
M A N N I N G

Phil Wilkins
Foreword by Eduardo Silva Pereira

Using Fluent Bit, Kubernetes, streaming and more

Fluent Bit’s Logical Architecture and Key Features

New processor feature

This feature can manipulate

all three signal types (metrics,

traces, and logs).

New processor feature

Processor includes SQL-like

syntax options and Lua.

Plugins

Plugins support a wide variety

of technology standards, such

as OTLP and HTTP, and

application and platform-specific

formats such as systemd and

Windows Logs.

Parser to extract meaning

Regex-based parsers range

from Apache and nginx logs

to CRI.

Custom plugins

Custom plugins can be built

with C and compiled into the

binary with options such as Go.

Filter to transform and route

We can manipulate, enrich,

and filter events declaratively,

from simple grep options to

adding Kubernetes and

container metadata.

Event buffering

Event buffering is in memory or

to file. The buffering enables

performance options and offers

time series data access and

recovery options.
Time series processing

Buffered data can be filtered

and restructured, and

time series calculations

can be performed on it, like

simplified Apache Spark.

Custom filters

Bespoke filter logic is

incorporated through WASM and

Lua. Filters are decoupled from

the input and output processors,

minimizing risks to backpressure.
Stream data

We can handle the output of

stream processing as a new

data source.

Chaining ltersfi

These filters allow us to drive

multistep filtering more

efficiently or skip filtering.

Multiple output without copying

Fluentd required outputs to be

copied explicitly to reach more

than one output. Fluent Bit does

not have this requirement.

Con guration optionsfi

Fluent Bit supports classic and

YAML formats for configuration

along with CLI config options.

Plugins allow Prometheus

exporter replacement

Fluent Bit allows plugins to be used

as an alternative to services such

as Prometheus Node Exporter.

Fluent Bit’s APIs

These APIs allow the retrieval

of health, metrics, and command

actions such as reloading

configuration without restarting.

OpenTelemetry Collector/Exporter

Fluent Bit is OTLP compliant so it can

operate like both OpenTelemetry
Collector and can support non-OTLP

sources.

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)
P

a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Logs and Telemetry

Logs and Telemetry
USING FLUENT BIT, KUBERNETES,

STREAMING, AND MORE

PHIL WILKINS

FOREWORD BY EDUARDO SILVA PEREIRA

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2025 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The authors and publisher have made every effort to ensure that the information in this book
was correct at press time. The authors and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Katie Sposato Johnson
20 Baldwin Road Technical editor: Karthik Gaekwad
PO Box 761 Review editor: Dunja Nikitović
Shelter Island, NY 11964 Production editor: Kathy Rossland

Copy editor: Keir Simpson
Proofreader: Katie Tennant

Technical proofreader: Braydon Kain
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781633437470
Printed in the United States of America

www.manning.com

 To my wife, Catherine, and our boys, Christopher and Aaron

vii

brief contents
PART 1 FROM CONCEPTS TO RUNNING FLUENT BIT1

1 ■ Introduction to Fluent Bit 3
2 ■ From zero to “Hello, World” 22

PART 2 DIGGING DEEPER ..47

3 ■ Capturing inputs 49
4 ■ Getting inputs from containers and Kubernetes 90
5 ■ Outputting events 123
6 ■ Parsing to extract more meaning 164
7 ■ Filtering and transforming events 187

PART 3 PLUGINS AND QUERIES 221

8 ■ Stream processors for time series calculations
and filtering 223

9 ■ Building processors and Fluent Bit extension
options 248

10 ■ Building plugins 271
11 ■ Putting Fluent Bit into action: An enterprise use case 296

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the author xxv
about the cover illustration xxvi

PART 1 FROM CONCEPTS TO RUNNING FLUENT BIT1

1 Introduction to Fluent Bit 3

1.1 Why is Fluent Bit so important? 3
The value of event distribution 5 ■ Fluent’s place in CNCF 6

1.2 Core Fluent Bit concepts 6
Payload structure 6 ■ Logical architecture 8

1.3 Drivers of Fluent Bit adoption 11
Small footprint, efficiency, and speed 11 ■ Effect of OpenTelemetry
and how Fluent Bit relates to It 12 ■ Extending Fluent Bit with C,
Go, WebAssembly, and Lua 15 ■ Fluent Bit and stream
processing 15 ■ OTel vs. Fluent Bit and Fluentd 15

1.4 Is Fluent Bit a child or a successor of Fluentd? 18
viii

CONTENTS ix
1.5 How we’re going to discover Fluent Bit 19
How much Kubernetes will this book involve? 20 ■ Logging in
Action 20

2 From zero to “Hello, World” 22

2.1 Multiple ways to configure Fluent Bit 23
Configuration formats 23 ■ CLI controls 23 ■ Defining
a monitoring pipeline using the CLI 27 ■ Fluent Bit prebuilt
Docker container 31

2.2 Fluent Bit configuration in two forms 31
Fluent Bit vs. Fluentd configuration comparison 31 ■ Comparing
Classic and YAML configuration 32

2.3 Checking configuration with a dry run 37
Exercise: Using - -dry-run to help fix a conf file 38

2.4 Configuring file inclusions 38
Creating dynamic configuration by using inclusions 39 ■ Proving
stub inclusions 40

2.5 Environment variables in the configuration 41
Applying environment variables 41 ■ Setting environment
variables 42

2.6 Monitoring Fluent Bit’s health 42

PART 2 DIGGING DEEPER...47

3 Capturing inputs 49

3.1 Fluent Bit plugins 49
3.2 OS and device sources 51

Monitoring infrastructure with native executables 51 ■ Tuning
monitoring sources 55 ■ Device sources 55

3.3 Using stdout 56
The twelve-factor app and Fluent Bit 57 ■ Running the
containerized Log Simulator 58

3.4 File-based log events 60
3.5 Capturing log files 62

Simple file consumption 62 ■ Supporting long-running
processes 64 ■ Capturing logs from short-lived applications 69

CONTENTSx
3.6 Network events and communication between Fluent
Bit and Fluentd 69
Network input sources 70 ■ HTTP source 71 ■ Securing
communication with SSL/TLS 73 ■ forward source 76
Beyond network ports 78 ■ Internode communication 78
OpenTelemetry 80

3.7 Fluent Bit buffers and chunks 87
3.8 Other sources 88

Container-related plugins 88 ■ Getting data from other
processes 88 ■ Observing the observers 89

4 Getting inputs from containers and Kubernetes 90

4.1 Architectural context 91
4.2 Fluent Bit capturing Docker events and metrics 92

Docker Events 93 ■ Docker Metrics 96

4.3 Using Podman as a Docker alternative 97
4.4 Other containers 98
4.5 Container logging drivers 100
4.6 Application direct to Fluent Bit 101

OpenTelemetry’s approach to containerized applications 103
Deploying for application direct logging 104 ■ Enriching log
events with Pod context by injection 107 ■ Enriching log events
with Pod context by filter 107

4.7 Kubernetes and observability 111
Understanding Kubernetes’ position on logging 111 ■ Kubernetes
auditing 112 ■ Kubernetes events input 112 ■ The many parts
of the Kubernetes ecosystem 113 ■ Container Images 114
Helm charts 115

4.8 Kubernetes operator 117
4.9 Observations on Fluent Bit with Kubernetes 120

4.10 The next frontier of observability with Fluent Bit: eBPF 121

5 Outputting events 123

5.1 Architectural context 124
5.2 Common characteristics of Fluent Bit output plugins 125

Output resilience through retries 125 ■ Network controls 129
Worker threads 129 ■ Considerations for using threads 130

CONTENTS xi
5.3 Null output 131
Monitoring with Fluent Bit 131 ■ Configuring null output 133

5.4 Sending log events to the console 135
Formatting outputs 137 ■ Seeing matching at work 138

5.5 Writing to files 138
5.6 Prometheus outputs 141

Prometheus Node Exporter 142 ■ Running our Prometheus
configuration 145 ■ Prometheus Fluent Bit Exporter 146
Prometheus remote writer 148

5.7 PostgreSQL output 151
5.8 HTTP output 155
5.9 Forwarding to other Fluent nodes 158

5.10 OpenTelemetry 159
5.11 Hyperscaler native and SaaS observability 162

6 Parsing to extract more meaning 164
6.1 Architectural context 164
6.2 The goal of parsing 165
6.3 Relationship between parsers and filters 166
6.4 Prebuilt parsers 169
6.5 Parsing an Apache log file 170
6.6 Multiline parsing 170
6.7 Custom parsing 174
6.8 Processing JSON 178

Changing the log event timestamp 180 ■ Diagnosing the
unhappy paths 180

6.9 Other types of parsers 181
logfmt 181 ■ LTSV 181

6.10 Decoders 182
6.11 Parsing shortcut for file inputs 185

7 Filtering and transforming events 187
7.1 Architectural context 188
7.2 Integrating and enriching with filters 189

Directing and securing logs with GeoIP 190 ■ Using the
CheckList filter 191

CONTENTSxii
7.3 Extending and amending with filters 193
Taking a brief look at the nest filter 195 ■ Illustrating the
record_modifier filter 195 ■ Illustrating the modify filter 196
Bringing it together 196 ■ Testing filters 198

7.4 Routing and controlling 199
Using the record accessor 199 ■ Rewriting the tag filter example 201
Explicitly including and excluding events with grep 204

7.5 Controlling events 206
throttle 206 ■ log_to_metrics 207 ■ Advanced use of
matching 210

7.6 Custom filtering with Lua 212
Background of Lua 213 ■ Implementing a Lua filter 214

PART 3 PLUGINS AND QUERIES221

8 Stream processors for time series calculations and filtering 223
8.1 Architectural context 223
8.2 Key ideas 224
8.3 Basic query 225
8.4 Stream-processing windows 229

Hopping windows 230 ■ Tumbling windows 233 ■ Setting
window durations 235 ■ Deciding which window to use 235

8.5 Selecting multiple attributes and naming 236
8.6 Streams vs. tags 237
8.7 Creating streams 239
8.8 Chaining and creating new streams 242
8.9 Typical use cases for streaming 245

Forecasting 245 ■ Intermittent error tolerance 245 ■ Spurious
data values 246 ■ Absence of events 246 ■ Cross-referencing
streams 246

9 Building processors and Fluent Bit extension options 248
9.1 Architectural context 249
9.2 Fluent Bit processor: Changing the behavior

of existing plugins 250
Processor with Lua for logs 250 ■ Content modifier
processor 252 ■ Processor for traces 254 ■ Processor
to metrics 257 ■ Processor using SQL 258

CONTENTS xiii
9.3 Why we need to extend Fluent Bit 260
9.4 C language 260

Considerations 261 ■ Benefits 262 ■ Drawbacks 262
Tools for the job 263

9.5 Go language 264
Benefits 264 ■ Drawbacks 265

9.6 WebAssembly 266
Benefits 267 ■ Drawbacks 267

9.7 Selecting an extension strategy 268

10 Building plugins 271
10.1 Architectural context 271
10.2 Why Go? 273
10.3 Plugin objective 273
10.4 Go plugin approach 274

Simplifying our build process 275 ■ Code structure 275
Fluent Bit feature switches 277 ■ The build process for
plugins 278

10.5 Understanding the plugin life cycle 278
Input life cycle 278 ■ Output life cycle 280

10.6 Implementing the plugin 282
Setting up MySQL 282 ■ Input plugin 284 ■ Building
the code 289 ■ Output plugin 290

10.7 Deploying the custom plugin 292
10.8 Configuring our scenario 293
10.9 Executing the build 294

10.10 Running the custom plugins 295

11 Putting Fluent Bit into action: An enterprise use case 296
11.1 Use case 296
11.2 Deployment needs 297
11.3 Customer dashboards 298

Customer dashboards with Fluent Bit 299 ■ Customer dashboard
containers 300 ■ Customer dashboard innovation 300

11.4 Development pipelines 300
11.5 Core services 300

CONTENTSxiv
11.6 Central accounting needs 301
11.7 Operational processes 302
11.8 Tool choices 305
11.9 Conclusion 305

appendix A Installations 307
appendix B Useful resources 318
appendix C Comparing Fluent Bit and Fluentd 350

index 357

foreword
The art of translating signals from applications and system services to insights on per-
formance and system health is a difficult task, especially when the data comes from
different sources and in different formats. Although the industry is trying to evolve
and create standards to solve this problem for the long term, the short-term result is
that we have to deal with several protocols and data structures to enable end users to
perform meaningful analysis. In parallel, data volume is a constant challenge for com-
panies as they see year-over-year data growth. The growth in data volume directly
affects user experience. The more data there is to process, the slower the analysis gets.

 When I started Fluent Bit in early 2015, little did I know that this lightweight agent,
created for Embedded Linux at that time, would rule the logging world in what we
now call cloud-native environments. Its ability to adapt to different protocols, plug-
gable architecture, and continuous focus for almost 10 years on performance (low
memory, low CPU, and high throughput) has positioned it as the default solution for
cloud providers such as Amazon, Google, Microsoft, and Oracle.

 Fluent Bit started as a sibling of the Fluentd project. But with the industry’s inten-
sive migration to microservices and new ways of deploying workloads in orchestrated
containers, the need arose for a more performant solution than Fluentd. Fluent Bit
was built to enable companies building for Kubernetes and containers to scale and
manage high volumes of data, making it the new preferred choice of the ecosystem. At
this writing, Fluent Bit has been deployed more than 14 billion times from public
repositories, not counting the number of cloud providers, which exceeds that.

 Behind the project scenes, Fluent Bit isn’t a one-person job. Hundreds of indi-
viduals and companies continuously contribute to improving it by writing code and
xv

FOREWORDxvi
documentation, maintaining distribution channels, and speaking at events. Phil Wilkins,
the author of this book, is an active member of the Fluent community who has been at
the center of the evolution of telemetry, data pipelines, and observability in general.

 In this book, Phil concentrates on the Fluent concepts in a way that’s easy to con-
sume and learn for those who want to migrate from Fluentd. He walks the reader
through the steps to implement Fluent Bit, from simple telemetry pipelines to
advanced use cases. Readers will find great insights about the internals, such as buffer-
ing, routing, and threading, as well as the capability to handle other signal types, such
as metrics and traces. He also provides details on using the upcoming industry proto-
col standards, such as OpenTelemetry.

 In summary, this book distills nearly a decade’s worth of innovation and develop-
ment in Fluent Bit technology. It provides practical guidance on addressing modern
challenges in observability, particularly in distributed systems like Kubernetes. I hope
you enjoy this content as much as I did.

 May the telemetry force be with you.

—EDUARDO SILVA PEREIRA

Fluent Bit creator and maintainer

preface
The idea of writing about Fluent Bit first came up around 2021. At the time, I was writ-
ing a book on Fluentd for Manning (Logging in Action), and I’d talked with Eduardo
Silva Pereira, the creator of Fluent Bit, and Anurag Gupta, the leader of Fluentd.
Extending Logging in Action wasn’t a practical option, and I wasn’t sure I could make
the case for a dedicated book. I could see the trend toward OpenTelemetry and its
influence on technology direction, but the standards weren’t yet stable, and I assumed
that Fluentd would lead the charge in engaging with the OpenTelemetry Protocol
(OTLP) standard. But Eduardo and Anurag had already picked up on the trends accel-
erating the adoption of Fluent Bit. They saw the continued adoption of native binaries
in the Kubernetes space getting more compact and providing faster performance.
(After all, at scale, saving even 5% of your compute effort yields dividends.)

 By early 2023, I’d forgotten how much time writing a book takes and could see
clearly that Fluent Bit was gaining a lot of momentum. I also understood better how a
new book could differ from and complement Logging in Action.

 Now that the book is written, it’s related to what came before but entirely free-
standing and independent, like Fluentd and Fluent Bit—independent and comple-
mentary. I think that the book’s timing is working out well. Fluent Bit v3 is out without
breaking changes from v2. In many respects, v1.9 and v2 introduced the key founda-
tion to support users’ needs as OpenTelemetry matured, the standards became stable,
and Fluent Bit is now in the mainstream. Innovations in observability are coming in
the form of eBPF (extended Berkeley Packet Filter), which Fluent Bit will be more
than capable of handling.
xvii

PREFACExviii
 The book starts with the basics and addresses all the important features of v2 and
v3. Features that are only available in v3 are identified. But Fluent Bit’s configuration
doesn’t have any breaking changes, so while not all features and configuration options
will be available, the principles explained in this book will still hold true for versions
before v2. Therefore, if you work in an organization that’s very cautious about moving
up to recent releases, this book will still help. If you’re new to the Fluent projects, this
book is the place to start your learning journey.

acknowledgments
This book is my second with Manning and with some of the same team. The writing
process took longer than we expected. But I hope you’ll agree that the Manning edito-
rial team’s prodding and encouragement means this book will deliver for you. I want
to thank everyone at Manning, particularly development editor Katie Sposato John-
son, acquisitions editor Andrew Waldron, and technical editor Karthik Gaekwad, who
have been with me throughout this adventure.

 Anurag Gupta and Eduardo Silva Pereira, the founders of Calyptia, who have been
at the forefront of Fluentd and Fluent Bit for many years, took time to share their
insights and support. Eduardo, who started the Fluent Bit project, also kindly gave his
time to write the foreword, for which I’m very grateful. Calyptia employs many Fluent
Bit committers, and I’d like to particularly acknowledge fellow Brit Patrick Stephens
at Chronosphere, who helped hugely and with whom I’ve collaborated on conference
presentations about Fluent Bit.

 In writing this book, I had the support of volunteer reviewers and MEAP readers,
some of whom come from the active Fluent Bit community. Their feedback provided
great help and insight. Not every suggestion made it into the book, but I’m thinking
about building on them in other ways, such as blog posts and DZone articles. I’d like
to single out Braydon Kains for his contributions as a reviewer; he took the time to
share his insights into the OpenTelemetry community and offered ideas on how to
make running all the book’s scenarios as easy as possible.

 To all the reviewers—Abhay Paroha, Ajay Lotan Thakur, Amar Mani, Andres
Sacco, Arpit Singh, Arun Pandiyan Perumal, Atul S. Khot, Ayisha Tabbassum, Braydon
xix

ACKNOWLEDGMENTSxx
Kains, Conor Redmond, Curtis Bates, Eduardo Silva Pereira, Frans Oilinki, Glen Yu,
Harsha Patil, Harshavardhan Nerella, James Liu, Jerome Meyer, John Guthrie, Jonathan
Blair, José Lecaros Cisterna, Kerry E. Koitzsch, Kosmas Chatzimichalis, Leonardo
Taccari, Magnus Therning, Mario-Leander Reimer, Monojit Banerjee, Narayanan
Seshan, Nico de Wet, Nikhil Kumar, Patrick Stephens, Pradeep Chintale, Prashant
Dwivedi, Raymond Cheung, Samson Hailu, Sau Fai Fong, Simeon Leyzerzon, Sudeep
Batra, Victor Declerk, and Vladislav Bilay—thank you, your suggestions helped make
this book better.

 Publishing a book involves more than engineering and writing. Often, help of
other kinds is needed. That help has come from Manning, of course, but also from
Calyptia and its parent organization, Chronosphere. Thank you all.

 My journey as an author wouldn’t have started without support and encourage-
ment over the years. Those involved in my journey to becoming an Oracle Ace Direc-
tor (think Java Rock Star or Microsoft MVP for Oracle Integration and Cloud) have
been central to this journey. Many thanks to my friends and colleagues, past and pres-
ent, at Oracle.

 Last and most important, this book would never have happened without the sup-
port and understanding of my wife, Catherine, and our two sons, Christopher and
Aaron, when I’ve spent evenings and weekends at the computer rather than in their
company. All my love to you.

about this book
Logs and Telemetry is for anyone involved in the practical tasks of developing, configur-
ing, and running IT solutions. One of the most dominant uses of Fluent Bit is in the
Kubernetes ecosystem, so the book gives a great deal of consideration to Kubernetes
and containers. But don’t be fooled; like many cloud-native technologies, it applies to
traditional IT environments, so the book looks at features that support them. Modern
monitoring doesn’t separate infrastructure monitoring, application logging, and opera-
tional performance metrics. We have a technology that could be used in a DevOps or
platform engineering context, as well as old-school organizations that separate infra-
structure and application responsibilities.

 Within the world of Kubernetes, there are probably as many opinions on what is
involved in Kubernetes monitoring as there are flavors of Kubernetes. This book looks
at all the major Kubernetes features available at this writing, but don’t expect it to
be a comprehensive guide on, say, building Helm charts for Fluent Bit. (For that, read
a book about Helm first and then read this book. This will give you an understanding
of how to package Fluent Bit, which is no different from any other application.) More
of us work with prepackaged Kubernetes stacks than build Kubernetes environments
from scratch. These configurations are opinionated, so if you know how they’re con-
figured, this book will equip you with the understanding to capture those metrics,
logs, and traces. In its most basic form, Kubernetes is a clever and highly configurable
application process running on a configurable OS. Keeping this in mind and seeing a
lot of Fluent Bit’s standard features will help you. Much of the book runs things locally
xxi

ABOUT THIS BOOKxxii
to make it easy to see what’s going on. We don’t want the Kubernetes experience to be
an impediment to grasping what you can do with Fluent Bit.

 Developers and operationally involved people will benefit from the book, but so
will architects. We’ll reveal the art of the possible and show how Fluent Bit can simplify
the IT landscape to make the most of the latest thinking on observability.

How this book is organized: A road map
This book was written to partner with Logging in Action, but as with all the best sequels,
you don’t have to have read the first book to enjoy and benefit from the second. Log-
ging in Action addresses some architectural and design considerations that apply equally
to Fluent Bit and Fluentd, and the products are interoperable.

 This book is made up of 3 parts in 11 chapters. Part 1 sets out the big ideas:

 Chapter 1 introduces Fluent Bit’s ideas and background and addresses its rela-
tionship with the wider observability and application ecosystem. We explore the
industry trends accelerating and driving the growth in Fluent Bit adoption.

 Chapter 2 takes us through configuring and running Fluent Bit. We run a sim-
ple configuration that every developer implements: “Hello, World.”

Part 2 takes us from “Hello, World” to seeing and using Fluent Bit’s core capabilities,
which enable us to solve many of our needs:

 Chapter 3 is our first deep look at Fluent Bit and the features we’ll need in the
real world. To do anything, we need data in the form of logs, traces, and met-
rics, so chapter 3 examines the most common sources.

 Containers and Kubernetes are, first and foremost, sources of events and
enrichment data for Fluent Bit, so chapter 4 covers both. In addition, the chap-
ter touches on filters, which chapter 7 revisits in depth.

 We need to put event data (logs, metrics, and traces) somewhere. Chapter 5
looks at how to output metrics, traces, and logs.

 Events may be partially or completely unstructured, but without structure, it is
difficult to get any meaning from them. In chapter 6, we parse events. We can
use parsers in several ways, from formatting to converting strings and handling
encoded characters.

 Chapter 7 takes us from parsers to filters. Now that we can extract meaning
from our events, we need to impose order and structure on them, enrich
them with additional context, and manipulate them so that they’re routed or
excluded correctly.

Part 3 takes on advanced options:

 Chapter 8 tackles stream processing with Fluent Bit. We use stream processors
to derive meaningful new data using SQL-based syntax and work with multiple
events in a time series.

ABOUT THIS BOOK xxiii
 Chapter 9 looks at Fluent Bit’s processor capability to incorporate custom logic
within input and output plugin configuration. Eventually, we’ll encounter a sit-
uation where we must build a proper plugin. To prepare, we need to examine
the different options for building custom plugins.

 Chapter 10 turns the concept of custom plugins into reality and examines how
plugins interact with Fluent Bit’s core as we walk through building our own
input and output plugins.

 Chapter 11 shows how Fluent Bit can be applied to an enterprise use case. We will
explore how Fluent Bit could help an organization without undue disruption.

Appendixes have been provided to cover the setup of third-party building blocks we
need to allow us to exercise Fluent Bit. They also provide details of additional refer-
ence information and insights:

 Appendix A provides details on setting up the tools and services needed to run
the exercises in this book.

 Appendix B lists many additional resources and reference tables.
 Appendix C provides an overview of the differences between Fluent Bit and

Fluentd.

About the code
This book contains many examples of Fluent Bit’s configuration and source code,
both in numbered listings and inline with standard text. In both cases, the source
code is formatted in a fixed-width font like this to separate it from ordinary text.

 The book shows only the relevant sections of a configuration file in most cases.
The configurations are annotated to illustrate the configurations. In some cases, even
this is not enough, and listings include line-continuation markers (➥).

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/logs-and-telemetry. Source code for the
examples in this book is available for download from the publisher’s website at https://
www.manning.com/books/logs-and-telemetry or the GitHub repository at https://
github.com/mp3monster/Logs-and-Telemetry--Using-Fluent-Bit.

liveBook discussion forum
Purchase of Logs and Telemetry includes free access to liveBook, Manning’s online read-
ing platform. Using liveBook’s exclusive discussion features, you can attach comments
to the book globally or to specific sections or paragraphs. It’s a snap to make notes for
yourself, ask and answer technical questions, and receive help from the author and
other users. To access the forum, go to https://livebook.manning.com/book/logs-and
-telemetry/discussion. You can also learn more about Manning’s forums and the rules
of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where meaningful
dialogue between individual readers and between readers and the author can take

https://livebook.manning.com/book/logs-and-telemetry
https://www.manning.com/books/logs-and-telemetry
https://www.manning.com/books/logs-and-telemetry
https://github.com/mp3monster/Logs-and-Telemetry--Using-Fluent-Bit
https://github.com/mp3monster/Logs-and-Telemetry--Using-Fluent-Bit
https://livebook.manning.com/book/logs-and-telemetry/discussion
https://livebook.manning.com/book/logs-and-telemetry/discussion
https://livebook.manning.com/book/logs-and-telemetry/discussion
https://livebook.manning.com/discussion

ABOUT THIS BOOKxxiv
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest that you try asking the author some challenging questions lest his interest stray!
The forum and the archives of previous discussions will be accessible on the pub-
lisher’s website as long as the book is in print.

about the author
PHIL WILKINS has spent more than 30 years in the software
industry, with broad experience in businesses and environ-
ments from multinationals to software startups and consumer
organizations to consultancy. He has worked with household
names and has been part of award-winning teams. He started as
a developer on real-time, mission-critical solutions and worked
his way up through technical and development leadership
roles, primarily in Java-based environments. Along the way, Phil
became TOGAF-certified. Phil now works for Oracle as a cloud
architect and evangelist specializing in cloud-native develop-

ment, APIs, and integration technologies and is involved with the development of a
new generation of SaaS products.

 Phil was a peer reviewer of books for several publishers before coauthoring several
titles on API and integration, as well as Logging in Action, which is the partner to this
book. Outside his daily commitments, Phil is an active blogger and contributor to
websites such as Software Daily, DZone, and InfoQ. He has made presentations physi-
cally and virtually at conferences in the United Kingdom and around the world.
xxv

about the cover illustration
The figure on the cover of Logs and Telemetry is “Cephalonien,” or “Man from Ceph-
alonia,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in
1788. This illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and their trade or station in
life by their dress alone. Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich diversity of regional culture
centuries ago, brought back to life by pictures from collections such as this one.
xxvi

Part 1

From concepts
to running Fluent Bit

Any good thriller starts by introducing its protagonists, along with their
motivations, backgrounds, and strengths and weaknesses. The environment(s)
in which the key players operate is shown in the first 20 minutes.

 This is what the first part of the book is about. The first chapter introduces
our hero, Fluent Bit; it sets the scene by presenting the context, the use cases,
and so on. If we are in the process of discovering Fluent Bit or thinking about
the things that will help us make a case to colleagues for adopting it, this chapter
gives us plenty of fuel for thought.

 If chapter 1 is about our principal player, chapter 2 is about the environ-
ments in which Fluent Bit can operate. We will start by taking our first practical
steps with Fluent Bit and follow the time-honored tradition established by Brian
Kernighan, in which the first solution is “Hello, World.”

Introduction to Fluent Bit
Lewis Carroll wrote in Alice in Wonderland that you should “begin at the beginning,”
so that’s what we’ll do in this chapter. Before we get down to the details, let’s take a
moment to understand what Fluent Bit is and answer some important questions
about it, such as why it is so important and worthy of a book and how it fits into the
IT ecosystem. We’ll also address the elephant in the room: the relationship between
Fluentd and Fluent Bit.

1.1 Why is Fluent Bit so important?
Fluent Bit is, at its heart, a specialized event capture and distribution tool. Let’s
break that statement down a bit. Why is it specialized? Fluent Bit focuses on log
events, metrics, and traces (sometimes called signals):

This chapter covers
 Examining the drivers behind the rapid growth

of Fluent Bit

 Identifying the essential parts of Fluent Bit

 Reviewing the technologies used with Fluent Bit

 Understanding the relationship and differences
between Fluentd and Fluent Bit
3

4 CHAPTER 1 Introduction to Fluent Bit
 Log—Can be seen as each output message or line in a log file or, put another
way, a string of text that provides some information about what has happened.
The message can range from completely unstructured to a fully structured and
self-describing message.

 Metrics—Measurements, usually numeric values with a descriptive label, gener-
ated by our IT hardware and software. Examples are the use of each CPU core
on a computer or the number of transactions processed in an application per
minute.

 Traces—A trace is a linked set of values recorded at important waypoints in the
execution of our software, often aligning with transactions. Traces have a lot in
common with log events. The key difference is that trace events have a relation-
ship with each other, and sometimes, a trace is not shared until a transaction
ends or an error occurs. It’s important to note that trace identifiers are carried
through the different parts of the application. Traces have become more signif-
icant with Kubernetes and the adoption of microservice strategies because,
when used properly, they can make following what is happening across distrib-
uted solutions far easier.

We’ll explore types of event data in greater depth as we progress through the book.
The ability to handle various events within a single tool isn’t unique, but it does distin-
guish Fluent Bit from technologies it’s sometimes compared with, such as Logstash
(https://www.elastic.co/logstash).

 Because Fluent Bit reacts to and processes events, typically in near real time as
they’re received or tracked from sources such as a file, it’s described as event-driven.
Why do we need Fluent Bit to be event-driven? After all, we look at the data when
something isn’t right. Although we may adopt the traditional approach of looking at
logs when someone has declared there to be an issue, people still like to see stats and
metrics closer to real time. We should also remember that we can derive meaningful
time-sensitive metrics from log events. In our code, we are interested in the events
when our software has done something that may be of interest to confirm that all is
well, understand which decision branch was taken, or find the answer to a calculation
applied to data. Even when a scheduler triggers the monitored solution, we want the
logs, events, and traces to be provided when they are still meaningful.

 Clever words, then, for something mundane? It would be easy to think that. Unfor-
tunately, this thinking can lead us to miss a wealth of possibilities and opportunities
that Fluent Bit offers to make our lives a lot easier. If we consider a log event as just a
block of text from our code, for example, we may overlook that we can derive mean-
ing from it and determine whether something else needs to occur there and then. If
the event is a health check indicating everything is fine, we could send the data to the
operations dashboards and do no more. But if the event reports the receipt of a large,
malformed payload, it could indicate a more serious problem that needs immediate
intervention before users start calling to complain.

https://www.elastic.co/logstash

51.1 Why is Fluent Bit so important?
1.1.1 The value of event distribution

Tackling the pain of identifying (and possibly needing to resolve) an issue with a sys-
tem benefits us all individually, whether we’re part of a team working within an envi-
ronment practicing some variation of DevOps, part of a tiered support system on the
operational front line, or the developer last in an escalation chain for a testing issue.

 When an issue reaches us, we need to know what happened or, better, be able to
engage with it as it is happening. The issue might be a serious system failure or a
question about how something or someone was or is interacting with our system(s).
To address the issue, we must have this information available and a tool that fits
our needs.

 The information we need could be as simple as the complete log message. Often,
we need to understand what happened before, during, and after the event of concern
to establish cause and effect. (For example, a database may be producing errors because
we’ve run out of storage. Did we run out of storage because the housekeeping process
failed, or did we overlook the need to monitor our storage capacity?) We need to cap-
ture and aggregate data from many different sources. Logs, metrics, and traces are the
building blocks of observability, and monitoring data (logs, events, and traces) is gen-
erally transient. Using Fluent Bit and tools like it enables us to gather data from all
sources and put it somewhere secure. It’s been my experience that when things go
seriously wrong, people aren’t worrying about preserving state information, logs, and
the like. Their concern is returning to an operational status, which can mean that logs
and stored metrics in the production environment may easily be trashed.

 Aggregating log events doesn’t just mitigate the risk of data loss but also helps us
see the complete picture. COBOL solutions, for example, usually were made up of
multiple programs run in sequence. Processes were sequential, but distribution pro-
cesses were already possible. As technology advanced, we adopted two- or three-tier
solutions running concurrently (application and database servers, usually with sep-
arate UIs). Even if we’re operating monolithic application servers, work can be
spread across multiple virtualized load-balanced servers, and microservices have led
to a further explosion of distribution. To make sense of what is happening, we need to
bring together all the events spread across all these distribution points to get an accu-
rate picture of what is happening.

 Aside from being able to preserve information that can help us diagnose an issue,
we can easily overlook one challenge: the more time we take to get from issue to diag-
nosis, the more damage can occur, and therefore, the more painful the recovery pro-
cess becomes. Whether we’re fixing failed transactions or working out the scale of a
security breach, by processing the metrics and logs as they occur, we can automate the
evaluation of whether they indicate an issue occurring now or, better, an imminent
problem. Thus, we can reduce the amount of pain because we’ve avoided or kept the
effect of the issue as small as possible.

 The ability to distribute data easily also allows us to adopt different tools for differ-
ent tasks. If the data is difficult to distribute, we end up with the lowest common

6 CHAPTER 1 Introduction to Fluent Bit
denominator or with tools that support the most vocal team using the data rather than
ones that address different needs. PagerDuty (https://www.pagerduty.com), for exam-
ple, is ideal for notifying the right person depending on the identified system and the
time and day of the week.

1.1.2 Fluent’s place in CNCF

The Fluent tools, Fluentd and Fluent Bit, are key players in the Cloud Native Comput-
ing Foundation (CNCF; https://www.cncf.io) ecosystem, helping us gather, secure,
and, ideally, analyze logs and metrics. These solutions allow us to get the observability
data (logs, traces, and metrics) in a form that another tool can render in an easily
digestible format. Fluent Bit is having a greater effect than Fluentd in terms of adop-
tion and support for the latest observability standards and tools, as we’ll see.

 Within the CNCF, projects are classified to reflect their process, quality, maturity,
support, and adoption. Graduated projects such as Fluentd and Fluent Bit need con-
tributors from multiple organizations with processes that demonstrate good project
governance and development processes. Most important, these projects need several
public adopters so the wider community can be confident that it will not likely adopt
something that could be abandoned overnight.

1.2 Core Fluent Bit concepts
We’ve looked at why Fluent Bit is important. Now, let’s address some core concepts
that influence almost every aspect of Fluent Bit. The most critical thing that we’ve
encountered is the event. We should also consider what Fluent Bit does and doesn’t
do to make events useful.

 The other key concept in Fluent Bit is plugins. As we progress through the book,
we’ll dig deeper into plugins, but at this stage, I’ll describe them as the building
blocks of Fluent Bit’s functional capabilities.

1.2.1 Payload structure

To interact with Fluent Bit’s events (whether they represent log events, traces, or met-
rics), we need to understand how each event is represented within Fluent Bit, which is
the same way Fluentd does, with three mandatory elements. As figure 1.1 illustrates,
Fluent Bit has three core elements with some additional elements that are opaque to
us right now:

 Metadata—Metadata is a list of key-value pairs with a mandatory key called Tag
and related value. The Tag is a logical name associated with the events. We use
the Tag to route events to the correct operation(s). As we progress through the
book, we’ll introduce strategies that allow us to manipulate a Tag and use intel-
ligent naming conventions to help us. In Fluent Bit v1 and Fluentd, the meta-
data was only the Tag. To increase flexibility and allow Fluent Bit to carry other

https://www.pagerduty.com/
https://www.cncf.io/

71.2 Core Fluent Bit concepts
types of events (and traces), Fluent Bit v1.9 changed the metadata to hold
additional key-value pairs about the nature of the record content, such as the
type of event. As we’ll see later in the book, we can access the Tag value with-
out referring to the fact that it’s part of the metadata, as Fluent Bit v1 and Flu-
entd have.

 Timestamp—Events without a timestamp are of limited value. Without the time-
stamp, we can’t determine whether an issue is current or new because we have
no sense of when the event occurred. We can’t determine whether the event is a
cause or an effect because we don’t know the order in which things occurred.
As a result, many input plugins offer a means to locate where in the event the
correct timestamp to use or apply the moment when the input is received as the
timestamp.

 Record—A record contains the event data (log, metric, or trace). The ability
to access and manipulate the record within various plugins depends on the
plugin type and the metadata describing the record. When the record con-
tains a log, Fluent Bit (depending on the input and parsing) treats the record’s
value as a list of key-value pairs or a single block of text. We can extract con-
tent and convert the payload to JSON, among other things. When we’re not
processing an event, the record is held efficiently by serializing the record using
the MessagePack (https://msgpack.org) library. (Appendix B has additional
details on MessagePack.)

The metadata can also denote that the record represents metrics or traces.
In this case, the record takes on the following characteristics:

– Metrics—When we send and receive metrics, the data is in line with the Pro-
metheus format (a non-JSON structure). But Fluent Bit gives us the means to
retrieve and manipulate metrics data. Internally, metrics are handled by a
library called CMetric, which other projects are starting to use.

– Traces—Traces are also handled as a special record payload and can be made
into a record and interacted with.

We’ll explore these aspects in greater detail as we explore these data sources.
Although the movement of the content between the visible record and the opaque
structure is not completely free today, it is this author’s opinion that handling this
movement will become easier over time.

 Figure 1.1 shows the data structure of Fluent Bit v1.9 and later, alongside the equiv-
alent Fluent Bit v1 and Fluentd structure. Although the difference is subtle, it is
noticeable when handling non-log events. It is worth noting that in the exceptional sit-
uation of caching log events in a file with a pre-1.9 version of Fluent Bit, trying to get a
post-1.9 version of Fluent Bit to read those cached files will result in errors.

https://msgpack.org

8 CHAPTER 1 Introduction to Fluent Bit
1.2.2 Logical architecture

Figure 1.2 shows Fluent Bit’s architecture. We’ll use this diagram throughout the book
to help orient us to the capabilities we’re exploring within Fluent Bit. The figure
shows these logical components:

 Input plugin (listener), input plugin (pulled)—Many representations of Fluent Bit
don’t differentiate the types of input plugins. Although the contract between
the plugin and the core of Fluent Bit (the pipeline processing) is unaltered,
there are differences in how the plugin is implemented that affect configura-
tion and tuning considerations. Network-centric inputs can be described as lis-
teners; we connect to the network, and when data is received, we must process
it. Large, sudden spikes here can cause backpressure; the source system invok-
ing Fluent Bit can’t continue until we consume the event.

The pulled events, such as those that capture log events from a file as they’re
written, require us to poll the file periodically to determine whether any new
content has been added. The implementation of the input plugin can dictate
the system’s throughput.

 Custom input plugin—This capability can be characterized as a pulled or listener
plugin. As we have support for network sources with HTTP, unless we have

The record structure can depend on the

metadata, but for logs, this is treated as a

name-value pair if received as a text input.

Logs can be converted to a JSON structure

for easier processing.

A list of values that includes the attribute

Tag

Contains type information for the .record

Internally, the can be difrecord ferentiated

as metrics, trace, or log data.

[Metadata]

Such as 1362050500.000000000

Defined as the time received by Fluent Bit

unless mapped from the received event

T nanosecondsime from epoch as seconds.

Record

Timestamp

Fluent Bit v1.9, v2.0, and laterFluent Bit v0-v1.8.x and Fluentd

Tag

Straightforward

text value

Numeric time

from epochTimestamp

Record

Text as

name-value

pair or JSON

Figure 1.1 Log event structure for Fluent Bit v1.x and Fluentd (left) and Fluent Bit from v1.9
(right)

91.2 Core Fluent Bit concepts
specialist encoding that is best handled by an input plugin rather than a
decoder (a specialist feature available to parsers), this feature is likely to adopt a
pulled model. A custom plugin differentiates itself from other plugins because
it is not part of the standard Fluent Bit release—any plugin built directly into
the binary by a third party or through the extension options, which we’ll discuss
in section 1.3.3.

 Parser—This provides the means to transform the received content into mean-
ingful data, such as extracting the important values from the record or trans-
forming it to JSON. A range of prebuilt parsers is available; many of these
parsers are specializations of regular expressions. Parsers are typically used in
conjunction with filters, but some input plugins can also use them.

 Buffer—Depending on the plugin, buffering can be used in several places. Log-
ically, it fits well here, as the primary objective of buffering is to allow us to flex
to input and output performance differences that might occur, such as spikes in
outputs from our sources or a slowdown in the consumption of our outputs.
The buffer, therefore, prevents Fluent Bit from being a potential throughput
constraint or point of data loss. If you’re sensitive about the risk of data loss, you
can switch the buffer to use file storage, which can be read when the Fluent Bit
process restarts. This approach does have a performance cost. The buffer has a
storage interface layer that manages the data going into and out of the buffer
and its physical implementation (file or memory); it also interacts with any rele-
vant stream processors.

 Filter, custom filter—Filters are the pipeline’s heavy lifters, providing the means to
interact and manipulate events that have been received. Filters fetch and return
the events that they process to the buffer. Normal filters are completely configu-
ration-driven, but custom filters can be implemented in two ways:
– The typical approach is to invoke Lua scripts.
– We can implement more demanding or complex filters with C, Go, and Web-

Assembly, following the approach used by custom input and output plugins.
 Stream processing—Stream processing represents how we configure the new,

advanced analytics capabilities. We can loop data from this analytical process
back as an input so we can use the analytical values to enrich processing, such as
creating time series data based on received events.

 Output plugin, custom output plugin—As with the inputs, we’ve separated these
types of plugins to draw attention to extensibility. The output plugin’s role is to
retrieve events from a buffer and then store them or pass them to a third-party
solution for onward processing (this may be data storage, but we may output to
other Fluentd or Fluent Bit instances to delegate or aggregate work), depend-
ing on the plugin’s implementation.

We have defined the logical components more granularly than the official docu-
mentation does to help you understand their behavioral characteristics. The official

10 CHAPTER 1 Introduction to Fluent Bit
documentation focuses principally on input, filter, and output—three of the four hor-
izontal groups in figure 1.2.

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Figure 1.2 Logical Fluent Bit architecture, with the blocks representing
logical features and the lines representing the possible flow of events. The
standard Fluent Bit groupings are overlaid, but I’ve separated and illustrated
the buffers slightly differently, as their positions are more logical than how
they fit into the code base.

111.3 Drivers of Fluent Bit adoption
1.3 Drivers of Fluent Bit adoption
The drivers that make Fluent Bit a significant player come down to a few key factors:

 The way Fluent Bit is implemented perfectly addresses the cloud and cloud-
native industry drive for small size, efficiency, and quick startup, making it eas-
ier to exploit the elasticity of containerized environments.

 Fluent Bit is equipped to meet the rapid acceleration and adoption of OpenTe-
lemetry (often referred to as OTel), bringing together log processing, metrics,
and tracing to harmonize the different aspects of observing our applications. As
a result, tasks such as tracking individual transactions across multiple services
and servers can be standardized.

 Fluent Bit provides out-of-the-box support for other dominant cloud-native
technologies, particularly those used to support monitoring and observability,
such as Prometheus and Grafana’s Loki.

There are a couple of additional factors that we think are in play, but the trends are
harder to isolate:

 Support for ideas and approaches to streaming and stream analytics have been
seen with technologies such as Apache Kafka, Spark, and Beam. Fluent Bit’s
capability to support stream-processing ideas may not be influencing adoption
currently, but it is likely to make a difference in the future. Streaming is more
notable in the cloud and cloud-native domains, but depending on how it is
addressed, it can deliver dividends for monitoring and observability across all
industries and technology domains, new and old. Fluent Bit’s streaming capa-
bilities allow it to become more dynamic and adapt to what happens—an idea
we’ll explore further when we look at stream processing in chapter 8.

 One of the most dominant players in the monitoring space is Fluent Bit’s older
sibling, Fluentd. We could attribute its dominance to several things, such as
being early in the market and part of CNCF or the ease with which new sources
and targets can be plugged into their custom integrations. Fluent Bit has all
these benefits. In addition, Fluent Bit can communicate transparently with
Fluentd deployments, removing or minimizing disruption in transitions between
Fluentd and Fluent Bit and blending deployments of both across an organiza-
tion as needed.

1.3.1 Small footprint, efficiency, and speed

Fluent Bit may have started by supporting Internet of Things (IoT) use cases, but the
characteristics that IoT requires fit nicely with cloud-native, particularly containers
and Kubernetes. First, maximizing the dynamic scaling of containers through orches-
tration engines such as Kubernetes makes the ability to go from a standstill to running
quickly exceptionally easy to do when an application is designed to run with a small
footprint (typically needed on IoT devices). Further, with the overhead of the con-
tainer itself, anything we can do to reduce the amount of CPU and memory consumed

12 CHAPTER 1 Introduction to Fluent Bit
is desirable. One way is to employ precompiled native binaries (sometimes called
ahead-of-time [AoT] compilation). This approach eliminates the overhead of running
an interpreter layer (such as the time to start the interpreter before any application
logic is loaded and the additional memory needs of the interpreter). Using a just-in-
time (JIT) compiler helps with performance but still has a compilation overhead that
we see with language virtual machines such as the JVM. As Fluent Bit has been written
with C, it has always compiled into a binary and, therefore, has no overhead. The
value of scaling exceptionally quickly and being resource efficient and high perform-
ing means that Fluent Bit has been adopted by cloud providers such as Amazon Web
Services (AWS), Azure, Google, and Oracle, as well as cloud service providers such as
LinkedIn and Lyft because these characteristics translate into tens of thousands of
dollars in savings.

 Although Fluent Bit is very compact, it can scale to handle workloads with con-
trols that allow inputs and outputs to run in separate threads. Separating input and
output operations reduces the chance that backpressure will affect multiple inputs.
Threading control options in Fluent Bit also have the potential to increase through-
put. Still, when we’re working within a containerized environment, we need to use
threading with care; we no longer have an assured allocation of CPU cores, and
more threads could make the real CPU perform more context switching than is
optimal.

1.3.2 Effect of OpenTelemetry and how Fluent Bit relates to It

Before OpenTelemetry (OTel), the primary specifications that informed the observ-
ability of metrics, traces, and logs came from several standardization efforts within
CNCF in the form of OpenTracing (https://opentracing.io), OpenCensus (https://
opencensus.io), and implicitly, given its dominance, Fluentd and, by association, Flu-
ent Bit for the structure of logging. Different standards often required different tool-
ing to capture such data. Fluent Bit has always caught some metrics data; the IoT
ecosystem needs to keep software footprints small, so one service capturing both logs
and metrics is preferable. As a result, it made sense for Fluent Bit to capture not only
logs but also local metrics such as CPU, memory, and storage use. Bringing all these
data sources together has driven the simplification of operational monitoring, result-
ing in rapid uptake and shown to be disruptive.

 Fluent Bit’s support of the OpenTelemetry standards and its ability to work within
the OTel ecosystem hasn’t required any radical changes, although it has driven some
upgrades of parts of its implementation. In some respects, the upgrades have formal-
ized what Fluent Bit was already doing. With this alignment, Fluent Bit is well-
equipped to support the adoption of OpenTelemetry standards without imposing
them, allowing its adoption to be more incremental.

 When we start digging into the input and output capabilities of Fluent Bit, we’ll
look further into the relationship with OpenTelemetry and leading products in the
observability space, such as Prometheus (https://prometheus.io), which has helped

https://opentracing.io/
https://opencensus.io/
https://opencensus.io/
https://opencensus.io/
https://prometheus.io/

131.3 Drivers of Fluent Bit adoption
propel OTel further forward, and Grafana (https://grafana.com/grafana). We’ll also
look at commercial vendors that have worked to support OTel’s standards, creating a
rapidly growing ecosystem of connectable monitoring tools.

NOTE If you need a quick reference on the acronyms and terminology, you
can find a handy glossary at https://opentelemetry.io/docs/concepts/glossary.
Also, appendix B lists several excellent resources.

The heart of OTel is the OpenTelemetry Protocol (OTLP), which details the data
structures, encoding, and transmission of the telemetry data. Currently, OTLP sup-
ports transmission using gRPC (Remote Procedure Call) with HTTP/2 using Proto-
col Buffer (Protobuf) and JSON with HTTP synchronously. OTLP promotes the use
of gRPC as the first-choice approach to communication and JSON as a step-down
or fallback.

 OTel, as a project, goes far beyond defining OTLP. It also provides implementa-
tions of the functionality described in the standard (sometimes described as a refer-
ence implementation), along with tools and libraries. The tools and libraries are
implemented in multiple languages; we can use them to help inject logic into applica-
tions and quickly get data applications producing traces. OTel also has functionality
such as log appenders that allow logging frameworks to send the logs using the OTLP
specification.

 To understand how Fluent Bit could fit into an open telemetry solution, let’s look
at what Fluent Bit can do using OTel terminology (https://opentelemetry.io/docs/
concepts/components). Given its ability to gather monitoring and observability data
from different sources and transform it into the OTLP structure, Fluent Bit can fill
the role of an OpenTelemetry Collector. Because Fluent Bit was built to work in a distrib-
uted environment and can pass data in OTLP format to any other OpenTelemetry
compliant collector (which could be a Fluent Bit node or another product), we can
describe Fluent Bit as being able to perform as an OTLP Exporter.

 Figure 1.3 shows how Fluent Bit can fit into an OpenTelemetry environment with
its ability to handle logs (L), metrics (M), and traces (T) generated by an application
with or without the help of OTel libraries or tools, along with its ability to interact with
an OpenTelemetry Collector.

 Because OTel provides implementations of collector and exporter capabilities,
calling Fluent Bit an OpenTelemetry Collector or OpenTelemetry Exporter can be a
source of confusion. The standard itself is called OTLP, so referring to Fluent Bit as
being OTLP-compliant is clearer, even if less obvious about the task we might deploy
Fluent Bit to perform. In addition, there is some sensitivity within the OpenTelemetry
community about the difference between the project’s own implementation of a col-
lector (called OpenTelemetry Collector) and other implementations of that capabil-
ity. We are erring on the side of describing Fluent Bit as an OTLP Collector (after all,
protocol compliance is key to the collector’s function) and reducing ambiguity among
CNCF projects.

https://opentelemetry.io/docs/concepts/components/
https://opentelemetry.io/docs/concepts/components/
https://opentelemetry.io/docs/concepts/components/
https://grafana.com/grafana/
https://opentelemetry.io/docs/concepts/glossary/

14 CHAPTER 1 Introduction to Fluent Bit
Protocol Buffers (Protobuf)
Protocol Buffers are a key technology for gRPC, which OTel uses. Protocol Buffers
have a concisely defined schema, which is used with the Protobuf tooling to generate
the code for sending and receiving payloads. A well-defined schema allows the tooling
to create the code that creates a compressed binary payload representation. This
schema is both a strength and a potential constraint. The strength comes from the
efficient payload transmission. The downside is that a schema change affects both
the provider and consumer and makes realizing the tolerant reader integration pat-
tern more challenging. Also, given that the Protobuf-generated payload is a com-
pressed binary format, it is a lot harder to inject into any communication middleware
that can accommodate transformation. Links to OTel, Protobuf, and related technol-
ogies are in appendix B.

Host

(Bare metal, device, VM, container)

T

App

App +

OTel library

Host

(Bare metal, device, VM, container)

L

L

T

Other

service(s)

ML

M

L

T

M

L

T

M

L

racesTetricsM L ogs

Key

OpenTelemetry

tool(s) or

OTLP-compliant

solutions

App L

App +

OTel library

OTel

Collector

agent

L

T

M

L

Figure 1.3 Fluent Bit’s relationship with OpenTelemetry with apps generating OTel
logs, metrics, and traces and Fluent Bit facilitating their transmission to an OTel-
compliant point of aggregation or processing. Applications can send OTLP data directly
or via an OTel component, and we can route data to other OTel services or analysis tools.

151.3 Drivers of Fluent Bit adoption
As we progress through the book, we’ll examine more closely how Fluent Bit and
OpenTelemetry perform different functions. Note that OpenTelemetry protocol
support before Fluent Bit v3 was restricted to HTTP and JSON. Version 3 brought
enhancements that support HTTP/2, enabling Fluent Bit to use gRPC. This, in turn,
means that Fluent Bit can provide a fully compliant OTLP implementation without
needing to take advantage of the step down to HTTP and JSON.

1.3.3 Extending Fluent Bit with C, Go, WebAssembly, and Lua

The ability to extend Fluent Bit’s core capability is important. The number of third-
party plugins built for Fluentd clearly demonstrates this need. In addition to source
and targets, small pieces of custom logic for actions such as filtering are also needed.
For inputs, outputs, and filters, we can connect precompiled solutions using C, Go
(also referred to as Golang), and WebAssembly (WASM), which we can use to further
increase our choice of languages for implementation and elevate decoupling.

 As Filters often need a quicker, easier way to define small pieces of logic, using Lua
as a scripting language makes sense. We’ll explore these technologies and the pros
and cons of the different approaches in chapter 9.

1.3.4 Fluent Bit and stream processing

The goal of implementing processing logic as events flow through a pipeline is not
new. As software frameworks developed to support that goal, we saw what we now
know as stream processing or stream analytics as Complex Event Processing (CEP).
You could argue that we’ve had basic stream processing in the form of service bus
(https://www.devx.com/terms/enterprise-service-bus) products for a long time; stream
processing is less about the technology and more about how the technology is applied.
If you accept the argument about service buses, it is reasonable to assert that Fluentd
and Fluent Bit also provide basic streaming capabilities. What has evolved is how we
look at stream processing and stream analytics. Today, we can identify a couple of dis-
tinctive characteristics of stream processing and analytics:

 The large volume of data we’re trying to push through the pipeline is a key
characteristic of stream processing. Fluent Bit is no stranger to these data vol-
umes, but the volumes we want to process demand an enormous scale for ser-
vice buses to meet such demands. Also, service buses need to address a level of
complexity, such as data integrity across multiple systems—something that is
typically not an issue for stream processing.

 As we focus on data, using SQL is the nearly universal way to work with data. If
we can express the examination of the log events by using SQL, we make the
data a lot more accessible.

1.3.5 OTel vs. Fluent Bit and Fluentd

We should emphasize that when considering whether to use Fluentd or Fluent Bit and
even Fluent Bit or OTel, the answer need not be one or the other. From the outset,

https://www.devx.com/terms/enterprise-service-bus

16 CHAPTER 1 Introduction to Fluent Bit
Fluent Bit and Fluentd have been built to communicate easily and seamlessly. Because
of the way that the Fluent Bit and Fluentd solutions structure their payloads internally,
we can take an OTel payload, wrap it inside the Fluent model, and unpack it again.
The key to answering the question about Fluentd lies with the adoption of OTel for
more than microservice use cases and the speed at which additional adaptors are
developed.

 In my opinion, new developments will become Fluent Bit–based over the next cou-
ple of years because developers who may have considered Logstash will look to Elastic
APM agents (https://mng.bz/x6n6). However, solutions in production will see a slower
rate of change with Fluent Bit replacing Fluentd. The most likely driver of change in
existing software will be the adoption of OpenTelemetry. Highly scaled OTel solutions
with even small footprint savings will create measurable cost savings or a solution that
reaches the point of replacement or significant overhaul.

 With the data captured within Fluent Bit, we can parse semistructured content to
extract more meaning from the event, allowing more informed actions to be per-
formed downstream. This process can be as simple as extracting a value from some
text, such as whether the log entry contains an error or extracting a numeric value for
Prometheus to use or to influence the routing of the event. The process can also be as
complex as converting a custom format to a JSON representation.

 The natural next step is filtering events, perhaps to discard them when they are insig-
nificant or to route them to one or more outputs. We could send the data to a central
log repository and pass the event’s numeric elements to Prometheus as a metric.

 Transferring data in groups of events is more efficient than transferring one event
at a time. The start and end of each conversation have some small overhead, such as
opening and closing network connections or opening and locating the end of a file
and then closing the file handle. Buffering or grouping events helps us make tradeoffs
in these activities, which is one of the roles of buffers regardless of where they are.
Because a buffer may not be a simple in-memory structure, it’s better to perform buff-
ering after filtering, so if the buffer involves more than managing the data we already
have in memory, we’re minimizing the effort.

 The final step is putting the events somewhere. That might well be another Fluent
Bit (acting as an OpenTelemetry node or a simple log event processor) or Fluentd
(taking advantage of its larger collection of plugin options or existing deployed moni-
toring infrastructure), or it could be one of the supported data stores or custom out-
puts that have been plugged in.

 In figure 1.4, we have taken our architecture view and add some example sources,
destinations, and technologies that allow us to enhance Fluent Bit. This figure under-
lines the flexibility and compatibility of Fluentd and OpenTelemetry-compliant tools
in addition to a diverse range of other applications and technologies.

 You’ll probably have noticed that Fluent Bit doesn’t do anything about data pre-
sentation or visualization. This comes down to the philosophy that an application has
a single responsibility: do one thing and do it well. For Fluent Bit, that one thing is

https://mng.bz/x6n6

171.3 Drivers of Fluent Bit adoption
Fluent Bit and Fluentd

able to communicate

Prometheus as an

exporter or remote

writer

Docker and other

container engine

data sources

OS and hardware

metric and logs

Example prebuilt plugins

Data storage sources

such as DBs

Application logs directly

or via files (such as via

Apache Log4j2)

OpenTelemetry as a

collector or agent

Messaging services

such as Apache Kafka

C-coded plugins, typically part

of Fluent Bit core binary

Lua scripts, invoked through

a filter

Go language-built static

objects as custom extensions;

bind to C interface

WASM + WASI binary

containers, working via defined

interface

Plugin and custom logic

C

C

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

C

C

Figure 1.4 Fluent Bit logical architecture with some of the available plugins

18 CHAPTER 1 Introduction to Fluent Bit
getting observability data from what needs to be observed to the tools that allow us to
visualize and analyze the data.

 If you’re familiar with the architecture of Fluentd, you’ll recognize that the archi-
tecture, although implemented with different technologies, is reasonably similar at
this level of abstraction. This similarity reflects the relationship between the two solu-
tions and is a simple truism of event processing.

1.4 Is Fluent Bit a child or a successor of Fluentd?
Although Fluent Bit started as a sibling of Fluentd (https://www.fluentd.org), with
support for OTel and other features arriving in the late 1.x versions and as part of
v2.0, it is fair to say that it has grown up to be Fluentd’s equal. This fact spawns a cou-
ple of questions:

 Do I need to learn Fluentd to learn Fluent Bit?
 Is Fluentd a legacy solution now?

To come to grips with Fluent Bit, you don’t need to know anything about Fluentd. But
if you understand Fluentd at a high level, you’ll find that getting to grips with Fluent
Bit is easy. There is no dependency between the products. In many respects, although
the two products have a lot of overlap, they are complementary.

 Whether Fluentd is a legacy technology is an architectural question. The answer is
always, “It depends.” The drivers and capabilities incorporated into Fluent Bit mean
that it fits neatly into the modern Kubernetes-centered, cloud-native ecosystem, with
the means to address all the demands of that ecosystem, although some features cur-
rently are not available in Fluentd. As previously discussed, Fluent Bit has a smaller,
lighter footprint, making it suitable for containerized use cases. Another factor is
OpenTelemetry support. At the time of this writing, we have not seen a road map to
equip Fluentd with support for OTel, which makes Fluent Bit by far the better choice
for deploying into container-orchestrated environments such as Kubernetes and work-
ing with services such as Istio. Nothing stops us from deploying Fluent Bit in non-
cloud-native environments, which typically have a wider portfolio of technologies with
which to work. This scenario lends itself more to Fluentd for the foreseeable future,
given the number of adapters it has available. The skills required to create custom
plugins are also more readily available; you simply need to grasp Ruby or another
object-oriented language with built-in memory management, as listed in the TIOBE
Index (https://www.tiobe.com/tiobe-index). Although WASM can enable extensions
to Fluent Bit in languages such as Java and Ruby, it demands additional skills for a
technology that is still proving itself to the mainstream.

 As to whether Fluentd is history, the answer is no. Major vendors have invested in
and used Fluentd for a long time, and that sort of investment is not one to walk away
from. Furthermore, Fluentd and Fluent Bit have different technologies, and although
they have some common ideas, they execute those ideas differently. Many of the key
contributors to the development of Fluentd are also working on Fluent Bit. Both

https://www.fluentd.org/
https://www.tiobe.com/tiobe-index

191.5 How we’re going to discover Fluent Bit
solutions are being propelled forward to meet the demands and innovation needed
by the CNCF ecosystem. Cloud-native ideas and CNCF influence the world of soft-
ware; not all cloud software deployments are as tightly bound to Kubernetes as others.
Put simply, Fluent Bit can do a lot and be applied to many use cases, but today, Flu-
entd fits some use cases better than Fluent Bit, and vice versa.

NOTE The way that Fluent Bit’s name is written has fluctuated, at times being
Fluentbit. The two ways of writing the name are interchangeable. The spellings
fluent-bit and Fluentbit have also been used for code and executable artifacts.
But the official, correct spelling is Fluent Bit.

1.5 How we’re going to discover Fluent Bit
This book sequences chapters to get you started quickly, focusing on sources and des-
tinations. Then it adds advanced capabilities, such as filtering and creating plugins.
We want this book to be both a tour guide for those who are new to Fluent Bit and a
resource for reference for both new and experienced users. Like a good tour guide,
we will reflect on Fluent Bit’s history and how it affects today as we travel through Flu-
ent Bit’s capabilities. We’ll look at the most common configuration scenarios with
real-world applications. The scenarios don’t simply involve clicking this and typing
that and seeing something happen; we’ll explain what is going on and why. After all,
the better you understand how things work, the easier it is to derive new configura-
tions and other use cases.

 Every scenario has a working solution in a GitHub repository (https://mng
.bz/vJKa) and in Manning’s book-download pack (https://www.manning.com/down-
loads/2686), and we’ll describe how to run those scenarios in the book. As the exam-
ples get more advanced, we may not include every bit of the configuration in the
book—only the bits that are relevant to the subject at hand. The complete configura-
tion is available in the files referenced in the GitHub repository.

 Just as a tour guide doesn’t explain every detail of every exhibit as they guide you
along, we’re not going to look at every edge case of Fluent Bit. Like a guide, we will
give you the means to go back and explore different aspects more deeply on your own
time. We’ve included several appendices for that purpose. The appendices include
setup instructions for the tools used in the book and references to further supportive
reading, tools, lookup information, and examples that will help.

 The scenarios in each chapter sometimes develop logically from the preceding ones
as we build sophistication and illustrate different possibilities. But don’t worry—if you
need to jump back to a chapter, you won’t need to return to the beginning. Each sce-
nario configuration is independent of the others. We’ll also give you some additional
challenges; the solutions are in the downloadable content. These challenges allow you
to try different ways of configuring Fluent Bit without having the answer in front of you.

 The biggest possible challenge is creating realistic log behavior. We’ll solve that
issue by using a LogGenerator/LogSimulator that can create different log events. To
learn more about this utility, see appendix A.

https://www.manning.com/downloads/2686
https://www.manning.com/downloads/2686
https://mng.bz/vJKa
https://mng.bz/vJKa
https://mng.bz/vJKa

20 CHAPTER 1 Introduction to Fluent Bit
1.5.1 How much Kubernetes will this book involve?

The way the industry references Kubernetes can confuse those who are new to the
technology. To be precise, Kubernetes is the orchestrator for a set of technologies that
are compliant with its APIs. We often talk about Docker when referring to containers,
but we actually mean Open Container Initiative (OCI)–compliant containers and the
associated container engines. Product names like Kubernetes are shorthand for the
broader ecosystem rather than detailed specifics of container orchestration. Within
this book, we have worked to use Kubernetes in the broader use, and when we’re talking
about specific parts of Kubernetes, we’ve tried to use the specific component names.

 The objective for many people is to understand Fluent Bit in the context of build-
ing and operating containerized applications. Using Fluent Bit to monitor container-
ized applications requires only a basic understanding of how containers can be
orchestrated. Likewise, 10 years ago, only a basic understanding of VMs was needed to
monitor applications that ran in environments managed by VMWare. Few people
need to know how VMWare moves VMs or Kubernetes moves containers within a
server cluster, for example. Applications shouldn’t be aware of the world outside their
container or VM unless you’re producing a Kubernetes controller.

 For a detailed look at the Kubernetes log and observability, we would recommend
checking out a Kubernetes-specific book to understand its administration (several
resources are mentioned in appendix B). Most of us will start with a prepared Kuber-
netes cluster, and these Kubernetes environments are opinionated; compare OpenShift,
Tanzu, K3s, Minikube, and the cloud-provider setups, and you’ll see. Many prepared
Kubernetes deployments tell you how they have configured things, so it’s worthwhile
to look at their documentation; sometimes, there are preconfigured Fluent Bit set-
tings to monitor Kubernetes at the lowest level, so the question is how to build on this
feature. When you’ve considered this question, come back to this book to see how you
can use the events generated by Kubernetes and apply Fluent Bit.

 We use containers in this book, but to keep things simple and to emphasize that
Fluent Bit is not just a tool for Kubernetes, we will focus on running Fluent Bit locally.
This approach means we don’t have to worry about container configuration when try-
ing to master Fluent Bit configuration. It also helps us see that Fluent Bit can work
with more traditional application deployments.

1.5.2 Logging in Action

The final question in this chapter is how this book relates to Logging in Action
(https://www.manning.com/books/logging-in-action). That book touches on Fluent
Bit but just enough to provide context. Like the two technologies, that book and this
one can be used together, but neither is beholden to the other. Don’t dismiss Logging
in Action, however. That book has content relevant to Fluent Bit, particularly a deeper
look at the theory of observability and monitoring, such as deployment strategies and
ways to mix the two technologies.

https://www.manning.com/books/logging-in-action

21Summary
Summary
 We have taken a whirlwind tour of what has made Fluent Bit so popular and

how it is particularly good in a microservices context, such as its small footprint
and operability with other technologies, particularly Fluentd.

 We looked at the high-level ideas, architecture, and components of Fluent Bit,
so we are in a better position to understand the application of Fluent Bit, which
we’ll explore in the coming chapters.

 We also examined the relationship between Fluent Bit and OpenTelemetry and
saw that they can coexist and complement each other.

 We reviewed the high-level ideas and elements of Fluent Bit, enabling you to be
able to start asking questions about Fluent Bit and getting a sense of the ele-
ments we’ll explore in the coming chapters, starting by looking at the different
ways we can run Fluent Bit and implement a “Hello, World” configuration.

From zero
to “Hello, World”
When it comes to getting Fluent Bit up and running with a scenario, we’ll be
quicker than Nic Cage in Gone in 60 Seconds. Although the chapter will take you a
little longer to read than others, we’ll certainly have the Fluent Bit equivalent to the
developer’s “Hello, World” going with minimal effort. Understanding different
configuration approaches and the ways they can be dynamic means you can decide
which approach best fits your deployment needs.

 For this chapter, all we need are Fluent Bit and a tool of our choice to edit con-
figuration files, such as Visual Studio Code. If the tool can understand YAML
(YAML Ain’t Markup Language), that’s a bonus. All the instructions for installing
Fluent Bit are provided in appendix A.

This chapter covers
 Learning ways to configure Fluent Bit

 Examining the Fluent Bit command-line
interface (CLI)

 Creating a Fluent Bit version of “Hello, World”

 Looking at classic and YAML Fluent Bit
configurations

 Working with dynamic configuration features
22

232.1 Multiple ways to configure Fluent Bit
 The content relating only to v3 has been explicitly called out. The core capabilities
described will work all the way back to Fluent Bit v1, but the console output differs
slightly.

NOTE The book focuses on Fluent Bit v2 and v3. Despite the major version
change, the configuration files are backward compatible.

2.1 Multiple ways to configure Fluent Bit
Fluent Bit allows us to provide configurations in multiple ways—through the com-
mand line or several different file formats. Before examining how to configure Fluent
Bit, we need to take a moment to understand the various options and how we will
address them in the book.

2.1.1 Configuration formats

Using the command-line interface (CLI) can be a powerful way to configure Fluent
Bit. This approach also has limitations and becomes difficult to work with when imple-
menting anything more than basic use cases, such as retrieving log events or standard
environment metrics and outputting them to a file.

 The command-line capability is one way to simplify a container configuration. A
configuration tweak affects only a single layer in the container and does not require a
container to be rebuilt from scratch as a result of needing to copy configuration files
into the image. We could also bypass this with smarter container management that
mounts volumes to retrieve a configuration file(s), or have the container startup per-
form a configuration pull from somewhere like a Git repository every time a container
is started. If the Fluent Bit container is being used with Kubernetes, it is common
practice to insert configuration files into a container by using a ConfigMap—the
approach we’ll use with Kubernetes in chapter 4.

 To understand the possibilities, we’ll walk through the process of using the CLI to
define a simple Fluent Bit configuration. The rest of the book focuses on using a con-
figuration file.

2.1.2 CLI controls

The Fluent Bit command line can be used to provide parameters that tell Fluent Bit
how to execute, as well as set several status and control behaviors. As with most appli-
cations, the CLI uses a hyphen and a single letter or double hyphen with a full name
for each parameter value. The short parameters are case sensitive. Fluent Bit supports
the near-universal shortcut -h (--help) to display command-line help. Let’s start with
the parameters we’re likely to use regularly, particularly during the development of
Fluent Bit configurations (table 2.1).

24 CHAPTER 2 From zero to “Hello, World”
Using parameters, we can validate the version of Fluent Bit we have deployed. When
we run the command fluent-bit -V, we should see a message confirming that our
Fluent Bit deployment is v2 or later. If not, revisit appendix A’s deployment guidance,
as we will be doing things in the book that can’t be run. Try generating an SOS report
with the -S parameter. We’ll use other options, such as --dry-run and --config (-c),
later in the book.

 Let’s look at more advanced configuration options that allow us to control Fluent
Bit behavior in a more operational context, such as directing where Fluent Bit writes
its log files, and where it can write temporary files, such as when file buffers are used
(table 2.2).

Table 2.1 Fluent Bit execution CLI controls

Short parameter Long parameter Description

-h --help This parameter displays detailed CLI help on the console.

-b --storage_path When buffering uses the filesystem, the files are stored in
this location.

-c --config As with Fluentd, this parameter directs Fluent Bit to work
with a specific configuration file identified by the path to the
file provided.

-d --daemon This parameter tells Fluent Bit to run as a daemon process,
so it will be executed as an OS process.

-D --dry-run The --dry-run option directs Fluent Bit to evaluate the
configuration to ensure that it is correct without running the
pipelines and generating output.

-q --quiet The --quiet parameter reduces output to warnings and
errors, and -qq makes things very quiet, with only errors
being output.

-S --sosreport This parameter builds a detailed summary of the Fluent Bit
deployment, including flags used to build the binary, which
helps anyone better understand any operational issues.

-v --verbose The --verbose and --quiet controls work in the same
manner. -v enables Fluent Bit to log to the debug level, and
-vv goes to the trace level.

-V --version This parameter gets Fluent Bit to provide information on the
version number and related details.

Table 2.2 Log operation CLI controls

Short parameter Long parameter Description

-C --custom Enables the use of custom sources (inputs) or sinks
(outputs).

252.1 Multiple ways to configure Fluent Bit
Using the parameters in table 2.2, run Fluent Bit so that it logs to a file called fb.log,
run the command, and terminate the process after about 10 seconds. The command
you should arrive at is fluent-bit -l fb.log. When you’ve stopped Fluent Bit, you
should see a local file called fb.log. The file will contain text showing Fluent Bit log
information reflecting the startup, like this:

[2024/04/14 16:57:29] [info] [fluent bit] version=2.2.2,
➥ commit=eeea396e88, pid=30060
[2024/04/14 16:57:29] [info] [storage] ver=1.5.1, type=memory,
➥ sync=normal, checksum=off, max_chunks_up=128
[2024/04/14 16:57:29] [info] [cmetrics] version=0.6.6
[2024/04/14 16:57:29] [info] [ctraces] version=0.4.0
[2024/04/14 16:57:29] [info] [sp] stream processor started
[2024/04/14 16:57:34] [warn] [engine] service will shutdown
➥ in max 5 seconds
[2024/04/14 16:57:35] [info] [engine] service has stopped
➥ (0 pending tasks)

Table 2.3 shows the key controls for defining a pipeline from the command line. We’ll
put these controls to use soon. We previously saw the architecture of Fluent Bit, so it
shouldn’t surprise you that it heavily informs how the CLI and the configuration files
are structured.

-e --plugin Identifies where an external plugin should be loaded
from.

-f --flush Allows us to change the flush frequency by providing an
integer representing a number of seconds. (No value
means that flush defaults to every second.) The flush
represents the frequency at which the log events are pro-
cessed downstream, regardless of how full the buffering
capacity is.

-l --log_file Allows us to direct the log events to a log file rather than
the console. The console still gets a brief startup config-
uration summary.

-w --workdir Defines where Fluent Bit puts any temporary files.

-H --http Enables the HTTP server, which can be used to address
HTTP GET REST calls that can be used to retrieve infor-
mation about the Fluent Bit node, such as health, met-
rics, and build details. Except for the response to the
root URL, the other endpoints start with /api/v1/.

-P --port Allows a different port from the default 2020 to be
defined for the HTTP server.

-s --coro_stack_size Sets the stack size for coroutines (defaults to 24 KB).

Table 2.2 Log operation CLI controls (continued)

Short parameter Long parameter Description

26 CHAPTER 2 From zero to “Hello, World”
We can also retrieve a help summary for specific inputs, outputs, and filters by spec-
ifying the input, output, or filter followed by -h or --help. For example, we can
retrieve details about the dummy input plugin using the command fluent-bit -i
dummy -h. Try formulating a command line to get the configuration details for the
stdout output plugin.

Table 2.3 Log event–processing CLI controls

Short parameter Long parameter Description

-i --input Identifies the input plugin and must be followed by the
plugin name.

-o --output Identifies the settings for the output. -o needs to be fol-
lowed by the name of the output, such as stdout.

-F --filter Starts the definition of a filter.

-m --match Controls the events that an output can process.

-p --prop Identifies the following value provided to define the name
and value for a configuration property for the plugin, filter,
etc. The property is provided as a name-value pair, such as
name=value.

-R --parser Allows us to define the data in the log event’s record that
can be manipulated.

-t --tag Allows us to define the tag to be applied to the input event.

-T --sp-task Allows us to define a stream processor.

What does plugin mean?
We’ve encountered references to plugins. The term is key to Fluent Bit but can be a
source of misunderstanding because plugin can be used to describe features com-
piled directly into the core of Fluent Bit. This term comes from Fluent Bit’s older sib-
ling, Fluentd, which is built with Ruby and takes advantage of Ruby’s modularity and
dynamic class loading. Different parts of Fluentd are exposed by defined interfaces
that could be easily built on with Ruby’s language features. These interfaces are pro-
vided to help ensure that the code is implemented with good software engineering
practices, regardless of whether the code is part of the core product or used by others
to implement their own inputs, outputs, and filters. There are other interfaces, but
they are far less frequently used. As functionality that uses these interfaces typically
comes in separately deployable files and could be visualized as being plugged into
the core, they’ve become known as plugins.

Fluent Bit defines interfaces to manage coupling and extensibility as sound software
engineering practices. As a result, the term has continued in Fluent Bit even though
many of the plugins are compiled into the executable for the Fluent Bit file. In this
book, we will continue using the language of plugins, whether they are compiled into
the core of Fluent Bit or custom developed using WebAssembly or Go.

272.1 Multiple ways to configure Fluent Bit
2.1.3 Defining a monitoring pipeline using the CLI

As we’ve seen from the command-line options, we can use the CLI to define a moni-
toring pipeline. This capability makes it possible to configure containerized Fluent Bit
and embody the behavior in a Kubernetes Pod declaration, including the command
declaration. Let’s put it to the test by creating a simple Fluent Bit command that works
with a dummy input and pushing it to the console.

INPUT

Within the command line, we can define one or more inputs by repeating the input
delimiter, followed by the input plugin name. For our “Hello, World” example, we’ll
use the simplest possible option: a plugin called dummy. dummy doesn’t source any log
events; it creates them internally with a JSON payload, which we can define or allow to
have defaulted values. With each input, we need to define the tag associated with that
source. Let’s use the value dummy1, which means that after the input, we need to pro-
vide the -t parameter with the value dummy1.

 We want to output the JSON {"hello": "my world"}, so we need to supply the con-
figuration for the attribute or property used by the plugin to change the payload. Now
things get a little tricky, as JSON expects quotes, but the logic that consumes the prop-
erty wants only the whole value quoted. As a result, the quotes within the JSON need
to be escaped with a leading forward slash, for example: "{\" hello\" :\"my
world\"}". Bringing these CLI parameters together gives us the definition of the
input. Note that the order is important.

OUTPUT

Next, we define the output, which we’ll keep simple, directing the log events to the
stdout. We use the -o option followed by the output name—in this case, stdout. We
need to define the tag-based filter (or event match, to use the correct Fluent Bit
term). We do this with the -m parameter applied to the output identified immedi-
ately before the declaration. Because we want to log all events, we can use a wildcard
(*). (We’ll address the role of matching in chapter 5 when we start to explore the
ideas of routing.)

 As we’re running the command from a script, wrapping the asterisk in single
quotes has become necessary. Single quotes are unnecessary if we run the command
directly from the console.

 The last addition to our command, -q, makes the logging quiet, so we don’t get
any unnecessary noise from the logging. We recommend incorporating the behavioral
settings into the CLI statement before expressing any log event–handling elements.
The built-up CLI command should look like the following listing; see chapter2\flu-
entbit\hello-world.cli.[sh|bat].

fluent-bit -q -i dummy -p dummy="{\"hello\":\"my world\"}" -t dummy1
➥ -o stdout -m '*'

Listing 2.1 Command-line-configured Fluent BIt

28 CHAPTER 2 From zero to “Hello, World”
The download/GitHub bundle (identified in appendix A) provides the command
wrapped up as a shell script to make it easy to run. When we run the command
./hello-world.cli.sh, we should see a result like figure 2.1.

INTERPRETING CONSOLE OUTPUT

Figure 2.1 shows our output, and we can clearly see the strings used in our JSON set by
the dummy property and a timestamp showing when the log entry was created. But the
payload isn’t the expected format for JSON because the output plugin can present
information in a few ways, and the default isn’t JSON; it’s a representation of how Flu-
ent Bit stores each event internally. The internal representation uses a serialization
library, MessagePack (https://msgpack.org/index.html), that converts the string to a
binary format, reducing the number of bytes needed to hold the message. This library
is also used when communicating between Fluent Bit and Fluentd instances. Message-
Pack is an open source data format designed to be compact and fast in serializing and
deserializing. We address this topic further in chapter 3, but first, we’ll explain what
the data elements in figure 2.1 represent:

 The first value in square brackets is a counter for that event in the current
chunk of events. The process of outputting the event is dictated by how much
of the buffer is full and by the flush frequency, which by default is 1 second. The
dummy plugin generates events once per second, so we can expect this value to
be only 0. To illustrate this behavior, alter the script and add -f 15, which
flushes the buffer every 15 seconds. As a result, we’ll see the counter increment
to 14 (or 13, if any nanosecond drift occurs in the timing).

 The next value is the tag associated with the log event. If no tag is defined, the
tag is derived from the input type, such as dummy. If no tag is set, we see the
plugin name and a numeric counter for each instance of the plugin used, e.g.,
dummy.0).

 The third numeric value is the timestamp in seconds from the epoch, with frac-
tions of a second as the decimal place number.

Figure 2.1 Output generated from running the CLI version of the “Hello, World”
configuration

https://msgpack.org/index.html

292.1 Multiple ways to configure Fluent Bit
 Later versions of Fluent Bit (v2 and later) follow the timestamp with any meta-
data associated with the event as we described in chapter 1.

 Finally, we have the record body, which contains a representation of the JSON
formatted text from our dummy attribute: {"hello"=>"my world"}.

EXTENDING THE CLI TO DEFINE MULTIPLE INPUTS

A single input, such as a CPU or an application log alone, doesn’t tell a comprehen-
sive story. Ideally, we might want to collect multiple log event data sources. We can see
how multiple inputs work by creating an additional dummy input on the command line
with different values.

 When we use multiple inputs or outputs, the sequence of the properties provided
in the CLI declaration is important. The tag (-t) and properties (-p) are always asso-
ciated with the preceding defined input, output, or filter. Given this information, we
should be able to enhance the existing dummy input with a tag value of dummy1.
We should be able to define an additional dummy input. This second dummy input uses
the tag dummy2 and generates the JSON {"more": "stuff"}. We should be able to
configure this second dummy input by copying the first dummy input and then editing
the properties.s

 All the exercises so far have provided solutions. The answer should look like the
following listing; see chapter2\fluentbit\hello-world-2.cli.[sh|bat].

fluent-bit -q -i dummy -t dummy1 -p dummy="{\"hello\":\"my world\"}"
➥ -i dummy -t dummy2 -p dummy="{\"more\":\"stuff\"}" -o stdout -m '*'

In developing the enhanced version of the command, we’ll have picked out the fol-
lowing points:

 Ordering the input and associated properties
 Using escape characters for the dummy input on the input plugin

As a result, we expect to see a result that looks like figure 2.2.

Listing 2.2 Parameterized CLI run

Figure 2.2 Output from Fluent Bit when running with two dummy sources configured
with different dummy attribute values

30 CHAPTER 2 From zero to “Hello, World”
MULTIPLE OUTPUTS

Let’s extend our example so that we have multiple outputs and can differentiate the
outputs. We’ll continue to use stdout, but for one of the outputs, we’ll configure the
output plugin to format the entire message as JSON for its output, and we’ll configure
the date and timestamp to use ISO 8601 format. To do so, we’ll add properties to the
output definition, specifically setting format to a value of json. The default is msgpack,
which results in an unpacked representation of the data held in Fluent Bit. Other
options are json_lines and json_stream, both of which force the output to be syn-
tactically correct JSON, but json_lines forces each record onto its own line, and the
json_streams option does not. The property json_date_format should be set to
iso8601. As a result, the date is included in the log event output formatted in line with
the ISO standard. The resulting command should look like this listing (chapter2\
fluentbit\hello-world-3.cli.[sh|bat]).

fluent-bit -f 5 -q -i dummy -t dummy1
➥ -p dummy="{\"hello\":\"my world\"}" -i dummy -t dummy2
➥ -p dummy="{\"more\":\" stuff\", \"1\":\"2\"}" -o stdout -m "*"
➥ -o stdout -m "*" -p Format=json_lines -p json_date_format=iso8601

The result should resemble figure 2.3, where outputs occur twice (once for each out-
put definition). One of the outputs is displayed in proper JSON format and uses the
ISO 8601 date representation.

Defining the inputs, outputs, and filters in the order in which we expect them to be
used is generally good practice because it helps with ease of reading. Sometimes,

Listing 2.3 CLI with multiple inputs

Figure 2.3 Output from Fluent Bit when running with multiple inputs and outputs

312.2 Fluent Bit configuration in two forms
however, definition order can have an effect, particularly when we’re introducing
filters. In this case, there aren’t any factors that will make Fluent Bit have to con-
sider order. We can confirm this fact by changing the declaration order of the inputs
and outputs.

2.1.4 Fluent Bit prebuilt Docker container

When the Fluent Bit project performs a release, a basic Docker container is published
(https://hub.docker.com/r/fluent/fluent-bit). We can run the Docker image version
by editing our hello-world-2.cli.sh file, and replacing the fluent-bit binary refer-
ence with the command docker run and the path to the latest Fluent Bit, such as
cr.fluentbit.io/fluent/fluent-bit:latest. We should see the same outcome as
Docker allows its stdout to reach our console. We’ve provided an implementation of
the answer with the script file hello-world-2.cli.answer.[sh|bat].

2.2 Fluent Bit configuration in two forms
Fluent Bit has two configuration file styles. The original, or classic, format looks like a
Fluentd configuration file and a new YAML format. The YAML format was introduced
with Fluent Bit v1.9 and is considered a production fit from Fluent Bit v2.0. Adopting
a YAML format for Fluent Bit helps align with a common notation used across the
cloud-native ecosystem of the Cloud Native Computing Foundation (CNCF) and
Kubernetes. It also allows us to exploit any tooling that supports YAML or can tem-
plate YAML configuration files, such as Carvel (https://carvel.dev/ytt). Eventually,
YAML will become the default configuration approach. As new features arrive for Flu-
ent Bit, we’ll see the approach to configuration support through YAML first and possi-
bly not in the classic format (such as the recent addition of the processor feature,
which we’ll discuss in chapter 9). As Fluent Bit is mature and has an established install
base, we need to maintain backward compatibility so we don’t expect breaking
changes when it comes to the classic configuration notation.

 As many existing users are working with the classic format, we’ll use that configura-
tion format for most of the book (but equivalent YAML files are provided). This chap-
ter looks at both formats and addresses the differences.

2.2.1 Fluent Bit vs. Fluentd configuration comparison

Chapter 1 introduced the relationship between Fluent Bit and Fluentd. If you’re
already using Fluentd and considering migrating to Fluent Bit, then we need to
understand the similarities and differences of the configuration file formats. Unfortu-
nately, while there are a lot of similarities in the configuration formats, they aren’t a
perfect match. Table 2.4 shows how a classic Fluent Bit configuration file compares
with a standard Fluentd configuration using dummy and stdout plugins.

https://carvel.dev/ytt
https://hub.docker.com/r/fluent/fluent-bit

32 CHAPTER 2 From zero to “Hello, World”
The key difference is that the XML style tags have been replaced by square brackets
with no termination, which is now implicit. Our core types of directives have had some
name changes. The configuration for the node, for example, is called SERVICE in Flu-
ent Bit and system in Fluentd.

TIP If you elected to migrate from Fluentd to Fluent Bit, it’s worth adopting
a coexistence strategy and migrating directly to the YAML format.

2.2.2 Comparing Classic and YAML configuration

We’ve seen how classic and YAML Fluent Bit configurations differ. Now let’s look at
the same configuration side by side (table 2.5). The comparison uses dummy and
stdout plugins to implement the “Hello, World” configuration.

Table 2.4 Classic Fluent Bit vs. Fluentd configuration comparison

Classic Fluent Bit Fluentd

[SERVICE]
 flush 1
 daemon Off
 log_level info

define the Dummy source
[INPUT]
 name Dummy
 dummy {"hello": "my world"}

Accept all log events regardless
of tag and write
them to the console
[OUTPUT]
 name stdout
 match *

<system>
 log_level info
</system>

define the Dummy source
<source>
 @type Dummy
 dummy {"hello": "my world"}
</source> # after a directive

Accept all log events regardless of
tag and write them to the console
<match *>
 @type stdout
</match>

332.2 Fluent Bit configuration in two forms
As we can see from the side-by-side representation of the classic and YAML formats,
the difference is more than minor changes to align the attributes and core blocks.
The change isn’t just moving [input] to input, for example; we have the additional
structure in the form of a pipeline element, and input is called inputs. Likewise,
output is now the plural rather than the singular representation and resides within
the pipeline definition. There is also a variation in the YAML format, sometimes
referred to as Kubernetes Idiomatic YAML.

TIP If you’re new to YAML, appendix B includes links to resources that can
help, including the YAML specification, IDE plugins, and online formatters.

Table 2.5 Classic Fluent Bit vs. Fluent Bit YAML configuration

Classic Fluent Bit
Fluent Bit YAML

(without Kubernetes idiomatic formatting)

Hello World config will
take events received on
port 18080 using TCP as a protocol

[SERVICE]
 flush 1
 daemon Off
 log_level info

define the TCP source that will
provide log events
[INPUT]
 name Dummy
 dummy {"hello":"my world"}

Accept all log events regardless
of tag and write them to the
console
[OUTPUT]
 name stdout
 match *

Hello World config will
take events received on
port 18080 using TCP as a protocol

service:
 flush_interval: 1
 log_level: info

pipeline:
 inputs:
 - name: dummy
 dummy: '{ "hello": "my world" }'
 tag: test
 outputs:
 - name: stdout
 match: *

Configuration files
This book supports both classic and YAML configuration formats. When illustrating
configurations, we will use the classic format, which is arguably a little easier to read,
and present YAML when we need to show how configurations may appear differently
or features without a classic configuration option. These files are in the download
package from Manning and available in the GitHub repository (https://mng.bz/vJKa).

https://mng.bz/vJKa

34 CHAPTER 2 From zero to “Hello, World”
CONFIGURATION FILE STRUCTURE FOR A CLASSIC FILE

We’ve seen similarities and differences in the formatting. Now let’s look at the format-
ting rules for the classic file.

 Indentation within classic-format configuration files is significant, as it is in YAML
(see appendix B if you’re unfamiliar with YAML). The main directive blocks (some-
times described as sections), such as [SERVICE], [INPUT], [OUTPUT], and [FILTER],
must be left-aligned with no spaces. The case is not important in the declarations;
[SERVICE] and [service] are equally valid.

 Each block’s attributes (also referred to as properties) need to be indented, usually
with four spaces (but we’ve opted to use only two spaces to help with layout in this
book). The indentation must be consistent within the configuration file.

 A property (sometimes referred to as an attribute or key) and value can’t be split
across lines. The spacing between the attribute and its value needs to be at least one
space. Some people like to space the attributes and values so that the configuration
appears in a more tabular form with the values lining up, as shown in table 2.4. Others
prefer single-space separation, the approach adopted within the provided configura-
tion files. The following listing highlights a few key rules; see chapter2\fluentbit\
hello-world.conf.

[service]
 flush 1

[input]
 name dummy
 dummy {"hello":"my world"}
 tag dummy1

[output]
 match *
 name stdout

To execute these configuration files, rather than use a lengthy set of parameters, we
can use the command fluent-bit -c followed by the name of our configuration file.
We assume you have the folder with the fluent-bit executable in the $PATH (%PATH%
for Windows) environment variable, as advised during installation. Otherwise, you’ll
have to use the full path. For this book, we have assumed that you have the executable
in the PATH, so a command such as this will work:

fluent-bit -c hello-world.conf

Listing 2.4 “Hello, World” configuration in classic format

All the Fluent Bit general configuration
values are set in this section.

The flush attribute controls how frequently Fluent Bit
flushes its log cache to the output channels (stdout and
stderr). In this case, we have set it to 1 second.

Indentation is important in a configuration file and must
be consistent. The typical recommendation for indentation
is four space characters. (We’ve used two to keep the
configuration compact.) Indentation, as in a YAML file,
indicates parent and child relationships. In this case, all
these values are subservient to this input.

Fluent Bit configuration uses the terminology of input and output.

Fluent Bit can control whether an output plugin will take log events
using a match property that applies filters based on the tag name.

352.2 Fluent Bit configuration in two forms
For a YAML configuration, the only thing we need to do is change the file extension to

fluent-bit -c hello-world.yaml

CONFIGURATION FILE STRUCTURE FOR A YAML FILE

We’ve seen that while there are some similarities, there are also some important differ-
ences. So, we should take a closer look at the configuration file and the rules that apply.

 Fluent Bit has traditionally named its attributes using snake-case convention (sepa-
rating words with underscores like_this). Kubernetes, however, adopted an approach
that has cascaded to many other CNCF projects: camel case. (The first character of
each word except for the first word is capitalized, so no underscore is necessary,
likeThis.) You can find the specifics at https://mng.bz/ZVA9. The style differences
can be jarring when reading Fluent Bit configuration inside a Kubernetes Pod config-
uration. To address this, Fluent Bit adopted the ability to translate attribute names
between the two representations. log_level and logLevel, for example, are recog-
nized as the same attribute. In this book, we will use snake case and reserve camel case
only for Kubernetes YAML configurations to help you appreciate both formats. The
following listing highlights a few key rules of the YAML formatting; see chapter2\
fluentbit\hello-world.yaml.

env:
 flush_interval: 2

service:
 flush: ${flush_interval}
 log_level: info
 #logLevel: info

pipeline:
 inputs:
 - name: dummy
 dummy: '{ "hello": "my world" }'
 tag: dummy1

 outputs:
 - name: stdout
 match: "*"

Let’s incorporate the additional sources and outputs described when we extended the
CLI with an additional dummy input and the stdout. We created a version of the classic
configuration and YAML files. We can see from the resulting files that the classic con-
figuration file has a near-perfect correlation to how we define the command line, as
shown in the following configuration. The only notable difference is that we don’t
need to escape the quotation marks, as we can assume everything after the property
name belongs to the payload to use; see chapter2\fluentbit\hello-world-2.conf.

Listing 2.5 "Hello, World” config using YAML

We can set environment variables
within the configuration.

We can reference environment
variables within the configuration.

We can express the log_level
attribute using the older snake
case and the Kubernetes camel
case (idiomatic approach).

We can group multiple inputs
and outputs into a pipeline.

We need to show YAML that this is
the first in an array of properties
using the dash character.

We don't need to consider
escaping the quotes when

we wrap the expression in a
set of single quote marks.

https://mng.bz/ZVA9

36 CHAPTER 2 From zero to “Hello, World”
[service]
 flush 3

[input]
 name dummy
 dummy {"hello":"my world"}
 tag dummy1

[input]
 name dummy
 dummy {"more":"stuff"}
 tag dummy2

[output]
 match *
 name stdout

[output]
 match *
 name stdout
 format json
 json_date_format iso8601

The YAML format, by contrast, doesn’t map perfectly. First, we use the pipeline,
which offers an interesting opportunity to create a behavior a bit like a Label in Flu-
entd. In effect, we can group inputs and outputs. The next difference is that each
input within a pipeline no longer needs to reuse the inputs declaration if the inputs
are defined consecutively, which makes sense of that previously discussed change in
plurality; instead, we start a fresh list of properties. The inputs element may be worth
using to support readability, of course. We can visualize this pipeline using Calyptia’s
Visualizer tool (part of which we can see in figure 2.4), which allows us to design pipe-
lines and generate visualizations from an existing configuration (another option for
validating that the configuration will perform as expected). Listing 2.7 shows the con-
figuration; see chapter2\fluentbit\hello-world-2.yaml.

Listing 2.6 Multi-input configuration file

We repeat the input block
for each input we define.

We create an additional output
block for each event output type,
including associated properties.

Defines the additional
formatting using JSON

Sets the date formatting
to use ISO 8601 format

Figure 2.4 Two dummy (Mock Data) plugins, which will be consumed by
two standard-output (stdout) plugins

372.3 Checking configuration with a dry run
env:
 flush_interval: 1

service:
 flush: ${flush_interval}
 log_level: info

pipeline:
 inputs:
 - name: dummy
 dummy: '{ "hello": "my world" }'
 tag: dummy1

 #inputs:
 - name: dummy
 dummy: '{ "more": "stuff" }'
 tag: dummy2

 outputs:
 - name: stdout
 match: "*"

 #outputs:
 - name: stdout
 match: "*"
 format: json
 json_date_format: iso8601

2.3 Checking configuration with a dry run
Having progressed to running the hello-world example via the CLI and a configura-
tion file, we have an ideal opportunity to address the command-line option --dry-
run. A dry run allows us to start up Fluent Bit so that it validates the configuration
without running it. If any problems occur with the configuration, Fluent Bit provides
log output information to tell us. To see a valid execution of the dry run, try it with a
valid configuration by using this command:

fluent-bit -–dry-run -c hello-world.conf

Listing 2.7 Multi-input config using YAML

Classic and YAML differences
As of this writing, the classic configuration formats have a few features that are not
yet in YAML format. I expect that the gaps will be addressed over time so that adopt-
ing YAML format will become a superset of capabilities. Check the GitHub issues
(https://github.com/fluent/fluent-bit/issues) and discussions (https://github.com/
fluent/fluent-bit/discussions) sections if a feature doesn’t appear to exist.

At the same time, the latest features for Fluent Bit are getting YAML configurations
first and may not be backported to the classic notation. A key example is the proces-
sor feature, which we’ll look at in chapter 9.

We have the additional
pipeline declaration.

We don’t need to escape the quotes,
but the string still needs to be
wrapped with a single quote.

The second input and output
declarations don't require the
parent element to be used.
We've commented them out
here so you can try the
configuration with and
without the declarations.

https://github.com/fluent/fluent-bit/issues
https://github.com/fluent/fluent-bit/discussions
https://github.com/fluent/fluent-bit/discussions
https://github.com/fluent/fluent-bit/discussions

38 CHAPTER 2 From zero to “Hello, World”
The result ends with a simple message that says

 configuration test is successful.

To prove its behavior, either edit the hello-world.conf file and make a change (such
as changing the plugin’s name from dummy to dumm) or run the provided faulty file
hello-world.error.conf. When you run the erroneous file, you should see an error
such as [error] [config] section 'dumm' tried to instance a plugin name that
doesn't exist.

 The validation checks performed by Fluent Bit are not exhaustive. The error
reports in the Fluent Bit GitHub repository show some limitations.

 Because the validation checks are applied to the configuration when they’re
loaded, the --dry-run option can be used on the YAML configuration just as easily.
Try performing a dry run with the YAML version of the erroneous configuration file
hello-world.error.yaml. The loading of the YAML file is also aware of how the file
should be constructed.

2.3.1 Exercise: Using - -dry-run to help fix a conf file

We have provided an additional configuration file with errors (hello-world.error2
.conf); use the --dry-run option to identify the problem(s) and get the configuration
running. We’ve provided a version of the configuration file with the errors commented
out and the corrections applied; the file is called hello-world.error.conf.answer.

TIP Incorporating the --dry-run command within a software build pipeline
can help you identify and eliminate configuration errors during the build
process; you don’t have to wait until the software is deployed and is producing
errors during startup.

2.4 Configuring file inclusions
When Fluent Bit configuration files start getting larger and more complex, we can
break them down and create the configuration through a series of files, which are
pulled together with @include declarations. This approach makes each part of the
configuration easier to manage. Handling inclusions is a process of performing a text
substitution, so you need to be aware of considerations such as these:

 Sensitivities such as indentation—The substitution is applied only at the root level
rather than the attribute level.

 Any declaration sequencing issues—These issues include referencing variables,
which need to be defined before they’re used.

We can see this at work by using hello-world-includes.conf, which includes two
files that make up our hello-world example; see chapter2\fluentbit\hello-world-
includes.conf.

392.4 Configuring file inclusions
@include hello-world-input.conf
@include hello-world-output.conf

Figure 2.5 shows how this process works.

We can run this example with the command - fluent-bit -c hello-world-includes
.conf. This will yield the same result as running hello-world.conf.

2.4.1 Creating dynamic configuration by using inclusions

Simplifying our configuration files is the beginning of using the @include feature. We
can also use it to be more sophisticated in varying monitoring configurations based on
deployment needs. If we’re deploying Fluent Bit with our application (which could be
Kubernetes itself), we may want to track the logs and information about the host, such
as CPU logs. The input plugin for CPU logs is a Linux-only source. If we keep two ver-
sions of only the CPU bit of our configuration—one for use in Linux and the other
for non-Linux deployments—we can swap the appropriate file version depending on
the environment. The core configuration never changes.

 Figure 2.6 illustrates this approach. We apply Linux-cpu.conf or noLinux-cpu
.conf by symbolically linking, copying, or using other strategies to make a file called
cpu.conf with the appropriate content for the two options.

Listing 2.8 Using file inclusions

Example of the inclusion of a configuration file

When a relative path is provided, the path is
relative to the configuration file with the inclusions.

[]SERVICE

flush 1

@include hello-world-input.conf

@include hello-world-output.conf

hello-world-includes.conf

[]INPUT

name dummy

dummy {"hello":"my world"}

tag dummy1

[]OUTPUT

match *

name stdout

hello-world-outputconf

hello-world-input.conf

Figure 2.5 Visualizing how configuration is inserted when using the
@include feature

40 CHAPTER 2 From zero to “Hello, World”
2.4.2 Proving stub inclusions

For this exercise, we can illustrate this dynamic behavior without the hello-world
configuration. We can create the new version by copying the hello-world-includes
.conf (let’s call the new file hello-world-includes2.conf) and adding an includes
declaration, including a file we’ll call dynamic.conf (e.g., @include dynamic.conf).
The stub.conf file is empty, as would be the case for our Windows environment. We
need to establish the relationship between dynamic.conf and stub.conf. In Linux,
we can copy (cp stub.conf dynamic.conf) the file or establish a symbolic link (ln -s
stub.conf dynamic.conf). The best approach in Windows is to copy the file (copy
stub.conf dynamic.conf, comparable to noLinux-cpu.conf in figure 2.6). Run our
copied scenario (fluent-bit -c hello-world-includes2.conf). We should see the
same results as before.

 Now let’s simulate the Linux environment; the inclusion should bring in the addi-
tional configuration. We don’t have to change our main file. We need to copy or
change the symbolic link, so if we look at dynamic.conf, we’ll see the same contents as
stub-content.conf, including an additional dummy input plugin. We can rerun our
copied scenario (fluent-bit -c hello-world-includes2.conf). This time, the out-
put includes an additional output message saying hello stubby with the tag stubby.
We can change the output by swapping the mapping of dynamic.conf without chang-
ing any configuration.

TIP Avoid using wildcard inclusions. It’s possible to define inclusions with
wildcards in the names. If we had the files FBInclusionOne.conf and
FBInclusionTwo.conf, we could include them both with @include

[]SERVICE

flush 1

@include hello-world-input.conf

@include cpu.conf

@include hello-world-output.conf

hello-world-includes.conf

[]INPUT

name dummy

...

tag dummy1

Alias, symbolic link,

copy, or mount of a

file depending on the

environment

[]OUTPUT

match *

name stdout

hello-world-input.conf

cpu.conf

hello-world-outputconf

[]INPUT

name cpu

tag cpu

#nothing to include

Linux-cpu.conf

noLinux-cpu.conf

Figure 2.6 Injecting the appropriate file into a configuration depending on the deployment
context

412.5 Environment variables in the configuration
FBInclusion*.conf. The problem is that this approach can result in the
inclusions being applied in arbitrary order. In the case of interdependency or
implications of ordering, there are no guarantees. Therefore, this approach is
best avoided.

2.5 Environment variables in the configuration
Another way to make our configurations more dynamic in behavior is to use environ-
ment variables. Fluent Bit configuration can reference environment variables. Then,
during startup, we can retrieve and use the values within the configuration file. This
technique can be particularly helpful if, for example, we want to have the same moni-
toring configuration for our preproduction environment and our production envi-
ronment, with all logged content going to an instance of OpenSearch or Elasticsearch
for each environment. We could define an environment variable with the URL and a
location to retrieve credentials (such as a vault) for the different connections and
then reference those variables in the configuration. Alternatively, we could operate a
single instance of a logging service and differentiate the environments by changing
tags or adding an attribute to the logged event.

2.5.1 Applying environment variables

In this section, we’re going to use an environment variable to change the “Hello,
World” message—something that is about as invasive as we can get. For this change to
work, we need to introduce an environment variable called myTag and give it a value,
for example, my-dummy-tag. In Linux, we can use the command export myTag=my-
dummy-tag. In Windows, we would use the shell command set instead of export.
Appendix A includes additional details on exporting environment variables as part of
the Fluent Bit setup.

 Next, we need to copy hello-world.conf to hello-world-variable.conf to intro-
duce the variable into the expression, or we can use the provided version. We refer-
ence environment variables by placing the variable name inside curly braces with a
leading dollar symbol, as shown in the following configuration fragment (chapter2\
fluentbit\hello-world-variable.conf).

[input]
 name dummy
 dummy {"hello":"my world"}
 tag ${myTag}

With the changes made, we need to set the environment variable. When the environ-
ment variable is in place, we can run the example:

fluent-bit -c hello-world-variable.conf

We can see the output change when we run this, replacing the tag’s value of dummy1
with the value of the environment variable. If the environment variable isn’t set, Fluent

Listing 2.9 Using environment variables

References the
environment variable
to set as the tag

42 CHAPTER 2 From zero to “Hello, World”
Bit produces an error complaining about an unknown property because the value sub-
stitution failed.

NOTE The use of environment variables has some constraints. Some configu-
ration attributes, such as dummy, expect to be given a literal string. In situa-
tions like this, we can use the Modify or Record filters, which we’ll see in
chapter 7. These filters allow us to add or change the event payload.

2.5.2 Setting environment variables

In addition to referencing environment variables, we can set them from within a config-
uration by using the @set declaration. For example, if we wanted to set an environment
variable within our configuration called myTag with the value of TestingTesting, we’d
need to include it in the configuration @set myTag=TestingTesting.

 The applications of this feature aren’t as broad as the @include, but the most useful
use case is for sharing configuration values between included configuration files. Also,
any needed environment variables can be captured within a Fluent Bit configuration file
in a platform-agnostic manner. @set, for example, takes care of whether the environ-
ment is Linux, Windows, or a different OS with different syntaxes for setting up the val-
ues of these shared variables. If the @set declaration uses the same name as an OS-level
environment variable, the environment variable’s value will be overridden.

 Let’s try setting and overriding an existing environment variable by copying list-
ing 2.9 (hello-world-variable.conf) to hello-world-variable2.conf (we’ve pro-
vided the configuration so you can run the example), adding @set myTag=NotTesting
as the first line, and rerunning the configuration. The result will be that the tag dis-
played in the output will now be NotTesting rather than the original environment
variable value my-dummy-tag.

 If the configuration fails to start up with an error message like unknown configura-
tion property 'tag', it indicates that Fluent Bit isn’t able to resolve the environment
variable or the environment variable is an empty or null string.

2.6 Monitoring Fluent Bit’s health
When teams start investing in observability and monitoring more generally, effort
goes into checking that our applications are running smoothly. Often, the absence of
an alert is interpreted as a sign that all is well. But what if the monitor has stopped? In
this case, the absence of events is a problem. For this reason, microservices in a Kuber-
netes environment should implement a health endpoint, traditionally set as /health.
This leads to the question, does Fluent Bit have anything to which we can connect the
container health check?

Background on health checks
To enable containers or Kubernetes Pods to be effectively managed, we must be able
to interrogate their condition. To this end, Dockerfiles include the ability to define

432.6 Monitoring Fluent Bit’s health
To enable Fluent Bit to communicate and listen to web-delivered events, we need to
include a web server, which gives us the means to communicate with and interrogate
Fluent Bit. The first step is configuring Fluent Bit to start the web server, which we do
with an attribute in the [SERVICE] block called http_server. We can also configure
the IP and ports the server should use (http_listen and http_port, respectively).

 With the server active, we can also configure how Fluent Bit responds to health
checks. We need to switch on the feature with the health_check attribute with a value
of on; otherwise, the default web server response is provided. With the health
response enabled, we can control what Fluent Bit considers healthy. Health is charac-
terized by a count of errors from all the output plugins measured against a threshold
defined by hc_error_count and the number of failed retries for output plugins
(hc_retry_failure_count). We don’t want the error count and retry-error count to
be a cumulative score from the start of Fluent Bit, so we need to define a period
expressed in seconds (hc_period) over which the count is applied. If we had an out-
put trying to write to a file that kept failing because the filesystem was full, we should
expect the error count or retry failure count to exceed a threshold quickly. As a result,
the response to the health check URL will be bad.

 When we use the health check feature, we should take into account what Fluent
Bit considers to be an error and its implications. Any failing output will result in an
unhealthy response even if we can live with the loss of those outputs. To put it another
way, there is no way to define a tolerance to losing some outputs temporarily; the
approach is an all-or-nothing approach. The other challenge is that the health check
doesn’t test inputs to see whether they’re working successfully. If the tail (file track-
ing) input can’t read the input file, an unhealthy state won’t be successfully produced
because the plugin is considered OK as the plugin exists and the parameter values are
at least defined. The following listing shows the config for the health check feature;
see chapter2\fluentbit\hello-world-server.conf.

health check actions. For more information on defining health checks in Dockerfiles,
see https://mng.bz/RN4a. For Pods, we can describe several different checks (also
called probes), including liveness. For more information, see https://mng.bz/2gnw.
If the Pod doesn’t respond quickly enough to the health check from Kubernetes, we
can assume that the Pod is unhealthy and needs to be replaced by a new instance.
A healthy response for Kubernetes is a response typically containing an HTTP
response code of 200 (which may be accompanied by a body containing ok). Any HTTP
response code outside the 200–299 range is deemed unhealthy. It’s common prac-
tice for a containerized app to include some sort of endpoint implementation that can
respond to invocations on localhost:8080/v1/health, which provides details on
the application’s health.

https://mng.bz/RN4a
https://mng.bz/2gnw

44 CHAPTER 2 From zero to “Hello, World”
[service]
 flush 1
 http_server on

 #http_listen 0.0.0.0

 http_port 2020

 hot_reload on

 health_check on

 hc_errors_count 10

 hc_retry_failure_count 10

 hc_period 60

With this included in our hello-world configuration, we can run Fluent Bit (fluent-
bit -c hello-world-server.conf) and then use a tool such as curl or Postman (or
even a browser) to access the information about Fluent Bit. The URL to use is
0.0.0.0:2020, giving us a JSON payload and details about the Fluent Bit instance. If
we use this approach, we can use jq to make things more readable:

curl 0.0.0.0:2020 | jq

In addition to the curl commands, we have created Postman configurations that can
be used to exercise the different API endpoints, including the hot reload. Details on
setting up Postman are in appendix A.

NOTE Because Fluent Bit treats all its data as JSON, it can be useful to have a
tool such as jq that can format the output to be more readable (sometimes
referred to as pretty print). To get jq or understand how it works, go to https://
jqlang.github.io/jq. Additional information is included in appendix B.

Fluent Bit provides APIs that go beyond simply retrieving a summary view. Some of
the APIs have two versions available: v1 is accessed via the URL path /api/v1/, and v2
is accessed via the path /api/v2/. The version changes represent feature improvements;
the older URL version is retained for backward compatibility. An example is the

Listing 2.10 Config with HTTP server

By default, the Fluent Bit web server is switched off to
minimize the footprint, so it needs to be enabled.

If we’re using a server with multiple network
addresses, we need to specify which one. By
default, the server uses 0.0.0.0.

Stipulates the port to be used

Switches on a feature that allows us to use an API to
trigger a reload of the configuration of Fluent Bit

Enables the health check response feature

Defines the number of errors allowed
in the hc_period before returning a
failed health check

Defines the number of failed retries allowed
in the hc_period before returning a failed
health check

Defines the duration for errors to accumulate,
expressed as a number of seconds

https://jqlang.github.io/jq
https://jqlang.github.io/jq
https://jqlang.github.io/jq

45Summary
/metrics endpoint; v1 provides a JSON payload, and v2 responds with Prometheus-
formatted data and more data than /v1/metrics.

 For a Kubernetes health check, a simple response returning ok indicates that the
container instance is running smoothly. To get this response, we need to access one of
the more meaningful operational endpoints in the path /api/v1/, such as /api/v1/
health. If we invoke the health check URL with a curl command, we can expect to
get a response of ok:

curl 0.0.0.0:2020/api/v1/health

In subsequent chapters, particularly chapters 3 and 5, we’ll revisit the available APIs.

Summary
 We can configure and run Fluent Bit by using the following approaches: CLI,

classic file format, and YAML file format.
 Fluent Bit and Fluentd are different even at the configuration level.
 We can create a simple “Hello, World” configuration and then extend it to

explore some of the different means by which we can validate and structure its
configuration.

 We can validate the configuration by using the dry-run option.
 Fluent Bit’s configuration can be made dynamic by using inclusions and envi-

ronment variables.
 We can monitor and obtain health and metrics data in different formats from

Fluent Bit, making it easy to ensure that our monitoring operations are working
properly.

Part 2

Digging deeper

Part 1 set us up for our deep dive into Fluent Bit. The next five chapters cover
different types of input and how to output, filter, and route. By the end of chap-
ter 7, we’ll be able to solve many of our routine problems in monitoring and
measuring our systems.

 Chapter 3 is about ingesting data from common sources, from files to net-
work communications. Chapter 4 dives deeper, focusing on Kubernetes. Most of
our interactions are about input from Kubernetes, and the chapter touches on
other concepts, such as filters, because we may not be inputting but enriching
our observability data with details from Kubernetes.

 Chapter 5 is about getting the captured events to the right places. As we saw
in chapter 1, Fluent Bit looks to other tools to provide visualization and explora-
tion of observed data. As in chapter 3, we’ll look at different types of destina-
tions. We may not see every type of plugin we can output with, but we’ll have the
foundation to use any plugin we encounter. Now we have “stuff coming out, stuff
going in,” as Peter Gabriel sang.

 But we need to make sense of what we have, which means filtering the wheat
from the chaff and making sense of what is being said. Chapter 6 covers parsers,
which allow us to break up and change the noise to signals. Then we can apply
meaning with filters in chapter 7. Filters are for removing noise, but they give us
the opportunity to enrich and transform our events.

Capturing inputs
This chapter is all about capturing metrics, traces, and (most important) logs using
Fluent Bit and a variety of plugins that support the latest techniques in the form of
OpenTelemetry, as well as the established practices of using stdout and log files.
We’ll focus on logs, as Fluent Bit originated from log handling. Logs also offer the
most flexible signals and can be easily used to provide data that embodies metrics
and traces; we’ll touch on techniques that allow us to change a signal’s type. We’ll
come back to this subject in other chapters, including chapter 9.

3.1 Fluent Bit plugins
Fluent Bit has a respectable portfolio of plugins. To understand the relationships
between the parts of Fluent Bit, let’s see how the inputs fit into the overall logical
architecture, shown in figure 3.1.

This chapter covers
 Reading log events from files

 Capturing console logging

 Ingesting OpenTelemetry data

 Integrating with logging frameworks
49

50 CHAPTER 3 Capturing inputs
If we tried to illustrate every available plugin, we could easily fill this book and never
get around to looking at what to do with the captured events. To address this chal-
lenge, we can group some of the inputs with similar characteristics and then look at
representative plugins in each group. As Fluent Bit has a high level of consistency, an
example in each group provides a sound basis for extrapolating what can be expected
of similar source plugins that the book doesn’t discuss. The inputs can be character-
ized this way:

 OS-level events from systemd, Windows event logs, and serial interfaces
 System metrics such as CPU, disk I/O, and memory metrics

Focus of

this

chapter

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Figure 3.1 Logical architecture of Fluent Bit, with this chapter's focus highlighted

513.2 OS and device sources
 Application-level sources such as log files with prebuilt or custom log formats
 Event-driven sources such as MQTT, OpenTelemetry, and other Fluent nodes
 Network-/web-based pulled data such as Prometheus scraping and Kubernetes-

style health checking

One important thing to remember is that Fluent Bit and Fluentd can work together.
Consequently, we can take advantage of Fluentd having more plugins than Fluent Bit
but still do the bulk of the work with Fluent Bit, which, as we have seen, is more effi-
cient. We can do this because the forward plugin has a defined standard that both
Fluent Bit and Fluentd use. As a bonus, some external products have also adopted this
protocol so they can be connected directly to Fluent Bit. (Docker, for example, has a
logging driver supporting the forward protocol.) In addition to the forward plugin,
there are several other general-purpose standard protocol-based plugins available,
such as http and TCP, available in Fluent Bit and Fluentd.

 The forward and http plugins aren’t the only ones we can use to send and receive
data from third-party products without having a specific input plugin implementation.
Fluent Bit supports the OpenTelemetry (OTLP) protocol, so applications configured
to generate compliant logs, traces, and metrics can also be connected with Fluent Bit.

 Traditionally, application-logging frameworks are associated with creating log files.
Some logging frameworks can work with the forward protocol or http, and the Open-
Telemetry (OTel) project has provided telemetry frameworks that can be used, as well
as adapters or appenders for the most common logging frameworks.

 What does this mean for us? Well, for new or modernized solutions, we can con-
sider alternatives to traditional monitoring strategies, such as log files, without resort-
ing to custom plugins to obtain metrics and trace data (although custom plugins can
be a highly efficient way of implementing data transformation).

 When capturing events, we should consider the options and the pros and cons
rather than accept the default and traditional approaches to capturing observability
data. We’ll explore the opentelemetry, forward, and http plugins later in the chap-
ter. First, we should consider the common monitoring needs and proven strategies.

3.2 OS and device sources
Input plugins for OS-based resources work in a similar manner; they use a time-based
sampling approach that yields a JSON payload, which becomes a log event in Fluent
Bit. Because these plugins behave in the same way, we can combine them into a single
scenario. When monitoring infrastructure, we should consider memory, CPU, disk
storage, and network utilization.

3.2.1 Monitoring infrastructure with native executables

Although prebuilt binary solutions produce faster executables than interpreted solu-
tions such as Python or just-in-time (JIT) compiled solutions such as Java and Ruby,
the downside is that there is no language abstraction layer providing platform-specific

52 CHAPTER 3 Capturing inputs
OS and hardware interfaces. As a result, different platform binaries have certain fea-
tures disabled; typically, the interpreter or JIT has been implemented to address any
platform difference or capability gaps. Because there is no virtual machine (VM), we
depend on libraries that talk directly to the OS or hardware. We have a problem if
those libraries don’t work for a particular environment. This challenge has been
addressed through feature switches, so some features are unavailable for some builds.
The most common occurrence is when features are switched off for Apple silicon
chipsets (such as M2) and macOS.

 The benefit of open source is that we can address these problems ourselves either
because no binary executable was built for our CPU and OS combination or because
we need a feature and are willing to invest the effort in developing the solution. The
latter option is a serious undertaking.

 An alternative to this problem (which may come up if you’re using macOS) is
adopting a VM or chipset emulator such as QEMU or using a cloud vendor’s free tier.
To help you understand what is available, appendix B includes a table of plugins, list-
ing which plugins work for various platforms.

 These resource measures, even in a container context, are useful even at a low
refresh rate to ensure that our services have the capacity they need to run efficiently.
(We don’t want our services to use swap space, for example, as that wastes allocated
CPU capacity.) Have we correctly configured the amount of CPU resources for Kuber-
netes to allocate to a container? If we’re operating on real hardware, the answer is
more critical. In such circumstances, we can’t intervene quickly by dialing up the allo-
cated resources or scaling out with another container or Pod.

 Treating these measures as log events within Fluent Bit rather than metrics may
seem perverse. But we do it for a couple of reasons:

 The ability to handle metrics differently came in v2 of Fluent Bit, and the
plugins haven’t been changed to protect backward compatibility.

 The ability to handle logs is more flexible and more efficient for data manipula-
tion than the metrics structure. But if this data needs to be transformed to met-
rics, we can do that. Other plugins, such as node_exporter, can be used to
generate metrics with this data from the outset, as we’ll see in chapter 5.

To capture these metrics, we need to define four input blocks. Each input block iden-
tifies the source plugin by using the name attribute, such as disk, cpu, mem (memory),
and netif (network interface). All these plugins use the attributes interval_sec or
interval_nsec, which allow us to define the frequency at which we pull the measures
as integers (expressed as seconds or nanoseconds, respectively). We can define tags
for them or let Fluent Bit set a default tag. We recommend setting the tags explicitly,
as it can help if you want to use them as values for filtering data. In our example, the
tag book_vm_<plugin name> uses a full name rather than just the plugin name, such as
memory instead of mem and network instead of netif.

533.2 OS and device sources
NOTE Some naming conventions that have been adopted are worthy of note.
Most source and target plugins have a degree of consistency in attribute nam-
ing conventions (such as interval_sec or interval_nsec) when polling
physical or virtualized resources. When data is being pulled from another web
service, the attributes typically refer to scraping, so the frequency becomes
scrape_interval. Timing typically defaults to being expressed in seconds.

For now, let’s continue the chapter 2 practice of pushing the events to the console. We
need the output declaration with the name attribute having the value stdout and the
match attribute having the value of * (asterisk). This configuration allows us to start
monitoring if we want to, as we see in os-monitoring-basic.conf. See the following
listing and chapter3/fluentbit/os-monitoring-basic.conf.

[INPUT]
 name disk
 interval_sec 5
 tag book_vm_disk

[INPUT]
 name cpu
 interval_sec 5
 tag book_vm_cpu

[INPUT]
 name mem
 interval_sec 5
 tag book_vm_memory

[INPUT]
 name netif
 interval_sec 5
 #interface eth0
 tag book_vm_network

[OUTPUT]
 name stdout
 match *

WARNING Not all OSes support all plugins. The input plugins for storage
(disk), memory (mem), CPU, and network (netif) are not available in the
current standard builds of Fluent Bit for macOS. We have detailed which
plugins are different OSes in appendix B.

Let’s run this configuration with the command

fluent-bit -c chapter3/fluentbit/os-monitoring-basic.conf

Figure 3.2 shows the outcome of this command.

Listing 3.1 Performing basic OS monitoring

The disk source plugin is defined with
the performance figures captured every 5
seconds and tagged as book_vm_disk.

The CPU source plugin is defined with
the performance figures captured every 5
seconds and tagged as book_vm_cpu.

The memory source plugin is defined with the
performance figures captured every 5 seconds
and tagged as book_vm_memory.

The network source plugin is defined with the
performance figures captured every 5 seconds
and tagged as book_vm_network.

Some platforms require the network interface to be specified
explicitly, e.g., eth0. You can introduce this configuration
attribute by removing the #, which comments out the attribute.

The match attribute defines which log events this plugin will handle.
* (asterisk) is a wildcard. When used on its own, we’ll match all
events and process them with this plugin.

54 CHAPTER 3 Capturing inputs
Let’s take a moment to understand what the console output of the captured host met-
rics shows. The output records are prefixed with the timestamp, metadata, and so on,
introduced in chapter 2. The output should contain the entries tagged from the
sources defined in the input definitions and sent to the console using our output
plugin. With the data from the cpu plugin, which has the tag book_vm_cpu, we can see
CPU measurements in JSON form (table 3.1).

Table 3.1 The cpu plugin output values and their meanings

Attribute name Description

p_cpu Provides the overall measure of total CPU utilization

p_user Shows how much CPU use is from user processes, such as running developer
tools, as a percentage of the total

p_system Shows how much of the CPU use is from system processes, such as the OS, as
a percentage of the total

Figure 3.2 Output fragment from running the OS-monitoring configuration that collects CPU, memory,
and disk. You could run the command and pipe the content to jq to help with formatting.

553.2 OS and device sources
These metrics are reported against each CPU core, with each CPU ID used as a prefix,
such as cpu0. In this example, the measurement reflects the capabilities of eight dual-
core CPUs. We can capture this information in a more nuanced way by providing Fluent
Bit with the specific process we want to measure (PID). We’ll come back to this topic.

 The output also includes records with the tag book_vm_memory, which includes the
actual memory available to the environment, the swap space, and the amount of mem-
ory being utilized expressed in kilobytes (KB). To compare the numbers with an alter-
native view, use the command cat /proc/meminfo in Linux or the Task Manager tool
in Windows (taskmgr on the command line).

 The output from running this configuration includes a record tagged book_vm_
network and shows the volume of network traffic passing through the network. (The
network interface to be monitored can be identified with the interface attribute, but
we have omitted this attribute, so the measurement is for all available networks.) The
figures are split into rx (received) and tx (transmitted) for each interface being mea-
sured. Then the transmitted and received are split to show the volume of bytes, how
many packets they represent, and how many network errors are detected.

 The last record in our output is book_vm_disk, which lists the data for the amount
of read (read_size) and write (write_size) activity measured. Because we haven’t
been generating activity (unless we have another process going while running this sce-
nario), we will report zero values.

3.2.2 Tuning monitoring sources

Our first exercise is to adapt and tune the configuration we’ve just used in listing 3.1
to gather OS-based metrics. We need to change the CPU, network, and memory mon-
itoring inputs from 5 to 1.5 seconds. As the interval values are expressed as integers,
we can’t simply modify the interval_sec value attribute to a decimal value of 1.5, as it
accepts only whole (integer) values. However, Fluent Bit provides an alternative attri-
bute called interval_nsec. This attribute allows us to stipulate a number of nanosec-
onds, so we can express 1.5 seconds with an integer. Therefore, we could replace the
configuration attribute interval_sec 5 with the attribute interval_nsec 1500000000.
With that change applied, we rerun the Fluent Bit configuration. This change can be
run using the prepared answer configuration fluent-bit –c chapter3/fluentbit/
bos-monitoring-answer.conf. As a result, many more log events will be pushed to
the console.

3.2.3 Device sources

In addition to typical, basic, host-environment measurements, Fluent Bit can capture
other infrastructure values depending on the hardware and the OS. For example, in
Linux environments, we can also collect temperature metrics with the thermal input
plugin. In Windows environments, we can pull data via the Windows Exporter Metrics
source (windows_exporter_metrics), based on the Prometheus plugin that targets
specific drives, CPU, and thermal sensor data.

56 CHAPTER 3 Capturing inputs
 In addition, Fluent Bit allows us to pick up OS kernel log events from Windows
and Linux using platform-specific plugins. To make these plugins work, you need to
understand and have the relevant user permissions associated with the user or process
that runs Fluent Bit and is allowed to access the relevant data.

 Exporter metrics plugins such as Windows Exporter Metrics generate proper Flu-
ent Bit metric structures rather than log structures. These plugins are based on the
Prometheus Node Exporter functionality (https://prometheus.io/docs/guides/node
-exporter). These plugins produce a metrics event rather than the previously described
structured content within a log event. The metrics produced are comprehensive but
need to be converted to log events to perform meaningful calculations, as we have a
lot more tooling capability with logs. It’s reasonable to assume that this capability will
improve over time, so eventually, we won’t need to convert.

3.3 Using stdout
If you’ve been actively involved with software development in the past 5 to 10 years,
there’s a fair chance you’ll have come across the twelve-factor app (https://12factor
.net), which lays out some high-level principles for software development. The 11th fac-
tor addresses the use of logs (https://12factor.net/logs). Specifically, it recommends:

 Logs are the stream of aggregated, time-ordered events collected from the out-
put streams of all running processes and backing services. Logs in their raw
form are typically in text format with one event per line (though backtraces
from exceptions may span multiple lines). Logs have no fixed beginning or end
but flow continuously as long as the app is operating.

 A twelve-factor app never concerns itself with routing or storage of its output
stream. It should not attempt to write to or manage log files. Instead, each run-
ning process writes its event stream, unbuffered, to stdout. During local devel-
opment, the developer will view this stream in the foreground of their terminal
to observe the app’s behavior.

 In staging or production deployment, each process’s stream will be captured by
the execution environment, collated with all other streams from the app, and
routed to one or more final destinations for viewing and long-term archival.
These archival destinations are not visible to or configurable by the app and
instead are completely managed by the execution environment. Open source
log routers (such as Logplex and Fluentd) are available for this purpose.

 The event stream for an app can be routed to a file or watched via real-time
tail in a terminal. Most significantly, the stream can be sent to a log indexing
and analysis system such as Splunk or a general-purpose data warehousing sys-
tem such as Hadoop/Hive.

https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter
https://prometheus.io/docs/guides/node-exporter
https://12factor.net
https://12factor.net
https://12factor.net
https://12factor.net/logs

573.3 Using stdout
3.3.1 The twelve-factor app and Fluent Bit

Let’s explore what the twelve-factor app statement means when working with Fluent
Bit. The first statement reflects a point we made in chapter 1, and Fluent Bit has fea-
tures that align with this idea. We agree that the application shouldn’t need to know
where the logging goes beyond passing it to an output. However, whether you should
state that you are sending all logging to stdout is more debatable. We would argue that
where the events go should be configuration driven so the application logic doesn’t
address routing or storage. Although Fluent Bit can handle catching stdout, applying
this approach presents several challenges, particularly if the guidance is taken literally
(such as the use of printf, println, and other language-equivalent statements):

 If this guidance is taken literally, we’re unlikely to be using a logging frame-
work, which means we can’t change the logging detail (such as logging debug
messages or only errors).

Operationally, we rarely want to generate debug-level logs, although if a
problem can’t be re-created in nonproduction environments, it may be neces-
sary. If we only push logs to stdout, there isn’t any logic to filter out this over-
head, and we end up with overly chatty production solutions or code that can
be hard to diagnose due to information scarcity. If we start wrapping the output
calls with conditions and our own flags, we’re reinventing the wheel; a logging
framework can do this work for us with more consistency and flexibility.

 Although not using a logging framework doesn’t automatically mean that log
output will be structured inconsistently, experience shows that output inconsis-
tency is far more likely, and it is much harder to ensure that code logs consis-
tently without using even a simple logging framework.

 If any part of the solution generates sensitive log data and we use a logging frame-
work, we have the chance to suppress logging in a targeted manner quickly (such
as setting logging thresholds so that a particular class never creates log events),
even temporarily, by tuning the logging configuration.

 If the log structure has no consistency, to make logs actionable, we have to
incorporate logic into the monitoring that has more understanding of the
source application (which messages are errors and which aren’t, which mes-
sages are formatted as JSON and which are free text). If we incorporate logic
conflicts with the idea of cohesion and low coupling, as our monitoring must
understand the innards of another piece of software, and change the applica-
tion, which affects logging or metrics, we must also modify the log management
tooling because the changes are far more likely to have knock-on effects.

Regardless of what the twelve-factor app says, we believe the right thing to do is to use
a logging framework that knows how to push the log events to Fluent Bit. Because Flu-
ent Bit can communicate in the same way as Fluentd, a wide range of possible logging
frameworks is available. If a logging framework isn’t possible, we can identify an inter-
mediary that can be efficiently consumed.

58 CHAPTER 3 Capturing inputs
TIP Logging in Action (https://www.manning.com/books/logging-in-action)
includes a chapter on logging frameworks and compatibility with Fluentd. As
we’ll see later in this chapter and in chapter 5, Fluent Bit can be interchanged
with Fluentd because both support several common protocols. You can find
details on compatible frameworks at https://mng.bz/lrVd.

The goal is to not need the core application logic to know where the logs are going,
which all comes down to the separate configuration of the logging framework. We get
the benefits of tuning logging and structural standardization, reducing labor, and hav-
ing no file management performance problems or storage overhead to worry about.
At the same time, we don’t need the infrastructure during unit testing to capture failed
test outputs. If you agree with this approach, you’ll find some helpful material in the
Logging in Action book, which looks at a range of frameworks in multiple languages. Not
everyone agrees, however, so let’s look briefly at the stdout capture approach.

 To generate stdout traffic, we’ll use the LogSimulator with a simple configuration.
Appendix A describes how to set it up. Using it is even easier than writing a little script
that creates a steady flow of stdout messages. To capture the stdout stream, we need to
set up Fluent Bit with the stdout input plugin, which is simple because it has no attri-
butes other than the tag to attribute the stdout content, as shown in the following list-
ing; see /chapter3/fluentbit/stdout-monitoring.conf.

[SERVICE]
 flush 1

[INPUT]
 name stdin
 tag book_stdout

[OUTPUT]
 match *
 name file
 path .
 file captured.txt

3.3.2 Running the containerized Log Simulator

To simplify the command, we’ve wrapped the Docker container call inside a simple
shell script called stdout-formatted-run.sh (we’ve used a naming convention of
postfixing the properties file with -run.sh or -run.bat instead of .properties). The
script looks like this:

docker run -v .:/vol/log \
➥ -v $flbBookRootDir/chapter3/SimulatorConfig/:/vol/conf \
➥ -v $flbBookRootDir/TestData/:/vol/test-data \
➥ --env run_props=stdout-formatted.properties \
➥ --env data=medium-source.txt \
➥ logsimcontainer-logger

Listing 3.2 Capturing stdout

Identifies the plugin to be
configured using the name
attribute

Imposes a specific tag for the captured
events. We will see in chapter 5 how it can
help direct log events through the correct
processes in Fluent Bit.

https://www.manning.com/books/logging-in-action
https://mng.bz/lrVd

593.3 Using stdout
We’re mounting directories for the test data files, the location of the configuration
files for the log simulator, and the output location (the current directory). Then, via
environment variables, we’re telling the log simulator which configuration file and
test data file to use. For the rest of the book, we’ll show the provided script for simplic-
ity. If you prefer, this script can be substituted with the following command. Using this
configuration, we can run the process with the command (from the chapter 3 folder):

./SimulatorConfig/stdout-formatted-run.sh | fluent-bit
➥ -c ./fluentbit/stdout-monitoring.conf

NOTE As we’re using Docker to simplify the use of the Log Simulator, you
may see additional Docker output in the SimulatorConfig folder during the
execution of the scripts, such as warnings about Java incubator modules. This
output is a byproduct of the container dependencies and isn’t a problem.

When we review the captured.txt file, we see that it contains lines like this:

[1683312768.616811852, {"message":"The first computer dates back to
➥ Adam and Eve. It was an Apple with limited memory, just one byte.
➥ And then everything crashed."}]

Note that the body of the log is a simple JSON structure because we configured the
LogSimulator to print messages in a JSON structure. We can see this structure if we
remove the piping of the simulator into Fluent Bit (./SimulatorConfig/stdout-
formatted-run.sh). That’s fine, but few applications write to stdout with nice, simple
JSON structures, although adopting a framework often gives use that option. By
default, this structure is what Fluent Bit expects because we want to consume the stdin
in an unstructured manner. We have an alternative configuration to generate it: std-
out-formatted2.properties. The best way is to copy and edit stdout-formatted-
run.sh or use the one I’ve provided, called std-formatted-run2.s, and change the
run_props reference to the new file. Try running this configuration against the same
Fluent Bit configuration to see what happens. (It may be helpful to delete captured.txt
before repeating.) Our command becomes

./SimulatorConfig/stdout-formatted-run2.sh | fluent-bit
➥ -c ./fluentbit/stdout-monitoring.conf

The file won’t be created, but we won’t see any indication of a problem from Fluent
Bit. From chapter 2, we know how to use the command line to move the log level to
debug: by setting the log level in the configuration file, using the attribute log_level
in the service block or –-verbose on the command line. If we rerun the command
with the changed log level, we’ll see messages like this one:

[input:stdin:stdin.0] invalid JSON message, skipping

To overcome this problem, we need to introduce a parser. (We’ll explore the use of
parsers in detail in chapter 6.) At this time, we need to worry only about adding an

60 CHAPTER 3 Capturing inputs
attribute called parser, which identifies a named parser to be pulled from the iden-
tified file referenced by the parser_file attribute, which is part of the services
definition. See the following listing and stdout: /chapter3/fluentbit/stdout-
monitoring2.conf.

[SERVICE]
 flush 1
 parsers_file ./fluentbit/simple-parser.conf

[INPUT]
 name stdin
 tag book_stdout
 parser plaintext

To run this configuration, we need to feed the Log Simulator’s output to the stdin of
Fluent Bit, but we don’t want the output from Fluent Bit to mingle with it accidentally.
Therefore, the safest thing is to direct our output to a file. We’ve added the necessary
output declaration to the configuration file, so we’ll see the log entries being put in
the captured.txt file, with the log event formatted as a simple JSON structure. Here
is the command to execute this configuration:

./SimulatorConfig/stdout-formatted-run.sh | fluent-bit
➥ -c ./fluentbit/stdout-monitoring2.conf -v

3.4 File-based log events
Writing logs to files has, for the longest time, been the default way of sharing logs,
metrics, and traces from an application. During development and testing, it is often

Listing 3.3 Capturing stdout (fragment): stdout-monitoring2.conf

Risks of using the stdin plugin
Piping the output from one application to another is generally not recommended, irre-
spective of the twelve-factor app. If the application generating the stdout traffic is pro-
ducing faster than Fluent Bit can consume it, we’ll have a lot of issues. Precisely how
these problems will manifest depends largely on the Linux configuration, but situa-
tions such as backpressure blocking the source from working are a likely outcome.
In addition, some Linux flavors have control of the use over stdin for systemd-con-
trolled processes.

As a result, if this approach is necessary, keep the parser simple, use buffering, and
push the heavy lifting to a separate node downstream. Alternatively, consider piping
the output to a log file using the tail plugin. If the log file becomes unwieldy in size,
you may need to consider introducing the Linux logrotate utility (https://linuxconfig
.org/logrotate). For Windows, you may need to consider something like https://github
.com/plecos/logrotatewin.

Points to the location of the
parser file. We can provide a
path relative to where Fluent
Bit is running, or an absolute
path. We recommend adopting
absolute paths for production
setups because it avoids
dependencies between how
processes are started and
the installation.

Names the parser
definition in the
referenced parser files
to use on this input

https://linuxconfig.org/logrotate
https://linuxconfig.org/logrotate
https://linuxconfig.org/logrotate
https://github.com/plecos/logrotatewin
https://github.com/plecos/logrotatewin
https://github.com/plecos/logrotatewin

613.4 File-based log events
the easiest way (after using stdout) to inspect what is going on in an application. If
we take the DevOps principle “You build it; you run it” to its logical conclusion,
we’re most likely to carry forward the approaches that served us well during develop-
ment: handling logs through files. We’ll probably dial down the amount of logging
going on.

 The downside is that when it comes to containerization—particularly when the
container is being managed with Kubernetes—when the container is deleted, the con-
tainer’s local storage is also deleted. Only mounted external persistent volumes
remain. So if our application using Kubernetes health checking indicates a problem,
Kubernetes will recycle our container, taking the logs with it. But this point is when we
want the logs most. Why did our application in the container start reporting prob-
lems? We have two options: reconfiguring our logging for production or finding a way
to secure that file content. We think that over time, we’ll see new developments, and
the code that is given time to be refactored to adopt aspects of OpenTelemetry will
help, along with changing approaches to logging during development and testing.
Although newer developments may take a more optimal approach, lift and shift devel-
opments are more likely to repackage existing modules for containerized environ-
ments. But we still need to solve the current problem, which we can do in several ways:

 Make the containers more complex by ensuring that logs are written to storage that isn’t
transient. This option involves using persistent volume claims, making our
Kubernetes configuration and deployment more complex.

 Use logging frameworks with a different adapter that can send the logs somewhere over the
network. We can use the sidecar pattern to deploy tools like Fluent Bit as part of
the same Pod and capture logs (we’ll see more of this in chapter 4).

 Deploy a process that knows where the logs are being written, collect the log content as it is
generated, and send it elsewhere. This option is effectively the least invasive for
existing code. It works where a logging framework can’t support alternative
plugins and where logging is done by capturing stdout and sending it to a file.
Whichever way we slice it, logging in to files isn’t going to go away, and we need
to get that content somewhere more secure. Given Fluent Bit’s small footprint
and its capability to be incorporated into a machine startup (virtual or physi-
cal), it’s an ideal candidate for this task.

Therefore, let’s continue our journey with Fluent Bit by looking at how we can cap-
ture log events from a file so that the log events are captured as soon as possible after
they’re written. For this task, we need to use our LogSimulator to mimic our applica-
tion generating log files. We’ll provide the configuration and commands necessary to
run the log-generation process for each example or exercise.

62 CHAPTER 3 Capturing inputs
3.5 Capturing log files
Fluent Bit’s input plugin for handling files is called tail. The plugin is so named
because it comes from the Linux command tail, which allows us to see the end of a
file. With the right parameters, the Linux tail (tail -f) can read from the start of
the file and then track how a file is appended to. This behavior is also available to our
plugin. If the end of a file is the tail, it’s easy to appreciate why the start of a file is
often referred to as the head.

 The plugin expects us to provide attributes that help Fluent Bit identify files and
where they exist in the filesystem. We can tell the plugin to record how far it has pro-
gressed through reading a file so Fluent Bit can pick up where it left off if it restarts. The
attributes that control this behavior can be identified with the name DB.<something>.
In the following sections, we’ll look at various configuration options for the tail
plugin and address common use cases.

3.5.1 Simple file consumption

The first approach to parsing a file is ingesting the lines. Don’t try to turn the content
into something meaningful; that task can come later. We’ll use the configuration that
is most beneficial for injecting existing log files into our monitoring tools. We want
the logs to be consumed from the top of the file rather than track changes to the bot-
tom of the file from the moment we start Fluent Bit. For now, we want the content to
go to the console, as we did with the “Hello, World” example in chapter 2. We need to
use the tail input plugin to perform this task and set several attributes.

 First, we need to identify the file to ingest. We can do that with combinations of set-
ting the path, path_key and excluding content from the path (exclude_path) so that
we don’t accidentally try to process files that could be in the same file location, such as
compressed log files in .zip or .tar format. As we saw in chapter 1, we also need to
associate a tag with the log event. We can either define the tag explicitly or tell the
plugin which part of the payload to pull the tag from. Because we are treating the log
events as an unstructured string, we need to impose the tag. To ensure that we read
from the start of the file, we set the read_from_head. We can also tell Fluent Bit to ter-
minate when it reaches the end of the file by setting the exit_on_eof attribute. Taking

Using the LogSimulator in the real world
Although we’ll use the LogSimulator to help us master the configuration of Fluent Bit,
the utility can also play real-world logs as though they’re happening in real time. This
feature allows us to develop and test our monitoring configurations without needing
to run large, complex applications and, harder still, set them up to induce unhappy
scenarios—the kind that are most important to capture.

633.5 Capturing log files
these considerations into account, the simplest configuration is shown in the follow-
ing listing; see /chapter3/fluentbit/basic-file-read.conf.

[SERVICE]
 flush 1

[INPUT]
 name tail

 path ./basic-file.txt

 read_from_head true

 exit_on_eof true

 tag basic-file

[OUTPUT]
 name stdout
 match *

WARNING Appendix A describes how to build or retrieve the required Docker
image. We recommend building the image locally to ensure that any security
patches will be picked up from the dependency tree. If you pull the Docker
Hub image, make sure to follow the actions identified in appendix A. If you
don’t complete this step, Docker may complain that it can’t find or access the
container image.

Let’s run our basic file-read setup. To do that, we need to start the LogSimulator with
its configuration and test data using the command

./SimulatorConfig/basic-log-file-run.sh

To avoid the need for absolute paths and minimize the need to configure environ-
ment variables to resolve where we put the downloaded content, we used relative
paths, which rely on the download’s directory structure. So we need to run the com-
mand from the correct location. With the LogSimulator generating log content, we
can start Fluent Bit properly with the command

fluent-bit -c ./fluentbit/basic-file-read.conf

The output from the internal logging of Fluent Bit is the log file entries, as shown in
figure 3.3.

Listing 3.4 Illustrating a file tail: basic-file-read.conf

Declares the use
of the tail plugin

Defines the path to the file or files
with the content we want to capture

We need to ingest the entire log file, which means
telling Fluent Bit to start at the head of the file.

Gets Fluent Bit to shut down after consuming the
entire log file. The shutdown is triggered by the
first file input that meets this condition.

Sets the tag to associate
with this log file

64 CHAPTER 3 Capturing inputs
Looking at the configuration, we’ve set the read_from_head attribute to true. Every
time we start Fluent Bit, that attribute will log every record from the start of the log
file(s). If Fluent Bit is deployed as part of a container that is regularly destroyed and re-
created, this situation doesn’t present a problem. But if we’re capturing logs from a
long-running process, we don’t want the log-capture process to return to the start every
time, as this would result in the downstream solution receiving duplicated log entries.

 The second problem with the current configuration is that we set the attribute
exit_on_eof to be true. This attribute means that as soon as the reading process
reaches the end of any files being input, Fluent Bit shuts down (it’s possible to exit
before all files are fully read). This approach may sound strange, but it’s ideal when
we want to use Fluent Bit to bulk process existing log files, such as ingesting historical
logs into an analytics platform. But typically, we want Fluent Bit to wait until new
records are detected. So let’s eliminate that attribute and try again (we’ve provided
this as ./fluentbit/basic-file-read2.conf). We’ll see the console update as the
LogSimulator generates logs. Note that the log simulation is configured to loop through
the test data set and then stop.

3.5.2 Supporting long-running processes

For typical long-running application log capture, we’re going to collect logs that will
accumulate over time, as we would expect for application servers or web servers run-
ning on bare metal, VMs, or even in containers. We’re more likely to handle large log
files (covering a long time) and rotate because we can’t allow log files to become too
large and unwieldy. If environments are snapshotted or backed up, having a mono-
lithic log file can burden the process unnecessarily.

Figure 3.3 The output of reading the LogSimulator-generated log file, as consumed by our Fluent Bit input

653.5 Capturing log files
 In noncontainerized deployments, there is a chance that the server will generate the
logs, Fluent Bit will start and stop at different times, and existing log files may be
extended as servers start and stop. Hence, we need to avoid missing logs but not reingest
logs that have already been consumed. Consequently, we need to track our progress
through the capturing of log events and understand how to handle log rotation. We also
need to parse the log file to derive attributes such as the event time recorded by the
application rather than impose a timestamp stating when the log event was read.

 In a Kubernetes ecosystem, we have another challenge: Kubernetes may decide to
evict Pods, particularly if we’re manipulating taints. If we’re not running Fluent Bit as
a sidecar, the starting and stopping will differ.

TRACKING PROGRESS

Tracking our progress through log files means we can stop and start Fluent Bit and, if
we’re unfortunate, address process-recovery scenarios without reingesting logs. To do
so, we need to maintain a separate record of how far through a log file we’ve pro-
gressed and which log files have been partially or fully ingested by using some sort of
database (in the most generic sense). Fluent Bit uses SQLite, a database implemented
in C with a small footprint. Fluent Bit is written in C, which keeps things nice and sim-
ple. Although SQLite may seem heavy-handed for the task, there are good reasons to
use it. Many mobile devices use SQLite to hold data for state and locally stored data to
accommodate the possible lack of network connectivity. Furthermore, as SQLite han-
dles the storage files at a low level, its I/O is optimized and can be faster than han-
dling the tracking data with text files.

 SQLite is built into the Fluent Bit binary, so we need to provide the appropriate con-
figuration values only for the DB attribute, which defines the file that will be used to store
the data. DB.locking allows us to tell SQLite whether multiple processes can update the
database file. Ideally, each database is updated by a single Fluent Bit process at any time.
Giving each source of logs its own database files provides good isolation. We may hold a
few more file handles if we use workers (a Fluent Bit feature that enables parallelization,
explored in chapter 5) to optimize performance, which minimizes the chance of limit-
ing the benefits of workers by needing to manage the database reading and writing.
Note that we can still query the database from other processes.

 The remaining configuration options made available by Fluent Bit focus on more
traditional database applications, covering the journaling of DB changes (DB.journal_
mode) and how the low-level file I/O disk synchronization works (DB.sync) to ensure
that the database updates are fully secured on the filesystem. To track the progress of
reading log files, we should be able to tolerate the risk of file corruption in the unlikely
event of a problem, such as a power failure during the low-level I/O process. We would
be more concerned about the possible corruption of the actual log file. This attribute is
geared to more transactionally sensitive use cases with SQLite. Given this fact, we should
be able to leave the value DB.sync unset so that it defaults or lowers the setting to gain a
little more performance. Because the journal_mode is incompatible with shared net-
work filesystems, we should leave DB.journal_mode unset. We’re likely to be working

66 CHAPTER 3 Capturing inputs
with network filesystems except for Internet of Things (IoT) use cases. Do we want or
need the overhead for database journaling? Our configuration will look like the follow-
ing listing; see /chapter3/fluentbit/basic-file-read.conf.

[SERVICE]
 flush 1

[INPUT]
 name tail
 path ./basic-file.txt
 DB ./tracking-file-read.db
 DB.locking false
 read_from_head true
 tag tracking-file-read

[OUTPUT]
 name stdout
 match *

TIP The downside of using SQLite is that we need to deploy additional tools
to inspect the contents of the database file. Fortunately, the SQLite website
offers prebuilt downloads for this purpose (https://SQLite.org/download
.html). In addition to tooling, the SQLite website has lots of useful information.

To run our log file–tracking configuration with the progress-tracking scenario, we’ll
use the LogSimulator with a version of the data file that has each line numbered
sequentially. This version allows us to understand what is happening with log con-
sumption. When we’ve got Fluent Bit logging the file contents to the console, we’ll
stop the process (press Ctrl-C) in the shell running Fluent Bit to bring the process to a
graceful end. Then, to make it easy to see where the logging output picks back up,
we’ll use a command along the lines of

echo ------------------

which displays a visible separator on the console. Then we can restart the Fluent Bit
process and review the content pushed to the console. We can start Fluent Bit with the
command

fluent-bit -c ./fluentbit/tracking-file-read.conf

and run the Log Simulator with the command

./SimulatorConfig/basic-log-file-run-2.sh

We should have observed the logs displayed in the console output from the start of
the file. After we stop and restart Fluent Bit, the output should continue from where
it left off.

Listing 3.5 An enhanced file tail: basic-file-read.conf

Defines the file
location that contains
the SQLite data

Defines the locking
control to be applied

Applies only on the initial startup,
as the recorded position trumps
the start of the file flag

https://SQLite.org/download.html
https://SQLite.org/download.html
https://SQLite.org/download.html

673.5 Capturing log files
NOTE Using a database to track progress through a file isn’t unique to con-
suming application log files. Other types of log event sources are realized with
files, such as systemd. As a result, we need to provide a plugin with the attri-
butes necessary to allow the plugin to record its progress, so processing can
resume where it left off as expected.

LOG ROTATION

Log rotation prevents log files from becoming too large due to endless appending to the
file. Without rotation, a log file eventually becomes difficult to use, and it’s harder to
ensure we don’t exhaust storage resources. Log rotation is typically managed in one of
two ways. In a Linux environment, we have the OS utility logrotate (https://mng.bz/
1aoR). Many logging frameworks offer rotation options as well. Typically, log file rotation
works by writing to a log file. When the file reaches a certain threshold based on size or
time (for Linux’s logrotate, only on time, as a cron job triggers it), it gets renamed, and
we start with a new file with the same name. We must also ensure we’ve fully exhausted
reading log events from a file. We can see this log rotation process in figure 3.4.

myLog.txtmyApp

with

logging

rotation

myApp

with

logging

rotation

myApp

with

logging

rotation

myApp

with

logging

rotation

myLog.txt myLog.1.txt

myLog.txt myLog.1.txt myLog.2.txt

myLog.txt myLog.1.txt myLog.2.txt myLog.3.txt

When the log file reaches
a certain size or age, it is
“moved” and renamed.

When log rotation uses file
numbers, the filename is
modified every time a log
is rotated.

When we reach a limit in the
number of log files, the oldest
file is deleted.

Figure 3.4 We can see how log rotation moves and then deletes log files.

https://mng.bz/1aoR
https://mng.bz/1aoR
https://mng.bz/1aoR

68 CHAPTER 3 Capturing inputs
Using any log-capture framework, including Fluent Bit, raises several questions. Apart
from managing potential file growth, do we want log rotation? If we’re capturing the
logs as they get written to the file, the old files are redundant. Challenges also come
from monitoring applications with Fluent Bit. Fluent Bit may not be in place in envi-
ronments such as dev and test, where log files are an essential part of development
and testing, and we don’t want to change configurations unnecessarily.

 If we use log rotation, we need to tune our logging settings to minimize the pos-
sibility that a file will be rotated before we’ve read all the content. If we’re using the
database, how do we know that we’ll start from the beginning again? Also, how do
we prevent reading the rotated log files again, as we have already read them before
they rotated?

 Fluent Bit addresses these questions by tracking the underlying file identifiers. When
a file is rotated, the new file may have the same name, but the identifier for the file is
new. Fluent Bit provides an attribute that allows us to change our read interval so we can
be sure that we’ve picked up the last of the log entries. This attribute, called rotate_
wait, takes a value in seconds (e.g., rotate_wait 1 means we wait 1 second to accommo-
date any final flush). We can also control which files get picked up by using the
ignore_older attribute, which takes a numeric value and a character that indicates the
type of duration (such as hours, minutes, or seconds; appendix B defines a full list of
duration types). If we set the attribute as ignore_older 5m, files over 5 minutes old are
not processed. This setting allows us to track our progress. We also need to amend file
properties to support rotating logs, so we need to understand how log files are rotated.
The easiest way to create the effect of log rotation is to use a modified Log Simulator
configuration that drives log rotation via the logging configuration file. We can run the
earlier scenario, a modified configuration file, ./chapter3/SimulatorConfig/jul-log-
file.properties. The command to run the script that uses this new configuration file is

./SimulatorConfig/jul-log-file-run.sh

Let’s also extend our previous configuration by adding to the properties mentioned.
See /chapter3/fluentbit/rotating-file-read.conf.

[SERVICE]
 flush 1

[INPUT]
 name tail
 path ./basic-file.txt
 DB ./tracking-file-read.db
 DB.locking false
 read_from_head true
 tag tracking-file-read
 rotate_wait 1
 ignore_older 1m

Listing 3.6 Illustrating log rotation: rotating-file-read.conf

Adds the new attribute

693.6 Network events and communication between Fluent Bit and Fluentd
[OUTPUT]
 name stdout
 match *

Running the log-rotation scenario, we see the same output on the console, but we also
see log files accumulate in the folder. Try setting up a logrotate configuration file and
triggering logrotate manually to see its effect.

3.5.3 Capturing logs from short-lived applications

Capturing logs from short-lived applications is often overlooked. But we can build
solutions using Amazon Web Services (AWS) Lambda, OpenFaaS (https://www
.openfaas.com), and other serverless function-based solutions. We can also have sched-
uled jobs with Kubernetes. Or, in more traditional environments, we may log/audit
trail batch processes such as housekeeping managed by cron jobs. If the underlying
infrastructure and storage are transient, as in AWS Lambda, OCI Functions, and simi-
lar serverless cloud options, trying to trail logs can be an issue.

 Given our understanding of this behavior, we should be able to adapt the configu-
ration to accommodate deployments, which are more likely to occur when we use
code deployed as a Function as a Service (FaaS) such as AWS Lambda, Oracle Func-
tions, or local deployments using the open source framework provided by OpenFaaS.
The task is to adapt our existing configuration to such a use case.

 We can address this constraint in several ways. The approach depends on the pre-
ferred design style and software development frameworks being used. We could con-
figure the application and Fluent Bit so that the application’s stdout goes to Fluent
Bit’s stdin, and Fluent Bit uses its stdin source plugin to capture the log events. We
can take a more advanced approach to long-running solutions by using an application-
logging framework. Many logging frameworks have a configurable element typically
described as an appender that can communicate directly with Fluent Bit or Fluentd.
As the native Fluentd and Fluent Bit implementations work the same way, logging
frameworks can connect to Fluentd or Fluent Bit interchangeably.

NOTE Chapter 11 of Logging in Action (https://mng.bz/XVxE) is devoted to
looking at the frameworks, so we won’t invest any more effort into how to do
this. But if you have the book, it is worth experimenting with swapping Flu-
entd with Fluent Bit.

3.6 Network events and communication between
Fluent Bit and Fluentd
The source of log events (or, as we’ll see, all three types of OpenTelemetry signals)
can be sent and received over the network by Fluent Bit. In many respects, this situa-
tion is desirable; we escape the possible latency of storage devices, and we have a great
deal of freedom in the way we deploy Fluent Bit. Not only can we receive data from
applications this way, but we can also have Fluent Bit and Fluentd nodes work together

https://mng.bz/XVxE
https://www.openfaas.com
https://www.openfaas.com
https://www.openfaas.com

70 CHAPTER 3 Capturing inputs
using several approaches, such as the forward protocol, simple http, and Fluent Bit.
Fluent Bit also has the option of using OpenTelemetry. As a result, we can create
sophisticated scaling and deployment patterns described in chapter 7 of the Logging in
Action book (https://mng.bz/XVxE).

 Given the importance and value of network-based communications, we’re going to
look at the http, forward, and OpenTelemetry plugins. Because we don’t need to
worry about event volume at this stage, we’re going to use Postman as the tool to
send the events to Fluent Bit. Appendix A provides details on installing Postman
and explains how to set up the payloads or import the provided configuration file. If
you want to try invoking the use cases by other means, such as curl (https://curl.se),
feel free to do so.

3.6.1 Network input sources

The input plugins for the core Fluent Bit that uses network connectivity have several
common attributes, including forward, http, and Splunk. These common characteris-
tics help manage Fluent Bit’s performance and resource needs. Fluent Bit has control
of incoming data from most non-network sources, even if that control is how many
bytes are read from a file at a time. This task is harder on a network because network
data is transient, so we have to consume it as it appears. The attributes we need to be
aware of are

 buffer_max_size—Sets the amount of memory available in the buffer (in other
words, the maximum amount of pre-allocated space). If a single log event
exceeds this amount, we can expect operational errors. The default is 4 MB,
which should be more than sufficient in most scenarios. If we need more capac-
ity, we’re likely to be facing challenges such as these:
– Someone is trying to push events containing the entire works of Shakespeare

or their holiday photos through your monitoring as a single event. Neither
activity is recommended.

– We’re trying to buffer up too much content as a result of factors such as wait-
ing too long to allow data to be flushed. Holding data in memory for long
periods creates a higher risk of losing events in the event that Fluent Bit
stops ungracefully (if Kubernetes kills a container, for example).

– This sort of data volume for a message suggests a possible denial-of-service
(DoS) attack on the monitoring infrastructure.

We can change this value by providing an integer and, optionally, an explicit
data size (e.g., 64 MB or 32 KB). If the value is unset, the number is treated as
bytes. Appendix B lists the data volume names that can be used.

If the source is batching events before sending them to Fluent Bit, and the
space of all the events in a single call to Fluent Bit exceeds the buffer size,
errors can result. In this situation, however, we might consider reducing the
number of events batched up in the source.

https://mng.bz/XVxE
https://curl.se

713.6 Network events and communication between Fluent Bit and Fluentd
 buffer_chunk_size—Defines how big an individual chunk is. Fluent Bit starts
processing a buffer chunk as soon as it is full (or sooner if the flush interval
occurs before the buffer chunk is full). The default is 512 KB. Each chunk
holds one or more events.

There are only two realistic situations in which we might want to change these defaults:

 When we’re operating a Fluent Bit instance as a point of aggregation for many upstream
sources—In this case, we may want to increase the capacity.

 When we need to optimize memory use and reduce the allocation—This situation might
occur when we’re running Fluent Bit on a small IoT device.

3.6.2 HTTP source

The HTTP source supports the HTTP verb POST with a JSON body, which is treated as
the log event. The timestamp attributed to each log event is based on the time when
the event was received according to the system clock.

 To receive HTTP traffic, we need to define the network(s) that we want to listen to
and which port on the network to listen to. Typically, we define the network address to
listen to as 0.0.0.0. This setting allows us to accept traffic from all networks to which
our environment is connected. When we’re deployed to a server running at a network
boundary, the server will likely have multiple network connections. As a result, we
need to be mindful of which network is being used so we don’t accidentally create a
network security vulnerability. The identified port needs to be the one to which the
sender expects to send their HTTP traffic.

 When the HTTP payload is received, if it is valid JSON, we can influence the
response provided by setting the HTTP response code by using the successful_
response_code attribute. (For details on HTTP codes, see https://mng.bz/PNn5.)
The successful response code, if unconfigured, defaults to 201. Still, we may want to
return the generic OK (200 to indicate that we received the payload), in which case
we need to explicitly declare the attribute and the value in the configuration. For
this example, we’ll return the generic 200 response code. We can also add name-
value pairs to the HTTP header response by using the success_header attribute.
This attribute gives us an easy way to return information to the sender. For example,
we may want to use a custom header to indicate the recipient type or the instance
identifier of a Fluent Bit node. We can add as many custom headers as we need by
repeating the attribute followed by the name and value. In this example, we’re using
it to distinguish between a Fluent Bit and a Fluentd consumer. As with all inputs,
we can also stipulate the tag. See the following listing and /chapter3/fluentbit/
http.conf.

https://mng.bz/PNn5

72 CHAPTER 3 Capturing inputs
[SERVICE]
 flush 1
 log_level debug

[INPUT]
 name http
 listen 0.0.0.0
 port 9881
 successful_response_code 200
 success_header x-fluent-bit received
 tag http

[OUTPUT]
 name stdout
 match *

To run our HTTP source configuration, we need to start Fluent Bit with the command

fluent-bit -c ./fluentbit/http.conf

Next, we start Postman and load the configuration provided (chapter3/Postman/
FluentBit-Chapter3.postman_collection.json). With the HTTP Call option selected,
we can see the configuration (or set it up with the log.json file, following the config-
uration guidance in appendix A). When we click the Send button, the response
should be nearly instant. Looking at the bottom half of Postman, which contains the
response, we see that the Body section is empty, but the Headers tab contains values.
When we select the Headers tab, we can see our custom response header includes
x-fluent-bit and a received value, as shown in figure 3.5.

 In addition to verifying the outcome in Postman, as we’ve directed the output to
stdout, we’ll see the log message payload in the Fluent Bit console. With the basic con-
figuration working, try modifying the configuration to return multiple headers and
different payload bodies. We’ve provided chapter2/fluentbit/http-answers.conf
to give you something to compare or try.

 What if we want to receive different event feeds over the HTTP input? We can con-
figure inputs on different ports or continue with a single input. After the base part of
the URL (in the preceding example, localhost:9881), the remaining path can be
used as the tag value. So, if we made an HTTP post to the URL localhost:9881/
myURLTag, we’d see that the tag has a value of myURLTag. Let’s amend the scenario to
omit the tag attribute and add a path name to the URL we want to see as the tag, such
as /myURLTag. As a result, only the console output will display the extracted path as the
tag value.

Listing 3.7 Using custom headers: http.conf

Declares the input source plugin name

Defines the network to listen to. In this
case, we’re listening to all network
sources. We’ve also set the port.

Defines the HTTP response code to
be returned when the invocation is
successful, restricted to 200, 201

The tag we set is important in this case, as
it influences which output will be used.

733.6 Network events and communication between Fluent Bit and Fluentd
3.6.3 Securing communication with SSL/TLS

So far, we’ve used HTTP without any form of security. Historically, this approach has
been acceptable within a closed environment. Now, however, we work in a world that
is increasingly security conscious, recognizing that security should no longer be at the
perimeter of our networks but be on every layer so that if one level of security is
bypassed, the next should protect us. This approach is often referred to as zero trust.
We recognize the fact that bad actors may be in our organization, performing mali-
cious acts as a result of either social engineering or other staff unaware of the conse-
quences of how they’re working. Today, computer performance and capacity are such

Figure 3.5 When we use Postman to perform the send, we can expect a result with an empty body and several
header values received, such as the Server value shown in the bottom half of the screenshot. This element
changes depending on the version of Fluent Bit and may be omitted.

74 CHAPTER 3 Capturing inputs
that security is no longer a large overhead. In addition, our systems are becoming con-
nected but decoupled and highly distributed. Solutions originally assumed to be run
in private data centers are now potentially spread across multiple cloud vendors in dif-
ferent cloud regions and in what is left of our data center.

 It would be easy to assume that observability data in the form of metrics, logs, and
traces doesn’t need security, but this assumption would be a mistake. During applica-
tion development, it isn’t unusual to log complete message payloads. Although we
might tidy up our logging as our development reaches maturity, it is easy to overlook a
log statement or log attributes that we think aren’t sensitive. Still, if someone misuses
the application, such as recording customer credit details in a notes field, if we don’t
have some security, we’re logging and transmitting sensitive data. For credit card
details, we’d have problems with the Payment Card Industry Data Security Standard
(PCI DSS), which can have serious consequences.

 To help address this problem, any network-based plugin in Fluent Bit can utilize
Secure Sockets Layer/Transport Layer Security (SSL/TLS) certificates. If you build your
own plugin and repackage Fluent Bit accordingly, it’s best to ensure that your plugin
builds on the foundations provided, which include SSL/TLS. As all the network source
plugins have a common foundation, we can apply the same attributes to all those plugins.

 Let’s make this example more practical by looking at how we can secure the HTTP
source from the preceding example. We need a certificate (see appendix A for gener-
ating a certificate) to use SSL/TLS. The first attribute we need to set is the tls flag,
which defaults to off. For this reason, we don’t see TLS attributes in most configura-
tion examples. In real applications, consider setting this attribute even if the value is
off because it acts as a prompt to think about security. When we use a certificate, we
can accept the certificate at face value or use the information in the certificate to ask
the certificate authority (CA) to perform an authenticity check. We can control
whether this check happens by using the tls.verify attribute. When we’re using self-
signed certificates, no recognized CA is associated with the certificate, so no CA can
perform a verification process; as a result, this attribute needs to be switched off. In
production use cases, we recommend using a proper CA-provided certificate. CAs also
maintain records of certificates that have been revoked.

Certificate authorities and certificate management
Certificates have lifespans, and the shorter a certificate’s lifespan is, the better the
security is because any certificate compromise can last only as long as the certifi-
cate’s life. The problem is that deploying and refreshing certificates can be a messy,
time-consuming process, and any error will break a system that uses HTTPS. The Linux
Foundation addressed this challenge by developing Let’s Encrypt (https://letsencrypt
.org). Let’s Encrypt provides a short-period certificate (six months). The foundation
also led the development of the Automatic Certificate Management Environment
(ACME), which is now an Internet Engineering Task Force (IETF) RFC (Request for
Comments; https://datatracker.ietf.org/doc/html/rfc8555). The implementation of

https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org
https://datatracker.ietf.org/doc/html/rfc8555

753.6 Network events and communication between Fluent Bit and Fluentd
To use a certificate, whether it is self-signed or issued by a recognized CA, we need to
tell Fluent Bit where to find the certificate by stipulating the certificate to use. The file
location is defined by the attribute tls.ca_file for a specific certificate. Or we can
point to a location that contains certificates with tls.ca_path.

 When we create a certificate, it has two components: a public key file and a private
key file. The private key file is part of the server verification process, so we must pro-
vide the private key location by using the tls.key_file attribute, which points to the
location of the private key. The last aspect of a certificate is providing a password,
which is optional. If a password has been set, we must provide it by using the
tls.key_passwd attribute.

 Regarding the CA, we can either configure the OS or container so that it knows
about the CA or provide the root certificate. Given this information, we can adapt the
preceding example so that it looks like the following listing; see /chapter3/fluentbit/
https.conf.

[SERVICE]
 flush 1
 log_level debug

[INPUT]
 name http
 listen 0.0.0.0.
 port 9882
 successful_response_code 200
 success_header x-fluent-svc fluent-bit
 tag http
 tls on
 tls.ca_path /etc/pki/tls/certs/
 #ts.ca_file /etc/pki/tls/certs/fb-book
 tls.key_file /etc/pki/tls/certs/fb-book.key
 tls.verify off

[OUTPUT]
 name stdout
 match *

ACME requires you to deploy an additional piece of software but manages the autore-
newal of certificates for you.

There are now several implementations of the ACME standard, some of which can be
embedded in other programs or frameworks. A solution such as the CNCF project’s
certification manager (https://cert-manager.io) can automate the distribution of cer-
tificates in a Kubernetes environment and work with Let’s Encrypt. Appendix B lists
some additional resources on creating and managing certificates.

Listing 3.8 HTTP input example: https.conf

As before, we’re naming
the http source plugin.

To avoid accidentally running an HTTP
request against the http endpoint and vice
versa, we’ve shifted the network port by 1.

Uses the TLS attribute to
switch the use of TLS on

Provides Fluent Bit with relevant
locations. As this path should be
an absolute path, we have put the
files in a dedicated folder in the
conventional Linux location for
certificates, so flushing them out
later will be easy. If you want to
run this configuration, you need
to provide your own certificate
resources.

We could point to a specific
certificate file instead.

We can direct Fluent
Bit not to verify the
certificate with the CA.

https://cert-manager.io

76 CHAPTER 3 Capturing inputs
We’ve shifted the port number to ensure we know we’re running the HTTPS configu-
ration, so we need to modify the port number in the Postman URL. When the config-
uration is executed, we’ll see the same process of invocation and response.

3.6.4 forward source

As we touched on in previous chapters, Fluent Bit and Fluentd can interoperate seam-
lessly. Both products can use a plugin implemented for input and output called
forward. Because the implementations are in different languages and some other
products have adopted the protocol, interoperability can’t be achieved simply through
a common code base. Therefore, the protocol and payload have been formally
defined; you can find the definitions at https://mng.bz/w5og. To take advantage of
protocol compliance, we can use Fluent Bit and Fluentd to receive log events from a
Docker Fluentd logging driver.

 Because forward and http have many features in common—both can use network-
ing to send and receive events, for example—let’s take a moment to highlight key dif-
ferences between them. The payload structure is prescribed for forward, for example.
Perhaps more significant is using a binary serialization library called MessagePack
(https://msgpack.org; shortened to msgpack in code), which encodes the payload and
improves transmission performance. Unlike gRPC, which can be used with Open-
Telemetry, MessagePack doesn’t need a schema to generate code before being used
for a payload. The upside is flexibility, but msgpack can’t compress the payload as effi-
ciently as gRPC. Also, the tag and timestamp are preserved with the core message pay-
load, unlike the http plugin.

 Because Fluent Bit can use the forward protocol/plugin as both input and output,
we can use Fluent Bit to connect to itself. This approach saves us from deploying addi-
tional tools and shows how we can create networks of Fluent Bit that can be connected
to route data to a common location. We’ll use a forward output, which we’ll examine
in more depth with the other types of output plugins. The forward output sends a
payload it has received to a second Fluent Bit instance with its own configuration,
which receives the forward input and sends the received message to its console. As a
result, our setup will use two separate configuration files. Our configuration will look
like figure 3.6.

 As we explore the forward output plugin with the other output plugins, we won’t
consider the http-forward configuration file (illustrated in figure 3.6). Instead, we’ll
concentrate on the forward-out configuration file using the forward input plugin.

 The configuration attributes of the forward input plugin work the same way as
those of the http input plugin. Now the name attribute is forward, and we need to
identify the network and the port to listen to. In this case, we’ve set the port attribute
to 9980. As with http, we can control the buffer behavior with buffer_max_size and
buffer_chunk_size, but we’ll accept the default values.

 Differences between http and forward configuration start with how the events are
tagged. We can impose a tag with the standard tag attribute that overrides the log

https://mng.bz/w5og
https://msgpack.org

773.6 Network events and communication between Fluent Bit and Fluentd
event’s existing tag in the forward payload, or we can prefix it using the attribute
tag_prefix. Prefixing the tag name makes it easy to route a received event based on
whether the event originated in this Fluent Bit instance or another instance. In this
scenario, we want to carry the tag from the original source as it helps to show the con-
tinuity between the Fluent Bit instances. See the following listing and /chapter3/
fluentbit/forward-out.conf.

[SERVICE]
 flush 1
 log_level debug

[INPUT]
 name forward
 listen 0.0.0.0
 port 9980

[OUTPUT]
 name stdout
 match *

Listing 3.9 forward plugin example: forward-out.conf

Local

network

HTTP

forward

[INPUT]

[OUTPUT]

http-forward

HTTP

stdout

[INPUT]

[OUTPUT]

forward-out

Console

(stdout)

Figure 3.6 When we use Postman to perform the send, we can expect a result
with an empty body and several header values.

This configuration of the forward input
plugin has only the mandatory attributes.
As a result, the log events retain the tag
set when originally captured.

This setting means we’ll
listen to all network
addresses.

78 CHAPTER 3 Capturing inputs
We need two shell sessions to run this forward-based configuration, one to each of the
following commands:

fluent-bit -c ./fluentbit/http-forward.conf
fluent-bit -c ./fluentbit/forward-out.conf

With the processes running, we need to reuse Postman as we did in the first HTTP
exercise. In doing so, we should see the first shell’s console receive the message and
report sending it by using forward. In the second shell, we should see the message
being received and printed to the console, with the tag set and the timestamp reflect-
ing the initial receipt.

3.6.5 Beyond network ports

Fluent Bit’s forwarding mechanism goes beyond the standard network model to
enable us to exploit Linux sockets (or domain sockets). This mechanism allows pro-
cesses that reside on the same server to communicate more efficiently, for example,
eliminating the need to address network routing. This feature can be useful when Flu-
ent Bit is deployed as part of a Kubernetes control plane, deployed on the host along-
side services such as CRI-O (https://cri-o.io) and containerd (https://containerd.io),
which we need to monitor to understand any problems with a Kubernetes worker
node. Because the socket approach depends on being co-resident, we don’t recom-
mend it unless the deployment model is certain. We need to set the Linux/UNIX
path for the socket by using the attribute unix_path. The existence of this attribute
results in the listen and port attributes being ignored regardless of their settings.
We also need to define the permissions of the Linux socket file done with the unix_
perm attribute. Example values are unix_path /tmp/fluent-bit-in.sock and unix_
perm 440.

3.6.6 Internode communication

In Kubernetes-based environments, one of the key reasons for sending data between
Fluent Bit instances is to simplify Pod configurations and handle Pod scaling by
embedding the Fluent Bit with the primary application in a container or, more likely,
using a sidecar pattern. By including Fluent Bit within a Kubernetes Pod, we eliminate
the complexities of managing persistent volumes; different Pods won’t clash when
writing to storage, and we can handle the consequences of dynamic scaling of Pods
and worker nodes. We can also manage the dynamics that come in as Kubernetes
retires unhealthy nodes as well as the transitioning of nodes and Pods with changes
driven by canary or blue/green deployment patterns. With the sidecar pattern, we
capture the logs from the service within the Pod. If we do so via tailing files, then we
simply use the Pod’s transient storage, or (better) the service’s logging framework
sends to the Fluent Bit sidecar via the localhost network. The sidecar can route the
data to a centralized node to consolidate it and direct it to the appropriate backend
services, such as a security information and event management (SIEM) solution for

https://cri-o.io
https://containerd.io

793.6 Network events and communication between Fluent Bit and Fluentd
security, a time series data store for metrics dashboarding, and so on. Pod-related
deployment of Fluent Bit may also capture details on the Pod, clearly showing us when
a Pod becomes unhealthy. We can see some of these internode communication con-
figurations in figure 3.7.

Two things to keep in mind when using multiple Fluent Bit nodes are the startup
sequence and what could happen if an upstream node starts before the downstream
node. In this situation, the upstream nodes are consuming events, but when they try
to forward them, the destination node is unavailable. We can configure retries to miti-
gate this problem, but we will see errors. If we can arrange it, starting Fluent Bit
instances with other Fluent Bit instances connected to them first and working outward
can overcome the problem. This approach minimizes reported errors about failed
connections as nodes start and connect because the send action always initiates the
connection and reports an error. In figure 3.7, we would start with the nodes at the
bottom and work our way up. As a result, we don’t start processing events until the net-
work is up and everyone is connected. In production, this kind of control may not be
possible, but in nonproduction environments, controlling the startup sequence means
we don’t receive errors that can be distracting.

App A

Sidecar

Worker node

Pod Pod

Pod

Pod Pod

App D

Pod

Worker node

Pod Pod

Pod PodPod

App B App C

Sidecar Sidecar

Figure 3.7 Deployment options for using Fluent Bit and Fluentd. The arrows
reflect the flow of forwarded log events. The dashed arrows reflect the ability to
forward to secondary connections if a connection fails to respond, giving us a
resilient configuration if needed. These options work because the forward plugin
works for both services. The right worker uses Fluentd as the concentrator node.
App A uses common storage. App D works via a flat file visible within the Pod.

80 CHAPTER 3 Capturing inputs
3.6.7 OpenTelemetry

OpenTelemetry (often shortened to OTel) radically affected the landscape for moni-
toring solutions, bringing together the key elements (sometimes called signals) of
logs, metrics, and traces. Although this book isn’t about OpenTelemetry, OTel contin-
ues to influence the growth and adoption of Fluent Bit. In all likelihood, through
working with Fluent Bit, you’ll encounter some of the challenges that OTel presents.
We can’t underestimate the effect of OTel. In our opinion, OTel’s effect on observability
is similar to Log4j’s effect on application logging. Because of Log4j, we’ve seen multi-
ple derivatives of its implementation across many languages and even programming
languages that incorporate logging as a native feature. OTel is not trivial; it’s much
more advanced than traditional logging frameworks. So we should take time to under-
stand it before we examine how Fluent Bit works with it.

 OTel refers to types of observability data as signals. The types of signals are

 Logs—Cover traditional application logging.
 Traces—Have some features in common with logs but in a specific context, such

as a parent trace or typically a specific transaction. A trace can have baggage that
includes additional metadata for the transaction, such as the business transac-
tion identifier and associated accounts. A trace treat spans like baggage that
represent the start and end of significant activities, such as the execution of a
transaction. Applications can be composed of smaller pieces, such as services or
nested transactions, so we need spans to represent composition as well. Spans
within a trace can be nested; as a result, we can have a hierarchy of spans.

 Metrics—Represent the usual measurement data we associate with monitoring.
This data can be associated with resource monitoring, such as CPU use, but can
measure business-centric values, such as the number of transactions handled
per minute.

Traditionally, we would have focused on logs and metrics using different tools. The
adoption of cloud-native technologies and microservices made handling traces even
more critical. The execution of an end-to-end process can occur across different ser-
vices on different servers, which may change from moment to moment, so correlating
activities for a single transaction is far more complex. The OTel project has propelled
the handling of observability forward in several ways:

 Harmonization and formalization of the definition and transmission of differ-
ent types of signals

 Reference implementations for certain capabilities, protocols, and connectors
to other cloud-native projects

 Tooling to support the creation of different types of metrics, including injecting
into existing code-trace generation

One nice thing about the standardization of logs events is that the format drew a lot of its
structure from de facto standards provided by Fluentd and Fluent Bit. Although the OTel

813.6 Network events and communication between Fluent Bit and Fluentd
log format is more complex than Fluentd’s and more prescriptive than Fluent Bit’s, you
can still see some connections. As discussed in chapter 1, Fluent Bit will become an
important technology in the observability space because it can handle different types of
signals discretely but also act as an OTLP collector (bringing the different signal types
together) and an exporter sending the signals to another OTel service (which could
include another Fluent Bit instance) or to specialist services such as Prometheus and
Grafana for additional analysis and visualization. Figure 3.8 represents the stages that the
signals pass through from the viewpoint of OTel. You can see how Fluent Bit fits in.

We need to be aware of some challenges. OTel is still evolving, and the signal data
structures have only recently been identified as stable. To accommodate the needs of
different stakeholders, we can transmit the different signals in a couple of ways, and
not everyone has implemented all the different mechanisms defined by the standard.
As a result, there is a chance of mismatches in capability. The standards allow us to
send the signals as follows:

 gRPC requires HTTP/2. gRPC uses Protobuf3 to encode the payload in a com-
pact binary form. When using gRPC, if the communication recipient can’t
handle HTTP/2, the sender is meant to step down to the widely supported
HTTP/1.1. But this may not always be the case.

Generate

Emit

Generate

Application(s) and services will

create signals (manually or

through injection via a framework)

and create logs and metrics.

Emit

Application or service emits different

signals directly or indirectly (such

as via file) to a collector.

Collect

Process

Export

Collect

Receive all signal types directly

or indirectly from the application(s)

and service(s).

Process

Perform routing, filtering,

restructuring, and extracting of

information from the signals.

Export

Pass the signals on to services that

can securely store, visualize, and

perform further processing,

such as searching.

A
p

p
li

c
a
ti

o
n

 o
r

s
e
rv

ic
e

O
p

e
n

T
e
le

m
e
tr

y
 C

o
ll

e
c
to

r

Figure 3.8 The phases and
separation of steps involved in
Open Telemetry traffic

82 CHAPTER 3 Capturing inputs
 The use of the compressed Protobuf3 payloads over HTTP/1.1 is allowed.
 The signals may also be transmitted via JSON-formatted messages over HTTP/1.1.

Fluent Bit v3 adopted HTTP/2; before, it handled the signals by using HTTP/1.1 as
JSON or in Protobuf3-formatted messages. To invoke these endpoints, we’ll use JSON
payloads over HTTP/1.1. This approach is the most basic one, but we can use Fluent
Bit endpoints with v2. HTTP/1.1, and JSON handling is almost universal, so even if
our existing tools do not understand the payload, they can at least handle it. We can
easily see the complexity and details of the payloads for different types of signals.

 Although this discussion isn’t representative of the potential sources, the key is
compliance with the payload schema and transmission protocol. However, seeing
the diversity of origins of OTel data is worthwhile because the OTel project isn’t just
about the Collector or standard OTLP. The project provides tooling and libraries
to support

 Logging frameworks with an OTel-compliant interface. The OTel project has
built tooling to enable this extensibility.

 Code instrumentation at different layers, including
– Language libraries (C++, .Net, Erlang, Go, Java, JavaScript, PHP, Python,

Ruby, Rust, and Swift). This instrumentation includes access to libraries and
agent logic so that custom-coded signals can be created with SDKs.

– Language frameworks, such as Java’s SpringBoot and Python’s Flask, can
have modules that inject OTel invocations into the app engine.

– Plugins to logging frameworks, such as the Appender for Log4j2 or Go’s Zap,
so the log events are sent to an OTLP collector due to the logging frame-
work’s configuration.

– Language annotations such as Java and Python.
– Kubernetes configurations that use some commonly used languages, such as

Node, Python, .Net, and Java, have instrumentation injected.
 Monitoring agents that can generate OTel data.

Protobuf background
Google developed Protobuf (short for Protocol Buffers) and made it freely available.
Protobuf takes a predefined schema and generates code with objects and logic to
(de)serialize it. The schema provides details such as data type and the order of fields,
allowing the code to compress the message payload and limit the amount of meta-
data in the payload. For example, if you know the order of the elements and their
types, when types are a fixed size, you no longer need to encode the start and end
of the attributes in a record or state for which attribute the following bytes are. Pro-
tobuf supports the generation of code for all the major programming languages. Pro-
tobuf has been through a couple of evolutions, with v3 being the latest; v2 and v3
are not fully backward compatible. You can find the full specification at https://
protobuf.dev.

https://protobuf.dev
https://protobuf.dev
https://protobuf.dev

833.6 Network events and communication between Fluent Bit and Fluentd
As we progress through this book, we’ll see features that allow us to transform non-
compliant events into OTel-compliant payloads, use Fluent Bit’s ability to act as an
exporter in OTel terminology, and send payloads onward in a compliant format. As a
result, Fluent Bit can act as an observability agent or proxy for noncompliant sources.

To handle the different signals, we can have separate Fluent Bit endpoints or a single
endpoint for all signals. Because some attributes apply to certain signals, we’ve sepa-
rated them out for clarity. As before, we’re going to direct the received events to std-
out. The first thing to note about the configuration in listing 3.10 is that we create a
separate [INPUT] declaration for each signal type. This declaration is not unique to
OTel; it’s how we can handle as many inputs as our Fluent Bit configuration. Regard-
less of the signal type, the plugin name is opentelemetry.

 Because an OTLP collector expects data over the network, we also need to set the
listen attribute for the network and the port. We chose to separate the signals into
different inputs, so we need to set each input to listen to its own port. Each signal uses
a different port. The OTel source plugin allows us to define the payload element to
use for the tag rather than impose a value. For now, let’s see how Fluent Bit will set the
value; when we derive the tag, we can use the tag_key attribute.

 Because traces and logs have many common characteristics, Fluent Bit provides an
attribute called raw_traces that allows Fluent Bit to treat traces as though they are log
bodies when set to true. Our input for traces has this attribute set. As a result, we end
up with the configuration as shown in listing 3.10. As you can see in the configuration,
we haven’t specified the URL path for receiving the different metrics because Fluent
Bit imposes the URL endpoints standardized by the OTel specification:

 <server address e.g., localhost:4618>/v1/logs
 <server address e.g., localhost:4618>/v1/traces
 <server address e.g., localhost:4618>/v1/metrics

Keep in mind that the event sizes for the OTel signals, particularly traces, have the
potential to be large. They’re not going to be in the megabytes range, but kilobytes
are a possibility when using JSON format. A trace is made up of records called spans,
which record the start and end of an operation, against which we need to record
information that makes it unique. But a span can contain more spans within it. For
example, a parent span may represent the trace of a business transaction from start to

MessagePack vs. Protobuf3
Fluent Bit’s preferred way to send messages is through MessagePack. Although Mes-
sagePack and Protobuf3 have the goal of helping data communication, MessagePack
does not need to know the message schema ahead of time, whereas Protobuf3
requires ahead-of-time code generated against a message schema. This gives Proto-
buf3 a performance edge over MessagePack at the price of having to work with pre-
defined schemas.

84 CHAPTER 3 Capturing inputs
end. Within that business transaction, we may record inner spans. Each child span
may cover each SQL or API call to aggregate content from other services. If we have
multiple SQL or API calls, the parent span can end up with multiple child spans, and
this relationship can be recursive. Also, if an automated injection of traces is adopted,
the number of data points and associated data values (known as baggage) captured in
the trace has the potential to be significant. You can see an example of OTel auto-
mated instrumentation with the Python Flask framework at https://mng.bz/9oV0. See
the following listing and chapter3/fluentbit/otel-consumer.conf.

[SERVICE]
 flush 1
 log_level debug

[INPUT]
 #use this for Logs
 name opentelemetry
 listen 127.0.0.1
 port 4318

[INPUT]
 # use this for Traces
 name opentelemetry
 listen 127.0.0.1
 raw_traces true
 port 4317

[INPUT]
use this for metrics
 name opentelemetry
 listen 127.0.0.1
 port 4316

[OUTPUT]
 match *
 name stdout

Because we’re using JSON over HTTP for OTel communications, we can use Postman
to execute the configuration. Within Postman, we have provided three configurations
to post, one for each signal type: OpenTelemetry V1 Log, OpenTelemetry V1 Trace,
and OpenTelemetry V1 Metric. Take a look at the JSON body in each configuration.
The content is much more substantial than our pure HTTP example because
although the log structure is derived from Fluentd (and, by implication, Fluent Bit), it
has much more additional metadata. It can link the log back to spans within traces, for
example. (See resourceLogs.scopeLogs.logRecords[0].traceId and resourceLogs
.scopeLogs.logRecords[0].spanId.) Our JSON contains two records within
resourceLogs.scopeLogs.logRecords.

Listing 3.10 OTel input example: otel-consumer.conf

With this input, we want to ingest
the log events, so we’ve got the
port and network to listen to.

A second input for traces, which
differs because we need to have
a port separate from logs

Here, we set the raw_traces attribute to true;
as a result, the traces will be consumed as logs
(treating the event in its raw form rather than
as a special kind of event.

This input is for our metrics. Although
we have the same attributes as logs,
we may wish to configure the tag
differently to separate metrics
routing from logs or traces.

https://mng.bz/9oV0

853.6 Network events and communication between Fluent Bit and Fluentd
 Let’s start Fluent Bit with

fluent-bit -c chapter3/fluentbit/otel-consumer.conf

and test the Logs signal first by selecting the OpenTelemetry V1 Log configuration
and then clicking the Send button in Postman. What we see on the console may sur-
prise you. Figure 3.9 shows an example.

We don’t see the entire JSON payload provided in Postman when looking at the con-
sole output, only the resourceLogs.scopeLogs.logRecords (as we can see in the
JSON body of Postman). The content has been restructured for us, so we no longer
see additional values such as resourceLogs.resource.attributes or the associated val-
ues needed to provide the data type information. As the OTel payload described two log
events, we correspondingly see two complete entries on the console. When it comes to
the tag value, we see the type and the URL path that received the event.

NOTE There are some additional considerations for processing Open-
Telemetry data. As the payload shows, the core schemas allow part of the
data to be self-describing: for example, resourceLogs.scopeLogs.logRecords
.attributes[]. The attributes included will vary depending on the source of
the OpenTelemetry signal and may change based on ingestion. Examples are
illustrated in the OTel documentation (https://mng.bz/EO0D). It is easy to
expect OTel to enforce a single schema, but internal adoption for services
may have to make compromises, such as imposing some structure on the log
body, which isn’t ideal and could impede adoption. Without OTel, we would
see a divergence in the low-level protocol layers and even basic payload struc-
tures. So, while this may appear overly complex, we are better off. The way to
handle such considerations is to apply good practices from the integration
world, as we are addressing a specialist integration challenge. You can read
more about some of these ideas in the Logging in Action book.

Figure 3.9 The console output for handling logs in with Open Telemetry

https://mng.bz/EO0D

86 CHAPTER 3 Capturing inputs
UNDERSTANDING TRACES WHEN THE RAW_TRACES ATTRIBUTE IS NOT SET

In the configuration otel-consumer.conf, we included the attribute raw_traces and
set it to true so the trace data would be consumed as log events rather than as the
OTel Trace. We need to remove the raw_traces value from our configuration or
change it from true to false and then rerun Fluent Bit with this configuration. We
also use Postman to send the Trace event to our Fluent Bit instance. What would you
expect to see on the console? At present, we don’t see anything; there isn’t any data
within the log event itself.

 How do we know that Fluent Bit has received the event to process it? The answer is
that we have to review the HTTP response returned, which we can see in the same way
as with the http source plugin. You should see an HTTP 201 response in Postman. Flu-
ent Bit is only acknowledging its receipt, and there are no guarantees about the pro-
cessing of the payload, so a corrupt JSON body will get the same response. How do we
know the event has been processed correctly? The simple answer is that if Fluent Bit
experiences an error when trying to process an event, it will generate error events
itself. Should we force the source to wait until an event is processed, and if so, what
could the source do? If we force the source to wait until an event is processed, we are
likely to create backpressure problems and slow throughput. But even if the source
waited for the event to be processed, if we pushed back an error message instead of
trying to send the same event again, the chances of having some intelligence to
address the problem are minimal.

SENDING METRICS

Having run the logs and traces of OTel cases, let’s run the metrics case. With Fluent
Bit still running, we only need to switch to the OpenTelemetry V1 Metric configura-
tion in Postman and click Send again. Just as the traces were not treated as raw events,
we don’t see anything on the console.

SIMPLIFYING CONFIGURATION

As you may have ascertained from the explanation of the URL, we could consolidate
the traces into a single endpoint if we are not concerned about using tags to separate
the sources. Therefore, take the provided configuration, change the tag to OTel, sim-
plify so that we have a single input for all metrics, and rerun the configuration. To
rerun Postman, we need to correct the URLs to be consistent. As before, we have pro-
vided the answer configuration in the form of chapter3/fluentbit/otel-consumer-
answer.conf.

Learning more about OpenTelemetry
OTel is a significant answer to the need for observability, and we’ve only scratched
the surface of the subject here. But our focus is on Fluent Bit, not the OTel standards
and tools. The OTel docs (https://opentelemetry.io/docs) are substantial and useful
resources but not necessarily the easiest guides if you don’t have at least a basic

https://opentelemetry.io/docs

873.7 Fluent Bit buffers and chunks
3.7 Fluent Bit buffers and chunks
We’ve started to talk about attributes, such as chunk_size, that relate to how buffering
is managed. Now we should provide a bit more detail on buffers and chunking. We’ll
address them in more depth later in the book, but here, we’ll take a high-level look.

 To be efficient, Fluent Bit captures and holds log events in buffers, which are made
up of chunks. Each input has its own discrete buffer. The buffers and chunks are
defined based on capacity. Normally, we can expect a chunk to hold multiple events
from a source. To make processing efficient, input plugins hand off chunks of the buf-
fer for processing when they reach capacity; in doing so, they make handling events
more efficient. A chunk doesn’t have to be full before it is passed on for processing, as
we also have the flush attribute to control behavior by triggering data movement on a
time basis. The number of chunks available is determined as a function of the total
buffer storage allowed and the size of a chunk (buffer size/chunk size). If or when it
becomes necessary to tailor the buffering, you need to consider several factors:

 You want multiple chunks so that as one is being handed off for processing, the
next is being filled.

 The size is always greater than the largest single event to be handled, as chunks
hold only complete events. To put that into context, this chapter is a bit over 1
MB as a PDF with all its images and formatting.

 Which is more important: event processing throughput speed or efficiency? If
efficiency is more important, make each chunk larger. If throughput is more
important, keep chunks smaller.

 The more events held in the buffer, the greater the effect of data loss in the
event of a failure, such as when the Fluent Bit process terminates ungracefully.

Buffering is typically performed as an in-memory mechanism, but some plugins also
support using the filesystem for buffering. This can be defined in the plugin by the
attribute storage.type, which takes the value of the filesystem or memory. But using
the filesystem does come with the price of the fact that file I/O is much slower, having
additional effects on performance. To use the filesystem with a plugin’s buffer, we
need to stipulate with the other service attributes the location of the storage to be
used (storage.path) and whether chunks that can’t be recovered from the filesystem
should be deleted (storage.delete_irrecoverable_chunks). We can also switch on
checksumming on storage by setting the attribute storage.checksum to on. Depend-
ing on the type of storage being used, we can control synchronization by using the
storage.sync option, which can be set to full, ensuring that data is synchronized to

understanding of the cloud-native ecosystem (Kubernetes, Prometheus, and so on).
This is understandable, given that OTel is part of the CNCF ecosystem, but also unfor-
tunate, as OTel is just as valid and useful in non-Kubernetes environments. Appendix
B lists titles that can help.

88 CHAPTER 3 Capturing inputs
the filesystem if Fluent Bit crashes. To better understand this concept, look at the
Linux-mapped memory file capability when set to MAP_SYNC (https://man7.org/linux/
man-pages/man2/mmap.2.html). Using the full storage.sync can have performance
implications.

3.8 Other sources
There are more source plugins than we can address in a single chapter, and available
plugins will continue to evolve. As you’ll have read, input plugins have common
themes. The points we have focused on will provide a solid grounding for understand-
ing other sources. It’s worthwhile to touch on some sources and approaches for get-
ting data into Fluent Bit.

3.8.1 Container-related plugins

As Fluent Bit’s characteristics lend themselves to container and container orchestra-
tion use cases, it is not surprising to see its adoption within the Kubernetes ecosystem
and its plugins to support the specific needs of the Kubernetes environments. In chap-
ter 4, we’ll explore the input possibilities for containers and Kubernetes.

3.8.2 Getting data from other processes

We can invoke external processes by using the exec plugin or the exec-wasi plugin.
The exec plugin is similar to its Fluentd namesake, but there are some constraints
when using it in a containerized world. For exec to work, it needs certain OS features,
which (depending on your container) may not be present. This is true of distroless con-
tainers. (For more information on distroless containers, visit https://mng.bz/mRO0.)

 Still, a simple trick that can help capture some data, albeit less efficiently than a
proper plugin, is to execute a shell script or command. With a script, we can tailor the
response to make it consumable.

 Unlike exec, the exec-wasi plugin uses the WebAssembly System Interface (WASI),
which provides the means to invoke a WASM solution. As we’re using WASI rather
than a shell like Bash to execute, this approach is unaffected by distroless container
constraints like exec. We’ll explore WASM and WASI in chapter 9.

 The final approach, which differs slightly from using exec or exec-wasi, is to
produce a freestanding script or application that can act like a probe that captures
the desired data, such as pinging third-party services to confirm availability and
then sending the result to the http endpoint as a JSON payload, using a curl com-
mand. Such probes could be as simple as a little bit of Bash scripting. We can mon-
itor our external (to the Fluent Bit process) probes by using the proc plugin.
Running such a process as a cron job would mean we can be confident that the pro-
cess is executed. Such an approach can be more challenging to make operationally
resilient, but if the probe is simple, the chances of needing intervention are low.
We may want to monitor the state of print queues on a print server. We could build
a custom plugin for this task or produce a short script that uses the Linux tool lpstat

https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://mng.bz/mRO0

89Summary
(https://mng.bz/5OQq), which wraps and sends the result to Fluent Bit via a curl
command.

3.8.3 Observing the observers

We want to ensure that our observers are behaving themselves and monitoring the
environment. Fluent Bit has a plugin that can generate its own health data. Ideally,
that is sufficient, but if we’re operating observability tools with their own built-in self-
monitoring, we may want to capture that data as well. After all, if our ability to observe
is failing, we want to know before we go blind. We should also keep in mind some of
these tools are destinations for our outputs. As a result, it is possible to pull data from
them. Prometheus, for example, exposes a metrics API that can be used to source
data. (Read more about Prometheus’ self-monitoring at https://mng.bz/DpDg.)

Summary
 We can receive log events from several different sources and push the events

out to stdout, including files, HTTP, and forwarding.
 OpenTelemetry (OTel) significantly affects how observability and monitoring

happen and how Fluent Bit supports these changes.
 Fluent Bit can handle metrics and traces as well as logs.
 The twelve-factor app advocates logging via stdout, which we can address with Flu-

ent Bit’s stdin plugin. However, this approach can present additional challenges.
 When capturing logs from long-running processes, we can mitigate processes

starting and stopping by using SQLite to record how far through a log file we are.
 There are some options for executing processes to capture metrics and logs

using plugins such as exec.
 Fluent Bit and Fluentd can send logs to each other without knowing or caring

which Fluent implementation the other is. This is achieved using the forward
plugin.

 Applications through log appenders can talk directly to Fluent Bit, which offers
several benefits, particularly for short-lived processes.

 We can secure network-centric traffic with SSL/TLS and control how the certif-
icate is validated.

https://mng.bz/5OQq
https://mng.bz/DpDg

Getting inputs
from containers
and Kubernetes
Chapter 3 looked at a variety of input plugins that can be used in cloud-native and
traditional deployments. These input plugins provide insights into applications and
environments in which they are deployed: bare metal, virtual machine (VM), or
container. Although these technologies provide the means to execute applications,
they don’t address how we can orchestrate and manage these sources. This chapter
examines how we can observe containers and container orchestration, particularly
with Kubernetes, and the approaches available to manage our Fluent Bit configura-
tion effectively. Understanding the complexities of how containers and container
orchestration can work is important. It can influence how we approach observing

This chapter covers
 Finding ways to capture events from containerized

apps

 Investigating how we can observe containers and
Kubernetes itself

 Discussing deployment patterns and tools to
power our monitoring

 Applying techniques for adding container or
Kubernetes context to events
90

914.1 Architectural context
our applications and the way we understand what container runtimes and container
orchestration are doing and how they affect our solutions.

4.1 Architectural context
Figure 4.1 shows our architecture diagram again, highlighting the parts of Fluent Bit
relevant to this chapter. We’re still on the top layer of our diagram, which reflects the
importance of ingesting events. Without that capability, Fluent Bit’s value becomes
rather limited.

 In this chapter, we’re going to start with containers. Containers and their engines are
used not only as part of Kubernetes but also as a more contemporary, lighter-weight

The use of

these plugins

in support of

containers and

Kubernetes

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)
P

a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Figure 4.1 Logical architecture of Fluent Bit, with this chapter's focus highlighted

92 CHAPTER 4 Getting inputs from containers and Kubernetes
way to achieve virtualization without the complexity, such as running individual
containers or a simple composition such as Docker Compose. Although Kuberne-
tes is the dominant container orchestration technology, other options of varying
sophistication are available, from Docker Compose and Docker Swarm to Podman
and Hashicorp’s Nomad (https://mng.bz/5OwD). After we’ve looked at container-
ization, we’ll look at Kubernetes (or, more accurately, the Kubernetes ecosystem of
components). For containerized environments and container orchestration, we need
to consider several perspectives:

 How the container engine(s) are performing, as they are discrete processes
hosting the application logic. After all, our application may be reporting prob-
lems because the engine running it is having its own problems.

 Whether the container orchestration is reporting issues that, in turn, can affect
the container’s ability to operate correctly (such as being able to locate another
container and connect to it). These issues could stem from etcd, kubelet, and
other processes involved with a Kubernetes deployment.

 Containers and their orchestration present a different approach to deployment
to help propel scaling and resource efficiencies; as a result, they offer us addi-
tional deployment approaches. What are the approaches and patterns?

 Containers are more transient and no longer have unique configurations in the
way that VMs usually do. How do we handle those consequences?

 We want to know whether Kubernetes and containers are operating properly; ide-
ally, we also should look for confirmation that everything is behaving as we expect.
A Kubernetes cluster with all the Pods and their containers is an extremely com-
plex animal that can morph continuously due to external factors.

 If we’re hosting services that can incur costs (licenses, support agreements, ser-
vice fees, and so on) in a dynamic environment, we need to understand our
commercial obligations and possible cost exposures.

NOTE This chapter is about the features Fluent Bit provides and supports to
work with Kubernetes and containers. Appendix B provides lots of references
for more detailed information. If you want to package Fluent Bit with Helm,
for example, the appendix provides details on packaging and deployment
options for Fluent Bit, but to find out how to use Helm, it would be better to
read a book dedicated to that subject.

4.2 Fluent Bit capturing Docker events and metrics
Today (and in the foreseeable future) Docker is the most dominant container run-
time and toolkit, particularly when you consider non-Kubernetes container and
development environments. Before Kubernetes v1.5, it was integrated directly into
Kubernetes (kubelet), although we’re seeing more containerd and CRI-O for cloud-
provided Kubernetes environments. Therefore, it makes sense that Fluent Bit has the
means to tap into Docker’s event records. Currently, these plugins are available only

message URL https://mng.bz/5OwD

934.2 Fluent Bit capturing Docker events and metrics
for Linux because the Docker Events plugin uses UNIX sockets to communicate with
Docker, so we need the deployments to be coresident.

4.2.1 Docker Events

The Docker Events plugin allows us to observe the events that the container engine
handles. It helps us understand the container life cycle and related events that can
affect container operations.

NOTE Docker use (particularly Docker Desktop) can be constrained or pre-
vented in some organizations because of licensing implications, which may
result in having to pay for commercial licenses.

If our Docker installation is standard, we can use the plugin without any configuration
attributes. Otherwise, we need to define the location of the Docker socket for Fluent
Bit with the attribute unix_path. We can tune the buffer size (the amount of storage
being allowed to hold events) with the buffer_size attribute, which takes the number
of bytes. Docker’s event outputs may be formatted as JSON or structured text output.
To mitigate against possible connection loss, we can stipulate the maximum number
of reconnection attempts with reconnect.retry_limits and how many seconds to
wait between retries using reconnect.retry_interval as a number of seconds.

 When the events are received as structured text, we can tell Fluent Bit the name of
the JSON key (the attribute is called key), the value of which will contain the event
output we want to use. By default, this output has the value of the message, as shown
in the following output. As with many other text-based inputs, we can identify a parser
to use with the attribute called parser. Start Fluent Bit to use the docker_events
plugin and output to the console using this command (to start, accept all the default
attribute settings for the plugin):

fluent-bit -i docker_events -o stdout

Then we need to get something happening with Docker, so let’s run the “Hello,
World” container with this command in the terminal:

docker run hello-world

If you haven’t already run this container, Docker first attempts to retrieve it from
Docker Hub (https://hub.docker.com/_/hello-world). When the container has been
retrieved and started, logs, like the following example, will be sent to the console.
Note that each output starts with {"message"=>"{, reflecting the default setting of
the key attribute for the configuration of the plugin. We’ve also simplified the long
hex value of the ID to help with the readability of the output, but it offers an ideal
value to correlate messages when logs are combined:

[2] docker_events.0: [[1699637206.996666301, {}],
➥ {"message"=>"{"status":"create","id":"hex-id-string",
➥ "from":"helloworld","Type":"container","Action":"create",

https://hub.docker.com/_/hello-world

94 CHAPTER 4 Getting inputs from containers and Kubernetes
➥ "Actor":{"ID":"hex-id-string","Attributes":
➥ {"desktop.docker.io/wsl-distro":"Ubuntu-22.04",
➥ "image":"hello-world","name":"vigorous_wescoff"}},
➥ ""scope":"local","time":1699637206,"timeNano":1699637206996174521}"}]
[3] docker_events.0: [[1699637207.011748547, {}],
➥ "{"message"=>"{"status":"attach","id":"hex-id-string",
➥ "from":"hello-world","Type":"container","Action":"attach",
➥ "Actor":{"ID":"hex-id-string","Attributes":
➥ {"desktop.docker.io/wsl-distro":"Ubuntu-22.04",
➥ "image":"hello-world","name":"vigorous_wescoff"}},

"scope":"local","time":1699637207,"timeNano":1699637207010889920}"}]

It is interesting to see the attributes included with each captured event. We can
observe how the container is being run (note the values in the output for the JSON
elements, like Action update) and the amount of detail provided. Let’s change from
the command line and use the default settings to use a configuration file with the key
set to the value of DockerDoes. We should also set the retry values. We’ve provided a
solution configuration called docker-events-in.conf.answer if you want to see the
solution. We can rerun the scenario with the command

fluent-bit -c fluentbit/docker-events-in.conf

Then we start Docker as before, using the command

docker run hello-world

In the console output, the only difference is that the element name for the log event
content itself is not {"message"=>"{" but {"DockerDoes"=>"{". This time, rather
than terminate things gracefully, let’s stop Docker but leave Fluent Bit running. If
you’re running Docker Desktop, use the UI to terminate the process; if you’ve only
installed Docker, use the command sudo service docker stop. Then we’ll see Fluent
Bit reporting errors like this:

[2023/11/10 20:33:40] [error]
➥ [/tmp/fluent-bit/plugins/in_docker_events/docker_events.c:57
➥ errno=111] Connection refused
[2023/11/10 20:33:40] [error]
➥ [input:docker_events:docker_events.0] failed to re-initialize socket
[2023/11/10 20:33:40] [debug]
➥ [input:docker_events:docker_events.0] close socket fd=40
[2023/11/10 20:33:40] [info]
➥ [input:docker_events:docker_events.0] Failed. Waiting for next retry..
[2023/11/10 20:33:45] [info]
➥ [input:docker_events:docker_events.0] Retry(2/2)

Note how many retries Fluent Bit attempts to execute. Finally, the events that can be
received from Docker are substantial, covering all of the container’s life cycle events
and user commands, such as attaching to the container and checking its health. You
can see the list at https://mng.bz/o02j. Figure 4.2 illustrates the Docker events that

https://mng.bz/o02j

954.2 Fluent Bit capturing Docker events and metrics
state

event

Docker

command

Key

stopped

killed by

out-of-memory

running

paused

deleted

create

create

start

diekill

die

stop

die start

restart

pause

unpause
out of

memory

(oom)

restart - no
restart - yes

die

destroy

docker

run

docker

create

d
o

c
k
e
r

rm

attach

detachexec_start

health_statusexec_die

User container actions

docker

start

docker kill

docker stop

docker

restart

docker pause

docker

unpause

Docker runtime

create

connect

destroy

disconnect

install

enable

remove

disable

Daemons

reload

Nodes

create

update

remove

Services

create

update

remove

Configs

create

update

remove

Secrets

create

update

remove

Volumes Networks Plugins Images

create

mount

destroy

unmount

import

load

push

pull

save

tag

delete

untag

Figure 4.2 Illustration of the events that Docker emits and where in the container life cycle or platform they
originate

96 CHAPTER 4 Getting inputs from containers and Kubernetes
are emitted as commands and how Docker-received commands or the container
moves through its life cycle. Understanding these details means we know what should
be happening and looking for in the events received and how any commands issued
should affect them. As a result, we can apply filters (covered in chapter 7) to examine
particular aspects of the container’s behavior.

4.2.2 Docker Metrics

The Docker Metrics plugin (identified with the name attribute with a value of docker)
gives us the means to determine the resources the container consumes. This informa-
tion can be beneficial for ensuring that a container is getting sufficient resources (an
oversubscribed node may see containers being rationed) and that we’re not asking
the container orchestration to allocate unnecessary resources to a container.

 This plugin allows us to define in seconds the frequency of collecting the data
(interval_sec). We can also define containers to include or exclude by using attri-
butes called include or exclude with space-separated values for each container. If nei-
ther include nor exclude has values specified, data for all containers is gathered.

 Let’s copy and extend our docker-event.conf to capture the Docker metrics. We
don’t need to include or exclude anything, as we’re using the hello-world container.
Let’s set the interval to 5 seconds, as the container runs briefly. We’ve saved a copy of
the enhanced configuration as a file called docker-all-in.conf. Our configuration
file should look like this (chapter4/fluentbit/docker-all-in.conf).

[SERVICE]
 flush 1
 log_level debug

[INPUT]
 name docker_events
 tag myDockerEvents
 key DockerDoes
 reconnect.retry_limits 2
 reconnect.retry_interval 5

[INPUT]
 name docker
 interval_sec 5

[OUTPUT]
 name stdout
 match *

Let’s run our revised scenario with the busybox container, which remains alive until
we exit the container’s shell. We can run this Fluent Bit with the command

fluent-bit -c fluentbit/docker-all-in.conf

Listing 4.1 Performing Docker monitoring: docker-all-in.conf

This plugin captures
the events affecting

the container, such as
start and stop.

Enforces the key for
the log events

These two attributes control the retry
frequency and how many retry attempts
to perform before giving up trying to
monitor Docker’s socket outputs.

Gets the metrics from Docker for each container.
In this case, we haven’t set any inclusions or
exclusions on containers to get data for.

Defines the number of seconds between
retrieving the data regarding the
container's resource consumption

974.3 Using Podman as a Docker alternative
NOTE Depending on your environment, running Fluent Bit as an admin or
root may be necessary.

Then start the Docker container using the command

docker run -it –-rm busybox

As a result of the command, we should see outputs like this:

[0] docker.1: [[1699904074.688616190, {}], {"id"=>"cc5d19f82359",
➥ "name"=>"distracted_keldysh", "cpu_used"=>39952, "mem_used"=>524288,
➥ "=>18446744073709551615}]

Even if we don’t do anything further with the container, we see additional log entries
being recorded with the container metrics. After a minute, we’ll have seen sufficient
logs flow through Fluent Bit and can now stop the container, which we can do by
using the exit command in the container’s shell. Note that, in the output, we see the
name reflecting the container name Docker provided and the container’s id in addi-
tion to the memory and CPU measurements.

NOTE Depending on your environment, Docker commands may be rejected,
typically due to a permissions problem. To overcome this problem, use the
sudo command; an example is sudo docker run -it --rm busybox.

TIP You can find more about busybox at https://hub.docker.com/_/busybox.
Like hello-world, it’s an official Docker image. BusyBox is convenient for
trying scripting within a container’s shell.

To handle Docker metrics in a Prometheus format, we can use cAdvisor (container
advisor), which has been implemented to export metrics from Docker via an API. We
can find this utility at https://github.com/google/cadvisor.

4.3 Using Podman as a Docker alternative
An alternative to Docker is Podman (https://podman.io). Podman has the benefit of
working with Kubernetes Pod definitions rather than directly with a container,
although there are pros and cons to using Podman instead of Docker. Exploring argu-
ments such as licensing and support models, particularly for the support tooling, is
best addressed elsewhere. Technically, the decision whether to use Docker or Podman
is more about the decision to use Pods or container configurations and runtimes,
which always override how we want to use monitoring, as well as what observability is
implemented and how. Here, we need to examine how to interact with Podman
because it differs from Docker.

 If we use Podman, we can access metric events when we understand the configura-
tion file and several container-related filesystems. We can read these files using the
Podman plugin on a polling cycle. The input plugin has more in common with a node
exporter in configuration, which extends to having attributes like a polling frequency

https://hub.docker.com/_/busybox
https://github.com/google/cadvisor
https://podman.io/

98 CHAPTER 4 Getting inputs from containers and Kubernetes
expressed as several seconds (scrape_interval) and a Boolean value for whether the
plugin should scrape on startup (with scrape_on_start taking a true or false
value). Then we can define the paths to configuration for Podman (path.config)
and the locations for sysfs (path.sysfs) and procfs (path.procfs), which relate to
Linux kernel virtual filesystems. The output from the plugin is formatted like node
exporter content, adopting the Prometheus metrics format.

 The following listing provides an illustrative configuration (chapter4/fluentbit/
Podman-basic.conf). If you use it, you may want to adjust the configuration for your
Podman deployment.

[SERVICE]
 flush 1
 log_level debug

[INPUT]
 name podman_metrics
 tag podmanSrc
 scrape_interval 5
 path.config
➥ /var/lib/containers/storage/overlay-containers/containers.json
 scrape_on_start true

[OUTPUT]
 name prometheus_exporter

[OUTPUT]
 name stdout
 match *

TIP You can find background on sysfs (short for system filesystem) at https://
linuxhint.com/linux-sysfs-file-system and https://mng.bz/n0N8. Find back-
ground on procfs (short for process filesystem) at https://mng.bz/q042 and
https://mng.bz/75Ky.

4.4 Other containers
We have looked at Docker and Podman, both of which have dedicated Fluent Bit
plugins and are well known. They also illustrate differing approaches to exposing data
to tools such as Fluent Bit. When it comes to enterprise-class deployments of Kuberne-
tes, containerd and CRI-O are more dominant. Both container runtimes focus on
delivering against the Kubernetes interface specifications. As a result, their approach
to events and logging is influenced by Container Runtime Interface (CRI; https://
mng.bz/vJ6q), which provides the specification for communication between kubelet
and the container. In addition, we have the Open Container Initiative (OCI), which
provides the interface for the container implementation.

Listing 4.2 Illustrative Podman configuration: podman-basic.conf

Reference to
the built-in
Podman plugin The location of the configuration

file, which provides the
necessary information for the

plugin to work

As the plugin collects metrics rather than logs
or traces, we need the data to go somewhere,
so we are making it available to Prometheus.

A catchall for logs
to be output

https://linuxhint.com/linux-sysfs-file-system/
https://linuxhint.com/linux-sysfs-file-system/
https://linuxhint.com/linux-sysfs-file-system/
https://mng.bz/vJ6q
https://mng.bz/vJ6q
https://mng.bz/vJ6q
https://mng.bz/n0N8
https://mng.bz/znZA
https://mng.bz/q042
https://mng.bz/75Ky

994.4 Other containers
 Neither CRI nor OCI prescribe specific ways for container implementations to
handle stdout and stderr. As a result, containers could use journald and systemd for
outputting details. CRI requires that logs be communicated using CRI logging format.
Fortunately, Fluent Bit has a predefined parser to support handling such formatted
outputs. The Kubernetes standards also define a means to pull back metrics needed to
help ensure that scheduling is observed.

 Tracing is not prescribed, but containerd, for example, can be configured directly
to work with OpenTelemetry. Working with the plugin that supports this feature
requires an appreciation of the workings of containerd, which is true of all the con-
tainer runtimes. As figure 4.3 illustrates, several layers exist between how we typically
interact with Kubernetes and the container execution layer.

As we can see, it is a complex challenge to interact directly with container logging for
containers designed specifically to work with Kubernetes. Although Docker can work
with Kubernetes, its heritage is not exclusive. But simply using stdout and stderr with
the container isn’t the only way to communicate our events.

 We’ve covered several popular container engines and the newer engines built with
Kubernetes specifically in mind. It’s worth keeping in mind that these processes run on
the host OS, and although they perform specialized tasks (including helping manage
container logs,) ultimately, they are like other applications and generate logs. Therefore,

Kubernetes

control plane

kubelet

CRI implementations

(containerd, CRI-O)

Container

Runtime

Interface

(CRI)

Containerized logic

Container runtime

implementation

e.g. runC, Crun

O
p
e
n
 c

o
n
ta

in
e
r

in
ti
a
ti
v
e

(O
C

I)

Container runtime

implementation

e.g. runC, Crun

O
p
e
n
 c

o
n
ta

in
e
r

in
ti
a
ti
v
e

(O
C

I)

Container runtime

implementation

e.g. runC, Crun

O
p
e
n
 c

o
n
ta

in
e
r

in
ti
a
ti
v
e

(O
C

I)

Container runtime

implementation

(runC, crun)

O
p
e
n
 C

o
n
ta

in
e
r

In
ti
a
ti
v
e
 (

O
C

I)

Figure 4.3 The relationship between Kubernetes and containers for logging, traces, and metrics.
The shaded segments highlight the elements guaranteed to be consistent across Kubernetes
deployments. As you can see, a lot of variability and flexibility makes Kubernetes powerful and
adaptable, and it is harder to apply a universal observability approach.

100 CHAPTER 4 Getting inputs from containers and Kubernetes
the secret is understanding how the software generates and shares its signals (logs, traces,
and metrics). Some specifics are available at https://mng.bz/M1D8. We’ll discuss Kuber-
netes from an application perspective in section 4.7 (Kubernetes and observability).

4.5 Container logging drivers
Different container engines support logging differently, but it is common practice to
offer a feature called log driving—the process in which the container’s stdout and stderr
I/O streams are captured and sent to an output location based on the driver that has
been configured. Podman defaults to using a journald logging driver (which we can tap
by using the systemd plugin provided by Fluent Bit) along with several other file formats.
Log-driven content can be but is not guaranteed to be enriched with information about
the container, such as the container ID, name, and output source (stdout or stderr).

 Docker has a broad range of drivers, including a Fluent driver that uses the forward
format we saw in chapter 3. Docker’s documentation talks about Fluentd, but as we’ve
already seen, Fluent Bit can handle the forward protocol.

 Let’s repeat the "Hello World" container exercise but, this time, tell Docker about a
Fluent Bit instance that is ready to receive the log events from Docker. To do this, we
need a simple configuration that uses the forward input plugin, listens to port 24224
on all networks (0.0.0.0) or localhost, and directs the received content to the stdout
for convenience. The following configuration (chapter4/fluentbit/docker-log
-driver-out.conf) is likely to be familiar, as we’ve used these plugins in chapter 3.

[SERVICE]
 flush 1

[INPUT]
 name forward
 port 24224
 listen 0.0.0.0

[OUTPUT]
 name stdout
 match *

Before we run the scenario, we need to start Fluent Bit and make it ready to receive
the events with the command

fluent-bit -c ./fluentbit/docker-log-driver-out.conf

We can start the container now, but we need to give Docker additional parameters
that tell it to use the Fluentd logging driver and where to direct the logging traffic (by
passing –-log-opt parameters). As a result, our command becomes

docker run --log-driver=fluentd --log-opt
➥ fluentd-address=localhost:24224 hello-world

Listing 4.3 Receiving Docker log events: docker-log-driver-out.conf

The forward plugin
receives log events from
the Docker logging driver.

The stdout output directs
the received events from
Docker to the console.

https://mng.bz/M1D8

1014.6 Application direct to Fluent Bit
As a result of this command, Fluent Bit sends to the console log events like these sam-
ples (with a container_id string substituted for readability):

[0] d2525377a000: [[1701015147.000000000, {}],
➥ {"container_id"=>"hex-id-string", "container_name"=>"/jolly_mestorf",
➥ "source"=>"stdout", "log"=>""}]
[1] d2525377a000: [[1701015147.000000000, {}],
➥ {"source"=>"stdout", "log"=>"Hello from Docker!",
➥ "container_id"=>"hex-id-string", "container_name"=>"/jolly_mestorf"}]
[2] d2525377a000: [[1701015147.000000000, {}],
➥ {"log"=>"This message shows that your installation appears
➥ to be working correctly.", "container_id"=>"hex-id-string",
➥ "container_name"=>"/jolly_mestorf", "source"=>"stdout"}]
[4] d2525377a000: [[1701015147.000000000, {}],
➥ {"log"=>"To generate this message, Docker took the following steps:",
➥ "container_id"=>"hex-id-string",
➥ "container_name"=>"/jolly_mestorf", "source"=>"stdout"}]

If the chosen container runtime doesn’t have a logging driver that supports Fluentd/
Fluent Bit protocols (as may be the case with a service provider), we can resort to driv-
ing the logs to a known, accessible file location where a Fluent Bit instance can track
the file. If you adopt this approach, I recommend considering the following points:

 Security on access to the log file should support data sensitivity/classification of
the most sensitive container that could be run.

 The storage I/O performance is sufficient to match the log event generation
rate. You don’t want the container engines to experience buffer problems.

 Make sure that the storage location has capacity, assuming that applications are
chatty. This can be important if the logging mechanism records voluminous
trace data.

 Make sure that the context covering the container instance is recorded in the log.

4.6 Application direct to Fluent Bit
Chapter 3 described arguments for using or not using stdout for logs, such as the
additional work required, particularly for correctly recombining multiline log events
that occur when logging stack traces. We’ve also seen how containers can capture std-
out and stderr streams. But if our application uses a logging framework, our applica-
tion could optionally talk directly to a Fluent Bit instance, which can make handling
logs in our containerized environment easier and maintainable in the following ways:

 Our monitoring configuration will be agnostic about the monitoring stack and
how the containerization handles logs as well as traces and metrics.

 Minimize potential latency in getting logs from the transient containerized
environment to a secured persistent location. If Kubernetes chooses to kill a
container or node because it has become unhealthy, you want to know what was
happening just before and when the container was terminated so you can per-
form root-cause analysis or determine whether a transaction was disrupted.

102 CHAPTER 4 Getting inputs from containers and Kubernetes
 Configuring and tuning the application’s logging levels and which parts of the
code base produce logs are part of application configuration. If someone incor-
porates sensitive data into a log, we can selectively tune it out, reducing data
sensitivity and security implications as we aggregate data.

 Using a framework makes it easier to control and direct the generation of sig-
nals so that the core application meets your logging strategy. If logging to std-
out is the mandated strategy, so be it.

 We can use the logging framework to eliminate newline characters before out-
put, eliminating a lot of issues or the need to recombine such information.
Log4j2, for example, allows us to define layouts and exclude particular char-
acters. Log4j provides documentation on this topic at https://mng.bz/aVvX.
Although a lot of development may not be Java-based, Log4j is a good place to
look, as it has a history of leading the way with language logging frameworks,
and the various Apache language derivatives provide language-specific imple-
mentations such as log4net (https://mng.bz/w5gQ).

A potential downside is that the logging framework and Fluent Bit may not know that
they are being run within a container. How do we differentiate our logs between con-
tainer instances? We could approach this problem in several ways:

 Look to our logging framework. Log4j2, for example, provides capabilities to
help with this task (https://mng.bz/QVve). Many logging frameworks are exten-
sible, so we can always build our own mechanism to interrogate the container
environment.

 Inject into the container environment variables that can identify the instance. These
variables can be incorporated into the logs by the framework or Fluent Bit.

 Set OS attributes such as the hostname explicitly and uniquely. Some containers set the
hostname to be container unique, but OCI doesn’t mandate this, so it can’t be
taken as a guarantee unless you know which container engine will be used.

 Configure logging to target a specific Fluent Bit endpoint or file. Fluent Bit can derive
the necessary contextual information from that endpoint or file and inject it
into the log events.

The approach you adopt to solve this problem depends on how you prefer to work
and how you’re generating the application logs, metrics, and traces. My preference is
to inject the values into the container as environment variables and have the Fluent
Bit sidecar inject what is necessary. This approach keeps the application code deploy-
ment agnostic, like Fluent Bit.

NOTE The sidecar pattern is a well-documented approach and is covered
in Kubernetes’ documentation (https://mng.bz/gAaG) and the excellent
Microservice Patterns book by Chris Richardson (https://www.manning.com/
books/microservices-patterns).

https://mng.bz/aVvX
https://mng.bz/QVve
https://mng.bz/w5gQ
https://mng.bz/gAaG
https://www.manning.com/books/microservices-patterns
https://www.manning.com/books/microservices-patterns
https://www.manning.com/books/microservices-patterns

1034.6 Application direct to Fluent Bit
TIP You can find information about application logging frameworks at
https://mng.bz/pxKw and https://mng.bz/OmBa. Remember that if you’re
investigating frameworks and framework plugins that could extend a frame-
work’s capabilities, Fluentd is often mentioned when you could use Fluent Bit
and Fluentd.

4.6.1 OpenTelemetry’s approach to containerized applications

Although we have been focusing on logging frameworks, we shouldn’t forget that
OpenTelemetry allows us to log from the application directly to an OpenTelemetry
Protocol (OTLP)–compliant collector, which can be a Fluent Bit instance. Figure 4.4
shows that the application logs are sent directly to the collector rather than indirectly
via a file or the container management tier.

 Routing more directly makes it easier to associate and correlate the logs with met-
rics data and traces. To this end, the OpenTelemetry project has produced SDKs
(https://opentelemetry.io/docs/specs/otel/logs/sdk) to send logs directly, using

Infra

VM/

Pod/

container/

serverless

Application/service

OTel

Collector

(Fluent Bit)

Metrics Traces Logs

Metrics backend

(Prometheus)

Traces backend

(Jaeger)

Log analytics

(OpenSearch)

Infra metrics

(CPU, memory)

App metrics

(slow queries)

App logs

(Log4j2)

Infra logs

(ournald)j

Legacy

logs

Instrumented code (auto and manual)

Enrichment, correlation,

filtering, routing

Exporter

C
o
rr

e
la

te
d

C
o
rr

e
la

te
d

App traces

(OTel SDK)

Figure 4.4 Application direct to a Collector (based on https://opentelemetry.io/docs/
specs/otel/logs)

https://opentelemetry.io/docs/specs/otel/logs
https://mng.bz/pxKw
https://mng.bz/OmBa
https://opentelemetry.io/docs/specs/otel/logs/sdk

104 CHAPTER 4 Getting inputs from containers and Kubernetes
APIs within the application code. Alternatively, the OpenTelemetry project provides
the Logs Bridge API, which enables existing frameworks to build new appenders that
allow the logging framework to send logs to the OTLP-compliant collector (in our
case, Fluent Bit). You can find the Bridge API at https://mng.bz/YVDa.

 You’re welcome to try this API. The repository includes details on deploying into
minikube (https://minikube.sigs.k8s.io/docs), and the configurations need tweaking
to authenticate with your Elasticsearch deployment. We aren’t going to put this API
into action, as it is all about the application-development side of things, and Fluent Bit
would see the results purely as OpenTelemetry calls.

4.6.2 Deploying for application direct logging

The sidecar pattern is the most common way to deploy a supporting service. This
pattern makes it easy to define monitoring in a manner suited to an application and
deal with application-specific considerations by deploying only the relevant inputs, fil-
ters, and formatters related to the application. This drives lower coupling, as each Flu-
ent Bit deployment is aligned to the application in one container. This capability has
a price:

 There is overhead in running an instance of Fluent Bit per application Pod
deployed. But given the size of Fluent Bit’s footprint, it is arguably a fair price
for lower coupling and empowering the DevOps ethos (you build it, you run it).

 Additional effort is required to ensure that all the Pods are using the correct
patched version of the sidecar container.

Compare this approach with the DaemonSet approach, in which output from each
application is pushed to stdout or stderr and collected by Kubernetes. Then we have
Fluent Bit deployed per worker/master node as a DaemonSet, and all containers run-
ning on that node have their logs picked up by that node’s Fluent Bit instance(s). Any
application-specific filtering in the configuration is now held within the same Fluent
Bit instance, so any logging configuration change (such as routing, filtering, or
enriching) affects all the applications in containers on that node.

 In addition, the sidecar model reduces the overhead of parsing the container’s std-
out, which is necessary with the DaemonSet approach. Because the sidecar approach
has an implicit context, the match and filtering configurations have the potential to
be simpler, and the configuration does not need to understand how the Kubernetes
environment is configured, making the development effort simpler.

 The sidecar doesn’t have to work with network connectivity to the application gen-
erating logs, but doing so keeps the network connection within the local host scope.
However, the sidecar can access the transient storage provided to the Pod, so logs can
also be handled.

 The following Kubernetes configuration file (chapter4/kubernetes/sidecar-
config-map.yaml) defines a Pod configuration with two containerized sources. The first
uses busybox to generate log files, which we can collect by using a second container in
which Fluent Bit is operating. To keep the Fluent Bit configuration separated, we define

https://minikube.sigs.k8s.io/docs
https://mng.bz/YVDa

1054.6 Application direct to Fluent Bit
it in a ConfigMap, which needs to be passed to Kubernetes before providing the Pod
declaration (sidecar-config-map.yaml).

apiVersion: v1
kind: ConfigMap
metadata:
 name: fluentbit-config
data:
 fluent-bit.conf: |
 [SERVICE]
 flush 1

 [INPUT]
 name tail
 tag source1
 path /var/log/1.log

 [INPUT]
 name tail
 tag source2
 path /var/log/2.log

 [OUTPUT]
 name file
 match *
 file /var/combined-output.txt
 format plain

 [OUTPUT]
 name stdout
 match *

Deploying this configuration requires a Kubernetes environment and the Kubernetes
command-line tool (kubectl). With Kubernetes running, we can run the command

kubectl apply -f ./kubernetes/sidecar-config-map.yaml

This configuration is simple, taking the two file inputs and writing them to a different
output file (chapter4/kubernetes/sidecar-example.yaml).

apiVersion: v1
kind: Pod
metadata:
 name: side-car-demo
spec:
 containers:
 - name: log-generation
 image: busybox
 command: ["/bin/sh", "-c"]

Listing 4.4 Kubernetes sidecar: sidecar-config-map.yaml

Listing 4.5 Config with sidecar: sidecar-example.yaml

Defines the name of this configuration so it can be
referenced by the Pod configuration. A separate
configuration means we can deploy an update to
the config and need only refresh the existing
containers.

Sets the tag for the first input file
so we can easily differentiate the
entries in the combined file

Sets the path to the
file based on a common
view of shared folders

Sets the location for the common
output file (assuming that the
container configuration allows
you to write to the filesystem)

We also send the output to the
container’s terminal, so if we attach
it to the container to see its console,
we can observe the outcome.

The name of the container in
the Pod that will generate
the logs that Fluent Bit is
going to be tailing

106 CHAPTER 4 Getting inputs from containers and Kubernetes
 args:
 - >
 i=0;
 while true;
 do
 # Write two log files along with the date and a counter
 # every second
 echo "$i: $(date)" >> /var/log/1.log;
 echo "$(date) INFO Log2 $i" >> /var/log/2.log;
 i=$((i+1));
 sleep 1;
 done

 volumeMounts:
 - name: varlog
 mountPath: /var/log

 - name: fluent-bit-side-car
 image: fluent/fluent-bit:latest
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 - name: config-volume
 mountPath: /fluent-bit/etc

 volumes:
 - name: varlog
 emptyDir: {}
 - name: config-volume
 configMap:
 name: fluentbit-config

We need to deploy the Pod configuration with the command

kubectl apply -f ./kubernetes/sidecar-example.yaml

With the Pod deployed, we should see it start. When the containers are running, to
see the results, we need to connect to the container fluent-bit-side-car. We can do
this in several ways:

 Use the Kubernetes command-line interface with the command kubectl exec.
 Access the Pod using the Kubernetes dashboard and the UI navigation options,

which is particularly easy with minikube.

When we’ve connected to the container, we can execute the Linux command using
our preferred Kubernetes:

tail -f /var/log/combined-output.txt

Sets up a simple shell script within the container
that will generate content and send it to the log
files identified and configured in Fluent Bit

Defines the
mount point for
the log folder

Names the second
container that acts

as the sidecar

Defines the image to be used for
the container. Here, we’re using
the standard Fluent Bit-provided
image. We will impose some
additional configurations using
the Pod specification.

We need to map the filesystem
from the primary container to
the filesystem of our sidecar for
Fluent Bit. The logs from the log-
generation container will appear
locally in the Fluent Bit container
and vice versa, but the storage
remains transient to the Pod.

Defines the mount for the configuration
file. It needs to be mapped into the
container’s filesystem as expected for
the fluent-bit.conf file expected by the
container’s configuration.

Declares how the mounted
volumes work, so our logs are
conventional local storage

The mount volume for the
configuration is mapped to our

ConfigMap provided by Kubernetes.

1074.6 Application direct to Fluent Bit
As a result, we’ll see Fluent Bit generating a single log file from the 1.log and 2.log
file sources. It isn’t wise to keep logs within the containers because if a container or
Pod is removed, its local storage is deleted because the local filesystem, as previously
mentioned, is transient. If the local filesystem isn’t mapped to external storage, we can
expect to see the content lost. Given this fact, it would be better for our Fluent Bit
deployment to send the logs to an external destination, such as an OpenSearch
instance. Writing directly to an external service like OpenSearch can eliminate tran-
sient storage but create various other challenges. A better option is to bypass local
storage, map a logging framework to HTTP, and address the sidecar container using
the localhost network address.

4.6.3 Enriching log events with Pod context by injection

Using the sidecar deployment model means that we’re operating within the context
of a container, and of course, the application shouldn’t need to be explicitly aware
of this fact. Therefore, how can we differentiate logs from different instances of the
same Pod? After all, in a production environment, we may create multiple instances
of a Pod, even if only for simple cutover to new Pod instances. Then, if we scale up,
we may get more instances of the same Pod. Fluent Bit doesn’t address that situation
as part of the input but uses a plugin called Kubernetes, which enriches the logs
with the relevant information. This plugin is intended to be used with Fluent Bit
operating as part of a DaemonSet processing stdout or anywhere that has a tag set
following the format <pod name>_<namespace>+<container name>-dockerId. We
will explore the use of filter plugins in chapter 7, although we’ll discuss aspects of
the Kubernetes filter in the next section.

 If this approach is not an option, we can take advantage of Kubernetes configura-
tion options that can direct the convention for the hostname to reflect the Pod’s fully
qualified domain name (FQDN). Then a container script can be used to define envi-
ronment variables for the necessary values based on the FQDN. Alternatively, the envi-
ronment variables are set by the container configuration, taking advantage of the
downward API, which is well illustrated in the Kubernetes documentation (https://
mng.bz/dZWw). Although these approaches also require filters to enrich the events,
you could look to the log source to use this mechanism, so when Fluent Bit receives
the log events, we already have the information in the event.

4.6.4 Enriching log events with Pod context by filter

An alternative approach to enriching the events received through Kubernetes logging
involves using a Kubernetes filter. The Kubernetes filter works by exploiting how input
plugins such as tail and systemd customize the event’s tag (sometimes referred to as
tag expansion). Tag expansion incorporates the tags, including several attribute details,
such as the Pod name and container ID, into the filename. These name elements are
extracted from the full path and enable the plugin to look up additional metadata
using the Kubernetes APIs.

https://mng.bz/dZWw
https://mng.bz/dZWw
https://mng.bz/dZWw

108 CHAPTER 4 Getting inputs from containers and Kubernetes
TAG EXPANSION

We tell the plugin that the tag needs to be expanded to include the full file path by add-
ing the asterisk at the end of the tag name. The easiest way to see tag expansion in action
is to apply it to the file-reading configuration in chapter 3. Let’s copy the basic-file
-read2.conf. (We’ve called our copy basic-file-read-tag-expansion.conf.) Then
we change the tag attribute from tag-basic-file to tag basic-file.* in the following
listing and chapter4/fluentbit/basic-file-read-tag-expansion.conf.

[INPUT]
 name tail
 path ./chapter3/basic-file.txt
 read_from_head true
 tag basic-file.*

We can run the configuration using the following command (which must be run from
the parent folder of the chapter resources):

fluent-bit -c ./fluentbit/basic-file-read-tag-expansion.conf

When this command is executed, we see log entries that look something like this:

[0] basic-file.d.dev.Fluent-Bit-with-Kubernetes.chapter3.basic-file.txt:
➥ [[1712088985.065352000, {}], {"log"=>"hello"}]

Note that in the example log entry, the tag now includes after basic-file the full
path of the filename. The tag value uses dots where we would usually see a slash in
the pathname.

KUBERNETES FILTER

The Kubernetes filter is closely aligned with handling an input related to Kubernetes.
Because we’re looking closely at containers and Kubernetes, it makes sense to intro-
duce the filter now. But don’t worry if the topic isn’t entirely clear yet. We’ll take a
good look at parsers in chapter 6 and filters in chapter 7.

 When operating as a DaemonSet, Fluent Bit is deployed as an instance per node,
and with the right mount configuration for the DaemonSet, Fluent Bit can see the
logs that are being generated by Kubernetes’ routing of stdout and stderr. With the
appropriate information in the file path and filename, we can exploit the tag expan-
sion and parse the tag to obtain the attributes necessary to query Kubernetes for addi-
tional metadata. The parser is looking for the following:

 Pod name
 Kubernetes namespace
 Container name
 Container ID

Listing 4.6 Tag expansion fragment: basic-file-read-tag-expansion.conf

We have modified the tag to use a dot as
a separator and then expand. For the tail
plugin, expansion is supported by appending
the absolute pathname of the file being read.

1094.6 Application direct to Fluent Bit
Then we can obtain the following details by calling the Kubernetes API server or kubelet:

 Pod ID
 Labels
 Annotations
 Namespace labels
 Namespace annotations

Tapping into a container’s logs this way requires either Kubernetes configurations
for output to remain standard or an understanding of how the path is constructed
so that we can create an alternative parser configuration to extract the necessary
values. Otherwise, we can’t derive all the essential information, and the tail config-
uration keeps up to date as the container deletes the associated log files when it is
evicted. The filter configuration offers a lot of options, but these options can be
reduced to several core themes:

 Securely connecting to the Kubernetes API (kube_URL, kube_CA_file, kube_CA_
path, kube_token_file, kube_token_TTL, tls.debug, tls.verify) or kubelet
(use_kubelet, kubelet_port, kubelet_host, kube_token_command)

 How the additional metadata is incorporated into the log event (merge_log,
merge_log_key, merge_log_trim, merge_parser, keep_log, dummy_meta)

 Controlling the caching and metadata applied (annotations, kube_meta_
preload_cache_dir, kube_meta_cache_TTL)

As you can see from the groups of configurations, we can either configure Fluent
Bit to talk to the Kubernetes API server or a kubelet. Although communicating
with the server is preferable in large clusters where this server is already going to be
working hard, it may be preferable to communicate with the kubelet, which will be
a more local endpoint with fewer components talking to it. But for our example
configuration, we’re going to talk with the server using the default DNS address.
Because we need to communicate securely, we need to know where the certificates
are and ideally expose them to the DaemonSet via a mount. Because this connec-
tion is using Transport Layer Security (TLS) and the filter builds on the TLS frame-
work within Fluent Bit, we inherit the network controls to enable or disable details
such as TLS certificate verification.

 In addition to securing the connection to the Kubernetes API server using TLS,
Kubernetes expects a token to participate in the exchange, so we need to supply a
bearer token. This token is sourced from a file identified by the kube_token_file.
(For more information on authentication with Kubernetes, check https://mng.bz/
GNeJ.) We don’t want to reread the token file every time we call the API. So the filter
caches the value, but as the token is rotated, it needs to be refreshed. To address this
situation, we set a time to live (TTL) before Fluent Bit rereads the file. The TTL value
is set with the attribute kube_token_TTL.

https://mng.bz/GNeJ
https://mng.bz/GNeJ
https://mng.bz/GNeJ

110 CHAPTER 4 Getting inputs from containers and Kubernetes
 Although connecting to Kubernetes securely and efficiently is important, ideally, we
want to cache data so that we’re not recalling the API for another log event from the
same container. The filter includes attributes we can use to control how and when cach-
ing is applied, including the aging of the cache. The cache’s primary age control is set
via the kube_meta_cache_TTL attribute. This attribute follows the common Fluent Bit
syntax for defining seconds, milliseconds, and other time intervals with a character
code. (See appendix B for the options.) If the Docker ID is included in the path and the
Docker ID changes, we can use it to trigger a refresh by setting cache_use_docker_id
attribute. Obviously, the tradeoff is a small chance that something such as the labels
will change before the cached value is refreshed. As a result, old labels are attached to
log events. Because the logs are typically written as semistructured text or journal for-
mats, the filter has the logic to handle both formats; by default, it assumes semistruc-
tured text, but we can switch it to journald by setting the use_journal attribute to on.

 Finally, we can control the data added by setting the attributes annotations and
labels to on or off. We can also control how the additional attributes are added if the
merge_log attribute is set. The filter determines whether the log event is in JSON for-
mat; if so, the new values are added to the log event as additional JSON elements.
When we merge, we have the option to consolidate all the log attributes under a sin-
gle element defined by using the merge_log_key attribute.

 If the payload isn’t JSON, we can still parse it by naming the parser to use with the
merge_parser attribute. This attribute identifies the parser from a parser file, as we’ll
see in more depth in the coming chapters.

 Perhaps one of the most valuable options for the filter is the merge_log_trim attri-
bute. When switched on, this attribute tells the filter to strip any line-feed and carriage-
return characters from the log event. The attribute makes downstream processing
simpler if the log has to be written to file because we remove the complexity of process-
ing multiline use cases. See the following listing and chapter4/fluentbit/kubernetes-
filter.conf.

[FILTER]
 name kubernetes
 match kube.*
 kube_URL https://kubernetes.default.svc:443
 kube_CA_file
➥ /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
 kube_token_file
➥ /var/run/secrets/kubernetes.io/serviceaccount/token
 kube_meta_cache_TTL 60s
 cache_use_docker_id on
 labels on
 annotations on
 use_journal off

Listing 4.7 Kubernetes filter fragment: kubernetes-filter.conf

Because the source will have used the
tag expansion technique to get the full
source name, which we need to process
to obtain metadata, we need a wildcard
in the match.

Declares the address
of the Kubernetes
server; this is the
default DNS name.

The configuration to
secure and validate
our call to the
Kubernetes API server

Controls the caching of results from
Kubernetes. Here, we’re setting the
cached values to be held for a
minute before refreshing.

Declares the metadata
we want to include in
the enriched log event

1114.7 Kubernetes and observability
 kube_tag_prefix kube.var.log.containers.
 merge_log on
 merge_log_key log_processed
 merge_log_trim on

Given the number of attributes involved in configuring the connection to Kubernetes
and identifying essential values to get the information needed to query Kubernetes,
using the filter can be a concern, and it can be challenging to get the configuration cor-
rect. If you haven’t been involved in the detailed configuration of Kubernetes, finding
all the correct values won’t be easy. This challenge can be compounded when you use a
managed Kubernetes service, as all the necessary information may not be available or
even accessible. Focusing on the application layers rather than the low-level Kubernetes
configuration, we prefer to adopt two approaches to this scenario:

 Keep the Fluent Bit configuration as vanilla as possible and trust your Kubernetes
subject matter expert or service provider to supply all the details for the source
and filter. Connect this configuration using Fluent Bit (see chapter 2), which
allows you to bring your configuration in. As a result, details such as where to
direct the events, additional filters, and so on can be managed separately from
the Kubernetes configuration details managed by your Kubernetes expert.

 Aim to capture your logs and events by directing the data through logging
frameworks and OpenTelemetry SDKs. Although this approach is at odds with
the twelve-factor app guidance (chapter 3), it isn’t at odds with OpenTelemetry,
and it reduces computational workload and deployment complexity.

4.7 Kubernetes and observability
Kubernetes looks at logs and logging from multiple perspectives: logging, measuring,
and tracking what a container does, what the wider Kubernetes cluster does (although
the container and cluster can be considered the same), and what the application
within the container does. As a result, we need to think about how to capture these
forms of events.

4.7.1 Understanding Kubernetes’ position on logging

As far as Kubernetes is concerned, logging from applications run by containers is the
responsibility of the container runtime. The norm is for the container to handle stan-
dard out and standard error. In addition to using stdout and stderr, most container
runtimes have adopted the idea of a logging driver, which allows for different ways to
handle captured application logs. Other than typically implementing the stdout and
stderr using the logging-driver model, implementations have little consistency.

 Just handling what the container is doing doesn’t address logging at a cluster level,
such as recording what is happening across the cluster, eviction of Pods, and the

Because the complete file path is
included in the tag, we may want
to strip the base part of the path
and prefix from the tag.

Asks the filter to strip carriage-return and line-feed
characters from the payload so that we limit the

problem of multiline log reading downstream if the
contents need to be written to file at any time

112 CHAPTER 4 Getting inputs from containers and Kubernetes
starting and stopping of nodes. Again, Kubernetes does not prescribe a specific solu-
tion but promotes the idea of using logging agents in a sidecar configuration or hav-
ing a logging agent operate on every node (as part of a DaemonSet). Kubernetes has
its own logging library, known as klog (https://github.com/kubernetes/klog), and
more recently has moved toward adopting logr (https://github.com/go-logr/logr).
Logr has a stronger decoupling between the logging interface and log-content out-
put, so logr can be used to create klog and other outputs.

4.7.2 Kubernetes auditing

In addition to understanding what is happening with the applications within a
Kubernetes ecosystem, we should be auditing Kubernetes. We may want to find out,
for example, who or what instructed Kubernetes to evict a container. Kubernetes
addresses this situation with auditing capability, which we can configure to talk to a
logging backend by using a webhook or writing the events in a log file in JSON
Lines format (https://jsonlines.org). We shouldn’t confuse this auditing with the
event capability that Fluent Bit supports as a plugin source, as we’ll see. With the cor-
rect audit configuration, we can collect such data by using Fluent Bit. For more infor-
mation on configuring Kubernetes auditing, see https://mng.bz/znZA.

4.7.3 Kubernetes events input

Kubernetes exposes its activities and events to anyone requesting them via its API
server. Through the Kubernetes events plugin (called kubernetes_events), we can
grab those events and put them in the log events pipeline. You’ll recognize many attri-
butes that have the same or similar names and purposes as the tail plugin and a net-
work-based plugin.

 The plugin uses an SQLite database as we can with tail (identified by the db attri-
bute) so that events aren’t accidentally duplicated into the pipeline; we are given the
same events each time we call the API server. Because the process is based on polling,
we have attributes to define the number of seconds or nanoseconds (interval_sec or
interval_nsec attribute).

 We need to be mindful that we can have only one active Fluent Bit instance run-
ning this plugin because of the constraints on the way SQLite works. This restriction
isn’t catastrophic; we can lean on Kubernetes to monitor the health of the container.
A large cluster, however, will have a lot of events, so a single Fluent Bit instance needs
sufficient resources to keep up with Kubernetes. If more than one Fluent Bit instance
starts retrieving the event data, we’ll see a duplication of events.

 When it comes to connecting with the Kubernetes API to collect event data, this
plugin has a common set of attributes with the Kubernetes filter plugin for defining
the URL for the server, certificate location, TLS checking, token, and token time to
live (TTL) (Kube_URL, Kube_CA_File, Kube_CA_Path, tls.debug, tls.verify, Kube_
Token_File, Kube_Token_TTL). See the following listing and chapter4/fluentbit/
kubernetes-out.conf.

https://github.com/go-logr/logr
https://github.com/kubernetes/klog
https://jsonlines.org
https://mng.bz/znZA

1134.7 Kubernetes and observability
[SERVICE]
 flush 1
 log_level debug

[INPUT]
 name kubernetes_events
 tag kubernetes_events
 kube_url https://kubernetes.default.svc
 tls.verify off
 interval_sec 5
 kube_token_file
➥ /var/run/secrets/kubernetes.io/serviceaccount/token
 kube_request_limit 100
 kube_retention_time 15m
 #kube_namespace

[OUTPUT]
 name stdout
 match *

This plugin’s configuration raises challenges, specifically, safely exposing the Kuber-
netes token and the certificates to Fluent Bit. Assuming that this Fluent Bit deploy-
ment occurs within a Kubernetes Pod, a good way to overcome this challenge is to
store the files as Kubernetes secrets and then, in the Pod specs, define a mount point
that maps to the secrets. Data is kept securely, but we can map the value to whichever
containers need the value. Within the Pod, the file is seen as normal. It’s best not to
provide the credentials via environment variables, as they’re fixed for the lifetime of
the container. As a result, the configuration will fail if the credentials are rotated.

 We should be careful how we interpret the Kubernetes event data. As the docu-
mentation says, “Events should be treated as informative, best-effort, supplemental
data” (https://mng.bz/0MQv).

NOTE With the Kubernetes filter, Kubernetes_events plugins, or any other
way of interacting directly with Kubernetes APIs, role-based access control
(RBAC) must be configured so that the service accounts used to run these
containers have the necessary privileges to request data from the API server.
We can find an illustration of the configuration at https://mng.bz/KDGO.
Books such as Core Kubernetes, by Jay Vyas and Chris Love (https://www.manning
.com/books/core-kubernetes), are good guides to how RBAC works.

4.7.4 The many parts of the Kubernetes ecosystem

When we talk about Kubernetes, we’re also talking about multiple other processes,
such as etcd (https://etcd.io), container managers such as Docker and CRI-O (https://
cri-o.io), container runtimes such as runc and crun, and container networking with

Listing 4.8 K8s events plugin illustration: kubernetes-out.conf

Reference to
the Kubernetes
events plugin Address of the Kubernetes

API server. Standard DNS
addresses will work.

This value needs to
be configured based
on the deployment
instance.

We haven’t restricted
the namespace, so this
receives all events.

Assumes that Fluent Bit is running within the
Kubernetes environment, so we have to attach it to
the container to see the log events being generated

https://etcd.io
https://cri-o.io
https://cri-o.io
https://cri-o.io
https://mng.bz/KDGO
https://www.manning.com/books/core-kubernetes
https://www.manning.com/books/core-kubernetes
https://www.manning.com/books/core-kubernetes
https://mng.bz/0MQv

114 CHAPTER 4 Getting inputs from containers and Kubernetes
Calico (https://www.tigera.io/project-calico) and flannel (https://github.com/flannel
-io/flannel). Different components behave differently even if they comply with the
Kubernetes interfacing specifications such as Container Network Interface (CNI)
and OCI.

 Then we can overlay the challenges of the Kubernetes deployment with opinion-
ated deployments in the form of OpenShift (https://mng.bz/9oYr) and Tanzu (https://
tanzu.vmware.com/tanzu), for example. Cloud-vendor-hosted packaging of Kubernetes
such as Google Kubernetes Engine (GKE), Azure Kubernetes Service (AKS), Amazon
Elastic Kubernetes Service (EKS), and Oracle Container Engine for Kubernetes (OKE)
can provide additional dimensions to monitoring because the infrastructure and even
parts of Kubernetes management can be abstracted from you. OKE, for example, doesn’t
allow you to monitor the management nodes because this part of the service is managed.
You can elect to have the worker nodes managed, eliminating the tasks of adding nodes
to and removing nodes from a cluster and deploying the Kubernetes component.

NOTE To learn more about the Cloud Native Computing Foundation (CNCF)
software ecosystem, including projects such as flannel, Calico, and CRI-O, as
well as interfaces such as CNI (https://www.cni.dev) and related explicit or
implicit standards, the easiest place to start is from the CNCF landscape web-
site (https://landscape.cncf.io).

4.7.5 Container Images

As part of Fluent Bit’s release cycle, different image builds are created for Fluent Bit
(available at https://packages.fluentbit.io), as well as OCI container images using a
distroless base image, benefiting from the smallest footprint possible and, therefore,
the smallest number of vulnerabilities. An image can be configured via the command
line, as illustrated in the Docker Hub documentation.

 But if we want to use a configuration file, we need to override the provided config-
uration. We can address this problem in different ways. To manipulate the container
directly, a quick and easy approach is to do it locally with the docker run command,
which overwrites the container’s configuration file with a local one:

docker run -v $PWD/fluent-bit.conf:
➥ /fluent-bit/etc/fluent-bit.conf:ro fluent/fluent-bit

An alternative option is to use the docker cp command to copy our own configuration
file(s) to the container’s file: /fluent-bit/etc/conf/fluent-bit.conf. For a long-
term solution, however, we need to build our own container extension using the from
declaration. Today, the container expects a classic file format, but overriding the CMD
declaration allows us to change which file and configuration format are executed.

 Other providers of container images with Fluent Bit exist. By default, the Fluent
Operator, for example, uses an enhanced container image provided by KubeSphere
(kubesphere/fluent-bit). We need to be mindful of which image we use and the lay-
ers on which it is built.

https://www.tigera.io/project-calico
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://mng.bz/9oYr
https://tanzu.vmware.com/tanzu
https://tanzu.vmware.com/tanzu
https://tanzu.vmware.com/tanzu
https://www.cni.dev
https://landscape.cncf.io
https://packages.fluentbit.io

1154.7 Kubernetes and observability
 The last option, probably the most common one, is to use Kubernetes configura-
tion files, define a ConfigMap containing the Fluent Bit configuration, and then map
it to the container filesystem, which is how our example sidecar configuration works
(listing 4.5). Although we used this approach on the sidecar, we can apply it to other
scenarios, such as configuring the DaemonSet.

4.7.6 Helm charts

Helm is the default package manager for deploying into Kubernetes. The project
includes Helm charts, which include Fluent Bit. The chart (chapter4/helm-
charts/chart/fluent-bit/values.yaml) provides a configuration that can be used as
a foundation for a DaemonSet that configures Fluent Bit. It shows how we can incorpo-
rate the configuration rather than the container into the chart. Much of this configura-
tion will be explored in later chapters and is here only for illustrative purposes.

luaScripts:
 filter_example.lua: |
 function filter_name(tag, timestamp, record)
 -- put your lua code here.
 end

config:
 service: |
 [SERVICE]
 Daemon Off
 Flush {{ .Values.flush }}
 Log_Level {{ .Values.logLevel }}
 Parsers_File /fluent-bit/etc/parsers.conf
 Parsers_File /fluent-bit/etc/conf/custom_parsers.conf
 HTTP_Server On
 HTTP_Listen 0.0.0.0
 HTTP_Port {{ .Values.metricsPort }}
 Health_Check On

 inputs: |
 [INPUT]
 Name tail
 Path /var/log/containers/*.log
 multiline.parser docker, cri

Listing 4.9 Extract from Helm chart: values.yaml

We’ll see in chapter 7 how we
can use Lua. As we’re looking
at a Helm chart, it's worth
showing how a separate Lua
script can be declared and
referenced. Here, we declare
the Lua code, which will be
referenced later in the
configuration.

The start of the Fluent Bit core
configuration. The following
declarations of the inputs,
outputs, and filters are children
of this YAML element.

These declarations should be
familiar, as the values set are
the same as when we used a
conventional Fluent Bit
configuration file.

As the configuration is still a
YAML file, we need to
declare the different plugin
types using YAML and use |
notation to include all the
subsequent lines as part of
the declaration.

When Fluent Bit is installed, it includes
predefined filters. Here, we’re referencing
them based on the standard deployment

location. Note that we can define multiple
parser files by repeating the Fluent

Bit attribute.

Here, we’re telling the input to use the
multiline parser, which can expect to parser
Docker-formatted lines or those provided
by CRI-O managed containers, reflecting
the fact that configuring monitoring for
Kubernetes can be challenging.

116 CHAPTER 4 Getting inputs from containers and Kubernetes
 Tag kube.*
 Mem_Buf_Limit 5MB
 Skip_Long_Lines On

 [INPUT]
 Name systemd
 Tag host.*
 Systemd_Filter _SYSTEMD_UNIT=kubelet.service
 Read_From_Tail On

 filters: |
 [FILTER]
 Name kubernetes
 Match kube.*
 Merge_Log On
 Keep_Log Off
 K8S-Logging.Parser On
 K8S-Logging.Exclude On

 [FILTER]
 Name lua
 Match <your-tag>
 script /fluent-bit/scripts/filter_example.lua
 call filter_name

 outputs: |
 [OUTPUT]
 Name es
 Match kube.*
 Host elasticsearch-master
 Logstash_Format On
 Retry_Limit False

For this solution to work, the Helm chart adds a mount point called config to the
Helm chart’s values.yaml, into which the configuration is injected. To take advan-
tage of the Helm charts provided, assuming that you have Helm installed, run the fol-
lowing commands:

helm repo add –force fluent https://fluent.github.io/helm-charts
helm upgrade --install fluent-bit fluent/fluent-bit
helm show values fluent/fluent-bit

When applying the tail input configuration to these log files, we also have to work
with the assumption that they may span multiple lines. We see in listing 4.9 the use of
the attribute multiline.parser, which tells the tail input plugin that it needs to use
the more advanced multiline parser.

 But the problem doesn’t end there. The Kubernetes logs could be generated using
Container Runtime Interface (CRI) format or possibly Docker format. We can over-
come this problem by telling the parser about both formats by separating them with
commas, as the listing shows (docker, cri). The parser will attempt to apply the first
parsing format. If that format yields errors, it attempts to use the next parser format. If

Because the container can be constrained explicitly
within the configuration of the Pod, we need to ensure
that Fluent Bit works within those constraints.

References the Lua
script mentioned
previously. Note that
the reference is a
predetermined path
but uses the name
provided in the
luaScripts YAML
element.

Identifies an Elasticsearch output
plugin. The host address needs to
be resolvable, as seen by the
container within Kubernetes.

1174.8 Kubernetes operator
you’re confident about the format your Kubernetes environment will support, it is
worth setting the configuration to reflect this format.

 Keep in mind that multiline parsing requires greater computational effort. The
parser has to determine which line is the last line of the event before it can do any-
thing, compared with the normal single-line approach. If we can do anything
upstream to avoid or minimize multiline outputs, it’s worth doing, such as following
development practices that discourage multiline outputs (checks with static code anal-
ysis) or using logging frameworks to strip newline characters.

TIP Calyptia (part of Chronosphere) has great troubleshooting blogs that
are worth examining if you encounter additional problems, particularly when
working with the DaemonSet approach to log capture. You can find these
blogs at https://calyptia.com/blog and https://mng.bz/j0pe.

4.8 Kubernetes operator
Although Kubectl and Helm are typical ways to deploy and manage resources in
Kubernetes, we can also manage Fluent Bit in a Kubernetes environment through the
Fluent Operator. The Fluent Operator (https://github.com/fluent/fluent-operator)
defines the following custom resource definitions (CRDs):

 FluentBit—Defines node monitoring via a DaemonSet (https://mng.bz/
WV2W). It identifies the image to use to run and the configuration to use.

 ClusterFluentBitConfig—Defines cluster-wide plugin configurations for
inputs, outputs, and filters as secrets, so embedding credentials in the configu-
ration, although not optimal, is secure. We also have the option to target spe-
cific namespaces with the cluster configuration.

 FluentBitConfig—Selects namespace-level configurations for inputs, outputs,
and filters. These configurations follow the same conventions as their cluster
namesakes for Input, Output, Filter, and Parser resources.

Because ClusterFluentBitConfig and FluentBitConfig work the same way, let’s
examine part of the standard ClusterFluentBitConfig configuration files. The fol-
lowing configuration files come directly from Fluent Operator’s configuration sam-
ples (https://mng.bz/86OD).

 The easiest way to visualize the configuration process is to consider https://
mng.bz/EOwR, a configuration file with the different selectors defined as enhanced,
including declarations that we would see in a conventional Fluent Bit configuration
file. The critical difference is that what it includes is more dynamic here.

apiVersion: fluentbit.fluent.io/v1alpha2
kind: FluentBitConfig
metadata:
 name: fluentbitconfig-sample

Listing 4.10 Helm chart config: fluentbit_v1alpha2_fluentbitconfig.yaml

https://calyptia.com/blog
https://mng.bz/j0pe
https://github.com/fluent/fluent-operator
https://mng.bz/WV2W
https://mng.bz/WV2W
https://mng.bz/WV2W
https://mng.bz/86OD
https://mng.bz/EOwR
https://mng.bz/EOwR
https://mng.bz/EOwR

118 CHAPTER 4 Getting inputs from containers and Kubernetes
spec:
 service:
 flush: 1
 daemon: false
 logLevel: info
 parsersFile: parsers.conf
 inputSelector:
 matchExpressions:
 - key: fluentbit.fluent.io/enabled
 operator: In
 values: ["true"]
 filterSelector:
 matchExpressions:
 - key: fluentbit.fluent.io/enabled
 operator: In
 values: ["true"]
 outputSelector:
 matchExpressions:
 - key: fluentbit.fluent.io/enabled
 operator: In
 values: ["true"]

As the preceding configuration shows, the Helm chart defines the selectors for the
parts that make up a complete Fluent Bit configuration (https://mng.bz/NBwd). The
next two examples show input and output configurations.

apiVersion: fluentbit.fluent.io/v1alpha2
kind: Input
metadata:
 name: input-sample
 labels:
 fluentbit.fluent.io/enabled: "true"
spec:
 tail:
 tag: kube.*
 path: /var/log/containers/*.log
 parser: docker
 refreshIntervalSeconds: 10
 memBufLimit: 5MB
 skipLongLines: true
 db: /tail/pos.db
 dbSync: Normal

Note that the input configuration has also put performance constraints on the configu-
ration with the memBufLimit and skipLongLines. As a result, we can be more confident
the output will not be a source of backpressure because we’re not going to consume lots
of resources; any log entries that are large and could demand too much effort are
skipped. We’re controlling how much compute effort is needed compared with the
main application logic. See the following listing and https://github.com/fluent/
fluent-operator/blob/master/config/samples/fluentbit_v1alpha2_output.yaml.

Listing 4.11 Input config: fluentbit_v1alpha2_fluentbitconfig.yaml

Having seen the service block in our configurations,
we recognize the contents of this block.

The configuration kind drives which configurations to use.
(An inputSelector looks for objects of kind input and so on.)

The match selector looks in the labels section
of the configuration for a corresponding key.

The label needs to have a value that
produces a Boolean result when evaluated
against this list of value(s) using the
operator.

The same configuration as the inputSelector is
followed for a filter. We can add or remove
inputs, outputs, and so on to the configuration
by varying the label(s) in each config file,
affecting the outcome of the match rule.

Here, we define a label that the match
rule will evaluate. As we can see by
comparing it with the code in listing
4.10, our label key is identified, and the
operator value produces a positive
result, meaning that it will be included
in the final Fluent Bit configuration. As
a result, we could easily remove it by
changing true to false.

Identifies the plugin
to use by its name

Now we have the same configuration
attributes using the camel-case
notation of the attributes.

https://mng.bz/NBwd

1194.8 Kubernetes operator
kind: Output
metadata:
 name: output-sample
 labels:
 fluentbit.fluent.io/enabled: "true"
spec:
 match: kube.*
 es:
 host:
➥ elasticsearch-logging-data.kubesphere-logging-system.svc
 port: 9200
 logstashPrefix: ks-logstash-log
 logstashFormat: true
 timeKey: "@timestamp"

Fluent Operator contains a configuration that watches these resources for changes.
When it detects a change, it pushes the revised configuration changes out to the
secrets repository, which is synced with the DaemonSet. The result is that the Fluent
Bit configuration changes are picked up and applied. This sequence of events is illus-
trated in figure 4.5.

Listing 4.12 Output config: fluentbit_v1alpha2_output.yaml

Output configuration
as defined by the kind

The metadata values control whether
the configuration will be incorporated
into the generated Fluent Bit
configuration file, going back to the
selector definition in listing 4.10.

The match declaration works as it would in a
configuration. The only difference is that rather
than being a child of the plugin name, it resides

outside the plugin’s attributes.

We need to identify the address of
the Elasticsearch host as seen from

within the Kubernetes cluster.

Fluent Operator

Process is triggered

as a result of

new config.

Secret updated

(/fluentbit/

etc/fluentbit.conf)

A new config is built.

Watcher sees

change

A new secret is

pulled.

Deployment

refresh

Change is applied.

Figure 4.5 The sequence of events
and the components involved in a
configuration change

120 CHAPTER 4 Getting inputs from containers and Kubernetes
TIP Using alpha versions involves an elevated risk of errors. The gain is a
more flexible solution. By the time you read this chapter, a more up-to-date
version may be available, possibly even a general-availability release. But I
don’t expect the configuration and intended behavior to change.

If you’re sending log events to a service such as Elasticsearch, which also runs within
the same Kubernetes cluster when the cluster starts, the DaemonSet will start before
the other Pods. As a result, it becomes possible for a Fluent Bit instance in a Daemon-
Set to complain that it can’t send logs to Elasticsearch during the startup phase. We
might be able to control the startup by using an init container (https://mng.bz/
DpwV), but this approach has the potential to create unexpected side effects. If a con-
tainer fails during startup before our Fluent Bit DaemonSet is started, for example,
we’ll lose visibility into what happened because logs will be removed before Fluent Bit
has had the chance to capture them. Another possibility is using the scheduler to retry
sending the events, as we’ll see in chapter 5. The question is whether we can live with
the possibility of losing the log events while Elasticsearch is starting or whether the
retry configuration is a workable option.

 Today, Fluent Operator assumes that the Fluent Bit instances deployed on each
node (due to the DaemonSet) will consolidate all the logs to a Fluentd instance based
on the premise that Fluentd can connect to more end systems. Although this may be
true, the situation is changing because of OpenTelemetry.

NOTE Using Fluent Operator with new or custom plugins requires updating the
operator configuration with one CRD YAML file for each type of plugin. You can
find the provided CRDs at https://mng.bz/lrZo. The YAML file contains the
descriptors for the data types and attribute names. Because these files are
maintained manually, we must ensure that attribute names are synchronized
to prevent confusion. The build process for the CRD plugins uses Kustomize
(https://kustomize.io), which could be tailored to add your own plugins, min-
imizing problems of forked code and the ability to accept future updates.

The Fluent Operator project isn’t the only source of a logging operator for Kuberne-
tes. The Logging Operator project (https://kube-logging.dev) is also available. This
implementation has a lot in common with the Fluent Operator project. The most
notable difference is that this implementation allows the option of using Fluentd or
syslog-ng (https://www.syslog-ng.com) as the consolidation point for the cluster.

4.9 Observations on Fluent Bit with Kubernetes
Having looked more closely at Fluent Bit and its relationship with Kubernetes, we’ve
seen that the relationship is more about how the plugins allow us to examine what is
going on with a particular type of application (for the main part addressed by some
specific input plugins) than how Kubernetes and container management wraps around
and uses Fluent Bit.

https://mng.bz/DpwV
https://mng.bz/DpwV
https://mng.bz/DpwV
https://mng.bz/lrZo
https://kustomize.io
https://kube-logging.dev
https://www.syslog-ng.com

1214.10 The next frontier of observability with Fluent Bit: eBPF
 What we’ve referred to as application direct logging or observability (achieved by
injecting or using a framework that communicates directly with observability tooling)
is the approach OpenTelemetry leans toward. OpenTelemetry also offers an elegant
solution to some of the challenges that arise from using stdout and stderr and accept-
ing whatever a Kubernetes environment offers. These challenges include

 Any events with content that have a newline character get separated into multi-
ple events to be recombined. In a direct approach, the multiline content is
passed to Fluent Bit as a single event.

 Additional management (and budgeting) of the additional processing work-
load of parsing text back to a structured payload.

 Although we want to monitor Kubernetes when using an opinionated configu-
ration or deployment, we’re better off thinking of it as being more of an OS. We
don’t ignore it; we trust it to surface problems for us.

4.10 The next frontier of observability with Fluent Bit: eBPF
The next potential consideration for observability, primarily in the Kubernetes
space, is the growing interest in the Extended Berkeley Packet Filter (eBPF;
https://ebpf.io). This has come about because of CNI implementations such as Cil-
ium (https://cilium.io) and Falco (https://falco.org), which have taken advantage of
eBPF support in the Linux kernel and provided a means to help ensure network
traffic security. Any anomalies are captured and reported, which makes Fluent Bit a
natural fit for facilitation.

 eBPF is a safe, controlled way to inject logic into the Linux kernel, allowing us to
customize kernel behavior, among many other things. We can observe how data flows
through the network layers and how applications are performing at even the lowest
levels, such as memory management. Although the tooling for eBPF started by sup-
porting activities such as OS and kernel observation and diagnostics, this approach
made it easy to tap in and observe what is happening with virtual networks imple-
mented through CNI, such as Cilium and flannel.

 Due to the effect eBPF is making, Microsoft is developing an eBPF implementa-
tion for Windows (https://github.com/microsoft/ebpf-for-windows) so that eBPF
tools can be used within a Windows environment. An example of this space is Aqua-
Security’s Tracee (https://github.com/aquasecurity/tracee), working with Fluent Bit
using the forward plugin (https://mng.bz/Bgz2). An interesting configuration
requirement arises. Because Fluent Bit is likely to generate network traffic sending
eBPF-related log events to the event capture and log analytics tools, we need to
ensure that Fluent Bit’s network activities don’t, in turn, create eBPF events that
must be logged.

https://ebpf.io
https://cilium.io
https://falco.org
https://mng.bz/Bgz2
https://github.com/aquasecurity/tracee
https://github.com/microsoft/ebpf-for-windows

122 CHAPTER 4 Getting inputs from containers and Kubernetes
Summary
 Fluent Bit can capture events from Docker and Podman, although they have

different technical approaches—with Docker pushing events and Podman pull-
ing via an API.

 We can use logging drivers to capture log data. The benefits of this approach
include reduced effort to extract meaning, routing, and potential for greater
contextual information (inferred or explicitly sent).

 Applications can communicate more directly to Fluent Bit while remaining
agnostic to how the events (logs, traces, and metrics) are captured by using a
sidecar and/or adopting OpenTelemetry.

 Kubernetes logging is a complex landscape due to different container runtimes
and the ability to swap the implementation of some components with different
observability approaches. Other challenges exist when operating in cloud-
provided Kubernetes services, such as whether we can interact with the com-
pute node for managed Kubernetes services.

 Configuring container images can be addressed in several ways. The basic con-
tainer approach embeds configuration, so we need to extend the container or
override the configuration. When using a container in Kubernetes, we can
adopt an injection approach using ConfigMaps or by overriding parts of a con-
tainer configuration, such as the CMD or mount points.

 Helm charts allow us to apply the configuration to the Fluent Bit container. By
defining the Fluent Bit configuration as a ConfigMap, we can control the effect
of change as part of Kubernetes package management.

 Kubernetes operators enable us to apply monitoring, although we have a more
complex approach to the configuration. Through operator definitions, we can
ensure that valid configuration values are supplied to Kubernetes. The selector
mechanism allows us to choose which configurations to apply.

 The application of eBPF and Fluent Bit is a potentially powerful use case, par-
ticularly with further security insights from low-level network activity.

Outputting events
We’ve explored capturing events (logs, traces, and metrics) from various sources,
such as files, OS data, and network-based events, using OpenTelemetry and differ-
ent plugins. Having captured these events, we need to put them somewhere so that
the data can be visualized, analyzed, and communicated to those who need it, from
SecOps to developers running regression tests. We should start this activity by
understanding the components of Fluent Bit that are involved.

This chapter covers
 Examining the common characteristics of

output plugins

 Generating logs for the console, files, and
other local outputs

 Storing logs and metrics with Prometheus
and PostgreSQL

 Forwarding signals to an OpenTelemetry or
Fluent Bit node

 Exploring other monitoring tools using HTTP
and hyperscaler endpoints
123

124 CHAPTER 5 Outputting events
5.1 Architectural context
Figure 5.1 shows the part of the architecture we’ll be looking at in this chapter.
Although it may look like we’re jumping a lot of steps, as with mastering any program-
ming language, we start with I/O before mastering the clever constructs. But we will
touch on some basic details, such as filters.

Output covers a wide range of possible destinations for our logs, traces, and metrics,
from simply storing the captured events in a file to forwarding the events to a prod-
uct. With the advent of OpenTelemetry, it has become possible to send data to more

Focus of

this

chapter

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Figure 5.1 Fluent Bit architecture and which areas will be covered by this chapter

1255.2 Common characteristics of Fluent Bit output plugins
systems without needing custom adapters. In addition to the growing adoption of
OpenTelemetry, some de facto standards have developed, such as the data format
adopted by Prometheus and even Fluent Bit’s own forward specification (https://
mng.bz/6YD6). As with the input plugins, we can characterize the output plugins.
With a few exceptions, such as file, flowcounter, and Null, the outputs have a net-
work component. Some have authentication attributes and attributes to help map the
event to product characteristics, such as which elements of the message need to be
labeled or identify the service we’re sending events for. This makes the groupings
much harder. However, we can best group them based on the ability to custom-
ize/configure the destination’s behaviors, which leads us to

 Technology or standards-defined protocol solutions, such as OpenTelemetry,
WebSockets, and HTTP.

 Data store and query services that can be deployed locally and can be self-
managed or offered as a managed solution, such as Loki (https://grafana
.com/oss/loki) and PostgreSQL.

 Data store and query cloud services, such as Datadog (https://www.datadoghq
.com) and Google Cloud BigQuery (https://cloud.google.com/bigquery). Some
services offer generic query capabilities, while others have enhanced and domain-
specific features.

To get a handle on Fluent Bit’s output capabilities, we will focus on null, :stdout (con-
sole), and file outputs, as stdout and null are helpful for developing or solving configu-
ration issues, and file outputs are almost universal. Next, we will focus on the first two
characterizations in terms of pure technology and then the self-hostable solutions, which
are representative of distributed and Kubernetes environments. We don’t need to be so
concerned about having multiple examples from data stores. Mastering a service like
PostgreSQL provides plenty of insight for the last category because most data store–
related plugins have similar characteristics to achieve connectivity. In addition, many
operational considerations are addressed as part of the data store operations or by a ser-
vice provider and aren’t a problem for the environment running Fluent Bit itself.

5.2 Common characteristics of Fluent Bit output plugins
Fluent Bit’s framework supports several reusable capabilities, although not all output
plugins support all these features, such as workers and network timeouts. Therefore, a
table in appendix B shows which plugins support these behaviors.

5.2.1 Output resilience through retries

As previously mentioned, many of our output plugins involve networks, and even
when we’re using localized outputs like files, there is a chance that networking will be
hidden from us. This is very much the case for Kubernetes and enterprise environ-
ments where storage is network-attached.

 We like to think networks are highly resilient and never fail, but this is not the case.
The internet is robust; if a linkage fails, traffic usually gets rerouted around such

https://mng.bz/6YD6
https://mng.bz/6YD6
https://mng.bz/6YD6
https://www.datadoghq.com
https://www.datadoghq.com
https://www.datadoghq.com
https://cloud.google.com/bigquery
https://grafana.com/oss/loki
https://grafana.com/oss/loki
https://grafana.com/oss/loki

126 CHAPTER 5 Outputting events
problems. However, private networks don’t always have such levels of redundancy. We
tend to forget that between our source and destination can be a plethora of physical
or software devices that can decide that our network traffic might not be allowed to
progress because of the type or size of the payload or a raft of other possible rules that
may be in place. Or maybe demand has overwhelmed the device, as happens in a suc-
cessful denial-of-service (DoS) attack, including network proxies, caches, firewalls,
and load balancers between source and destination. Then, networks are increasingly
software-defined within our Kubernetes environment, and they will certainly be a
component of operations. We can change and affect networks so much more easily.
The bottom line is that we have to assume networks aren’t resilient and are fallible.

 To help address this problem, all Fluent Bit output plugins return a result from
their actions, which can indicate success (OK), error, or a request that a retry be
scheduled. We don’t see this within the configuration, but this is important when
building our own plugins, as we’ll see later in the book. As this is a plugin-wide
behavior, we can configure Fluent Bit to pause and retry outputs before giving up.
This behavior can be controlled by service-wide attributes specified in the service
block. The two key controlling attributes are

 scheduler.cap—Defines the maximum number of seconds a delay can have
before a retry

 scheduler.base—Sets the minimum number of seconds a delay can have
before a retry can be attempted

The actual delay before retrying is calculated as a random number between the base
and a maximum value that is never greater than the scheduler.cap. The max number
for the range in which we get a random delay is adjusted exponentially. This means
that the first retry should happen at a time on or soon after the scheduler.base. But
the more times we retry, the greater we want to potentially delay, as the chances of
other processes also retrying increases. Therefore, we need to increase the spread of
the retries over time. If we count the number of retries, the upper limit becomes
min(scheduler.base * 2n, scheduler.cap). Figure 5.2 illustrates the retry periods
and shows when multiple tries will be attempted.

 This is an elegant way to distribute the retry load, particularly as the number of
processes trying to connect to a service increases. But we can’t let retries continue for-
ever, as this could result in backpressure issues. So, we need the option to stipulate a
retry limit. The retry limit relates to the possibilities of backpressure and how critical
data is from a particular cause. We can stipulate within the output configuration for a
specific plugin a configuration called retry_limit. This configuration has several
options. We can provide a numeric maximum number of retries. retry_limit 3, for
example, gives us three retries after the first attempt. We may never want a retry, so we
can set the attribute value as no_retries (such as retry_limit no_retries), or we
might want the retries to go forever, in which case we set the attribute with a value of
false or no_limits.

1275.2 Common characteristics of Fluent Bit output plugins
To see this in action, let’s reuse chapter 3’s configuration, illustrating the use of receiv-
ing an HTTP event and then routing it to the forward plugin. But rather than run the
second instance of Fluent Bit in which we had the input forward plugin configured,
we won’t start that process. Thus, we’re going to configure our retry controls into the
scenario. To keep things fairly quick, we’ll

 Specify the schedule base as 2 seconds and the cap as 15 seconds.
 Set the output option on the forward output configuration.
 Set the limit to five retries.

We should have a configuration like the following listing (chapter5/fluentbit/http-
forward-retries.conf).

[SERVICE]
 flush 1
 log_level warn
 scheduler.base 2
 scheduler.cap 15

Listing 5.1 Controlling retries: http-forward-retries.conf

S
ta

rt
 o

f
re

tr
ie

s

scheduler.cap

=[3 x (2 x 2)]

S
e
c
o
n
d
 r

e
tr

y

scheduler.base =3

scheduler.cap

=[3 x (2 x 2 x 2)]

T
h
ir
d
 r

e
tr

y

F
ir
s
t
re

tr
y

The scheduler values are measured from
the moment the next retry triggers.

As we apply an exponential
backoff, the period in
which the scheduler may
trigger extends.

=[3 x 2]

Time

Retry within
this period

Retry within this period

Retry within this period
as limited by the cap

scheduler.cap

scheduler.base = 3

scheduler.base =3

Figure 5.2 Fluent Bit’s scheduler retry timing is represented with a timeline.

Here, we’re defining the minimum
backoff duration in seconds.

Defines the maximum period for which we
can delay the retry. This maximum isn’t used
immediately because of the backoff algorithm.

128 CHAPTER 5 Outputting events
[INPUT]
 name http
 listen 0.0.0.0
 port 9881
 successful_response_code 201
 success_header x-fluent-bit received
 tag http

[OUTPUT]
 name forward
 match *
 host 0.0.0.0
 port 9980
 retry_limit 6

With this scenario running, the first thing to note is that we’re likely to see errors
(depending on how a plugin is implemented; it certainly is the case for HTTP
plugins) when the output plugin tries to send the events. The next step is to start Post-
man and, using the HTTP Single Call configuration in the chapter 5 collection, use
the Send button to send the request, which will report a 201 HTTP success response.
Things will appear on the console where we’re running Fluent Bit. The invocation will
immediately fail, and we’ll see a series of messages reporting failures to send and how
long before the output plugin attempts to send again, as illustrated in the console out-
put in figure 5.3.

When we review the figure, we see that the retry interval typically increases, as reflected
by the growing range from which a randomized number is being taken. We also see six
retry messages plus the final report of being unable to retry after the last attempt.
Remember that six retries will mean seven calls—the first attempt and then the
retries, but the retry is reported off the back of the first attempt.

Sets an explicit limit on how many
attempts we’ll try to forward to
the events before giving up

Figure 5.3 The console reports the retry attempts and fails because the destination Fluent Bit instance isn’t
running and can’t be connected to it.

1295.2 Common characteristics of Fluent Bit output plugins
 The configuration we’ve used with the scheduler applies to all the output plugins
because we’ve applied the configuration attributes within the service block. However,
is it also possible to apply these configurations at the individual output plugin level? If
the scheduler is set globally, any attributes defined for a specific output will override
the service-level settings. We can disable retry attempts or set things to retry infinitely
by setting the retry_limit attribute to no_retries or no_limits, respectively.

5.2.2 Network controls

We’ve looked at resilience through retries for outputs. But when the network
aspect of the output is visible to us (as when we are explicitly addressing servers and
ports), we also need to have a chance to dictate how quickly we decide a connec-
tion is not responding. In other words, we manage the timeout, and when we can
maintain or keep a connection such as WebSockets alive, we minimize the over-
head of reestablishing the connection.

5.2.3 Worker threads

Worker threads allow us to increase the performance of Fluent Bit by establishing
multiple threads to handle the workload for output plugins. In doing so, we mini-
mize the chance of creating backpressure, where our ability to output events affects
the ability to consume events because of buffer constraints, which can then create
issues for the log source, such as slowing down the consumption confirmation if the
source is synchronously connected to Fluent Bit. Not all plugins support workers
today, but the stdout and file output plugins do. We configure the number of work-
ers wanted for an output with the attribute workers and provide the number of workers
(threads) wanted.

 The following configuration illustrates the use of workers with the stdout plugin
(chapter5/fluentbit/std-output-workers.conf). The input almost doesn’t matter,
as we’re only interested in seeing what Fluent Bit does, so we’ve switched the logging
to debug, which helps show what is happening.

[SERVICE]
 flush 1
 log_level debug

[INPUT]
 name dummy
 tag dummy
 dummy {"name" : "blah", "message" : "a dummy message"}

[OUTPUT]
 match *
 name stdout
 workers 4

Listing 5.2 Allocating workers for output: std-output-workers.conf

A dummy input is used for
simplicity, as the input doesn’t
matter unless we want to see Fluent
Bit’s behavior under extreme load.

We allocated four workers
(threads) for this output plugin.
By default, this value is 1.

130 CHAPTER 5 Outputting events
When we run this scenario, we should see a couple of things displayed on the console
in addition to the dummy message. We can expect to see log messages indicating the
creation of the output threads (numbered from 0, so four threads would be num-
bered 0–3). As the buffer is flushed through the output, we’ll see an indication of the
threads in use. To run the scenario, we need to use the command

fluent-bit -c fluentbit/std-output-workers.conf

The result is messages like this:

[2024/04/07 17:04:06] [debug] [stdout:stdout.0]
➥ created event channels: read=23 write=24
[2024/04/07 17:04:06] [info] [output:stdout:stdout.0] worker #0 started
[2024/04/07 17:04:06] [info] [sp] stream processor started
[2024/04/07 17:04:06] [info] [output:stdout:stdout.0] worker #2 started
[2024/04/07 17:04:06] [info] [output:stdout:stdout.0] worker #1 started
[2024/04/07 17:04:06] [info] [output:stdout:stdout.0] worker #3 started

As the stdout plugin is triggered, we’ll see messages like this:

[2024/04/07 17:04:07] [debug] [output:stdout:stdout.0]
➥ task_id=0 assigned to thread #0

Note how the thread is identified at the end of the event. Scrolling through the out-
puts, we notice that the thread number increments until all the threads have been
triggered and then returns to 0. So, we can see, all things being equal, that each
thread is used in turn. Finally, when we’re shutting Fluent Bit down, we see messages
like this for each worker (thread.) Again, notice near the end of the log event the
number for each worker:

[2024/04/07 17:04:14] [info] [output:stdout:stdout.0]
➥ thread worker #0 stopping...
[2024/04/07 17:04:14] [info] [output:stdout:stdout.0]
➥ thread worker #0 stopped

5.2.4 Considerations for using threads

We have to consider whether using workers is beneficial, however. Events may arrive in
the target system out of order because of how the CPU allocated time to different
threads. Log events being slightly out of order in a database or a security information
and event management (SIEM) tool is unlikely to be an issue as the query process can
resolve the sequence. But logging events in a file for engineers to read will make life
harder if correct ordering is lost. Another possibility with worker threads is that we
allocated more worker threads than the end system can handle. As a result, we risk the
connection timing out or increasing the workload on the destination service as it has
to switch between servicing different connections.

 As a rule of thumb, unless you know about the destination you’re outputting to
and have certainty about the actual capacity for concurrency within the environment

1315.3 Null output
in which Fluent Bit is running, mitigating possible bottleneck effects on the sources is
best achieved using buffering. After all, if we’re in a virtual environment without guar-
anteed CPU capacity, we could create more threads that the OS needs to context-
switch between within a virtual machine (VM), which itself is context-switched
because more VMs are running than real CPU threads are available.

TIP The natural thing to do when you want to help Fluent Bit performance
in a Kubernetes environment is to increase the amount of memory or CPU
allocated to the Fluent Bit container. But this additional resource doesn’t
deliver any gains and goes unused. Fluent Bit can be I/O intensive. Potential
causes are that processes wait for I/O resources or access is blocked because
another process has locked the resource. One way to overcome this is by
using threads and workers. This may seem counterintuitive, but it allows the
process to switch to another thread that may not be blocked by I/O and can
be executed using the currently available capacity. As we’ve mentioned, threads
come with a cost, so they are best used wisely.

In addition to worker threads for output, input plugins can be moved into dedicated
threads with the additional attribute threaded set with a value of on. This feature was
introduced in Fluent Bit v2.0.2, but little has been said about it since then, so we rec-
ommend being cautious when adopting its use.

5.3 Null output
When dealing with data pipelines, it is worthwhile to ensure that all the data has an
output. In doing so, we can see how much is being received and data being discarded
as long as we’re using Fluent Bit’s routing, so we don’t direct data to both the bin and
a genuine endpoint. The easiest way to bin data is to use the null output plugin. In
Fluent Bit, this is the equivalent of directing output to /dev/null as the output is
going to consume the data and do nothing with it. The plugin needs two attributes.
The name attribute identifies the plugin (in this case, null), and the match attribute
identifies the data it is to output.

 In addition to measuring the amount of event data not being put to use, the null out-
put plugin can be helpful for examining performance problems. Routing the captured
events to the null output plugin makes it possible to determine whether a throughput
problem is caused by the ability to ingest data or at the backend output phase.

5.3.1 Monitoring with Fluent Bit

Before we try to see how the null output plugin affects the Fluent Bit operation, we
need to understand what is happening with resources. Fortunately, Fluent Bit has an
API that we can enable to observe what is happening. To use the API, we need to
switch the web server on by providing some additional attributes in the service block:

 http_server set to on (the alternative is off)
 http_listen and http_port set to the network(s) and port to listen to

132 CHAPTER 5 Outputting events
Let’s listen to all network sources (0.0.0.0) on port 2020 for our configuration. We also
need to tell the server to enable the collecting of metrics from the plugins by adding the
attribute storage.metrics with a value of on to the service declaration. With the
server configured, we need to understand the URLs available to us, shown in table 5.1.

Table 5.1 Standard URLs for Fluent Bit metrics and health data

URI (http://host:port) Description

/ Returns the build flags that have been set. The build process allows us to
enable or disable the inclusion of features and plugins using build flags. So, if
we need to compact the Fluent Bit binary footprint, we can exclude particular
plugins, such as FLB_HAVE_AWS, if we don’t want to interact with the Amazon
Web Services (AWS) plugins, such as Kinesis.

In addition, we have the version of Fluent Bit and the edition returned, which
represents whether we’ve got the open source (community) version or an
enhanced version from an organization such as Calyptia.

/api/v1/health Same as the root response.

/api/v1/metrics Provides the throughput of the plugin as the number of records and data
volume in bytes. Other measures may be provided, depending on the plugin.
Output, for example, will include errors and retries. These figures are
cumulative.

/api/v1/metrics/
prometheus

Presents the same metrics data but in a manner that Prometheus can collect
and process, allowing us to combine it with tools like Grafana to visualize what
Fluent Bit is doing.

/api/v1/storage Provides meaningful information about how the buffers are being used with
the number of chunks, the amount of physical storage involved, and the
amount of memory being consumed.

/api/v2/metrics/
prometheus

Exposes any metrics provided by loaded plugins (such as those used in the
loaded configuration, in addition to the core measurements that the v1 API
produces. The response is formatted as a Prometheus metrics payload.

/api/v2/metrics Uses a new CMetrics (https://github.com/fluent/cmetrics) library, which has
taken its inspiration from a Go Prometheus package format (https://mng
.bz/o01v).

The key difference between this metrics output and the Prometheus v2 path
is that the Prometheus #HELP and #TYPE entries are not included in the
output. The actual metric value is still in Prometheus format but prefixed
with a timestamp.

/api/v2/reload Triggers the Fluent Bit node to execute a hot reload of its configuration
without requiring the Fluent Bit instance to restart. It requires Fluent Bit
to have the hot reload option switched on using the command-line parameter
--enable-hot-reload, http_listen, and http_port.

This endpoint responds to both GET and POST HTTP verbs. The GET returns a
simple JSON structure showing the number of reloads that have occurred. To
trigger the hot reload, we need to use the POST verb, as in curl -X POST
-d '{}' localhost:2020/api/v2/reload.

http://host:port
https://github.com/fluent/cmetrics
https://mng.bz/o01v
https://mng.bz/o01v

1335.3 Null output
These endpoints mean we can understand where the data is coming from and going to.
Based on the configuration described, we have some API calls configured in the Postman
chapter 5 collection that we can use to grab the data easily. We also captured the outputs
in chapter5/api-output-examples if you want to review and compare the outputs.

 We’ll also look at the Prometheus exporter plugin later in the chapter. This plugin
can be used to expose Fluent Bit metrics, which doesn’t need the main HTTP server
capabilities, allowing us to separate security controls.

5.3.2 Configuring null output

To generate a reasonable volume of events quickly so we can clearly see the null output
statistics changing, we could use the LogSimulator, or we could use a source plugin such
as mem and cpu, which we saw in chapter 3 for capturing CPU and memory use at the OS
level. We’ll use these plugins and take advantage of the nanosecond timing we can con-
figure, giving us a steady, consistent volume of data. We’ll add the output definition in
the Fluent Bit configuration but with the output commented out. As a result, we should
have the following configuration (chapter5/fluentbit/null-output.conf).

[SERVICE]
 Flush 1
 log_level debug
 HTTP_server On
 HTTP_listen 0.0.0.0
 HTTP_port 2020
 storage.metrics On

[INPUT]
 name cpu
 interval_nsec 10
 tag book_vm_cpu

[INPUT]
 name netif
 interface eth0
 interval_nsec 10
 tag book_vm_network

[INPUT]
 name mem
 interval_nsec 10
 tag book_vm_memory

[OUTPUT]
 name null
 match *

Given this information, we can create or run the configuration provided (chapter5/
fluentbit/null-output.conf). Then, we can run the configuration with the command

fluent-bit -c fluentbit/null-output.conf

Listing 5.3 Using the null output plugin: null-output.conf

We’ve enabled the HTTP server so
we can access the internal metrics
and data to confirm events are
being generated.

Declares and
matches all outputs
to the null plugin

134 CHAPTER 5 Outputting events
With Fluent Bit generating and ingesting the events, we can select the Get FB Metrics
configuration in Postman and then click Send. The result will be returned data from Flu-
ent Bit, as illustrated in figure 5.4. We should expect to see the outputs listed with the
number of records and bytes generated by the input plugins. The output plugin should
be listed with similar metrics. As we’re directing everything to the same output plugin,
the total record processed by the inputs should correspond to the output. There will
always be a potential small margin of error depending on when the metrics are retrieved
from the plugins compared with which record(s) have been processed in the pipeline.
To explore further, use the other Postman API calls to retrieve health and storage data.

Figure 5.4 A screenshot of Postman with JSON metrics response shows the different plugins' throughput.

1355.4 Sending log events to the console
5.4 Sending log events to the console
We directed output to the console (stdout) in chapter 4. However, this topic is worth
exploring further, as it makes for an easy way to see how other common features can
affect output behavior and touch on use cases that can be beneficial.

 When applying the stdout plugin, the use cases may not stand out beyond helping
the development of Fluent Bit configuration, particularly if our configuration is modi-
fying or filtering log events. As we did in previous chapters, we can easily see the out-
comes of our configuration changes. We remove the output when we’re happy with
filtering and record manipulation.

 The value may be less obvious when using the plugin beyond the development of
our Fluent Bit configuration. stdout may help in the following production use cases:

 In a Kubernetes environment, the stdout can be captured by Kubernetes. Some
complexities and challenges arise from trusting this approach, which is described
in the Logging in Action book, so we would advocate it only as a fail-safe method.

 Almost the opposite approach is to direct only the most critical of errors to std-
out. That way, if the console displays any output, it stands out, and we’ll know
the problem is considered serious.

 Considering the value, let’s examine what is needed to direct output to the con-
sole. Each output definition is preceded by the [OUTPUT] directive. Then we
need to define the match attribute, which declares which tag(s) will be handled
by this output. We can provide an asterisk (*) as a wildcard for all outputs. Alter-
natively, we can provide names or combine them with the wildcard. We can
have only a single wildcard within the match. We’ll see more in chapter 7 when
we dig into filtering.

NOTE The general convention for tag naming is to adopt dot-based notation
to represent any logical hierarchy needed (much like JSONPath). If we have
sources defined for a computer’s CPU, memory, and disk, we might tag them
as server.cpu, server.memory, and server.disk. If we captured multiple log
sources for App1 and App2, we might call those sources something like
app1.container_log, app1.db_log, and app2.console. Now, if we want a sin-
gle output for just the host machine metrics, we could set the match to
server.*. Although there aren’t any formally defined legal or illegal charac-
ters for tags, we know that the asterisk has a special meaning. We recommend
keeping tag names constrained to alphanumeric values, dash, underscore,
and dot characters, which will make it much easier if we need to wildcard or
process the tag’s value somehow, within the same constraints as legal charac-
ters for JSON attributes, to avoid problems.

As with any plugin, we need to name the plugin to use; for the console, as we’ve seen,
this is stdout. We can also direct Fluent Bit on how to format the output. For now,
we’ve set this to json_lines. We’ll explore the options a bit more shortly. We can add
to the JSON structured log event the timestamp that the log event was received and
how to format it. We provide the JSON element name via the configuration attribute

136 CHAPTER 5 Outputting events
json_date_key and the supported format for the value with the attribute json_
date_format, which will accept the value double as the numeric data type, with the whole
number denoting seconds from the epoch (midnight, January 1, 1970) and the frac-
tional part being milliseconds: 1690230582.488276600. We can change that to millisec-
onds from epoch, with the value epoch or its synonym epoch_ms or epoch_millis or by
using the ISO 8601 convention YYYY-MM-DDTHH:MM:SS.nnnnnnZ with the value iso8601.
The last option is java_sql_timestamp, a simplified version of ISO 8601, as it omits
the use of the characters T and Z.

 All our output configurations have used the match attribute, which is set with an
asterisk as its value. The match attribute defines which events can be handled by the
output definition (and, as we’ll see in the coming chapters, used for most types of
operations). The match compares the value it has with the tag value set. As you’ve
probably realized, the asterisk is effectively a wildcard match.

 Using this, we can construct a configuration that sends the log events to the con-
sole in JSON format, with each log event having its own line, and includes the time-
stamp for when we received the events in ISO format, as shown in the following listing
and chapter5/fluentbit/std-output.conf.

[SERVICE]
 flush 1
 log_level error

[INPUT]
 name http
 listen 0.0.0.0
 port 9881
 tag http-in

[OUTPUT]
 match *
 name stdout
 format json_lines
 json_date_key received-date
 json_date_format iso8601

To run this scenario, within the provided Postman configuration, we have a collection
for the chapter that has a POST invocation named HTTP Call. We can send the log
event by clicking the Send button. But first, we’d recommend looking at the HTTP
body provided. Although simple, it is a little more complex than in chapter 4, as we
have nested JSON content with multiple records within the body declaration. Next, we
need to start Fluent Bit with our configuration file using the following command:

fluent-bit -c fluentbit/std-output.conf

Listing 5.4 Formatting output: std-output.conf

Controls Fluent Bit’s own log output. We don’t want the console
to receive anything except Fluent Bit errors or content directed to
the console by an output plugin, so we can easily see the
difference between Fluent Bit logging and the output plugin.

Matches against all tags (so
all inputs will be output)

As with all plugins, we
name the plugin to use.

Defines the format for the output. In this
case, each log event is displayed as JSON
on a single line.

Definition of the element in the JSON structure
to place the recorded date and time of when
the event was received by Fluent BitThe formatting to use for representation

of the date and time to be used with the
field named by json_date_key

1375.4 Sending log events to the console
With Fluent Bit running, let’s send the log event. We should see that each log event in
the REST payload gets its own log line on the console, as shown in figure 5.5.

If we compare the console output to the body of the message in Postman, we see that
we have a new leading element in the JSON, which reflects our use of the json_
date_key and json_date_format attributes. We can experiment with the output to try
the format options described in the next section.

5.4.1 Formatting outputs

Not all outputs support the use of formatting, and the formats that the outputs sup-
port can differ between output plugins. Table 5.2 describes the incorporated format-
ters. Appendix B includes a table that shows which outputs allow which formats.

Now that we understand the different options, let’s try a couple to see the differences.
We can edit and rerun the previous configuration. We’d recommend trying json_
stream and msgpack (also used if no format is specified).

Table 5.2 The different output formatting options and what they produce

Format type Description

msgpack MessagePack (msgpack) doesn’t behave entirely as you might expect. Rather than
writing to stdout, the binary representation (of the msg), we see a string representa-
tion of the payload carried within Fluent Bit. We don’t see the binary representation,
as this can have some unexpected consequences for the terminal. The mildest
effects can be that the character sequences affect how the console session
renders content; the worst is that character sequences trigger the console to
start messing with memory buffers, printer configurations, and so on. Check
out https://www.xfree86.org/current/ctlseqs.html for details.

json json ensures that the event’s record is represented in a JSON structure. This
doesn’t include the tag and timestamp associated with the log event’s record.

json_lines json_lines ensures that each record is represented by its own line.

json_stream Here, we continue to see the log events in JSON format. But rather than give each log
entry its own line, now we have everything on the same continuous line or stream.

Figure 5.5 Console output with one line per log event, with long text wrapping

https://www.xfree86.org/current/ctlseqs.html

138 CHAPTER 5 Outputting events
5.4.2 Seeing matching at work

We can use this configuration to see how the match attribute can affect behavior.
Table 5.3 defines different values to try with the match attribute and the expected
outcomes. You can try these by editing the configuration file and rerunning Fluent
Bit configuration, taking an HTTP input and output to stdout, and resending the
log event using Postman.

5.5 Writing to files
Storing log events for easy consumption later is done using a shared filesystem. When
the files are written to by multiple processes at the same time, with or without a log-
ging framework, there’s a risk of corrupting the log entries, which are intermingled
on the same line. By consolidating log events through Fluent Bit, we avoid file write
collisions while still being able to bring log events together. As we’ll see later in the
book, the other benefit of using Fluent Bit rather than application log appenders is
the ability to enrich stored data. Also, we can enhance security so that only Fluent
Bit needs to have write permissions to the filesystem being used. Finally, if the appli-
cation process communicates with Fluent Bit via networking, we may be able to
improve application performance by offloading the overhead for slow I/O throughput
of disk storage.

 As with console output, we have the option to format outputs in different ways.
This time, we will configure multiple file outputs using different formats so that we
can compare the outputs. This does mean we need to duplicate some of the attributes.
First, we need to define the filename for the output file using the file attribute. If this
is left undefined, the filename defaults to the tag value, which we don’t want, given
that we’re outputting the same source with the same tag to multiple files. To avoid this
issue, we will set the file attribute for each output as output1 but use different exten-
sions to reflect the formatting. We have the option to define the path to the output
folders. If the path attribute is unset, the folder from which we have executed Fluent

Table 5.3 Different match values and how they affect the outcomes

match value Outcome

http-in We have set the match value to be the same as the tag value. We will continue to
see the received log events on the console as before.

HTTP-IN Here, we’re seeing how the match behaves with case sensitivity. We don’t see any
output this time as the match is case sensitive.

http* We’ve included the asterisk as a wildcard. We will continue to see the log events
pass through to the console because of the wildcard behavior.

http As the match is literal, without a wildcard, the match is not exact, and the log
events won’t make it to the console.

nothing We have a different tag, so our events won't reach the console.

1395.5 Writing to files
Bit will be used as the path. In production, we’d recommend setting this value, but to
make it easier to exercise the configuration without the path being defined (everyone
will have different environment setups), we’ve omitted it. We have provided a clean-
c5.sh script to delete the files generated, which assumes the same thing as Fluent Bit
regarding location. Let’s look at the formatting options and the ones we will use:

 plain—The plain format takes the log events and pushes them out to the file
in an unmodified format.

 csv—The csv (comma-separated values) format allows you to choose a separa-
tor using the delimiter attribute, which allows values comma, space, and tab
(or /t). It is also true to its name, as the output process treats the record’s root
elements as name values, so just the values are output. If the record contains
nested JSON, the nested JSON is treated as a single value.

 ltsv—The ltsv (label tab-separated values) format is similar to the csv format,
except we can include the labels and choose among the same options to delimit
the labels but use the attribute name label_delimiter.

 msgpack—The msgpack format takes advantage of the msgpack serialization
mechanism. This results in the payload generated appearing more like binary.

 template—The template format is much more interesting, as we can now incor-
porate whatever content and then reference values using curly braces around the
keys to the payload, including the log record’s time value, using the key of time.
The ability to reference the log event record content includes traversing nested
JSON elements using a subset of the JSONPath notation—dot notation to traverse
hierarchy, such as <parent element name>.<child element name>.

At this stage, we need to know that all output plugins will receive all log events as long
as the match clause allows. With this, we can configure the log events to be output to
multiple files, allowing us to see the different formatting side by side. See the follow-
ing listing and chapter5/fluentbit/simple-file.conf.

[SERVICE]
 flush 1
 log_level error

[INPUT]
 name http
 listen 0.0.0.0
 port 9881
 tag http-in

[OUTPUT]
 match *
 name stdout
 json_date_key received-date
 json_date_format iso8601
 format json_lines

Listing 5.5 Different file formats: simple-file.conf

We’ve retained the console
output so we can see when
the event has been received.

140 CHAPTER 5 Outputting events
[OUTPUT]
 match *
 name file
 file output1.csv
 format csv
 delimiter \t

[OUTPUT]
 match *
 name file
 file output1.ltsv
 format ltsv
 label_delimiter space
 delimiter comma

[OUTPUT]
 match *
 name file
 file output1.txt
 format plain

[OUTPUT]
 match *
 name file
 file output1.msgpack
 format msgpack

[OUTPUT]
 match *
 name file
 format template
 file output1.templated.txt
 template addressing={hello} value={val} --- {time}

To run this configuration, we will continue using Postman as our log event source. We
also want to start Fluent Bit, as we haven’t stipulated a configuration value for the path
attribute; the output files will be written in the folder in which Fluent Bit is being exe-
cuted. So, it’s best to ensure that we have read and write privileges in the folder in
which we’re about to execute Fluent Bit.

 Unlike when reading, we don’t need to worry about tracking progress, as we’ll
keep adding to the end of the current file. In chapter 3, we talked about log rotation
and the fact that some logging frameworks include the ability to rotate logs. Fluent Bit
doesn’t have this feature and will continue to add new log entries to the end of the file
each time they need to be written. This means we need to use an external service to
perform log rotation. Within Fluent Bit, we can apply some control on the output
using techniques such as these:

Here, we’re setting the output
to use the file plugin.

We identify the filename to use. If it isn’t defined, this will
default to the value of the tag (provides the option to write to
different files dynamically if we manipulate the tag using a filter).

We can dictate how the output
is written, such as CSV or JSON.

We have a choice of three delimiters. We can use a tab
(as used here with \t), or we can use a space or comma
(using the words space and comma, respectively).

For this file, we’re using label
tab-separated values (LTSV) file
format, which means we have
additional attribute options.

Sets the character that delimits (separates) the label
from the value. This time, we’re using a space character.

The delimiter here is applied in the same
logical position as a csv, separating values. But
for an ltsv output, we can consider the value
to be both the label and the data element.

Here, we’re using msgpack as the
output, which gives us a chance to
see how the content is encoded.

The template output is a flexible approach to
creating outputs and works by effectively
performing string substitutions.

This configuration attribute defines the template. The words within
the { } are the names of the log event’s record elements that are

substituted. The substitution includes replacing the curly brackets.

1415.6 Prometheus outputs
 Omit the file attribute so that it defaults to using the tag, but before the output
plugin processes the log events, manipulate the tag name. We will see how we
can manipulate log events in the coming chapters.

 Another strategy is to use a variable as part of the path attribute. We can period-
ically manipulate the variable and force a hot configuration refresh (not avail-
able on all platforms), which will induce the variable to be picked up. This can,
of course, be used only if the log event sources can tolerate Fluent Bit restarting
periodically. Sources where Fluent Bit is reading the source won’t be a problem,
but network-centric source plugins need to have the ability to retry or fail to a
standby instance of Fluent Bit.

In later chapters, we will see how to manipulate values such as the tag.

5.6 Prometheus outputs
When it comes to more sophisticated times series data storage for metrics (numeric)
and visualization, Prometheus and Grafana are often the default tools for Kubernetes-
based use cases. When it comes to Prometheus, there are two ways we can enable data
to be passed from Fluent Bit to Prometheus:

 We can allow Prometheus to scrape data from Fluent Bit on a scheduled inter-
val, which is the traditional way for Prometheus to work. This allows Fluent Bit
to serve dual purposes. For Prometheus to capture environmental data, it tradi-
tionally uses a local agent to gather the data (an exporter). As we’re deploying
Fluent Bit with access to the same information, we can use Fluent Bit as the
agent. As a result, the input plugin for this way of working is known as the pro-
metheus_exporter. As we potentially also want Prometheus to capture the met-
rics relating to our Fluent Bit deployments, another input plugin called
fluentbit_metrics exists. These plugins generate the metrics data in a format
that is readily consumable by Prometheus.

 More recently, Prometheus introduced an API to push data to Prometheus.
We’ll look at why this approach is necessary shortly. The ability to remotely write
means we use the prometheus_remote_write plugin instead.

In this part of the chapter, we’ll evolve the configuration to support different ways we
can work with Prometheus. The first thing we need to do is deploy Prometheus with
the appropriate configuration. We will be running Prometheus using Docker Com-
pose, as this allows us to configure Prometheus easily in a manner that looks like
Kubernetes without needing to run a Kubernetes environment. Appendix A details
the steps to set up all the prerequisites. We aren’t deploying Grafana, as Prometheus
provides a basic interface and query expression syntax called PromQL that is suffi-
cient to meet our requirements.

142 CHAPTER 5 Outputting events
5.6.1 Prometheus Node Exporter

To capture the data that the Node Exporter would generate, we need to add a new
input plugin called node_exporter_metrics. At the simplest level, we need to identify
only the frequency at which it retrieves the data from the compute node using the
scrape_interval attribute, which takes a numeric number of seconds per poll. As
with all plugins, we can define the tag to use, as well as the tag property. It is worth
noting that this is a Linux-only plugin today, although there is a Windows-comparable
plugin called windows_exporter_metrics. Although it is not ideal that this is a Linux-
only plugin, we must accept that there are more Linux production environments, par-
ticularly when considering Kubernetes-based environments.

 With the input of node data defined, we can focus on the output plugin. The pro-
metheus_exporter plugin takes data provided in the record part of the internal data
structure, which needs to be formatted as a Prometheus record, and shares the data
with Prometheus when it makes an HTTP call to the Fluent Bit instance using the
URL <host address>:<port>/metrics, which is the standard URL that Prometheus
uses. We can specify the port number, which can be different for different Pro-
metheus outputs. For example, an infrastructure team wants to monitor servers to
understand overall enterprise health. It is not interested in differentiating between
production and nonproduction environments. Or an application development team
wants to have a Prometheus instance of their own as they’re using the metrics to ascer-
tain factors that might influence the performance of their application during testing
or in production. We’re not suggesting that this is a good way of working. But the way
organizations work has a material effect that Fluent Bit can address. The attribute
host identifies the networks that should be listened to; in our case, we’re saying all
networks. Finally, to help distinguish this exporter from others, we can provide addi-
tional name-value pairs that function as labels in Prometheus. This can be done using
the add_label property with a space character to separate the name and the value.
Note that Prometheus has strict rules on naming conventions for the labels that need
to be kept to upper- and lowercase alphanumeric characters and no special charac-
ters. We can combine this and get a configuration.

 Labels allow us to dimension the data (group data values) from different perspec-
tives. We might want a view per Fluent Bit deployment, so we’d add a label to reflect

Understanding Prometheus and Grafana
Prometheus is a feature-rich and powerful tool, as is Grafana. Plenty of resources can
help you dig deeper into these tools. Aside from the product documentation websites
https://prometheus.io/docs/introduction/overview and https://grafana.com/docs,
we recommend looking at Cloud Observability in Action, by Michael Hausenblas
(https://www.manning.com/books/cloud-observability-in-action), for more context
on Prometheus. See Learn Kubernetes in a Month of Lunches, by Elton Stoneman
(https://www.manning.com/books/learn-kubernetes-in-a-month-of-lunches), to put
these tools in action.

https://prometheus.io/docs/introduction/overview
https://grafana.com/docs
https://www.manning.com/books/cloud-observability-in-action
https://www.manning.com/books/learn-kubernetes-in-a-month-of-lunches

1435.6 Prometheus outputs
that. (Container instance or server ID are possibilities depending on the deployment.)
We may also want to group the metrics based on a functional characteristic, such as all
Fluent Bit instances deployed to monitor a group of servers running a particular service
(sometimes described as a server group or fleet). As using predefined data values such as
server name, type, and ID has minimal overhead, these labels are worth adding to met-
rics even if there isn’t an identified immediate requirement, as it creates options for
later custom querying when trying to perform fault diagnosis or event correlation.

TIP A key consideration when using Prometheus is the size of the cardinality
(the number of dimensions) of the data being handled. High levels of cardi-
nality have a real effect on Prometheus. This challenge is explored in depth
by Jaime Riedesel in chapter 14 of Software Telemetry (https://www.manning
.com/books/software-telemetry).

The following listing illustrates configuring Fluent Bit as a node exporter for Pro-
metheus (chapter5/fluentbit/prometheus-exporter-output.conf).

[SERVICE]
 flush 5
 log_level info

[INPUT]
 name node_exporter_metrics
 tag node_metrics
 scrape_interval 5

[OUTPUT]
 name prometheus_exporter
 match *
 port 9885
 host 0.0.0.0
 add_label fluentbit exporter

As the output is communicated over HTTP, we can see the result of our configuration
without starting Prometheus. Let’s start Fluent Bit with this command:

fluent-bit -c fluentbit/prometheus-exporter-output.conf

We can see what data is generated for Prometheus to scrape by using a browser or
Postman to execute a GET on the URL http://localhost:9885/metrics. We pro-
vided the configuration in Postman, called Prometheus Scraper. When the data is
retrieved, we’ll see a considerable amount of detail provided in the output. This
includes comments describing groups of output values (provided by the exporter)
followed by each measurement in the format measurement-name {label="value",

Listing 5.6 Prometheus exporter: prometheus-exporter-output.conf

The input plugin generates the metric
data. Having it as a source allows us to
direct the data to multiple destinations.

The scrape interval is the frequency in seconds at
which data is collected for Prometheus. This should be
aligned with Prometheus’s configuration; otherwise,
we create an unnecessary workload. Prometheus will
be calling and getting the same data, or we’re
generating metrics data that is never captured.

Identifies the plugin that allows Prometheus
to scrape data from our Fluent Bit node

The port we will allow
Prometheus to call on

We can add labels handled as key-value pairs; as
many labels can be added as desired. The labels
allow us to dimension the data to our needs.

https://www.manning.com/books/software-telemetry
https://www.manning.com/books/software-telemetry
https://www.manning.com/books/software-telemetry

144 CHAPTER 5 Outputting events
label="value"} measurement-"value". Note that the label(s) added appear in every
record, and other label values help differentiate each of the readings, such as which
processor the value relates to in a multicore CPU. (We saw this in chapter 3 when
looking at the cpu input plugin.) We’ve extracted illustrative fragments from the out-
put, as well as leaving a blank line to show where each fragment starts and ends:

HELP node_cpu_seconds_total Seconds the CPUs spent in each mode.
TYPE node_cpu_seconds_total counter
node_cpu_seconds_total{fluentbit="exporter",cpu="0",mode="idle"}
➥ 84200.880000000005
node_cpu_seconds_total{fluentbit="exporter",cpu="0",mode="iowait"}
➥ 811.76999999999998
node_cpu_seconds_total{fluentbit="exporter",cpu="0",mode="irq"} 0
node_cpu_seconds_total{fluentbit="exporter",cpu="0",mode="nice"} 0
node_cpu_seconds_total{fluentbit="exporter",cpu="0",mode="softirq"}
➥ 111.56999999999999
node_cpu_seconds_total{fluentbit="exporter",cpu="0",mode="steal"} 0
node_cpu_seconds_total{fluentbit="exporter",cpu="0",mode="system"}
➥ 70.010000000000005
node_cpu_seconds_total{fluentbit="exporter",cpu="0",mode="user"} 101.28

Note that the label presents itself within the Prometheus-formatted output. The
JSON-like labels can be used to dimension the data sets, such as viewing data for
CPU 0 or the idle time across all CPUs:

HELP node_cpu_guest_seconds_total Seconds the CPUs spent in
➥ guests (VMs) for each mode.
TYPE node_cpu_guest_seconds_total counter
node_cpu_guest_seconds_total{fluentbit="exporter",cpu="0",mode="user"} 0
node_cpu_guest_seconds_total{fluentbit="exporter",cpu="0",mode="nice"} 0

HELP node_disk_reads_completed_total The total number of reads completed
successfully.

TYPE node_disk_reads_completed_total counter
node_disk_reads_completed_total{fluentbit="exporter",device="sda"} 1141
node_disk_reads_completed_total{fluentbit="exporter",device="sdb"} 111

HELP node_disk_flush_requests_time_seconds_total This is the
➥ total number of seconds spent by all flush requests.
TYPE node_disk_flush_requests_time_seconds_total counter
node_disk_flush_requests_time_seconds_total{fluentbit="exporter",
➥ device="sda"} 0
node_disk_flush_requests_time_seconds_total{fluentbit="exporter",
➥ device="sdb"} 0.0060000000000000001

HELP node_vmstat_pgpgin /proc/vmstat information field pgpgin.
TYPE node_vmstat_pgpgin counter
node_vmstat_pgpgin{fluentbit="exporter"} 2624237

HELP node_network_transmit_fifo_total Network device statistic fifo.
TYPE node_network_transmit_fifo_total counter
node_network_transmit_fifo_total{fluentbit="exporter",device="lo"} 0
node_network_transmit_fifo_total{fluentbit="exporter",device="eth0"} 0

1455.6 Prometheus outputs
HELP node_systemd_units Summary of systemd unit states
TYPE node_systemd_units gauge
node_systemd_units{fluentbit="exporter",state="activating"} 0
node_systemd_units{fluentbit="exporter",state="deactivating"} 0
node_systemd_units{fluentbit="exporter",state="inactive"} 94
node_systemd_units{fluentbit="exporter",state="active"} 240
node_systemd_units{fluentbit="exporter",state="failed"} 2
HELP node_systemd_version Detected systemd version
TYPE node_systemd_version gauge
node_systemd_version{fluentbit="exporter",
➥ version="249.11-0ubuntu3.9"} 249.11000000000001

The default configuration for the node_exporter plugin yields a great deal of data, so
the plugin provides additional attributes that allow us to tailor and tune the data col-
lected, such as controlling characteristics like these:

 Linux paths to the data on processes and filesystem metrics for collection
 Ability to specify which metrics are collected
 The option to override the scrape_interval attribute for specific data regard-

ing CPU, memory, disk, and filesystem load
 Regular expressions for allowing parts of the filesystem to be ignored when it

comes to collection metrics
 Regular expressions for collecting and excluding systemd data

To show all the attributes and their options, we created a configuration file called
prometheus-exporter-output-all.conf that you can review and experiment with.

5.6.2 Running our Prometheus configuration

We can try capturing this data quickly with our Prometheus configuration. To do this,
we need to start Fluent Bit with our configuration (if we haven’t shut it down). Then, in
a separate terminal, navigate to the chapter5/prometheus folder and run the command

docker compose up

We need to run the command from a specific folder as we pass some basic configura-
tion information into Prometheus. Prometheus needs configuration to know from
where to scrape its metrics data and how frequently. We don’t want to do a deep dive
into the Prometheus configuration. To understand all the configuration attributes, we
recommend reviewing https://mng.bz/n0W4. But we will call the critical elements that
affect our exercise. First, in the global declaration section, we can define the frequency
at which we scrape data unless there is an overriding configuration for a specific source.
In our case, we want to run quickly at 10-second intervals, so we set the scrape_inter-
val to 10s. Next, we need to define all the scrape sources. In our case, we’ve left in the
configuration where Prometheus is scraping its own metrics. We’ve added a block of val-
ues in the scrape_configs section. Each scrape process is described as a job with a
job_name. The job name is important as it is a way to distinguish the data source when
we perform queries using the Prometheus UI. Then we need to point Prometheus to an

https://mng.bz/n0W4

146 CHAPTER 5 Outputting events
address, ideally, DNS rather than IP, which makes things a little more robust if IPs are
reallocated. With the address, we also need to provide the ports being used. Looking
back at our configuration, we see that we have already set the port number to 9885.

 As we’re running Fluent Bit locally, and Prometheus is in a container, we need to
consider how we connect the container networking to our host network. We can do
this by telling Docker through the compose configuration to use the host’s network
(network_mode: host), in which case Prometheus and Fluent Bit will appear to be
running on the same network address. Therefore, we can use a network address of
127.0.0.1 (aka localhost) in our Prometheus configuration.

 The alternative is to allow Docker to use bridge mode (my preference, as it avoids
conflicting network ports). In this case, we need to edit chapter5/prometheus/
prometheus.yaml to replace occurrences of 127.0.0.1 with our host machine’s IP
address; for me, 192.168.0.205.

 We can use the command docker compose up again to start Prometheus so that we
can see it generating logs, and we’ll see it executing and scraping the data. As we’ve
not put the container into the background, we can terminate things simply with con-
trol d, and Docker should report the deployment shutdown.

5.6.3 Prometheus Fluent Bit Exporter

More appropriate for us is a similar input called fluentbit_metrics. This works using
the same principle as the node_exporter_metrics plugin but instead provides metrics
about Fluent Bit itself. Unlike node_exporter_metrics, the configuration is much
simpler. We need to provide the scrape_interval in seconds as before, the tag, and
an optional scrape_on_start, which, if unset, defaults to false, so let’s set it to true.
Getting the data to Prometheus doesn’t require changes to the output plugin. Unlike
the node_exporter_metrics plugin, this source is not platform sensitive. As a result,
we have a configuration that looks like the following listing (chapter5/fluentbit/
prometheus-fb-exporter-output.conf).

[SERVICE]
 flush 5
 log_level info

[INPUT]
 name fluentbit_metrics
 tag fluentbit_metrics
 scrape_interval 5
 scrape_on_start true

[OUTPUT]
 name prometheus_exporter
 match *
 port 9885
 host 0.0.0.0
 add_label fluentbit exporter

Listing 5.7 Fluent Bit metrics: prometheus-fb-exporter-output.conf

Tells Fluent Bit how frequently to
gather its own metrics, expressing the
frequency as a number of seconds

We can force the scrape to happen as soon as Fluent
Bit starts up or when it starts processing events. By
capturing metrics at startup, we are likely to see a
start-state measurement for Fluent Bit (assuming
that the Fluent Bit process doesn’t immediately hit
with pushed inputs such as HTTP).

1475.6 Prometheus outputs
Let’s start this version of the configuration and repeat the process of using Postman to
retrieve the log metrics. The command line to start Fluent Bit is

fluent-bit -c fluentbit/prometheus-fb-exporter-output.conf

With Fluent Bit running, we can use the same Postman configuration as before (Pro-
metheus Scraper). As with the previous output, we’ll see Prometheus-style metrics, but
this time, they relate to Fluent Bit. Let’s see how Prometheus sees this data by starting
up Prometheus again.

 Prometheus provides a simple presentation layer that allows us to formulate and run
queries against the data it stores. This can be accessed using the <host>:<port>/graph
URL, such as localhost:9090/graph. We can then use the UI to help build the graph.
For example, we could query the metric fluentbit_input_metrics_scrapes_total,
and then we need to tell Prometheus the time period and interval for the data points on
the Graph tab. For our demo, we want to set the interval to a short value (5 minutes in
the following example), and as we don’t have much data, we can go for the latest
(obtained by clicking the cross icon in the time field). When we’re happy with the query
parameters, we click the Execute button to direct the browser to a URL with the parame-
ters defined and render the graph. The result should look figure 5.6.

Figure 5.6 A simple example output metric from Prometheus showing how many times Prometheus scraped data
from Fluent Bit

148 CHAPTER 5 Outputting events
We could jump directly to the graph using the URL http://localhost:9090/graph?g0
.expr=fluentbit_input_metrics_scrapes_total&g0.tab=0&g0.stacked=0&g0&g0

.range_input=1m (assuming that localhost is where Prometheus is being run).

5.6.4 Prometheus remote writer

We have seen how we can let Prometheus scrape data from Fluent Bit. But the scrap-
ing (or polling) approach to collecting data has some limitations. It may be easy to
have Prometheus calling nodes to retrieve the metrics data from a central control per-
spective, as we can control operations from one place and present a server being
swamped with data. But it also means we risk missing or losing important data:

 Short-lived or transient processes generating metrics data may no longer be
alive by the time Prometheus knows and tries to connect with the metrics
exporter on the node. For example, it generates metrics from within a Pod,
which Kubernetes may shut down as it controls the number of instances based
on demand. Other short-lived scenarios that would be affected are metrics from
serverless solutions such as Fn Project and AWS Lambda.

 Connecting to node exporters across networks can present some real problems
for network security. This is most visible when Prometheus is running in one
cloud and needs to scrape data from node exporters in another cloud or private
data center. Allowing an external service to connect with a node exporter within a
private subnet within a data center is the sort of thing that will give an IT security
officer a heart attack. Suppose the idea was even considered. In that case, we’d
likely need to put into place a complex array of network security processes, such
as proxies or API gateways, to introduce additional authentication checks.

 Reaching out to node exporters is, in effect, a process of polling, which can be
inefficient as we may end up going through the overhead of connecting to a
node exporter to find there is no new data. We must trade off the latency of
important metrics, such as a metric showing something has reached a critical
threshold, against the efficiency of calls. Ideally, we should make calls only when
we have a high probability of retrieving the data. Call too quickly, and we won’t
get any new data in each call; call too slowly, and we’ll hit critical thresholds
before we know and can do anything about them. As a result, communicating
using a push model or streaming approach is attractive. With a push model,
when there is data, the source sends it to the central service, or the central ser-
vice creates an open connection where the data source can send back data
when it occurs over the connection initiated by the server.

To address these challenges with Prometheus, the team behind Prometheus devel-
oped a remote write specification (https://mng.bz/vJPr). Prometheus provides an
endpoint to support this specification but isn’t the only software to implement it; it
can be used to send metrics to solutions that can handle time series data, such as Tha-
nos. As the interaction is standardized, we can communicate with Prometheus or data

https://mng.bz/vJPr

1495.6 Prometheus outputs
stores but also use this output plugin to send data to cloud services that support that
standard, such as New Relic, Logz.io, and Grafana Cloud.

 Let’s set up our configuration so that we can remotely write to our locally hosted
Prometheus instance. To illustrate configuration differences, we’re also going to
define an output to send data to a cloud-hosted solution. We opted to use Grafana
Cloud, as it has a free tier and a period of unrestricted use. The way the service is built
also allows us to differentiate among Grafana, Prometheus, and other components.
Appendix A describes how to set up Grafana Cloud. If you don’t want to use one or
the other, delete the output declaration or comment it out using the hash character.

 We’ll continue to use the Fluent Bit metrics as the source (making the deployment
platform neutral). We need to define an output that uses the prometheus_remote_
write plugin (identified with the name attribute). We need to specify the host address.
For our local configuration, this can be the IP of the machine running our Pro-
metheus container. For the cloud deployment, we’d expect this to be a DNS address,
which will vary depending on which cloud provider and cloud region the managed
service is operating. As we’re based in the United Kingdom, it makes sense for us to
use a region in the United Kingdom. (During setup, you may choose a different
deployment location, but you should note the URL you’re provided.)

 Next, we need to identify the URI—the path to the endpoint, which will differ
depending on the service. Prometheus, out of the box, expects this to be /api/v1/
write. For the Grafana Cloud, the changes to /api/prom/push reflect how they’ve
structured their endpoints across multiple service components. We can derive these
details from the remote write endpoint provided by the Prometheus setup (https://
grafana.com/orgs/<subdomainname>/hosted-metrics/<userId>). We need to indi-
cate which port to use to call Prometheus, which can be affected by whether we’re
using Transport Layer Security (TLS). Locally, we’re using the default port of 9090,
and we’re not using TLS or credentials. For a cloud deployment, we’d expect to use
TLS and the standard TLS port to be used, which means we need to set the port attri-
bute to the standard 443 TLS port for our cloud service but to 9090 locally. Also, we
need to enable the TLS option for our cloud service using the attribute tls and set
the value to on, but for a simple local configuration, we set the attribute to off. We
would expect any cloud service to authenticate requests to provide data to prevent a
third party from poisoning our data or disrupting the service by sending it masses of
junk data. Authentication can be done through basic authentication, so we need to
define the username with the attribute http_user and the associated password with
http_passwd. Locally, to avoid the additional complexities of setting up an authentica-
tion solution and adding more complexity to the Prometheus setup, we will forgo
authentication so we don’t need to supply such credentials. Our example references
environment variables to minimize the exposure of such credentials. We can provide
the additional labels using the add_label attribute.

 As we’re initiating the data transmission, we have the option to record what the
consumer says about the data. We can control whether Fluent Bit will log this (and

https://grafana.com/orgs/<subdomainname>/hosted-metrics/<userId>
https://grafana.com/orgs/<subdomainname>/hosted-metrics/<userId>
https://grafana.com/orgs/<subdomainname>/hosted-metrics/<userId>

150 CHAPTER 5 Outputting events

 of
d
we’ll be able to see it on the console) using the attribute log_response_payload,
which we’ll enable with the value of on. Our configuration looks like the following list-
ing (chapter5/fluentbit/prometheus-remote-output.conf).

[SERVICE]
 flush 5
 log_level trace

[INPUT]
 name fluentbit_metrics
 tag internal_metrics
 scrape_interval 5

[OUTPUT]
 name prometheus_remote_write
 match *
 host prometheus-prod-05-gb-south-0.grafana.net
 uri /api/prom/push
 port 443
 tls on
 log_response_payload on
 add_label fluentbit cloud
 http_user ${my-userid}
 http_passwd ${my-password}

[OUTPUT]
 name prometheus_remote_write
 match *
 host 192.168.0.205
 uri /api/v1/write
 port 9090
 tls off
 log_response_payload on
 add_label fluentbit local

With the cloud environment configured and our Docker version of Prometheus run-
ning using the previously described docker compose up command, we can run the sce-
nario using the command

fluent-bit -c fluentbit/prometheus-remote-output.conf

Listing 5.8 Prometheus writer: prometheus-remote-output.conf

Identifies the remote write
plugin (the alternative being a
Prometheus exporter plugin)

The address of the server
to write to. In this case,
we’re referencing a Grafana
Cloud deployment.

The path to the web
endpoint. This will vary
based on the service
configuration and
implementation, so we’ll
need to refer to the
provided documentation.
Provided services often
will provide a full URL,
and the URL needs to be
broken into separate
elements.

External services will expect the caller to provide
credentials. Here, we’re supplying a username and
password (basic authentication). The values are
provided from environment variables, or we replace
these references.

This instantiation output is to a local instance
Prometheus. As a result, we have no dedicate
DNS address—just an IP within our network.

The default remote write URI for a Prometheus
default configuration. Note that it differs from
the Grafana Cloud service.

We’re using the default port, which doesn’t
expect the use of TLS, so we’re providing the
port number and explicitly switching the tls
part of the service off.

We want to see the response message
coming back from Prometheus, so we

have enabled the response logging.

We’re adding a label to help queries
distinguish the different metric sets.

1515.7 PostgreSQL output
We should see Fluent Bit’s console report sending the metrics to Grafana Cloud. We
can then navigate to the dashboard using the URL https://<subdomain name>.grafana
.net/dashboards> we’ve set up to see the effect of the incoming data, as described in
appendix A.

5.7 PostgreSQL output
If we want a general-purpose tool that allows us to query our log events (as well a met-
rics and tracers), the ideal is a database with native support for JSON, which means
the database can easily accommodate varying log structures and we avoid Fluent Bit’s
having to do a lot of heavy lifting restructuring the different payloads. Also, Fluent Bit
handles log events using a JSON data structure. Out of the box, Fluent Bit supports
databases such as Elasticsearch and the OpenSearch variant, as well as Postgres. We
could also include Kafka and Prometheus in this list, as they can operate as time series
databases. As Postgres is not difficult to work with and is a converged database (works
with relational and nonrelational data models), it makes a good illustration.

 Appendix A provides setup information for PostgreSQL, which we’ll need to run
this scenario. In addition, within the chapter’s download folder are convenience
scripts start-postgres.[sh|bat] to help make things easier with the Docker com-
mand and all the relevant parameters.

 The PostgreSQL plugin (pgsql) is subject to build flags; as a result, it may not be
in your Fluent Bit deployment. By default, it is in the official binary download for
Linux but not for Windows or macOS and won’t be on if you have compiled Fluent Bit
yourself (unless the plugin has been explicitly enabled). The easiest way to confirm
the plugin’s availability is to use the fluent-bit -–help command line, which includes
a list of the available plugins in the output.

 Let’s start with the simplest scenario and configuration. We will continue consum-
ing events from Postman as an HTTP input, and output the received events to a table
in Postgres. To do this, we need to provide the details of how to authenticate the data-
base connection using the attributes user and password. Including credentials in the
core configuration is not ideal, and we’ll return to this consideration shortly. Then we
need to provide the network connection address for the database server using the
attributes host and port, which are configured just like any other network-based con-
nection. Although our example is going to work with localhost for simplicity, when we
get into real-world deployments, particularly in containerized use cases like Kuberne-
tes environments, localhost is unlikely to be an option (the one case where localhost
will be fine is sidecar deployments), and we’re best using DNS addresses. We won’t col-
locate Fluent Bit within a single container with Postgres. We need to ensure that we
can still access the Postgres service.

 As the database server can support multiple database instances, we need to name
the database instance using the database attribute. The plugin allows us to name
the table with the attribute called table. This means we can direct different types of
logs or log sources to different tables if we want Fluent Bit to filter and route events

152 CHAPTER 5 Outputting events
(chapter 7), but we’ve already seen how we can use the match attribute. Finally, we
need to incorporate the log event’s timestamp into the JSON payload to make it easier
to perform JSON queries when examining time ranges or ordering data. We could do
this by manipulating the payload upstream of the output, but the plugin has made this
simple for us. For our scenario, we will use the provided Postgres database and the
users’ setup (again, an action to avoid extra setup effort and good for production use
cases). See the following listing and chapter5/fluentbit/db-output.conf.

[SERVICE]
 flush 1
 log_level info

[INPUT]
 name http
 listen 0.0.0.0
 port 9881
 tag input1

[OUTPUT]
 name pgsql
 match *
 host localhost
 port 5455
 user postgresUser
 password postgresPW
 database postgres
 table fluentbit
 timestamp_key ts

To execute this HTTP-to-Postgres scenario, we need to start our container with Post-
gres, as described in appendix A. Then we need to run either a Postgres command-
line interface (CLI) client or an installed UI tool such as pgAdmin, which we’re going
to use (appendix A). Finally, we’re going to use Postman again. When our prerequi-
site tools are running, we can start Fluent Bit with the command

fluent-bit -c fluentbit/db-output.conf

When Fluent Bit is running, we can select the HTTP Call configuration in the collec-
tions within Postman and click Send. We should see log messages on the Fluent Bit
console indicating activity. With that, we can explore what happened in Postgres.
Using the navigation tree, we can open the database and expand the tables, which
should include a table called fluentbit that the plugin generated for us. Then, using
the context menu on the table, we can use pgAdmin to View/Edit Data > All Rows.
This will populate the Query panel, execute the SQL, and show the results in the
lower panel, as shown in figure 5.7.

Listing 5.9 PostgreSQL output example: db-output.conf

Provides the name of the plugin being used.
This is the name for PostgreSQL.

As the database has been deployed on the same
host as Fluent Bit, we can reference localhost. But
in a Kubernetes use case, we’ll want to use an IP or
DNS address.

The port to be used for
communicating with Postgres

As a Postgres server can handle multiple schemas,
we need to identify which schema. We can use the
default schema rather than set up an additional
schema. But in production, we should have a
separate schema for monitoring use cases.

We need to declare the attribute's name in the JSON
payload, to which we’ll add the timestamp for the record.

1535.7 PostgreSQL output
As the figure shows, the table contains a record for each log event received, with col-
umns for the tag, timestamp, and data in JSON format. Depending on the environ-
ment and time zone, the timestamp will reflect Coordinated Universal Time (UTC).
This prevents the records from getting out of sequence when moving in and out of
daylight-saving clock shifts.

 We previously identified that having credentials in clear text is not recommended.
The easiest way to address this is to reference an environment variable for this value.
When operating within a Kubernetes environment, we can retrieve the credentials
from a Vault and inject them into the container via the Pod configuration. This
ensures the credentials are stored securely and not in the configuration, which ideally
would be held in a version control tool such as Git. The downside of this approach is

Figure 5.7 pgAdmin view of the Postgres table containing log events output by Fluent Bit

154 CHAPTER 5 Outputting events
that after the environment variable values are set, they remain unchanged in the con-
tainer for as long as it is running.

TIP For more information on how to configure Secrets management within
Kubernetes, we recommend looking at Kubernetes Secrets Management by Alex
Soto Bueno and Andrew Block (https://www.manning.com/books/kuberne-
tes-secrets-management).

Let’s modify our configuration to illustrate that the password comes from an environ-
ment variable. The first step is defining and populating the environment variable. We
can do that with the command export PostgreSQLPassword=postgresPW. Then we
modify the attribute so that, rather than password postgresPW, we have the attribute
set as password ${PostgreSQLPassword}. With that change, repeat the previous steps
of starting Fluent Bit, sending the event from Postman, navigating to the fluentbit
table, and retrieving the records with pgAdmin. The result of the query on the table
will show the additional record.

 In addition to security, we need to consider the performance of the database to
ensure that we can send the logs to the database quickly enough. Like many data-
bases, PostgreSQL supports connection pools and allows many concurrent connec-
tions. To exploit this, we have configuration attributes that allow us to configure how
many connections we may want to use concurrently. Each connection, in effect, can
process a chunk of log events. There is always an outside chance that one connection
may get serviced before another, resulting in log events being stored slightly out of
sequence. But as we mentioned, we can protect against this by using order-by clauses
in our SQL. To enable this behavior, we need to switch on the asynchronous behavior
using the attribute async and providing a value of true. Then we can define how
many connections it maintains as a minimum (avoiding the initial overhead of start-
ing additional connections) and the maximum number of connections using the attri-
butes min_pool_size and max_pool_size, respectively.

 To increase the workload, we need to use the LogSimulator. Trying to induce the
workload to guarantee the use of the additional connections is difficult as it is
dependent on the environment being used in terms of CPU, memory, and so on.
The LogSimulator command and configuration to generate a large load is provided
in chapter5/SimulatorConfig/volume.properties, along with the convenience
scripts previously illustrated. (Appendix A describes setting up and running the
LogSimulator.) You may need to experiment with configurations of LogSimulator
and Docker to see the connection pooling being used. We’ve included a configura-
tion called scaling-test.conf in chapter5/fluentbit, which includes the pool
size attributes.

 The pgsql plugin has also been enabled to work with CockroachDB (https://
www.cockroachlabs.com), available as an open source or managed cloud service, which
is fully compliant with PostgreSQL syntax and can work with PostgreSQL drivers. To
exploit this, an additional attribute called cockroachdb needs to have a value of true set.

https://www.manning.com/books/kubernetes-secrets-management
https://www.manning.com/books/kubernetes-secrets-management
https://www.cockroachlabs.com
https://www.cockroachlabs.com
https://www.cockroachlabs.com

1555.8 HTTP output
Cockroach DB offers some interesting capabilities suited to deployment in cloud/con-
tainerized environments as it is resilient through the use of multiple nodes, able to scale
and balance workload across its nodes, and retains integrity and ACID (atomicity, consis-
tency, isolation, durability) properties expected of a relational database.

5.8 HTTP output
Today, the use of HTTP and JSON (described as RESTful if it’s used according to sev-
eral good principles) is so pervasive that when there isn’t a plugin available, it is likely
that we can direct Fluent Bit using the HTTP output or extending it to overcome any
special needs, such as specific payload encryption or authentication. The http output
plugin is restricted to using the POST verb; this reflects the idea that we’re unlikely to
be updating or replacing a log record, typically done with the PATCH or PUT verb.

 To illustrate the HTTP output, we’re going to use a tool called WireMock (appendix
A), which allows us to create a local HTTP server that can be configured to respond to
different requests and validate header details, such as basic auth credentials and return
payloads. We’ve prepared configuration files for WireMock and supplied a shell script
(start-wiremock.sh) to start the container.

 To create an HTTP output, we need to start with the match and name attributes. As
we’re passing on what we receive from an HTTP input, we can set the output to match
all traffic, and the output plugin is called http. As with all network-based outputs
(where we invoke the endpoint rather than accept a call from another party, such as
Prometheus), we must provide the port and host properties. As this output is a
general-purpose plugin, we can’t assume the URI/path of the destination. So, this
needs to be provided using the uri property. We’ll use a simple path with /simple.
Combining these properties should produce a qualified URL, and depending on the
HTTP verb (POST, PUT, GET, PUSH, and so on), we can use curl or a web browser,
http://localhost:8080/simple. We can get the output plugin to format the payload,
which means using a format property to define what format we’d like. For readability,
let’s use JSON. As we’ve seen previously, we can also stipulate the formatting of the
date-time provided using the property json_date_format. We can add HTTP header
values using the header attribute followed by name and value for the header with a
space separating the key and value. In our example (chapter5/fluentbit/http-out-
put.conf), we provide a key of Fluentbit and a value of http.

[SERVICE]
 flush 1
 log_level error

[INPUT]
 name http
 listen 0.0.0.0
 port 9881
 tag http-in

Listing 5.10 HTTP output example: http-output.conf

156 CHAPTER 5 Outputting events
[OUTPUT]
 match *
 name http
 port 8080
 host 127.0.0.1
 uri /simple
 format json
 header fluentbit http
 json_date_format iso8601

To run our scenario, we need to start WireMock using the script

start-wiremock.sh

If you choose to run WireMock differently, such as deploying to a Kubernetes envi-
ronment, ensure that you can see the console output. Then start up Fluent Bit with
the command

fluent-bit -c http-output.conf

The last step is to start Postman. Using the chapter 5 collection, select the HTTP Sin-
gle Call configuration and click the Send button. We expect to see this result on the
console displaying the HTTP input. Postman should receive an HTTP 201 response
code. Then, examining the WireMock console output, we should see it write out the
header and body details to the console.

 This is a good start, but if we’re sending a great deal of JSON data, ideally, we want
to take advantage of the fact that HTTP allows payloads to be compressed. This can be
enabled by defining the compress property and providing the type of compression to
be used. Today, the only option for applying compression is gzip, which reflects the
broad availability of gzip as both ends of the connection must support the compres-
sion algorithm. When Fluent Bit is supported by distributed solutions, particularly
when crossing data centers, there is a good chance that a proxy will be involved. In
this case, we can identify the proxy server using the proxy attribute and supply the
proxy’s address.s

 More important, when using the network, we should ideally use security, and
many HTTP endpoints will expect at least basic authentication to secure the desti-
nation data store from being tainted with random or poisonous data. The http out-
put plugin supports basic authentication and has also been extended to support AWS

Defines the output as
using the http plugin

We need a destination in
terms of port and server.

In addition to a network address, we
need to supply the URI that defines
where in a specific server to
communicate. In our example, we’re
addressing 192.168.0.135:8080/simple
as the complete address. The full path is
separated out to make it easier to
adjust the addressing dynamically.

We can define the formatting of
the output. In most cases, we’d
expect this to be JSON.

By providing additional header attributes, we can provide
additional values dynamically; these could be additional

tokens for authentication through useful metadata about
which instance of Fluent Bit we’re sending the event from.

We can define how the date and time provided
are formatted. The ISO approach is universally

understood, even if it involves more effort to
parse and retrieve. It is also humanly readable.

1575.8 HTTP output
authentication. HTTP Basic authentication requires a user and password, provided
by the http_user and http_passwd attributes. We previously discussed different
approaches to avoiding hardwiring credentials into the configuration. For simplic-
ity, we have set these to have the value test in our configuration http-auth-output
.conf file.

 Let’s restart WireMock and Postman. This time, we’ll run Fluent Bit with the command

fluent-bit -c fluentbit/http-auth-output.conf

We should see the header and body again written to the console. Note the additional
header line for authorization, which indicates we are using basic authentication and a
random-looking string. The string represents the Base64 encoding of our username
and password, separated with a colon. We can verify the string using the website
https://www.base64encode.org. As we haven’t set up WireMock to support HTTPS, we
are passing credentials in the clear, which isn’t recommended. The benefit of Wire-
Mock is that it can be set up with certificates to enable HTTPS traffic. Figure 5.8 shows
the expected output.

Figure 5.8 WireMock console output for the configuration using basic authentication

158 CHAPTER 5 Outputting events
5.9 Forwarding to other Fluent nodes
Chapter 4 introduced the forward plugin to illustrate how we can configure Fluent
Bit to receive log events. Let’s take a close look at the http-forward.conf file we used,
as shown in listing 5.11 (chapter5/fluentbit/http-forward.conf). As we described
earlier, the network-centric plugins have the same core attributes, such as host and
port. We can also secure connectivity using TLS with the attribute and value tls on.
The same TLS configuration values need to be provided as described with the HTTP
plugin use. When TLS is enabled, Fluent Bit, when communicating with Fluentd, can
use several additional security properties, such as basic authentication (username and
password attributes) or a shared token (defined using shared_key or disabled with
empty_shared_key attributes).

[SERVICE]
 flush 1
 log_level debug

[INPUT]
 Name http
 listen 0.0.0.0
 port 9881
 successful_response_code 202
 success_header x-fluent-bit received
 Tag http

[OUTPUT]
 name forward
 match *
 host 0.0.0.0
 port 9980

We can repeat chapter 3’s forward plugin configuration, as shown in figure 5.9,
where we use a Postman configuration (or curl) to trigger the pipeline. (The Post-
man chapter 3 collection configuration was called HTTP Call, and in chapter 3, the
JSON file is called log.json.) A more adventurous configuration exercise would be
to set up Fluentd as described in chapter 7 of the Logging in Action book but using
the http-forward.conf configuration from chapter 3 to direct the Postman traffic
to Fluentd, which, in turn, will reach our Fluent Bit deployment.

 To rerun the scenario to see the configuration perform, in our shell, we need to go
back to the chapter3 folder and execute the command

fluent-bit -c ./fluentbit/http.conf

Although the results will be the same as in chapter 3, we can understand the forward
plugin from both an input and output case.

Listing 5.11 Using the forward plugin: http-forward.conf

The forward output
plugin uses the same core
attributes as HTTP and
other network plugins.

1595.10 OpenTelemetry
5.10 OpenTelemetry
Fluent Bit can perform two roles when it comes to outputting OpenTelemetry (OTel).
We saw in chapter 3 that Fluent Bit can capture OTel data flows. As Fluent Bit may be
part of a network of nodes that consolidate logs across multiple sources such as Pods,
we need to be able to send data to a downstream node, which may be collecting all the
traffic from other nodes capturing data from Pods before filtering and directing traf-
fic to a central solution.

 Another common use case is transforming collected sources of metrics, traces, and
logs and standardizing them in the OTel format. Data manipulation will make the
events between the input and output compliant. We also have the opportunity to take
the different signals and associate them with a common subject. For example, we may
measure Pod performance metrics and metrics related to error rates and link this data
to application logs and trace data. Together, we get a far more holistic view of what a
service may be doing and performing. This is part of the reason why OpenTelemetry
has worked to unify several disparate standards.

NOTE In v1 and v2 of Fluent Bit, only the HTTP and JSON parts of the Open-
Telemetry Protocol (OTLP) specification were supported, not gRPC with
HTTP/2 format. OTLP states that the step down is permissible; communication

Local

network

HTTP

forward

[INPUT]

[OUTPUT]

http-forward

HTTP

stdout

[INPUT]

[OUTPUT]

forward-out

Console

(stdout)

Figure 5.9 The configuration is as we saw in chapter 3, but this time, our focus
is on the output (left node).

160 CHAPTER 5 Outputting events
with gRPC should be used when available. Fluent Bit v3 includes a significant
enhancement in the form of introducing support for HTTP/2. The under-
the-hood changes needed to introduce support for HTTP/2 are part of the
reason we’ve seen a major version revision. Given that it will be a while before
v3 deployments overtake v2 and the step down to JSON is valid, we’ve focused
on the JSON approach to illustrate functionality.

To do this, Fluent Bit can send data using JSON over HTTP(S) to the relevant destina-
tion, which should follow the defined URI conventions but can be changed to accom-
modate updated nonstandard endpoints, such as a proxy server affecting paths. To
address this, we need to define the logs_uri, traces_uri, and metrics_uri (exclud-
ing the host, which is identified as a separate attribute). We can also label the data to
provide more meaning and associate the different signals with a common theme. We
can attach labels to the signal by repeating the add_label attribute as many times as
needed. In our example, we’ve added two. The value for the add_label attribute is
constructed by a space-separated name-value pair.

 The last consideration is how important it is to get an active confirmation being
logged by Fluent Bit. Setting the log_response_payload to true will result in the
response being logged, which will create some additional I/O workload, so it is best only
set when configuring and verifying that the Fluent Bit configuration is correct. We’re
not trying to send the data to a nonexistent endpoint. If we need assurance and absolute
traceability that the signals have been received, we can enable this. We can control the
logging of the responses to more than just the console by adding an attribute to the
[SERVICE] section of the configuration in the form of log_file, which points to the file
to which Fluent Bit will log its logs, as we have done in this configuration.

 To make things as compact as possible, we’re using the dummy input plugin to gener-
ate log events. The fluentbit_metrics input plugin will generate metrics data. The
event_type input plugin will create trace events for us. Not shown in the following list-
ing but included in the provided file (chapter5/fluentbit/otel-output.conf) are
opentelemetry input plugins, so we have the option to use our Postman operations
from chapter 3. To make it easy to see what is happening, I include an output for stdout.

[SERVICE]
 flush 1
 log_level info
 log_file fluent-bit.log

[INPUT]
 name fluentbit_metrics
 tag node_metrics
 scrape_interval 300

[INPUT]
 name dummy
 tag dummy.log

Listing 5.12 OpenTelemetry output: otel-output.conf

1615.10 OpenTelemetry
[INPUT]
 name event_type
 type traces

#[OUTPUT]
name stdout
match *

[OUTPUT]
 name opentelemetry
 match *
 host localhost
 port 8080
 metrics_uri /v1/metrics
 logs_uri /v1/logs
 traces_uri /v1/traces
 add_label app fluent-bit-demo
 add_label client fluent-bit
 log_response_payload True

With our configuration ready, we need to handle the output from Fluent Bit. To do
this, we’re going to use the WireMock container. We’ve provided the configuration
and simplified the task of mapping our configuration by incorporating it into a com-
mand-line script. This script needs to be run in the chapter5 folder, as it uses relative
paths to map the folders. To start WireMock, we need to run the command

./start-wiremock.[sh|bat]

and then start Fluent Bit with the command

fluent-bit -c fluentbit/otel-output.conf

Fluent Bit will be generating events. If we’ve uncommented the stdout output, this
shows content scrolling through. Ideally, we want to see what is being sent by the
opentelemetry plugin. We can do this by interrogating WireMock with some HTTP
GET calls. Within the chapter 5 Postman collection, we’ve provided two operations
called WireMock mappings and WireMock requests. When used, the WireMock map-
pings will retrieve the WireMock configuration. To see what WireMock is receiving, we
want to use the WireMock requests. With the operation selected (configuration visible
in the tool’s main panel), click the tool’s Send button. As a result, we’ll receive an
HTTP response in which we can expect to see a message body returned (figure 5.10).

 As we can see in figure 5.10, the payload is packed as a Protobuf payload (bodyAs-
Base64), but we can also see elements of the payload in the body element of the JSON
sufficient to make out that the content reflects what we expect to see. We can use the

To see the events on the console,
uncomment (remove the hash characters)
from the OUTPUT configuration. But this
content will be noisy.

Names the
output plugin Defines the location of the

server to direct the output to

Directs the outputs to the appropriate
URI. Here, we’re following the standard
URIs for OpenTelemetry v1.

As with several plugins that operate
using HTTP networking, we can add
value pairs in the HTTP header.

We have the option of recording the response for the opentelemetry endpoint
into Fluent Bit's logging. If we experience any problems passing on the OTel

signal(s), we have a record of why. The server may be down and not responding,
or it may be overloaded by problems such as authentication errors.

162 CHAPTER 5 Outputting events
search to find the three different types of log events generated by searching for the
output URLs (/my/metrics, /my/logs, and /my/traces).

5.11 Hyperscaler native and SaaS observability
If we’re running solutions on infrastructure providers such as Oracle, AWS, Azure,
and Google, to name just a few of the big players, we can use their services to store and
visualize metrics, traces, and logs. This raises the question of how Fluent Bit can out-
put these services. A couple of options are available. The long-term answer is that
these providers will or do offer OTel-capable endpoints, meaning we can use Fluent
Bit as a vendor-agnostic agent and point its output to the relevant cloud service. We’re
also seeing this pattern of support happening with the specialty observability
SaaS/software providers such as Datadog and Splunk.

 The short-term answer is that some providers, such as AWS, have created plugins
that are built into the Fluent Bit core as outputs. Additionally, the Prometheus API
and its associated data definitions have been adopted as a de facto standard. (See the
documentation at https://mng.bz/vJPr.) Some services can be sent using the standard
HTTP output that we’ve already looked at.

Figure 5.10 The Postman view of the output event—in this case, an OpenTelemetry metrics message

https://mng.bz/vJPr

163Summary
Summary
 Outputs can be formatted. Fluent Bit provides several formatters that support

different ways to format: JSON, MessagePack, and so on.
 Fluent Bit can write to files. This feature has both benefits and challenges. The

most notable challenge is that Fluent Bit file output currently doesn’t provide
native support for log rotation.

 Fluent Bit can direct output to Prometheus in two ways:
– Prometheus can scrape the data from Fluent Bit using the exporters (ideal if

you want Prometheus to control the process).
– Fluent Bit can remote-write to Prometheus, which is more suitable for

dynamic environments in which Fluent Bit instances may be replaced.
 We can direct log events to a Postgres database. The Postgres plugin (pgsql), is

a good example of an external storage solution that allows users to query data.
 Fluent Bit can work with HTTP endpoints, sending events to a wide range of

tools without needing dedicated plugins. This capability includes the option to
communicate with other Fluentd and Fluent Bit nodes.

 Fluent Bit can send events to OTLP-compliant destinations using the step-down
approach, and since v3, the HTTP/2 with gRPC exchange can be applied.

Parsing to extract
more meaning
In this chapter, we will start working with Fluent Bit’s capabilities to examine and
manipulate the data it collects and outputs. Parsers are key tools for extracting
meaning from unstructured data. Obtaining the meaning of an event allows us to
make decisions and transform and route events. To use an old expression, parsing
enables us to turn data into information.

6.1 Architectural context
As we can see in figure 6.1, parsers and filters sit in the middle of the pipeline of
processing log events after we’ve ingested the data.

 The benefit of separating parsers from the input and output plugins is that we
can apply the same parsing processes to different sources. This makes parsers

This chapter covers
 Exploring the relationship between filters,

parsers, and decoders

 Examining prebuilt parsers

 Using filters to run parser processes

 Using regular expressions and JSON parsers
to extract meaning from log content
164

1656.2 The goal of parsing
highly reusable, as we’ll see. As the figure suggests, we can use parsers with input plugins,
but the main relationship parsers have with other components is with filters, as we’ll see.

6.2 The goal of parsing
Parsers are among the most important tools for extracting meaning from log events,
allowing us to find important values. The main reasons for parsing are

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Focus of

this

chapter

Figure 6.1 Logical architecture of Fluent Bit, with this chapter's focus on parsers
highlighted. Parsers are used in special cases with input plugins but primarily through
their relationship with filters.

166 CHAPTER 6 Parsing to extract more meaning
 When we’ve parsed data, we can incorporate the extracted data back into the
payload for later use. For example, we can extract the necessary values to incor-
porate into a structured payload that the destination system may require:
– We can use the parsed data to help route the events—for example, isolat-

ing error codes from a stack trace or the exception type and package, which
can help us decide the best path for remediation. In the most advanced situ-
ations, parsing could involve processes such as archiving files or clearing
old temp data.

– If the event is security related, such as successful and unsuccessful logins to
an application, we may want to route the event to our standard repository for
application logs and to the security-monitoring tools. Doing so can add to
security-specific analyses, such as looking for patterns of use or misuse, for
example, multiple logins for an account from different locations.

 We can detect and implement preventive measures such as ensuring that sensi-
tive data like credit cards and bank account details isn’t accidentally included in
logs or traces when someone incorporates all the data received into the event
without considering the security implications. Ideally, such data is removed or
masked before leaving the application, but few frameworks provide such mask-
ing or filtering, which has to be done with the logic building the event.

The value of performing such checks can make a significant difference when
addressing compliance audits. The ability to show preventive measures when
there is a risk that such data will creep into the logs is a powerful message for
the auditor. In the case of the payment card industry (PCI), although our front-
line services and servers need to be stringently compliant, downstream servers
don’t need to demonstrate that they have every control in place. That said, a
zero-trust approach to security is always worthwhile.

We can use our ability to extract information from logs, particularly for warnings
and errors, to direct notifications to the relevant teams. If we’re supporting a mul-
titenant solution, extracting from the logs which tenant the issue is affecting is also
key in terms of customer relations. There is great value in showing that we’re on top
of an issue before customers spot it; it is better than customers raising issues as sup-
port tickets.

NOTE Using regular expressions (regex) is a common way to validate or extract
text elements from a string. If you’re new to regex, it is worth taking a moment
to understand better how they work. Appendix B includes resources to help,
but we’d suggest starting with https://mng.bz/QVRQ. Multiple flavors of regex
exist and are typically influenced by the development languages being used.

6.3 Relationship between parsers and filters
Although chapter 7 examines filters in more detail, parsing (analyzing the input and
extracting meaningful content) is achieved through a specific filter. We’re starting

https://mng.bz/QVRQ

1676.3 Relationship between parsers and filters
with parsing because it can help solve many challenges without requiring more com-
plex filter capabilities. To understand how to incorporate a parser into a use case of
capturing log events, parsing them, and outputting the result to a file, we need to take
a brief look at filters.

 The first important detail is that the parsing configuration lives in a file separate
from the definition of the pipeline of events. We identify the file containing the parser
configurations in the [SERVICE] part of the configuration, using an attribute called
parsers_file, which we supply with the file’s location containing one or more parser
definitions. In this book, we’ll use a relative file path, as the directory structure in
which the resources are downloaded will be different for everyone. But for produc-
tion, consistency, certainty, and clarity about where files are located are important, so
we’d recommend using absolute paths.

 With the parser file identified (we can identify multiple parser files if necessary by
repeating the attribute, sometimes referred to as chaining parsers, as one parser’s out-
put becomes another parser’s input), we need to populate the file with our parser
configuration. As with our core configuration files, the classic format starts with a
block declaration of [PARSER] for each parser definition in our file. Currently, a YAML
configuration will use the same traditional notation for parsers.

 Parser definitions use several attributes that depend on the parser implementa-
tion, but universally, we need to name the parser with the name attribute, which links
to the parser specification to be used in the filter configuration. The name needs to
be unique across all the parser definitions we create. Configuration errors may result
in the rest of the parser file not being processed. A warning is generated at startup,
but lots of unexpected runtime problems may occur if not observed. We also need
to tell Fluent Bit what type of parser we want to use with a format attribute. We’ll
explore more of the attributes as we get further into using parsers. See the following
listing and chapter6/fluentbit/parsers.conf.

[PARSER]
 name myApache
 format regex
 regex ^(?<INT>[^]+) (?<FLOAT>[^]+)
➥ (?<BOOL>[^]+) (?<STRING>.+)$

With the parser defined, we can complete the filter definition, which invokes the
parser. It should be no surprise that the filter declaration is a lot like an output defini-
tion, identified in a classic format with [FILTER] and a dictionary block called filter
within the pipeline in YAML.

Listing 6.1 Example parser file: parsers.conf

The name that links the parser
definition to the main configuration
(filter). The name needs to be unique.

The name of the type
of parser to be used

The parser needs the regex, but other parsers
need different values. This regex attempts to
identify an Integer, Float, Boolean, and String
from the provided string to parse.

168 CHAPTER 6 Parsing to extract more meaning
 As we have the option of many kinds of filters, we need to tell Fluent Bit we want a
parser filter using the attribute called name and the value of the parser. We need
a match attribute, so we filter only the correct data.

 The all-important bit is providing the parser attribute, which uses the name of
the parser definition in the parser file. The final piece of this jigsaw is identifying
the attribute key_name, which identifies the root element in the log event structure
we want to parse.

 We don’t have to define the entire payload every time. For example, we could pro-
duce a parser that extracts the entire error message from a log event. A MySQL data-
base could return to our application the error message "ERROR 1146 (42S02): Table
'test.no_such_table' doesn't exist", which may be wrapped up in our application
log text. An example log event could be

17:13:01.540 [main] ERROR com.foo.Bar – Err from database - ERROR
1146 (42S02): Table 'test.no_such_table' doesn't exist.

From this single text, we may want to parse and create an initial set of attributes to
hold the log classification, such as ERROR; where in the code the error was raised
(com.foo.bar); and then an attribute to hold the error message

Err from the database - ERROR 1146 (42S02): Table
'test.no_such_table'doesn't exist

This first parse results in new payload elements, such as Classification, Code-
Location, and LogMessage.

 Producing a parser that can pass to a subsequent parser the task of parsing the
newly extracted LogMessage part of the log event and locating the MySQL database
error code becomes much simpler and more reusable. See the following listing and
chapter6/fluentbit/apache-log-parser.conf.

[SERVICE]
 flush 1
 parsers_file ${FLUENTBIT_HOME}/conf/parsers.conf

[INPUT]
 name tail
 path ./apache-log
 read_from_head true
 tag apache-feed

[FILTER]

 name parser

 match *
 key_name log

Listing 6.2 Config with a parser referenced: apache-log-parser.conf

Here, we’re using an
environment variable
to give us a path to the
Fluent Bit installation
folder, which then allows
us to reference the conf
folder containing the
predefined filters.

To use the parser, we need
to define a filter to process
the appropriate events.

Names the type of filter to be
used—in this case, a parser

We need to identify the part of the record we
want to filter, as we've just ingested the log
event. The log’s core content is mapped to
the event attribute called log.

1696.4 Prebuilt parsers
 parser apache

 preserve_key true

 reserve_data false

[OUTPUT]
 name stdout
 match *

6.4 Prebuilt parsers
The software industry has a variety of standardized or default log structures, many of
which are simply character delimited and ingested as a single string. We need to break
them into meaningful parts.

 Rather than reinventing the wheel and figuring out the algorithm or regex for
these common formats, Fluent Bit incorporates a catalog of parser definitions as part
of its installation in a folder called /conf at the root of the Fluent Bit installation. We
can copy the parser expressions into our configuration or, better, reference the pro-
vided ones directly. The overhead of potentially loading parser configurations we
don’t need into memory isn’t huge unless we’re time sensitive to milliseconds or need
to optimize memory use to save bytes.

 We can implement a simple trick to make it easy to reference these configuration
files. Assuming that the path to the Fluent Bit binary is incorporated into the PATH
environment variable rather than directly wired into the PATH, declare a separate envi-
ronment variable with the absolute path to the installation location, refer to that in
PATH, and then reference that in our parser file declaration: export FB_PARSERS="
/fluent-bit/conf/". Then we can reference the predefined parsers with parsers_
file ${FB_PARSERS}/ parsers.conf in our configuration file. Change the install loca-
tion and update the environment variable; we don’t need to amend configuration files.

 Although the list of predefined parsers will grow slowly, it’s worth taking a moment
to understand what is already in place and, more important, their names, to prevent
any future naming collisions. Appendix B documents the parsers, breaking down the
list of possible parsers based on the supplied files and describing each parser’s appli-
cation and attributes.

Services can override default logging behavior
Most applications and services provide the means to tailor or override the default
configurations, at which point standard parsers can’t help. But foundational technol-
ogies like web servers rarely have their logging configurations customized. Appendix
B.2 contains tables that describe the provided parsers and identify the attributes pro-
vided by the parser’s expression.

We need to reference the name of the parser
configuration. Here, the name of the parser
is used in the parser’s configuration.

We can tell the parser filter whether we want to retain
the original payload element (log, in this configuration).
The log element will be removed from the log event’s
payload if set to false.

We can define whether we want to retain the other log payload
attributes. If set to false, the elements of the log event we
had when we started the parsing process will be lost.

170 CHAPTER 6 Parsing to extract more meaning
6.5 Parsing an Apache log file
Having worked through the configuration, let’s execute this configuration and con-
sume an Apache log file using the example in listing 6.1. To run this scenario, we will
use LogSimulator to feed the log data steadily.

NOTE We can run LogSimulator using the Dockerfile provided, as the invo-
cation needs several parameters. We’ve bundled the Docker command into a
shell and batch scripts (with the appropriate .sh and .bat extensions) to sim-
plify this process. If you prefer, you can install LogSimulator and run it
locally; details are in appendix A.

LogSimulator expects to be started from the root folder of the downloaded content
folder (running from here allows us to share the executable and test data across all
the chapters) with the command

./SimulatorConfig/apache-log-feed-run.sh

When the LogSimulator has started, we can start Fluent Bit within the chapter6 folder
using the command

fluent-bit -c fluentbit/apache-log-parser.conf

With Fluent Bit running, we should see the log being written to the console with each
part of the log record belonging to a JSON, element like this:

[0] apache-feed: [[1687345516.000000000, {}], {"host"=>"218.105.111.72",
➥ "user"=>"-", "method"=>"GET", "path"=>"/scripts/python/wrap/?C=N;O=D",
➥ "code"=>"200", "size"=>"2631", "referer"=>"-",
➥ "agent"=>"Mozilla/5.0 (compatible; Ezooms/1.0; help@moz.com)"}]

6.6 Multiline parsing
Chapter 4 introduced multiline parsing as we explored the capture and processing of
Kubernetes logs, but here we dive deeply into the details. We can use the multiline

(continued)

If you review the configuration files, you’ll see that they all use the regex parser.
We’ll explore this parser in more detail shortly. As you’ll see, a lot of the provided
configurations support Cloud Native Computing Foundation (CNCF)/Kubernetes-
related projects, as this is Fluent Bit’s natural habitat. But there are other sources
for configurations.

If we’re interested in a specific part of a standard log, such as the platform hosting
a browser recorded in an Apache log, rather than try to create a new parser expres-
sion, it will be easier and potentially more reliable to use the standard Apache parser,
which will have been proved many times in different environments, and then create
a parser to process only the element containing the wanted information.

1716.6 Multiline parsing
parser with some input plugins (an idea we’ll revisit later in the chapter), as illustrated
in the Input Plugin (Pulled) in figure 6.1. We can also use the multiline parser via a mul-
tiline filter, which works much like the normal parser filter. The parser-specific attributes
are prefixed with multiline. We identify the field to parser multiline.key_content
(whereas the simpler single-line filter uses the name key_content), and we identify
the parser by multiline.parser. This parser can be a custom or predefined parser.
(See appendix B for the predefined multiline parsers.) Predefined parsers were used
in chapter 4; here, we focus on a custom parser, as shown in figure 6.2.

Regarding input, we may have managed to ingest an event with newline and/or car-
riage-return characters into a single event (several lines in a single event). But it is also
possible that we’ve ingested multiple records in a series of events (a single multiline
event interpreted as multiple events), in which case we’re effectively consolidating
records with the same tag in the buffer. We can tell Fluent Bit this with the buffer attri-
bute set to on. But we need to be confident that events have been consumed in order
and/or that we have controls that stop us from accidentally merging many events.

 In addition, multiline processing can result in large entries, particularly if the
parser process fails to recognize the end of a multiline record, so we have some addi-
tional controls over the process of putting the events back into the buffer. These con-
trols come with the emitter_storage.type, which defines where the buffer storage is
(memory or file), and the buffer limit, using the attribute emitter_mem_buf_limit.
This takes a numeric size with the standard Fluent Bit size character (see appendix B),
which defaults to 10 MB. We can also force a flush of whatever has been processed
into a single record, regardless of whether the correct termination of the multiline
event has been identified, by using flush_ms, which sets the number of milliseconds
(defaulting to 2000 or 2 seconds).

 If we consumed event feeds that could be sourced from several input plugins and
at least one of these inputs wasn’t able to use a multiline parser, we could use the filter

84.049.9.216 - - [21/June/2023:10:05:46 +0000]

HTTP/1.1" 200 2126

«http://mp3monster.org/presentations/mp3monster-fluentbit/"

"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77

Safari/537.36"

start rule

name (start_state)

REGEX

expression

next line rule

(line_1)

rule name

(line_1)

REGEX

expression

next line rule

(line_2)

rule name

(line_2)

REGEX

expression

next line rule

(line_2)

"GET /presentations/mp3monster/fluentbit/images

/Dreamhost_logo.svg

Figure 6.2 Each part of a multiline log (left) can correlate to a parser configuration (right). As long as the regex
is valid at the right point, we will keep linking lines into a single event. In the figure, the rule named line_2 picks
up five lines. As the line_2 rule is cyclical, we can continue consuming many lines into the same event if it isn’t
expressed well.

172 CHAPTER 6 Parsing to extract more meaning
with a multiline parser to process the content. To illustrate this behavior, we will read a
small text file without a multiline parser configured; it will create a log event in the
buffer for each new line. But we know that a new log event starts with a curly bracket
({), and subsequent lines start with a hyphen (-). So, we need the filter to go
through the buffer and pull these events back together with a multiline parser. We
would have a configuration with a multiline parser in a filter like the following listing
and chapter6/fluentbit/multiline-parser-filter.conf.

[SERVICE]
 flush 2
 parsers_file ./fluentbit/multilineparser.conf

[INPUT]
 name tail
 path ../TestData/multiline-json-small.txt
 read_from_head true
 tag multi-feed

[FILTER]
 name multiline
 match multi-feed
 multiline.parser multiline_Demo
 multiline.key_content log
 buffer on

[OUTPUT]
 name stdout
 match *

Unlike in the chapter 4 use case, where we had to support multiple possible log for-
mats, we can still do this here by separating the parser names with a comma. We’re
applying a custom use case, so the likelihood of needing to identify the best-fit parser
is relevant.

 The part of multiline filtering that is distinctly different from a conventional
parser is how the configuration is expressed in the parser file. Both simple parsers and
multiline parsers can coexist in the same configuration file. The question is how to
differentiate the two. The simple answer is that the configuration block is denoted by
[MULTILINE_PARSER] rather than [PARSER]. Our example configuration includes a
normal parser ([PARSER]) definition, which we don’t use.

 The multiline parser definition has the name attribute like a normal parser, linking
the configuration to the plugin in our pipeline. Then we identify the parser imple-
mentation type using the type attribute, which identifies the type of parser that will be
used to process the lines. Today, only the regex parser can be used. We can also set a
flush_timeout in the filter and the number of milliseconds. We have multiple rule
definitions. The rules have three parts, each part bounded by double quotes:

Listing 6.3 A filter that uses a multiline parser: multiline-parser-filter.conf

We reference the
configuration file with
the multiline parsers in
the same way as the
simple parsers.

We identify the filter as using
the multiline parser rather
than the standard parser.

For all parsers, multiline or
basic, we link the configurations
via the parser name.

As we’ll be processing a structured
event, we need to define the name of
the attribute.

We need to be
explicit that
we’re looking to
process content
from the buffer.

1736.6 Multiline parsing

t

is

y

e
 The state name for this rule. The first state is denoted as "start_state".
 The expression to be applied confirms that the line matches what is expected.

This needs to match the entire line’s content.
 The next state allows us to define different formats. If the line formatting

matches the expression, the parser assumes that it is the end of the multiline.

As previously mentioned, it is possible to provide multiple parsers by having explicit
definitions of the log structure. As a result, the parser can more easily fail a parser
and try the next one on the list. The tradeoff is that the more advanced the regex
is, the more compute effort is needed. Going through multiple parsers to get the
right match makes for more work. See the following listing and chapter6/fluentbit/
multilineparser.conf.

[MULTILINE_PARSER]
 name multiline_Demo
 type regex
 key_content log
 flush_timeout 1000
 #
 # rules | state name | regex pattern | next state
 # ------|---------------|----------------------------
 rule "start_state" "^[{].*" "cont"
 rule "cont" "^[-].*" "cont"

Before running this scenario, we might find it useful to temporarily comment out the
filter definition. This way, we’ll see the events if the filter doesn’t apply the necessary
changes. From the chapter6 directory, run the following command:

fluent-bit -c fluentbit/multiline-parser-filter.conf

The outcome is that every line from the source file generates a single Fluent Bit event,
with no consolidation of lines that belong together. It might be worth counting the
number of output log events. If we comment on the filter, we can uncomment it and
run the scenario again with the same command:

fluent-bit -c fluentbit/multiline-parser-filter.conf

When we run the scenario, we’ll still see carriage-return characters being output, but
the recombined lines are single log events. We know this because of the absence of the

Listing 6.4 Defining a multiline parser (fragment): multilineparser.conf

The name of our parser. We’ve adopted the
recommended convention to make it easier to

distinguish this from a standard parser.

We identify the type of parser involved. Today,
only regular expression (regex) is supported.

We can tell the multiline
processor to flush whatever
we have after 1,000
milliseconds so that we don’t
end up infinitely accumulating
content into a single log event.

We have to provide a
regex that specifically
matches the entire firs
line of a new log. In th
example, our regex
shows that the line
must start with a curl
brace and be followed
by any character. Each
part of the rule must b
enclosed in quotes.

Subsequent rules are linked by
identifying them as the next state to
another line (last part of each rule).

174 CHAPTER 6 Parsing to extract more meaning
metadata, such as the timestamp and tag at the start of the line output. Now the out-
puts look like this:

[8] multi-feed: [[1712849159.215674039, {}],
➥ {"log"=>"{"msg" : "I think my neighbor is stalking me
- as she has been googling my name on her computer.
- I saw it through my telescope last night.",
- "name" : {"firstname": "Slarti", "surname":"Bartfast"},
- "age": 75}"}]

What is clever about this is that in addition to joining the lines, the filter removed the
records from the buffer that have been merged. This is the overhead of using a filter
rather than the parser on the input.

 The nature of regular expressions means it is a lot harder to define a parser that
uses a condition to determine when a multiline event has ended. For example, if we
assume that all lines are part of a record until a line starting with END is found, it is a
lot harder. We can easily see this by modifying our configuration slightly with the fol-
lowing changes to the multiline-parser-filter.conf:

 Change the input path from ../TestData/multiline-json-small.txt to
../TestData/multiline-json-small2.txt. If we look at this modified file, we
see that we’ve added terminations to the records with the word END.

 Change the multiline parser reference from multiline_Demo to multiline_
Demo2.

The critical difference is that the filter definition is the second rule (the parser expres-
sion is "^(?!END)"), which essentially means any content as long as it doesn’t start
with END. So, encountering a line that breaks the regex, we start the filter with
start_state again. But because our regular expression is not consuming and tokeniz-
ing content, we still have the string END, so it ends up remaining an event in the buffer.
If we run the configuration, we’ll get output like this:

[6] multi-feed: [[1712849159.215674039, {}], {"log"=>"
➥ {"msg" : "Maybe if we start telling people the brain is an
➥ app they will startusing it.",
➥ "name" : {"firstname": "Trillian", "surname":"Astra"},
➥ "age": 25}"}]
[7] multi-feed: [[1712849159.215685992, {}], {"log"=>"END"}]

Note that log event 7 exists with the word END. We can apply a second stage of filtering
to address this event if necessary. But as we can see, it is more challenging because of
the inclusive nature of regex syntax when matching.

6.7 Custom parsing
Eventually, we’ll encounter a situation where a predefined Fluent Bit parser won’t be
able to address our needs. When we can’t use predefined parser expressions, we need
to look elsewhere for our regular expressions or define them ourselves.

1756.7 Custom parsing
NOTE Plenty of published resources exist for predefined regex expressions,
such as recognizing credit card numbers and international bank accounts.
Using a proven existing regex to process a string is far quicker and more reli-
able than trying to develop a complex regex on our own. Appendix B pro-
vides a list of resources for testing expressions against sample data sets.

When we look at regular expressions, we see subtle variations in implementations,
which roughly align with programming languages. However, a standard exists: Perl
Compatible Regular Expressions (PCRE; https://www.pcre.org/original/doc/html).
Fluent Bit’s implementation comes from a library called Onigmo (https://github
.com/k-takata/Onigmo), which is the core C library used by Ruby. Therefore, any
Ruby regular expression will work with Fluent Bit; any regular expression used for Flu-
entd also works here.

 When constructing a regular expression, we provided a worked illustration in the
Logging in Action book (https://livebook.manning.com/book/logging-in-action/chap-
ter-3/point-18395-240-252-1), so we’re not going to revisit those details, instead con-
centrating on the behavior of the filter and parser when applied. In many respects,
this is far more important. Depending on the settings, the original log content could
be lost (addressed in chapter 3 of Logging in Action), so if you want to understand the
debate, we recommend starting there.

 This time, let’s use the provided nginx parser, which can break out all the parts of
the log event. But the provided nginx retrieves the originating IP address whether it is
an IPv4 or IPv6. We don’t want to lose that detail, but we want to retrieve IPv4
addresses, which we know are made up of four octets separated by a period. To do this,
we want an additional regex on the log event to retrieve the IPv4 address. We also want
to know about the agent implementation without the version-related information—
Wget or Mozilla, for example. The easiest way to approach this is to have a second
parser for the log:

172.29.139.108 - - [12/May/2023:08:05:53 +0000]
➥ "GET /downloads/product_1 HTTP/1.1" 304 0 "-"
➥ "Mozilla/5.0 (0.9.7.9)"

The parser needs the following:

 To retrieve the IPv4 string (and know that it is v4 and not v6) and obtain the
type of agent, the following regex breaks up the string by looking for one to
three digits delimited with a dot four times, which forms the IPV4.

 Next, the expression skips the data by looking for the closing (]) square
bracket.

 Then the expression looks for the fourth occurrence of a double quote.

The subsequent alphabetic characters become the agentType. The regex

^(?<IPv4>((\d{1,3}(.))\d{1,3}(.)\d{1,3}(.)\d{1,3}))
➥ (([^\"]*))\"((([^\"]*)\"){4})(?<agentType>([a-zA-Z]*))

https://livebook.manning.com/book/logging-in-action/chapter-3/point-18395-240-252-1
https://livebook.manning.com/book/logging-in-action/chapter-3/point-18395-240-252-1
https://www.pcre.org/original/doc/html
https://github.com/k-takata/Onigmo
https://github.com/k-takata/Onigmo
https://github.com/k-takata/Onigmo

176 CHAPTER 6 Parsing to extract more meaning
results in the creation of elements called IPv4 and agentType. We can verify the regu-
lar expression using any tools referenced in appendix B.

 With the IPv4 extracted, we can use another parser to retrieve the first octet from
it. If this octet value is 192, we know that the web traffic has come from a class C net-
work. To configure this use case, we need to execute three parsers:

 A standard nginx parser to parse the log attribute
 A custom regex parser, which must also be executed against the log element
 A regex, this time executing against one of the extracted IPv4 attributes gener-

ated from the second parser expression

We need three filters, with the preserve_key and reserve_data set to true. If these
values aren’t set, we’ll lose data values. After you run the scenario successfully, we rec-
ommend experimenting by selectively changing these attributes to off and observing
the consequences.

 The order in which the filters are defined is important, as there is a dependency
between the second and third parsers. The order that is applied is dictated by the
order in which they are defined in the configuration file, which we can prove by mov-
ing the third filter definition to the first definition in the file chapter6/fluentbit/
nginx-log-parser.conf and shown in the following listing.

[SERVICE]
 flush 1
 parsers_file ./fluentbit/parsers2.conf
 parsers_file ${FLUENTBIT_HOME}/conf/parsers.conf

[INPUT]
 name tail
 path ./nginx-log
 read_from_head true
 tag nginx-feed

[FILTER]
 name parser
 match *
 key_name log
 parser nginx
 preserve_key true
 reserve_data true

[FILTER]
 name parser
 match *
 key_name log
 parser myNginxSubset
 preserve_key true

Listing 6.5 Multiple parsers: nginx-log-parser.conf

The first parsers_file
references a custom parser
file. The second uses an
environment variable to
provide the path to our
Fluent Bit installation. The
remaining path references
one of the supplied parser
configuration files.

The filter is configured to use a parser. This
attribute identifies one specific parser, which
is one of the predefined parsers.

Setting the reserve_key and reserve_data to
true means we will retain the original data
after the filter’s processing.

This parser declaration identifies our
custom parser configuration rather
than a predefined parser.

1776.7 Custom parsing
 reserve_data true

[FILTER]
 name parser
 match *
 key_name IPv4
 parser myNginxOctet1
 preserve_key true
 reserve_data true

[OUTPUT]
 name stdout
 match *

Our custom parser file looks like the following listing (chapter6/fluentbit/parsers2
.conf).

[PARSER]
 name myNginxSubset
 format regex
 regex ^(?<IPv4>((\d{1,3}(.))\d{1,3}(.)\d{1,3}(.)\d{1,3}))
➥ (([^\"]*))\"((([^\"]*)\"){4})(?<agentType>([a-zA-Z]*))

[PARSER]
 name myNginxOctet1
 format regex
 regex (?<octet1>\d{1,3})

To execute our scenario, we need to run LogSimulator with the nginx test data using
the command

./SimulatorConfig/nginx-log-feed-run.sh

When the LogSimulator has started, we can start Fluent Bit within the chapter6 folder
using the command

fluent-bit -c fluentbit/nginx-log-parser.conf

The resulting console output looks like this:

[1030] nginx-feed: [[1683907539.000000000, {}], {"octet1"=>"94",
➥ "IPv4"=>"94.23.21.169", "agentType"=>"Mozilla",
➥ "remote"=>"94.23.21.169", "host"=>"-", "user"=>"-", "method"=>"GET",
➥ "path"=>"/downloads/product_2", "code"=>"404", "size"=>"337",
➥ "referer"=>"-", "agent"=>"Mozilla/5.0 (0.9.7.9)",
➥ "log"=>"94.23.21.169 - - [12/May/2023:16:05:39 +0000]
➥ "GET /downloads/product_2 HTTP/1.1" 404 337 "-"
➥ "Mozilla/5.0 (0.9.7.9)""}]

Listing 6.6 Defining multiple parsers in a single file: parser2.conf

Rather than the core log element, this time we’re
passing in an element in the event created from
the previous parser configuration.

References our custom
parser configuration

Declaration block start for a parser

Defines the name that identifies the parser

Start of the next parser

The regular expression to be executed,
with the resulting value put into the
event record with the name octet1

178 CHAPTER 6 Parsing to extract more meaning
As we can see, the initial values represent the tag and the internal timestamp, followed
by the JSON-formatted log event. The additional JSON elements we created with our
second and third parsers—octet1, IPv4, and agentType—appear first, followed by
the elements created by the provided nginx parser, followed by the original log ele-
ment, which we’ve told the filters to retain.

 Sometimes, before we parse an expression, we want to process the element so that
the complexity of the regular expression isn’t compounded with escape-code charac-
ters. If the log was a JSON structure with values that needed escaping, such as
quotes, we can enable the string to be preprocessed to resolve the escaped values
before we start parsing, making the task simpler. We can control this using the attri-
bute unescape_key, which accepts a true or false Boolean value. As our example
doesn’t need processing, we can set this to false (but could omit it, as its default state
is false). In addition to escape characters, sometimes our payloads have special char-
acter sequences to help encode special meanings. This broader challenge can be
addressed by using decoders, which we’ll discuss later in this chapter.

6.8 Processing JSON
Fortunately, nginx can also generate its logs in JSON format. This makes it easier to
understand but comes at the price of consuming some additional resources. As we’ve
seen, when consuming a log file, the ingested log event is treated as a single string. To
take advantage of the fact that the log content is formatted for us, we want to use a
parser that can translate the payload into meaningful JSON data. To do this, Fluent
Bit includes a JSON parser.

 The JSON parser can take the log part of the event, process it as a single layer of
JSON, and generate attributes in the log event for each element of the first tier of
JSON. If the JSON is nested, the nested layer is left as an unprocessed structure. So,
it isn’t possible to take the JSON output and traverse nested structures using JSON-
Path, for example. For cases such as nginx, this isn’t a problem, as we can see with
this log entry:

{"time": "12/May/2023:13:05:17 +0000", "remote_ip": "10.033.133",
➥ "remote_user": "-", "request": "GET /downloads/product_1 HTTP/1.1",
➥ "response": 404, "bytes": 341, "referrer": "-",
➥ "agent": "Mozilla/5.0 (0.8.16~exp12ubuntu10.16)"}

If, however, the agent attribute were formatted as

"agent": {"agentType": "Mozilla", "agentTypeVer": "5.0",
➥ "agentBuild": "(0.8.16~exp12ubuntu10.16)"}

we would need to run the JSON parser on the agent element to decompose the nested
elements so that they can be referenced.

 Let’s build a variation of our previous use case using the JSON parser and then
take the output from that to perform the regex to retrieve the first octet again. To do

1796.8 Processing JSON
this, we need to define a fresh parser. The declaration for the simplest JSON parser
requires only the declaration of the format attribute with the value of json and the
name, which we can use to reference from the filter definition. We’ve opted for the
name of myNginxJSONParser. Therefore, we have a simple parser file (chapter6/flu-
entbit/json-parser.conf), shown in the following listing.

[PARSER]
 name myNginxJSONParser
 format json

Now we can construct our main Fluent Bit configuration. We want to reuse the
myNginxOctet1 parser, so we need to include both parser files. As sequencing remains
important, we need to define the filter, which calls our JSON parser setup, followed by
a repeat of the filter configuration, which will reuse the regex parser we defined ear-
lier. As the JSON parser restructures the entire content for us, there is little to gain by
retaining any previous attributes like log this time. However, we want to retain the
input elements from the previous filter for the output. Our configuration should look
like the following listing (chapter6/fluentbit/nginx-json-log-parser.conf).

[SERVICE]
 flush 1
 parsers_file ./fluentbit/json-parser.conf
 parsers_file ./fluentbit/parsers2.conf

[INPUT]
 name tail
 path ./nginx.json.log
 read_from_head false
 tag nginx-feed

[FILTER]
 name parser
 match *
 key_name log
 parser myNginxJSONParser
 preserve_key false
 reserve_data false

[FILTER]
 name parser
 match *
 key_name remote_ip
 parser myNginxOctet1
 preserve_key true
 reserve_data true

Listing 6.7 Parser for JSON conversion: json-parser.conf

Listing 6.8 Applying a JSON parser: nginx-json-log-parser.conf

Name of the parser that the filter
configuration will reference

The format of the parser will convert the provided
string into a key-value pair structure based on
processing the value as a JSON structure.

Here, we’re referencing a parser that
uses the JSON capabilities rather than
regex as in our previous examples.

We’re telling the filter to parse on the attribute
that has been manipulated in the state in which it
was received. We’re not bothering to pass out the
original log event’s contents.

We’re identifying the element in the log event
to be used with the parser. This element comes
directly from the JSON conversion of the payload.

Identifies one of our parsers. But this parser
expects to pull only the first octet from a
string that represents an IP address.

As we’re parsing to obtain some additional
details, this time we need to retain the
data received in the filter.

180 CHAPTER 6 Parsing to extract more meaning
[OUTPUT]
 name stdout
 match *

The result of this configuration is almost the same as that of the previous scenarios.
The only difference is that LogSimulator needs to reference a different test data file.
We can run the scenario with the commands

./SimulatorConfig/nginx-json-log-feed-run.sh
fluent-bit -c fluentbit/nginx-json-log-parser.conf

With this scenario running, we should see output like this:

[0] nginx-feed: [[1695400435.934181800, {}], {"octet1"=>"10",
➥ "time"=>"12/May/2023:08:05:25 +0000",
➥ "remote_ip"=>"10.138.60.101", "remote_user"=>"-",
➥ "request"=>"GET /downloads/product_2 HTTP/1.1", "response"=>304,
➥ "bytes"=>0, "referrer"=>"-", "agent"=>"Mozilla/5.0 (0.9.7.9)"}]

Note that the output doesn’t contain the original log element. Because the payload
is in JSON format, we know converting the payload to its constituent elements will
not result in the loss of information. We can see the octet1, which has been gener-
ated for us.

6.8.1 Changing the log event timestamp

Modifying the overall log event timestamp is possible with the JSON parser. To do this,
we need to extend the parser configuration to name the JSON element that will con-
tain the date and time. In our example, this would be time. Then, we need to tell Flu-
ent Bit how the date and time are laid out using an element called time_format. This
attribute uses notation to define where each part of the structure is. Let’s try adding
these attributes to the configuration and rerunning the scenario. We’ve provided
the correct configuration in a version of the parser file called chapter6/Fluentbit/
json-parser.conf.answer.

NOTE Time format definitions are limited to one. So, if time is expressed in
different ways within a Fluent Bit event, multiple parsers need to be applied
to address the problem.

6.8.2 Diagnosing the unhappy paths

Regular expressions are complex, and it is easy to make an error. What happens if the
parser’s regular expression is incorrect? Typically, you’ll see the Fluent Bit instance
terminate as it tries to create the parser that is ready for use. The easiest way to see
this is to remove one of the brackets in an expression, such as myNginxOctet1 in the
parsers2.conf file, and restart Fluent Bit.

 If the log is malformed, the parser will attempt to ingest the content. But if it fails,
the parser will typically abort and leave the payload unprocessed. We can see this

1816.9 Other types of parsers
behavior by running a modified version of the nginx JSON scenario where we have
taken a small sample of log entries and deliberately made a single modification
(TestData/nginx.malformed.json.log.txt) that makes the content invalid. In this
source file, we’ve also modified the dates so the day of the month increments for each
record; this will make it easy when running the scenario to trace the output back to
the source record. To start this scenario, use the commands

./SimulatorConfig/nginx-json-log-feed-run.sh
fluent-bit -c fluentbit/nginx-json-log-parser.conf

The 04/May record is a good example of best endeavors, but it cannot complete the
ingestion as the JSON element delimiter (comma) has been omitted after the date.
So, the parser stops at that point.

 For this reason, it is worth considering retaining the original payload consumed. If
there is a risk of ingesting corrupted entries, that may be undesirable. There are
options to spot and handle such problems; for example, we could apply the modify fil-
ter and use its key_exists condition or the expect filter to check for populated attri-
butes. We’ll investigate filters further in chapter 7.

6.9 Other types of parsers
We’ve seen the two most dominant parsers, but a couple of other parsers are available.
Both follow a template similar to what we’ve seen.

6.9.1 logfmt

The logfmt parser is very much like the JSON parser, taking the payload and
transforming the logfmt data into JSON elements. The logfmt structure works with
key-value pair expressions using the equal character to separate the key and value;
key=value myLog=myEvent would result in the Fluent Bit event containing two ele-
ments with the keys key and myLog with corresponding values of value and myEvent,
respectively. Although the format has never been formally ratified, the most authorita-
tive description is at https://brandur.org/logfmt. There are plenty of implementa-
tions of the format; for an example, see https://github.com/go-logfmt/logfmt.

6.9.2 LTSV

The Label Tab-Separated Value (LTSV) parser is more like the regex parser as we have
had to provide additional information about the layout. An example LTSV string
could look like this:

line:1 widget:gadget aKey:aValue time:[16/Jun/2024:14:55:01 +0000]

As with the JSON parser, we can define the field representing the event date using the
attributes time_key and time_format. But, the heavy lifting comes with the attribute
called types. Here, we need to define the name of each value (which becomes the key
in the JSON internal representation) and the data type, which can be integer, float,

https://brandur.org/logfmt
https://github.com/go-logfmt/logfmt

182 CHAPTER 6 Parsing to extract more meaning
bool, hex, or string. We could process this line with the parser configuration (chap-
ter6/fluentbit/ltsv-parser.conf) shown in the following listing.

[PARSER]
 name simpleLTSVExample
 format ltsv
 time_key time
 time_format [%d/%b/%Y:%H:%M:%S %z]
 types line:integer widget:string aKey:string

This would result in a record being generated as

[[1718549701.000000000, {}], {"line"=>"1",
➥ "widget"=>"gadget", "aKey"=>"aValue"}]

You can see for yourself by running the simple chapter6/Fluentbit/ltsv.conf con-
figuration in the download pack.

6.10 Decoders
Decoders are designed to address the problem of when a log entry needs to contain
characters that aren’t allowed as part of a name or value. For example, if we want to
include a quote character within a JSON payload because the character is reserved, it
becomes encoded. But when trying to process the message, encoding can get in the
way of the logic. So we need to be able to decode them. For example, to carry the text
"Hello\World" to carry it in the log part of a log event, it becomes encoded as "log" :
"\"Hello\\World\"". If, along the way, that needs to be wrapped into another JSON
structure, things get difficult. To unpick this so we can apply logic to the originally
intended value, we can use a decoder. We can apply the decoder to any parser by sup-
plying the attribute decode_field_as and the following values:

 Name of the decoder to use
 Payload element that the decoder should process
 Any behavior controls (optional)

If we have the following JSON as our log event where someone had tried to request a
path but accidentally swapped forward and back slashes, the details will be encoded
with additional slashes. But if we want to store the error in a database correctly, we
need to strip back the escape slash characters.

 To see how the decoder works at its best, there is a small test payload called coded-
json.txt in the TestData folder. The test contains escaped and Unicode characters:

{"time": "1", "coded-msg" : "\\t hello", "coding-type" : "UTF-8"}
{"time": "2", "coded-msg" : "{\"key\":\"value\"}", "coding-type" : "JSON"}
{"time": "3", "coded-msg" : "\\u0077\\u0000\\u004C\\u0069\\u006E\\u0065",
➥ "coding-type" : "escaped Unicode"}

Listing 6.9 An LTSV parser configuration: ltsv-parser.conf

We’ve identified the value that
needs to be processed as a date.

Defines how to parse the date

Does the heavy lifting of
identifying the keys and
their data types

1836.10 Decoders
The time is set to be simple, so it’s easy to correlate the output to the original record.
To process this sample data set, we established a new parser file (parsers3.conf),
which includes parser definitions.

 To understand the differences in this scenario, rerun the same scenario multiple
times. Each time we run, we will switch which parser is used to observe the difference.
The code configuration remains relatively similar to the previous parser configurations
(chapter6/fluentbit/decoding-parser.conf), as shown in the following listing.

[SERVICE]
 flush 1
 parsers_file ./fluentbit/parsers3.conf

[INPUT]
 name tail
 path ./codedJSON.log
 tag codedFeed

[FILTER]
 name parser
 match *
 key_name log
 parser noDecoder
 #parser myDecodingUnstructured
 #parser myJSONOnly
 #parser myJSONDecodedUTF
 preserve_key false
 reserve_data true

[OUTPUT]
 name stdout
 match *

With the core configuration defined, referencing different parsers and the associated
decoders in a common file, let’s look at the parser configuration file (chapter6/
fluentbit/parsers3.conf), shown in the following listing.

[PARSER]
 name noDecoder
 format regex
 regex (?<NoDecoder>(.*))

[PARSER]
 name myDecodingUnstructured
 format regex

Listing 6.10 Using a decoder with a parser: decoding-parser.conf

Listing 6.11 Different decoder examples in a parser file: parsers.conf

A new parser file with variations
in configuration to help us
understand the decoder behavior

The first parser
configuration will be
run against the data set.

A commented-out parser. We
want only one uncommented
parser per run.

This is very simple, so we can see that we can ingest
the log event as a payload without any implicit
parsing (as occurs if we set the payload as JSON).

Note that the regex pushes the content to an
attribute called NoDecoder so we can distinguish
it from the default attribute called log.

This parser continues to treat the
payload as a string structure.

184 CHAPTER 6 Parsing to extract more meaning
 regex (?<unstructured>(.*))
 decode_field json unstructured try_next

[PARSER]
 name myJSONOnly
 format json

[PARSER]
 name myJSONDecodedUTF
 format json
 decode_field_as escaped_utf8 coded-msg

Table 6.1 describes the differences that we observe when we run this decoder sce-
nario. The results change as we swap the referenced parsers as previously described.
The Parser column traces back to the parser declaration in the configuration file illus-
trated in listing 6.11 (chapter6/Fluentbit/parsers3.conf).

Let’s run the scenario. It’s best to start by running the LogSimulator with the command

./SimulatorConfig/encoded-logs-run.sh

Then start the Fluent Bit configuration with the command

fluent-bit -c fluentbit/decoding-parser.conf

When we’ve seen the logs and events rotate through and observed the described
behavior, we stop Fluent Bit, uncomment the next parser (remove the #), comment

Table 6.1 Effects of different parsers and their decoders in listing 6.11

Parser Observed differences

noDecoder The console output looks as though no parser was involved, but
rather than the log body’s being attributed to a log=> in the output,
it is No~Decoder=>.

myDecodingUnstructured We’ll have larger output with the log content being output to an ele-
ment called unstructured (containing the entire log message). In
addition, each JSON element in the event record’s root level will be an
attribute because we’ve managed to decode the payload as a JSON
object. Because the payload is handled as JSON, the output removes
one of the backslashes; it recognizes the content as escaped
characters.

myJSONOnly Because we’re telling Fluent Bit to parse the payload as JSON, it
includes handling escape characters. But note that the escaped
Unicode string (time =>3) is not decoded, so the output starts
with \u077.

myJSONDecodedUTF When this parser is run, we see the JSON presented correctly and the
Unicode string transformed correctly. As a result, the record with a
time value of 3 now displays the coded-msg as wLine.

We’re asking the decoder to
take the ingested string content
identified using the name defined
by the regex and decode it to a
JSON structure.

Without a decoder,
we can also convert
the payload to JSON.
But we have to treat
the log event as a
JSON structure. This decoder takes a JSON

element and has it decode the
escaped UTF8-format characters.

1856.11 Parsing shortcut for file inputs
out the one we’ve just run (prefix the line with #), and restart Fluent Bit. We’ve con-
figured LogSimulator to loop slowly through the test data for a considerable dura-
tion, so we won’t need to keep restarting the simulator. As we’ve seen, there are
several ways to transform source log events to JSON to enable the targeting of spe-
cific parts of the payload.

6.11 Parsing shortcut for file inputs
We have been tailing and then parsing our inputs in our demonstration scenarios in
this chapter. This means that the input plugin will serialize each log event using Mes-
sagePack (https://msgpack.org); then we deserialize them to perform the parse opera-
tion. The issue is that the process of serializing and deserializing requires computational
effort and therefore can slow event processing. In addition to the serialization effort,
the events received are added to and modified in the buffer storage. If the buffer is in
memory, this isn’t a huge cost, but if the buffer is directed to use file storage, the over-
head will be more significant.

 We can eliminate this overhead by directing the input to the parser for the tail
input plugin, bypassing the need to serialize and deserialize the workload. We saw this
briefly in chapter 4 when the multiline parser was used to help manage Kubernetes
logs. But it should come as no surprise that we can use the basic parser the same way.
As a result, we can simplify our previous configuration to become the following listing
(chapter6/fluentbit/decoding-reader.conf).

[SERVICE]
 flush 1
 parsers_file ./fluentbit/parsers3.conf

[INPUT]
 name tail
 path ./codedJSON.log
 tag codedFeed
 parser myJSONDecodedUTF

[OUTPUT]
 name stdout
 match *

Run this configuration using the same LogSimulator and the command

./SimulatorConfig/encoded-logs-run.sh

Then start the Fluent Bit configuration with the command

fluent-bit -c fluentbit/decoding-parser.conf

Listing 6.12 Input using a parser: decoding-reader.conf

We continue with the same
parser file and parsers as in
the previous example. But this
configuration has no filter
definition.

We tell the input plugin
to use the same parser
as before.

https://msgpack.org

186 CHAPTER 6 Parsing to extract more meaning
As we see from the console output, we’ve successfully ingested the log contents, this
time without needing a separate filter, and reducing the overhead.

Summary
 Filters and parsers have an important relationship in Fluent Bit, where parsers

can be invoked from a filter definition.
 Fluent Bit has predefined parsers for common log formats such as nginx and

Apache web server log files. When a suitable predefined parser isn’t available,
we can define our own.

 Rather than use a single filter for each parser, Fluent Bit allows us to configure
multiple parsers with a single filter, offering many efficiencies.

 We can chain parsers, so the output of one parser can be the input of another.
Chaining parsers can make decomposing a problem easier and allows us to
reuse parser definitions.

 A JSON parser can convert text input to JSON-structured logs using the parser
format option.

 Decoders allow us to handle strings that can carry encoded characters. Using a
decoder makes it easy to extract characters that aren’t legal within a regular
JSON payload.

 Parsers aren’t restricted to being used only by filters. Some input plugins allow
the use of parsers during input plugin execution.

Filtering and
transforming events
Chapter 6 looked at parsers and the filter that enables them. This chapter looks at
the rest of the filters available to us. We will look carefully at filters that can manip-
ulate the tag value, as this is central to how we route logs, metrics, and traces to dif-
ferent output destinations.

This chapter covers
 Creating content and attribute-based filtering

 Modifying event content to enrich, structure,
and route events

 Transforming content from logs to metrics

 Rewriting tags to help downstream matching

 Grepping events to identify events for filtering

 Limiting events to prevent backend overloading

 Coding filters using Lua
187

188 CHAPTER 7 Filtering and transforming events
7.1 Architectural context
Figure 7.1 shows how filters fit into our logical Fluent Bit architecture.

We can group filters in the following ways:

 Integrate and enrich—These filters allow the use of third-party sources to enrich
or examine event data. The filters differ from input and output plugins; the
data adds to an existing event, and the values it adds are predicated on existing
events. Examples include these:

Focus of

this

chapter

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Figure 7.1 The application of filters we’re going to consider in this chapter is highlighted
in our logical architecture.

1897.2 Integrating and enriching with filters
– Kubernetes—This filter accesses the Kubernetes control plane to retrieve addi-
tional information about the environment or application execution context,
such as metadata about the Pod and container (an area that we took a high-
level look at in chapter 4).

– AWS Metadata—Filters like the AWS Metadata filter can retrieve additional
information from Amazon Web Services (AWS), such as instance ID and avail-
ability zone information based on the provision of data from the log event.

– GeoIP2—This filter can take IP addresses and interrogate a published reposi-
tory to provide the geographic location associated with an IP.

– Nightfall—This filter uses a third-party service to evaluate the log event for
any possibly sensitive data, such as credit cards and personally identifiable
information (PII).

– TensorFlow—This filter uses machine learning to classify events based on what
has been observed before.

– CheckList—This filter supplies a configuration data set and checks whether a
value exists.

 Extend and amend—We extend the value of an event by using filters to extract
more meaning from the event payload using parsers, as we saw in chapter 6,
and using filters such as
– modify—Allows us to conditionally rename, copy, and remove attributes
– record_modifier—Attributes for defining black- and whitelisting of ele-

ments in the payload, as well as defining new elements
– nest—Provides the means to reorganize the hierarchy of elements within

the payload
 Route and control—These filters allow us to configure data manipulation beyond

the use of parsers or control Fluent Bit performance. Filters in this group include
– throttle—Controlling the throughput so we don’t swamp a backend with load
– rewrite_tag—Changing tags allows us to dynamically change routing
– log_to_metrics—Converting payload

 Custom—These filters allow us to build custom logic to process the event or
incorporate custom-built logic through Go, WebAssembly (WASM), and Lua.
Although these filters can be used for integration purposes, we’ve separated
them because they involve coding effort rather than configuration. We’ll look at
extending other aspects of Fluent Bit more in chapter 9.

Previous chapters discussed how Fluent Bit differentiates and handles the different
signals (logs, metrics, and traces). It is worth noting that the filters, particularly those
in the integrate and enrich group, focus on supporting log signals.

7.2 Integrating and enriching with filters
This group of filters should be handled carefully, as a slow external service could
affect Fluent Bit’s pipeline. Before using it, consider the performance and volumes

190 CHAPTER 7 Filtering and transforming events
such a service can handle, along with the resultant latency that may be introduced. We
can mitigate such risks in a couple of ways:

 Implement services like TensorFlow and GeoIP downstream by having a Fluent
Bit instance capture the events from the source and then pass them to a second
Fluent Bit deployment. The second instance of Fluent Bit should not be com-
peting for CPU, memory, and other resources with other services, such as a
business application (which is more likely to be the case in a noncontainerized
deployment). Having the dedicated resource ensures that we can configure the
second instance of Fluent Bit with plenty of capacity to buffer events if the filter
is not keeping up with the volume of events being received. We could imple-
ment increased caching by having more memory or caching to disk with high-
performance storage. All this means that the event pipeline won’t cause problems
such as backpressure and that it has the capacity for more intensive processes.

 Filter out data before enrichment so we’re enriching only the data from exter-
nal services that will benefit from enrichment. We should enrich earlier only if
the additional information helps further decision making, such as filtering and
routing. Often, we look to enrichment to provide more context and support for
problem resolution.

7.2.1 Directing and securing logs with GeoIP

Let’s look at an example of how enrichment helps us. GeoIP translates our IP address
to a physical location by taking information published by organizations such as ISPs,
declaring where IPs connect to public networks. We can see this information at work
when we visit the Google home page or services like MaxMind (https://maxmind.com)
and IPLocation.net (https://iplocation.net), among others. We can see MaxMind
demonstrating GeoIP functionality in figure 7.2.

Figure 7.2 MaxMind GeoIP screenshot showing how an IP can be attributed to a physical location (in this case,
a postal code or zip code)

https://maxmind.com/
https://iplocation.net/

1917.2 Integrating and enriching with filters
NOTE Depending on the provider, the GeoIP data, if offered as software as a
service (SaaS), may be subject to a license or subscription fee. Pricing of the
data or service can be influenced by factors like location precision (such as
mapping an IP to a postal code or, less precisely, to a country), how the data is
being used, and the frequency of updates to the provided GeoIP data.

How does GeoIP awareness help with monitoring? We can use it in several ways:

 If our logs must handle PII data, we must respect data sovereignty. Conse-
quently, we have to ensure that we route log events so that they remain within
the rules imposed by different countries.

 IPs from unexpected locations indicate network masking through services such
as virtual private networks (VPNs) and Tor (The Onion Routing). Although our
firewalls may stop such traffic from hitting our applications, we still need to
understand where traffic is coming from, particularly if we want to push back
on what may be an attempt at denial of service.

 We can also apply the principle to internal networks as, ultimately, the process
is a lookup mechanism. Unexpected IPs can indicate that internal malware is
in action.

 A global organization may want to direct support activities to a specific team
aligned with geography, as the support team will likely speak the local lan-
guage(s) and be sensitive to local time zones and working practices. (Some
countries don’t define a work week as Monday through Friday, for example.)

 Some cloud services charge for data egress between cloud regions, so determin-
ing the cloud region using an IP creates opportunities to manage such data flows.

The GeoIP2 plugin uses a local database made available by MaxMind. Using a local
database gives us control of performance considerations.

7.2.2 Using the CheckList filter

Although the GeoIP2 filter takes data from a commercially managed source, we can
implement a similar internal control using the CheckList filter. Like the implementation
of the GeoIP2 filter, this implementation uses a local file, which is loaded into memory by
Fluent Bit and then queried. Both plugins have similar controls, with the CheckList filter
providing additional attributes to support a more generalized use case by supporting
exact or partial matching (using the mode attribute) and deciding whether to support
case sensitivity of the key during lookup (ignore_case). Being mindful of the perfor-
mance consideration, we can also get the query time output (print_query_time).

 Let’s implement a simple check against an expected list of partial or full IPv4
addresses that match those of the remote requests from our JSON nginx feed. First, we
need a file containing the partial or full IPs we want to check; by allowing partial IPs, we
can specify just subnets rather than every IP permutation that might be allowed. We
do this by setting the mode attribute to partial. We’ve provided this in a file called
ip-checklist.data. We need to point the filter to this file using the file attribute. The

192 CHAPTER 7 Filtering and transforming events
file’s contents are presented by each CheckList option on an individual line, so if the
checklist needs to consider whitespace, this isn’t an issue, and no quotes are required.

 To perform a comparison, we need to identify the event attribute to look for in the
list provided. As we’ve already parsed the payload to JSON, we name the element
from the payload, called remote_ip, which needs to be identified by the lookup_key.
When the checklist gets a match, it will generate an additional payload element
defined by the record attribute. We do this by providing the key and value in the dec-
laration; for example, we record the key value. It is worth noting that the record value
being added will be treated as JSON. As a result, a numeric value or values, true or
false, need to be quoted; otherwise, they won’t be handled as strings. Although this
may be desirable, if we want to apply subsequent logic to the new element, we’re
likely to need a regex expression, which demands a string value. Doing this results
in a configuration that contains a CheckList filter like the following listing (chapter7/
fluentbit/ip-checklisted.conf).

[SERVICE]
 flush 1
 parsers_file ${FLUENTBIT_HOME}/conf/parsers.conf

[INPUT]
 name tail
 path ./nginx.json.log
 read_from_head true
 tag nginx-feed
 parser json

[FILTER]
 name checklist
 match nginx-feed
 file ./fluentbit/ip-checklist.data
 lookup_key remote_ip
 ignore_case false
 mode partial
 record known_origin yes
 print_query_time true

[OUTPUT]
 name stdout
 match *

To run this scenario, we need to run our LogSimulator from the chapter 6 folder with
the command

./SimulatorConfig/nginx-json-log-feed-run.sh

We also need to start Fluent Bit with the command

fluent-bit -c fluentbit/ip-checklisted.conf

Listing 7.1 CheckList filter: ip-checklisted.conf

References one of the prebuilt parsers
that ensure the records that are read are
converted to a JSON payload, eliminating
the need for a separate filter declaration

Identifies the
CheckList filter

To compare a value to a checklist, we
must provide the list. This points to the
file containing the values; if identified, it
will trigger the addition of a new
element to the log event.

If an entry in the checklist matches the contents
of this element named by this attribute, the
defined record is added to the event.

We can control whether the checking is
case sensitive; here, we are asking that it be.

This record is added if the match succeeds.
Because we’ve used a value of yes, we won’t
have any issues building further logic later.

1937.3 Extending and amending with filters
We’ll see Fluent Bit push the log events to the console as they’re received and pro-
cessed. We’ll see output like this:

[12] nginx-feed: [[1683878714.000000000, {}], {"remote_ip"=>"10.033.133",
➥ "remote_user"=>"-", "request"=>"GET /downloads/product_1 HTTP/1.1",
➥ "response"=>304, "bytes"=>0, "referrer"=>"-",
➥ "agent"=>"Mozilla/5.0 (0.8.16~exp12ubuntu10.16)"}]
[13] nginx-feed: [[1683878745.000000000, {}], {"remote_ip"=>"10.4.66.76",
➥ "remote_user"=>"-", "request"=>"GET /downloads/product_1 HTTP/1.1",
➥ "response"=>404, "bytes"=>318, "referrer"=>"-",
➥ "agent"=>"Mozilla/5.0 (1.0.1ubuntu2)", "known_origin"=>"yes"}]

Note that the first entry (with the remote_ip of 10.033.133) doesn’t have an
element for known_origin. Our checklist checks only for IPs in the range 10.4 and
10.239.186.133. Our second example does match because its remote_ip value of
10.4.766.76 is a partial match with the checklist entry of 10.4. As a result, the end
of the JSON structure includes "known_origin"=>"yes". As we’ve set the print_
query_time to true, we’ll also see messages on the console reporting the lookup time
like this:

[2023/10/03 20:19:00] [info] [filter:checklist:checklist.0]
➥ query time (sec.ns): 0.500 : '10.4.66.76'

To see how performance is affected, try changing the filter configuration to use the
ip-checklist-long.data file and rerun the scenario.

TIP If you have any trouble running the configuration, check whether you
still have the environment variable FLUENTBIT_HOME set correctly and you’re
running the configuration from within the chapter7 folder.

Although we’ve used the checklist filter to apply an IP-based filter that will work for
internal networks, we can use it for a broad range of use cases, such as applying it to
logged class paths in code for libraries or subsystems that demand particular atten-
tion. The checklist can be used to filter out log entries because they contain expected
log values indicating that all is well.

7.3 Extending and amending with filters
There are a range of possible reasons for manipulating log events. We’ve already seen
how to extract more meaning by breaking an unstructured text block into more
meaningful content using various parsers. Although we can achieve a lot with parsers,
they aren’t the most efficient solutions when we have a JSON payload. Other reasons
for manipulating the payload include the following:

 We need to apply attribute naming conventions so that the JSON payloads com-
ing from different sources are consumed consistently. As a result, logic for data
analysis of logs doesn’t have to differentiate between sources, for example,
recording log events from nginx and Apache web servers in the same way.

194 CHAPTER 7 Filtering and transforming events
 Similarly, when calling a web service, we need to provide the same attributes
regardless of whether the call content is being built from different sources.

 If the log entries are lengthy, we may not want to transmit all the content for
each record, particularly if we’re transmitting between data centers or clouds
because of the data egress and network costs that could occur. So, we need to
remove the unnecessary elements.

Several filters can help with these goals:

 record_modifier—Allows us to define a list of elements (keys, defined with
the attribute allowlist_key) that the event can have. We can target removing
one or more elements (remove_key attribute). Elements can be added using
the record attribute, which takes a key-value pair. The filter can also be used to
add a unique ID (UUID) with an attribute uuid_key, which takes the element’s
name to hold the generated UUID. The abilities to add the UUID and define a
whitelisting of elements in the payload that are allowed are most valuable, as
the modify filter can match the other capabilities.

 modify—Doesn’t define whitelists of elements of the event but offers condition-
ality, add, set (add or replace), rename, copy, remove, and reorder (move_to_
start or move_to_end) attributes. The copy and rename operations have ver-
sions (the attributes prefixed with hard_) that can force the operation regard-
less of whether the target element named already exists.

The filter has the option of using an attribute called condition, which allows
us to name a condition and the name of an element. If the condition is
defined, it must resolve to a Boolean, and the filter will only execute if the
result is positive. These operations include

– key_exists, key_does_not_exist—Determines the existence or absence of
a named element (key).

– a_key_matches—Allows us to verify whether the key (element) exists based
on the provided regular expression.

– key_value_equals, key_values_does_not_equal—Allow us to test whether
the value of the named key (element) equals an explicit value.

– key_value_matches, key_value_does_not_match—Variations on key_

matches that allow us to locate a key based on a regular expression and test
its value against an explicit value for equality.

 matching_keys_have_matching_values, matching_keys_do_not_have_match-
ing_value—Variations on key_value_matches that use a regex to identify the
key’s value to test. Rather than use an explicit value, we test it with another
regex to determine whether there is a match.

 nest—Allows us to modify the payload structure easily by using an element (key)
name that can be combined with a wildcard, placing the matching attributes in a
subelement that will use the provided key. The nest filter can also implement the
reverse process, taking a nested object and promoting the elements to sit under

1957.3 Extending and amending with filters
the parent. We define whether we’re demoting (nest) or promoting (lift)
using the operation attribute.

7.3.1 Taking a brief look at the nest filter

The nest filter’s primary use case is to help group attributes—grouping the additional
metadata retrieved from Kubernetes, for example, or flattening unnecessarily complex
object hierarchies. Let’s look at a simple application. When demoting, we need to define
the wildcard attribute, which we use to provide the name(s) of the record’s attribute(s)
that need demoting. Note that the wildcard character (*) can be used only in a postfix
position. Then we need to provide the parent element’s name, which can be a new ele-
ment, such as nest_under newElementName. Typically, when we group related elements,
they’re likely to have a common name prefix, which may become redundant as the prefix
is likely to be the parent element name. So, we can ask the filter to strip the prefixes, as in
remove_prefix user_.

 Going the other way, the operation attribute is set to lift. We need to identify the
element whose child elements will be promoted, using a nested_under request. We
can impose a prefix on the elements using the attribute add_prefix.

 We’ve provided a simple example of promoting (lift) and demoting (nest) that
uses a dummy-input-created JSON payload, which can be run with

fluent-bit -c fluentbit/nest-example.conf.

Running this example illustrates how we nest user-related attributes and promote
the contents of the request child elements. As the output is to the console, we may
find it useful to parse the content with a JSON beautifier; several options are sug-
gested in appendix B. After running the initial configuration, try promoting just the
path child elements.

7.3.2 Illustrating the record_modifier filter

We could fill this entire chapter by covering all the possibilities of the record_modifier
and modify filters. To demonstrate the behavior of these filters, this chapter extends
the scenario. We want to add a UUID to the log event in an element called myUUID.
We’re also going to extend the log event with the hostname. Having UUIDs can help
us in several ways:

 If we see logs from multiple instances of the same application or service gener-
ating the same logs, the UUID can make it easy to differentiate the log event
occurrences and to track back through a log history to a specific event, as the
UUID is unique to a single log generated.

 When we send logs to multiple locations or across our IT infrastructure, we can
perform reconciliation and identify the same log in different systems. UUIDs
can be used as token substitution for sensitive data.

196 CHAPTER 7 Filtering and transforming events
 If an application logs PII data, we could attach a UUID to that log event,
record the PII data and the UUID in a single secure location, and then shed
the PII attributes. If necessary, we can track back to the sensitive data by look-
ing up the UUID.

As the modify filter allows us to set elements in the log events based on environmental
values, we’ll add to the log events the hostname where the log event was captured. This
means setting the attribute record with the values hostname ${HOSTNAME}.

7.3.3 Illustrating the modify filter

We will use the modify filter to remove and rename some of the log event elements if
we’ve previously been able to link and associate the remote_ip to one in our checklist.
We need to define a condition attribute that will use the key_exists check previously
described. Then, we need to define the remove attribute to identify what elements to
remove from the payload, plus a rename. To add an element, we could use the add or
set attributes. Given that we want to be certain that our value is set, we’ll use the set
operation, as the add will fail if the attribute already exists.

7.3.4 Bringing it together

Having identified what we need to implement in terms of the checklist, modify,
and record_modifier filters, let’s bring them together. The following configuration
shows two new filters that were introduced (record_modifier and modify). We’ve
opted to use record_modifier first, as we want to add additional information to all
log events before we start introducing conditional operations. Then we’ve imple-
mented modify with its condition, which means we remove details like the request
for the IP addresses we know about, as we’re interested only in whether the network
traffic is flowing and how much traffic could be flowing through. See the following
listing and chapter7/fluentbit/ip-checklisted-modifying-filter.conf.

[SERVICE]
 flush 1
 parsers_file ${FLUENTBIT_HOME}/conf/parsers.conf

[INPUT]
 name tail
 path ./nginx.json.log
 read_from_head true
 tag nginx-feed
 parser json

[FILTER]
 name checklist
 match nginx-feed
 file ./fluentbit/ip-checklist.data
 lookup_key remote_ip
 ignore_case false

Listing 7.2 CheckList and modify: ip-checklisted-modifying-filter.conf

1977.3 Extending and amending with filters
 mode partial
 record known_origin yes
 print_query_time false

[FILTER]
 name record_modifier
 match nginx-feed
 record hostname ${HOSTNAME}
 uuid_key myUUID

[FILTER]
 name modify
 match nginx-feed
 condition Key_Exists known_origin
 remove agent request
 remove referrer
 rename remote_user user
 set identifiedValue matched

[OUTPUT]
 name stdout
 match *

When we run the scenario, we should expect several new elements in each event, rep-
resenting the added elements from the modify_record. Some log events will be far
shorter where we previously matched the IP to our list, as we can see next. (To
improve readability, we’ve replaced some values, such as "Mozilla/5.0 (0.9.7.9)"
with X and "Mozilla/5.0 (1.0.1ubuntu2)" with Y.)

[0] nginx-feed: [[1683878748.0, {}],
➥ {"remote_ip"=>"10.138.60.101", "remote_user"=>"-",
➥ "request"=>"GET /downloads/product_2 HTTP/1.1",
➥ "response"=>304, "bytes"=>0, "referrer"=>"-", "agent"=>"X",
➥ "hostname"=>"Watts", "myUUID"=>"33667302-ee7b-4b30-90c8-795d2f68d02e"}]
[0] nginx-feed: [[1683878702.0, {}], {"remote_ip"=>"10.4.66.76",
➥ "user"=>"-",
➥ "request"=>"GET /downloads/product_1 HTTP/1.1",
➥ "response"=>304, "bytes"=>0, "referrer"=>"-",
➥ "agent"=>"Y", "known_origin"=>"yes",
➥ "hostname"=>"Watts",
➥ "myUUID"=>"3246d472-dab6-4d6c-ab12-29cb336de339",
➥ " identifiedValue"=>"matched"}]
[0] nginx-feed: [[1683878725.0, {}],
➥ {"remote_ip"=>"10.57.209.92","remote_user"=>"-",
➥ "request"=>"GET /downloads/product_1 HTTP/1.1",

This time, we’re explicitly declaring that
we don’t want the timing information to be
logged (which is also the default setting).

Declares the filter that will allow
us to manipulate the log event

Defines the new element to add to the
payload and its value. We can include
predefined variables in the setting, as
shown here.

This attribute tells the filter to add a unique
ID to the log event as well, naming the
element to hold the value myUUID.

This modify filter applies the defined changes
only if this condition yields a true result by
identifying whether an element (key) in the
root of the event called known_origin exists.

Here, we’re moving two elements called
agent and request from the log event.

We could include removing the referrer
element in the preceding declaration. The
element is here only to illustrate that we
can have multiple declarations within the
same operation.

Defines the renaming of a log event
element from remote_user to user

If we have an element called identifiedValue,
we’ll change the element’s value. Otherwise,

we’ll add a new element called identifiedValue
and set the key (element) to a value of matched.

Note the presence of the
hostname attribute and
myUUID on every log
event.

198 CHAPTER 7 Filtering and transforming events
➥ "response"=>304, "bytes"=>0, "referrer"=>"-",
➥ "agent"=>"X", "hostname"=>"Watts",
➥ "myUUID"=>"b9756bbf-fe6f-4e93-ad29-6c2175fef271"}]
[0] nginx-feed: [[1683878704.0, {}],
➥ {"remote_ip"=>"10.239.186.133", "user"=>"-",
➥ "request"=>"GET /downloads/product_2 HTTP/1.1",
➥ "response"=>304, "bytes"=>0, "referrer"=>"-",
➥ "agent"=>"X", "known_origin"=>"yes",
➥ "hostname"=>"Watts",
➥ "myUUID"=>"f7031553-8dbe-4620-bb8c-088765de434b",
➥ "identifiedValue"=>"matched"}]
[0] nginx-feed: [[1683878708.0, {}], {"remote_ip"=>"172.29.139.108",
➥ "remote_user"=>"-", "request"=>"GET /downloads/product_1 HTTP/1.1",
➥ "response"=>304, "bytes"=>0, "referrer"=>"-", "agent"=>"X",
➥ "hostname"=>"Watts", "myUUID"=>"ebeeb4cc-ff23-4c0e-b38d-0001b2d53ce0"}]
[0] nginx-feed: [[1683878704.0, {}], {"remote_ip"=>"10.033.133.001",
➥ "remote_user"=>"-", "request"=>"GET /downloads/product_1 HTTP/1.1",
➥ "response"=>304, "bytes"=>0, "referrer"=>"-", "agent"=>"Y",
➥ "hostname"=>"Watts", "myUUID"=>"777c144d-1073-4092-bd3d-3caa5d89e6c5"}]
➥ [0] nginx-feed: [[1683878757.0, {}], {"remote_ip"=>"10.234.194.89",
➥ "remote_user"=>"-", "request"=>"GET /downloads/product_2 HTTP/1.1",
➥ "response"=>304, "bytes"=>0, "referrer"=>"-", "agent"=>"X",
➥ "hostname"=>"Watts", "myUUID"=>"192f1129-ef92-4b9a-844d-3a5c415b7df0"}]
➥ [0] nginx-feed: [[1683878720.0, {}], {"remote_ip"=>"10.4.72.163",
➥ "user"=>"-", "request"=>"GET /downloads/product_1 HTTP/1.1",
➥ "response"=>304, "bytes"=>0, "referrer"=>"-", "agent"=>"X",
➥ "known_origin"=>"yes", "hostname"=>"Watts", "myUUID"=>"91251b7b-5623-
➥ 4bd7-9f89-33cb961a9b43", " identifiedValue "=>"matched"}]

To run this scenario, we need to run the LogSimulator (from the chapter 6 folder) to
play the log events using the commands (assuming that the LogSimulator has ended
its previous execution):

./SimulatorConfig/nginx-json-log-feed-run.sh

Then we start Fluent Bit in the process with the command

fluent-bit -c fluentbit/ip-checklisted-modifying-filter.conf

7.3.5 Testing filters

Even with the subset features covered, we have the potential to significantly change
and affect the content of events. Because some filters support performing actions
based on conditions, now the events can take many more paths in processing, which
means we should implement a testing regime on our Fluent Bit configurations. As the
conditionality of the event increases, more strenuous testing is necessary beyond con-
firming that log events go from source to destination.

 We’ve previously mentioned the value of (re)playing events through our configu-
ration, allowing us to (re)examine how our logging configuration behaves. But we
also want to verify that the event data exists and is as expected. This can be imple-
mented using the expect filter. This filter allows us to define an action attribute that

Note that the entries
with a remote_ip that
got a partial match have
the additional element
"identifiedValue"=>"matched".

1997.4 Routing and controlling
logs warnings (with a value of warn), results in messages (with a value of result_key), or
even terminates (with a value of exit) Fluent Bit’s execution. With the action, we can
determine which element (key) in the event is the cause of the issue (result_key
attribute). The checks that we can configure include

 key_exists, key_not_exists—Determines whether the named element (key)
is within the log event

 key_val_is_null, key_val_is_not_null—Evaluates whether the named key
(element) has a null value

 key_val_eq—Determines whether the value of the named key (element)
matches a provided literal value

As you can see, this is like a subset of the modify filter in many respects. The differ-
ence is that the filter treats the event as essentially immutable.

 Although the obvious use case is to help validate our logging configuration, we
could also use it in production. If an application suddenly changes the way it is creat-
ing log events, we can use the expect filter to verify that the events are structured as
expected, and take action if they’re not; as a result, we avoid the adage “Garbage in,
garbage out.”

 If you choose to include expect in production, we recommend that the element
name provided by the attribute result_key be unique and ideally incorporate an
error code. Doing so makes it easy to trace the issue back to a specific point, as we
would like to think that application errors also carry an error code.

 As previously discussed, adding new filters like expect adds an element of overhead.
We need to allow for the additional effort or exclude this filter from production. If we
don’t want to use expect in production, then we can comment out the filter definition
(a little clumsy) or, in a classic configuration, use the include feature (see section 2.4) to
hold the expect filter and then swap the file for a stub version when deploying to produc-
tion. Although YAML provides for includes, it doesn’t allow us to target and position the
expect filters. We’ve included an annotated example of using expect in the download
pack called chapter7/fluentbit/ip-checklist-modifying-filter-expected.conf.

7.4 Routing and controlling
As previously mentioned, using the tag combined with matching is the principal means
to route events to specific destinations. We may be clever with the design of our tags
so that we can use tag hierarchies and wildcards. Sooner or later, we need to manip-
ulate the tag to direct the event as it flows through Fluent Bit. The solution is the
rewrite_tag filter. As rewriting every event would be pointless, this filter must support
the means to define a condition, which is done using the rule attribute.

7.4.1 Using the record accessor

Often, we want to set the tag to reflect the characteristics of the log event we’re pro-
cessing. We may have to convert the payload to be handled as JSON structure within
the log event first. This means potentially adding another parser and filter stage to

200 CHAPTER 7 Filtering and transforming events
our pipeline. Fortunately, some of our filters support the record accessor (record_
accessor), which means we don’t need to go through the process.

 record_accessor allows us to reference reserved values, such as a log event’s tag,
along with log event data. The value being referenced is prefixed by the dollar ($)
character, so the $tag would retrieve the current log event’s tag. It can also be used to
reference the root elements of the log payload (assuming that it is in JSON format).
Then we can traverse the structure using JSONPath-style syntax. Traversing subele-
ments is done by using the subelement name or index within square brackets ([]).
In multiple levels of nesting, each nested layer is addressed by an additional set of
square brackets.

 The easiest way to follow this is to see how we can apply the syntax to an example
log event payload. Using the following JSON, let’s pull out some values:

{
 "time": "12/May/2023:08:05:52 +0000",
 "remote_ip": "10.4.72.163",
 "remote_user": "-",
 "request": {
 "verb": "GET",
 "path": " /downloads/product_2",
 "protocol": "HTTP",
 "version": "1.1"
 },
 "response": 304,
 "bytes": 0,
 "referrer": "-",
 "agent": "Mozilla/5.0 (0.9.7.9)"
}

If we used the expression $remote_ip, the record_accessor would return the value
10.4.72.163 because it accesses a root-level element. If we wanted to retrieve the
value GET, we’d use the expression $request['verb'] because the request is a root
element. Then we need to access the child element called verb, so it needs to be
quoted inside square brackets (i.e., using the child element’s name as the index to the
request list of elements.

 If the expression references an element that doesn’t exist, no value is returned,
and the logic will not work. Rather than breaking the pipeline for the event(s) being
processed or worse, causing Fluent Bit to terminate the current occurrence of the
logic will result in no action being taken; the record will remain unmodified, and the
step process in the pipeline will be performed, creating the risk of a cascade of errors.
The record_accessor capability is available in a subset of all plugins, detailed in
appendix B.

TIP The syntax for referencing environment variables and referencing ele-
ments within the JSON payload with record_accessor are similar. Both
start with the dollar symbol ($), and both use brackets, but the environment

2017.4 Routing and controlling
variable uses curly braces ({}), and the record_accessor uses square ones
([]). If you get these the wrong way around, you’re likely to end up with
the reference resolving to an empty string (unless you have a matching decla-
ration with the same name), and then the plugin behaves erroneously.

7.4.2 Rewriting the tag filter example

Let’s look at how the rewrite_tag filter helps us change a tag. To rewrite the tag, we
first need to determine whether the tag needs to be rewritten. This is achieved through
the rule attribute of the filter, where we provide the element to use (allowing us to
use the record_accessor) followed by the regular expression, which should result in
a Boolean result, which will determine whether to run the tag rewrite.

 After the regular expression, we need to provide the replacement tag. We can also
use the record_accessor syntax to construct the new tag. The value resulting from
this expression has to be a string; therefore, we can’t reference a non-string element
with the accessor.

 The final part of the rule attribute is a Boolean value indicating whether the filter
should create a clone of the event with the new tag and emit (or keep) the original
event as well. If we allowed this value to be true, we would see the event with both the
original tag and the new tag; if we set the value to false, the event would have its tag
name changed.

 Let’s look at an example of the definition of the new tag, as we can combine literal
values with the use of record_accessor. Suppose that we want a new tag that starts
with the existing tag (Apps) and extends with a dot, followed by the request’s verb,
the literal .onSvr, and the host’s name—which, let’s say, is Watts. Following the
JSON example used to explain record_accessor, we should have a new tag that
looks like Apps.GET.onSvr.Watts. To achieve this result, the expression should be
$TAG.$request['verb'].onSrv.$Hostname.

 As our flow becomes more complex, it’s worth seeing it laid out logically. Figure 7.3
includes some flows that are not in the example configuration. These operations have
black labels to help convey the value of structured tag names.

 We have also altered our current IP checklist example so that the log events we
route to one output will have some of the attributes removed and those on the other
path are kept. To minimize setup effort rather than use PagerDuty and OpenSearch,
as the figure illustrates, we will use the console for PagerDuty and a file for Open-
Search. We’ll be able to recognize which is which because the console includes out-
putting the tag. In the real world, such a configuration is plausible, as we want to share
enough information in our alerting channels to give the recipient a sense of the prob-
lem they need to attend to. However, for operational postmortems and deeper
problem analysis, we need to provide a richer level of information. See listing 7.3 and
chapter7/fluentbit/ip-checklist-modified-routed-filter.conf.

202 CHAPTER 7 Filtering and transforming events
[SERVICE]
 flush 1
 parsers_file ${FLUENTBIT_HOME}/conf/parsers.conf

[INPUT]
 name tail
 path ./nginx.json.log

Listing 7.3 Tag rewriting: ip-checklist-modified-routed-filter.conf

Various sources with a
tag-naming convention
to help understanding
and routing

Store everything in an archive
file and send apps-related logs
to OpenSearch.

Extract specific details from the
record that can be used for
routing. Standardize attribute
names between Apps.App1 and
Apps.App2.

Determine whether
traffic indicates an
origin of interest.

Apps.App2..*

Apps.App2..*

Add to the record a
new element with the
hostname of the server.

Apps..*

Apps..*

* Apps..*

Priority

Priority

Remove any
attributes not
required to be
sent to PagerDuty,
then send.

As we have set the rewrite rule to have
a value of true, it will clone the event.
As a result, we will need to make two
passes of the output.

If the log event is identified
as being acceptable to the
checklist as a known_origin,
it will be sent to PagerDuty.

Input

(Fluent Bit)

Input

(file)

Input

(DB errors)

Input

(DB slow query)

Input

(K8s events)

Apps.App2.Oracle.Query Infra.k8sApps.App2.Oracle.SvrApps.App2.NginxApps.App1.aggregate

Filters

(checklist *)

Filter

(record_modifier)

Filter

(modify)

Filter

(tag rewrite)

Output

(file - archive)

Output

(OpenSearch)

Filter

(modify)

Output

(Pager Duty)

Figure 7.3 A visualization of our route-controlled output as it follows the logical flow of the configuration. The
tag names applied or matched are in italics above the process. The process step includes the type and the plugin.

Reuses our log feed to drive
the log event processing

2037.4 Routing and controlling
 read_from_head true
 tag Apps.App2.Nginx
 parser json

[FILTER]
 name checklist
 match Apps.App2.*
 file ./fluentbit/ip-checklist.data
 lookup_key remote_ip
 ignore_case false
 mode partial
 record known_origin yes

[FILTER]
 name record_modifier
 match Apps.App2.*
 record hostname ${HOSTNAME}
 uuid_key myUUID

[FILTER]
 name modify
 match Apps.*
 rename remote_user user
 rename widget gadget

#[FILTER]
name stdout
match Apps.*

[FILTER]
 name rewrite_tag
 match Apps.*
 rule known_origin ^(yes) priority true
 log_level debug

[FILTER]
 name modify
 match priority
 remove agent
 remove request
 remove referrer
 set known_origin matched

[OUTPUT]
 name stdout
 match priority

[OUTPUT]
 name file
 match Apps.*
 path .
 file Apps-all.txt

Adapts a more structured tag
naming that correlates with
figure 7.3 (visualization of our
route-controlled output)

Enriches the locally
captured log events with our
hostname and unique ID

Renames attributes that have been
sourced from the file and from other
systems, as shown in figure 7.3
(visualization of our route-
controlled output)

Renames an element that doesn’t exist,
which helps us see how the filter handles
such problems

Uses the stdout plugin as a filter to help
with debugging a configuration, but we
don’t want this feature in production

If the element known_origin is found
and has the value of yes, we’ll change
the tag to priority. But we also want
to retain an original copy of the
event, so we set the keep to true.

The log level doesn’t have to be
configuration-wide. We can
target a specific operation.

Only for the log events with the tag
priority, as this filter is about tuning
the payload for the destination

Removes several unwanted elements
from the payload

The value yes isn’t best for the reader, so let’s
change the value. If it doesn’t exist, it will be added.

Replaces the PagerDuty shown in figure 7.3
(visualization of our route-controlled output)

Replaces OpenSearch, as shown in figure 7.3
(visualization of our route-controlled output)

204 CHAPTER 7 Filtering and transforming events
7.4.3 Explicitly including and excluding events with grep

The approaches to defining conditions we’ve seen so far have been constrained to sin-
gle expressions. The grep filter allows us to define multiple conditions to filter out
events from the pipeline. When we define multiple conditions (available since Fluent
Bit v2.1), we also need to define how the result of each condition is combined:

 A logical and operation (all values need to be a positive result for the filter to
be applied).

 A logical or (any of the values need to have a positive result for the filter to
apply).

 A third way to combine the results, known as legacy. The logical operator
depends on whether the expression is inclusive (resulting in a logical and) or
excluding (resulting in a logical or).

The expressions are defined with the attribute regex (for inclusive expressions) fol-
lowed by the element name to apply a defined regular expression. The excluding
expression is defined using the attribute exclude combined with the named ele-
ment and a regular expression against that element’s value. We can define the logi-
cal operation with the attribute logical_op with the values and, or, or legacy as
long as we don’t mix regex and exclude attributes. If regex and exclude are used
together, the attribute logical_op can’t be used, as the logical operation implicitly
uses the and behavior.

 We’ve provided a file called chapter7/Fluentbit/grep-examples.conf, which is
made up of six dummy inputs generating the same JSON log event, each using a dif-
ferent tag, followed by a grep filter being matched to one of the inputs. Each filter
provides a different combination of regex and exclude attributes. Try reviewing the
complete configuration and determining which tagged logs will reach the console. A
fragment of the configuration follows.

[SERVICE]
 flush 1
 parsers_file ${FLUENTBIT_HOME}/conf/parsers.conf

[INPUT]
 name dummy
 dummy { "time": "12/May/2023:08:05:52 +0000",
➥ "remote_ip": "10.4.72.163",
➥ "remote_user": "-",
➥ "request": {"verb": "GET",
➥ "path": "/downloads/product_2",
➥ "protocol": "HTTP",
➥ "version": "1.1" },
➥ "response": 304}
 tag dummy1

Listing 7.4 The grep filter: grep-examples.conf (fragment)

2057.4 Routing and controlling
#
Additional dummy declarations with the same payload but with
different tags can be seen in the full configuration
#

[FILTER]
 name grep
 match dummy1
 regex request['protocol'] ^(HTTP)
 regex remote_ip (11)
 logical_op or
#
Additional filters with various combinations of regex, exclude, and
logical_op can be seen in the configuration file – each filter only
acts on a single input
#

[OUTPUT]
 name stdout
 match *

After reviewing the full configuration, we need to find out which tagged inputs will
pass through the filters. Run the configuration using the command

fluent-bit -c fluentbit/grep-examples.conf,

We see that the input log events with tags dummy1, dummy4, and dummy6 reach the con-
sole. The other dummy sources will have been filtered out. Let’s look at how the
results produced an outcome:

 dummy1—Succeeds, as it needs the protocol to be HTTP (true) or the remote_ip
to contain the value 11 (false). Combining these two values with a logical or,
we get a positive outcome.

 dummy2—Fails, as the protocol needs to have a value of HTTP (true), and the
remote_ip must include the value 11 within it (false). However, the remote_ip
does not have such a value; the operation is a logical and, requiring both to be
true to pass the filter.

 dummy3—Fails. as it requires the protocol to be HTTP (true) or the remote_ip
to include the number 11 (false), and we are using a logical or. As one of the
regex expressions is true, the overall outcome of the regex stage is true. But we
have to consider that the expressions have the exclude declaration, which in
effect is a logical not operation, thereby eliminating the response.

 dummy4—Succeeds, as it requires the protocol to be HTTP (true) and the
remote_ip to include the number 11 (false). We are using a logical or opera-
tion, resulting in a false result. But we must consider that the expressions use
exclude, which in effect is a logical not operation. As a result, the false from
the and becomes true.

Testing a nested element called protocol, which
is a child element to request to determine
whether it contains the string HTTP

As all our conditions are the same type
(regex), we can define which logical operator
will combine the condition results.

206 CHAPTER 7 Filtering and transforming events
 dummy5—Fails, as the protocol is HTTP (true) and remote_ip contains 11
(false). We need to consider the exclude, which affects only the protocol’s
result, making it false. With no explicit logical operation defined, an implied
and should be used, producing a false result.

 dummy6—Succeeds, as the protocol is HTTP (true) and remote_ip contains 11
(false). But this time, we apply exclude to the remote_ip, which was already
false, so it is now true. As we have a logical and implied with both values posi-
tive, we get an overall positive outcome.

If you’d like to test yourself, see what happens if the remote_ip’s first octet changes to 11.

7.5 Controlling events
We’ve seen how we can manipulate and direct the log events. The remaining option
for controlling behavior is throttling the log throughput so that we don’t experience
errors, or worse, the destination accepts and dumps data.

7.5.1 throttle

Throttling allows us to control the rate at which log events are released from Fluent
Bit. Throttling is controlled by defining the number of events per period (rate). The
input is calculated as an average set by the window attribute with the number of
intervals. (Chapter 8 looks more deeply into time windows.) When throttling kicks
in, events start being dropped to ensure that the rate set is not exceeded. Let’s look at
a simple scenario in which a dummy input generates events at a rate of five per second.
But we will throttle the throughput at two events (rate) every two seconds (interval),
with the message dropping being dictated by the average over a 6-second period
(window). We’ll see the consequences of throttling immediately. We can also switch on
print_status, which will tell us what is being calculated. Our configuration should
look like the following listing and is available in chapter7/fluentbit/throttle-
demo.conf.

[SERVICE]
 flush 10

[INPUT]
 name dummy
 copies 5
 rate 1
 dummy {"message":"dummy"}
 tag throttle_demo

[FILTER]
 name throttle
 match *
 rate 2
 window 3

Listing 7.5 Example of throttling: throttle-demo.conf

Defines the number of
copies per second to send

Defines the number of events
per interval to allow

Defines how many intervals to
calculate the average over

2077.5 Controlling events
 interval 2s
 print_status true

[OUTPUT]
 name stdout
 match *

We can run this scenario with the command

fluent-bit -c fluentbit/throttle-demo.conf

Setting the print_status flag tells Fluent Bit to output messages like this:

[info] [filter:throttle:throttle.0] 1718567870:
➥ limit is 2.00 per 2s with window size of 3,
➥ current rate is: 2 per interval

As the dummy plugin doesn’t include an incremental counter, we can’t see which events
are being dropped. Throttling prevents backend systems from being overwhelmed by
events, but there are some limitations. The most significant is that no rules govern
which events are dropped and which ones are kept. Given the arbitrary nature of the
throttle, we could lose important error logs. We can do a couple of things to limit this
risk or at least know when potential risk exists:

 Fluent Bit’s logging is captured, and we filter the logs to capture when Fluent
Bit reports we’re sending the maximum allowed messages (rate is x per inter-
val). This tells us there is a distinct risk at play.

 Separate log events are based on the log level they’re reporting. Consider first
filtering or throttling logs classified at lower levels in the log hierarchy, such as
trace and debug and then info.

 If log loss is a sensitive subject, write all logs to a simple high-performance file
store and protect the analytics platform with throttling. (Analytical platforms
are likely to need rate limits.) If events are missing, we can reingest the log file’s
contents when things are slower.

In addition to the throttle plugin, Fluent Bit recently added throttle_size. It
applies windowing techniques, but eviction is based on the size of the message or the
size of an element of a message.

7.5.2 log_to_metrics

Applications may generate metrics-related data but emit these signals through logs.
This could happen because when the application was built, it was the only practical
way to emit application-monitoring values, or associating a Prometheus node exporter
as a sidecar was considered undesirable. Regardless of the reason, generating metrics
for Prometheus from log events is desirable.

 To address this need, Fluent Bit has a plugin called log_to_metrics, which allows us
to map or calculate values from JSON log data to provide Prometheus metrics

The length of the interval using
standard Fluent Bit time notation

Switches print status on so we can
see whether throttling is affected

208 CHAPTER 7 Filtering and transforming events

(counter, gauge, and histogram; for details, see https://prometheus.io/docs/concepts/
metric_types).

 To illustrate, we’ll use two dummy inputs to provide simulated log inputs. We’ll
also extract values for the gauge and histogram metric types. The counter will count
the occurrences of the matched events. Each metric needs a name (metric_name) and
description (metric_description). Each metric also needs a filter to be defined,
which provides the metric_mode attribute that defines the Prometheus metric type
(counter, gauge, or histogram). We can also include a label in the values, based on an
attribute of the log message that is identified by the label_field attribute. The met-
ric type dictates the additional attributes needed. For histograms and gauges, we need
to identify the numeric value in the log event to use with the value_field attribute.
For a histogram, we also need to provide a bucket attribute that provides a sample
value size.

 The plugin includes some advanced capabilities, such as defining a regular expres-
sion that includes or (regex) or excludes (exclude) log events from the measurement
based on whether the element in the log matches the regular expression. The plugin
can also be used in conjunction with the Kubernetes Filter plugin, which, when com-
bined, adds labels for pod_id, pod_name, namespace_name, docker_id, and contain-
er_name. For the combination to be applied, the kubernetes_mode attribute needs to
be provided. The configuration in the following listing illustrates the generation of
each of the metric types, available in chapter7/fluentbit/log-to-metrics.conf.

[SERVICE]
 flush 1

[INPUT]
 name dummy
 dummy {"greeting ":"hello", "gauge_value":"1"}
 tag dummy.hello

[INPUT]
 name dummy
 dummy {" greeting":"bonjour", "gauge_value":"7"}
 tag dummy.hello

[INPUT]
 name dummy
 dummy {"greeting":"goodbye", "gauge_value":"3"}
 tag dummy.goodbye

[FILTER]
 name log_to_metrics
 match dummy.*
 tag test_metric_all
 metric_mode counter
 label_field greeting

Listing 7.6 Generating Prometheus metrics: log-to-metrics.conf

Uses a JSON element called
gauge_value for the gauge
and histogram metric types.
Although the figure is hardwired,
the value is different for each
dummy input.

We have two dummy inputs
with the dummy.hello tag.
But we’ll use the greeting as
the label to see how it
affects the result of the
count and histogram.

A different tag so we can see
the differences in events

Identifies the metric type. In this
example, we’re creating a counter.

To have the count dimensioned by the greeting
type, we need to identify the JSON element to use.

https://prometheus.io/docs/concepts/metric_types
https://prometheus.io/docs/concepts/metric_types
https://prometheus.io/docs/concepts/metric_types

2097.5 Controlling events
 metric_name count_all_dummy_messages
 metric_description count of messages by greeting

[FILTER]
 name log_to_metrics
 match dummy.*
 tag test_metric_all
 metric_mode counter
 metric_name count_all_dummy_messages
 metric_description count of ALL messages

[FILTER]
 name log_to_metrics
 match dummy.goodbye
 tag goodbye_gauge
 metric_mode gauge
 metric_name goodbye_gauge
 value_field gauge_value
 metric_description A gauge from dummy.goodbye

[FILTER]
 name log_to_metrics
 match dummy.hello
 tag hello_test_histogram
 metric_mode histogram
 metric_name hello_histogram
 label_field greeting
 bucket 0.4
 value_field gauge_value
 metric_description A histogram for dummy.hello events

[OUTPUT]
 name prometheus_exporter
 match *
 host 0.0.0.0
 port 9885

To run the scenario and see the results, we can start Fluent Bit with the command

fluent-bit -c fluentbit/logs-to-metrics.conf

Then we can use the PrometheusGet configuration in the chapter 7 collection pro-
vided in the Postman configurations or the following curl command:

curl -s http://127.0.0.1:9885/metrics

The result appears something like this (depending on how quickly we execute the
command):

HELP log_metric_counter_count_dimensioned count of messages by greeting
TYPE log_metric_counter_count_dimensioned counter
log_metric_counter_count_dimensioned{greeting="bonjour"} 12
log_metric_counter_count_dimensioned{greeting="goodbye"} 13

This counter doesn’t have a label_field
identified but remains a count so we can see
the effect of not dimensioning the counts.

Each metric needs
a unique name.

The description is incorporated
into the # HELP output.

We’re using the tag name to
filter what is being calculated
rather than a regex or exclude
attribute.

Defines a Prometheus
gauge metric type

For a gauge or histogram metric,
we need to identify the attribute in
the log event to use, which needs
to be numeric.

Identifies the
metric-type
histogram, so
we also need
to provide the
value_field

Histograms also
need a bucket value
to control the
sample size.

Identifies the numeric
field in the log event to
be used in the histogram

210 CHAPTER 7 Filtering and transforming events
log_metric_counter_count_dimensioned{greeting="hello"} 12
HELP log_metric_counter_count_all_messages count of ALL messages
TYPE log_metric_counter_count_all_messages counter
log_metric_counter_count_all_messages 37
HELP log_metric_gauge_goodbye_gauge A gauge from dummy.goodbye
TYPE log_metric_gauge_goodbye_gauge gauge
log_metric_gauge_goodbye_gauge 3
HELP log_metric_histogram_hello_histogram A histogram
➥ for dummy.hello events
TYPE log_metric_histogram_hello_histogram histogram
log_metric_histogram_hello_histogram_bucket{le="0.4",greeting="bonjour"} 0
log_metric_histogram_hello_histogram_bucket
➥ {le="+Inf",greeting="bonjour"} 12
log_metric_histogram_hello_histogram_sum{greeting="bonjour"} 84
log_metric_histogram_hello_histogram_count{greeting="bonjour"} 12
log_metric_histogram_hello_histogram_bucket{le="0.4",greeting="hello"} 0
log_metric_histogram_hello_histogram_bucket{le="+Inf",greeting="hello"} 13
log_metric_histogram_hello_histogram_sum{greeting="hello"} 13
log_metric_histogram_hello_histogram_count{greeting="hello"} 13

As we can see from this output, the various metrics are generated and dimensioned by
the greeting value from the log event.

WARNING There are recommended practices for developing and defining met-
rics for Prometheus. But, the number of dimensions (also referred to as cardi-
nality) of the metrics is most critical, as it can affect Fluent Bit’s behavior as a
Prometheus exporter. Each dimension will result in additional values being col-
lected and calculated. Be careful about the number of possible values that
could appear in the JSON element identified with the label_field attribute.

7.5.3 Advanced use of matching

The use of the match attributes in all the plugins isn’t strictly part of the filter plugins
but is sufficiently related to discuss here. We explored typical uses of the match attri-
bute when looking at the output plugins. As we’ve seen, we can use absolute or partial
tag names with wildcards to filter which events are processed by a plugin. The most
advanced possibility for a match incorporates regular expressions. In this context, we
can look at regex as an advanced form of wildcarding insofar as we can bound the
match more precisely but still allow some variety.

Considerations when using regex
When using regex, we need to consider the performance implications. A regular expres-
sion can be computationally demanding to execute. As we’re effectively applying the
expression against all events in the pipeline, it can have a detrimental effect on per-
formance. Therefore, we should be cautious with their use. The more complex the
expression is, the greater the compute effort. In the worst case, it may be worth con-
sidering a wildcard use case in a rewrite_tag filter. The website https://www.regular-
expressions.info highlights some pitfalls that make expressions particularly horrible.

https://www.regular-expressions.info
https://www.regular-expressions.info

2117.5 Controlling events
To use a regular expression for matching, rather than the normal match attribute, we
use the attribute match_regex and then provide a regular expression. Let’s take a
hypothetical situation to see this in action. Development teams have agreed they’ll
postfix the value that will be treated as the tag with the error level. In the Fluent Bit
pipeline, we’re interested only in errors and warnings. The problem is complicated by
the fact that some developers have interpreted the log level as a numeric value, with
error being 1, warning being 2, and so on.

 We could address this by having an output plugin for each log level we’re inter-
ested in, but that could present ongoing maintenance problems as we need to apply
configuration changes to multiple outputs. Using the match_regex, we can explicitly
target outputs that are postfixed with the log levels wanted, which we’ve done in the
following example. We have multiple dummy input plugins generating events with tags
that have log level postfixes that differ by using both word and numbered levels. Some
of these events aren’t wanted. We see the error and warning log level events when we
run this listing (chapter7/fluentbit/regex-match.conf).

[SERVICE]
 flush 1

[INPUT]
 name dummy
 dummy {"message":"an ERROR message using a numeric code"}
 tag myTag.1

[INPUT]
 name dummy
 dummy {"message":"an ERROR message"}
 tag myTag.error

[INPUT]
 name dummy

In addition, regular expressions that become complex can be difficult to understand
and maintain. It would be easy to assert that log structures rarely change, so main-
tenance needs are low. But remember that someone may introduce something to a
log that we never expected, and this something can break the expression. We may
be processing a JSON-like log event, and someone adds a log reporting that some
JSON they received is malformed and including the JSON, which could easily break
our expression. Although regex is created for its brevity, as with all things, we’re trad-
ing the ability to manage unexpected/unhappy scenarios with coding the processing.
We’re not suggesting not using regex. We’re saying you should imagine how well
a less-experienced colleague might react if they must make a change. If the right
answer is complex, describe how you expect the regex to achieve a match, or any
specific constraints or assumptions the regex has, or break the expressions into sev-
eral steps.

Listing 7.7 Matching using regex: regex-match.conf (fragment)

We’ve omitted additional combinations of dummy outputs, but the
GitHub/download-pack version of this configuration contains
additional combinations that exclude or include them.

212 CHAPTER 7 Filtering and transforming events
 dummy {"message":"a warning message using numeric code"}
 tag myTag.2

[INPUT]
 name dummy
 dummy {"message":"an info message using numeric code"}
 tag myTag.3

[OUTPUT]
 match_regex myTag.(error|warn|1|2)
 name stdout
 format json

Let’s run the configuration with the command

fluent-bit -c fluentbit/regex-match.conf

We can expect to see output like this:

[{"date":1702639498.957197,"message":
➥ "an ERROR message using a numeric code"}]
[{"date":1702639498.95723,"message":"an ERROR message"}]
[{"date":1702639498.957239,"message":
➥ "a warning message using numeric code"}]

Experiment with this configuration further by changing the dummy inputs to gener-
ate other variations, such as events tagged with .err, .warning, debug, and 5. Then tune
the regular expression to get a subset of logs going to the console as before. We’ve pro-
vided an example configuration in chapter7/fluentbit/regex-max-answer.conf.

7.6 Custom filtering with Lua
The filters we’ve examined are potent and easy to work with because they’re entirely
configuration driven. The downside is that there are limits to what problems they can
solve. Sometimes, we need to drop into a coding approach to our log event process-
ing. Examples where Lua can really help are

 When performance is critical, and the plugin approach to manipulating the
event uses multiple filters or a single filter with multiple parsers, we can imple-
ment the transformation using a single Lua filter more efficiently.

 Performing additional computational logic that existing filters can’t address,
such as transforming date formats, considering whether they’re using a time
zone or shifting for daylight saving time.

 Implementing data masking so sensitive values can be safely hidden. This is par-
ticularly helpful for uncommon data formats where we can’t simply use a pre-
defined utility.

We’ve omitted additional combinations of dummy outputs, but
the GitHub/download-pack version of this configuration contains
additional combinations that exclude or include them.

Our regular expression that will permit
tagged events starting with myTag with
the value error, warn, 1, or 2

2137.6 Custom filtering with Lua
7.6.1 Background of Lua

To understand how Lua can help us, the possible drawbacks of using it, where we can
see its use, and how we can understand the syntax more, it’s worth looking at the back-
ground of the language. Lua is a language that looks a bit like a blend of C (relative
simplicity) and Ruby (syntax) that is easy to incorporate into other language run-
times, such as those written with C. Lua can be run as a purely interpreted language or
with the use of a just-in-time (JIT) compiler (LuaJIT; https://luajit.org), converting
the code to a binary on the fly as needed. Fluent Bit uses the JIT compiler to run Lua
scripts. An efficient language, a good JIT compiler, and a well-written script can pro-
duce good performance, although not as fast as code already compiled to a native
binary, and the JIT will always represent overhead. This makes it ideal for custom logic
for context-specific filtering expressions that should be aligned to a configuration, not
the core Fluent Bit codebase.

NOTE Lua (Portuguese for moon) has been around since 1993 due to work by
the Department of Computer Graphics Technology Group at Pontifical Cath-
olic University in Rio (PUC-Rio). The governance and upkeep of the lan-
guage are now performed by the Lua Lab research laboratory, which still has
connections to PUC-Rio.

Using Lua as part of Fluent Bit may seem out of place, as it isn’t the best-known lan-
guage. The TIOBE language index (https://www.tiobe.com/tiobe-index) currently
has it sitting in 26th place, behind languages such as Lisp. Although it may not be a
well-known language, it does pop up regularly in the cloud-native community. Lua is
supported as a plugin option for Apache APISIX (https://mng.bz/XVqp) and Envoy
for HTTP filtering. Outside the Cloud Native Computing Foundation (CNCF) ecosys-
tem, the well-known Kong API gateway (https://mng.bz/yoZy) supports Lua. Nginx
has a Lua module (https://mng.bz/M19o) used by OpenResty, and Vector (https://
mng.bz/aVmo) from Datadog as another tool for running observability and monitor-
ing pipelines.

 Given these examples, Lua’s early associations with graphics appear in some big-
name games, such as World of Warcraft as a scripting tool, and the game Angry Birds is
implemented primarily with Lua. It shouldn’t be a surprise to hear that Lua is easy to
embed in C-based applications, and despite its use, JIT compilation is performant.

 Lua and the JIT compiler are provided as open source, so their use is unrestricted.
In the unlikely event that you need to run the solution on a less common OS or
chipset, such as Tizen and FreeRTOS, you can do so as long as you have a C compiler
build your specific binaries.

TIP To learn more about Lua and its history, try https://www.lua.org/history
.html. For more on Lua’s gaming success, see https://mng.bz/gA7x.

https://www.tiobe.com/tiobe-index/
https://mng.bz/XVqp
https://luajit.org/
https://mng.bz/yoZy
https://mng.bz/M19o
https://mng.bz/aVmo
https://mng.bz/aVmo
https://mng.bz/aVmo
https://www.lua.org/history.html
https://www.lua.org/history.html
https://www.lua.org/history.html
https://mng.bz/gA7x

214 CHAPTER 7 Filtering and transforming events

7.6.2 Implementing a Lua filter

The best way to see Lua work is to implement a simple script. Fluent Bit includes some
basic samples in the master branch of its GitHub repository (https://mng.bz/5OoZ),
although these samples are minimal. We will produce a script that counts the number
of root elements in the log event and adds the result back into the log event. We will
also print the element names (keys) to see what data Lua can access.

 Lua is typically and best handled as a separate script, similar to how parsers are han-
dled. Fluent Bit invokes the Lua script with the three parts of a log event—timestamp,
core record, and tag—and expects a code, timestamp, and record back. Note that we
can’t return the tag because manipulating the tag would affect the internal structures of
the events managed by Fluent Bit. The code returned tells Fluent Bit about the effect of
changes that occurred within the Lua script. The code is numeric (table 7.1).

The timestamp follows Fluent Bit’s convention of handling the value as a double (dec-
imal) data type representing seconds.nanoseconds. The record is passed as a Lua
table structure (name-value pairs), and if the element contains subelements, they are
represented as a table, so we can use iteration and recurse through the structure. Lua
tables can be indexed using the key name or a numeric value, which makes it easy to
traverse and manipulate the content.

 To illustrate adding values and manipulating existing ones if they can be found,
we’ll add the count of elements and change the attribute remote_user if it can be found.
As a result, our Lua script looks like this listing (chapter7/fluentbit/attribute-
count.lua).

local function elementCounter (record)
 -- this function can be used recursively so we can count nested elements
 counter = 0
 for key,value in pairs(record) do
 if (type(value) == "table") then

Table 7.1 Response-code values and their meanings

Code Meaning

–1 The record needs deleting.

 0 All values are unmodified.

 1 Both timestamp and record structures have changed, and the Fluent Bit record needs to be
updated.

 2 Only the record has changed, and the timestamp remains unmodified.

Listing 7.8 Lua attribute counter: attribute-count.lua

A local function separated from the main
function called by Fluent Bit so that it can
be recursively invoked to handle nested
elements in the event

Lua allows us to interrogate the data structure’s
types. As we know, nested elements are handled
as tables, so if we find something of the type
Table, we should examine it recursively.

https://mng.bz/5OoZ

2157.6 Custom filtering with Lua
 counter = counter + elementCounter(value)
 else
 counter=counter+1
 print(string.format("-->[%d] %s --> %s",counter, key, value))
 end
 end
 return counter
end

function cb_addElementCount(tag, timestamp, record)
 -- we need to indicate back to Fluent Bit that the
➥ record will have changed, but not the timestamp
 local code = 2;

 if (record['remote_user'] ~= nil) then
 -- if the remote_user attribute exists let's change it to be Lua
 record ['remote_user'] = "Lua"
 end

 -- add a new element with the count of elements in the structure passed
 record["element_count"] = (elementCounter(record) + 1)

 return code, timestamp, record

end

Ideally, we would build some unit testing for our script with a framework such as
LuaUnit (https://luaunit.readthedocs.io/en/latest), which is the Lua implementa-
tion of the xUnit framework. Appendix B provides details on retrieving and running
LuaUnit.

 With a script produced, we need to configure the filter, which results in the func-
tion’s being invoked. To do that, we need to provide Fluent Bit the script’s location
using the script attribute and then the name of the correct function with the call
attribute. By providing both details, we can combine multiple functions to use within
a single script file. Combined with the name and match attributes, we have the mini-
mum footprint to invoke a Lua script.

 This minimum set of configurations is enough to run the script, but if the script
encounters an error, Fluent Bit will terminate. During development, this is helpful,
but in production, it represents a real problem. We can overcome it with the protect-
ed_mode attribute, which protects Fluent Bit from crashing if Lua experiences a prob-
lem when set to true. It is worth considering configuring this attribute using an
environment variable. This way, we’re not toggling the value back and forth when
committing changes to Git—something that is easy to overlook. See the following list-
ing and chapter7/fluentbit/lua-filter-example.conf.

Performs recursion

The function
declaration that we
have to configure
Fluent Bit to invoke

Shows whether an
element exists in
the record

We’ve found an element,
and we’ll modify its value.

Adds the count
element. As you
can see, this is no
different from
the creation.

The returned values.
We’re not going to
manipulate the
timestamp we’ve set up.

https://luaunit.readthedocs.io/en/latest

216 CHAPTER 7 Filtering and transforming events

[SERVICE]
 flush 1

[INPUT]
 name dummy
 dummy {"time": "12/May/2023:08:05:52 +0000",
➥ "remote_ip": "10.4.72.163",
➥ "remoteuser": "-",
➥ "request": {"verb": "GET",
➥ "path": "/downloads/product_2",
➥ "protocol": "HTTP","version": "1.1"},
➥ "response": 304}
 tag dummy1

[INPUT]
 Name dummy
 dummy {"time": "12/June/2023:08:05:52 +0000",
➥ "remote_ip": "10.4.72.163", "remote_user": "-",
➥ "request": {"verb": "GET",
➥ "path": " /downloads/product_2",
➥ "protocol": "HTTP", "version": "1.1"},
➥ "response": 304,
➥ "another_root_element" : "horrah",
➥ "why" : "just so the counter varies"}
 tag dummy2

[INPUT]
 name fluentbit_metrics
 tag fluentbitmetrics
 scrape_interval 15
 scrape_on_start true

[FILTER]
 name lua
 match *
 script ./attribute-count.lua
 call cb_addElementCount
 protected_mode true

[OUTPUT]
 name stdout
 match *

As we’re using Fluent Bit–generated data for the inputs, we can run this configuration
easily with the command

fluent-bit -c fluentbit/lua-filter-example.conf

With Fluent Bit running, we see the following fragments on the console:

[0] dummy1: [[1696619883.228085400, {}],
➥ {"request"=>{"path"=>" /downloads/product_2",

Listing 7.9 Lua invocation config: lua-filter-example.conf

Note the difference in how we named
the remote user element in dummy1
and dummy2. This has consequences
for the execution of Lua code.

Despite collecting the metrics
today, it isn’t possible to use
this data within Lua.

Identifies the
Lua filter

When the Lua code is kept as
an external script, we need to
name the script's location.

As our Lua script may contain multiple
functions, we need to define the name of the
correct function to invoke. The named function
must comply with the definition required.

Tells Fluent Bit to control the effect of any script errors.
During development, it is worth switching this off.

2177.6 Custom filtering with Lua
➥ "verb"=>"GET", "version"=>"1.1", "protocol"=>"HTTP"},
➥ "remoteuser"=>"-", "element_count"=>9,
➥ "time"=>"12/May/2023:08:05:52 +0000",
➥ "remote_ip"=>"10.4.72.163", "response"=>304}]

-->[1] path --> /downloads/product_2
-->[2] verb --> GET
-->[3] version --> 1.1
-->[4] protocol --> HTTP
-->[5] remoteuser --> -
-->[6] time --> 12/May/2023:08:05:52 +0000
-->[7] remote_ip --> 10.4.72.163
-->[8] response --> 304
[0] dummy2: [[1696619883.227222300, {}],
➥ {"remote_user"=>"-", "element_count"=>11,
➥ "why"-->[1] remote_user --> -
-->[2] why --> just so the counter varies
-->[3] time --> 12/June/2023:08:05:52 +0000
-->[4] another_root_element --> horrah
-->[5] remote_ip --> 10.4.72.163
-->[1] path --> /downloads/product_2
-->[2] verb --> GET
-->[3] version --> 1.1
-->[4] protocol --> HTTP
-->[10] response --> 304

[0] dummy2: [[1696634412.729062200, {}],
➥ {"remote_user"=>"Lua", "request"=>{"version"=>"1.1",
➥ "protocol"=>"HTTP", "verb"=>"GET",
➥ "path"=>" /downloads/product_2"},
➥ "time"=>"12/June/2023:08:05:52 +0000",
➥ "element_count"=>11, "another_root_element"=>"horrah",
➥ "remote_ip"=>"10.4.72.163", "why"=>"just so the counter varies",
➥ "response"=>304}]

Looking beyond the basic invocation, Fluent Bit includes several configuration attri-
butes for 1.x versions of Fluent Bit (predating our baseline):

 type_int_key

 type_array_key

In addition, we have two advanced options. The attribute time_as_table addresses
the possibility of small shifts in the timestamp. The timestamp is, by default, passed to
Lua as a floating-point number. However, the type conversion can result in minor
rounding errors, resulting in nanosecond shifts in the timestamp. We can mitigate this
by telling Fluent Bit to pass the value as a table with two key values called sec and
nsec. We’ve illustrated this with the chapter7/fluentbit/lua-filter-types-example
.conf and associated Lua code chapter7/fluentbit/attribute-types.lua.

 The remaining significant attribute is code. This attribute provides an alternative
way to provide Fluent Bit the Lua script to execute by passing the code rather than a

The remote user
value hasn’t been
overridden. The attribute
element_count has been
added to the log event.

We can see the content
of each of the elements
(key and value).

We have the element_count attribute in the log
event again, but note that the remote_user
attribute has also been modified to Lua.

218 CHAPTER 7 Filtering and transforming events
reference to a script file. This makes it easy to configure Fluent Bit when using a con-
tainerized deployment, as configuring mount points or custom containers for Fluent
Bit is not required. The one challenge is that we are mixing different notations, mak-
ing maintaining the code a lot messier. So we always recommend developing Lua scripts
and passing them using the script attribute, copying the script to the code option
only when everything has been shaken down and proven.

 The configuration in the following listing and chapter7/fluentbit/lua-filter-
types-embedded.yaml adapts the previous example so we can see how an array is han-
dled and the alternative approach to passing the timestamp. This time, we’ve replaced
the script attribute for the use of code, allowing us to embed our script in our config-
uration file. Note that we’ve included the YAML version of the configuration here.
The classic configuration syntax would require all the code to be on a single line, mak-
ing it unintelligible or unprintable.

 flush: 1
 daemon: off
 log_level: info

pipeline:
 inputs:
 - name: dummy
 tag: dummy1
 dummy: '{"time": "12/May/2023:08:05:52 +0000",
➥ "remote_ip": "10.4.72.163", "remoteuser": "-",
➥ "request": {"verb": "GET",
➥ "path": "/downloads/product_2",
➥ "protocol": "HTTP", "version": "1.1" },"response": 304}'

 - name: dummy
 tag: dummy2
 dummy: '{"time": "12/June/2023:08:05:52 +0000",
➥ "remote_ip": "10.4.72.163", "remote_user": "-",
➥ "request": {"verb": "GET",
➥ "path": "/downloads/product_2",
➥ "protocol": "HTTP", "version": "1.1"},
➥ "response": 304,
➥ "another_root_element" :
➥ "horrah", "why" :
➥ ["just"," so", " the counter"," varies"]}'

 filters:
 - name: lua
 match: "*"
 call: cb_displayDataAndTypes
 time_as_table: true
 code: |
 local function printDetails(record, indent)
 local counter = 0
 for key, value in pairs(record) do
 local elementType = type(value)

Listing 7.10 Embedding Lua: lua-filter-types-embedded.yaml

The last element in this
dummy output is tweaked
to provide an array of
strings so we can see how
it is passed to Lua.

Asks Fluent Bit to pass the timestamp part of
the event record as a table. In doing so, we
avoid any possible rounding errors due to
passing numbers as floating-point values.

The code attribute, with
the YAML notation indicating
the use of multiple lines and
making the code easier to read

2197.6 Custom filtering with Lua
 if (elementType == "table") then
 print(string.format("%s { %s = ", indent, key))
 printDetails(value, indent .. " ")
 print("}")
 else
 print(string.format("%s %s = %s --> %s",
indent,
key,
tostring(value), elementType))
 end
 end
 end

 function cb_displayDataAndTypes(tag, timestamp, record)
 local code = 0
 if (type(timestamp) == "table") then
 print(tag, ":", timestamp['sec'], " . ", timestamp['nsec'])
 else
 print(tag, " ", timestamp)
 end
 printDetails(record, "")
 return code, timestamp, record
 end

 outputs:
 - name: null
 match: "*"

Running this configuration can be done simply with the command fluent-bit -c
fluentbit/lua-filter-types-embedded.yaml. As the output is being sent to the null
output plugin, the only output we’ll see this time is from Lua. We should see Lua dis-
playing the different attributes, their values, and their Lua data type. Additionally, as
we’re passing the date as a table, we see the timestamp being displayed as two attri-
butes. Here is an illustrative fragment of the output that will be generated:

dummy1 : 1696776394 . 848984498
 remote_ip = 10.4.72.163 --> string
 remoteuser = - --> string
 response = 304 --> number
 { request =
 path = /downloads/product_2 --> string
 protocol = HTTP --> string
 verb = GET --> string
 version = 1.1 --> string
}
 time = 12/May/2023:08:05:52 +0000 --> string
dummy2 : 1696776394 . 849111579
 remote_ip = 10.4.72.163 --> string
 another_root_element = horrah --> string
 { why =
 1 = just --> string
 2 = so --> string

If the timestamp is of type
table, we retrieve the two

elements making up the
timestamp.

As the Lua script is printing all the content and we’re
not doing anything else with the log events, we can
direct all the outputs to null to be neat and tidy.

The first difference is that
the timestamp is output as
two separate parts, and
we’ve concatenated the
two values as a string with
a dot between the values.

Numeric data in the JSON
structure is being passed
through as a numeric value.

As we recurse down the table
content, we’re indenting the
output with additional
whitespace characters.

When we pass data as an array, the
elements become numerically indexed.

220 CHAPTER 7 Filtering and transforming events
 3 = the counter --> string
 4 = varies --> string
}
 response = 304 --> number
 { request =
 path = /downloads/product_2 --> string
 protocol = HTTP --> string
 verb = GET --> string
 version = 1.1 --> string
}

The script determines how to display the timestamp depending on setting the attribute
time_as_table value to false and rerunning. See whether you can see occurrences of
rounding; you need to understand how Fluent Bit sees the timestamp to do this. You
can introduce an additional filter before the Lua filter that uses stdout as in an earlier
example. We’ve provided an implementation called lua-filter-types-embedded-
answer.yaml.

Summary
 Fluent Bit has a wide range of available filters covering integration and enriching,

extending and amending payloads, routing and control, and custom filtering.
 Fluent Bit supports plugins that can use third-party services to enrich log events,

such as obtaining a geolocation for an IP address (GeoIP) and using TensorFlow.
 Fluent Bit provides filters that allow us to manipulate events such as nesting or

flattening the event data structure, renaming event attributes, and changing
their values.

 The tag_rewrite filter allows us to manipulate the event tag and alter the rout-
ing of events with the match attributes. The filter supports the ability to define
rules to control which events have their tags changed.

 We can manipulate the events to change their signal type, such as generating
metrics from logs.

 Filters like throttle can ensure that backend systems aren’t overwhelmed.
 Fluent Bit supports the development of custom filter through the use of Lua.

Using Lua allows us to achieve custom filter processes without resorting to full
plugin development.

Part 3

Plugins and queries

Part 3 explores Fluent Bit’s advanced capabilities. Chapter 8 covers stream
processing, showing how it allows us to perform queries on events and time
series calculations as events pass through Fluent Bit. This gives Fluent Bit a Kaf-
kaesque ability to perform time series calculations. We’ll explore the limits of
what can be queried and turn our query answers into new events.

 Chapter 9 examines the idea behind processors, a feature of input and out-
put plugins that allows us to incorporate advanced manipulation of logs, traces,
and metrics. If this feature isn’t sufficient to solve our input and output needs,
we have the option of creating custom plugins. Each approach has pros and
cons, so we’ll suggest the right one for different needs.

 This leads us neatly into chapter 10, which takes us through the process of
building custom plugins. We apply only one of the options in chapter 9, but it
is the easiest to follow and fits most of the needs we’re likely to encounter. By
the end of this chapter, we’ll build one input and one output plugin that can
work with databases such as MySQL and can be easily extended to work with
other databases.

 This part closes by looking at an enterprise use case in chapter 11. Although
the enterprise is hypothetical, the needs and circumstances are drawn from real-
world organizations. As we go through the use case, we’ll explain how Fluent Bit
can be applied and iteratively refine its use. We’ll also link to pertinent chapters
of the book so you can connect what you see to a realistic environment.

Stream processors
for time series

calculations and filtering
Let’s start by orienting ourselves in the Fluent Bit landscape, seeing how this chap-
ter fits into our technology landscape.

8.1 Architectural context
Figure 8.1 gives us some immediate insights into what we can do with streaming,
with the flow going back to an input. Similarly, we can output stream-processing
results to the relevant output plugins. Before we can look at that, however, we need
to understand the key ideas involved.

This chapter covers
 Learning some core ideas about stream

analytics

 Querying data streams created by Fluent Bit

 Exploring the SQL-like syntax provided for
streaming analytics

 Creating new outputs based on Fluent
Bit inputs
223

224 CHAPTER 8 Stream processors for time series calculations and filtering
8.2 Key ideas
To understand how streaming works, we need to come to grips with a few new ideas:

 We express the logic to be applied using SQL-style syntax.
 Although the syntax is SQL-based, no database is involved. The only data pool

available is the buffer.
 Our analogy for tables in the SQL syntax is a stream or a tag, and columns in a

relational table are analogous to the log event attributes in the Fluent Bit event.
 We can execute our expressions against streams and tags.

Focus of

this

chapter

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Figure 8.1 Representation of Fluent Bit from a logical architecture perspective, highlighting
the aspects of Fluent Bit that this chapter will address. Here, we’re particularly interested in
the buffer and the stream processing that depends on the buffer’s capabilities.

2258.3 Basic query
As things progress and the application of streams advances, this understanding will
help us appreciate the nuances. The key is that the stream processor operates as a sep-
arate subsystem triggered by data interacting through the storage interface, which is
part of the buffer and abstracts whether the buffer may be configured to use the
filesystem or only memory. It is important to recognize that buffering plays a role at
every stage after an event has been accepted. Even if our configuration pipeline was
defined as an input plugin passing to a filter and to an output plugin, the events(s)
will be sent to the buffer before leaving the input plugin, and as the filter does its
work, it also maintains the buffer contents. Then the output stream gets data from the
buffer for processing and holds that data in its own private buffer to process.

 If figure 8.1 does not accurately portray the underlying code, why not change the fig-
ure? The short answer is that the figure would become far more complex and make it
visually less apparent how we should work with Fluent Bit. When we define our Fluent Bit
configuration files, we define the buffer behavior as part of the server configuration
block. Otherwise, it is transparent to the configuration pipeline with one exception:
using the stream processor, as its actions are triggered from the buffer’s interface.

8.3 Basic query
Let’s start with a simple query introducing the basics of Fluent Bit’s stream process-
ing. We’ll use the random input plugin, which operates the same way as dummy, but
rather than allowing us to define a payload, it generates a predefined JSON struc-
ture with a random integer value like {"rand_value"=>9130800433333918836}, in
which 9130800433333918836 is the randomly generated number. We’ll set the
random plugin to use the tag random-num and generate a value every second, and
we’ll set the flush statement to every 5 seconds. That way, we know that the buffer
will have multiple values.

 We’ll select the random value from the tag for the expression itself. From a struc-
tural perspective, the SQL is defined in a separate configuration file and then refer-
enced by the main Fluent Bit configuration file. If this sounds familiar, it should; it’s
the same approach as the one for incorporating parsers.

 The stream-processing configuration defines each referenceable expression by
starting with [STREAM_TASK], followed by a name attribute used to reference the
expression and then an exec for defining the SQL-like expression, which must end
with a semicolon. If we wrote our SQL expression by selecting a column from a table,
we write SELECT myColumn FROM myTable;, which is close to what we need for our
streaming logic. Rather than a column, we want an attribute, which we know will be
called rand_value. (the output from the random input plugin). Then our table is
either a stream or a tag. We need to identify which type of source to use, so we need to
prefix the table name with TAG or STREAM, and the name needs to be quoted (to deal
with any unusual characters in the tag). As a result, our complete expression is SELECT
rand_value FROM TAG:'random-num'. Now we have the essential elements for a config-
uration file that looks like the following listing; see chapter8/fluentbit/query.conf.

226 CHAPTER 8 Stream processors for time series calculations and filtering
[STREAM_TASK]
 name selectTask
 exec SELECT rand_value FROM TAG:'random-num';

Now we need to bring in the main configuration file. To start, we’re going to direct all
output to the null output plugin. Any initial output generated can come only from the
stream processor. When we define a basic SELECT statement, the result of the select
gets directed to stdout. So, with this configuration, the only output we can expect to
see will come from the processor. See the following listing and chapter8/fluentbit/
query-streamer.conf.

[SERVICE]
 flush 5
 log_level info
 streams_file ./query.conf

[INPUT]
 name random
 interval_sec 1
 tag random-num

[OUTPUT]
 match *
 name null

#[OUTPUT]
match *
name stdout
json_date_format iso8601

Before running this configuration, notice that we’ve referenced the stream processor
configuration file. There is no direct reference to the expression itself in the same way
that we linked the use of parsers. In analyzing the expression, we can derive the relation-
ship with our buffer(s) by using the FROM part of the clause. Let’s run the configuration.
Because we’re generating the data within Fluent Bit, we only need to start the following:

fluent-bit -c fluentbit/query-streamer.conf

The output looks something like this:

[2023/12/18 21:25:24] [info] [input:random:random.0]
➥ initializing
➥ [2023/12/18 21:25:24] [info] [input:random:random.0]
➥ storage_strategy='memory' (memory only)
[2023/12/18 21:25:24] [info]
➥ [output:null:null.0] worker #0 started

Listing 8.1 Query stream processor definition: query.conf

Listing 8.2 Config using query stream process: query-streamer.con

Starting declaration of the stream processor definition

The name of this process, if needed

The SQL-like expression

Brings the stream processor
configuration file into the scope
of the Fluent Bit configuration

This random plugin generates a log event with the
element rand_value, which has a random integer value.

As we don’t want to output any of our
events to stdout, let’s use the null plugin.

If we want to confirm that the stdout content is
coming from the stream processor, we can see the
values generated by uncommenting this output.

Startup of the console
output for the stream
processor

2278.3 Basic query
[2023/12/18 21:25:24] [info] [sp] stream processor started
[2023/12/18 21:25:24] [info]
➥ [sp] registered task: selectTask
[0] [1702934725.024952265, {}, {"rand_value"=>14541635925168437956}]
[0] [1702934726.024890593, {}, {"rand_value"=>7178464768418648777}]
[0] [1702934727.024900018, {}, {"rand_value"=>7073757049224596515}]

The preceding output shows the creation of the random input, and the output:null:
null handles our SELECT statement console output. Then (and most important) we see
that the stream processor—identified in the logs as [sp]—has started and registered a
task, which aligns with our task name attribute of the task definition (registered task:
selectTask).

 The behavior we see may not be what we expected. The output doesn’t occur every 5
seconds in line with the flush declaration but at the same frequency as an event created
by the random input plugin. A standard stream processor SELECT statement writes its
result to stdout as it calculates its results. This helps us because the SELECT statement is a
key part of the larger statement where we can create new data streams, as we’ll see in sec-
tion 8.7. Using only a SELECT statement is a convenient way to understand what is hap-
pening when we’re developing our stream processors. The output looks like this:

[0] [1702896844.182314550, {}, {"rand_value"=>15668481522459365240}]
[0] [1702896845.182015611, {}, {"rand_value"=>10201632310136221749}]
[0] [1702896846.181963688, {}, {"rand_value"=>15632835645568553858}]
[0] [1702896847.181958820, {}, {"rand_value"=>8912068240649376789}]

We can confirm that the correct output behavior is unaffected by uncommenting
(removing #) from the final output definition in the configuration file and rerunning
the scenario. This time, we see that additional outputs are sent to the console in
batches and formatted differently, as we can inform the output formatting used.

NOTE To understand syntax, we can benefit from the Extended Backus Naur
Form (EBNF) notation and railroad diagrams. The EBNF representation for
the syntax is available at https://mng.bz/6YnZ. We can also use railroad dia-
grams (https://mng.bz/o0r2) that were built from the EBNF.

Before we move on from the constraints of the SELECT statement, let’s explore more
of what’s possible to do with it, given its role in the other operations. As with most SQL
implementations, several functions are available, such as count. Appendix B describes
the available functions. We can also support using a WHERE clause, which can reference
values in the event. Given these capabilities, let’s define several new stream-processing
tasks using a new file, which we can call query2.conf. In the configuration, we include
three SELECT statements:

 SELECT record_tag(), rand_value FROM TAG:'random-num';—Extends our
original SELECT statement so that we can see the tag name incorporated into
the output as a result of selecting the function record_tag. So that we can refer
to it easily, let’s name this task selectTaskWithTag.

Startup of
the stream
processor
expression
is logged.

https://mng.bz/6YnZ
https://mng.bz/o0r2

228 CHAPTER 8 Stream processors for time series calculations and filtering

ng

 SELECT now(), sum(rand_value) FROM TAG:'random-num';—Adds the time-
stamp in human-readable format to the output record. But we’re also asking
the query to sum the random numbers. Let’s name this task selectSumTask.

 SELECT unix_timestamp(), count(rand_value) FROM TAG:'random-num' WHERE
rand_value > 0;—Provides a record with a timestamp using seconds in a nano-
seconds format and a count of the number of records where the random num-
ber is greater than zero. Let’s name this one selectWhereTask.

Taking these expressions together, we should have a configuration file that looks like
the following listing; see chapter8/fluentbit/query2.conf.

[STREAM_TASK]
 name selectTaskWithTag
 exec SELECT record_tag(), rand_value
➥ FROM TAG:'random-num';

[STREAM_TASK]
 name selectSumTask
 exec SELECT now(), sum(rand_value)
➥ FROM TAG:'random-num';

[STREAM_TASK]
 name selectWhereTask
 exec SELECT unix_timestamp(),
➥ count(rand_value) FROM TAG:'random-num'
➥ WHERE rand_value > 0;

For these processor definitions to work, we need to amend the query-streamer
.conf file to reference this configuration file rather than the original one by changing
the streams_file ./query.conf statement in the SERVICE section of the configuration.
In the provided configuration file, we’ve included the other streamer configuration
files, commented out. If you uncomment the stdout plugin configuration, we rec-
ommend commenting it out again. With that change made, we can rerun the sce-
nario using the command

fluent-bit -c fluentbit/query-streamer.conf

This time, the output looks like this:

 [0] [1702943626.020400561, {},
➥ {"RECORD_TAG()"=>"random-num",
➥ "rand_value"=>4668199473915963542}]
[0] [(ext:0)"e\x80\xdb\x8a\x018c\xc1",
➥ {"NOW()"=>"2023-12-18 23:53:46", "SUM(rand_value)"=>4668199473915963542}]
[0] [(ext:0)"e\x80\xdb\x8a\x018\xdd\x8d",
➥ {"UNIX_TIMESTAMP()"=>1702943626, "COUNT(rand_value)"=>1}]
[0] [1702943627.020404263, {},

Listing 8.3 Multiple stream processor definitions: query2.conf

Retrieves the tag value using the record_tag()
function and the random value from any
stream tagged as random-num because we’re
not using a wildcard in the tag name. The use
of the record_tag is redundant, but it shows
the application of the function.

Retrieves the date and time when the processor is
executed and applies the aggregate function sum,
adding all the values in the processor's scope

To help differentiate Now and Unix Timestamp
from the result of now(), we included the
UnixTimeStamp in this task. We’re also counti
the number of records with an element called
rand_value. We’re considering only events
where the rand_value is greater than 0.

2298.4 Stream-processing windows
➥ {"RECORD_TAG()"=>"random-num",
➥ "rand_value"=>11887209388767628999}]
[0] [(ext:0)"e\x80\xdb\x8b\x018\x80&",
➥ {"NOW()"=>"2023-12-18 23:53:47", "SUM(rand_value)"=>-6559534684941922617}]
[0] [1702943628.020396409, {}, {"RECORD_TAG()"=>"random-num",
➥ "rand_value"=>14491574902839362681}]
[0] [(ext:0)"e\x80\xdb\x8c\x018M\x00",
➥ {"NOW()"=>"2023-12-18 23:53:48",
➥ "SUM(rand_value)"=>-3955169170870188935}]
[0] [1702943629.020415689, {},
➥ {"RECORD_TAG()"=>"random-num",
➥ "rand_value"=>15567006026439619077}]

Several things in the output are of interest:

 Where we used the record_tag(), now(), and unix_timestamp() functions,
the values are in the JSON response, with the function as the name and the
appropriate value.

 Where the rand_value is greater than 0, we see three lines of output, one for
each of the stream_task declarations. But if the value is 0 or lower, we don’t get
an output for the selectWhereTask. We see a behavior more like a logical and.

 The count always returns a result of 1, not a number up to 5, which is how big
the buffer should be. Unlike in SQL, which returns a count based on the entire
table, the logic applies only to the current events being recorded. To overcome
this, we need a window of events. We’ll come back to this topic shortly.

 The count behavior also explains the result of the sum; it returns the same value
as the rand_value because the natural scope is not the entire buffer.

It’s clear from these observations that for the WHERE clause and any aggregation
clauses to work, we must calculate data against more than a single event, so we need to
define windows. With respect to real-world applications of now and unix_timestamp,
these functions are partners, with now providing a reader-friendly view and unix_
timestamp providing the same information in a format that makes it easy to per-
form calculations. The first and simplest use case for these functions allows us to
record into the stream when events have been created or manipulated. With unix_
timestamp, we can use comparative logic, such as the time between the first occur-
rence of the event or the timestamp of an important milestone in the data life
cycle, such as when an order was placed. When compared with now, we have a sense
of latency in the system, which may well be material, measuring performance
against service-level agreements.

8.4 Stream-processing windows
The best way to explain the concept of windows is to use a visual analogy. Suppose that
you’re sitting on a moving train. The landscape you see out the window is limited or
framed by the window. As you move, the landscape you see comes and goes out of
sight as you pass by. What you see is never reordered or sorted; you see things as they

230 CHAPTER 8 Stream processors for time series calculations and filtering
happen in a moment of time as you pass by. Now imagine data instead of a landscape.
If we tried to express this concept in a traditional relational database, we might create
a query along the lines of

select * FROM timeSeriesTable WHERE eventTime > now()-5 AND
➥ eventTime < now() ORDERBY eventTime

How our window is refreshed or when our query is reexecuted depends on the kind of
window being used. Fluent Bit supports hopping windows and tumbling windows.

8.4.1 Hopping windows

A hopping window is the easiest to appreciate; it effectively gets the window of data
updated at a time frequency (hop). This type of window is sometimes referred to as a
sliding window, as the effects can appear similar, particularly when the hops are small.
The difference is that the time events that enter or leave the window can vary, making
execution far more computationally intensive.

 Let’s look at things in terms of our analogy. Suppose your window is a projected
image of the landscape, and what you see is refreshed 24 times a second. Something
in the first frame will have moved in the opposite direction of your movement when
you hop to the next frame and will appear to be sliding through the frame. Changes
in aggregated calculations are likely to be smoother, as some preceding frame data
points influence the current frame’s data points (figure 8.2).

We can express this in the stream task by adding this code after the where statement:

WINDOW HOPPING (<window size in seconds as an integer> SECONDS, ADVANCE
BY <hop duration as an integer> SECONDS).

08 0905 0601 02 21 2317 1913 1411 12

New frame every
2 seconds,
containing 4
seconds of data

Data set with
incrementing IDs

Fifth frame

Fourth frame

Third frame

Second frame

First frame

Figure 8.2 Visualization of a sliding or hopping window in terms of how it sees the data

2318.4 Stream-processing windows
Let’s take our selectSumTask and selectWithTag forward to a new stream_task file
(query3.conf) and extend the selectSumTask to add a hopping window that looks at
an interval of 4 seconds and advances every 2 seconds. The resulting configuration
looks like the following listing; see chapter8/fluentbit/query3.conf.

 [STREAM_TASK]
 name selectTaskWithTag
 exec SELECT record_tag(), rand_value FROM TAG:'random-num';

[STREAM_TASK]
 name selectSumTask
 exec SELECT now(), sum(rand_value) FROM TAG:'random-num'
➥ WINDOW HOPPING (4 SECOND, ADVANCE BY 2 SECOND);

To make it easy to observe the behavior of the window, we’re also going to modify the
query-streamer. Rather than use random values, we’ll use the dummy plugin to generate
the message that always gives the rand_value attribute a value of 2 and triggers once per
second. Again, we need to update the query-streamer-1.conf’s attribute streams_
file to reference our new configuration file. As a result, our main configuration will
look like the following listing; see chapter8/fluentbit/query-streamer-1.conf.

[SERVICE]
 flush 5
 log_level info
 streams_file ./query3.conf

[INPUT]
 name dummy
 interval_sec 1
 dummy {"rand_value":"2"}
 tag random-num

[OUTPUT]
 match *
 name null

With this configuration, we should expect a predictable result, and as we’re using a
small figure, we avoid the risk that the calculation will yield an unexpected negative
value. The random plugin–generating numbers that are large positive numbers, when
added together, can result in an integer overflow error (https://mng.bz/n01e) and

Listing 8.4 Stream processor with hopping window: query3.conf

Listing 8.5 A dummied value fed to our stream processor: query-streamer-1.conf

The query we carried forward
from the previous section

Incorporates the aggregation function sum, which
means we need to use a window. Here, we’ve used a

hopping window, which recalculates every 2 seconds,
looking at 4 seconds of data.

We’ve updated our configuration
to reference the new query
processor configuration.

We’ve replaced the random number
plugin with the dummy plugin, but the
payload generated will look the same.

We’re using the same tag as before, so
the change to the processor statement
has only the window change.

https://mng.bz/n01e

232 CHAPTER 8 Stream processors for time series calculations and filtering

nd
t it
its
m
ECT

in
e
e

the
produce a negative value. When the changes have been applied, we can rerun the
configuration with the command

fluent-bit -c fluentbit/query-streamer-1.conf

As a result of this configuration, we see output a bit like the following. For readabil-
ity, We’ve replaced the dummy tag outputs "RECORD_TAG()"=>"random-num" with
"TAG()"=>"XX "):

[0][1709583296.798773500,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709583297.792872900,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709583298.778259300,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709583299.806917000,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][(ext: 0)"e\xe6+\xc30\"\x0e|",
➥ {"NOW()"=>"2024-03-04 20:14:59",
➥ "SUM(rand_value)"=>8}]
[0][1709583300.804949800,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709583301.804049600,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709583302.801290100, {},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][(ext:0)"e\xe6+\xc7/\xb1\x9b\xc4",
➥ {"NOW()"=>"2024-03-04 20:15:03",
➥ "SUM(rand_value)"=>12}]
[0][1709583303.801065200, {},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709583304.802936700, {},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709583305.798320300, {},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709583306.795026500, {},{"TAG()"=>"XX",“rand_value"=>"2"}]
[0][(ext:0)"e\xe6+\xcb/L\x0dT",
➥ {"NOW()"=>"2024-03-04 20:15:07",
➥ "SUM(rand_value)"=>14}]

The output generated doesn’t yield the results we expected: a reading of 8 with a fluctua-
tion of plus or minus 2 due to millisecond precision. There are two reasons for this result:

 The window is a direct multiple of the event frequency. If there is any slight
variation in the timestamping of when the event is added to the buffer, it will be
excluded if it falls outside the window. This can be further affected by the fact
that Fluent Bit is multithreaded. Depending on how the threads are allocated
to CPUs, a nanosecond or two of latency is introduced. We need to be mindful
of this problem when choosing our windowing intervals compared with the
event frequency.

 The SELECT statement results in the calculated value being added to the buffer.
Given our window and recalculation intervals, the previously calculated value is
included in the next calculation. We can ensure that the calculated values get a
separate tag and, as a result, don’t go back into the same buffer.

Reflects the
window of every
4 seconds and
shows the value
we expect (4 x 2)

The second 4-seco
interval. We expec
to yield 4 x 2, but
value is derived fro
8 + (2 x 2). The SEL
statement results
the calculated valu
going back into th
buffer, and we’re
calculating every 2
seconds the values
in the buffer over
past 4 seconds.

On the third trigger, we expect the last calculated value (12) plus another 2 x 2,
but that isn’t what we have. The reason is nanosecond precision. If the time in
which the value reaches the buffer is a nanosecond out, it won’t be included in

the calculation. So the number makes sense if one value falls just outside the 4-
second window. If we review the timestamps on the logs, we see that they’re not

perfectly sequential because of the nature of threading and I/O operations.

2338.4 Stream-processing windows
We should keep some other behavioral characteristics in mind:

 If we set the window period to be more than the flush period, the data will con-
tinue to flush at the right interval but be retained in the buffer. We need to be
conscious of what our query expressions can do to buffer sizing.

 If we set the advance duration larger than the data period, we move into the
domain of sampling rather than calculating on a continual flow. As a result, the
outcomes are less predictable. Today, this is allowed, but sampling doesn’t line
up conceptually with a sliding window, as we no longer perform calculations
against the full data set. There is always a chance that enhanced validation may
prevent this result in the future.

 Despite having a uniform time-based rate of event generation, and although
our windows are defined by time as well, we may see small fluctuations in the
number of events in each window due to nanosecond timestamping and
whether the event generation adds another event into the buffer quickly
enough to fall inside or outside a window. As a result, we see variations of one
event more or less in a window calculation. In a real use case, this change can
be more volatile (such as CPU use measurements on a server executing batch
jobs), and if we’re working against data buffered to disk, the I/O operations
have the potential to affect data that falls inside or outside the window.

8.4.2 Tumbling windows

Tumbling (sometimes called cascading) windows differ from hopping windows in one
key aspect: there is no potential for data overlap in each window. Put another way,
the hop duration is the same as the window duration. Here, we set a window of a cer-
tain duration, and the next window starts immediately after the last one is com-
pleted (figure 8.3).

Each frame
contains the next
4 seconds of data;
no overlap.

08 09 11 1201 02 05 06 21 2313 14 17 19
Data set with
incrementing IDs

Third frame

Second frame

First frame

Figure 8.3 Visualization of a tumbling window in terms of how it sees the data.
Note that there is no overlap of the window periods.

234 CHAPTER 8 Stream processors for time series calculations and filtering

y

e
ating
 the

sult
The easiest way to relate to this figure is to imagine you’re rolling (or tumbling) down
a corridor with windows at intervals in the wall. Each time you get to look out the win-
dow, you see a different landscape.

 Let’s put this into action by adapting our windowing dummy use case again. We’ll
copy our query3.conf file to query4.conf so we keep our example of a hopping con-
figuration. Now we can replace the selectSumTask’s exec attribute value, so instead of
WINDOW HOPPING (4 SECOND, ADVANCE BY 2 SECOND), we have WINDOW TUMBLING 4 SECOND).
See the following listing and chapter8/fluentbit/query4.conf.

[STREAM_TASK]
 name selectTaskWithTag
 exec SELECT record_tag(), rand_value FROM TAG:'random-num';

[STREAM_TASK]
 name selectSumTask
 exec SELECT now(), sum(rand_value) FROM TAG:'random-num'
➥ WINDOW TUMBLING (4 SECOND);

We need to update the query-streamer-1.conf file so that the service attribute refer-
ences this new file. Let’s run the scenario again:

fluent-bit -c fluentbit/query-streamer-1.conf

This time, we see far more predictable outcomes because we’re not recalculating data
within our window. We’ve applied the same readability modifications as before by replac-
ing the dummy tag outputs "RECORD_TAG()"=>"random-num" with "TAG()"=>"XX"):

[0][1709586021.421976700,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709586022.419766400,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709586023.418403000,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709586024.429872900,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][(ext:0)"e\xe66h\x19\xaa\xc7\xec",
➥ {"NOW()"=>"2024-03-04 21:00:24", "SUM(rand_value)"=>8}]
[0][1709586025.430094600,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709586026.423181800,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709586027.420841300,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][1709586028.417736700,{},{"TAG()"=>"XX","rand_value"=>"2"}]
[0][(ext:0)"e\xe66l\x18\xefd\xd4",
➥ {"NOW()"=>"2024-03-04 21:00:28", "SUM(rand_value)"=>8}]

We’re not recalculating until the end of the next window, so the previous calculation
doesn’t fall into the scope of the calculation of the window (where it was because we
recalculated every 2 seconds). It is possible to reintroduce uncertainty if the window
length is the same as the event input length, at which point we risk the nanosecond
precision problem again. We can prove that by adjusting the calculation window in
this configuration to 1 second.

Listing 8.6 Stream processor with tumbling window: query4.conf

We’ve swapped
the hopping window
for the simpler
tumbling window,
which evaluates each
consecutive block of
4 seconds of data.

Now the previousl
calculated number
doesn’t affect the
calculation becaus
we’re not recalcul
at any time before
end of the window
duration, so the re
is consistent.

2358.4 Stream-processing windows
8.4.3 Setting window durations

All of our examples to date have been in seconds, but Fluent Bit’s stream processor
also supports the use of Hour, Minute, and Second keywords. We need to be mindful of
how much data is being buffered to support the duration of the processor. If we have
too little, we’ll end up processing empty windows; if we have too much, we could need
more memory than is available. When considering the duration, we may go long as we
don’t see too many events in normal operations. But when things go wrong, we often
see huge surges in events, particularly logs, so we need to ensure that Fluent Bit won’t
fail and lose data.

 If we use stream-processing windows, it is essential that the data sources don’t shift
their timestamps to accommodate daylight saving time adjustments (clocks moving
back or forward one hour twice a year). We also want all the sources to report against
the same time zone to eliminate confusion. In some business cases, we want to know
the local time. We’d advise managing those time values as part of the event payload
and naming them clearly as local time to prevent confusion.

8.4.4 Deciding which window to use

From an application perspective, hopping windows are best suited to use cases in
which we need to smooth out the data to see true anomalies and minimize false posi-
tives in events such as these:

 Spikes or drops in network traffic
 Fluctuations in application workload

The key to hopping windows is to use them for near-real-time detection. Tumbling
windows are better for looking at trends rather than real time, such as answering the
following questions about our events:

 What is the trend or pattern for our system use during the day?
 Is the number of experienced hardware faults increasing?
 Can we forecast a likely failure point?

Looking at these questions from a computational perspective is straightforward.
Assuming that we are processing data for 1 minute, we have a window of 10 seconds,
and a hop interval is 5 seconds. If we use a tumbling window, we’ll analyze the data 6
times, but if we use a hopping window, we’ll perform 11 calculations ([60s / 5s] –1).

 Although these points can be helpful in deciding whether to use tumbling or hop-
ping windows, validating the windowing configuration is in the realm of data science,
particularly for optimizing the window configurations. We don’t want to smooth the
data so much that we eliminate the effect of true outliers; neither do we want trends to
span so long a period that it’s hard to derive any value from the measurement.

236 CHAPTER 8 Stream processors for time series calculations and filtering
8.5 Selecting multiple attributes and naming
As we create a new record structure, we may want to change the element names in the
JSON output, particularly because the names used from derived values are the expres-
sions themselves, such as NOW(). We can achieve this using the reserved word AS, which
works like SQL; we can select a value and use AS to give the selected value a different
name (such as SELECT columnElementName AS myMeaningfulElementName).

 We can also retrieve multiple elements from the log event we’re processing by sep-
arating elements to be selected with a comma. If we receive a JSON structure with
nested elements, we may also want to take an element from that nested structure by
naming the root element within square brackets.

 Let’s put that example in practical terms. We could use a new set of sources, so we
created a new base configuration called query-streamer-2.conf, which uses the
dummy plugin to generate different JSON events. See the following listing and chap-
ter8/fluentbit/query-streamer-2.conf.

[SERVICE]
 flush 5
 log_level info
 streams_file ./query-naming.conf

[INPUT]
 name dummy
 samples 10
 dummy {"myData":{"innerNo":"1",
➥ "innerText1" : "blah", "innerText2" : "more blah"},
➥ "outerNo": "10", "outerTextA" : "widget",
➥ "outerTextB" : "gadget"}
 tag complexMsg

[INPUT]
 name dummy
 samples 10
 dummy {"myMessage":"Im simple", "really" : "I am"}
 tag simpleMsg

[INPUT]
 name dummy
 samples 10
 dummy {"myMessage":"I dont know what to say"}
 tag simpleMsg

[OUTPUT]
 match *
 name null

#[OUTPUT]
match *
name stdout
json_date_format iso8601

Listing 8.7 Generating JSON to process: query-streamer-2.conf

The inclusion of our stream processor
configuration file. When included, it
identifies the streams against which
processors need to be linked.

So we don’t get an endless output of the same
content, we’ve used the samples attribute to
limit the plugin activity to creating 10 events.

Although the output
messages are different,
these input plugins use

the same tag.

So we don’t get an endless output of
the same content, we’ve used the
samples attribute to limit the plugin
activity to creating 10 events.

Because we’re looking at the logging generated, we’re applying only a
SELECT statement. It is good practice to direct the events to null to
show that we’re not trying to do anything with them downstream.

To see the raw tagged data, uncomment
the output plugin configuration.

2378.6 Streams vs. tags
Taking the JSON that is generated and tagged complexMsg, let’s formulate a query
that retrieves the following values and creates the output as follows:

 Take tag and output it as myTag.
 Take outerTextA and rename it myThingType.
 Take innerText from the nested JSON structure and call it myComment.

As mentioned, the elements in the root need to be referenced directly, and we use
the AS keyword to provide the new name. For the innerText, we need to use the par-
ent attribute name and then reference the inner value by quoting it within square
brackets. The resulting configuration should look like the following listing and
chapter8/fluentbit/query-naming.conf.

[STREAM_TASK]
 name selectTaskWithRenaming
 exec SELECT record_tag() AS myTag, outerTextA AS
➥ myThingType, myData['innerText1']
➥ AS myComment FROM TAG:'complexMsg';

As our configuration is generating its own data, we can run the example using the
command

fluent-bit -c fluentbit/query-streamer-2.conf

The resulting output isn’t exciting because the dummy doesn’t have any randomization,
but we’ll see 10 entries—and only 10, as we’ve restricted the dummy plugin using the
samples attribute to trigger only 10 times. But the tags are as defined, and we
retrieved part of the nested JSON:

[0] [1703190995.687085814, {}, {"myTag"=>"complexMsg",
➥ "myThingType"=>"widget", "myComment"=>"blah"}]

Extend the stream processor to retrieve the innerNo element from the JSON, and
make the tag element the last part of the output JSON with the name originalTag. If
you want to see an implementation, we’ve provided the stream processor (query-
naming-answer.conf) with the modified algorithm. If you want to run it, you’ll need
to amend query-streamer-2.conf to reference this file.

8.6 Streams vs. tags
Before we can look at the use of a stream, we need to understand the differences
between streams and tags. A stream is a single unique source that can be an input or
the result of a stream processor’s output. We can set the stream name on inputs using
the attribute name alias. Once set, the stream name is immutable.

Listing 8.8 Stream processor outputting JSON: query-naming.conf

Here, we’re accessing data
that is nested within the
event’s JSON structure and
creating a new payload event
with the value myComment.

238 CHAPTER 8 Stream processors for time series calculations and filtering
 We can align a tag to a single source or multiple sources. We can also use filters to
manipulate a tag. If we look at the output from the startup of Fluent Bit with the
query-streamer configuration, we see the following output:

[2023/12/29 16:31:19] [info] [fluent bit] version=2.2.1,
➥ commit=, pid=4406
[2023/12/29 16:31:19] [info] [storage] ver=1.5.1,
➥ type=memory, sync=normal, checksum=off, max_chunks_up=128
[2023/12/29 16:31:19] [info] [cmetrics] version=0.6.6
[2023/12/29 16:31:19] [info] [ctraces] version=0.4.0
[2023/12/29 16:31:19] [info] [input:random:random.0] initializing
[2023/12/29 16:31:19] [info] [input:random:random.0]
➥ storage_strategy='memory' (memory only)
[2023/12/29 16:31:19] [info] [sp] stream processor started

Notice that the fifth line reports the initializing of the random plugin—specifically,
the name between the second set of square brackets, which shows us the plugin type
(input, output, and so on) followed by a colon, the plugin name (such as random), fol-
lowed by the default plugin name, which is the plugin name followed by a dot and the
occurrence number of that plugin starting at 0 (such as random.0).

 Copy query-streamer.conf (use the name query-streamer-multiple.conf), and
create a copy of the dummy input within the configuration. Then rerun the configura-
tion with the command

fluent-bit -c fluentbit/query-streamer-multiple.conf

We’ve provided a version of the file if you want to use it. The resulting output includes
the following:

[2023/12/29 16:47:37] [info] [input:random:random.0]
➥ storage_strategy='memory' (memory only)
[2023/12/29 16:47:37] [info] [input:random:random.1] initializing
[2023/12/29 16:47:37] [info] [input:random:random.1]
➥ storage_strategy='memory' (memory only)

This output shows two inputs being initialized with postfixes of .0 and .1. Let’s take
this one step further and add the alias declaration of the first input (alias myRandom)
and run things again (provided as query-streamer-multiple-alias.conf). Now
we’ll see the following output in the startup:

[2023/12/29 16:53:44] [info] [input:random:myRandom] initializing
[2023/12/29 16:53:44] [info] [input:random:myRandom]
➥ storage_strategy='memory' (memory only)
[2023/12/29 16:53:44] [info] [input:random:random.1] initializing
[2023/12/29 16:53:44] [info] [input:random:random.1]
➥ storage_strategy='memory' (memory only)

Part of the name has become the stream name, but the counter has still been incre-
mented. Also, because the stream processor is using the tag, not the stream name, it

2398.7 Creating streams
continues to perform the queries. Let’s make a final change by modifying the
query2.conf stream task definition and align the task to the STREAM instead of the
tag. We need to replace the TAG:'random-num' part of the statement with
STREAM:random.0. Notice that we no longer need to include the quotes, as wildcards
are no longer possible. Let’s copy query2.conf to query2-stream-name.conf and
apply the change. We can also amend the names to reflect the fact that we’re using a
STREAM by modifying the last part of the name. As a result, our configuration looks
like the following listing and chapter8/fluentbit/query2-stream-name.conf.

[STREAM_TASK]
 name selectTaskWithStream
 exec SELECT record_tag(), rand_value
➥ FROM STREAM:random.0;

[STREAM_TASK]
 name selectSumStream
 exec SELECT now(), sum(rand_value)
➥ FROM STREAM:random.0;

[STREAM_TASK]
 name selectWhereStream
 exec SELECT unix_timestamp(), count(rand_value)
➥ FROM STREAM:random.0 where rand_value > 0;

We need to modify the query-streamer.conf configuration to use the modified version
of the streams file by changing the streams_file attribute to streams_file ./query2-
stream-name.conf. When we rerun our configuration with the command

fluent-bit -c fluentbit/query-streamer.conf

the resulting output is the same as before. Although this example is not hugely
impressive, it enables us to create streams and attach downstream processors to pre-
ceding stream tasks.

8.7 Creating streams
We’ve focused on the query aspect of the stream processor because the CREATE STREAM
option largely depends on the SELECT statement. Let’s extend our existing queries to
create a new stream and output that new stream.

 We’ll continue using random as our source of input, as we did for our query-
streamer.conf examples. This time, we’ll create a stream called createTaskWith-
Stream, which should be tagged as myStream.Select. Then the new log event should
contain the following:

 rand_value from the random plugin
 The current time in pretty format (the output from the now() function), which

we’ll call dtg (often used as shorthand for Date Time Group)

Listing 8.9 Using the STREAM keyword: query2-stream-name.conf

We’ve modified the name to reflect the fact
that we’re using a stream rather than a tag.

The expression
identifies a
specific stream
rather than a tag.

240 CHAPTER 8 Stream processors for time series calculations and filtering
 The UNIX timestamp value from the corresponding function, which we’ll
call unixTime

We’ll use our random-num tag as the source. This is built on our selectTaskWithTag
query. To build this expression, we use the template CREATE STREAM <streamName>
WITH (tag='<tag>') SELECT <value>, <value> AS <name> FROM TAG: '<tag>' ;. The
stream name has to be provided as there isn’t an easy way to default the value. The
WITH allows us to perform name-value pair assignments within the brackets for the
properties used as metadata, such as the tag. We can assign only literal values here and
can’t use functions such as now() and unix_timestamp(). Typically, we use the WITH
(tag='<tag>') only to set a tag value. We connect this to a SELECT statement with the
keyword AS. After that, this is no different from SQL. As a result, our create.conf file
will look like the following listing; see chapter8/fluentbit/create.conf.

[STREAM_TASK]
 name createTaskWithTag
 exec CREATE STREAM createTaskWithStream
➥ WITH (tag='myStream.Select')
➥ AS SELECT record_tag(),
➥ rand_value, now() AS dtg,
➥ unix_timestamp() as unixTime
➥ FROM TAG:'random-num';

Let’s briefly look at our parent configuration file with its random input plugin and an
output plugin for the tagged stream in the following listing; see chapter8/fluent-
bit/create-streamer.conf.

[SERVICE]
 flush 5
 log_level info
 streams_file ./create.conf

[INPUT]
 name random
 interval_sec 1
 tag random-num

[OUTPUT]
 match myStream.*
 name stdout

The listing illustrates the match statement, ensuring that the output we’ll see comes
only from our stream processor. Because we tag the stream’s output, logically, we
should see the stream processor flow feeding back as an input, although we don’t have
to define the input within the main configuration (figure 8.4).

Listing 8.10 Creating a new stream with a tag: create.conf

Listing 8.11 Config using our stream: create-streamer.conf

We’ve used a different name
here because we’re exploiting
the CREATE STREAM syntax.

This expression is like the SELECT syntax but leads with
a CREATE STREAM that names a new stream and uses
the WITH syntax to set the tag name of the event.

We include the new
stream processor
configuration file.

The source tag is random-num, but
because of the stream processor, we’ll
be outputting with a different tag.

2418.7 Creating streams
Figure 8.4 shows how the events pass through our logical representation of the archi-
tecture. We can follow the flow in numeric order:

1 The random plugin creates an event with the tag random-num every second.
2 The input plugin passes the created event to the buffer without any parsing. As

no filtering is associated with the pipeline, we don’t need to consider triggering
such an activity when the event is secured in the buffer.

3 The event reaching the buffer triggers as it comes into contact with the storage
interface. As a result, we evaluate whether a processor is attached. For this tag,
we have an attached processor, so the event needs to be handed off to the
stream processor. The event is not part of a window but is processed immedi-
ately, resulting in the creation of a new event with the tag myStream.Select.

4 The result of the stream processor is a new event in the stream with a tag, which
logically needs to be reingested into the pipeline.

Custom input

plugin

(andom)r

input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

(stdout)

output plugin

Custom output

plugin

Buffers

Parser

e

Figure 8.4 Overlay of our architecture view with the sequence of actions our events
pass through. The numbering shows the path the events take through the components.
The numbering indicates the sequence.

242 CHAPTER 8 Stream processors for time series calculations and filtering
5 Because this is a logical input of the new event, we don’t have to declare an
input plugin configuration; this is implicit.

6 The new event with the tag myStream.Select has no parsing, so it goes directly
to the buffer again. This time, no processor is attached, so no stream processing
is required.

7 The event is routed to an output plugin because there is a valid match defini-
tion in line with the flush scheduling.

8 The output plugin consumes the events that are flushed, resulting in the out-
put’s being written to the console.

With that detail, let’s run the scenario using the command

fluent-bit -c fluentbit/create-streamer.conf

Applying a tag to the stream is an optional step. You may wonder what happens to
the stream and why we might not want to apply a tag. The answer is that we can still
address the new stream within the stream processor. Therefore, we can chain stream
processes without the event going through the input pipeline. If there were a wildcard
filter at stages 2 and 6, the events would be processed. Without the tag, the event
remains unmodified.

8.8 Chaining and creating new streams
Let’s explore chaining streams by creating a variation on our previous SELECT state-
ment, which counted the number of events in an interval. That stream processor won’t
be tagged. But we’ll take the result into a separate stream processor, which will generate
an event only where the count is greater than a certain value. Let’s count how many
occurrences of the random value are more than 20,000,000,000,000,000,000. (Our ran-
dom numbers are 20 digits long, so we need a reasonably large number to create an
element of exclusion.) Then we’ll put the result of the count and the current time
into our output record in a stream called createCountStream. We won’t see any out-
put from this stream, which has no associated tag to match against. Because we want
to create an aggregated value, we need to use a window. In this scenario, we’ll use a
tumbling window of 5 seconds.

 We’ll consume the createCountStream events with two processors that create an
event depending on whether the count element produced in the previous
(createCountStream) stream has a value of more than 2 or a value equal to or less
than 2. Both streams include the counted and countTime elements from the previ-
ous stream but use different tags: MyStream.more and myStream.lessEqual, respec-
tively. As a result, the output will be from one of the two streams and tagged as
MyStream.more or myStream.lessEqual. Figure 8.5 shows this configuration.

 Taking what we saw in previous examples, we should arrive at a configuration that
looks like the following listing; see chapter8/fluentbit/create2.conf.

2438.8 Chaining and creating new streams
[STREAM_TASK]
 name createTaskWithTag
 exec CREATE STREAM createTaskWithTagTag WITH
➥ (tag='myStream.Select') AS SELECT record_tag(),
➥ rand_value, now() as dtg,
➥ unix_timestamp() as unixTime FROM TAG:'random-num';

[STREAM_TASK]
 name createCountStream
 exec CREATE STREAM createCountStream
➥ AS SELECT unix_timestamp(), count(rand_value)
➥ as counted, now() as countTime

Listing 8.12 Chained streams example: create2.conf

(andom)r

input plugin

Buffer

createTaskWithTag

createMoreStream

stdout

plugin
Match: myStream.*

Tagged:

myStream.Select

Tagged:

<no tag>

Tagged:

myStream.More

Tagged:

myStream.LessEqual

Tagged:

random-num

NameComponent

Stream

name
Stream

Key

createLessEqualStream

createCountStream

Figure 8.5 Sequence and tagging of plugins and stream processors. The stream
processor tasks in the middle of the flow are shaded to distinguish them. Note that
createCountStream doesn’t tag its output.

Reuses the simple select
to create a stream that
enriches the event with
different representations
of the time

244 CHAPTER 8 Stream processors for time series calculations and filtering
➥ FROM TAG:'random-num'
➥ WINDOW TUMBLING (5 SECOND) where
➥ rand_value > 20000000000000000000;

[STREAM_TASK]
 name createCountMoreStream
 exec CREATE STREAM createMoreStream WITH
➥ (tag='myStream.More') AS
➥ SELECT countTime, counted FROM
➥ STREAM:createCountStream where counted > 2;

[STREAM_TASK]
 name createCountLessEqualStream
 exec CREATE STREAM createLessEqStream
➥ WITH (tag='myStream.lessEqual')
➥ AS SELECT countTime, counted FROM
➥ STREAM:createCountStream where counted <= 2;

For this example to work, we need to update the streams_file attribute to reference
our new streams2.conf file. Then we can run our scenario with the command

fluent-bit -c fluentbit/create-streamer.conf

We can expect to see three types of output:

 The result of our stream createTaskWithTag, which is tagged myStream.Select,
shows every generated event, and looks like this:

[0] myStream.Select: [[1703955995.504518444, {}],
➥ {"RECORD_TAG()"=>"random-num", "rand_value"=>18186270176722129669,
➥ "dtg"=>"2023-12-30 17:06:35", "unixTime"=>1703955995}]

 The result of our stream createMoreStream, which is tagged myStream.More and
may appear at the end of the window period only if counted is greater than 2:

[0] myStream.More: [[1703955999.504615067, {}],
➥ {"countTime"=>"2023-12-30 17:06:39", "counted"=>3}]

 The result of our stream createLessEqStream, which is tagged myStream
.lessEqual and may appear at the end of the window period only if counted is
less than or equal to 2:

[0] myStream.lessEqual: [[1703956019.504577312, {}],
➥ {"countTime"=>"2023-12-30 17:06:59", "counted"=>1}]

As we can see, we can chain stream processors to create more sophisticated operations.

Using the same source, we use a
tumbling window to count the number of
occurrences where the random number is
of a certain size. The output stream is
untagged, and each event every 5 seconds
contains the number of events identified
and the time the event was created.

These streams are chained to
use the createCountStream
content. The results of these
streams are tagged. We’ve
filtered the streams so that
only one of these two
streams will create an event
for onward processing.

2458.9 Typical use cases for streaming
8.9 Typical use cases for streaming
Now that we have a handle on the capabilities of streaming, let’s explore some com-
mon applications of the stream processor and address some constraints compared
with dedicated stream-processing services.

8.9.1 Forecasting

With a window of data, it is possible to extrapolate likely future values from a trend. If
we have data on storage use, we can forecast possible problems such as reaching use
levels in storage at which I/O performance will degrade. As a result, we can imple-
ment actions proactively. To use the forecast capability, we can use a function called
timeseries_forecast, which takes the element name or key from the events in the
window and a number of seconds forward from now to forecast.

NOTE There are multiple mathematical approaches to forecasting; you can
find explanations of some at https://mng.bz/vJP1. The Fluent Bit implemen-
tation uses a simple linear regression. Put in simple terms, it takes the data
points over time and calculates the average change over time. Then that cal-
culated change over time is used to predict forward in a linear path. This
approach doesn’t take historical patterns into account.

8.9.2 Intermittent error tolerance

Good applications tolerate a level of errors through techniques such as catch and
retry mechanisms. So, any transient problems that occur, such as network connections
timing out, can be managed easily. At the same time, applications will likely report an
error, so if we need to examine error logs, we can isolate the initial occurrence of a
fault. We don’t want these managed intermittent error events to trigger alerts if the
application is handling them on a retry unless they’re happening at a frequency that
indicates a more serious problem that could cause backpressure problems. We can
deal with this by looking at the average number of errors generated during a period.
Below a threshold, we can suppress triggering a problem; above a threshold, we should
initiate an intervention.

Demonstrating untagged stream flow behavior
As previously mentioned, without a tag, the flow of the events would not reach a plugin.
Using our completed example, we can easily demonstrate the flow by introducing the
stdout filter (chapter 7). Simply introducing this filter with a wildcard match results
in any event flowing through the pipeline being written to the console. As a result,
we’ll continue to see only the output of tagged events. If you’d like to confirm this, run
chapter8/fluentbit/filtered-create-streamer.conf;, which includes the addi-
tional filter.

https://mng.bz/vJP1

246 CHAPTER 8 Stream processors for time series calculations and filtering
8.9.3 Spurious data values

Occasionally, we receive metrics with an anomaly. This problem is common in indus-
trial Internet of Things (IoT) environments where a sensor may be subject to condi-
tions that can cause a misread or corruption of the signal or a sensor fault. A
temperature sensor on a computer motherboard reports a temperature, and within a
second, the temperature leaps 20 degrees. In normal operations, we wouldn’t expect
to see such violent temperature changes. As a result, we may want to eliminate the
data value unless it continues to remain high.

8.9.4 Absence of events

Some applications generate heartbeat events so that we know things are functioning
as expected. We no longer need to poll the application to determine whether it’s alive
or rely on a log being generated when an application crashes or terminates. But prov-
ing the absence of an event over a time frame can be difficult. Using windowing with
the stream processor makes this incredibly simple to achieve. If we know that an appli-
cation generates a heartbeat event every minute, we can count the number of events
over 2 minutes to provide some tolerance for process scheduling. If we count the
events in that window, there should be at least one event in the window; if not, we can
reasonably assume that the application died and that some intervention is needed
(manual or automated).

8.9.5 Cross-referencing streams

Feature-rich specialist stream processors such as Apache Spark (https://mng.bz/
4p6D) and Kafka’s ksqlDB (https://mng.bz/QVRR) enable streams to pull data from
other streams. This capability is interesting in Fluent Bit; it allows us to create and
establish alerts only when these two separate event streams are alerting. If a database’s
performance drops and the number of users spikes, for example, these alerts are
important individually but not catastrophic; together, they indicate that the system
may crash.

TIP To learn more about Apache Spark and Kafka for streaming queries,
check out https://www.scaler.com/topics/kafka-vs-spark. If you want to go
deeper into this area, you can find additional resources in appendix B.

Another use case is correlating logs, traces, and metrics data, so a metric from a com-
pute node could be referenced by a log generated on the same node in real time. As a
result, we could start to establish cause and effect in real time. The alternative would
be to collect the events in a database and then perform relational joins or nested SQL
actions on the events. Unfortunately, Fluent Bit’s stream processor currently doesn’t
support this capability.

 Although it isn’t possible to perform cross-stream enrichment of individual events,
we can still perform some correlation activities. By running a stream processor against
a tag, we can feed multiple sources into the stream via tag rewriting with a filter. Better,

https://mng.bz/4p6D
https://mng.bz/4p6D
https://mng.bz/4p6D
https://mng.bz/QVRR
https://www.scaler.com/topics/kafka-vs-spark

247Summary
if the sources use a clever tag-naming convention, we can use wildcards in the naming.
The common stream runs a small window, and we aggregate and group records in the
window to produce a composite record.

 If absolute precision of event stream record joining is necessary, a better option is
to outsource the work to Kafka, where Fluent Bit has input and output connectors.
The last option is to use Lua to perform the enrichment by connecting to a caching
solution such as Redis (https://github.com/nrk/redis-lua) or a database with memory-
caching capabilities for performance and Open Database Connectivity (ODBC) capa-
bilities, which the LuaSQL (https://github.com/lunarmodules/luasql) library can
work with. A word of caution on the Lua approach: using additional libraries is going
to complicate your deployment, as only the standard Lua libraries are bundled by
default. Enrichment of this nature is likely to be resource intensive.

Summary
 The stream processor’s SQL-based SELECT syntax is central to all the uses of

Fluent Bit’s stream processor. The SELECT allows us to identify specific occur-
rences of events currently buffered, such as to determine whether a process
has been executed.

 Fluent Bit’s stream processor includes aggregation functions such as count and
average. When using aggregations, we need to use Windows. This allows us to
perform tasks such as translating event occurrences into metrics or generating
new events, such as recognizing if something occurs too few or too many times.

 We can use stream processors to filter out the events that are important to a
calculation.

 Fluent Bit’s stream processor supports two types of windows: hopping and tum-
bling. These window types have different cost/performance implications. Hop-
ping windows are more computationally expensive but less likely to miss
fluctuations and more granular in data analysis.

 Stream processors can consume streams or tags. The difference between a
STREAM and a tag relates to the fact that one or more sources are available in a
tag, but a stream is always a single source with an immutable identifier.

 Streams without tags can only be handled by other streams and won’t trigger
other plugins. But when we attribute a tag to the stream, it has the behavior of
an (implied) input plugin.

 An untagged stream can only be handled by STREAMS, which can be chained
together to create more sophisticated processing.

 Fluent Bit’s stream processors provide a powerful mechanism but should not be
confused with a pure streaming technology such as Apache Spark and Kafka. For
example, it isn’t possible for data from one stream to be used to inform another.

https://github.com/nrk/redis-lua
https://github.com/lunarmodules/luasql

Building processors
and Fluent Bit

extension options
This chapter looks at different approaches to extending Fluent Bit logic. Using
Lua, we’ll look at new feature processors that allow us to extend logic around the
input and output of all signal types (logs, traces, and metrics). If this isn’t sufficient,
we can consider developing our own plugins. We can build new plugins by forking
or contributing to the Fluent Bit project or using the technologies provided to cre-
ate independent plugins. In this chapter, we’ll examine what is involved in the
options and their pros and cons.

This chapter covers
 Applying processors to interact and manipulate

metrics, traces, and logs

 Using SQL-like expressions to work with signals
using a processor

 Exploring the need for a custom plugin

 Reviewing the technology options for creating
custom plugins

 Understanding of the technologies involved in
custom plugins
248

2499.1 Architectural context
9.1 Architectural context
Processors provide the opportunity to enhance input and output plugin behavior in
several ways without resorting to custom plugins. However, processors allow us to go
only so far; sometimes, we must consider developing custom plugins to extend Fluent
Bit. To support this, we’ll explore the design decisions when selecting a strategy to
develop an extension. Figure 9.1 highlights where the choice of strategy can affect
Fluent Bit. In chapter 10, we will apply one of these custom plugin strategies.

Focus for

processor

capabilities

Focus for

custom

plugins

Focus for

custom

plugins

Focus for

custom

plugins

Focus for

processor

capabilities

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Figure 9.1 Representation of Fluent Bit from a logical architecture, showing where custom plugins can
be used, along with the processor feature that allows us to change the behavior of existing plugins

250 CHAPTER 9 Building processors and Fluent Bit extension options
9.2 Fluent Bit processor: Changing the behavior
of existing plugins
Fluent Bit v2.1.2 introduced additional customization logic for input and output
plugins called processors (not to be confused with the stream processor). It has a sim-
ilar feel to using Lua as a custom filter in many respects, but there are some notable
differences:

 The processor can be viewed as being an inline piece of logic. The logic imple-
mented can directly affect the performance of the input or output plugin. As a
result, we can significantly affect the plugin’s behavior and performance, such
as its ability to ingest data, so it should be treated with care.

 The processor can be configured to interact with the telemetry types Fluent Bit
v2 and later can handle (logs, metrics, and traces).

 The data being manipulated has not yet been added to the buffer, and this
logic’s actions could potentially prevent that from occurring.

 We can only configure the processor feature using YAML.

As a result, this isn’t a full-fledged custom plugin capability (as we’ll see later in the
chapter), but it can have a greater potential effect. We’re not yet interacting with the
buffer, so we get more performance as we’re not serializing and deserializing the event
with MessagePack. The downside is that reuse is limited; we can’t attach the processor to
multiple event sources through the matching behavior.

 The introduction of the Fluent Bit processor framework included the ability to use
Lua in the processor to manipulate logs. Fluent Bit v3 extended the processor’s capa-
bility to support working with traces and metrics.

9.2.1 Processor with Lua for logs

So that we can easily separate the effect of the processor from that of the plugin, we’re
going to work with two simple plugins. As a source, we’ll take the random input plugin,
which we’ll manipulate in the following ways:

 Copy the original random value to a new event attribute.
 Divide the random value by 2, truncating any fractional parts.
 Capture the response from pinging Google.com.

As the random plugin generates log events rather than traces or metrics, we’ll need to
tell the processor we want the events to be presented as log events. For the output,
we’ll use stdout and again manipulate the contents in the following ways:

 Truncate the response from the ping invocation.
 Add an attribute with a value to the log event.

To use the processor, we need to introduce a new declaration block for the processor
(called processors) and use it first to name the type of event we want to interact with
(in our case, logs, but with the ability to interact with signals and traces, too). When

2519.2 Fluent Bit processor: Changing the behavior of existing plugins

we identify the filter using the name attribute, we use the same parameters that we’d
use to define a custom filter. For a Lua filter, we need to define the method’s name to
invoke in the code (call attribute). This example (chapter9/fluentbit/processor-
demo.yaml) uses the YAML facility to inline the code into the configuration with the
code attribute.

service:
 log_level: info
 http_server: on
 flush: 1

pipeline:
 inputs:
 - name: random
 tag: test-tag
 interval_sec: 5
 processors:
 logs:
 - name: lua
 call: modify
 code: |
 function modify(tag, timestamp, record)
 new_record = record
 new_record["original_val"] =
 record["rand_value"]
 local num = tonumber(record["rand_value"])
 local newNum = string.format("%d", num/2)
 new_record["rand_value"] = newNum
 new_record["tag"] = tag
 local handler =
 io.popen(
 "ping -c 1 -i 0.1 google.com")
 new_record["ping"] = handler:read("*a")
 return 1, timestamp, new_record
 end
 #filters:
 # - name: stdout
 # match: "*"
 outputs:
 - name: stdout
 match: "*"
 processors:
 logs:
 - name: lua
 call: modify_out
 code: |
 function modify_out(tag, timestamp, record)
 new_record = record

Listing 9.1 Using processors in input and output plugins: processor-demo.yaml

In this YAML configuration, we’ve set
the random-number generator input

to run every 5 seconds to give us time
to evaluate the output.

We start the configuration for the processor.

Tells Fluent Bit we’re interested in the log-based
inputs. (The other options are traces and metrics.)

We tell the processor we want to use the Lua
plugin. (We could use other plugins here as well.)

As with using Lua as a custom filter, we need
to identify the method to invoke.

Rather than reference a separate file, we can
embed the script in the YAML configuration. But
be aware that any errors from LuaJIT will report
line numbers based on the start of the Lua code,
not the actual line number in the configuration
file, so we need to know how many lines precede
the code in the configuration file.

For a deeper look
at how Lua is
invoked, such as
the parameters
and return
values, see
chapter 7.

Copies the
rand_value in the
event to another
element of the
event’s record
called original_val

Gets the random
number divided by
2 and applied back
to the data
structure

Pings Google.com
once with a short
delay

We have this commented-out
filter, so if necessary, we can
look at the final input.

Inside the output plugin
configuration, we declare
another processor.

252 CHAPTER 9 Building processors and Fluent Bit extension options
 local search = record["ping"]
 local start = string.find(search, " ms")
 new_record["ping"] = string.sub(search, 0, start + 2)
 new_record["output"] = "new data"
 return 1, timestamp, new_record
 end

We can run this scenario easily with the command

fluent-bit -c fluentbit/processor-demo.yaml

Fluent Bit generates output like this:

[0] test-tag: [[1707683937.869194269, {}],
➥ {"rand_value"=>"3468270981094447104",
➥ "ping"=>"PING google.com(142.250.178.14) 56(84) bytes of data.
➥ 64 bytes from lhr48s27-in-f14.1e100.net (142.250.178.14):
➥ icmp_seq=1 ttl=116 time=2.82 ms", "output"=>"new data",
➥ "tag"=>"test-tag", "original_val"=>6936541962188894208}]
[0] test-tag: [[1707683942.869093656, {}],
➥ {"rand_value"=>"718867304183793408",
➥ "ping"=>"PING google.com (142.250.178.14) 56(84) bytes of data.
➥ 64 bytes from lhr48s27-in-f14.1e100.net (142.250.178.14):
➥ icmp_seq=1 ttl=116 time=3.41 ms", "output"=>"new data",
➥ "tag"=>"test-tag", "original_val"=>1437734608367586816}]
[0] test-tag: [[1707683947.869064092, {}],
➥ {"rand_value"=>"-4611686018427387904",
➥ "ping"=>"PING google.com (142.250.178.14) 56(84) bytes of data.
➥ 64 bytes from lhr48s27-in-f14.1e100.net (142.250.178.14):
➥ icmp_seq=1 ttl=116 time=3.78 ms", "output"=>"new data",
➥ "tag"=>"test-tag", "original_val"=>-9223372036854775808}]

Note from this console output sample that we have two different generated numbers:
the random one and the result of dividing it by 2. We can also use the shortened out-
put from the ping command.

9.2.2 Content modifier processor

We saw the modifier filter in chapter 7. The processor has a similar capability called
the content_modifier, but there are some notable differences. The content_filter
applies only a single change, such as adding or removing an attribute in a single invoca-
tion. Between filter invocations, the data is serialized and amended in the buffer before
being deserialized for the next filter to process. But within the processor, we can make
multiple calls to the processor logic without the back-and-forth of serializing and deseri-
alization, making the process easier to follow in the configuration as well.

The output from pinging
Google.com is lengthy, so we’ll truncate

the response string and update the attribute.

As a result of our processor,
we see additional elements,

including the result of
pinging Google.com.

The random number from the original plugin has been copied to a new
attribute, and the original rand_value tag has had its value modified.

The text that is normally produced as a result of using ping
was changed before the output operation was complete.

2539.2 Fluent Bit processor: Changing the behavior of existing plugins
 The modifier processor uses the action to tell the processor what to do. We need a
key and, depending on the action value, a value and pattern. The key attribute usu-
ally identifies the event element to interact with, except insert, which names the new
element. The value attribute, when used, is usually the new value for the attribute
except for rename, which provides the new name to use. The supported actions include
the following:

 insert—Adds a new value.
 upsert—Inserts a value if it doesn’t exist; if it does, the value is replaced.
 delete—Removes the element identified by the key.
 rename—Takes the event’s element identified by the key and renames it to the

value identified by the value attribute.
 extract—Uses a pattern attribute to apply a regular expression to the value

identified by the key attribute. The regular expression results in a key and
value.

 hash—Converts the named (key) element to a hashed value.
 convert—Converts the data type of the identified (named by key) element.

This requires an additional attribute called converted_type to provide the new
data type. The accepted values are string, boolean, int, and double.

Let’s put this processor to work. We’ll use the dummy input, and on the input, we’ll use
the content_modifier processor to add an element to the payload. So that we can see
what occurred, we’ll include a filter to stdout. Then we’ll direct the event to stdout but
add multiple processors to the output that delete an event element called recipient,
add new elements called message and rename, and hash an element called noName. Our
configuration will be like the following listing; see chapter9/fluentbit/processor-
modifier.yaml.

service:
 log_level: info
 http_server: on
 flush: 1

pipeline:
 inputs:
 - name: dummy
 tag: dummy-input
 dummy: '{ "message": "hello my world",
➥ "recipient" : "no one", "noName" : "nameless" }'
 interval_sec: 10
 processors:
 logs:
 - name: content_modifier
 action: insert
 key: "ImNew"
 value: "cool value"

Listing 9.2 Using processors to manipulate an event: processor-modifier.yaml

The start state for
our log event, which
will be generated
and passed to the
processor before
reaching the buffer

Declares the use of the
content_modifier processor

Identifies the action to apply. In this
case, we’ll add a new element called
ImNew with the value "cool value".

254 CHAPTER 9 Building processors and Fluent Bit extension options
 filters:
 - name: stdout
 match: "*"
 outputs:
 - name: stdout
 match: "*"
 processors:
 logs:
 - name: content_modifier
 action: delete
 key: "recipient"
 - name: content_modifier
 action: upsert
 key: "message"
 value: "I've been upserted"
 - name: content_modifier
 action: rename
 key: "noName"
 value: "newName"
 - name: content_modifier
 action: hash
 key: "newName"

We can run this scenario with the command

fluent-bit -c fluentbit/processor-modifier.yaml

When we run this command, we’ll see output like this:

[0] dummy-input: [1714239548.467153200, {},
➥ {"message"=>"hello my world", "recipient"=>"no one",
➥ "noName"=>"nameless", "ImNew"=>"cool value"}]
[0] dummy-input: [[1714239548.467153200, {}],
➥ {"newName"=>"17d72fdf1868464ade4f11f794ecd73b655d
➥ b1e8eed322d2f66bdcba5bcfdad5", "ImNew"=>"cool value",
➥ "message"=>"I've been upserted"}]

The first line of output reflects the effect of the stdout filter. The second line is the
output plugin at work after it executes the processors. Note that the element
newName didn’t exist in the filter’s output but does in the final output, illustrating
the effect of the processor on the output plugin. To modify the metadata, we need
to add an attribute called context, which defaults to the value body but can be
switched to attributes.

9.2.3 Processor for traces

The content_modifier doesn’t work only for logs; it can also be applied to traces. To
apply the content_modifier to a trace, we need to be explicit about the processor
type in the pipeline’s processors declaration, changing it from logs to traces. The

Using the stdout filter allows us to see the record when it has
been added to the buffer, so it includes the additional element
not included in the original dummy input definition.

The first of the content_modifier processors to
be executed before we complete the output
plugin. These processors are executed
sequentially in the order defined.

For a delete action, we need only
name the element with the key.

With the upsert, if the element already
exists, the value is replaced, which is
true in this configuration.

For a rename action, the value is the new
key for the element rather than the value
of the element being actioned.

To perform this hash, we’re referring to the
element’s new name, as we performed a
rename action before hashing the value.

2559.2 Fluent Bit processor: Changing the behavior of existing plugins
second critical element is the attribute context. To preserve the trace structure, the
context identifies which part of a trace we want the modifier to apply to. Therefore,
the context must be one of the following:

 span_name—Name attributed to the span.
 span_kind—Client, server, producer, consumer, or internal. The value depends

on the way the span has been triggered (synchronous, asynchronous, remote
in, or remote out).

 span_status—Should be Unset, Ok, or Error.
 span_attributes—The values associated with the attribute.

Let’s see how the input looks when we use the content_modifier to alter a span’s
attributes. See the following listing and chapter9/fluentbit/processor-trace-
modifier.yaml.

pipeline:
 inputs:
 - name: opentelemetry
 listen: 127.0.0.1
 port: 4317
 processors:
 traces:
 - name: content_modifier
 action: upsert
 context: span_attributes
 key: "BIGkey"
 value: "Modified"

As Fluent Bit v3 can handle the gRPC invocations, the easiest way to invoke Fluent Bit
this way is via the telemetrygen (from the OpenTelemetry project) utility. We can run
the utility directly with the Go install command to download and compile the code or
via a container. To make it easy to (re)use, we’ve adopted the container approach
here, using a docker-compose file to override the default container settings. To run
the scenario, let’s start Fluent Bit with the command

fluent-bit -c fluentbit/processor-trace-modifier.yaml

Then we can start our Docker container using docker-compose, which tells teleme-
trygen to send a single trace event to Fluent Bit. When successful, the container will
stop. We can do this with the command

docker compose -f compose.yaml up

The output should look like this:

Listing 9.3 Trace-modifying configuration: processor-trace-modifier.yaml

Note that we’ve switched
from logs to traces.

We’ve explicitly set the context to define
which part of the trace to apply the action to.

Defines the key and its new value

256 CHAPTER 9 Building processors and Fluent Bit extension options
|-------------------- RESOURCE SPAN --------------------|
 resource:
 - attributes:
 - service.name: 'telemetrygen'
 - dropped_attributes_count: 0
 schema_url: https://opentelemetry.io/schemas/1.4.0
 [scope_span]
 instrumentation scope:
 - name : telemetrygen
 - version :
 - dropped_attributes_count: 0
 - attributes:

 schema_url:
 [spans]
 [span 'okey-dokey-0']
 - trace_id : 11fd2ace7d8a9b8591bd65dab9c85737
 - span_id : fdc707e5bd13341c
 - parent_span_id : 6055c353fcd7e95c
 - kind : 2 (server)
 - start_time : 1714503268725436216
 - end_time : 1714503268725559216
 - dropped_attributes_count: 0
 - dropped_events_count : 0
 - status:
 - code : 0
 - attributes:
 - net.peer.ip: '1.2.3.4'
 - peer.service: 'telemetrygen-client'
 - BIGKey: 'Modified'
 - events: none
 - [links]
 [span 'lets-go']
 - trace_id : 11fd2ace7d8a9b8591bd65dab9c85737
 - span_id : 6055c353fcd7e95c
 - parent_span_id : undefined
 - kind : 3 (client)
 - start_time : 1714503268725436216
 - end_time : 1714503268725559216
 - dropped_attributes_count: 0
 - dropped_events_count : 0
 - status:
 - code : 0
 - attributes:
 - net.peer.ip: '1.2.3.4'
 - peer.service: 'telemetrygen-server'
 - BIGKey: 'Modified'
 - events: none
 - [links]

The start of each span data structure,
which details when the span was executed
and whether the span has a parent

The start of the attributes associated with
the span. As we’ve asked the processor to
add to the span attributes, we expect to
see a new key-value pair here.

Our new attribute added to the
attributes of the span construct

The start of each span data structure,
which details when the span was executed
and whether the span has a parent

The start of the attributes associated with
the span. As we’ve asked the processor to
add to the span attributes, we expect to
see a new key-value pair here.

2579.2 Fluent Bit processor: Changing the behavior of existing plugins
Our trace structure contains the additional elements. Removing the processor config-
uration and rerunning Fluent Bit and telemetrygen confirms that they normally
aren’t there.

NOTE telemetrygen parameters allow us to tailor which OpenTelemetry Pro-
tocol (OTLP) events are generated. The tool is relatively simple. The options
for its configuration are described at https://mng.bz/WVEl.

TIP If the configuration doesn’t produce any output, there is a problem with
the Docker network configuration. For this configuration to work, both Flu-
ent Bit and our Docker container must be visible on the same host network. If
you’re uncertain, we recommend replacing the reference to host.docker
.internal in the docker.compose file with the IP of the host machine with
Fluent Bit running.

9.2.4 Processor to metrics

Unlike logs and traces, metrics are simple. At their simplest, they are key-value pairs,
so the number of things we may want to do is a lot simpler. One challenge is that a
substantial number of metric values can be generated out of the box; if we need to
supply only a subset of such metrics, we need to reduce the data volume involved. The
new v3 processor includes a metrics_selector processor that can define a filter, so
we can retain metrics or exclude specific metrics. We can set the behavior using an
action attribute; this attribute, when set to include, allows only metrics whose name
matches the filter expressed by the metric name_attribute. We can exclude by setting
the attribute to be excluded. Strictly speaking, the code currently treats anything but
include as meaning exclude.

 The filter is defined using the metric_name, which can be a regular expression
(inferred if the value starts with a forward slash) or the actual metric name (such as
matching a literal value). We can also be explicit by using the attribute operation_type,
which accepts the values prefix or substring, treats the metric as a literal value, and
matches the start of the metric name or searches the full name.

 Let’s create a simple example using the node_exporter_metrics input plugin. We
want the node_cpu metrics that start with the string node_cpu, not the hundreds of
measures that can be provided. We need a configuration like the following listing; see
chapter9/fluentbit/processor-metrics.yaml.

service:
 log_level: info
 http_server: on
 flush: 1

pipeline:
 inputs:
 - name: node_exporter_metrics

Listing 9.4 Using processors to filter our metrics: processor-metrics.yaml

We’ve defined the use of the
node_exporter_metrics
plugin as normal.

https://mng.bz/WVEl

258 CHAPTER 9 Building processors and Fluent Bit extension options
 tag: flb-metrics
 scrape_interval: 10
 processors:
 metrics:
 - name: metrics_selector
 action: include
 metric_name: /^node_cpu*/
 outputs:
 - name: stdout
 match: "*"

We can run this scenario with the command

fluent-bit -c fluentbit/processor-metrics.yaml

As a result, we’ll see metrics being output that look like this (only a subset, as the out-
put will be influenced by how many CPUs are available, and we’ve stripped the date
timestamp from the front of the output to aid readability):

node_cpu_seconds_total{cpu="0",mode="idle"} = 201493.66
node_cpu_seconds_total{cpu="0",mode="iowait"} = 821.74000000000001
node_cpu_seconds_total{cpu="0",mode="irq"} = 0
node_cpu_seconds_total{cpu="0",mode="nice"} = 1.8500000000000001
node_cpu_seconds_total{cpu="0",mode="softirq"} = 5053.6599999999999
node_cpu_seconds_total{cpu="0",mode="steal"} = 0
node_cpu_seconds_total{cpu="0",mode="system"} = 3754.0300000000002
node_cpu_seconds_total{cpu="0",mode="user"} = 10724.059999999999

When we looked at the configuration options, we’ve highlighted the fact that we can
declare how to handle the metrics_name value, for example, by declaring that the
metric name must start with node_cpu, which is what our regular expression declares.
A regular expression is computationally more demanding than checking a string pre-
fix. Why not try changing the configurations to use this alternative approach? We’ve
supplied the answer in the configuration file processor-metrics-answer.yaml.

9.2.5 Processor using SQL

The Fluent Bit team has been working to ease and simplify the ways we interact with
events. An approach adopted for stream processors (chapter 8) uses a SQL-based syn-
tax as most people will have some familiarity with the syntax. Although the syntax that
can be used here and with the stream processor is similar, there are constraints when
we apply the principle to these processors, as we’re not interacting with the buffer. As
the data we can apply the SQL to is within the scope of the input or output plugin, we
can interact only with streams, not tags. It is also fair to assume that not all the opera-
tors, such as the windowing operators, will be available. But we can use the syntax to
filter, apply simple transforms, and rename, as we illustrated in chapter 8.

All our previous metrics identified that the events
were logs. Now we’re working with events that are
metrics, so this value needs to change accordingly.

Names the processor. For this
scenario, we’re working with
the metrics_selector.

Defines whether we’re including or
excluding metrics. Exclude means
we keep everything but those that
match; include means it must
match the conditions set.

The filter criteria. We
start with a forward
slash, which implies

this will be a regular
expression.

2599.2 Fluent Bit processor: Changing the behavior of existing plugins
 To see this in action, let’s use the dummy plugins to generate several inputs and then
use SQL to filter out events and select the event elements to be output. We need to
formulate a suitable SQL statement, which must be terminated with a semicolon. This
is supplied by referencing the SQL process with the name attribute set to sql. Then we
have to provide the query attribute to the SQL expression, as the following code illus-
trates; see chapter9/fluentbit/processor-sql.yaml.

service:
 log_level: info
 http_server: on
 flush: 1

pipeline:
 inputs:
 - name: dummy
 tag: dummy-input
 dummy: '{ "message": "hello my world",
➥ "recipient" : "notMe", "noName" : "nameless" }'
 interval_sec: 1
 - name: dummy
 tag: dummy-input2
 dummy: '{ "message": "bye bye cruel world",
➥ "recipient" : "Pink Floyd", "noName" : "Im not a number"}'
 interval_sec: 1
 outputs:
 - name: stdout
 match: "*"
 processors:
 logs:
 - name: sql
 query: "SELECT message, noName
➥ FROM STREAM WHERE recipient = 'notMe';"

We can easily run this example with the command

fluent-bit -c fluentbit/processor-sql.yaml

Our SQL expression is going to exclude some of the elements in the payload from the
output and block the events created by dummy-input2 because the payload it gener-
ates sets its recipient value to a value other than notMe. The result is output like this:

[0] dummy-input: [[1714326098.658997100, {}],
➥ {"message"=>"hello my world", "noName"=>"nameless"}]
[0] dummy-input: [[1714326099.648579300, {}],
➥ {"message"=>"hello my world", "noName"=>"nameless"}]

Listing 9.5 Using a SQL processor to control output: processor-sql.yaml

We have two inputs
using the dummy plugin
generating slightly
different messages.

Identifies the
SQL processor

The SQL statement that includes
the names of the attributes we
want to retain (the select clause)
and then the filtration through the
WHERE part of the statement

260 CHAPTER 9 Building processors and Fluent Bit extension options
9.3 Why we need to extend Fluent Bit
As we’ve seen in previous chapters, Fluent Bit is flexible, with multiple protocols that
can interact with source and target systems. We have Lua for writing custom scripts. So
why do we need more extensibility options? The answer to this question involves sev-
eral factors:

 To allow Fluent Bit to provide common behavioral characteristics, we need the
plugins to interact with the core of Fluent Bit consistently. The easiest way is to
provide a set of standard interfaces and means to build the plugins for the com-
mitters of Fluent Bit, most clearly visible in the C extension option.

 There will always be special cases where existing plugins can’t support our
needs. They might use an unusual authentication mechanism, encryption algo-
rithm, serialization, or compression logic. Sometimes, APIs work by providing
predefined objects; to use them, we have to generate code, as in the case of
gRPC and Protobuf APIs.

 We could achieve connectivity using an existing plugin, but we’d make perfor-
mance compromises, such as by using several filters. This will work, but it has a
performance cost. Implementing the logic as a native binary plugin means we
can optimize the performance while benefitting from Fluent Bit’s other features.

Fluent Bit offers several ways to build native binary extensions:

 C
 Go language (often written as Golang)
 WebAssembly (WASM)

We’ll take a high-level look at these options and why we might choose to use such an
approach to build a Fluent Bit extension. We’ll also identify where to get more details.
This will set us up for chapter 10, where we will walk through building an extension.

 Using C is the only option if you want plugins to be incorporated into a standard
Fluent Bit deployment. Still, the Go and WASM approaches help enforce lower cou-
pling through the interfacing controls, which can be easier to bypass if the plugin is
compiled into the same binary.

9.4 C language
When we talk about building extensions with C, we mean building functionality
directly into the core of Fluent Bit. We could approach this by permanently forking
the code base and maintaining the downstream version. This approach creates a lot of
additional effort in the long term, as we’ll take on the challenge of merging and
retesting the changes to ensure that they don’t affect our own forked code base. Typi-
cally, we adopt this approach only if we want to provide a managed, supported version
of Fluent Bit, so if our customer encounters a bug, we have the means to fix and
release it outside the cadence of the open source project. Typically, this involves feed-
ing the change back into the core open source, so code divergence is minimized. The

2619.4 C language
alternative to code forking is contributing directly to the open source project. This
approach is the one we’re going to consider here.

9.4.1 Considerations

We need to make a wider set of design and implementation decisions before adopting
this approach to building extensions. These problems have practical, technical, and
potentially commercial implications. These considerations include:

 Licensing—Fluent Bit, like nearly every Cloud Native Computing Foundation
(CNCF) project, has adopted the Apache 2 open source license (https://www
.apache.org/licenses/LICENSE-2.0). Without going into the deep details of the
license, it essentially allows anyone to do whatever they like with the provided
code, including creating extensions or building solutions or services that use it.
If the plugin needs to contain proprietary code or intellectual property, we’ll be
giving it away.

 Development standards and processes—To support consistency and maintainability
of the source code, any contributions need to be made by following Fluent Bit’s
development processes, coding styles, and tools, which could be at odds with
the tools and processes adopted within our organizations. A bit of effort is cer-
tainly required to become familiar with these styles and tools. If C isn’t used reg-
ularly in our organization, there is going to be a notable learning curve.

 Development and release cycles—These Fluent Bit cycles may not match our com-
mercial needs in terms of timelines. If we’ve provided a plugin that works with
our product and want to align a release launch to the availability of the plugin,
we’ll need to align to Fluent Bit, not the other way around.

Contribution is not a guarantee for becoming a committer
Developing a feature or enhancement doesn’t automatically grant the right to become
a committer. Contributions of any size come by raising pull requests, which are reviewed
by project committers, so the acceptance of a contribution is gated. Although key con-
siderations include code quality and compliance, there is a chance that if our contri-
bution functionally is niche or at odds with the norms of the wider capabilities, the
committers may decline to accept the pull request. I recommend discussing a pro-
posed submission with the community, including committers, and explaining how you
would implement the solution before starting any code.

Becoming a committer entails time and effort in terms of contributions through pull
requests. Approval to become a committer is granted only when the other committers
in the community feel that you have proved your knowledge, understanding, and align-
ment with the project and its expectations.

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

262 CHAPTER 9 Building processors and Fluent Bit extension options
9.4.2 Benefits

By adopting C, we can take advantage of Fluent Bit’s internal structures and inter-
faces as with any out-of-the-box plugin. From a commercial perspective, this has sev-
eral advantages:

 The benefits of open source solutions are likely to be maximized, given Fluent
Bit’s high profile as a leading CNCF project. These benefits include the following:
– Effort in maintaining the code is potentially spread across a wider community.
– Security benefits from Linus’ law (“Many eyes make all bugs shallow”) are

not to be confused with a guarantee of being secure. We only have to see the
Log4j shell vulnerability to confirm that.

– Licensing is easier, as the Apache license is widely used and understood.
– Support and knowledge of using a plugin are more widely distributed.

From a more technical perspective, we’ll see benefits such as these:

 Performance—As the code is directly integrated into the Fluent Bit core, there
are no additional interfacing or abstraction layers. Given C’s low-level nature, it
is possible to highly optimize a plugin’s resource use and performance (at the
cost of requiring the development process to test for memory leaks).

 Code reuse—Because we’re working directly with the core code it will be easier
to use and reuse existing code to support the plugin. As a result, the amount
of development may be smaller than implementing the plugin outside the
core code base.

 Easier plugin use—There are no additional steps for deploying and configuring
the additional deployment of resources. The process is deploy and go.

 Promotion and collaboration—If the plugin supports our service, it will help draw
attention to that service.

NOTE Resources for C-based development are available at https://mng.bz/
86w5, which covers the relevant internal APIs for plugin contexts, enabling
plugins, and so on. In addition, documentation on core development practices,
such as how memory management is implemented, is available at https://
mng.bz/EOZX and https://mng.bz/NBRv. Also, appendix B lists information
and tools that can help with C-based development for Fluent Bit.

9.4.3 Drawbacks

Unless our development tooling and processes neatly align with those of the Fluent
Bit project, we’ll need to establish additional development environments, tooling,
quality controls, and so on, effectively increasing time and effort. The libraries Fluent
Bit uses have been established, and introducing new dependencies is likely to attract a
lot of due diligence to ensure that it doesn’t introduce new license constraints on Flu-
ent Bit, duplicate capabilities, or introduce new vulnerabilities to Fluent Bit. We must

https://mng.bz/86w5
https://mng.bz/86w5
https://mng.bz/86w5
https://mng.bz/EOZX
https://mng.bz/EOZX
https://mng.bz/EOZX
https://mng.bz/NBRv

2639.4 C language
ensure that the new dependency is suitably supported and maintained so that it doesn’t
create additional overhead.

 For input and/or output plugins, we must manage any changes we make in the
solution being connected to so that it doesn’t create periods of incompatibility, such
as releasing changes and deprecating the old interfaces before an update to the Flu-
ent Bit plugin can be produced, released, and adopted.

NOTE Fluent Bit’s use of semantic versioning (https://semver.org/) means
that Fluent Bit has minor releases every six months, and patch-level revisions
every two or three weeks, regularly including minor improvements. So far,
we’ve seen only three major revisions: v1.0.0 in 2018, v2.0.0 in 2022, and v3.0.0
in 2024. The major version changes occur when significant feature changes are
made. Version 2 had an internal data structure change, for example, and v3
saw the web server upgraded to support HTTP/2 and support gRPC.

It is possible to create and offer a forked version of Fluent Bit, which isn’t unusual.
Amazon Web Services (AWS) provides its own distribution of Fluent Bit (https://github
.com/aws/aws-for-fluent-bit). Typically, organizations do this to fit their support pro-
cesses and incorporate custom extensions. They can incorporate their plugin into the
core of Fluent Bit and use proprietary code without developers getting visibility. Merg-
ing and regression-testing changes are a lot of work, however. We also have to consider
whether our users will be comfortable not using the common builds.

 It may be necessary to extend the build process with feature flags so that if the
plugin is unavailable on a particular platform, there is no attempt to compile the
plugin to the code base. This task involves additional effort and means that custom
builds can remove the plugin.

 With Go, it is possible to create proprietary extensions and keep the code secure, but
this requires deploying additional binary files and requires the user to configure the
dependencies. Certain combinations of technology with WASM may also be able to keep
the source code hidden, but WASM currently has restrictions on how it can be used.

9.4.4 Tools for the job

If building directly into Fluent Bit is the approach that meets our needs, we’ll need to
be aware of several resources.

CONTINUOUS INTEGRATION AND DELIVERY

Fluent Bit includes a script library that runs a continuous integration process to allow
development to be regression- and integration-tested. This library has been set up to
be as light as possible, using the lightweight Kind packaging of Kubernetes, but it uses
OpenSearch, which needs a reasonable number of resources allocated to it.

 By default, the tests pull the Fluent Bit image tagged as latest from GitHub, so
localized testing needs to modify the configuration of where the FLUENTBIT_IMAGE_
RESPOSITORY is defined in run-tests.sh. The relevant repository is at https://github
.com/fluent/fluent-bit-ci.

https://semver.org/
https://github.com/aws/aws-for-fluent-bit
https://github.com/aws/aws-for-fluent-bit
https://github.com/aws/aws-for-fluent-bit
https://github.com/fluent/fluent-bit-ci
https://github.com/fluent/fluent-bit-ci
https://github.com/fluent/fluent-bit-ci

264 CHAPTER 9 Building processors and Fluent Bit extension options
TERRAFORM ENVIRONMENTS

As Fluent Bit is a CNCF project, it makes sense that there is infrastructure as code to
spin up environments to support the development and testing of Fluent Bit. In the
fluent-bit-infra GitHub repository (https://github.com/fluent/fluent-bit-infra/tree/
main), we find Terraform configurations for spinning up environments in the Goo-
gle cloud.

9.5 Go language
Go (https://go.dev) is the most dominant language for CNCF projects (https://
gloutnikov.com/post/cncf-language-stats), bringing the benefits of native binary per-
formance while retaining features of languages such as Java in the form of memory
management and abstractions and ease of development. It helps that the originators
of Kubernetes (Google) are the driving force behind the development of Go.

 The emphasis on native binary performance benefits for cloud solutions, particu-
larly at hyperscale, makes easy direct integration between C/C++ and Go important as
the Linux Kernel is written with C/C++, and it is second after Go in terms of native
binary languages used by CNCF projects.

 The Go plugins interact with the Fluent Bit framework through the Goproxy mod-
ule (https://mng.bz/DpdA) in Fluent Bit. At this writing, the Goproxy and the associ-
ated Go binding code expose only input and output plugins, not the filter method
interfaces.

9.5.1 Benefits

Using Go and configuring the addition of Go plugins into Fluent Bit provides a range
of organizational and technical benefits:

 The open source project does not dictate release cycles and development pro-
cesses.

 Because the result is delivered as a native binary, the plugin can be offered with-
out exposing proprietary code or intellectual property.

 Specialist use cases are ideal for niche use cases that reflect specific organiza-
tional needs or niche requirements. These kinds of use cases often have a level
of intellectual property rights (even if it is indirect when it comes to support
functionality). For example, in the case of a plugin that handles errors from a
video transcoder, the number of organizations using video transcoders is rela-
tively small, and the number using a specific transcoder with a custom means to
generate logs and events is even smaller.

 Plugins can be implemented to meet specific internal needs without giving due
consideration to the community. If our organization has a specific standard for
naming conventions, we can hardwire it into the plugin without concern about
whether it meets wider community needs.

https://github.com/fluent/fluent-bit-infra/tree/main
https://github.com/fluent/fluent-bit-infra/tree/main
https://github.com/fluent/fluent-bit-infra/tree/main
https://mng.bz/DpdA
https://go.dev/
https://gloutnikov.com/post/cncf-language-stats/
https://gloutnikov.com/post/cncf-language-stats/
https://gloutnikov.com/post/cncf-language-stats/

2659.5 Go language
The technical benefits of using Go to build the plugin are

 Go retains the performance of native binary executables without losing the ben-
efits of memory management being performed by a language runtime.

 The Go language provides binding to C applications as standard (https://pkg
.go.dev/cmd/cgo), and Fluent Bit includes a library (https://github.com/fluent/
fluent-bit-go) that further helps with interfacing.

 Development approaches, particularly for closed source or private solution
implementation, can be aligned to internal principles and practices without
considering the wider community.

9.5.2 Drawbacks

The drawbacks are more operational than specific to code development itself. These
challenges include the following:

 At this writing, the filter interfaces are not available.
 If the development team(s) don’t work with Go, overhead remains in imple-

menting and maintaining processes such as continuous integration. We need to
include regression testing for major and minor revisions.

 If we intend to make the plugin open source, it is not as likely to get the same
level of attention as the core Fluent Bit repositories. As a result, more of the
maintenance burden will be on the plugin provider.

 Users have additional deployment effort when deploying our plugin in their
existing environments, which could be problematic if customers use prepack-
aged platforms like OpenShift.

 The scope of paid support services can be ambiguous, as third-party support
offerings typically don’t cover third-party plugins.

 The plugin needs to be subject to ongoing periodic updates, even if the solution
is stable and mature, to prevent the possible perception that the plugin is stale.

 Additional development effort is needed to translate between C- and Go-native
data types. We will have to use other Go language libraries and frameworks.

 We may have to rebuild Fluent Bit with Go support enabled (cmake -DFLB_
DEBUG=On -DFLB_PROXY_GO=On) depending on the build of Fluent Bit we use.
Note that the images provided by the Fluent Bit project have this build flag
enabled by default.

NOTE Resources for Go-based development are available at https://github
.com/fluent/fluent-bit-go, including example implementations and a Go util-
ity library to ease the workaround for the Go–C interface.

https://github.com/fluent/fluent-bit-go
https://github.com/fluent/fluent-bit-go
https://github.com/fluent/fluent-bit-go
https://pkg.go.dev/cmd/cgo
https://pkg.go.dev/cmd/cgo
https://pkg.go.dev/cmd/cgo
https://github.com/fluent/fluent-bit-go
https://github.com/fluent/fluent-bit-go
https://github.com/fluent/fluent-bit-go

266 CHAPTER 9 Building processors and Fluent Bit extension options
9.6 WebAssembly
WASM and the associated WebAssembly System Interface (WASI) represent the most
flexible approaches to building custom plugins because they allow for greater free-
dom in development languages. At the same time, WASM has an increased learning
curve. We need to master how to define and build the assemblies and the means
through which we can debug our code.

Because WASM was built with the intent to be used within the browser, security is a big
aspect of its design but also a limiting factor. WASM was intended to communicate
with the browser via stdin and stdout; all other channels are blocked. In principle,
WASM does the hard work and shares the results with the browser for the purpose of
rendering. For a Fluent Bit plugin, other than for implementing parsers and filters,
this is going to be rather restrictive. After all, the ideal reason to build a plugin is to
integrate neatly with the source or destination. As WASM progresses into backend
adoption, work is being done to address the problem, but this effort is still in progress
at this writing.

WebAssembly background
WASM is designed to be invocable and contains discrete local executables, so it is
ideal for Fluent Bit; it helps enforce the low coupling between the core and exten-
sions. Although using WASM forces developers to adopt a more stringent framework,
it allows a rich choice of languages for developing the logic within WASM, covering C,
Rust, Python, C#, Go, and JVM-based languages.

WASM started its journey in 2017 as an evolution of Java’s Applet concept, delivering
executable solutions that can be run safely within the browser. The problem with
Java’s applets (and Flash) is that a runtime engine must be installed on the client
before the application can be run. Furthermore, the client-side execution container is
dictated by the language used.

WASM addresses this problem by allowing a binary to be deployed and run securely
by the browser. WASM provides all the necessary packaging to protect the browser
from needing anything preinstalled. To communicate with anything external, WASM
needs WASI, which provides a controlled layer, conceptually similar to Java’s sand-
boxing of applets.

WASM has yet to take off as expected to enable in-browser extensions, possibly due
to continued development with JavaScript frameworks and factors such as portability
concerns. However, it has found a new, unexpected use case: packaging and deploy-
ing server-side functionality, particularly in cloud-native use cases. WASM’s security
controls required to work with a web browser created a tightly controlled relationship
with the outside world, making it more secure than containers by default. Also, WASM
needs a smaller footprint than a container but can still execute applications. As a
result, it can start up and run more efficiently. This secure, small, quick startup aligns
neatly with Fluent Bit’s guiding principles.

2679.6 WebAssembly
9.6.1 Benefits

Like the Go benefits, we can divide these into more commercial/organizational fac-
tors and purely technical ones. From a technical standpoint, the WASM benefits are

 Configuring a WASM plugin is no more complex than that of a Go plugin from
the perspective of Fluent Bit configuration.

 WASM, like containers, makes the boundaries between components more
robust for better separation of concerns, particularly because WASI is designed
to support accessing resources outside the assembly in one of the most security-
aware scenarios running in a browser.

 WASM provides far greater freedom of choice of development languages for
the logic needed, which can potentially accelerate the development process. By
using WASM, it is possible to develop the logic with JavaScript, Java, PHP,
Python, and Rust, to name a few options (https://mng.bz/lrMd).

Following are some commercial and organizational benefits:

 Because the artifact produced is binary, WASM allows us to offer commercial
plugins and adopt a closed-source approach to the code if we want. When we
provide the WASM, we have no obligation to provide the source code.

 Build and release cycles are not tied to the Fluent Bit project. If we want to
release a WASM that can manipulate a Fluent Bit event to a structure that Flu-
ent Bit can carry along with our application, we can release it and subsequent
changes that meet our timeframe, as the deployment is not bound to Fluent Bit.

 WASM emphasizes providing and securing the code within the assembly, so it is
a difficult attack vector to exploit. Deploying third-party plugins will make
accessing any of our environments difficult.

9.6.2 Drawbacks

The drawbacks of using WASM and WASI are technical, particularly given that this
technology is relatively young. The most significant points are

 A significant additional learning curve is involved unless the organization is
already working with WASM. Conceptually, WASM has ideas similar to contain-
ers, but it isn’t a straightforward skills transfer, which may be part of the reason
why we’re not seeing WASM adopted as quickly as many people expected.

 The additional abstraction and ability for WASM to support interpreted and vir-
tual machine (VM) languages can make the development process more removed
from performance considerations. Building a Python WASM as a plugin used
for a high-volume pipeline within Fluent Bit will have significant performance
implications.

 Each layer of abstraction adds a small amount of overhead. WASM has the
greatest level of abstraction from Fluent Bit and, therefore, comparatively, the
largest overhead.

https://mng.bz/lrMd

268 CHAPTER 9 Building processors and Fluent Bit extension options
 The chances of maximizing the benefits from an open source community are
significantly lower because the plugin isn’t linked to the Fluent Bit code base.
The community needs to make a conscious decision to investigate other sources
of plugins.

 As the code is wrapped in an assembly, debugging the code can be much
harder, just as debugging code within a container is harder.

 WASM’s security strength is also a constraint, as today, the model is very difficult
to use to allow a plugin to access services such as the network for HTTP and
TCP interfaces. However, we believe that some of these challenges will be
addressed over time.

9.7 Selecting an extension strategy
Table 9.1 is a decision matrix (sometimes referred to as a stress test). It works by provid-
ing a series of factors that are key to deciding which technology best suits your
requirements or preferred approach. The table shows how well each extension option
meets each factor. If a factor is important, choose the columns with a Y result. When
you’ve evaluated all the rows, count the columns in which you’ve selected an answer.
The column with the most responses selected reflects the most suitable option. For
more about this approach to decision making, check out https://mng.bz/Bgdw.

Learning more about WASM
Reference documentation is available at https://webassembly.org (for WASM) and
https://wasi.dev (for WASI). Books such as WebAssembly in Action (https://www
.manning.com/books/webassembly-in-action) and liveProjects such as Simple App with
WebAssembly (https://www.manning.com/liveproject/simple-app-with-webassembly)
are also available. If you like to learn from examples, examples of WebAssemblies
are freely available; https://wasmbyexample.dev shows the same WASM using dif-
ferent languages. There are plans to establish a registry to hold WebAssemblies
through the development of a standard (so established registries can be extended
to support this new type of object). This standard is known as WebAssembly Reg-
istry (Warg); details are at https://warg.io and https://github.com/ bytecodealliance/
registry.

Table 9.1 Decision matrix to help determine the most suitable plugin technology

Factor
C (part of
Fluent Bit)

Go WASM

Code is kept proprietary (for considerations such as protecting
intellectual property).

N Y Y

Code mustn’t be subject to Apache licensing. N Y Y

The change and release process is controlled by the Fluent
Bit community.

Y N N

https://webassembly.org/
https://mng.bz/Bgdw
https://wasi.dev/
https://www.manning.com/books/webassembly-in-action
https://www.manning.com/books/webassembly-in-action
https://www.manning.com/books/webassembly-in-action
https://www.manning.com/liveproject/simple-app-with-webassembly
https://wasmbyexample.dev/
https://warg.io/
https://github.com/bytecodealliance/registry
https://github.com/bytecodealliance/registry
https://github.com/bytecodealliance/registry

269Summary
Although the decision matrix will help you arrive at a considered position, as a gen-
eral rule of thumb, we recommend adopting Go as the default approach for custom
plugins. Although this approach ignores the potential commercial benefits of imple-
menting it into the core of Fluent Bit, it allows a great deal of latitude for develop-
ment and use.

Summary
 The processor capabilities added in v2 of Fluent Bit (Lua scripting) and the sig-

nificant new capabilities added in v3 (content_modifier, metrics_selector,
and SQL) can deliver powerful means to work with all signal types.

 The SQL processor is a quickly relatable way to define the filtering and process-
ing of events.

 We can use an OpenTelemetry project contribution to help test our Fluent Bit
configuration.

 The benefits and drawbacks of the approaches to building plugins align with
common themes:
– Control (or lack of) of the delivery approach and tooling being use
– Choice of development language and people’s familiarity with languages
– Whether the plugin logic should be open or closed source, reflecting the

possibility of needing to include proprietary code

Build and development needs to work with the existing build
process.

Y N N

You can use your own development and testing standards
and tools.

N Y Y

Code reuse and behavior consistency are maximized. Y - -

The plugin supports niche use cases in which extensions must
be implemented without forking the Fluent Bit core.

N Y Y

The plugin offers value to a wider community, and the value and
cost of maintaining the code is shared within the community.

Y - -

The language has inbuilt memory management, eliminating the
work of managing memory explicitly and the associated risks.

N Y Y

The plugin benefits from language-native memory manage-
ment, allowing it to be highly optimized.

Y N N

You have increased programming-language freedom (such as
Rust, JavaScript, or Java).

N N Y

Abstraction overheads must be minimal. Y Y N

Table 9.1 Decision matrix to help determine the most suitable plugin technology (continued)

Factor
C (part of
Fluent Bit)

Go WASM

270 CHAPTER 9 Building processors and Fluent Bit extension options
 New plugins can be created that compile directly into Fluent Bit using C. This
approach has benefits (the plugin becomes core to Fluent Bit if accepted by
the committers) and drawbacks (ownership is entirely bound to Fluent Bit’s
governance).

 Using Go as a technology for building custom plugins has its own pros and
cons. Go offers improved decoupling and increased control of the plugin code
base. Still, it can be more difficult to deploy and use when Fluent Bit is bundled
within an opinionated platform like OpenShift.

 WASM and WASI as plugin technologies offer unique and distinct pros and
cons, particularly, increased freedom in terms of development language but sig-
nificant constraints in how they currently connect to outside services.

 A decision matrix can help you make an informed and transparent decision on
the approach to adopt.

Building plugins
So far in the book, we’ve concentrated on using capabilities entirely within a stan-
dard Fluent Bit deployment. Chapter 9 went through the options for building cus-
tom plugins. In this chapter, we will implement input and output plugins using Go.

10.1 Architectural context
We’ve reviewed the options and elected to build custom plugins. Now let’s revisit
our architectural view to see how our development relates to our architectural
view, as shown in figure 10.1. Using Go currently allows us to interact only with

This chapter covers
 Implementing custom plugins using the Go

language

 Using the Fluent Bit–provided Go binding layer

 Consuming Fluent Bit configuration data to
control plugin behavior

 Managing data between method calls using the
context object

 Seeing how contexts are applied for multiple
instances of the same plugin type
271

272 CHAPTER 10 Building plugins
the input and output plugin frameworks, so we won’t see any of the inner workings,
such as the buffers.

To understand the development of a Go plugin, we need to look more closely at a few
technical areas:

 Understanding the structure of our code and dependencies
 Understanding the plugin life cycles that dictate the implementation
 Understanding the functions we need to implement, what we can do, and what

is expected to be done within those functions

Focus of

this

chapter

Focus of

this

chapter

Fluent Bit input(s)

Custom input

plugin

Input plugin

(pulled)

Input plugin

(listener)

P
a
rs

e
r

FilterCustom filter

Stream

processing

Output plugin
Custom output

plugin

Fluent Bit filter(s)

Fluent Bit output(s)

Buffers

Fluent Bit data management

Parser

Figure 10.1 Logical architecture of Fluent Bit, with this chapter's focus highlighted

27310.3 Plugin objective
 Ensuring the solution can be built and then repeated for the output, paying
close attention to the differences in life cycle methods

 Looking at how custom plugins are configured in a Fluent Bit configuration file

10.2 Why Go?
We’ll use Go for several reasons:

 We’re not bound to the processes and rules expected of us if we produce a C
plugin that compiles into the Fluent Bit core. We don’t have to recompile the
entirety of Fluent Bit.

 Go frees us from worrying about memory resource management without com-
promising performance considerations.

 Go frees us from the additional complexity of WebAssembly (WASM) and
WebAssembly System Interface (WASI) and the constraints for connecting to
other services, such as the network.

 Go helps enforce the API layers because the touchpoints are clearly established.

We will focus on input and output plugins as the filter plugin implementation uses
principles from both types of plugins. When we have a working plugin, we’ll deploy
and run it before completing the capability, as completing the functionality should
reflect more of the technicalities of the service we’re going to interface.

NOTE Go language resources may be necessary, depending on your familiar-
ity with the language. This book isn’t about Go, so although it explains what is
happening, understanding and appreciating what is happening with the code is
necessary. To understand more about the language, we recommend bookmark-
ing the language website https://go.dev. A quick reference to the language
structure and style is on the Go website at https://go.dev/doc/effective_go.
The Go language website includes lots of additional resources. If you want to
dive deeper, we recommend Go in Action (https://www.manning.com/books/
go-in-action-second-edition).

10.3 Plugin objective
We will implement a relational database plugin that can be used with multiple data-
bases. The rationale is that enterprise applications often keep tables with audit
records as to actions completed by users, particularly at the administration level,
which could affect end-to-end operations. Some databases, such as Oracle, manage
audits and other actions in tables, so we can observe not just an application but also
what is happening within the entire database. Operational teams that support data-
bases often run queries to check the database’s health, being able to execute these
queries and inject the data into the observability pipeline. Likewise, injecting the rele-
vant information into a database with a data model that helps with specific analysis
tasks can be significantly labor saving.

 To make the plugins as flexible as possible, the input and output plugin configura-
tion will provide attributes to receive the different values needed to build an SQL

https://go.dev
https://go.dev/doc/effective_go
https://www.manning.com/books/go-in-action-second-edition
https://www.manning.com/books/go-in-action-second-edition
https://www.manning.com/books/go-in-action-second-edition

274 CHAPTER 10 Building plugins
statement. As observability has a key element of sequencing (either by a timestamp or
a proxy such as an increment key), we’ll need that information. When the data is
ingested, we may want to delete the record from the source. These goals mean the
configuration for our plugin should look like this:

[INPUT]
 name in_gdb
 tag db1
 db_host 192.168.1.135
 db_port 3306
 db_user demo
 db_password demo
 ordering_col a_key
 table_name pluginsrc
 db_name demo
 db_type mysql
 pk a_key
 delete false
 query_cols a_key, a_string

This approach will be applied to both input and output plugins. Our configuration
will have a variable number of parameter attributes. As we’re pulling data from a data-
base, we can reasonably expect the Fluent Bit engine to initiate our execution, but for
completeness, we’ll touch on how a network-driven push can be handled as an input.

 Although the provided code includes a lot of functionality, the solution isn’t enter-
prise complete. The GitHub repository (https://mng.bz/vJKa) includes suggestions
on how to further develop the plugin.

10.4 Go plugin approach
Before we start looking at how the plugins work, let’s look at how Go connects to the
core Fluent Bit code base without recompiling Fluent Bit itself. The Go language has a
framework called cgo, which allows us to connect Go and C applications. Through the
use of specific types of code comments, cgo enables us to map Go functions to C
header definitions and provide code to wrap the handling of memory between raw C
code and how Go works with its more type-strict and robust memory management.
This mapping means that when we call a wrapped method, the call and the parameter
values in memory are passed between the languages.

 In addition, cgo can generate shared object binaries (recognized by their file exten-
sion .so). Fluent Bit can load these objects at startup if it knows about them.

 As well as loading the shared object files at startup, Fluent Bit’s hot reload feature
will reload these objects as part of the reload process. As a result, we can deploy
updates to the plugin without having to restart Fluent Bit fully.

 The downside is that if we’re developing a plugin for multiple platforms, we have
to compile the binaries for each OS (such as Windows and Linux) and CPU chipset
(Intel, Arm, and so on). For in-house solutions, the multiplatform problem may not be
an issue, but it’s certainly a consideration for a service provider. To support multiple

https://mng.bz/vJKa

27510.4 Go plugin approach
platforms, we need to address the demands of more configuration and the existence
of the appropriate libraries.

NOTE You can find more on cgo at https://go.dev/blog/cgo and https://pkg
.go.dev/cmd/cgo, along with information on how Go handles memory map-
ping with C via a package called unsafe (https://pkg.go.dev/unsafe).

10.4.1 Simplifying our build process

Rather than go through the challenges of configuring Go (which can be onerous if we
don’t want to use its defaults), we’re going to build on top of a Go language Docker
image (https://hub.docker.com/_/golang) that has all the necessary details. If we
want to take the .so files to be distributed, Docker provides the means to retrieve the
generated artifacts.

 Building our Docker image will take a little time because it will copy our code into
the container and compile it. If we don’t want to copy the source code, we could mount
the host filesystem. Depending on the machine’s performance capabilities, this will still
take less than a minute, but any code and debug processes can take longer.

 We’ll load the container with configuration files so that if the container is success-
fully built, it will run a simple scenario that can exercise our logic. In a production
environment, we would also be creating and building unit tests.

10.4.2 Code structure

To ease the development of the code, we’ve structured things so that the database-
related logic of our use case has no dependencies on the cgo layer. As a result, we can
run this locally in a more agnostic manner. (The code is in the file run_gdb.go.) This
is useful for any extensions or improvements we may want to make. As an additional
benefit, we can separate the code that is secondary to what we’re trying to under-
stand: how to use the way Fluent Bit can be extended rather than the mechanics of a
specific extension.

 The database code has many commonalities for an input and output plugin, so rather
than separate the logic and duplicate code into each of the plugins, we put the code in a
single folder called common, and we copy it into the compilation of each of the plugins.

 If you’re an experienced Go developer, you’d probably elect to build this code as a
separate package and create package dependencies. But, as the amount of code
involved is small and keeping all the code together and the build process easy to fol-
low, we’ve elected to apply simple copy steps into the build. Figure 10.2 shows how the
code is laid out in the repository and the relationships between the files.

 The code that provides the binding between C and the Go code skeleton that we
have to flesh out is at https://github.com/fluent/fluent-bit-go, which includes simple
examples. The examples also follow a similar strategy of using Docker but do not sup-
port the idea of a single container using Go plugins for both input and output. Calyp-
tia (now part of Chronosphere), which has been the primary contributor to Fluent
Bit, has a similar implementation (https://github.com/calyptia/plugin). Crucially, the

https://go.dev/blog/cgo
https://hub.docker.com/_/golang
https://pkg.go.dev/cmd/cgo
https://pkg.go.dev/cmd/cgo
https://pkg.go.dev/cmd/cgo
https://pkg.go.dev/unsafe
https://github.com/fluent/fluent-bit-go
https://github.com/calyptia/plugin

276 CHAPTER 10 Building plugins
out.go

out.so

/src/out_gdb

Go CLI

command

in.go

in.so

/src/in_gdb

Go CLI

command

golang:1.21-

bullseye

fluent/fluent-bit:

3.0.6-debug

/src/common

gdb.go

run_gdb.go

Dockerfile
fluent-

bit.conf

plugins.

conf
readme

go.mod

/src

Each plugin (in and out)
uses a common code base,
minimizing duplication.

The Docker build process drives the process of creating
the plugins and copying all the necessary files.

Our Dockerfile uses two
sources to bring together
the necessary features
to compile the plugins and
get a prepared Fluent Bit.

File reference relationship File copy action Execution relationship

Key

Source code

Build process
/folderCreated

artifact

Figure 10.2 The straight lines represent development relationships. The curved lines are execution-
related relationships. The dashed lines show what artifacts contribute to the creation of the artifact
pointed at. The diamonds represent our generated .so (shared object) files. The Dockerfile drives
everything.

27710.4 Go plugin approach
Go methods that appear in both the Fluent Bit repository and the Calyptia repository
are the same.

 The one detail not included in figure 10.2 to prevent it from becoming too cluttered
is documentation of the plugin properties. Several folders contain appropriate mark-
down files that include details such as descriptions of the configuration attributes.

NOTE The Fluent Bit–Go repository has a constraint in the input plugin. We
believe that the problem will be resolved in due course, allowing the input
plugin to have the dual option of having a context object passed with the oper-
ation just as the output plugin provides. For the book, we describe how things
work, assuming that the problem is resolved. The readme file in GitHub goes
into more detail so we can update things inline with the code release of the
improvement.

In addition to an example solution, we have provided a skeleton copy of the code in
chapter10/code-baseline. It has the input and output Go files with methods marked
with TODO, so you could use them as a starting point rather than review the implemen-
tation. If you want the common SQL logic, copy the common folder into code-baseline
or copy the code-baseline over the completed implementation provided.

10.4.3 Fluent Bit feature switches

If we elect to set everything up or change the Dockerfile and its sourcing of the Flu-
ent Bit image, we may need to confirm that the Go proxy layer within the core Flu-
ent Bit binary is enabled. (The standard builds in the Fluent Bit repository are
enabled.) This can be done by looking at the output from the command fluent-
bit –-help. The output will be a list of build flags enabled when Fluent Bit is com-
piled. We need to confirm the existence of FLB_HAVE_PROXY_GO. The output will
look something like this:

Internal
 Event Loop = libevent
 Build Flags = FLB_HAVE_IN_STORAGE_BACKLOG FLB_HAVE_CHUNK_TRACE
 ➥ FLB_HAVE_PARSER FLB_HAVE_RECORD_ACCESSOR FLB_HAVE_STREAM_PROCESSOR
 ➥ JSMN_PARENT_LINKS JSMN_STRICT FLB_HAVE_TLS FLB_HAVE_OPENSSL
 ➥ FLB_HAVE_METRICS FLB_HAVE_AWS FLB_HAVE_SIGNV4 FLB_HAVE_SQLDB
 ➥ FLB_HAVE_METRICS FLB_HAVE_HTTP_SERVER FLB_HAVE_TIMESPEC_GET
 ➥ FLB_HAVE_PROXY_GO FLB_HAVE_REGEX FLB_HAVE_UTF8_ENCODER FLB_HAVE_LUAJIT

The flag in the preceding output appears in boldface to make it easier to spot.

NOTE The approach and dependencies in this example assume the use of
Fluent Bit v1.9 or later. An implementation of the library can support Fluent
v1.4. To benefit from some of the features this book describes, we’ve assume
at least v1.9, ideally v2.1 or later.

278 CHAPTER 10 Building plugins
10.4.4 The build process for plugins

To build a plugin such as our database example, we need a build process, which is
embodied within a Makefile. As Dockerfile configures all the necessary Go environment
variables, we can exploit defaults and dependencies within the base image. The Docker-
file’s build process has retrieved many of the dependencies. The compilation process
is simple:

go build -buildmode=c-shared -o in_gdb.so

10.5 Understanding the plugin life cycle
All plugins have to work within the life cycle defined by the Fluent Bit engine, whether
we’re building a custom plugin for a bespoke business application or want to make it
easy to use Fluent Bit with a commercial tool. Each step of the life cycle has a function
associated with it. The life cycles of the different plugin types have some common ele-
ments. Let’s start by examining what these common operations do:

 Registration (FLBPluginRegister)—This operation is invoked as Fluent Bit’s
engine creates an internal catalog of plugins, allowing it to help the user imme-
diately if they use the command-line plugin to list plugins, for example. We
must return the proper name and description of this plugin.

 Initialization (FLBPluginInit)—When the pipeline is being translated from a
configuration file to executable processes, Fluent Bit will invoke our code with
the configuration details. Each context-aware plugin has an initialization invo-
cation per configuration file reference, which could include actions such as
checking network connectivity or confirming that a file for that context (config-
uration reference) can be opened.

 Exit (FLBPluginExit)—When the Fluent Bit engine wants to shut down gracefully,
it issues each plugin a call using this method. In our case, we should use the invo-
cation to release the database connection gracefully. Hence, the database knows
we’re no longer connected and can release any resource it holds for us.

This list shows that the startup and shutdown behaviors are the same, which makes sense.

10.5.1 Input life cycle

Figure 10.3 illustrates the input plugin life cycle. We can see common operations. The
core part of the life cycle is iterative, as shown by outputs leading back to inputs. The
iteration is driven by Fluent Bit, so these loops pass back through the Fluent Bit core
representation.

 Let’s discuss the role of each method specific to an input plugin, as shown in
figure 10.3:

 Input callback, input callback context—The Fluent Bit engine triggers this method to
collect data. We can put a sleep operation in to create a delay before accessing
data again. Otherwise, we end up in a tight loop, which is fine for a fast-moving

27910.5 Understanding the plugin life cycle
Fluent Bit core plugins

complete cleardown.

Fluent Bit core

receives shutdown or hot reload.

Fluent Bit core

triggers cleanup callback.

Fluent Bit core

triggers input one or more times.

Fluent Bit core reads config to

locate plugins.

Fluent Bit core prepares pipeline.

FLB start

Registration

(FLBPluginRegister)

Initialization

(FLBPluginInit)

FLB ends

Input callback

(FLBPluginInputCallback)

Input cleanup callback

(FLBPluginInputCleanupCallback)

Exit

(FLBPluginExit)

Input callback ctx

(FLBPluginInputCallbackCtx)

Input cleanup callback ctx

(FLBPluginInputCleanupCallbackCtx)

Figure 10.3 The life cycle of an input Fluent Bit plugin. Each solid-filled rectangle block needs
a function implemented in the plugin. The unfilled rectangle blocks are the expected methods
when the context problem is addressed. The dotted lines show the equivalent invocation flows
to the solid ones that exist today. The execution passes back to the Fluent Bit core (diagram-
wide shapes) after each invocation; the core’s role is illustrated by the shapes. This figure
allows us to see the life cycle as a flow and where execution flows.

280 CHAPTER 10 Building plugins
log file but not for something that should change more slowly, such as a slow
query record in a database.

 Input cleanup callback and input cleanup callback context—If this method is defined,
the engine will call it after the result of the initial callback is returned. The
intent is to enable actions after the data is added to the buffer. In our example,
we could use it to delete the data in the database after we’ve read it.

These methods have two versions, one without a context and one with a context. As
the Go implementation doesn’t have its own cache, any information associated with
the plugin, such as attributes that have to be retained between invocations, must be
stored in the context.

10.5.2 Output life cycle

Let’s look at the output plugin life cycle, which has a common initialization and exit.
As figure 10.4 shows, the plugin-specific methods consume the contents of the buffer
and send them to the target we’re plugging into.

 Let’s walk through the functions:

 Output flush (with context)—Having a context-based output allows us to con-
nect to different instances of an end system. We might use the same plugin
type to write different events to different database schemas if our DB output
plugin was used to record logs relating to user events, such as signing in and
out of an application. A different configuration of the same plugin might
receive a different set of log events, such as business-process key events, which
need to be analyzed differently. Data retention needs to be separate for differ-
ent people (business-ops users rather than security auditors). As a result, the
context holds configuration differences.

 Output flush—Like the contextual version of this method, this method contains
the logic to write the received buffer data it to the target system. Unlike the con-
textual version, this method has no context, so we can’t differentiate between
configurations in the pipeline. This method is sufficient for plugins such as
implementations that don’t require configuration, such as those using stdout.
In our use case, we’ll use the Go database driver to write to the database, so we
need the contextual approach. If both the contextual and noncontextual ver-
sions of the output flush function are defined, the Fluent Bit core will call the
contextual version of the function.

 Exit (with context)—The exit operation has both contextual and noncontextual
implementations, as with the output flush methods, if the context version is
called instead of the noncontextual version (if defined). Following our illustra-
tion, this allows us to close the connections to a database without affecting other
connections using the same plugin. This approach is particularly handy if our
connections need to be terminated independently, as with the dummy plugin,
which can be told to run a predefined number of times and then stop.

28110.5 Understanding the plugin life cycle
Exit

(FLBPluginExit)

Output flush

(FLBPluginFlush)

Output flush (with context)

(FLBPluginFlushCtx)

Exit (with context)

(FLBPluginExitCtx)

Fluent Bit core plugins

complete cleardown.

Fluent Bit core

unwinds registration.

Fluent Bit core receives

shutdown or hot reload.

Fluent Bit core

triggers input one or more times.

Fluent Bit core reads config to

locate plugins.

Fluent Bit core prepares pipeline.

FLB starts

Registration

(FLBPluginRegister)

Initialization

(FLBPluginInit)

FLB ends

Unregistration

(FLBPluginUnregister)

Figure 10.4 The life cycle of a Fluent Bit output plugin. Each rectangle block represents
an implementable method. Here, we have output flush with or without a context object and
a corresponding exit with or without context. Each method we implement is triggered by
the Fluent Bit core, as shown with the full-width shapes. We can see the logical life cycle
with clarity on the invocation source.

282 CHAPTER 10 Building plugins
 Exit—This method allows us to wrap things up. If our output is to something
like stdout, we can induce the flushing of any I/O buffers that may be neces-
sary. Whether or not the exit is contextual, we need to release any held
resources, such as the database connection so that the database can reuse that
connection for something else.

In both figures 10.3 and 10.4, for input and output, the Fluent Bit core representa-
tions are connected because, at any phase of the life cycle, the core may be forced to
jump out of the normal sequence. During startup, for example, the shutdown signal
is received.

10.6 Implementing the plugin
Let’s step down in detail, starting with the development environment and code. The
first detail we need to have in place is our database. MySQL is a popular open source
database with maintained containers that currently doesn’t have its own plugin; it
makes for a good database. Postgres is another popular database, and we’ve already
used it; we’ll also prove the idea by incorporating the Postgres driver. If you want to go
further with the scenario, we recommend trying things with Postgres.

10.6.1 Setting up MySQL

The first step is downloading and setting up MySQL. You can use the official Docker
image at https://hub.docker.com/_/mysql or install it locally, which is easy with a UI-
based installer. To configure and manage MySQL, we recommend installing the Com-
munity Edition of the MySQL Workbench or the command-line interface (CLI) tool.
The steps are covered in appendix B. To start the MySQL database for the first time,
we need to use the command

docker run --name mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=mySQLRoot -d
➥ mysql:latest

When the Docker image is running, we want to connect to the database using the
MySQL Workbench. (If you prefer a tool like the MySQL CLI, feel free to use it
instead.) We need to create a new connection in the Database menu and complete the
details to be like those shown in figure 10.5.

https://hub.docker.com/_/mysql

28310.6 Implementing the plugin
When we’re connected to the database server, we need to create the database and
tables. To do this, select the Query 1 tab in the center of the UI, copy into it the SQL
provided in the file chapter10/sql/initialize_mysql.sql, and click the lightning
bolt icon to execute it. The Output section at the bottom of the screen in figure 10.6
shows the results.

 We need to repeat this process for the contents of the SQL files chapter10/
sql/create_user_mysql.sql and populate.sql, which create a user to test with
and a couple of rows of data in the pluginsrc table. Now we have a database table
ready for use with our plugin.

Figure 10.5 The MySQL Workbench as we connect to the containerized instance of the database

284 CHAPTER 10 Building plugins
10.6.2 Input plugin

Let’s examine each of the functions we need to implement following the input
plugin’s life cycle, which we saw in figure 10.3.

INPUT REGISTRATION

Registration is simple. We need to return the plugin’s name and a description. This
data is added to that of the other available plugins. If command-line help is used to list

Figure 10.6 MySQL Workbench with SQL is used to create the database and tables for our use. The SQL executed
successfully, as we can see in the Output section at the bottom.

28510.6 Implementing the plugin
the available plugins, our plugin will be included in the help information. Further, the
name provided links this plugin to the configuration file references. The following
listing shows the implementation; see chapter10/go/src/in_gdb/in.go.

//export FLBPluginRegister
func FLBPluginRegister(def unsafe.Pointer) int {
 log.Printf("[%s] Register called", PluginName)
 return input.FLBPluginRegister(def, PluginName,
➥ "Go plugin for reading content from a database")
}

We need to communicate with the controlling C code whether or not our operation
has been successful, and occasionally, we have the option to say, “Please retry.” As is
typical of C solutions, we do this by passing an integer. The abstraction layer has
defined the values as meaningful constants. Table 10.1 lists the names of the constants
and their integer values.

INPUT PLUGIN INITIALIZATION

The next step is initialization. Here, we need to interact with the plugin layer to retrieve
the configuration values; we call the FLBPluginConfigKey method provided by the
interface layer. Although the bulk of the configuration values are handled separately, we
have retained one invocation within the function to check the log level setting.

 With the value gathered, we should validate that all the necessary values are defined
and sensible. If any values are missing or unsuitable, we need to tell the user. We’ve
addressed this situation by separating out the validation logic using a method called
validateSqlParams. This method returns an error struct that contains an appropriate
message. Unlike all the other logging in which we use the log features, this method’s
logging is routed directly to the console so the user will see a meaningful message.
When defining the configuration attribute names to use, we must be mindful that many
reserved attribute names exist. (See appendix B for the reserved names.)

Listing 10.1 Implementation of the register function: in.go

Table 10.1 The constants that can be used for return codes in plugin development

Constant name Value

FLB_OK 1

FLB_ERROR 0

FLB_RETRY 2

A hint for the cgo process
for mapping code

The first of many uses of
the unsafe features because
we’re not isolated from the
fact that our code is being
initiated by C. To tell the
invoking C code whether
things have been executed
successfully, we need to
return an integer value.

Helps our code be a bit chatty during
development so we can see our methods

being invoked. We defined the plugin
name as a constant so we can reference
it throughout the code, which makes it

easy to repurpose the code.

286 CHAPTER 10 Building plugins

s

f
d

n
 Within this method, we also retrieve the configuration value for Log_Level, and if
it is set to debug, we’ll print the configuration. If the values are valid, we’ll cache them.
Our implementation is, in effect, the orchestration logic of the whole process, as
shown in the following listing and chapter10/go/src/in_gdb/in.go.

//export FLBPluginInit
func FLBPluginInit(plugin unsafe.Pointer) int {
 params, err := getParams(plugin)
 if err != nil {
 return input.FLB_ERROR
 }

 if strings.Contains(strings.ToLower(
➥ input.FLBPluginConfigKey(plugin, "Log_Level")),
➥ "debug") {
 log.Printf("%s configured with %v\n",
➥ params.pluginName, params)
 }

 validateErr := validateSqlParams(params)
 if validateErr == nil {
 cacheParams(params)
 return input.FLB_OK
 } else {
 fmt.Printf("%s - Configuration error - %s \n",
➥ params.pluginName, validateErr)
 return input.FLB_ERROR
 }
}

The getParams method is a collection of statements that use the calls to FLBPluginKey
(such as input.FLBPluginConfigKey(plugin, "Log_Level") with appropriate type
casting). Listing 10.2 shows an example that interrogates the configuration values to see
whether the Log_Level has been set and, if so, whether the level is debug. The method
provides a Go struct representing all the values and their correct data types. We pass
this structure around to make the code somewhat tidier. We pass back an error code if
key configuration values are missing or wrong. To ensure consistency between input and
output, we’ve named the configuration attributes as constants in the common code.

INPUT CALLBACK

The real work takes place as we interact with the source and translate the retrieved val-
ues into an appropriate structure and payload format. We have decoupled the logic of

Listing 10.2 Implementation of the initialize function: in.go

Here, we’re calling a separate function to retrieve all
the configuration values. This function executes a

series of calls to FLBPluginConfigKey.
If retrieving the configuration
values from the Fluent Bit
configuration file results in an error,
we need to propagate this back to
the core of Fluent Bit to handle.

Retrieves the configuration value
using the interface function that
communicates back to the core o
Fluent Bit. The getParams metho
is a series of these calls that
retrieves all the needed values. I
this case, we’re looking for the
attribute value called Log_Level.

If we’re configured to
work at a debug log
level, we need to log all
the configuration values
we’ve aggregated into a
convenience structure
called MyParams.

With all the data
values collected, we
use a function to check
whether all the
mandatory values are
populated and
meaningful.

If the validation is OK and if we’ve cached
our data structure (making it quicker and easier

to use without recasting and validating values
later), we can tell Fluent Bit everything is OK.

28710.6 Implementing the plugin

s
e.

e

e

we
 in
g

ng,

e
r
n’t
formulating and pulling the database from the database; when invoked, it returns an
array of map values. Then we map each record to a structure that holds the current
timestamp and values retrieved, using their column names as the key.

 When we have the correct structure (note that we aren’t pinning a tag to the struc-
ture because it’s implied and understood by Fluent Bit’s core process management),
we use an encoder that encodes the payload using the MessagePack library. Finally, as
we’re passing the data by using memory references provided in the invocation, we
apply the Go transformation so that the C binary understands the data. Only the suc-
cess or error flag is provided as a return value.

 The final step is calculating how long to idle, as described by the configuration.
Strictly speaking, the sleep time should be calculated from the time when the call-
back is invoked. Still, for simplicity, we’re assuming that the latency of calling the data-
base and processing the results is small enough not to count because we’re not
allowing triggers faster than once per second. See the following listing and chapter10/
go/src/in_gdb/in.go.

//export FLBPluginInputCallback
func FLBPluginInputCallback(data *unsafe.Pointer, size *C.size_t) int {
 //log.Printf("FLBPluginInputCallback - START --------------")
 now := time.Now()
 flbTime := input.FLBTime{now}
 params := retrieveParams()
 dataSet, sequenceId := dynamicQuery(params)

 if dataSet != nil && len(dataSet) > 0 {
 dataCtr := len(dataSet)

 if len(sequenceId) > 0 {
 params.LatestSequencerId = sequenceId
 cacheParams(params)
 }

 var entry []interface{} = nil
 if dataCtr > 0 {
 for dataLine := 0; dataLine < dataCtr; dataLine++ {
 recd := dataLineToStrMap(dataSet[dataLine])
 entry = []interface{}{flbTime, recd}
 }
 }

Listing 10.3 Implementation of the input callback function: in.go

We need to associate the log entry with a
timestamp, so let’s get the date and time

as we ingest the event.

Retrieves the cached configuration of
the configuration values for this plugin
instance. As we have a lot of values, it i
easier to pull a complete data structur

If we have some data to send, we
process it. Otherwise, we push back
a null pointer and zero length.

We need to manag
the value used to
track the event
ordering so that th
next time we query
the database, we
don’t select data
we’ve already
retrieved. Instead,
get the next values
order. If the trackin
value needs updati
we ensure that we
update our cached
data. Note that if w
delete records afte
they’re read, we do
need this tracking.

We need to give the record we received
from the SQL logic (a key-value map) the

structure expected by Fluent Bit. As we saw in
chapter 1, we have metadata (including the

tag), a timestamp, and the log event. The
metadata is handled for us. But we’re entirely

responsible for building the event’s record.

288 CHAPTER 10 Building plugins
 enc := input.NewEncoder()
 packed, err := enc.Encode(entry)
 if err != nil {
 log.Printf("[%s] error:
➥ %s,\n Can't convert to msgpack: %v\n",
➥ PluginName, err, entry)
 return input.FLB_ERROR
 }

 length := len(packed)
 *data = C.CBytes(packed)
 *size = C.size_t(length)
 } else {
 length := 0
 *data = nil
 *size = C.size_t(length)
 time.Sleep(time.Second *
➥ time.Duration(params.QueryFrequency))
 }

 return input.FLB_OK
}

You may have noticed in the code that we use {interface} heavily. This Go language
feature allows us to pass around constructs of varying types. Using an interface per-
mits a derived mapping to operations for different data types.

 When we’ve passed the data back to the core of Fluent Bit, the data provided is
incorporated into the buffer mechanism and managed through the pipeline for us.
We could consider using the context structure to cache the database connector
object, but this can become complex for a couple of reasons:

 The server can time out connections. We need to reopen the connection. If not han-
dled carefully, this approach leaks resources. Therefore, for simplicity, we’re
going to instantiate a new connection. If the database is pooling its connec-
tions, the overhead is not much more than authenticating HTTP requests.

 We don’t know (and shouldn’t care) what data may be inside a connection structure. As a
result, we are handling it as a data structure using the C-related utilities. Rather
than getting buried in these details, we can keep things simple by caching only
the data structures that we control. The server can time out connections.

CLEANUP CALLBACK

This operation is simple. When it’s invoked, we retrieve any contextual values that
hold resources and release them. If any errors occur, they’re passed back to the call-
back and logged, and we report an error back to the Fluent Bit core. At this level, we
need to release only resources specific to this callback cycle.

 Depending on the type of connection being managed, we may want to close the
connection to the source. We may want to exploit the context to determine whether it
is worth cleaning up. If the context yielded no data in the query, we might want to
clean it up because we might be waiting a long time. Then we might as well clean up

Fluent Bit handles the events in the
msgpack format. We need to perform
the conversion before setting the
pointers to reference these values using
data *unsafe.Pointer, size *C.size_t.

Takes the msgpack data and wraps
it up so it can be handled and safely
passed across the Go–C boundary

If our query resulted in no
records, we need to delay the
next iteration, as the chance of
getting a zero-row result is high.

28910.6 Implementing the plugin
everything rather than discover that the DB timed out our connection. The outcome
of the callback and the cleanup actions could be passed through the context. See the
following listing and chapter10/go/src/in_gdb/in.go.

//export FLBPluginInputCleanupCallback
func FLBPluginInputCleanupCallback(data unsafe.Pointer) int {
 // err := releaseResources(data)
 // if err != nil {
 // log.Printf("%s had an error during cleanup, error is %s\n",
 // Plugin_Name, err)
 // return input.FLB_ERROR
 //}
 return input.FLB_OK
}

INPUT EXIT

This callback is often only used when we need to handle open connections for the
entire operating period of Fluent Bit. We’re closing things down quickly, which
means that the plugin is less efficient, but it makes for simpler code. We can get
away with acknowledging via an OK response. See the following listing and chapter10/
go/src/in_gdb/in.go.

//export FLBPluginExit
func FLBPluginExit() int {
 return input.FLB_OK
}

As our functions operate within the standard Fluent Bit framework, if the user has
configured a grace value in the service part of the configuration, Fluent Bit will be
afforded some time for resources to close.

10.6.3 Building the code

With the plugin code in place, we want to see whether it will compile and generate the
binary statically linkable file. We can do this by asking Docker to create the image; the
Dockerfile includes the steps to pull the code from the local development environment
and build and deploy the plugin. As we saw in figure 10.2, the Dockerfile drives the whole
process. Let’s review it in the following listing; see chapter10/go/src/Dockerfile.

Listing 10.4 Implementation of the cleanup callback function: in.go

Listing 10.5 Implementation of the exit callback: in.go

Calls the internal function to release any resources we use. Releasing resources at this stage,
although clean and tidy, can have performance implications as we’ll need to open resources again in
future uses of the plugin instance. Unless a significant risk exists, it’s better to leave this for the exit.

If we experience a problem clearing down,
returns an error; otherwise, returns OK.
This may be important because it could
result in leaking memory.

As with all the code samples, the cgo comment helps
us understand the methods’ need for exposure.

We want to return an error message only when
a genuine error occurs. Calling a method when
nothing needs to be done isn’t an error.

290 CHAPTER 10 Building plugins
FROM golang:1.14 as gobuilder

WORKDIR /root

ENV GOOS=linux\
 GOARCH=amd64

COPY / /root/
COPY /common/* /root/out/
COPY /common/* /root/in/

COPY /out_gdb/* /root/out
COPY /in_gdb/* /root/in

RUN go mod edit -replace
➥ github.com/fluent/fluent-bit-go=
➥ github.com/fluent/fluent-bit-go@master
RUN go mod download & make -C out all
RUN go mod download & make -C in all

FROM fluent/fluent-bit:2.2

COPY --from=gobuilder /root/out/out_gdb.so
➥ /fluent-bit/bin/
COPY --from=gobuilder /root/in/in_gdb.so /fluent-bit/bin/
COPY --from=gobuilder /root/fluent-bit.conf /fluent-bit/etc/
COPY --from=gobuilder /root/plugins.conf /fluent-bit/etc/

EXPOSE 2020

CMD ["/fluent-bit/bin/fluent-bit", "--config",
➥ "/fluent-bit/etc/fluent-bit.conf"]

To help with running the plugins, in addition to the default configuration, we
included additional configurations in the chapter10/fluentbit folder that can be
swapped in, which allows the input or output plugins to be exercised.

10.6.4 Output plugin

As we’ve already seen, the input and output plugins have many similar definitions,
such as the registration and initialization phases. We’ve also implemented a lot of core
logic in a common code base. We don’t need to examine FLBPluginRegister and
FLBPluginInit. Things diverge when we handle the plugin flush. As we want to have
differences and track states, we’ll implement FLBPluginFlushCtx.

Listing 10.6 Configuration that will build the plugin and container: Dockerfile

As mentioned earlier, this container image builds
on top of an official Go image, so we know that

all the necessary utilities are in place.

Declares the folder that will form the
base of all the code and resources

For cgo, we can rely on many
defaults, such as where libraries
will be downloaded. But we still
need to declare explicitly which OS
and chipset we’re building for.

Copies the configuration files and source code for the
plugin into the container. Note that we’re copying the
common code into both plugin folders rather than
building a package and then declaring a dependency.

Makes sure we have
the latest Fluent Bit

Go source

We use Go to retrieve the
dependencies for the module
(defined in the go.mod file)
and then execute the
Makefile in one of the plugin
folders. This step is repeated
for the second plugin.

Defines a dependency on the Fluent Bit
container image, which results in Fluent
Bit executables being put in place

Copies our
generated code
to the right place

The container execution instructions.
Note that it uses a default. If we want
to introduce alternative configurations,
the Dockerfile must be changed.

29110.6 Implementing the plugin
OUTPUT FLUSH

As we saw when reviewing the plugin life cycle, this functionality is given a chunk of
data and pushes it to the destination—the database for which we have the configura-
tion. Like the input callback, the data is exchanged using C pointers with the payload
serialized with MessagePack. To make the data meaningful, we decode the payload.
We also need to handle some quirks of how data can be represented. A string can be
passed as a series of unsigned integers, for example. Before sending the data any-
where, we convert the data to more appropriate Go types.

 When this problem has been addressed, we can hand off the work of injecting the
data into the database. This time, we use the configuration values to inform the insert
behavior. See the following listing and chapter10/go/src/out_gdb/out.go.

//export FLBPluginFlushCtx
func FLBPluginFlushCtx(ctx, data unsafe.Pointer,
length C.int,
tag *C.char) int {

 params := NewSqlParams()
 myContext := output.FLBPluginGetContext(ctx)
 if myContext != nil {
 strContext := myContext.(*string)
 params = JSONToParams(*strContext, PluginName)
 } else {
 params = envToParams(PluginName)
 if params == nil {
 return output.FLB_ERROR
 }
 }

 if params == nil {
 return output.FLB_ERROR
 }

 dec := output.NewDecoder(data, int(length))

 count := 0
 for {
 ret, ts, record := output.GetRecord(dec)
 if ret != 0 {
 break
 }

 var timestamp time.Time
 switch t := ts.(type) {
 case output.FLBTime:
 timestamp = ts.(output.FLBTime).Time
 case uint64:
 timestamp = time.Unix(int64(t), 0)
 default:

Listing 10.7 Implementation of the flush callback: out.go

The data payload comes through
C-wrapped data structures and
uses Go’s unsafe feature.

Here, we see the call to the
plugin to get the actual context
for this instance of the plugin.

Unwraps the context and
prepares to use it. Out of
an abundance of caution,
because we’re passing
across the Go–C boundary,
we’ve marshaled our config
to JSON and back again.

We need to decode the data
we’ve been provided, as it
will be in msgpack format.

Starts an infinite loop of processing
data. (We may receive multiple
records from the buffer to store.)

Makes sure we have the correct
representation for the timestamp

292 CHAPTER 10 Building plugins
 timestamp = time.Now()
 }

 count++
 insertErr := execInsert(params, record)
 if insertErr != nil {
 return output.FLB_ERROR
 }
}

return output.FLB_OK
}

The context (ctx) can be any data you want, but it has to be handled via a pointer.
Therefore, we need to use the cgo C functions to ensure that data is handled correctly
for passing back and forth.

EXIT AND UNREGISTER FUNCTIONS

As with the input plugins, we’re keeping things simple, not caching the database con-
nection object or any other resources that must be explicitly resource managed. We can
handle these method invocations with a simple logging action and returning FLB_OK.

10.7 Deploying the custom plugin
When the plugin is built, we want to deploy and use it. We need to tell Fluent Bit
about the additional plugin files. This process is similar to including parsers (chapter
6) and Lua scripts (chapter 7). We need a file to reference the plugin .so files. The
file format is the same as the parser-inclusion configuration, as shown in the following
listing; see chapter10/go/src/plugins.conf.

[PLUGINS]
 path /fluent-bit/bin/out_gdb.so
 path /fluent-bit/bin/in_gdb.so

The conventional location for custom plugins is a /bin folder of the folder containing
Fluent Bit. But this location is not mandatory. We could argue that referencing the
folder that contains the build objects in our container would be better, as it can sim-
plify the Dockerfile. But as we’re copying other resources in place, consolidating
helps, particularly if someone wants to export a copy of the Fluent Bit part of the
filesystem. Wherever the plugin file resides, we identify each one with the attribute
path and then an absolute path. To clarify the configuration file’s purpose, we start
with a declaration block of [PLUGINS].

 With the plugin’s configuration established, we add a reference to it in the Flu-
ent Bit configuration file. As we did with the parsers, we add an attribute to the

Listing 10.8 Configuration identifying the custom plugins: plugins.conf

We have a record. Let’s
invoke the logic to load
the record into the DB.

As with all the callbacks,
we need to provide a
status in the response.

The identifier tells us that the
following configuration will identify
the location of plugin binaries.

Each plugin is referenced by an attribute of
the path and then an absolute file path.

29310.8 Configuring our scenario
[SERVICE] block of the configuration, an attribute called plugins_file, and the
file’s location:

plugins_file plugins.conf

When Fluent Bit starts and parses the configuration file, it loads the identified
plugins, even if they’re not used.

10.8 Configuring our scenario
Now that we’ve walked through all the Fluent Bit core callbacks that drive the plugin,
we’ve developed our own version or examined the plugin code base deeply. Either way,
we need to exercise the plugins. We’ve included a couple of extra configurations in addi-
tion to the primary one that the Docker image will pick up in chapter10/fluentbit:

 A configuration that uses the random input plugin and a filter to generate a syn-
thetic source to test the output plugin (output-only-test.conf).

 A configuration that reads from a database source and sends the received events
to stdout.

 A configuration with two outputs using the same input, which helps demon-
strate the application of context. As the plugin supports giving each instance of
the plugin configuration a unique name, it is possible to see in the logs when
each instance is triggered.

All these configurations work with the MySQL database we set up at the start of this chap-
ter and should also work with the Postgres versions because the provided code keeps to
American National Standards Institute (ANSI) SQL. To deploy these configurations, we
need to use them to replace the contents of chapter10/go/src/fluent-bit.conf.

 Let’s examine the full end-to-end configuration, which uses both the input and
output plugins. Many of the configuration values affect how the SQL is generated
and executed rather than the plugin. All the attributes are detailed in the file
chapter10/go/src/README.md with example values. See the following listing and
chapter10/go/src/plugins.conf.

[SERVICE]
 flush 5
 daemon Off
 log_level info
 parsers_file parsers.conf
 plugins_file plugins.conf
 HTTP_Server Off
 HTTP_Listen 0.0.0.0
 HTTP_Port 2020

[INPUT]
 name in_gdb

Listing 10.9 Configuration identifying the custom plugins: plugins.conf

Directs Fluent Bit to
read the file that tells it
where the plugin objects
to load are located

The name of our plugin has to tie up with the name
in the name provided by the FLBPluginRegister
method (listing 10.1: PluginName).

294 CHAPTER 10 Building plugins
 tag db1
 db_host 127.0.0.1
 db_port 3306
 db_type mysql
 db_user demo
 db_password demo
 ordering_col a_key
 db_name demo
 table_name pluginsrc
 pk a_key
 delete false
 query_cols a_key, a_string
 #where_expression
 #log_level debug

[OUTPUT]
 name out_gdb
 match *
 db_host 127.0.0.1
 db_port 3306
 db_type mysql
 db_name demo
 db_user demo
 db_password demo
 table_name plugindest
 pk a_key
 log_level debug

[OUTPUT]
 match *
 name stdout

TIP Depending on how your Docker and host network are set up, you may
need to modify the IP configuration to explicitly be the IP of the machine
running the database. We like to wire this to a Domain Name System (DNS)
address or the IP of our host machine.

10.9 Executing the build
As described earlier in the chapter, we’ve incorporated into the Docker image build
the steps to invoke Makefiles for each plugin. If we want to build only one of the
plugins, we need to comment out the entries in the Dockerfile that calls the Make-
file and copy the resulting file to the target folder where Fluent Bit is installed.
Don’t forget to amend the plugins.conf file as well. The build command run from
the chapter10/go/src folder for the Docker image is

docker build . -t fluent-bit-gdb -f Dockerfile

We need to provide the details necessary to connect to the
DB server for input and output plugins. Depending on the
network configuration, it may be necessary to change this to
the IP for the host of the database. Depending on how your
local networking is configured, you may want to replace this
address with the IP of your host machine.

We need to know which DB type so we can
use the correct driver and construct the
connection URL appropriately.

As a DB server can support multiple schemas
and tables, we need to know which one.

In our configuration, we’re
not deleting records after
they’re read by the plugin.

Identifies the names of the table
columns we want to send

We need to provide the details necessary to connect to the
DB server for input and output plugins. Depending on the
network configuration, it may be necessary to change this to
the IP for the host of the database. Depending on how your
local networking is configured, you may want to replace this
address with the IP of your host machine.

Ideally, we inject these values into the configuration
so that the DB credentials aren’t in clear text.
Further, in a production environment, we want to
use a set of credentials that are limited in terms of
what can be seen and done.

295Summary
If the build fails, we see the compilation errors displayed as an outcome. But failing to
build the first plugin won’t prevent the build process for the second plugin.

 Keep in mind that if we run the build process multiple times, we’ll accumulate cop-
ies of some layers from the Dockerfile—specifically the layers associated with building
the plugins because they’re generated every time. Therefore, it is worthwhile to purge
(or prune) them periodically using the command

docker builder prune -f

If you want to distribute the built plugins, you can use Docker commands to retrieve
the generated shared object files.

10.10 Running the custom plugins
Before we run our Docker image, remember to ensure that the MySQL container is
running. With everything in place, we start our container with the command

docker run -it --rm fluent-bit-gdb

This command starts the container, triggering the Dockerfile’s RUN statement to exe-
cute Fluent Bit. The console output from our Docker image shows details such as the
plugin methods being invoked. But the real proof is to query the tables in the MySQL
database periodically. The simplest way is to run the SQL statement select * from
plugindest, as we did when setting up the tables (using a SQL tab in the center of the
MySQL Workbench and clicking the lightning bolt icon to execute the SQL state-
ment). Notice that to ensure that the destination table (plugindest) can consume
our events, we set up a separate primary key, which is autoincrementing. Every time
we send data across, we’re guaranteed to get a new row.

Summary
 Fluent Bit’s core directs the plugin execution logic through a series of inter-

faces that support a life cycle. For each phase of the life cycle, a Go function
needs to be implemented.

 The code is structured, and our approach to having common logic has been to
copy the common code to the right place for the build process rather than the
more mature approach of using packaging to keep things simple.

 Building Go extensions involves the use of cgo. Cgo tools and commands to
enable Go code to be bound to C applications have been explored, where cgo is
necessary to enable our code to be called from the Fluent Bit core when necessary.

 Plugins can access the configuration attributes to tailor plugin behavior as
defined in a standard Fluent Bit configuration file.

 Fluent Bit has constraints on the naming of configuration values (which appear
in the configuration file).

Putting Fluent
Bit into action:

An enterprise use case
To understand how to use different features of Fluent Bit in a real-world context,
we’ll link our examples to a hypothetical use case in this chapter. Although the use
case is for a hypothetical company, many aspects of the example are based on real-
world needs. As we work through the use case and see how Fluent Bit can be
applied to deliver value, we’ll refer to specific chapters that cover the relevant con-
cepts and capabilities.

11.1 Use case
Media Management Solutions (MMS) provides media content management as a
service, covering tasks such as cataloging media, streaming, and transcoding for-
mats for content such as audio and video. The product is a specialized form of
headless content management system in many respects. Enterprise customers will

This chapter covers
 Reviewing an enterprise use case’s needs

 Seeing why adopting Fluent Bit can be
evolutionary

 Looking at multicloud observability

 Connecting what we’ve learned with the real world
296

29711.2 Deployment needs
incorporate and extend the core product into their own services. Customers are typi-
cally large corporations that need to provide videos, such as instructional videos, for
their staff or customers.

 The MMS team often describes its business as a blend of the brains of YouTube and
Netflix, with APIs that allow customers to build a user experience like Netflix and with
strong, easy-to-use content organization, curation, and analytics for providing content
features such as those that YouTube offers.

 The internet enabled a new generation of technology titans, companies that can flex
and scale like never before and are cloud born, free of heritage challenges. Many busi-
nesses today don’t have those benefits. MMS is part of the latter group, having started at
a time when application solutions had to be deployed to a company’s own hardware.

11.2 Deployment needs
The MMS product was originally developed and deployed with J2EE application serv-
ers installed in customer data centers. With the maturation and acceptance of cloud
services, MMS has many customers running the product in various clouds. To take
advantage of this fact, MMS developed a road map to transition its business model
from a license offering with the option of a managed service or (primarily) a Software
as a Service (SaaS) offering.

 Cloud adoption increased pressure on cost management by making resource use
as elastic as possible and increasing service availability (such as removing maintenance
downtime). As a result, MMS incrementally refactors or rewrites its core application to
run on Kubernetes.

 These goals led to the decision that the core solution must stick with core Cloud
Native Computing Foundation (CNCF) solutions rather than cloud-vendor-specific
services. Customers want to use the product with their own preferred cloud provider
to minimize latency between the application and their extensions and to lower the
possible cost of data-egress charges from the cloud vendor. The solution must oper-
ate across Google Cloud Platform (GCP), Amazon Web Services (AWS), Microsoft
Azure, and Oracle Cloud Infrastructure (OCI) as a design principle, as illustrated in
figure 11.1. Cloud vendors provide native functionality that is compliant with the CNCF
stack, which they should take advantage of to minimize their IT operations effort. Using
managed Kubernetes is acceptable, but monitoring visualization through a cloud ven-
dor’s tools is not.

 MMS could have adopted a strategy of connecting the different components
directly to their observability toolset, but this was seen as restrictive. It would create a
complex web of many-to-many connections. It would also mean there was no option to
improve incrementally and it would be constrained by what could be done with cur-
rent implementation technologies. As we saw in chapter 1, adopting Fluent Bit provides
a small vendor-neutral footprint that offers options for extension when necessary. Flu-
ent Bit can be deployed almost anywhere, including all the major hyperscalers and
OSes for on-premises deployments to support license-based customers.

298 CHAPTER 11 Putting Fluent Bit into action: An enterprise use case
MMS considered Fluentd, but Fluent Bit supports OpenTelemetry, which is on its
road map and the more efficient footprint. In addition, Fluent Bit does not need to
address the deployment and patching of Ruby or in-house Ruby development skills,
which makes Fluent Bit a far more attractive option.

11.3 Customer dashboards
The customer’s management console serves static content, such as CSS and HTML,
from a web server. The console is used mainly for understanding and managing
content permissions, content curation, and business-process-related controls. In
addition to serving static content, the web server acts as a load balancer, cache,
and proxy.

 Although Apache did its job well, it is being replaced by nginx as part of the tech-
nology changes being made. Nginx offers better performance without sacrificing
capabilities. Apache’s greater flexibility was not being fully used.

MMS

private DC

Customer

DC

Customer

DC

Customers increasingly
want to use public cloud
platforms. However,
data ingress, egress, and
sovereignty problems can
affect which cloud and
region a customer wants.

Customers also want to
benefit from the value
proposition of the cloud
by removing operational
responsibilities.

To cost-efficiently provide a managed or
PaaS/SaaS service, MMS needs to understand
what is happening with the deployment.
This means applying observability practices
in a trustworthy manner.

MMS isn’t a cloud-
based service provider,
so it needs to support
its long-term, valuable
noncloud customers.
Some of these
customers will remain
off the cloud because
of data concerns and
security obligations
such as PII and data
sovereignty.

Figure 11.1 Multiple cloud vendors are supported as part of a managed service, along with some cases of
customer data center (DC) managed services, although this business is contracting.

29911.3 Customer dashboards
 The software logic for the dashboards is implemented like the core application
technologies, using Java in J2EE (now called Jakarta EE) with Eclipse Glassfish (https://
github.com/eclipse-ee4j/glassfish) implementation. The database used for managed
and licensed deployments has been customer-choice relational DB in the form of Ora-
cle, MySQL, or Postgres, which they had to license to get the necessary support and
assurances on patching.

 The JavaScript UI part of the dashboards interacts RESTfully with the backend via
an API gateway. The technology road map is to continue with Java as the principal
programming language; the organization has considerable expertise in Java, with a
code base that can be refactored to move quickly from J2EE to MicroProfile architec-
ture (https://microprofile.io). Helidon (https://helidon.io) is also being adopted
because it is perceived to be leading the way with MicroProfile-compliant frameworks
and is maximizing Java’s evolution. The transition to MicroProfile and microservices is
intended to be iterative, with the Glassfish servers decomposed to a MicroProfile
architecture. Subsequent iterations will adopt GraalVM (https://www.graalvm.org),
which translates Java into native binaries. Further enhancements will be made using
OpenTelemetry solutions, such as code instrumentation for tracing.

11.3.1 Customer dashboards with Fluent Bit

Fluent Bit deployment will use a sidecar pattern for the Pods created, given that their
code base is already established with a logging framework (chapter 4). Initially, the
sidecar will access commonly mounted folders for the containers, so some benefits of
using Fluent Bit can be obtained without changing the application.

 These first iterations of deploying Fluent Bit tapped into the Log4j outputs, using
Fluent Bit’s file-handling plugin (chapter 3) and the parser (chapter 6), reflecting the
traditional log file approach. As a result, some benefits of using Fluent Bit could be
obtained without changing the application.

 The team quickly recognized that shifting to the Log4j HTTP appender would
simplify things, eliminating the challenges of processing multiline log events and
managing file mount points (chapters 3 and 4). It also removes the challenge of
storage in Kubernetes (chapter 4) and allows the team to quickly improve and tune
event processing, extracting essential events and filtering out successful housekeep-
ing events.

 This was seen as a good intermediate state until the team understood how to get
the most out of OpenTelemetry and transition Fluent Bit to be an OpenTelemetry
Protocol (OTLP) Collector, able to receive and send OpenTelemetry standardized
events (chapter 3). Adopting the OpenTelemetry models requires the team to mas-
ter automated code instrumentation and add explicit OpenTelemetry calls, identify-
ing the start and end of spans that might reflect business transactions, for example.

https://github.com/eclipse-ee4j/glassfish
https://github.com/eclipse-ee4j/glassfish
https://github.com/eclipse-ee4j/glassfish
https://microprofile.io/
https://helidon.io/
https://www.graalvm.org

300 CHAPTER 11 Putting Fluent Bit into action: An enterprise use case
11.3.2 Customer dashboard containers

The precise way to connect Kubernetes to Fluent Bit monitoring depends on the cloud
being used; what is visible in these managed services differs. Oracle’s fully managed
Kubernetes means that OCI will look after and operate the master and worker nodes,
which does not prevent the customer from using the Kubernetes filter to enrich the
captured events. The Fluent Operator and Helm charts (chapter 4) will be starting
points for automating the deployment of Fluent Bit to the Kubernetes environments
where node monitoring is required.

11.3.3 Customer dashboard innovation

MMS is taking full responsibility for the dashboard experience in the SaaS deploy-
ments, being able to measure user experience (UX) performance. OpenTelemetry
provides a framework that allows client-side traces to be sent back to Fluent Bit
(https://mng.bz/dZ6g) via an API gateway that understands the OTLP protocol, ensur-
ing that it can’t be used as an attack vector. It also exploits the OpenTelemetry capabil-
ities discussed in chapter 3. The Fluent But deployment can easily be addressed by
deploying a standard Fluent Bit container (chapter 4).

11.4 Development pipelines
Docker will support developing and testing microservices. The Docker configuration
will use the Fluent Bit log driver so that logs don’t get routed via the Log4k configura-
tion and are picked up and flagged. Chapter 4 describes the logging-driver model.

 In addition to developing and testing MMS’s products, the team will use Fluent Bit
to monitor continuous integration/continuous development (CI/CD) and the devel-
opment toolchain. These logs will be captured directly in the security tooling to
ensure no attempts are made to poison deployable artifacts with malicious code.

11.5 Core services
The core services of MMS are written in a mix of Java and C/C++. Java is used for
everything other than transcoding services; the transcoders were developed and built
using C/C++ so that hardware optimizations could be used. Java development follows
the same model as the dashboard features. The Java solutions have been deployed to
separate Glassfish servers on separate networks to provide additional security isola-
tion. The C/C++ transcoding functionality uses journald; because the logic is closer to
the OS and hardware, journald makes it easier to see what the transcoders report as
errors, alongside OS and hardware logs.

 Strategically, the transcoding is largely seen as recompiling and deploying the ser-
vices. Transcoding is a computationally intensive process, so these components will be
developed to exploit the increasing power of GPUs.

 Streaming operations focus on auditing who streams media, what they stream,
and when they stream it. Sending media down socket connections is much easier.
These services are written in Java and mix Glassfish-developed functionality with

https://mng.bz/dZ6g

30111.6 Central accounting needs
custom-threaded applications. Media streaming is a sensitive area regarding product
perception and can be heavily influenced by performance and application stability.

 The data collected from the streaming services is expected to become the primary
revenue driver because it is the most customer-relatable service use. In the future, the
backend will have to help calculate and optimize the use of storage tiers. Also, the
transcoding service will charge based on media length (duration) and resolution, so
getting insights into resource use will be an avenue for improving service margins.

 The current MMS solution is a managed service. The customer had to pay for
resource use. As long as MMS’s forecasts for customers were within a certain toler-
ance, customers tended to accept a resource-generous approach to these services,
with plenty of spare capacity and redundancy. MMS managed the services without
tending to every aspect of the deployments around the clock. However, as customers
using the managed service shift to the cloud, this approach has led to pushback.

 For the core services, MMS will use the systemd plugin, which provides access to
journald along with plugins for memory, CPU, disk, and network (chapter 3). In
addition, any existing scripts in place can be instrumented with Fluent Bit so that
their outputs can be captured in the logs, providing full visibility and audit trailing to
environment processes. Chapter 2 shows how to use the Fluent Bit command-line
interface (CLI) directly; chapter 3 shows how to capture the stdout. This not only
gives MMS an audit record of what happened but also enables it to perform analysis of
the corrective actions.

 The Java functionality will evolve similarly to the customer dashboards. Whereas
the dashboards’ use of Helidon provides good integration with OpenTelemetry, the
team will need to use the OTel instrumentation tooling.

11.6 Central accounting needs
MMS has operated an enterprise resource planning (ERP) solution to manage core
processes such as accounting, human resources, and budgets. These processes
haven’t been particularly demanding because they’ve worked on a licensing model,
and managed services have been licensed, plus standardized support packages and
consulting services on configuration, deployment, and integration are available. As
a result, the on-premises deployment of the ERP has been standard and predictable
work. The product has been well maintained as on-premises deployment. The move
toward SaaS, however, is expected to drive more real-time interactions by users who
want to see their service-use data, creating more work. Strategically, MMS wants to
switch to a SaaS ERP but also wants to sweat the existing assets as long as possible so
it can focus on the product.

 The logs from the ERP will be collected with Fluent Bit to monitor its well being
along with the supporting database (chapters 3 and 5). Additional custom metrics
will be built using Go’s extension capability (chapters 9 and 10) so that the ERP can
be monitored in terms of the lag between billing events for service consumption
and how up to date the ERP is. Combined with other measures, this data can be

302 CHAPTER 11 Putting Fluent Bit into action: An enterprise use case
used to forecast whether ERP performance is likely to become a problem earlier
than expected.

 Each virtual machine (VM) or physical server has its own Fluent Bit node to moni-
tor resource use, capturing OS logs such as journald and core performance metrics,
which will be shared with Prometheus via the remote write exporter. When a SaaS solu-
tion eventually replaces the ERP, several SaaS selection criteria will support operational
needs, and several potentially custom plugins will be needed. The requirements are

 The ability to retrieve from the application audit information that can be incor-
porated into security operations so that the SaaS capability can be monitored
and combined to create a more comprehensive security picture

 APIs that retrieve key measures to help with holistic monitoring, such as detect-
ing lag between service consumption and billing

 APIs that measure the ERP to reconcile service charges from the service pro-
vider and forecast demand, aligning with budget

Fluent Bit may need some customized plugins to implement the automation of such
operational support (chapters 9 and 10). However, these features can be imple-
mented with Lua scripts rather than Go plugins.

11.7 Operational processes
Current operational processes are driven by wiring applications to the company’s
Slack or email to trigger alerts for major problems, such as service failures detected by
pinging various nodes. Additionally, problems have come from customers raising sup-
port requests.

 Operational health has been driven primarily by the ops team performing routine
health checks as a result of experience and the use of runbooks and checklists. The
additional capacity created a fair bit of redundancy in the deployments, so the exist-
ing automation is sufficient. With large enterprise clients, the fees involved enable the
company to manage a head count–to-customer ratio of 1:10. If resources are stretched,
engineering (which is expected to take periodic rotations in ops) helps out.

 Correction is achieved by using localized scripts and simple tools in the managed
environment. An occasional log incorporating sensitive data isn’t a problem, but the
team recognizes that the situation could be better. Adopting Kubernetes and micro-
services will demand better tooling, and the SaaS offering is likely (and wanted) to
help grow the customer base in smaller organizations.

 To increase engineering productivity and help the product transition to at least
its initial version, the team needs to spot operational problems sooner and gain
diagnostic insights that will improve the product. The team decided to focus on
metrics to understand existing deployments better because raw measures like the
number of processes running, CPU, and storage loads won’t reveal sensitive data.
Strategically, each supported cloud vendor for the SaaS offering will have an opera-
tional monitoring backend. For the first customers of the new microservices-built

30311.7 Operational processes
implementation, the operational processes will run on the current on-premises
spare capacity.

 A Fluent Bit node will be used in each MMS deployment as a controlled point of
egress from the application. Egress is tightly controlled, and the Fluent Bit node can
be configured with filters to apply parsers that can be used for the following:

 Filtering out or masking logs with sensitive data values.
 Filtering out data identified as not needing to be centralized. This data will be

stored with the application deployment for up to 14 days so it can be retrieved
and examined if necessary.

 Enriching passed-on events with deployment information to determine the ori-
gin, including a managed token based on random-number generation.

 Using a stream processor (chapter 8) to count the number of warnings received
within a 5-minute window and determine whether a heartbeat was received
from the upstream sidecar Fluent Bit instances.

These egress controls will use filters, including the record modifier filter and custom
parsers (chapter 6), to spot sensitive data in the events received. The egress Fluent Bit
node will use the Prometheus remote write plugin (chapter 5) to send its local metrics
to the central node. The count of remote nodes will indicate whether contact with a
managed or SaaS instance has been lost.

 Central operations will use a Prometheus server and corresponding Grafana
instance to visualize the received metric and alert on upper or lower thresholds.
The central Fluent Bit will consist of several separate deployments covering the fol-
lowing tasks:

 Handling data receipt from the distributed MMS deployments. Although most
communications are expected to use the OpenTelemetry protocol, OTLP edge
cases will be handled using the forward protocol. Transport Layer Security
(TLS) will be applied to these communications, and when the infrastructure to
roll out certificates quickly is in place, it will be extended to mutual TLS
(mTLS; see chapters 3 and 5).

Operations will monitor the Grafana, Prometheus, OpenSearch, and Tempo
infrastructure and receive traffic from other nodes. The checklist plugin from
chapter 7 will be used to validate the identifying token.

 Applying stream processing to derive overall measures for all the MMS product
deployments.

The aggregating central nodes are expected to receive a lot of data eventually. To
address this, the plan is to include deployment IDs within the tag names. Then work-
loads can be split up by using worker threads, regular expressions, and wildcards in
the match definitions (chapter 5).

 Figure 11.2 illustrates the deployment architecture between MMS and a single
location. We assumed that the management node in Kubernetes is a managed service.

304 CHAPTER 11 Putting Fluent Bit into action: An enterprise use case
This will depend on the cloud provider. In Oracle’s Cloud Infrastructure (OCI), for
example, the management node is part of the managed service. For customer deploy-
ments, additional configuration is needed to monitor the management node.

Dashboards work particularly well with metrics and provide great visual cues about
what is happening operationally. But they present several challenges:

Kubernetes cluster

Cloud region

On-premises DC

K8s ops cluster

VM

App DB

Usage

data

Media

data

Local temp

Log storeLocal temp

Log storeLocal temp

Log store

VM

K8s transcoder

namespace

Microservice

Pod

Microservice

Pod

Microservice

Pod

K8s streamer

namespace

Microservice

Pod

Microservice

Pod

Microservice

Pod

K8s dashboards

namespace

Microservice

Pod

Microservice

Pod

K8s ops

namespace

Pod

ERP data

ERP

Figure 11.2 Architecture of our use case, made up of modern cloud-native technologies and
private data center deployments using virtualization and private Kubernetes clusters

30511.9 Conclusion
 Remote work means that many organizations no longer need a dedicated large
display showing all the indicators.

 Conveying critical log events on a dashboard effectively can be difficult.
 Latency exists between events and dashboards, visually indicating a problem as

the data is collected. With automated scaling, there is a risk of making things
worse because the scaling mechanism could increase the compute load and
accelerate the problem.

MMS recognizes this challenge and will test and develop notifications through social
channels, such as Microsoft Teams and Slack, linked to their dashboards, which will
mitigate the risk of not detecting a situation that needs attention during metrics and
dashboard processing. MMS has also developed a set of filters and streams that can
detect import events and send them through social channels as alerts.

 MMS uses a ticketing system that allows customers to raise requests and show
where and when correction is needed, as well as a log of the decision processes. Tick-
ets associated with standard problems are linked to a copy of the standard runbook.
Automated notifications from Fluent Bit that are perceived to deliver value will also
raise tickets.

11.8 Tool choices
A range of tools support the analysis and actioning of signal types. In this use case,
MMS has adopted the following:

 Prometheus (https://prometheus.io)—One of the most dominant open source
solutions for capturing and storing time series data. Prometheus holds its data
in a time-ordered structure. The data is handled as key-value pairs and pro-
cessed as counter, gauge, histogram, or summary metrics.

 Tempo (https://grafana.com/oss/tempo)—Part of the Grafana Labs open
source solutions, providing analytical insights on trace data. Jaeger (https://
www.jaegertracing.io) is often the default option, but historically, extra work has
been required to secure it.

 OpenSearch (https://opensearch.org)—A fork of Elasticsearch (https://www.elastic
.co/elasticsearch) and interface compatible with Elasticsearch APIs without the
more restrictive license and offered as a managed service by some cloud providers.

 Grafana (https://grafana.com/oss/grafana)—A visualization tool commonly
used with Prometheus.

11.9 Conclusion
MMS developed a road map that exploits Fluent Bit’s fundamental features, using Flu-
ent Bit’s core functionality to capture and drive insights in a distributed model. The
company also identified actions that will exploit the advanced features, such as
streaming, to help with special use cases. Fluent Bit’s application clearly lends itself to
modern Kubernetes-centered use cases and more traditional deployments.

https://grafana.com/oss/tempo/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://prometheus.io/
https://opensearch.org/
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://grafana.com/oss/grafana/

306 CHAPTER 11 Putting Fluent Bit into action: An enterprise use case
 MMS recognizes that observability is an important part of ensuring the health of its
build processes as they become increasingly automated to ensure that the pipelines
are operating correctly (not failing because they can’t store built artifacts due to stor-
age capacity). The organization recognizes that the transition and changes are signifi-
cant and that the challenges and Fluent Bit adoption ultimately need to support
business goals. Revenue will be much more dynamic under a consumption pricing
model. Therefore, operational awareness and the ability to control costs must be far
more reactive and, if possible, proactive.

Summary
 Fluent Bit is platform- and vendor-agnostic, so it can support multicloud and fil-

ter what is needed for the centralized views.
 Fluent Bit supports modern Kubernetes-style deployments and more traditional

VM deployments.
 Both monolithic application technology stacks and microservices are supported

by Fluent Bit.
 Monitoring isn’t just for production software. Tools such as Fluent Bit can

retrieve data and create metrics on SaaS services to ensure that suppliers are
true to their quality-of-service commitments.

 Fluent Bit enables the incremental adoption of new technologies and standards
in the observability space.

 Observability isn’t only for business production services. Development pipelines
need care to keep operating efficiently, so outputs are crucial as development
processes become increasingly automated.

appendix A
Installations

This book uses components and tools in addition to those necessary to run Fluent
Bit v2.x and later. This appendix addresses the setup of the tools. There is a strong
focus on working with the Kubernetes ecosystem, which is dominated by Linux
containers. As a result, the instructions focus on configuring Linux and using con-
tainers. We’ll use Docker to run our containers and Docker Compose to simplify
parameterizing our execution of Docker containers.

A.1 Tool installation overview
Because the use of Linux dominates the Kubernetes ecosystem and containers,
we’ll focus on using Linux, but where practical, we’ll also provide reference infor-
mation for the Windows equivalent. If you’re working with a Windows environ-
ment, we recommend that you adopt one of the following options:

 Use Windows Subsystem for Linux 2 (WSL2). For more information on installing
this free solution, we recommend starting at https://mng.bz/r1Vx.

 Use VirtualBox to run a Linux Virtual machine. we recommend using a virtual
machine (VM) with a graphical UI for simplicity. VirtualBox (https://
www.virtualbox.org) is an open source solution. It is better to download an
OS image and create the VM, which eliminates the problem of using an out-
of-date instance configured so that it’s harder to work with.

 Adopt Windows Docker desktop. The benefit is that it includes a Kubernetes
deployment and can work with WSL2 or Hyper-V virtualization.

 Add Linux capacity with a free cloud account. Some cloud hyperscalers, such as
Oracle Cloud, provide free computing resources, offering a way to start a
Linux server to run processes.
307

https://mng.bz/r1Vx
https://www.virtualbox.org/
https://www.virtualbox.org/

308 APPENDIX A Installations
We will use tools like Fluent Bit outside containers, which makes it easier to under-
stand what is going on and how we can drive Fluent Bit when creating or extending
containers that run Fluent Bit.

 The following sections provide enough detail for you to install the tools that sup-
port the examples in this book. If an installation value isn’t stated, use the default
value. We’ve included details on installing utilities locally so you can try things out,
such as using the Fluent Bit command line in a console rather than configuring the con-
tainer environment for all Fluent Bit scenarios. Installing services in Linux can be messy
because different flavors handle details such as package management differently—
Advanced Packaging Tool (APT), Yellowdog Updater Modified (Yum), and Snap, to
name a few.

A.2 Downloading book resources
All the example configurations, scenario solutions, test data, and Docker container
files needed for this book can be retrieved from https://www.manning.com/books/
logs-and-telemetry or https://mng.bz/vJKa. Before we do anything else, let’s get that
content in place. The repository is structured so that each chapter has its own folder.
The test data, as well as the code and configurations to create a container for Log-
Simulator, gets its own folders, which are used across chapters.

 We assume that you’ll set up an environment variable called flbBookRootDir, refer-
encing the root folder where you’ve downloaded and unpacked the book’s resources.
The following sections provide guidance on setting up such a variable. The environment
variable might reference /home/Phil/Fluent-Bit-with-Kubernetes, for example.

WARNING The downloads include several shell scripts, so you may need to set
permissions explicitly to allow their execution. The root directory contains a
script called linux-set-permissions.sh that recurses through the directories
and corrects permissions (when run with permissions and has execute privi-
leges itself). This is particularly important for the container build processes.

We have assumed that when you run the provided scenarios, you’ll run them from
within the relevant chapter folder, such as $flbBookRootDir/chapter3.

A.3 Prepping Linux
If your Linux instance is connected to a repository manager, you should update the
metadata using the appropriate command. Depending on your privileges, you may
need to prefix these commands with sudo:

 yum update
 apt-get update
 snap refresh

If the Linux setup doesn’t include any of the services, you have the choice to config-
ure your Linux instance to a repository, and you’ll need to look at the instructions
associated with the relevant tool or download the installation package (easier).

https://www.manning.com/books/logs-and-telemetry
https://www.manning.com/books/logs-and-telemetry
https://mng.bz/vJKa

309A.4 Fluent Bit
A.4 Fluent Bit
The book assumes an installation of Fluent Bit v2.1 or later. Most of the content will
work in earlier versions, but some features may not. You can confirm the Fluent Bit
version with the command fluent-bit –-version.

 Fluent Bit provides the details and means you need to build the binaries yourself.
We’ve assumed that your environment is supported by one of the prebuilt images, but
if that is not the case, we recommend that you follow the guidance in the Fluent Bit
official manual at https://mng.bz/V2xN. All the prebuilt installation downloads are at
https://packages.fluentbit.io.

A.4.1 Linux Installs

Most package managers have versions of Fluent Bit, and you can follow this approach
if you choose. Sometimes, however, these package managers don’t support the latest
version, particularly if you’re trying to install in an environment where package man-
agement is directed to a privately managed repository. The guaranteed approach is to
use the following command in Linux environments:

curl https://raw.githubusercontent.com/fluent/
➥ fluent-bit/master/install.sh | sh

Update the environment variable $PATH to include the folder path in the Fluent Bit
binary folder. To find out how, see https://mng.bz/x627.

 Depending on your OS and its environment, Fluent Bit can be added as a daemon
service. You can see the configuration at https://mng.bz/Aade.

A.4.2 macOS

Fluent Bit can be installed using the Homebrew package manager, which is much like
the Linux approach. Homebrew supports both Intel and Arm CPUs. For more infor-
mation on Homebrew, see https://brew.sh. To install Homebrew, use the command

/bin/bash -c "$(curl -fsSL
➥ https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Then install Fluent Bit with Homebrew using the command

brew install fluent-bit

If you use this approach, you must update the environment variable $PATH to include
the path to the Fluent Bit binary folder. Changing $PATH in macOS is described at
https://mng.bz/ZVEN.

 Official Intel images are available at https://packages.fluentbit.io/macos in .pkg
format. Our recommendation is to use Homebrew.

https://mng.bz/V2xN
https://packages.fluentbit.io/
https://mng.bz/x627
https://mng.bz/Aade
https://brew.sh/
https://mng.bz/ZVEN
https://packages.fluentbit.io/macos/

310 APPENDIX A Installations
A.4.3 Windows installs

Prebuilt binaries are available for Windows in an installer package or a zip bundle. For
maximum control of the environment, download the zip file and unpack it to a pre-
ferred location. Both download types are available at https://packages.fluentbit.io/
windows, which contains folders for each release. Navigate to the preferred version
folder in a browser and then download the correct file (right-click Save). Configure the
PATH environment variable to point to the bin folder within the unzipped folder struc-
ture. You can find guidance on changing the PATH variable at https://mng.bz/RNZR.

TIP If you want to reference the location of your Fluent Bit installation in
other scripts or swap between versions of Fluent Bit, consider defining an envi-
ronment variable with the Fluent Bit bin folder (such as FLUENT_BIT_HOME)
and reference it in the PATH environment variable. Then change the value of
FLUENT_BIT_HOME, which is easier than finding and modifying the right part
of the PATH, particularly from the command line.

A.5 Docker
You can introduce Docker in several ways:

 Using Docker Desktop
 Using the vanilla Docker command-line interface (CLI) with its utilities
 In older environments, using Docker within tools such as VirtualBox
 Using a cloud provider’s free tier to instantiate a Linux machine with Docker

preinstalled (such as Oracle’s Developer Image)

We recommend using Docker Community Edition or Docker Desktop. Larger organi-
zations may prevent Docker Desktop, which can attract a license fee. If you’re a Linux
user who can use Docker Desktop, replace the references to docker-ce with docker-
desktop. An alternative to Docker is Rancher (https://www.rancher.com), but this
book focuses on Docker, which is better recognized.

A.5.1 Windows

For Windows installations, you can download an installation executable at https://
docs.docker.com/get-docker, which guides you through the installation. You need to
enable Hyper-V, which may incur a BIOS change, or Windows Subsystem for Linux
(WSL) on your machine. We recommend adopting WSL.

A.5.2 Verifying the installation

When the Docker installation is complete, confirm that Docker and Docker Compose
are usable by running the command docker info. Then confirm Docker Compose
with the command docker compose version. These commands work on all platforms.

https://packages.fluentbit.io/windows/
https://packages.fluentbit.io/windows/
https://mng.bz/RNZR
https://www.rancher.com/
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

311A.6 Kubernetes
A.5.3 Linux (including macOS)

When your environment is ready with up-to-date metadata from your package man-
ager, run the command, possibly with the sudo prefix (such as sudo apt-get <package
name>). Examples are

 yum install docker-ce docker-ce-cli containerd.io

➥ docker-buildx-plugin docker-compose-plugin

 apt-get install docker-ce docker-ce-cli containerd.io

➥ docker-buildx-plugin docker-compose-plugin

 snap install docker

NOTE Depending on your Linux configuration, you may first have to config-
ure the OS to reference the correct repository. Docker provides the details at
https://mng.bz/2ggo.

You may want to create a Docker group and attribute your user account(s) to it so that
you don’t require elevated privileges to run the Docker commands. Docker provides
guidance on this topic at https://mng.bz/2ggo, but whether such configurations are
necessary will depend upon how you have configured your environment.

 The alternative is to download the relevant package directly from https://docs
.docker.com/get-docker. Unless you’re a proficient Docker user or your environment
doesn’t include a GUI, using Docker Desktop will be convenient because it makes see-
ing and clearing the containers after use easier.

A.5.4 macOS

If you prefer to execute installations on macOS using the Homebrew package man-
ager, you can install Docker this way. Assuming that you have Homebrew installed as
described for the Fluent Bit installation, the command is

brew install docker

If you prefer to have a Docker Desktop deployment, you can download an Apple Disk
Image (.dmg) package at https://www.docker.com/products/docker-desktop. Regardless
of the installation process, make sure that the Fluent Bit bin folder is in the $PATH
environment variable.

A.6 Kubernetes
Although this book isn’t about Kubernetes and its configuration and administration, it
uses Kubernetes. We’ve been asked what we use so that readers who are less comfortable
with administrating Kubernetes will feel more comfortable mirroring what we’ve done.

 We have used the Kubernetes cluster as an option with Docker Desktop (https://
docs.docker.com/desktop). Docker Desktop is free for personal use and some com-
mercial use. Professionally, we work with Oracle Container Engine for Kubernetes
with its serverless and virtual nodes option.

https://mng.bz/2ggo
https://mng.bz/2ggo
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/
https://www.docker.com/products/docker-desktop/
https://docs.docker.com/desktop/
https://docs.docker.com/desktop/

312 APPENDIX A Installations
 Docker Desktop is cross-platform (Windows, Linux, and macOS with Intel and
Apple chipsets). For Windows users, it integrates with Windows Subsystem for Linux 2
(WSL2). It also comes with features that make it easy to reset your Kubernetes envi-
ronment if you want. For more details on Docker Desktop and Kubernetes, see https://
docs.docker.com/desktop/kubernetes.

 An alternative is Minikube (https://minikube.sigs.k8s.io/docs), which probably is
more popular. Like Docker Desktop, Minikube works across Linux, macOS, and Win-
dows. It’s easy to install using package managers such as Homebrew, Chocolatey, RPM,
and Debian dpkg. Minikube has done a nice job of simplifying actions such as
enabling and accessing the Kubernetes dashboard (the command minikube dash-
board will install the dashboard).

A.7 LogSimulator
Several chapters use a custom application that simulates an application generating log
events. We can control the content and rate at which log events are played. Log-
Simulator provides a host of other features that help test the monitoring of log events
(from files, HTTP, and so on). Originally written to help demonstrate Fluentd, it has
grown and evolved. You have several ways to deploy and run the LogSimulator to sup-
port the book:

 Use an image shared on Docker Hub (https://mng.bz/1aaQ).
 Use the Docker commands in the GitHub repository or the Manning.com

download pack (https://www.manning.com/downloads/2686) and build the
image locally (our recommendation, which guarantees the image will be up to
date and benefit from any improvements made).

NOTE The Dockerfile includes files from the downloads. If they don’t have
the correct permissions, the image won’t work. If you follow this approach
and the container fails in Linux, check file permissions.

 Run it as a Java application (requires Maven to generate the Java archive file
[JAR]). Although written in Groovy, the code complies with Java, so running it
as a Java app with the Groovy JAR is possible.

 Run the utility as a Groovy script (requires Java and Groovy to be installed).
This is how the utility was originally intended to be used. It provides the bene-
fits of Java’s structure without requiring additional steps to use Maven, making
it easy to tweak, tailor, and extend for your own needs.

This book uses the packaging of the LogSimulator with Docker Compose to wrap
the mounting process for the configuration to make running the utility as easy as
possible. The tool will continue to be improved and made easier to use. The GitHub
repository for the LogSimulator (https://mng.bz/PNN8) contains documentation

https://docs.docker.com/desktop/kubernetes/
https://docs.docker.com/desktop/kubernetes/
https://minikube.sigs.k8s.io/docs/
https://mng.bz/1aaQ
https://mng.bz/PNN8
https://www.manning.com/downloads/2686

313A.7 LogSimulator
on the configuration, and additional information and news are available at https://
mng.bz/JNNz.

 The following sections cover the native Groovy and Java approach and the con-
tainer setup. Within the exercises, we’ve configured things to work as though you’re
running a built container, but running the scenarios as a local Java or Groovy script is
trivial. The utility and all its documentation, including installation guidance, are avail-
able at https://github.com/mp3monster/LogGenerator.

A.7.1 Running as a downloaded image

To use the prebuilt image, we first need to get the image stored locally with the
command

docker pull mp3monster/flb-logsim

Then tag the image so that it works as though it was built locally with the command

docker image tag mp3monster/flb-logsim logsimcontainer-logger:latest

A.7.2 Running as a locally built Docker image

We’ve provided a dynamic container in the GitHub repository for the book (https://
github.com/mp3monster/Logs-and-Telemetry--Using-Fluent-Bit). All the resources
are in the folder called LogSimContainer. The container is built from the official
Groovy container, so there is no need to worry about Groovy or Java packaging. The
container’s RUN command invokes a script called run.sh, which pulls the latest version
of the Groovy code from GitHub and runs it. All the necessary resources are in a
folder called LogSimContainer.

 The easiest way to build the container locally is to use the Docker Compose file
with the command docker compose -f docker-compose-logsim.yaml build. (We’ve
supplied build.sh and build.bat scripts as a convenience.) If you want to change
how the container works, you must modify the run.sh file and rebuild the container.
Because all the logic is in a single file, only one layer is rebuilt. But the Groovy script is
retrieved each time the container is run—ideal if you want to tinker with the LogSim-
ulator code itself. To help you tidy up, we have also provided a simple script called
docker-clean.sh and a Windows docker-clean.bat. To run the LogSimulator, you
must provide several parameters to Docker:

 Three volume mounts, which define
– Mapping the output folder for any created log files, such as when using the

LogGenerator to create log files as a Fluent Bit input. This folder must map
to /vol/log.

– Mapping the folder containing the simulator configuration files to /vol/conf.
– Mapping the test data sets folder to /vol/test-data.

https://mng.bz/JNNz
https://mng.bz/JNNz
https://github.com/mp3monster/LogGenerator
https://github.com/mp3monster/Logs-and-Telemetry--Using-Fluent-Bit
https://github.com/mp3monster/Logs-and-Telemetry--Using-Fluent-Bit

314 APPENDIX A Installations
You also need to set several environment variables in the container for

 run_props, to define which configuration file to use. Note that the properties
file can also define the location of the test data, but the environment variable
will overrule it; the values provided in the configuration file for the LogSimulator
assume a native deployment rather than a container one.

 The test data file, to use with the variable data.

Because we provide file paths to Docker, we recommend using absolute paths. As men-
tioned earlier, to simplify life, you define an environment variable called flbBookRoot-
Dir, which points to the root folder of your copy of the downloaded resources. As a
result, a command to run the LogSimulator looks like this:

docker run -v .:/vol/log -v \
$flbBookRootDir/chapter3/SimulatorConfig/:/vol/conf -v \
$flbBookRootDir/TestData/:/vol/test-data \
--env run_props=basic-log-file.properties \
--env data=medium-source.txt logsimcontainer-logger

Because this command is lengthy, we’ve provided scripts with .sh and .bat extensions
in the SimulatorConfig folders for the chapters that use the LogSimulator (such as
chapter3/ SimulatorConfig). The filenames are the combination of the configura-
tion filename and -run (e.g., basic-log-file-run.bat), When you run this com-
mand, you should see Docker download the relevant container artifacts and the log
(figure A.1).

NOTE As with many Linux-related challenges, if any problems occur, it is
worth checking file permissions. Although we have not experienced prob-
lems, permissions have tripped up other people.

A.7.3 Java and Groovy

The LogSimulator uses Java v8 or later. To run the tool with Java without first creating
a JAR file, you need Java v11. You can use the latest version of Java. You need the Java
Development Kit (JDK), not the Java Runtime Engine (JRE). Alternatively, you can
run the tool as a Groovy script, so you can avoid generating a JAR file before JDK v11.

Figure A.1 Output from running the LogSimulator

315A.9 Postman
 You can install Java and Groovy manually by visiting the following links to get the
downloads; follow the OS-specific instructions. Alternatively, install SDKMAN! (https://
sdkman.io/install), which will help you install Java and Groovy and enable you to
switch between Java versions as necessary:

 Java (https://mng.bz/w55B); follow the links to the installation instructions
 Groovy (https://groovy-lang.org/install.html)

If you want to use the LogSimulator as a Groovy utility, we recommend that you
observe the compatibility details with Java, particularly as the Java release cycle is
faster.

A.7.4 Post-LogSimulator use

For chapters that create files with the LogSimulator, in the chapter folder, we have
also provided a clean-cX.sh file, where X represents the chapter number. We’ve pro-
vided a .bat version as well.

A.8 WireMock
Chapter 4 uses WireMock to get sight of data sent by Fluent Bit. We adopted the open
source version of WireMock. WireMock can be deployed in several ways. For this
book, you can run the Docker container image but not in background mode, so you
can see what data is being received and what WireMock is doing. Therefore, you can
execute the simple command

docker pull wiremock/wiremock:latest

to retrieve the latest version of the Docker image, ready to be used. We’ve provided a
simple script to start WireMock. If you’d like to start WireMock manually, review
https://wiremock.org/docs/standalone/docker. If you prefer to install WireMock
locally, download it at https://wiremock.org/docs/standalone/java-jar.

A.9 Postman
Postman is a relatively small, undemanding tool, so trying to run it in a container is
more complex work than is warranted. It’s best to install Postman in your native envi-
ronment. You can download it at https://www.postman.com/downloads. The website
recommends the binary based on what it can derive from your browser metadata. For
Linux, it recommends a gzipped TAR file. For Windows, it provides an installation
executable. When the download is unpacked and installed, ensure that the location of
the binary is included in the $PATH environment variable.

 Postman describes groupings of API call collections. Each chapter has its own col-
lection, and the JSON export of each collection is provided in the download material.

https://sdkman.io/install
https://sdkman.io/install
https://mng.bz/w55B
https://groovy-lang.org/install.html
https://wiremock.org/docs/standalone/docker/
https://wiremock.org/docs/standalone/java-jar/
https://www.postman.com/downloads/

316 APPENDIX A Installations
A.10 Postgres
With Docker installed, the easiest way to install Postgres is to use a Docker container
image, which you can get at https://hub.docker.com/_/postgres or deploy with the
command docker pull postgres. When you use this approach, Postgres is self-
contained, so when the container is stopped, all data will be lost.

 This book uses pgAdmin to examine what is happening when we use Postgres. If
you’re happy using the Postgres CLI and prefer not to have a UI, feel free to use the
CLI instead of pgAdmin. You can download the Postgres admin tool at https://
www.pgadmin.org/download. Like Postman, this tool is relatively lightweight, and try-
ing to run a containerized option creates unnecessary additional setup, so we recom-
mend that you download the most suitable installer for your environment.

A.11 MySQL
Chapter 10 uses MySQL. There are cloud-managed implementations of MySQL, but
for this book, the simplest solution is to use the Docker image. You can download and
use the official image at https://hub.docker.com/_/mysql or via the Docker com-
mand docker pull mysql. If you follow the Docker Hub startup instructions, you must
expose the MySQL port (3306) by adding the -p 3306:3306 parameter to the Docker
run command.

 To configure and manage MySQL, use the official MySQL Workbench, which you
can download at https://dev.mysql.com/downloads/workbench. This website offers a
menu of Linux OS versions and associated release numbers that will link to the cor-
rect package manager bundle to download. Install the bundle with the install com-
mand, such as

apt-get install mysql-workbench-community-dbgsym_8.0.36-
1ubuntu23.10_amd64.deb.

A.12 Prometheus
Prometheus is a larger installation that generates various files and needs configuring.
As a result, it is best to run it locally using a container. We’ve provided a Docker Com-
pose file to drive the installation process. This file drives both the download and the
configuration of the properties for Prometheus. Remember that the Prometheus con-
figuration keeps everything in the container. Stopping the container results in losing
previous run data. There are other ways to install Prometheus if you prefer, including

 Downloading the latest installation at https://mng.bz/755V.
 Deploying to Kubernetes with Helm. Install Helm (https://helm.sh/docs/

intro/install) before following the instructions on a site such as https://mng
.bz/mRRy.

https://www.pgadmin.org/download/
https://www.pgadmin.org/download/
https://hub.docker.com/_/postgres
https://hub.docker.com/_/mysql
https://dev.mysql.com/downloads/workbench/
https://mng.bz/755V
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://mng.bz/mRRy
https://mng.bz/mRRy
https://mng.bz/mRRy

317A.13 jq
A.13 jq
This book refers to the jq tool. Although jq isn't used in the book, you may want to use
it. You can install jq via Yum, APT, and Homebrew. Alternatively, follow the guidance
at https://jqlang.github.io/jq/download.

https://jqlang.github.io/jq/download/

appendix B
Useful resources

B.1 Standard plugins based on platform
The tables in this section describe the plugins available for various platforms, based
on v2.1 and v3.0 of Fluent Bit. Version 3.0 is denoted by Y (3). In several cases,
plugins appear for one platform earlier than another, so don’t be surprised to see Y
in one column and Y (3) in another. An empty cell means that the plugin is unavail-
able for that platform. Each section also identifies the chapter(s) that provide(s)
appropriate coverage of the plugin.

B.1.1 Input plugins

Table B.1 covers the input plugins provided as standard in Fluent Bit v2.1. Those
available for v3.0 are shown as Y (3).

Table B.1 Input plugins included in Fluent Bit and the platforms they work on

Input plugin Linux?
macOS
(M2)?

Windows? Descriptions Chapter(s)

collectd Y Y Accepts data from the
collectd service (https://
www.collectd.org)

–

cpu Y CPU use 3

disk Y Disk stats 3

docker Y Docker container metrics 4

docker_events Y Docker events (such as life
cycle)

4

dummy Y Y Y Generates dummy data 2
318

https://www.collectd.org
https://www.collectd.org

319B.1 Standard plugins based on platform
elasticsearch Y Y Y Bulk API endpoints for
Elasticsearch

–

event_test Y Y Y Tests input plugins –

event_type Y Y Y Tests input plugins –

exec Y Y Results from executing a
shell script

3

exec_wasi Y Y WebAssembly System
Interface (WASI) input

3

fluentfbit_metrics Y Y Y Internal metrics 5

forward Y Y Y Input using the forward
protocol (used primarily by
Fluentd and Fluent Bit)

3

head Y Y An inversion of the Tail file
reader plugin that behaves
like the Linux head com-
mand

–

health Y Y Response from health-check
URLs

–

http Y Y Y REST API using HTTP/S 3

kafka Y Y (3) Y (3) Kafka consumer –

kmsg Y Kernel log buffer –

kubernetes_events Y Y (3) Y (3) Kubernetes events (via API
server)

4

mem Y Memory use 3

mqtt Y Y MQTT messaging input –

netif Y Network Interface use data 3

nginx_metrics Y Y Y(3) Nginx metrics –

node_exporter_metrics Y Y (3) Generates metrics as
though it were the Pro-
metheus Node Exporter

9

opentelemetry Y Y Y OpenTelemetry-compliant
consumer using HTTP with
JSON

3

podman_metrics Y Podman container manager
metrics

4

Table B.1 Input plugins included in Fluent Bit and the platforms they work on (continued)

Input plugin Linux?
macOS
(M2)?

Windows? Descriptions Chapter(s)

320 APPENDIX B Useful resources
proc Y Checks process health
using Linux

–

process_exporter_
metrics

Y (3) Supports process metrics in
Prometheus format

6

prometheus_remote_
write

Y (3) Integrated with the Pro-
metheus remote write
framework

–

prometheus_scrape Y Y Y Scrapes metric from a Pro-
metheus endpoint

–

random Y Y Y Generates random values 8

serial Y Y Input from a serial port –

splunk Y Y (3) Handles messages from the
Splunk HTTP Event Collector
(HEC; https://mng.bz/QVVR)

–

statsd Y Y Y Accepts metrics using the
StatsD protocol (https://
github.com/statsd/
statsd#statsd)

–

stdin Y Y Captures stdin 3

syslog Y Y Y Handles syslog messages
over UDP, TCP, or UNIX
sockets

–

systemd Y Collects log messages from
the journald daemon on
Linux environments

–

tail Y Y Y Tracks file input 3

tcp Y Y Y Receives JSON or raw mes-
sages from a TCP port

–

thermal Y Hardware temperature data
via OS

–

udp Y Y Y Receives JSON or raw mes-
sages from a TCP port

–

windows_exporter_
metrics

Y Generates metrics as
though it were the Pro-
metheus Node Exporter in
Windows

3

winevtlog Y Reads the Windows Event
Log with new API

–

Table B.1 Input plugins included in Fluent Bit and the platforms they work on (continued)

Input plugin Linux?
macOS
(M2)?

Windows? Descriptions Chapter(s)

https://mng.bz/QVVR
https://github.com/statsd/statsd#statsd
https://github.com/statsd/statsd#statsd
https://github.com/statsd/statsd#statsd

321B.1 Standard plugins based on platform
B.1.2 Output plugins

Table B.2 covers the output plugins provided as standard in Fluent Bit v2.1 and v3.0.
The latter are denoted by Y (3).

winlog Y Reads the Windows Event
Log

–

winstat Y Captures Windows statistics –

Table B.2 Output plugins included in Fluent Bit and the platforms they work on

Output plugin Linux?
macOS
(M2)?

Windows? Description Chapter(s)

azure Y Y Y Sends events to the Azure
Monitor’s Log API

–

azure_blob Y Y Y Outputs events to Azure
Blog Storage

–

azure_kusto Y (3) Y (3) Y (3) Sends event to Azure’s Data
Explorer (kusto)

–

azure_logs_ingestion Y Y (3) Uses the Azure Log Analyt-
ics APIs to send log events

–

bigquery Y Y Sends log events to Google
Cloud Big Query Service
(still considered experimen-
tal in Fluent Bit v2.2)

–

chronicle Y Y (3) Sends unstructured (secu-
rity) log to the Google
Chronicle service

–

cloudwatch_logs Y Y Y Sends logs and metrics
(using Embedded Metric
Format) to Amazon Cloud-
Watch

–

counter Y Y Y Outputs the number of
events output since Fluent
Bit started

–

datadog Y Y Y Sends events to the Data-
dog service

–

es (Elasticsearch) Y Y Y Sends events to Elastic-
search and OpenSearch

–

Table B.1 Input plugins included in Fluent Bit and the platforms they work on (continued)

Input plugin Linux?
macOS
(M2)?

Windows? Descriptions Chapter(s)

322 APPENDIX B Useful resources
exit Y Y Stops Fluent Bit after the
number of flushes and
helps with testing

–

file Y Y Y Outputs to a defined file 5

flowcounter Y Y Y Outputs the number of
events and their size based
on a time unit

–

forward Y Y Y Sends log events to Fluentd
(can also be used by Fluent
Bit and other services)

5

gelf Y Y Y Sends Gelf (Graylog
Extended Log Format)
events to an endpoint over
TCP or UDP; can include
TLS

–

http Y Y Y Uses HTTP POST to send
events to an endpoint in
MessagePack or JSON for-
mat; includes optional
extensions to support Ama-
zon Web Services (AWS)
endpoints and TLS

5

influxdb Y Y Y Sends events to an Influx
time-series database

–

kinesis_firehose Y Y Y Sends events to Amazon
Kinesis Firehose service

–

kinesis_streams Y Y Y Sends events to Amazon
Kinesis Streams service

–

logdna Y (3) Y Y Sends logs to LogDNA cloud
service

–

loki Y (3) Y Y Sends logs to a Grafana
Loki server

–

kafka Y Y (3) Sends events to the Apache
Kafka service using the pro-
vided Kafka library

–

kafka-rest Y Y Sends events to Kafka
using the Apache Kafka
REST proxy

–

nats Y Y Sends log events to a NATs
messaging server

–

Table B.2 Output plugins included in Fluent Bit and the platforms they work on (continued)

Output plugin Linux?
macOS
(M2)?

Windows? Description Chapter(s)

323B.1 Standard plugins based on platform
nrlogs Y Y Y Sends events to a New
Relic (nr) service

–

null Y Y Y Disposes of any events 5

opensearch Y Y Y Sends events to an Open-
Search database

–

opentelemetry Y Y Y Sends OpenTelemetry-com-
pliant (OTLP) events to
another OTel-compliant end-
point

5

oracle_log_analytics Y Y (3) Y (3) Sends events to Oracle’s
Log Analytics service

–

pgsql Y Sends events to a Postgres
database

5

plot Y Y Generates data file for GNU
Plot

–

prometheus_exporter Y Y Y Provides an endpoint that
allows Prometheus to scrape
from the Fluent Bit instance
as it would for an agent

5

prometheus_remote_
writer

Y Y Y Pushes events to Pro-
metheus using Prometheus’
remote write mechanism

5

skywalking Y Y Y Sends events to a deploy-
ment of Apache Skywalking

–

slack Y Y Y Sends log events to the
Slack collaboration platform

–

splunk Y Y Y Sends events to Splunk
deployments

–

stackdriver Y Y Y Sends events to Google’s
Stackdriver service

–

stdout Y Y Y Sends events to stdout 5

s3 Y Y Y Stores log events in Ama-
zon’s S3 object store

–

syslog Y Y Y Sends events to a syslog
server supporting RFC3164
and RFC5424

–

Table B.2 Output plugins included in Fluent Bit and the platforms they work on (continued)

Output plugin Linux?
macOS
(M2)?

Windows? Description Chapter(s)

324 APPENDIX B Useful resources
B.1.3 Filter plugins

Table B.3 covers the filter plugins provided as standard in Fluent Bit v2.1 and v3.0.

tcp Y Y Y Sends events to a TCP
server with different payload
formats

–

td Y Y Send events to a Treasure
Data cloud service

–

udp Y Y Y UDP broadcast –

vivo_exporter Y Y Y Sends logs, metrics, and
traces over HTTP to a Vivo
endpoint (visualization
solution)

–

websocket Y Y Y Establishes an HTTP con-
nection via GET and sends
events in JSON or Message-
Pack format

–

Table B.3 Filter plugins included in Fluent Bit and the platforms they work on

Output plugin Linux?
macOS
(M2)?

Windows? Description Chapter(s)

alter_size Y Y Y Alters incoming chunk size –

aws Y Y Y Adds AWS metadata –

checklist Y Y Y Checks record attributes
against a list of configured
values

7

ecs Y Y Y Adds AWS ECS metadata –

expect Y Y Y Validates keys and their val-
ues

7

geoip2 Y Y Y Adds geolocation data
based on IP to location-
mapping data

7

grep Y Y Y Applies grep to specific
event attributes

7

kubernetes Y Y Y Appends Kubernetes meta-
data to the events

7

log_to_metrics Y Y Y Generates metrics from
logs

7

Table B.2 Output plugins included in Fluent Bit and the platforms they work on (continued)

Output plugin Linux?
macOS
(M2)?

Windows? Description Chapter(s)

325B.1 Standard plugins based on platform
B.1.4 Processors

Table B.4 covers the processor capability introduced after v2.1 and doesn’t differenti-
ate among versions.

lua Y Y Y Executes Lua scripts 7

modify Y Y Y Modifies records using
rules

7

multiline Y Y Y Combines logs that span
multiple lines to a single
event

7

nest Y Y Y Alters the nesting of attri-
butes in an event

7

nightfall Y Y Y External solution; scans an
event for sensitive data
such as PII- and PCS-
related data

–

parser Y Y Y Uses different types of
parsers to extract data from
events

7

record_modifier Y Y Y Modifies records 7

rewrite_tag Y Y Y Changes the event’s tag 7

stdout Y Y Y Copies events to stdout 7

sysinfo Y Y Y Filters for system info –

throttle Y Y Throttles using a sliding-
window algorithm

7

throttle_size Y Y Throttles messages by size
using a sliding-window algo-
rithm

7

type_converter Y Y Y Converts the data types of
record attributes

–

wasm Y Y Provides WASM support for
custom filters

–

Table B.3 Filter plugins included in Fluent Bit and the platforms they work on (continued)

Output plugin Linux?
macOS
(M2)?

Windows? Description Chapter(s)

326 APPENDIX B Useful resources
B.2 Predefined parsers
The following tables describe additional parser configurations. The Parser column
shows the parser name, which can be referenced from plugins capable of using a
parser, and the filter definitions. The Description column explains the purpose of the
parser and supplies available links for more detailed information. The Output Attri-
butes column reflects the values the parser will produce, making it easier than looking
through the regular expression.

B.2.1 parser.conf file

Table B.5 describes the main parser file (parser.conf) in the installation bundle and
supports many common log formats used by technologies such as Apache and nginx.

Table B.4 Filters supported with processor

Output plugin Linux?
macOS
(M2)?

Windows? Description Chapter(s)

content_modifier Y Y Y Modifies contents of logs,
metrics, and traces

9

labels Y Y Y Modifies metrics labels 9

metrics_selector Y Y Y Selects metrics by name 9

sql Y Y Y Allows events to be manipu-
lated with a SQL-like syntax

9

Table B.5 The main parser.conf file bundled

Parser Description Output attributes

apache,
apache2

As a web server, Apache is
incredibly pervasive, even if
nginx is slowly displacing it.
Having prebuilt for the standard
configurations of Apache log
files is of great value.

 hosts
 user
 time
 method
 path
 code
 size
 referer

apache_error For parsing Apache’s own error
logs.

 time
 level
 pid
 client
 message

327B.2 Predefined parsers
Cri The Container Runtime Interface
(CRI) provides the layer between
container engines such as
Docker and CRI-O. Container
logs are directed out through
the logging aspect of CRI. The
logging is described at https://
mng.bz/gAA8. This parser
makes it possible to ingest the
log format.

 time
 stream
 logtag
 message

docker This parser allows the Docker
logs to be parsed. It’s needed
only for Fluent Bit versions ear-
lier than v1.2.

These attributes reflect the payload. The defini-
tion includes correct date and time formatting.

docker-daemon  time
 level
 msg

Envoy Envoy is a Layer 7 proxy service
typically used in Kubernetes-
based deployments and often
used as a foundation for other
Kubernetes components, such
as Istio. The access logs are
described at https://mng.bz/
M11D.

 start_time
 method
 path
 protocol
 code
 response_flags
 bytes_received
 bytes_sent
 duration
 x_envy_upstream_service_time
 x_forwarded_for
 user_agent
 request_id
 authority
 upstream_host

Table B.5 The main parser.conf file bundled (continued)

Parser Description Output attributes

https://mng.bz/gAA8
https://mng.bz/gAA8
https://mng.bz/M11D
https://mng.bz/M11D

328 APPENDIX B Useful resources
istio-envoy-
proxy

Istio provides a service mesh
and gateway capabilities for
Kubernetes. Built on top of
Envoy, the log formatting is at
https://mng.bz/aVV9 and pro-
vides the parser for standard
logs.

 start_time
 method
 path
 protocol
 response_code
 response_flags
 response_code_details
 connection_termination_details
 upstream_transport_failure_reason
 bytes_received
 bytes_sent
 duration
 x_envoy_upstream_service_time
 x_forwarded_for
 user_agent
 x_request_id
 authority
 upstream_host
 upstream_cluster
 upstream_local_address
 downstream_local_address
 downstream_remote_address
 requested_server_name
 route_name

Json This convenience definition
means we don’t need to declare
a JSON parser to use the built-in
parser mechanism. We can
refer to it directly from the filter.

These attributes reflect the payload. The defini-
tion includes correct date and time formatting.

K8s_nginx_
Ingress

Nginx is often used as a Kuber-
netes Ingress controller.

 host
 user
 time
 method
 path
 code
 size
 referrer
 agent
 request_length
 request_time
 proxy_upstream_name
 proxy_alternative_upstream_name
 upstream_addr
 upstream_response_length
 upstream_response_time
 upstream_status
 reg_id

Table B.5 The main parser.conf file bundled (continued)

Parser Description Output attributes

https://mng.bz/aVV9

329B.2 Predefined parsers
kube_custom Parser to extract details from a
Kubernetes logging output using
Docker as the container runtime
engine. This is included in the
Fluent Operator deployment.

 tag
 pod_name
 namespace_name
 container_name
 docker_id

mongodb The parser handles the NoSQL
MongoDB logs. See https://
mng.bz/yooo.

 time
 severity
 component
 context
 message
 ms

Nginx Defines the mapping of the non-
JSON-formatted nginx web
server access log elements. For
more information, see https://
mng.bz/XVV1.

 remote
 host
 user
 time
 method
 path
 code
 size
 referrer
 agent

syslog-
rfc3164

This parser configuration
addresses the IETF-defined RFC
standards for syslog-formatted
log messages and differs from
local by having the host attri-
bute. See https://www.rfc-editor
.org/rfc/rfc6134.html.

 pri
 time
 host
 ident
 pid
 message

syslog-
rfc3164-local

This parser configuration
addresses the IETF-defined RFC
standards for Syslog-formatted
log messages. See https://
www.rfc-editor.org/rfc/rfc6134
.html.

 pri
 time
 ident
 pid
 message

syslog-
rfc5424,

This parser configuration
addresses the IETF-defined RFC
standards for syslog- formatted
log messages, as defined by the
first syslog RFC. See https://
www.rfc-editor.org/rfc/rfc5424
.html and https://www.rfc
-editor.org/rfc/rfc6134.html.

 pri
 time
 host
 ident
 pid
 msgid
 extradata
 message

Table B.5 The main parser.conf file bundled (continued)

Parser Description Output attributes

https://mng.bz/yooo
https://mng.bz/yooo
https://mng.bz/XVV1
https://mng.bz/XVV1
https://www.rfc-editor.org/rfc/rfc6134.html
https://www.rfc-editor.org/rfc/rfc6134.html
https://www.rfc-editor.org/rfc/rfc6134.html
https://www.rfc-editor.org/rfc/rfc6134.html
https://www.rfc-editor.org/rfc/rfc6134.html
http://www.rfc-editor.org/rfc/rfc5424.html
http://www.rfc-editor.org/rfc/rfc5424.html
http://www.rfc-editor.org/rfc/rfc5424.html
https://www.rfc-editor.org/rfc/rfc6134.html
https://www.rfc-editor.org/rfc/rfc6134.html

330 APPENDIX B Useful resources
B.2.2 parsers_ambassador file

The parsers_ambassador file (table B.6) focuses on parsers to support the Cloud
Native Computing Foundation (CNCF) Emissary API gateway led by Ambassador
Labs. For more information on the API gateway, see https://www.getambassador.io/
products/api-gateway. For information on other Ambassador solutions, see https://
www.getambassador.io.

B.2.3 parsers_cinder file

Cinder is part of OpenStack, providing block storage and using Ceph. Table B.7
describes the parser for parserss_cinder.conf.

B.2.4 parsers_extra

Table B.8 describes a catchall file for other common parsers, such as the Chief client
and MySQL.

Table B.6 Parser configurations for the parsers_ambassador.conf file

Parser Description Output attributes

ambassador CNCF’s API Gateway log-file-reading
regular expression (https://www
.getambassador.io)

 type
 time
 method
 path
 protocol
 response_code
 response_flags
 bytes_received
 bytes_sent
 duration
 x_envoy_upstream_service_time
 x_forwarded_for
 user_agent
 x_request_id
 aurthority
 upstream_host

Table B.7 Parser for the parsers_cinder.conf file

Parser Description Output attributes

ceph Ceph (https://ceph.io) is a distributed filesystem solution. This regu-
lar expression reads its log file. It can be used with OpenStack.

log_time
message

https://www.getambassador.io
https://www.getambassador.io
https://ceph.io
https://www.getambassador.io/products/api-gateway
https://www.getambassador.io/products/api-gateway
https://www.getambassador.io
https://www.getambassador.io

331B.2 Predefined parsers
Table B.8 Parser configurations for the parsers_extra.conf file

Parser Description Output attributes

Chef client Chef (https://www.chef.io) is a configuration man-
agement tool (often compared with Ansible). The
Chef client is an agent deployed to nodes to deliver
and execute configuration management actions.
This configuration supports Chef agent logging.

 log_time
 severity
 message

couchbase_erlang
_multiline

Some parts of Couchbase, such as the cluster
manager, use Erlang, which can generate multi-
line logs. This parser handles those logs.

 logger
 level
 timestamp
 message

couchbase_http Couchbase’s configuration for Apache differs
slightly from standard Apache, so this parser
accommodates those modifications.

 host
 user
 timestamp
 method
 path
 code
 size
 client

couchbase_java
_multiline

The Couchbase SDK supports Java development.
Because Java logging libraries can generate mul-
tiline logs, this parser configuration addresses
that requirement.

 timestamp
 level
 class
 thread
 message

couchbase_json_
log_nanoseconds
couchbase_rebalance_
report

Couchbase is an open source distributed NoSQL
database (https://mng.bz/o00D). These logs are
formatted as JSON, so the fields depend on the
log content. The configuration includes the defini-
tion of how dates are formatted.

Depend on the
JSON payload

couchbase_simple
_log_space_separated
couchbase_simple_log,
couchbase_simple
_log_utc
couchbase_simple
_log_mixed

Because Couchbase’s logs differ in purpose and
structure, we have multiple parser definitions.
These parsers produce the same output and
need to be selected depending on subtle varia-
tions in the log formatting, such as space sepa-
ration, and date and timestamp formatting. See
https://mng.bz/o00D.

 timestamp
 message

Crowbar Crowbar is an environment tool used with Open-
Stack (https://crowbar.github.io).

 log_time
 message

http_statement This parser extracts details from a record of
HTTP traffic.

 req_method
 req_path
 alnum
 req_protocol
 req_status
 req_len
 req_log_time
 req_mver

https://www.chef.io
https://mng.bz/o00D
https://mng.bz/o00D
https://crowbar.github.io

332 APPENDIX B Useful resources
iptables This parser is for processing the logs that can be
generated through the Linux IPTables service.

 rule_chain
 rule_name
 accept_or_drop
 in_interface
 out_interface
 mac_address
 source
 dest
 len
 pkt_tos
 pkt_prec
 pkt_ttl
 pkt_id
 pkg_frg
 protocol
 source_port
 dest_port
 proto_kpt_len
 proto_window_
size

 pkt_res
 pkt_type
 pkt_flag
 pkg_urgency
 pkt_icmp_type
 pkt_icmp_code
 pkt_icmp_id
 pkt_icmp_seq

mysql_error This parser is for self-managed logs from MySQL
database deployments (https://mng.bz/5OO7).
It includes MySQL database server diagnostic
information.

 log_time
 myId
 severity
 subsystem
 message

mysql_slow The mysql_slow log provides details on slow
SQL operations, usually queries that can be used
to help turn databases. For details, see https://
mng.bz/6YYR.

 user
 dbhost
 dbhost_address
 message

pacemaker Pacemaker (https://clusterlabs.org/pacemaker)
is a cluster resource manager from ClusterLabs.

 log_time
 pid
 node
 component
 severity
 message

Table B.8 Parser configurations for the parsers_extra.conf file (continued)

Parser Description Output attributes

https://mng.bz/5OO7
https://mng.bz/6YYR
https://mng.bz/6YYR
https://clusterlabs.org/pacemaker

333B.2 Predefined parsers
B.2.5 parsers_java file

This parsers_java file (table B.9) is for Java log files that use standard language log-
ging configuration.

B.2.6 parsers_kafka file

Kafka uses a range of components and technologies. Some of these components use
standardized log formats, and some don’t; logging frameworks like SLF4J support
extensive configuration. The parsers_kafka file (table B.10) provides parsers to han-
dle the variations from default.

rabbitmq RabbitMQ (https://www.rabbitmq.com/log-
ging.html) is one of the dominant open source
messaging services, allowing logs to be con-
sumed and broken into their constituent parts.
Fluent Bit’s support can help because message
brokers can be distributed and clustered, so rout-
ing logs together provides end-to-end insight.

 severity
 log_time
 message

Universal This parser is ideal for capturing everything in a
simple message field and for serving as a place-
holder to incorporate a parser into a pipeline.

 message

Uuid This parser looks for a universally unique identi-
fier (UUID) made up of a series of hexadecimal
values separated by hyphens.

 uuid

Table B.9 Parser definitions for the parsers_java.conf file

Parser Description Output attributes

java_multiline Java logs can generate multiline logs. The most common
scenario is logging a stack trace as a result of trapping
an exception. Fluent Bit typically treats a log entry as a
single line. This parser addresses that situation.

 time
 thread
 level
 message

Table B.8 Parser configurations for the parsers_extra.conf file (continued)

Parser Description Output attributes

https://www.rabbitmq.com/logging.html
https://www.rabbitmq.com/logging.html

334 APPENDIX B Useful resources
B.2.7 parsers_openstack file

Table B.11 describes OpenStack technologies and their log formats. These configura-
tions are for the standard OpenStack configuration. As with many platform solutions,
you can change the configuration of parts, particularly if the platform is being
deployed to an environment that expects services to operate in a particular way.

B.3 Multiline parsers
Fluent Bit provides several prebuilt multiline parsers, described in table B.12.

Table B.10 Parser definitions for the parsers_kafka.conf file and Kafka technologies

Parser Description Output attributes

confluent-schema-
registry
confluent-schema-
registry-prefixed

Most of Kafka’s logging is implemented with
the Java SLF4J logging framework. The pre-
fixed version of the parser produces a version
of the schema_registry output. The only
difference is that the output elements have a
prefix to the name _sr_ and an additional
catchall field, _sr_extra_info.

 time
 level
 src
 date
 method
 path
 http_version
 code
 size
 _sr_exrta_info

Table B.11 Parsers for the parsers_openstack.conf file and OpenStack log configurations

Parser Description Output attributes

cinder
glance
Heath
keystone
neutron
nova

These parsers represent open source components within
OpenStack, generate the same log format, and are
declared separately to reduce divergence:

 Glance provides an image management service
(https://docs.openstack.org/glance).

 Heat provides service orchestration, like Kubernetes
itself (https://docs.openstack.org/heat).

 Keystone supports authentication and several API
management services (https://docs.openstack.org/
keystone).

 Neutron provides virtual networking, comparable to
Falco and Flannel in a Kubernetes deployment
(https://docs.openstack.org/neutron).

 Nova provides the compute abstraction layer, just
as Docker or CRI-O can for Kubernetes (https://
docs.openstack.org/nova).

 log_time
 pid
 severity
 component
 req_id
 req_user
 req_project
 req_domain
 req_user_domain
 req_project_domain
 message

https://docs.openstack.org/glance
https://docs.openstack.org/heat
https://docs.openstack.org/keystone
https://docs.openstack.org/keystone
https://docs.openstack.org/neutron
https://docs.openstack.org/nova
https://docs.openstack.org/nova

335B.4 Sources of predefined regular expressions
B.4 Sources of predefined regular expressions
Creating regular expressions (regex) for known data formats can be time consuming,
but several websites publish predefined regex. Table B.13 describes sources that will
work with the Fluent Bit regex library.

Table B.12 Prebuilt multiline parsers

Parser Description

cri Supports the recombining of multiline logs generated inline with CRI, as illustrated by
CRI-O

docker Concatenates multiline logs generated by a Docker engine

go Supports the concatenation of log entries created by the Go programming language

Java Supports the concatenation of log entries created by Google Cloud’s Java application
framework

python Supports the concatenation of log entries created by the Python programming language

Table B.13 Sources of predefined regular expressions

Name Description URL

AutoRegex AI tool that takes an English description
and generates a regex

https://www.autoregex.xyz

Multinational
Postal Codes

Regular expression to identify a country’s
postal codes

https://mng.bz/vJJa

IBAN/BBAN Reg-
ular Expression
Patterns

Tool for getting regular expressions spe-
cific to different countries or regions

http://mng.bz/n0q2

iHateRegex Tool and some predefined expressions;
includes nice expression visualization

https://ihateregex.io

Regex Hub Collated community-driven regex patterns https://projects.lukehaas.me/regexhub

Regex Planet A testing tool with a small cookbook https://www.regexplanet.com/cook-
book/index.html

RegExLib Catalogs several thousand community-
provided expressions

https://regexlib.com/Search.aspx

Regular Expres-
sions 101

Has a community-provided set of
patterns

https://regex101.com/library

Regular-
Expressions
info

A website dedicated to regular expres-
sions. It covers implementation differ-
ences and regular expressions for
common use cases.

https://www.regular-expressions.info

https://www.autoregex.xyz
https://mng.bz/vJJa
http://mng.bz/n0q2
https://ihateregex.io
https://projects.lukehaas.me/regexhub
https://www.regexplanet.com/cookbook/index.html
https://www.regexplanet.com/cookbook/index.html
https://regexlib.com/Search.aspx
https://regex101.com/library
https://www.regular-expressions.info

336 APPENDIX B Useful resources
B.5 Plugins supporting record accessor
Chapter 7 looks at routing and control of Fluent Bit events. One way is to use
record_accessor, which allows plugins that support it to use the record_accessor to
retrieve event data values from the Fluent Bit event. The feature is not available with
all plugins. See table B.14.

B.6 Stream processor functions
Fluent Bit’s stream processor capabilities include functions that we typically expect
to have, given its similarity to SQL. In table B.15, <key> represents the name of a
JSON element.

Table B.14 Plugins and filters supporting the record_accessor

Name Type

azure Outputs

checklist Filter

expect Filter

forward Outputs

grep Filter

http Outputs

kubernetes_events Inputs

log_to_metrics Filter

loki Outputs

modify Filter

opensearch Outputs

oracle_log_analytics Outputs

rewrite_tag Filter

splunk Outputs

stackdriver Outputs

tcp Outputs

udp Outputs

Table B.15 Functions available in the stream processor

Function Description

avg(<key>) Returns the average value for the identified key

count(<key> | *) Returns the number of occurrences of a key or can be used with an aster-
isk as a wildcard (or all)

337B.7 Reserved attribute names
B.7 Reserved attribute names
Table B.16 describes the attribute names that are effectively reserved and can’t be
used by a custom plugin. It identifies the reserved attribute names, explaining what
they’re used for, and the plugin types that use attributes, including families of config-
uration values. These values follow a namespace-style naming convention in a path to
identify subpaths. tls.ca_path, for example, is a child of the tls namespace. If you
want to define a custom attribute because you’re using a different Transport Layer
Security (TLS) framework, you could use tls_ but not tls. These constraints reflect
where functionality within the core can be used or reused by a plugin.

max(<key>) Returns the largest value of a given key for the selected events

min(<key>) Returns the smallest value of a given key for the selected events

now() Returns the current time and date expressed as a string in the format
%YYYY-%mm-%dd %HH:%MM:%SS

record_tag() Returns the tag value for the log event

record_time() Returns the timestamp of the event in the format
<seconds>.<milliseconds>

sum <<key>) Returns the total of the values selected for the identified key

timeseries_forecasst
(<key>, <seconds
from now>)

Returns the forecast value of a key a defined number of seconds into the
future

unix_timestamp() Returns the current datetime as the number of seconds from epoch (mid-
night, January 1, 1970) in the format <seconds>.<nanoseconds>

Table B.16 Tags that are reserved and have special meanings

Attribute name Explanation Input? Output? Filter?

alias Provides the ability to define an alternative value for
the tag

Y Y Y

dns.* Is reserved for Fluent Bit’s dns configuration, such
as dns.mode

Y Y

host Provides the address of a source or target service Y Y

ipv6 Is reserved for supporting network configurations
using IP v6

Y Y

listen Defines the port on which to listen to HTTP traffic Y

log_level Defines the overall logging level or the logging level
for a specific plugin

Y Y Y

Table B.15 Functions available in the stream processor (continued)

Function Description

338 APPENDIX B Useful resources
B.8 Expressing time
Some output plugins allow you to define how date information is displayed. Table B.17
lists the options and uses the following abbreviations:

 YYYY—Four-digit year
 MM—Month as a two-digit representation (1–12)
 DD—Day of the month as a two-digit representation (1–31)
 hh—Hour of the day in a twenty-four-hour clock (0–23)
 mm—Minute of hour (0–59)
 f—Fraction of a second, with number of characters denoting precision (ffffff

is to six decimal places)

log_suppress_
interval

Defines any logging from Fluent Bit that can be sup-
pressed temporarily

Y Y Y

match Defines which tagged event to process Y Y

match_regex As an alternative to a standard tag match, matches
using regular expressions

Y Y

Mem_buf_limit Defines the maximum size of the memory buffer Y Y

port Defines the port on the host to listen to or communi-
cate on

Y Y

retry_limit When a plugin indicates that a retry is possible,
defines the maximum number of retries allowed

Y

routable Is reserved for internal logic to manage data routing Y Y

scheduler.* Defines any attribute that can control the behavior of
the scheduling within Fluent Bit

Y Y

storage.* Is reserved for configuration behavior related to the
file and memory buffer configuration

Y Y

tag Identifies the pipeline of events Y Y Y

threaded Used internally to manage thread control Y Y

tls Indicates whether TLS should be used Y Y

tls.* Is reserved for the TLS functionality provided by Flu-
ent Bit

Y Y

workers Defines the number of worker threads that Fluent Bit
can use to boost performance

Y

Table B.16 Tags that are reserved and have special meanings (continued)

Attribute name Explanation Input? Output? Filter?

339B.11 Useful third-party tools
B.9 Expressing data sizes
Some attributes allow you to express data sizes in terms of bytes up to terabytes, but
terabyte sizing is not recommended. See table B.18.

B.10 Fluent Bit formatters
Formatters are prebuilt pieces of logic that some plugins can use to output Fluent Bit
payloads in different ways. Table B.19 lists built-in formatters and the output plugins
that support them.

B.11 Useful third-party tools
Good logging is the key to effective log use. Table B.20 lists tools outside the Fluent
Project that can be helpful for working with Fluent Bit.

Table B.17 Data formats that Fluent Bit allows you to request

Format name Appearance Description

Double 1701127927.958472 Seconds.NanoSeconds

ISO 8601 2018-05-30T09:39:52.000681Z YYYY-MM-DDThh.mm.ffffffZ

Epoch 1701127928 Seconds from January 1, 1970

java_sql_timestamp 2018-05-30 09:39:52.000681 YYYY-MM-DD hh:mm.ss.ffffff

Table B.18 Describing data volumes in attributes

Size Character options Examples

Bytes – 100 represents 100 bytes.

Kilobytes k, K, kb, KB 12k represents 12 kilobytes (Kb).

Megabytes m, M, mb, MB 5m represents 5 megabytes (MB).

Gigabytes g, G, gb, GB 3g represents 3 gigabytes (GB).

Table B.19 Predefined formatters available to output plugins

Formatter Outputs that use it

MessagePack HTTP, Observe, Kafka, stdout

Json_lines HTTP, Observe, Kafka, stdout

Json_stream HTTP, stdout

Gelf HTTP

340 APPENDIX B Useful resources
Table B.20 Helpful tools to use with Fluent Bit

Tool Description URL

Calyptia Calyptia provides much of the develop-
ment effort and expertise behind Fluent
Bit and Fluentd. It includes a supported
version of Fluent Bit and additional
plugins.

https://calyptia.com

Docker Containerization platform that enables
containers to be run, containers to be
packaged and orchestrated together
(Docker Compose).

https://www.docker.com

Docker Desktop This tool provides a desktop management
layer and Kubernetes deployment using
Docker Core capability. The solution is
multiplatform-capable.

https://www.docker.com/products/
docker-desktop

EpochConverter This tool provides different ways of pre-
senting dates.

https://www.epochconverter.com

Fluentular This tool is a Fluentd (and Bit) regex editor. https://fluentular.herokuapp.com

Grafana This metrics visualization tool is open
source and available to deploy wherever
you want.

https://grafana.com/oss/grafana

Grafana Cloud Cloud SaaS combines several open source
services (Prometheus, Loki, Thanos,
Grafana) as a managed service.

https://grafana.com/products/cloud

Jq This JSON query tool can be used from the
command line.

https://jqlang.github.io/jq

jqplay This tool is the web version of jq. https://jqplay.org

JSON Beautifier This tool formats an unformatted JSON
string to be readable.

https://jsonbeautifier.org

JSONPath
Beautifier

This tool allows you to beautify JSON with
several representations.

https://jsonpath.com

MessagePack
converter

This tool is for compressing and decom-
pressing MessagePack payloads manually.

https://msgpack.solder.party

pgAdmin This admin console can be used with Post-
gres (https://www.postgresql.org).

https://www.pgadmin.org

Regex validator This online utility develops and validates
regex that complies with the Ruby flavor.

https://rubular.com

Regexp Explain This Visual Studio (VS) Code plugin is for
visualizing regex.

https://mng.bz/4ppQ

RegExr This online tool is for regex development
and visualization.

https://regexr.com

https://calyptia.com
https://www.docker.com
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://www.epochconverter.com
https://fluentular.herokuapp.com
https://grafana.com/oss/grafana
https://grafana.com/products/cloud
https://jqlang.github.io/jq
https://jqplay.org
https://jsonbeautifier.org/
https://jsonpath.com
https://msgpack.solder.party
https://www.postgresql.org
https://www.pgadmin.org
https://rubular.com
https://mng.bz/4ppQ
https://regexr.com

341B.12 Observability
B.12 Observability
A great deal of observability content is available these days. Table B.21 lists suggested
resources that will help not just with technical details but also with foundational thinking.

Regulex This tool provides open source regex
visualization.

https://jex.im/regulex

Tracee This tool can send eBPF events to Fluent
Bit using the forward protocol.

https://github.com/aquasecurity/
tracee

UNIX timestamp-
Converter

This website converts UNIX timestamps
(time from epoch) to a more easily read-
able format.

https://www.unixtimestamp.com

VS Code This IDE has a wealth of plugins covering
all the technologies used in this book.

https://code.visualstudio.com

VS Code plugin
for Fluent Bit

This syntax plugin for VS Code supports
classic format configuration files.

https://mng.bz/QVV4

WireMock This potent, easy-to-use tool provides sim-
ulated web endpoints. It can capture web-
service calls and return dummy results.

https://wiremock.org

YAML plugin for
VS Code

This tool is a YAML syntax checker and
highlighter.

https://mng.bz/XVVE

Ytt (YAML templat-
ing tool)

YAML templating allows us to define com-
mon configurations and then inject contex-
tual-specific values. The greatest benefit
is that we can use the same context file to
ensure that multiple configuration files are
consistent, as when setting ports to use
in Istio, Kubernetes, and application con-
figuration files.

https://carvel.dev/ytt

Table B.21 Recommended reading on observability

Title Description URL

Cloud Observability
in Action

This book looks at broad observability
perspectives.

https://www.manning.com/books/
cloud-observability-in-action

OpenTelemetry OpenTelemetry is rapidly becoming the
standard for communicating telemetry
data (logs, metrics, and traces) and falls
under CNCF.

https://opentelemetry.io

“The Four Golden
Signals”

Part of Google's SRE guide and embod-
ies ideas around monitoring and
observability.

https://sre.google/sre-book/
monitoring-distributed-systems

Table B.20 Helpful tools to use with Fluent Bit (continued)

Tool Description URL

https://jex.im/regulex
https://github.com/aquasecurity/tracee
https://github.com/aquasecurity/tracee
https://www.unixtimestamp.com
https://code.visualstudio.com
https://mng.bz/QVV4
https://wiremock.org
https://mng.bz/XVVE
https://carvel.dev/ytt
https://www.manning.com/books/cloud-observability-in-action
https://www.manning.com/books/cloud-observability-in-action
https://opentelemetry.io
https://sre.google/sre-book/monitoring-distributed-systems
https://sre.google/sre-book/monitoring-distributed-systems

342 APPENDIX B Useful resources
B.13 Helpful logging practices and resources
The key to the effective use of logs is good logging. Table B.22 lists sources of addi-
tional information on logging practices.

B.14 Additional reading
Table B.23 lists resources that provide additional insight into the technologies used in
this book, related to logging, traces, and metrics.

O11ynews! This blog is by Michael Hausenblas
(Manning author).

https://o11y.news

Table B.22 Resources on logging good practices

Description URL

Logging best practices from Logz.io https://logz.io/blog/logging-best-practices

Ultimate Guide to Logging (covers multiple lan-
guage perspectives)

https://www.loggly.com/ultimate-guide

The Pragmatic Logging Handbook https://mng.bz/M118

National Institute of Standards and Technology
(NIST) Guide to Computer Security Log
Management

https://mng.bz/aVVX

Definition of Syslog standard; also contains
good ideas for logging practices

https://tools.ietf.org/html/rfc5424

OpenObservability Talks YouTube channel http://www.youtube.com/@OpenObservabilityTalks

Table B.23 Further reading on technologies in this book

Title Description URL

Core Kubernetes This book and Kubernetes in Action cover
much of what you'll need for Kubernetes.

https://www.manning.com/books/
core-kubernetes

Docker in Action,
Second Edition

Docker is the typical technology for imple-
menting a container. When we do not need
the sophistication of Kubernetes, we use
Docker more directly. This book covers the
core of building and running containers.

https://www.manning.com/books/
docker-in-action-second-edition

Operations Anti-
Patterns, DevOps
Solutions

Operational processes and logging are inte-
gral to achieving a DevOps way of working.
This book looks at the pitfalls (or antipat-
terns) you could face.

https://www.manning.com/books/
operations-anti-patterns-devops-
solutions

Table B.21 Recommended reading on observability (continued)

Title Description URL

https://o11y.news
https://logz.io/blog/logging-best-practices
https://www.loggly.com/ultimate-guide
https://mng.bz/M118
https://shortener.manning.com/aVVX
https://tools.ietf.org/html/rfc5424
http://www.youtube.com/@OpenObservabilityTalks
https://www.manning.com/books/core-kubernetes
https://www.manning.com/books/core-kubernetes
https://www.manning.com/books/docker-in-action-second-edition
https://www.manning.com/books/docker-in-action-second-edition
https://www.manning.com/books/operations-anti-patterns-devops-solutions
https://www.manning.com/books/operations-anti-patterns-devops-solutions

343B.15 Web resources
B.15 Web resources
These helpful online documentation resources provide details on a range of subjects
that influence logging and using Fluent Bit. They cover standards (de facto or for-
mal), such as logging formats and ways to format log attributes (such as dates), and
offer guidance on common problems.

B.15.1 Formal and de facto standards

Table B.24 lists online resources that support formal and de facto standards.

Software
Telemetry

This book is about getting metrics, logging,
and using certain types of business applica-
tion state data to get a health perspective.
Fluent Bit can be a crucial part of a telemetry
solution.

https://www.manning.com/books/
software-telemetry

Linux in Action This book covers the use of Linux, including
log management with syslogd.

https://www.manning.com/books/
linux-in-action

Cloud Observabil-
ity in Action

This book explores the ideas behind metrics,
traces, and logs (aka signals). It takes into
account aspects of signal management such
as correlation.

https://www.manning.com/books/
cloud-observability-in-action

Learn Kubernetes
in a Month of
Lunches

The book focuses on Fluentd rather than Flu-
ent Bit but also includes content on Pro-
metheus.

https://www.manning.com/books/
learn-kubernetes-in-a-month-of-
lunches

Securing DevOps This book includes sections on log analytics
and stream processing.

https://www.manning.com/books/
securing-devops

WebAssembly In
Action

This book is a comprehensive guide to
WASM.

https://www.manning.com/books/
webassembly-in-action

Logging In Action This book focuses on Fluentd and logging
frameworks.

https://www.manning.com/books/
logging-in-action

Monitoring with
Prometheus

The book takes a top-to-bottom look at Pro-
metheus.

https://www.prometheusbook.com

Spark in Action,
2nd ed.

This book covers the Apache event-based dis-
tributed data processing platform.

https://www.manning.com/books/
spark-in-action-second-edition

Gnuplot in Action,
2nd ed.

This guide to Gnuplot is helpful if you choose
to use the plot output plugin.

https://www.manning.com/books/
gnuplot-in-action-second-edition

Table B.23 Further reading on technologies in this book (continued)

Title Description URL

https://www.manning.com/books/software-telemetry
https://www.manning.com/books/software-telemetry
https://www.manning.com/books/linux-in-action
https://www.manning.com/books/linux-in-action
https://www.manning.com/books/cloud-observability-in-action
https://www.manning.com/books/cloud-observability-in-action
https://www.manning.com/books/learn-kubernetes-in-a-month-of-lunches
https://www.manning.com/books/learn-kubernetes-in-a-month-of-lunches
https://www.manning.com/books/securing-devops
https://www.manning.com/books/securing-devops
https://www.manning.com/books/webassembly-in-action
https://www.manning.com/books/webassembly-in-action
https://www.manning.com/books/logging-in-action
https://www.manning.com/books/logging-in-action
https://www.prometheusbook.com
https://www.manning.com/books/spark-in-action-second-edition
https://www.manning.com/books/spark-in-action-second-edition
https://www.manning.com/books/gnuplot-in-action-second-edition
https://www.manning.com/books/gnuplot-in-action-second-edition

344 APPENDIX B Useful resources
Table B.24 Information related to Fluent Bit standards

Title Description URL

Apache Kafka Kafka has several variants (additional
features from Confluent, managed ser-
vices, and API-compatible alternate
implementations). This documentation
is the core Apache solution.

https://kafka.apache.org

Apache SkyWalking This application performance monitoring
solution is ideally suited to Kubernetes
and other container-based solutions.

https://skywalking.apache.org

Conmon This OCI container runtime monitor is
used by CRI-O and other container run-
times.

https://github.com/containers/
conmon

containerd This container runtime is drawn from
the core of Docker.

https://containerd.io

CRI-O CRI-O is a container runtime for
Kubernetes.

https://cri-o.io

Escape Sequence in C This tutorial provides information on
character escape sequences.

www.geeksforgeeks.org/escape-
sequence-in-c/

“11 Fluent Bit Examples,
Tips & Tricks for Log
Forwarding with
Couchbase”

Couchbase is a popular open source
database product. This article
describes how best to monitor Couch-
base using Fluent Bit.

https://mng.bz/gAAG

Date formatting (ISO
8601)

This documentation explains the ISO
8601 date-format standard.

Part 1: https://mng.bz/eVVq
Part 2: https://mng.bz/pxxw

Helm Helm is a leading Kubernetes package
manager.

https://helm.sh

journald journald is a Linux system service for
collecting log data.

https://mng.bz/Omma

Introducing JSON This web page provides the official defi-
nition of JSON format and includes a
nice railway diagram.

https://www.json.org/json-en
.html

Kubernetes Kubernetes is the container orchestra-
tion platform.

https://kubernetes.io/docs

“Rotate and archive
logs with the Linux
logrotate command”

This article is about log rotation. https://mng.bz/YVVa

Labeled Tab-Separated
Values (LTSV)

LTSV is a way of formatting data that
Fluent Bit’s parser can handle.

http://ltsv.org

NATS NATS is a messaging service designed
to support microservice use cases and
is part of the CNCF.

https://nats.io

https://kafka.apache.org
https://skywalking.apache.org
https://github.com/containers/conmon
https://github.com/containers/conmon
https://containerd.io
https://cri-o.io
http://www.geeksforgeeks.org/escape-sequence-in-c/
http://www.geeksforgeeks.org/escape-sequence-in-c/
https://mng.bz/gAAG
https://mng.bz/eVVq
https://mng.bz/pxxw
https://helm.sh
https://mng.bz/Omma
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://kubernetes.io/docs/
https://mng.bz/YVVa
http://ltsv.org
https://nats.io

345B.15 Web resources
B.15.2 Additional web resources

Table B.25 lists sources of additional information.

Open source version of
Loki

Grafana offers Loki as a managed ser-
vice in addition to the open source ver-
sion. This web page is the open source
product page.

https://grafana.com/oss/loki

Prometheus Metrics
Exposition format

Prometheus’ approach to communicat-
ing metrics in a text format doesn’t fol-
low conventions such as YAML and
JSON. This content explains how the for-
matting works.

https://mng.bz/GNNJ

Vivo Vivo is an open source visualization ser-
vice for logs, events, and traces,

https://github.com/calyptia/vivo

YAML The official YAML site includes details
on its syntax. A reader-friendly explana-
tion of YAML provides references to
more content (https://yaml.com).

https://yaml.org

systemd systemd performs a variety of tasks at
the heart of Linux. The primary interest
from an observability perspective is
events and interaction with journald.

https://mng.bz/znnA

Table B.25 Additional resources

Title Description URL

“Creating a Self-Signed
Certificate with
OpenSSL”

There are a variety of ways to create
certificates. The simplest is to use self-
signed certificates.

https://www.baeldung.com/
openssl-self-signed-cert

Automated certificate
management

Rotating certificates regularly is good
practice. This task can be complex, but
several organizations have developed
technologies for it, Let’s Encrypt being
the trailblazer.

 https://letsencrypt.org
 https://certbot.eff.org

Docker CLI Cheat Sheet Docker provides a convenient cheat
sheet for command-line interface (CLI)
commands. Unlike CLI help, it provides
answers to common questions.

https://mng.bz/0MMv

“Linux Directory Struc-
ture and Important Files
Paths Explained”

This article provides an overview of the
typical layout of Linux filesystems. It
helps you understand where to install
components in production deployments
and where logs should go.

https://mng.bz/KDDO

Table B.24 Information related to Fluent Bit standards (continued)

Title Description URL

https://www.baeldung.com/openssl-self-signed-cert
https://www.baeldung.com/openssl-self-signed-cert
https://letsencrypt.org
https://grafana.com/oss/loki
https://mng.bz/GNNJ
https://github.com/calyptia/vivo
https://yaml.com
https://yaml.org
https://mng.bz/znnA
https://certbot.eff.org
https://mng.bz/0MMv
https://mng.bz/KDDO

346 APPENDIX B Useful resources
B.16 Fluent Bit resources
Table B.26 lists resources that provide additional insights into the technologies that
Fluent Bit uses and its users are exposed to.

sysfs This Linux kernel service exports infor-
mation about various kernel subsys-
tems, hardware devices, and
associated devices.

 https://linuxhint.com/linux-
sysfs-file-system

 https://man7.org/linux/
man-pages/man5/sysfs.5.html

Proc This filesystem service in Linux operat-
ing systems can be used to expose
information about processes.

 https://linuxhint.com/use
-proc-filesystem-linux

 https://man7.org/linux/man
-pages/man5/proc.5.html

“Run a private online
TLS certificate authority
in a Docker container”

Just as we can configure an OS to know
about a private certificate authority, we
can do the same for a container.

https://mng.bz/9oor

“Sidecar Containers” The sidecar pattern is a common
approach to deploying containerized
support services, such as Fluent Bit,
within a Pod.

https://mng.bz/j00e

Apache Spark This stream-based processing engine
supports data science and machine
learning.

https://spark.apache.org

Table B.26 Fluent Bit technologies

Title Description URL

MessagePack This compression library is implemented in multi-
ple languages that Fluent Bit can use and is used
when the forward plugin is sending or receiving
events.

https://msgpack.org

gRPC This website provides documentation, libraries,
and tools for the gRPC messaging standard.

https://grpc.io

Protobuf Protocol Buffers (Protobuf) is a key technology in
the way gRPC works, which is the preferred way to
communicate between OpenTelemetry components.

https://protobuf.dev

HTTP/2 HTTP/2 is the next version of HTTP. The specifica-
tion is governed by the IETF.

https://http2.github.io

SQLite SQLite is a lightweight embeddable database. https://sqlite.org

Go implementation of
forward protocol

Fluent Bit and Fluentd use the forward protocol.
This repository has a Go implementation of the
protocol.

https://github.com/IBM/
fluent-forward-go

Table B.25 Additional resources (continued)

Title Description URL

https://linuxhint.com/linux-sysfs-file-system
https://man7.org/linux/man-pages/man5/sysfs.5.html
https://man7.org/linux/man-pages/man5/sysfs.5.html
https://linuxhint.com/use-proc-filesystem-linux
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://mng.bz/9oor
https://mng.bz/j00e
https://spark.apache.org
https://msgpack.org
https://grpc.io
https://protobuf.dev
https://http2.github.io
https://sqlite.org
https://github.com/IBM/fluent-forward-go
https://github.com/IBM/fluent-forward-go

347B.18 WASM and WASI
B.17 Lua
Lua allows us to write custom filters without building a full plugin extension. Table
B.27 lists tools and documentation sources that are helpful for developing custom fil-
ters with Lua.

B.18 WASM and WASI
Fluent Bit supports WebAssembly (WASM) and WebAssembly System Interface
(WASI) for building extensions. WASM and WASI are big fields in their own right.
Table B.28 lists resources to help you understand these technologies better.

Kustomize Kustomize is a configuration templating tool. Flu-
ent Bit uses it to manage the Operator configura-
tion files.

https://kustomize.io

cAdvisor cAdvisor (Container Advisor) enables you to export
metrics from Docker.

https://github.com/
google/cadvisor

Table B.27 Tools and information for Lua

Title Description URL

Lua language guide The bible of the Lua language https://www.lua.org

LuaUnit An xUnit-based testing framework for Lua https://luaunit.readthed-
ocs.io/en/latest

Lua sandbox A utility that allows you to see how input events
will look when processed by a Lua script

https://fluent.github.io/
lua-sandbox

Lua Language Server
for VS Code

Plugin for VS Code to support Lua development  https://mng.bz/WVVW
 https://luals.github.io

Istio in Action Covers the application of Lua in Istio https://www.manning
.com/books/istio-in-action

Redis in Action Describes using Lua in Redis scripting https://www.manning
.com/books/redis-in-action

Mozilla Firefox tool
Hindsight

Analyzes traffic https://github.com/
mozilla-services/hindsight

Rosetta Code (program-
ming chrestomathy)

Code to solve common problems, such as vali-
dating international banking codes

https://rosettacode.org/
wiki/Category:Lua

Table B.26 Fluent Bit technologies (continued)

Title Description URL

https://kustomize.io
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://www.lua.org
https://luaunit.readthedocs.io/en/latest
https://luaunit.readthedocs.io/en/latest
https://fluent.github.io/lua-sandbox
https://fluent.github.io/lua-sandbox
https://mng.bz/WVVW
https://luals.github.io
https://www.manning.com/books/istio-in-action
https://www.manning.com/books/istio-in-action
https://www.manning.com/books/redis-in-action
https://www.manning.com/books/redis-in-action
https://github.com/mozilla-services/hindsight
https://github.com/mozilla-services/hindsight
https://rosettacode.org/wiki/Category:Lua
https://rosettacode.org/wiki/Category:Lua

348 APPENDIX B Useful resources
B.19 C development resources
Table B.29 lists resources for developing and compiling C.

B.20 Logging format definitions
Table B.30 identifies common technologies and associated approaches to generating
logged events. This information can help you understand how to process events with
these tools.

Table B.28 Information on WASM and WASI

Title Description URL

WebAssembly Com-
munity Group

Home of the WASM standards https://www.w3.org/community/
webassembly

WebAssembly.org Primary website for information on and links
to the standards

https://webassembly.org

WebAssembly Mozilla’s developer resources for WASM https://mng.bz/866D

WASM by Example Guide to WASM development, supporting
Rust, AssemblyScript (TypeScript-like lan-
guage), Emscripten (C/C++), and TinyGo

https://wasmbyexample.dev/
home.en-us.html

Rust and WebAs-
sembly

GitHub-based e-book on using Rust and
WASM

https://rustwasm.github.io/book

WASI Web page listing the relevant resources for
the standard

https://wasi.dev

Regex Explain Regex visualization generation tool for VS
Code

https://mng.bz/EOaR

Table B.29 Resources for C development

Resource Description URL

Mastering CMake Tool for building Fluent Bit https://mng.bz/NB1d

VS Code C plugin Plugin that provides C/C++ intelli-
sense and debugging

https://mng.bz/DpMV

GitHub CLI Command-line tool for GitHub https://cli.github.com

Vagrant Tool for creating development
environments

https://www.vagrantup.com/

Chocolatey Tool used in Windows continuous
integration processes

https://chocolatey.org

Windows Flex
and Bison

Windows port of Flex lexical analyzer
and GNU Bison parser generator

https://github.com/lexxmark/winflexbison

Valgrind Dynamic analysis tool https://valgrind.org

http://www.w3.org/community/webassembly
http://www.w3.org/community/webassembly
https://webassembly.org
https://mng.bz/866D
https://wasmbyexample.dev/home.en-us.html
https://wasmbyexample.dev/home.en-us.html
https://rustwasm.github.io/book
https://wasi.dev
https://mng.bz/EOaR
https://mng.bz/NB1d
https://mng.bz/DpMV
https://cli.github.com
https://www.vagrantup.com/
https://chocolatey.org
https://github.com/lexxmark/winflexbison
https://valgrind.org

349B.20 Logging format definitions
Table B.30 Logging formats

Name Description URL

CMetrics A variation on the Prometheus format for
communicating metrics

https://github.com/fluent/cmetrics

Common Event For-
mat (CEF)

A common format developed by ArcSight https://mng.bz/x6KX

Embedded metric
format

A standard Amazon has proposed to
incorporate metrics into log events

https://mng.bz/AaQx

Graylog Extended
Log Format (GELF)

Commonly supported log format that can
be sent using UDP

https://mng.bz/V2VG

Kubernetes logging
(klog)

How Kubernetes logging is generated
and structured

https://mng.bz/dZXw

logfmt A common log format, still the most
authoritative definition despite the exis-
tence of a formal standard

https://brandur.org/logfmt

MySQL error logs Details on how MySQL error logs are
constructed

https://mng.bz/lrYo

MySQL slow queries Details on how MySQL slow query logs
are structured

https://mng.bz/BgX2

Prometheus The format for sharing metrics data with
Prometheus

https://mng.bz/ZVlA

statsd A network daemon that runs as part
of the Node.js platform to capture and
emit stats

https://github.com/statsd/statsd

syslog-rfc3164 More recent specification for the stan-
dard used by syslog

https://datatracker.ietf.org/doc/
html/rfc3164

syslog-rfc5424 The initial version of the syslog definition https://datatracker.ietf.org/doc/
html/rfc5424

Windows Event Logs Definition of Windows logs https://mng.bz/vJq4

https://github.com/fluent/cmetrics
https://mng.bz/x6KX
https://mng.bz/AaQx
https://mng.bz/V2VG
https://mng.bz/dZXw
https://brandur.org/logfmt
https://mng.bz/lrYo
https://mng.bz/BgX2
https://mng.bz/ZVlA
https://github.com/statsd/statsd
https://datatracker.ietf.org/doc/html/rfc3164
https://datatracker.ietf.org/doc/html/rfc3164
https://datatracker.ietf.org/doc/html/rfc5424
https://datatracker.ietf.org/doc/html/rfc5424
https://mng.bz/vJq4

appendix C
Comparing Fluent Bit

and Fluentd

This appendix highlights the differences between Fluent Bit and Fluentd. Fluent
Bit is far more than a simple reimplementation of Fluentd using C. Although the
goals and ideas at the heart of both solutions are essentially the same, there are also
many differences. Some differences are subtle but important, such as the YAML
Ain’t Markup Language (YAML) configuration structure, and others are minor,
such as additional attributes for a plugin. They are noticeable in other areas, such
as how custom plugins can be built.

 We’re not going to describe the Fluentd features here beyond naming them. If
you want more in-depth understanding of how the Fluentd features work, we rec-
ommend reading Logging in Action.

C.1 Technology differences
Chapter 1, and to some extent chapter 2, looked at the implementation and deploy-
ment differences between Fluentd and Fluent Bit. We’ll summarize them in bullet
points rather than repeat the details:

 Implementation technologies, with Fluent Bit using C and supporting exten-
sions with C, Go, Lua, and WebAssembly (WASM), compared with Ruby for
Fluentd

 Smaller, more compact, platform-native binary for Fluent Bit and a platform-
agnostic runtime for Fluentd

 A basic management UI in Fluentd if needed; no such capability in
Fluent Bit
350

351C.3 Inputs and outputs
 Support for HTTP/2 (introduced in Fluent Bit v3); no use of HTTP/2 in Flu-
entd yet

C.2 Configuration capabilities
As we saw in chapter 2, the Fluentd and Fluent Bit configurations have similarities but
are not the same. Fluent Bit leads the way by enabling configuration with YAML
(which Fluentd has also adopted), making it easier to embed Fluent Bit in a Kuberne-
tes environment and read, although the YAML structures used differ. The configura-
tion features that vary between Fluentd and Fluent Bit are

 Inclusion files are more flexible in Fluentd than in Fluent Bit, particularly in
Fluent Bit YAML format.

 The way that parsers are configured in Fluent Bit is rich and lends itself to bet-
ter reuse, with the ability to import multiple parser configurations from sepa-
rate configuration files, including canned configurations. This idea extends to
Lua and stream processing.

 Fluentd’s support for validating configuration files using the Dry Run feature
seems much more comprehensive than Fluent Bit’s. The fact that YAML is more
sensitive to layout probably doesn’t help.

 The ability to set global (service-level) configuration values, such as log_level,
and then override them in specific plugins in Fluent Bit is helpful, allowing us
to focus logging on where we’re introducing new configurations, not the entire
pipeline.

C.3 Inputs and outputs
Plugins, particularly input and output plugins for specific product and technology
endpoints, are freely available. But this free availability is offset by the rapid adop-
tion of OpenTelemetry for technologies and products that support cloud-native
solutions.

C.3.1 Support for logging frameworks

The support for logging frameworks is a little bit of a dummy. The documentation for
Fluentd and logging frameworks is more substantial than the documentation for Flu-
ent Bit. But taking that to mean that Fluentd is better with logging frameworks is an
error. Most logging frameworks, when not writing to files or using a tailored adapter
for a specific service such as a database, use basic RESTful web services or support the
forward protocol. Chapter 5 states that Fluentd and Fluent Bit are interchangeable in
this regard. If you’re looking for extensions to a logging framework that will interact
with Fluent Bit, your best bet is to research Fluentd-compatible solutions.

352 APPENDIX C Comparing Fluent Bit and Fluentd
C.3.2 Plugin choice

When you consider the wider ecosystem and the fact that until a few years ago,
Fluentd was more dominant than Fluent Bit, it’s no surprise that the portfolio of
plugins is much larger. But standards (de facto and formal) have developed,
matured, and been embraced by many vendors. This situation has reduced the need
for plugins, particularly downstream, where we’re more likely to use an off-the-shelf
solution.

 The ability to develop plugins for Fluentd is far more mature, although you can
build plugins for Fluent Bit. Having created plugins for both Fluent Bit and Fluentd,
we find the Fluentd framework a bit easier to use. Large organizations have opted to
implement solutions directly into the core of Fluent Bit using C. As a result, the pres-
sure to mature the plugin layer hasn’t been as great, with the additional benefit of not
having to deploy additional Ruby gems.

C.3.3 Secondary/fallback output options

Some of Fluentd’s core plugins support defining a secondary output, so if you experi-
ence problems connecting with an output, the plugin will use a secondary plugin.
This means it is possible to monitor events written to a local filesystem if you can’t con-
nect with a remote service. Fluent Bit doesn’t provide this capability. The closest equiv-
alent is a second output, such as a local log file, with all events going to both
destinations. It is up to an ops team to determine which events have been dropped
and to retrieve them from the file.

C.3.4 OpenTelemetry

The influence of OpenTelemetry has been substantial. It has taken some time for the
OpenTelemetry Protocol (OTLP) specification to be declared stable, reflecting how
standards are developed these days, emphasizing securing functioning, usable code
before ratifying the specification.

 Fluent Bit has a clear narrative for supporting OpenTelemetry, and the major
version-number changes are in the internal structural changes made to support Open-
Telemetry and even operate as an OTel-compliant collector. Fluentd doesn’t have
such a clear narrative. It is possible to work with OTLP by taking advantage of the step
down from gRPC on HTTP/2 to JSON on HTTP, then Fluentd can treat the payload
like any other log event. However, the OTLP schema isn’t trivial, and we’ve not seen
plugins referencing OTLP support, so creating compliant payloads or working with
the payloads requires more configuration effort.

353C.5 Buffering and internal data structure
C.3.5 Customization with embedded code

Both Fluentd and Fluent Bit allow code fragments, but the approaches are notably
different. With Fluentd, we can invoke simple Ruby statements to return values for
any attribute in the configuration. By contrast, Fluent Bit allows Lua, which is declared
as a discrete script and invoked, along with predefined configuration, by processors
and filters.

 The ability to embed a Ruby statement lends itself to creating a more dynamic
runtime configuration, such as working out the absolute path to a file based on
where Fluentd is installed. By contrast, using Lua filters in Fluent Bit allows us to per-
form sophisticated, efficient event processing. Stream processing brings SQL capabil-
ities to the buffered events, and processors offer the chance to implement advanced
parsing logic.

C.4 Routing
One key internal difference between Fluentd and Fluent Bit is the approach to send-
ing the same events to multiple destinations. In Fluentd, to send a log event to multi-
ple destinations, we need to copy the log event explicitly. In Fluent Bit, it’s not
necessary to define or even consider the problem of copying, making configuration
much simpler.

 Figure C.1 (from Logging in Action) illustrates the relationship between Fluentd’s
core engine, which includes the buffer and output plugins, followed by a Fluent Bit
perspective. At first glance, they look alike. The key is that as each output plugin is
called, no return path hands the event back to be tried with the next plugin if it wasn’t
consumed.

 Another difference between Fluent Bit and Fluentd routing is the label feature
in Fluentd. This feature allows us to group plugins to form a pipeline; a single con-
figuration file can contain multiple label groupings or pipelines. Although Fluent
Bit’s YAML configuration has an ideal pipeline structure, a Fluent Bit YAML config-
uration file can contain only a single pipeline, and the classic format doesn’t have
such a construct.

C.5 Buffering and internal data structure
The approaches to buffering in Fluentd and Fluent Bit allow using memory or the
filesystem, and the data is handled in chunks. There are notable differences, however.
First, the data is serialized using MessagePack for efficiency, but Fluentd uses simpler
zip compression.

354 APPENDIX C Comparing Fluent Bit and Fluentd
. . .

Source directive

Input plugin

Unmatched log events returned

Event

copy

Event

copy

Event

copy

F
lu

e
n
td

e
n
g
in

e

Match directive (first occurrence)

Match

with implicit tag filter
Output plugin

Matched log

events consumed

Match directive (th occurrence)n

Match

with wildcard
Output plugin

Matched log

events consumed

Match directive (second occurrence)

Match

with implicit tag filter
Output plugin

Matched log

events consumed

Unmatched log events returned

. . .

Source declaration

Input plugin
F

lu
e
n
t B

it

e
n

g
in

e
Output plugin declaration (first occurrence)

Match

with implicit tag filter
Output plugin I/O

Match

declaration satisfied; pass

to I/O logic

Output plugin declaration (th occurrence)n

Match

with implicit tag filter
Output plugin I/O

Match

declaration satisfied; pass

to I/O logic

Output plugin declaration (second occurrence)

Match

wildcard
Output plugin I/O

Match

declaration satisfied; pass

to I/O logic

Figure C.1 The difference between Fluent Bit and Fluentd’s handling of buffered events and the
output plugin. Fluentd offers the event to each output plugin in the pipeline until a match occurs.
Fluent Bit offers the event to all the output plugins in the pipeline without regard to whether it is
consumed elsewhere.

355C.6 Streaming processing
Fluent Bit’s internal data structure started in v1 with the same structure as Fluentd,
but from v2 on, Fluent Bit adjusted its internal model slightly to make it easier to man-
age logs, traces, and metrics (figure C.2).

Fluentd’s approach to threading with its workers construct gave configuration devel-
opers a great deal of control, enabling them to group different input and output
plugins in a thread, as well as configure threading for the buffer. By comparison,
Fluent Bit offers some thread control, but it isn’t as direct and explicit. More
important, the buffer doesn’t have direct thread controls. This situation is not so
much a constraint as a reflection of how the relationship between buffers and inputs
is implemented.

C.6 Streaming processing
Streaming (or streaming analytics, to use the more common term) is a notable differ-
ence. Fluent Bit has it, and Fluentd does not. The feature allows Fluent Bit to generate
more real-time analytical data, such as the volume of types of data processed per min-
ute. We shouldn’t expect the stream processor to be as feature-rich as Apache Spark in

The record structure can depend on the

Metadata, but for logs, this is treated as a

name-value pair if received as a text input.

Logs can be converted to a JSON structure

for easier processing.

A list of values that includes the attribute

Tag

Contains type information for the .Record

Internally, the can be difRecord ferentiated

as metrics, trace, or log data.

[Metadata]

Example: 1362050500.000000000

Defined as the time received by Fluent Bit

unless mapped from the received event

T nanosecondsime from epoch as Seconds.

Record

Timestamp

Fluent Bit v.1.9-v2.x and laterFluent Bit v0-v1.8.x and Fluentd

Tag

Straightforward

text value

Numeric time

from epochTimestamp

Record

Text as

name-value

pair or JSON

Figure C.2 Comparing the internal data structure of an event. The key difference between the
two structures is the Tag (Fluentd on the left) and the Metadata (Fluent Bit on the right) as an
array of values that includes the tag value.

356 APPENDIX C Comparing Fluent Bit and Fluentd
processing observability events (at least at the moment). Several constraints must be
overcome before the possibility can even be considered.

C.7 Conclusion
Several websites compare Fluent Bit and Fluentd. The level of detail varies, but typi-
cally, the comparison boils down to several basic points:

 Fluent Bit’s execution footprint is much smaller than Fluentd’s.
 The portfolio of plugins specific to different services is far greater for Fluentd.
 Available features align Fluent Bit more closely to the Kubernetes ecosystem.
 Fluentd, in our opinion, scales up more easily, and Fluent Bit is easier to scale

down.

The comparisons often boil down to differences in use cases, as both Fluent Bit and
Fluentd can be applied to almost any scenario. Some scenarios lend themselves better
to Fluentd and others to Fluent Bit (table C.1).

Perhaps the most valuable factor to consider is the rate of development. Fluent Bit is
evolving and adding significant new capabilities faster than Fluentd, which continues
to develop at a more measured pace.

Table C.1 Use cases for Fluent Bit and Fluentd

Fluent Bit Fluentd

Cloud-native/Kubernetes Containers and VMs

Internet of Things Monolithic and traditional applications

Logs and metrics Logs

index
A

absence of events 246
AKS (Azure Kubernetes

Service) 114
ANSI (American National Stan-

dards Institute) 293
AoT (ahead-of-time)

compilation 12
Apache

Apache 2 261, 316
APISIX 213
Kafka 11, 17, 246, 312,

344
licencing 262, 268
Log4j 17, 102
logfiles 170, 326
parser 170, 326
SkyWalking 323, 344
Spark 246, 343, 346, 355

API
calls 84, 133–134, 325
downward 107
endpoints 44, 319
Fluent Bit 131
gateways 148, 213, 299–300,

330
Go and 273
Kubernetes 109–110,

112–113, 319
Logs Bridge 104
Prometheus and 89, 97, 141,

162
APISIX 213

application direct to Fluent
Bit 101–111

deploying for application
direct logging 104–107

enriching log events with Pod
context by filter 107–111

enriching log events with Pod
context by injection 107

OpenTelemetry's approach to
containerized
applications 103

APT (Advanced Packaging
Tool) 308

architectural context 164, 188
AS reserved word 236
attributes 34

reserved attribute names 337
selecting multiple 236–237

AWS (Amazon Web
Services) 263, 297

Azure 12, 114, 162, 297, 311

B

backpressure 8, 12, 60, 86, 118,
126, 129, 190, 245

baggage 80, 84
.bat extension 314
buffer 9, 172, 185, 224–225,

232–233, 241, 280, 288, 353,
355

buffer_chunk_size 71, 76, 87
buffer_max_size 70, 76
buffer_size 93, 229

constraints 129
files vs. memory 9, 52, 70, 87,

171, 185, 190, 225
Fluent Bit and 87–88, 171,

250
flushing 28, 130
problems 101
role of 16

building plugins
Go plugin approach

274–278
output 290–292

busybox container 96

C

Call configuration 152
Call HTTP 158
capturing inputs

file-based log events 61
from containers and

Kubernetes 93
stdout 56–60

cardinality 143, 210
Carvel 31
cascading windows 233
C development, resources

for 348
CEP (Complex Event

Processing) 15
certificates 74–75, 109, 113,

157, 303, 345
cgo framework 274
chaining streams 242–245
357

INDEX358
CheckList filter 189, 191–193,
196

Chef client 331
CI/CD (continuous integra-

tion/continuous
development) 300

C language 261–264
benefits 262
considerations 261
continuous integration and

delivery 263
drawbacks 263
terraforming environments

264
CLI (command-line interface)

23, 152, 282, 301
ClusterFluentBitConfig 117
CMD declaration 114
CMetric library 7
CNCF (Cloud Native Computing

Foundation) 6, 31, 114,
170, 261, 297, 330

CNI (Container Network
Interface) 114

observability with 121
code, building plugins 289
ConfigMap 23, 105, 115
configuration

checking with dry run 37–38
environment variables 41–42
files 33
Fluent Bit, in two forms

31–37
configuring Fluent Bit 23–31

CLI controls 23–25
configuration formats 23
defining monitoring pipeline

using CLI 27–31
prebuilt Docker container

31
configuring plugins 293–294
console, sending log events

to 135–138
formatting outputs 137
seeing matching at work 138

container log drivers 100–101
containers

and Kubernetes, getting
inputs from 90

application direct to Fluent
Bit 101–111

architectural context 91

capturing inputs from Docker
events and Docker
Metrics 93–97

inputs from 121
Kubernetes operator 117–120
other 98
Podman 97

convert action 253
cpu plugin 54
CRDs (custom resource

definitions) 117
CRI (Container Runtime

Interface) 98, 117, 327
CRI-O 114
cron job 67, 69
cross-referencing streams 246
Crowbar 331
crun 114
csv (comma-separated values)

format 139
curl command 44–45
custom filter 9, 220, 250–251
custom parsing 174–178
custom plugins, deploying

292

D

DaemonSet 104, 107–109, 112,
115, 117, 119–120

data, decoding 185
Datadog 125, 162, 213, 311
data sizes, expressing 339
data variable 314
decoders 182–185
delete action 253
deployment needs 297
development pipelines 300
distributed 4, 13, 74, 125, 156,

262, 275, 303, 305, 330–331,
333, 341

DNS (Domain Name
System) 294

Docker 310
capturing inputs from con-

tainers and Kubernetes
93–97

Linux 311
macOS 311
metrics 96–97
verifying installation 310
Windows 310

Dockerfile 43–44, 170, 276–278,
289–290, 292, 294–295, 312

DoS (denial-of-service)
attack 126

dry run 24, 37–38
dtg (Date Time Group) 239
dummy plugin 28, 231,

236–237, 280

E

EBNF (Extended Backus Naur
Form) 227

eBPF (extended Berkeley Packet
Filter) 121–122, 341

EKS (Amazon Elastic Kuberne-
tes Service) 114

END line 174
enterprise use case 297

central accounting needs 301
core services 300

environment variables 41–42
applying 41
setting 42

Envoy 327
error struct 285
etcd 114
event-driven 4
events

capturing from containers
and Kubernetes, Docker
events 93–96

controlling 206–212
filtering and transforming

187–188
outputting 138–141, 155–158

executing build 294
Exit (FLBPluginExit) 278
exit functions 292
Expect filter 199
expressing data sizes 339
extending Fluent Bit 260
extract action 253
extracting meaning, parsers and

filters 167–169

F

FaaS (Function as a Service) 69
file-based log events 61
file inputs, parsing shortcut

for 185

INDEX 359
filtering and transforming
events 187

architectural context 188
extending and amending with

filters 193–199
integrating and enriching

using filters 190–193
routing and controlling

199–206
filters 9, 15, 26, 124, 187–220

architectural context 164–
165, 188

AWS Metadata 189
CheckList 189, 191–193, 196
custom 189, 212–220, 315
deploying 104
dictionary block 167
enriching log events with Pod

context 107–111
extend and amend 189,

193–199
Fluent Bit and 260, 266, 303,

353
GeoIP2 189–191
integrate and enrich 188–193
Kubernetes 108, 117, 189
Lua 212–220, 347, 353
MMS 305
nest 195
Nightfall 189
parsers and 166–168, 176
predefined 115, 168
record/modify 42, 194–198,

303, 316
route and control 189,

199–206
TensorFlow 189
testing 198–199

FLBPluginConfigKey
method 285

Fluent Bit 3
application direct to

101–111
buffering and internal data

structure 353
building processors and

extension options 248
building processors with C

language 261–264
capturing inputs from con-

tainers and
Kubernetes 93–97

comparing with Fluentd 32,
118, 350–356

configuration capabilities 351
configuration in two

forms 31–37
configuring 22–31
configuring file

inclusions 38–41
core concepts 6–10
deployment needs 297
development pipelines 300
drivers of adoption 11–18
enterprise use case 296–306
extending 248, 260, 308
formatters 339
importance of 3–6
inputs and outputs 49, 77, 92,

101, 120, 125, 131,
351–353

installations 309–310
monitoring health 42–45
multiline parsers 334
observability with 121
observations on with

Kubernetes 120
output plugins 321
outputting events 125–134,

158
overview 3
plugins 49
processors 249–250
relationship to Fluentd 18
resources 346
selecting extension

strategy 268
standard plugins 318
streaming processing 356
stream-processor

functions 336
technology differences 350
Twelve-Factor App and

57–58
fluent-bit binary reference 31
FluentBitConfig 117
fluentbit table 154
Fluentd

buffering and internal data
structure 353

comparing with Fluent Bit 32,
118, 350, 353

Fluent Bit vs. Fluentd configu-
ration comparison 31

relationship to Fluent Bit 18
technology differences 350

flush, output plugins 291
flush interval 33, 35, 37, 71
forecasting 245
formal and de facto

standards 343
formatting outputs 137
Forward 76–78

forwarding to other Fluent
nodes 78, 124, 158–159

FQDN (fully qualified domain
name) 107

frameworks
extensible 102
in multiple languages 58, 82,

102
Log4j 17, 80, 82, 102–103,

262, 299
logging 13, 51, 57, 61, 67, 69,

111, 351
OpenTelemetry (OTel) 13,

51, 80, 104
SLF4J 333–334
Zap 82

G

GCP (Google Cloud Platform)
297

BigQuery 125, 321
GKE 114

GeoIP 190–191
GET calls 71, 132, 136, 155,

322
Get FB Metrics

configuration 134
GitHub 19, 28, 33, 37–38,

211–212, 214, 263–264, 274,
277, 312

GKE (Google Kubernetes
Engine) 114

Go plugin approach 274–278
build process for plugins 278
code structure 275
Fluent Bit feature

switches 277
simplifying build process 275

Go programming language
(Golang) 15, 17, 260, 264,
335

benefits 264–265

INDEX360
Go programming language
(Golang) (continued)

building plugins 274–278
drawbacks 265
integration with C/C++ 264
vs. C language 260

Grafana 13, 81, 132, 141–142,
149, 303, 305

Grep filter, explicitly including
and excluding events
with 204–206

Groovy
Java and 314–315
Log Simulator 312–313

gRPC (Remote Procedure
Call) 13, 15, 76, 159–160,
255, 260, 346, 352

H

hash action 253
hopping windows 230–233
HTTP

GET calls 71, 132, 136, 155,
322

HTTP/2 13, 15, 81–82,
159–160, 263, 351

HTTP input 72, 75, 138, 151,
155–156

HTTP output 155–157, 162

I

IETF (Internet Engineering
Task Force) 74, 329, 346

implementing plugins 282
includes 38, 199
inclusions 38–41, 64, 96

configuring file inclusions
38–41

creating dynamic configura-
tion by using inclusions
39

proving stub inclusions 40
Initialization

(FLBPluginInit) 278
injection, enriching log events

with Pod context 107
input plugins 7–9, 88, 125, 131,

134, 171
callback 287
cleanup callback 288

dummy 28, 211, 231, 236–237,
280

exit 289
for Fluent Bit 49–51, 70, 87,

121, 165, 308–311
for OS-based resources 51, 53
initialization 285
OpenTelemetry 70, 121, 125,

160
registration 285
systemd 107
tail 43, 56, 60, 62–63, 107–108,

112, 116, 185
thermal 55, 320

inputs 351–353
capturing 49
capturing log files 62–69
cpu 50, 53–55
customization with embed-

ded code 353
disk 50, 52–53
forward 51, 70, 76–79
HTTP 51
life cycle of 278
mem 51–53
netif 52–53
OpenTelemetry 352
OS and device sources 51–56
plugin choice 352
Pods 42–43, 65, 79, 92, 97,

111, 120
secondary/fallback output

options 352
support for logging frame-

works 351
TCP 51
windows_exporter_metrics 55

insert action 253
installations 307

Docker 310–311
downloading book

resources 308
Fluent Bit 309
jq tool 317
LogSimulator 312–313
MySQL 316
Postgres 316
Postman 315
prepping Linux 308
Prometheus 316
tool installation overview 307
WireMock 315

interfaces 26
intermittent error tolerance 245
intervals 206
iptables 332
IPv4 element 176
ISO8601 format 30, 136

J

Jaeger 103, 305
Java 18, 51, 82, 264, 299

applets 266
apps 312, 335
core services 300
Groovy and 314–315
incubator modules 59
libraries 331
log files 333

JavaScript 82, 266–267, 299
JDK (Java Development Kit) 314
JIT (just-in-time) compiler 12,

52
journald 99–100
JRE (Java Runtime Engine) 314
JSON (JavaScript Object Nota-

tion), parsing 178–181
changing log event

timestamp 180
diagnosing unhappy

paths 180
JSONPath notation 139
JVM (Java Virtual Machine) 12

K

Kafka 333
keys 34
Kong 213
Kubernetes 31, 311

architectural context 91
capturing inputs from con-

tainers and 93–97
containers and 98
involvement in book 20
klog 112, 349
observability 111–117
observations on Fluent Bit

with 120
operator 117–120
Podman 97
Pods 42–43, 65, 79, 97, 111, 120

Kustomize 120

INDEX 361
L

latency
between events and

dashboards 305
in getting logs 101
in the system 229
minimizing 297
of calling the database 287
of important metrics 148
of storage devices 69
resultant 190
timestamping and 232

legacy 204
lines 171
Linux 311

Fluent Bit installations 309
prepping 308
sockets 78

log events 4
generating metrics from

207–210
sending to console 135–138

log files, capturing 62–69
logfmt parser 181
logging

application direct to Fluent
Bit 101–111

format definitions 348
frameworks 13, 51, 57, 61, 67,

69, 111, 351
helpful practices and

resources 342
logging driver 51, 76, 100–101,

111, 300
Logging in Action, book 20, 58,

69–70, 85, 135, 158, 175,
343, 350, 353

logical architecture 8–10
Logrotate 67
logs 330

configuring Fluent Bit 22
container log drivers

100–101
file-based log events 61
filtering and transforming

events 190–199
Kubernetes and containers,

architectural context 91
OpenStack 330, 334
parsing 164, 169, 178–181,

330

processors with Lua for 250
stream processors, creating

streams 239–242
LogSimulator 19, 58–59, 62–64,

66, 308, 312–314
Java and Groovy 314–315
post-LogSimulator use 315
running as downloaded

image 313
running as locally built

Docker image 313
running containerized 58–60

Loki 11, 125, 312, 336, 340, 345
LTSV (Label Tab-Separated

Value) parser 181
ltsv (label tab-separated values)

format 139
Lua 212–220, 347, 350–351, 353

background 213
filters 189, 212, 214–216, 220
processors with, for logs

250–252
processors with for logs 250
scripts 9, 15, 115–116, 214,

260, 302

M

macOS 52–53, 151, 308–316
Fluent Bit installations 309

matching 210–212
seeing at work 138
wildcards 27, 53, 110, 135–

136, 138, 194, 210, 239,
247, 303

MessagePack 7, 28, 76, 83, 137,
185

msgpack format 139–140,
288, 291

metadata 7
metrics

capturing 52–54
capturing from Docker

containers 96–97
defined 4, 80
DockerMetrics plugin 96–97
environment 23
generating from log events 4,

207–210
local 12
log_to_metrics 207
memory metrics 50

network metrics 55, 100, 121,
135, 142, 292

OS-based 55
processors to 257
pulling back 99
sending and receiving 7, 86
system metrics 50, 145

minikube 104, 106, 312
Modify filter 42, 194, 196–198
modify operation 196
MongoDB 329
monitoring Fluent Bit 42–45,

131–133
mTLS (mutual TLS) 303
multiline

content 121
filtering 172
log events/logs 101, 171, 299,

331, 335
outputs 117
parsers 115–117, 170–174,

185, 334–335
processing 171
use cases 110

multiline parsers 334
MySQL 316

setting up 282

N

naming, selecting multiple
attributes 236–237

native executables 52–55
Nest filter 195
.Net 82
netif plugin 52–53, 133, 319
network controls 129
network metrics 55, 100, 121,

135, 142, 292
Nginx 329
Node Explorer 52, 56, 97–98,

142–143, 145–146, 148, 207,
257, 319–320

null output 131
configuring 133

O

observability
hyperscaler native and SaaS

observability 162
resources 341

INDEX362
observability (continued)
with Cilium 121
with Falco 121
with Fluent Bit 121

OCI (Open Container
Initiative) 98, 114

OCI (Oracle Cloud
Infrastructure) 297, 304

ODBC (Open Database
Connectivity) 247

OKE (Oracle Container Engine
for Kubernetes) 114

OK result 126
Onigmo 175
OpenSearch 305
OpenShift 114
OpenStack 330, 334
OpenTelemetry Collector 13
OpenTelemetry (OTel) 51,

159–162, 352
approach to containerized

applications 103
effect of 12–15
Telemetrygen 255–257
vs. Fluent Bit and Fluentd

16–18
operational processes 302–305
or operation 204
OS and device sources 51–56

device sources 55
monitoring infrastructure

with native
executables 52–55

tuning monitoring sources 55
OTLP Exporter 13
OTLP (OpenTelemetry

Protocol) 13, 51, 103, 160,
257, 299, 352

output, life cycle of 280
output flush 280
output plugins 9, 146, 290, 321

Datadog 125
exit and unregister

functions 292
flush 291
forward 76
Google Cloud BigQuery 125
HTTP 125
Kafka 321
Loki 125
node_exporter_metrics

142–146

null 125, 131–134
Observe 339
OpenTelemetry 125
prometheus_exporter

143–144
prometheus_remote_write

141, 150
stdout 125, 129–130,

135–138, 323
windows_exporter_metrics

142
outputting events 123

architectural context 124
common characteristics of

Fluent Bit output
plugins 125–134

Fluent Bit 141–151
Fluent Bit to Grafana

141–145
Fluent Bit to

Prometheus 141–151
forwarding to other Fluent

nodes 158
hyperscaler native and SaaS

observability 162
OpenTelemetry 159–162
PostgreSQL output 151–155
Prometheus Node

Exporter 142–145
Prometheus outputs 141
sending log events to

console 135–138
writing to files 138–141

P

pacemaker 332
parsers 9, 168, 330

other types of 181
prebuilt 169
predefined 326

parsing 164
architectural context 164
custom 178
decoders 182–185
goal of 165
JSON 178–181
multiline 174
relationship between parsers

and filters 167–169
shortcut for file inputs 185

payload structure 6

PCRE (Perl Compatible Regular
Expressions) 175

pgsql plugin 151, 155
PHP 82, 267
PII (Personally Identifiable

Information) 189, 191, 196,
298, 325

plain format 139
plugins 26

architectural context 272
building 271, 273–278
building code 289
choice of 352
configuring 293–294
deploying custom 292
executing build 294
implementing 282
input 284–285, 287–289
life cycle of 278–282
objectives for 273
output 290
record accessor 336
running custom 295
standard 318

Pod
configuration 35, 78–79, 104,

106, 153
context 107–108
declaration 27, 97, 105
evicting 65
instances of 107, 148
managing effectively 42–43
performance metrics 159
removing 107
scaling out with 52
specs 113

Podman 97
Postgres 316
PostgreSQL output 151–155
Postman 315
prebuilt parsers 169
predefined parsers 326
predefined regular

expressions 335
pretty print 44
probes 43
processors 248, 325

architectural context 249
building 261–265
content modifier 252
declaration 255
declaration block 251

INDEX 363
processors (continued)
Fluent Bit 250
for traces 255
selecting extension

strategy 268
to metrics 257
using SQL 258
WASM (WebAssembly)

266–268
with Lua for logs 250

Prometheus 305
installations 316

PrometheusGet
configuration 209

Protobuf (Protocol Buffer)
13–14, 81–83, 161, 260,
346

Python 51, 82, 84, 267, 335

Q

query, basic 225–229

R

random plugin 225–226, 231,
238–239, 241, 250

RBAC (role-based access
control) 113

Record 7–8, 42, 355
record accessor 200

plugins supporting 336
Record filter 42
Record Modifier filter 194–195
regex (regular

expressions) 145, 166
predefined 335

Registration (FLBPlugin-
Register) 278

regular expressions (REGEX) 9,
166, 173–178, 181, 194, 201,
204, 208, 210–212, 253,
257–258, 303, 335

Remote Procedure Call
(gRPC) 13

rename action 253
resources 318

additional reading 342
expressing time 338
filter plugins 324
Fluent Bit formatters 339
for C development 348

processors 325
reserved attribute names

337
WASM and WASI 347

retry output resilience 125–129
routing 353
routing and controlling

events 199–206
explicitly including and

excluding events with
Grep 204–206

rewriting tag filter
example 201

using record accessor 200
rule definitions 172
RUST 82, 266–267, 348

S

SaaS (Software as a Service) 297
scaling

automated 305
configuration 154
dynamic 11, 78
of Pods 78
out 52
propelling 92
quickly 12
sophisticated 70

sections 34
SELECT statement 226–227,

232, 239–240, 242
server configuration block 225
SERVICE directive 32
set operation 196
shell scripts (.sh) 28, 41, 58, 88,

96–97, 106, 155, 158, 170,
262, 308

sidecar 61, 65, 78–79, 87, 102,
104–107, 112, 115, 151, 207,
299, 303, 346

SIEM (security information
and event management)
tool 130

signals
attaching labels to 160
corruption of 246
data structures 81
logs 5, 50, 60–62, 69, 80
metrics 4, 80, 86
OpenTelemetry 85, 161
shutdown 282

traces 4, 80, 83–86, 254–257
types of 81, 83–84, 248, 305

Single Call configuration 156
sliding window 230, 233, 315

streaming 229–230
span 83–84, 117, 235, 255–256
spans 80, 83–84, 299
Splunk 56, 70, 162, 310, 313
spurious data values 246
SQLite 65
SQL (Structured Query Lan-

guage), processors
using 258

standard plugins 318
stdin 60, 69, 266, 310
stdout 56–60

running containerized Log
Simulator 58–60

stream processing 9, 15
stream-processing

windows 230–235
deciding which window to

use 235
hopping windows 230–233
setting window durations 235
sliding window 230, 233, 325
tumbling (cascading)

windows 233
stream-processor functions 336
stream processors 224

absence of events 246
architectural context 223
basic query 225–229
chaining streams 242–245
creating streams 239–242
cross-referencing streams

246
forecasting 245
for time-series calculations

and filtering 223,
230–235

intermittent error
tolerance 245

selecting multiple attributes
and naming 236–237

spurious data values 246
tags vs. 237–239
typical use cases for 245–247

streams, creating 239–242
Syslog 329
systemd 60, 67, 76, 99–100, 107,

116, 145, 301

INDEX364
T

tag expansion 107–108, 110
tags, streams vs. 237–239
tail plugin 43, 56, 60, 62–63,

107–108, 112, 116, 185
Tanzu 114
TCP plugin 51
telemetry 13, 51, 250, 308, 341,

343
custom parsing 174–178

Telemetrygen 255–257
template format 139
Tempo 305
TestData folder 182
testing filters 198
thermal plugin 55, 320
third-party tools 339
threads, considerations for

using 130
throttling 206
time, expressing 338
time-series calculations

and filtering, stream proces-
sors for 223

basic query 225–229
chaining streams 242–245
creating streams 239–242
selecting multiple attributes

and naming 236–237
stream processors for 224,

230, 245–247
streams vs. tags 237–239

timestamps, changing 180
TIOBE 18, 213

TLS (Transport Layer
Security) 74–75, 109, 112,
149–150, 158, 303, 312, 337

mTLS 303
to 241
tools 305
TORs (The Onion Routers) 191
traces 4

processors for 255
TTL (time to live) 109
tumbling windows 233
Twelve-Factor App 57–58

U

UDP (User Datagram
Protocol) 310, 312, 314,
349

unhappy paths, diagnosing 180
Universal 333
UNIX sockets 93, 320
unregister functions 292
upsert action 253
use cases, enterprise use

case 297
UTC (Coordinated Universal

Time) 153
Uuid 333

V

validateSqlParams method 285
via 138
VM (virtual machine) 52, 91,

131, 302

VPNs (virtual private
networks) 191

W

WASI (WebAssembly System
Interface) 273, 347

WASM (WebAssembly) 15,
266–268, 273, 347

benefits of 267
drawbacks of 267

web resources 343–345
additional 345
formal and de facto

standards 343
WebSockets 125, 129
WHERE clause 229
Windows, Fluent Bit

installations 310
WireMock tool 155, 315
worker threads 129
writing to files 138–141
WSL2 (Windows Subsystem for

Linux 2) 312
WSL (Windows Subsystem for

Linux) 310

Y

YAML (Yet Another Markup
Language), comparing clas-
sic and YAML configura-
tion 32–37

Yum (Yellowdog Updater) 308

Fluent Bit can be applied in nearly any environment in any way, from Kubernetes clusters to IoT
devices and everything in between, deployed as a sidecar being called directly or working indirectly
via log files in shared storage.

Fluent Bit is fully OpenTelemetry Protocol (OTLP) compliant like the OpenTelemetry Collector, so it
can be used in place of the OpenTelemetry Collector. It can also act as a Prometheus Node Exporter,
simplifying our IT landscape. It can operate in scalable, resilient configurations or single nodes. We
can deploy Fluent Bit to talk directly to observability tools or (through aggregation) fan in/fan out
networks.

Fluent Bit Deployment Environments and Configurations

Network

routing

IoT

IoT device

Monolith

app

Server(s)

Kubernetes cluster

Pod

Svc

DaemonSet

Apps

VMs

Pod

Svc

Pod

Svc

Pod

Svc

Pod

Svc

Pod

A few of the destinations that
might give us visualization
and insight into our logs,
traces, and metrics

Phil Wilkins ● Foreword by Eduardo Silva Pereira

F
luent Bit is a super-fast lightweight observability tool
that’s perfect for Kubernetes and containers, as well as
traditional IT environments. Fluent Bit makes it a snap to

extract meaning from the logs, traces, and other performance
metrics generated by your applications and infrastructure.
It’s also a great way to route telemetry to analysis tools like
Prometheus and Grafana.

Logs and Telemetry shows you how to turn systems data into
actionable insights using Fluent Bit. You’ll start by learning
the pre-built plugins for common use cases and progress to
integration with powerful tools like OpenTelemetry and real-
time analytical event processing. You’ll use plugins to confi g-
ure routing, fi ltering and processing, automate your observ-
ability with Lua scripts, and confi gure Fluent Bit to meet the
demands of highly scalable environments.

What’s Inside
● Deploy Fluent Bit for telemetry collection
● Confi gure pipelines to fi lter, route, and transform data
● Integrate Fluent Bit with containers and Kubernetes
● Monitor applications at scale

For developers, DevOps engineers, and SREs working with
observability.

Phil Wilkins has spent over 25 years in the software industry
from multinationals to software startups. He is the author of
Logging in Action.

Th e technical editor on this book was Karthik Gaekwad.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Logs and Telemetry

SOFTWARE DEVELOPMENT

M A N N I N G

“An essential, targeted book
for anyone working on cloud

native applications.”
—Jay Vyas, Tesla Motors

“Extensive real-life examples
and comprehensive coverage!

It’s a great resource for
architects, developers,

 and SREs.”
—Sambasiva Andaluri, IBM

“A must read for anyone
managing a critical IT-system.

You will truly understand
what’s going on in your

applications and
 infrastructure.”—Hassan Ajan, Gain Momentum

“A detailed dive into
building observability and

monitoring.”—Jamie Riedesel
author of Software Telemetry

ISBN-13: 978-1-63343-747-0

See first page

	Logs and Telemetry
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1—From concepts to running Fluent Bit
	1 Introduction to Fluent Bit
	1.1 Why is Fluent Bit so important?
	1.1.1 The value of event distribution
	1.1.2 Fluent’s place in CNCF

	1.2 Core Fluent Bit concepts
	1.2.1 Payload structure
	1.2.2 Logical architecture

	1.3 Drivers of Fluent Bit adoption
	1.3.1 Small footprint, efficiency, and speed
	1.3.2 Effect of OpenTelemetry and how Fluent Bit relates to It
	1.3.3 Extending Fluent Bit with C, Go, WebAssembly, and Lua
	1.3.4 Fluent Bit and stream processing
	1.3.5 OTel vs. Fluent Bit and Fluentd

	1.4 Is Fluent Bit a child or a successor of Fluentd?
	1.5 How we’re going to discover Fluent Bit
	1.5.1 How much Kubernetes will this book involve?
	1.5.2 Logging in Action

	Summary

	2 From zero to “Hello, World”
	2.1 Multiple ways to configure Fluent Bit
	2.1.1 Configuration formats
	2.1.2 CLI controls
	2.1.3 Defining a monitoring pipeline using the CLI
	2.1.4 Fluent Bit prebuilt Docker container

	2.2 Fluent Bit configuration in two forms
	2.2.1 Fluent Bit vs. Fluentd configuration comparison
	2.2.2 Comparing Classic and YAML configuration

	2.3 Checking configuration with a dry run
	2.3.1 Exercise: Using - -dry-run to help fix a conf file

	2.4 Configuring file inclusions
	2.4.1 Creating dynamic configuration by using inclusions
	2.4.2 Proving stub inclusions

	2.5 Environment variables in the configuration
	2.5.1 Applying environment variables
	2.5.2 Setting environment variables

	2.6 Monitoring Fluent Bit’s health
	Summary

	Part 2—Digging deeper
	3 Capturing inputs
	3.1 Fluent Bit plugins
	3.2 OS and device sources
	3.2.1 Monitoring infrastructure with native executables
	3.2.2 Tuning monitoring sources
	3.2.3 Device sources

	3.3 Using stdout
	3.3.1 The twelve-factor app and Fluent Bit
	3.3.2 Running the containerized Log Simulator

	3.4 File-based log events
	3.5 Capturing log files
	3.5.1 Simple file consumption
	3.5.2 Supporting long-running processes
	3.5.3 Capturing logs from short-lived applications

	3.6 Network events and communication between Fluent Bit and Fluentd
	3.6.1 Network input sources
	3.6.2 HTTP source
	3.6.3 Securing communication with SSL/TLS
	3.6.4 forward source
	3.6.5 Beyond network ports
	3.6.6 Internode communication
	3.6.7 OpenTelemetry

	3.7 Fluent Bit buffers and chunks
	3.8 Other sources
	3.8.1 Container-related plugins
	3.8.2 Getting data from other processes
	3.8.3 Observing the observers

	Summary

	4 Getting inputs from containers and Kubernetes
	4.1 Architectural context
	4.2 Fluent Bit capturing Docker events and metrics
	4.2.1 Docker Events
	4.2.2 Docker Metrics

	4.3 Using Podman as a Docker alternative
	4.4 Other containers
	4.5 Container logging drivers
	4.6 Application direct to Fluent Bit
	4.6.1 OpenTelemetry’s approach to containerized applications
	4.6.2 Deploying for application direct logging
	4.6.3 Enriching log events with Pod context by injection
	4.6.4 Enriching log events with Pod context by filter

	4.7 Kubernetes and observability
	4.7.1 Understanding Kubernetes’ position on logging
	4.7.2 Kubernetes auditing
	4.7.3 Kubernetes events input
	4.7.4 The many parts of the Kubernetes ecosystem
	4.7.5 Container Images
	4.7.6 Helm charts

	4.8 Kubernetes operator
	4.9 Observations on Fluent Bit with Kubernetes
	4.10 The next frontier of observability with Fluent Bit: eBPF
	Summary

	5 Outputting events
	5.1 Architectural context
	5.2 Common characteristics of Fluent Bit output plugins
	5.2.1 Output resilience through retries
	5.2.2 Network controls
	5.2.3 Worker threads
	5.2.4 Considerations for using threads

	5.3 Null output
	5.3.1 Monitoring with Fluent Bit
	5.3.2 Configuring null output

	5.4 Sending log events to the console
	5.4.1 Formatting outputs
	5.4.2 Seeing matching at work

	5.5 Writing to files
	5.6 Prometheus outputs
	5.6.1 Prometheus Node Exporter
	5.6.2 Running our Prometheus configuration
	5.6.3 Prometheus Fluent Bit Exporter
	5.6.4 Prometheus remote writer

	5.7 PostgreSQL output
	5.8 HTTP output
	5.9 Forwarding to other Fluent nodes
	5.10 OpenTelemetry
	5.11 Hyperscaler native and SaaS observability
	Summary

	6 Parsing to extract more meaning
	6.1 Architectural context
	6.2 The goal of parsing
	6.3 Relationship between parsers and filters
	6.4 Prebuilt parsers
	6.5 Parsing an Apache log file
	6.6 Multiline parsing
	6.7 Custom parsing
	6.8 Processing JSON
	6.8.1 Changing the log event timestamp
	6.8.2 Diagnosing the unhappy paths

	6.9 Other types of parsers
	6.9.1 logfmt
	6.9.2 LTSV

	6.10 Decoders
	6.11 Parsing shortcut for file inputs
	Summary

	7 Filtering and transforming events
	7.1 Architectural context
	7.2 Integrating and enriching with filters
	7.2.1 Directing and securing logs with GeoIP
	7.2.2 Using the CheckList filter

	7.3 Extending and amending with filters
	7.3.1 Taking a brief look at the nest filter
	7.3.2 Illustrating the record_modifier filter
	7.3.3 Illustrating the modify filter
	7.3.4 Bringing it together
	7.3.5 Testing filters

	7.4 Routing and controlling
	7.4.1 Using the record accessor
	7.4.2 Rewriting the tag filter example
	7.4.3 Explicitly including and excluding events with grep

	7.5 Controlling events
	7.5.1 throttle
	7.5.2 log_to_metrics
	7.5.3 Advanced use of matching

	7.6 Custom filtering with Lua
	7.6.1 Background of Lua
	7.6.2 Implementing a Lua filter

	Summary

	Part 3—Plugins and queries
	8 Stream processors for time series calculations and filtering
	8.1 Architectural context
	8.2 Key ideas
	8.3 Basic query
	8.4 Stream-processing windows
	8.4.1 Hopping windows
	8.4.2 Tumbling windows
	8.4.3 Setting window durations
	8.4.4 Deciding which window to use

	8.5 Selecting multiple attributes and naming
	8.6 Streams vs. tags
	8.7 Creating streams
	8.8 Chaining and creating new streams
	8.9 Typical use cases for streaming
	8.9.1 Forecasting
	8.9.2 Intermittent error tolerance
	8.9.3 Spurious data values
	8.9.4 Absence of events
	8.9.5 Cross-referencing streams

	Summary

	9 Building processors and Fluent Bit extension options
	9.1 Architectural context
	9.2 Fluent Bit processor: Changing the behavior of existing plugins
	9.2.1 Processor with Lua for logs
	9.2.2 Content modifier processor
	9.2.3 Processor for traces
	9.2.4 Processor to metrics
	9.2.5 Processor using SQL

	9.3 Why we need to extend Fluent Bit
	9.4 C language
	9.4.1 Considerations
	9.4.2 Benefits
	9.4.3 Drawbacks
	9.4.4 Tools for the job

	9.5 Go language
	9.5.1 Benefits
	9.5.2 Drawbacks

	9.6 WebAssembly
	9.6.1 Benefits
	9.6.2 Drawbacks

	9.7 Selecting an extension strategy
	Summary

	10 Building plugins
	10.1 Architectural context
	10.2 Why Go?
	10.3 Plugin objective
	10.4 Go plugin approach
	10.4.1 Simplifying our build process
	10.4.2 Code structure
	10.4.3 Fluent Bit feature switches
	10.4.4 The build process for plugins

	10.5 Understanding the plugin life cycle
	10.5.1 Input life cycle
	10.5.2 Output life cycle

	10.6 Implementing the plugin
	10.6.1 Setting up MySQL
	10.6.2 Input plugin
	10.6.3 Building the code
	10.6.4 Output plugin

	10.7 Deploying the custom plugin
	10.8 Configuring our scenario
	10.9 Executing the build
	10.10 Running the custom plugins
	Summary

	11 Putting Fluent Bit into action: An enterprise use case
	11.1 Use case
	11.2 Deployment needs
	11.3 Customer dashboards
	11.3.1 Customer dashboards with Fluent Bit
	11.3.2 Customer dashboard containers
	11.3.3 Customer dashboard innovation

	11.4 Development pipelines
	11.5 Core services
	11.6 Central accounting needs
	11.7 Operational processes
	11.8 Tool choices
	11.9 Conclusion
	Summary

	appendix A—Installations
	A.1 Tool installation overview
	A.2 Downloading book resources
	A.3 Prepping Linux
	A.4 Fluent Bit
	A.4.1 Linux Installs
	A.4.2 macOS
	A.4.3 Windows installs

	A.5 Docker
	A.5.1 Windows
	A.5.2 Verifying the installation
	A.5.3 Linux (including macOS)
	A.5.4 macOS

	A.6 Kubernetes
	A.7 LogSimulator
	A.7.1 Running as a downloaded image
	A.7.2 Running as a locally built Docker image
	A.7.3 Java and Groovy
	A.7.4 Post-LogSimulator use

	A.8 WireMock
	A.9 Postman
	A.10 Postgres
	A.11 MySQL
	A.12 Prometheus
	A.13 jq

	appendix B—Useful resources
	B.1 Standard plugins based on platform
	B.1.1 Input plugins
	B.1.2 Output plugins
	B.1.3 Filter plugins
	B.1.4 Processors

	B.2 Predefined parsers
	B.2.1 parser.conf file
	B.2.2 parsers_ambassador file
	B.2.3 parsers_cinder file
	B.2.4 parsers_extra
	B.2.5 parsers_java file
	B.2.6 parsers_kafka file
	B.2.7 parsers_openstack file

	B.3 Multiline parsers
	B.4 Sources of predefined regular expressions
	B.5 Plugins supporting record accessor
	B.6 Stream processor functions
	B.7 Reserved attribute names
	B.8 Expressing time
	B.9 Expressing data sizes
	B.10 Fluent Bit formatters
	B.11 Useful third-party tools
	B.12 Observability
	B.13 Helpful logging practices and resources
	B.14 Additional reading
	B.15 Web resources
	B.15.1 Formal and de facto standards
	B.15.2 Additional web resources

	B.16 Fluent Bit resources
	B.17 Lua
	B.18 WASM and WASI
	B.19 C development resources
	B.20 Logging format definitions

	appendix C—Comparing Fluent Bit and Fluentd
	C.1 Technology differences
	C.2 Configuration capabilities
	C.3 Inputs and outputs
	C.3.1 Support for logging frameworks
	C.3.2 Plugin choice
	C.3.3 Secondary/fallback output options
	C.3.4 OpenTelemetry
	C.3.5 Customization with embedded code

	C.4 Routing
	C.5 Buffering and internal data structure
	C.6 Streaming processing
	C.7 Conclusion

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

