

Learn React with TypeScript
Third Edition

A beginner's guide to building real-world, production-ready
web apps with React 19 and TypeScript

Carl Rippon

Learn React with TypeScript
Third Edition

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Portfolio Director: Ashwin Nair
Relationship Lead: Bhavya Rao
Project Manager: Aparna Nair
Content Engineer: Adrija Mitra
Technical Editor: Sweety Pagaria
Copy Editor: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Shantanu Zagade
Growth Lead: Priyadarshini Sharma

First published: November 2018
Second edition: March 2023
Third edition: June 2025

Production reference: 1050625

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK.

ISBN 978-1-83664-317-3

www.packt.com

http://www.packt.com

Contributors

About the author
Carl Rippon is a seasoned software developer with over 25 years of experience in building complex
business applications across a range of industries. For the past 15 years, he has specialized in modern
JavaScript technologies – particularly React, TypeScript, and Next.js. A passionate educator and
writer, Carl has authored more than 100 blog posts, sharing practical insights and solutions with the
developer community.

I’d like to thank Sarah, Ellie-Jayne, Lily-Rose, Fudge, and Arlo for all the support and encouragement
they’ve given me while writing this book. A special thanks to everyone on the Packt editorial team for
their hard work and great feedback, especially Adrija Mitra.

About the reviewers
Gurjit Singh is a Berlin-based senior frontend engineer at Storyblok, with over six years of experience
in building modern web applications using React, TypeScript, and Node.js. Formerly employed at
zendesk.com, he contributed at an organizational level across AI-powered and customer-facing
initiatives. Gurjit is also an active open source contributor. His work has led to collaborations with
engineers at Apple, Wix, and more, and he was invited to a hackathon in San Francisco, US, for his
contributions to the Khalis Foundation. He enjoys speaking at conferences and sharing practical
engineering insights with the developer community. In his free time, he’s passionate about Indian
classical music, reading psychology books, and traveling the globe.

Andrew Baisden is an experienced software developer skilled in the JavaScript and Python ecosystems.
He builds cross-platform applications using frontend technologies such as React, TypeScript, and
modern frameworks. Experienced with backend and mobile development, Andrew is also passionate
about sharing knowledge and writes technical articles for various publications. He also engages with
his social media audience by offering valuable resources and content. Andrew combines education
with constant self-improvement to stay current with technology.

The author acknowledges the use of cutting-edge AI, in this case ChatGPT, with the sole aim of
enhancing the language and clarity within the book, thereby ensuring a smooth reading experience for

readers. It's important to note that the content itself has been crafted by the author and edited
by a professional publishing team.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/GxSkC

https://packt.link/GxSkC

Preface� xv

Part 1: Introduction� 1

1
Getting Started with React� 3

Technical requirements� 4
Understanding the benefits of React� 4
Creating a React project� 5
Understanding the project � 7
Adding linting to Visual Studio Code� 8
Adding code formatting� 10
Starting the app in development mode� 13
Producing a production build� 14

Understanding the structure of a
React app � 15
Understanding the React entry point� 15
Understanding the React component tree� 16
Understanding a React component� 17

Creating a component � 18
Creating a basic Alert component� 18
Adding Alert to the App component� 20

Using props� 22
Understanding props� 22

Adding props to the Alert component� 23

Using state� 26
Understanding state� 26
Implementing a visible state
in the Alert component� 27
Adding a close button to Alert� 28

Using events� 31
Understanding events� 31
Implementing a close button click
handler in the alert� 32
Implementing an alert close event� 33

Using React developer tools� 35
Using the Components tool� 35
Using the Profiler tool� 37

Summary� 38
Questions� 39
Answers� 40

Table of Contents

Table of Contentsviii

2
Getting Started with TypeScript� 43

Technical requirements� 43
Understanding the benefits of
TypeScript� 44
Understanding TypeScript� 44
Catching type errors early� 45
Improving developer experience and
productivity with IntelliSense� 47

Understanding JavaScript types� 48
Using basic TypeScript types� 50
Using type annotations� 50
Using type inference� 53
Using the Date type� 53
Using the any type� 55
Using the unknown type� 56

Using arrays� 58

Creating TypeScript types� 60
Using object types � 60
Creating type aliases� 61
Creating union types� 63

Using the TypeScript compiler� 65
Creating a React and TypeScript
component� 68
Creating a project� 69
Adding a props type� 70
Adding a state type� 71

Summary� 72
Questions� 73
Answers� 73

3
Using React Hooks� 75

Technical requirements� 75
Using the effect Hook� 76
Understanding the effect Hook parameters� 76
The rules of Hooks� 77
Effect cleanup� 78
Creating the project� 79
Fetching data using the effect Hook� 80

Using state Hooks� 83
Using useState� 83
Understanding useReducer� 87
Using useReducer� 88

Using the ref Hook� 91
Understanding the ref Hook� 91

Using the ref Hook� 93

Using the memo Hook� 95
Understanding the memo Hook� 95
Using the memo Hook� 96

Using the callback Hook� 98
Understanding the callback Hook� 98
Understanding when a component
is re-rendered� 99
Using the callback Hook� 100

Other React Hooks� 105
useId� 106
useTransition� 106
useDeferredValue� 107

Table of Contents ix

Hooks covered in other chapters� 109

Summary� 109
Questions� 110
Answers� 112

Part 2: App Fundamentals� 115

4
Approaches to Styling React Frontends� 117

Technical requirements� 118
Using plain CSS� 118
Creating the project� 118
Understanding how to reference CSS� 119
Using plain CSS in the alert component� 121
Experiencing CSS clashes� 124

Using CSS modules� 126
Understanding CSS modules� 126
Using CSS modules in the alert component� 127

Using Tailwind CSS� 130
Understanding Tailwind CSS� 130
Installing and configuring Tailwind CSS� 131

Using Tailwind CSS� 132

Using SVGs� 136
Understanding how to use SVGs in React� 137
Adding SVGs to the alert component� 139

Other styling approaches� 140
Using inline styles� 140
Using SCSS� 141
Using CSS-in-JS� 142

Summary� 143
Questions� 144
Answers� 145

5
Using React Server and Client Components� 147

Technical requirements� 147
Understanding SPAs � 148
Understanding the SPA problem� 148
Understanding the benefits of SPAs� 149

Understanding Server Components� 149
Understanding what a Server Component is� 149
Understanding how RSCs address the SPA
problem� 151
Understanding the benefits of Server
Components� 151

Creating Server Components� 152

Creating the project� 153
Creating an RSC� 156
Understanding how Server Components work� 158

Exploring Client Components� 159
Understanding Client Components� 159
Understanding Client Component rendering� 160
Specifying Client Components� 160
Creating Client Components� 161

Composing Server and Client
Components� 165
RSCs versus Client Components� 165

Table of Contentsx

Understanding when to use an RSC or Client
Component� 166
Understanding client boundaries� 166
Rendering an RSC in ColorModeToggle� 167

Summary� 170
Further reading� 170
Questions� 171
Answers� 172

6
Creating a Multi-Page App with Next.js� 173

Technical requirements� 173
Creating routes� 174
Creating the project� 174
Understanding routes� 175
Creating a posts route� 176

Creating navigation� 178
Using the Link component� 178
Using useRouter� 181

Creating shared layout� 182
Understanding layout components� 182
Creating a header� 183

Creating dynamic routes� 186
Understanding dynamic routes� 186
Creating a blog post dynamic route� 187

Using search parameters� 190
Understanding search parameters� 190
Adding search functionality to the app� 191

Summary� 195
Questions� 195
Answers� 196

Part 3: Data� 197

7
Server Component Data Fetching and Server Function Mutations� 199

Technical requirements� 200
Understanding server-side and
client-side data fetching� 200
Client-side data fetching� 200
Server-side data fetching� 201
Understanding the benefits� 202

Getting set up� 203
Creating the project� 203
Setting up the database� 204

Fetching data using an RSC� 205
Implementing query functions� 206
Calling query functions from RSCs� 208
Adding type safety to a database query� 209

Adding loading indicators using
React Suspense� 212
Understanding the need
for loading indicators� 212
Adding a delay� 212

Table of Contents xi

Understanding React Suspense� 213
Implementing loading indicators� 214

Handling errors with React
error boundaries� 218
Understanding React error boundaries� 218
Implementing error boundaries� 219

Mutating data using
a Server Function� 223

Understanding a Server Function� 224
Creating a Server Function� 226
Adding a progress indicator� 229
Handling errors � 230

Summary� 233
Questions� 233
Answers� 235

8
Client Component Data Fetching and Mutations with TanStack Query� 237

Technical requirements� 238
Fetching data using TanStack Query� 238
Understanding the challenges with useEffect
for data fetching� 238
Understanding TanStack Query� 239
Setting up the project� 241
Fetching blog post data� 241

Using a Route Handler
with TanStack Query� 249
Understanding the benefits of Route Handlers� 249

Using Route Handlers� 249
Adding type safety to the API response � 252

Mutating data using a TanStack
Query mutation� 254
Understanding TanStack Query mutations� 254
Using useMutation� 255

Summary� 257
Questions� 258
Answers� 259
Learn more on Discord� 260

9
Working with Forms� 261

Technical requirements� 261
Using basic forms� 262
Creating the project� 262
Creating a native form� 263

Using a Route Handler
for submission� 267
Creating a database mutation� 267
Creating a Route Handler� 269
Integrating the form submission with the

Route Handler� 269

Using a Server Action for submission� 272
Understanding Server Actions� 272
Using a Server Action in ContactForm � 272
Adding server validation� 274

Using useFormStatus � 277
Understanding useFormStatus� 277
Using useFormStatus� 278

Using useActionState� 279

Table of Contentsxii

Understanding useActionState� 279
Using useActionState� 280
Returning state from the Server Action	 280
Adding action state to the form	 282
Adding field errors	 285

Using React Hook Form � 291
Understanding React Hook Form� 291
Understanding client-side validation	 291
Understanding the useForm Hook	 292
Understanding the register function	 292
Specifying validation 	 293
Obtaining validation errors	 294

Handling submission	 294

Using React Hook Form� 295

Implementing optimistic updates � 300
Understanding useOptimistic� 300
Using useOptimistic� 301
Adding an unoptimistic contacts page	 301
Making done optimistic	 302

Summary� 304
Questions� 305
Answers� 306

Part 4: Advanced React� 307

10
State Management� 309

Technical requirements� 309
Understanding the types of state� 310
Server state� 310
Form state� 310
URL state� 310
Local state� 310
Derived state� 311
Shared state� 312

Using prop drilling� 312
Creating the project� 313
Understanding and using prop drilling� 315
Using better composition	 318

Using React context� 320

Understanding React context� 320
Using React context� 321

Using Zustand� 328
Understanding Zustand� 328
Using Zustand� 329

Using TanStack Query
and URL parameters� 332
Using TanStack Query� 333
Using URL parameters� 334

Summary� 336
Questions� 336
Answers� 338

11
Reusable Components� 341

Technical requirements� 342 Creating the project� 342

Table of Contents xiii

Using generic props� 342
Understanding generics � 342
Generic functions	 343
Generic types	 343
The keyof operator	 344
Generic React components	 344

Creating a basic list component� 345

Using prop spreading� 349
Using render props� 351
Understanding the render props pattern� 352
Adding a renderItem prop � 352

Adding checked functionality� 355

Creating custom hooks� 357
Understanding custom hooks� 357
Extracting checked logic into a custom hook� 359

Allowing the internal state
to be controlled� 361
Understanding how the internal state
can be controlled� 361
Allowing checkedIds to be controlled� 363

Summary� 368
Questions� 368
Answers� 370

12
Unit Testing with Vitest and the React Testing Library� 373

Technical requirements� 374
Testing pure functions� 374
Understanding a test� 375
Testing isChecked� 376
Testing exceptions� 378
Running tests� 380

Testing components� 382
Understanding the React Testing Library� 382
A basic component test	 382
Understanding queries	 383

Implementing checklist component tests� 384
Using test IDs� 388

Simulating user interactions� 389

Understanding fireEvent and user-event� 390
Implementing checklist tests
for checking items� 390

Getting code coverage� 393
Installing the code coverage tool� 393
Running code coverage� 394
Understanding the code coverage report� 394
Gaining full coverage on the checklist
component� 397
Ignoring files in the coverage report� 398

Summary� 399
Questions� 400
Answers� 401

Other Books You May Enjoy� 404

Index� 409

Preface

React was built by Meta to provide more structure to its code base and allow it to scale much better. React
worked so well for Facebook that they eventually made it open source. Today, React is the dominant
technology for building frontends; it allows us to build small, isolated, and highly reusable components
that can be composed together to create complex frontends. With advancements such as React Server
Components, React has further expanded its capabilities, enabling developers to seamlessly combine
server-side rendering and client-side interactivity for highly optimized and dynamic applications.

TypeScript was built by Microsoft to help developers more easily develop large JavaScript-based
programs. It is a superset of JavaScript that brings a rich type system to it. This type system helps
developers catch bugs early and allows tools to be created to navigate and refactor code robustly.

This book will teach you how to use both of these technologies to create large, sophisticated frontends
that are easy to maintain, while also exploring modern features such as React Server Components to
enhance performance and productivity.

Who this book is for
If you are a developer who wants to create large and complex frontends with React and TypeScript,
this book is for you. The book doesn’t assume you have any previous knowledge of React or TypeScript
– however, basic knowledge of JavaScript, HTML, and CSS will help you get to grips with the
concepts covered.

What this book covers
Chapter 1, Getting Started with React, covers creating React projects and the fundamentals of building
React components. This includes making a component configurable using props and interactive
using state.

Chapter 2, Getting Started with TypeScript, starts with the fundamentals of TypeScript and its type
system. This includes using inbuilt types as well as creating new types. The chapter then covers creating
a React component with TypeScript types.

Chapter 3, Using React Hooks, details the common React Hooks and their typical use cases. The chapter
also covers how to use the Hooks with TypeScript to make them type-safe.

Chapter 4, Approaches to Styling React Frontends, walks through how to style React components using
several different approaches. The benefits of each approach are also explored.

Prefacexvi

Chapter 5, Using React Server and Client Components, covers how and when to use React Server
Components and Client Components and also how to compose them together.

Chapter 6, Creating a Multi-Page App with Next.js, covers the fundamentals of building multi-page
apps in a popular React framework called Next.js. This includes implementing different pages, links
between them, and page parameters.

Chapter 7, Server Component Data Fetching and Server Function Mutations, demonstrates how React
Server Components can fetch data from a database. The chapter also includes mutating database data
using a React Server Function.

Chapter 8, Client Component Data Fetching and Mutations with TanStack Query, covers how React Client
Components can fetch and mutate data from a database using a popular library called TanStack Query.

Chapter 9, Working with Forms, explores how forms can be implemented using several different
approaches, including the latest React Hooks and a popular forms library.

Chapter 10, State Management, walks through how React state can be shared between different
components. Several approaches are explored along with their benefits.

Chapter 11, Reusable Components, brings in several patterns for making React components highly
reusable but still type-safe.

Chapter 12, Unit Testing with Vitest and the React Testing Library, first delves into how functions can
be tested with Vitest. The chapter then moves on to how React components can be tested with the
help of the React Testing Library.

To get the most out of this book
To follow along with this book, you’ll need to have the following technologies installed on your
Windows or macOS computer:

•	 A modern browser, such as Google Chrome, which you can download from https://www.
google.com/chrome

•	 Node.js and npm, available at https://nodejs.org/en/download

•	 Visual Studio Code, downloadable from https://code.visualstudio.com

Software/hardware covered in the book

React 19 or later

Next.js 15 or later

TypeScript 5 or later

https://www.google.com/chrome
https://www.google.com/chrome
https://nodejs.org/en/download
https://code.visualstudio.com

Preface xvii

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/.
If there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We used
the Form component from Next.js to optimize the form submission performance.”

A block of code is set as follows:

export default function Home() {
 return (
 <main>
 </main>
);
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

import Form from ‘next/form’;
export function ContactForm() {
 return (
 <Form ... >
 ...
 </Form>
);
}

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexviii

Any command-line input or output is written as follows:

npm run dev

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “In the running app, try clicking the
Done button to mark an item as done.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

﻿ xix

Share Your Thoughts
Once you’ve read Learn React with TypeScript, Third Edition, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1836643179

Download a Free PDF Copy of This Book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836643173

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781836643173

Part 1:
Introduction

This part will get you started with both React and TypeScript, learning how to create a new project
and implement interactive type-safe components. We will also learn about React’s common Hooks
in detail and the cases in which they are used in applications.

This part has the following chapters:

•	 Chapter 1, Getting Started with React

•	 Chapter 2, Getting Started with TypeScript

•	 Chapter 3, Using React Hooks

1
Getting Started with React

Facebook has become an incredibly popular app. As its popularity has grown, so has the demand for
new features. React is Meta’s answer to helping more people work on the Facebook code base and
deliver features more quickly. React has worked so well for Facebook that Meta eventually made it
open source. Today, React is a mature library for building component-based frontends that is extremely
popular and has a massive community and ecosystem.

TypeScript is also a popular, mature library maintained by another big company, Microsoft. It allows
users to add a rich type system to their JavaScript code, helping them be more productive, particularly
in large code bases.

This book will teach you how to use these awesome libraries to build robust frontends that are easy
to maintain. The first two chapters in the book will introduce React and TypeScript separately. You’ll
then learn how to use React and TypeScript together to compose robust components with strong
typing. There is a whole chapter on the recently released React Server Components (RSCs), which
offer significant performance and productivity gains. The book covers all the key topics you’ll need
to build a web frontend, such as styling, forms, data fetching, and data mutation.

In this chapter, we will introduce React and understand its benefits. We will then build a simple React
component, learning about the component syntax and how to make it configurable. After that, we
will learn how to make a component interactive using component state and events. At the end of the
chapter, we will learn how to use React’s development tools.

By the end of this first chapter, you’ll be able to create simple React components and will be ready to
learn how to strongly type them with TypeScript.

In this chapter, we’ll cover the following topics:

•	 Understanding the benefits of React

•	 Setting up a React project

•	 Understanding the structure of a React app

•	 Creating a component

Getting Started with React4

•	 Using props

•	 Using state

•	 Using events

•	 Using React developer tools

Technical requirements
We use the following tools in this chapter:

•	 Browser: A modern browser such as Google Chrome.

•	 Terminal: We will use a terminal to execute commands to create a React project. The default
terminal available in your operating system will work fine.

•	 Visual Studio Code: We need a code editor to create our first React component. Visual Studio
Code is a popular editor that we’ll use throughout this book. This can be downloaded and
installed from https://code.visualstudio.com.

•	 Node.js and npm: Node.js will be required to build our React app and run it on a development
server. npm is a package manager that allows us to easily install libraries into our app. These
tools come together and can be downloaded and installed from https://nodejs.org/
en/download.

All the code snippets in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter01.

Understanding the benefits of React
Before we start creating our first React component, in this section, we will understand what React is
and explore some of its benefits.

React is an incredibly popular frontend library. We have already mentioned that Meta uses React for
Facebook, but many other famous companies use it too, such as Netflix, Uber, and Airbnb. React’s
popularity has resulted in a huge ecosystem surrounding it that includes great tools, popular libraries,
and many experienced developers.

One reason for React’s popularity is that it is simple. This is because it focuses on doing one thing very
well – providing a powerful mechanism for building UI components. Components are pieces of the
UI that can be composed together to create a frontend. Furthermore, components can be reusable so
that they can be used on different screens or even in other apps.

https://code.visualstudio.com
https://nodejs.org/en/download
https://nodejs.org/en/download
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01

Creating a React project 5

React’s narrow focus means it can be incorporated into an existing app, even if it uses a different
framework. This is because it doesn’t need to take over the whole app to run; it is happy to run as
part of an app’s frontend.

React components are displayed performantly using a virtual Document Object Model (DOM).
You may be familiar with the real DOM – it provides the structure for a web page. However, changes
to the real DOM can be costly, leading to performance problems in an interactive app. React solves
this performance problem by using an in-memory representation of the real DOM called a virtual
DOM. Before React changes the real DOM, it produces a new virtual DOM and compares it against
the current virtual DOM to calculate the minimum amount of changes required to the real DOM.
The real DOM is then updated with those minimum changes.

React’s recent addition of Server Components enables very performant data fetching and reduces the
amount of JavaScript sent from the server to the browser. Couple this with React server functions
and you also have an extremely productive development experience.

React Native, a framework based on React, allows us to build cross-platform apps for iOS and Android,
similar to how we use React to build web applications. The core React development skills are the same
across both technologies, and code can be shared and reused as well.

The fact that Meta uses React for Facebook is a major benefit because it ensures that it is of the highest
quality – React breaking Facebook is not good for Meta! It also means a lot of thought and care goes
into ensuring new versions of React are cheap to adopt, which helps reduce the maintenance costs
of an app.

React’s simplicity means it is easy and quick to learn. There are many great learning resources, such
as this book. There is also a range of tools that make it very easy to scaffold a React app – one such
tool is called Vite, which we will learn about later in this chapter.

Now that we are starting to understand React, we will create our first React project in the next section.

Creating a React project
In this section, we will create a React project and configure Visual Studio Code to work optimally
with it. We will also cover how to run a React app in development mode and also how to produce a
production build.

We will create a React project using Vite, a popular build tool and development server for React apps.
Carry out the following steps:

1.	 In a terminal, in a folder of your choice, execute the following command to instruct Vite to
create a project:

npm create vite@latest

Getting Started with React6

2.	 A prompt for the project name appears. The project name will be the folder name containing
the project code. So, enter a name of your choice and press Enter.

Figure 1.1 – Creating a Vite project

3.	 A prompt now appears for the framework for the project. Select React by using the down arrow
key to move to React and press Enter.

Figure 1.2 – Selecting the React framework

4.	 Lastly, the variant is prompted for. Select JavaScript, using the down arrow key, and press Enter.
Note that we will explore the TypeScript option in the next chapter.

5.	 The project is created in the folder name you chose. The terminal lists the following three
commands that it suggests should be run:

	� cd <your-project-name>: This will change the working directory to the one just created

	� npm install: This will install npm packages that the initial project depends on

	� npm run dev: This will run the app in development mode

6.	 Run the first two suggested commands in the terminal so that the project is the working directory
and the project dependencies are installed.

Next, we are going to inspect the project before running the last suggested command to run the app
in development mode.

Creating a React project 7

Understanding the project

Now that the project is created, we are going to take some time to understand the folders and files
that Vite has created. Carry out the following steps:

1.	 Open Visual Studio Code in the project directory. This can be done using the following
command in the terminal:

code .

2.	 Look at the folders and files in the project in the Explorer panel on the left. The following are
brief descriptions of these:

	� node_modules: This contains all dependent npm packages and was created when they
were installed in the project using the npm install command.

	� Public: This stores static assets such as images to be served at the root path (/).

	� Src: This holds our source code files, including the following:

	� main.jsx: Contains logic for loading the React app into the root web page, index.html

	� index.css: Global styles for the app

	� App.jsx: The top-level React component called App

	� App.css: Styles for the App component

	� .gitignore: This specifies which folders and files are to be ignored by Git.

	� eslint.config.js: This is a configuration file for ESLint, which is a tool that checks
code for potential errors and deviations from coding standards.

	� index.html: This is the root web page. The React app is loaded into this at runtime.

	� package.json: This defines the project name, version, dependencies, scripts, and other
project metadata.

	� package-lock.json: This holds exact versions for dependencies, ensuring consistency
when the project is run in different environments.

	� README.md: This contains information about the Vite template used to create the project. It
is typically overwritten with information about the app being developed, such as an overview
and steps to set up the development environment.

	� vite.config.js: This contains the configuration for Vite. For this project, a Vite React
plugin has been specified.

Now that we are starting to understand the folders and files in the React project, we’ll fully set up linting.

Getting Started with React8

Adding linting to Visual Studio Code

Linting is the process of checking code for potential problems. It is common practice to use linting
tools to catch problems early in the development process as code is written. ESLint is a popular tool
that can lint React and TypeScript code. Fortunately, Vite has already installed and configured ESLint
in our project.

Editors such as Visual Studio Code can be integrated with ESLint to highlight potential problems.
Carry out the following steps to install an ESLint extension into Visual Studio Code:

1.	 Open up the EXTENSIONS area in Visual Studio Code. The Extensions option is in the
Preferences menu in the File menu on Windows or the Settings… menu in the Code menu
on a Mac.

2.	 A list of extensions will appear on the left-hand side and the search box above the extensions
list can be used to find a particular extension. Enter eslint into the extensions list search box.

Figure 1.3 – Visual Studio Code ESLint extension

An extension by Microsoft called ESLint should appear at the top of the list.

3.	 Click the Install button to install the extension.

4.	 Now, we need to make sure the ESLint extension is configured to check React and TypeScript.
So, open the Settings area in Visual Studio Code. The Settings option is in the Preferences
menu in the File menu on Windows or the Settings… menu in the Code menu on a Mac.

5.	 In the Settings search box, enter eslint: probe and select the Workspace tab:

Creating a React project 9

Figure 1.4 – Visual Studio Code ESLint Probe settings

This setting defines the languages to use when ESLint checks code.

6.	 Make sure that typescript and typescriptreact are on the list. If not, add them using the Add
Item button.

The ESLint extension for Visual Studio Code is now installed and configured in the project.

7.	 Before we move on, there is one ESLint rule we are going to switch off, which is the checking of
React component prop types. We won’t be using this React feature because we will eventually
be strongly typing React components using TypeScript. Open eslint.config.js and add
the highlighted line to the rules field to switch this rule off:

rules: {
 ...,
 ‘react/prop-types’: ‘off’,
}

Getting Started with React10

For more information about ESLint, see the following link: https://eslint.org/.

Next, we will add automatic code formatting to the project.

Adding code formatting

The next tool we will set up automatically formats code. Automatic code formatting ensures code
is consistently formatted, which helps its readability. Having consistently formatted code also helps
developers see the important changes in a code review – rather than differences in formatting.

Prettier is a popular tool capable of formatting React and TypeScript code. Unfortunately, Vite
doesn’t install and configure this for us. Carry out the following steps to install and configure Prettier
in the project:

1.	 Install Prettier using the following command in the terminal in Visual Studio Code:

npm install --save-dev prettier

The --save-dev option specifies that prettier should be installed as a development-only
dependency. This is because Prettier is only required during development and not at runtime.

A shortened version of this command is as follows:
npm i -D prettier

Here, i is short for install, and -D is short for --save-dev.

2.	 Prettier has overlapping style rules with ESLint, so install the following library to allow Prettier
to take responsibility for the styling rules from ESLint:

npm i -D eslint-config-prettier

3.	 The ESLint configuration needs to be updated to allow Prettier to manage the styling rules.
Open the eslint.config.js file, which is at the root of the project, and add the following
highlighted lines:

...
import prettier from “eslint-config-prettier”;

export default [
 ...,
 prettier
];

https://eslint.org/

Creating a React project 11

4.	 Prettier can be configured in a file called .prettierrc.json. Create this file with the
following content in the root folder:

{
 “printWidth”: 100,
 “singleQuote”: true,
 “semi”: true,
 “tabWidth”: 2,
 “trailingComma”: “all”,
 “endOfLine”: “auto”
}

We have specified the following:

	� Lines wrap at 100 characters

	� String qualifiers are single quotes

	� Semicolons are placed at the end of statements

	� The indentation level is two spaces

	� A trailing comma is added to multi-line arrays and objects

	� Existing line endings are maintained

Note
More information on the configuration options can be found at the following link: https://
prettier.io/docs/en/options.html.

Prettier is now installed and configured in the project.

Visual Studio Code can integrate with Prettier to automatically format code when source files are
saved. So, let’s install a Prettier extension in Visual Studio Code:

1.	 Open the EXTENSIONS area in Visual Studio Code and enter prettier into the extensions
list search box. An extension called Prettier - Code formatter should appear at the top of the list:

Figure 1.5 – Visual Studio Code Prettier extension

https://prettier.io/docs/en/options.html
https://prettier.io/docs/en/options.html

Getting Started with React12

2.	 Click the Install button to install the extension.

3.	 Next, open the Settings area in Visual Studio Code. Select the Workspace tab and make sure
the Format On Save option is ticked:

Figure 1.6 – Visual Studio Code Format On Save setting

This setting tells Visual Studio Code to automatically format code in files that are saved.

4.	 There is one more setting to set. This is the default formatter that Visual Studio Code should
use to format the code. Click the Workspace tab and make sure Default Formatter is set to
Prettier - Code formatter:

Figure 1.7 – Visual Studio Code Default Formatter setting

Creating a React project 13

The Prettier extension for Visual Studio Code is now installed and configured in the project. Next,
we will run the app in development mode.

Starting the app in development mode

Vite has a development server that the project’s app can run on. Carry out the following steps to run
the app in development mode:

1.	 Vite has already created an npm script called dev, which runs the app in development mode.
Run this script in the terminal as follows:

npm run dev

2.	 The app will start running on the Vite development server on localhost on port 5173 by default
(the port can be changed in Vite’s configuration). The browser URL for the app will appear in
the terminal, which is http://localhost:5173/ by default. Go to this URL in a browser
and you’ll see the app running:

Figure 1.8 – The React app running in development mode

http://localhost:5173/

Getting Started with React14

Vite not only serves the app on its development server but it also transpiles React components
into JavaScript code that can run in the browser. It does all this incredibly fast!

3.	 We will make a simple change to the code now while the app is still running. In the code editor,
open the index.html file at the project’s root. Find the HTML title element, which
specifies the title that appears on the browser tab.

4.	 Make a change to the contents of the title element by putting an exclamation mark at the
end of it:

<title>Vite + React!</title>

Notice that the browser tab title updates immediately after you save the changes to the index.
html file:

Figure 1.9 – Updated app title

Vite automatically does any required transpilation and reloads the app in the browser in a very
efficient manner.

5.	 Stop the app from running before continuing. The shortcut key for stopping the app is Ctrl + C.

We have now seen how Vite provides a productive development experience. Next, we will produce
a production build.

Producing a production build

A production build transpiles React components into JavaScript code similar to when running the
app in development mode. However, it carries out several other processes on top of this so that the
app runs in a performant manner in production.

One of the processes is minification. Minification is the process of removing all unnecessary characters
from source code without impacting its functionality, which includes removing whitespace and
comments and shortening variable names. This results in a smaller file size, leading to faster load times.

Another process also involves merging files so that the code is downloaded and executed in a
performant manner in production. This process is often referred to as bundling, and the output file
is often referred to as a bundle. Bundles are often separated into smaller chunks to decrease the app’s
load time (e.g., a bundle per page in the app). Bundlers also tree-shake redundant code out, to keep
the size of the bundles as small as possible for better performance.

Understanding the structure of a React app 15

Carry out the following steps to produce a production build of our app:

1.	 Vite has already created an npm script called build that produces all the artifacts for deployment
to production. Run this script in the terminal as follows:

npm run build

After a few seconds, the deployment artifacts are placed in a dist folder.

2.	 Open the dist folder – it contains many files. The root file is index.html, which references
the other JavaScript, CSS, and image files. Open some of the files and view their content; you’ll
see that they are optimized for production with whitespace removed and the JavaScript minified.

This completes the production build and the React project setup with Vite. Here’s a recap of the key
points for creating a React project with Vite:

•	 Vite can quickly set up a React project using the npm create vite@latest command.

•	 Vite sets up many useful project features, such as linting. Using the ESLint Visual Code extension
improves the linting experience when writing code.

•	 One feature that Vite doesn’t set up is automatic code formatting. However, Prettier can be
installed and configured to provide this capability.

•	 The app can be run in development code using the npm run dev command, and a production
build can be created with npm run build.

Keep this project safe because we will continue to use it in the next section when we understand the
structure of a React app.

Understanding the structure of a React app
In this section, we will explore the entry point of the React app created in the last section and how
it is loaded into the HTML page. We will then learn about the React component tree and how a
component is defined.

Understanding the React entry point

The entry point of this React app is in the main.jsx file in the src folder. Open this file and inspect
its contents. It contains a call to React’s createRoot function as follows:

createRoot(document.getElementById(‘root’)).render(
 <StrictMode>
 <App />
 </StrictMode>,
)

Getting Started with React16

Here’s an explanation of this code:

•	 As the name suggests, createRoot creates a root in the HTML document for the React
components. createRoot takes in a DOM element for where to place the React components,
which is the element that has the ID of ‘root’ in this case.

•	 createRoot returns an object containing a render function. The render function takes
in the React components to display in the root DOM element. This displaying process is often
referred to as rendering. In this case, the React components to display are an App component
inside a StrictMode component. The syntax for the React components to display is JSX.

Note
JSX stands for JavaScript XML, which is a syntax extension for JavaScript that allows developers
to write HTML-like code within JavaScript/TypeScript. It enables the creation of React
components in a readable and declarative way, making it easy to visualize the UI structure.
JSX needs to be transpiled into regular JavaScript function calls using a tool such as Babel.
For more information on JSX, see the following link: https://react.dev/learn/
writing-markup-with-jsx.

•	 The StrictMode component is a special React component that helps identify potential
problems. It activates additional checks and outputs warnings to the browser console in
development mode.

Next, we will take some time to understand the React component tree.

Understanding the React component tree

A React app is structured in a tree of components. The root component is the component at the top
of the tree. In our project, the root component is the StrictMode component.

React components can be nested inside another React component. The App component is nested
inside the StrictMode component in our project. This is powerful because any component can be
placed inside StrictMode – it doesn’t necessarily need to be App.

React components can output one or more other React components. The following is an example of
a React component tree:

https://react.dev/learn/writing-markup-with-jsx
https://react.dev/learn/writing-markup-with-jsx

Understanding the structure of a React app 17

Figure 1.10 – A React component tree

If our App component rendered other React components (Header, Main, and Footer), the
component tree would be as in the preceding figure.

Next, we’ll start to understand how a React component is defined.

Understanding a React component

We will now understand the implementation of a basic React component.

Open App.jsx, which contains the definition for the App component. We won’t fully understand
the component at this stage, but notice it’s just a regular JavaScript function.

Let’s focus on what the function returns – it returns JSX representing the UI. Notice that the JSX
references HTML elements such as div, a, h1, button, and p. So, JSX can output HTML elements
as well as other React components. The App component currently only outputs HTML elements and
not any other React components.

Notice the top-level JSX element in the return statement, <>, that doesn’t have a name. This is a React
fragment, which provides a way to group elements without creating a DOM element.

Still focusing on the JSX, notice the JavaScript code in curly brackets. For example, look at the JSX
for the button element:

<button onClick={() => setCount((count) => count + 1)}>
 count is {count}
</button>

The onClick attribute is set to an anonymous JavaScript function that calls another function called
setCount. We will understand what the onClick attribute does later in this chapter – the key
point for now is that JSX can include JavaScript. Notice also that the button content also contains
a reference to a JavaScript variable called count. Referencing JavaScript functions and variables in
JSX allows component output to be dynamic.

Getting Started with React18

That brings us to the end of this section. Let’s recap:

•	 The entry point of a Vite React app is located in the main.jsx file, where the createRoot
function is used to render React components

•	 A React app is structured into a tree of components

•	 A React component is a regular JavaScript function that returns JSX representing the dynamic UI

Next, it is time to create a React component.

Creating a component
In this section, we will create a React component and reference this within the App component.

Creating a basic Alert component

We are going to create a component that displays an alert, which we will simply call Alert. It will
consist of an icon, a heading, and a message.

Note
A React component name must start with a capital letter. If a component name starts with a
lowercase letter, it is treated as a DOM element and won’t render properly.

Carry out the following steps to create the component in the project:

1.	 Create a new file in the src folder called Alert.jsx.

Note
The filename for component files isn’t important to React or the React transpiler. It is common
practice to use the same name as the component, either in Pascal or snake case. However, the file
extension must be .js or .jsx for React transpilers to recognize these as React components.

2.	 Open the Alert.jsx file and enter the following code in it:

function Alert() {
 return (
 <div>
 <div>

 ⚠
 Oh no!
 </div>

Creating a component 19

 <div>Something went wrong</div>
 </div>
);
}

Remember that the code snippets are available online to copy. The link to the preceding snippet
can be found at https://github.com/PacktPublishing/Learn-React-with-
TypeScript-Third-Edition/tree/main/Chapter01/creating-a-component.

The component renders the following items:

	� A warning icon (note that this is a warning emoji)

	� A title: Oh no!

	� A message: Something went wrong

Note
The role and aria-label attributes have been added to the span element containing the
warning icon to help screen readers understand that this is an image with a title of warning.

For more information on the img role, see https://developer.mozilla.org/en-
US/docs/Web/Accessibility/ARIA/Roles/img_role.

For more information on the aria-label attribute, see https://developer.mozilla.
org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-label.

3.	 Alternatively, a React component can be implemented using arrow function syntax. The following
code snippet is an arrow syntax version of the Alert component:

const Alert = () => {
 return (
 <div>
 <div>

 ⚠

 Oh no!
 </div>
 <div>Something went wrong</div>
 </div>
);
};

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01/creating-a-component
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01/creating-a-component
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/img_role
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/img_role
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-label
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-label

Getting Started with React20

Note
There aren’t any significant differences between arrow functions and normal functions in
the context of React function components. So, it is down to personal preference which one
you choose. This book generally uses regular function syntax because it has fewer characters
to type; however, if you wish, you can find more information on JavaScript arrow functions
here: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Functions/Arrow_functions.

Congratulations, you have created your first React component!

There is a linting error in the file we have just created, highlighted by ESLint. The error is that the
Alert component is unused. Ignore the error for now – we’ll resolve it later in this chapter.

Figure 1.11 – ESLint error

If the app was running, the Alert component wouldn’t appear in the browser yet. This is because it
hasn’t been added to the React component tree yet. We’ll do this in the next section.

Adding Alert to the App component

Going back to the Alert component in our project, we will reference Alert in the App component.
We will also remove the existing content in the App component so that it only renders the alert. To
do this, carry out the following steps:

1.	 First, we need to export the Alert component so that it is available in other files. Open
Alert.jsx and add the export keyword before the Alert function:

export function Alert() {
 ...
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Creating a component 21

Note
It is common practice to have each React component in a separate file. This helps prevent files
from becoming too large and helps the readability of the code base.

Notice that the ESLint error is now resolved because Alert can now potentially be used by
other files.

2.	 Now, we can import Alert into the App.jsx file. Open App.jsx and add the following
import statement at the top of the file:

import { Alert } from ‘./Alert’;

3.	 Remove the other import statements so that the alert is in the only import.

4.	 We can now reference Alert in the App component’s JSX. Replace the App component
definition with the following so that it only renders the alert:

function App() {
 return <Alert />;
}

5.	 Run the app in development mode by executing the npm run dev command in the terminal
and opening the app’s URL in a browser. The component will now display in the browser on
the page:

Figure 1.12 – Alert component in the app

Getting Started with React22

Nice! If you have noticed that the Alert component isn’t styled nicely, don’t worry – we will learn
how to style it in Chapter 4, Approaches to Styling React Frontends.

Here’s a recap of this section:

•	 React component names start with an uppercase letter, and the filename should have a .js
or .jsx extension.

•	 We created an Alert component that displays a warning icon, a title, and a message.

•	 Generally, a React component is structured in its own file and so needs to be exported before
being referenced in another React component. We exported the Alert component and
imported and used it within the App component.

Next, we will learn how to make the Alert component a little more flexible.

Using props
Currently, the Alert component is pretty inflexible. For example, the alert consumer can’t change
the heading or the message. At the moment, the heading or the message needs to be changed within
Alert itself. Props solve this problem, and we will learn about them in this section.

Note
Props is short for properties. The React community often refers to these as props, so we will
do so in this book.

Understanding props

The props parameter is an optional parameter that is passed into a React component. This parameter
is an object containing the properties of our choice, allowing a parent component to pass data. The
following code snippet shows a props parameter in a ContactDetails component:

function ContactDetails(props) {
 console.log(props.name);
 console.log(props.email);
 ...
}

The props parameter contains the name and email properties in the preceding code snippet.

Note
The parameter doesn’t have to be named props, but it is common practice.

Using props 23

Props are passed into a component in JSX as attributes. The prop names must match what is defined in
the component. Here is an example of passing props into the preceding ContactDetails component:

<ContactDetails name=”Fred” email=”fred@somewhere.com” />

So, props make the component output flexible. Consumers of the component can pass appropriate
props into the component to get the desired output.

Next, we will add some props to the Alert component we have been working on.

Adding props to the Alert component

In the project, carry out the following steps to add props to the Alert component to make it
more flexible:

1.	 Start by running the app in development mode if it’s not already running. Do this by running
the npm run dev command in the terminal.

2.	 Open Alert.jsx and add a props parameter to the function:

export function Alert(props) {
 ...
}

3.	 We will define the following props for the alert:

	� type: This will either be “information” or “warning” and will determine the icon
in the alert.

	� heading: This will determine the heading of the alert.

	� children: This will determine the content of the alert. The children prop is actually
a special prop used for the main content of a component.

Update the Alert component’s JSX to use the props as follows:
export function Alert(props) {
 return (
 <div>
 <div>
 <span
 role=”img”
 aria-label={
 props.type === ‘warning’
 ? ‘Warning’
 : ‘Information’
 }
 >

Getting Started with React24

 {props.type === ‘warning’ ? ‘⚠’ : ‘ℹ’}

 {props.heading}
 </div>
 <div>{props.children}</div>
 </div>
);
}

You may notice that the Alert component in the browser now displays nothing other than
an information icon (this is an information emoji); this is because the App component isn’t
passing any props to Alert yet.

4.	 Open App.jsx and update the Alert component in the JSX to pass in props as follows:

export default function App() {
 return (
 <div className=”App”>
 <Alert type=”information” heading=”Success”>
 Everything is really good!
 </Alert>
 </div>
);
}

Notice that the Alert component is no longer self-closing so Everything is really
good! can be passed into its content. The content is passed to the children prop.

The app now displays the configured Alert component:

Figure 1.13 – Configured Alert component in the app

5.	 We can clean up the Alert component code a little by destructuring the props parameter.

Note
Destructuring is a JavaScript feature that allows properties to be unpacked from an object. For
more information, see the following link: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Operators/Destructuring_assignment.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Using props 25

6.	 Open Alert.jsx again, destructure the function parameter, and use the unpacked props
as follows:

export function Alert({ type, heading, children }) {
 return (
 <div>
 <div>
 <span
 role=”img”
 aria-label={
 type === ‘warning’ ? ‘Warning’ : ‘Information’
 }
 >
 {type === ‘warning’ ? ‘⚠’ : ‘ℹ’}

 {heading}
 </div>
 <div>{children}</div>
 </div>
);
}

This is a little cleaner because we use the unpacked props directly rather than having to reference
them through the props parameter.

7.	 We want the type prop to default to “information”. Define this default as follows:

export function Alert({
 type = ‘information’,
 heading,
 children
}) {
 ...
}

That completes the implementation of the props in the Alert component for now. Here’s a quick
recap on props:

•	 Props allow a component to be configured by the consuming JSX and are passed as JSX attributes

•	 Props are received in the component definition in an object parameter and can then be used
in its JSX

Next, we will continue to make the Alert component more sophisticated by allowing it to be closed
by the user.

Getting Started with React26

Using state
React component state is a special variable that may change over the lifecycle of a component. In
this section, we’ll learn about the state variable and use it within our Alert component. We will
use state to allow the alert to be closed by the user.

Understanding state

There isn’t a predefined list of states; we define what’s appropriate for a given component. Some components
won’t even need any state – the Alert component hasn’t required a state for the requirements so far.

The state is a key part of making a component interactive. When a user interacts with a component,
the component’s output may need to change. A change to the state causes the component to refresh,
more often referred to as re-render.

The state is defined using a useState function from React. The useState function is one of React’s
Hooks. There is a whole chapter on React Hooks in Chapter 3, Using React Hooks.

The syntax for useState is as follows:

const [state, setState] = useState(initialState);

Here are the key points:

•	 The initial state value is passed into useState. If no value is passed, it will initially
be undefined.

•	 useState returns a tuple containing the current state value and a function to update the
state value. The tuple is destructured in the preceding code snippet.

•	 The state variable name is state in the preceding code snippet, but we can choose any
meaningful name.

•	 We can also choose the state setter function name, but it is common practice to use the same
name as the state variable preceded by set.

•	 Multiple states can be defined by defining multiple instances of useState. For example, here
are definitions for loading and error states:

const [loading, setLoading] = useState(true);
const [error, setError] = useState();

Next, we will implement state in the Alert component to determine whether it is visible or not.

Using state 27

Implementing a visible state in the Alert component

We will begin by implementing a feature in the Alert component that allows the user to close it.
A key part of that feature is controlling the alert’s visibility, which we will do with a visible state.
This state will either be true or false and it will initially be set to true.

Follow these steps to implement a visible state in Alert:

1.	 If the app isn’t already running, do so by running the npm run dev command in the terminal.

2.	 Open Alert.jsx in the project.

3.	 Add the following import statement at the top of the file to import the useState Hook
from React:

import { useState } from ‘react’;

4.	 Define the visible state as follows in the component definition:

export function Alert(...) {
 const [visible, setVisible] = useState(true);
 return (
 ...
);
}

5.	 After the state declaration, add a condition that returns null if the visible state is false.
This means nothing will be rendered:

export function Alert(...) {
 const [visible, setVisible] = useState(true);
 if (!visible) {
 return null;
 }
 return (
 ...
);
}

The component will render in the app the same as before because the visible state is true.
Try changing the initial state value to false, and you will see it disappear.

Currently, the Alert component is making use of the visible state’s value by not rendering
anything if it is false. However, the component isn’t updating the visible state yet – that is,
setVisible is unused at the moment. We will update the visible state after implementing a
close button, which we will do next.

Getting Started with React28

Adding a close button to Alert

We will add a close button to the Alert component to allow the user to close it. We will make this
configurable so that the alert consumer can choose whether the close button is rendered.

Carry out the following steps:

1.	 Start by opening Alert.jsx and adding a closable prop:

export function Alert({
 type = “information”,
 heading,
 children,
 closable
}) {
 ...
}

The consumer of the Alert component will use the closable prop to specify whether the
close button appears.

2.	 Add a close button between the heading and content as follows:

export function Alert(...) {
 ...
 return (
 <div>
 <div>
 ...
 {heading}
 </div>
 <button aria-label=”Close”>
 ❌
 </button>
 <div>{children}</div>
 </div>
);
}

Notice that the span element that contains the close icon is given an “img” role and a
“Close” label to help screen readers. Likewise, the button is also given a “Close” label to
help screen readers.

Using state 29

The close button appears in the Alert component as follows:

Figure 1.14 – The close button in the Alert component

3.	 At the moment, the close button will always render rather than just when the closable
prop is true. We can use a JavaScript logical AND short circuit expression (represented by
the && characters) to render the close button conditionally. To do this, make the following
highlighted changes:

import { useState } from ‘react’;

export function Alert(...) {
 ...
 return (
 <div>
 <div>
 ...
 {heading}
 </div>
 {closable && (
 <button aria-label=”Close”>

 ❌

 </button>
)}
 <div>{children}</div>
 </div>
);
}

If closable is a falsy value, the expression will short-circuit and, consequently, not render
the button. However, if closable is truthy, the button will be rendered.

Getting Started with React30

Note
See the following link for more information about logical AND short-circuit expressions: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Operators/Logical_AND.

See the following link for JavaScript’s falsy values: https://developer.mozilla.org/
en-US/docs/Glossary/Falsy and https://developer.mozilla.org/en-
US/docs/Glossary/Truthy for truthy values.

4.	 Open App.jsx and pass the closable prop into Alert:

export default function App() {
 return (
 <div className=”App”>
 <Alert
 type=”information”
 heading=”Success”
 closable
 >
 Everything is really good!
 </Alert>
 </div>
);
}

Notice that a value hasn’t been explicitly defined on the closable attribute. We could have
passed the value as follows:

closable={true}

However, there is no need to pass the value on a Boolean attribute. If the Boolean attribute is
present on an element, its value is automatically true.

When the closable attribute is specified, the close button appears in the Alert component
as it did before, in Figure 1.13. When the closable attribute isn’t specified, the close
button doesn’t appear:

Figure 1.15 – The close button is not in the Alert component when closable is not specified

Excellent!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND
https://developer.mozilla.org/en-US/docs/Glossary/Falsy
https://developer.mozilla.org/en-US/docs/Glossary/Falsy
https://developer.mozilla.org/en-US/docs/Glossary/Truthy
https://developer.mozilla.org/en-US/docs/Glossary/Truthy

Using events 31

Here is a quick recap of what we have learned so far about React state:

•	 State is defined using React’s useState Hook

•	 The initial value of the state can be passed into the useState Hook

•	 useState returns a state variable that can be used to render elements conditionally

•	 useState also returns a function that can be used to update the value of the state

You may have noticed that the close button doesn’t actually close the alert. In the next section, we
will rectify this as we learn about events in React.

Using events
Events are another key part of allowing a component to be interactive. In this section, we will
understand what React events are and how to use events on DOM elements. We will also learn how
to create our own React events.

We will continue to expand the Alert component’s functionality as we learn about events. We will
start by finishing the close button implementation before creating an event for when the alert has
been closed.

Understanding events

Browser events happen as the user interacts with DOM elements. For example, clicking a button raises
a click event from that button.

Logic can be executed when an event is raised. For example, an alert can be closed when its close
button is clicked. A function called an event handler (sometimes referred to as an event listener)
can be registered on an element for an event that contains the logic to execute when that particular
event happens.

Note
See the following link for more information on browser events: https://developer.
mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events.

Events in React events are very similar to browser-native events. In fact, React events are a wrapper
on top of the browser’s native events.

Event handlers in React are generally registered to an element in JSX using an attribute. The following
code snippet registers a click event handler called handleClick on a button element:

<button onClick={handleClick}>...</button>

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Building_blocks/Events

Getting Started with React32

Next, we will return to our Alert component and implement a click handler on the close
button that closes the alert.

Implementing a close button click handler in the alert

At the moment, our Alert component contains a close button, but nothing happens when it is
clicked. The alert also contains a visible state that dictates whether the alert is shown. So, to finish
the close button implementation, we need to add an event handler when it is clicked that sets the
visible state to false. Carry out the following steps to do this:

1.	 If the app isn’t already running, do so by running the npm run dev command in the terminal.

2.	 Open Alert.jsx and register a click handler on the close button as follows:

<button aria-label=”Close” onClick={handleCloseClick}>

We have registered a click handler called handleCloseClick on the close button.

3.	 We then need to implement the handleCloseClick function in the component. Create
an empty function to start with, just above the return statement:

export function Alert(...) {
 const [visible, setVisible] = useState(true);
 if (!visible) {
 return null;
 }
 function handleCloseClick() {}
 return (
 ...
);
}

This may seem a little strange because we have put the handleCloseClick function inside
another function, Alert. The handler needs to be inside the Alert function so that it has
access to props and state.

Arrow function syntax can be used for event handlers if preferred. An arrow function version
of the handler is as follows:

export function Alert(...) {
 const [visible, setVisible] = useState(true);
 if (!visible) {
 return null;
 }
 const handleCloseClick = () => {}
 return (
 ...

Using events 33

);
}

Event handlers can also be added directly to the element in JSX as follows:
<button aria-label=”Close” onClick={() => {}}>

In the Alert component, we will stick to the named handleCloseClick event
handler function.

4.	 Now, we can use the visible state setter function to make the visible state false in
the event handler:

function handleCloseClick() {
 setVisible(false);
}

If you click the close button in the app, the alert disappears. Nice!

Note that the browser’s reload option can be used to reload the app and make the Alert
component reappear.

Next, we will extend the close button to raise an event when the alert closes.

Implementing an alert close event

We will now create a custom event in the Alert component. The event will be raised when the alert
is closed so that consumers can execute logic when this happens.

A custom event in a component is implemented by using a prop. The prop is a function that is called
to raise the event.

To implement an alert close event, follow these steps:

1.	 Start by opening Alert.jsx and add a prop for the event:

export function Alert({
 type = “information”,
 heading,
 children,
 closable,
 onClose
}) {}

We have called the prop onClose.

Note
It is common practice to start an event prop name with on.

Getting Started with React34

2.	 In the handleCloseClick event handler, raise the close event after the visible state
is set to false:

function handleCloseClick() {
 setVisible(false);
 if (onClose) {
 onClose();
 }
}

Notice that we only invoke onClose if it is defined and passed as a prop by the consumer.
This means that we aren’t forcing the consumer to handle this event.

3.	 We can now handle when an alert is closed in the App component. Open App.jsx and add
the following event handler to Alert in the JSX:

<Alert
 type=”information”
 heading=”Success”
 closable
 onClose={() => console.log(“closed”)}
>
 Everything is really good!
</Alert>;

We have used an inline event handler this time.

4.	 In the app, if you click the close button and look at the console, you will see that closed has
been output:

Figure 1.16 – Console output after the alert is closed

That completes the close event and the implementation of the alert for this chapter.

Here’s what we have learned about React events:

•	 Events, along with state, allow a component to be interactive

•	 Event handlers are functions that are registered on elements in JSX

•	 A custom event can be created by implementing a function prop and invoking it to raise the event

Using React developer tools 35

The component we created in this chapter is a function component. You can also create components
using classes. For example, a class component version of the Alert component is at https://
github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/
tree/main/Chapter01/class-component. However, function components are dominant
in the React community. Here are a few of the reasons why:

•	 Generally, they require less code to implement

•	 Logic inside the component can be more easily reused

•	 React Hooks can’t be used in class components

For these reasons, we will focus solely on function components in this book.

Next, we will learn how to use the React browser development tools.

Using React developer tools
React developer tools is a browser extension available for Chrome, Firefox, and Edge. The tools allow
React apps to be inspected and debugged. In this section, we are going to install and use these tools
on the Alert component we have implemented in this chapter.

The links to the extensions are as follows:

•	 Chrome: https://chromewebstore.google.com/detail/react-developer-
tools/fmkadmapgofadopljbjfkapdkoienihi

•	 Firefox: https://addons.mozilla.org/en-GB/firefox/addon/react-
devtools/

•	 Edge: https://microsoftedge.microsoft.com/addons/detail/react-
developer-tools/gpphkfbcpidddadnkolkpfckpihlkkil

Follow the instructions in the relevant link to install the extension in your browser. You may need to
reopen the browser for the tools to be available.

Using the Components tool

The first tool we are going to explore is the Components tool. It allows you to inspect the current props
and state of a component. Carry out the following steps to try this tool on our Alert component:

1.	 If the app isn’t running, start it by executing npm run dev in a terminal.

2.	 Open the browser’s development tools by pressing F12 on Windows or Cmd + Option + I on
a Mac. React’s developer tools can be found in two panels called Components and Profiler.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01/class-component
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01/class-component
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter01/class-component
https://chromewebstore.google.com/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chromewebstore.google.com/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://addons.mozilla.org/en-GB/firefox/addon/react-devtools/
https://addons.mozilla.org/en-GB/firefox/addon/react-devtools/
https://microsoftedge.microsoft.com/addons/detail/react-developer-tools/gpphkfbcpidddadnkolkpfckpihlkkil
https://microsoftedge.microsoft.com/addons/detail/react-developer-tools/gpphkfbcpidddadnkolkpfckpihlkkil

Getting Started with React36

3.	 Select the Components panel. The React component tree appears. Selecting the Alert
component in the component tree reveals current information about it:

Figure 1.17 – React development tools Components panel

4.	 One useful set of component information is the current prop values. You can change these
values and the component output in the browser will be updated. Try this by changing the
children prop. This is a great way of manually testing that a prop is working as expected.

5.	 There is also a section for current Hook values, which includes state values. Notice, however, that
the state isn’t named – it has a generic name, State. However, Hooks appear in this section
in the order they appear in the component code, so we can work out what these items are. In
addition, there is a Parse hook names option (with a wizard icon) that can show the Hook
variable names. Click this option to reveal the state variable name in brackets:

Figure 1.18 – State variable name after the wizard icon is clicked

6.	 We’re going to observe the visible state value change. Make sure closable is set on
the component (you can set this prop to true in the props section if not). Like props,
you can change state values using the developer tools. Click the checkbox to the right of
State(visible). This toggles the value of the visible state between true and false
and updates the component in the browser accordingly.

Using React developer tools 37

This completes our exploration of the Components tool. Press F5 to refresh the browser so that the
Alert component reappears before continuing. Next, we will explore the Profiler tool.

Using the Profiler tool

Now, we will explore the Profiler panel. This tool allows interactions to be profiled, which is useful
for tracking performance problems. Carry out the following steps to profile the closing of the alert:

1.	 Before we start profiling, we are going to make sure the Profiler tool captures why components
render. Select the Profiler panel and click the View settings option (the cog icon). After the
React developer tools settings open, click the Profiler tab to view the Profiler settings. Make
sure the Record why each component rendered while profiling. setting is ticked.

Figure 1.19 – Profiler settings

2.	 Close the settings and click the Start profiling option, which is the blue circle icon.

3.	 Click the close button in the alert in the app.

4.	 Click the Stop profiling option, which is the red circle icon. A timeline appears of all the
component re-renders:

Figure 1.20 – Profile of the alert being closed

This shows that Alert was re-rendered when the close button was clicked, taking 0.7 milliseconds.

This tool is helpful in quickly spotting the slow components of a user interaction.

Getting Started with React38

This completes our exploration of the React developer tools. Here’s a recap:

•	 The React Components developer tool allows component props and state to be inspected
and tested

•	 The React Profiler developer tool allows poor-performing user interactions to be profiled to
help pinpoint the root problem

That brings us to the end of the chapter. Next is a chapter summary.

Summary
We now understand that React is a popular library for creating component-based frontends. In this
chapter, we created an Alert component using React.

Component output is declared using a mix of HTML and JavaScript called JSX. JSX needs to be
transpiled into JavaScript before it can be executed in a browser.

Props can be passed into a component as JSX attributes. This allows consumers of the component to
control its output and behavior. A component receives props as an object parameter. The JSX attribute
names form the object parameter property names. We implemented a range of props in this chapter
in the Alert component.

Events can be handled to execute logic when the user interacts with the component. We created an
event handler for the close button click event in the Alert component.

State can be used to re-render a component and update its output. The state is defined using the
useState Hook and is often updated in event handlers. We created a state for whether the alert
is visible.

Custom events can be implemented as a function prop. This allows consumers of the component to
execute logic as the user interacts with it. We implemented a close event on the Alert component.

The Alert component is an example of a reusable component that can be used in many places across
a large app and even across different apps.

In the next chapter, we will introduce ourselves to TypeScript. We will then use TypeScript to strongly
type the Alert component we started in this chapter.

Questions 39

Questions
Answer the following questions to reinforce what you have learned in this chapter:

1.	 What is wrong with the following component definition?

export function important() {
 return <div>This is really important!</div>;
}

2.	 Component props are passed into a component as follows:

<ContactDetails name=”Fred” email=”fred@somewhere.com” />

The component is then defined as follows:
export function ContactDetails({ firstName, email }) {
 return (
 <div>
 <div>{firstName}</div>
 <div>{email}</div>
 </div>
);
}

The name Fred isn’t output though. What is the problem?

3.	 What is the initial value of the loading state defined here?

const [loading, setLoading] = useState(true);

4.	 What is wrong with how the state is set in the following component?

export function Agree() {
 const [agree, setAgree] = useState();
 return (
 <button onClick={() => agree = true}>
 Click to agree
 </button>
);
}

Getting Started with React40

5.	 The following component implements an optional Agree event. What is wrong with
this implementation?

export function Agree({ onAgree }) {
 function handleClick() {
 onAgree();
 }
 return (
 <button onClick={handleClick}>
 Click to agree
 </button>
);
}

Answers
Here are the answers to the preceding questions:

1.	 The problem with the component definition is that its name is in lowercase. React functions
must be named with an uppercase first character:

export function Important() {
 ...
}

2.	 The problem is that a name prop is passed rather than firstName. Here’s the corrected JSX:

<ContactDetails firstName=”Fred” email=”fred@somewhere.com” />

3.	 The initial value of the loading state is true.

4.	 The state isn’t updated using the state setter function. Here’s the corrected version of the state
being set:

export function Agree() {
 const [agree, setAgree] = useState();
 return (
 <button onClick={() => setAgree(true)}>
 Click to agree
 </button>
);
}

Learn more on Discord 41

5.	 The problem is that clicking the button will cause an error if onAgree isn’t passed because it
will be undefined. Here’s the corrected version of the component:

export function Agree({ onAgree }) {
 function handleClick() {
 if (onAgree) {
 onAgree();
 }
 }
 return (
 <button onClick={handleClick}>
 Click to agree
 </button>
);
}

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/GxSkC

https://packt.link/GxSkC

2
Getting Started with TypeScript

In this chapter, we will start by understanding what TypeScript is and how it provides a much richer
type system on top of JavaScript. We will learn about the basic types in TypeScript, such as numbers
and strings, and then how to create our own types to represent objects and arrays using different
TypeScript features. We will understand the TypeScript compiler and its key options in a React app.
Finally, we will revise the alert component we built in the last chapter to use TypeScript.

In this chapter, we’ll cover the following topics:

•	 Understanding the benefits of TypeScript

•	 Understanding JavaScript types

•	 Using basic TypeScript types

•	 Creating TypeScript types

•	 Using the TypeScript compiler

•	 Creating a React and TypeScript component

By the end of this chapter, you’ll be able to create simple type-safe React components.

Technical requirements
We will use the following software in this chapter:

•	 Browser: A modern browser such as Google Chrome.

•	 TypeScript Playground: This is a website at https://www.typescriptlang.org/
play/ that allows you to play around with and understand the features of TypeScript without
installing it.

•	 Terminal: We will use a terminal to execute commands to create a TypeScript project. The
default terminal available in your operating system will work fine.

https://www.typescriptlang.org/play/
https://www.typescriptlang.org/play/

Getting Started with TypeScript44

•	 Visual Studio Code: We’ll need a code editor to explore TypeScript. If you didn’t install it in
the last chapter, it can be installed from https://code.visualstudio.com/.

•	 Node.js and npm: TypeScript is dependent on these pieces of software. You can install them
from https://nodejs.org/en/download/.

All the code snippets in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter02.

Understanding the benefits of TypeScript
In this section, we will start by understanding what TypeScript is, how it relates to JavaScript, and
how TypeScript enables teams to be more productive.

Understanding TypeScript

TypeScript was first released in 2012 and is still being developed, with new releases coming out every
few months. But what is TypeScript, and what are its benefits?

TypeScript is often referred to as a superset or extension of JavaScript because any feature in JavaScript
is available in TypeScript. Unlike JavaScript, TypeScript can’t be executed directly in a browser – it
must be transpiled into JavaScript first.

Note
It is worth being aware that a proposal is being considered that would allow TypeScript
to be executed directly in a browser without transpilation. See the following link for more
information: https://github.com/tc39/proposal-type-annotations.

TypeScript adds a rich type system to JavaScript. It is often used with frontend frameworks such as
Angular, Vue, and React. TypeScript can also be used to build a backend with Node.js, or even newer
server runtimes such as Bun or Deno. This demonstrates how flexible TypeScript’s type system is.

When a JavaScript code base grows, it can become hard to read and maintain. TypeScript’s type
system solves this problem. TypeScript uses the type system to allow code editors to catch type errors
as developers write problematic code. Code editors also use the type system to provide productivity
features, such as robust code navigation and code refactoring.

Next, we will step through an example of how TypeScript catches a type of error that JavaScript can’t.

https://code.visualstudio.com/
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter02
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter02
https://github.com/tc39/proposal-type-annotations

Understanding the benefits of TypeScript 45

Catching type errors early

The type information helps the TypeScript compiler catch type errors. In code editors such as Visual
Studio Code, a type error is underlined in red immediately after the developer has made a type
mistake. Carry out the following steps to experience an example of TypeScript catching a type error:

1.	 Open Visual Studio Code in a folder of your choice.

2.	 Create a new file called calculateTotalPrice.js by choosing the New File option in
the Explorer panel.

Figure 2.1 – Creating a new file in Visual Studio Code

3.	 Enter the following code into the file:

function calculateTotalPriceJS(
 product,
 quantity,
 discount,
) {
 const priceWithoutDiscount =
 product.price * quantity;
 const discountAmount =
 priceWithoutDiscount * discount;
 return (
 priceWithoutDiscount -
 discountAmount
);
}

The function calculates the total price for a product, as well as the quantity and discount passed
into it.

Remember that the code snippets are available online to copy. The link to the previous snippet
is https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/blob/main/Chapter02/understanding-typescript/
calculateTotalPrice.js.

There is a bug in the code that might be difficult to spot, and the error won’t be highlighted
by Visual Studio Code. The bug will become clear in step 5 after the code has been converted
to TypeScript.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/understanding-typescript/calculateTotalPrice.js
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/understanding-typescript/calculateTotalPrice.js
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/understanding-typescript/calculateTotalPrice.js

Getting Started with TypeScript46

4.	 Now, create a copy of the file but with a .ts extension instead of .js. A file can be copied by
right-clicking on it in the Explorer panel and selecting the Copy option. Then, right-click the
Explorer panel again and select the Paste option to create the copied file.

Note
A .ts file extension denotes a TypeScript file. This means a TypeScript compiler will perform
type checking on this file.

5.	 In the calculateTotalPrice.ts file, remove the JS at the end of the function name
and make the following highlighted updates to the code:

function calculateTotalPrice(
 product: { name: string; unitPrice: number },
 quantity: number,
 discount: number
) {
 const priceWithoutDiscount = product.price * quantity;
 const discountAmount = priceWithoutDiscount * discount;
 return priceWithoutDiscount - discountAmount;
}

Here, we have added TypeScript type annotations to the function parameters. We will learn
about type annotations in detail in the next section.

The key point is that the type error is now highlighted by a red squiggly underline:

Figure 2.2 – Highlighted type error

Understanding the benefits of TypeScript 47

The bug is that the function references a price property in the product object that doesn’t
exist. The property that should be referenced is unitPrice.

Catching these problems early in the development process increases the team’s throughput and is one
less thing for quality assurance to catch. It could be worse – the bug could have gotten into the live
app and given users a bad experience.

Keep these files open in Visual Studio Code because we will run through an example of TypeScript
improving the developer experience next.

Improving developer experience and productivity with
IntelliSense

IntelliSense is a feature in code editors that gives useful information about elements of code and
allows code to be quickly completed. For example, IntelliSense can provide the list of properties
available in an object.

Carry out the following steps to experience how TypeScript works better with IntelliSense than
JavaScript and how this positively impacts productivity. As part of this exercise, we will fix the price
bug from the previous section:

1.	 Open calculateTotalPrice.js, and on line 2, where product.price is referenced,
remove price. Then, with the cursor after the dot (.), click Ctrl + spacebar. This opens Visual
Studio Code’s IntelliSense:

Figure 2.3 – IntelliSense in a JavaScript file

Visual Studio Code can only guess the potential property name, so it lists variable names and
function names it has seen in the file. Unfortunately, IntelliSense doesn’t help in this case
because the correct property name, unitPrice, is not listed.

Getting Started with TypeScript48

2.	 Now, open calculateTotalPrice.ts, remove price from product.price, and
press Ctrl + spacebar to open IntelliSense again:

Figure 2.4 – IntelliSense in a TypeScript file

This time, Visual Studio Code lists the correct properties.

3.	 Select unitPrice from IntelliSense to resolve the type error.

IntelliSense is just one tool that TypeScript provides. It can also provide robust refactoring features,
such as renaming React components, and helps with accurate code navigation, such as going to a
function definition.

To recap, we learned the following in this section:

•	 TypeScript’s type-checking feature helps catch problems earlier in the development process

•	 TypeScript enables code editors to offer productivity features such as IntelliSense

•	 These advantages provide significant benefits when working in larger code bases

Next, we will learn about the type system in JavaScript. This will further underline the need for
TypeScript in a large code base.

Understanding JavaScript types
Before understanding the type system in TypeScript, let’s briefly explore the type system in JavaScript.
To do this, open a browser and carry out the following steps:

1.	 Open the browser development tools (F12 on Windows or Cmd + Option + I on Mac) and go
to the Console panel.

2.	 Enter the following lines into the console:

let firstName = “Fred”;
console.log(typeof firstName);
let score = 9;

Understanding JavaScript types 49

console.log(typeof score);
let date = new Date(2022, 10, 1);
console.log(typeof date);

The code assigns three variables to various values. The code also outputs the variable values to
the console, along with their JavaScript type.

Here’s the console output:

Figure 2.5 – Some JavaScript types

It isn’t surprising that firstName is a string and score is a number. However, it is a little
surprising that date is an object rather than something more specific, such as a date.

3.	 Let’s add another couple of lines of code to the console:

score = “ten”;
console.log(typeof score);

Again, the console output is a little surprising:

Figure 2.6 – Variable changing type

Getting Started with TypeScript50

The score variable has changed from a number type to a string type! This is because
JavaScript is loosely typed.

A key point is that JavaScript only has a minimal set of types, such as string, number, and boolean.
It is worth noting that all of the JavaScript types are available in TypeScript because Typescript is a
superset of JavaScript.

Also, JavaScript allows a variable to change its type – meaning that the JavaScript engine won’t throw
an error if a variable is changed to a completely different type. This loose typing makes it impossible
for code editors to catch type errors.

Note
For more information on JavaScript types, see https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Data_structures.

Now that we understand the limitations of the type system in JavaScript, we will learn about TypeScript’s
type system, starting with basic types.

Using basic TypeScript types
In this section, we’ll start by understanding how TypeScript types can be declared and how they are
inferred from assigned values. We will then learn the basic types commonly used in TypeScript that
aren’t available in JavaScript and understand helpful use cases.

Using type annotations

TypeScript type annotations enable variables to be declared with specific types. These allow the
TypeScript compiler to check that the code adheres to these types. In short, type annotations allow
TypeScript to catch bugs where our code uses the wrong type much earlier than we would if we were
writing our code in JavaScript.

Open TypeScript Playground at https://www.typescriptlang.org/play and carry out
the following steps to explore type annotations:

1.	 Remove any existing code in the left-hand pane and enter the following variable declaration:

let unitPrice: number;

The type annotation comes after the variable declaration. It starts with a colon followed by
the type we want to assign to the variable. In this case, unitPrice is going to be a number
type. Remember that number is a type in JavaScript, which means that it is available for us
to use in TypeScript too.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://www.typescriptlang.org/play

Using basic TypeScript types 51

The transpiled JavaScript appears on the right-hand pane as follows:
let unitPrice;

However, notice that the type annotation has disappeared. This is because type annotations
don’t exist in JavaScript.

Note
You may also see “use strict”; at the top of the transpiled JavaScript. This means that the
JavaScript will be executed in JavaScript strict mode, which will pick up more coding mistakes.
For more information on JavaScript strict mode, see https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/Strict_mode.

2.	 Add a second line to the program:

unitPrice = “Table”;

Notice that a red line appears under unitPrice on this line. If you hover over the underlined
unitPrice, a type error is described:

Figure 2.7 – A type error being caught

3.	 The type error also appears in the Errors tab in the right-hand pane. There is a red badge
containing 1 notifying us that there is one error. Click the Errors tab to discover the same error
message that was reported in the previous step.

Figure 2.8 – Type error reported on the Errors tab

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Getting Started with TypeScript52

4.	 You can also add type annotations to function parameters and a function’s return value using
the same syntax as annotating a variable. As an example, enter the following function into
TypeScript Playground:

function getTotal(
 unitPrice: number,
 quantity: number,
 discount: number
): number {
 const priceWithoutDiscount = unitPrice * quantity;
 const discountAmount = priceWithoutDiscount * discount;
 return priceWithoutDiscount - discountAmount;
}

We’ve declared the unitPrice, quantity, and discount parameters, all with a number
type. The return type annotation comes after the function’s parentheses, which is also a number
type in the preceding example.

Note
We have used both const and let to declare variables in different examples. let allows the
variable to change the value after the declaration, whereas const variables can’t change. In
the preceding function, priceWithoutDiscount and discountAmount never change
the value after the initial assignment, so we have used const.

5.	 Add another line of code to call getTotal with an incorrect type for quantity. Assign
the result of the call to getTotal to a variable with an incorrect type:

let total: string = getTotal(500, “one”, 0.1);

Both errors are immediately detected and highlighted:

Figure 2.9 – Both type errors being caught

This strong type checking is something that we don’t get in JavaScript, and it is very useful in large
code bases because it helps us immediately detect type errors.

Using basic TypeScript types 53

Next, we will learn how TypeScript doesn’t always need type annotations in order to type check code.

Using type inference

Type annotations are really valuable, but they require additional code to be written. This extra code
takes time to write. Luckily, TypeScript’s powerful type inference system means type annotations
don’t need to be specified all the time. TypeScript infers the type of a variable from its assigned value.

Explore type inference by carrying out the following steps in TypeScript Playground:

1.	 First, remove any previous code and then add the following line:

let flag = false;

2.	 Hover over the flag variable. A tooltip will appear showing the type that flag has been
inferred to:

Figure 2.10 – Hovering over a variable reveals its type

3.	 Add another line beneath this to incorrectly set flag to an invalid value:

flag = “table”;

A type error is immediately caught, just like when we used a type annotation to assign a type
to a variable.

Type inference is an excellent feature of TypeScript and prevents the code bloat that lots of type
annotations would bring. Therefore, it is common practice to use type inference and only revert to
using type annotations where inference isn’t possible.

Next, we will look at the Date type in TypeScript.

Using the Date type

We are already aware that a Date type doesn’t exist in JavaScript, but luckily, a Date type does exist
in TypeScript. The TypeScript Date type is a representation of the JavaScript Date object.

Note
See the following link for more information on the JavaScript Date object: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Date.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

Getting Started with TypeScript54

To explore the TypeScript Date type, carry out the following steps in TypeScript Playground:

1.	 First, remove any previous code and then add the following lines:

let today: Date;
today = new Date();

A variable named today is declared with a Date type assigned to it. The value of the variable
is set to today’s date.

2.	 Refactor these two lines into the following single line that uses type inference rather than a
type annotation:

let today = new Date();

3.	 Check that today has been assigned the Date type by hovering over it and checking the tooltip:

Figure 2.11 – Confirmation that today has inferred the Date type

4.	 Now, check IntelliSense is working by adding today. on a new line:

Figure 2.12 – IntelliSense working nicely on a date

5.	 Remove this line and add a slightly different line of code:

today.addMonths(2);

Using basic TypeScript types 55

An addMonths function doesn’t exist in the Date object, so a type error is raised:

Figure 2.13 – Type error caught on a date

In summary, the Date type has all the features we expect – inference, IntelliSense, and type checking
– which are really useful when working with dates.

Next, we will learn about an escape hatch to TypeScript’s type system.

Using the any type

What if we declare a variable with no type annotation and no value? What will TypeScript infer as the
type? Let’s find out by entering the following code in TypeScript Playground:

let flag;

Now, hover the mouse over flag:

Figure 2.14 – Variable given the any type

So, TypeScript gives a variable with no type annotation and no immediately assigned value the any type.
It is a way of opting out of performing type checking on a particular variable and is commonly used
for dynamic content or values from third-party libraries. However, TypeScript’s increasingly powerful
type system means that we need to use any less often these days.

Instead, there is a better alternative: the unknown type.

Getting Started with TypeScript56

Using the unknown type

unknown is a type we can use when we are unsure of the type but want to interact with it in a strongly
typed manner. Carry out the following steps to explore how this is a better alternative to the any type:

1.	 In TypeScript Playground, remove any previous code and enter the following:

fetch(“https://swapi.dev/api/people/1”)
 .then((response) => response.json())
 .then((data) => {
 console.log(“firstName”, data.firstName);
 });

The code fetches a Star Wars character from a web API. No type errors are raised, so the code
appears okay.

2.	 Now, click on the Run option to execute the code:

Figure 2.15 – firstName property has an undefined value

The firstName property doesn’t appear to be in the fetched data because it is undefined
when it is output to the console.

Why wasn’t a type error raised on line 4 where firstName was referenced? Well, data is of
type any, which means no type checking will occur on it. You can hover over data to confirm
that it has been given the any type.

3.	 Give data the unknown type annotation:

 fetch(“https://swapi.dev/api/people/1”)
 .then((response) => response.json())
 .then((data: unknown) => {
 console.log(“firstName”, data.firstName);
 });

Using basic TypeScript types 57

A type error is now raised where firstName is referenced:

Figure 2.16 – Type error on unknown data parameter

The unknown type is the opposite of the any type, as it contains nothing within its type. A
type that doesn’t contain anything may seem useless. However, a variable’s type can be widened
if checks are made to allow TypeScript to widen it.

4.	 Before we give TypeScript information to widen data, change the property referenced within
it from firstName to name:

fetch(“https://swapi.dev/api/people/1”)
 .then((response) => response.json())
 .then((data: unknown) => {
 console.log(“name”, data.name);
 });

name is a valid property, but a type error is still occurring. This is because data is still unknown.

5.	 Now, make the highlighted changes to the code to widen the data type:

fetch(“https://swapi.dev/api/people/1”)
 .then((response) => response.json())
 .then((data: unknown) => {
 if (isCharacter(data)) {
 console.log(“name”, data.name);
 }
 });

function isCharacter(
 character: any
): character is { name: string } {
 return “name” in character;
}

The code snippet can be copied from https://github.com/PacktPublishing/
Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/
using-basic-typescript-types/using-the-unknown-type/code.ts.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/using-basic-typescript-types/using-the-unknown-type/code.ts
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/using-basic-typescript-types/using-the-unknown-type/code.ts
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/using-basic-typescript-types/using-the-unknown-type/code.ts

Getting Started with TypeScript58

The if statement uses a function called isCharacter to verify that a name property is
contained within the object. The result of this call is true in this example, so the logic will
flow into the if branch.

Notice the return type of isCharacter, which is as follows:
character is { name: string }

This is a type predicate. TypeScript will narrow or widen the type of character to { name:
string } if the function returns true. The type predicate is true in this example, so
character is widened to an object with a name string property.

6.	 Hover over the data variable on each line where it is referenced. data starts off with the
unknown type where it is assigned with a type annotation. Then, it is widened to {name:
string} inside the if branch:

Figure 2.17 – Widened type given to data

Notice that the type error has also disappeared. Nice!

7.	 Next, run the code. You will see Luke Skywalker output to the console.

In summary, the unknown type is an excellent choice for data whose type you are unsure about.
However, you can’t interact with unknown variables – the variable must be widened to a different
type before any interaction.

Next up, let’s cover arrays.

Using arrays

Arrays are structures that TypeScript inherits from JavaScript. We add type annotations to arrays as
usual, but with square brackets, [], at the end to denote that this is an array type.

Let’s explore an example in TypeScript Playground:

1.	 Remove any existing code and enter the following:

const numbers: number[] = [];

Alternatively, the Array generic type syntax can be used:
const numbers: Array<number> = [];

Using basic TypeScript types 59

We will learn about generics in TypeScript in Chapter 11, Reusable Components.

2.	 Add 1 to the array by using the array’s push function:

numbers.push(1);

3.	 Now add a string to the array:

numbers.push(“two”);

A type error is raised as we would expect:

Figure 2.18 – Type error when adding a string type to a number array

4.	 Now replace all the code with the following:

const numbers = [1, 2, 3];

5.	 Hover over numbers to verify that TypeScript has inferred its type to be number[].

Figure 2.19 – Array type inference

Excellent – we can see that TypeScript’s type inference works with arrays!

Arrays are one of the most common types used to structure data. In the preceding examples, we’ve
only used an array with elements that have a number type, but any type can be used for elements,
including objects, which have their own properties.

Here’s a recap of all the basic types we have learned about in this section:

•	 TypeScript adds many useful types to JavaScript types, such as Date, and is capable of
representing arrays.

•	 TypeScript can infer a variable’s type from its assigned value. A type annotation can be used
where type inference doesn’t give the desired type.

Getting Started with TypeScript60

•	 No type checking occurs on variables with the any type, so this type should be avoided.

•	 The unknown type is a strongly typed alternative to any, but unknown variables must be
widened to be interacted with.

•	 Array types can be defined using square brackets after the array item type.

In the next section, we will learn how to create our own types.

Creating TypeScript types
The last section showed that TypeScript has a great set of standard types. In this section, we will learn
how to create our own types. We will start by learning how to create types for objects before learning
how to create types for variables that hold a range of values.

Using object types

Objects are very common in JavaScript programs, so learning how to represent them in TypeScript
is really important. In fact, we already used an object type earlier in this chapter for the product
parameter in the calculateTotalPrice function. Here is a reminder of the product parameter’s
type annotation:

function calculateTotalPrice(
 product: { name: string; unitPrice: number },
 ...
) {
 ...
}

An object type in TypeScript is represented a bit like a JavaScript object literal. However, instead
of property values, property types are specified instead. Properties in the object definitions can be
separated by semicolons or commas, but using a semicolon is common practice.

Clear any existing code in TypeScript Playground and follow this example to explore object types:

1.	 Enter the following variable assignment to an object:

let table = {name: “Table”, unitPrice: 450};

If you hover over the table variable, you’ll see it is inferred to be the following type:
{
 name: string;
 unitPrice: number;
}

So, type inference works nicely for objects.

Creating TypeScript types 61

2.	 Now, on the next line, try to set a discount property to 10:

table.discount = 10;

A discount property doesn’t exist in the type, though – only the name and unitPrice
properties exist. So, a type error occurs.

3.	 Let’s say we want to represent a product object containing the name and unitPrice
properties, but we want unitPrice to be optional. Remove the existing code and replace it
with the following:

const table: { name: string; unitPrice: number } = {
 name: “Table”,
};

4.	 This raises a type error because unitPrice is a required property in the type annotation. We
can use a ? symbol as follows to make this optional rather than required:

const table: { name: string; unitPrice?: number } = {
 name: “Table”,
};

The type error disappears.

Note
The ? symbol can be used in functions for optional parameters, for example,
myFunction(requiredParam: string, optionalParam?: string).

Now, let’s learn a way to streamline object type definitions.

Creating type aliases

The type annotation we used in the last example was quite lengthy and would be longer for more
complex object structures. Also, having to write the same object structure to assign to different
variables is a little frustrating:

const table: { name: string; unitPrice?: number } = ...;
const chair: { name: string; unitPrice?: number } = ...;

Type aliases solve these problems. As the name suggests, a type alias refers to another type, and the
syntax is as follows:

type YourTypeAliasName = AnExistingType;

Getting Started with TypeScript62

Open TypeScript Playground and follow along to explore type aliases:

1.	 Start by creating a type alias for the product object structure we used in the last example:

type Product = { name: string; unitPrice?: number };

2.	 Now assign two variables to this Product type:

let table: Product = { name: “Table” };
let chair: Product = { name: “Chair”, unitPrice: 40 };

That’s much cleaner!

3.	 A type alias can extend another object using the & symbol. Create a second type for a discounted
product by adding the following type alias:

type DiscountedProduct = Product & { discount: number };

DiscountedProduct represents an object containing name, unitPrice (optional),
and discount properties.

Note
A type that extends another using the & symbol is referred to as an intersection type.

4.	 Add the following variable with the DiscountedProduct type, as follows:

let chairOnSale: DiscountedProduct = {
 name: “Chair on Sale”,
 unitPrice: 30,
 discount: 5,
};

5.	 A type alias can also be used to represent a function. Add the following type alias to represent
a function:

type Purchase = (quantity: number) => void;

The preceding type represents a function containing a number parameter and doesn’t
return anything.

Note
The void type is used to indicate that a function doesn’t return a value.

Creating TypeScript types 63

6.	 Use the Purchase type to create a purchase function property in the Product type,
as follows:

type Purchase = (quantity: number) => void;
type Product = {
 name: string;
 unitPrice?: number;
 purchase: Purchase;
};

Type errors will be raised on the table, chair, and chairOnSale variable declarations
because the purchase function property is required.

7.	 Add a purchase function property to the table variable declarations, as follows:

let table: Product = {
 name: “Table”,
 purchase: (quantity) =>
 console.log(`Purchased ${quantity} tables`),
};
table.purchase(4);

The type error is resolved on the table variable declaration.

8.	 A purchase property could be added in a similar way to the chair and chairOnSale
variable declarations to resolve their type errors. However, ignore these type errors for this
exploration and move on to the next step.

9.	 Click the Run option to run the code that purchases four tables. “Purchased 4 tables” is output
to the console.

In summary, type aliases allow existing types to be composed together and improve the readability
and reusability of types. We will use type aliases extensively in this book.

Next, we will learn how to create a type to represent a range of values.

Creating union types

A union type is the mathematical union of multiple other types to create a new type and can represent
a range of values. Type aliases can be used to create union types.

An example of a union type is as follows:

type Level = “H” | “M” | “L”;

A variable of type Level can contain the values “H”, “M”, or “L”.

Getting Started with TypeScript64

Clear any existing code in TypeScript Playground, and let’s play around with union types:

1.	 Start by creating a type to represent “red”, “green”, or “blue”:

type RGB = “red” | “green” | “blue”;

Note that this type is a union of strings, but a union type can consist of any type – even mixed types!

2.	 Create a variable with the RGB type and assign a valid value:

let color: RGB = “red”;

3.	 Now try assigning a value outside the type:

color = “yellow”;

A type error occurs, as expected:

Figure 2.20 – Type error on the union type

4.	 Now try to set color to null:

color = null;

As we would expect, this still creates an error.

5.	 Union types can reference multiple types. Let’s add null to our RGB type, as follows:

type RGB = “red” | “green” | “blue” | null;

The color assignment to null now no longer raises an error because null is allowed
within the RGB type.

That completes our exploration of union types. We’ll use them extensively throughout this book.

Here’s a recap of what we have learned about creating types:

•	 Union types are a great way of representing a specific set of strings. They also allow a variable
to hold values of multiple types.

•	 Type aliases allow new, reusable types to be created and can be used for objects, functions,
and union types.

Using the TypeScript compiler 65

•	 An existing type alias can be extended using the & symbol.

•	 The ? symbol can specify that an object property or function parameter is optional.

Now that we have covered types, next, we will learn about the TypeScript compiler.

Using the TypeScript compiler
In this section, we will learn how to use the TypeScript compiler to type check code and transpile it
into JavaScript. First, we will use Visual Studio Code to create a simple TypeScript project containing
a simple function. We will then use the terminal within Visual Studio Code to interact with the
TypeScript compiler.

Open Visual Studio Code in a blank folder of your choice, and carry out the following steps:

1.	 In the Explorer panel in Visual Studio Code, create a file called package.json containing
the following content:

{
 “name”: “tsc-play”,
 “dependencies”: {
 “typescript”: “*”
 },
 “scripts”: {
 “build”: “tsc src/welcome.ts”
 }
}

The file defines a project name of tsc-play and sets the latest version of TypeScript as the
only dependency. The file also defines an npm script called build, which will invoke the
TypeScript compiler (tsc), passing it a welcome.ts file in the src folder. Don’t worry that
welcome.ts doesn’t exist – we will create it in step 3.

2.	 In a terminal, navigate to the project folder and install the dependencies using the
following command:

npm i

This will install all the libraries listed in the dependencies section of package.json.
So, this will install TypeScript.

3.	 Create a folder called src and then create a file called welcome.ts within it.

4.	 Open welcome.ts and add the following content:

function welcome(name: string | null) {
 if (name === null) {
 return `Welcome!`;

Getting Started with TypeScript66

 }
 return `Welcome, ${name}!`;
};

The function takes in a name and constructs a string that welcomes that name. If no name
exists, a generic welcome is returned.

5.	 Enter the following command in the terminal:

npm run build

This will run the npm build script we defined in the first step.

After the command finishes, notice that a welcome.js file appears next to welcome.ts
in the src folder.

6.	 Open the transpiled welcome.js file and read the content. It will look as follows:

function welcome(name) {
 if (name === null) {
 return “Welcome!”;
 }
 return “Welcome, “.concat(name, “!”);
};

Notice that the type annotations have been removed because they aren’t valid JavaScript. Notice
also that it has been transpiled to JavaScript, capable of running in very old browsers.

The default configuration that the TypeScript compiler uses isn’t ideal. For example, we probably
want the transpiled JavaScript in a completely separate folder and are likely to want to target
newer browsers, resulting in less JavaScript code.

7.	 The TypeScript compiler can be configured using a file called tsconfig.json. Add a
tsconfig.json file at the root of the project, containing the following code:

{
 “compilerOptions”: {
 “outDir”: “dist”,
 “target”: “esnext”,
 “module”: “esnext”,
 “lib”: [“DOM”, “esnext”],
 “strict”: true,
 “jsx”: “react”,
 “moduleResolution”: “node”,
 “noEmitOnError”: true
 },
 “include”: [“src/**/*”],
 “exclude”: [“node_modules”, “build”]
}

Using the TypeScript compiler 67

This code can be copied from https://github.com/PacktPublishing/Learn-
React-with-TypeScript-Third-Edition/blob/main/Chapter02/using-
the-typescript-compiler/tsconfig.json.

Here’s an explanation of each setting in the compilerOptions field:

	� outDir: This is the folder that the transpiled JavaScript is placed in.

	� target: This is the version of JavaScript we want to transpile to. The esnext target
means the next version. This means transpilation uses modern JavaScript features instead
of polyfilling them, reducing the size of the outputted code.

	� Module: This is a module system within the code. The esnext module means standard
JavaScript modules.

	� Lib: Gives the standard library types included in the type-checking process. DOM gives the
browser DOM API types, and esnext gives types for APIs in the next version of JavaScript.

	� Strict: When set to true, it means the strictest level of type checking. This includes the
strictNullChecks option, which means null is required in types when needed. For
example, the following statement would error when Strict (and strictNullChecks)
is true but not when false:

let firstName: string = null;

	� Jsx: When set to React, it allows the compiler to transpile React’s JSX.

	� moduleResolution: This is how dependencies are found. We want TypeScript to look
in the node_modules folder, so we have chosen node.

	� noEmitOnError: When set to true, it means the transpilation won’t happen if a type
error is found.

The include field specifies the TypeScript files to compile, and the exclude field specifies
the files to exclude.

Note
For more information on the TypeScript compiler options, see the following link: https://
www.typescriptlang.org/tsconfig.

8.	 The TypeScript compiler configuration now specifies all files in the src folder to be compiled.
So, remove the file path on the build script in package.json:

{
 ...,
 “scripts”: {
 “build”: “tsc”
 }
}

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/using-the-typescript-compiler/tsconfig.json
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/using-the-typescript-compiler/tsconfig.json
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter02/using-the-typescript-compiler/tsconfig.json
https://www.typescriptlang.org/tsconfig
https://www.typescriptlang.org/tsconfig

Getting Started with TypeScript68

9.	 Delete the previous transpiled welcome.js in the src folder.

10.	 Rerun the build command in the terminal:

npm run build

This time, the transpiled file is placed in a dist folder – a copy of the transpiled function is
provided here:

function welcome(name) {
 if (name === null) {
 return `Welcome!`;
 }
 return `Welcome, ${name}!`;
}

You will notice that the transpiled JavaScript now uses backticks for the welcome string, which
is supported in modern browsers.

11.	 The final thing we are going to try is a type error. Open welcome.ts and add a number
return type to the function:

function welcome(name: string | null): number {

Two type errors are immediately raised in the editor.

12.	 Delete the dist folder to remove the previously transpiled JavaScript file.

13.	 Rerun the build command in the terminal:

npm run build

The type errors are reported in the terminal. Notice that the transpiled JavaScript file is not created.

In summary, TypeScript has a compiler, called tsc, that we can use to carry out type checking and
transpilation as part of a continuous integration process. The compiler is very flexible and can be
configured using a file called tsconfig.json. It is worth noting that Babel is often used to transpile
TypeScript (as well as React), leaving TypeScript to focus on type checking.

Next, we will create a React component that is strongly typed with TypeScript.

Creating a React and TypeScript component
In Chapter 1, Getting Started with React, we built an alert component using React. In this section, we
will use TypeScript to make the component strongly typed and experience the benefits. We start by
adding a type to the alert component’s props and then experiment with defining a type for its state.

Creating a React and TypeScript component 69

Creating a project

We will use Vite to create a project as we did when we first built the alert component. However, this
time, we will choose the React and TypeScript template. Carry out these steps:

1.	 In a terminal, in a folder of your choice, execute the following command to instruct Vite to
create a React and TypeScript project:

npm create vite@latest alert -- --template react-ts

In the preceding code snippet, we have specified the project name and template in the command
and so won’t be prompted for this information. The react-ts template has been chosen to
create a React and TypeScript project.

2.	 The project is created. Execute the following commands in the terminal to move the working
directory to the alert folder, install the project dependencies, open the project in Visual
Studio Code, and run the app in development mode:

cd alert
npm i
code .
npm run dev

3.	 Feel free to add automatic code formatting. We covered this topic with Prettier in Chapter 1,
Getting Started with React.

4.	 Create a new file for the alert component in the src folder called Alert.tsx.

Note
TypeScript React components have a .tsx file extension.

5.	 Paste into Alert.tsx the JavaScript version of the alert component, which can be found
on GitHub at https://github.com/PacktPublishing/Learn-React-with-
TypeScript-Third-Edition/blob/main/Chapter01/using-events/src/
Alert.jsx.

Notice that type errors are reported on some of the props because they can only be inferred
as having the any type.

Next, we’ll add a TypeScript type annotation on the component props, which will resolve the type error.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter01/using-events/src/Alert.jsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter01/using-events/src/Alert.jsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter01/using-events/src/Alert.jsx

Getting Started with TypeScript70

Adding a props type

Earlier in the chapter, we learned how to add type annotations to functions. We’ll use this knowledge
to strongly type the alert component props:

1.	 Add the following type just above the component. This will be the type for the component props:

type Props = {
 type?: string;
 heading: string;
 children: ReactNode;
 closable?: boolean;
 onClose?: () => void;
};

The heading and children props are required but the rest of the props are optional.

The children prop is given a special type from React called ReactNode. This allows it to
accept JSX elements as well as strings. At the moment, a type error is occurring on this – we’ll
resolve this in the next step.

The name of the type can be anything, but it is common practice to call it Props.

2.	 To resolve the type error on the ReactNode reference, update the React import statement
as follows:

import { useState, type ReactNode } from ‘react’;

Note
Including the type keyword before types in import statements isn’t required. However, it
is best practice because it helps the TypeScript-to-JavaScript compilation process remove all
traces of type information.

3.	 Now, assign the Props type to the alert component after the destructed parameters:

export function Alert({
 type = “information”,
 heading,
 children,
 closable,
 onClose,
}: Props) {
 ...
}

The alert props are now strongly typed.

Creating a React and TypeScript component 71

4.	 Open App.tsx and replace the contents with the following:

import { Alert } from ‘./Alert’;
import ‘./App.css’;

function App() {
 return <Alert />;
}

export default App;

We have imported the Alert component and output it in the App component. A type error
occurs on Alert in the JSX because props that are required haven’t been passed.

Figure 2.21 – Type error on the Alert component

5.	 Pass in a header prop to Alert, and give it some content:

<Alert heading=”Success”>
 Everything is really good!
</Alert>

The type errors will disappear now that the required props have been passed.

6.	 Start the app by executing npm run dev in a terminal.

7.	 If you visit the running app in a browser, the React app containing the alert appears on the
page as expected.

Next, we will learn how to explicitly give React state a type.

Adding a state type

Follow these steps to experiment with the visible state type in the alert component:

1.	 Open Alert.tsx and hover over the visible state variable to determine its inferred type.
It has been inferred to be boolean because it has been initialized with the true value. The
boolean type is precisely what we want.

Getting Started with TypeScript72

2.	 As an experiment, remove the initial value of true passed into useState. Then, hover over
the visible state variable again. It has been inferred to be undefined because no default
value has been passed into useState. This obviously isn’t the type we want.

3.	 Sometimes, the useState type isn’t inferred to be the type we want, like in the previous
step. In these cases, the type of the state can be explicitly defined using a generic argument
on useState. Explicitly give the visible state a boolean type by adding the following
generic argument:

const [visible, setVisible] = useState<boolean>();

Note
A generic argument is like a regular function argument but defines a type for the function. A
generic argument is specified using angled brackets after the function name.

4.	 Restore the useState statement to what it originally was, with it initialized as true and
no explicit type:

const [visible, setVisible] = useState(true);

5.	 Stop the app from running by pressing Ctrl + C.

In summary, always check the inferred state type from useState and use its generic argument to
explicitly define the type if the inferred type is not what is required.

That brings us to the end of the chapter. Next, we will recap what we have learned in this chapter.

Summary
TypeScript complements JavaScript with a rich type system, and in this chapter, we experienced
catching errors early using TypeScript’s type checking.

We also learned that JavaScript types, such as number and string, can be used in TypeScript, as
well as types that only exist in TypeScript, such as Date and unknown.

New types can be created using type aliases. We learned that type aliases could be based on objects,
functions, or even mixed types using a union type. We used a type alias to strongly type the props on
an alert React component.

We now know that the ? symbol in a type annotation makes an object property or function parameter
optional. Also, an existing type can be extended using the & symbol.

We learned that the TypeScript compiler can be invoked via a CLI, allowing it to be integrated into
a continuous integration pipeline. The compiler can carry out transpilation to JavaScript, as well as
type checking, and can be configured with a tsconfig.json file.

Questions 73

So far in this book, we have used only one React Hook, useState. In the next chapter, we’ll learn
about many of React’s other Hooks.

Questions
Answer the following questions to check what you have learned about TypeScript:

1.	 What would the inferred type be for the flag variable in the following code?

let flag = false;

2.	 What is the type annotation for an array of dates?

3.	 Will a type error occur in the following code?

type Point = {x: number; y: number; z?: number};
const point: Point = { x: 24, y: 65 };

4.	 Use a type alias to create a number that can only hold integer values between and including
1 and 3.

5.	 The following code raises a type error because lastSale can’t accept null values:

type Product = {
 name: string;
 lastSale: Date;
}
const table: Product = {name: “Table”, lastSale: null}

How can the Product type be changed to allow lastSale to accept null values?

Answers
1.	 The flag variable would be inferred to be a boolean type.

2.	 An array of dates can be represented as Date[] or Array<Date>.

3.	 A type error will not be raised on the point variable. It doesn’t need to include the z property
because it is optional.

4.	 A type for numbers 1-3 can be created as follows:

type OneToThree = 1 | 2 | 3;

5.	 A union type can be used for the lastSale property to allow it to accept null values:

type Product = {
 name: string;
 lastSale: Date | null;
}
const table: Product = {name: “Table”, lastSale: null}

3
Using React Hooks

React Hooks are special functions that let you use React features, such as state, inside components.
In this chapter, we will learn about React’s common Hooks and how to use them with TypeScript. We
will implement the knowledge of all these Hooks in a React component that allows a user to adjust a
score for a person. We will start by exploring the effect Hook and begin to understand use cases where
it is useful. We will then delve into two state Hooks, useState and useReducer, understanding
when it is best to use each one. After that, we will cover the ref Hook and how it differs from the state
Hooks, and then the memo and callback Hooks, looking at how they can help performance. In the
last section, we will touch briefly on other React Hooks that are either less common or covered in
depth later in this book.

By the end of this chapter, you’ll have a working knowledge of the common React hooks.

So, we’ll cover the following topics:

•	 Using the effect Hook

•	 Using state Hooks

•	 Using the ref Hook

•	 Using the memo Hook

•	 Using the callback Hook

•	 Other React Hooks

Technical requirements
We will use the following technologies in this chapter:

•	 Browser: A modern browser such as Google Chrome

•	 Node.js and npm: You can install them from https://nodejs.org/en/download/

•	 Visual Studio Code: You can install it from https://code.visualstudio.com/

https://nodejs.org/en/download/
https://code.visualstudio.com/

Using React Hooks76

All the code snippets in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter03.

Using the effect Hook
In this section, we will learn about the effect Hook and where it is useful. We will then create a new
React project and a component that makes use of the effect Hook.

Understanding the effect Hook parameters

The effect Hook is used for handling side effects in a component. A component side effect is a set of
instructions executed outside the scope of the component such as a web service request. The effect
Hook is defined using the useEffect function from React. useEffect contains two parameters:

•	 A function that executes the effect; at a minimum, this function runs each time the component
is rendered

•	 An optional array of dependencies that cause the effect function to rerun when changed

Here’s an example of the effect Hook in a component:

function SomeComponent() {
 function someEffect() {
 console.log(“Some effect”);
 }
 useEffect(someEffect);
 return ...
}

The preceding effect Hook is passed an effect function called someEffect. No effect dependencies
have been passed, so the effect function is executed each time the component renders.

Often, an anonymous arrow function is used for the effect function. Here’s the same example but with
an anonymous effect function instead:

function SomeComponent() {
 useEffect(() => {
 console.log(“Some effect”);
 });
 return ...
}

As you can see, this version of the code is a little shorter and arguably easier to read.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter03
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter03

Using the effect Hook 77

Here’s another example of an effect:

function SomeOtherComponent({ search }:{search: string}) {
 useEffect(() => {
 console.log(“An effect dependent on a search prop”, search);
 }, [search]);
 Return ...;
}

This time, the effect has a dependency on a search prop. So, the search prop is defined in an
array in the effect Hook’s second parameter. The effect function will run every time the value of
search changes.

The rules of Hooks

There are some rules that most React hooks, including useEffect, must obey:

•	 A Hook can only be called at the top level of a function component. So, a Hook can’t be called
in a loop or in a nested function such as an event handler.

•	 A Hook can’t be called conditionally.

•	 A Hook can only be used in function components and not class components.

The following example is a violation of the rules:

export function AnotherComponent() {
 function handleClick() {
 useEffect(() => {
 console.log(“Some effect”);
 });
 }
 return (
 <button onClick={handleClick}>Cause effect</button>
);
}

This is a violation because useEffect is called in a handler function rather than at the top level. A
corrected version is as follows:

export function AnotherComponent() {
 const [clicked, setClicked] = useState(false);
 useEffect(() => {
 if (clicked) {
 console.log(“Some effect”);
 }

Using React Hooks78

 }, [clicked]);
 function handleClick() {
 setClicked(true);
 }
 return (
 <button onClick={handleClick}>Cause effect</button>
);
}

useEffect has been lifted to the top level and now depends on the clicked state that is set in
the handler function.

Effect cleanup

An effect can return a function that performs cleanup logic when the component is unmounted. Cleanup
logic ensures nothing is left that could cause a memory leak. Let’s consider the following example:

function ExampleComponent(
 { onClickAnywhere }: { onClickAnywhere: () => void }
) {
 useEffect(() => {
 function handleClick() {
 onClickAnywhere();
 }
 document.addEventListener(“click”, handleClick);
 });
 return ...
}

The preceding effect function attaches an event handler to the document element. The event handler
is never detached, though, so multiple event handlers will become attached to the document element
as the effect is rerun. This problem is resolved by returning a cleanup function that detaches the
event handler, as follows:

function ExampleComponent(...) {
 useEffect(() => {
 function handleClick() {
 onClickAnywhere();
 }
 document.addEventListener(“click”, handleClick);
 return function cleanup() {
 document.removeEventListener(“click”, handleClick);
 };
 });

Using the effect Hook 79

 return ...;
}

Often, an anonymous arrow function is used for the cleanup function:

function ExampleComponent(...) {
 useEffect(() => {
 function handleClick() {
 onClickAnywhere();
 }
 document.addEventListener(“click”, handleClick);
 return () => {
 document.removeEventListener(“click”, handleClick);
 };
 });
 return ...;

An anonymous arrow function is a little shorter than the named function in the previous example.

Next, we will explore a common use case for the effect Hook.

Creating the project

Let’s start by creating a new project in Visual Studio Code using Vite. We learned how to do this in
Chapter 2, Getting Started with TypeScript – the steps are as follows:

1.	 In a terminal, in a folder of your choice, execute the following command to instruct Vite to
create a React and TypeScript project:

npm create vite@latest hooks -- --template react-ts

2.	 The project is created. Execute the following commands in the terminal to move the working
directory to the hooks folder, install the project dependencies, and open the project in Visual
Studio Code:

cd hooks
npm i
code .

3.	 Feel free to add automatic code formatting. We covered this topic with Prettier in Chapter 1,
Getting Started with React.

4.	 Run the app in development mode by executing the following command in a terminal:

npm run dev

Using React Hooks80

5.	 Open App.tsx and replace the content with the following:

import ‘./App.css’;

function App() {
 return <div></div>;
}
export default App;

The app contains a blank page at the moment. Keep the app running as we explore the different
React Hooks in the subsequent sections of this chapter.

That’s the project created. Next, we will use the effect Hook.

Fetching data using the effect Hook

A common use of the effect Hook is fetching data. Carry out the following steps to implement an
effect that fetches a person’s name:

1.	 Create a function that will simulate a data request. To do this, create a file called getPerson.
ts in the src folder and then add the following content to this file:

type Person = {
 name: string,
};
export function getPerson(): Promise<Person> {
 return new Promise((resolve) =>
 setTimeout(() => resolve({ name: “Bob” }), 1000)
);
}

The function asynchronously returns an object, { name: “Bob” }, after a second has elapsed.

Notice the type annotation for the return type, Promise<Person>. The Promise type
represents a JavaScript promise, which is something that will eventually be completed. The
Promise type has a generic argument for the item type that is resolved in the promise, which
is Person in this example. For more information on JavaScript promises, see the following
link: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Promise.

2.	 Next, we will create a React component that will eventually display a person and a score. Create
a file called PersonScore.tsx in the src folder and then add the following contents to
the file:

import { useEffect } from ‘react’;
import { getPerson } from ‘./getPerson’;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Using the effect Hook 81

export function PersonScore() {
 return null;
}

The useEffect Hook has been imported from React and the getPerson function we have
just created has also been imported. At the moment, the component simply returns null.

3.	 Add the following effect above the return statement:

export function PersonScore() {
 useEffect(() => {
 getPerson().then((person) => console.log(person));
 }, []);
 return null;
}

The effect calls the getPerson function and outputs the returned person to the console. The
effect is only executed after the component is initially rendered because an empty array has
been specified as the effect dependencies in its second argument.

4.	 Open App.tsx and render the PersonScore component:

import ‘./App.css’;
import { PersonScore } from ‘./PersonScore’;

function App() {
 return <PersonScore />
}
export default App;

5.	 Go to the running app in the browser and go to the Console panel in the browser’s DevTools.
Notice that the person object appears in the console, which verifies that the effect that fetches
the person data ran properly:

Figure 3.1 – The effect output

You may also notice that the effect function has been executed twice rather than once. This
behavior is intentional and only happens in development mode with React Strict Mode.

Using React Hooks82

6.	 Next, we will refactor how the effect function is called to expose an interesting problem. Open
PersonScore.tsx and change the useEffect call to use the async/await syntax:

useEffect(async () => {
 const person = await getPerson();
 console.log(person);
}, []);

Note
The async/await syntax is an alternative way to write asynchronous code. Many developers
prefer it because it reads like synchronous code. For more information on async/await,
see the following link: https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Asynchronous/Promises#async_and_await.

The preceding code is arguably more readable, but React raises an error. Look in the browser’s
console and you’ll see the following error:

Figure 3.2 – Effect async error

The error is very informative – the useEffect Hook doesn’t allow a function marked with
async to be passed into it.

7.	 Next, update the code and use the approach suggested in the error message:

useEffect(() => {
 async function getThePerson() {
 const person = await getPerson();
 console.log(person);
 }

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Promises#async_and_await
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Promises#async_and_await

Using state Hooks 83

 getThePerson();
}, []);

A nested asynchronous function has been defined and immediately called in the effect function;
this works nicely.

8.	 This implementation of the effect is arguably less readable than the initial version. So, switch
back to that version before continuing to the next section. The code is available to copy from
the following link: https://github.com/PacktPublishing/Learn-React-
with-TypeScript-Third-Edition/blob/main/Chapter03/use-effect/
src/PersonScore.tsx.

Note
Although useEffect is commonly used for data fetching, it can be problematic. The problems
and alternative approaches are covered in Chapter 7, Server Component Data Fetching and
Server Function Mutations.

That completes our exploration of the effect Hook – here’s a recap:

•	 The effect Hook is used to execute component side effects when a component is rendered or
when certain props or states change

•	 Any required effect cleanup can be done in a function returned by the effect function

Note
For more information on useEffect, see the React documentation at https://react.
dev/reference/react/useEffect.

Next, we will learn about the two state Hooks in React. Keep the app running as we move to the
next section.

Using state Hooks
We have already learned about the useState Hook in previous chapters, but we will look at it
again here and compare it against another state Hook we haven’t covered yet, useReducer. We will
expand the PersonScore component we created in the last section to explore these state Hooks.

Using useState

As a reminder, the useState Hook allows state to be defined in a variable. The syntax for useState
is as follows:

const [state, setState] = useState(initialState);

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-effect/src/PersonScore.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-effect/src/PersonScore.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-effect/src/PersonScore.tsx
https://react.dev/reference/react/useEffect
https://react.dev/reference/react/useEffect

Using React Hooks84

We will enhance the PersonScore component we created in the last section to store the person’s
name in state. We will also have state for a score that is incremented, decremented, and reset
using some buttons in the component. We will also add a loading state to the component, showing
a loading indicator when true.

Carry out the following steps:

1.	 Open PersonScore.tsx and add useState to the React import statement:

import { useEffect, useState } from ‘react’;

2.	 Add the following state definitions for name, score, and loading at the top of the component
function, above the useEffect call:

export function PersonScore() {
 const [name, setName] = useState<
 string | undefined
 >();
 const [score, setScore] = useState(0);
 const [loading, setLoading] = useState(true);

 useEffect(...);

 return null;
}

The score state is initialized to 0 and loading is initialized to true.

3.	 Change the effect function to set the loading and name state values after the person data
has been fetched. This should replace the existing console.log statement:

useEffect(() => {
 getPerson().then((person) => {
 setLoading(false);
 setName(person.name);
 });
}, []);

After the person object has been fetched, loading is set to false, and name is set to the
person’s name.

Using state Hooks 85

4.	 Next, add the following if statement between the useEffect call and the return statement:

useEffect(...);
if (loading) {
 return <div>Loading ...</div>;
}
return ...

This displays a loading indicator when the loading state is true.

5.	 Change the component’s return statement to output the following:

if (loading) {
 return <div>Loading ...</div>;
}
return (
 <div>
 <h3>
 {name}, {score}
 </h3>
 <button>Add</button>
 <button>Subtract</button>
 <button>Reset</button>
 </div>
);

The person’s name and score are displayed in a header with Add, Subtract, and Reset buttons
underneath (don’t worry that the output is unstyled – we will learn how to style components
in the next chapter):

Figure 3.3 – The PersonScore component after data has been fetched

6.	 Update the Add button so that it increments the score when clicked:

<button onClick={() => setScore(score + 1)}>
 Add
</button>

The button click event calls the score state setter to increment the state.

Using React Hooks86

There is an alternative method of updating the state values based on their previous value. The
alternative method uses a parameter in the state setter that gives the previous state value, so
our example could look as follows:

setScore(previousScore => previousScore + 1)

This is arguably a little harder to read, so we’ll stick to our initial method.

7.	 Add score state setters to the other buttons, as follows:

<button onClick={() => setScore(score - 1)}>
 Subtract
</button>
<button onClick={() => setScore(0)}>Reset</button>

8.	 In the running app, click the different buttons. They should change the score as you would expect.

Figure 3.4 – The PersonScore component after the button is clicked

9.	 Before we finish this exercise, let’s take some time to understand when the state values are
actually set. Update the effect function to output the state values after they are set:

useEffect(() => {
 getPerson().then((person) => {
 setLoading(false);
 setName(person.name);
 console.log(“State values”, loading, name);
 });
}, []);

You may notice that ESLint highlights missing dependencies, loading and name, on the
useEffect call – ignore this warning because we’ll remove this console.log statement
at the end of this step.

Perhaps we would expect false and “Bob” as the output to the console? However, true
and undefined are the output to the console. This is because updating state values is not
immediate – instead, they are batched and updated before the next render. So, it isn’t until the
next render that loading will be false and name will be “Bob”.

We no longer need the console.log statement we added in this step, so remove it
before continuing.

Next, we will learn about an alternative React Hook for using state.

Using state Hooks 87

Understanding useReducer

useReducer is an alternative, more complex, method of managing state. It uses a reducer function
for state changes, which takes in the current state value and returns the new state value.

Here is an example of a useReducer call:

const [state, dispatch] = useReducer(
 reducer,
 initialState,
);

So, useReducer takes in a reducer function and the initial state value as parameters. It then returns
a tuple containing the current state value and a function to dispatch state changes.

The dispatch function takes in an argument that describes the change. This object is often referred to
as an action. An example dispatch call is as follows:

dispatch({ type: ‘add’, amount: 2 });

There is no defined structure for an action, but it is common practice for it to contain a property, such
as type, to specify the type of change. Other properties in the action can vary depending on the type
of change. Here’s another example of a dispatch call:

dispatch({ type: ‘loaded’ });

This time, the action only needs the type to change the necessary state.

Turning our attention to the reducer function, it has parameters for the current state value and the
action. Here’s an example code snippet of a reducer:

function reducer(state: State, action: Action): State {
 switch (action.type) {
 case ‘add’:
 return {
 ...state,
 total: state.total + action.amount
 };
 case ...
 ...
 default:
 return state;
 }
}

Using React Hooks88

The reducer function usually contains a switch statement based on the action type. Each switch
branch makes the required changes to the state and returns the updated state. A new state object is
created during the state change – the current state is never mutated. Mutating the state would result
in the component not re-rendering.

Note
In the preceding code snippet, inside the ‘add’ branch, the spread syntax is used on the
state variable (...state). The spread syntax copies all the properties from the object after
the three dots. In the preceding code snippet, all the properties are copied from the state
variable into the new state object returned. The total property value will then be overwritten
by state.total + action.amount because this is defined after the spread operation
in the new object creation. For more information on the spread syntax, see the following
link: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/Spread_syntax.

The types for useReducer can be explicitly defined in its generic parameter as follows:

const [state, dispatch] = useReducer<
 Reducer<State, Action>
>(reducer, initialState);

Reducer is a standard React type that has generic parameters for the type of state and the type of
action.

So, useReducer is more complex than useState because state changes go through a reducer function
that we must implement. However, the additional complexity may be worth it in the following cases:

•	 An action changes multiple state values – for example, a web API response updating a loading
state value as well as a data state value.

•	 The next state value depends on the previous state value. The ‘add’ action in the preceding
example is an example of this.

Next, we will implement state using useReducer.

Using useReducer

We will refactor the PersonScore component we have been working on to use useReducer instead
of useState. To do this, carry out the following steps. The code snippets used are available to copy
from https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/blob/main/Chapter03/use-reducer/src/PersonScore.tsx:

1.	 Open PersonScore.tsx and import useReducer instead of useState from React:

import { useEffect, useReducer } from ‘react’;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-reducer/src/PersonScore.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-reducer/src/PersonScore.tsx

Using state Hooks 89

2.	 We will have the state in a single object, so define a type for the state beneath the import statements:

type State = {
 name: string | undefined;
 score: number;
 loading: boolean;
};

3.	 Next, let’s define types for all the action objects:

type Action =
 | {
 type: ‘initialize’;
 name: string;
 }
 | {
 type: ‘increment’;
 }
 | {
 type: ‘decrement’;
 }
 | {
 type: ‘reset’;
 };

These action objects represent all the ways in which the state can change. The action object
types are combined using a union type, allowing an action to be any of these. This kind of
union type is a discriminated union because each item in the union contains a property to
distinguish the items (the type property).

4.	 Now, define the following reducer function underneath the type definitions:

function reducer(state: State, action: Action): State {
 switch (action.type) {
 case ‘initialize’:
 return {
 name: action.name,
 score: 0,
 loading: false
 };
 case ‘increment’:
 return { ...state, score: state.score + 1 };
 case ‘decrement’:
 return { ...state, score: state.score - 1 };
 case ‘reset’:
 return { ...state, score: 0 };

Using React Hooks90

 default:
 return state;
 }
}

The reducer function contains a switch statement that makes appropriate state changes for
each type of action.

Notice the nice IntelliSense when referencing the state and action parameters:

Figure 3.5 – IntelliSense inside the reducer function

5.	 Inside the PersonScore component, replace the useState calls with the following
useReducer call:

const [{ name, score, loading }, dispatch] =
 useReducer(reducer, {
 name: undefined,
 score: 0,
 loading: true,
 });

The state has been initialized with an undefined name, a score of 0, and loading set to true.

The current state value has been destructured into name, score, and loading variables.
If you hover over these destructured state variables, you will see that their types have been
inferred correctly.

6.	 We now need to amend the places in the component that update the state. Start with the effect
function and dispatch an initialize action after the person has been returned:

useEffect(() => {
 getPerson().then(({ name }) =>
 dispatch({ type: ‘initialize’, name })
);
}, []);

Using the ref Hook 91

7.	 Lastly, dispatch the relevant actions in the button click handlers:

<button
 onClick={() => dispatch({ type: ‘increment’ })}
>
 Add
</button>
<button
 onClick={() => dispatch({ type: ‘decrement’ })}
>
 Subtract
</button>
<button onClick={() => dispatch({ type: ‘reset’ })}>
 Reset
</button>

8.	 If you try clicking the buttons in the running app, they will correctly update the displayed score.

That completes our exploration of the useReducer Hook. It is more useful for complex state
management situations than useState, for example, when the state is a complex object with related
properties and state changes depend on previous state values. The useState Hook is more appropriate
when the state is based on primitive values independent of any other state.

Note
For more information on useState and useReducer, see the React documentation at
https://react.dev/reference/react/useState and https://react.dev/
reference/react/useReducer.

We will continue to expand the PersonScore component in the following sections. Next, we will
learn how to move the focus to the Add button using the ref Hook.

Using the ref Hook
In this section, we will learn about the ref Hook and where it is useful. We will then walk through
a common use case of the ref Hook by enhancing the PersonScore component we have been
working on.

Understanding the ref Hook

The ref Hook is called useRef and it returns a variable whose value is persisted for the lifetime of a
component. This means that the variable doesn’t lose its value when a component re-renders.

https://react.dev/reference/react/useState
https://react.dev/reference/react/useReducer
https://react.dev/reference/react/useReducer

Using React Hooks92

The value returned from the ref Hook is often referred to as a ref. The ref can be changed without
causing a re-render.

Here’s the syntax for useRef:

const ref = useRef(initialValue);

An initial value can optionally be passed into useRef. The type of the ref can be explicitly defined
in a generic argument for useRef:

const ref = useRef<Ref>(initialValue);

The generic argument is useful when no initial value is passed or is null. This is because TypeScript
won’t be able to infer the type correctly.

The value of the ref is accessed via its current property:

console.log(“Current ref value”, ref.current);

The value of the ref can be updated via its current property as well:

ref.current = newValue;

A common use of the ref Hook is to access HTML elements imperatively. HTML elements have a ref
attribute in JSX that can be assigned to a ref. The following is an example of this:

function MyComponent() {
 const inputRef = useRef<HTMLInputElement>(null);
 function doSomething() {
 console.log(
 “All the properties and methods of the input”,
 inputRef.current
);
 }
 return <input ref={inputRef} type=”text” />;
}

The ref used here is called inputRef and is initially null. So, it is explicitly given a type of
HTMLInputElement, which is a standard type for input elements. The ref is then assigned to the
ref attribute on an input element in JSX. All the input’s properties and methods are then accessible
via the ref ’s current property.

Next, we will use the ref Hook in the PersonScore component.

Using the ref Hook 93

Using the ref Hook

We will enhance the PersonScore component we have been working on to use useRef to move
the focus to the Add button. To do this, carry out the following steps. All the code snippets used are
available at https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/blob/main/Chapter03/use-ref/src/PersonScore.tsx:

1.	 Open PersonScore.tsx and import useRef from React:

import { useEffect, useReducer, useRef } from ‘react’;

2.	 Create a ref for the Add button just below the useReducer statement:

const [...] = useReducer(...);

const addButtonRef = useRef<HTMLButtonElement>(null);

useEffect(...)

The ref is named addButtonRef and is initially null . It is given the standard
HTMLButtonElement type.

Note
All the standard HTML elements have corresponding TypeScript types for React. Right-click
on the HTMLButtonElement type and choose Go to Definition to discover all these types.
The React TypeScript types will open containing all the HTML element types.

3.	 Assign the ref to the ref attribute on the Add button JSX element:

<button
 ref={addButtonRef}
 onClick={() => dispatch({ type: ‘increment’ })}
>
 Add
</button>

4.	 Now that we have a reference to the Add button, we can invoke its focus method to move
the focus to it when the person’s information has been fetched. Add the following highlighted
line in the existing effect:

useEffect(() => {
 getPerson().then(({ name }) => {
 dispatch({ type: ‘initialize’, name });
 addButtonRef.current?.focus();
 });
}, []);

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-ref/src/PersonScore.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-ref/src/PersonScore.tsx

Using React Hooks94

Notice the ? symbol after the current property on the ref. This is the optional chaining
operator, and it allows the focus method to be invoked without having to check that current
is not null. Visit the following link for more information about optional chaining: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Operators/Optional_chaining.

5.	 There is a cleaner approach than adding that line of code to the existing effect. At the moment,
that effect is mixing the concerns of fetching data, setting state, and setting focus to a button.
Mixing concerns like this can make components hard to understand and change. So, remove
that line from the existing effect, and let’s add another effect to do this below the existing effect:

useEffect(() => {
 getPerson().then(({ name }) =>
 dispatch({ type: ‘initialize’, name })
);
}, []);

useEffect(() => {
 if (!loading) {
 addButtonRef.current?.focus();
 }
}, [loading]);

if (loading) {
 return <div>Loading ...</div>;
}

The effect is executed when the loading state is true, which will be after the person has
been fetched.

6.	 If you refresh the browser containing the running app, you will see a focus indicator on the
Add button:

Figure 3.6 – The focused Add button

If you press the Enter key, you will see that the Add button is clicked and the score incremented.
This proves that the Add button is focused.

That completes the enhancement and our exploration of the ref Hook.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining

Using the memo Hook 95

To recap, the ref Hook creates a mutable value and doesn’t cause a re-render when changed. It is
commonly used to access HTML elements in React, imperatively.

Note
For more information on useRef, see the React documentation at https://react.dev/
reference/react/useRef.

Next, we will learn about the memo Hook.

Using the memo Hook
In this section, we will learn about the memo Hook and where it is useful. We will then walk through
an example in the PersonScore component we have been working on.

Understanding the memo Hook

The memo Hook creates a memoized value and is beneficial for values that have computationally
expensive calculations. The Hook is called useMemo and the syntax is as follows:

const memoizedValue = useMemo(
 () => expensiveCalculation(),
 []
);

A function that returns the value to memoize is passed into useMemo as the first argument. The
function in this first argument should perform the expensive calculation.

The second argument passed to useMemo is an array of dependencies. So, if the
expensiveCalculation function has dependencies a and b, the call will be as follows:

const memoizedValue = useMemo(
 () => expensiveCalculation(a, b),
 [a, b]
);

When any dependencies change, the function in the first argument is executed again to return a new
value to memoize. In the previous example, a new version of memoizedValue is created every
time a or b changes.

https://react.dev/reference/react/useRef
https://react.dev/reference/react/useRef

Using React Hooks96

The type of the memoized value is inferred but can be explicitly defined in a generic parameter on
useMemo. The following is an example of explicitly defining that the memoized value should have
a number type:

const memoizedValue = useMemo<number>(
 () => expensiveCalculation(),
 []
);

Next, we will experiment with useMemo.

Using the memo Hook

We will use the PersonScore component we have been working on to play with the useMemo Hook.
To do so, carry out the following steps. The code snippets used are available at https://github.
com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/
main/Chapter03/use-memo/src/PersonScore.tsx:

1.	 Open PersonScore.tsx and import useMemo from React:

import {
 useEffect,
 useReducer,
 useRef,
 useMemo
} from ‘react’;

2.	 Add the following expensive function below the import statements:

function sillyExpensiveFunction() {
 console.log(“Executing silly function”);
 let sum = 0;
 for (let i = 0; i < 10000; i++) {
 sum += i;
 }
 return sum;
}

The function adds all the numbers between 0 and 10000 and will take a while to execute.

3.	 Add a call to the function in the PersonScore component beneath the effects:

useEffect(...);

const expensiveCalculation = sillyExpensiveFunction();

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-memo/src/PersonScore.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-memo/src/PersonScore.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-memo/src/PersonScore.tsx

Using the memo Hook 97

if (loading) {
 return <div>Loading ...</div>;
}

4.	 Add the result of the function call to the JSX underneath name and score:

<h3>
 {name}, {score}
</h3>
<p>{expensiveCalculation}</p>
<button ... >
 Add
</button>

5.	 Refresh the browser containing the app and click the buttons. If you look in the console, you
will see that the expensive function is executed every time the component is re-rendered after
a button click.

Figure 3.7 – The expensive function executed multiple times

Remember that a double render occurs in development mode and React’s Strict Mode. So, once
a button is clicked, you will see Executing silly function in the console twice.

An expensive function executing each time a component is re-rendered can lead to performance
problems.

6.	 Rework the call to sillyExpensiveFunction as follows:

const expensiveCalculation = useMemo(
 () => sillyExpensiveFunction(),
 []
);

Using React Hooks98

The useMemo Hook is used to memoize the value from the function call.

7.	 Refresh the browser containing the running app and click the buttons. If you look in the console,
you will see that the expensive function is only executed on the initial render and not when
the buttons are clicked because the memoized value is used instead.

Figure 3.8 – The expensive function call memoized

That completes our exploration of the useMemo Hook. The takeaway from this section is that the
useMemo Hook helps improve the performance of function calls by memoizing their results and
using the memoized value when the function is re-executed.

Note
For more information on useMemo, see the React documentation at https://react.
dev/reference/react/useMemo.

Next, we will look at another Hook that can help performance.

Using the callback Hook
In this section, we will learn about the callback Hook and where it is useful. We will then use the Hook
in the PersonScore component we have been working on.

Understanding the callback Hook

The callback Hook memoizes a function so that it isn’t recreated on each render. The Hook is called
useCallback and the syntax is as follows:

const memoizedCallback = useCallback(() => someFunction(), []);

https://react.dev/reference/react/useMemo
https://react.dev/reference/react/useMemo

Using the callback Hook 99

A function that executes the function to memoize is passed into useCallback as the first argument.
The second argument passed to useCallback is an array of dependencies. So, if the someFunction
function has dependencies a and b, the call will be as follows:

const memoizedCallback = useCallback(
 () => someFunction(a, b),
 [a, b]
);

When any dependencies change, the function in the first argument is executed again to return a new
function to memoize. In the previous example, a new version of memoizedCallback is created
every time a or b changes.

The type of the memoized function is inferred but can be explicitly defined in a generic parameter
on useCallback. Here is an example of explicitly defining that the memoized function has no
parameters and returns void:

 const memoizedValue = useCallback<() => void>(
 () => someFunction (),
 []
);

A common use case for useCallback is to prevent unnecessary re-renders of child components.
Before trying useCallback, we will take the time to understand when a component is re-rendered.

Understanding when a component is re-rendered

We already understand that a component re-renders when its state changes. Consider the
following component:

export function SomeComponent() {
 const [someState, setSomeState] = useState(‘something’);
 return (
 <div>
 <ChildComponent />
 <AnotherChildComponent something={someState} />
 <button
 onClick={() => setSomeState(‘Something else’)}
 ></button>
 </div>
);
}

Using React Hooks100

When someState changes, SomeComponent will re-render – for example, when the button is
clicked. In addition, ChildComponent and AnotherChildComponent will re-render when
someState changes. This is because a component is re-rendered when its parent is re-rendered.

It may seem like this re-rendering behavior will cause performance problems – particularly when
a component is rendered near the top of a large component tree. However, it rarely does cause
performance issues. This is because the DOM will only be updated after a re-render if the virtual DOM
changes, and updating the DOM is the slow part of the process. In the preceding example, the DOM
for ChildComponent won’t be updated when SomeComponent is re-rendered if the definition
of ChildComponent is as follows:

export function ChildComponent() {
 return A child component;
}

The DOM for ChildComponent won’t be updated during a re-render because the virtual DOM
will be unchanged.

While this re-rendering behavior generally doesn’t cause performance problems, it can cause performance
issues if a computationally expensive component is frequently re-rendered or a component with a slow
side effect is frequently re-rendered. For example, we would want to avoid unnecessary re-renders in
components with a side effect that fetches data.

There is a function called memo in React that can be used to prevent unnecessary re-renders. The
memo function can be applied as follows to ChildComponent to prevent unnecessary re-renders:

export const ChildComponent = memo(() => {
 return A child component;
});

The memo function wraps the component and memoizes the result for a given set of props. The
memoized function is then used during a re-render if the props are the same. Note that the preceding
code snippet uses arrow function syntax so that the component can be a named export.

In summary, React’s memo function can prevent the unnecessary re-rendering of slow components.

Next, we will use the memo function and the useCallback Hook to prevent unnecessary re-renders.

Using the callback Hook

We will now refactor the PersonScore component by extracting the Reset button into a separate
component called Reset. This will lead to unnecessary re-rendering of the Reset component, which
we will resolve using React’s memo function and the useCallback Hook.

Using the callback Hook 101

To do so, carry out the following steps. The code snippets used are available at https://github.
com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/
main/Chapter03/use-callback/src/PersonScore.tsx:

1.	 Start by creating a new file in the src folder for the Reset button component called Reset.
tsx with the following content:

type Props = {
 onClick: () => void,
};
export function Reset({ onClick }: Props) {
 console.log(“render Reset”);
 return <button onClick={onClick}>Reset</button>;
}

The component takes in a click handler and displays the Reset button.
The component also outputs render Reset to the console so that we can clearly see when the
component is re-rendered.

2.	 Open PersonScore.tsx and import the Reset component:

import { Reset } from ‘./Reset’;

3.	 Replace the existing Reset button with the new Reset component as follows:

<div>
 ...
 <button onClick={() => dispatch({ type: ‘decrement’ })}>
 Subtract
 </button>
 <Reset
 onClick={() =>
 dispatch({ type: ‘reset’ })
 }
 />
</div>;

4.	 Go to the app running in the browser and open React’s developer tools. Make sure the Highlight
updates when components render. option is ticked in the Components panel’s settings:

Figure 3.9 – The re-render highlight option

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-callback/src/PersonScore.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-callback/src/PersonScore.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter03/use-callback/src/PersonScore.tsx

Using React Hooks102

5.	 In the browser, the Reset button will work as it did before. Click this button as well as the Add
and Subtract buttons. If you look at the console, you’ll notice that Reset is unnecessarily
re-rendered. You will also see the re-render highlight around the Reset button.

Figure 3.10 – The unnecessary re-renders of the Reset component

6.	 Use the browser’s Inspect tool to inspect the DOM. To do this, right-click on the Reset button
and choose Inspect. Click the buttons and observe the DOM elements. The developer tools
in Chrome highlight elements when they are updated. You will see that only the h3 element
content was updated – none of the other elements are highlighted due to an update occurring.

Figure 3.11 – The h3 element was updated after a re-render

Even though Reset is unnecessarily re-rendered, it doesn’t result in a DOM update. In addition,
Reset isn’t computationally expensive and doesn’t contain any side effects. So, the unnecessary
render isn’t really a performance problem. However, we will use this example to learn how to
use React’s memo function, and the useCallback Hook can prevent the unnecessary render.

Using the callback Hook 103

7.	 We will now add React’s memo function to try to prevent unnecessary re-renders. Open Reset.
tsx and add a React import statement to the memo import at the top of the file:

import { memo } from ‘react’;

8.	 Now, wrap memo around the Reset component as follows:

export const Reset = memo(({ onClick }: Props) => {
 console.log(“render Reset”);
 return <button onClick={onClick}>Reset</button>;
});

9.	 In addition, add the following line beneath the Reset component definition so that it has a
meaningful name in React’s development tools:

Reset.displayName = ‘Reset’;

10.	 In the browser, click the Add, Subtract, and Reset buttons. Then, look at the console and notice
that Reset is still unnecessarily re-rendered.

11.	 We will use React’s developer tools to start to understand why Reset is still unnecessarily
re-rendered when its result is memoized. Open the Profiler panel and click the cog icon to open
the settings. Go to the Profiler settings section and make sure Record why each component
rendered while profiling. is ticked:

Figure 3.12 – Ensuring the Record why each component rendered while profiling. option is ticked

12.	 Click the blue circle icon to start profiling and then click the Add button in our app. Click the
red circle icon to stop profiling.

Using React Hooks104

13.	 In the flamegraph that appears, click the Reset bar. This gives useful information about the
Reset component re-render:

Figure 3.13 – Information about the Reset re-render

So, the unnecessary Reset render is happening because the onClick prop changes. The
onClick handler contains the same code, but a new instance of the function is created
on every render. This means onClick will have a different reference on each render. The
changing onClick prop reference means that the memoized result from Reset isn’t used
and a re-render occurs instead.

14.	 We can use the useCallback Hook to memoize the onClick handler and prevent the
re-render. Open PersonScore.tsx and start by refactoring the handler into a named function:

const handleReset = () => dispatch({ type: ‘reset’ });

if (loading) {
 return <div>Loading ...</div>;
}

return (
 <div>
 ...
 <Reset onClick={handleReset} />
 </div>
);

15.	 Now, add useCallback to the React import statement:

import {
 useEffect,
 useReducer,
 useRef,
 useMemo,
 useCallback
} from ‘react’;

Other React Hooks 105

16.	 Add a memoized reset click handler, as follows:

const handleReset = () => dispatch({ type: “reset” });
const handleResetMemoized = useCallback(
 handleReset,
 [],
);

17.	 Lastly, change the onClick prop on Reset to reference the new memorized handler:

<Reset onClick={handleResetMemoized} />;

18.	 Now, if you click the Add, Subtract, and Reset buttons, you will notice that Reset is no longer
unnecessarily re-rendered.

That completes our exploration of the useCallback Hook.

Here’s a quick recap of everything we learned in this section:

•	 A component is re-rendered when its parent is re-rendered.

•	 React’s memo function can be used to prevent unnecessary re-renders to child components.

•	 useCallback can be used to memoize functions. This can be used to create a stable reference
for function props passed to child components to prevent unnecessary re-renders.

•	 React’s memo function and useCallback should be used wisely – make sure they help
performance before using them because they increase the complexity of the code.

Note
For more information on useCallback, see the React documentation at https://react.
dev/reference/react/useCallback.

Next, we will touch on some other React Hooks.

Other React Hooks
In this section, we will touch on some other React Hooks. We will also mention some React Hooks
that are covered in depth in subsequent chapters of this book.

https://react.dev/reference/react/useCallback
https://react.dev/reference/react/useCallback

Using React Hooks106

useId

The useId Hook generates unique IDs and is typically used for accessibility attributes in reusable
components. The following is a reusable Field component where useId is used to associate the
label and input for screen readers:

export function Field({ label, name }: ...) {
 const id = useId();
 return (
 <div>
 <label htmlFor={id}>{label}</label>
 <input id={id} name={name} type=”text” />
 </div>
);
}

The full code for this example is at https://github.com/PacktPublishing/Learn-
React-with-TypeScript-Third-Edition/tree/main/Chapter03/use-id.

For more information on useId, see the React documentation at https://react.dev/
reference/react/useId.

useTransition

The useTransition Hook enables state transitions to not block the UI, making it ideal for state
transitions that may take some time to complete.

The following component allows a user to filter a large list of names. When the user types a character
in the search input, the list state is updated with the filtered names. The React transition marks the
list state update as low priority, preventing the search input from lagging when the user types into it.

The useTransition Hook returns a tuple containing the following:

•	 A flag for whether the transition is in progress. The flag is called isPending in the
following example.

•	 A function to start the transition. The function is called startTransition in the
following example.

Here’s the example:

function App() {
 const [query, setQuery] = useState(“”);
 const [list, setList] = useState(names);
 const [isPending, startTransition] = useTransition();
 return (

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter03/use-id
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter03/use-id
https://react.dev/reference/react/useId
https://react.dev/reference/react/useId

Other React Hooks 107

 <div>
 <input ...
 value={query}
 onChange={(e) => {
 setQuery(e.target.value);
 startTransition(() => {
 setList(
 names.filter((name) =>
 name
 .toLowerCase()
 .includes(e.target.value.
 toLowerCase()),
),
);
 });
 }}
 />
 {isPending && <p>Loading...</p>}

 {list.map((name, index) => (
 <li key={index}>{name}
))}

 </div>
);
}

The full code for this example is at https://github.com/PacktPublishing/Learn-React-
with-TypeScript-Third-Edition/tree/main/Chapter03/use-transition.

For more information on useTransition, see the React documentation at https://react.
dev/reference/react/useTransition.

useDeferredValue

Like useTransition, the useDeferredValue Hook helps optimize the UI. The
useDeferredValue Hook is used to defer the updating of a primitive value.

The following example is similar to the useTransition example – it allows a user to filter a large
list of names. However, useDeferredValue is used to optimize the UI.

In this example, the filtered list isn’t stored in state – instead, it is calculated on every render in the
List component. So, the List component is slow to render on large lists.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter03/use-transition
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter03/use-transition
https://react.dev/reference/react/useTransition
https://react.dev/reference/react/useTransition

Using React Hooks108

useDeferredValue defers the updating of deferredQuery, which, in turn, defers the rendering
of List. This allows the search input to feel less laggy when typed into:

function App() {
 const [query, setQuery] = useState(“”);
 const deferredQuery = useDeferredValue(query);
 return (
 <div>
 <input ...
 value={query}
 onChange={(e) => {
 setQuery(e.target.value);
 }}
 />
 {query !== deferredQuery && <p>Loading...</p>}
 <List query={deferredQuery} />
 </div>
);
}

The List component is wrapped in React’s memo function so that it isn’t re-rendered when query
changes and is only re-rendered when deferredQuery changes:

const List = memo(function List({ query }: ...) {
 const list = names.filter((name) =>
 name.toLowerCase().includes(query.toLowerCase()),
);
 return (

 {list.map((name, index) => (
 <li key={index}>{name}
))}

);
});

The full code for this example is at https://github.com/PacktPublishing/Learn-React-
with-TypeScript-Third-Edition/tree/main/Chapter03/use-deferred-value.

For more information on useDeferredValue, see the React documentation at https://
react.dev/reference/react/useDeferredValue.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter03/use-deferred-value
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter03/use-deferred-value
https://react.dev/reference/react/useDeferredValue
https://react.dev/reference/react/useDeferredValue

Summary 109

Hooks covered in other chapters

We will cover the following hooks in detail in some of the later chapters:

•	 useContext: This is used to access a React context, which we cover in Chapter 10, State
Management.

•	 useOptimistic: This is used for optimistic UI updates before confirmation from the server.
It is covered in Chapter 9, Working with Forms.

•	 useActionState: This is commonly used for form state. It is covered in Chapter 9, Working
with Forms.

•	 useFormStatus: This tracks the status of form submission and is also covered in Chapter 9,
Working with Forms.

Next, we will summarize the chapter.

Summary
In this chapter, we learned that all React Hooks must be called at the top level of a function component
and can’t be called conditionally.

The useEffect Hook can be used to execute component side effects when it is rendered. We learned
how to use useEffect to fetch data, which is a common use case.

useReducer is an alternative to useState for using state, and we experienced using both
approaches in our PersonScore example component. useState is excellent for primitive state
values. useReducer is great for complex object state values, particularly when state changes depend
on previous state values.

The ref Hook creates a mutable value and doesn’t cause a re-render when changed. We used useRef
to set focus to an HTML element after it was rendered, which is a common use case.

The useMemo and useCallback Hooks can be used to memoize values and functions, respectively,
and can be used for performance optimization. The examples we used for these Hooks were a little
contrived and using useCallback didn’t improve performance, so remember to check that the use
of these Hooks does improve performance.

So far in this book, the components we have created are unstyled. In the next chapter, we will learn
several approaches for styling React components.

Using React Hooks110

Questions
Answer the following questions to check what you have learned about React Hooks:

1.	 The following component renders some text for 5 seconds. This is problematic, though. What
is the problem?

export function TextVanish({ text }: Props) {
 if (!text) {
 return null;
 }
 const [textToRender, setTextToRender] = useState(text);
 useEffect(() => {
 setTimeout(() => setTextToRender(“”), 5000);
 }, []);
 return {textToRender};
}

2.	 The following code is a snippet from a React component that fetches some data and stores it
in state. There are several problems with this code, though. Can you spot any of the problems?

const [data, setData] = useState([]);
useEffect(async () => {
 const data = await getData();
 setData(data);
});

3.	 Consider the following reducer function:

type State = { steps: number };
type Action =
 | { type: ‘forward’; steps: number }
 | { type: ‘backwards’; steps: number };

function reducer(state: State, action: Action): State {
 switch (action.type) {
 case ‘forward’:
 return { ...state, steps: state.steps + action.steps
};
 case ‘backwards’:

Questions 111

 return { ...state, steps: state.steps - action.steps
};
 default:
 return state;
 }
}

What will the type of the action parameter be narrowed down to in the ‘backwards’
switch branch?

4.	 Consider the following Counter component:

export function Counter() {
 const [count, setCount] = useState(0);
 const memoCount = useMemo(() => count, []);
 return (
 <div>
 <button onClick={() => setCount(count + 1)}>
 {memoCount}
 </button>
 </div>
);
}

What will the button content be after it is clicked once?

5.	 Consider the following Counter component:

export function Counter() {
 const [count, setCount] = useState(0);
 const handleClick = useCallback(() => {
 setCount(count + 1);
 }, []);
 return (
 <div>
 <button onClick={handleClick}>{count}</button>
 </div>
);
}

What will the button content be after it is clicked twice?

Using React Hooks112

Answers
Here are the answers to the preceding questions:

1.	 The problem with the component is that both useState and useEffect are called
conditionally (when the text prop is defined), and React doesn’t allow its Hooks to be called
conditionally. Placing the Hooks before the if statement resolves the problem:

export function TextVanish({ text }: Props) {
 const [textToRender, setTextToRender] = useState(text);
 useEffect(() => {
 setTimeout(() => setTextToRender(“”), 5000);
 }, []);
 if (!text) {
 return null;
 }
 return {textToRender};
}

2.	 The main problem with the code is that the effect function can’t be marked as asynchronous
with the async keyword. A solution is to revert to the older promise syntax:

const [data, setData] = useState([]);
useEffect(() => {
 getData().then((theData) => setData(theData));
});

The other major problem is that no dependencies are defined in the call to useEffect. This
means the effect function will be executed on every render. The effect function sets some state,
which causes a re-render. So, the component will keep re-rendering, and the effect function will
keep executing indefinitely. An empty array passed into the second argument of useEffect
will resolve the problem:

useEffect(() => {
 getData().then((theData) => setData(theData));
}, []);

Another problem is that the data state will have the any[] type, which isn’t ideal. In this
case, it is probably better to explicitly define the type of the state as follows:

const [data, setData] = useState<Data[]>([]);

Answers 113

The last problem is that the data state could be set after the component has been unmounted,
which can lead to memory leaks. A solution is to set a flag when the component is unmounted
and not set the state when the flag is set:

useEffect(() => {
 let cancel = false;
 getData().then((theData) => {
 if (!cancel) {
 setData(theData);
 }
 });
 return () => {
 cancel = true;
 };
}, []);

3.	 TypeScript will narrow the type of the action parameter to { type: ‘backwards’;
steps: number } in the ‘backwards’ switch branch.

4.	 The button content will always be 0 because the initial count of 0 is memoized and never updated.

5.	 The button content will be 1 after one click and will stay 1 after subsequent clicks. So, after
two clicks, it will be 1.

The key here is that the handleClick function is only created when the component is initially
rendered because useCallback memoizes it. So, the count state will always be 0 within
the memoized function. This means the count state will always be updated to 1, which will
appear in the button content.

Part 2:
App Fundamentals

This part covers key fundamental topics for building apps, starting with different styling approaches
and their benefits. The use of React Server Components is then explored, and the use cases where
they shine. The part concludes with building an app with multiple pages using the popular Next.js
React framework.

This part has the following chapters:

•	 Chapter 4, Approaches to Styling React Frontends

•	 Chapter 5, Using React Server and Client Components

•	 Chapter 6, Creating a Multi-Page App with Next.js

4
Approaches to Styling React

Frontends

React doesn’t offer a standard styling mechanism, and the community has developed many different
approaches. In this chapter, we will learn a few of the most popular styling approaches.

We will use different approaches to style the alert component we worked on in previous chapters.
First, we will use plain CSS and understand the pros and cons of this approach. Then, we will move
on to use CSS modules, which will resolve plain CSS’s main problem. Next, we’ll use a library called
Tailwind CSS, again understanding its pros and cons. Lastly, we’ll touch on a few other noteworthy
styling approaches.

Additionally, we are going to learn how to use SVGs in React apps and use them in the alert component
for the information and warning icons.

By the end of this chapter, you will have the knowledge to pick an appropriate styling approach for
future React projects you work on.

We’ll cover the following topics:

•	 Using plain CSS

•	 Using CSS modules

•	 Using Tailwind CSS

•	 Using SVGs

•	 Other styling approaches

Approaches to Styling React Frontends118

Technical requirements
We will use the following technologies in this chapter:

•	 Browser: A modern browser such as Google Chrome.

•	 Node.js and npm: You can install them from https://nodejs.org/en/download/.

•	 Visual Studio Code: You can install it from https://code.visualstudio.com/.

All the code snippets used in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter04.

Using plain CSS
We will style the alert component we created in Chapter 2, Getting Started with TypeScript, using
plain CSS. We will look at one of the challenges with plain CSS and discover how we could mitigate it.

Creating the project

We’ll use the alert component we completed at the end of Chapter 2, Getting Started with TypeScript.
We will create a new Vite React and TypeScript project and copy the alert component into it. Let’s
carry out the following steps:

1.	 In a terminal, in a folder of your choice, execute the following command to instruct Vite to
create a React and TypeScript project:

npm create vite@latest alert -- --template react-ts

2.	 The project is created. Execute the following commands in the terminal to move the working
directory to the alert folder, install the project dependencies, and open the project in Visual
Studio Code:

cd alert
npm i
code .

3.	 Feel free to add automatic code formatting. We covered this topic with Prettier in Chapter 1,
Getting Started with React.

4.	 Run the app in development mode by executing the following command in a terminal:

npm run dev

https://nodejs.org/en/download/
https://code.visualstudio.com/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04

Using plain CSS 119

5.	 Create a new file in the src folder called Alert.tsx and copy-paste the contents from
https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/blob/main/Chapter04/start/Alert.tsx.

This is the last version of the alert component we worked on.

6.	 Open App.tsx and replace the content with the following:

import { Alert } from ‘./Alert’;
import ‘./App.css’;

export default function App() {
 return (
 <Alert heading=”Success” closable>
 Everything is really good!
 </Alert>
);
}

The project is now created and running in development mode. Next, we will take some time to
understand how to use plain CSS in React components.

Understanding how to reference CSS

Vite has already enabled the use of plain CSS, and it does already use some of it in the project. Carry
out the following steps to explore how plain CSS is referenced in a React app:

1.	 Open the main.tsx file and notice the index.css import statement:

import ‘./index.css’

The import statement is a little different from importing a JavaScript or TypeScript module – it
imports all the CSS from the file rather than part of the code in the file.

2.	 Open index.css and notice that it contains CSS rules that target elements outside of the
React app. For example, there are CSS rules targeting the body element.

Another CSS file used is App.css, which is imported into App.tsx. Most styles in App.
css are redundant because they target elements we removed. For example, the logo CSS class
is now redundant.

We will keep the redundant CSS in place for now. Eventually, we’ll check whether the build
process strips it out.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter04/start/Alert.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter04/start/Alert.tsx

Approaches to Styling React Frontends120

3.	 Open App.css and add the following highlighted properties to the card class to add a
rounded border:

.card {
 padding: 2em;
 border-radius: 8px;
 border: 1px solid #c1c1c1;
}

4.	 We will use the card CSS class in the App component. Open App.tsx and wrap a div
element with a card CSS class around Alert as follows:

function App() {
 return (
 <div className=”card”>
 <Alert ... >...</Alert>
 </div>
);
}

React uses a className attribute rather than class because class is a reserved word in
JavaScript. The className attribute is converted to a class attribute during transpilation.

In the running app, a border now appears around the alert:

Figure 4.1 – Alert with a border around

5.	 Now, stop the app from running by pressing Ctrl + C in the terminal.

6.	 Run the following command in the terminal to produce a production build:

npm run build

After a few seconds, build artifacts will appear in a dist folder at the project’s root.

7.	 Open index.html in the dist folder. Find the link element that references the CSS file,
and note down the path – it will be something similar to /assets/index-DFxdEdRD.css.

Using plain CSS 121

8.	 Open up the referenced CSS file. All the whitespace has been removed because it is optimized
for production. Notice that it contains all the CSS from index.css and App.css, including
the redundant logo CSS class:

Figure 4.2 – The bundled CSS file, including the redundant logo CSS class

The key point here is that Vite doesn’t remove any redundant CSS – it will include all the content from
all the CSS files that have been imported.

Next, we’ll style the alert component with plain CSS.

Using plain CSS in the alert component

Now that we understand how to use plain CSS within React, let’s style the alert component. Carry
out the following steps:

1.	 Add a CSS file called Alert.css in the src folder. This is available to copy on GitHub at
https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/blob/main/Chapter04/using-plain-css/src/Alert.css.

2.	 We are going to add the CSS classes step by step and understand the styles in each class. Start
by adding a container class into Alert.css:

.container {
 display: inline-flex;
 flex-direction: column;
 text-align: left;
 padding: 1em;
 border-radius: 4px;
 border: 1px solid transparent;
}

This will be used on the outer div element. The style uses an inline flexbox, with the items
flowing vertically and left-aligned. We’ve also added a nice, rounded border and a bit of padding
between the border and child elements.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter04/using-plain-css/src/Alert.css
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter04/using-plain-css/src/Alert.css

Approaches to Styling React Frontends122

3.	 Add the following additional classes that can be used within container:

.container.warning {
 color: #e7650f;
 background-color: #f3e8da;
}
.container.information {
 color: #118da0;
 background-color: #dcf1f3;
}

We will use these classes for the different types of alerts to color them appropriately.

4.	 Add the following class for the header container element:

.header {
 display: flex;
 align-items: center;
 margin-bottom: 0.1em;
}

This will be applied to the element that contains the icon, heading, and close button. It uses a
flexbox that flows horizontally with child elements vertically centered. It also adds a small gap
at the bottom before the alert message.

5.	 Now, add the following class for the icon to give it a width of 22px:

.header-icon {
 width: 22px;
}

6.	 Next, add the following class to apply to the heading to make it bold:

.header-text {
 font-weight: bold;
}

7.	 Add the following class to apply to the close button:

.close-button {
 margin-left: auto;
 border: none;
 display: flex;
 align-items: center;
 justify-content: center;
 background: transparent;
 height: 24px;

Using plain CSS 123

 width: 24px;
 padding: 0px;
 cursor: pointer;
}

This removes the border and background. It aligns the button to the right of the header and
gives it a pointer mouse cursor. It also centers the content within it.

8.	 Add the following class for the content element:

.content {
 margin: 0 1.2em 0 1.4em;
 color: #000;
}

This adds some margin so that the message horizontally aligns with the heading and sets the
text color to black.

That completes all the CSS class definitions.

9.	 Open Alert.tsx and add an import statement at the top of the file for the CSS file we
just created:

import ‘./Alert.css’;

10.	 Now, we are going to reference the CSS classes we just created in the elements of the alert
component. Add the following highlighted CSS class name references in the alert JSX to do this:

<div className={`container ${type}`}>
 <div className=”header”>

 {type === “warning” ? “⚠” : “ℹ”}

 {heading}
 {closable && (
 <button ... className=”close-button”>
 ...
 </button>
)}
 </div>
 <div className=”content”>{children}</div>
</div>

The elements in the alert component are now being styled by the CSS classes in the imported
CSS file.

Approaches to Styling React Frontends124

11.	 Start the app in development mode by running npm run dev in the terminal.

If you visit the app in the browser, an improved alert component will appear in the browser:

Figure 4.3 – A styled alert component with plain CSS

That completes the alert component’s styling, but let’s continue so that we can observe a downside
of plain CSS.

Experiencing CSS clashes

Now, we’ll see an example of CSS with different components clashing. Keep the app running in
development mode and then follow these steps:

1.	 Open App.tsx and change the referenced CSS class from “card” to “container” on
the div element:

<div className=”container”>
 <Alert ...>
 ...
 </Alert>
</div>

2.	 Open App.css and change the card CSS class name to container:

.container {
 padding: 2em;
 border-radius: 8px;
 border: 1px solid #c1c1c1;
}

Now, look at the running app and notice that the alert now has a gray border, its corners are a
little more rounded, and there is a little more padding.

3.	 Inspect the elements using the browser development tools. Notice that styles from the
container CSS class in App.css are leaking into the alert component, causing its padding
and border to be overridden.

Using plain CSS 125

Figure 4.4 – Clashing CSS classes

The key point here is that plain CSS classes are scoped to the whole app and not just the file it is imported
into. This means that CSS classes can clash if they have the same name, as we have just experienced.

A solution to CSS clashes is to carefully name them using BEM. For example, container in the
App component could be called App__container, and container in the Alert component
could be called Alert__container. However, this requires discipline from all members of a
development team.

Note
BEM stands for Block, Element, and Modifier and is a popular naming convention for CSS
class names. More information can be found at the following link: https://css-tricks.
com/bem-101/.

Here’s a quick recap of this section:

•	 Using plain CSS is simple and familiar to most developers and works without any additional
configuration in a Vite project

•	 CSS files can be imported in React component files using import ‘path-to-css-file.
css’ syntax

•	 All the styles in an imported CSS file are applied to the app – there is no scoping or removing
redundant styles

https://css-tricks.com/bem-101/
https://css-tricks.com/bem-101/

Approaches to Styling React Frontends126

Next, we will learn about a styling approach that doesn’t suffer from CSS clashes across components.

Using CSS modules
In this section, we’ll begin by understanding CSS modules and use them within the alert component
we have been working on.

Understanding CSS modules

CSS modules is an open source library available on GitHub at https://github.com/
css-modules/css-modules, which can be added to the bundling process to facilitate the
automatic scoping of CSS class names.

A CSS module is a CSS file, just like in the previous section; however, the filename has an extension of
.module.css rather than .css. This special extension allows Vite to differentiate a CSS module
file from a plain CSS file so that it can be processed differently.

A CSS module file is imported into a React component file as follows:

import styles from ‘./styles.module.css’;

This is similar to the syntax of importing plain CSS, but a variable is defined to hold CSS class name
mapping information. In the preceding code snippet, the CSS class name information is imported
into a variable called styles, but the variable name can be anything we choose.

The CSS class name mapping information variable is an object containing property names corresponding
to the CSS class names. Each class name property contains a value of a scoped class name to be used on
a React component. Here is an example of the mapping object containing container and error
CSS class names that have been imported into a component:

{
 container: “_container_16mbb_1”,
 error: “_error_16mbb_7”
}

The scoped CSS class name includes the original CSS class name, followed by a random string. This
naming construct prevents class names from clashing.

Styles within a CSS module are referenced in a component’s className attribute as follows:

A bad error

The CSS class name on the element would then resolve to the scoped class name. In the preceding
code snippets, styles.error would resolve to _error_16mbb_7. So, the styles in the running
app will be the scoped style names and not the original class names.

https://github.com/css-modules/css-modules
https://github.com/css-modules/css-modules

Using CSS modules 127

Projects created using Vite already have CSS modules installed and configured. This means we don’t
have to install CSS modules in order to start using them in our project.

Next, we will use CSS modules in the alert component we have worked on.

Using CSS modules in the alert component

Now that we understand CSS modules, let’s use them in the alert component. Carry out the following steps:

1.	 Start by renaming Alert.css to Alert.module.css; this file can now be used as a
CSS module.

2.	 Open Alert.module.css and change the CSS class names to camel case rather than kebab
case. This will allow us to reference the scoped CSS class names more easily in the component
– for example, styles.headerText rather than styles[“header-text”]. The
changes are as follows:

...

.headerIcon {
 ...
}
.headerText {
 ...
}
.closeButton {
 ...
}

3.	 Now, open Alert.tsx and change the CSS import statement to import the CSS module
as follows:

import styles from ‘./Alert.module.css’;

4.	 In the JSX, change the class name references to use the scoped names from the CSS module:

<div className={`${styles.container} ${styles[type]}`}>
 <div className={styles.header}>

 {type === “warning” ? “⚠” : “ℹ”}

 {heading && (

 {heading}

)}
 {closable && (

Approaches to Styling React Frontends128

 <button ... className={styles.closeButton}>
 ...
 </button>
)}
 </div>
 <div className={styles.content}>{children}</div>
</div>

5.	 If the app isn’t already running, start it by running npm run dev in the terminal.

This time, the alert will no longer have its own gray border, which is a sign that styles are no
longer clashing.

6.	 Inspect the elements in the DOM using the browser’s DevTools. You will see that the alert
component is now using scoped CSS class names. This means the alert container styles no
longer clash with the app container styles.

Figure 4.5 – The CSS module scoped class names

7.	 Stop the running app before continuing by pressing Ctrl + C.

8.	 To round off our understanding of CSS modules, let’s see what happens to the CSS in a
production build. However, before we do that, let’s add a redundant CSS class at the bottom
of Alert.module.css:

...

.content {

Using CSS modules 129

 margin-left: 1.4em;
 color: #000;
}
.redundant {
 color: red;
}

9.	 Now, create a production build by executing npm run build in the terminal.

After a few seconds, build artifacts are created in the dist folder.

10.	 Open the bundled CSS file, and you will notice the following points:

	� It contains all the CSS from index.css, App.css, and the CSS module we just created.

	� The class names from the CSS module are scoped. This will ensure that the styles in production
don’t clash, like in development mode.

	� It contains the redundant CSS class name from the CSS module.

Figure 4.6 – The redundant CSS class included in the CSS bundle

That completes the refactoring of the alert component to use CSS modules.

Note
For more information on CSS modules, visit the GitHub repository at https://github.
com/css-modules/css-modules.

Here’s a recap of what we have learned about CSS modules:

•	 CSS modules allow CSS class names to be automatically scoped to a React component. This
prevents styles for different React components from clashing.

•	 CSS modules isn’t a standard browser feature; instead, it is an open source library that can
be added to the bundling process. However, it is pre-installed and preconfigured in projects
created with Vite.

•	 Within a CSS module file, you write plain CSS, which is familiar to most developers.

•	 Similar to plain CSS, redundant CSS classes are not pruned from the production CSS bundle.

https://github.com/css-modules/css-modules
https://github.com/css-modules/css-modules

Approaches to Styling React Frontends130

Next, we will learn about another approach to styling React apps.

Using Tailwind CSS
In this section, we will start by understanding Tailwind CSS and its benefits. Next, we’ll refactor the
alert component we have been using to use Tailwind and observe how it differs from other approaches
we have tried.

Understanding Tailwind CSS

Tailwind is a set of prebuilt CSS classes that can be used to style an app. It is referred to as a utility-
first CSS framework because the prebuilt classes can be thought of as flexible utilities.

An example CSS class is bg-white, which styles the background of an element white – bg is short
for background. Another example is bg-orange-500, which sets the background color to a 500
shade of orange. Tailwind contains a nice color palette that can be customized.

The utility classes can be used together to style an element. The following example styles a button
element in JSX:

<button className=”border-none rounded-md bg-emerald-700 text-white
cursor-pointer”>
 ...
</button>

Here’s an explanation of the classes used in the preceding example:

•	 border-none removes the border of an element.

•	 rounded-md rounds the corners of an element border. md stands for medium. Alternatively,
you could use lg (large) or even full, for more rounded borders.

•	 bg-emerald-700 sets the element background color to a 700 shade of emerald.

•	 text-white sets the element text color to white.

•	 cursor-pointer sets the element cursor to a pointer.

The utility classes are low-level and focused on styling a very specific thing. This makes the classes
flexible, allowing them to be highly reusable.

Tailwind can specify that a class should be applied when the element is in a hover state by prefixing
it with hover:. The following example sets the button background to a darker shade of emerald
when hovered over:

<button className=”md border-none rounded-md bg-emerald-700 text-white
cursor-pointer hover:bg-emerald-800”>
 ...
</button>

Using Tailwind CSS 131

So, a key point of Tailwind is that we don’t write new CSS classes for each element we want to style
– instead, we use a large range of well-thought-through existing classes. A benefit of this approach is
that it helps an app look nice and consistent.

Note
For more information on Tailwind, refer to their website at the following link: https://
tailwindcss.com/. The Tailwind website is a crucial resource for searching and understanding
all the different utility classes that are available.

Next, we will install and configure Tailwind in the project containing the alert component we have
been working on.

Installing and configuring Tailwind CSS

Now that we understand Tailwind, let’s install and configure it in the alert component project. To do
this, carry out the following steps:

1.	 In the Visual Studio project, start by installing Tailwind by running the following command
in a terminal:

npm i -D tailwindcss @tailwindcss/vite

The Tailwind library is installed as a development dependency because it’s not required at runtime.

2.	 Open vite.config.ts and add the tailwindcss plugin:

...
import tailwindcss from “@tailwindcss/vite”;
export default defineConfig({
 plugins: [react(), tailwindcss()],
});

3.	 Now, open index.css in the src folder and replace the contents with the following line to
add the base Tailwind CSS:

@import ‘tailwindcss’;

https://tailwindcss.com/
https://tailwindcss.com/

Approaches to Styling React Frontends132

4.	 Next, we will add a Visual Studio Code extension that enables IntelliSense for Tailwind CSS
classes. Open up the Visual Studio Code extensions, search for the Tailwind CSS IntelliSense
extension, and install it.

Figure 4.7 – Tailwind Visual Studio Code extension

The next two steps are only relevant if you are using Prettier to format code.

5.	 Let’s add a Prettier plugin to sensibly sort CSS class names referenced on the className
attribute during code formatting. Start by installing prettier-plugin-tailwindcss
by executing the following command in the terminal:

npm i -D prettier-plugin-tailwindcss

6.	 Open the Prettier configuration file and add the following highlighted line to configure Prettier
to use this plugin:

{
 ...,
 “plugins”: [“prettier-plugin-tailwindcss”]
}

Tailwind is now installed and ready to use.

Next, we will use Tailwind to style the alert component we have been working on.

Using Tailwind CSS

Now, let’s use Tailwind to style the alert component. We will replace the use of CSS modules with
Tailwind utility class names in the JSX className attribute. To do this, carry out the following steps:

1.	 Open App.tsx and remove the className attribute on the outermost div element. This
removes the plain CSS from the App component.

2.	 Open Alert.tsx and start by removing the Alert.module.css import statement from
the top of the file.

Using Tailwind CSS 133

3.	 Update the className attribute on the outermost div element as follows:

<div
 className={`border-1 inline-flex flex-col rounded-md border-
 transparent p-3 text-left`}
>
 ...
</div>

Here is an explanation of the utility classes that were just used:

	� inline-flex and flex-col create an inline flexbox that flows vertically

	� text-left aligns items to the left

	� p-3 adds three spacing units of padding

	� We have encountered rounded-md before – this rounds the corners of the div element

	� border-1 and border-transparent add a transparent 1px border

Note
Spacing units are defined in Tailwind and are a proportional scale. One spacing unit is equal
to 0.25rem, which translates roughly to 4px.

Notice the helpful IntelliSense as the class names are entered:

Figure 4.8 – IntelliSense for Tailwind class names

Notice also that the class names will be sorted as per the preceding code snippet, regardless of
the order in which they are entered.

4.	 Still on the outermost div element, add the following conditional styles using string interpolation:

<div
 className={`border-1 inline-flex flex-col rounded-md border-
transparent p-3 text-left ${
 type === ‘warning’

Approaches to Styling React Frontends134

 ? ‘text-amber-900’
 : ‘text-teal-900’
 } ${
 type === ‘warning’
 ? ‘bg-amber-50’
 : ‘bg-teal-50’}`}
>
 ...
</div>

The text color is set to a 900 amber shade for warning alerts and a 900 teal shade for information
alerts. The background color is set to a 50 amber shade for warning alerts and a 50 teal shade
for information alerts.

5.	 Next, update the className attribute on the header container as follows:

<div className=”mb-1 flex items-center”>
 ...
 {heading}
 {closable && ...}
</div>

Here is an explanation of the utility classes that were just used:

	� mb-1 adds a one spacing unit margin at the bottom of the element

	� flex and items-center create a horizontal flowing flexbox where the items are
centered vertically

6.	 Update the className attribute on the icon as follows:

 {type === ‘warning’ ? ‘⚠’ : ‘ℹ’}

The w-7 instance sets the element to a width of seven spacing units.

7.	 Update the className attribute on the heading as follows:

{heading}

The font-bold instance sets the font weight to be bold on the element.

8.	 Update the className attribute on the close button as follows:

{closable && (
 <button
 ...
 className=”ml-auto flex h-6 w-6 cursor-pointer items-center
 justify-center border-none bg-transparent p-0”

Using Tailwind CSS 135

 >
 ...
 </button>
)}

Here, border-none removes the element border, and bg-transparent makes the element
background transparent. The ml-auto instance sets the left margin to automatic, which right-
aligns the element. The flex, items-center, and justify-center instances center
the content within the button. The h-6 and w-6 instances size the button, and p-0 removes
its padding. The cursor-pointer instance sets the mouse cursor to a pointer.

9.	 Finally, update the className attribute on the message container as follows:

<div className=”ml-7 pr-5 text-black”>
 {children}
</div>

The ml-7 instance sets the left margin on the element to seven spacing units, pr-5 sets the
right padding to five spacing units, and text-black sets the text color to black.

10.	 Run the app by running npm run dev in the terminal. After a few seconds, the app will
appear in the browser.

11.	 Inspect the elements in the DOM using the browser’s DevTools. Notice the Tailwind utility
classes being used.

A key point to notice is that no CSS class name scoping occurs. There is no need for any scoping
because the classes are general and reusable and not specific to any component.

Figure 4.9 – A styled alert using Tailwind

Approaches to Styling React Frontends136

12.	 Stop the running app before continuing by pressing Ctrl + C.

13.	 To round off our understanding of Tailwind, let’s see what happens to the CSS in a production
build. First, create a production build by executing npm run build in the terminal.

After a few seconds, build artifacts are created in the dist folder.

14.	 Open the bundled CSS file from the dist/assets folder. Notice the base Tailwind styles
and all the Tailwind classes we used in this file.

Figure 4.10 – Tailwind CSS classes in a bundled CSS file

Note
An important point is that Tailwind doesn’t add all its CSS classes – that would produce a
massive CSS file! Instead, it only adds the CSS classes used in the app.

That completes the process of refactoring the alert component to use Tailwind.

Here’s a recap of what we learned about Tailwind:

•	 Tailwind requires installing and configuring in a Vite project.

•	 Tailwind is a well-thought-through collection of reusable CSS classes that can be applied to
React elements. There is a lot to learn, but the documentation is very helpful.

•	 One downside of Tailwind is that the JSX can be harder to read when it contains many Tailwind
CSS class references.

•	 Tailwind has a nice default color palette and a 4px spacing scale, which gives a nice look and feel.

•	 Only classes used on React elements are included in the CSS build bundle. For this reason, and
the high reusability, the CSS bundle is generally very small.

Next, we will make the icons in the alert component look a bit nicer.

Using SVGs
In this section, we will learn how to use SVG files in React and how to use them for the icons in the
alert component.

Using SVGs 137

Understanding how to use SVGs in React

SVG stands for Scalable Vector Graphics, and it is made up of points, lines, curves, and shapes based
on mathematical formulas rather than specific pixels. This allows them to scale when resized without
distortion. The quality of icons is important to get right – if they are distorted, they make the whole
app feel unprofessional. Using SVGs for icons is common in modern web development.

The simplest way to use SVGs in React is to add an svg element directly in JSX. The following example
is an upload button containing an up-arrow SVG:

function Upload() {
 return (
 <div className=... >
 <button className=... >
 <svg
 width=”24”
 height=”24”
 viewBox=”0 0 24 24”
 fill=”none”
 xmlns=”http://www.w3.org/2000/svg”
 >
 <path
 d=”M12 4L4 12H9V20H15V12H20L12 4Z”
 fill=”white”
 />
 </svg>
 </button>
 </div>
);
}

The downside of this approach is that svg elements can contain a lot of markup, making the React
component hard to read. It’s more convenient to reference an SVG file that is located outside the React
component file. Vite allows SVG files to be imported without any additional configuration. In fact, a
couple of SVGs were referenced in the Vite React template App component as follows:

import reactLogo from ‘./assets/react.svg’
import viteLogo from ‘./vite.svg’;
...
function App() {
 ...
 return (
 ...

 ...

Approaches to Styling React Frontends138

 ...
);
}
export default App;

In the preceding example, viteLogo is imported as a path to the SVG file, which is then used on
the src attribute on the img element to display the SVG.

Notice the path in the viteLogo import statement and where the vite.svg file is in the project
– it’s in the public folder. The public folder is a special folder where assets are served at the root
path (/), and it is intended for assets that aren’t referenced in source code or for assets whose names
should remain unchanged during the bundling process.

A downside of referencing an SVG in an img element is that you lose the ability to style the SVG.
Another approach is to create a reusable SVG React component with the SVG embedded. The following
example is a React component for an up-arrow icon:

export function UpArrow() {
 return (
 <svg
 width=”24”
 height=”24”
 viewBox=”0 0 24 24”
 fill=”none”
 xmlns=”http://www.w3.org/2000/svg”
 >
 <path
 d=”M12 4L4 12H9V20H15V12H20L12 4Z”
 fill=”white”
 />
 </svg>
);
}

The SVG React component can then be consumed in other components without the SVG bloating
the markup, as follows:

import { UpArrow } from “/icons/UpArrow”;
function Upload() {
 return (
 <div className=... >
 <button className=... >
 <UpArrow />
 </button>

Using SVGs 139

 </div>
);
}

In fact, there is a Vite plugin called vite-plugin-svgr that allows you to import SVG files as
React components, as in the following example:

import UpArrow from “/icons/uparrow.svg?react”;
function Upload() {
 return (
 <div className=... >
 <button className=... >
 <UpArrow />
 </button>
 </div>
);
}

See the vite-plugin-svgr GitHub repository for more details: https://github.com/
pd4d10/vite-plugin-svgr.

Next, we will use SVGs in the alert component.

Adding SVGs to the alert component

Carry out the following steps to replace the emoji icons in the alert component with SVGs:

1.	 First, create three empty files called cross.svg, info.svg, and warning.svg in the
src/assets folder. Then, copy and paste the content of these from the GitHub repository
at https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/tree/main/Chapter04/using-svgs/src/assets.

2.	 Open Alert.tsx and add the following import statements to import the SVGs:

import crossIcon from ‘./assets/cross.svg’;
import infoIcon from ‘./assets/info.svg’;
import warningIcon from ‘./assets/warning.svg’;

We have given the SVG components appropriately named aliases.

3.	 Replace the span element containing the emoji icons with an img element conditionally
referencing the SVGs as follows:

<div className=”mb-1 flex items-center”>
 <img
 src={type === ‘warning’ ? warningIcon : infoIcon}
 alt={type === ‘warning’ ? ‘Warning’ : ‘Information’}

https://github.com/pd4d10/vite-plugin-svgr
https://github.com/pd4d10/vite-plugin-svgr
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-svgs/src/assets
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-svgs/src/assets

Approaches to Styling React Frontends140

 className=”mr-1 h-6 w-6”
 />
 {heading}

</div>

We have used Tailwind to size icons appropriately and add a gap between them and the heading.

4.	 Next, replace the emoji close icon with the SVG close icon as follows:

<button ... >

</button>

5.	 Run the app by running npm run dev. The app in the browser will contain the alert
component with the SVG icons.

Figure 4.11 – An alert with an SVG icon

That completes the alert component – it is looking much better now.

Here’s a quick recap of what we learned about using SVGs in React apps:

•	 SVGs are commonly used for icons in an app to ensure a professional look

•	 SVG files can be imported into a React component and then referenced within an img element

Next, we touch on a few other styling approaches.

Other styling approaches
In this section, we’ll cover other popular styling approaches.

Using inline styles

The style attribute can be used to style JSX elements. It is set to a JavaScript object, where CSS
properties are written in camelCase with string or number values.

Here is an example of the alert container styled using this approach:

<div
 style={{
 display: “inline-flex”,

Other styling approaches 141

 flexDirection: “column”,
 textAlign: “left”,
 padding: “1em”,
 borderRadius: “4px”,
 border: “1px solid transparent”,
 backgroundColor:
 type === “warning” ? “#f3e8da” : “#dcf1f3”,
 color: type === “warning” ? “#e7650f” : “#118da0”,
 }}
>
 ...
</div>;

The benefits of this approach are the following:

•	 It’s simple and familiar to most developers

•	 There’s no build step required

•	 The styles are scoped to the component

However, there are some drawbacks:

•	 CSS pseudo classes (such as :hover) and pseudo elements (such as ::before) can’t be used.

•	 It’s generally less performant because no style sheet can be cached. It can also lead to unnecessary
style duplication, increasing the DOM size.

Here’s a link to the complete code for the alert component styled using inline styles: https://
github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/
tree/main/Chapter04/using-inline-styles.

Using SCSS

SCSS is a superset of CSS that has historically been very popular because of features such as variables,
nesting, and mixins. However, variables and nesting have now become available in native CSS, so
SCSS is a less popular option for new React projects.

Here’s the alert container styled using the nesting feature in SCSS:

container {
 display: inline-flex;
 flex-direction: column;
 text-align: left;
 padding: 1em;
 border-radius: 4px;

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-inline-styles
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-inline-styles
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-inline-styles

Approaches to Styling React Frontends142

 border: 1px solid transparent;

 &.warning {
 color: #e7650f;
 background-color: #f3e8da;
 }
 &.information {
 color: #118da0;
 background-color: #dcf1f3;
 }
}

Vite does support SCSS, but a sass-embedded package does need to be installed. The SCSS is placed
in a file with a .scss file extension and imported into a component in the same way as a .css file.

SCSS doesn’t automatically scope styles, so it suffers from the same clashing problem as plain CSS.

Here’s a link to the code for the alert component styled using SCSS: https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/
Chapter04/using-scss.

For more information on SCSS, see the documentation at https://sass-lang.com.

Using CSS-in-JS

CSS-in-JS is a styling technique where the styles are written directly in JSX. So, it’s similar to inline
CSS, but a build step moves the inline styles from the HTML elements into a style element. The
HTML elements then reference the styles using a scoped CSS class name.

The styled-components library is a very popular CSS-in-JS library. Here’s the alert container
using styled-components:

const Container = styled.div<{ type: string }>`
 display: inline-flex;
 flex-direction: column;
 text-align: left;
 padding: 1em;
 border-radius: 4px;
 border: 1px solid transparent;

 ${(props) =>
 props.type === “warning” &&
 `
 color: #e7650f;

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-scss
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-scss
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-scss
https://sass-lang.com

Summary 143

 background-color: #f3e8da;
 `}

 ${(props) =>
 props.type === “information” &&
 `
 color: #118da0;
 background-color: #dcf1f3;
 `}
`;

The Container component is a regular React component that can take in props – in this case, a
type prop applies the container for the specified alert type. It uses a template literal to define a styled
div element with CSS directly in the React component.

Here’s a link to the code for the alert component styled using styled-components: https://
github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/
tree/main/Chapter04/using-css-in-js.

A downside of styled-components is that styles are applied at runtime rather than at build
time, resulting in a minor performance penalty. Another downside is it can’t be used in React Server
Components, which we’ll cover in Chapter 5, Using React Server and Client Components. The project
has also been recently placed in maintenance mode.

For more information on styled-components, see its documentation at https://styled-
components.com.

Newer CSS-in-JS libraries, such as StyleX (https://stylexjs.com) and Panda (https://
panda-css.com), address the downsides of styled-components but haven’t gained as much
traction at the time of writing this book.

Next, we will summarize what we have learned in this chapter.

Summary
In this chapter, we learned three methods of styling and their pros and cons.

First, we learned that plain CSS could be used to style React apps, but all the styles in the imported CSS file
are bundled regardless of whether a style is used. Also, the styles are not scoped to a specific component
– we observed the container CSS class names clashing with the App and Alert components.

Next, we learned about CSS modules, which allow us to write plain CSS files imported in a way that
scopes styles to the component, allowing it to be used anywhere in the app. We learned that CSS
modules is an open source library pre-installed and preconfigured in projects created with Vite. We
saw how this resolved the CSS clashing problem but didn’t remove redundant styles.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-css-in-js
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-css-in-js
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter04/using-css-in-js
https://styled-components.com
https://styled-components.com
https://stylexjs.com
https://panda-css.com
https://panda-css.com

Approaches to Styling React Frontends144

We looked at styling with the popular Tailwind CSS library. We learned that Tailwind provides a set
of reusable CSS classes that can be applied to React elements, including a nice default color palette
and a 4px spacing scale, both of which can be customized. We learned that only the used Tailwind
classes are included in the production build.

We touched on a few other styling approaches. Inline CSS is convenient but has performance penalties
and doesn’t allow pseudo classes or pseudo elements. SCSS and CSS-in-JS were very popular in the
past, so you may use them in existing code bases.

Finally, we learned that Vite enables the use of SVG files. SVGs can be imported and referenced as a
path in an img element.

An important note is that styling doesn’t impact component reusability. Our alert component can still
be used in many parts of an app and even in different apps.

In the next chapter, we will look at React Server Components.

Questions
Answer the following questions to check what you have learned about React styling:

1.	 Why could the following use of plain CSS be problematic?

<div className=”wrapper”></div>

2.	 We have a component styled using CSS modules as follows:

import styles from ‘./styles3.module.css’;

function ComponentThree() {
 return <div className={styles.wrapper}>
</div>
}

The styles in styles3.module.css are as follows:
.wrap {
 display: flex;
 align-items: center;
 background: #e7650f;
}

The styles aren’t being applied when the app is run. What is the problem?

Answers 145

3.	 We are styling a button element using Tailwind. It is currently styled as follows:

<button className=”bg-blue-500 text-white font-bold py-2 px-4
rounded”>
 Button
</button>

How can we enhance the style by making the button background a 700 shade of blue when
the user hovers over it?

4.	 A logo SVG is referenced as follows:

import Logo from ‘./logo.svg’;

function SomeComponent() {
 return (
 <div>
 <Logo />
 </div>
);
}

However, the logo isn’t rendered. What is the problem?

5.	 We are styling a button element using Tailwind that has a color prop to determine its color
and is styled as follows:

<button className={`bg-${color}-500 text-white font-bold py-2
px-4 rounded`}>
 Button
</button>

However, the button color doesn’t work. What is the problem?

Answers
1.	 The wrapper CSS class could clash with other classes. To reduce this risk, the class name can

be manually scoped to the component:

<div className=”card-wrapper”></div>

2.	 The wrong class name is referenced in the component – it should be wrap rather than wrapper:

import styles from ‘./styles3.module.css’;

function ComponentThree() {
 return <div className={styles.wrap}>
</div>
}

Approaches to Styling React Frontends146

3.	 The style can be adjusted as follows to include the hover style:

<button className=”bg-blue-500 hover:bg-blue-700 text-white
font-bold py-2 px-4 rounded”>
 ...
</button

4.	 The Logo instance will hold the path to the SVG rather than a component. The import statement
can be adjusted as follows to import a React component if the vite-plugin-svgr plugin
is used:

import Logo from ‘./logo.svg?react’;

function SomeComponent() {
 return (
 <div>
 <Logo />
 </div>
);
}

5.	 The bg-${color}-500 class name is problematic as this can only be resolved at runtime
because of the color variable. The used Tailwind classes are determined at build time and
added to the bundle, meaning the relevant background color classes won’t be bundled. This
means that the background color style won’t be applied to the button.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/GxSkC

https://packt.link/GxSkC

5
Using React Server and Client

Components

In this chapter, we will learn all about React Server and Client Components. We’ll start by understanding
the problem that Server Components aim to solve before exploring their capabilities and when to
use them. Additionally, we will learn how to nest them inside each other to create a performant app
with the capabilities we need.

We’ll also start to use a React-based app framework called Next.js and gain hands-on experience
creating both Server and Client Components.

We’ll cover the following topics:

•	 Understanding SPAs

•	 Understanding Server Components

•	 Creating Server Components

•	 Exploring Client Components

•	 Composing Server and Client Components

Technical requirements
We will be using the following technologies in this chapter:

•	 Browser: A modern browser such as Google Chrome

•	 Node.js and npm: You can install them from https://nodejs.org/en/download/

•	 Visual Studio Code: You can install it from https://code.visualstudio.com/

All the code snippets used in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter05.

https://nodejs.org/en/download
https://code.visualstudio.com/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter05
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter05

Using React Server and Client Components148

Understanding SPAs
Before diving into Server Components, let’s understand the problems they aim to solve, all of which
stem from single-page applications (SPAs).

Understanding the SPA problem

The SPA problem occurs when the first page is loaded. The following diagram visualizes the steps to
load the first page in an SPA:

Figure 5.1 – React SPA loading steps

Here’s a description of the steps:

1.	 The process starts with the user requesting a page from the server and an HTML page being
downloaded. A typical SPA loads an HTML page with very little content other than references to
JavaScript and CSS files. Usually, the HTML won’t contain any meaningful content to the user.

2.	 The JavaScript and CSS referenced in the HTML are requested and downloaded from the
server. The JavaScript contains code to render the app because the elements are rendered on
the client. In a React app, this JavaScript will contain both React and the app, meaning there
may be a lot of JavaScript. The CSS contains styles for the rendered elements.

3.	 Once the JavaScript has been downloaded, it is parsed and executed, which results in the
component tree being rendered in a React app. The rendering process is often referred to as
client-side rendering (CSR) in an SPA.

4.	 Generally, an app will fetch some data from a database to display on the first page. So, after
the initial rendering in a React app, a data fetching process will occur, followed by component
re-rendering to display the data on the page.

The main problem with SPAs is that a lot happens before the user sees meaningful content on the
page – typically, at least three network requests! This inefficient process is a potential performance
problem. If any of the steps take a long time, the problem can be significant. For example, downloading,
parsing, and executing a large amount of JavaScript can be problematic. Slow loading performance
not only frustrates users but can impact SEO.

Understanding Server Components 149

It is worth noting that bundlers such as Vite can split the app into separate bundles to mitigate the
first load performance problem. Bundles are loaded on demand as the user interacts with the app.
However, this solution can cause a knock-on problem – sluggish user interactions as the bundles are
lazily loaded.

Understanding the benefits of SPAs

Before we start to cover React Server Components (RSCs), it is important to understand that SPAs
aren’t all bad – it’s been a popular architecture for well over a decade, and they still offer significant
benefits today. In fact, the apps we’ve built so far in this book are SPAs. Here are some of the good
parts of SPAs:

•	 Once the initial JavaScript is loaded and executed, SPAs are fast. UI elements are updated on the
client, and any data fetching happens without a full page reload. In addition, page navigation
happens on the client without a server request.

•	 It scales well because the server load doesn’t contain any HTML or JavaScript processing – that
work is distributed to each client.

•	 Frontend-backend separation is easy, meaning the backend can be a technology other
than JavaScript.

•	 Hosting an SPA is simple and cheap because it’s just a set of static resources. A CDN can be
used, enabling global delivery and potentially reducing costs further because of the reduced
server requests and reduced bandwidth usage.

Next, it’s time to learn about RSCs and how they address the SPA problem.

Understanding Server Components
In this section, we will learn what RSCs are and their benefits.

Understanding what a Server Component is

RSCs were first introduced in the experimental React 18 version and fully released in React 19. React
components before this version were all Client Components.

The React components we have built so far in this book aren’t RSCs – instead, they are Client Components.
We’ll dive deeper into how Client Components can work alongside RSCs later in this chapter.

Here’s an example of an RSC:

export async function Person({ id }: { id: string }) {
 const result = await db
 .select({ name: people.name, notes: people.notes })
 .from(people)

Using React Server and Client Components150

 .where(eq(people.id, id));
 if (result.length === 0) {
 return null;
 }
 const person = result[0];
 return (
 <main>
 <h1>{person.name}</h1>
 <p>{person.notes}</p>
 </main>
);
}

At first glance, an RSC looks like a regular React component, similar to what we have already been
building. Note the following in particular:

•	 The component is a function that takes in props – in this case, id

•	 The component returns JSX

However, there are some obvious differences:

•	 The function is asynchronous. Client Components can only be synchronous – RSCs can be
asynchronous or synchronous.

•	 The function is accessing a database on the server. Client Components can’t access server
resources directly.

Here are some other key points about RSCs that aren’t apparent from the preceding code snippet:

•	 They run exclusively on the server.

•	 They don’t re-render. They are run once on the server to generate the UI, which is then
downloaded to the client.

•	 They can’t be very interactive – React state, effects, and events aren’t allowed. However, HTML-
native interactivity, such as basic forms, can be used. Interactions that require JavaScript can’t
be used.

•	 The JavaScript bundle doesn’t include the component’s JavaScript code, which is executed in
the rendering process. Only the result of the RSC function call is downloaded to the client,
which is the generated UI.

RSCs have taken a couple of years to be fully released and available after being introduced in an
experimental version. This is because they require pieces outside of React, such as a bundler and a
web server that supports RSCs.

Understanding Server Components 151

This brings us to an architectural requirement for RSCs – a web server capable of executing an RSC
is required. So, non-JavaScript-based servers will require an additional server for RSCs. In addition,
even if the server is JavaScript-based, the web framework that’s used needs to support RSCs, and not
many do at the time of writing this book.

Now that we have started to understand what RSCs are, next, we’ll cover their benefits in depth.

Understanding how RSCs address the SPA problem

The following diagram visualizes the steps to load the first page where an RSC is used:

Figure 5.2 – RSC loading steps

Here’s a description of the steps:

1.	 The process starts with the user requesting a page from the server. The server runs the RSC,
executing any database queries. The processed HTML page is then downloaded. So, the HTML
will probably contain meaningful content for the user, unlike an SPA.

2.	 The JavaScript and CSS referenced in the HTML are requested and downloaded from the server.
The amount of JavaScript will generally be less than what you’d receive from an SPA because
some of it will already have been executed and not needed on the client. The JavaScript will
contain Client Components, something we’ll cover later in this chapter.

3.	 Once the JavaScript has been downloaded, it is parsed and executed, which results in Client
Components being hydrated. We’ll cover hydration later in this chapter, but it’s important to
note that it’s less work than fully rendering the components.

Now that we have started to understand RSCs and how they address the SPA problem, let’s explore
their benefits further.

Understanding the benefits of Server Components

RSCs offer significant benefits. Here are some valuable tasks an RSC can do:

•	 Fetch data directly from a database

•	 Call another web service that requires secret credentials

•	 Check whether a user is authorized to access a server resource

Using React Server and Client Components152

•	 Convert markdown content into HTML without having to download the converter code to
the browser

Broadly speaking, there are three categories of benefits:

•	 Performance: Performance is positively impacted in the following ways:

	� The amount of JavaScript that’s downloaded to the browser is reduced

	� The amount of network calls from the browser is reduced when the app loads

	� Component rendering is reduced when the app loads

•	 Developer productivity: Let’s look at how developer productivity is impacted:

	� We’ve always been able to write server code to query databases and perform user authorization
checks. However, RSCs allow you to do this using the React paradigm.

	� RSCs allow frontend and backend code to be colocated, as well as strong typing to be available
across the network boundary.

	� RSCs reduce the React state that is needed in an app because it’s not needed for server data
– this data is just rendered directly on the server. State is one of the most complex aspects
of React, so reducing the state reduces complexity.

•	 Security: Since server components never run on the client, they can safely contain sensitive
logic such as conditional access rules or API keys

This concludes this section on understanding RSCs. To recap, RSCs run exclusively on the server
and can be asynchronous, unlike Client Components. They can fetch data directly from databases
and interact with server resources but can’t perform JavaScript user interactions. RSCs offer good
performance, productivity, and security benefits compared to Client Components.

Next, we will implement our first RSC.

Creating Server Components
In this section, we are going to create a new project in Next.js, a popular React-based framework that
supports RSCs. Then, we’ll create some RSCs and cement our understanding of them.

Creating Server Components 153

Creating the project

Next.js is a mature framework that was an early adopter of RSCs. We will use it in this chapter and
throughout the rest of this book. Carry out the following steps to create a Next.js project:

1.	 In a terminal, execute the following command to create the project:

npx create-next-app@latest app --ts --tailwind --eslint --app
--src-dir --import-alias “@/*” --turbopack

Here’s an explanation of the command:

	� create-next-app: The tool that creates the project

	� app: The app’s name

	� --ts: An option that allows you to configure the project so that it can use TypeScript

	� --tailwind: An option that configures the project so that it uses Tailwind styling

	� --eslint: An option that configures ESLint for linting

	� --app: An option that configures the project so that it uses the latest router variant, which
is called the app router

	� --src-dir: An option that configures whether the source code is in a src folder

	� --import-alias: An option that configures import path aliases. We have set this to
the default of “@/*”

	� --turbopack: An option that specifies whether Turbopack should be used for development

The command also installs the project dependencies, something that will take a few seconds.

More information on creating a Next.js app can be found at https://nextjs.org/docs/
app/api-reference/cli/create-next-app.

2.	 Still in the terminal, move to the project folder and open Visual Studio Code by running the
following commands:

cd app
code .

If you aren’t using Visual Studio Code, then the code . command won’t open your editor –
you can omit that command and open your editor manually.

3.	 Prettier can be set up in the same manner as Vite, something we learned in Chapter 1, Getting
Started with React. Feel free to add automatic code formatting to this project.

https://nextjs.org/docs/app/api-reference/cli/create-next-app
https://nextjs.org/docs/app/api-reference/cli/create-next-app

Using React Server and Client Components154

4.	 In the terminal, execute the following command to run the app in development mode:

npm run dev

The app will be available in your browser at http://localhost:3000:

Figure 5.3 – Next.js template app home page

5.	 Next, go to the code in Visual Studio Code and open layout.tsx in the src/app folder.
This is the root React component, which renders at all paths of the app. Add the following
highlighted line before the return statement:

export default function RootLayout(...) {
 console.log(‘Am I on the server or client?’);
 return ...
}

http://localhost:3000

Creating Server Components 155

The console’s output will help us determine whether the component is an RSC.

As we previously experienced with Vite, the app will be automatically rebuilt and reloaded
into the browser efficiently.

6.	 Open the browser console in the browser development tools area. You will see the following
message, alongside a Server badge, indicating it came from the server:

Figure 5.4 – Browser console output

7.	 Now, open the terminal that is running the Next.js app. We’ll see the following message:

Figure 5.5 – Console output from the Next.js server

From this, we can see that the Layout component is an RSC.

8.	 Now, open Page.tsx. This is the component that renders inside Layout in the root path
of the app. Add a similar console output to this component:

export default function Home() {
 console.log(‘Is Home on the server or client?’);
 return ...
}

You will determine that this is an RSC as well.

Using React Server and Client Components156

9.	 In the browser development tools area, go to the Components panel and look at the React
components list. You will see a Server badge against the RSCs. This is another way of
determining whether a component is an RSC:

Figure 5.6 – Server badge in the React components list

In Next.js, components are RSCs by default – that is, you don’t have to do anything to declare that a
component is an RSC. In fact, you can’t specify that a component is an RSC – you can only specify
that a component is a Client Component. Later in this chapter, we’ll explore how this is done.

In the next section, we’ll create our own RSC in the Next.js project.

Creating an RSC

In this section, we will create a Header RSC and nest it inside the Home RSC we observed in the previous
section. The Header component will simply contain the app’s name. Carry out the following steps:

1.	 Create a folder in the src folder called components. Then, create a file called Header.
tsx in that components folder.

Note
It is common practice to isolate routing components in the app folder from other components
using a components folder. We will learn more about routing components in Chapter 6,
Creating a Multi-Page App with Next.js.

Creating Server Components 157

2.	 Add the following content to Header.tsx:

export function Header() {
 console.log(“Is Header an RSC?”);
 return (
 <header className=”flex w-full items-center justify-
between”>

 My app

 </header>
);
}

This outputs a header element with the text My app inside.

3.	 Open page.tsx and add an import statement to import Header:

import { Header } from ‘@/components/Header’;

Here, @/ is an import path alias for the src folder. Using an import path alias is an alternative
to using a relative path, which would look as follows:

import { Header } from ‘../components/Header’;

The benefits of import path aliases over relative paths include readability and reduced changes
when files are moved.

4.	 Add Header inside the div element, just above the main element:

return (
 <div ... >
 <Header />
 <main ... >
 ...
 </div>
);

Looking at the browser console and the terminal will reveal that Header is an RSC:

Figure 5.7 – Confirmation in the terminal that Header is an RSC

That’s our first RSC created. Nice!

Using React Server and Client Components158

In the next section, we’ll start to understand what happens under the hood of an RSC.

Understanding how Server Components work

In this section, we are going to take the time to understand how the Header component runs on the
server and is then displayed in the browser. Carry out the following steps:

1.	 First, we will extend the Header component so that it includes some computation. Once we’ve
done this, we’ll be able to determine whether the computation was carried out on the server or
the client. Open Header.tsx and add a calculated total, as follows:

export function Header() {
 console.log(‘Is Header an RSC?’);
 const total = 99 + 99;
 return (
 <header ... >
 My app
 {total}
 </header>
);
}

2.	 In the browser development tools area, in the Elements panel, search for 198. There will be
two instances of 198. The first will be inside the span element, while the second will be inside
a script element, inside a JSON structure, as shown in the following screenshot:

Figure 5.8 – Serialized RSC

Exploring Client Components 159

Note that the script element’s JSON may be different for you compared to what’s shown in
the preceding screenshot.

The JSON in the script element starts to reveal how RSCs work. Once the RSCs have been
run on the server, the RSC output is serialized along with information to render them. It is
important to note that only the result of the RSC is serialized, not the function code. In this
example, only 198 is serialized, not the calculation. So, sensitive details in the RSC will never
be leaked to the client unless they are included in the RSC output.

That brings us to the end of this section on creating RSCs. Here’s a quick recap:

•	 Next.js is an app framework that supports RSCs. We used this to create our React project.

•	 In a Next.js project, components are RSCs by default, so Layout and Page are RSCs. We
created a Header RSC inside the Page RSC.

•	 We used the console to confirm that the components were RSCs and inspected HTML elements
in the browser development tools area to see their serialized format.

Now that we have a good understanding of RSCs, next, we will learn about Client Components.

Exploring Client Components
In this section, we will start by understanding Client Components concerning RSCs. Then, we will
create a Client Component in our project that will toggle the app between dark and light mode.

Understanding Client Components

For interactive apps, Client Components are essential. In fact, every React component was a Client
Component before the introduction of RSCs.

Here are some of the features that Client Components have that RSCs don’t:

•	 They have React Hooks, such as useState, useRef, and useEffect

•	 They provide browser event handling, such as onClick on a button

•	 State and functions are shared with the React context

•	 Access to browser APIs such as window.localStorage is provided

Next, we’ll learn how Client Components are rendered in Next.js

Using React Server and Client Components160

Understanding Client Component rendering

As the name suggests, Client Components run on the client. However, they can also run on the server
during the initial load to pre-render the parts that can be pre-rendered, which is what happens in
Next.js. In Next.js, after the initial load, Client Components are hydrated with the parts not covered
by pre-rendering, which is generally interactivity. This process is complex, but it speeds up the initial
rendering of Client Components.

To better understand the Next.js Client Component rendering process a little more, consider the
following Button Client Component:

function Button() {
 return (
 <button onClick={() => { console.log(“click”); }}>
 Click
 </button>
);
}

Here are the steps that take place in the rendering process:

1.	 First, the component is rendered on the server. However, it can’t be fully rendered because the
server can’t attach the click handler. So, the result of this first rendering process is an HTML
button without a click handler.

2.	 The HTML button is sent to the client, along with a hydration script.

3.	 Finally, the client adds the HTML button to the DOM and runs the hydration script to attach
the button click handler.

Before we create a Client Component in our project, we’ll learn how to specify a Client Component
in Next.js.

Specifying Client Components

As mentioned earlier in this chapter, in Next.js, components are RSCs by default. To specify a Client
Component, the file must contain ‘use client’ at the top. However, components that are
imported into a Client Component file automatically become Client Components, meaning ‘use
client’ isn’t required.

Don’t worry if this is a bit confusing at this stage! In the next section, we will add a Client Component
to the app to cement this knowledge.

Exploring Client Components 161

Creating Client Components

In this section, we’re going to create a Client Component that will toggle our app between dark and
light mode. We’ll take the time to experience what happens if the component isn’t marked as a Client
Component and also prove it runs on the server as well as the client. Carry out the following steps:

1.	 Create a new file called ColorModeToggle.tsx in the src/components folder
containing the following content:

export function ColorModeToggle() {
 console.log(‘Does ColorModeToggle run on the Server and
 Client?’);

 function handleClick() {}

 return (
 <button onClick={handleClick} className=”flex rounded
 bg-blue-500 px-4 py-2 text-white”>
 </button>
);
}

The component renders a blue button with a click handler that doesn’t do anything yet.

2.	 Open Header.tsx and add ColorModeToggle after the {total}</
span> element:

import { ColorModeToggle } from ‘./ColorModeToggle’;
export function Header() {
 ...
 return (
 <header ...>
 ...
 {total}
 <ColorModeToggle />
 </header>
);
}

Using React Server and Client Components162

A runtime error will occur:

Figure 5.9 – Missing “use client” error

Currently, ColorModeToggle is an RSC, and we have an event handler, which isn’t allowed.

3.	 Back in ColorModeToggle.tsx, resolve the error by specifying that the component is a
Client Component at the top of the file:

‘use client’;

4.	 Still in ColorModeToggle.tsx, we will use state to store information regarding whether
we are in dark mode or not. We’ll update this in the button click handler and render the current
mode as the button text. Add the following highlighted lines of code:

‘use client’;
import { useState } from ‘react’;

export function ColorModeToggle() {
 ...
 const [colorMode, setColorMode] =
 useState<’dark’ | ‘light’>(‘light’);
 function handleClick() {
 const newColorMode =
 colorMode === ‘dark’ ? ‘light’ : ‘dark’;
 setColorMode(newColorMode);
 }
 return (
 <button ... >
 {colorMode === ‘dark’ ? ‘Light’ : ‘Dark’}
 </button>
);
}

Exploring Client Components 163

The color mode toggle button now appears to the right of the app header:

Figure 5.10 – The color mode toggle button on the right

5.	 Clicking the color mode toggle button doesn’t toggle between dark and light mode at the
moment. To make this work, we need to add a dark CSS class name to the body element.
We also need to update the --background and --background CSS variables. We can
use an effect to synchronize the colorMode state with these:

import { ..., useEffect } from ‘react’;

export function ColorModeToggle() {
 ...
 useEffect(() => {
 if (colorMode === ‘dark’) {
 document.body.classList.add(‘dark’);
 document.documentElement.style.setProperty(
 ‘--background’,
 ‘#0a0a0a’,
);
 document.documentElement.style.setProperty(
 ‘--foreground’,
 ‘#ededed’,
);
 } else {
 document.body.classList.remove(‘dark’);
 document.documentElement.style.setProperty(
 ‘--background’,
 ‘#ffffff’,
);
 document.documentElement.style.setProperty(
 ‘--foreground’,
 ‘#171717’,
);
 }
 }, [colorMode]);

 return ...
}

Using React Server and Client Components164

6.	 The color mode toggle button now works when clicked. Let’s make one more improvement
that will default the color mode to what is specified in the operating system or browser. Add
the following effect to do this:

export function ColorModeToggle() {
 ...
 useEffect(() => {
 const mediaQuery = window.matchMedia(
 ‘(prefers-color-scheme: dark)’,
);
 setColorMode(
 mediaQuery.matches ? ‘dark’ : ‘light’
);
 }, []);

 return ...
}

We are using an effect here because we only want this code to run on the client where window.
matchMedia can be accessed. Remember that Client Components can initially run on the
server, but the server doesn’t have access to the browser window object. Effects are never run
on the server – they only run on the client.

This pattern is handy for DOM access, which needs to happen when the component is loading.

7.	 Now, let’s check where the ColorModeToggle component is run. First, check the terminal
to confirm that is it initially run on the server:

Figure 5.11 – Confirmation that ColorModeToggle runs on the server

8.	 Finally, let’s check the browser console:

Figure 5.12 – Confirmation that ColorModeToggle runs on the client

Composing Server and Client Components 165

That brings us to the end of this section on Client Components. Here’s a recap:

•	 Client Components are necessary for interactive apps as they support features such as React
Hooks, event handling, and DOM access. They initially run on the server and are later hydrated
with interactivity on the client.

•	 A Client Component requires a ‘use client’ directive at the top of its file. Other components
that are imported into a Client Component file automatically become Client Components,
meaning ‘use client’ isn’t required for subsequent Client Components.

•	 Finally, ColorModeToggle is the first Client Component in our app. It contains a state, an
effect, and event handlers. So, it must be a Client Component, rather than an RSC.

That completes our exploration of Client Components. Next, we’ll learn how Server and Client
Components can be composed.

Composing Server and Client Components
This section will explain the thought process behind choosing between Server and Client Components.
Then, we will understand what a client boundary is and how to inject an RSC into it.

RSCs versus Client Components

We have already covered the benefits and different capabilities of RSCs and Client Components. As
a recap, here is a succinct comparison table:

Feature/Aspect RSC Client Component

First page load Fast Slower

Access to secure resources
(databases, third-party APIs)

Direct Via an HTTP call to a secure server

Interactivity Not supported Full interactivity

React Hooks Very limited Full support

Access to browser APIs Not supported Full access

Table 5.1: Key Differences Between RSCs and Client Components

Next, we’ll cover a strategy for choosing an RSC or Client Component.

Using React Server and Client Components166

Understanding when to use an RSC or Client Component

If you are creating a new Next.js page, you should start the component tree with RSCs. This is because
it’s the default in Next.js, and RSCs tend to be simpler and more performant. Switch a component to
a Client Component if it requires functionality outside of RSCs, such as interactivity. To maximize
performance, isolate only the parts that RSCs can’t do in Client Components. This is exactly what we
did with ColorModeToggle in the previous section.

Next, we’ll understand exactly when we need to use the ‘use client’ directive.

Understanding client boundaries

Every file that’s imported after a ‘use client’ directive is automatically a Client Component.
This is referred to as a client boundary.

The following diagram visualizes a client boundary on a page in an app:

Figure 5.13 – Client boundary in an app

The Page and Header components are RSCs. Note that ContactForm contains a ‘use client’
directive, so it is a Client Component. Here, Name, Details, and Submit are all Client Components
and don’t need a ‘use client’ directive. So, a client boundary is formed around everything that
is imported into ContactForm.

You might think it isn’t possible to render an RSC inside a Client Component. In the next section,
we will learn how to do this.

Composing Server and Client Components 167

Rendering an RSC in ColorModeToggle

In this section, we’re going to add an icon to our ColorModeToggle component, which, as you
may recall, is a Client Component. We’ll learn how the icon can be turned into an RSC.

Client Components can’t import an RSC. However, an RSC can be passed to a Client Component as
a prop.

Using this key concept, we’ll add an icon RSC to our ColorModeToggle component. Follow
these steps:

1.	 Start by creating a file for the SVG icon called colorModeIcon.svg in the src/components
folder. Copy the contents of the SVG at https://github.com/PacktPublishing/
Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter05/
rendering-rsc-in-client-component/src/components/colorModeIcon.
svg and paste it into this file.

2.	 Next, create a React component for the icon. Create a file called ColorModeIcon.tsx with
the following contents:

import Image from “next/image”;
import colorModeSvg from “./colorModeIcon.svg”;

export function ColorModeIcon() {
 console.log(“Is ColorModeIcon an RSC?”);
 return (
 <Image
 src={colorModeSvg}
 alt=”Color mode icon”
 className=”mr-2 h-6 w-6”
 />
);
}

The component renders the SVG in a Next.js Image component with a fixed size.

3.	 Now, let’s put the icon inside ColorModeToggle. First, we will try to import it and use it
in ColorModeToggle.tsx:

import { ColorModeIcon } from “./ColorModeIcon”;

export function ColorModeToggle() {
 ...
 return (

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter05/rendering-rsc-in-client-component/src/components/colorModeIcon.svg
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter05/rendering-rsc-in-client-component/src/components/colorModeIcon.svg
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter05/rendering-rsc-in-client-component/src/components/colorModeIcon.svg
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter05/rendering-rsc-in-client-component/src/components/colorModeIcon.svg

Using React Server and Client Components168

 <button ...>
 <ColorModeIcon />
 {colorMode === ‘dark’ ? ‘Light’ : ‘Dark’}
 </button>
);
}

4.	 If the app isn’t running, you can make it run by entering npm run dev in the terminal. Have
a look in the browser console to determine whether ColorModeIcon is a Client Component:

Figure 5.14 – Confirmation that ColorModeIcon is a Client Component

The fact that the message Is ColorModeIcon an RSC? is output to the browser console without
a Server badge confirms it is a Client Component. This confirms what we learned in the
previous section – a component that’s imported into a Client Component will automatically
be a Client Component.

5.	 Next, we will try a different approach for adding ColorModeIcon to ColorModeToggle.
This time, we’ll pass it as a prop. Start by removing the ColorModeIcon import statement.

6.	 Now, add an icon prop to ColorModeToggle and output this instead of ColorModeIcon:

import { ..., type ReactNode } from ‘react’;

export function ColorModeToggle({
 icon,
}: {
 icon: ReactNode;
}) {
 ...
 return (
 <button ...>
 {icon}
 {colorMode === ‘dark’ ? ‘Light’ : ‘Dark’}
 </button>
);
}

Composing Server and Client Components 169

In Chapter 1, Getting Started with React, we learned that components can be passed to other
components using a special children prop. We can create our own prop that accepts
a component, something we have done here with the icon prop. We have set its type to
ReactNode so that it accepts any React component.

7.	 Lastly, open Header.tsx and pass ColorModeIcon into ColorModeToggle using
the icon prop:

...
import { ColorModeIcon } from ‘./ColorModeIcon’;

export function Header() {
 ...
 return (
 <header ...>
 ...
 <ColorModeToggle icon={<ColorModeIcon />} />
 </header>
);
}

Now, if you look in the browser console, you’ll see that the message Is ColorModeIcon an
RSC? has a Server badge because ColorModeIcon is an RSC.

Before completing this section, let’s appreciate some productivity benefits of using RSCs with Client
Components. Even though these components run on completely different computers, we develop
them using the same paradigm. Open Header.tsx and carry out the following steps:

1.	 Hover over ColorModeToggle in the JSX. Note that we get IntelliSense across the
server/client boundary:

Figure 5.15 – IntelliSense across the server/client boundary

2.	 Temporarily remove the icon attribute from the JSX. Note that we get a type error.

Using React Server and Client Components170

3.	 Right-click on ColorModeToggle and choose the Go to Definition option. You will be
taken to the definition for ColorModeToggle.

Amazingly, these kinds of features work across these two worlds – they give us great productivity
benefits. It doesn’t feel like two different worlds at all!

That concludes this section on composing RSCs with Client Components. Here’s a recap:

•	 It is recommended to start a new Next.js page with RSCs for simplicity and performance. Use
Client Components only when additional functionality, such as interactivity, is needed.

•	 A client boundary is created when a component has a ‘use client’ directive. All files that
are imported after become Client Components.

•	 While a Client Component cannot directly import an RSC, an RSC can be passed as a prop.

Next, we will summarize what we have learned in this chapter.

Summary
In this chapter, we learned that RSCs were fully released in React 19 and run exclusively on the server.
Unlike Client Components, RSCs can be asynchronous and interact directly with server resources
such as databases.

The primary benefits of RSCs include improved performance since they reduce the amount of
JavaScript that’s sent to the client and lower the number of network calls that are made from the
browser. Developer productivity is also enhanced because RSCs allow frontend and backend code to
be colocated, eliminating the need to shift between different paradigms.

Client Components are essential for interactivity as they support React Hooks and browser API access.
They run on the client after initial server rendering. Developers can declare a component as a Client
Component by adding the ‘use client’ directive. RSCs can be nested inside Client Components
by passing them as props.

Next.js is a popular React-based framework that supports RSCs, where components are RSCs by
default. We created a Next.js app and created a Header RSC with a ColorModeToggle Client
Component nested inside. We then nested a ColorModeIcon RSC inside ColorModeToggle
by passing it as a prop.

In the next chapter, we will learn more about Next.js so that we can create a multi-page app.

Further reading
For more information on RSCs, see the React documentation at https://react.dev/reference/
rsc/server-components.

https://react.dev/reference/rsc/server-components
https://react.dev/reference/rsc/server-components

Questions 171

Questions
Answer the following questions to check what you have learned in this chapter:

1.	 We have a Next.js app that has the following RSC:

import Counter from “@/components/Counter”;

export default function Home() {
 return (
 <div>
 <Counter />
 </div>
);
}

The Counter component reads as follows:
import { useState } from “react”;

export default function Counter() {
 const [count, setCount] = useState(1);

 return (
 <button
 onClick={() => setCount((prev) => prev + 1)}
 >
 {count}
 </button>
);
}

A compile error occurs. What’s the problem?

2.	 Does an RSC run on the client? Does a client component run on the server?

3.	 We have the following component, but an error occurs when it renders. What’s the problem?

“use client”;

export async function PeopleList() {
 const people = await getPeople();
 return (

 {people.map((person) => (
 <li key={person}>
 {person}

Using React Server and Client Components172

))}

);
}

4.	 In a Next.js app, is it possible for an RSC to be nested inside a Client Component?

5.	 In Next.js, which of the following is not allowed inside an RSC?

	� fetch

	� useEffect

	� async / await

Answers
1.	 Here, Counter.tsx needs to be a Client Component because it requires state. However, it’s

an RSC because it’s imported into an RSC file. So, the following directive needs to be placed at
the top of the file to make it a Client Component:

“use client”;

2.	 An RSC only runs on the server – it doesn’t run on the client. A client component can run on
the server and then be hydrated on the client.

3.	 Client Components can’t be asynchronous. So, the component can be changed to an RSC if
it’s imported into an RSC. If it needs to be a Client Component, the getPeople call can be
made using the useEffect Hook. A simple example is shown here:

export function PeopleList() {
 const [people, setPeople] = useState<string[]>([]);
 useEffect(() => {
 getPeople().then((p) => {
 setPeople(p);
 });
 }, []);

 return ...;
}

4.	 Yes – if the RSC is passed into the Client Component as a prop. You can’t import an RSC into
a Client Component file.

5.	 The useEffect Hook – because useEffect only runs on the client.

6
Creating a Multi-Page App with

Next.js

So far in this book, we’ve created apps with a single screen. In this chapter, we’ll learn how to create
apps with multiple screens with Next.js, which was introduced in the last chapter. React doesn’t
include much of the functionality required to build multi-page apps, and Next.js is a popular option
that fills that gap.

We will create a blog post app containing three screens – a Home page, a Posts page, and a Post page.
We will create a shared header on the screens and navigation options between them. We will also
create a search feature and learn all about search parameters.

By the end of this chapter, you’ll know how to build multi-page apps using Next.js.

We’ll cover the following topics:

•	 Creating routes

•	 Creating navigation

•	 Creating shared layout

•	 Creating dynamic routes

•	 Using search parameters

Technical requirements
We will use the following technologies in this chapter:

•	 Browser: A modern browser such as Google Chrome

•	 Node.js and npm: You can install them from https://nodejs.org/en/download/

•	 Visual Studio Code: You can install it from https://code.visualstudio.com/

https://nodejs.org/en/download/
https://code.visualstudio.com/

Creating a Multi-Page App with Next.js174

All the code snippets used in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter06.

Creating routes
In this section, we will create a Next.js project. We will understand what routes are and how to create
them. We’ll use this knowledge to create a route that lists all our blog posts.

Creating the project

Let’s start by creating a Next.js project. This was covered in the previous chapter, so the step explanations
are brief:

1.	 In a terminal, execute the following command to create the project:

npx create-next-app@latest blog --ts --eslint --app --src-dir
--import-alias “@/*” --no-tailwind --turbopack

2.	 Still in the terminal, move to the project folder and open Visual Studio Code using the following
commands:

cd blog
code .

3.	 Prettier can be set up in the same manner as we learned with Vite in Chapter 1, Getting Started
with React. Feel free to add automatic code formatting to this project.

4.	 In the terminal, execute the following command to run the app in development mode:

npm run dev

The app will be available in a browser at http://localhost:3000.

5.	 Open src/app/global.css and overwrite the content with the CSS from the following
file in the GitHub repository:

https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/blob/main/Chapter06/creating-project/src/app/
globals.css

This will nicely style our app.

6.	 Lastly, let’s clean up the Home page. Open page.tsx in the src/app folder and replace
its content with the following:

export default function Home() {
 return (

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter06
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter06
http://localhost:3000
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter06/creating-project/src/app/globals.css
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter06/creating-project/src/app/globals.css
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter06/creating-project/src/app/globals.css

Creating routes 175

 <main>
 <h2>
 Welcome to my blog!
 </h2>
 </main>
);
}

The page outputs a nice header centered at the top of the page.

Figure 6.1 – Home page

That completes the project setup. Next, we’ll understand how to create new pages.

Understanding routes

A route is a path in a web app that corresponds to a URL. Next.js has two types of routing systems:
the page router and the app router. In this book, we’ll focus on the more recently released app router,
which our project has been configured with.

Routes are defined using the folder structure in the app folder and a special file called page.tsx.
We already have a home route defined for path /, which is the src/app/page.tsx file. To define
a settings route, we would implement a src/app/settings/page.tsx file.

Creating a Multi-Page App with Next.js176

The contents of page.tsx is a React component. It can be an RSC or a Client Component. The
component name can be a meaningful name of our choice; however, it’s important that it is the default
export. It must be the default export to allow Next.js to automatically detect and render the right
component for a route – if it was a named export, it wouldn’t know which one to use.

Now that we understand routes and how to create them, we’ll create a posts route.

Creating a posts route

Carry out the following steps to create a posts route in our app:

1.	 Create a folder in the src/app folder called posts with a page.tsx file inside.

2.	 Add the following content to the page.tsx file that was just created:

export default function Posts() {
 return (
 <main>
 <h2>Posts</h2>

 </main>
);
}

The component outputs a heading and an empty list at this stage.

3.	 Go to the http://localhost:3000/posts URL in a browser. This will hit the route
we just created, displaying the Posts component.

Figure 6.2 – posts route

http://localhost:3000/posts

Creating routes 177

4.	 We will now add some blog post data to display on this page. Start by creating a data folder in
the src folder with a file called posts.ts in it. Copy the content from the file in the GitHub
repository at https://github.com/PacktPublishing/Learn-React-with-
TypeScript-Third-Edition/blob/main/Chapter06/creating-routes/
src/data/posts.ts and paste it into posts.ts. It contains an exported variable called
posts containing an array of blog posts:

export const posts = [
 {
 Id: 1,
 title: ‘Understanding React Hooks’,
 description:
 ‘A comprehensive guide to React Hooks and how they
 simplify state management in functional components’,
 },
 ...
];

5.	 We will now use the posts variable in the Posts page to output a list of blog posts. Open
app/posts/page.tsx and add the following highlighted lines:

import { posts } from ‘@/data/posts’;

export default function Posts() {
 return (
 <main>
 <h2>Posts</h2>

 {posts.map((post) => (
 <li key={post.id}>
 {post.title}
 <p>{post.description}</p>

))}

 </main>
);
}

The posts variable is imported and used in the JSX to loop through its array to output list
items. Using Array.map is a common practice for JSX looping logic.

Notice the key attribute on the list item elements. React requires this on elements in a loop to
update the corresponding DOM elements efficiently. The value of the key attribute must be
unique and stable within the array, so we have used the post ID.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter06/creating-routes/src/data/posts.ts
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter06/creating-routes/src/data/posts.ts
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter06/creating-routes/src/data/posts.ts

Creating a Multi-Page App with Next.js178

If you look at the posts route in the browser, it now contains a list of blog posts.

Figure 6.3 – Updated posts route

That completes this section on creating routes. The key point is that routes in Next.js are created using
the app folder structure and page.tsx files.

For more information on routes, see the following page in the Next.js documentation: https://
nextjs.org/docs/app/getting-started/layouts-and-pages.

Next, we will learn about a Next.js component that can perform navigation.

Creating navigation
Next.js has two ways to implement navigation, which we’ll cover in this section. As part of the learning
process, we will update the blog posts list to include links to the associated Post page.

Using the Link component

The Link component is the recommended way to perform navigation in Next.js. Carry out the
following steps to use this component in the Posts page:

1.	 Open app/posts/page.tsx and add an import statement at the top of the file to
import Link:

import Link from ‘next/link’;

https://nextjs.org/docs/app/getting-started/layouts-and-pages
https://nextjs.org/docs/app/getting-started/layouts-and-pages

Creating navigation 179

2.	 In the Posts component’s JSX, change the element containing the blog post title to Link
as follows:

<li key={post.id}>
 <Link href={`/posts/${post.id}`}>
 {post.title}
 </Link>
 <p>{post.description}</p>

We’ve also defined the route that the link should go to using the href attribute.

3.	 The route we have just referenced doesn’t exist yet, so let’s create it. Inside the posts folder,
create a folder named 1 (the number 1). Then, create a page.tsx file inside it containing
the following:

export default function Post() {
 return <main>Blog post one</main>;
}

This implements route posts/1, which will satisfy the first blog post list item. We will improve
this route later in this chapter so that all blog posts are linked.

4.	 Run the app by executing npm run dev in a terminal if it isn’t already running.

5.	 Now, inspect the blog post list using the browser development tools when on the Posts page.

Figure 6.4 – Link component inspection

We can see that the Link component is rendered as an HTML anchor element.

Creating a Multi-Page App with Next.js180

6.	 While still in the browser development tools, go to the Components panel in the React developer
tools. Find the Posts component and confirm that it is an RSC:

Figure 6.5 – Posts RSC

So, the key point is that Link can be used in RSCs.

7.	 Click on the first blog post item link in the app – it will direct you to the Post page.

Figure 6.6 – Link navigation

You may notice that a full-page reload didn’t happen. Instead, client-side navigation is performed
to maximize performance.

That completes the use of the Link component for now. We’ll use it again later in this chapter. For more
information on the Link component, see the following page in the Next.js documentation: https://
nextjs.org/docs/app/api-reference/components/link.

Next, we will understand a different way of navigating.

https://nextjs.org/docs/app/api-reference/components/link
https://nextjs.org/docs/app/api-reference/components/link

Creating navigation 181

Using useRouter

The Next.js useRouter hook allows programmatic navigation. Unlike Link, it can’t be used in an
RSC, so the consuming component must be a Client Component.

The hook returns an object containing useful routing functions such as the following:

•	 Push: Performs client-side navigation, adding a new entry to the browser history

•	 replace: Performs client-side navigation, without adding a new entry to the browser history

•	 refresh: Refreshes the current route without losing any state

The following is a code snippet that includes navigation using useRouter:

import { useRouter } from ‘next/navigation’;

function SomeComponent() {
 const router = useRouter();
 ...

 function handleClick() {
 if (someCheck()) {
 router.push(‘/some-path’);
 } else
 router.push(‘/some-other-path’);
 }
 }
 return <button onClick={handleClick}>Action</button>;
}

Here’s a breakdown of the code snippet:

•	 The useRouter hook is called at the start of the component and assigned to a router
variable. So, all the routing functions are available in the router variable.

•	 The router’s push function is called in the button-click handler with the path being passed.
There is a call to the function, someCheck, to determine the path to navigate to.

For more information on the useRouter hook, see the following page in the Next.js documentation:

https://nextjs.org/docs/app/api-reference/functions/use-router

https://nextjs.org/docs/app/api-reference/functions/use-router

Creating a Multi-Page App with Next.js182

That completes this section on navigation. To recap, the Link component is the recommended way
of navigating in Next.js and can be used in RSCs as well as Client Components. The useRouter
hook allows programmatic navigation in Client Components.

Next, we will cover how to implement shared layout components.

Creating shared layout
In this section, we will create a header for our app containing links to the Home and Posts pages. We
will use the shared layout capabilities of Next.js to implement this.

Understanding layout components

In Next.js, a shared layout is defined in a special file called layout.tsx. Shared layouts can be
defined on any route. Our current app has a shared layout at the root path in the src/app folder.
Following are some of the contents of this file:

...
export default function RootLayout({ children }: ...) {
 return (
 <html lang=”en”>
 <body ... >
 {children}
 </body>
 </html>
);
}

The file’s content is a React component set as the default export. The component’s name can be a
meaningful name of our choice. This component is sensibly named RootLayout because it will be
rendered for every route.

Layout components can be RSCs or Client Components. In our app, RootLayout is an RSC.

The page component for the rendered route will be passed into the layout component’s children
prop. So, Home will be passed for route / and Posts for route posts/.

Now that we understand how shared layout components work, we will create a shared header.

Creating shared layout 183

Creating a header

We will create a Header component in our app containing links to the Home and Posts pages. We will
then add Header to RootLayout to be visible in all routes. Carry out the following steps to do this:

1.	 Create a components folder in the src folder and then a file called Header.tsx inside
it. Add the following content inside Header.tsx:

import Link from ‘next/link’;

export function Header() {
 return (
 <header>
 <Link href=”/”>Home</Link>
 <Link href=”/posts”>Posts</Link>
 </header>
);
}

Inside a header element, we’ve added links to the home and posts routes using the
Link component.

2.	 Open src/app/layout.tsx and add Header inside the body element as follows:

...
import { Header } from ‘@/components/Header’;
...
export default function RootLayout(...) {
 return (
 <html ... >
 <body ... >
 <Header />
 {children}
 </body>
 </html>
);
}

3.	 Run the app by executing npm run dev in a terminal if it isn’t already running.

Creating a Multi-Page App with Next.js184

Look at the app in the browser – you will see the header we’ve just added on both the Home
and Posts pages:

Figure 6.7 – Header on the Home page

4.	 We are going to improve the styling of the header links a little. We will style the active link
so that it stands out. We will use a hook called usePathname from Next.js to get the active
path to check against the link’s path to determine whether it is active. To start with, make the
following highlighted changes in Header.tsx to get the active path:

‘use client’;
import Link from ‘next/link’;
import { usePathname } from ‘next/navigation’;

export function Header() {
 const pathname = usePathname();
 return ...
}

We needed to turn Header into a Client Component because usePathname can’t be used
in an RSC.

Creating shared layout 185

5.	 Now use the pathname variable to set an active CSS class on the links conditionally:

<header>
 <Link
 href=”/”
 className={pathname === ‘/’ ? ‘active’ : ‘’}
 >
 Home
 </Link>
 <Link
 href=”/posts”
 className={
 pathname === ‘/posts’ ? ‘active’ : ‘’
 }
 >
 Posts
 </Link>
</header>

If you look at the running app, the active link will be bold:

Figure 6.8 – Active header link

Creating a Multi-Page App with Next.js186

That completes our shared header and this section on shared layout.

To recap, a shared layout component is defined in layout.tsx. The root layout is shared across all
paths and is in the app folder.

For more information on the layout.tsx file, see the following page in the Next.js documentation:

https://nextjs.org/docs/app/api-reference/file-conventions/layout

Currently, the blog post route is only working for the first one. We’ll address this in the next section.

Creating dynamic routes
We will learn about dynamic routes in this section and use it to fully implement the blog post route.

Understanding dynamic routes

In Next.js, a dynamic route allows you to create pages that can respond to different URL parameters.
This allows page content to be displayed from varying data in the URL. The dynamic part of the URL
is defined in square brackets.

An example is our Post page at route posts/1, posts/2, and so on, which is posts/[id], in
its dynamic form. In this dynamic route, id is referred to as a route parameter.

Route parameters are passed into the page component in a params prop. For example, an id parameter
could be used in the Post page as follows:

export default async function Post({
 params,
}: {
 params: Promise<{ id: string }>;
}) {
 const id = (await params).id;
 return <main>Blog post {id}</main>;
}

A type annotation is used to strongly type the route parameters. Notice that the params prop is
asynchronous, which means the component must be declared with the async keyword.

https://nextjs.org/docs/app/api-reference/file-conventions/layout

Creating dynamic routes 187

If you want to use a route parameter lower in the component tree, Next.js has a useParams hook that
can be used. This is only available in Client Components and not RSCs. useParams has a generic
parameter to strongly type the route parameters. Here’s an example of an id parameter being used:

‘use client’;
import { useParams } from ‘next/navigation’;

export function SomeComponent() {
 const params = useParams<{id: string}>();
 return <h3>Blog post {params.id}</h3>
}

Now that we understand dynamic routes and how to implement them, we’ll fully implement our blog
post route.

Creating a blog post dynamic route

Carry out the following steps to make the blog post route dynamic. We will also display the blog post
title and description in its page component.

1.	 Start by renaming the 1 folder inside the src/app/posts folder to [id]. This makes the
route dynamic with an id route parameter.

2.	 Open up page.tsx inside the [id] folder and add the highlighted changes:

export default async function Post({
 params,
}: {
 params: Promise<{ id: string }>;
}) {
 const id = (await params).id;
 return <main>Blog post {id}</main>;
}

The component is now using the route parameter.

3.	 Run the app by executing npm run dev in a terminal if it isn’t already running.

Creating a Multi-Page App with Next.js188

4.	 Go to the app in the browser, go to the blog post list, and click on different blog post links. You
will see the Post page correctly displaying the id route parameter:

Figure 6.9 – Post page displaying its id route parameter

5.	 Let’s add some validation to ensure the id route parameter is numeric. If it isn’t numeric, we’ll
inform the user that the page isn’t found:

import { notFound } from “next/navigation”;
export default async function Post(...) {
 const id = Number((await params).id);
 if (!Number.isInteger(id)) {
 notFound();
 }
 return <main>Blog post {id}</main>;
}

The Next.js notFound function will display the default Next.js not found component.

6.	 We want to display the blog post title and description on the Post page. First, let’s access the
posts variable and find the relevant post using the id route parameter. Make the following
additions in src/app/posts/[id].page.tsx:

import { posts } from ‘@/data/posts’;

export default async function Post(...) {
 ...
 const post = posts.find(

Creating dynamic routes 189

 (post) => post.id === Number(id),
);
 return <main>Blog post {params.id}</main>;
}

7.	 If the post isn’t found, output a helpful message by adding the highlighted lines:

export default async function Post(...) {
 ...
 const post = posts.find(...);
 if (!post) {
 notFound();
 }
 return <main>Blog post {params.id}</main>;
}

8.	 Finally, replace the content of the main element with the blog post title and description as follows:

export default async function Post(...) {
 ...
 return (
 <main>
 <h2>{post.title}</h2>
 <p>{post.description}</p>
 </main>
);
}

9.	 Now go to different blog posts in the running app – you’ll see the title and description displayed:

Figure 6.10 – Post page with title and description

Creating a Multi-Page App with Next.js190

10.	 If you enter an invalid id route parameter in the browser’s URL, a message will be displayed
that you have not found it.

That completes this section on dynamic routes. Here’s a quick recap:

•	 Dynamic routes in Next.js allow you to create pages that respond to URL parameters. We used
this feature to display different blog posts based on the id route parameter.

•	 The params prop or the useParams hook in Client Components can access the route
parameters and dynamically update the content based on the URL.

For more information on dynamic routes, see the following page in the Next.js documentation:

https://nextjs.org/docs/app/building-your-application/routing/
dynamic-routes

Next, we will learn about the other type of URL parameter – a search parameter.

Using search parameters
In this section, we will learn about search parameters in Next.js and use them to implement a search
feature in the app.

Understanding search parameters

Search parameters are part of a URL that comes after the ? character and separated by the & character.
Search parameters are sometimes referred to as query parameters. In the following URL, type and
when are search parameters: https://somewhere.com/?type=sometype&when=recent.

In Next.js, search parameters can be accessed via a searchParams prop as follows:

export default async function Page({
 searchParams,
}: {
 searchParams: Promise<{
 [key: string]: string | string[] | undefined;
 }>;
}) {
 const params = await searchParams;
 return (
 <main>
 Searching: {params.type}, {params.when}
 </main>
);
}

https://nextjs.org/docs/app/building-your-application/routing/dynamic-routes
https://nextjs.org/docs/app/building-your-application/routing/dynamic-routes
https://somewhere.com/?type=sometype&when=recent

Using search parameters 191

Notice that searchParams is asynchronous, so accessing it must be awaited and the component
must be declared as asynchronous.

The type annotation for searchParams is a little complex, so let’s break it down:

•	 [key: string] is an index signature representing any property name. This is because
any search parameter can be added to the URL even though our components only use type
and when.

•	 The union that follows the index signature is all the types that search parameters can have.
Again, we can’t fully control what a user puts in the URL, so this represents what could happen.

•	 The type is wrapped in the Promise type because searchParams is asynchronous.

If you want to use a search parameter lower in the component tree, Next.js has a useSearchParams
hook that can be used. This is only available in Client Components and not RSCs. Here’s an example
of type and when parameters being accessed:

‘use client’;
import { useSearchParams } from ‘next/navigation’;

export function SomeComponent() {
 const searchParams = useSearchParams();
 const type = searchParams.get(‘type’);
 const when = searchParams.get(‘when’);
 ...
}

So, useSearchParams is a little different to useParams for route parameters. It returns a standard
JavaScript URLSearchParams interface, which provides functions to access search parameters.
A get function on the interface allows access to a particular search parameter value. For more
information on URLSearchParams, see the following link: https://developer.mozilla.
org/en-US/docs/Web/API/URLSearchParams.

Next, we will add search functionality to our app.

Adding search functionality to the app

We will add a search input to the header of the app. Submitting a search will take the user to the
Posts page with a filtered set of blog posts matching the search criteria. Carry out the following steps:

1.	 First, open src/components/Header.tsx and add a search form as shown here:

import Form from ‘next/form’;

export function Header() {

https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams

Creating a Multi-Page App with Next.js192

 ...
 return (
 <header>
 <Link ... >Home</Link>
 <Link ... >Posts</Link>
 <Form action=”/posts”>
 <input
 type=”search”
 name=”criteria”
 placeholder=”Search”
 aria-label=”Search blog posts”
 />
 </Form>
 </header>
);
}

Form is a Next.js component that extends the native HTML form element. It allows the form
to be submitted without a full page reload.

The action attribute on Form will cause a navigation to the posts route. The navigation
will include a criteria search parameter with the value from the criteria input.

2.	 Run the app by executing npm run dev in a terminal if it isn’t already running.

3.	 Go to the app in the browser, enter some criteria in the search input in the header, and press
Enter. Navigation occurs to the Posts page with a criteria search parameter. The blog post
list isn’t filtered yet – we’ll start to implement this in the next step.

4.	 Now open src/app/posts/page.tsx. Add a searchParams prop to the Posts
component and make the component asynchronous as follows:

export default async function Posts({
 searchParams,
}: {
 searchParams: Promise<{
 [key: string]: string | string[] | undefined;
 }>;
}) {
 ...
}

5.	 We have destructured the criteria search parameter to make referencing it in the following
steps a little simpler.

Using search parameters 193

6.	 Inside the Posts component, filter the blog posts using the search criteria:

export default async function Posts(...) {
 const criteria = (await searchParams).criteria;
 const resolvedPosts =
 typeof criteria === ‘string’
 ? posts.filter((post) =>
 post.title
 .toLowerCase()
 .includes(criteria.toLowerCase()),
)
 : posts;
 return ...
}

If a search criterion is defined, a case-insensitive filter occurs. Otherwise, unfiltered posts are used.

7.	 Let’s also include search criteria in the heading if defined. We’ll create a variable to hold
the heading:

export default async function Posts(...) {
 const criteria = ...
 const resolvedPosts = ...
 const resolvedHeading =
 typeof criteria === ‘string’
 ? `Posts for ${criteria}`
 : ‘Posts’;
 return ...
}

8.	 Finally, we can use these variables in the JSX as follows:

export default async function Posts(...) {
 ...
 return (
 <main>
 <h2>{resolvedHeading}</h2>

 {resolvedPosts.map((post) => (
 ...
))}

 </main>
);
}

Creating a Multi-Page App with Next.js194

9.	 In the running app, if we do a search, the blog post list is filtered:

Figure 6.11 – Filtered blog post list

10.	 That completes the app. Stop the app from running using Ctrl + C in the terminal.

That completes this section on search parameters. To recap, search parameters in Next.js are accessed
through a searchParams prop or the useSearchParams hook.

For more information on search parameters, see the following page in the Next.js documentation:

https://nextjs.org/docs/app/api-reference/functions/use-search-params

Next, we will summarize what we have learned in this chapter.

https://nextjs.org/docs/app/api-reference/functions/use-search-params

Summary 195

Summary
Next.js gives us a comprehensive set of features to create multi-page apps. Different routes are defined
using folders and a special page.tsx file. Dynamic routes are defined using square brackets containing
the route parameter. We created a static route for a blog post list and a dynamic route for each blog post.

A shared layout component is defined in layout.tsx in the relevant folder. We used the root layout
to share a Header component.

The Link component is the recommended way of navigating in Next.js and can be used in RSCs as well
as Client Components. We used this in the blog post list as well as the app header. The useRouter
hook allows programmatic navigation in Client Components.

Route and search parameters can be accessed via params and searchParams props, respectively.
They can also be accessed in Client Components via useParams and useSearchParams hooks.
We used an id route parameter in the blog post dynamic route. We also used a criteria search
parameter in the blog post list route.

The knowledge you have learned in this chapter has given you the skills to write apps with multiple pages.

In the next chapter, we will enhance the app we created in this chapter to use data from a database,
as we learn how React can interact with server data.

Questions
Answer the following questions to check what you have learned in this chapter:

1.	 In the Next.js app router, what file defines a route segment’s layout that persists across
multiple pages?

2.	 When navigating to the /home URL in a Next.js app, a 404 error message is returned. Here’s
the contents of the src/app folder:

app/
├── globals.css
├── layout.tsx
├── page.tsx
└── home.tsx

What could be the problem?

Creating a Multi-Page App with Next.js196

3.	 Can a Next.js Link component be used in an RSC?

4.	 In Next.js, a Header component needs to be placed on every page. What approach would
you recommend?

5.	 When navigating to the /customers/10 URL in a Next.js app, a 404 error message is
returned. Here’s the contents of the src/app/customers folder:

app/
├── customers
 └── id
 └── page.tsx

What’s the problem?

Answers
1.	 Layout.tsx.

2.	 The /home path will render the app/home/page.tsx file, not app/home.tsx.

3.	 Yes, it can.

4.	 Header can be added to the root layout as follows:

export default function RootLayout(...) {
 return (
 <html lang=”en”>
 <body ... >
 <Header />
 {children}
 </body>
 </html>
);
}

5.	 The id folder name needs to have square brackets to form a dynamic route (i.e., [id]).

Part 3:
Data

This part covers different approaches for interacting with database data on a server with its benefits and
trade-offs. It includes fetching data using React Server Components and React Client Components.
It also includes mutating data using React Server Functions and various form approaches to capture
the mutation data.

This part has the following chapters:

•	 Chapter 7, Server Component Data Fetching and Server Function Mutations

•	 Chapter 8, Client Component Data Fetching and Mutations with TanStack Query

•	 Chapter 9, Working with Forms

7
Server Component Data

Fetching and Server Function
Mutations

In this chapter, we will learn how React can fetch data from the server using a Server Component
and take a look at the benefits of doing so. We will enhance the blog post app we created in the last
chapter to use data from a database to make the data interactions realistic. We’ll implement loading
indicators and error handlers along the way to ensure the user experience is great.

We will learn about React Server Functions to mutate server data and use this knowledge to create
new blog post data in our app. Again, we’ll ensure a great user experience by implementing a mutating
indicator and handling errors.

By the end of this chapter, you will have the skills to implement web pages with fast load times and
the knowledge to create actions on those pages in a simple and robust manner.

We’ll cover the following topics:

•	 Understanding server and client data fetching

•	 Getting set up

•	 Fetching data using a Server Component

•	 Adding loading indicators using React Suspense

•	 Handling errors with React error boundaries

•	 Mutating data using a Server Function

Server Component Data Fetching and Server Function Mutations200

Technical requirements
We will use the following technologies in this chapter:

•	 Browser: A modern browser such as Google Chrome

•	 Node.js and npm: You can install them from https://nodejs.org/en/download/

•	 Visual Studio Code: You can install it from https://code.visualstudio.com/

All the code snippets used in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter07.

Understanding server-side and client-side data fetching
Before implementing data fetching in our app, we will learn about the differences between client-side
and server-side data fetching and the benefits of each approach.

Client-side data fetching

Client-side data fetching happens after a Client Component is initially rendered. We touched on the
client-side data fetching process in Chapter 5, Using React Server and Client Components. As a recap,
here’s a visualization of the steps involved:

Figure 7.1 – Client-side data fetching steps

Here are the key points:

•	 A lot happens before data is fetched – the HTML, JavaScript, and CSS are downloaded from
the server, the JavaScript is parsed, and an initial rendering of the React components happens.

•	 Many HTTP requests happen – one to get the HTML, one for the JavaScript, one for the CSS,
and another to perform the database query. If multiple components fetch data, more HTTP
requests happen; this is often referred to as a network waterfall.

•	 The React components need to be re-rendered before the user sees data.

•	 Data can be refreshed at a later point using an HTTP request from the client.

https://nodejs.org/en/download/
https://code.visualstudio.com/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter07
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter07

Understanding server-side and client-side data fetching 201

Server-side data fetching

Server-side data fetching happens when a React Server Component (RSC) is run on the server. Again,
we touched on this process in Chapter 5, Using React Server and Client Components. As a recap, here’s
a visualization of the steps involved:

Figure 7.2 – Server-side data fetching steps

Here are the key points:

•	 The database query happens early in the process while the RSC is run on the server.

•	 RSCs generally result in less JavaScript being downloaded than Client Components. This not
only means that the JavaScript is downloaded faster, but also that it is parsed faster.

•	 Fewer HTTP requests happen. If multiple RSCs fetch data, this all happens on the server in
a single HTTP request. For example, in the following Home RSC, a user is fetched from the
database, and then the user’s tasks are fetched in the TaskList child RSC. So, both these
database queries happen in the same HTTP request:

async function Home() {
 const user = await fetchUser();
 return (
 <main>
 <h2>Welcome, {user.name}</h2>
 <TaskList userId={user.id} />
 </main>
);
}
async function TaskList({ userId }: ...) {
 const tasks = await fetchTasks(userId);
 return ... ;
}

•	 React components are able to display data in their initial render.

Server Component Data Fetching and Server Function Mutations202

•	 Data can’t be refreshed at a later point in an RSC without a full page reload.

Note
It’s worth noting that the data could be fetched from another server instead of a direct database
query for both client-side and server-side data fetching.

Understanding the benefits

Both server-side and client-side data fetching have benefits and downsides. Here are the benefits of
server-side data fetching:

•	 The user will see the data on the page quicker than client-side data fetching.

•	 RSCs have access to cookies, allowing cookie-based authentication and authorization checks.
Client Components don’t have access to cookies, so an alternative authentication and authorization
approach will need to be taken.

Here are the benefits of client-side data fetching:

•	 Data can be refreshed without a full page load. A typical use case where data refreshing is
required is a dashboard that needs to show up-to-date data.

•	 Data paging can be done without a full page load.

•	 Infinite scroll can only be done in a Client Component. This is where additional data is fetched
as the user scrolls down a list.

•	 Component composition and reuse are easier in a Client Component. This is because Client
Components can fetch their own data, reducing the need for data to be passed in through props.
As a result, developers can more easily compose high-level components from low-level ones
without tightly coupling them to a specific data-fetching hierarchy. In contrast, when using
RSCs to fetch data, the data is passed to a Client Component through props. This introduces a
rigid top-down data flow, where high-level RSCs must be aware of specific data requirements
of their nested children. This breaks encapsulation and makes it harder to reuse components
in different contexts since their data dependencies are no longer internal.

•	 Client-side data fetching can be used with any web server framework – it doesn’t have to support
RSCs or even be based on JavaScript.

That concludes this section on how client-side and server-side data fetching works. To recap, client-
side data fetching occurs after the initial rendering and involves multiple HTTP requests, resulting
in a slower user experience due to re-rendering. Server-side data fetching is more efficient, showing
data during the initial render and using fewer HTTP requests, but it does not allow data refreshing
without a full page reload.

Getting set up 203

Next, we will set up the project for our app and then implement a server-side data fetch.

Getting set up
In this section, we will set up the code for the app we will work on in this chapter, which is the blog
app from the last chapter. We will also connect the app to a SQLite database.

Creating the project

Carry out the following steps to set up the project. It is the project we ended with in the last chapter,
plus some additional styles needed for this chapter:

1.	 In a terminal, execute the following command to create the project:

npx create-next-app@latest blog --ts --eslint --app --src-dir
--import-alias “@/*” --no-tailwind --turbopack

2.	 Still in the terminal, move to the project folder and open Visual Studio Code using the following
commands:

cd blog
code .

3.	 Prettier can be set up in the same manner as Vite, as we covered in Chapter 1, Getting Started
with React. Feel free to add automatic code formatting to this project.

4.	 Copy the following files from the src folder in the GitHub repository at https://github.
com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/
tree/main/Chapter07/start/src. Add them into the project in the same folder
structure, replacing any existing files:

	� app/layout.tsx

	� app/page.tsx

	� app/posts/page.tsx

	� app/posts/[id]/page.tsx

	� app/global.css

	� components/Header.tsx

	� data/posts.ts

The project is now as it was at the end of the last chapter, with some additional styles.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter07/start/src
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter07/start/src
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter07/start/src

Server Component Data Fetching and Server Function Mutations204

Setting up the database

SQLite is a SQL-based database engine that is simple to set up. We will use a popular fork of SQLite
called libSQL that works nicely with Next.js. The dependency for libSQL is already installed.

Note
More information on libSQL can be found at https://turso.tech/libsql.

Carry out the following steps to create our blog database and view the data:

1.	 Install SQLite by executing the following in a terminal:

npm i @libsql/client

2.	 Create a script that we’ll eventually run to create our database. Create a folder called scripts
in the src folder and then a file called createDatabase.mjs in this folder. Copy the script
from the GitHub repository at https://github.com/PacktPublishing/Learn-
React-with-TypeScript-Third-Edition/blob/main/Chapter07/start/
src/scripts/createDatabase.mjs and paste it into the file.

3.	 To create the database, run the following command in the terminal:

node src/scripts/createDatabase.mjs

This command executes the script using Node.js. After the command has completed a blog.
db database file will appear in the data folder.

4.	 The data inside blog.db can be viewed using a Visual Studio Code extension called SQLite3
Editor.

Figure 7.3 – SQLite3 Editor extension

This extension also allows us to edit data, which will be useful later in the chapter. So, install
this extension and you’ll then be able to click on the file in the Explorer panel to view the data.

https://turso.tech/libsql
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter07/start/src/scripts/createDatabase.mjs
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter07/start/src/scripts/createDatabase.mjs
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter07/start/src/scripts/createDatabase.mjs

Fetching data using an RSC 205

Figure 7.4 – Blog data in SQLite3 Editor

Excellent! That completes this section on setting up the project for this chapter. Here’s a quick recap:

•	 We created a Next.js project using the create-next-app tool and copied code from the
last chapter’s app with some additional styles.

•	 We created a SQLite database for the blog post data and installed a library that we will eventually
use to connect to it.

Next, we’ll implement some data-fetching code in an RSC.

Fetching data using an RSC
In this section, we will implement data fetching in the blog post list and blog post detail RSCs to get
the data from our new database. We will structure the code that interacts with the database in separate
functions – we will call them query functions.

Server Component Data Fetching and Server Function Mutations206

Implementing query functions

First, we will implement functions to connect to the database and query it to get the necessary data.
Follow these steps:

1.	 We will start by storing the path to the database in an environment variable. This is common
practice because it allows the app in different environments to connect to different databases.
Create a file called .env in the project root with the following content:

DB_URL=file:src/data/blog.db

2.	 Create a file called queries.ts in the src/data folder. Add the following content to
queries.ts to import a function from libSQL that will allow us to connect to the database:

import { createClient } from ‘@libsql/client’;

3.	 Create a type for the post data as follows:

type Post = {
 id: number;
 title: string;
 description: string;
};

We will use this to strongly type the data returned from the function queries in the subsequent steps.

4.	 Create a function to get all the blog posts as follows:

export async function getAllPosts() {
 const client = createClient({
 url: process.env.DB_URL ?? ‘’,
 });
 const data = await client.execute(
 ‘SELECT id, title, description FROM posts’,
);
 client.close();
 return data.rows as unknown as Post[];
}

First, we use the createClient function to connect to the database. The database URL
environment variable is accessed via the process.env object, which is the standard way
of accessing environment variables in Next.js. The function returns an object containing an
execute function, which allows the database to be queried.

We use the execute function to select the id, title, and description fields from the
posts table, which is where our blog post data is.

We then close the database connection and return the rows returned in the query.

Fetching data using an RSC 207

Notice that a type assertion is used in the return statement to strongly type the returned
data. This is a little messy because we need to assert to unknown before asserting post[].
We will clean this up later in this chapter, but we’ll stick with this for now.

5.	 Implement a similarly structured function to get filtered blog posts:

export async function getFilteredPosts(
 criteria: string,
) {
 const client = createClient({
 url: process.env.DB_URL ?? ‘’,
 });
 const data = await client.execute({
 sql: ‘SELECT id, title, description FROM posts WHERE
 title LIKE ?’,
 args: [`%${criteria}%`],
 });
 client.close();
 return data.rows as unknown as Post[];
}

The main difference this time is that we pass a SQL statement and a SQL parameter to the
database client’s execute function. The SQL statement contains a WHERE clause that filters the
data using the title field and a parameter (? is a parameter in SQLite). The SQL parameter
value is passed via the args property in an array. We set the SQL parameter value to the
criteria parameter that was passed into the function inside % symbols, which are wildcards
in SQLite. The wildcards and the SQL LIKE operator mean rows with matching criteria
inside title will be returned by the query. It is worth noting that SQLite is case insensitive,
so the criteria case doesn’t need to match the title field.

6.	 The last query function is to get a single blog post:

export async function getPost(id: number) {
 const client = createClient({
 url: process.env.DB_URL ?? ‘’,
 });
 const data = await client.execute({
 sql: ‘SELECT id, title, description FROM posts WHERE id
 = ?’,
 args: [id],
 });
 client.close();
 if (data.rows.length === 0) {
 return undefined;
 }

Server Component Data Fetching and Server Function Mutations208

 return data.rows[0] as unknown as Post;
}

This time, we pass the blog post id as a SQL parameter. If no rows are found, we return
undefined; otherwise, we return the first row found.

That’s the query functions implemented. Next, we will call these functions in the relevant RSCs.

Calling query functions from RSCs

We will now call the query functions we just implemented in the blog post list and blog post detail
RSCs. Follow these steps:

1.	 Start by opening src/app/posts/page.tsx and replacing the posts import statement
with an import statement to import the required query functions:

import Link from ‘next/link’;
import {
 getAllPosts,
 getFilteredPosts,
} from ‘@/data/queries’;

2.	 Within the Posts component, update the assignment of resolvedPosts to call the query
functions as follows:

const resolvedPosts =
 typeof criteria === ‘string’
 ? await getFilteredPosts(criteria)
 : await getAllPosts();
 const resolvedHeading =
 typeof criteria === ‘string’
 ? `Posts for ${criteria}`
 : ‘Posts’;

3.	 Now, open src/app/posts/[id]/page.tsx and make similar changes. Start by replacing
the existing import statement with an import statement for getPost.

import { getPost } from ‘@/data/queries’;

4.	 Next, update the posts variable assignment with a call to getPost:

const post = await getPost(id);

Fetching data using an RSC 209

5.	 Run the app by executing npm run dev in the terminal. The app will behave as it did in the
last chapter, but now it is using a real database. Try going to the post list page, doing a search,
and then going to a particular blog post to make sure everything is working.

6.	 Stop the app from running before continuing by pressing Ctrl + C.

We’ve now implemented data fetching from a database in two RSCs. Next, we will clean up the
TypeScript typing of the query function data.

Adding type safety to a database query

At the moment, we are trusting that the data from the database queries is of type Post[] for the
getAllPosts and getFilterPosts functions, and also type Post for the getPost function.
We know this is the case in our example, but in the real world, database schemas may change without
connecting code being updated accordingly. This can happen when different teams own the database,
and the code, and a database change isn’t properly communicated.

If the type representing query data is incorrect, then code consuming wouldn’t work as expected and
may result in an unexpected runtime error. In our app, this would result in the post list and detail
pages not rendering correctly. In larger apps, these kinds of bugs can be hard to pinpoint and take a
while to fix.

To protect the code against unexpected database changes, the type of the data can be checked at
runtime to see if it is as expected. A popular library called Zod can elegantly do schema validation
checks. If the checks fail, an error is thrown. This might not seem ideal, but it gives clarity as to where
the problem is, which helps ensure a quick resolution.

Carry out the following steps to add schema validation with Zod to our database queries:

1.	 First, install Zod by executing the following command in a terminal:

npm i zod

2.	 Create a new file in the src/data folder called schema.ts. This will contain the Zod
schemas for the database queries. Add the following content to schema.ts:

import { z } from ‘zod’;

export const postSchema = z.object({
 id: z.number(),
 title: z.string(),
 description: z.string(),
});
export const postsSchema = z.array(postSchema);

Server Component Data Fetching and Server Function Mutations210

We have defined two schemas:

	� The first, postSchema, represents a single blog post. The schema specifies an object with
a numeric id property, and string title and description properties.

	� The second, postsSchema, represents multiple blog posts. It builds on postSchema,
simply specifying that it is an array of postSchema.

Both schemas are exported so that we can use them in our function queries.

3.	 Open queries.ts and remove the existing Post type as it will become redundant after
the subsequent steps.

4.	 Import the schemas into queries.ts:

import { postsSchema, postSchema } from ‘./schema’;

5.	 In the query functions, validate the query data using the schemas just imported, removing the
type assertions:

export async function getAllPosts() {
 ...
 return postsSchema.parse(data.rows);
}

export async function getFilteredPosts(...) {
 ...
 return postsSchema.parse(data.rows);
}

export async function getPost(...) {
 ...
 return postSchema.parse(data.rows[0]);
}

The parse function in the Zod schemas performs the validation check. An error is thrown
if the check fails. If the check is successful, the data passed into parse is returned and typed
as per the schema.

6.	 Open src/app/posts/page.tsx and hover over the resolvedPosts variable where
two of the query functions are called in its assignment. You’ll see that it has been correctly
typed from the Zod schema.

Fetching data using an RSC 211

Figure 7.5 – Correctly typed resolvedPosts variable

7.	 Run the app by executing npm run dev in the terminal. The app will behave as it did before.

8.	 To see the query schema validation in action, open queries.ts and temporarily cast id
to text in the SQL statement in the getAllPosts function. This simulates a potentially
breaking database change:

export async function getAllPosts() {
 ...
 const data = await client.execute(
 ‘SELECT CAST(id as text) as id, ...’,
);
 ...
}

9.	 Visit the posts list page in the running app and you’ll see a runtime error created by Zod:

Figure 7.6 – Runtime Zod error

Server Component Data Fetching and Server Function Mutations212

The error message is very clear, telling us that the id field in every row is a string rather than
an expected number. This is very useful for developers but not for users – we’ll improve the
user error experience later in this chapter.

10.	 Revert the change to getAllPosts before continuing so that the error is resolved.

That completes the improved typing of query data. More information on Zod can be found at https://
zod.dev/.

Here’s a quick recap of this section:

•	 Data can be fetched in an RSC by simply calling the query in the RSC function body before
the return statement. The query can be awaited, and the RSC can be marked as async if
the query is asynchronous.

•	 Zod can be used to ensure data from database queries is type safe.

Next, we will improve the data-fetching user experience by adding a loading indicator.

Adding loading indicators using React Suspense
In this section, we will learn about React Suspense and use it to implement a loading indicator in the
RSCs that fetch data in our app. This will improve the loading user experience.

Understanding the need for loading indicators

Currently, the data-fetching user experience in our app is reasonable because the process is quick. This
is because everything is running locally, and so the latency is low. This is also because the database
is small, and the queries are simple, so they execute fast. Lastly, we are the only user using the app.

When apps run on real servers with larger, more complex databases, queries will be a little slower –
particularly when many users use the app.

Loading indicators let the user know that the app is loading the page, and they prevent the app from
feeling laggy.

Adding a delay

Before implementing a loading indicator, we will simulate a more significant data fetching delay. This
will enable us to feel the difference loading indicators make. Carry out the following steps:

1.	 Open queries.ts and add a delay function as follows:

async function delay() {
 await new Promise((resolve) =>
 setTimeout(resolve, 1000),

https://zod.dev/
https://zod.dev/

Adding loading indicators using React Suspense 213

);
}

The delay is 1 second, which is longer than we would expect the typical query execution to
take. However, this allows us to experience what a slow load would be like.

2.	 Add a call to delay at the top of the three queries:

export async function getAllPosts() {
 await delay();
 ...
}
export async function getFilteredPosts(...) {
 await delay();
 ...
}
export async function getPost(id: number) {
 await delay();
 ...
}

3.	 Trying navigating to different pages in the app. Clicking links that navigate to pages containing
data will feel laggy.

We will eventually improve the experience so that the page immediately loads with a loading indicator
informing the user that some content is still loading. Before this, we will learn about a critical React
feature needed to do this.

Understanding React Suspense

React Suspense enables components to wait for asynchronous tasks during rendering. A common
asynchronous task that Suspense is used for is data fetching. It allows the rendering of some JSX
elements to be suspended while data is being fetched, allowing other elements to be rendered normally.
In addition, a fallback can be specified for the suspended elements, which can be a loading indicator.

The Suspense fallback can be shown to the user before suspended elements because RSCs containing
suspended elements are streamed to the browser. So, the Suspense fallback will be sent to the browser
in the first chunk, with suspended elements following when they are ready. The chunks of the RSC are
added to the DOM and shown to the user as they are downloaded to the browser.

In the following example, the Page RSC will immediately display a Loading … message. After the
name has been fetched, the loading indicator will be replaced with a Hello, {fetched name} message:

export default function Page() {
 return (
 <Suspense fallback={<div>Loading...</div>}>

Server Component Data Fetching and Server Function Mutations214

 <Name />
 </Suspense>
);
}
async function Name() {
 const name = await getName();
 return <div>Hello, {name}</div>;
}

The Suspense component is from React, which forms a Suspense boundary. Its children are
suspended from rendering until their asynchronous tasks are complete. Its fallback attribute allows
an alternative component to be rendered while the suspended children’s asynchronous tasks run.

Note
Next.js has a built-in loading indicator convention that uses React Suspense under the
hood. However, the whole page component is replaced with the loading component. More
information can be found at https://nextjs.org/docs/app/api-reference/
file-conventions/loading.

Next, we will add loading indicators on the blog post list and detail pages.

Implementing loading indicators

We will use React Suspense to add loading indicators to parts of the page components for the blog
post list and details. We will extract the asynchronous parts of the components into child components
so that they can be wrapped with a Suspense component. Carry out the following steps:

1.	 Start by creating a loading indicator component that can be reused in both page components.
Create a file called Loading.tsx in src/components with the following content:

export function Loading() {
 return (
 <div className=”skeleton”>
 <div className=”skeleton-item-title”></div>
 <div className=”skeleton-item-desc”></div>
 </div>
);
}

The component renders div elements that visually represent placeholders for the blog post
title and description. The referenced styling can be found in global.css.

https://nextjs.org/docs/app/api-reference/file-conventions/loading
https://nextjs.org/docs/app/api-reference/file-conventions/loading

Adding loading indicators using React Suspense 215

2.	 We will extract the data fetching and rendering of the blog post list from Posts into a PostList
component. Start by adding a new file called PostList.tsx to the src/components
folder. Copy the content into this file from the GitHub repository at https://github.
com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/
blob/main/Chapter07/fetching-rsc/src/components/PostList.tsx.
Here’s an extract of this code:

export async function PostList({ criteria }: ...) {
 const resolvedPosts = ...
 return (

 {resolvedPosts.map((post) => (
 <li key={post.id}>
 <Link href={`/posts/${post.id}`}>
 {post.title}
 </Link>
 <p>{post.description}</p>

))}

);
}

3.	 Open src/app/posts/page.tsx and remove the Link and query imports. Add imports
for the Suspense, Loading, and PostList components as follows:

import { Suspense } from ‘react’;
import { Loading } from ‘@/components/Loading’;
import { PostList } from ‘@/components/PostList’;

4.	 Remove the resolvedPosts variable in the Posts component.

5.	 Replace the ul and li elements in the JSX with PostList inside a Suspense component
as follows:

export default async function Posts(...) {
 const criteria = ...
 const resolvedHeading = ...
 return (
 <main>
 <h2>{resolvedHeading}</h2>
 <Suspense fallback={<Loading />}>
 <PostList criteria={criteria} />

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter07/fetching-rsc/src/components/PostList.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter07/fetching-rsc/src/components/PostList.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter07/fetching-rsc/src/components/PostList.tsx

Server Component Data Fetching and Server Function Mutations216

 </Suspense>
 </main>
);
}

That completes the reworking of the Posts component.

6.	 Open src/app/posts/[id]/page.tsx. We will extract the data fetching and rendering
from Post into a PostDetail component. Start by adding a new file at src/components/
PostDetail.tsx with the following content, which can be largely copied from the
Post component:

import { getPost } from ‘@/data/queries’;

export async function PostDetail({
 id,
}: {
 id: number;
}) {
 const post = await getPost(id);
 if (!post) {
 return <p>Post not found</p>;
 }
 return (
 <>
 <h2>{post.title}</h2>
 <p>{post.description}</p>
 </>
);
}

7.	 Open src/app/posts/[id]/page.tsx and remove the getPost import statement.
Add imports for the Suspense, Loading, and PostDetail components as follows:

import { Suspense } from ‘react’;
import { Loading } from ‘@/components/Loading’;
import { PostDetail } from ‘@/components/PostDetail’;

8.	 Inside the Post component, remove the post variable and guard clause for the blog post not
being found. Keep the id variable in place, and it’s casting to a number. Also, keep the guard
clause in place to handle cases where the ID isn’t numeric.

Adding loading indicators using React Suspense 217

9.	 Replace the JSX inside the main element with PostDetail inside a Suspense as follows:

<main>
 <Suspense fallback={<Loading />}>
 <PostDetail id={id} />
 </Suspense>
</main>

That completes the reworking of the Post component. The full component file is available
on GitHub at https://github.com/PacktPublishing/Learn-React-with-
TypeScript-Third-Edition/blob/main/Chapter07/fetching-rsc/src/
app/posts/%5Bid%5D/page.tsx.

10.	 In the running app, try clicking links to navigate to different pages in the app. The pages will
immediately appear with a loading indicator if data needs to be fetched:

Figure 7.7 – Loading indicator on post list page

11.	 Stop the app from running by pressing Ctrl + C in the terminal.

12.	 Remove the simulated delays in the queries now that we are happy with the loading indicators.

That completes the implementation of the loading indicators. For more information on React Suspense,
see the page in the React documentation: https://react.dev/reference/react/Suspense.

Here’s a quick recap:

•	 React Suspense is a React component that suspends its children from rendering while an
asynchronous database query function executes.

•	 When children are suspended, the Suspense component allows a loading indicator component
to be rendered instead.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter07/fetching-rsc/src/app/posts/%5Bid%5D/page.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter07/fetching-rsc/src/app/posts/%5Bid%5D/page.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter07/fetching-rsc/src/app/posts/%5Bid%5D/page.tsx
https://react.dev/reference/react/Suspense

Server Component Data Fetching and Server Function Mutations218

•	 When the database query function executed has been completed, the suspended children will
render, replacing the loading indicator.

•	 This pattern works in an RSC because React Suspense causes RSCs to be streamed to the browser.

Next, we will learn how to improve the handling of errors during data fetching.

Handling errors with React error boundaries
In this section, we will learn about error handling using React error boundaries. With this knowledge,
we will improve the error handling in our app.

Understanding React error boundaries

A React error boundary is a component that catches errors in its children during rendering. React
error boundaries are available in React class components. To use them in function components we can
use a package called react-error-boundary that exposes an ErrorBoundary component.

Here’s an example use of the ErrorBoundary component:

export function SomeComponent() {
 return (
 <main>
 <h2>Some heading</h2>
 <ErrorBoundary
 FallbackComponent={ErrorAlert}
 onError={(error, info) => {
 // Log to error service
 }}
 >
 <SomeChildComponent />
 </ErrorBoundary>
 </main>
);
}

The FallbackComponent attribute allows an error component to replace the children that failed
to render.

The onError attribute allows errors to be captured, allowing them to be logged. It’s worth noting
that this attribute can only be used if the consuming component is a Client Component and not an
RSC because it is an event.

Handling errors with React error boundaries 219

Here’s the definition of the error fallback from the preceding code snippet:

“use client”;
export function ErrorAlert({
 error,
 resetErrorBoundary,
}: {
 error: Error;
 resetErrorBoundary: () => void;
}) {
 return (
 <div role=”alert”>
 <h3>Something went wrong</h3>
 <p>{error.message}</p>
 <button onClick={resetErrorBoundary}>Retry</button>
 </div>
);
}

The error fallback component must be a Client Component. It takes in the following props:

•	 error. This is the raised Error object that contains all the information about the error.

•	 resetErrorBoundary. This allows the state in the error boundary to be reset to
reattempt rendering.

Note
Next.js has a built-in error boundary indicator convention, but the whole page component is
replaced with the error component. More information can be found at https://nextjs.
org/docs/app/api-reference/file-conventions/error.

Next, we will add error boundaries on the blog post list and detail pages.

Implementing error boundaries

Will use ErrorBoundary from the react-error-boundary package. We’ll use this in the
blog post list and detail pages. Carry out these steps:

1.	 Install the react-error-boundary package by executing the following command in
a terminal:

npm i react-error-boundary

https://nextjs.org/docs/app/api-reference/file-conventions/error
https://nextjs.org/docs/app/api-reference/file-conventions/error

Server Component Data Fetching and Server Function Mutations220

2.	 We will start by adding an error fallback component that displays the error to the user. Create
a file called ErrorAlert.tsx in the src/components folder containing the following:

“use client”;
export function ErrorAlert({
 error,
 resetErrorBoundary,
}: {
 error: Error;
 resetErrorBoundary: () => void;
}) {
 return (
 <div role=”alert”>
 <h3>Something went wrong</h3>
 <p>{error.message}</p>
 <button onClick={resetErrorBoundary}>
 Retry
 </button>
 </div>
);
}

The component displays the error message with a Retry button underneath that resets the
error boundary.

3.	 We will wrap the ErrorBoundary from react-error-boundary, so that the fallback
and error reporting are centralized. Create a new file called ErrorBoundary.tsx in src/
components with the following content:

‘use client’;
import type { ReactNode } from ‘react’;
import {
 ErrorBoundary as ReactErrorBoundary,
} from ‘react-error-boundary’;
import { ErrorAlert } from ‘./ErrorAlert’;

export function ErrorBoundary({
 children,
}: {
 children: ReactNode;
}) {
 return (
 <ReactErrorBoundary
 FallbackComponent={ErrorAlert}
 onError={(error, info) => {

Handling errors with React error boundaries 221

 console.error(‘Unexpected error’, {
 error,
 info,
 });
 }}
 >
 {children}
 </ReactErrorBoundary>
);
}

We called our component ErrorBoundary and aliased ErrorBoundary from react-
error-boundary as ReactErrorBoundary to prevent them from colliding.

We’ve specified ErrorAlert as the error fallback, and we are outputting errors to the console.

4.	 Open src/pages/posts/page.tsx and wrap our ErrorBoundary around PostList:

import {
 ErrorBoundary
} from ‘@/components/ErrorBoundary’;
...
export default function Posts(...) {
 ...
 return (
 <main>
 ...
 <Suspense ... >
 <ErrorBoundary>
 <PostList ... />
 </ErrorBoundary>
 </Suspense>
 </main>
);
}

5.	 Open src/pages/posts/[id]/page.tsx and wrap our ErrorBoundary
around PostDetail:

import {
 ErrorBoundary
} from ‘@/components/ErrorBoundary’;
...
export default async function Post(...) {
 ...
 return (

Server Component Data Fetching and Server Function Mutations222

 <main>
 <Suspense ...>
 <ErrorBoundary>
 <PostDetail ... />
 </ErrorBoundary>
 </Suspense>
 </main>
);
}

The error boundaries are now implemented.

6.	 Run the app by executing npm run dev in a terminal, navigate to the blog post list page, open
the browser developer tools, and go to the Components panel. We can force the PostList
into an error state by searching for the component in the tree, selecting PostList in the tree,
and selecting the option that contains the exclamation mark icon.

Figure 7.8 – Forcing a component into an error state

Mutating data using a Server Function 223

The error will then appear, replacing the blog post list:

Figure 7.9 – PostList component in an error state

7.	 Click the Retry button to reset the error state. The PostList component will successfully render.

8.	 Repeat the previous two steps for the PostDetail component on the blog post details page.
You will find that the error boundary works nicely there as well.

That completes the error boundaries in our app and this section. Here’s a quick recap:

•	 A React error boundary is a component that catches errors from its child components.

•	 The error boundary component can render a custom error alert component when in an error state.

•	 The error boundary component can also log errors to an error service, which helps
production troubleshooting.

For more information on React error boundaries, see the following page in the React
documentation: https://react.dev/reference/react/Component#catching-
rendering-errors-with-an-error-boundary.

Next, we will learn how to mutate data.

Mutating data using a Server Function
In this section, we will learn how to mutate database data via a React Server Function. We will create
a button in our app to create a new blog post leveraging a Server Function. We will also learn how to
implement a progress indicator for the Server Function and handle any errors.

https://react.dev/reference/react/Component#catching-rendering-errors-with-an-error-boundary
https://react.dev/reference/react/Component#catching-rendering-errors-with-an-error-boundary

Server Component Data Fetching and Server Function Mutations224

Understanding a Server Function

A React Server Function is exactly as the name suggests – it’s a function that executes on the server.
A common use case is to execute a database mutation.

Traditionally, a React app would call a web API to execute code on the server. Server Functions
simplify this task.

Here is an example of a Server Function used within an RSC. It renders a button that, when clicked,
deletes a product from a database:

export function DeleteButton({id}: {id: number}) {
 async function deleteProduct() {
 ‘use server’;
 const client = createClient({
 url: process.env.DB_URL ?? ‘’
 });
 await client.execute({
 sql: ‘DELETE FROM products WHERE id = ?’,
 args: [id],
 });
 client.close();
 }
 return (
 <button type=”button” onClick={deleteProduct}>
 Delete
 </button>
);
}

The ‘use server’ directive marks the deleteProduct function as a Server Function. This
function is never downloaded to the browser – it only exists on the server. This means sensitive
information about the database, such as its connection credentials, won’t leak into the browser.

You may be thinking that the preceding code snippet can’t be an RSC because it contains a button
click handler. We previously learned that RSCs aren’t capable of handling events because they need
to run on the client. In Next.js, this code works because RSCs can pass Server Functions to the client
in certain event handlers, and onClick is one that supports this capability – onSubmit is another
that is commonly used. As previously stated, the whole Server Function isn’t sent to the client – just
a reference to it.

Mutating data using a Server Function 225

Server Functions can be called from Client Components as well, but they must be in a different file.
Here’s the same example, but this time DeleteButton is a Client Component:

•	 Here’s the DeleteButton.tsx file:

‘use client’;
import { deleteProduct } from ‘@/data/deleteProduct’;

export function DeleteButton({ id }: { id: number }) {
 return (
 <button
 type=”button”
 onClick={() => deleteProduct(id)}
 >
 Delete
 </button>
);
}

The deleteProduct Server Function is imported and called as a regular function.

•	 Here’s deleteProduct.ts:

‘use server’;
import { createClient } from ‘@libsql/client’;

export async function deleteProduct(id: number) {
 const client = createClient({
 url: process.env.DB_URL ?? ‘’
 });
 await client.execute({
 sql: ‘DELETE FROM posts WHERE id = ?’,
 args: [id],
 });
 client.close();
}

The ‘use server’ directive at the top of the file marks the exported functions in the file
as Server Functions.

Now that we understand how to implement a Server Function, we’ll use one to create new blog posts
in our app.

Server Component Data Fetching and Server Function Mutations226

Creating a Server Function

In this section, we will create a button on the blog posts list page that creates a new blog post. We’ll
use a Server Function to implement this. Carry out the following steps:

1.	 We’ll start by implementing the Server Function that inserts a new blog post into the database.
Create a new file called createPost.ts in the src/data folder and add the following
content to it:

‘use server’;
import { revalidatePath } from ‘next/cache’;
import { createClient } from ‘@libsql/client’;

export async function createPost(
 title: string,
 description: string,
) {
 const client = createClient({
 url: process.env.DB_URL ?? ‘’,
 });
 await client.execute({
 sql: ‘INSERT INTO posts(title, description) VALUES (?,
?)’,
 args: [title, description],
 });
 client.close();
 revalidatePath(‘/posts’);
}

The function connects to the database and runs a SQL query to insert a new record into the
posts table with the title and description passed to the function.

The revalidatePath function invalidates the Next.js cache so that the new post appears
in the list.

The ‘use server’ directive means that the function will be available as a Server Function.

2.	 We will now create a button Client Component that calls createPost. Create a file called
NewPost.tsx in the src/components folder with the following content:

‘use client’;
import { createPost } from ‘@/data/createPost’;

export function NewPost() {
 async function handleClick() {
 await createPost(
 ‘New Post’,

Mutating data using a Server Function 227

 ‘New Post Description’,
);
 }
 return (
 <div className=”actions”>
 <button type=”button” onClick={handleClick}>
 Create New Post
 </button>
 </div>
);
}

The component renders a button that calls the createPost Server Function in its click
handler. We have hardcoded the blog post title and description New Post and New Post
Description respectively.

A form could be used to capture the title and description from the user before submitting it to
the Server Function. We will cover this in detail in Chapter 9, Working with Forms.

As you write the code to call createPost, take a moment to appreciate the IntelliSense. Try
also to pass non-string arguments and experience the type checking. These features work across
the client/server network boundary, just like there is no boundary at all!

3.	 The last implementation step is referencing the NewPost component in the Posts page.
Open src/app/posts/page.tsx and add NewPost as follows:

import { NewPost } from ‘@/components/NewPost’;
...
export default async function Posts(...) {
 const criteria = ...
 const resolvedHeading = ...
 return (
 <main>
 <h2>{resolvedHeading}</h2>
 <NewPost />
 <Suspense ...>
 ...
 </Suspense>
 </main>
);
}

Server Component Data Fetching and Server Function Mutations228

Run the app by executing npm run dev in a terminal, then navigate to the blog post list
page. The Create New Post button appears above the blog post list:

Figure 7.10 – Create New Post button on blog post list page

4.	 Open the browser developer tools, go to the Network panel, and clear any existing network calls
shown. We will use this panel to better understand how the Server Function is called in step 6.

5.	 Click the Create New Post button, and the new blog post will appear at the bottom of the
list. You can use the Visual Studio Code SQLite extension to verify the record is added to the
posts table in the database.

6.	 In the browser developer tools Network panel, find the request to the posts path and look
at the HTTP request method, an HTTP request header called Next-Action, and the
request payload.

Figure 7.11 – Server Function HTTP request

Mutating data using a Server Function 229

Here are the key points on how the Server Function is invoked:

	� It is invoked using an HTTP POST request to the page the component is rendered on.

	� The request Next-Action HTTP header is an indirect reference to the createPost
function on the server. This is set to a GUID-like string in this example.

	� The payload is an array containing the arguments to pass to the Server Function.

This completes the implementation and consumption of our Server Function. For more information
on Server Functions, see the following page in the React documentation: https://react.dev/
reference/rsc/server-functions.

Next, we will add a progress indicator to the NewPost component.

Adding a progress indicator

In the NewPost component, we will use an isMutating React state variable to render a progress
indicator. Carry out the following steps:

1.	 Open NewPost.tsx and add the following highlighted code:

import { useState } from ‘react’;
...
export function NewPost() {
 const [isMutating, setIsMutating] = useState(false);
 async function handleClick() {
 setIsMutating(true);
 await createPost(...);
 setIsMutating(false);
 }
 return (
 <div ... >
 <button ... >
 {isMutating
 ? ‘Creating...’
 : ‘Create New Post’}
 </button>
 </div>
);
}

We set isMutating to true before the Server Function call and then false when it has
finished executing. The button content changes to Creating… during the mutation, forming
the progress indicator.

https://react.dev/reference/rsc/server-functions
https://react.dev/reference/rsc/server-functions

Server Component Data Fetching and Server Function Mutations230

2.	 Click the Create New Post button to see the progress indicator. It will probably appear and
disappear quickly, so you can use the browser developer tools Network panel to throttle the
network to make the progress indicator appear for longer.

That completes the progress indicator. Next, we’ll improve the error handling around the Server Function.

Handling errors

If the Server Function errors, no error notification is shown to the user. Instead, the operation will
appear to hang. As developers, we’ll see an error alert that Next.js displays, but this won’t be the case
in a production build.

Carry out the following steps to improve the error handling:

1.	 We will start by enhancing the Server Function to catch errors in the database calls. Open
createPost.ts and import the following LibSQL types:

...
import {
 ...,
 type Client,
 type ResultSet,
} from ‘@libsql/client’;

2.	 Inside createPost, add a try-catch statement around the creation of the database client
and execution of the SQL query as follows:

export async function createPost(...) {
 let client: Client | undefined;
 let result: ResultSet | undefined;
 try {
 client = createClient(...);
 await client.execute(...);
 } catch {
 return { ok: false };
 } finally {
 if (client) {
 client.close();
 }
 }
 revalidatePath(‘/posts’);
}

Mutating data using a Server Function 231

3.	 Add a return statement to return whether the mutation is successful, along with the id of
the new post:

export async function createPost(...) {
 ...
 revalidatePath(‘/posts’);
 return {
 ok: true,
 id: result
 ? result.lastInsertRowid
 : undefined,
 };
}

4.	 We can now use the return object from createPost in the NewPost component to set
some state, which in turn will display an error or success message. Open NewPost.tsx and
start by setting a status state from the createPost call:

export function NewPost() {
 ...
 const [status, setStatus] = useState<
 ‘pending’ | ‘error’ | ‘success’
 >(‘pending’);
 async function handleClick() {
 setIsMutating(true);
 const result = await createPost(
 ‘New Post’,
 ‘New Post Description’,
);
 setStatus(result.ok ? ‘success’ : ‘error’);
 setIsMutating(false);
 }
 ...
}

5.	 Lastly, we can use status to render a success or error message as follows:

export function NewPost() {
 ...
 return (
 <div ... >
 <button ...>
 ...
 </button>
 {status === ‘error’ && (

Server Component Data Fetching and Server Function Mutations232

 An unexpected error occurred

)}
 {status === ‘success’ && (

 Post successfully created

)}
 </div>
);
}

Note that we are rendering a general error message in this situation. In Chapter 9, Working
with Forms, we’ll learn how to render more specific error messages from a Server Function.

6.	 In the running app, a success message now appears when the Create New Post button is clicked
and the createPost Server Function is successful. The table name in the SQL statement in
createPost can be adjusted to test an error.

Figure 7.12 – Error message when createPost errors

Don’t forget to correct the SQL statement before continuing.

That completes the error handling and this section on Server Functions. Here’s a quick recap:

•	 Server Functions allow server code to be executed from a React component in a simple and
type-safe manner.

•	 A Client Component progress indicator can be implemented using React state that is updated
before and after the execution of the Server Function.

•	 A try-catch statement can be used to handle errors in a Server Function. Whether an error
occurred can be returned to the React component to render in a success or error state.

Next, we will summarize what we have learned in this chapter.

Summary 233

Summary
In this chapter, we learned that server-side data fetching can improve the performance of the initial
loading of a page because of reduced network calls and reduced client-side JavaScript.

We used server-side data fetching in our app, in an RSC, querying a SQLite database for the data.
We used React Suspense to implement a loading indicator and a React error boundary to handle and
report errors.

We learned that Server Functions are a simple and type-safe approach to mutating data. Finally, we
used a Server Function in our app to add a new blog post to our database.

You now have the skills to make web pages load blazingly fast and the knowledge to quickly implement
maintainable actions on those pages.

In the next chapter, we learn how to implement client-side data fetching and mutations using a popular
third-party library.

Questions
Answer the following questions to check what you have learned in this chapter:

1.	 We have the following RSC for a page. The page takes a while because the getPeople
function is a bit slow. What can we do to improve the user experience other than improve the
performance of the getPeople function?

export default async function People() {
 const people = await getPeople();
 return (

 {people.map((person) => (
 <li key={person}>
 {person}

))}

);
}

2.	 Consider the following RSC. When an error is thrown in the getPeople function, the whole
React app fails to render. How can we improve this situation so that only the PeopleList
component fails to render?

export async function PeopleList() {
 const people = await getPeople();
 return (

Server Component Data Fetching and Server Function Mutations234

 {people.map((person) => (
 <li key={person}>
 {person}

))}

);
}

3.	 What is the advantage of using React Server Functions over traditional API routes in Next.js?

4.	 Why isn’t it recommended to use React Server Functions in Next.js for data fetching?

5.	 The following component raises a build error in Next.js. What’s the problem?

“use client”;
import { useState } from “react”;

export function Counter() {
 const [count, setCount] = useState(1);

 async function saveCount(count: number) {
 use server”;
 db.count.save(count);
 }

 function handleClick() {
 setCount((prev) => {
 const newCount = prev + 1;
 saveCount(newCount);
 return newCount;
 });
 }
 return (
 <button onClick={handleClick}>
 {count}
 </button>
);
}

Answers 235

Answers
1.	 React Suspense can be used with the people list to provide a loading indicator while its data

is being fetched. First, the people list needs to be extracted into its own component:

export async function PeopleList() {
 const people = await getPeople();
 return (

 {people.map((person) => (
 <li key={person}>
 {person}

))}

);
}

The People component can then reference PeopleList inside a Suspense component
with a loading indicator fallback.

export default function People() {
 return (
 <main>
 <Suspense fallback={<div>Loading...</div>}>
 <PeopleList />
 </Suspense>
 </main>
);
}

If using Next.js and People is a page-level component, the conventional loading.tsx file
can be used as an alternative solution.

2.	 An ErrorBoundary component (from the react-error-boundary package) can
wrap PeopleList in the component tree to catch errors and render a fallback component:

<ErrorBoundary FallbackComponent={ErrorFallback}>
 <PeopleList />
</ErrorBoundary>

The fallback component must be a Client Component.
“use client”;
export function ErrorFallback() {
 return <div role=”alert”>An error occurred</div>;
}

Server Component Data Fetching and Server Function Mutations236

3.	 React Server Functions allow server code to be executed from a React component using less
code and better type safety than a Next.js API route handler.

4.	 React Server Functions in Next.js use a HTTP Post rather than a HTTP GET so they won’t
use the browser or CDN cache.

5.	 Client Components can’t contain inline Server Functions. So, the saveCount function needs
to be extracted into a separate file with the “use server” directive at the top:

// saveCount.ts
“use server”;
export async function saveCount(count: number) {
 db.count.save(count);
}

// Counter.tsx
“use client”;
import { useState } from “react”;
import { saveCount } from “./saveCount”;

export function Counter() {
 const [count, setCount] = useState(1);

 function handleClick() {
 setCount((prev) => {
 const newCount = prev + 1;
 saveCount(newCount);
 return newCount;
 });
 }
 return (
 <button onClick={handleClick}>
 {count}
 </button>
);
}

8
Client Component Data

Fetching and Mutations with
TanStack Query

In this chapter, we will learn how React can fetch data from a Client Component, reworking the blog
post app from the last chapter.

We will start by exploring the challenges of using useEffect for client-side data fetching. We’ll move
on to use a popular library called TanStack Query for client-side data fetching and experience how
it simplifies this task. We will maintain the great UX created in the last chapter, using the capabilities
in TanStack Query to implement loading indicators and error handling. We will also use TanStack
Query to rework the mutation code.

We will cover using React Server Functions for client-side data fetching and understand the downsides
of this approach. We’ll also learn how a Next.js Route Handler compares with React Server Functions
for client-side data fetching.

By the end of the chapter, you’ll have the knowledge to implement maintainable, robust client-side
data fetching and mutations.

We’ll cover the following topics:

•	 Fetching data using TanStack Query

•	 Using a Route Handler with TanStack Query

•	 Mutating data using a TanStack Query mutation

Client Component Data Fetching and Mutations with TanStack Query238

Technical requirements
We will use the following technologies in this chapter:

•	 Browser: A modern browser such as Google Chrome

•	 Node.js and npm: You can install them from https://nodejs.org/en/download/

•	 Visual Studio Code: You can install it from https://code.visualstudio.com/

All the code snippets used in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter08.

Fetching data using TanStack Query
In this section, we will start by understanding how to fetch data using React’s useEffect Hook
and the challenges with this approach. We will then explore how to fetch data using a popular library
called TanStack Query and use it in our app, experiencing the benefits.

Understanding the challenges with useEffect for data fetching

In this section, we will explore fetching data using React’s useEffect Hook and the challenges
with this approach.

We used the useEffect Hook in Chapter 3, Using React Hooks to fetch a person’s name. Here’s a
reminder of the code:

const [name, setName] = useState<string | undefined>();
const [loading, setLoading] = useState(true);

useEffect(() => {
 getPerson().then((person) => {
 setLoading(false);
 setName(person.name);
 });
}, []);

if (loading) {
 return <div>Loading ...</div>;
}

https://nodejs.org/en/download/
https://code.visualstudio.com/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter08
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter08

Fetching data using TanStack Query 239

Notice that we need to manage the state for the fetched data and the loading indicator. If error handling
is added, more state is required, and the code gets a little more complex:

...
const [error, setError] = useState<Error | undefined>();

useEffect(() => {
 getPerson()
 .then((person) => {
 ...
 })
 .catch(e => {
 setError(e);
 setLoading(false);
 });
}, []);
...

In reality, we’d need to pass the person ID to the fetching function, making things even more complex:

useEffect(() => {
 getPerson(personId)
 ...
}, [personId]);

Now, a refetch will occur whenever personId changes. A race condition can occur if personId
changes while a fetch is still in progress. Also, if the component is unmounted while a fetch is still in
progress, an error will occur when the fetch is completed and the data state is set.

The complexity of implementing this code quickly escalates as more edge cases are implemented. The
following blog post from Dominik Forgmeister, one of the TanStack Query maintainers, dives into
the complexity a little deeper: https://tkdodo.eu/blog/why-you-want-react-query.

That completes this section on fetching data with the useEffect Hook. In summary, you can fetch
data with the useEffect Hook, but it isn’t recommended.

Luckily, TanStack Query reduces the complexity of data fetching and is a very popular choice in the
React community. We’ll learn about this next.

Understanding TanStack Query

TanStack Query simplifies data fetching code by managing the different states for us, such as loading
and error states. At its core is a smart data cache for the fetched data. When cached data becomes
stale, it automatically refetches data.

https://tkdodo.eu/blog/why-you-want-react-query

Client Component Data Fetching and Mutations with TanStack Query240

Here’s a simple code snippet of TanStack Query in a component that fetches data for a product and
displays its name and description:

function Product({ id }: { id: number }) {
 const { data, error, isPending } = useQuery({
 queryKey: [‘products’, id],
 queryFn: () =>
 fetch(
 `https://some-server.com/products/${id}`,
).then((res) => res.json()),
 });
 if (isPending) return ‘Loading... ‘;
 if (error) return ‘Error: ‘ + error.message;
 return (
 <div>
 <h2>{data.name}</h2>
 <p>{data.description}</p>
 </div>
);
}

TanStack Query contains a useQuery Hook that manages the data fetching process and the different
states. Options are passed into useQuery in an object, and the two most important options are
the following:

•	 queryKey: A unique key for the data. The TanStack Query cache is capable of storing data
from many different queries, so this key identifies the data in the cache. The key in this example
is an array containing the word “products” and the numeric product ID in this case.

Note
Using an array for a key is the best practice because it allows TanStack Query to easily
differentiate between individual elements with the key and make decisions based
on them. For example, if the data for key [‘products’] is invalidated, the data for
keys [‘products’,1], [‘products’,2], … would automatically be invalidated.

•	 queryFn: A function that actually does the data fetching. The browser fetch function gets
the product from the API in this example.

The useQuery Hook returns an object containing lots of useful variables, including the following:

•	 data: The fetched data.

•	 isPending: Whether the data has been fetched yet. This can be used to implement a loading
indicator, as in the preceding example.

Fetching data using TanStack Query 241

•	 isSuccess: When the data has been successfully fetched.

•	 isError: When the data fetching errored. This can be used to implement an error alert, as
in the preceding example.

•	 error: The Error instance if data fetching errored.

The useQuery Hook can only be used within a QueryClientProvider component in
the React component tree. This allows the same data cache to be used throughout the app. The
QueryClientProvider component takes in a QueryClient instance, as in the following example:

function App() {
 const [queryClient] = useState(() => new QueryClient());
 return (
 <QueryClientProvider client={queryClient}>
 ...
 </QueryClientProvider>
);
}

The QueryClient instance is held in state so that the same instance is reused after a re-render.

QueryClient can also be used to access the data cache; a common use case is invalidating it so that
fresh data is fetched. The following code snippet invalidates the cache for the [‘products’] key:

queryClient.invalidateQueries({ queryKey: [‘products’] });

Next, we will set up the project we will be using in this chapter.

Setting up the project

The project we need for this chapter is the one we finished at the end of the last chapter. A copy of
this can be found in the GitHub repository at https://github.com/PacktPublishing/
Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter08/start.

Next, we will rework our app to use TanStack Query for data fetching.

Fetching blog post data

We will start by reworking the data fetching on the post list page in our app to use TanStack Query.
Along the way, we will create a loading indicator and handle errors. Carry out the following steps:

1.	 Install TanStack Query by executing the following command in the terminal:

npm i @tanstack/react-query

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter08/start
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter08/start

Client Component Data Fetching and Mutations with TanStack Query242

2.	 We will create a Providers Client Component containing TanStack Query’s
QueryClientProvider. We will then reference this in the root layout, high in the React
component tree, so that all our Client Components can access the cache. Create a new file called
Providers.tsx in the src/components folder with the following content:

‘use client’;
import {
 QueryClient,
 QueryClientProvider,
} from ‘@tanstack/react-query’;
import { ReactNode, useState } from ‘react’;

export function Providers({
 children,
}: {
 children: ReactNode;
}) {
 const [queryClient] = useState(
 () => new QueryClient(),
);
 return (
 <QueryClientProvider client={queryClient}>
 {children}
 </QueryClientProvider>
);
}

3.	 Open src/app/layout.tsx and add Providers.tsx to RootLayout as follows:

import { Providers } from ‘@/components/Providers’;
...
export default function RootLayout(...) {
 return (
 <html ... >
 <body ... >
 <Providers>
 <Header />
 {children}
 </Providers>
 </body>
 </html>
);
}

All the Client Components have access to the cache now.

Fetching data using TanStack Query 243

4.	 We will expose the database queries as Server Functions so they are callable from Client
Components. Open queries.ts and add a ‘use server’ directive at the top of the file.

5.	 Open ErrorAlert.tsx. We will simplify the ErrorAlert component because retries
are automatic in TanStack Query. Remove the Retry button and resetErrorBoundary
prop. The component should now be as follows:

export function ErrorAlert({
 error,
}: {
 error: Error;
}) {
 return (
 <div role=”alert”>
 <h3>Something went wrong</h3>
 <p>{error.message}</p>
 </div>
);
}

6.	 We will now turn PostLists into a Client Component and rework data fetching to use
TanStack Query. Open PostList.tsx and make the following highlighted changes:

‘use client’;
import { useQuery } from ‘@tanstack/react-query’;
...
export function PostList(...) {
 const { data: resolvedPosts } = useQuery({
 queryKey: [‘posts’, criteria],
 queryFn: () => {
 if (typeof criteria === ‘string’) {
 return getFilteredPosts(criteria);
 }
 return getAllPosts();
 },
 });
 return ...
}

Don’t forget to remove the async keyword from the function.

We have set the query key to [‘posts’, criteria] so that all posts and filtered posts
are cached separately. We aliased the fetched data to be resolvedPosts so that no changes
are required in the JSX.

Client Component Data Fetching and Mutations with TanStack Query244

7.	 Add a loading indicator and error handling to PostList as follows:

import { Loading } from ‘./Loading’;
import { ErrorAlert } from ‘./ErrorAlert’;

export function PostList(...) {
 const {
 ...,
 isPending,
 error,
 } = useQuery(...);
 if (isPending) {
 return <Loading />;
 }
 if (error) {
 return <ErrorAlert error={error} />;
 }
 return ...
}

Open src/app/posts/page.tsx and remove the React Suspense and error boundaries
because data fetching is no longer happening from RSCs. The loading indicator import can
also be removed. The JSX in Posts should now be as follows:

<main>
 <h2>{resolvedHeading}</h2>
 <NewPost />
 <PostList criteria={criteria} />
</main>

8.	 Run the app by executing npm run dev in the terminal, if it’s not already running. Open
the browser developer tools, go to the Network panel and navigate to the Posts page. The last
HTTP request will be the data fetching request.

Fetching data using TanStack Query 245

Figure 8.1 – Client-side data fetching HTTP request

Notice that the request is an HTTP POST rather than a GET request. This is because all Server
Functions in Next.js are HTTP POST requests.

Note
You may miss the loading indicator because the data fetching is quick, with everything running
locally. You can change the Throttle setting in the browser developer tool Network panel to
slow the data fetching process.

9.	 We will temporarily cause an error to check that the error handling code is working. Open
queries.ts, and in the getAllPosts function, change posts to postsX in the SQL
statement. Refresh the Posts page in the running app, and you will see several HTTP requests
to get the data that returns status 500 before the error is displayed. This is the default retrying
behavior in TanStack Query.

Revert the change before continuing so that the query is successful again.

Client Component Data Fetching and Mutations with TanStack Query246

10.	 We will experience another nice default feature in TanStack Query. First, ensure the Posts page
is active in the app and then switch to a different tab in the browser.

11.	 Now let’s simulate a different user adding a blog post. Insert a record into the posts table
using the SQLite Visual Studio Code extension.

Figure 8.2 – Adding a record into the posts table

Fetching data using TanStack Query 247

12.	 Go back to the app in the browser, and you’ll see the new blog post in the list. TanStack Query
automatically fetches a fresh copy of the data if the browser window loses and regains focus.

Figure 8.3 – New post automatically added to the bottom of the Posts page

We will now rework the data fetching the Post page in our app to use TanStack Query. We will again
create a loading indicator and handle errors. Carry out the following steps:

1.	 We will start by turning PostDetail into a Client Component and rework its data fetching to
use TanStack Query. Open PostDetail.tsx and make the following highlighted changes:

‘use client’;
import { useQuery } from ‘@tanstack/react-query’;
...
export function PostDetail(...) {
 const { data: post } = useQuery({
 queryKey: [‘post’, id],
 queryFn: () => {
 return getPost(id);
 },
 });
 if (!post) {
 ...
 }
 return ...
}

Client Component Data Fetching and Mutations with TanStack Query248

Don’t forget to remove the async keyword from the function.

We have set the query key to [‘post’, id] so that different posts are cached separately.
We aliased the fetched data to be posts so that no changes are required in the JSX.

2.	 Add a loading indicator and error handling to PostDetail as follows:

import { Loading } from ‘./Loading’;
import { ErrorAlert } from ‘./ErrorAlert’;
...
export function PostDetail(...) {
 const { ..., isPending, error } = useQuery(...);
 if (isPending) {
 return <Loading />;
 }
 if (error) {
 return <ErrorAlert error={error} />;
 }
 if (!post) {
 ...
 }
 return ...
}

3.	 Lastly, open src/app/posts/[id]/page.tsx and remove the React Suspense, error
boundary, and loading indicator because data fetching is no longer happening from RSCs. The
JSX in Post should now be as follows:

<main>
 <PostDetail id={id} />
</main>

4.	 The Post page will now use client-side data fetching in the running app. You can experience
the error handling on the page using the same approach as before.

You may have noticed that new blog posts created using the Create New Post button don’t appear in
the list. We’ll resolve this later in this chapter when we look at TanStack mutations.

That completes the reworking of data fetching to use TanStack Query. Here’s a recap of this section:

•	 TanStack Query simplifies client-side data fetching with features such as automatic management
of loading and error states, caching, stale data refetching, and retrying failed queries.

•	 To use TanStack Query, QueryClientProvider is placed high in the React component
tree, enabling global data cache access and providing Hooks such as useQuery for fetching
and managing query states.

Using a Route Handler with TanStack Query 249

•	 TanStack Query default settings mean that erroneous queries are retried and data is refetched
when the browser window regains focus.

Next, we’ll rework the data fetching to use a Next.js Route Handler.

Using a Route Handler with TanStack Query
In this section, we will learn about Next.js Route Handlers and the benefits of using them for data
fetching over Server Functions. We will then rework our app to use Route Handlers.

Understanding the benefits of Route Handlers

A Next.js Route Handler allows an API endpoint to be created. Although the Server Function
approach is simple and provides type safety across the network boundary, it has some downsides,
such as the following:

•	 Server Functions run sequentially. So, if a component calls a Server Function to fetch data,
and a child component calls another Server Function, the second call must wait for the first to
complete. In contrast, Route Handlers run in parallel.

•	 Server Functions use an HTTP POST rather than a GET, which is commonly used for fetching
data. HTTP POST is generally used for mutations.

•	 The Next.js or React teams don’t recommend Server Functions for data fetching.

Now that we understand the reasons to use Route Handlers, we will use them in our app.

Using Route Handlers

We will replace the current use of Server Functions in our app with Route Handlers. Carry out the
following steps to create Route Handlers for api/posts and api/posts/[id] paths:

1.	 Start by removing the ‘use server’ directive at the top of queries.ts so that its
exported functions are no longer available as Server Functions.

2.	 Route Handlers are defined in the src/app/api folder. The handlers for different paths
are defined in a similar manner to pages with a route.ts file instead of a page.tsx file.
Create a route.ts file in the src/app/api/posts folder and add the following content:

import { type NextRequest } from ‘next/server’;
import {
 getAllPosts,
 getFilteredPosts,
} from ‘@/data/queries’;

Client Component Data Fetching and Mutations with TanStack Query250

export async function GET(request: NextRequest) {
 const criteria =
 request.nextUrl.searchParams.get(‘criteria’);
 if (typeof criteria === ‘string’) {
 return Response.json(
 await getFilteredPosts(criteria),
);
 }
 return Response.json(await getAllPosts());
}

The code handles GET requests to the api/posts path. It extracts criteria from the
search parameters and returns the data from the getFilteredPosts query if it is defined.
If no criteria are specified, the getAllPosts query is called for the data to return.

3.	 Try hitting the API in a browser by entering http://localhost:3000/api/posts as
the browser address. The JSON data for all the posts will be returned.

4.	 Create a route.ts file in the src/app/api/posts/[id] folder and add the
following content:

import { getPost } from ‘@/data/queries’;

export async function GET(
 _: Request,
 { params }: { params: Promise<{ id: string }> }
) {
 const id = Number((await params).id);
 if (!Number.isInteger(id)) {
 return Response.json(
 { message: ‘Post not found’ }, { status: 404 }
);
 }
 const data = await getPost(id);
 if (!data) {
 return Response.json(
 { message: ‘Post not found’ }, { status: 404 }
);
 }
 return Response.json(data);
}

The code handles GET requests to api/posts/[id] paths. It extracts the id route parameter
and returns the data from the getPost query. If id isn’t numeric or no rows are returned
from the query, HTTP status code 404 is returned.

http://localhost:3000/api/posts

Using a Route Handler with TanStack Query 251

5.	 Try hitting the API in a browser by entering http://localhost:3000/api/posts/1
as the browser address. The JSON data for post 1 will be returned.

6.	 We will now integrate the Route Handlers into the PostList and PostDetail components.
Start with PostList by opening PostList.tsx and remove the imported getAllPosts
and getFilteredPosts queries. Lastly, update useQuery to use the Route Handler
as follows:

const { ... } = useQuery({
 queryKey: ...,
 queryFn: async () => {
 const path =
 typeof criteria === ‘string’
 ? `/api/posts/?criteria=${
 encodeURIComponent(criteria)}`
 : ‘/api/posts/’;
 const response = await fetch(path);
 if (!response.ok) {
 throw new Error(‘Problem fetching data’);
 }
 return await response.json();
 },
});

We call the browser fetch function to make an HTTP request to the relevant path depending
on whether there is a criteria search parameter. If the response returns an HTTP error
status code, we throw an error to put the query in an error state.

7.	 You’ll notice a type error in the resolvedPosts variable map function because it can only
be inferred to have the any type. We will resolve this error later in this chapter. However, the
code will function fine if we navigate to the Posts page in the running app.

8.	 We will rework the PostDetail component now. Open PostDetail.tsx and remove the
imported getPost function. Lastly, update useQuery to use the Route Handler as follows:

const { ... } = useQuery({
 queryKey: ...,
 queryFn: async () => {
 const response = await fetch(
 `/api/posts/${id}`,
);
 if (!response.ok) {
 throw new Error(
 response.status === 404
 ? “Blog post not found”

http://localhost:3000/api/posts/1

Client Component Data Fetching and Mutations with TanStack Query252

 : “Problem fetching data”,
);
 }
 return await response.json();
 },
 });

We call the browser fetch function to make an HTTP request to the relevant path using the
id route parameter. If the response returns an HTTP error status code, we throw an error to
put the query in an error state. We specifically catch the 404 status code so that we can throw
an appropriate error message.

9.	 Again, the data from TanStack Query is inferred to have the any type, which isn’t ideal. However,
the code will function fine if we navigate to Post page in the running app.

That completes the rework to switch to using Next.js Route Handlers. For more information on Route
Handlers, see the following page: https://nextjs.org/docs/app/building-your-
application/routing/route-handlers.

Next, we will resolve the type safety issue with the TanStack Query data.

Adding type safety to the API response

We could use a TypeScript type assertion to make the data fetching code a little more type-safe as follows:

return response.json() as Promise<Posts>

However, we are assuming the schema of the API response body. This is fine if we control the API,
like in our app. However, what if a separate team develops that API? What if it’s a third-party API
that a different company controls? This assumption can be risky.

Instead of a type assertion, we will use Zod to validate the schema of the API response body – as we
did for the SQL query results earlier in this chapter. We will use the same Zod schema as we did for
the SQL query validation because the schema is unchanged after it is returned from the query. Carry
out the following steps:

1.	 Open PostList.tsx and add a Zod schema check as follows:

import { postsSchema } from ‘@/data/schema’;

export function PostList(...) {
 const { ... } = useQuery({
 ...,
 queryFn: async () => {
 ...

https://nextjs.org/docs/app/building-your-application/routing/route-handlers
https://nextjs.org/docs/app/building-your-application/routing/route-handlers

Using a Route Handler with TanStack Query 253

 return postsSchema.parse(
 await response.json(),
);
 },
 });
 ...
}

The type error is now resolved, and if you hover over the resolvedPosts variable, its type
will now be correctly inferred.

2.	 Open PostDetail.tsx and add a Zod schema check as follows:

import { postSchema } from ‘@/data/schema’;

export function PostDetail(...) {
 const { ... } = useQuery({
 ...,
 queryFn: async () => {
 ...
 return postSchema.parse(
 await response.json(),
);
 },
 });
 ...
}

If you hover over the posts variable, its type will now be correctly inferred.

That’s the type-safety improvement complete, and the end of this section on using Route Handlers.
Here’s a recap:

•	 Route Handlers are generally preferred to Server Functions for data fetching. This is because
they improve performance by allowing parallel API requests and using HTTP GET requests.

•	 One disadvantage of using Route Handlers for data fetching is the lack of type safety across
the network boundary. Zod can be used to bridge this gap with a schema that validates the
API response body.

Next, we will use TanStack Query for mutations.

Client Component Data Fetching and Mutations with TanStack Query254

Mutating data using a TanStack Query mutation
In this section, we will understand and then use a TanStack Query mutation in the NewPost component.
We will also resolve the problem with new posts not appearing in the Posts page.

Understanding TanStack Query mutations

The TanStack Query useMutation Hook manages the mutation process, including helpful state
variables. It also provides a mechanism to update the cache after a mutation. Here’s an example:

const { mutate, isPending, isError } = useMutation({
 mutationFn: (newProduct) => createProduct(newProduct),
 onSuccess: async () => {
 await queryClient.invalidateQueries({
 queryKey: [‘products’],
 }),
 },
});
async function handleClick() {
 mutate({
 name: ‘New product’,
 description: ‘New product description’,
 });
}
if (isPending) return ‘Mutating... ‘;
if (isError) return ‘An unexpected error occurred’;

The useMutation Hook takes in an options object as an argument. Here’s a description of the
options used in this example:

•	 mutationFn: The function that calls the server to do the mutation. In this example, we call
a Server Function called createProduct.

•	 onSuccess: A function to call when the mutation is successful. In this example, we invalidate
the products cache.

The useMutation Hook returns an object. Here’s a description of the object members used in
this example:

•	 mutate: This is the function that starts the mutation process. In this example, this function
is used in a click handler.

•	 isPending: This indicates whether the mutation is currently executing. We use it in this
example to render a mutating indicator.

•	 isError: This indicates the mutation has errored. We use it in this example to render an
error alert.

Mutating data using a TanStack Query mutation 255

Next, we will use useMutation in our app.

Using useMutation

We will simplify the state management in the NewPost component by using useMutation. We will
also invalidate the posts cache after the mutation has been successful. Carry out the following steps:

1.	 Open NewPost.tsx and start by removing the existing isMutating and status
useState calls. The React useState import can also be removed.

2.	 Import the useMutation Hook and call it as follows:

import { useMutation } from ‘@tanstack/react-query’;
...
export function NewPost() {
 const {
 mutate,
 isPending,
 isError,
 isSuccess
 } = useMutation({
 mutationFn: ({
 title,
 description,
 }: {
 title: string;
 description: string;
 }) => createPost(title, description),
 });

 async function handleClick() {
 ...
 }
 return ...
}

The mutation function calls the createPost Server Function, passing in the title and
description for the new blog post. We have destructured the mutate function as well as the
isPending, isError, and isSuccess state variables.

Note
We could have used a Route Handler for the mutation instead of a Server Function. However,
Server Functions are simpler to implement and give more type safety.

Client Component Data Fetching and Mutations with TanStack Query256

3.	 Call mutate in the click handler and remove the old state variable references as well. Also,
the function no longer needs to be marked with the async keyword. The click handler should
now be as follows:

function handleClick() {
 mutate({
 title: ‘New Post’,
 description: ‘New Post Description’,
 });
}

4.	 In the JSX, replace isMutating with isPending. Also, replace the conditionals on the
old status variable with isError and isSuccess:

<div ... >
 <button ... >
 {isPending ? ‘Creating...’ : ‘Create New Post’}
 </button>
 {isError && (
 An unexpected error occurred
)}
 {isSuccess && (
 Post successfully created
)}
</div>

5.	 If you try the Create New Post button in the running app, it’ll behave as it did before. This means
the new post still doesn’t appear in the list after the mutation has been successfully completed.

6.	 Let’s resolve this problem by invalidating the cache in the onSuccess function option as follows:

import {
 ...,
 useQueryClient,
} from ‘@tanstack/react-query’;
...
export function NewPost() {
 const queryClient = useQueryClient();
 const { ... } = useMutation({
 mutationFn: ...,
 onSuccess: async () => {
 queryClient.invalidateQueries({
 queryKey: [‘posts’],
 });
 },

Summary 257

 });
 ...
}

We use the useQueryClient Hook to access queryClient so that we can call its
invalidateQueries function. We pass the invalidateQueries function the key
we want to invalidate.

7.	 If you try the Create New Post button in the running app, the new post will now appear in the
list after the mutation has been successfully completed.

That completes this section on mutations with TanStack Query. Here’s a quick recap:

•	 The useMutation Hook from TanStack Query simplifies state management by handling
mutations, providing helper state variables such as isPending, isSuccess, and isError.

•	 By calling QueryClient.invalidateQueries with the appropriate query key in the
onSuccess function, data in the cache impacted by the mutation can be invalidated.

Note
For more information on TanStack Query, see its documentation at https://tanstack.
com/query/latest.

Next, we will summarize what we have learned in this chapter.

Summary
In this chapter, we started by exploring the use of the useEffect Hook for client-side data fetching
and how challenging writing robust code is. We quickly switched to using TanStack Query and
experienced how it simplified the code and enabled features like the retrying of a data fetch when
it errors. We experienced how it automatically refreshed data when our app’s browser tab regained
focus – something not possible with server-side data fetching.

We learned that using a Server Function has some downsides for client-side data fetching, such as
using an HTTP POST request rather than an HTTP GET. We switched to using a Next.js Route
Handler because of the downsides.

We learned that Server Functions are ideal for mutating data because of their simplicity and type
safety. We used a Server Function in our app to add a new blog post to our database. We used TanStack
Query with a Server Function for mutating data and learned that the TanStack Query cache needs to
be invalidated after a successful mutation.

You now have the skills to implement robust client-side data fetching and mutations in a very
maintainable fashion.

https://tanstack.com/query/latest
https://tanstack.com/query/latest

Client Component Data Fetching and Mutations with TanStack Query258

In the next chapter, we will learn more about mutations as we explore forms in depth.

Questions
Answer the following questions to check what you have learned in this chapter:

1.	 What is the problem with the following data fetching code?

useEffect(() => {
 fetch(“/api/data”)
 .then((res) => res.json())
 .then((data) => setData(data));
}, []);

2.	 Why isn’t it recommended to use a Server Function for data fetching in Next.js?

3.	 What will be the output of the following Zod schema validation?

const userSchema = z.object({
 name: z.string(),
 age: z.number().min(18),
});

const result = userSchema.safeParse({
 name: “Alice”,
 age: 16,
});

console.log(result.success);

4.	 What does the following mutation do when the form is submitted?

const mutation = useMutation({
 mutationFn: (newUser) =>
 fetch(“/api/users”, {
 method: “POST”,
 body: JSON.stringify(newUser),
 }),
 onSuccess: () => {
 console.log(“User created!”);
 },
});

<form
 onSubmit={(e) => {
 e.preventDefault();

Answers 259

 mutation.mutate({ name: “Jane” });
 }}
>
 <button type=”submit”>Create User</button>
</form>;

5.	 What does the staleTime option do in the following code?

useQuery([“todos”], fetchTodos, { staleTime: 10000 });

Answers
1.	 If the component unmounts before the fetch finishes, it may try to update the state, causing

a warning. An AbortController object that is aborted when the component unmounts
can be used to fix the problem:

useEffect(() => {
 const controller = new AbortController();
 fetch(“/api/data”, { signal: controller.signal })
 .then((res) => res.json())
 .then((data) => setData(data))
 .catch((err) => {
 if (err.name !== “AbortError”) {
 console.error(err);
 }
 });
 return () => controller.abort();
}, []);

2.	 Server Functions run in sequence rather than in parallel, which can cause a performance
problem when multiple Server Functions are called. They also use an HTTP POST rather than
an HTTP GET.

3.	 The validation will fail because the schema requires age to be a number greater than or equal
to 18, but 16 is provided. So, safeParse will return an object with a success property
set to false. Therefore, the output of the console.log statement will be false.

4.	 It sends an HTTP POST request and outputs User Created! to the console when successful.

5.	 The staleTime option is the number of milliseconds that a query’s data is considered fresh.
During this time, TanStack Query won’t refetch the data automatically in the background, even
if the component remounts or the window refocuses. So, in the code snippet, the data fetched
will be considered fresh for ten seconds.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/GxSkC

https://packt.link/GxSkC

9
Working with Forms

Forms are extremely common in apps, so it’s essential to be able to implement them efficiently. In this
chapter, we’ll build a contact form that you often see on company websites in Next.js. It will contain
a handful of fields and some validation logic.

We will start with a basic form implementation using native browser capabilities. We’ll revise the form
submission to use a Route Handler and then a React Server Action introducing server validation.
We’ll then implement a submission indicator and better error handling using React form status and
action state. We’ll use a popular library called React Hook Form to add client-side validation. Lastly,
we’ll implement optimistic updates for an even better user experience.

By the end of this chapter, you’ll be able to build user-friendly and robust forms in React.

We’ll cover the following topics:

•	 Using basic forms

•	 Using a Route Handler for submission

•	 Using a Server Action for submission

•	 Using useFormStatus

•	 Using useActionState

•	 Using React Hook Form

•	 Implementing optimistic updates

Technical requirements
We will use the following tools in this chapter:

•	 Browser: A modern browser such as Google Chrome

•	 Node.js and npm: You can install them from https://nodejs.org/en/download/

•	 Visual Studio Code: You can install it from https://code.visualstudio.com/

https://nodejs.org/en/download/
https://code.visualstudio.com/

Working with Forms262

All the code snippets used in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter09.

Using basic forms
In this section, we will create a Next.js project and the first iteration of the contact form. We will also
create a database that will eventually hold the form data.

Creating the project

Let’s start by creating a Next.js project and a SQLite database. Carry out the following steps:

1.	 In a terminal, execute the following command to create the project:

npx create-next-app@latest forms --ts --eslint --app --src-dir
--import-alias “@/*” --no-tailwind --no-turbopack

2.	 Still in the terminal, move to the project folder and open Visual Studio Code using the following
commands:

cd forms
code .

3.	 Prettier can be set up in the same manner as we learned with Vite in Chapter 1, Getting Started
with React. Feel free to add automatic code formatting to this project.

4.	 Install the libSQL dependency by running the following command in a terminal:

npm i @libsql/client

5.	 Create a script that we’ll eventually run to create our database. Create a folder called scripts
in the src folder and then a file called createDatabase.mjs in this folder. Copy the script
from the GitHub repository at https://github.com/PacktPublishing/Learn-
React-with-TypeScript-Third-Edition/blob/main/Chapter09/start/
src/scripts/createDatabase.mjs and paste it into the file.

6.	 Create a .env file in the project root and add the URL to the database into it:

DB_URL=file:src/data/forms.db

7.	 Create a folder in src called data for the location of the database. To create the database,
run the following command in the terminal:

node src/scripts/createDatabase.mjs

This command executes the script using Node.js. After the command has completed, a forms.
db database file will appear in the data folder.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter09
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter09/start/src/scripts/createDatabase.mjs
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter09/start/src/scripts/createDatabase.mjs
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter09/start/src/scripts/createDatabase.mjs

Using basic forms 263

8.	 Open src/app/global.css and overwrite the content with the CSS from the following
file in the GitHub repository:

https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/blob/main/Chapter09/start/src/app/globals.css.

This will nicely style our app.

9.	 Let’s clean up the home page. Open page.tsx in the src/app folder and replace its content
with the following:

export default function Home() {
 return (
 <main>
 </main>
);
}

10.	 In the terminal, execute the following command to run the app in development mode:

npm run dev

The app will be available in a browser at http://localhost:3000 and will show a
blank screen.

That completes the project setup. Next, we will create a basic contact form in the app.

Creating a native form

Carry out the following steps to create a native HTML contact form:

1.	 Open src/app/page.tsx and add the following elements inside the main element:

import {
 ContactForm
} from ‘@/components/ContactForm’;

export default function Home() {
 return (
 <main>
 <h2>Contact Us</h2>
 <p>
 If you enter your details we will get back
 to you as soon as we can.
 </p>
 <ContactForm />

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter09/start/src/app/globals.css
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter09/start/src/app/globals.css
http://localhost:3000

Working with Forms264

 </main>
);
}

The page displays a title, some instructions, and a ContactForm component.

The ContactForm component hasn’t been implemented yet, so a compile error occurs. We’ll
create this in the next step.

2.	 Create a folder called components in the src folder and a file called ContactForm.tsx
in it. Add the following content to the file:

export function ContactForm() {
 return <form></form>;
}

3.	 Add the following fields inside the form element:

<form>
 <div className=”field”>
 <label htmlFor=”name”>Your name</label>
 <input type=”text” id=”name” name=”name” />
 </div>
 <div className=”field”>
 <label htmlFor=”email”>Your email address</label>
 <input type=”email” id=”email” name=”email” />
 </div>
 <div className=”field”>
 <label htmlFor=”reason”>Reason you need to contact us
 </label>
 <select id=”reason” name=”reason”>
 <option value=””></option>
 <option value=”Support”>Support</option>
 <option value=”Feedback”>Feedback</option>
 <option value=”Other”>Other</option>
 </select>
 </div>
 <div className=”field”>
 <label htmlFor=”notes”>Additional notes</label>
 <textarea id=”notes” name=”notes” />
 </div>
</form>

Using basic forms 265

Note
A reminder that the code can be copied from https://github.com/PacktPublishing/
Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter09/
basic-form/src/components/ContactForm.tsx.

We have added fields for the user’s name, email address, contact reason, and additional notes.
Each field label is associated with its editor by setting the htmlFor attribute to the editor’s id
value. This helps assistive technology such as screen readers read out labels when fields gain focus.

The name attribute on the field editors allows field values to be extracted in the form
submission process.

4.	 Add a Submit button to the bottom of the form element as follows:

<form>
 ...
 <button type=”submit”>Submit</button>
</form>

5.	 That completes our basic form. In the running app, fill the form in and submit it. You’ll see the
values added to the URL as search parameters. You may also notice a full page reload occurs.

Figure 9.1 – Submitted form

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter09/basic-form/src/components/ContactForm.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter09/basic-form/src/components/ContactForm.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter09/basic-form/src/components/ContactForm.tsx

Working with Forms266

6.	 After the form is submitted, there is no indication that the process was successful for the user.
Add the following action attribute to the form element to navigate to a Thanks page after
the form is submitted:

<form action=”thanks”>

7.	 Let’s create the Thanks page by creating a new thanks folder in the src/app folder. Create
a page.tsx file within this folder with the following content:

export default async function Thanks({
 searchParams,
}: {
 searchParams: Promise<{
 [key: string]: string | string[] | undefined;
 }>;
}) {
 return (
 <main>
 <h2>Form successfully submitted</h2>
 Thank you {(await searchParams).name}, we will be in touch
soon.
 </main>
);
}

The component informs the user that the form has been successfully submitted and thanks
them. Their name is obtained from the name search parameter.

8.	 Fill out the form again and submit it. You’ll be navigated to the Thanks page. We are still getting
a full page reload though – we’ll address this in the next step.

9.	 Back in ContactForm.tsx, we can use the Form component from Next.js to prevent the
full page reload, as follows:

import Form from ‘next/form’;
export function ContactForm() {
 return (
 <Form ... >
 ...
 </Form>
);
}

10.	 Fill out the form once again and submit it. A full page reload no longer occurs when navigating
to the Thanks page.

Using a Route Handler for submission 267

That completes our basic form, which largely uses native HTML features. We used the Form component
from Next.js to optimize the form submission performance.

Next, we will integrate the form with a Next.js Route Handler.

Using a Route Handler for submission
In this section, we will change the form to submit the data to a web API. We will use a Route Handler
to create the API, which we learned about in Chapter 8, Client Component Data Fetching and Mutations
with TanStack Query. Submitting data to APIs has been common practice for many years because it
prevents a full page reload.

Creating a database mutation

We will create a function that adds the form data to our database. This will eventually be used in the
Route Handler. Carry out the following steps:

1.	 First, we will create a type to represent the data. Create a file called schema.ts in the data
folder with the following content:

export type Contact = {
 name: string;
 email: string;
 reason: string;
 notes: string;
};

2.	 Create a new file called insertContact.ts in the src/data folder containing the
following content:

import {
 createClient,
 type Client,
} from ‘@libsql/client’;
import { Contact } from ‘./schema’;

export async function insertContact({
 name,
 email,
 reason,
 notes,
}: Contact) {

Working with Forms268

 let client: Client | undefined;
 let ok = true;
}

The file imports the createClient function and Client type needed from the libSQL package as
well as the Contact type we just created. The insertContact function implementation has been
started by defining a parameter for the form data. Variables for the database connection and
whether the database mutation is successful have also been declared.

3.	 After the variable declarations, connect to the database and execute SQL to insert the record
into the contact table:

export async function insertContact(...) {
 ...
 try {
 client = createClient({
 url: process.env.DB_URL ?? ‘’,
 });
 await client.execute({
 sql: ‘INSERT INTO contact(name, email, reason, notes)
 VALUES (?, ?, ?, ?)’,
 args: [name, email, reason, notes],
 });
 } catch {
 ok = false;
 }
}

4.	 Finish the insertContact implementation by ensuring the database connection is closed
and the success of the operation is returned. The following is the updated code:

export async function insertContact(...) {
 ...
 if (client) {
 client.close();
 }
 return {
 ok
 };
}

That’s the function to mutate the database completed. Next, we’ll implement the Route Handler.

Using a Route Handler for submission 269

Creating a Route Handler

Carry out the following steps to create the Route Handler:

1.	 Create an api folder in the src/app folder and then a route.ts file inside it, so the Route
Handler will handle HTTP requests to the /api path.

2.	 Add the following code to route.ts:

import { type NextRequest } from ‘next/server’;
import { insertContact } from ‘@/data/insertContact’;

export async function POST(request: NextRequest) {
 const data = await request.json();
 const result = await insertContact(data);
 if (result.ok) {
 return Response.json(
 {}, { status: 201 },
);
 }
 return Response.json({}, { status: 500 });
}

The Route Handler handles HTTP POST requests. The handler gets the form data from the
request body and calls the insertContact database mutation, passing in the form data. If
the mutation is successful, the HTTP status code Created (status code 201) is returned. If the
mutation errored, the HTTP status code Internal Server Error (status code 500) is returned.

That completes the Route Handler. Next, we will integrate this Route Handler into our form.

Integrating the form submission with the Route Handler

To integrate the Route Handler into the form, we will write client-side code for the form submission
handler, replacing the form action. We will also remove the use of the Next.js Form component, as
this is no longer required. Open ContactForm.tsx and carry out the following steps:

1.	 Remove the Form import from Next.js and replace the Form component in the JSX with a
form element.

2.	 Make the component a Client Component by adding ‘use client’ at the top of the file.
This is because we are going to implement an event handler.

Working with Forms270

3.	 Change the action attribute on the form element to reference an action handler, as follows:

export function ContactForm() {
 async function handleAction(formData: FormData) {}
 return (
 <form action={handleAction}>
 </form>
);
}

The handleAction function will now be invoked when the form is submitted. It is now our
responsibility to submit the form data to the server.

The handleAction function parameter is of the FormData type. FormData is a native
browser interface that allows access to values in a form and takes in a form element in its
constructor parameter. For more information on FormData, see https://developer.
mozilla.org/en-US/docs/Web/API/FormData.

4.	 Add the following lines to the action handler to get the data into an object compatible with
the Route Handler:

import { Contact } from ‘@/data/schema’;
...
export function ContactForm() {
 async function handleAction(...) {
 const contact = Object.fromEntries(
 formData,
) as Contact;
 }
}

We use the Object.fromEntries method to turn formData into a simple object with
properties containing the field values.

We also use a type assertion to type the contact object, which isn’t ideal. It isn’t ideal because
it doesn’t actually verify that formData contains the properties and value types that Contact
should have. We’ll improve this later in this chapter.

5.	 On the next lines in the submit handler, make an HTTP request to the Route Handler’s API,
and if it errors, output a console error:

async function handleAction(...) {
 ...
 const response = await fetch(‘api’, {
 method: ‘POST’,
 body: JSON.stringify(contact),
 });

https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://developer.mozilla.org/en-US/docs/Web/API/FormData

Using a Route Handler for submission 271

 if (!response.ok) {
 console.error(‘Something went wrong’);
 return;
 }
}

6.	 The final step in the submission handler is to navigate to the Thanks page. We can perform
client-side navigation using the Next.js useRouter Hook, as follows:

import { useRouter } from ‘next/navigation’;
...
export function ContactForm() {
 const { push } = useRouter();
 async function handleAction(...) {
 ...
 push(
 ‘/thanks/?name=’ +
 encodeURIComponent(contact.name),
);
 }
 return ...
}

We use the push function from the useRouter Hook to navigate, passing in the path to
the Thanks page. We include name as a search parameter using encodeURIComponent
to escape special characters that the user may have entered in their name.

7.	 In the running app, fill out the form and submit it. You can verify the data was saved into the
database using the Visual Studio Code SQLite extension we used in Chapter 8, Client Component
Data Fetching and Mutations with TanStack Query.

That completes the integration of the form with a Route Handler. Here’s a quick recap:

•	 A full page reload can be avoided by handling the form element’s action event

•	 The action can submit the form data via a web API, which can be implemented using a Next.
js Route Handler

•	 The Next.js useRouter Hook can be used to navigate to a submission success page

There is another, more modern way of submitting forms. We’ll cover this next.

Working with Forms272

Using a Server Action for submission
In this section, we’ll understand what a Server Action is. We’ll then use a Server Action in our form.

Understanding Server Actions

In Chapter 7, Server Component Data Fetching and Server Function Mutations, we learned how to
mutate data with Server Functions. We can use a Server Function for form submission. In fact, Server
Functions used for form submission are so common, they have a special name called Server Actions.

A Server Action can be passed to a form element in its action prop as follows:

<form action={serverAction}>

Earlier in this chapter, we used the action prop for the page path to submit to. We then used the
action prop to implement a client-side submission handler. Here, we are submitting directly to a
Server Action. So, the Server Action will need to contain any required page navigation.

A benefit of using a React Server Action for form submission is that it works without JavaScript. This
is handy for web apps used on mobile phones in places where the network connection is slow. In this
situation, the form may be available for the user to fill in and submit before it has been hydrated with
JavaScript.

A Server Action must have a function parameter of the FormData type and shouldn’t return anything:

export async function serverAction(formData: FormData) {
 // Save the data
 // Don’t return anything
}

Next, we will revise our form to use a Server Action.

Using a Server Action in ContactForm

We will turn insertContact into a Server Function and use it as a Server Action from our form.
We will also add some server-side validation to the form. Carry out the following steps:

1.	 Start by deleting the Route Handler at src/app/api/route.ts because this will no
longer be used in this chapter, and the code will break with the changes we will make to the
insertContact function.

2.	 Open insertContact.ts and add a ‘use server’ directive at the top of the file. This
marks the insertContact function as a Server Function.

Using a Server Action for submission 273

3.	 Adjust the parameter of the insertContact function to take in FormData and then
extract the field values from it:

export async function insertContact(
 formData: FormData
) {
 const { name, email, reason, notes } =
 Object.fromEntries(formData) as Contact;
 let client: Client | undefined;
 ...
}

So, we are interacting with FormData on the server now, instead of the client.

4.	 We also need to remove the return statement in the insertContact function.

5.	 We need to perform navigation on the server now. We can use the redirect function from
Next.js to do this. Add a call to redirect at the bottom of the insertContact function
if the mutation is successful:

import { redirect } from ‘next/navigation’;
...
export async function insertContact(...) {
 ...
 if (client) {
 client.close();
 }
 if (ok) {
 redirect(
 `/thanks/?name=${encodeURIComponent(name)}`,
);
 }
}

6.	 Open ContactForm.tsx, remove the use of the useRouter Hook, and set the action
attribute on the form element to the insertContact Server Function. The handleAction
function and importing of the Contact type can now be removed. The file should now be
as follows:

‘use client’;
import { insertContact } from ‘@/data/insertContact’;

export function ContactForm() {
 return (

Working with Forms274

 <form action={insertContact}>
 ...
 </form>
)
}

The ‘use client’ directive could also be removed because there is no event handler now.
However, we’ll leave this in place because we’ll use React Hooks in this component in the next
section.

In the running app, if you fill in and submit the form, it’ll behave as before.

7.	 Try turning off JavaScript in the browser and fill in and submit the form again. JavaScript can be
turned off in Chrome by opening the command window and choosing the Disable Javascript
command. The command window can be opened by pressing Shift + Command + P on a Mac
and Shift + Ctrl + P on Windows.

Figure 9.2 – Disabling JavaScript in Chrome

You will find the form is submitted and saved into the database fine.

Re-enable JavaScript in the browser before continuing using the Enable JavaScript command
in the command window.

8.	 Stop the app from running by pressing Ctrl + C.

That completes the reworking of the form to use a Server Action. The implementation is a lot simpler
than the previous Route Handler approach.

At the moment, there is no validation on our form. For example, we can submit it without entering
any information. We’ll address this next.

Adding server validation

Server-side validation not only helps users fill in forms correctly, but it also helps protect against
security attacks such as SQL injection and malformed requests. This is because client-side input can
be tampered with, bypassed, or disabled entirely by malicious users.

Using a Server Action for submission 275

We will add server-side validation using the Zod library. We used Zod in Chapter 8, Client Component
Data Fetching and Mutations with TanStack Query, to validate database and web API data. We can
use it to validate form data as well:

1.	 Install Zod into the project by running the following command in a terminal:

npm i zod

2.	 Open up the schema.ts file. Replace the Contact type with the following Zod schema:

import { z } from ‘zod’;

export const contactSchema = z.object({
 name: z
 .string()
 .min(1, {
 message: ‘You must enter your name’,
 })
 .max(50, {
 message:
 ‘The name must be less than 50 characters’,
 }),
 email: z.string().email({
 message:
 ‘You must enter a valid email address’,
 }),
 reason: z.string().min(1, {
 message: ‘You must enter a reason’,
 }),
 notes: z.string().optional(),
});

The schema defines the fields in our form as strings. All the fields are defined as being required,
apart from notes. The name field will take a maximum of 50 characters, and the email field
must be a valid email format.

3.	 In insertContact.ts, remove the Contact import statement and the type assertion
that uses Contact in the insertContact function.

4.	 In the insertContact function, validate the field values as follows:

import { contactSchema } from ‘./schema’;
...
export async function insertContact(...) {
 const parsedResult = contactSchema.safeParse(
 Object.fromEntries(formData),
);

Working with Forms276

 if (!parsedResult.success) {
 return;
 }
 const { name, email, reason, notes } =
 parsedResult.data;
 ...
}

We call the schema safeParse function so that an error isn’t automatically thrown if the
form is invalid. This is because we’ll eventually handle errors better. At the moment, if the form
is invalid, we short-circuit the function and just return nothing.

We then extract the field values from the data property from the safeParse return object.

5.	 We now get a type error on the SQL command because the database doesn’t accept undefined
into the notes field. To resolve this, coalesce undefined to null on the notes argument
as follows:

await client.execute({
 sql: ...,
 args: [name, email, reason, notes ?? null],
});

6.	 Run the app by entering the npm run dev command in a terminal. If you don’t fill in the
form correctly and submit it, the data won’t be saved into the database. However, no error is
shown to the user. Also, we are making the user re-enter the whole form. We will resolve these
issues later in the chapter.

That completes the implementation of server validation and also this section on using Server Actions
for form submission. Here’s a quick recap:

•	 Server Actions streamline form submission by enabling server-side handling of form data,
removing the need for client-side submit handlers. These can function without JavaScript,
making them a robust solution for low-connectivity scenarios.

•	 The Server Action must have a parameter of the FormData type, which will contain the
field values.

•	 The action attribute on the form element is set to the Server Action for the form to submit to it.

•	 Zod is commonly used to validate form data before being saved to a database.

Although we’ve enhanced the form by adding server validation, the user experience still isn’t great.
We will improve this in the next section.

Using useFormStatus 277

Using useFormStatus
In this section, we will understand how the React useFormStatus Hook can improve the user
experience and then use it within our form.

Understanding useFormStatus

The useFormStatus Hook allows access to information from a form submission in a Client
Component. Its main uses are to implement a submission indicator and to disable certain form
elements, such as the Submit button, during submission. Unlike other React Hooks, this one comes
from the React DOM package.

The syntax for useFormStatus is as follows:

const { pending, data } = useFormStatus();

The Hook returns an object containing the following properties:

•	 pending: Whether form submission is in progress.

•	 data: Gives access to field values for the form being submitted in a FormData structure.
data is null if the submission is not in progress.

A restriction of the useFormStatus Hook is that it must be called in a child component of the
component containing a form element. So, the following code won’t work:

function Form() {
 const { pending } = useFormStatus();
 return (
 <form>
 ...
 {pending && <p>Submitting ...</p>}
 <button type=”submit” disabled={pending}>
 Submit
 </button>
 </form>
);
}

Instead, the use of useFormStatus must be extracted and placed as a child:

function Form() {
 return (
 <form>
 ...

Working with Forms278

 <SubmitButtion />
 </form>
);
}
function SubmitButtion {
 const { pending } = useFormStatus();
 return (
 <>
 {pending && <p>Submitting ...</p>}
 <button type=”submit” disabled={pending}>
 Submit
 </button>

 </>
);
}

Now that we understand how to use useFormStatus, we’ll use this Hook in our form.

Using useFormStatus

We will add a submission indicator to our form using useFormStatus. Open ContactForm.
tsx and carry out the following steps:

1.	 Import useFormStatus from React DOM:

import { useFormStatus } from ‘react-dom’;

2.	 Create a new component at the bottom of ContactForm.tsx, as follows:

function SubmitButton() {
 const { pending } = useFormStatus();
 return (
 <>
 {pending && <p role=”alert”>Saving ...</p>}
 <button type=”submit” disabled={pending}>
 Submit
 </button>
 </>
);
}

The component contains a submission indicator and a Submit button. We use pending from
useFormStatus to show the submission indicator and disable the Submit button during
form submission.

Using useActionState 279

3.	 In the ContactForm component, replace the current Submit button with our enhanced version:

export function ContactForm() {
 return (
 <form ... >
 ...
 <SubmitButton />
 </form>
);
}

4.	 Try filling in the form in the running app. To see the submission indicator, throttle the network
using the browser development tools. The submission process will then be slow enough for
you to see the submission indicator.

That completes the implementation of the submission indicator and this section on useFormStatus.
Here’s a quick recap:

•	 The useFormStatus Hook can be used for implementing submission indicators in a form

•	 A downside of useFormStatus is that it must be in a child component of the form element

There is an alternative Hook we can use to implement a form submission indicator, which we will
learn about in the next section.

Using useActionState
Our form still doesn’t show validation errors and still wipes field values after an invalid submission. In
this section, we will understand how the React useFormStatus Hook can address these problems.
We will then use this Hook within our form.

Understanding useActionState

The useActionState Hook allows a Client Component to access the result of a Server Action.
This enables error messages to be shown to the user. It also enables field values to be persisted in the
form after submission.

The syntax for useActionState is as follows:

const [
 actionState,
 formAction,
 isPending,
] = useActionState(serverAction, initialState);

Working with Forms280

The Hook is passed a reference to the Server Action and an initial state value as arguments.

The Hook returns an array containing the following ordered elements:

•	 actionState: The current action state value

•	 formAction: An action to bind to the form element

•	 isPending: Whether the Server Action is in progress

The array element names can be any meaningful names of our choice. The action state’s structure is
also our choice, but it typically contains at least a message and a copy of the field values.

The Server Action must have particular parameters and must return the new state value when used
with useActionState:

export async function serverAction(
 previousState: { message: string, formData: FormData },
 formData: FormData,
) {
 ...
 return { message, formData }
}

The parameters must be the previous state, followed by the form data. Often, the previous state isn’t
needed in the Server Action implementation, but React requires this parameter.

Next, we’ll use this Hook in our form.

Using useActionState

We will use the useActionState Hook in our form to better handle errors and prevent the loss
of field values already entered. We will make the necessary changes to the insertContact Server
Action before reworking the ContactForm component.

Returning state from the Server Action

Open insertContact.ts and carry out the following steps to return the state from the
insertContact Server Action:

1.	 Start by adding a type to represent the action state:

type ActionState = {
 ok: boolean;
 error: string;
 formData: FormData;
};

Using useActionState 281

The ok property determines whether the mutation was successful. The error property will
contain the error message if the validation or mutation fails. The formData property is a copy
of the form’s FormData object, which contains the current field values.

2.	 Add a previousState parameter to the insertContact function:

export async function insertContact(
 previousState: ActionState,
 formData: FormData,
) { ... }

3.	 Return the relevant action state if the form data is invalid:

export async function insertContact(...) {
 const parsedResult = contactSchema.safeParse(...);
 if (!parsedResult.success) {
 return {
 ok: false,
 error:
 ‘Unable to save - invalid field values’,
 formData,
 };
 }
 ...
}

4.	 Set an error variable if the database mutation fails:

let error = ‘’;
try {
 client = createClient(...);
 await client.execute(...);
} catch {
 ok = false;
 error = ‘Problem saving form’;
}

5.	 Lastly, return the action state at the end of the insertContact function:

if (ok) {
 redirect(...);
}
return { ok, error, formData };

That completes the changes to the Server Action.

Working with Forms282

Adding action state to the form

We will make changes to ContactForm.tsx now, making use of the useActionState Hook.
We are going to remove the use of useFormStatus and instead use the pending variable from
useActionState. Open ContactForm.tsx and make the following changes:

1.	 Start by removing the useFormStatus import statement and importing the useActionState
Hook from React:

import { useActionState } from ‘react’;

2.	 Remove the SubmitButton component from the bottom of the file and replace the reference
to it in ContactForm with the following button element:

<form ...>
 ...
 <button type=”submit”>Submit</button>
</form>

3.	 In the ContactForm component, call useActionState, as follows, before the
return statement:

export function ContactForm() {
 const [
 { ok, error, formData },
 formAction,
 isPending,
] = useActionState(insertContact, {
 ok: false,
 error: ‘’,
 formData: new FormData(),
 });
 return ...
}

The Server Action and initial state is passed into the Hook. The returned action state is
destructured into ok, error, and formData variables. We also destructure the form action
into a formAction variable and the pending flag into an isPending variable.

4.	 The formAction variable can now be set on the form element:

<form action={formAction}>

Using useActionState 283

5.	 To retain field values, we set the defaultValue attribute on the editor elements to the
relevant value from the formData value from the action state:

<input ... name=”name”
 defaultValue={
 (formData.get(‘name’) ?? ‘’) as string
 }
/>
...
<input ... name=”email”
 defaultValue={
 (formData.get(‘email’) ?? ‘’) as string
 }
/>
...
<select ... name=”reason”
 defaultValue={
 (formData.get(‘reason’) ?? ‘’) as string
 }
> ... </select>
...
<textarea ... name=”notes”
 defaultValue={
 (formData.get(‘notes’) ?? ‘’) as string
 }
/>

We use the get function in the formData action state object to get the relevant field value. If
a field value hasn’t been entered, null will be returned, so we coalesce this to an empty string.
We use a string type assertion to keep the TypeScript compiler happy.

6.	 Add an error alert after the fields, just above the Submit button:

{!ok && (
 <p role=”alert” className=”error”>{error}</p>
)}
<button type=”submit”>Submit</button>

7.	 Lastly, add a submission indicator after the error alert, just above the Submit button. Also,
disable the button while the component is in a pending state:

{isPending && (<p role=”alert”>Saving ...</p>)}
<button type=”submit” disabled={isPending}>
 Submit
</button>

Working with Forms284

8.	 In the running app, submit the form without entering anything. The validation error is returned:

Figure 9.3 – Validation error

9.	 Try partially filling in the form. You’ll find that field values are no longer lost.

10.	 To see the submission indicator, throttle the network using the browser development tools. The
submission process will then be slow enough for you to see the submission indicator.

11.	 It is also worth checking that the form still works with JavaScript disabled – you’ll find that it does!

12.	 The final check is to submit a valid form. You will find this navigates to the Thanks page as it
did before.

That’s improved the validation user experience. We’ll continue to improve this even more.

Using useActionState 285

Adding field errors

Currently, we aren’t showing specific errors for each field. We will extract the field errors from the
Zod error and return this in a new piece of action state. We will then be able to render these errors
under each field.

We will start with a function to extract the field errors from the Zod error. We’ll place this function
in insertContact.ts. Carry out the following steps:

1.	 Open insertContact.ts and add an import statement for Zod:

import { z } from ‘zod’;

2.	 Add an errors property to the ActionState type, as follows. This will hold the field
validation errors. We’ll keep the error property for general form errors:

type Err = { message: string };
type FieldErrors = {
 name: Err | null;
 email: Err | null;
 reason: Err | null;
};
type ActionState = {
 ...
 errors: FieldErrors;
};

The field errors will be stored in an object with the field name as the property name. The error
value will be set to null if there is no error. If there is an error, the error message will be stored
in an object in a message property.

3.	 Add a function at the bottom of insertContact.ts to extract field errors from a Zod error:

function formatZodErrors(error: z.ZodError) {
 const formattedErrors: FieldErrors = {
 name: null,
 email: null,
 reason: null,
 };
}

At the moment, the function initializes the field errors to null.

Working with Forms286

4.	 Carry on with the function implementation and iterate through the flattened Zod errors. Inside
the loop, open a conditional branch for errors in an array structure because this is where the
field errors will be:

function formatZodErrors(...) {
 ...
 for (const [key, value] of Object.entries(
 error.flatten().fieldErrors,
)) {
 if (Array.isArray(value)) {
 }
 }
}

5.	 The final implementation step in the function is to set the errors in the relevant properties in
the formattedErrors variable:

function formatZodErrors(error: unknown) {
 ...
 for (...) {
 if (...) {
 if (key === ‘name’) {
 formattedErrors.name = {
 message: value[0],
 };
 } else if (key === ‘email’) {
 formattedErrors.email = {
 message: value[0],
 };
 } else if (key === ‘reason’) {
 formattedErrors.reason = {
 message: value[0],
 };
 }
 }
 }
 return formattedErrors;
}

We also return the formattedErrors variable containing the field errors.

Using useActionState 287

That completes the function to extract field errors. We will now update the insertContact function
to return field errors in the action state:

1.	 Still in insertContact.ts, use the formatZodErrors function to return field errors
when a validation error occurs:

export async function insertContact(...) {
 ...
 if (!parsedResult.success) {
 return {
 ok: false,
 error: ...,
 formData: ...,
 errors: formatZodErrors(parsedResult.error),
 };
 }
 ...
}

We have left the returned error property with the general error message so that this message
is rendered above the Submit button.

2.	 At the bottom of the insertContact function, include the errors property with no
errors in the returned object:

export async function insertContact(...) {
 ...
 return {
 ok,
 error,
 formData,
 errors: {
 name: null,
 email: null,
 reason: null,
 }
 };
}

Working with Forms288

The Server Action is now returning field errors. Let’s open ContactForm.tsx and make the
necessary changes to render the field errors:

1.	 Start by passing an initial errors object value into the useActionState Hook and
destructuring the errors variable:

const [
 { ok, error, errors, formData },
 formAction,
 isPending,
] = useActionState(insertContact, {
 ok: false,
 error: ‘’,
 errors: {
 name: null,
 email: null,
 reason: null,
 },
 formData: new FormData(),
});

2.	 Underneath the ContactForm component, add a new FieldError component that will
render a server validation error for a field:

type Err = { message?: string } | null;
function FieldError({ serverError, errorId }: {
 serverError: Err;
 errorId: string;
}) {
 if (!serverError) {
 return null;
 }
 return (
 <div id={errorId} role=”alert”>
 {serverError.message}
 </div>
);
}

The validation error is conditionally rendered in a div element if the error object has a value.
The div element has a role attribute of “alert” so that a screen reader will announce it.

Using useActionState 289

3.	 Moving back to the ContactForm component, we will render the validation errors using
the errors variable and the FieldError component. Start by adding a validation error
under the name input:

<div ... >
 <label ... >Your name</label>
 <input ...
 aria-invalid={errors.name ? ‘true’ : ‘false’}
 aria-describedby=”name-error”
 />
 <FieldError
 serverError={errors.name}
 errorId=”name-error”
 />
</div>

The aria-describedby attribute on the input element associates it with the div
element containing the error message, allowing a screen reader to announce the error when
appropriate. The aria-invalid attribute informs a screen reader whether the input is in
an invalid state or not.

4.	 We will use the same pattern on the email and reason fields:

<div ... >
 <label ... >Your email address</label>
 <input ...
 aria-invalid={errors.email ? ‘true’ : ‘false’}
 aria-describedby=”email-error”
 />
 <FieldError
 serverError={errors.email}
 errorId=”email-error”
 />
</div>
<div ... >
 <label ... >Reason you need to contact us</label>
 <select ...
 aria-invalid={
 errors.reason ? ‘true’ : ‘false’
 }
 aria-describedby=”reason-error”
 > ... </select>

Working with Forms290

 <FieldError
 serverError={errors.reason}
 errorId=”reason-error”
 />
</div>

5.	 In the running app, submit the form without entering anything. Validation errors under each
invalid field are now returned:

Figure 9.4 – Field validation errors

6.	 Stop the app from running by pressing Ctrl + C.

That completes the rendering of the field validation errors and this section on useActionState.
Here’s a quick recap:

•	 The useActionState Hook integrates with a Server Action and enables validation errors
to be rendered and field values to be retained after submission.

•	 The Hook also enables the implementation of a submission indicator and the disabling of form
elements during submission.

Using React Hook Form 291

•	 The Server Action must contain parameters for the previous action state followed by the form
data. It must also return the new action state.

So, both useActionState and useFormStatus have overlapping capabilities for implementing
submission indicators and disabling form elements during submission. However, useFormStatus
can only be used in a child component of a form, whereas useActionState can only be used in
the same component as the form. So, the useActionState approach is preferable when form
elements are in the same component, and the useFormStatus approach is ideal when the form
elements are separated into multiple components.

Next, we will learn about a popular form library that can enhance the user experience of our form
even further.

Using React Hook Form
In this section, we will learn about React Hook Form and use it to improve the validation user experience
in our contact form. We will also learn about its benefits compared to native HTML form validation.

Understanding React Hook Form

As the name suggests, React Hook Form is a React library for building forms. It is very flexible and
can be used for simple forms such as our contact form, as well as large forms with complex validation
and submission logic. It is also very performant and optimized not to cause unnecessary re-renders. It
is very popular with tens of thousands of GitHub stars and maturing nicely, having been first released
in 2019.

Understanding client-side validation

A key feature that React Hook Form enables is client-side validation. Client-side validation improves
the user experience by informing the user of a problematic entry before a server submission. It also
helps server scalability because it won’t deal with as many invalid form submissions.

There are native browser client validation capabilities – in fact, you may have spotted that the email
field currently uses client-side email validation.

Figure 9.5 – Native email validation

Working with Forms292

Email client-side validation is automatically included in input elements of the email type. We
could have added a required attribute to the name, email, and reason inputs to add required
client-side field validation rules to them.

The simplicity of the implementation of standard HTML form validation is nice. However, if we
want to customize the validation user experience, we’ll need to write JavaScript to use the constraint
validation API. So, common requirements such as customizing the error message styling or when
the validation is triggered require quite a bit of code. This is why libraries such as React Hook Form
are often preferred to the standard HTML form validation.

For information on this API and more information on HTML form validation, see the following
link: https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_
validation.

Understanding the useForm Hook

The key part of using React Hook Form is a useForm Hook, which returns useful functions and the
state. The following code snippet shows the useForm Hook being called:

const {
 register,
 handleSubmit,
 formState: { errors, isSubmitting, isSubmitSuccessful }
} = useForm<FieldValues>();

useForm has a generic type parameter for the type of the field values. In the preceding example, the
field values type is FieldValues.

Understanding the register function

A key function that useForm returns is a register function, which takes in a unique field name
and returns the following in an object structure:

•	 An onChange handler, which happens when the field editor’s value changes

•	 An onBlur handler, which happens when the field editor loses focus

•	 A reference to the field editor element

•	 The field name

These items returned from the register function are spread onto the field editor element to allow
React Hook Form to efficiently track its value. The following code snippet allows a name field editor
to be tracked by React Hook Form:

<input {...register(‘name’)} />

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation
https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation

Using React Hook Form 293

After the result of register has been spread to the input element, it will contain ref, name,
onChange, and onBlur attributes.:

<input
 ref={someVariableInRHF}
 name=”name”
 onChange={someHandlerInRHF}
 onBlur={anotherHandlerInRHF}
/>

The ref, onChange, and onBlur attributes will reference code in React Hook Form that tracks
the value of the input element.

Specifying validation

Field validation is defined in the register field in an options parameter, as follows:

<input {...register(‘name’, {required: true})} />

In the preceding example, the required validation is specified. The associated error message can
be defined as an alternative to the true flag, as follows:

<input
 {...register(‘name’, { required: ‘You must enter a name’ })}
/>

There are a range of different validation rules that can be applied. See this page in the React Hook
Form documentation for a list of all the rules that are available: https://react-hook-form.
com/get-started#Applyvalidation.

A Zod schema can also be used to specify validation rules using a resolver option in the
useForm Hook:

const { ... } = useForm({
 resolver: zodResolver(schema)
});

The schema variable in the preceding code snippet is a Zod schema definition and zodResolver
is a function from a companion package, @hookform/resolvers.

https://react-hook-form.com/get-started#Applyvalidation
https://react-hook-form.com/get-started#Applyvalidation

Working with Forms294

Obtaining validation errors

The useForm Hook returns a state variable called errors, which contains the form validation errors.
The errors state variable is an object containing invalid field error messages. For example, if a name
field is invalid because a required rule has been violated, the errors object could be as follows:

{
 name: {
 message: ‘You must enter your email address’,
 type: ‘required’
 }
}

Fields in a valid state don’t exist in the errors object, so a field validation error message can be
conditionally rendered as follows:

{errors.name && <div>{errors.name.message}</div>}

Our form already uses this rendering pattern, so it should feel familiar.

Handling submission

The useForm Hook also returns a handler called handleSubmit that can be used for form
submission. handleSubmit takes in a function that React Hook Form calls when it has successfully
validated the form. Here’s an example of handleSubmit being used:

function onSubmit(data: FormData) {
 console.log(‘Submitted data:’, data);
}
return (
 <form onSubmit={handleSubmit(onSubmit)}>
 </form>
);

In the preceding example, onSubmit is only called in the submission when the form is successfully
validated and not when the form is invalid.

The isSubmitting state can be used to disable elements while the form is being submitted. The
following example disables the Submit button while the form is being submitted:

<button type=”submit” disabled={isSubmitting}>
 Submit
</button>

Using React Hook Form 295

isSubmitSuccessful can be used to conditionally render a successful submission message:

if (isSubmitSuccessful) {
 return <div>The form was successfully submitted</div>;
}

There are many more features in React Hook Form, but these are the functions and states that are
commonly used. Refer to the React Hook Form documentation for more information at https://
react-hook-form.com/.

Now that we understand how to use React Hook Form, we will use it in our contact form.

Using React Hook Form

We will use React Hook Form in the contact form we have been working on. We will still use
useActionState and the Server Action for the form submission. We will be primarily using React
Hook Form for client validation. Carry out the following steps:

1.	 Let’s start by installing React Hook Form and its Zod resolver. Run the following command
in the terminal:

npm i react-hook-form @hookform/resolvers

2.	 Open ContactForm.tsx and import the React Hook Form Hook, the Zod resolver function,
and our Zod schema. Also, import useRef from React, which we’ll need to integrate React
Hook Form’s submission with the Server Action:

import { ..., useRef } from ‘react’;
import { useForm } from ‘react-hook-form’;
import { zodResolver } from ‘@hookform/resolvers/zod’;
import { contactSchema } from ‘@/data/schema’;

3.	 Call the useForm Hook after the useActionState Hook is called, as follows:

export function ContactForm() {
 const [...] = useActionState(...);
 const {
 handleSubmit,
 register,
 formState: { errors: clientErrors },
 } = useForm({
 resolver: zodResolver(contactSchema),
 defaultValues: {
 name: ‘’,
 email: ‘’,
 reason: ‘’,

https://react-hook-form.com/
https://react-hook-form.com/

Working with Forms296

 notes: ‘’,
 ...(Object.fromEntries(formData) ?? {}),
 },
 });

We alias the validation errors as clientErrors so they don’t collide with the server errors
we get from the action state.

As well as passing useForm our Zod schema, we also pass it default values. We specify the
default field values as empty strings and then overwrite these with any field values from the
action state from an invalid submission.

4.	 After the useForm call, add a reference for the form element:

const { ... } = useForm(...);
const formRef = useRef<HTMLFormElement>(null);
return (
 <form ref={formRef} ... >
 ...
 </form>
);

We will need the form element reference to integrate React Hook Form into the form submission.

5.	 Add a React Hook Form submission handler that invokes the Server Action as follows:

function onSubmit() {
 if (!formRef.current) {
 return;
 }
 formAction(new FormData(formRef.current));
}
return (
 <form
 ref={formRef}
 action={formAction}
 onSubmit={handleSubmit(onSubmit)}
 >
 ...
 </form>
);

The action attribute is left in place so that the submission still works before hydration has
been completed.

Using React Hook Form 297

The React Hook Form submission handler doesn’t have the usual data parameter because
we need to pass the Server Action field values in FormData format, which we get using the
FormData constructor function passing in the form reference.

6.	 Add a noValidate attribute to the form element to suppress native HTML validation,
which will remove the current email validation on the email field:

<form
 ...
 noValidate
>

7.	 We will update the name field to work with React Hook Form alongside the current action
state. Use the register function to register the field with React Hook Form and remove the
name attribute, because the register function sets this for us:

<input ... {...register(‘name’)} />

React Hook Form will set the default value, but it does it using JavaScript. So, the defaultValue
attribute is left as it is so that we don’t lose values after an invalid submission when JavaScript
hasn’t been hydrated.

8.	 Update the FieldError component to include a client error, as follows:

type Err = { message?: string } | null | undefined;
function FieldError({ clientError, ...}: {
 clientError: Err;
 ...
}) {
 const error = clientError ?? serverError;
 if (!error) {
 return null;
 }
 return (
 <div id={errorId} role=”alert”>
 {error.message}
 </div>
);
}

An error variable is assigned to the client or server error and replaces serverError in
the function logic.

9.	 Moving back to the name field in the ContactForm component, update the error message
to consider the client error from React Hook Form:

<input ...

Working with Forms298

 aria-invalid={
 (clientErrors.name ?? errors.name)
 ? ‘true’
 : ‘false’
 }
/>
<FieldError clientError={clientErrors.name} ... />

10.	 Continuing with the name field, add an aria-required attribute to inform screen readers
that it is a required field:

<input ...
 aria-required=”true”
/>

11.	 Follow the same pattern to integrate React Hook Form into the email field:

<input ...
 {...register(‘email’)}
 aria-required=”true”
 aria-invalid={
 (clientErrors.email ?? errors.email)
 ? ‘true’
 : ‘false’
 }
/>
<FieldError clientError={clientErrors.email} ... />

12.	 Repeat the preceding for the reason field:

<select ...
 {...register(‘reason’)}
 aria-required=”true”
 aria-invalid={
 (clientErrors.reason ?? errors.reason)
 ? ‘true’
 : ‘false’
 }
> ... </select>
<FieldError clientError={clientErrors.reason} ... />

13.	 Integrate the notes field with React Hook Form:

<textarea {...register(‘notes’)} />

Using React Hook Form 299

14.	 Start the app running by running the npm run dev command in a terminal.

15.	 Fill in the form correctly and submit it. The submission will succeed and the app will navigate
to the Thanks page. However, there is a React complaint if you look in the browser console:

Figure 9.6 – React submission warning

We’ve taken control of calling the Server Action from React – the React Hook Form submission
handler will override the action attribute when JavaScript has been hydrated. This means
React can’t properly manage the action state. So, it’s asking us to wrap the Server Action in a
React Transition so that it can manage the action state.

16.	 To wrap the Server Action call in a React Transition, first, import the startTransition
function from React and then wrap it around the call:

import { ..., startTransition } from ‘react’;
...
export function ContactForm() {
 ...
 function onSubmit() {
 startTransition(() => {
 if (!formRef.current) {
 return;
 }
 formAction(new FormData(formRef.current));
 });
 }
 ...
}

17.	 In the running app, fill in the form correctly and submit it. This time, everything will work
nicely without any warnings.

18.	 Try submitting an invalid form. An error will be displayed without any request to the server –
it all happens in the browser. Notice also how the focus is automatically set to the first invalid
field by React Hook Form.

19.	 Try turning JavaScript off and submitting invalid and valid forms. The form will behave as
expected, falling back to server validation.

20.	 Re-enable JavaScript in the browser and stop the app from running by pressing Ctrl + C.

Working with Forms300

That completes the integration of client-side validation into our form and this section on React Hook
Form. Here’s a quick recap:

•	 React Hook Form is a popular, performant, and flexible React library for building forms that
include client-side validation.

•	 The useForm Hook allows a Zod schema to define the validation rules. The Hook returns a
register function for tracking fields and an errors state variable.

•	 React’s action state and React Hook Form’s state do overlap, and in many cases, it’s fine to
use either approach to keep the code simple. However, you can have the best of both worlds
following the approach in this section.

Next, we will learn about optimistic updates after a form submission.

Implementing optimistic updates
In this section, we will learn what optimistic UI updates are and how to use React’s useOptimistic
Hook to implement them. We will then use this pattern on a new page in our app that allows users
to mark a contact item as done.

Understanding useOptimistic

An optimistic UI update is when the UI is updated immediately after a user action is invoked, before the
action is fully complete. The pattern makes the app faster and more responsive. The useOptimistic
Hook can be used to manage a variable that is expected to change during an action. Typically, the
variable will hold some data from the server. Here’s the syntax:

const [optimisticValue, setOptimisticValue] =
 useOptimistic(initialValue);

The variable we want to set optimistically is passed into useOptimistic. A tuple containing the
optimistic value and a setter function is returned. Here’s a component that uses useOptimistic:

export function Name() {
 const [name, setName] = useState(‘’);
 const [optName, setOptName] = useOptimistic(name);

 async function updateName(formData: FormData) {
 const newName = formData.get(‘name’);
 setOptName(newName);
 // Send newName to server to update db
 setName(newName);
 }
 return (

Implementing optimistic updates 301

 <form action={updateName}>
 <input type=”text” name=”name” defaultValue={name} />
 <p>New name: {optName}</p>
 </form>
);
}

The component contains a form containing a name input. When the form is submitted, the entered
name is sent to the server before the name state is updated. The useOptimistic Hook is used to
optimistically show the new name beneath the name input.

You might be wondering why we wouldn’t just use a normal state variable for the optimistic state. Well,
useOptimistic automatically falls back to the old state if an error occurs, and it automatically
deals with race conditions when multiple actions are triggered quickly.

Note
The useOptimistic setter function can be used for actions not invoked from a form.
However, if it’s not used in a form action, it must be inside a React Transition.

Now that we understand the useOptimistic Hook, we’ll use it inside our app.

Using useOptimistic

We will create a page in our app listing all the contact items from the database. Each list item will
contain a form to make additional notes and mark the item as done. We will use useOptimistic
for an optimistic done state.

Adding an unoptimistic contacts page

We will start by adding a version of a contacts page that doesn’t implement an optimistic done
state. This uses previously covered knowledge, so we will copy the relevant file content from the
GitHub repository at https://github.com/PacktPublishing/Learn-React-with-
TypeScript-Third-Edition/tree/main/Chapter09/use-optimistic. Add the
following files from the repository along with their folder structure:

•	 src/data/getContacts.ts: This contains a function to get all the contact items.

•	 src/data/completeContact.ts: This contains a Server Action to update the contact
item notes and mark it as done in the database.

•	 src/data/schema.ts: This contains additional Zod schema for the list of contact items
and the Server Action for completing an item. This file already exists, but it can be replaced
with the content from the repository.

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter09/use-optimistic
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter09/use-optimistic

Working with Forms302

•	 src/app/contacts/page.tsx: This is the new page for the contact items.

•	 src/components/ContactItem.tsx: This is the component we will be working on,
which is referenced in the new page. It renders details of a contact item with a form below
it. The form contains a notes field and a Submit button. The form submission calls the
completeContact Server Action. You may also notice a hidden input holding the contact
item ID, which is a common pattern for passing additional data to a Server Action.

Start the app running and navigate to the /contacts path to see the new page rendered.

Figure 9.7 – Contacts page

You can add some contact submissions using the root page if no contact items appear.

Try clicking the Done button to mark an item as done. It will work but with an annoying delay.

Making done optimistic

Open ContactItem.tsx and carry out the following steps to enhance the ContactItem
component to render the done state optimistically:

1.	 Add useOptimistic to the React import statement:

import { ..., useOptimistic } from ‘react’;

Implementing optimistic updates 303

2.	 Call the useOptimistic Hook after the useActionState Hook is called, as follows:

export function ContactItem(...) {
 const [...] = useActionState(...);
 const [optimisticDone, setOptimisticDone] =
 useOptimistic(done);
 return ...
}

The done variable is passed into useOptimistic, which comes from the database from
the page RSC. The returned optimisticDone will contain the optimistic done value, and
setOptimisticDone is a setter function to set it.

3.	 Update the paragraph element to use optimisticDone and reduce the opacity when the
action is not actually done:

<p
 style={{
 textDecoration: optimisticDone
 ? ‘line-through’
 : ‘none’,
 opacity: !done && optimisticDone ? 0.5 : 1,
 }}
>
 {name}, {email}, {reason}
</p>

4.	 Change the conditional rendering of the form to use the optimistic done value:

{!optimisticDone && (
 <form ... >
 ...
 </form>
)}

5.	 Rework the action handler to set optimisticDone before calling the Server Action:

<form
 action={(formData) => {
 setOptimisticDone(true);
 return formAction(formData);
 }}
>

Working with Forms304

6.	 In the running app, try clicking the Done button to mark an item as done. The form will
disappear, and the item will immediately be crossed out with reduced opacity. After a second,
when the Server Action is complete, the item will revert to full opacity.

That completes the enhancement to the ContactItem component and this section on optimistic
updates. To recap, optimistic UI updates improve app responsiveness by immediately reflecting user
actions in the UI, and React’s useOptimistic Hook helps implement this pattern while handling
errors and race conditions effectively.

Next, we will summarize what we have learned in this chapter.

Summary
In this chapter, we learned how to build forms in React, starting with a basic HTML form with the
Form component from Next.js to prevent a full page reload during form submission.

We learned that Server Actions are special Server Functions used for form submissions using a
form element’s action attribute. The nice thing about this submission pattern is that it works
without JavaScript.

We covered how to use the useFormStatus Hook for a submission indicator and disabling form
elements, and understood its requirement for being in a child component of a form element. We learned
that the useActionState Hook is an alternative way of implementing a submission indicator and
disabling form elements when the form is in the same component. The useActionState Hook
also allows the rendering of server-side validation errors.

We introduced ourselves to a popular forms library called React Hook Form to provide client-side
validation with a Zod schema. This contains a useForm Hook that returns a register function
to register fields and an errors state variable containing validation error messages.

Lastly, we covered using React’s useOptimistic Hook to implement optimistic UI updates.

In this chapter, we used form state for field values, error messages, and whether submission indicators
are visible. In the next chapter, we will learn about other types of state and also how to share state
between components.

Questions 305

Questions
Answer the following questions to check what you have learned in this chapter:

1.	 How does the built-in Next.js Form component enhance form handling compared to a native
form element?

2.	 What argument can be placed in the console.log statement to output the entered name
during form submission?

<form action={(data) => console.log())}>
 <input type=”text” name=”name” />
 <button type=”submit”>Submit</button>
</form>

3.	 What’s the problem with the following form using a React Server Action for submission?

<form onSubmit={someServerAction}>
 ...
</form>

4.	 What’s the benefit of using the form element action attribute rather than onSubmit for
form submission?

5.	 Consider the following form that captures and submits a name. When a name is entered and
submitted, the result of the console.log(name) statement is null. Why is this the case?

function App() {
 const [name, formAction] = useActionState(
 updateName,
 “”,
);
 return (
 <form action={formAction}>
 <input
 type=”text”
 defaultValue={(name ?? “”) as string}
 />
 <button type=”submit”>Submit</button>
 </form>
);
}

Working with Forms306

async function updateName(
 _: FormDataEntryValue | null,
 formData: FormData,
) {
 const name = formData.get(“name”);
 console.log(name);
 return name;
}

Answers
1.	 It uses client-side navigation rather than full-page navigation but still continues to function if

JavaScript is disabled.

2.	 The data parameter in the action handler is an object with the native FormData interface.
So, the get method can be used as follows to get the name field from the form:

<form
 action={(data) => console.log(data.get(“name”))}
>
 <input type=”text” name=”name” />
 <button type=”submit”>Submit</button>
</form>

3.	 The action attribute should be used rather than onSubmit, as follows:

<form action={someServerAction}>

4.	 onSubmit requires JavaScript, whereas action can work without JavaScript.

5.	 The name attribute is missing on the input element, which means it isn’t captured in the
form submission:

<input
 name=”name”
 type=”text”
 defaultValue={(name ?? “”) as string}
/>

Part 4:
Advanced React

This part covers advanced React topics. It starts with different approaches to sharing state between
components in an app with their benefits. Different patterns for implementing highly reusable type-
safe components are then explored. The part finishes with how to implement automated tests on
components, giving us the confidence to ship new features of applications quickly.

This part has the following chapters:

•	 Chapter 10, State Management

•	 Chapter 11, Reusable Components

•	 Chapter 12, Unit Testing with Vitest and the React Testing Library

10
State Management

We’ve already used React state many times throughout this book. In this chapter, we’ll cover React
state in depth, starting by understanding the different types of state and situations when we can avoid
writing code to manage state ourselves.

The chapter then focuses on shared state, which is the trickiest type of state to manage. We’ll explore
different approaches to managing shared state, discussing the pros and cons of each approach. To
experience the different approaches, we will build a simple app containing a header that displays the
user’s name, with the main content also referencing the user’s name. The user’s name will be stored
in a state that needs to be accessed by several components.

As such, we’ll cover the following main topics in the chapter:

•	 Understanding the types of state

•	 Using prop drilling

•	 Using React context

•	 Using Zustand

•	 Using TanStack Query and URL parameters

Technical requirements
We will use the following technologies in this chapter:

•	 Node.js and npm: You can install them from https://nodejs.org/en/download/

•	 Visual Studio Code: You can install it from https://code.visualstudio.com/

All the code snippets in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter10.

https://nodejs.org/en/download/
https://code.visualstudio.com/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter10
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter10

State Management310

Understanding the types of state
In this section, we’ll cover some of the different types of state and how it can be managed. React state
increases code complexity, so it’s helpful to be able to categorize it and potentially offload its management.

Server state

Server state is data fetched from an external server/API to render in the UI. It’s also referred to as
remote state or data state.

We learned in Chapter 7, Server Component Data Fetching and Server Function Mutations, how RSCs
remove the need for server state because data is fetched and rendered all on the server.

Sometimes we do need to fetch data in Client Components, and in Chapter 8, Client Component Data
Fetching and Mutations with TanStack Query, we learned how TanStack Query manages server state
for us and how managing this ourselves using useEffect and useState is problematic.

Form state

Form state includes field values, validation error messages, and whether submission indicators are
rendered. In Chapter 9, Working with Forms, we learned how this state can be managed using React’s
useActionState and useFormStatus Hooks, as well as the popular React Hook Form library. It’s
much simpler to use those approaches than to manage the state with our own code using useState.

URL state

URL parameters are a great way to store small bits of UI state. We used search parameters to store
search criteria in previous chapters, but route parameters can be used as well. A key benefit of this
approach is that the URL containing the state can be shared with another user to open the app rendered
with that state.

Local state

Local state is managed by a single component using React’s useState or useReducer Hooks,
which we have used throughout this book.

An example of local state is the visible state in the alert component we built over several chapters.
As a reminder, here’s a snippet of the alert component:

export function Alert(...) {
 const [visible, setVisible] = useState(true);
 if (!visible) {
 return null;
 }

Understanding the types of state 311

 function handleCloseClick() {
 setVisible(false);
 ...
 }
 return (
 <div>
 ...
 {closable && (
 <button ... onClick={handleCloseClick}>...</button>
)}
 ...
 </div>
);
}

Derived state

Derived state is computed from other state rather than being stored as state directly. It’s a pattern that
keeps code simpler and less error-prone by avoiding unnecessary duplication of state.

Here’s a common example of state duplication where filteredItems is the active elements
from the items state:

const [items, setItems] = useState([...]);
const [filteredItems, setFilteredItems] = useState([]);

useEffect(() => {
 setFilteredItems(items.filter((item) => item.active));
}, [items]);

So, filteredItems is duplicated state, which has to be synchronized using a useEffect Hook.

Here’s the same example using derived state:

const [items, setItems] = useState([...]);
const filteredItems = items.filter((item) => item.active);

It’s much simpler because there is no synchronization logic.

The useMemo Hook can be used to reduce unnecessary derived state computations:

const filteredItems = useMemo(() => {
 return items.filter((item) => item.active);
}, [items]);

State Management312

Shared state

As the name suggests, shared state is shared across multiple components. This is sometimes referred
to as global state.

Shared state can get tricky fast if not handled carefully. Here are some reasons why:

•	 When lots of components read and write from some shared state, changes in one place can
cause unintended side effects elsewhere. It can become hard to determine which component
caused a change or why a component re-rendered.

•	 When some shared state changes, many components may re-render—even those that don’t use
the shared state. All this re-rendering can cause performance challenges.

•	 Too much can be placed in shared state—even state that could have stayed local. The shared
state then becomes bloated and hard to maintain.

•	 A component that uses shared state is harder to unit test because the shared state is an external
dependency that needs to be set up in the test.

That completes this section on state categories. Here’s a quick summary:

•	 Server state is data from the server to render in the UI. Ideally, an RSC should be used to
avoid server state. Alternatively, a library such as TanStack Query should be used to robustly
manage server state.

•	 Form state is for state required in a form. It’s recommended to use the React form Hooks and/
or a library such as React Hook Form to manage it.

•	 URL state is when state is stored in a URL route or search parameters. It’s a simple way to store
bits of UI state.

•	 Local state is for a single component, whereas shared state is for multiple components.

•	 Derived state is a pattern to avoid state duplication and synchronization.

The remainder of this chapter focuses primarily on different approaches to implementing shared state.
It’s worth noting that server state and URL state can be used as approaches for shared state – this
chapter covers these approaches as well.

Next, we’ll cover the simplest approach for implementing shared state.

Using prop drilling
In this section, we will create the first iteration of the app, which will use a technique called prop
drilling to share state between components. After we create the project, we will take the time to
understand what prop drilling is and then make use of it in the app.

Using prop drilling 313

Creating the project

The app we will build will contain a header and some content beneath it. Here is the component
structure we will create:

Figure 10.1 – App component structure

The header will have a Sign in button to authenticate and authorize a user to get their name and
permissions. Once authenticated, the user’s name will be displayed in the app header, and the user
will be welcomed in the content. If the user has admin permissions, important content will be shown.

Carry out the following steps to create the initial versions of the files that we need in the app without
any state sharing. We will copy and paste the code from the GitHub repository to save time:

1.	 In a terminal, execute the following command to create the project:

npx create-next-app@latest state --ts --eslint --app --src-dir
--import-alias “@/*” --no-tailwind --turbopack

2.	 Still in the terminal, move to the project folder and open Visual Studio Code using the following
commands:

cd state
code .

State Management314

3.	 Prettier can be set up in the same manner as we learned with Vite in Chapter 1, Getting Started
with React. Feel free to add automatic code formatting to this project.

4.	 Open src/app/global.css and overwrite the content with the CSS from the following
file in the GitHub repository: https://github.com/PacktPublishing/Learn-
React-with-TypeScript-Third-Edition/blob/main/Chapter10/start/
src/app/globals.css.

This will nicely style our app.

5.	 Open page.tsx in the src/app folder and replace its content with the content in the
GitHub repository at https://github.com/PacktPublishing/Learn-React-
with-TypeScript-Third-Edition/blob/main/Chapter10/start/src/
app/page.tsx.

This component manages all the state but isn’t currently sharing it. It references the Header
and Main components and signIn and signOut Server Functions, which we’ll create in
the next step.

Notice that Home is declared as a Client Component with the ‘use client’ directive
because it is managing state.

6.	 Create the following component files and copy and paste the contents from the GitHub repository
at https://github.com/PacktPublishing/Learn-React-with-TypeScript-
Third-Edition/tree/main/Chapter10/start/src/components:

	� src/components/Header.tsx: This renders buttons to sign in and out. There is
also a message to indicate who is signed in, which displays a ? because it doesn’t know yet.

	� src/components/Main.tsx: This renders hello and sign-in messages. Again, it doesn’t
know whether a user has signed in yet, so both messages are displayed. It also renders a
Content component.

	� src/components/Content.tsx. This renders some important stuff and an insufficient
permissions message. It doesn’t know whether the user has permissions, so both messages
are currently displayed.

	� src/data/auth.ts. This contains the signIn and signOut Server Functions.
These functions only simulate authentication for simplicity, so that we can focus on state
management in this chapter. signIn returns a user called Bob with admin permissions.

There will be ESLint errors in page.tsx because the state variables are currently not used.
This will be resolved in the next section.

7.	 In the terminal, execute the following command to run the app in development mode:

npm run dev

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter10/start/src/app/globals.css
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter10/start/src/app/globals.css
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter10/start/src/app/globals.css
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter10/start/src/app/page.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter10/start/src/app/page.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter10/start/src/app/page.tsx
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter10/start/src/components
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter10/start/src/components

Using prop drilling 315

The app will be available in a browser at http://localhost:3000 and will show the following:

Figure 10.2 – Initial screen

That completes the project setup. Next, we will learn what prop drilling is.

Understanding and using prop drilling

Prop drilling is the practice of passing data via props from a parent component down through
multiple levels of intermediary components to reach a nested child component. This approach uses
React features that we are already aware of.

In our app, we will pass the state variables in the Home component to its child components using
props. We will also pass the handleSignIn and handleSignOut functions as props so that the
child components can call these to invoke the sign-in and sign-out processes.

We will make changes to the bottom of the component tree and work our way up. Carry out the
following steps:

1.	 Open Content.tsx and add a permissions prop. Use permissions to render the
appropriate message:

export function Content({
 permissions,
}: {
 permissions: undefined | string[];
}) {
 if (permissions === undefined) {
 return null;
 }
 return (
 <p>
 {permissions.includes(‹admin›)

http://localhost:3000

State Management316

 ? ‘Some important stuff that only an admin can do’
 : ‘Insufficient permissions’}
 </p>
);
}

2.	 Open Main.tsx and add userName and permissions props. Render an appropriate
message using the userName prop and pass the permissions prop to Content in the JSX:

export function Main({
 userName,
 permissions,
}: {
 userName: string | undefined;
 permissions: undefined | string[];
}) {
 return (
 <main>
 <h1>Welcome</h1>
 <p>
 {userName ? `Hello ${userName}!` :
 ‘Please sign in’}
 </p>
 <Content permissions={permissions} />
 </main>
);
}

Notice that the component doesn’t use permissions in its rendering logic – it is only passing
it through to the Content component.

3.	 Open Header.tsx and start by adding the following props:

export function Header({
 userName,
 onSignInClick,
 onSignOutClick,
 loading,
}: {
 userName: string | undefined;
 onSignInClick: () => void;
 onSignOutClick: () => void;
 loading: boolean;
}) { ... }

Using prop drilling 317

4.	 Update the JSX in Header to render the sign-in or sign-out buttons depending on whether
userName is defined. Also, output userName in the message:

<header>
 {userName ? (
 <>
 {userName} has signed in
 <button type=”button”>Sign Out</button>
 </>
) : (
 <button type=”button”>Sign in</button>
)}
</header>

5.	 Wire the buttons up to the onSignInClick and onSignOutClick props and use the
loading prop to disable the buttons when a sign-in or sign-out is taking place. Also, use
the loading prop to update the button content when a sign-in or sign-out is taking place:

{userName ? (
 <>
 ...
 <button ...
 onClick={onSignOutClick}
 disabled={loading}
 >
 {loading ? ‹...› : ‹Sign out’}
 </button>
 </>
) : (
 <button ...
 onClick={onSignInClick}
 disabled={loading}
 >
 {loading ? ‹...› : ‹Sign in’}
 </button>
)}

6.	 Open page.tsx and pass the state and sign-in and sign-out handlers to the child components
as follows:

<Header
 userName={userName}
 onSignInClick={handleSignIn}
 onSignOutClick={handleSignOut}

State Management318

 loading={loading}
/>
<Main userName={userName} permissions={permissions} />

The running app now appears as shown in the screenshot:

Figure 10.3 – App before signing in

7.	 Click the Sign in button. The sign-in process then happens, and after a couple of seconds, the
following screen appears:

Figure 10.4 – App after signing in

A nice thing about this approach is that it is simple and uses React features we are already familiar
with. A downside of this approach is that it can force components between the component providing
state and components accessing the state to have a prop for that state. So, some components that do
not need access to the state may be forced to access it. An example is the Main component – the
permissions state is forced to pass through it to the Content component.

Using better composition

Often, better composition can resolve the issue of a state being prop-drilled through the component
tree unnecessarily. For example, we can better compose the components inside the Home component to
resolve the issue of the permissions state unnecessarily passing through Main to get to Content.
We can achieve this by Main rendering React children instead of Content. Main can then pass
Content as a child of Main.

Using prop drilling 319

Carry out the following steps to do this:

1.	 Open Main.tsx and remove the import statement for the Content component. Also, add
an import statement for the ReactNode type:

import type { ReactNode } from ‘react’;

2.	 Still in Main.tsx, remove the permissions prop and add a children prop. Also, replace
Content with children in the JSX:

export function Main({ userName, children }: {
 userName: string | undefined;
 children: ReactNode;
}) {
 return (
 <main>
 <h1>Welcome</h1>
 <p>...</p>
 {children}
 </main>
);
}

3.	 Move to page.tsx and import the Content component:

import { Content } from ‘@/components/Content’;

4.	 Still in page.tsx, in the Home component JSX, remove the permissions attribute from Main
and pass Content as a child of Main as follows:

<Main userName={userName}>
 <Content permissions={permissions} />
</Main>

The app will function as before.

That completes this section on prop drilling. Here’s a recap:

•	 Prop drilling is when state is passed through multiple layers of components via props.

•	 It’s the simplest state sharing approach – it uses very basic React features, and it’s easy to trace
how state flows through the app.

•	 It works well for sharing state across a few adjacent components. Good component composition
can help prevent state from being unnecessarily passed through components.

•	 However, sharing state across deeply nested components becomes cumbersome because it
involves state being unnecessarily passed through components. Components are also harder
to refactor in this situation because of unnecessary dependencies.

State Management320

Next, keep the app running, and we will look at a more appropriate solution for sharing state across
many components.

Using React context
In this section, we will learn about a feature in React called context. We will then refactor the app
from the last section to use React context.

Understanding React context

React context is an object that can be accessed by components. This object can contain state values,
so it provides a mechanism for sharing state across components.

A context is created using a createContext function as follows:

const Context = createContext<ContextType>(defaultValue);

A default value for the context must be passed into createContext. It also has a generic type
parameter for the type that represents the object created by createContext.

A context provider component needs to be placed in the component tree above the components
requiring access to it. A provider wrapper component can be created that stores the shared state and
passes it to the context component as follows:

export function Provider({ children }: Props) {
 const [someState, setSomeState] = useState(initialState);
 return (
 <Context value={{ someState }}>
 {children}
 </Context >
);
}

The preceding code snippet uses the short variant of the context provider component, Context. The
longer version is Context.Provider.

The useState Hook has been used for the state in the preceding example, but useReducer could
also be used.

The provider wrapper component can then be placed appropriately in the component tree, above
components requiring the shared state:

function App() {
 return (
 <Provider>
 <Header />

Using React context 321

 <Main />
 </Provider>
);
}

React also contains a use Hook that can be used to get values from the context:

const { someState } = use(Context);

The context must be passed into the use Hook and properties from the context object can be
destructured from its result.

Note
There is an alternative useContext Hook that can be used to get state that has the same syntax
as the use Hook. However, unlike useContext, the use Hook can be used conditionally.

So, components that want access to the shared state can access it using the use Hook as follows:

export function SomeComponent() {
 const { someState } = use(Context);
 return <div>I have access to {someState}</div>;
}

For more information on React context, see the following link: https://react.dev/reference/
react/createContext.

Now that we understand React context, we will use it in the app we created in the previous section.

Using React context

We will rework the app from the last section to use React context. We will start by creating the context
and a provider component. Then, we will move the state from the Home component to the provider
component. We will also add the ability to toggle permissions and observe the impact on re-rendering.

So, to do this, carry out the following steps:

1.	 Start by creating a file called types.ts in a new state folder in the src folder. Add the
following type to represent the state and functions we will need in our context:

export type UserState = {
 userName: undefined | string;
 permissions: undefined | string[];
 loading: boolean;
 handleSignIn: () => Promise<void>;

https://react.dev/reference/react/createContext
https://react.dev/reference/react/createContext

State Management322

 handleSignOut: () => Promise<void>;
 togglePermissions: () => void;
};

2.	 Create another file in the state folder called UserContext.ts. Add the following content
to the file to create a React context that will contain the state and functions:

import { createContext } from ‘react’;
import type { UserState } from ‘./types’;

export const UserContext = createContext<UserState>({
 userName: undefined,
 permissions: undefined,
 loading: false,
 handleSignIn: () => new Promise(() => {}),
 handleSignOut: () => new Promise(() => {}),
 togglePermissions: () => {},
});

The createContext function requires an initial state, so we pass an object containing
undefined state values and empty functions.

Note
React context can share functions as well as state. We will use this feature to share the
handleSignIn, handleSignOut, and togglePermissions functions.

3.	 Create another file called UserProvider.tsx in the state folder. Add the start of the
provider component as follows:

‘use client’;

import { type ReactNode } from ‘react’;
import { signIn, signOut } from ‘@/data/auth’;
import { UserContext } from ‘./UserContext’;

export function UserProvider({
 children,
}: {
 children: ReactNode;
}) {
 return (
 <UserContext
 value={{}}

Using React context 323

 >
 {children}
 </UserContext>
);
}

At the moment, the UserProvider component is just rendering the UserContext
provider component.

We have marked it as a Client Component because we will eventually use it in the RootLayout RSC.

4.	 Move the state and handleSignIn and handleSignout functions from the Home
component to the UserProvider component:

import { ..., useCallback, useState } from ‘react’;
...
export function UserProvider() {
 const [userName, setUserName] = useState<
 string | undefined
 >();
 const [permissions, setPermissions] = useState<
 string[] | undefined
 >();
 const [loading, setLoading] = useState(false);

 const handleSignIn = useCallback(async () => {
 setLoading(true);
 const user = await signIn();
 setUserName(user.name);
 setPermissions(user.permissions);
 setLoading(false);
 }, []);
 const handleSignOut = useCallback(async () => {
 setLoading(true);
 await signOut();
 setUserName(undefined);
 setPermissions(undefined);
 setLoading(false);
 }, []);

 return ...
}

State Management324

5.	 Add a togglePermission function to the context as well:

export function UserProvider(...) {
 ...
 const togglePermissions = useCallback(
 () =>
 setPermissions((currPermissions) =>
 currPermissions?.length === 0
 ? [‘admin’]
 : [],
),
 [],
);

}

The function toggles between admin and no permissions.

6.	 Still in UserProvider.tsx, pass the state, handleSignIn, handleSignout, and
togglePermissions functions into UserContext in the JSX:

<UserContext
 value={{
 userName,
 permissions,
 loading,
 handleSignIn,
 handleSignOut,
 togglePermissions
 }}
>
 {children}
</UserContext>

7.	 Open layout.tsx and wrap UserProvider around the layout content:

import { UserProvider } from ‘@/state/UserProvider’;
...
export default function RootLayout(...) {
 return (
 <html ... >
 <body ... >
 <UserProvider>{children}</UserProvider>
 </body>

Using React context 325

 </html>
);
}

This means the whole component tree will have access to the context.

8.	 Open page.tsx. The state and handleSignIn and handleSignout functions should
be removed. The React and auth import statements should also be removed, and remove
the passing of the props in the JSX. Complete the work in this file by removing the ‘use
client’ directive because it can now be an RSC. The file contents should now be as follows:

import { Header } from ‘@/components/Header’;
import { Main } from ‘@/components/Main’;

export default function Home() {
 return (
 <>
 <Header />
 <Main>
 <Content />
 </Main>
 </>
);
}

9.	 Open Header.tsx and mark it as a Client Component because it will be using React context.
Also, import the use Hook from React and the UserContext context we created earlier.
Remove the props and get the state and functions from the context instead:

‘use client’;

import { use } from ‘react’;
import { UserContext } from ‘@/state/UserContext’;

export function Header() {
 const {
 userName,
 handleSignIn,
 handleSignOut,
 loading,
 } = use(UserContext);

 return ...
}

State Management326

10.	 Still in Header.tsx, extract togglePermissions from the context and use it when the
sign-in message is clicked:

export function Header() {
 const { ..., togglePermissions } = use(UserContext);
 return (
 <header>
 {userName ? (
 <>

 {userName} has signed in

 ...
 </>
) : ... }
 </header>
);
}

Adding a click handler on a span element isn’t good practice, but it’s a simple way to experience
React context re-renders.

11.	 Update the button onClick handlers to reference sign-in and sign-out handlers from the context:

return (
 <header>
 {userName ? (
 <>
 ...
 <button ... onClick={handleSignOut}>
 ...
 </button>
 </>
) : (
 <button ... onClick={handleSignIn}>
 ...
 </button>
)}
 </header>
);

12.	 Open Main.tsx and follow the same pattern as the previous step. Don’t pass permissions
to Content – it’ll cause a compile error, but we’ll resolve this in the next step:

‘use client’;
import { use, type ReactNode } from ‘react’;

Using React context 327

import { UserContext } from ‘@/state/UserContext’;
...
export function Main({
 children,
}: {
 children: ReactNode;
}) {
 const { userName } = use(UserContext);
 return ...
}

13.	 Open Content.tsx and follow the same pattern again:

‘use client’;
import { use } from ‘react’;
import { UserContext } from ‘@/state/UserContext’;

export function Content() {
 const { permissions } = use(UserContext);
 ...
}

The compile errors in all the files should now be resolved, and the running app will look and
behave like before.

14.	 Open the React development tools in your browser and make sure re-rendering highlights are
on (Components | Settings | Highlight updates when components render). In the app, sign
in and click the Bob has signed in message. Notice that all the components under the context
provider re-render.

Figure 10.5 – Components re-rendering

15.	 Stop the app running by pressing Ctrl + C.

State Management328

That completes the reworking of the app to use React context instead of prop drilling.

In comparison to prop drilling, React context requires more code to be initially written. However, it
allows components to access shared state using a Hook rather than passing it through components
using props. It’s an elegant, shared-state solution, particularly when many components share state.
However, when state changes, all the components beneath the context provider component re-render.

Next, we will learn about a popular third-party library that can be used to share state.

Using Zustand
In this section, we will learn about Zustand before using it to refactor the app we have been working
on to use it.

Understanding Zustand

Zustand is a popular, performant, and scalable state management library for React that is incredibly
simple to use.

The state lives in a centralized store, which is created using Zustand’s create function:

const useCountStore = create((set) => ({
 count: 0,
 inc: () => set((state) => ({ count: state.count + 1 })),
 dec: () => set((state) => ({ count: state.count - 1 })),
}));

Like React context, a Zustand store can hold functions as well as state values. The preceding example
store contains count state with functions to increment and decrement it.

The create function returns a Hook that can be used to access the store. In the preceding example,
we called this Hook, useCountStore.

The create function has an optional generic parameter for the type of the store:

export const useCountStore = create<{
 count: number;
 inc: () => void;
 dec: () => void;
}>(...);

Using Zustand 329

Unlike React context, no provider component is required. You simply access the store where you need
it using the store Hook:

function Add() {
 const count = useCountStore((state) => state.count);
 const inc = useCountStore((state) => state.inc);
 return (
 <button type=”button” onClick={inc}>
 {count}
 </button>
);
}

For more information on Zustand, see the following link: https://zustand.docs.pmnd.rs/
getting-started/introduction.

Now that we understand Zustand, we will use it in the app we created in the previous section.

Using Zustand

We will refactor the app to use Zustand instead of React context. First, we will create a store and then
consume it in the Header, Main, and Content components. Carry out the following steps:

1.	 Start by installing Zustand by executing the following command in a terminal:

npm i zustand

2.	 Create a new file in the state folder called useUserStore.tsx. Add the following content
to start the implementation of the store:

import { create } from ‘zustand’;
import { UserState } from ‘./types’;

export const useUserStore = create<UserState>(
 (set) => ({
 userName: undefined,
 permissions: undefined,
 loading: false
 }),
);

We have created a store to hold the state values, which we have initialized.

https://zustand.docs.pmnd.rs/getting-started/introduction
https://zustand.docs.pmnd.rs/getting-started/introduction

State Management330

3.	 Add the sign-in and sign-out handler functions to the store:

import { signIn, signOut } from ‘@/data/auth’;

export const useUserStore = create<UserState>(
 (set) => ({
 ...,
 handleSignIn: async () => {
 set({ loading: true });
 const user = await signIn();
 set({
 userName: user.name,
 permissions: user.permissions,
 loading: false,
 });
 },
 handleSignOut: async () => {
 await signOut();
 set({
 userName: undefined,
 permissions: undefined,
 loading: false,
 });
 },
 }),
);

The handlers are similar to the equivalent handlers in the React context, except we use Zustand’s
set function to update state values.

4.	 Add the togglePermissions function to the store as well:

export const useUserStore = create<UserState>(
 (set) => ({
 ...,
 togglePermissions: () =>
 set((state) =>
 state.permissions?.length === 0
 ? { permissions: [‘admin’] }
 : { permissions: [] },
),
 }),
);

That completes the Zustand store.

Using Zustand 331

5.	 Open Header.tsx and replace the context calls with a call to the store we just created:

import { useUserStore } from ‘@/state/useUserStore’;

export function Header() {
 const userName = useUserStore(
 (state) => state.userName,
);
 const loading = useUserStore(
 (state) => state.loading,
);
 const handleSignIn = useUserStore(
 (state) => state.handleSignIn,
);
 const handleSignOut = useUserStore(
 (state) => state.handleSignOut,
);
 const togglePermissions = useUserStore(
 (state) => state.togglePermissions,
);
 return ...
}

The React and context imports can also be removed because they are redundant.

6.	 Open Main.tsx and replace the context calls with a call to the store:

import { type ReactNode } from ‘react’;
import { useUserStore } from ‘@/state/useUserStore’;
...
export function Main() {
 const userName = useUserStore(
 (state) => state.userName,
);
 return ...
}

The React and context imports can also be removed because they are redundant.

7.	 Lastly, open Content.tsx and replace the context calls with a call to the store:

import { useUserStore } from ‘@/state/useUserStore’;
...
export function Content() {
 const permissions = useUserStore(
 (state) => state.permissions,

State Management332

);
 if (permissions === undefined) {
 return null;
 }
 return ...
}

Again, the React and context imports can also be removed because they are redundant.

8.	 Open layout.tsx and remove UserProvider because this is no longer required.

9.	 Run the app by running npm run dev in the terminal. The app will look and behave just
as it did before.

10.	 Open the React development tools in your browser and make sure re-rendering highlights
are on. In the app, sign in and click the Bob has signed in message. Notice that only the
Content component re-renders. This is because this is the only component subscribed to
the permissions state.

That completes the refactoring of the app to use Zustand rather than React context. As we have
experienced, it is very simple to use, and not having to use a provider component is a clear benefit
over React context. When a state in a Zustand store changes, only components that have subscribed
to that state will re-render. This makes it more performant than React context.

Next, we will remember URL parameters and TanStack Query and how they can be used to share
state across components.

Using TanStack Query and URL parameters
In this section, we will learn how TanStack Query can be used to share state that usually comes from
a server database across different React components. We will then move on to learn how state can be
shared across components using URL search parameters.

We have already used TanStack Query in Chapter 8, Client Component Data Fetching and Mutations
with TanStack Query, and used URL search parameters in Chapter 6, Creating a Multi-Page App with
Next.js. So, we will focus on the state-sharing aspects rather than the full implementation details.

We will use an extension of the app we have been building to understand how both TanStack Query
and URL search parameters can be used to share state. The app has been reworked to only return a user
ID from a sign-in and to get information about the user using TanStack Query. The user information
is shown in tabs, with the active tab stored as a URL search parameter.

Using TanStack Query and URL parameters 333

Figure 10.6 – Extended app

The code for the extended app is available at https://github.com/PacktPublishing/
Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter10/
url-react-query.

Using TanStack Query

As previously learned, TanStack Query maintains a client-side cache of the data it fetches. This data
can be shared across different components by simply using the useQuery Hook with the same query
key. When this Hook is called, the data will be fetched from the cache if it isn’t stale. In the extended
app, the Header and Main components use this approach to get the user name. The useQuery
call to get the core user information is centralized into a useGetUser custom Hook as follows:

export function useGetUser(
 userId: string | undefined,
) {
 return useQuery({
 queryKey: [‘user’, userId],
 queryFn: async () => {
 const response = await fetch(

https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter10/url-react-query
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter10/url-react-query
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter10/url-react-query

State Management334

 `/api/users/${userId}`,
);
 return userSchema.parse(
 await response.json(),
);
 },
 enabled: userId !== undefined,
 });
}

We will learn more about custom Hooks in Chapter 11, Reusable Components.

The query function calls a Route Handler and returns the validated response body, which will be
stored in the query cache. The enabled option ensures the query is only triggered when the user
has signed in and a user ID is available.

After a sign-in occurs, the Header component will be re-rendered, causing the query to trigger
and the data to be fetched and cached. The Main component will then be re-rendered, causing the
same query to trigger. Because the cache for the key is available, the cached data will be used for the
Main component.

Using TanStack Query is a natural way of sharing state from the server. We use the useQuery Hook
with a query function and an appropriate key in the components that require the data. TanStack
Query takes care of caching the data and whether a data fetch needs to occur.

Next, we will understand how URL search parameters can be used to share state.

Using URL parameters

In the extended app, a search parameter called tab is used to store the active tab. The implementation
of the tabs is split across many components, as shown in the following diagram:

Figure 10.7 – Tab components

Using TanStack Query and URL parameters 335

Both the Tab and TabDetail components access the active tab state from the URL. As previously
learned, Next.js has a useSearchParams Hook to access search parameter values and a useRouter
Hook to set them. The getting and setting of the tab search parameter in the Tab component is
highlighted here:

export function Tab({ name, label }: { ... }) {
 const params = useSearchParams();
 const activeTab = params.get(‘tab’) ?? ‘address’;
 const router = useRouter();
 return (
 <button
 type=”button”
 className={
 activeTab === name ? ‘active’ : ‘’
 }
 onClick={() => router.push(`/?tab=${name}`)}
 >
 {label}
 </button>
);
}

The getting of the tab search parameter in the TabDetail component is highlighted here:

export function TabDetail() {
 const params = useSearchParams();
 const activeTab = params.get(‘tab’);
 if (activeTab === ‘profile’) {
 return <Profile />;
 }
 if (activeTab === ‘hobbies’) {
 return <Hobbies />;
 }
 return <Address />;
}

This approach is extremely simple but very effective. It isn’t just limited to Next.js either – most frontend
frameworks have mechanisms to interact with URL route and search parameters.

A common mistake is to duplicate the URL state using React state and try to synchronize them both
using a React effect. However, the synchronization logic is often complex, resulting in edge case bugs.

State Management336

That completes this section on using TanStack Query and the URL for sharing state. Here’s a quick recap:

•	 TanStack Query caches server data and allows state sharing across components by using the
same useQuery Hook with a shared query key

•	 URL search parameters can manage and share UI state, such as the active tab in a multi-tab app

Next, we will summarize the chapter.

Summary
We started this chapter by looking at different categories of state. We learned how to manage state
robustly for each category. We spent most of the chapter focusing on the trickiest category of state,
shared state. We built a small one-page app that contained components that needed to share state.

We started our shared state exploration by using the prop drilling approach. This is the simplest
approach and ideal for a few adjacent components. However, it’s cumbersome for lots of components
– particularly if they are far apart in the component tree.

We moved on to learn about React context and refactored the app to use it. We learned that it’s more
convenient than prop drilling for sharing state between many components. However, it can cause
performance issues because many components often re-render when state changes.

Next, we learned about Zustand, which is similar to React context. A difference is that no provider
component is required, making it more straightforward to use. Zustand is very performant because
components only re-render when the state that they subscribe to changes.

Lastly, we learned how TanStack Query is a great way to share server state. Our app used this approach
to share user data. We also learned how to store certain UI state in the URL. Our app used this approach
to store the active tab.

In the next chapter, we will learn how to make components highly reusable.

Questions
Answer the following questions to check what you have learned in this chapter:

1.	 We have a context defined as follows to hold the theme state for an app:

type Theme = {
 name: string;
 color: ‘dark’ | ‘light’;
};

Questions 337

type ThemeContextType = Theme & {
 changeTheme: (
 name: string,
 color: ‘dark’ | ‘light’
) => void;
};
const ThemeContext =
 createContext<ThemeContextType>();

The code doesn’t compile though. What is the problem?

2.	 The context from question 1 has a provider wrapper called ThemeProvider, which is added
to the component tree as follows:

<ThemeProvider>
 <Header />
 <Main />
</ThemeProvider>
<Footer />

The theme state is undefined when destructured from useContext in the Footer
component. What is the problem?

3.	 Is it possible to have two React contexts in an app? Is it possible to have two Zustand stores in
an app? Can you have both React context and Zustand in an app?

4.	 The following button updates state in a Zustand store when clicked:

<button
 onClick={() => {
 const changeTheme = useThemeStore(
 (state) => state.changeTheme,
);
 changeTheme(“blue”, “dark”);
 }}
>
 Change
</button>

There is a problem with this code. What is this problem?

5.	 In a React component, is it possible to use React’s useState as well as state from a Zustand store?

State Management338

Answers
1.	 createContext must be passed a default value when using it with TypeScript. Here’s the

corrected code:

const ThemeContext = createContext<ThemeContextType>({
 name: ‘standard’,
 color: ‘light’,
 changeTheme: (
 name: string, color: ‘dark’ | ‘light’) => {},
});

2.	 Footer must be nested inside ThemeProvider in the component tree, as follows:

<ThemeProvider>
 <Header />
 <Main />
 <Footer />
</ThemeProvider>

3.	 Yes, there is no limit on the number of React contexts in an app. There is also no limit on
the number of Zustand stores in an app. In addition, apps can contain React contexts and
Zustand stores.

4.	 The useThemeStore Hook can’t be called in an event handler because it violates the rules
of Hooks. This is the corrected code:

const changeTheme = useThemeStore(
 (state) => state.changeTheme,
);
return (
 ...
 <button
 onClick={() => {
 changeTheme(“blue”, “dark”);
 }}
 >
 Change
 </button>
 ...
);

5.	 Yes, local state defined using useState or useReducer can be used alongside shared state
from a Zustand store.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/GxSkC

https://packt.link/GxSkC

11
Reusable Components

In this chapter, we will build a checklist component and use various patterns to make it highly reusable
but still strongly typed.

We will start by using TypeScript generics to strongly type the data passed to the component. Then,
we will use the props spreading pattern to make the component API-flexible and allow consumers of
the component to custom render parts of the component using the render props pattern. After that,
we will learn how to make custom hooks and use them to extract logic for checked items and how to
make the state within a component controllable to change the component’s behavior.

By the end of this chapter, you’ll have mastered key TypeScript and React patterns that will strengthen
your ability to build flexible, maintainable, and reusable components.

We’ll cover the following topics:

•	 Creating the project

•	 Using generic props

•	 Using prop spreading

•	 Using render props

•	 Adding checked functionality

•	 Creating custom hooks

•	 Allowing the internal state to be controlled

Reusable Components342

Technical requirements
We will use the following technologies in this chapter:

•	 Node.js and npm: You can install them here: https://nodejs.org/en/download/.

•	 Visual Studio Code: You can install it here: https://code.visualstudio.com/.

All the code snippets in this chapter can be found online at https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter11.

Creating the project
In this short section, we will create the project for the app we will build and its folder structure. The
folder structure will be straightforward because it contains a single page with the checklist component
we will build.

We will develop the app using Visual Studio Code as in previous chapters, so open Visual Studio Code
and carry out the following steps:

1.	 Create the project using Vite. See Chapter 2, Getting Started with TypeScript, if you can’t
remember the steps for this.

2.	 Copy styles from the GitHub repository at https://github.com/PacktPublishing/
Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter11/
start/src/index.css file, overwriting the existing contents.

That completes the project setup. Next, we will learn about a pattern that enables a reusable component
to accept different types of data in a strongly typed manner.

Using generic props
In this section, we’ll take some time to understand how to create our own generic types and also learn
about the keyof TypeScript feature, which is useful for generic types. We will use this knowledge to
build the first iteration of the checklist component with a generic type for its props.

Understanding generics

We have used generics throughout this book. For example, the useState hook has an optional
generic parameter for the type of state variable:

const [visible, setVisible] = useState<boolean>()

https://nodejs.org/en/download/
https://code.visualstudio.com/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter11
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter11/start/src/index.css
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter11/start/src/index.css
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/blob/main/Chapter11/start/src/index.css

Using generic props 343

Generic parameters in a function allow that function to be reusable with different types and be strongly
typed. The following function returns the first element in an array, or null if the array is empty.
However, the function only works with a string array:

function first(array: Array<string>): string | null {
 return array.length === 0 ? null : array[0];
}

Generics allows us to make this function usable with any type of array.

Generic functions

Although we have used generic functions throughout this book, we haven’t created our own generic
function yet. Generic type parameters are defined in angled brackets before the function’s parentheses:

function someFunc<T1, T2, ...>(...) {
 ...
}

The name of a generic type can be anything you like, but it should be meaningful so that it is easy
to understand.

Here is a generic version of the function we saw earlier. Now, it can work with arrays containing any
type of element:

function first<Item>(array: Array<Item>): Item | null {
 return array.length === 0 ? null : array[0];
}

The function has a single generic parameter called Item, which is used in the type of the array
function parameter, as well as the function’s return type.

Generic types

Custom types can be generic as well. For a type alias, its generic parameters are defined in angled
brackets after the type name:

type TypeName<T1, T2, …> = {
 ...
}

Reusable Components344

For example, the props of a React component can be generic. An example of a generic Props type
is as follows:

type Props<Item> = {
 items: Item[];
 ...
};

The Props type has a single generic parameter called Item, which is used in the type of the items prop.

The keyof operator

The keyof operator is a TypeScript operator that returns a union of string literal types representing
all the keys of a given type:

type User = {
 name: string;
 email: string;
};
type UserKeys = keyof User; // “name” | “email”

You can combine keyof with a generic type to dynamically reference the keys in the generic parameter:

type List<Item> = {
 items: Item[];
 id: keyof Item;
};
const users: List<User> = {
 items: [{ name: ‘user1’, email: ‘user1@somewhere.com’ }],
 id: ‘name’, // must be ‘name’ or ‘email’
};

In the preceding example, the id property of the users object must be a key of the User type – that
is, ‘name’ or ‘email’.

Generic React components

Generic props can be integrated into a generic function to produce a generic React component. Here’s
an example of a generic List component:

type Props<Item> = {
 items: Item[];
};
export function List<Item>({ items }: Props<Item>) {
 ...
}

Using generic props 345

The items prop in the List component can now have any type, making the component flexible
and reusable.

Now that we understand how to create a component with generic props, we will create the first iteration
of the checklist component.

Creating a basic list component

We will now start to create our reusable component. In this iteration, it will be a basic list containing
some primary and secondary text obtained from an array of data.

Carry out the following steps:

1.	 Start by creating a folder for the component called Checklist in the src folder. Then, create
a file called Checklist.tsx in this folder.

2.	 Open Checklist.tsx and add the following Props type:

type Props<Data> = {
 data: Data[];
 id: keyof Data;
 primary: keyof Data;
 secondary: keyof Data;
};

Here is an explanation of each prop:

	� The data prop is the data that drives the items in the list

	� The id prop is the property’s name in each data item that uniquely identifies the item

	� The primary prop is the property’s name in each data item that contains the main text to
render in each item

	� The secondary prop is the property’s name in each data item that includes the supplementary
text to render in each item

3.	 Next, start to implement the component function as follows:

export function Checklist<Data>({
 data,
 id,
 primary,
 secondary,
}: Props<Data>) {
 return (

 {data.map((item) => {

Reusable Components346

 })}

);
}

The component renders an unordered list element. It maps over the data items where we will
eventually render each list item.

4.	 Start implementing the function inside data.map as highlighted here:

{data.map((item) => {
 const idValue = item[id] as unknown;
 if (
 typeof idValue !== ‘string’ &&
 typeof idValue !== ‘number’
) {
 return null;
 }
 const primaryText = item[primary] as unknown;
 if (typeof primaryText !== ‘string’) {
 return null;
 }
 const secondaryText = item[secondary] as unknown;
}

The function checks whether the unique identifier (idValue) is a string or number, and if not,
nothing is rendered. The function also checks that the primary text property (primaryText)
is a string, and again, if not, nothing is rendered.

It’s important to do these runtime type checks because we want the Checklist component
to be reusable with many different data sources, including data from a server.

5.	 Finish the implementation of the map function by rendering the list items as follows:

{data.map((item) => {
 ...
 return (
 <li
 key={idValue}
 >
 <div className=”primary”>
 {primaryText}
 </div>
 {typeof secondaryText === ‘string’ && (
 <div className=”secondary”>

Using generic props 347

 {secondaryText}
 </div>
)}

);
})}

The list items are rendered with a primary div element and an optional secondary div element.

6.	 Create a new file in the Checklist folder called index.ts and export the Checklist
component into it:

export * from ‘./Checklist’;

This file will simplify import statements for the Checklist component.

7.	 The final step before seeing the component in action is to add it to the component tree in the
app. Open App.tsx and replace the content within it with the following:

import { Checklist } from ‘./Checklist’;

function App() {
 return (
 <div>
 <Checklist
 data={[
 { id: 1, name: ‘Lucy’, role: ‘Manager’ },
 { id: 2, name: ‘Bob’, role: ‘Developer’ },
]}
 id=”id”
 primary=”name”
 secondary=”role”
 />
 </div>
);
}

export default App;

We reference the Checklist component and pass some data into it. Notice how type-safe
the id, primary, and secondary attributes are – we are forced to enter a valid property
name with the data items.

Reusable Components348

8.	 Run the app by entering npm run dev in the terminal. The checklist component appears
as shown here:

Figure 11.1 – Our basic checklist component

Currently, the component renders a basic list – we will add the checked functionality later in
this chapter.

That completes this section on generic props.

To recap, here are some key points:

•	 TypeScript generics allow reusable code to be strongly typed.

•	 Functions can have generic parameters that are referenced within the implementation.

•	 Types can also have generic parameters that are referenced within the implementation.

•	 A React component can be made generic by feeding a generic props type into a generic function
component. The component implementation will then be based on generic props.

Next, we will learn about a pattern that allows the prop type to inherit props from an HTML element.

Using prop spreading 349

Using prop spreading
In this section, we’ll learn about a pattern called prop spreading. This pattern is useful when you want
to use all the props from an HTML element in the implementation of a component. In our checklist
component, we will use this pattern to add all the props for the ul element. This will allow consumers
of the component to specify props, such as the height and width of the checklist.

So, carry out the following steps:

1.	 Open Checklist.tsx and import the following type from React:

import { ComponentPropsWithoutRef } from ‘react’;

This type allows us to reference the props of an HTML element such as ul. It is a generic type
that takes the HTML element name as a generic parameter.

2.	 Add the props from the ul element to the component props type as follows:

type Props<Data> = {
 data: Data[];
 id: keyof Data;
 primary: keyof Data;
 secondary: keyof Data;
} & ComponentPropsWithoutRef<’ul’>;

3.	 Add a rest parameter called ulProps to collect all the props for the ul element in a single
ulProps variable:

export function Checklist<Data>({
 data,
 id,
 primary,
 secondary,
 ...ulProps
}: Props<Data>) {
 ...
}

This is the first time we have used rest parameters in this book. They collect multiple arguments
that are passed into the function into an array, so any props that aren’t called data, id,
primary, or secondary will be collected into the ulProps array. For more information
on rest parameters, see https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Functions/rest_parameters.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

Reusable Components350

4.	 Now, we can spread ulProps onto the ul element using the spread syntax:

export function Checklist<Data>({
 data,
 id,
 primary,
 secondary,
 ...ulProps
}: Props<Data>) {
 return (
 <ul
 {...ulProps}
 >...
);
}

5.	 We can use this new feature of Checklist to specify the list height and width. Open App.
tsx and add the following style attribute, as well as more data items:

<Checklist
 data={[
 { id: 1, name: ‘Lucy’, role: ‘Manager’ },
 { id: 2, name: ‘Bob’, role: ‘Developer’ },
 { id: 3, name: ‘Bill’, role: ‘Developer’ },
 { id: 4, name: ‘Tara’, role: ‘Developer’ },
 { id: 5, name: ‘Sara’, role: ‘UX’ },
 { id: 6, name: ‘Derik’, role: ‘QA’ }
]}
 id=”id”
 primary=”name”
 secondary=”role”
 style={{
 width: ‘300px’,
 maxHeight: ‘380px’,
 overflowY: ‘auto’
 }}
/>

6.	 If the app isn’t running, run it by entering npm run dev in the terminal. The checklist
component appears sized as we expect:

Using render props 351

Figure 11.2 – The sized checklist component

The component now has a fixed height with a vertical scrollbar as a result of the style we passed
into the component.

That completes our use of the prop spreading pattern. Here’s a recap of the key points:

•	 We intersect the props type with ComponentPropsWithoutRef to add props for the
HTML element we want to spread onto

•	 We use a rest parameter in the component props to collect all the HTML element props into
an array

•	 We can then spread the rest parameter onto an HTML element in the JSX

Next, we will learn about a pattern that allows consumers to render parts of a component.

Using render props
In this section, we will learn about the render props pattern and use it to allow the consumer of the
component to render items within the checklist component.

Reusable Components352

Understanding the render props pattern

A way of making a component highly reusable is to allow the consumer to render internal elements
within it. The children prop on a button element is an example of this because it allows us to
specify any button content we like:

<button>We can specify any content here</button>

The render props pattern allows us to use a prop other than children to provide this capability. This
is useful when the children prop is already used for something else, as in the following example:

<Modal heading={<h3>Enter Details</h3>}>
 Some content
</Modal>

Here, heading is a render prop in a Modal component.

Render props are useful when allowing the consumer to render elements associated with the data
passed into the component because the render prop can be a function:

<List
 data={[...]}
 renderItem={(item) => <div>{item.text}</div>}
/>

The preceding example has a render prop called renderItem that renders each list item in a List
component. The data item is passed into it so it can include its properties in the list item. This is similar
to what we will implement next for our checklist component.

Adding a renderItem prop

We will add a prop called renderItem to the checklist that allows consumers to take control of the
rendering of the list items. Carry out the following steps:

1.	 Open Checklist.tsx and add the ReactNode type to the React import statement:

import { ComponentPropsWithoutRef, type ReactNode } from
‘react’;

ReactNode represents an element that React can render. Therefore, we will use ReactNode
as the return type for our render prop.

2.	 Add a render prop called renderItem to the Props type:

type Props<Data> = {
 data: Data[];
 id: keyof Data;

Using render props 353

 primary: keyof Data;
 secondary: keyof Data;
 renderItem?: (item: Data) => ReactNode;
} & ComponentPropsWithoutRef<’ul’>;

The prop is a function that takes in the data item and returns what needs rendering. We have
made the prop optional because we will provide a default implementation for list items but
also allow consumers to override it.

3.	 Add renderItem to the component function parameters:

export function Checklist<Data>({
 data,
 id,
 primary,
 secondary,
 renderItem,
 ...ulProps
}: Props<Data>) {
 ...
}

4.	 In the JSX, at the top of the mapping function, add an if statement to check whether the
renderItem prop has been specified. If renderItem has been specified, call it with the
data item, and return its result from the mapping function:

<ul ...>
 {data.map((item) => {
 if (renderItem) {
 return renderItem(item);
 }
 const idValue = item[id] as unknown;
 ...
 })}

So, if renderItem has been specified, it will be called to get the element to render as the list
item. If renderItem hasn’t been specified, it will render the list item as it previously did.

5.	 To try the new prop out, open App.tsx and add the following renderItem attribute:

<Checklist
 ...
 renderItem={(item) => (
 <li key={item.id}>
 <div className=”primary”>
 {item.name},{“ “}

Reusable Components354

 <small
 style={{
 textTransform: “uppercase”
 }}>
 {item.role}
 </small>
 </div>

)}
/>

The list items are now rendered with the role in uppercase. The key attribute on the list item
elements is set to the unique item ID, allowing React to efficiently update the DOM when list
items have changed, been added, or removed.

6.	 If the app isn’t running, run it by entering npm run dev in the terminal. The checklist
component appears with the overridden list items:

Figure 11.3 – Overridden list items

7.	 Before continuing to the next section, remove the use of renderItem in the Checklist
element in App.tsx. The default rendering of list items should then appear.

That completes this section on the render props pattern. To recap, here are some key points:

•	 The render props pattern allows a component consumer to override the rendering of parts of
the component

Adding checked functionality 355

•	 A render prop can either be an element or a function that returns an element

•	 A common use case for a render prop is a data-driven list in which the rendering of list items
can be overridden

Next, we will add checked functionality to our checklist component.

Adding checked functionality
Currently, our checklist component doesn’t contain the ability to check items, so we will now add
checkboxes to the list of items, giving users the ability to check them. We will track the checked items
using a React state.

So, carry out the following steps to add this functionality to our component:

1.	 Open Checklist.tsx and add useState to the React import statement:

import { ..., useState } from ‘react’;

We will use the state to store the IDs of the checked items.

2.	 At the top of the component implementation, add the state for the IDs of the checked items:

const [checkedIds, setCheckedIds] =
 useState<IdValue[]>([]);

We have referenced an IdValue type that we haven’t defined yet – we’ll define this after we
have finished the component implementation in step 6.

3.	 Add checkboxes to the list of items as follows:

<li key={idValue}>
 <label>
 <input
 type=”checkbox”
 checked={checkedIds.includes(idValue)}
 onChange={handleCheckChange(idValue)}
 />
 <div>
 <div ... >
 {primaryText}
 </div>
 {typeof secondaryText === ‘string’ && (
 <div ... >
 {secondaryText}
 </div>
)}

Reusable Components356

 </div>
 </label>

The checkedIds state powers the checked attribute of the checkbox by checking whether
the list item’s ID is contained within it.

The label element intentionally wraps the input element so that clicking anywhere inside
the label, including the text or nested div elements, will toggle the checkbox. This improves
usability for users with motor impairments who may struggle to click small checkboxes. Screen
readers will also associate label content with the checkbox, so users using this tool will know
what the checkbox represents.

We will implement the referenced handleCheckChange function in the next step. Notice
that the reference calls the function passing the ID of the list item that has been checked.

4.	 Start to implement the handleCheckChange function in the component as follows:

const [checkedIds, setCheckedIds] = ...
const handleCheckChange =
 (checkedId: IdValue) => () => {};
return ...

This is a function that returns the handler function. This complexity is because a basic checked
handler doesn’t pass in the list item’s ID. This approach is called currying, and more information
on it can be found at the following link: https://javascript.info/currying-
partials.

5.	 Complete the handler implementation as follows:

const handleCheckChange = (checkedId: IdValue) => () => {
 const isChecked = checkedIds.includes(checkedId);
 const newCheckedIds = isChecked
 ? checkedIds.filter(
 (itemCheckedid) => itemCheckedid !== checkedId
)
 : checkedIds.concat(checkedId);
 setCheckedIds(newCheckedIds);
};

The implementation updates the list item’s ID to the checkedIds state if the list item has
been checked and removes it if it is unchecked.

6.	 Next, let’s define the IdValue type. Create a new file in the Checklist folder called types.
ts with the definition of IdValue:

export type IdValue = string | number;

Here, the list item’s ID can be a string or number value.

https://javascript.info/currying-partials
https://javascript.info/currying-partials

Creating custom hooks 357

7.	 Move back to Checklist.tsx and import IdValue:

import { IdValue } from ‘./types’;

The compilation errors should now be resolved.

8.	 If the app isn’t running, run it by entering npm run dev in the terminal. The checklist
component appears with checkboxes for each list item:

Figure 11.4 – Checkboxes for list items

The checklist component now includes checkboxes. However, there is an opportunity to make the
checked logic reusable – we’ll cover this in the next section.

Creating custom hooks
In this section, we’ll learn about custom React hooks. Then, we will use this knowledge to extract the
checked logic from the checklist component into a reusable custom hook.

Understanding custom hooks

As well as standard hooks such as useState, React allows us to create our own custom hooks.
Custom hooks allow logic to be isolated and reused across multiple components.

Reusable Components358

A custom hook is defined using a function with a name that starts with the word use. This naming
convention helps ESLint check for problems with the use of the custom hook. Here’s a custom hook
that provides toggling logic:

export function useToggle() {
 const [toggleValue, setToggleValue] = useState(false);

 function toggle() {
 setToggleValue(!toggleValue);
 }

 return {toggleValue, toggle};
};

The custom hook contains the state of the current toggle value, which is either true or false. It
also includes a function called toggle, which toggles the current value. The current toggle value
and the toggle function are returned from the custom hook in an object structure.

Note that an object structure doesn’t have to be returned. If the custom hook only returns a single item,
then that item can be returned directly. If the custom hook returns two things (as in the preceding
example), it can return a tuple (as useState does). An object structure is nice for more than two
items because the object keys make it clear what each item is.

Another trait of a custom hook is that it uses other standard React hooks. For example, the useToggle
custom hook uses useState. If the custom hook doesn’t call a React hook or another custom hook,
it’s just a regular function rather than a custom hook.

This custom hook can then be used in the implementation of a component as follows:

const { toggleValue, toggle } = useToggle();
return (
 <div>
 <button onClick={toggle}>{toggleValue ? ‘ON’ : ‘OFF’}</button>
 </div>
);

The toggle value (toggleValue) and the toggle function are destructured from the return value
of the custom hook. The toggle value is used to render text ON or OFF inside the button content
depending on whether it is true or false. The toggle function is also assigned to the click
handler of the button.

Custom hooks can take in parameters as well. In the example here, we have added a default value in
the useToggle hook:

type Params = {
 defaultToggleValue?: boolean;

Creating custom hooks 359

};
export function useToggle({ defaultToggleValue }: Params) {
 const [toggleValue, setToggleValue] = useState(
 defaultToggleValue
);
 ...
}

In the preceding example, the parameters are in an object structure. An object structure is nice when
there are multiple parameters and nothing breaks when new parameters are added.

Arguments are passed into the custom hook in an object. Here’s an example of using useToggle
with its value initially being true:

const { toggleValue, toggle } = useToggle({
 defaultToggleValue: true
});

Now that we understand how to create and use custom hooks, we will put this into practice in our
checklist component.

Extracting checked logic into a custom hook

We will extract the logic for checked items into a custom hook. This will allow potential future
components to use the logic and clean up the code a little.

The custom hook will be called useChecked and will contain the state for the checked list item IDs.
The hook will also include a handler that can be attached to the checkboxes, updating the checked
list item ID’s state.

To do this, carry out the following steps:

1.	 In the Checklist folder, create a file for the custom hook called useChecked.ts.

2.	 Open useChecked.ts and add the following import statements:

import { useState } from ‘react’;
import { IdValue } from ‘./types’;

The hook will use React state that is typed using IdValue.

3.	 Start to implement the function for the custom hook by initializing the state:

export function useChecked() {
 const [checkedIds, setCheckedIds] =
 useState<IdValue[]>([]);
}

Reusable Components360

The hook doesn’t have any parameters. The useState call is exactly the same as the one
currently in the Checklist component – this could be copied and pasted into the custom hook.

4.	 Add a checked handler to the custom hook. This can be copied from the implementation of
the Checklist component:

export function useChecked() {
 const [checkedIds, setCheckedIds] =
 useState<IdValue[]>([]);

 const handleCheckChange = (checkedId: IdValue) => () => {
 const isChecked = checkedIds.includes(checkedId);
 const newCheckedIds = isChecked
 ? checkedIds.filter(
 (itemCheckedid) => itemCheckedid !== checkedId
)
 : checkedIds.concat(checkedId);
 setCheckedIds(newCheckedIds);
 };
}

5.	 The last task in the custom hook implementation is to return the checked IDs and the
handler function:

export function useChecked() {
 ...
 return { handleCheckChange, checkedIds };
}

6.	 Next, open Checklist.tsx and remove the state definition and the handleCheckChange
handler function. Also, remove useState and IdValue from the import statements, as
they are redundant.

7.	 Still in Checklist.tsx, import the useChecked hook we just created:

import { useChecked } from ‘./useChecked’;

8.	 Add a call to useChecked and destructure the checked IDs and the handler function:

export function Checklist<Data>({ ... }: Props<Data>) {
 const { checkedIds, handleCheckChange } =
 useChecked();
 return ...
}

9.	 If the app isn’t running, run it by entering npm run dev in the terminal. The checklist
component will appear and behave as it did before we made these changes.

Allowing the internal state to be controlled 361

That completes the implementation and use of the custom hook. To recap, here are some key points:

•	 Custom hooks make code a little cleaner and are reusable because they isolate logic, which
can be complex.

•	 Custom hooks must start with use.

•	 Custom hooks must use a standard React hook or another custom hook.

•	 A custom hook is just a function that returns useful things for components to use. Using an
object structure for the returned items is ideal when returning many items because the object
keys make it clear what each item is.

•	 A custom hook can have parameters. Using an object structure for the parameters is ideal for
many items and doesn’t break anything when new parameters are added.

Next, we will cover a pattern that will allow the consumer of a component to control some of its
behavior with the state.

Allowing the internal state to be controlled
In this section, we’ll learn how to allow consumers of a component to control its internal state. We
will use this pattern in the checklist component so that users can check just a single item.

Understanding how the internal state can be controlled

Allowing consumers of a component to control the state allows the behavior of a component to be
tweaked if that behavior is driven by the state. Let’s go through an example using the useToggle
custom hook we covered in the last section when learning about custom hooks:

1.	 Two additional props are required to allow the internal state to be controlled – one for the
current state value and one for a change handler. These additional props are toggleValue
and onToggleValueChange in useToggle:

type Params = {
 defaultToggleValue?: boolean;
 toggleValue?: boolean;
 onToggleValueChange?: (
 toggleValue: Boolean
) => void;
};

export function useToggle({
 defaultToggleValue,
 toggleValue,
 onToggleValueChange,

Reusable Components362

}: Params) {
 ...
}

These props are marked as optional because this pattern doesn’t force the consumer of the
component to control the state – it’s a feature they can opt in to.

Note
The consumer of the component will never specify both defaultToggleValue and
toggleValue. The defaultToggleValue parameter should only be used when the
consumer doesn’t want to control toggleValue with the state. When the consumer does
want to control toggleValue with the state, they can set the initial value of their state.

2.	 The toggleValue prop now clashes with the toggleValue state because they have the
same name, so the state needs to be renamed:

const [resolvedToggleValue, setResolvedToggleValue] =
 useState(defaultToggleValue);

function toggle() {
 setResolvedToggleValue(!resolvedToggleValue);
}

return { resolvedToggleValue, toggle };

3.	 The default value of the internal state now needs to consider that there might be a prop
controlling the state:

const [resolvedToggleValue, setResolvedToggleValue] =
 useState(defaultToggleValue || toggleValue);

4.	 When the state is changed, the change handler is called, if it has been defined:

function toggle() {
 if (onToggleValueChange) {
 onToggleValueChange(!resolvedToggleValue);
 } else {
 setResolvedToggleValue(!resolvedToggleValue);
 }
}

Again, it’s important that we still update the internal state in case the consumer isn’t controlling
the state.

Allowing the internal state to be controlled 363

5.	 The last step in implementing this pattern is to update the internal state when the controlled
state is updated. We can do this with useEffect as follows:

useEffect(() => {
 const isControlled = toggleValue !== undefined;
 if (isControlled) {
 setResolvedToggleValue(toggleValue);
 }
}, [toggleValue]);

The effect is triggered when the state prop changes. We check whether the state prop is being
controlled; if so, the internal state is updated with its value.

Here’s an example of controlling toggleValue in useToggle:

const [toggleValue, setToggleValue] = useState(false);
const onCount = useRef(0);
const { resolvedToggleValue, toggle } = useToggle({
 toggleValue,
 onToggleValueChange: (value) => {
 if (onCount.current >= 3) {
 setToggleValue(false);
 } else {
 setToggleValue(value);
 if (value) {
 onCount.current++;
 }
 }
 },
});

This example stores the toggle value in its own state and passes it to useToggle . The
onToggleValueChange parameter is handled by updating the state value. The logic for setting
the state value only allows it to be true up to three times.

So, this use case has overridden the default behavior of the toggle so that it can only be set to true
up to three times.

Now that we understand how to allow the internal state to be controlled, we will use it in our
checklist component.

Allowing checkedIds to be controlled

At the moment, our checklist component allows many items to be selected. If we allow the checkedIds
state to be controlled by the consumer, they can change the checklist component so that they can
select just a single item.

Reusable Components364

So, carry out the following steps:

1.	 We will start in useChecked.ts. Add useEffect to the React import statement:

import { useState, useEffect } from ‘react’;

2.	 Add new parameters for the controlled checked IDs and the change handler:

export function useChecked({
 checkedIds,
 onCheckedIdsChange,
}: {
 checkedIds?: IdValue[];
 onCheckedIdsChange?: (checkedIds: IdValue[]) => void;
}) {
 ...
}

3.	 Update the internal state name to resolvedCheckedIds and default it to the passed-in
checkedIds parameter if defined:

export function useChecked({
 checkedIds,
 onCheckedIdsChange,
}: Params) {
 const [resolvedCheckedIds, setResolvedCheckedIds] =
 useState<IdValue[]>(checkedIds || []);
 const handleCheckChange = (checkedId: IdValue) => () => {
 const isChecked =
 resolvedCheckedIds.includes(checkedId);
 let newCheckedIds = isChecked
 ? resolvedCheckedIds.filter(
 (itemCheckedid) => itemCheckedid !== checkedId
)
 : resolvedCheckedIds.concat(checkedId);
 setResolvedCheckedIds(newCheckedIds);
 };
 return { handleCheckChange, resolvedCheckedIds };
}

4.	 Update the handleCheckChange handler to call the passed-in change handler if defined:

const handleCheckChange = (checkedId: IdValue) => () => {
 const isChecked = resolvedCheckedIds.includes(checkedId);
 let newCheckedIds = isChecked
 ? resolvedCheckedIds.filter(

Allowing the internal state to be controlled 365

 (itemCheckedid) => itemCheckedid !== checkedId
)
 : resolvedCheckedIds.concat(checkedId);
 if (onCheckedIdsChange) {
 onCheckedIdsChange(newCheckedIds);
 }
 setResolvedCheckedIds(newCheckedIds);
};

5.	 The last task in useCheck.ts is to synchronize the controlled checked IDs with the internal
state. Add the following useEffect hook to achieve this:

useEffect(() => {
 const isControlled = checkedIds !== undefined;
 if (isControlled) {
 setResolvedCheckedIds(checkedIds);
 }
}, [checkedIds]);

6.	 Now, open Checklist.tsx and import the IdValue type:

import { IdValue } from ‘./types’;

7.	 Add the new props for the controlled checked IDs and the change handler:

type Props<Data> = {
 data: Data[];
 id: keyof Data;
 primary: keyof Data;
 secondary: keyof Data;
 renderItem?: (item: Data) => ReactNode;
 checkedIds?: IdValue[];
 onCheckedIdsChange?: (checkedIds: IdValue[]) => void;
} & ComponentPropsWithoutRef<’ul’>;

export function Checklist<Data>({
 data,
 id,
 primary,
 secondary,
 renderItem,
 checkedIds,
 onCheckedIdsChange,
 ...ulProps
}: Props<Data>) {}

Reusable Components366

8.	 Pass these props to useChecked and destructure and use the resolvedCheckedIds variable:

const { resolvedCheckedIds, handleCheckChange } = useChecked({
 checkedIds,
 onCheckedIdsChange,
});
return (
 <ul {...ulProps}>
 {data.map((item) => {
 ...
 return (
 <li ... >
 <label>
 <input
 type=”checkbox”
 checked={
 resolvedCheckedIds.includes(idValue)
 }
 onChange={handleCheckChange(idValue)}
 />
 ..
 </label>

);
 })}

);

9.	 Open index.ts in the Checklist folder. Export the IdValue type because consumers
of the component can now pass in checkedIds, which is an array of this type:

export type { IdValue } from ‘./types’;

10.	 Now, open App.tsx and import useState from React, as well as the IdValue type:

import { useState } from ‘react’;
import {
 Checklist,
 IdValue
} from ‘./Checklist’;

11.	 Define the state in the App component for the single checked ID:

function App() {
 const [checkedId, setCheckedId] =

Allowing the internal state to be controlled 367

 useState<IdValue | null>(null);
 ...
}

The state is null when there is no checked item. This can’t be set to undefined because
Checklist will think checkedIds is uncontrolled.

12.	 Create a handler for when an item is checked:

function handleCheckedIdsChange(newCheckedIds: IdValue[]) {
 const newCheckedIdArr = newCheckedIds.filter(
 (id) => id !== checkedId
);
 if (newCheckedIdArr.length === 1) {
 setCheckedId(newCheckedIdArr[0]);
 } else {
 setCheckedId(null);
 }
}

The handler stores the checked ID in the state or sets the state to null if the checked item
has been unchecked.

13.	 Pass the checked ID and the change handler to the Checklist element as follows:

<Checklist
 ...
 checkedIds={checkedId === null ? [] : [checkedId]}
 onCheckedIdsChange={handleCheckedIdsChange}
/>;

14.	 Let’s give this a try. If the app isn’t running, run it by entering npm run dev in the terminal.
You will find that only a single list item can be checked.

That completes this section on allowing the internal state to be controlled. Here’s a recap:

•	 This pattern is useful because it changes the component’s behavior

•	 The component must expose a prop to control the state value and another for its change handler

•	 Internally, the component still manages the state and synchronizes it with the consumer’s
using useEffect

•	 If the state is controlled, the consumer’s change handler is called in the internal change handler

Let’s summarize the chapter now!

Reusable Components368

Summary
In this chapter, we created a reusable checklist component and used many useful patterns along the way.

We started by learning how to implement generic props, which allow a component to be used with
varying data types but still be strongly typed. We used this to allow varying data to be passed into the
checklist component without sacrificing type safety.

We learned how to allow consumers of a component to spread props onto an internal element. A
common use case is spreading props onto the internal container element to allow the consumer to
size it, which is what we did with the checklist component.

The render prop pattern is one of the most useful patterns when developing reusable components.
We learned that it allows the consumer to take responsibility for rendering parts of the component.
We used this pattern to override the rendering of list items in our checklist component.

Custom hooks isolate logic and are useful for sharing logic across components and keeping the code
within a component clean. Custom hooks must call a standard React hook directly or indirectly. We
extracted the checked logic from our checklist component into a custom hook.

The last pattern we learned about was allowing a component’s internal state to be controlled. This
powerful pattern allows the consumer of the component to tweak its behavior. We used this to only
allow a single list item to be checked in our checklist component.

In the next chapter, we will learn how to write automated tests for React components.

Questions
Answer the following questions to check what you have learned in this chapter:

1.	 The snippet of the following component renders a Select component containing options:

type Props<TOption> = {
 options: TOption[];
 value: string;
 label: string;
};
export function Select({
 options,
 value,
 label,
}: Props<TOption>) {
 return ...
}

Questions 369

The following TypeScript error is raised on the component props parameter though: Cannot
find name ‘TOption’. What is the problem?

2.	 The value and label props from the component in question 1 should only be set to a property
name in the options value. What type can we give value and label so that TypeScript
includes them in its type checking?

3.	 A prop called option has been added to the Select component from the previous question
as follows:

type Props<TOption> = {
 ...,
 option: ReactNode;
};

export function Select<TOption>({
 ...,
 option
}: Props<TOption>) {
 return (
 <div>
 <input />
 {options.map((option) => {
 if (option) {
 return option;
 }
 return ...
 })}
 </div>
);
}

The option prop is supposed to allow the consumer of the component to override the rendering
of the options. Can you spot the flaw in the implementation?

4.	 The following is a Field component that renders a label element and an input element:

type Props = {
 label: string;
} & ComponentPropsWithoutRef<’input’>;

export function Field({ ...inputProps, label }: Props) {
 return (
 <>
 <label>{label}</label>
 <input {...inputProps} />

Reusable Components370

 </>
);
}

There is a problem with the implementation though – can you spot it?

5.	 How many render props can a component have?

Answers
1.	 The generic type must be defined in the component function as well as the prop:

export function Select<TOption>({
 options,
 value,
 label,
}: Props<TOption>) {
 return ...
}

2.	 The keyof operator can be used to ensure value and label are keys in options:

type Props<TOption> = {
 options: TOption[];
 value: keyof TOption;
 label: keyof TOption;
};

3.	 The consumer is likely to need the data for the option, so the prop should be a function
containing the data as a parameter:

type Props<TOption> = {
 ...,
 renderOption: (option: TOption) => ReactNode;
};

export function Select<TOption>({
 options,
 value,
 label,
 renderOption,

Answers 371

}: Props<TOption>) {
 return (
 <div>
 <input />
 {options.map((option) => {
 if (renderOption) {
 return renderOption(option);
 }
 return ...
 </div>
);
}

4.	 There is a syntax error because the rest parameter is the first parameter. The rest parameter
must be the last one:

export function Field({ label, ...inputProps }: Props) {
 ...
}

5.	 There is no limit on the number of render props a component can have.

12
Unit Testing with Vitest and the

React Testing Library

In this chapter, we will learn how to use Vitest and the React Testing Library, two popular automated
testing tools that can be used together in React applications. We will create tests on the checklist
component we created in Chapter 11, Reusable Components.

We will start by focusing on Vitest and using it to test simple functions, learning about Vitest’s common
matcher functions for writing expectations, and how to execute tests to check whether they pass.

We will then move on to learning about component testing using the React Testing Library. We’ll
understand the different query types and variants and how they help us create robust tests.

After that, we will learn about the most accurate way to simulate user interactions using a React
Testing Library companion package. We use this to create tests for items being checked in the
checklist component.

At the end of the chapter, we will learn how to determine which code is covered by tests and, more
importantly, which code is uncovered. We’ll use Vitest’s code coverage tool to do this and understand
all the different coverage stats it gives us.

So, in this chapter, we’ll cover the following topics:

•	 Testing pure functions

•	 Testing components

•	 Simulating user interactions

•	 Getting code coverage

Unit Testing with Vitest and the React Testing Library374

Technical requirements
We will use the following technologies in this chapter:

•	 Node.js and npm: You can install them from https://nodejs.org/en/download/

•	 Visual Studio Code: You can install it from https://code.visualstudio.com/

We will start with a modified version of the code we finished in the last chapter. The modified code
contains logic extracted into pure functions, which will be ideal to use in the first tests we write. This
code can be found online at https://github.com/PacktPublishing/Learn-React-
with-TypeScript-Third-Edition/tree/main/Chapter12/start.

Carry out the following steps to download this to your local computer:

1.	 Go to https://download-directory.github.io/ in a browser.

2.	 In the textbox on the web page, enter the following URL: https://github.com/
PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/
main/Chapter12/start.

3.	 Press the Enter key. A ZIP file containing the start folder will now be downloaded.

4.	 Extract the ZIP file to a folder of your choice and open that folder in Visual Studio Code.

5.	 Go to this folder in a terminal and execute the following command to install all the dependencies:

npm i

You are now ready to start writing tests for the checklist component.

Testing pure functions
In this section, we will start by understanding the fundamental parts of a Vitest test. Then, we will put
this into practice by implementing tests on a pure function in the checklist component.

A pure function has a consistent output value for a given set of parameter values. These functions
depend only on the function parameters and nothing outside the function, and also don’t change any
argument values passed into them. So, pure functions are nice for learning how to write tests because
they have no tricky side effects to deal with.

In this section, we will also cover how to test exceptions, which is useful for testing type assertion
functions. Finally, at the end of this section, we will learn how to run the tests in a test suite.

https://nodejs.org/en/download/
https://code.visualstudio.com/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter12/start
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter12/start
https://download-directory.github.io/
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter12/start
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter12/start
https://github.com/PacktPublishing/Learn-React-with-TypeScript-Third-Edition/tree/main/Chapter12/start

Testing pure functions 375

Understanding a test

Vitest looks for tests in files with particular extensions. These file extensions are .test.ts for tests
on pure functions and .test.tsx for tests on components. Alternatively, a .spec.* file extension
could be used.

A test is defined using Vitest’s test function:

test(‘your test name’, () => {
 // your test implementation
});

The test function has two parameters for the test name and implementation. It is common practice for
the test implementation to be an anonymous function. The test implementation can be asynchronous
by placing the async keyword in front of the anonymous function:

test(‘your test name’, async () => {
 // your test implementation
});

The test implementation will consist of calling the function with arguments being tested and checking
the result is as we expect:

test(‘your test name’, async () => {
 const someResult = yourFunction(‘someArgument’);
 expect(someResult).toBe(‘something’);
});

Vitest’s expect function is used to define our expectations. The result of the function call is passed into
expect, and it returns an object containing methods that we can use to define specific expectations
for the result. These methods are referred to as matchers. If the expectation fails, Vitest will fail the test.

The preceding test uses the toBe matcher. The toBe matcher checks that primitive values are equal,
and the preceding test uses it to check that the someResult variable is equal to ‘something’.
Other common matchers are as follows:

•	 toStrictEqual for checking the values in an object or array. This recursively checks every
property in the object or array. Here’s an example:

expect(someResult).toStrictEqual({
 field1: ‘something’,
 field2: ‘something else’
});

Unit Testing with Vitest and the React Testing Library376

•	 not for checking the opposite of a matcher. Here’s an example:

expect(someResult).not.toBe(‘something’);

•	 toMatch for checking strings against regular expressions (regexes). Here’s an example:

expect(someResult).toMatch(/error/);

•	 toContain for checking whether an element is in an array. Here’s an example:

expect(someResult).toContain(99);

A complete list of all the standard matchers can be found in the Vitest documentation at https://
vitest.dev/api/expect.html#expect.

Now that we understand the basics of a Vitest test, we will create our first Vitest test.

Testing isChecked

The first function we will test is isChecked. This function has two parameters:

•	 checkedIds: This is an array of IDs that are currently checked

•	 idValue: This is the ID to determine whether it is checked

We will write a test for when the list item is checked and another for when it isn’t checked:

1.	 Start by installing Vitest by entering the following command in a terminal:

npm i -D vitest

2.	 We will configure Vitest so that we can use its functions such as test and expect globally,
without having to import them. Open the Vite configuration file, vite.config.ts,
which is in the project root. We need to create a Vitest configuration and merge it into the
Vite configuration. So, import a mergeConfig function from Vite and a defineConfig
function from Vitest as follows:

import { defineConfig, mergeConfig } from “vite”;
import {
 defineConfig as defineVitestConfig
} from “vitest/config”;

We have aliased the Vitest defineConfig function so that it doesn’t collide with the one
from Vite.

3.	 Adjust the Vite configuration to be assigned to a variable and create the Vitest configuration:

const viteConfig = defineConfig({
 plugins: [react()],

https://vitest.dev/api/expect.html#expect
https://vitest.dev/api/expect.html#expect

Testing pure functions 377

});
const vitestConfig = defineVitestConfig({
 test: {
 globals: true,
 },
});

We have configured the Vitest APIs to be available globally by setting test.globals to true.

4.	 The last step in the vite.config.ts file is to merge the configurations and export them:

export default mergeConfig(viteConfig, vitestConfig);

5.	 To make TypeScript aware of the global APIs, we need to update the TypeScript configuration file.
Open tsconfig.app.json from the project root and add the Vitest global types as follows:

{
 “compilerOptions”: {
 ...,
 «types»: [«vitest/globals»]
 },
 ...
}

6.	 On to writing a test now. Create a file called isChecked.test.ts in the src/Checklist
folder that will contain the tests.

Note
It is best practice to place test files adjacent to the source file being tested. This allows the
developers to navigate to the test for a function quickly.

7.	 Open isChecked.test.ts and import the isChecked function:

import { isChecked } from ‘./isChecked’;

8.	 Start to create the first test as follows:

test(‘’, () => {
});

9.	 Add the test name as follows:

test(‘should return true when in checkedIds’, () => {
);

Unit Testing with Vitest and the React Testing Library378

Forming a naming convention for test names is good practice so that they are consistent and
easy to understand. Here, we have used the following naming structure:

should {expected output / behaviour} when {input / state condition}

10.	 Now, let’s start to implement the logic inside the test. The first step in the test is to call the
function being tested with the arguments we want to test:

test(‘should return true when in checkedIds’, () => {
 const result = isChecked([1, 2, 3], 2);
});

11.	 The second (and last) step in the test is to check that the result is what we expect, which is
true for this test:

test(‘should return true when in checkedIds’, () => {
 const result = isChecked([1, 2, 3], 2);
 expect(result).toBe(true);
});

Since the result is a primitive value (a Boolean), we use the toBe matcher to verify the result.

12.	 Add a second test to cover the case when the ID isn’t in the checked IDs:

test(‘should return false when not in checkedIds’, () => {
 const result = isChecked([1, 2, 3], 4);
 expect(result).toBe(false);
});

That completes the tests on the isChecked function. Next, we will learn how to test exceptions that
are raised. We will check that our tests work after that.

Testing exceptions

We are going to test the assertValueCanBeRendered type assertion function. This is a little
different from the last function we tested because we want to test whether an exception is raised,
rather than the returned value.

Vitest has a toThrow matcher that can be used to check whether an exception has been raised. For
this to catch exceptions, the function being tested has to be executed inside the expectation, as follows:

test(‘some test’, () => {
 expect(() => {
 someAssertionFunction(someValue);
 }).toThrow(‘some error message’);
});

Testing pure functions 379

We will use this approach to add three tests on the assertValueCanBeRendered type assertion
function. Carry out the following steps:

1.	 Create a file called assertValueCanBeRendered.test.ts in the src/Checklist
folder for the tests. Import the assertValueCanBeRendered type assertion function:

import {
 assertValueCanBeRendered
} from ‘./assertValueCanBeRendered’;

2.	 The first test we will add is to check whether an exception is raised when the value isn’t a string
or number:

test(‘should raise exception when not a string or number’, () =>
{
 expect(() => {
 assertValueCanBeRendered(
 true
);
 }).toThrow(
 ‘value is not a string or a number’
);
});

We pass the true Boolean value, which should cause an error.

3.	 Next, we will test whether an exception isn’t raised when the value is a string:

test(‘should not raise exception when string’, () => {
 expect(() => {
 assertValueCanBeRendered(
 ‘something’
);
 }).not.toThrow();
});

We use the not matcher with toThrow to check that an exception is not raised.

4.	 The final test will verify that no exception is raised when the value is a number:

test(‘should not raise exception when number’, () => {
 expect(() => {
 assertValueCanBeRendered(
 99
);
 }).not.toThrow();
});

Unit Testing with Vitest and the React Testing Library380

That completes the tests for the assertValueCanBeRendered type assertion function.

Now that we have implemented some tests, we will learn how to run them next.

Running tests

In order to run the tests, we simply run Vitest. After the tests are run, a watcher will rerun the tests
when the source code or test code changes.

Carry out the following steps to run all the tests:

1.	 First, add the following test script to the package.json file in the scripts section.
This npm command will execute Vitest, which will run the tests:

{
 ...,
 “scripts”: {
 ...
 «test»: «vitest»
 },
 ...
}

2.	 Open the terminal and execute the following command:

npm run test

test is a very common npm script, so the run keyword can be omitted. In addition, test
can be shortened to t. So, a shortened version of the previous command is as follows:

npm t

The tests will be run, and the following summary will appear in the terminal:

Figure 12.1 – First test run

Notice that there is no Command Prompt in the terminal like there usually is after a command
has finished executing. This is because the command hasn’t fully completed as the test watcher is
running—this is called watch mode. The command won’t complete until watch mode is exited
using the Q key. Leave the terminal in watch mode and carry on to the next step.

Testing pure functions 381

3.	 All the tests pass at the moment. Now, we will deliberately make a test fail so that we can see the
information Vitest provides us. So, open assertValueCanBeRendered.ts and change
the expected error message on the first test as follows:

test(‘should raise exception when not a string or number’, () =>
{
 expect(() => {
 assertValueCanBeRendered(true);
 }).toThrow(‘value is not a string or a numberX’);
});

As soon as the test file is saved, the tests are rerun, and a failing test is reported as follows:

Figure 12.2 – Failing test

Vitest provides valuable information about the failure that helps us quickly resolve test failures.
It tells us this:

	� Which test failed

	� What the expected result was, in comparison to the actual result

	� The line in our code where the failure occurred

4.	 Resolve the test failure by reverting the test to check for the correct error message. The test
should be as follows now:

test(‘should raise exception when not a string or number’, () =>
{
 expect(() => {
 assertValueCanBeRendered(true);
 }).toThrow(‘value is not a string or a number’);
});

Unit Testing with Vitest and the React Testing Library382

That completes our exploration of running Vitest tests and this section on testing pure functions.
Here’s a quick recap of the key points:

•	 Tests are defined using Vitest’s test function

•	 Expectations within the test are defined using Vitest’s expect function in combination with
one or more matchers

•	 The expect function argument can be a function that executes the function being tested.
This is useful for testing exceptions with the toThrow matcher

Next, we will learn how to test React components.

Testing components
Testing components is important because this is what the user interacts with. Having automated tests
on components gives us confidence that the app is working correctly and helps prevent regressions
when we change code.

In this section, we will learn how to test components with Vitest and the React Testing Library. Then,
we will create some tests on the checklist component we developed in the last chapter.

Understanding the React Testing Library

The React Testing Library is a popular library for testing React components. It provides functions to
render components and then select internal elements. Those internal elements can then be checked
using special matchers provided by another companion library, called jest-dom.

A basic component test

Here’s an example of a component test:

test(‘should render heading when content specified’, () => {
 render(<Heading>Some heading</Heading>);
 const heading = screen.getByText(‘Some heading’);
 expect(heading).toBeInTheDocument();
});

Let’s explain the test:

•	 React Testing Library’s render function renders the component we want to test. We pass in
all the appropriate attributes and content so that the component is in the required state for the
checks. In this test, we have specified some text in the content.

Testing components 383

•	 The next line selects an internal element of the component. There are lots of methods on React
Testing Library’s screen object that allow the selection of elements. These methods are
referred to as queries. getByText selects an element by matching the text content specified.
In this test, an element with Some heading text content will be selected and assigned to
the heading variable.

•	 The last line in the test is the expectation. The toBeInTheDocument matcher is a special
matcher from jest-dom that checks whether the element in the expectation is in the DOM.

Understanding queries

A React Testing Library query is a method that selects a DOM element within the component being
rendered. There are many different queries that find the element in different ways:

•	 ByRole: Queries elements by their role.

Note
DOM elements have a role attribute that allows assistive technologies such as screen readers
to understand what they are. Many DOM elements have this attribute preset—for example, the
button element automatically has the role of ‘button’. For more information on roles,
see https://developer.mozilla.org/en-US/docs/Web/Accessibility/
ARIA/Roles.

•	 ByLabelText: Queries elements by their associated label. See this page in the React Testing
Library documentation for the different ways elements can be associated with a label: https://
testing-library.com/docs/queries/bylabeltext.

•	 ByPlaceholderText: Queries elements by their placeholder text.

•	 ByText: Queries elements by their text content.

•	 ByDisplayValue: Queries input, textarea, and select elements by their value.

•	 ByAltText: Queries img elements by their alt attribute.

•	 ByTitle: Queries elements by their title attribute.

•	 ByTestId: Queries elements by their test ID (the data-testid attribute).

There are also different types of queries that behave slightly differently on the found element. Each
query type has a particular prefix on the query method name:

•	 getBy: Throws an error if a single element is not found. This is ideal for synchronously getting
a single element.

•	 getAllBy: Throws an error if at least one element is not found. This is ideal for synchronously
getting multiple elements.

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles
https://testing-library.com/docs/queries/bylabeltext
https://testing-library.com/docs/queries/bylabeltext

Unit Testing with Vitest and the React Testing Library384

•	 findBy: Throws an error if a single element is not found. The check for an element is repeated
for a certain amount of time (one second by default). So, this is ideal for asynchronously getting
a single element that might not be immediately in the DOM.

•	 findAllBy: Throws an error if at least one element is not found within a certain time (one
second by default). This is ideal for asynchronously getting multiple elements that might not
be immediately in the DOM.

•	 queryBy: This returns null if an element is not found. This is ideal for checking that an
element does not exist.

•	 queryAllBy: This is the same as queryBy, but returns an array of elements. This is ideal
for checking multiple elements do not exist.

So, the getByText query we used in the preceding test finds the element by the text content specified
and raises an error if no elements are found.

For more information on queries, see the following page in the React Testing Library
documentation: https://testing-library.com/docs/queries/about/.

Notice that none of these queries references implementation details such as an element name, ID, or
CSS class. If those implementation details change due to code refactoring, the tests shouldn’t break,
which is precisely what we want.

Now that we understand what the React Testing Library is, we will use it to write our first component test.

Implementing checklist component tests

The first component test we will write is to check that list items are rendered correctly. The second
component test will check that list items are rendered correctly when custom rendered. Carry out
the following steps:

1.	 Start by installing the React Testing Library and jest-dom by executing the following
command in a terminal:

npm i -D @testing-library/react @testing-library/dom @testing-
library/jest-dom jsdom

2.	 We now need to configure Vitest to use a DOM environment for the tests rather than the default
node environment. Open the Vite configuration file, vite.config.ts, and configure Vitest
to use the jsdom library that simulates the DOM:

const vitestConfig = defineVitestConfig({
 test: {
 ...,

https://testing-library.com/docs/queries/about/

Testing components 385

 environment: “jsdom”,
 },
});

3.	 In the configuration, we will also automatically import the jest-dom library so that we don’t
need to do this in every test file. Add a setup file to run before the tests in the Vite configuration
file as follows:

const vitestConfig = defineVitestConfig({
 test: {
 ...,
 setupFiles: ‘./vitest.setup.ts’,
 },
});

4.	 Create the vitest.setup.ts file in the project root with the jest-dom import statement:

import ‘@testing-library/jest-dom/vitest’;

5.	 Open tsconfig.app.json and make TypeScript aware of the jest-dom types as follows:

{
 “compilerOptions”: {
 ...
 “types”: [
 “vitest/globals”,
 “@testing-library/jest-dom”
]
 },
 ...
}

6.	 Create a new file in the src/Checklist folder called Checklist.test.tsx and add
the following import statements:

import { expect, test } from “vitest”;
import {
 render,
 screen
} from ‘@testing-library/react’;
import { Checklist } from ‘./Checklist’;

Unit Testing with Vitest and the React Testing Library386

7.	 Start to create the test as follows:

test(‘should render correct list items when data
 specified’, () => {
});

8.	 In the test, render Checklist with some data:

test(‘should render correct list items when data specified’, ()
=> {
 render(
 <Checklist
 data={[{ id: 1, name: ‘Lucy’, role: ‘Manager’ }]}
 id=”id”
 primary=”name”
 secondary=”role”
 />
);
});

We’ve rendered a single list item that should have the primary text Lucy and the secondary
text Manager.

9.	 Let’s check that Lucy has been rendered:

test(‘should render correct list items when data specified’, ()
=> {
 render(...);
 expect(
 screen.getByText(‘Lucy’)
).toBeInTheDocument();
});

We have selected the element using the getByText query and fed that directly into the
expectation. We use the toBeInTheDocument matcher to check that the found element
is in the DOM.

10.	 Complete the test by adding a similar expectation for checking for Manager:

test(‘should render correct list items when data specified’, ()
=> {
 render(...);
 expect(...).toBeInTheDocument();
 expect(
 screen.getByText(‘Manager’)
).toBeInTheDocument();
});

Testing components 387

That completes our first component test.

11.	 We will add the second test in one go, as follows:

test(‘should render correct list items when renderItem
specified’, () => {
 render(
 <Checklist
 data={[{ id: 1, name: ‘Lucy’, role: ‘Manager’ }]}
 id=”id”
 primary=”name”
 secondary=”role”
 renderItem={(item) => (
 <li key={item.id}>
 {item.name}-{item.role}

)}
 />
);
 expect(
 screen.getByText(‘Lucy-Manager’)
).toBeInTheDocument();
});

We render a single list item with the same data as the previous test. However, this test custom
renders the list items with a hyphen between the name and role. We use the same getByText
query to check that the list item with the correct text is found in the DOM.

12.	 If the tests aren’t automatically running, run them by running npm test in the terminal. The
two new tests should both pass:

Figure 12.3 – Component tests passing

That completes our first two component tests. See how easy React Testing Library makes this!

Unit Testing with Vitest and the React Testing Library388

Using test IDs

The next test we will implement is to check that a list item is checked when specified. This test will be
slightly trickier and requires a test ID on the checkboxes. Carry out the following steps:

1.	 Start by opening Checklist.tsx and notice the following test ID on the input element:

<input
 ...
 data-testid={`Checklist__input__${
 idValue.toString()}`}
/>

Test IDs are added to elements using a data-testid attribute. The list item ID is included
in the ID so that it is unique for each list item.

2.	 Now, return to the Checklist.test.tsx file and begin to write the following new test:

test(‘should render correct checked items when specified’, () =>
{
 render(
 <Checklist
 data={[{ id: 1, name: ‘Lucy’, role: ‘Manager’
 }]}
 id=”id”
 primary=”name”
 secondary=”role”
 checkedIds={[1]}
 />
);
});

We have rendered the checklist with the same data as the previous tests. However, we have
specified that the list item is checked using the checkedIds prop.

3.	 Now, on to the expectation for the test:

test(‘should render correct checked items when specified’, () =>
{
 render(
 <Checklist
 data={[{ id: 1, name: ‘Lucy’, role: ‘Manager’
 }]}
 id=”id”
 primary=”name”

Simulating user interactions 389

 secondary=”role”
 checkedIds={[1]}
 />
);
 expect(
 screen.getByTestId(‘Checklist__input__1’)
).toBeChecked();
});

We select the checkbox by its test ID using the getByTestId query. We then use the
toBeChecked matcher to verify that the checkbox is checked. toBeChecked is another
special matcher from the Vitest-dom package.

This new test should pass, leaving us with three passing tests on Checklist:

Figure 12.4 – All three component tests passing

4.	 Stop the test runner by pressing the Q key.

That completes this section on testing components. Here’s a quick recap:

•	 The React Testing Library contains lots of useful queries for selecting DOM elements. Different
query types will find single or many elements and will or won’t error if an element isn’t found.
There is even a query type for repeatedly searching for elements rendered asynchronously.

•	 jest-dom contains lots of useful matchers for checking DOM elements. A common matcher
is toBeInTheDocument, which verifies an element is in the DOM. However, jest-dom
contains many other useful matchers, such as toBeChecked for checking whether an element
is checked or not.

Next, we will learn how to simulate user interactions in tests.

Simulating user interactions
So far, our tests have simply rendered the checklist component with various props set. Users can
interact with the checklist component by checking and unchecking items. In this section, we will first
learn how to simulate user interactions in tests. We will then use this knowledge to test whether list
items are checked when clicked and that onCheckedIdsChange is raised.

Unit Testing with Vitest and the React Testing Library390

Understanding fireEvent and user-event

The React Testing Library has a fireEvent function that can raise events on DOM elements. The
following example raises a click event on a Save button:

render(<button>Save</button>);
fireEvent.click(screen.getByText(‘Save’));

This is okay, but what if logic was implemented using a mousedown event rather than click? The
test would then need to be as follows:

render(<button>Save</button>);
fireEvent.mouseDown(screen.getByText(‘Save’));

Fortunately, there is an alternative approach to performing user interactions in tests. The alternative
approach is to use the user-event package, which is a React Testing Library companion package
that simulates user interactions rather than specific low-level DOM events. The same test using
user-event looks like this:

const user = userEvent.setup();
render(<button>Save</button>);
await user.click(screen.getByText(‘Save’));

The user-event package will dispatch the appropriate low-level DOM events, in the appropriate
order. So, the test would cover logic implemented using a click event or mousedown event. So, it
is less coupled to implementation details, which is good. For this reason, we’ll use the user-event
package to write interactive tests on our checklist component.

The user-event package can simulate interactions other than clicks. See the documentation at
the following link for more information: https://testing-library.com/docs/user-
event/intro.

Implementing checklist tests for checking items

We will now write two interactive tests on the checklist component. The first test will check items are
checked when clicked. The second test will check onCheckedIdsChange is called when items are
clicked. Carry out the following steps:

1.	 Install the user-event package by executing the following command in a terminal:

npm i -D @testing-library/user-event

2.	 We will add the interactive tests in the same test file as the other component tests. So, open
Checklist.test.tsx and add an import statement for user-event:

import userEvent from ‘@testing-library/user-event’;

https://testing-library.com/docs/user-event/intro
https://testing-library.com/docs/user-event/intro

Simulating user interactions 391

3.	 The first test will test that items are checked when clicked. Start to implement this as follows
at the bottom of the file:

test(‘should check items when clicked’, async () => {
});

We have marked the test as asynchronous because the simulated user interactions in user-
event are asynchronous.

4.	 Next, initialize the user simulation as follows:

test(‘should check items when clicked’, async () => {
 const user = userEvent.setup();
});

5.	 We can now render a list item as we have done in previous tests. We will also get a reference
to the checkbox in the rendered list item and check that it isn’t checked:

test(‘should check items when clicked’, async () => {
 const user = userEvent.setup();
 render(
 <Checklist
 data={[{ id: 1, name: ‘Lucy’, role: ‘Manager’ }]}
 id=”id”
 primary=”name”
 secondary=”role”
 />
);
 const lucyCheckbox = screen.getByTestId(
 ‘Checklist__input__1’
);
 expect(lucyCheckbox).not.toBeChecked();
});

6.	 Now, on to the user interaction. Simulate the user clicking the list item by calling the click method
on the user object; the checkbox to be clicked needs to be passed into the click argument:

test(‘should check items when clicked’, async () => {
 const user = userEvent.setup();
 render(...);
 const lucyCheckbox = screen.getByTestId(
 ‘Checklist__input__1’
);
 expect(lucyCheckbox).not.toBeChecked();
 await user.click(lucyCheckbox);
});

Unit Testing with Vitest and the React Testing Library392

7.	 The last step in the test is to check that the checkbox is now checked:

test(‘should check items when clicked’, async () => {
 const user = userEvent.setup();
 render(...);
 const lucyCheckbox = screen.getByTestId(
 ‘Checklist__input__1’
);
 expect(lucyCheckbox).not.toBeChecked();
 await user.click(lucyCheckbox);
 expect(lucyCheckbox).toBeChecked();
});

8.	 The next test will test that the function assigned to the onCheckedIdsChange prop is called
when a list item is clicked. Here is the test:

test(‘should call onCheckedIdsChange when clicked’, async () =>
{
 const user = userEvent.setup();
 let calledWith: IdValue[] | undefined = undefined;
 render(
 <Checklist
 data={[{ id: 1, name: ‘Lucy’, role: ‘Manager’ }]}
 id=”id”
 primary=”name”
 secondary=”role”
 onCheckedIdsChange={(checkedIds) =>
 (calledWith = checkedIds)
 }
 />
);
 await user.click(screen.getByTestId(
 ‘Checklist__input__1’));
 expect(calledWith).toStrictEqual([1]);
});

We set a calledWith variable to the value of the onCheckedIdsChange parameter.
After the list item is clicked, we check the value of the calledWith variable using the
toStrictEqual matcher. The toStrictEqual matcher is a standard matcher that is
ideal for checking arrays and objects.

Getting code coverage 393

9.	 The second test references the IdValue type, so add an import statement for this:

import { IdValue } from ‘./types’;

10.	 Run the tests by running npm test in the terminal. We should now have five passing
component tests:

Figure 12.5 – Five passing component tests

11.	 Stop the test runner by pressing the Q key.

That completes the tests for clicking items and this section on simulating user interactions. We learned
that the React Testing Library’s fireAction function raises a particular event that couples tests
to implementation details. A better approach is to use the user-event package to simulate user
interactions, potentially raising several events in the process.

Next, we will learn how to quickly determine any code that isn’t covered by tests.

Getting code coverage
Code coverage is how we refer to how much of our app code is covered by unit tests. As we write our
unit tests, we’ll have a fair idea of what code is covered and not covered, but as the app grows and
time passes, we’ll lose track of this.

In this section, we’ll learn how to use Vitest’s code coverage option so that we don’t have to keep what
is covered in our heads. We will use the code coverage option to determine the code coverage on the
checklist component and understand all the different statistics in the report. We will use the code
coverage report to find some uncovered code in our checklist component. We will then extend the
tests on the checklist component to achieve full code coverage.

Installing the code coverage tool

The default code coverage tool for Vitest is coverage-v8. To install this in our project, execute the
following command in a terminal:

npm i -D @vitest/coverage-v8

Unit Testing with Vitest and the React Testing Library394

Running code coverage

To get code coverage, we run the test command with a --coverage option. We also include a
--watch=false option that tells Vitest not to run in watch mode. So, run the following command
in a terminal to determine code coverage on our app:

npm test -- --coverage --watch=false

The tests take a little longer to run because of the code coverage calculations. When the tests have
finished, a code coverage report is output in the terminal with the test results:

Figure 12.6 – Terminal code coverage report

Next, we will take some time to understand this code coverage report.

Understanding the code coverage report

The coverage report lists the coverage for each file and aggregates coverage in a folder for all the files
in the project. So, the whole app has between 62.79% and 80.95% code coverage, depending on which
statistic we take.

Getting code coverage 395

Here’s an explanation of all the statistic columns:

•	 % Stmts: This is statement coverage, which is how many source code statements have been
executed during test execution

•	 % Branch: This is branch coverage, which is how many of the branches of conditional logic
have been executed during test execution

•	 % Funcs: This is function coverage, which is how many functions have been called during
test execution

•	 % Lines: This is line coverage, which is how many lines of source code have been executed
during test execution

The rightmost column in the report is very useful. It gives the lines of source code that aren’t covered
by tests. For example, the getNewCheckedIds.ts file in the checklist component has line 6,
which is uncovered.

There is another version of the report that is generated in HTML format. This file is automatically
generated every time a test is run with the --coverage option. So, this report has already been
generated because we have just run the tests with the --coverage option. Carry out the following
steps to explore the HTML report:

1.	 The report can be found in an index.html file in a coverage folder. Double-click on the
file so that it opens in a browser:

Figure 12.7 – HTML coverage report

The report contains the same data as the terminal report, but this one is interactive.

Unit Testing with Vitest and the React Testing Library396

2.	 Click on the src/Checklist link in the second row of the report. The page now shows the
coverage for the files in the checklist component:

Figure 12.8 – Coverage report for checklist component files

3.	 Click on the getNewCheckedIds.ts link to drill into the coverage for that file:

Figure 12.9 – Coverage report for getNewCheckedIds.ts

We can see that the uncovered line 6 is clearly highlighted in the getNewCheckedIds.ts file.

Getting code coverage 397

So, the HTML coverage report is useful in a large code base because it starts with high-level coverage
and allows you to drill into coverage on specific folders and files. When viewing a file in the report,
we can quickly determine where the uncovered code is because it is clearly highlighted.

Next, we will update our tests so that line 6 in getNewCheckedIds.ts is covered.

Gaining full coverage on the checklist component

The logic not currently being checked by tests is the logic used when a list item is clicked but has
already been checked. We will extend the ‘should check items when clicked’ test to
cover this logic. Carry out the following steps:

1.	 Open Checklist.test.tsx and rename the ‘should check items when
clicked’ test as follows:

test(‘should check and uncheck items when clicked’, async () =>
{
 ...
});

2.	 Add the following highlighted lines at the end of the test to click the checkbox for a second
time and check it is unchecked:

test(‘should check and uncheck items when clicked’, async () =>
{
 const user = userEvent.setup();
 render(...);
 const lucyCheckbox = screen.getByTestId(
 ‘Checklist__input__1’
);
 expect(lucyCheckbox).not.toBeChecked();
 await user.click(lucyCheckbox);
 expect(lucyCheckbox).toBeChecked();
 await user.click(lucyCheckbox);
 expect(lucyCheckbox).not.toBeChecked();
});

3.	 In the terminal, rerun the tests with coverage:

npm run test -- --coverage --watch=false

Unit Testing with Vitest and the React Testing Library398

All the tests still pass, and the coverage on the checklist component is now reported as 100%
on all the statistics:

Figure 12.10 – 100% coverage on the checklist component

The checklist component is now well covered. However, it is a little annoying that index.ts and
types.ts appear in the report with zero coverage. We’ll resolve this next.

Ignoring files in the coverage report

We will remove index.ts and types.ts from the coverage report because they don’t contain
any logic and create unnecessary noise. Carry out the following steps:

1.	 Open the vite.config.ts file. We can configure coverage in a test.coverage field,
and there is an exclude option for removing files from the coverage report. Add the following
highlighted lines to ignore the files we don’t want to include in the coverage report:

const vitestConfig = defineVitestConfig({
 test: {
 ...,
 coverage: {
 exclude: [
 “**/types.ts”,
 “**/index.ts”,
 “vite.config.ts”,
 “eslint.config.js”,
],
 },
 },
});

Summary 399

2.	 In the terminal, rerun the tests with coverage:

npm run test -- --coverage --watch=false

The types.ts and index.ts files are removed from the coverage report:

Figure 12.11 – types.ts and index.ts files removed from the coverage report

That completes this section on code coverage. Here’s a quick recap:

•	 The --coverage option outputs a code coverage report after the tests have run.

•	 An interactive HTML code coverage report is generated in addition to the one in the terminal.
This is useful on a large test suite to drill into uncovered code.

•	 Both report formats highlight uncovered code, giving us valuable information to improve our
test suite.

It’s time to summarize the chapter.

Summary
In this chapter, we created tests on a checklist component using Vitest and the React Testing Library.
In addition, we learned about common matchers in Vitest’s core package and useful matchers for
component testing in a companion package called Vitest-dom.

We learned about the wide variety of queries available in the React Testing Library to select elements in
different ways. We used the getByText query extensively in the checklist tests. We also created a test
ID on list item checkboxes so that the getByTestId query could be used to select them uniquely.

We learned that the user-event package is an excellent way of simulating user interactions that
are decoupled from the implementation. We used this to simulate a user clicking a list item checkbox.

Unit Testing with Vitest and the React Testing Library400

Finally, we learned how to produce code coverage reports and understood all the statistics in the
report. The report included information about uncovered code, which we used to gain 100% coverage
on the checklist component.

So, we have reached the end of this book. You will now be comfortable with both React and TypeScript
and have excellent knowledge in areas outside React core, such as styling and the popular Next.js
framework. You will be able to develop components that are reusable across different pages and even
different apps. On top of that, you will now be able to write a robust test suite so that you can ship
new features with confidence.

In summary, the knowledge from this book will allow you to efficiently build the frontend of large
and complex apps with React and TypeScript. I hope you have enjoyed reading this book as much
as I did writing it!

Questions
Answer the following questions to check what you have learned in this chapter:

1.	 Why doesn’t the following expectation pass? How could this be resolved?

expect({ name: ‘Bob’ }).toBe({ name: ‘Bob’ });

2.	 Which matcher can be used to check that a variable isn’t null?

3.	 Here’s an expectation that checks whether a Save button is disabled:

expect(
 screen.getByText(‘Save’).hasAttribute(‘disabled’)
).toBe(true);

The expectation passes as expected, but is there a different matcher that can be used to simplify this?

4.	 We have a form element containing a Save button only when data has been loaded into fields
from a server API. We have used the findBy query type so that the query retries until the
data has been fetched:

expect(screen.findByText(‘Save’)).toBeInTheDocument();

However, the expectation doesn’t work—can you spot the problem?

5.	 The following expectation attempts to check that a Save button isn’t in the DOM:

expect(screen.getByText(‘Save’)).toBe(null);

This doesn’t work as expected, though. Instead, an error is raised because the Save button can’t
be found. How can this be resolved?

Answers 401

Answers
1.	 The toBe matcher should only be used for checking primitive values such as numbers and

strings—this is an object. The toStrictEqual matcher should be used to check objects
because it checks the values of all its properties instead of the object reference:

expect({ name: ‘Bob’ }).toStrictEqual({
 name: ‘Bob’
});

2.	 The not and toBeNull matchers can be combined to check that a variable isn’t null:

expect(something).not.toBeNull();

3.	 The toBeDisabled matcher can be used from jest-dom:

expect(screen.getByText(‘Save’)).toBeDisabled();

4.	 The findBy query type requires awaiting because it is asynchronous:

expect(
 await screen.findByText(‘Save’)
).toBeInTheDocument();

5.	 The queryBy query type can be used because it doesn’t throw an exception when an element
isn’t found. In addition, the not and toBeInTheDocument matchers can be used to check
that the element isn’t in the DOM:

expect(
 screen.queryByText(‘Save’)
).not.toBeInTheDocument();

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to the
author, and learn about new releases – follow the QR code below:

https://packt.link/GxSkC

https://packt.link/GxSkC

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry-leading tools to help you plan your personal development and advance your career. For
more information, please visit our website.

Why Subscribe?
•	 Spend less time learning and more time coding with practical eBooks and videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

React Key Concepts, Second Edition

Maximilian Schwarzmüller

ISBN: 978-1-83620-227-1

•	 Build modern, user-friendly, and reactive web apps

•	 Create components and utilize props to pass data between them

•	 Handle events, perform state updates, and manage conditional content

•	 Add styles dynamically and conditionally for modern user interfaces

•	 Use advanced state management techniques such as React's Context API

•	 Utilize React Router to render different pages for different URLs

•	 Understand key best practices and optimization opportunities

•	 Learn about React Server Components and Server Actions

https://www.amazon.com/React-Key-Concepts-depth-features/dp/183620227X/ref=sr_1_1?crid=39LTP809A8PPI&dib=eyJ2IjoiMSJ9.h5PRR04f7b9LQzcLZ1Td4SBhTHe-rODYJAi6yTKURCPQC430Y_3uE2oE-dsaeQuqiGAbMrMtJ9ni61Y8dXIqw9USHuK2k_f-py8LVk8sfzfUTUCFZ_FLPJsQTJqGXsavNaTxbT8GGojobH6yb3xISI2s1kVOBU0uUTgoHQvVUo1R5GtTze9Pg2Aon-wrVH34.yQJQMmbj27LL66OB3d0xva275o7uzwAkH1vt3CZxUp0&dib_tag=se&keywords=react+key+concept&qid=1747132831&s=books&sprefix=react+key+concep%2Cstripbooks-intl-ship%2C515&sr=1-1

405Other Books You May Enjoy

React and React Nativ, Fifth Edition

Mikhail Sakhniuk and Adam Boduch

ISBN: 978-1-80512-730-7

•	 Explore React architecture, component properties, state, and context

•	 Work with React Hooks for handling functions and components

•	 Fetch data from a server using the Fetch API, GraphQL, and WebSockets

•	 Dive into internal and external state management strategies

•	 Build robust user interfaces (UIs) for mobile and desktop apps using Material-UI

•	 Perform unit testing for your components with Vitest and mocking

•	 Manage app performance with server-side rendering, lazy components, and Suspense

https://www.amazon.com/React-Native-cross-platform-JavaScript-TypeScript-ebook/dp/B0CQTK654D/ref=sr_1_1?crid=39JHG0TW5XB4L&dib=eyJ2IjoiMSJ9.vKKzg2LyLc6DUdwMT06pUwFmTMIV2qD17Zome61hcoloVVFv1F7YwCbiv1k-wmHuX4VroOV-1cUCzR0a__ZU5ipmhiYKtDtcg0cHxZwB1a9n27_Z456JHWUayylC8INuzSZ3dKolonTEHEVAWB_fxQbKTahyKZwUCdssJQSFTOtM5BnD0vTvXwYuerrN3t8BYNdt-UDqA0YYzullZITtOhr2JdAn3gIM_SYY_0ePOkQ.cX7aMqRLhzrIZ53DplwbZoKkBTgr1ZeEXxVO56XCmjQ&dib_tag=se&keywords=react+and+react+native&qid=1747133922&s=digital-text&sprefix=react+and+react+native%2Cdigital-text%2C283&sr=1-1

406

Share Your Thoughts
Now you’ve finished Learn React with TypeScript, Third Edition, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1836643179
https://packt.link/r/1836643179

Download a Free PDF Copy of This Book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836643173

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781836643173

Index

A

action 87
alert component

adding, to SVGs 139, 140
CSS modules, using 127-129
plain CSS, using 121-124

Alert component
adding, to App component 20-22
close button, adding to 28-31
close button click handler,

implementing 32, 33
props, adding to 23-25
state, implementing 27

any type 55
using 55

app router 153, 175
aria-describedby attribute 289
arrays 58

using 58, 59
assertValueCanBeRendered function

testing 378, 379
async/await

reference link 82

B
Babel 16
Block, Element, Modifier (BEM) 125

blog app
code, setting up 203
database, setting up 204, 205
project, creating 203

blog post dynamic route
creating 187-190

branch coverage 395
bundle 14
bundling 14

C
callback Hook

component, re-rendering 99, 100
using 98-105

checked functionality
adding 355-357

checked logic
extracting, into custom hooks 359-361

checklist component
allowing, consumers to control

internal state 361-363
full coverage, gaining 397, 398
tests, implementing 384-387

checklist tests
implementing, for checking items 390-393

Index410

client boundaries 166
Client Components 159

creating 161-165
rendering 160
specifying 160
using, scenarios 166

client-side data fetching 200
benefits 202, 203

client-side rendering (CSR) 148
code coverage 393

running 394
code coverage report 394-397

files, ignoring 398, 399
code coverage tool

installing 393
ColorModeToggle

RSC, rendering 167-170
Components tool

using 35-37
contact form

creating 263-266
createContext function 322
Create React App

production build, producing 15
CSS clashes

practicing 124-126
CSS-in-JS

using 142, 143
CSS modules 126, 127

reference link 126
using, in alert component 127-129

currying 356
reference link 356

custom hooks 357-359
checked logic, extracting into 359-361
creating 357

D
data

fetching, with TanStack Query 238
mutating, with Server Function 223
mutating, with TanStack

Query mutation 254
database query

type safety, adding to 209-212
data state 310
data, with RSC

fetching 205
query functions, calling from 208, 209
query functions, implementing 206-208
type safety, adding to database

query 209-212
data, with Server Function

errors, handling 230-232
progress indicator, adding 229, 230

Date type 53
using 53, 54

derived state 311
destructuring 24
discriminated union 89
dynamic routes

creating 186, 187

E
effect Hook

cleanup logic, performing 78, 79
parameters 76
project, creating 79, 80
rules 77, 78
used, for fetching data 80-83
using 76

ESLint 8
event handler 31

Index 411

event listener 31
events

alert close event, implementing 33-35
close button click handler, implementing

in Alert component 32, 33
using 31, 32

F
field validation 293
fireEvent function 390
forms 261
form state 310
function coverage 395

G
generic argument 72
generic props

basic list component, creating 345-348
using 342

generic React component 344
generics 341-343

functions 343
keyof operator 344
types 343, 344

global state 312

H
handleAction function 270
handleSignIn function 315
handleSignOut function 315
handleSubmit 294
Header component

creating 183-186
HTML form validation

reference link 292

I
index signature 191
inline styles

benefits 141
drawbacks 141
using 140

IntelliSense
developer experience, improving with 47, 48

internal state
access, controlling 361-363
checkedIds, allowing to controlled

by consumer 363-367
intersection type 62
isChecked function

testing 376-378

J
JavaScript promises

reference link 80
JavaScript’s falsy values

reference link 30
JavaScript types 48-50

reference link 50
JavaScript XML (JSX) 16

K
keyof operator 344

L
layout components 182
libSQL 204
line coverage 395

Index412

Link component
using 178-180

linting 8
list component

creating 345-347
loading indicators, with React Suspense

adding 212
delay, adding 212, 213
implementing 214-218
significance 212

local state 310
logical AND short-circuit expressions

reference link 30

M
matcher function 373
matchers 375
memo Hook 95, 96

using 96-98
minification 14
multi-page apps, with Next.js

dynamic routes, creating 186
navigations, creating 178
routes, creating 174
search parameters, using 190
shared layout, creating 182

N
navigation

creating 178
Link component, using 178-180
useRouter, using 181, 182

network waterfall 200
Next.js project

creating 262, 263

O
object type

using 60, 61
optimistic updates

implementing 300
useOptimistic 300, 301

optional chaining operator 94
reference link 94

P
page router 175
Panda

reference link 143
plain CSS

referencing 119-121
using 118
using, in alert component 121-124

posts route
creating 176-178

prettier 10
Profiler tool

using 37, 38
project

creating 342
prop drilling 312

component structure, creating 313-315
composition, using 318, 319
using 312-318

props
adding, to Alert component 23-25
using 22, 23

props spreading pattern 341
using 349-351

push function 271

Index 413

Q
queries 383

element 383
types 383

queryFn 240
query functions

calling, from RSCs 208, 209
implementing 206-208

queryKey 240
query parameters 190

R
React

advantages 4, 5
SVGs, using 137-139

React component 17, 18
Alert component, adding to 20-22
Alert component, creating 18-20
checklist component tests,

implementing 384-387
creating 18, 68
entry point 15, 16
project, creating 69
props type, adding 70, 71
React Testing Library 382
state type, adding 71, 72
test IDs, using 388, 389
testing 382
tree 16

React context
reference link 321
using 320-328

React developer tools
Components tool, using 35-37
Profiler tool, using 37, 38
using 35

React error boundaries
implementing 219-223
used, for handling errors 218, 219

React Hook Form 291
client-side validation 291, 292
reference link 293
register function 292
submission, handling 294, 295
useForm Hook 292
using 291, 295-299
validation errors, obtaining 294
validation, specifying 293

React Hooks 26
React project

code formatting, adding 10-13
creating 5-7
linting, adding to Visual Studio Code 8-10
production build, producing 14, 15
running, in development mode 13, 14

React Server Component (RSC) 201
React Server Components (RSCs) 3

rendering, in ColorModeToggle 167-169
using, scenarios 166
versus Client Components 165

React Suspense 213, 214
used, for adding loading indicators 212

React Testing Library 382
component test 382, 383
queries 383, 384
reference link 384

ref Hook
using 91- 95

register function 292
regular expressions (regexes) 376
remote state 310
rendering 16

Index414

renderItem prop
adding 352-354

render props pattern 341, 352
renderItem prop, adding 352-354
using 351

re-rendering 26
rest parameter 349

reference link 349
Route Handler

benefits 249
creating 269
database mutation, creating 267, 268
type safety, adding to API response 252, 253
used, for integrating form

submission 269-271
using 249-252
using, for submission 267
using, with TanStack Query 249

route parameter 186
routes 175, 176

creating 174
posts route, creating 176-178
project, creating 174, 175
types 175

S
Scalable Vector Graphics (SVGs)

adding, to alert component 139, 140
using 136
using, in React 137-139

SCSS
using 141, 142

search parameters
adding, in app 191-194
using 190, 191

Server Action 272
server validation, adding 274-276

using, for submission 272
using, in ContactForm 272-274

Server Components 149-151
benefits 151, 152
creating 152
projects, creating 153-156
RSC, creating 156, 157
RSCs, used for addressing SPA problem 151
working 158, 159

Server Function 224, 225
creating 226-229
used, for mutating data 223

server-side data fetching 201, 202
benefits 202, 203

server state 310
shared layout

creating 182
Header component, creating 183-186
layout components 182

shared state 309, 312
single-page applications (SPAs) 148

benefits 149
issue 148

spread syntax 88
reference link 88

SQLite 204
SQLite3 Editor 204
SQLite database

blog app, connecting to 204, 205
state

close button, adding to Alert
component 28-31

implementing, in Alert component 27
using 26

state Hooks
useReducer 87, 88
useState, using 83-86
using 83

Index 415

statement coverage 395
state types 310

derived state 311
form state 310
local state 310
server state 310
shared state 312
URL state 310

StyleX
reference link 143

styling approaches
CSS-in-JS, using 142, 143
inline styles, using 140, 141
SCSS, using 141, 142

Suspense boundary 214

T
tab component 334
Tailwind CSS 130, 131

configuring 131
installing 131
reference link 131
using 130-136

TanStack Query 237-240
blog post data, fetching 241-248
project, setting up 241
reference link 257
Route Handler, using 249
used, for fetching data 238
using 332-334

TanStack Query mutation 254
used, for mutating data 254

test IDs
using 388, 389

toBe matcher 375
togglePermissions function 322
tree-shake 14

type aliases
creating 61-63

type predicate 58
TypeScript 3, 44

benefits 44
developer experience and productivity,

improving with IntelliSense 47, 48
type annotations 46
type errors, catching 45, 46

TypeScript compiler
reference link 67
using 65-68

TypeScript component
creating 68

TypeScript types 50
any type, using 55
arrays, using 58-60
creating 60
Date type, using 53-55
object types, using 60, 61
type aliases, creating 61-63
type annotations, using 50-52
type inference, using 53
union types, creating 63, 64
unknown type, using 56-58

U
union type 63

creating 63, 64
unknown type

using 56-58
URL parameters

using 332-335
URL state 310
useActionState 279-290

action state, adding to form 282-284
field errors, adding 285-290

Index416

state, returning from Server Action 280, 281
syntax 279
using 279, 280

useCallback Hook
reference link 105

useDeferredValue Hook 107, 108
reference link 108

useEffect
reference link 83

useEffect Hook 238
challenges, for data fetching 238, 239

useForm Hook 292
useFormStatus 277, 278, 291

using 277-279
useId Hook 106

reference link 106
useMemo Hook

reference link 98
useMutation Hook

object members 254
options 254
using 255-257

useOptimistic 300, 301
done state, making 302-304
unoptimistic contacts page, adding 301, 302
using 301

useQuery Hook
queryFn 240
queryKey 240
variables 240

UserContext.ts 322
useReducer Hook 87, 88

reference link 91
using 88-91

useRef
reference link 95

user-event function 390
user interactions

checklist tests, implementing, for
checking items 390-393

fireEvent function 390
simulating 389
user-event function 390

useRouter
using 181, 182

UserProvider.tsx 322
useState Hook

reference link 91
using 83-86

useTransition Hook 106
reference link 107

utility-first CSS framework 130

V
virtual DOM (Document Object Model) 5
Visual Studio Code

linting, adding to 8-10
Vite 5
Vitest test functions 375

assertValueCanBeRendered
function, testing 378, 379

isChecked function, testing 376-378
running 380, 381
testing 374

W
watch mode 380

Index 417

Z
Zod 209

reference link 212
Zustand 328

reference link 329
using 328-332

	Cover
	Title Page
	Copyright
	Contributors
	Table of Contents
	Preface
	Part 1:
Introduction
	Chapter 1: Getting Started with React
	Technical requirements
	Understanding the benefits of React
	Creating a React project
	Understanding the project
	Adding linting to Visual Studio Code
	Adding code formatting
	Starting the app in development mode
	Producing a production build

	Understanding the structure of a React app
	Understanding the React entry point
	Understanding the React component tree
	Understanding a React component

	Creating a component
	Creating a basic Alert component
	Adding Alert to the App component

	Using props
	Understanding props
	Adding props to the Alert component

	Using state
	Understanding state
	Implementing a visible state in the Alert component
	Adding a close button to Alert

	Using events
	Understanding events
	Implementing a close button click handler in the alert
	Implementing an alert close event

	Using React developer tools
	Using the Components tool
	Using the Profiler tool

	Summary
	Questions
	Answers

	Chapter 2: Getting Started with TypeScript
	Technical requirements
	Understanding the benefits of TypeScript
	Understanding TypeScript
	Catching type errors early
	Improving developer experience and productivity with IntelliSense

	Understanding JavaScript types
	Using basic TypeScript types
	Using type annotations
	Using type inference
	Using the Date type
	Using the any type
	Using the unknown type
	Using arrays

	Creating TypeScript types
	Using object types
	Creating type aliases
	Creating union types

	Using the TypeScript compiler
	Creating a React and TypeScript component
	Creating a project
	Adding a props type
	Adding a state type

	Summary
	Questions
	Answers

	Chapter 3: Using React Hooks
	Technical requirements
	Using the effect Hook
	Understanding the effect Hook parameters
	The rules of Hooks
	Effect cleanup
	Creating the project
	Fetching data using the effect Hook

	Using state Hooks
	Using useState
	Understanding useReducer
	Using useReducer

	Using the ref Hook
	Understanding the ref Hook
	Using the ref Hook

	Using the memo Hook
	Understanding the memo Hook
	Using the memo Hook

	Using the callback Hook
	Understanding the callback Hook
	Understanding when a component is re-rendered
	Using the callback Hook

	Other React Hooks
	useId
	useTransition
	useDeferredValue
	Hooks covered in other chapters

	Summary
	Questions
	Answers

	Part 2:
App Fundamentals
	Chapter 4: Approaches to Styling React Frontends
	Technical requirements
	Using plain CSS
	Creating the project
	Understanding how to reference CSS
	Using plain CSS in the alert component
	Experiencing CSS clashes

	Using CSS modules
	Understanding CSS modules
	Using CSS modules in the alert component

	Using Tailwind CSS
	Understanding Tailwind CSS
	Installing and configuring Tailwind CSS
	Using Tailwind CSS

	Using SVGs
	Understanding how to use SVGs in React
	Adding SVGs to the alert component

	Other styling approaches
	Using inline styles
	Using SCSS
	Using CSS-in-JS

	Summary
	Questions
	Answers

	Chapter 5: Using React Server and Client Components
	Technical requirements
	Understanding SPAs
	Understanding the SPA problem
	Understanding the benefits of SPAs

	Understanding Server Components
	Understanding what a Server Component is
	Understanding how RSCs address the SPA problem
	Understanding the benefits of Server Components

	Creating Server Components
	Creating the project
	Creating an RSC
	Understanding how Server Components work

	Exploring Client Components
	Understanding Client Components
	Understanding Client Component rendering
	Specifying Client Components
	Creating Client Components

	Composing Server and Client Components
	RSCs versus Client Components
	Understanding when to use an RSC or Client Component
	Understanding client boundaries
	Rendering an RSC in ColorModeToggle

	Summary
	Further reading
	Questions
	Answers

	Chapter 6: Creating a Multi-Page App with Next.js
	Technical requirements
	Creating routes
	Creating the project
	Understanding routes
	Creating a posts route

	Creating navigation
	Using the Link component
	Using useRouter

	Creating shared layout
	Understanding layout components
	Creating a header

	Creating dynamic routes
	Understanding dynamic routes
	Creating a blog post dynamic route

	Using search parameters
	Understanding search parameters
	Adding search functionality to the app

	Summary
	Questions
	Answers

	Part 3:
Data
	Chapter 7: Server Component Data Fetching and Server Function Mutations
	Technical requirements
	Understanding server-side and client-side data fetching
	Client-side data fetching
	Server-side data fetching
	Understanding the benefits

	Getting set up
	Creating the project
	Setting up the database

	Fetching data using an RSC
	Implementing query functions
	Calling query functions from RSCs
	Adding type safety to a database query

	Adding loading indicators using React Suspense
	Understanding the need for loading indicators
	Adding a delay
	Understanding React Suspense
	Implementing loading indicators

	Handling errors with React error boundaries
	Understanding React error boundaries
	Implementing error boundaries

	Mutating data using a Server Function
	Understanding a Server Function
	Creating a Server Function
	Adding a progress indicator
	Handling errors

	Summary
	Questions
	Answers

	Chapter 8: Client Component Data Fetching and Mutations with TanStack Query
	Technical requirements
	Fetching data using TanStack Query
	Understanding the challenges with useEffect for data fetching
	Understanding TanStack Query
	Setting up the project
	Fetching blog post data

	Using a Route Handler with TanStack Query
	Understanding the benefits of Route Handlers
	Using Route Handlers
	Adding type safety to the API response

	Mutating data using a TanStack Query mutation
	Understanding TanStack Query mutations
	Using useMutation

	Summary
	Questions
	Answers
	Learn more on Discord

	Chapter 9: Working with Forms
	Technical requirements
	Using basic forms
	Creating the project
	Creating a native form

	Using a Route Handler for submission
	Creating a database mutation
	Creating a Route Handler
	Integrating the form submission with the Route Handler

	Using a Server Action for submission
	Understanding Server Actions
	Using a Server Action in ContactForm
	Adding server validation

	Using useFormStatus
	Understanding useFormStatus
	Using useFormStatus

	Using useActionState
	Understanding useActionState
	Using useActionState
	Returning state from the Server Action
	Adding action state to the form
	Adding field errors

	Using React Hook Form
	Understanding React Hook Form
	Understanding client-side validation
	Understanding the useForm Hook
	Understanding the register function
	Specifying validation
	Obtaining validation errors
	Handling submission

	Using React Hook Form

	Implementing optimistic updates
	Understanding useOptimistic
	Using useOptimistic
	Adding an unoptimistic contacts page
	Making done optimistic

	Summary
	Questions
	Answers

	Part 4:
Advanced React
	Chapter 10: State Management
	Technical requirements
	Understanding the types of state
	Server state
	Form state
	URL state
	Local state
	Derived state
	Shared state

	Using prop drilling
	Creating the project
	Understanding and using prop drilling
	Using better composition

	Using React context
	Understanding React context
	Using React context

	Using Zustand
	Understanding Zustand
	Using Zustand

	Using TanStack Query and URL parameters
	Using TanStack Query
	Using URL parameters

	Summary
	Questions
	Answers

	Chapter 11: Reusable Components
	Technical requirements
	Creating the project
	Using generic props
	Understanding generics
	Generic functions
	Generic types
	The keyof operator
	Generic React components

	Creating a basic list component

	Using prop spreading
	Using render props
	Understanding the render props pattern
	Adding a renderItem prop

	Adding checked functionality
	Creating custom hooks
	Understanding custom hooks
	Extracting checked logic into a custom hook

	Allowing the internal state to be controlled
	Understanding how the internal state can be controlled
	Allowing checkedIds to be controlled

	Summary
	Questions
	Answers

	Chapter 12: Unit Testing with Vitest and the React Testing Library
	Technical requirements
	Testing pure functions
	Understanding a test
	Testing isChecked
	Testing exceptions
	Running tests

	Testing components
	Understanding the React Testing Library
	A basic component test
	Understanding queries

	Implementing checklist component tests
	Using test IDs

	Simulating user interactions
	Understanding fireEvent and user-event
	Implementing checklist tests for checking items

	Getting code coverage
	Installing the code coverage tool
	Running code coverage
	Understanding the code coverage report
	Gaining full coverage on the checklist component
	Ignoring files in the coverage report

	Summary
	Questions
	Answers

	Other Books You May Enjoy
	Index

