates. However, unlike Example 3, there are no oscillations at
the endpoints. �
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7.4.5 Differentiability

In using a sine or cosine series when solving a PDE, it is implicitly assumed
you can differentiate the series term-by-term. What this means is that it
is assumed that

d

dx

∞
∑

n=1

pn(x) =
∞
∑

n=1

d

dx
pn(x).

With this in mind, in Example 3, if you try this with (7.36), you get

g′(x) =
∞
∑

n=1

2
(

1− cos(nπ/4)
)

cos(nπx). (7.45)

As you should recall, if an infinite series
∑

an converges, then it must be
true that an → 0 as n → ∞. The above series for g′(x) does not satisfy
this condition, and therefore it does not converge. In other words, you
can not differentiate (7.36) term-by-term. In contrast, for Example 2 you
can differentiate the series term-by-term. The theorem that explains this
states that if g(x) is continuous, and g′(x) is piecewise continuous, for
0 ≤ x ≤ L, then you can differentiate the cosine series term-by-term. You
can differentiate a sine series term-by-term if it is also true that g(0) =
g(L) = 0 [Tolstov and Silverman, 1976]. This holds for Example 2, and
that is why term-by-term differentiation can be done with that sine series.
For both the cosine and sine series, if g(x) is not continuous, then term-by-
term differentiation is not possible without additional assumptions. Those
interested in pursuing this issue a bit further should look at Exercise 11.

The situation for term-by-term integration is better. Specifically, if
g(x) satisfies the requirements of the convergence theorem, its sine, and
cosine, series can be integrated term-by-term.

The next question is whether the potential non-differentiability of a
sine series means that we can not use it to solve the diffusion equation.
To explain why this is not a problem, consider the solution (7.43), which
is

u(x, t) =

∞
∑

n=1

bne
−n2π2t sin(nπx).

As long as t > 0, the coefficients of this series are exponentially decreas-
ing functions of n2. This, along with the fact that the series for g(x)
converges, guarantee that you can differentiate the series term-by-term
without reservation, as long as t > 0.

7.4.6 Infinite Dimensional

For vectors in R
3, the dot product is used to determine orthogonality. As

you should recall, x and y are orthogonal if x · y = 0. Also, any vector
in R

3 can be written in terms of the three coordinate vectors i, j, and k.
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This means that it is possible to write x as a linear combination of these
vectors: x = xi + yj + zk. In this sense, i, j, and k are a basis for R

3.
In fact, since i, j, and k are orthogonal to each other, they form what is
called an orthogonal basis. Because there are three vectors in the basis,
R
3 is three dimensional.
Now, the Sine Series Convergence Theorem states when a function

g(x) can be written as a linear combination of the sine functions sin(πx/L),
sin(2πx/L), sin(3πx/L), · · · . There is also a dot product, or what is usu-
ally called an inner product, for the sine functions, and it involves the
integral appearing in the integration formula in (7.30). According to this
integration rule, the sine functions are orthogonal to each other. This
means that sin(πx/L), sin(2πx/L), sin(3πx/L), · · · is an orthogonal ba-
sis. Because this basis contains an infinite number of elements, the space
we are considering is infinite dimensional. This viewpoint gives rise to
what is called a Hilbert space, and these play a fundamental role in many
areas in science and engineering. For an introduction to Hilbert spaces
and partial differential equations, you might consult Gustafson [1999].

Exercises

1. Sketch the graph of f(x) for 0 ≤ x ≤ 1. Also, determine whether f(x)
is continuous, piecewise continuous, or neither for 0 ≤ x ≤ 1.

a) f(x) =











1 if 0 ≤ x ≤ 1
2

2x if 1
2 < x ≤ 3

4
3
2 if 3

4 < x ≤ 1

b) f(x) =

{

1 if x = 1
4 ,

1
2 ,

3
4 , 1

2 otherwise

c) f(x) =











0 if x = 0

lnx if 0 < x < 1

1 if x = 1

d) f(x) =

{

0 if 0 ≤ x ≤ 1
2

1
2x−1 if 1

2 < x ≤ 1

2. Assuming that L = 2, explain why g(x) does not satisfy the conditions
stated in the Sine Series Convergence Theorem.

a) g(x) = x1/3 b) g(x) = tanx c) g(x) = 1
x2+4x−1

3. In the following, g(x) and g′(x) are piecewise continuous. Assuming
that L = 2, sketch the function to which the sine series converges, for
0 ≤ x ≤ 2. The Heaviside function H(x) is defined on page 169.

a) g(x) = x

b) g(x) = ex

c) g(x) = cos(πx)

d) g(x) = 1− x

e) g(x) = 1 +H(x− 1)

f) g(x) = 1− 4H(x− 1
2)
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g) g(x) =

{

2− x if 0 ≤ x ≤ 1

0 if 1 < x ≤ 2

h) g(x) =

{

0 if 0 ≤ x ≤ 1

x otherwise

i) g(x) =

{

1 if 1
2 ≤ x ≤ 3

2

0 otherwise

j) g(x) =











1 if 0 ≤ x ≤ 1
3

0 if 1
3 < x ≤ 4

3

3 if 4
3 < x ≤ 2

4. Find the sine series for the functions in Exercise 3.

5. For the functions in Exercise 3, sketch the function to which the cosine
series converges, for 0 ≤ x ≤ 2.

6. Find the cosine series for the functions in Exercise 3.

7. For any given x from the interval 0 ≤ x ≤ 1, use the comparison test
to show that the series in (7.34) converges absolutely.

8. In this exercise let g(x) = x2, for 0 ≤ x ≤ 1.

a) Find the cosine series for g(x).

b) For any given x from the interval 0 ≤ x ≤ 1, use the comparison
test to show that the series in part (a) converges absolutely.

c) Using your result from part (a), show that

∞
∑

n=1

(−1)n+1

n2
=

π2

12
.

9. In this exercise let g(x) = x, for 0 ≤ x ≤ 1.

a) Find the sine series for g(x).

b) Using your result from part (a), show that

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

10. Find a function g(x) that is continuous for 0 ≤ x ≤ 1, except for a
jump discontinuity at x = 1/2, and which equals its sine series for
0 ≤ x ≤ 1.

11. This exercise deals with the restriction on term-by-term differentiabil-
ity of the sine series. This requires you to have read Section 6.7.1. If
the observation made in this exercise interests you, you might want to
look at Stakgold [2000].

a) Write the function g(x) in Example 3 in terms of the Heaviside
function H(x).

b) Using Example 4, from Section 6.7.1, what is g′(x)?

c) Using your result from part (b), what is the sine series for g′(x)?
How does this differ from the result in (7.45)?
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7.5 Wave Equation

The problem involves finding the function u(x, t) that satisfies

c2
∂2u

∂x2
=

∂2u

∂t2
, for

{

0 < x < L,
0 < t,

(7.46)

where c is a positive constant. This PDE is known as the wave equation.
It applies, for example, to the vertical displacement u(x, t) of an elastic
string. This provides an interesting interpretation of the terms in the sine
series solution, and this is discussed in Section 7.5.2.

To complete the problem, the boundary conditions are

u(0, t) = 0, (7.47)

and
u(L, t) = 0. (7.48)

For the initial conditions, it is assumed that

u(x, 0) = g(x), for 0 < x < L, (7.49)

and
ut(x, 0) = h(x), for 0 < x < L, (7.50)

where g(x) and h(x) are given functions. To avoid the complication with
differentiability, as described in Section 7.4.5, it is assumed that g(x)
and h(x) are smooth functions that satisfy the boundary conditions, and
g′′(0) = g′′(L) = 0.

As with the diffusion problem, separation of variables will be used to
find the general solution of the PDE and boundary conditions. After that,
the initial conditions will be satisfied. Also, you should notice, as with the
diffusion problem, the PDE and boundary conditions are homogeneous.
This is required for separation of variables to work.

Separation of Variables Assumption

Assuming
u(x, t) = F (x)G(t), (7.51)

and then substituting this into the PDE gives us

c2
F ′′(x)

F (x)
=

G′′(t)

G(t)
. (7.52)

Since the left-hand-side is only a function of x, and the right-hand-side is
only a function of t, we can conclude that there is a constant λ so that

c2F ′′(x) = λF (x) , (7.53)

and
G′′(t) = λG(t) . (7.54)
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Finding F (x) and λ

The separation of variables assumption must be used on the boundary
conditions. So, to have u(0, t) = 0, we need F (0)G(t) = 0. For this to
happen, and u not be identically zero, we require that F (0) = 0. Similarly,
we need F (L) = 0. Consequently, all-together, the function F (x) must
satisfy

c2F ′′(x) = λF (x) , (7.55)

where

F (0) = 0 and F (L) = 0, (7.56)

The only difference between the above BVP, and the one for the diffu-
sion equation, is that we now have the coefficient c2 instead of D. Conse-
quently, from (7.20) and (7.21), the nonzero solutions of (7.55) and (7.56)
are

Fn(x) = b̄n sin
(nπx

L

)

, (7.57)

and

λn = −c2
(nπ

L

)2
, (7.58)

for n = 1, 2, 3, . . .. Also, b̄n is an arbitrary constant.

Finding G(t)

Now that we know λ, (7.54) takes the form

G′′(t) = −c2
(nπ

L

)2
G(t)

Assuming that G(t) = ert, we get that r2 = −(cnπ/L)2. So, r =
±icnπ/L, and from this we get the general solution

Gn(t) = an cos(ωnt) + bn sin(ωnt), (7.59)

where

ωn =
cnπ

L
, (7.60)

and an and bn are arbitrary constants.

The General Solution

We have shown that for any given n, the function un(x, t) = Fn(x)Gn(t)
is a solution of the PDE that satisfies the boundary conditions. The re-
sulting general solution, that satisfies the PDE and boundary conditions,
is, therefore,

u(x, t) =
∞
∑

n=1

un(x, t),
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or equivalently

u(x, t) =
∞
∑

n=1

[

an cos(ωnt) + bn sin(ωnt)
]

sin
(nπx

L

)

, (7.61)

where an and bn are arbitrary constants, and ωn is given in (7.60). In
writing this down, the constant b̄n in (7.57) has been absorbed into the
an and bn.

Satisfying the Initial Conditions

u(x, 0) = g(x): We need

∞
∑

n=1

an sin
(nπx

L

)

= g(x). (7.62)

From (7.31), this means that

an =
2

L

∫ L

0
g(x) sin

(nπx

L

)

dx. (7.63)

ut(x, 0) = h(x): From (7.61), it is required that

∞
∑

n=1

ωnbn sin
(nπx

L

)

= h(x). (7.64)

Letting Bn = ωnbn, then the above equation takes the form

∞
∑

n=1

Bn sin
(nπx

L

)

= h(x). (7.65)

This is the same problem we had in Section 7.3.5, except that the
coefficient is being denoted as Bn instead of bn. So, from (7.25),

Bn =
2

L

∫ L

0
h(x) sin

(nπx

L

)

dx.

Since bn = Bn/ωn, the conclusion is that

bn =
2

cnπ

∫ L

0
h(x) sin

(nπx

L

)

dx. (7.66)

7.5.1 Examples

Example 1: Suppose that c = 1, L = 2, g(x) = 3 sin(πx), and h(x) = 0.
In this case, from (7.60), ωn = nπ/2. The resulting general solution
(7.61) is

u(x, t) =
∞
∑

n=1

[

an cos
(nπ

2
t
)

+ bn sin
(nπ

2
t
)

]

sin
(nπx

2

)

.
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Figure 7.9. Solution of the wave equation in Example 1. Shown is the solution
surface as well as the solution profiles at specific time values.

To satisfy the initial condition, since h(x) = 0 then, from (7.66),
the bn’s are all zero. As for the an’s, note that g(x) is one of the
sine functions in the series. Namely, it is the one when n = 2. This
enables us to avoid the integral in (7.63). To satisfy (7.62) we simply
take a2 = 3, and all the other bn’s are zero. Therefore, the solution
is

u(x, t) = 3 cos(πt) sin(πx). (7.67)

This solution is shown in Figure 7.9, both as time slices and as
the solution surface for 0 ≤ t ≤ 3T , where T = 2 is the period of
oscillation. �

Example 2: Suppose that in the previous example, the initial conditions
are g(x) = 0 and

h(x) = 3 sin
(πx

2

)

− 4 sin
(3πx

2

)

+ 5 sin(2πx).

This consists of the sum of three of the sine functions in (7.65):
n = 1, n = 3, and n = 4. To satisfy (7.65) we take B1 = 3,
B3 = −4, B4 = 5, and all the other Bn’s are zero. With this,
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b1 = 3/ω1 = 6/π, b3 = −4/ω3 = −8/(3π), b4 = 5/ω4 = 5/(2π).
Also, since g(x) = 0, then from (7.63), all the an’s are zero. The
resulting solution is

u(x, t) =
6

π
sin
(πt

2

)

sin
(πx

2

)

− 8

3π
sin
(3πt

2

)

sin
(3πx

2

)

+
5

2π
sin(2πt) sin(2πx). �

7.5.2 Natural Modes and Standing Waves

The curves shown in the lower plot in Figure 7.9 resemble what you see for
time lapse photographs of a vibrating string. There is a reason for this,
which is that the wave equation can be used to model the vibrational
motion of an elastic string. To pursue this a bit further, we found that
the solution of the wave equation problem consists of the superposition
of functions of the form

un(x, t) =
[

an cos(ωnt) + bn sin(ωnt)
]

sin
(nπx

L

)

, (7.68)

where
ωn =

cnπ

L
. (7.69)

The expression in the square brackets is a periodic function of t, with
period 2π/ωn. In this context, sin(nπx/L) is called a natural mode for
the problem, having natural frequency ωn. The resulting solution in (7.68)
corresponds to what is called a standing wave. So, the curves shown in
the lower plot in Figure 7.9 are plots of a standing wave in the case of
when n = 2. It is also possible to have traveling wave solutions, similar
to waves on a lake or ocean. If you want to learn about traveling waves,
you might look at Strauss [2007] or Holmes [2019].

Exercises

1. You are to find the solution of the wave equation problem for the
following initial conditions. Assume that L = 1 and c = 4. Note that
you should be able to answer this question without using integration.

a) g(x) = sin(3πx), and h(x) = 0

b) g(x) = 0, and h(x) = −2 sin(8πx)

c) g(x) = − sin(πx) + 4 sin(3πx), and h(x) = −3 sin(5πx)

d) g(x) = 5 sin(7πx), and h(x) = 2 sin(8πx) + 3 sin(12πx)

e) g(x) = 2 sin(2πx) cos(πx), and h(x) = −2 sin(8πx)

f) g(x) = 3 cos(2πx− π
2 ), and h(x) = −3 cos(7πx) sin(2πx)

2. Find the general solution of the following.
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a) uxx = utt, for 0 < x < 1, with the boundary conditions u(0, t) = 0
and ux(1, t) = 0.

b) 4uxx = utt, for 0 < x < 1, with the boundary conditions ux(0, t) = 0
and u(1, t) = 0.

c) uxx = 4utt, for 0 < x < 1, with the boundary conditions u(0, t) =
u(1, t) and ux(0, t) = ux(1, t).

d) uxx = utt+ut, for 0 < x < 1, with the boundary conditions u(0, t) =
0 and u(1, t) = 0. This is an example of what is called a damped
wave equation.

3. Solve

4
∂2u

∂x2
=

∂2u

∂t2
, for

{

0 < x < 1,
0 < t,

where u(0, t) = 0, u(1, t) = 0, u(x, 0) = 0, and ut(x, 0) = x(1− x).

7.6 Inhomogeneous Boundary Conditions

Solving the diffusion and wave equations using separation of variables
required the boundary conditions to be homogeneous. We now consider
how to find the solution when the boundary conditions are inhomoge-
neous, and have the form

u(0, t) = α, (7.70)

and
u(L, t) = β, (7.71)

where α and β are constants. The method used to find the solution is to
write it as

u(x, t) = w(x) + v(x, t),

where we pick w(x) so it satisfies the given boundary conditions. In other
words, so that w(0) = α and w(L) = β. Pretty much any smooth function
can be used, but it makes things easier if w comes from the steady state
equation. What this entails is explained below.

7.6.1 Steady State Solution

To find the steady state solution you assume that u(x, t) = w(x). This
is required to satisfy the PDE and the boundary conditions. Assuming
we are solving the diffusion equation (7.9), then we are looking for the
function w(x) that satisfies

d2w

dx2
= 0, for 0 < x < L,

where, from (7.70) and (7.71), w(0) = α and w(L) = β. The resulting
solution is

w(x) = α+
β − α

L
x.
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7.6.2 Transformed Problem

Now that we know the steady state solution, we write the solution of the
original diffusion problem as

u(x, t) = α+
β − α

L
x+ v(x, t). (7.72)

Since uxx = vxx and ut = vt, then from the diffusion equation (7.9) we
have that

D
∂2v

∂x2
=

∂v

∂t
, for

{

0 < x < L,
0 < t.

(7.73)

At x = 0, from (7.72), v(0, t) = u(0, t)− α = 0. This also happens at the
other endpoint. So, the boundary conditions are

v(0, t) = 0, (7.74)

and

v(L, t) = 0. (7.75)

Finally, if the initial condition is u(x, 0) = g(x), then the resulting initial
condition for v is

v(x, 0) = g(x)− α− β − α

L
x, for 0 < x < L. (7.76)

The above problem for v(x, t) has the same form as the one for u(x, t),
as given in (7.9)-(7.12), except for a slightly different looking initial condi-
tion. Consequently, we can use the solution as given in (7.23) and (7.25)
if we make the appropriate adjustments. In particular,

v(x, t) =

∞
∑

n=1

bne
λnt sin

(nπx

L

)

,

where

bn =
2

L

∫ L

0

(

g(x)− α− β − α

L
x
)

sin
(nπx

L

)

dx, (7.77)

and

λn = −D
(nπ

L

)2
.

7.6.3 Summary

We have shown that the solution of

D
∂2u

∂x2
=

∂u

∂t
, for

{

0 < x < L,
0 < t,
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where u(0, t) = α, u(L, t) = β, and u(x, 0) = g(x), is

u(x, t) = α+
β − α

L
x+

∞
∑

n=1

bne
λnt sin

(nπx

L

)

, (7.78)

where bn is given in (7.77).

Example: Find the solution of

4∂2
xu = ∂tu , for

{

0 < x < 5,
0 < t,

where u(0, t) = 3, u(5, t) = 2, and u(x, 0) = 0.

Answer: In this problem D = 4, L = 5, α = 3, and β = 2. So, from
(7.77),

bn =
2

5

∫ 5

0

(

− 3 +
x

5

)

sin
(nπx

5

)

dx = − 2

nπ

[

3− 2(−1)n
]

.

Therefore, from (7.78), the solution of the diffusion problem is

u(x, t) = 3− x

5
−

∞
∑

n=1

2

nπ

[

3− 2(−1)n
]

eλnt sin
(nπx

5

)

,

where λn = −4
(

nπ
5

)2
. �

7.6.4 Wave Equation

The method works, without change, on the wave equation. The only
complication is, as it usually is with the wave equation, differentiability.
To explain, if the boundary conditions are u(0, t) = α and u(L, t) = β,
and the initial conditions are u(x, 0) = g(x) and ut(x, 0) = h(x), then it
is required that

g(0) = α, h(0) = 0, g′′(0) = 0,

and

g(L) = β, h(L) = 0, g′′(L) = 0.

These are called compatibility conditions. If they are satisfied, and g′′(x)
and h′(x) are continuous, then the solution has the differentiability re-
quited to satisfy the wave equation.
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Exercises

1. You are to find the solution of the diffusion equation 4uxx = ut for the
given boundary and initial conditions. Assume that L = 1.

a) u(0, t) = 1, u(1, t) = −1, and u(x, 0) = 0.

b) u(0, t) = 2, u(1, t) = −5, and u(x, 0) = 2.

c) u(0, t) = −4, u(1, t) = 1, and u(x, 0) = x.

2. Find the steady state solution of the following problems.

a) uxx = ut, for 0 < x < 2, with the boundary conditions u(0, t) = 1
and ux(2, t) = −1.

b) 4uxx = ut, for 0 < x < 4, with the boundary conditions ux(0, t) = 2
and u(4, t) = 1.

c) (1 + t)uxx = ut, for 0 < x < 1, with the boundary conditions
u(0, t) = −1 and u(1, t) = 2.

d) uxx = ut+u, for 0 < x < 3, with the boundary conditions u(0, t) = 1
and u(3, t) = 2.

e) uxx−ux = ut, for 0 < x < 2, with the boundary conditions u(0, t) =
−1 and u(2, t) = 1.

3. Solve
∂2u

∂x2
=

∂u

∂t
, for

{

0 < x < 2,
0 < t,

where u(0, t) = 1, ux(2, t) = −1, and u(x, 0) = 0.

4. Solve

(1 + t)∂2
xu = ∂tu , for

{

0 < x < 1,
0 < t,

where u(0, t) = −1, u(1, t) = 2, and u(x, 0) = 0.

5. Solve

9
∂2u

∂x2
=

∂2u

∂t2
, for

{

0 < x < 1,
0 < t,

where u(0, t) = 1, u(1, t) = −1, u(x, 0) = 1 − 2x − 7 sin(3πx), and
ut(x, 0) = 0.

7.7 Inhomogeneous PDEs

It is common in applications to have a PDE that is not homogeneous. To
explain how to solve such a problem, suppose the PDE is

D
∂2u

∂x2
=

∂u

∂t
+ p(x, t) , for

{

0 < x < L,
0 < t,

(7.79)
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where p(x, t) is a given smooth function of x and t. It is assumed the
boundary conditions are homogeneous, and so,

u(0, t) = 0, (7.80)

and

u(L, t) = 0. (7.81)

Sine Series Expansions

The general solution when p ≡ 0, which is given in (7.23), consists of
the superposition of functions containing sin(nπx/L). The solution for
nonzero p can also be expanded in this way. Specifically, we can write

u(x, t) =

∞
∑

n=1

wn(t) sin
(nπx

L

)

, for 0 ≤ x ≤ L, (7.82)

where the wn(t)’s are determined from the PDE. The expansion in (7.82)
is guaranteed from the Sine Convergence Theorem (page 204) because u is
a smooth function and it satisfies the homogeneous boundary conditions
(7.80) and (7.81).

We will also expand the forcing function p is a sine series, and write

p(x, t) =

∞
∑

n=1

pn(t) sin
(nπx

L

)

, for 0 < x < L, (7.83)

where

pn(t) =
2

L

∫ L

0
p(x, t) sin

(nπx

L

)

dx. (7.84)

Because p(x, t) is known, the pn(t)’s are known. Note that it is not
assumed that p = 0 at the endpoints, which is why the interval in (7.83)
is 0 < x < L and not 0 ≤ x ≤ L.

Solving the PDE

Assuming the series for u can be differentiated term-by-term, we get that

uxx = −
∞
∑

n=1

(nπ

L

)2
wn(t) sin

(nπx

L

)

and ut =

∞
∑

n=1

w′
n(t) sin

(nπx

L

)

.

Introducing these into (7.79), as well as using (7.83), we have that

∞
∑

n=1

[

D
(nπ

L

)2
wn(t) + w′

n(t) + pn(t)

]

sin
(nπx

L

)

= 0. (7.85)
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For this to hold, the term in the square bracket must be zero. The proof
of this uses the integration formula (7.30), in exactly the same way it was
used to find the coefficients of the sine series. The conclusion is that

D
(nπ

L

)2
wn(t) + w′

n(t) + pn(t) = 0,

or equivalently,
w′
n + κnwn = −pn, (7.86)

where

κn = D
(nπ

L

)2
.

This is a first-order linear differential equation for wn, which can be solved
using an integrating factor. The integrating factor in this case is, from
(2.18), µ = eκnt. So, from (2.21), we get the general solution of (7.86) is

wn(t) = e−κnt

[

−
∫ t

0
pn(s)e

κnsds+ wn(0)

]

. (7.87)

Satisfying the Initial Condition

To solve the problem it remains to satisfy the initial condition

u(x, 0) = g(x), for 0 < x < L. (7.88)

From (7.25), and since bn = wn(0), it is required that

wn(0) =
2

L

∫ L

0
g(x) sin

(nπx

L

)

dx.

7.7.1 Summary

To summarize our findings, the solution of the inhomogeneous diffusion
problem (7.79)-(7.81), which satisfies the initial condition (7.88), is

u(x, t) =
∞
∑

n=1

wn(t) sin
(nπx

L

)

, (7.89)

where

wn(t) = e−κnt

[

−
∫ t

0
pn(s)e

κnsds+ wn(0)

]

, (7.90)

pn(t) =
2

L

∫ L

0
p(x, t) sin

(nπx

L

)

dx, (7.91)

wn(0) =
2

L

∫ L

0
g(x) sin

(nπx

L

)

dx,

and κn = D(nπ/L)2.
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Example

Suppose the problem to solve is

4
∂2u

∂x2
=

∂u

∂t
+ 3 sin(2t) sin(πx) , for

{

0 < x < 1,
0 < t,

(7.92)

where
u(0, t) = 0, (7.93)

u(1, t) = 0, (7.94)

and
u(x, 0) = 0, for 0 < x < 1. (7.95)

In this problem, D = 4 and L = 1. The first step is to find the pn’s. From
(7.91), we want

3 sin(2t) sin(πx) =

∞
∑

n=1

pn(t) sin(nπx).

So, p1(t) = 3 sin 2t and all the other pn’s are zero. Also, since g(x) = 0
then wn(0) = 0, for all n This leaves the integral in (7.90), and so

∫ t

0
p1(s)e

κ1sds =

∫ t

0
3 sin(2s)eκ1sds

= 3
2 + κ1e

κ1t sin(2t)− 2eκ1t cos(2t)

κ21 + 4
.

Since κ1 = 4π2, then

w1(t) =
3

2(1 + 4π4)

[

cos(2t)− 2π2 sin(2t)− e−4π2t
]

.

Therefore, the solution of the diffusion problem is

u(x, t) =
3

2(1 + 4π4)

[

cos(2t)− 2π2 sin(2t)− e−4π2t
]

sin(πx). �

7.7.2 A Very Useful Observation

As you might have noticed, the problem was solved without using separa-
tion of variables. Instead we assumed that the solution can be expanded
in a sine series, as expressed in (7.82). For this to work it is essential that
the functions sin(nπx/L) satisfy the boundary conditions, which they do
for this problem. By using this sine series expansion, the problem reduces
to solving a relatively simple ODE for the coefficients of the series. This
approach can be used on other PDEs and examples of how this is done
are given in Exercises 3 and 4. In fact, this idea is the basis for what is
called the Galerkin method for computing the solution of a PDE.
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Exercises

1. You are to find the solution of the diffusion equation (7.79), where
u(0, t) = 0, u(1, t) = 0, u(x, 0) = 0, and p(x, t) is given below. Assume
that D = 4 and L = 1.

a) p(x, t) = −4 cos(t) sin(5πx).

b) p(x, t) = e−2t sin(3πx).

c) p(x, t) = 1.

2. There is a simpler way to solve an inhomogeneous PDE when the
forcing function does not dependent on t. In this problem assume that
p(x, t) = x2.

a) Find the steady state solution of (7.79), that satisfies (7.80) and
(7.81).

b) Letting u(x, t) = w(x) + v(x, t), where w(x) is the steady state
solution you found in part (a), find the PDE and boundary condi-
tions satisfied by v(x, t). Also, if u(x, 0) = g(x), then what is the
resulting initial condition for v(x, t)?

c) Assuming g(x) = 0, find v(x, t), and from this determine the solu-
tion of the original diffusion problem.

3. This exercise considers how to use a sine series to solve

∂2u

∂x2
=

∂u

∂t
+ 5u , for

{

0 < x < 2,
0 < t,

where u(0, t) = 0, u(2, t) = 0, and u(x, 0) = x. This is going to be
done using the assumption in (7.82), which for this problem is

u(x, t) =

∞
∑

n=1

wn(t) sin
(nπx

2

)

, for 0 ≤ x ≤ 2.

a) Assuming u(x, t) is smooth, explain why the Sine Series Conver-
gence Theorem guarantees that the above series converges to u(x, t).

b) Substitute the series into the PDE and rewrite the result so it re-
sembles (7.85). From this determine the differential equation wn(t)
satisfies.

c) Find the general solution for wn(t), and from this write down the
general solution for u(x, t).

d) Use the general solution to satisfy the initial condition, and from
this determine the solution of the problem.

4. Solve

(1 + t)
∂2u

∂x2
=

∂u

∂t
, for

{

0 < x < 3,
0 < t,
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where u(0, t) = 0, u(3, t) = 0, and u(x, 0) = 1. Find the solution using
the procedure outlined in Exercise 3 (with the appropriate modifica-
tions).

7.8 Laplace’s Equation

We are going to consider how to solve the equation

∇2u = 0, (7.96)

where ∇2 is called the Laplacian, or the Laplacian operator. The
formula for ∇2 depends on the coordinate system you are using. In the
case of Cartesian coordinates,

∇2 =
∂2

∂x2
+

∂2

∂y2
,

in which case (7.96) is simply

uxx + uyy = 0. (7.97)

Later we will consider polar coordinates, and the respective formula for
∇2 will be given at that time.

It should not be a surprise that (7.96) is known as Laplace’s equa-
tion. It plays a fundamental role in applied mathematics. If you look
through a junior or senior level textbook in complex variables, fluid dy-
namics, electromagnetism, heat transfer, etc, it will appear often. As
an example, heat conduction is governed by the diffusion equation ut =
D∇2u. So, if you want to determine the steady-state temperature distri-
bution, then you must solve (7.96).

Our goal is to find the function u(x, y) that satisfies Laplace’s equation
for (x, y) in a region, as illustrated in Figure 7.10, along with a boundary
condition u = f on the boundary of the region. To keep things simple we
will only consider simple shapes, and that means rectangular and circular.
In both cases, the method of separation of variables is used to find the
solution.

Figure 7.10. The solution u(x, y) is to satisfy Laplace’s equation in a given
region in the x,y-plane, and also satisfy u = f on the boundary of the region.
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The symbol ∇2 appearing in Laplace’s equation comes from vector
calculus. Namely, using the gradient ∇ and the dot product, one writes

∇2 = ∇ · ∇.

In Cartesian coordinates the gradient is ∇ =
(

∂
∂x ,

∂
∂y

)

, and from this you

get that ∇2 = ∂2

∂x2 + ∂2

∂y2
. This can also be used to derive the formula for

∇2 is other coordinate systems, such as polar coordinates.

7.8.1 Rectangular Domain

The problem to solve is

uxx + uyy = 0 , for

{

0 < x < a,
0 < y < b,

(7.98)

where the boundary conditions are shown in Figure 7.11. So, u = 0 when
x = 0, when x = a, and when y = 0. Along the top, where y = b,
u = f(x).

The steps used in carrying out the separation of variables method
are very similar to what was done earlier. We will first find the general
solution of the PDE that satisfies the homogeneous boundary conditions.
We will then use that solution to satisfy the inhomogeneous boundary
condition (which is on the upper side of the rectangle).

Separation of Variables Assumption

Assuming
u(x, y) = X(x)Y (y), (7.99)

and then substituting this into Laplace’s equation gives us

X ′′(x)

X(x)
= −Y ′′(y)

Y (y)
. (7.100)

Figure 7.11. Rectangular domain used when solving Laplace’s equation and
the corresponding boundary conditions.



7.8. Laplace’s Equation 229

Since the left-hand-side is only a function of x, and the right-hand-side is
only a function of y, we can conclude that there is a constant λ so that

X ′′(x) = λX(x) , (7.101)

and

Y ′′(y) = −λY (y) . (7.102)

As explained earlier, the separated solution (7.99) is required to satisfy
the homogeneous boundary conditions shown in Figure 7.11.

Finding X(x) and λ

The equation to solve is

X ′′(x) = λX(x) . (7.103)

Since u = 0 when x = 0 and x = a, then it is required that

X(0) = 0 and X(a) = 0. (7.104)

This is essentially the same problem we had when solving the diffusion
and wave equations, and the general solution is

Xn(x) = cn sin
(nπx

a

)

, (7.105)

and

λn = −
(nπ

a

)2
, (7.106)

for n = 1, 2, 3, . . .. Also, cn is an arbitrary constant.

Finding Y (y)

From (7.102), we now need to solve

Y ′′(y) = −λnY (y) ,

where Y (0) = 0. The general solution of this ODE is

Yn = Ane
nπy/a +Bne

−nπy/a.

To have Yn(0) = 0 we need Bn = −An. Consequently,

Yn = An

(

enπy/a − e−nπy/a
)

= 2Ansinh(nπy/a). (7.107)
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The General Solution

The resulting general solution, that satisfies the PDE and homogeneous
boundary conditions, is, therefore,

u(x, y) =

∞
∑

n=1

Xn(x)Yn(y),

or equivalently

u(x, y) =
∞
∑

n=1

cnsinh
(nπy

a

)

sin
(nπx

a

)

, (7.108)

where the cn’s are arbitrary constants. In writing this down, the constant
2An in (7.107) has been absorbed into the cn in (7.105).

Satisfying the Inhomogeneous Boundary Condition

To have u(x, b) = f(x), we need

∞
∑

n=1

cnsinh
(nπb

a

)

sin
(nπx

a

)

= f(x). (7.109)

This can be written as

∞
∑

n=1

bn sin
(nπx

a

)

= f(x),

where bn = cnsinh(nπb/a). According to the Sine Convergence Theorem
(page 204), the bn’s that satisfy the above equation are

bn =
2

a

∫ a

0
f(x) sin

(nπx

a

)

dx.

From this we conclude that

cn =
2

a sinh(nπb/a)

∫ a

0
f(x) sin

(nπx

a

)

dx. (7.110)

With this value for cn, u(x, y) given in (7.108) is the solution of the
problem.

Example 1: Find the solution of

uxx + uyy = 0 , for

{

0 < x < 1,
0 < y < 1,

where u(x, 1) = 8 sin(5πx) and u = 0 on the other three sides of the
square (see Figure 7.11).
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Answer: In this problem a = b = 1, and f(x) = 8 sin(5πx). From
(7.109), we need

8 sin(5πx) =
∞
∑

n=1

cnsinh(nπ) sin(nπx).

So, c5sinh(5π) = 8, and the other cn’s are zero. Therefore, the
solution is

u(x, y) = 8
sinh(5πy)

sinh(5π)
sin(5πx).

The resulting solution is shown in Figure 7.12. �

Figure 7.12. Solution of Laplace’s equation derived in Example 1.

7.8.2 Circular Domain

We now solve Laplace’s equation when the domain is the circular region
x2 + y2 < a2, as illustrated in Figure 7.13. It makes it easier in this
case to use polar coordinates and take x = r cos θ, y = r sin θ. Using the
standard change of coordinate formulas, one finds that

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

Therefore, the problem we are solving is

urr +
1

r
ur +

1

r2
uθθ = 0 , for

{

0 ≤ r < a,
0 ≤ θ < 2π,

(7.111)



232 Chapter 7. Partial Differential Equations

where the boundary condition is

u
∣

∣

r=a
= f(θ). (7.112)

As will be seen below, this problem is easily solved using separation of
variables.

Using polar coordinates makes solving the problem easier, but it re-
quires some comment. First, (7.111) is singular when r = 0. This always
happens when using polar coordinates. To prevent the singular nature of
the equation from interfering with us solving the problem, it is assumed
that the solution is bounded. The second comment is that the positive
x-axis corresponds to θ = 0 and to θ = 2π. The solution u and its deriva-
tive uθ must be continuous in the circular domain, and this means we
must require that

u
∣

∣

θ=0
= u

∣

∣

θ=2π
and uθ

∣

∣

θ=0
= uθ

∣

∣

θ=2π
. (7.113)

In the vernacular of the subject, these are called periodic boundary con-
ditions. Also, note that these boundary conditions are homogeneous be-
cause u = 0 satisfies both of them. Finally, if (7.113) hold then ur is also
continuous in the domain.

Separation of Variables Assumption

Assuming
u = R(r)Θ(θ), (7.114)

and then substituting this into Laplace’s equation (7.111) gives us

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
= −Θ′′(θ)

Θ(θ)
. (7.115)

Since the left-hand-side is only a function of r, and the right-hand-side is
only a function of θ, we can conclude that there is a constant λ so that

r2R′′(r) + rR′(r) = λR(r) , (7.116)

Figure 7.13. Circular domain and corresponding boundary condition.
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and

Θ′′(θ) = −λΘ(θ) . (7.117)

From (7.113) we also must have that

Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π). (7.118)

Finding Θ(θ) and λ

As usual, the first problem to solve is the one involving the homogeneous
boundary conditions, which means solving (7.117) and (7.118).

λ = 0 : In this case (7.117) is Θ′′ = 0, and so Θ = A+Bθ, where A and
B are constants. To satisfy (7.118) it must be that B = 0, and so
the solution is Θ0 = A0.

λ 6= 0 : Assuming Θ = erθ, we get the characteristic equation r2 = −λ.
Skipping the two real roots case we take λ > 0 , giving us the general
solution

Θ = A cos(θ
√
λ) +B sin(θ

√
λ).

To satisfy (7.118) one finds that cos(2π
√
λ) = 1. This means that

2π
√
λ = 2π, 4π, 6π, . . .. In other words,

λn = n2, for n = 1, 2, 3, . . . , (7.119)

and

Θn = An cos(nθ) +Bn sin(nθ). (7.120)

Finding R(r)

λ = 0 : In this case (7.116) is r2R′′ + rR′ = 0. This is an Euler equation,
and how to solve it was explained in Section 3.11. One finds that
R = A+ B ln r, where A and B are constants. To have a bounded
solution we require B = 0, and this means the solution is R0 = A0.

λ = n2 : Now (7.116) is

r2R′′ + rR′ = n2R.

This is also an Euler equation, and the general solution is Rn =
Anr

n+Bnr
−n. Because the solution is bounded we require Bn = 0.

The General Solution

The general solution of Laplace’s equation that is bounded and satisfies
(7.113) is

u =
∞
∑

n=0

Rn(r)Θn(θ),
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or equivalently

u =
1

2
a0 +

∞
∑

n=1

rn
[

an cos(nθ) + bn sin(nθ)
]

. (7.121)

The coefficients in this formula are written in a form similar to what was
used earlier for a sine and cosine series. So, for example, we have written
R0Θ0 = A0A0 =

1
2a0.

Satisfying the Boundary Condition

To have u = f(θ) when r = a, we need

1

2
a0 +

∞
∑

n=1

an
[

an cos(nθ) + bn sin(nθ)
]

= f(θ). (7.122)

The an’s and bn’s are determined in the same way as for a sine and cosine
series. For example, to determine a7 you multiply the above equation by
cos(7θ), integrate for 0 ≤ θ ≤ 2π, and use orthogonality conditions such
as given in (7.30) and (7.39). The resulting formulas obtained in this way
are

an =
1

πan

∫ 2π

0
f(θ) cos(nθ)dθ,

and

bn =
1

πan

∫ 2π

0
f(θ) sin(nθ)dθ.

Figure 7.14. Solution of Laplace’s equation derived in Example 2.
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Example 2: Find the solution of

∇2u = 0 , for x2 + y2 < 1,

where u = 3 sin(4θ) for x2 + y2 = 1.

Answer: In this problem a = 1 and f(θ) = 3 sin(4θ). From (7.122),
we need

3 sin(4θ) =
1

2
a0 +

∞
∑

n=1

[

(an cos(nθ) + bn sin(nθ)
]

.

So, b4 = 3, and the other coefficients are zero. Therefore, the solu-
tion is

u = 3r4 sin(4θ).

The resulting solution is shown in Figure 7.14. �

Exercises

1. You are to find the solution of the problem shown in Figure 7.11.
Assume that a = 1 and b = 2. Note that you should be able to answer
this question without using integration.

a) f(x) = 5 sin(2πx)

b) f(x) = −3 sin(12πx)

c) f(x) = sin(πx)− 7 sin(8πx)

d) f(x) = −3 sin(4πx)− sin(7πx) + 6 sin(20πx)

2. You are to find the solution of the problem shown in Figure 7.13.
Assume that a = 2. Note that you should be able to answer this
question without using integration.

a) f(θ) = 4 cos(3θ)

b) f(θ) = 1− 3 sin(15θ)

c) f(θ) = sin(θ) + 3 cos(5θ)

d) f(θ) = 4− 2 sin(5θ)− 4 sin(9θ) + 8 cos(14θ)

3. The problem concerns solving the problem shown in Figure 7.15.

a) Write down the differential equation and boundary conditions for
this problem.

b) Find the general solution. This should satisfy Laplace’s equation as
well as the homogeneous boundary conditions.

c) Use the inhomogeneous boundary condition to find the formula for
the coefficient in your general solution.

d) If g(y) = 7 sin(3πy), then what is the solution?
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Figure 7.15. Problem solved in Exercise 3.

e) If g(y) = −2 sin(2πy) + 8 sin(7πy), then what is the solution?

4. The problem concerns solving the problem in the quarter circle shown
in Figure 7.16.

a) In polar coordinates, write down the differential equation and bound-
ary conditions for this problem.

b) Find the general solution. This should satisfy Laplace’s equation
as well as the homogeneous boundary conditions. It should not be
required to satisfy the conditions in (7.113), as those only apply
when you have a domain with 0 ≤ θ ≤ 2π.

c) If f(θ) = −3 sin(4θ), then what is the solution?

d) If f(θ) = 9 sin(2θ)− 5 sin(14θ), then what is the solution?

5. Setting λ = −κ2, where κ > 0, what is the general solution of (7.117)?
Show that to satisfy the boundary conditions (7.118) that the solution
is identically zero.

6. Suppose that instead of using 0 ≤ θ < 2π, one were to use −π ≤ θ < π.
How are the periodic boundary conditions (7.113) changed?

Figure 7.16. Problem solved in Exercise 4.



Appendix A

Matrix Algebra: Summary

The following is a brief summary of the rules of matrix and vector algebra
in two dimensions.

A.1 Addition: x+ y and A+B

General:
(

x
y

)

+

(

u
v

)

=

(

x+ u
y + v

) (

a b
c d

)

+

(

e f
g h

)

=

(

a+ e b+ f
c+ g d+ h

)

Examples:

(

1
2

)

+

(

−3
4

)

=

(

−2
6

) (

1 −2
−3 4

)

+

(

1 0
−7 3

)

=

(

2 −2
−10 7

)

A.2 Scalar Multiplication: αx and αA

Scalar means a number (real or complex).

General:

α

(

x
y

)

=

(

x
y

)

α =

(

αa
αb

)

α

(

a b
c d

)

=

(

a b
c d

)

α =

(

αa αb
αc αd

)

Examples:

4

(

1
−3

)

=

(

4
−12

)

− 4

(

1 0
−2 3

)

=

(

−4 0
8 −12

)

(

4
−8

)

= 4

(

1
−2

) (

6 0
3 −12

)

= 3

(

2 0
1 −4

)

237



238 Appendix A. Matrix Algebra: Summary

A.3 Equality: x = y and A = B

General:
(

x
y

)

=

(

u
v

)

means that x = u, y = v

(

a b
c d

)

=

(

e f
g h

)

means that a = e, b = f, c = g, d = h

Examples: note that I is defined on page 89

(

a
b

)

= 0 means that a = 0, b = 0

(

a b
c d

)

= I means that a = 1, b = 0, c = 0, d = 1

A.4 Matrix-Vector Multiplication: Ax and αAx+ y

General:
(

a b
c d

)(

x
y

)

=

(

ax+ by
cx+ dy

)

Examples:
(

1 −2
−3 4

)(

1
2

)

=

(

−3
5

)

3

(

1 −1
0 2

)(

−1
1

)

−
(

1
5

)

= 3

(

−2
2

)

−
(

1
5

)

=

(

−7
1

)

A.5 Differentiation: x′ and (af(t))′

General:
d

dt

(

x(t)
y(t)

)

=

(

x′(t)
y′(t)

)

d

dt

[(

a
b

)

f(t)

]

=

(

a
b

)

f ′(t)

Examples:
d

dt

(

t+ t3

sin t

)

=

(

1 + 3t2

cos t

)

d

dt

[(

1
−2

)

e5t
]

=

(

1
−2

)

5e5t = 5

(

1
−2

)

e5t
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Answers

Chapter 1
Section 1.2, pg 4

2a) r = −2
2b) r = 1/3
2c) none
2d) r = 0,−4
2e) r = −3, 1/2
2f) r = 2

2g) none
2h) r = 0
2i) none
2j) none
3a) r = −2, c = 1
3b) r = −1, c = −1

3c) r = 1/3, c = 3
3d) r = 1, c = −1
3e) r = −2/5, c = −7
3f) r = −4, c = 3

Chapter 2
Section 2.1, pg 12

1a) y = (9t+ c)−1/3, and y = 0
1b) y = ±(2e−t+c)−1/2, and y = 0
1c) y = −1/(cos t+ c), and y = 0
1d) y = 3±

√

t2/2 + c
1e) y = − ln( 12 t

2 + 2t+ c)
1f) y = − 1

3 ln[3 ln(t+ 1) + c]
1g) y = − 1

4 ln(2e
2t + c)

1h) y = − 1
ln 2 ln[t ln(2) + c]

1i) y = 1
3 [−1±(6t+c)−1/2], y = − 1

3
1j) y = −2− 1/(t+ c) and y = −2
1k) y = 3− 2/(t+ c) and y = 3
1l) y = tan(t/3 + c)
1m) y = ln[tanh(t2/2 + c)], y = 0
1n) y = ln(cet − 1)
1o) y = ±

√
cet2 − 1

2a) y (t) = 5 1√
150 t+1

2c) y (t) = 4 + 7 t

2d) y (t) = (1 + ln (4 + et)− ln (5))
−1

2e) y (t) = ln
(

1/2 t2e+2
e

)

2f) y (t) = −2 +
√
4 + 2 t

2g) y (t) = 2 arctan (1 + t)

2h) y (t) = 5
(

1 + 4 e5 t
)−1

2i) y (t) = 1
2 ln

(

e−2 t + e2 − 1
)

+ t

2j) y (t) = ln
(

t/2 + 1/2
√
t2 + 4

)

3a) q (r) = − 1√
14 r+1

3c) h (τ) = −2 + 4 eτ/3

3d) h (x) = 6
(

2 + e3 x
)−1

3e) z (r) = 6 (1 + 6 ln ((1 + er)/2))
−1

3f) w (τ) = 1/2 ln
(

1/8 τ4 + 1
)

3g) r (θ) = 2 (θ + 1)
2

3h) r (θ) = −1 +
√
2 θ2 + 1

4a) y − ln(1 + y) = t+ 1− ln 2
4b) 15 t = y5 + 5 y + 6
4c) y + ln(1 + y) = t+ 5 + ln(6)
4d) p− e−p = r + 2− e−2

5c) y = a cosh
(

x
a

)

+ h− a cosh
(

L
a

)

239
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Section 2.2, pg 18

1a) y (t) = c e−3 t

1b) y (t) = −t/2− 1/4 + e2 tc
1c) y (t) = −2 t− 14 + et/4c
1d) y (t) = et − 1 + e−tc

1e) y (t) = 20 t−cos(4 t)+c
12 t+8

1f) y (t) = t+c
t+2

1g) y = − 1
3+e3t

∫ t

0

√
se−3sds+ce3t

1h) y = e−t/2
(

1
2

∫ t

0
ses/2

1+s ds+ c
)

2a) y (t) = −4 + 3 et

2b) y (t) = 6t− 3
2 + 3 e−4t

2

2c) y (t) = 2 e−t/5

2d) y (t) = −e−t + 4− 2 e
t
2

2e) y (t) = −t+10
5+t

2f) y = −(2/3)e−t2/6
∫ t

0
es

2/6ds
3a) q (z) = 2− 3 e−2 z

3b) p (x) = −2x+ 1
2 − e−4x

2

3c) w (τ) = e2τ − eτ/2

3d) z (τ) = −τ/4− 5
16 + 5 e4 τ

16
3e) h (x) = −x+14

x+7

3f) h (z) = 3 z−1
5 z+1

4a) yp = −3, yh = c e2 t

4b) yp = 3 te−t, yh = c e−t

4c) yp = −3 + 1/13 e2 t, yh = c et/7

4d) yp =
∫ t

0
e−t2−s2ds, yh = c e−t2

5a) −2
5b) −1
7b) w (t) = 1√

5−4 e−2 t

Section 2.3, pg 28

1c) ln(2)
ln(4/3) days

2d) either 40 or 39 BC
3c) 50 ln(10)min
4c) 5(1− e−6) g
5b) 104(1− e−1) kg

6c) 324000
11

[

1−
(

25
27

)11]
lbs

7a) v = −20 + 120e−t/2 m/s
7c) 40(5− ln 6)m
8a) v = −(176/c)(1− e−2ct/11) fps

8d) 792 + 968e−20/11 ft
8e) −22 fps
9e) m/c− cL/A
11a) P = N

4

(

4 + z −
√
8z + z2

)

, z = e−rt

12a) P = 250 9−e−2t

3−e−2t

13d) 5 ln(64/39)
ln 2 min

14c) k = (41/4 − 21/4)/5

15b) 120 ln(42/37)
ln(4/3) min

15c) 120 ln(31/28)
ln(4/3) min

Section 2.4, pg 39
us=unstable; as=asymptotically stable

1a) as
1b) us
1c) as
1d) us
2a) y = 1, us; y = −2, as
2b) y = −1, us; y = 3, as
2c) y = ±1, us; y = 0, as
2d) y = ±2, as; y = 0, us

2e) y = − ln 2, as
2f) y = −2, as; y = 2, us
2g) y = 0, as; y = ln 3, us
2j) y = 0, as; y = −2, as; y = −1,

us
2i) y = 0, us; y = 1, as
2j) y = −2, us; y = 3, as
10c) 750

Chapter 3
Section 3.5, pg 52

1a) −7, 1
1b) −2, 2
1c) 1

2e
2
√
3, 1

2e
2

1d) 1 + 2e2
√
3, 1 + 2e2

1e) 1
2 (
√
3− 1)e2, 1

2 (
√
3 + 1)e2

1f) −e12, 0
3a) y (t) = c1 e−2 t + c2 et

3b) y (t) = c1 e−2 t + c2 et/2
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3c) y (t) = c1 + c2 e−3 t

3d) y (t) = c1 e−t/2 + c2 et/2

3e) y = c1 + c2t
3f) y (t) = c1 e3 t + c2 e3 tt
3g) y (t) = c1 e−t/2 + c2 e−t/2t
3h) y = c1 sin (t/2) + c2 cos (t/2)
3i) y (t) = c1 et sin (t)+ c2 et cos (t)
3j) y = e−t(c1 sin (2 t)+c2 cos (2 t))
4a) y (t) = −1/3 e2 t + 1/3 e−t

4b) y (t) = −8 e
t
2 − 2 e−2t

4c) y (t) = −4/3 + 1/3 e−3 t

4d) y (t) = 4− 5 et/5

4e) y = 3 exp(−(1/3)
√
3t)

4f) y = 5 exp(−(1/2)t)
4g) y (t) = −e−t − e−tt
4h) y (t) = −1/3 sin (3 t)− cos (3 t)
4i) y = −e−t sin (2 t)− e−t cos (2 t)
4j) y = 2 et/2 cos (t/3)

6a) (1 + t)
3

6b) cos
(

t2 + 6 t
)

6c) t+ 2
8b) 4, 4, 0

Section 3.8, pg 61
1a) y (t) = −et

1b) y = −π2 sin(πt)−3π cos(πt)+2 sin(πt)
π4+5π2+4

1c) y(t) = −5t2 − 8t− 42
5

1d) y (t) = − 3 sin(2 t)
202 − 15 cos(2 t)

101 + 1/6 e−t

1e) y (t) = −4 t3 + 30 t2 − 178 t+ 535

1f) y (t) = 4 cos(2 t)
17 − 33 sin(2 t)

17 − 4
1g) y(t) = (5t− 2) et/5
1h) y(t) = (3t− 1) cos(3t) /3− (5t+ 2) sin(3t) /5
1i) y (t) = t2 + 4/5 t+ 18

25
1j) y (t) = 1/10 + 3/13 et

1k) y (t) = −t2 − t3 − 3/4 t4 + 4/3 t

1l) y(t) = −et + 3 e−2t

2

1m) y (t) = − e4t cos(t)t
2

1n) y(t) = − 15 cos(t+7)
37 + 21 sin(t+7)

37

1o) y (t) = 5 + cos(2t)
2 − 3 sin(2t)

2
1p) y (t) = −2 sin (2 t)− 1/4 cos (2 t)
2a) y (t) = e3 tc2 + e−2 tc1 − et

2b) y = c1e
−2t + c2e

−t + −π2 sin(πt)−3π cos(πt)+2 sin(πt)
π4+5π2+4

2c) y (t) = etc2 + e−5 tc1 − 5t2 − 8t− 42
5

2d) y (t) = e−t

6 + 5 e
t
5 c1 + c2 − 3 sin(2t)

202 − 15 cos(2t)
101

2e) y (t) = e−t/3c2 + e2 tc1 − 4 t3 + 30 t2 − 178 t+ 535

2f) y (t) = e−t/4c2 + et/2c1 + 4 cos(2 t)
17 − 33 sin(2 t)

17 − 4

2g) y (t) = sin (2 t) c2 + cos (2 t) c1 + (5t−2)et

5

2h) y (t) = c2e
−t + c1e

6 t + (3t−1) cos(3t)
3 − (5t+2) sin(3t)

5
2i) y (t) = sin (2 t) etc2 + cos (2 t) etc1 + t2 + 4/5 t+ 18

25
2j) y (t) = e−t sin (3 t) c2 + e−t cos (3 t) c1 + 1/10 + 3/13 et

2k) y (t) = 1/3 e3 tc1 + c2 − t2 − t3 − 3/4 t4 + 4/3 t

2l) y (t) = e−tc2 + e2/3 tc1 − et + 3 e−2t

2

2m) y (t) = e4t sin(t) c2 + e4t cos(t) c1 − e4t cos(t)t
2

2n) y (t) = e6 tc2 + e−tc1 − 15 cos(t+7)
37 + 21 sin(t+7)

37

2o) y (t) = e−2tc1 + 5 + e−tc2 +
cos(2t)

2 − 3 sin(2t)
2

2p) y (t) = e−t/4c1 + c2 − 2 sin (2 t)− 1/4 cos (2 t)
3a) y(t) = −e−2t + 4 et − 6t− 3
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3b) y(t) = −1 + 2 cos(2t) + 2t2

3c) y(t) = −et − sin(t) + cos(t) + 1

3d) y(t) = − e−3t

3 + 3t2

2 − t+ 4
3

3e) y(t) = − e−2t

4 − e−2tt+ e2t

4

3f) y(t) = e
t
2 + (1− t) e−

t
2 − 1

3g) y(t) = sin(3t) + cos(3t) + cos(3t) t
3h) y(t) = e−t sin(2t) + e−t cos(2t) + e−t

3i) y(t) = 2 e
t
2 sin

(

t
2

)

− 2 sin(t)− cos(t)
5a) y (t) = −2/5 et + e6 tc

5b) y (t) = e−2/3 tc + −3π cos(π t)+2 sin(π t)
9π2+4

5c) y (t) = 2/3 t− 2/9 + e−3 tc
5d) y (t) = −3 t− 15− 1/6 e−t + et/5c

5e) y(t) = − cos(2t) t− 2 cos(2t)
5 − 2 sin(2t) t− 3 sin(2t)

10 + e4tc

5f) y(t) = −2t e−t − 2 e−t

7 − 1
3 + e6tc

5g) y (t) = −1/10 e−t cos (t) + 3/10 sin (t) e−t + e−2/3 tc
5h) y (t) = −1/4 cos (2 t+ 5) + 1/4 sin (2 t+ 5) + e2 tc

Section 3.9, pg 65
1a) yp = −2 e−2 t + 2 et/2 − 5 e−2 tt
1b) yp = 3 + (−3 cos (t) + 3 sin (t)) et

1c) yp = −e−2 t
∫ t

0
ln (1 + s) e2 s ds+ et

∫ t

0
ln (1 + s) e−s ds

1d) yp = 3t+ 2t
5
2

5 − e−3t
∫ t

0
e3ss

3
2 ds− 1 + e−3t

1e) yp = −2 ln (t+ 1) + et/5
∫ t

0
2 e−s/5

1+s ds

1f) yp = −e−
t
2

∫ t

0
sin
(

s2 + 1
)

e
s
2 ds+ e

t
2

∫ t

0
sin
(

s2 + 1
)

e−
s
2 ds

2a) y(t) = 4 e
t
2

5 + e−2t

5 + yp
2b) y(t) = −et sin(t) + et cos(t) + yp

2c) y(t) = e−2t

3 + 2 et

3 + yp
2d) y(t) = 1 + yp
2e) y(t) = 1 + yp

2f) y(t) = e
t
2

2 + e−
t
2

2 + yp
3a) 2 t (−t+ et − 1)
3b) 1/2 (t− 1) e2 t + 1/2 + t/2
3c) 4 t5/2

4b) 1/2 sin (t)
√
t

Section 3.10, pg 76

1a) ω0 = 3, R =
√
2, ϕ = π/4

1b) ω0 = π,R = 2, ϕ = −π/6
1c) ω0 = 1, R = 2/

√
3, ϕ = 2π/3

1d) ω0 = 2, R = 4
√
2, ϕ = −3π/4

2a) R = 2, ϕ = π/2
2b) R = 2, ϕ = −π/2
2c) R = 2

√
2, ϕ = π/4

2d) R = 2
√
2, ϕ = −3π/4

2e) R = 2, ϕ = −π/3
2f) R = 2, ϕ = 2π/3
4b) u = 1

4 cos(8t− π)

4e) 1
5b) u = 2

3

√
3 cos

(

2
√
3t− 5π

6

)

5f)
√
3π/18

6b) u = 1
20

√
2 cos

(

10t− 7π
4

)

6e) 5(2 +
√
2); 3π/40

9b) u = − 1
90

√
15e−2t sin(2

√
15t)

9d) 1
24 exp(− 1√

15
( 3π2 −Arctan( 1√

15
)))

10d) u =
√
2e−3t cos(t− π/4)

14b) u (t) = 3/4 sin (16 t) t

15b) u (t) = 5 sin(3 t)t
12
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Section 3.11, pg 81
1a) y (x) = c1 x2 + c2 x2 ln (x)
1b) y (x) = c1 x3 sin (ln (x)) + c2 x3 cos (ln (x))
1c) y (x) = c1√

x
+ c2 3

√
x

1d) y (x) = c1
√
x sin

(

1/2
√
3 ln (x)

)

+ c2
√
x cos

(

1/2
√
3 ln (x)

)

1e) y (x) = c1 x2 sin (3 ln (x)) + c2 x2 cos (3 ln (x))

1f) y (x) = c1

x + c2

x2/5

1g) y (x) = c2 ln (x) + c1
1h) y (x) = c2 x3 + c1
1i) y (x) = c1

xn + c2 xn+2

2a) y (x) = −x2e + xex

2b) y (x) = −1/4x4 − x+ 1/4 + x2

2c) y (x) = 2− 2x+ (x+ 1) ln (x)
2d) y (x) = 1/4x2−3/2 ln (x)+3/4

2e) y (x) = 1
2

(

(x− 1)
−1

+ x− 1
)

Chapter 4

2 i) A =

[

0 1
−c/a −b/a

]

; ii) a1 =

[

1
r1

]

, a2 =

[

1
r2

]

a) a = 1, b = 2, c = −3, r1 = 1, r2 = −3; b) a = 4, b = 0, c = 1, r1 = 1
2 i,

r2 = − 1
2 i; c) a = 4, b = 3, c = −1, r1 = 1/4, r2 = −1 d) a = 1, b = 4, c = 0,

r1 = 0, r2 = −4

Section 4.3, pg 94
1 a) indep, b) dep, c) dep, d) indep

2a) 3,−2 2b) 5,−1 3a) 2± 2i 3b) −1± 2i

Section 4.5, pg 101

1a)

[

c 1 e−3 t + c 2 e2 t

−1/3 c 1 e−3 t + 1/2 c 2 e2 t

]

1b)

[

c 1 e−t/2 + c 2 et/2

−2 c 1 e−t/2 + 2 c 2 et/2

]

1c)

[

c 1 + c 2 e5 t

−2 c 1 + 3 c 2 e5 t

]

1d)

[

−c 2 e2 t

c 1 e2 t + c 2 e2 tt

]

1e)

[

c 1 e−2 t

c 2 e−2 t

]

1f)

[

5c 1 sin(3t) + 5c 2 cos(3t)

c 1 (− sin(3t) + 3 cos(3t)) + c 2 (− cos(3t)− 3 sin(3t))

]

1g)

[

2c 1 sin(4t) + 10c 2 cos(4t)

c 1 (sin (4t)− cos (4t)) + 5c 2 (cos (4t) + sin (4t))

]

1h)







c 1 et/2 sin (t) + c 2 et/2 cos (t)

c 1
(

−2 et/2 sin (t) + 4 et/2 cos (t)
)

+c 2
(

−2 et/2 cos (t)− 4 et/2 sin (t)
)







1i)





2c 1 e−t sin(3t) + 2c 2 e−t cos(3t)

c 1 (e−t sin (3t)− e−t cos (3t))+
c 2 (e−t cos (3t) + e−t sin (3t))




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2 a)
{

c 1 = 18
5 , c 2 = 2

5

}

, b) {c 1 = 9/4, c 2 = 7/4} ,
c)
{

c 1 = 13
5 , c 2 = 7/5

}

, d) {c 1 = −1, c 2 = −4} , e) {c 1 = 4, c 2 = −1} ,
f)
{

c 1 = − 1
15 , c 2 = 4

5

}

, g)
{

c 1 = 3, c 2 = 2
5

}

, h) {c 1 = 7/4, c 2 = 4} ,
i){c 1 = 3, c 2 = 2}

4a)







c 1 e−t + c 2 e2 t

−2 c 1 e−t + c 2 e2 t − c 3 e−t

c 1 e−t + c 2 e2 t + c 3 e−t







4b)







c 1 et + 3 c 2 e2 t + 2 c 3 ett

c 2 e2 t

c 2 e2 t + c 3 et







4c)







2 c 1 et − c 2 e−2 t

3 c 1 et

7 c 1 et + 4 c 2 e−2 t + c 3 e−t







4d)







c 1 e−t

2 c 2 e
√
5t + 2 c 3 e−

√
5t

−c 3
(√

5 + 1
)

e−
√
5t + c 2 e

√
5t
(√

5− 1
)







5b) y1 = 5 + 5 e−
t
25 , y2 = −5 e−

t
25 + 5

Section 4.6, pg 109
4 a) 1± 2i, b) 1± 2i, c) −2± 4i, d) −2± 4i

Section 4.7, pg 115
us=unstable; as=asymptotically stable; ns=neutrally stable
si=sink; so=source; ssi=spiral sink; sso=spiral source; sa=saddle; c=center

1a) us, sa
1b) as, si
1c) us, so
1d) us, so

1e) as, si
1f) us, sso
1g) as, ssi
1h) ns, c

1i) ns, c
3a) us, sa
3b) as, si
3c) as, ssi

3d) us, sso
5a) us
5b) as
5c) us

5d) us
5e) ns
5f) as

Section 4.8, pg 117

1b) f = e−
t
2 cos

(√
3 t
2

)

−
e−

t
2
√
3 sin

(√

3 t
2

)

3

1c) u = e−
t
2 cos

(√
3 t
2

)

+
e−

t
2
√
3 sin

(√

3 t
2

)

3

2e) u1 = − sin(t) + sin(2t), u2 = −2 sin(t)− sin(2t)

Chapter 5
Section 5.1, pg 124

2a) (u, v) = (1/2, 0), (1/3, 1/4)
2b) (u, v) = (0, 0), (−1, 1)
2c) (u, v) = (1/4, 4)
2d) (S, P ) = (1, 1), (0, 0), (2, 0)
2e) (S, I) = (5, 0), (1, 2)

2f) (s, c) = (−1, 1)
2g) (x, y) = (0, 0)
2h) (x, y) = (0, 2), (0,−1), (2, 0)
2i) (x, y) = (0, 0), (0, 6), (1, 3), (4, 0)
2j) (u, v) = (0, 0)

Section 5.2, pg 135
1a) (u, v) = (1,−1), us, sa
1b) (u, v) = (0, 0), us, sa
1c) (x, y) = (0, 0), as, si; (x, y) = (2/3, 4/9), us, sa
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1d) (S,E) = (0, E0), us, sa
1e) (u, v) = (1/2, 0), us, sa; (1/3, 1/4), as, si
1f) (u, v) = (1/4, 4), as, si
1g) (r, s) = (−2,−2), us, sa; (r, s) = (1, 1), as, ssi
1h) (x, y) = (0, 0), id
1i) (x, y) = (0, 1), us, sso
1j) (u, v) = (1, 1), us, sso
1k) (x, y) = (0, 0), us, sa; (x, y) = (c/d, a/b), id
1l) (S, P ) = (0, 0) us, sa; (S, P ) = (2, 0), us, sa; (S, P ) = (1, 1), as, ssi
1m) (S, I) = (1, 0), as, si; (S, I) = (2,−1/2), us, sa
1n) (r, s) = (1,−3), as, si; (r, s) = (−1,−2), us, sa
3a) (x, y) = (a, a3), us; (x, y) = (−a,−a3), as
3b) (x, y) = (a, cos(a)), us
4) a) B, b) C, c) A, d) D
7) b) N < b/a; c) N > b/a

Section 5.3, pg 146
1a) H = v2 + 3e2u/2− 3u
1b) H = v2/2 + 1

10 ln(1 + 5u2)
1d) H = 5v2/2 + 7u2/2 + 3

5u
10

1d) H = v2/2 + 4/3
(

u2 + 1
)3/2

5) d)
√

3/2; e) −1; f) 2
√
2
∫ 1

−1
[(3 + u2)(1− u2)]−1/2du

6) d)
√
2(1− e−1); e) − ln(2− e−1);

f)
√
2
∫ 1

− ln(2−e−1)
[(1− e−1)2 − (1− e−u)2]−1/2du

7) e) d = −a, H = bv2/2− cu2/2 + auv

Chapter 6
Section 6.1, pg 157

1a) − (s− 5)
−1

1b) (4 + 3 s)/s2

1c) 2
s2 + 7

1+s

1d) 1
s+2 − 4

(s−7)2

1e) 8 s−3

1f) (9 s2 − 6 s+ 2)/s3

1g) 4 s−1 + 8 s−2 + 8 s−3

1h) −10s
s2+64

1i) 5
s + 8

(s−3)2+16

1j) 3
s−1 + 4s

s2+4

1k) 2 s2+3
(s2+9)(s2+1)

1l) 50
s(s2+100)

2a) 6 s
(s2+9)2

2b) 6 s2−49
(s2+49)2

2c) 2
s(s2−3)
(s2+1)3

2d) 10 s+2

((s+2)2+25)
2

3a)
∑n

k=0 ak
k!

sk+1

3b)
∑n

k=0 ak/(s+ k)
3c)

∑n
k=1 ak

kπ
k2π2+s2

Section 6.2, pg 160

1a) 2/3 sin (3 t)
1b) 3t e−4t + 5 et

1c) 1/5 et − 1/5 e−4 t

1d) e−t cos (2 t)
1e) 1/4 e2 t + 7/4 e−2 t

1f) 1/3 e−t (6 cos (3 t)− 5 sin (3 t))

1g) − cos(4t) + cos(3t)
1h) cosh(4t)− cosh(t)
1i) sin (2 t)− sin (3 t)
1j) t et + t2e−2t + t3e3t

1k) sin(t) + sinh(t)
1l) 7 cos(t)− 3t
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1m) −2 et + 1 + e2t

1n) e2t−e−t
(√

3 sin
(√

3 t
)

+ cos
(√

3 t
))

2a) 1− cos(3t)

2b) 1− e−4t (4t+ 1)
2c) −2 et + 1 + e2t

Section 6.3, pg 163

1a) −1 + (s− 4)Y
1b) 4 + (2 s+ 7)Y
1c) s2Y + 5Y + 2 s+ 1
1d)

(

s2 + 3 s− 2
)

Y + 2s

1e)
(

4 s2 + 2 s
)

Y + 8 s− 2

2a) 1/2 et− 1/2 cos (t)− 1/2 sin (t)
2b) 1/2 t sin (t)
2c) cos t(sin t− 2 cos t) + 1 + e−t

2d) −1/2 sin (t) + 1/2 sinh (t)
2e) 1/2 t2 + cos (t)− 1
2f) − cos(t) + 1

Section 6.4, pg 168

1a) 1 + e−t/2

1b) −1/2 e−t + e−t/3

1c) 1/3 e−2 t − 1/3 et

1d) 2te3 t

1e) 4− 5 et/5

1f) −2 sin (t/2)− cos (t/2)
1g) −et cos (t)
1h) −3 e−t sin (2 t)
2a) 4 et − e−2 t − 6 t− 3

2b) −1 + cos (2 t) + 2 t2

2c) et − sin (t) + cos (t)− 2
2d) 1/2 t2

2e) 1− 1/2 et cos (2 t)− 1/2 e−t

3a)
∫ t

0
ln (1 + 3 τ) e−3 t+3 τ dτ

3b) 1
3

∫ t

0

√
1 + τ sin (3 t− 3 τ) dτ

3c)− 1
5

∫ t

0
e−2 t+2 τ

1+τ dτ+ 1
5

∫ t

0
et/2−τ/2

1+τ dτ

3d) 1
2

∫ t

0
sin(1+τ2)e−t+τ sin (2t− 2τ) dτ

4a)
∫ t

0
ln (1 + 3 τ) e−3 t+3 τ dτ + e−3 t

4b) cos (3 t) + 1
3

∫ t

0

√
1 + τ sin (3 t− 3 τ) dτ

4c) 8/5 e−2 t + 2/5 et/2 − 1
5

∫ t

0
e−2 t+2 τ

1+τ dτ + 1
5

∫ t

0
et/2−τ/2

1+τ dτ

4d) e−t sin (2 t) + 1
2

∫ t

0
sin(1 + τ2)e−t+τ sin (2t− 2τ) dτ

Section 6.5, pg 171

1a) e−6 s

s

1b) e−s−e−3s

s

1c) 3 e−2s−4 e−5s

s

1d) 3−2 e−s

s

1e) 1−e−s

s2

1f) e−3s

s2+1

1g) 1−2 e−s+2 e−2s−2 e−3s

s

1f) 1−2 e−s+2 e−3s−e−4s

s2

2a) H (t− 3)e3−t cos (−9 + 3 t)
2b) −1/2H (t− 2) (t− 2) (t− 4)

2c) H (t− 1)− H (t− 2) + H (t− 3)
2d) 2− t+ 2 t2 − 7/6 t3

2e) H (t− 5)t
2f)H (t−6) (5 cos (t− 6) + sin (t− 6))

4a) 1
1−e−2 s

(

s−1 − e−s

s

)

4b) − e−ss+e−s−1
(1−e−s)s2

4c) 1+e−2 s−2 e−s

(1−e−2 s)s2

4d) 1+e−2 s−2 e−s

(1−e−2 s)s

5c) 1
(es−1)s

6a) 1 +H (t− 1) + H (t− 2) + H (t− 3) + H (t− 4) + · · ·
6b) 1− H (t− 2) + H (t− 4)− H (t− 6) + H (t− 8) + · · ·
6c) 1− 1/2H (t− 1) + 3/8H (t− 2)− 5H (t−3)

16 + 35H (t−4)
128 + · · ·

6d) 1 + t/2− 1/16 t2 + t3

96 − 5 t4

3072 ++ · · ·
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Section 6.6, pg 175

1a) − (s− 5)
−1

, Re(s) > 5
1b) 8 s−3, Re(s) > 0
1c) 3s

s2+16 , Re(s) > 0

1d) 1
(s+2)2

, Re(s) > −2

2a) e−s

s2

2b) 2−2 e−s

s2

2c) −(3s+1)e−3s+(s+1)e−s

s2

2d) e−2s

s

2e) 1−e−4sπ

s2+1

2f) 4−4 e−3s

s

Section 6.7, pg 181
1a) e−4 t + 3/4H (t− 1)

(

1− e−4 t+4
)

1b)
(

−1 + et/2−2
)

H (4− t)− et/2−2

1c) 2H (t− 3)e−t+3 − e−t

1d) −1/2H (t− 2) + 1/2 (1− H (2− t)) e4 t−8 + e4 t−4 (H (1− t)− 1)
1e) 1/10H (t− 5)

(

−5 + 3 e−2 t+10 + 2 e3 t−15
)

1f) 3/2H (t− 4) (sin (t− 4))
2 − 3/2H (t− 2) (sin (t− 2))

2

1g) 3/4H (t− 1)
(

−1 + e4 t−4
)

1h) −2H (t− 2) sin (t− 2) + H (t− 3) sin (t− 3)

2) Q(t) = −5H(t− 2) e−
t
50

+ 1
25 + 950 e−

t
50 + 50

3) b) P = 100 e2t − 500 e2t−2
(

H(t− 1) + e−2H(t− 2) + e−4H(t− 3) + · · ·
)

4) b) v = 35H(t− 10) e−
t
4
+ 5

2 − 40 + 40 e−
t
4 ,

c) x = 1160− 40t− 160 e−
t
4 + 140H(t− 10) (1− e−

t
4
+ 5

2 )
5) b) T = −200H(t− 120)

(

1− e−k(t−120)
)

+200H(t− 180)
(

1− e−k(t−180)
)

−
280 e−kt + 350, c) about 230 minutes

Section 6.8, pg 186

1a)

[

18 e−3 t

5 + 2/5 e2 t

−6/5 e−3 t + 1/5 e2 t

]

1b)

[

7/4 et/2 + 9/4 e−t/2

7/2 et/2 − 9/2 e−t/2

]

1c)

[

5/2 e2 t + 3/2 e4 t

−5/2 e2 t + 3/2 e4 t

]

1d)

[ 13
5 + 7/5 e5 t

− 26
5 + 21 e5 t

5

]

1e)

[

4 e2 t

−e2 t − 4 e2 tt

]

1f)

[

− 1
2 e

t sin (2 t) + 4 et cos (2 t)

−et cos (2 t)− 8 et sin (2 t)

]

2a)

[

2 e2t

3 − 8 e−t

3 − 3t+ 2
4 e2t

3 + 8 e−t

3 − 4

]

2b)

[

3t2

−6t2 − 4t

]

2c)

[

e2t − 2t− 1
e2t − e2tt− t− 1

]

2d)

[

−2 et cos(t) + et sin(t) + t+ 2
et sin(t) + 3 et cos(t)− 4t− 3

]

3a) 1
s2+s−6

[

s 6

1 s+ 1

]

3b) 1
s2−1/4

[

s 1/4

1 s

]

3c) 1
(s−2)2

[

s− 2 0

−1 s− 2

]

3d) 1
s2−2 s+5

[

s− 1 −4

1 s− 1

]

4c) y1 = 5 + 5 e−
t
25 , y2 = −5 e−

t
25 + 5

5c) y1 = −118 e−
t

100 − 72 e−
3t
50 + 200,

y2 = −236 e−
t

100 + 36 e−
3t
50 + 200

5c) y1 = 8 e−
3t
50 + 2 e−

t
100 , y2 =

−4 e−
3t
50 + 4 e−

t
100

6c) u1 = sin(t)
3 + sin(2t)

3 ,

u2 = 2 sin(t)
3 − sin(2t)

3

7d) u = e−
t
2 cos

(√
3 t
2

)

+
e−

t
2
√
3 sin

(√

3 t
2

)

3
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Chapter 7

Section 7.2, pg 194

1a) u (x) = e4x−e−4x

e4−e−4

1b) u (x) = e−3x−e3x

e3+e−3

1c) u (x) = ex sin(2x)
e2 sin(4)

1d) u (x) = −5 e2+5 e2−x+5 ex−5
e2+1

1e) u (x) = −2 e−x + x2 − 2x+ 2 e−1

1f) u (x) = −e2x+e4x

e4π−e2π − sin(4x)

3a) un = bn sin
[

π
2 (2n− 1)x

]

, with λn = −[π2 (2n− 1)]2

3b) u0 = b0, with λ0 = 0; and un = bn cos
(

nπ
4 x
)

, with λn = −(nπ4 )2

3c) u = be−λx/2 sin(πx/4), with λ = ±
√

4− (π/2)2

3d) un = bne
−x sin(nπx), with λn = 1 + (nπ)2

3e) u0 = b0, λ0 = 0; un = an sin(2πnx) + bn cos(2πnx), with λn = 4π2n2

Section 7.3, pg 200
1a) −4 e−75π2t sin (5π x)

1b) 6 e−363π2t sin (11π x)

1c) e−3π2t sin (π x) + 8 e−48π2t sin (4π x)− 10 e−147π2t sin (7π x)

1d) −e−27π2t sin (3π x) + 7 e−192π2t sin (8π x) + 2 e−675π2t sin (15π x)

1e) 2 e−27π2t sin (3π x) + 2 e−3π2t sin (π x)

2a)
∑∞

n=1 −2 (−1+(−1)n)e−n2π2t sin(1/2nπ x)
nπ

2b)
∑∞

n=1 −4 (−1+2 (−1)n)e−n2π2t sin(1/2nπ x)
nπ

2c) −4/3 e−π2t sin(1/2π x)
π +

∑∞
n=3 −2 n (−1+(−1)n)e−n2π2t sin(1/2nπ x)

π (n2−4)

2d)
∑∞

n=1

(

2 cos(1/2nπ)
nπ − 2 1

nπ

)

e−n2π2t sin (1/2nπ x)

2e)
∑∞

n=1

(

−4 (−1)n+2 cos(1/6nπ)
nπ + 2 1

nπ

)

e−n2π2t sin (1/2nπ x)

3)
∑∞

n=1 30
(−1)ne−n2π2t sin(1/3nπ x)

nπ

4)
∑∞

n=1
(2 cos(1/4nπ)−2 cos(3/4nπ))e−5/2n2π2t sin(1/2nπ x)

nπ

5a)
∑∞

n=1 bne
−k2

nt sin(knx), kn = π(2n− 1)/2

5b)
∑∞

n=1 bne
−4k2

nt cos(knx), kn = π(2n− 1)/2

5c)
∑∞

n=1 bne
−k2

n(t+t2/2) sin(knx), kn = nπ

5d)
∑∞

n=1 bne
−k2

nt+e−t

sin(knx), kn = nπ

6d) u = −24e(−k2
3t+e−t−1) sin(k3x)− 12e(−k2

15t+e−t−1) sin(k15x)
7a) (1 + x)F ′′ = λF , 7G′ − tG = λG
7b) r2R′′ + rR′ = λR, Θ′′ = −λΘ
7c) (exF ′)′ = λ(1 + x2)F , G′ = λG
7d) Z ′′ + 3zZ ′ = λZ, Y ′′ + 9Y = λY
7e) (F ′/F )2 = λ, (G′/G)2 = e−t − λ

Section 7.4, pg 212

4a)
∑∞

n=1 −4 (−1)n sin(1/2nπ x)
nπ
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4b)
∑∞

n=1 −2
nπ ((−1)ne2−1) sin(1/2nπ x)

n2π2+4

4c)
∞
∑

n=1
n odd

4
n sin (1/2nπ x)

π (n2 − 4)

4d)
∞
∑

n=1
n even

4 sin
(

nπx
2

)

nπ

4e)
∑∞

n=1
(−4(−1)n+2 cos(nπ

2 )+2) sin(nπx
2 )

nπ

4f)
∑∞

n=1

(

6 (−1)n−8 cos(1/4nπ)
nπ + 2 1

nπ

)

sin (1/2nπ x)

4g)
∑∞

n=1

(

−2nπ cos(1/2nπ)−4 sin(1/2nπ)
n2π2 + 4 1

nπ

)

sin (1/2nπ x)

4h)
∑∞

n=1

(

− 2(2(−1)nnπ−nπ cos(nπ
2 )+2 sin(nπ

2 )) sin(nπx
2 )

n2π2

)

4i)
∑∞

n=1
(2 cos(nπ

4 )−2 cos( 3nπ
4 )) sin(nπx

2 )
nπ

4j)
∑∞

n=1

(

−6(−1)n−2 cos(nπ
6 )+6 cos( 2nπ

3 )
nπ + 2

nπ

)

sin
(

nπx
2

)

6a) 1 +

∞
∑

n=1
n odd

8 cos (1/2nπ x) /(n2π2)

6b) −1/2 + 1/2 e2 +
∑∞

n=1 4
((−1)ne2−1) cos(1/2nπ x)

n2π2+4
6c) cos(πx)

6d) −
∞
∑

n=1
n odd

8 cos (1/2nπ x) /(n2π2)

6e) 3
2 +

∑∞
n=1

(

− 2 sin(nπ
2 ) cos(nπx

2 )
nπ

)

6f) −2 +
∑∞

n=1

8 sin(nπ
4 ) cos(nπx

2 )
nπ

6g) 3
4 + 2

∑∞
n=1

(nπ sin(nπ
2 )−2 cos(nπ

2 )+2) cos(nπx
2 )

n2π2

6h) 3
4 +

∑∞
n=1

(

− 2(nπ sin(nπ
2 )+2 cos(nπ

2 )−2(−1)n) cos(nπx
2 )

n2π2

)

6i) 1
2 +

∑∞
n=1

(−2 sin(nπ
4 )+2 sin( 3nπ

4 )) cos(nπx
2 )

nπ

6j) 7
6 +

∑∞
n=1

(2 sin(nπ
6 )−6 sin( 2nπ

3 )) cos(nπx
2 )

nπ

8a) 1/3 +
∑∞

n=1 4
(−1)n cos(nπ x)

n2π2

9a)
∑∞

n=1 −2 (−1)n sin(nπ x)
nπ

Section 7.5, pg 218
1a) cos(12πt) sin(3πx)
1b) − 1

16π sin(32πt) sin(8πx)

1c) − cos (4π t) sin (π x) + 4 cos (12π t) sin (3π x)− 3 sin(20π t) sin(5π x)
20π

1d) 5 cos (28π t) sin (7π x) + sin(32π t) sin(8π x)
16π + sin(48π t) sin(12π x)

16π

1e) cos (12π t) sin (3π x) + cos (4π t) sin (π x)− sin(32π t) sin(8π x)
16π

1f) 3 cos (8π t) sin (2π x)− sin(36π t) sin(9π x)
24π + 3 sin(20π t) sin(5π x)

40π
2a)

∑∞
n=1

(

an cos(knt) + bn sin(knt)
)

sin(knx), kn = (2n− 1)π/2

2b)
∑∞

n=1

(

an cos(2knt) + bn sin(2knt)
)

cos(knx), kn = (2n− 1)π/2
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2c) a+ bt+
∑∞

n=1

(

an cos(nπt)+ bn sin(nπt)
)(

An cos(2nπx)+Bn sin(2nπx)
)

2d) e−t/2
∑∞

n=1

(

an cos(ωnt) + bn sin(ωnt)
)

sin(nπx)
)

, ωn =
√
4n2π2 − 1/2

3)
∑∞

n=1 −2 (−1+(−1)n) sin(2nπ t) sin(nπ x)
n4π4

Section 7.6, pg 222

1a) 1− 2x+
∑∞

n=1 −2 (1+(−1)n)e−4n2π2t sin(nπ x)
nπ

1b) 2− 7x+
∑∞

n=1 −14 (−1)ne−4n2π2t sin(nπ x)
nπ

1c) −4 + 5x+
∑∞

n=1 8
e−4n2π2t sin(nπ x)

nπ
2a) 1− x
2b) −7 + 2x
2c) −1 + 3x
2d) Aex +Be−x, where A = (2− e−3)/(e3 − e−3), B = (e3 − 2)/(e3 − e−3)
2e) A+Bex, where A = (1 + e2)/(1− e2), B = 2/(e2 − 1)

4) −1 + 3x+
∑∞

n=1 2 (1 + 2 (−1)
n
) e−n2π2(t+1/2 t2) sin (nπ x) /(nπ)

5) 1− 2x− 7 cos (9π t) sin (3π x)

Section 7.7, pg 226

1a)
(4 k5 cos(t)+4 sin(t)−4 k5 e−k5 t) sin(5π x)

k5
2+1

, where k5 = 100π2

1b) − e−k3 t(−1+ek3 t−2 t) sin(3π x)

k3−2 , where k3 = 36π2

1c)
∑∞

n=1 −1/2
(−1+(−1)n)

(

e−4n2π2t−1
)

sin(nπ x)

n3π3

3d)
∑∞

n=1 −4 (−1)ne
−(5+1/4π n2)t sin(1/2nπ x)

nπ

Section 7.8, pg 235
1a) 5 sinh(2πy) sin(2πx)/ sinh(4π)
1b) −3 sinh(12πy) sin(12πx)/ sinh(24π)
1c) sinh(πy) sin(πx)/ sinh(2π)− 7 sinh(8πy) sin(8πx)/ sinh(16π)

1d) −3 sinh(4πy) sin(4πx)
sinh(8π) − sinh(7πy) sin(7πx)

sinh(14π) + 6 sinh(20πy) sin(20πx)
sinh(40π)

2a) 1
2r

3 cos(3θ)
2b) 1− 3(r/2)15 sin(15θ)
2c) (r/2) sin(θ) + 3(r/2)5 cos(5θ))
2d) 4− 2(r/2)5 sin(5θ)− 4(r/2)9 sin(9θ) + 8(r/2)14 cos(14θ)
3d) 7 sinh(3πx) sin(3πy)/ sinh(3π)
3e) −2 sinh(2πx) sin(2πy)/ sinh(2π) + 8 sinh(7πx) sin(7πy)/ sinh(7π)
4b)

∑∞
n=1 cnr

2n sin(2nθ)
4c) −3(r/2)4 sin(4θ)
4d) 9(r/2)2 sin(2θ)− 5(r/2)14 sin(14θ)



Bibliography

G. Bonani, S. Ivy, W. Wolfli, M. Broshi, I. Carmi, and J. Strugnell.
Radiocarbon dating of fourteen Dead Sea scrolls. Radiocarbon, 34(3):
843–849, 1992. doi: 10.1017/S0033822200064158.

A. Coddington and R. Carlson. Linear Ordinary Differential Equations.
Society for Industrial and Applied Mathematics, 1997. ISBN 978-0-
898713-88-6.

A. M. Cohen. Numerical Methods for Laplace Transform Inversion. Nu-
merical Methods and Algorithms. Springer, 2007. ISBN 978-0-387-
28261-9.

B. Davies. Integral Transforms and Their Applications. Texts in Applied
Mathematics. Springer-Verlag New York, 3d edition, 2002. ISBN 978-
0-387-95314-4.

D. Eigler. Quantum Corral. Website, 2020. http://www.nisenet.org/

catalog/scientific-image-quantum-corral-top-view.

R. Engbert and F. Drepper. Chance and chaos in population biology -
models of recurrent epidemics and food chain dynamics. Chaos, Soli-
tons, and Fractals, 4(7):1147–1169, 1994. doi: 10.1016/0960-0779(94)
90028-0.

B. Friedland. Control System Design: An Introduction to State-Space
Methods. Dover Publications, Inc., New York, NY, USA, 2005. ISBN
978-0486442785.

K. E. Gustafson. Introduction to Partial Differential Equations and
Hilbert Space Methods. Dover Publications, 3d edition, 1999. ISBN
9780486140872.

M. H. Holmes. Introduction to the Foundations of Applied Mathematics.
Texts in Applied Mathematics. Springer, 2nd edition, 2019. ISBN 978-
0-387-87749-5.

R. F. Hoskins. Delta Functions: Introduction to Generalised Functions.
Woodhead Publishing, 2nd edition, 2009. ISBN 978-1-904275-39-8.

251



252 BIBLIOGRAPHY

A. J. Jerri. The Gibbs Phenomenon in Fourier Analysis, Splines and
Wavelet Approximations. Mathematics and Its Applications. Springer,
1998. ISBN 978-0-7923-5109-2.

NASA. Drag of a sphere. Website, 2020. https://www.grc.nasa.gov/WWW/
K-12/airplane/dragsphere.html.

F. Oberhettinger and L. Badii. Tables of Laplace Transforms. Springer-
Verlag Berlin Heidelberg, 1973. ISBN 978-3-540-06350-6.

A. E. Parker. Who solved the Bernoulli differential equation and how
did they do it? College Mathematics Journal, 44(2):89–97, 2013. doi:
10.4169/college.math.j.44.2.089.

L. Perko. Differential Equations and Dynamical Systems. Texts in Applied
Mathematics. Springer, 2001. ISBN 978-0-387-95116-4.

F. W. Roos and W. W. Willmarth. Some experimental results on sphere
and disk drag. AIAA Journal, 9(2):285–291, 1971. doi: 10.2514/3.6164.

J. L. Schiff. The Laplace Transform: Theory and Applications. Under-
graduate Texts in Mathematics. Springer, 1999. ISBN 978-0-387-98698-
2.

I. Stakgold. Boundary Value Problems of Mathematical Physics (Vol.
1). Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000. ISBN 978-0-89871-456-2.

W. A. Strauss. Partial Differential Equations: An Introduction. Wiley,
2nd edition, 2007. ISBN 978-0-470-05456-7.

A. M. Stuart and A. R. Humphries. Dynamical Systems and Numeri-
cal Analysis. Cambridge Monographs on Applied and Computational
Mathematics. Cambridge University Press, 1998. ISBN 978-0-521-
64563-8.

G. P. Tolstov and R. A. Silverman. Fourier Series. Dover Publications,
1976. ISBN 978-0486633176.



Index

H(·), 169
W (y1, y2), 46
L(·), 155
δ(t), 177
det(·), 90
∀, 45, 89
I, 90
∇2, 227
Im(·), 49
Re(·), 49
g, 23, 66, 75
i, 49

Abel’s formula, 46
acceleration, 2, 22, 43, 83,

190
advection equation, 189
Airy’s equation, 168
amplitude, 67
Archimedes’ principle, 30, 77
associated homogeneous

equation
first-order equation, 17
matrix equation, 18
second-order equation, 44,

54, 59
asymptotically stable, 35
linear system, 113
nonlinear system, 126, 127

autonomous equation, 35,
120

balance law, 190
bang-bang wave, 172
baseball, 31
beam equation, 6
Bernoulli equation, 19
Bessel equation, 66
Beverton-Holt model, 32
boundary conditions, 191
diffusion equation, 195

periodic, 195, 232
wave equation, 214

boundary value problem, 190
Brownian motion, 190
buoyant force, 30
BVP, 190, 215

catenary, 13
center, 114
central force field, 149
characteristic equation, 47,

51, 190
eigenvalues, 90

compatibility conditions
wave equation, 221

complex conjugates, 94
complex number, 49
imaginary part, 49
real part, 49

convolution theorem, 162
cosine series, 208
convergence theorem, 208
differentiability, 211

critical point, 39

damped
critically damped, 78
over-damped, 78

damped wave equation, 219
damping
critically damped, 70
over-damped, 70
under-damped, 71
weakly damped, 72, 74

damping constant, 70
Dead Sea scrolls, 29
defective matrix, 97
delta function, 177
determinant, 46, 90, 136
differential equation
dependent variable, 2

first-order linear, 14
first-order system, 83
homogeneous, 3
independent variable, 3
linear, 3
order, 3
second-order linear, 43

diffusion equation, 189
inhomogeneous, 222
inhomogeneous boundary

conditions, 219
separation of variables, 195
steady state, 219

discontinuous forcing
function, 175

distribution, 180
drag force, 23
on sphere, 31

driving frequency, 73
Dulong-Petit law of cooling,

27

eigenvalue, 89
eigenvalue problem, 90
BVP, 192

eigenvector, 89
independent, 92

electrostatic force, 149
epidemic equilibrium, 134
epidemics, 84
equilibrium point, 39
Euler equation, 79
Euler’s formula, 48
existence and uniqueness

theorem, 44
exponential order, 174

Fejér summation, 208
floor function, 172
flutter, 74
forcing
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periodic, 78
forcing amplitude, 73
forcing function, 43
oscillator, 72

Fourier sine series, 198, 202

Galerkin method, 225
general solution
diffusion equation, 198
first-order equation, 16
linear system, 88, 95
second-order equation, 44,

59
wave equation, 215, 229

Gibbs phenomenon, 208
gravitational acceleration

constant, 23, 66, 119
gravitational force, 23, 66,

149

half-life, 28
half-plane of convergence,

173
Hamiltonian, 140, 146, 148
Hamiltonian system, 148
Heaviside step function, 169
derivative, 180

Hilbert space, 212
homicide victim, 33
homogeneous, 3
Hooke’s law, 66

identity matrix, 90
impulse, 178
impulse forcing, 177
indeterminate steady state,

130
inhomogeneous, 3
inhomogeneous boundary

conditions, 219
initial condition, 2
diffusion equation, 195
separation of variables, 198

initial conditions
second-order equation, 44
wave equation, 214

initial value problem, 2
second-order equation, 44

integral curves, 103
integrating factor, 15, 224
isolated steady states, 123
IVP, 2

Jacobian matrix, 128, 129
joke model, 137

jump discontinuity, 169, 173,
203

Kelvin-Voigt material, 117
Kermack-McKendrick

model, 84

Laplace transform, 155
convergence theorem, 174
convolution, 162
impulse forcing, 177
inverse, 157
of derivative, 161
periodic function, 171
solving differential

equations, 163
table, 158

Laplace’s equation, 227
periodic boundary

conditions, 232
libration, 143
linear approximation, 128
linear operator, 156
linear system
first-order, 84
general solution, 88
homogeneous, 86, 183
inhomogeneous, 183
second-order, 118

linearized stability theorem,
129

linearly independent
equating coefficients, 58
functions, 45
vector functions, 89
vectors, 92
Wronskian, 46

logistic equation, 25

mass-spring-dashpot, 6, 66
matrix
defective, 94
identity, 90
non-invertible, 90
singular, 90

Maxwell material , 117
Maxwell viscoelastic

material, 19
measles, 120, 135
method of undetermined

coefficients, 55
first-order equation, 18, 61

Michaelis-Menten equations,
6, 124

mixing problems, 20

natural frequency, 67, 218
natural mode, 218
neutrally stable, 36, 113, 127
Newton’s law of cooling, 26
Newton’s second law, 2, 23,

43, 66, 67, 83, 138,
140, 149, 190

ODE, 3
one-sided stability, 42
oscillator
Duffing, 124, 147
Morse, 147
simple harmonic, 67, 138
Toda, 124
Van der Pol, 124

partial differentiation
notation, 189

partial fractions, 165
particular solution, 17
non-uniqueness, 55
second-order equation, 54

PDE, 3
pendulum, 6, 119, 142
period, 146

periodic forcing, 78
periodic orbit, 151
periodic solution, 67, 138,

146
phase, 67
phase plane, 103
phase portrait, 104, 129, 130
table, 105

Picard-Lindelöf theorem, 12
piecewise continuous, 173,

202
predator-prey equations, 124
principle of superposition, 5
linear system, 87
PDEs, 198

radioactive decay, 1, 6, 28
Rayleigh quotient, 194, 195
reduction of order, 47, 80
resonance, 73

saddle, 114, 130
saddle point, 131, 133
sawtooth wave, 172
Schrödinger’s equation, 6
separable equation, 7
separation of variables
for ODE, 8
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for PDEs, 196, 214, 228,
232

non-uniqueness, 11
separation constant, 196

separatrix, 143
simple harmonic motion, 67
sine series, 198
convergence theorem, 204

sink, 114, 130, 133
SIR model, 84, 120
Somigliana equation, 23, 75
source, 114, 130
spiral sink, 114, 130, 131
spiral source, 114, 130
spring constant, 66
square wave, 171
stability theorem

linear system, 114
nonlinear system, 129
single equation, 35

standing wave, 218
steady state, 35
linear system, 113
nonlinear system, 122
PDE, 219

Temple Scroll, 29
term-by-term differentiation,

211
terminal velocity, 24, 31
trace, 116, 136
transfer function, 165
systems, 186

triangle wave, 172

turkey, 32, 182

unstable, 35
linear system, 113
nonlinear system, 128

variation of parameters, 19,
62

velocity, 2, 22, 83
angular, 119

wave equation, 189
compatible boundary

conditions, 221
damped, 219

weight, 23, 75, 77
Wronskian, 63, 89


