

Introducing Python
THIRD EDITION

Modern Computing in Simple Packages

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Bill Lubanovic

Introducing Python
by Bill Lubanovic

Copyright © 2026 Bill Lubanovic. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisition Editor: Brian Guerin

Development Editor: Corbin Collins

Production Editor: Kristen Brown

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

January 2026: Third Edition

Revision History for the Early Release

2024-10-14: First Release

2024-12-11: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098174408 for release
details.

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781098174408

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Introducing Python, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-17440-8

[LSI]

Dedication
With love to Lettie and Maeve. Oh, the things you’ll see!

Brief Table of Contents (Not Yet
Final)

Preface (available)

Chapter 1: Introduction (available)

Chapter 2: Types and Variables (available)

Chapter 3: Numbers (available)

Chapter 4: Strings (available)

Chapter 5: Bytes (available)

Chapter 6: If and Match (available)

Chapter 7: For and While (available)

Chapter 8: Tuples and Lists (available)

Chapter 9: Sets and Dictionaries (available)

Chapter 10: Functions (available)

Chapter 11: Objects (available)

Chapter 12: Modules and Packages (available)

Chapter 13: Review (unavailable)

Chapter 14: Development Environment (unavailable)

Chapter 15: Type Hints (unavailable)

Chapter 16: Testing (unavailable)

Chapter 17: Debugging (unavailable)

Chapter 18: Review (unavailable)

Chapter 19: Text Data (unavailable)

Chapter 20: Binary Data (unavailable)

Chapter 21: Dates and Times (unavailable)

Chapter 22: Files (unavailable)

Chapter 23: Data in Time: Concurrency (unavailable)

Chapter 24: Data in Space: Networks (unavailable)

Chapter 25: Data in a Box: Persistent Storage (unavailable)

Chapter 26: The Web (unavailable)

Chapter 27: Data Science (unavailable)

Chapter 28: AI (unavailable)

Chapter 29: Performance (unavailable)

Chapter 30: Review (unavailable)

Appendix A: Answers to Questions (unavailable)

Preface

This is the third edition of a book introducing you to one of the world’s
most popular programming languages: Python. You may be a beginning
programmer, or have some experience and want to add Python to the
languages you already know. Throughout the book, I’ll sometimes contrast
Python with other languages, to catch assumptions about how it works,
especially with subtle differences.

Computing languages are easier to learn than human languages — they’re
more concise and precise. Python is recognized as one of the easiest
computing languages to learn, read, and write. It consists of data (like
nouns in spoken languages) and instructions or code (like verbs). In
alternating chapters, you’ll be introduced to Python’s basic code and data
structures, learn how to combine them, and build up to more advanced ones.
The programs that you read and write will get longer and more complex.

You’ll learn the language, and what to do with it. We’ll begin with the core
Python language and its “batteries included” standard library, and advance
to finding, downloading, installing, and using some good third-party
packages. My emphasis is on whatever I’ve actually found useful in twenty
years of production Python development, rather than fringe topics or
complex hacks.

Although this is an introduction, some advanced topics are included
because I want to expose them to you. Areas like databases and the web are
still covered, but technology changes fast. A Python programmer might now
be expected to know something about cloud computing, machine learning,
or event streaming. You’ll find something here on all of these.

Python has some special features that work better than adapting styles from
other languages that you may know. For example, using for and iterators is
a more direct way of making a loop than manually incrementing some
counter variable.

When you’re learning something new, it’s hard to tell which terms are
specific rather than colloquial, and which concepts are actually important.
In other words, “Is this on the test?” I’ll highlight terms and ideas that have
specific meaning or importance in Python, but not too many at once. Real
Python code is included early and often.

NOTE
I’ll include a note such as this when something might be confusing, or if there’s a more
appropriate Pythonic way to do it.

Python isn’t perfect. I’ll show you things that seem odd or that should be
avoided — and offer alternatives you can use, instead.

Audience
Although it helps if you’ve done some programming before, I want to make
it possible for beginning programmers to get something out of this book.
Python is an excellent first computing language, and you don’t need to read
and understand all of this book to get started.

Changes in the Third Edition
Although this largely follows the shape of the second edition, I’ve brought
every page up to date:

Dropped chapters 20-22, and appendices A, C, and E.

Added chapters on AI, data science, and performance.

Expanded coverage of development environments.

Added discussion of recent Python features and fixes.

Emphasized the use of typing hints.

Featured FastAPI for web examples.

Updated many examples and arcane tidbits1.

Expanded old Chapter 19 (Be a Pythonista) into a full Part 2.

Outline
Part 1 (Chapters 1–13) explains the basics of the Python language. You
should read these chapters in order. I work up from the simplest data and
code structures, combining them on the way into more detailed and realistic
programs. You can try all the code in this part on your own machine.

Chapter 1 (Introduction): Computer programs are not that different
from directions that you see every day. Some little Python
programs give you a glimpse of the language’s looks, capabilities,
and uses in the real world. You’ll see how to run a Python program
within its interactive interpreter (or shell), or from a text file saved
on your computer.

Chapter 2 (Types and Variables): Computer languages mix data
and instructions. Different types of data are stored and treated
differently by the computer. They may allow their values to be
changed (mutable) or not (immutable). In a Python program, data
can be literal (numbers like 78, text strings like "waffle") or
represented by named variables. Python treats variables like names
or labels, which is different from many other languages and has
some important consequences.

Chapter 3 (Numbers): This chapter shows Python’s simplest data
types: booleans, integers, and floating-point numbers. You’ll also
learn the basic math operations. The examples use Python’s
interactive interpreter like a calculator.

Chapter 4 (Strings): Learn how to create, combine, change,
retrieve, and print text strings. You’ll see much more in Chapter

19.

Chapter 5 (Bytes): Many data examples are binary, and can be
represented in Python by the bytes and bytearray data types.
Binary files are discussed in Chapter 20.

Chapter 6 (If and Match): We’ll bounce between Python’s nouns
(data types) and verbs (program structures) for a few chapters.
Python code normally runs a line at a time, from the start to the end
of a program. The if code structure lets you run different lines of
code, depending on some data comparison.

Chapter 7 (For and While): Verbs again, and two ways to repeat
code in a loop: for and while. You’ll be introduced to a core
Python concept: iterators.

Chapter 8 (Tuples and Lists): It’s time for the first of Python’s
higher-level built-in data structures: lists and tuples. These are
sequences of values, like LEGOs for building much more complex
data structures. Step through them with iterators, and build lists
quickly with comprehensions.

Chapter 9 (Sets and Dictionaries): Dictionaries (aka dicts) and sets
let you save data by their values rather than their position. This
turns out to be very handy and will be among your favorite Python
features.

Chapter 10 (Functions): Weave the data and code structures of the
previous chapters to compare, choose, or repeat. Package code in
functions and handle errors with exceptions.

Chapter 11 (Objects): The term object is a bit fuzzy, but important
in many computer languages, including Python. If you’ve done
object-oriented programming in other languages, Python is a bit
more relaxed. This chapter explains how to use objects and classes,
and when it’s better to use alternatives.

Chapter 12 (Modules and Packages): This chapter demonstrates
how to scale out to larger code structures: modules, packages, and
programs. You’ll see where to put code and data, how to get data in
and out, handle options, tour the Python Standard Library, and take
a glance at what lies beyond.

Chapter 13 (Review): This is a look back at the preceding twelve
chapters, tying together some concepts

Part 2 (Chapters 14-18) goes beyond the language, into the tools and
techniques you’ll need to do serious Python programming. This is an
expansion of the single “Be a Pythonista” chapter of the second edition.

Chapter 14 (Development Environment): Here, we get into virtual
environments (Python version control) and package management
with pip and other tools.

Chapter 15 (Type Hints and Documentation): Although they’re
completely optional to the Python interpreter itself, type hints
really help make your code readable, and they’re essential for
FastAPI, Mojo, and other recent applications.

Chapter 16 (Testing): How do you know that your code works?
Some techniques can save you a lot of time and grief.

Chapter 17 (Debugging): Sometimes you need to dig to find the
problem.

Chapter 18 (Review): This refreshes information from the previous
Tools chapters.

Part 3 (Chapters 19-30) shows how Python is used in specific application
areas such as the web, databases, networks, and so on; read these chapters
in any order you like.

Chapter 19 (Text Data): Go beyond the basic string description in
Chapter 4: Unicode characters, regular expressions for text pattern
matching, and more.

Chapter 20 (Binary Data): This area doesn’t seem to get much
discussion in Python books. You can do some tricky things in
Python with non-textual data that you might think require a lower-
level language like C.

Chapter 21 (Dates and Times): Dates and times can be messy to
handle. This chapter shows common problems and useful
solutions.

Chapter 22 (Files): Basic data storage uses files and directories.
This chapter shows you how to create and use them.

Chapter 23 (Data in Time: Concurrency): This is the first hard-
core system chapter. Its theme is data in time — how to use
programs, processes, and threads to do more things at a time
(concurrency). Python’s asyncio is heavily featured.

Chapter 24 (Data in Space: Networks): Send your code and data
through space in networks with services, protocols, and APIs.
Examples range from low-level TCP sockets, to messaging
libraries and queuing systems, to cloud deployment.

Chapter 25 (Data in a Box: Databases): Data can be stored and
retrieved with basic flat files and directories within filesystems.
They gain some structure with common text formats such as CSV,
JSON, and XML. As data get larger and more complex, they need
the services of databases — traditional relational ones, and some
newer NoSQL data stores.

Chapter 26 (The Web): The web gets its own chapter — clients,
servers, APIs, and frameworks. You’ll crawl and scrape websites,
and then build real websites with request parameters and templates.

Chapter 27 (Data Science): Python is right at home here, with a
very wide variety of tools and methods that are used in production
systems every day.

Chapter 28 (AI): This new chapter is devoted to the very timely
subject of artificial intelligence. Python has risen to prominence
largely from its heavy use in data modeling and AI development.
This chapter documents various approaches to using and
developing AI-based systems.

Chapter 29 (Performance): This is another new chapter, showing
various methods of speeding up Python in cases where it isn’t
frisky enough. It includes an introduction to a very recent Python
superset called Mojo, which I think could have quite an impact if
its development plans go well.

Chapter 30 (Review): As before, this chapter refreshes some info
from the previous ones.

Python Versions
Computer languages change over time as developers add features and fix
mistakes. The examples in this book were written and tested with Python
version 3.13, the most current as this book was being edited. and I’ll talk
about its notable additions. The What’s New in Python page is a technical
reference; a bit heavy when you’re just starting with Python, but may be
useful in the future if you ever need to deal with different Python versions.

About the Author
I’m a self-taught programmer, which has been mostly a good thing. I started
by learning FORTRAN in 1975 — with punch cards! It seems like another
century now. Oh, wait, it was. In 1977, I first encountered UNIX and C, and
was hooked. When I finally ran out of money and time in graduate school
(doing biomedical research on circadian rhythms), I was able to get a series
of UNIX jobs, such as developing early graphic user interface (GUI)
systems in the early 80s, before the Mac and Windows. I worked with the
early non-commercial Internet until it went public in the early 90s. After the

https://docs.python.org/3/whatsnew

release then of Mosaic (the first cross-platform browser), I figured out that
the Web would be the “next big thing”, and pivoted to web development.

I did two startups, and developed early websites with C and two newer
languages: Perl (invented in 1987 by Larry Wall) and PHP (by Rasmus
Lerdorf, in 1995). I had read about Python, and finally played with it for a
week or two. It was much better than I expected. I was able to mock up
most of a large application that four of us had written previously in C over a
year — including database access and a graphical user display. It was time
for the pivot to Python, which led to the words you’re reading now.

One advantage of my early exposure to computing is that many of the
things we take for granted now — relational databases, the Internet, the
Web, GUIs, object-oriented programming — came along after I’d already
been a professional programmer for a few years. I could watch each new
thing play out a bit before deciding how much faith to accord it. Even
today, when you read about some cool-sounding tech (say, microservices or
serverless), look for war stories:

What are its limits?

How do you fix it when it breaks?

How does it perform?

What are the security implications?

So, in this book, you may sometimes see that my opinions on some subjects
(such as object inheritance, or MVC and REST designs for the web) vary a
bit from the common wisdom. Decide for yourself!

Also, sometimes I use meaningless variable names like a, b, and x — but
recommend elsewhere that you use meaningful names. Sometimes I do this
to keep a code example simple and short, and the variable names are clearly
throwaways. We don’t want code lines to use too much space in the print
edition. Paper doesn’t grow on trees, you know2.

And thanks for jumping in. One of my cats will thank you at the end of the
book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variables, functions, and
data types.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

NOTE
This icon signifies a tip, suggestion, or general note.

WARNING
This icon indicates a warning or caution.

Using Code Examples
The substantial code examples and exercises in this book are available
online for you to download. This book is here to help you get your job
done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Introducing
Python by Bill Lubanovic (O’Reilly). Copyright 2026 Bill Lubanovic, 978-
1-098-17440-8.”

If you feel your use of code examples falls outside fair use or the
permission given here, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For over 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding

https://github.com/madscheme/introducing-python
https://github.com/madscheme/introducing-python
mailto:permissions@oreilly.com
http://oreilly.com/

environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.xhtml

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/introducing-python-2e.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

http://oreilly.com/
mailto:support@oreilly.com
https://oreilly.com/about/contact.xhtml
https://oreil.ly/introducing-python-2e
http://www.oreilly.com/
https://linkedin.com/company/oreilly-media
http://www.youtube.com/oreillymedia

Acknowledgments
My sincere thanks to the reviewers and readers who helped make this
better:

Corbin Collins,

1 A good name for a band, or pet food?

2 Oh, wait. It does.

Chapter 1. Introduction

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

Only ugly languages become popular. Python is the one exception.
—Don Knuth

You’re here. Good. Then let’s begin.

You may already know something about computers and Python, or you may
not. If I’m going too slow for you in some section, jump ahead a page or
two. You won’t hurt my feelings.

So, here we go.

Mysteries
Let’s begin with two mini-mysteries and their solutions. What do you think
the following two lines mean?

(Row 1): (RS) K18,ssk,k1,turn work.
(Row 2): (WS) Sl 1 pwise,p5,p2tog,p1,turn.

It looks technical, like some kind of computer program. Actually, it’s a
knitting pattern; specifically, a fragment describing how to turn the heel of a
sock, \ like the one in Figure 1-1.

Figure 1-1. Knitted socks

This makes as much sense to me as a Sudoku puzzle does to one of my cats,
but if you’re a knitter, you probably understand it perfectly.

Let’s try another mysterious text, found on an index card. You’ll figure out
its purpose right away, although you might not know its final product:

 1/2 c. butter or margarine
 1/2 c. cream
 2 1/2 c. flour
 1 t. salt
 1 T. sugar
 4 c. riced potatoes (cold)

Be sure all ingredients are cold before adding flour.
Mix all ingredients.
Knead thoroughly.
Form into 20 balls. Store cold until the next step.
For each ball:
 Spread flour on cloth.
 Roll ball into a circle with a grooved rolling pin.
 Fry on griddle until brown spots appear.
 Turn over and fry other side.

Even if you don’t cook, you probably recognized that it’s a recipe1: a list of
food ingredients followed by directions for preparation. But what does it
make? It’s lefse, a Norwegian delicacy that resembles a tortilla (Figure 1-2).
Slather on some butter and jam or whatever you like, roll it up, and enjoy.

Figure 1-2. Lefse

The knitting pattern and the recipe share some features:

A regular vocabulary of words, abbreviations, and symbols. Some
might be familiar, others mystifying.

Rules about what can be said, and where—syntax.

A sequence of operations to be performed in order.

Sometimes, a repetition of some operations (a loop), such as the
method for frying each piece of lefse.

Sometimes, a reference to another sequence of operations (in
computer terms, a function). In the recipe, you might need to refer
to another recipe for ricing potatoes.

Assumed knowledge about the context. The recipe assumes you
that know what water is and how to boil it. The knitting pattern
assumes that you can knit and purl without stabbing yourself too
often.

Some data to be used, created, or modified — potatoes and yarn.

The tools used to work with the data—pots, mixers, ovens, knitting
sticks.

An expected result. In our examples, something for your feet and
something for your stomach. Just don’t mix them up.

Whatever you call them — idioms, jargon, little languages — you see
examples of them everywhere. The lingo saves time for people who know
it, while mystifying the rest of us. Try deciphering a newspaper column
about bridge if you don’t play the game, or a scientific paper if you’re not a
scientist (or even if you are, but in a different field).

Little Python Programs
I used the knitting pattern and recipe to demonstrate that programming isn’t
that mysterious. It’s largely a matter of learning the right words and the
rules.

Now, it helps greatly if there aren’t too many words and rules, and if you
don’t need to learn too many of them at once. Our brains can hold only so
much at one time.

Python is:

A computer programming language

Created in 1991 by the Dutch computer scientist Guido van
Rossum

Grown and guided by Guido and others since then

Well designed

Easier to read and write than most alternative languages

A core of modern data science and artificial intelligence (AI)
computing

A valuable skill in today’s computing job market

Useful for small scripts, but also huge systems like Instagram.

Let’s finally see a small but real computer program (Example 1-1). What do
you think this does?

Example 1-1. countdown.py
for countdown in 5, 4, 3, 2, 1, "hey!":
 print(countdown)

If you guessed that it’s a Python program that prints the lines

5
4
3
2
1
hey!

then you know that Python can be easier to learn than a recipe or knitting
pattern. And you can practice writing Python programs from the comfort
and safety of your desk, far from the hazards of hot water and pointy sticks.

The Python program has some special words and symbols — for, in,
print, commas, colons, parentheses, and so on — that are important parts

of the language’s syntax (rules). The good news is that Python has a nicer
syntax, and less of it to remember, than most computer languages. It seems
more natural — almost like a recipe.

Example 1-2 is another tiny Python program; it selects one Harry Potter
spell from a Python list and prints it.

Example 1-2. spells.py
spells = [
 "Riddikulus!",
 "Wingardium Leviosa!",
 "Avada Kedavra!",
 "Expecto Patronum!",
 "Nox!",
 "Lumos!",
]
print(spells[3])

The individual spells are Python strings (sequences of text characters,
enclosed in quotes). They’re separated by commas and enclosed in a Python
list that’s defined by enclosing square brackets ([and]). The word spells
is a variable that gives the list a name so that we can do things with it. In
this case, the program would print the fourth spell:

Expecto Patronum!

Why did we say 3 if we wanted the fourth? A Python list such as spells is
a sequence of values, accessed by their offset from the beginning of the list.
The first value is at offset 0, and the fourth value is at offset 3.

NOTE
People count from 1, so it might seem weird to count from 0. It helps to think in terms
of offsets instead of positions. Yes, this is an example of how computer programs
sometimes differ from common language usage.

Lists are very common data structures in Python, and Chapter 8 shows how
to use them.

The program in Example 1-3 prints a quote from one of the Three Stooges,
but referenced by who said it rather than its position in a list.

Example 1-3. quotes.py
quotes = {
 "Moe": "A wise guy, huh?",
 "Larry": "Ow!",
 "Curly": "Nyuk nyuk!",
 }
stooge = "Curly"
print(stooge, "says:", quotes[stooge])

If you were to run this little program, it would print the following:

Curly says: Nyuk nyuk!

quotes is a variable that names a Python dictionary — a collection of
unique keys (in this example, the name of the Stooge) and associated values
(here, a notable saying of that Stooge). Using a dictionary, you can store
and look up things by name, which is often a useful alternative to a list.

The spells example used square brackets ([and]) to make a Python list,
and the quotes example uses curly brackets ({ and }, which are no relation
to Curly), to make a Python dictionary. Also, a colon (:) is used to associate
each key in the dictionary with its value. You can read much more about
dictionaries in Chapter 9.

That wasn’t too much syntax at once, I hope. In the next few chapters,
you’ll encounter more of these little rules, a bit at a time.

Setup
Most likely, you’re working on one of the three most prominent platforms:

Microsoft Windows

Apple macOS

Linux or other UNIX-like system

Programming is a text-heavy process. Modern operating systems highlight
graphic user interfaces (GUIs) for most operations, but to write programs,
you’ll need two things on your computer:

A terminal window for typing commands.

A text editor for creating and modifying files.

Chapter 14 will discuss fancier tools like integrated development
environments (IDEs) that provide these features and more in one
application, but in Part 1 we only need a text-based terminal window and an
editor. These are all widely available on thr three main platforms that I
mentioned above.

Coming right up, and throughout this book, I’ll include platform-specific
notes as needed.

Install Python
Unfortunately, many operating systems do not come with Python, so you
may need to install it. Even if your system has it, it may be an old version. I
recommend getting the most recent version of Python, from the official
website: python.org. Click the Downloads button, then the button for your
platform, and follow the directions.

Upgrade Python
In computing, it’s common to number software releases as x.y.z, where x is
the major version, y is a minor version within x, and z is a small bug fix or
other change within y.

As this book was written, the most recent major.minor release of Python
was version 3.13. The major version 3 took about ten years to replace the
previous major version 2. The minor versions come out roughly annually2.

https://www.python.org/

In your terminal window, type python -V. You should see something like
this:

$ python -V
Python 3.13.0b3

NOTE
If your Python version is earlier than 3.13, watch in this book for notes that indicate
things that may act differently in earlier versions.

Run Python Programs
The program python can be run in two ways:

Interactively — you type a line at a time and see what happens

Execute a Python file

Let’s try both.

The Python Interactive Interpreter
Sometimes called the Python shell, this is what you get if you just type
python (I’ve substituted [version info] below, because the actual details can
be long, and differ across machines and versions):

$ python
Python ... [version info] ...
Type "help", "copyright", "credits" or "license" for more information.
>>>

Each line that starts with >>> is a prompt for you to type a line of valid
Python code.

You type Python code after that prompt, and it executes it, line by line. This
is a quick way to test snippets of Python, and I’ll use it through this book to

illustrate brief examples. You can type whatever’s in +bold text+ into the
Python interpreter on your machine as you read along.

Let’s try it:

$ python
Python ... (version info) ...
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Hello? World?")
Hello? World?
>>>

print() is a built-in Python function and it writes anything that you put
between the parentheses to your terminal. In this case, we gave it a text
string, which Python indicates with the enclosing quote (") characters.

Python Files
You save Python code in files with a .py extension. Run a Python file by
typing the command python, followed by the Python filename.

Save that single line that you typed in the previous section into a file called
hello.py:

print("Hello? World?")

Then, in your terminal window, tell Python to run it:

$ python hello.py
Hello? World?

Normally, we just use the interactive interpreter to test little chunks of code,
and Python files for anything bigger.

Built-In Python Features
Like that print() function above, the Python interpreter has built-in
support for the data and code structures that you’ll see in the following

chapters of Part One.

The Python Standard Library
When you installed the Python interpreter, you also got Python’s standard
library: a group of Python files that are officially supported for each
release. These handle many of the tasks that you’ll see in Part Three. You
access these from your program with the import statement, which is fully
explained in Chapter 12, and you can see in in the example code
Example 1-4 coming up below.

Third-Party Python Packages
You can install Python code written by anyone, and access it the same as
you do the standard library. Part Three includes many examples of these.

A Bigger Example
I once worked for the Internet Archive, which has been saving Internet
content for years. Its most well known feature is the Wayback Machine3,
which has been archiving web pages for years, and is an invaluable resource
to find old copies of websites, even some that are long gone. Example 1-4
below accesses the Wayback Machine and illustrates many of the things that
you can do with Python, right out of the box. You’ll learn all the details
eventually, as you read through this book. (The line numbers are not part of
the code, but were added for the explanation that follows.)

Example 1-4. archive.py
1 import webbrowser
2 import json
3 from urllib.request import urlopen
4
5 print("Let's find an old website.")
6 site = input("Type a website URL: ")
7 era = input("Type a year, month, and day, like 20150613: ") + "0000"
8 url = f"http://archive.org/wayback/available?url={site}×tamp={era}"

https://archive.org/

9 response = urlopen(url)
10 contents = response.read()
11 text = contents.decode("utf-8")
12 data = json.loads(text)
13 try:
14 old_site = data["archived_snapshots"]["closest"]["url"]
15 print("Found this copy:", old_site)
16 print("It should appear in your browser now.")
17 webbrowser.open(old_site)
18 except:
19 print("Sorry, no luck finding", site)

This little Python program did a lot in a few fairly readable lines. You don’t
know all these terms yet, but you will within the next few chapters. Here’s
what’s going on in each line:

1. Import (make available to this program) all the code from the
Python standard library module called webbrowser.

2. Import all the code from the Python standard library module called
json.

3. Import only the urlopen function from the standard library module
urllib.request.

4. A blank line, because we don’t want to feel crowded.

5. Print some initial text to your display.

6. Print a question about a URL, read what you type, and save it in a
program variable called site.

7. Print another question, this time reading a year, month, and day,
and then save it in a variable called era. Append the hour and
minute for midnight ("0000"); the Wayback Machine will look
earlier and later for the closest date and time the page was last
grabbed.

8. Construct a string variable called url to make the Wayback
Machine look up its copy of the site and date that you typed. This
uses the f-string format that can embed the values of variables.

9. Connect to the web server at that URL and request a particular web
service.

10. Get the response data and assign to the variable contents.

11. Decode contents to a text string in JSON format, and assign to
the variable text.

12. Convert text to data—Python data structures.

13. Error-checking: try to run the next four lines, and if any fail, run
the last line of the program (after the except).

14. If we got back a match for this site and date, extract its value from
a three-level Python dictionary. Notice that this line and the next
three are indented. That’s how Python knows that they are part the
try section.

15. Print the URL that we found.

16. Print what will happen after the next line executes.

17. Display the URL we found in your web browser.

18. If anything failed in the previous four lines, Python jumps down to
here.

19. If it failed, print a message and the site that we were looking for.
This is indented because it should be run only if the preceding
except line runs.

NOTE
Most computing languages use some character delimiters to indicate the start and end of
multiline code blocks. Some use literal words like start and end, and the “curly brace”
languages (C, C++, Java, JavaScript, and many others) use { and }. Python uses
consistent indentation instead. It makes the code a bit less busy and easier to read.

When I ran this in a terminal window, I typed a news site URL and a
historic date, and got this text output:

$ python archive.py

Let's find an old website.
Type a website URL: xkcd.com

Type a year, month, and day, like 20150613: 20240728

Found this copy: http://web.archive.org/web/20240727204346/https://xkcd.com/
It should appear in your browser now.

And Figure 1-3 shows what appeared in my browser.

Figure 1-3. From the Wayback Machine

For various reasons, the saved archive pages are sometimes missing
content, like images, that had been on the original site. At the top of the
archived page above is an added bar that lets you access any past archive of
that site. The Archive is a great tool to learn what people actually said and
did at particular times.

Review/Preview
This chapter listed the minimal tools that you’ll need to write Python
programs, and included a sample program and its output.

Ths next chapter gets into variables and data types, core concepts in any
programming language.

1 Usually only found in cookbooks and cozy mysteries.

2 There is not expected to be a Python 4. The 2-to-3 transition was hard enough.

3 A reference to the Sherman and Mr. Peabody segments of the old Rocky and Bullwinkle
cartoons.

Chapter 2. Types and Variables

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

A good name is rather to be chosen than great riches.
—Proverbs 22:1

Computer programs consist of commands (often shorthanded as code) and
data. This chapter introduces the basics of how computers handle data, and
how Python is a bit different from many programming languages.

A Caveman Computer
Figure 2-1 is a drastically simplified diagram of a typical computer’s
components.

Figure 2-1. Computer components

The central processing unit (CPU, or “chip”) is the brains of the
operation. Most computers now have multiple CPUs, and we’ll say
more about this in Chapters 23 and 29.

The random access memory (RAM) is the fast but limited storage
area.

A disk stores much more data than the RAM does, but is thousands
of times slower.

Common local input devices include keyboards, touchscreens,
mice, cameras, and microphones.

Common local output devices include displays and printers.

A network communicates with other computers.

The CPU and RAM are volatile: they only work while electricity is flowing
through them. The disk is nonvolatile (normally magnetic), and retains its
data even when the whole computer is turned off. There’s a continual
struggle between RAM (fast but limited) and disk (slow but much roomier)
to balance a computer’s performance.

Computer programs and data are stored on the disk, and transferred to RAM
when the CPU needs to access them. The CPU fetches (reads) from RAM
and stores (writes) back.

In this book, I’ll liken RAM to a series of bookshelves, where each rack is
the same height and width, and each slot on a particular shelf is uniquely

numbered. Each location is independently addressable, so you can put
something on a shelf and find it later. Each slot is a byte wide. So I’d better
explain what a byte is, and get back to this bookshelf metaphor afterward.

In Chapter 29, a more complete computer architecture is discussed,
including things like caches that affect performance.

Bits and Bytes
At the very bottom, all data in a computer consists of bits. A bit is a tiny
unit of storage that can represent one of two states. Way down in the
electronics of the computer’s storage (RAM or disk), bits are implemented
by microscopic components and different voltages.

These two states can be interpreted in different ways, such as:

Set or unset

On or off

A number (1 or 0)

A Boolean value (true or false)

Figure 2-2 and Figure 2-3 are representations of the two bit possibilities.

Figure 2-2. Unset bit

Figure 2-3. Set bit

It’s hard to express more complex ideas with just two values, so, going up
one level, computers bundle eight bits together into a byte. Because each bit

has two possible values, and we’re now treating eight bits as a unit, there
are 28 (256) different possible combinations of bit values in a byte.

Individual bits or bytes have no actual meaning. Each one has some
combination of states, and we somehow need to keep track of them and
treat them in a certain way. For example, because a byte can have up to 256
distinct states, we can use base 2, or binary arithmetic, to treat a byte as a
tiny number. If all of its bits are 0 (off), that could represent the integer 0. If
all bits are 1 (on), that could represent the integer 255. The least significant
bit represents how many 1’s, the next bit up represents how many 2’s, and
the top, most significant bit represents how many 128’s. (This is like our
familiar base 10 (decimal) system, where we have digits from 0 to 9, but no
single digit for ten. Instead, we have a 1 in ten’s place, and up to hundred’s
place, and so on.) These are called positional systems. Setting all the bits
means (from the top down): 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255.

The bits in a byte have a particular order, from least significant to most
significant (at the top). Figure 2-4 shows a byte with the integer value 0,
Figure 2-5 represents the integer 1, and Figure 2-6 has all bits set, which
could represent the integer 255.

Figure 2-4. Byte with value 0

Figure 2-5. Byte with value 1

Figure 2-6. Byte with value 255

That example was an unsigned (always positive) number, but we could treat
a byte as a signed number (positive, negative, or zero) by using one of the
bits to indicate the sign. But then, we only have seven bits left to represent
the number’s magnitude, and can’t get to 255 anymore.

Finally, we could use a byte to represent a text character, such as a letter,
digit, or punctuation symbol. English uses 26 letters, so 26 lowercase
letters, 26 uppercase letters, and the digits 0 through 9 would only need 62
distinct values to fit in a byte. The rest of the 255 possible bit combinations
could be used for something else.

The ASCII standard was defined many decades ago to fill in these slots. It
also included common punctuation symbols, and some non-printing values.
It handled everything you’d see on a typewriter or computer keyboard in a
single byte. But: only if it was an American keyboard, because that was
what the A in ASCII stood for. In Chapter 4, you’ll see how Unicode allows
all of the world’s languages (and symbols and even emojis) to be expressed
in computers. There are millions of unique Unicode symbols — we can’t
stuff them all into a a single byte anymore.

Multibyte Types
Now, let’s go back to the bookshelf metaphor that I used earlier. If you have
some data that fits inside a byte, you could store it at a specific location on
that shelf (location in the computer’s memory).

Just as bits can be combined into bytes to represent more possible values,
bytes can be combined into adjacent multibyte structures. Two bytes
provide 28 * 28 = 216 = 65,536 unique bit combinations. Four bytes (32 bits)
allows 4,294,967,296 combinations. So we can use more than one adjoining
byte slot on our memory bookshelf. In Figure 2-7, four bytes in a row make
a single four-byte number, with the value 1:

Figure 2-7. Four bytes, with value 1

The most significant byte is the leftmost one, so setting only the lowest bit
in the least significant (rightmost) byte represents the number one.

In a library, a narrow book might be a novella or poetry collection, and a
wider one might be a full novel or nonfiction book like a dictionary. In the
computer, we might only need a narrow slot (a byte) for one piece of data,
but a wider slot for something else. Unlike the library, where books have
spines with titles and other identifying information), computer memory
locations are anonymous. It’s the job of the computer program to associate a
type with memory locations.

Variables
This giant bookshelf of bytes in computer memory contains everything that
the computer’s brain (its CPU, or Central Processing Unit) needs to do
computery things. But how do you keep track of everthing?

A Python program has code (the actual instructions) and data (the values
and their types). Like most computing languages, Python has the concept of
a variable: a unique name inside the code that refers to a specific data
value.

Python handles variables in a different way from many other computer
languages, so let’s explain, with text and pictures.

Assign a Value to a Variable
You assign a value to a variable when you’re creating it. In Python, like
many other languages, you assign a value by specifying:

variable = value

For example:

x = 5

assigns the integer value 5 to the variable x.

Try it in the Python shell:

$ python
Python 3.13.0b3 [version info]
Type "help", "copyright", "credits" or "license" for more information.
>>> x = 5
>>> x
5

When you just type a variable on a line, the shell prints its value for you on
the next line. This is a feature of the shell, and it won’t happen when you
execute a Python file.

NOTE
This = is not expressing equality, like a formula in algebra. Maybe computer languages
could have used a different symbol for assignment than =, but assignment is so common
in computing that’s it’s established itself. You get used to it very quickly.

Remember those memory bookshelves? One way to visualize this is that
somewhere in memory, one or more bytes are used to represent the integer
value 5. Figure 2-8 uses four contiguous bytes.

Figure 2-8. Four bytes, with value 5

Okay, what about the variable x? That’s somewhere else in memory, along
with all the code and other variables for this program.

Now, here’s an important distinction: in most programming languages (but
not Python), a variable just points to the value directly in memory. The
variable in those languages can be thought of as a box that can contain
values of the same type. The variable is essentially an address or a pointer,
and any valid value can be assigned to its memory destination slot, and
replace the previous value. Computer languages that work this way are
called statically typed. They remember where x points, and that its value in
memory needs to be a valid four-byte integer.

But, as I said, Python is different. Instead of tracking the type with the
variable in the code, the value in memory is bundled with the type and extra
bookkeeping info. This means that the variable is just a name, like a sticky
note that you attach to something. Besides “name”, a Python variable might
also be called a “reference” or “label”. Python variables are dynamically
typed.

Figure 2-9 is a simplified idea of what the Python value for an integer with
the value 5 actually looks like in memory.

NOTE
Many Python discussions mention that every data type in Python is implemented as an
object. The problem is that the term “object” can have multiple meanings. You’ll see
how to create new data types with classes and objects in Chapter 11. When I use the
term here, I mean a minimal data structure that describes the core features of this
particular data, including the raw value that the CPU uses.

I’ll drop the little bit boxes now and just saying what’s stored at each
location. The actual number of bytes that each component takes up is an
implementation detail that we don’t need to care about:

Figure 2-9. A Python object in memory

The id is unique for each value object in memory. Although the
Python intepreter may just use its physical location in memory,
don’t assume this. The important point is that it’s unique. The id()
function returns the unique id:

>>> x = 5
>>> id(x)
4488951848

The type box indicates the Python type of this data location.
Besides the built-in types that I list in Table 2-1 later in this
chapter, you can define your own custom types in Python. You’ll
see how in Chapter 11.

The actual value bits (in this example, those for the integer 5)
might be stored here in the value location, or elsewhere in
memory. In coming chapters, you’ll see data structures that are are
bigger than single integers and need room to roam.

What about that reference count? It’s how Python tracks how
many variables are pointing to the same value object. If this count
reaches zero, then no variables are referring to this particular piece
of data, and the program has no way of reaching it anymore.
Python can then clear this area of memory and use it for other
values; this is called garbage collection.

Okay. What all this means is that, in Python, if you type x = 5, Python will
create that multipart data structure (object) in memory with type integer
and value 5. It will return this structure’s memory address, and associate it
with the variable x. Then the reference count will be incremented from 0 to
1, because its new friend, variable x, now knows about it.

After this in the program, any reference to the variable x will follow the big
metaphorical finger that it points to memory, and get that lovely integer 5.

Change the Value of a Variable
The value itself can be changed by assigning a new value to the same
variable. So, if we now say:

x = 6

As I mentioned earlier, in most languages (not Python), a variable is a
pointer; that old bit pattern representing the value 5 gets wiped, and
Figure 2-10 shows that it’s overwritten by the bits that represent 6:

Figure 2-10. Four bytes, now with value 6

Python does this a different way: it first creates a new value object in
memory, with type integer and the value 6. Then it associates that existing
variable x with this new value, and accordingly increments the reference
count of this new value object to one.

Because x now refers to a new value object, its id changes:

>>> x = 5
>>> id(x)
4488951848
>>> x = 6

>>> id(x)
4488951880

Because the variable x no longer refers to the previous value (5), the
reference count of the that old value object (the one with integer value 5) is
decremented to zero.

A value with a zero reference count is no longer addressable by the code, so
Python eventually garbage collects it (frees the memory it uses).

Delete a Variable
Another way to get rid of a value it to delete its variable: del x.

This also decrements its value object’s reference count and causes its
garbage collection. You normally don’t need to do tbis in Python; the
interpreter keeps track of the scope (code extent lifetime) of each variable,
zeroing reference counts and freeing up the memory that they used.

If you’ve used other languages, this means you don’t need to manage
memory manually (say this fast three times) in Python. There are no C-style
malloc() or free() calls. This is one of the big advantages of a language
like Python; memory management is difficult and notoriously error-prone.

I went into all this detail for a reason: to pre-explain some Python behavior
that might be confusing if you’re used to other languages, such as assigning
a mutable (changeable) piece of data to multiple variables. You’ll see this in
Chapter 8 when we talk about lists.

Name Variables
Python variable names have some rules.

They can contain only these characters:

Lowercase letters (a through z)

Uppercase letters (A through Z)

Digits (0 through 9)

Underscore (_)

They are case-sensitive: thing, Thing, and THING are different
names.

They must begin with a letter or an underscore, not a digit.

They cannot be one of Python’s reserved words (also known as
keywords).

The reserved words are:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try
as def from nonlocal while
assert del global not with
async elif if or yield

Within Python, you can find the reserved words with

>>> help("keywords")

or:

>>> import keyword
>>> keyword.kwlist

These are valid names:

a

a1

a_b_c___95

_abc

_1a

These names, however, are not valid:

1

1a

1_

name!

another-name

Naming Conventions
Python also has some conventions when naming variables. They aren’t
rules, like those I just mentioned, but they’ll help you be consistent with
other Python code out there.

First, Python variables should use snake case: lowercase letters
(and possibly digits) separated by the underscore (_) character.
Examples: x_squared, num_ghosts.

Other languages (like Java and JavaScript) prefer camel case (an
initial lowercase letter and uppercase humps inside): xSquared,
numGhosts.

Even other languages capitalize the first letter too: XSquared,
NumGhosts. Python also likes this convention when you’re
defining object classes, which are coming in Chapter 11.

Finally, although Python doesn’t have true constants (variables that
can’t change), it recommends snake case with all caps to help
everyone remember that this variable should not be modified after
its initial assignment: MAX_ITEMS, SECRET_CODE.

Python really seems to like that humble underscore character:

A name that starts with a single underscore (_) is treated as sort of
private by the import statement (see Chapter 12).

A name that starts with two underscores (__) is treated specially
when creating object classes (see Chapter 11).

Finally, names that start and end with double underscores are used
for so-called magic or “dunder” methods in object classes (also in
Chapter 11).

Python Types
You’ve seen that bits, bytes, and multibyte combinations have no inherent
meaning in computer meemory or storage. Something, somewhere, assigns
that meaning and remembers it. That’s where computer language types
come in.

Each computer architecture (a specific design from a computer company)
has the ability to handle particular bit combinations, and treat them as
distinct types. These types include numbers of various sizes, text characters,
and so on. Python defines its own types to match these common hardware
types. <Table 2-1 lists these built-in types, and which upcoming chapter
describes them.

The Name column contains equivalent English names.

Type is the actual Python wording for this type.

Mutable indicates whether the value of this type (not the type
itself!) can be changed.

Examples shows some Python syntax to express values of this type.

And Chapter is where you’ll really get into the details.

Table 2-1. Python’s basic data types

Name Type Mutable? Examples Chap

Boolean bool no True False Chap

Integer int no 47 25000 25_000 Chap

Floating point float no 3.14 2.7e5 Chap

Complex complex no 3j 5 + 9j Chap

Text string str no 'alas' "alack"
'''a verse attac

k'''

Chap

List list yes ['Winken', 'Blin

ken', 'Nod']

Chap

Tuple tuple no (2, 4, 8) Chap

Bytes bytes no b'ab\xff' Chap

ByteArray bytearray yes bytearray(...) Chap

Set set yes set([3, 5, 7]) Chap

Frozen set frozenset no frozenset(['Els

a', 'Otto'])

Chap

Dictionary dict yes {'game': 'bing

o', 'dog': 'ding

Chap

Name Type Mutable? Examples Chap
o', 'drummer':

'Ringo'}

In the next chapter, we’ll get into number types: bool, int, float, and
complex.

Specify Values
By now, you’ve seen that a value can be specified as a literal (like 5) or a
variable (like x, which was assigned the value 5). There are rules for how to
specify literal values, and they depend on the underlying types. As you’ve
seen, an integer is specified as a sequence of digits, but a float (floating
point value, which you’ll see in the next chapter) can consist of a string of
digits and a decimal point.

In the next few chapters, I’ll show how to specify literal values for Python’s
standard types, assign them to variables, and perform various operations
(like addition of numbers).

Review/Preview
This chapter focused on variables (names used in programs) and values (the
data that the names refer to). Python is different from many programming
languages, because the variable is just a name, and the value includes other
information, including its type, its actual data bits, and a count of how many
variables refer to it.

NOTE
You can think of an object as a clear plastic box on that memory shelf, with some fixed-
size contents (id, type, reference count), and some varying in size (the value bits
themselves). A variable can be pictured as a sticky note attached to that object, or a tag
on a thread taped to it.

Coming next: numbers! Yay! The simplest objects of all.

Practice
2.1 Install Python if you don’t have it on your computer already. Use the
most recent version if you can.

2.2 Start the interactive interpreter, and type print(42). It should echo
42 on the next line.

2.3 If you’re still in the interactive interpreter, type 43. It should print 43 on
the next line. This is a feature of the interactive interpreter only, and won’t
print anything if you’re executing a Python file.

2.4 Try assigning the literal value 7 to variables with different names. Try
some illegal names to see what error messages Python tosses back to you.

Chapter 3. Numbers

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

That action is best which procures the greatest happiness for the greatest
numbers.

—Francis Hutcheson

In this chapter we begin by looking at Python’s simplest built-in data types:

Booleans (which have the value True or False)

Integers (whole numbers such as 42 and 100000000)

Floats (numbers with decimal points such as 3.14159, or
sometimes exponents like 1.0e8, which means one times ten to the
eighth power, or 100000000.0)

In a way, these basic data types are like atoms. We use them individually in
this chapter, and in later chapters you’ll see how to combine them into
larger “molecules” like lists and dictionaries.

Each type has specific rules for its usage and is handled differently by the
computer. I also show how to use literal values like 97 and 3.1416, and the
variables that I mentioned in Chapter 2.

The code examples in this chapter are all valid Python, but they’re snippets.
We’ll be using the Python interactive interpreter, typing these snippets and
seeing the results immediately. Try running them yourself with the version
of Python on your computer. You’ll recognize these examples by the >>>
prompt.

Booleans
In Python, the only values for the boolean data type are True and False.
Essentially, this is a bit. Sometimes, you’ll use these directly; other times
you’ll evaluate the “truthiness” of other types from their values.

The special Python function bool() can convert any Python data type to a
Boolean. Functions get their own chapter in Chapter 10, but for now you
just need to know that a function has:

A name.

Zero or more comma-separated input arguments, surrounded by
parentheses. Even if the function has no arguments, you still need
the parentheses (()).

Zero or more return values.

When I refer to a function in the text, I’ll include the parentheses after it to
help you recognize it.

The bool() function takes any value as its argument and returns the
Boolean equivalent.

Nonzero numbers are considered True:

>>> bool(True)
True
>>> bool(1)

True
>>> bool(45)
True
>>> bool(-45)
True

And zero-valued ones are considered False:

>>> bool(False)
False
>>> bool(0)
False
>>> bool(0.0)
False

You’ll see the usefulness of Booleans in Chapter 6 and Chapter 7. In later
chapters, you’ll see how lists, dictionaries, and other types can be
considered True or False.

Integers
Integers are whole numbers — no fractions, no decimal points, nothing
fancy. Well, aside from a possible initial positive (+) or negative (-) sign.
And bases, if you want to express numbers in other ways than the usual
decimal (base 10); I’ll say more about bases in “Bases”.

Literal Integers
Any sequence of digits in Python represents a literal integer:

>>> 5
5

A plain zero (0) is valid:

>>> 0
0

But you can’t have an initial 0 followed by a digit between 1 and 9:

>>> 05
 File "<stdin>", line 1
 05
 ^
SyntaxError: invalid token

NOTE
This Python exception warns that you typed something that breaks Python’s rules. I
explain what this means in “Bases”. You’ll see many more examples of exceptions in
this book because they’re Python’s main error handling mechanism.

You can start an integer with 0b, 0o, or 0x. See “Bases”.

A sequence of digits specifies a positive integer. If you put a + sign before
the digits, the number stays the same:

>>> 123
123
>>> +123
123

To specify a negative integer, insert a – before the digits:

>>> -123
-123

The sign doesn’t need to be right next to the digits:

>>> + 123
123
>>> - 123
-123

Sorry, you can’t have any commas when typing in an integer:

>>> 1,000,000
(1, 0, 0)

Instead of a million, you’d get a tuple (a sequence of values, separated by a
comma; see Chapter 8). Python uses the comma (,) to create tuples. But
you can use the underscore (_) character as a digit separator (in Python 3.6
and newer.)

>>> million = 1_000_000
>>> million
1000000

The underscore can’t be the first or last character; anywhere after the first
digit, it’s just ignored:

>>> 1_2_3
123

Integer Operations
For the next few pages, I show examples of Python acting as a simple
calculator. You can do normal arithmetic with Python by using the math
operators in Table 3-1.

Table 3-1. Integer operations

Operator Description Example Result

+ Addition 5 + 8 13

- Subtraction 90 - 10 80

* Multiplication 4 * 7 28

/ Floating-point
division

7 / 2 3.5

// Integer (truncating)
division

7 // 2 3

% Modulus (remainder) 7 % 3 1

** Exponentiation 3 ** 4 81

Addition and subtraction work as you’d expect:

>>> 5 + 9
14
>>> 100 - 7
93
>>> 4 - 10
-6

You can include as many numbers and operators as you’d like:

>>> 5 + 9 + 3
17
>>> 4 + 3 - 2 - 1 + 6
10

Note that you’re not required to have a space between each number and
operator:

>>> 5+9 + 3
17

It just looks better stylewise and is easier to read.

Multiplication is also straightforward:

>>> 6 * 7
42
>>> 7 * 6
42
>>> 6 * 7 * 2 * 3
252

Division is a little more interesting because it comes in two flavors:

/ carries out floating-point (decimal) division

// performs integer (truncating) division

Even if you’re dividing an integer by an integer, using a / will give you a
floating-point result (floats are coming later in this chapter):

>>> 9 / 5
1.8

Truncating integer division returns an integer answer, throwing away any
remainder:

>>> 9 // 5
1

Instead of tearing a hole in the space-time continuum (the cosmos hates
when that happens), dividing by zero with either kind of division causes a
Python exception:

>>> 5 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> 7 // 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by z

Integers and Variables
All of the preceding examples used literal integers. You can mix literal
integers and variables that have been assigned integer values:

>>> a = 95
>>> a
95
>>> a - 3
92

You’ll remember from Chapter 2 that a is a name that points to an integer
object. When I said a - 3, I didn’t assign the result back to a, so the value
of a did not change:

>>> a
95

If you wanted to change a, you would do this:

>>> a = a - 3
>>> a
92

Again, this would not be a legal math equation, but it’s how you reassign a
value to a variable in Python. In Python, the expression on the right side of
the = is calculated first, and then assigned to the variable on the left side.

If it helps, think of it this way:

Subtract 3 from a

Assign the result of that subtraction to a temporary variable

Assign the value of the temporary variable to a:

>>> a = 95
>>> temp = a - 3
>>> a = temp

So, when you say

>>> a = a - 3

Python is calculating the subtraction on the righthand side, remembering the
result, and then assigning it to a on the left side of the + sign. It’s faster and
neater than using a temporary variable.

You can combine the arithmetic operators with assignment by putting the
operator before the =. Here, a -= 3 is like saying a = a - 3:

>>> a = 95
>>> a -= 3
>>> a
92

This is like a = a + 8:

>>> a = 92
>>> a += 8
>>> a
100

And this is like a = a * 2:

>>> a = 100
>>> a *= 2
>>> a
200

Again, plain integer division (using a single /) always produces a float,
even if there’s no remainder:

>>> a = 200
>>> a /= 4
>>> a
50.0
>>> a = 200
>>> a /= 3
>>> a
66.66666666666667

Truncating integer division (which uses //) always tosses the remainder,
and produces an integer:

>>> a = 13
>>> a //= 4
>>> a
3

The % character has multiple uses in Python. When it’s between two
numbers, it produces the remainder when the first number is divided by the
second:

>>> 9 % 5
4

Here’s how to get both the (truncated) quotient and remainder at once:

>>> divmod(9,5)
(1, 4)

Otherwise, you could have calculated them separately:

>>> 9 // 5
1
>>> 9 % 5
4

You just saw some new things here: a function named divmod is given the
integer arguments 9 and 5 and returns a two-item tuple. As I mentioned
earlier, tuples will take a bow in Chapter 8; functions debut in Chapter 10.

One last math feature is exponentiation with **, which also lets you mix
integers and floats:

>>> 2**3
8
>>> 2.0 ** 3
8.0
>>> 2 ** 3.0
8.0
>>> 0 ** 3
0

Precedence
What would you get if you typed the following?

>>> 2 + 3 * 4

If you do the addition first, 2 + 3 is 5, and 5 * 4 is 20. But if you do the
multiplication first, 3 * 4 is 12, and 2 + 12 is 14. In Python, as in most
languages, multiplication has higher precedence than addition, so the
second version is what you’d see:

>>> 2 + 3 * 4
14

How do you know the precedence rules? You can look them up, but it’s
much easier to just add parentheses to group your code, showing how you
intend the calculation to be carried out:

>>> 2 + (3 * 4)
14

This example with exponents

>>> -5 ** 2
-25

is the same as

>>> - (5 ** 2)
-25

and probably not what you wanted. Parentheses make it clear:

>>> (-5) ** 2
25

This way, anyone reading the code doesn’t need to guess its intent or look
up precedence rules.

Bases
Integers are assumed to be decimal (base 10) unless you use a prefix to
specify another base. You might never need to use these other bases, but
you’ll probably see them in Python code somewhere, sometime.

We generally have 10 fingers and 10 toes, so we count 0, 1, 2, 3, 4, 5, 6, 7,
8, 9. Next, we run out of single digits and carry the one to the “ten’s place”
and put a 0 in the one’s place: 10 means “1 ten and 0 ones.” Unlike Roman
numerals, Arabic numbers don’t have a single character that represents “10”
Then, it’s 11, 12, up to 19, carry the one to make 20 (2 tens and 0 ones), and
so on.

A base is how many digits you can use until you need to “carry the one.” In
base 2 (binary), the only digits are 0 and 1. This is the famous bit. 0 is the
same as a plain old decimal 0, and 1 is the same as a decimal 1. However, in
base 2, if you add a 1 to a 1, you get 10 (1 decimal two plus 0 decimal
ones).

In Python, you can express literal integers in three bases besides decimal
with these integer prefixes:

0b or 0B for binary (base 2).

0o or 0O for octal (base 8).

0x or 0X for hex (base 16).

These bases are all powers of two, and are handy in some cases, although
you may never need to use anything other than good old decimal integers.

The interpreter prints these for you as decimal integers. Let’s try each of
these bases. First, a plain old decimal 10, which means 1 ten and 0 ones:

>>> 10
10

Now, a binary (base two) 0b10, which means 1 (decimal) two and 0 ones:

>>> 0b10
2

Octal (base 8) 0o10 stands for 1 (decimal) eight and 0 ones:

>>> 0o10
8

Hexadecimal (base 16) 0x10 means 1 (decimal) sixteen and 0 ones:

>>> 0x10
16

You can go the other direction, converting an integer to a string with any of
these bases:

>>> value = 65
>>> bin(value)
'0b1000001'
>>> oct(value)
'0o101'
>>> hex(value)
'0x41'

The chr() function converts an integer to its single-character string
equivalent:

>>> chr(65)
'A'

And ord() goes the other way:

>>> ord('A')
65

In case you’re wondering what “digits” base 16 uses, they are: 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, a, b, c, d, e, and f. 0xa is a decimal 10, and 0xf is a decimal
15. Add 1 to 0xf and you get 0x10 (decimal 16).

Why use different bases from 10? They’re useful in bit-level operations,
which are described in Chapter 20, along with more details about
converting numbers from one base to another.

Cats normally have five digits on each forepaw and four on each hindpaw,
for a total of 18. If you ever encounter cat scientists in their lab coats,
they’re often discussing base-18 arithmetic. My cat Chester, seen lounging
about in Figure 3-1, is a polydactyl, giving him a total of 22 or so (they’re
hard to distinguish) toes. If he wanted to use all of them to count food
fragments surrounding his bowl, he would likely use a base-22 system
(hereafter, the chesterdigital system), using 0 through 9 and a through l.

Figure 3-1. Chester—a fine furry fellow, and inventor of the chesterdigital system

Type Conversions
To change other Python data types to an integer, use the int() function.

The int() function takes one input argument and returns one value, the
integer-ized equivalent of the input argument. This will keep the whole
number and discard any fractional part.

As you saw at the start of this chapter, Python’s simplest data type is the
Boolean, which has only the values True and False. When converted to
integers, they represent the values 1 and 0:

>>> int(True)
1
>>> int(False)
0

Turning this around, the bool() function returns the Boolean equivalent of
an integer:

>>> bool(1)
True
>>> bool(0)
False

Converting a floating-point number to an integer just lops off everything
after the decimal point:

>>> int(98.6)
98
>>> int(1.0e4)
10000

Converting a float to a boolean is no surprise:

>>> bool(1.0)
True
>>> bool(0.0)
False

Finally, here’s an example of getting the integer value from a text string
(Chapter 4) that contains only digits, possibly with _ digit separators or an
initial + or - sign:

>>> int('99')
99
>>> int('-23')
-23
>>> int('+12')
12
>>> int('1_000_000')
1000000

If the string represents a nondecimal integer, you can include the base:

>>> int('10', 2) # binary
2
>>> int('10', 8) # octal
8
>>> int('10', 16) # hexadecimal
16
>>> int('10', 22) # chesterdigital
22

Converting an integer to an integer doesn’t change anything, but doesn’t
hurt either:

>>> int(12345)
12345

If you try to convert something that doesn’t look like a number, you’ll get
an exception.

>>> int('99 bottles of beer on the wall')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '99 bottles of beer on the
wall'
>>> int('')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: ''

The preceding text string started with valid digit characters (99), but it kept
on going with others that the int() function just wouldn’t stand for.

int() will make integers from floats or strings of digits, but it won’t handle
strings containing decimal points or exponents:

>>> int('98.6')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '98.6'
>>> int('1.0e4')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '1.0e4'

If you mix numeric types, Python will sometimes try to automatically
convert them for you:

>>> 4 + 7.0
11.0

The boolean value False is treated as 0 or 0.0 when mixed with integers or
floats, and True is treated as 1 or 1.0:

>>> True + 2
3
>>> False + 5.0
5.0

How Big Is an int?
In old Python 2, the size of an int could be limited to 32 or 64 bits,
depending on your CPU; 32 bits can store store any integer from –
2,147,483,648 to 2,147,483,647.

A long had 64 bits, allowing values from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. In Python 3, the old long type is long gone,
and an int can be any size—even greater than 64 bits. You can play with
big numbers like a googol (one followed by a hundred zeroes, named in
1920 by a nine-year-old boy):

https://oreil.ly/6ibo_

>>>
>>> googol = 10**100
>>> googol
1000
00000000000000000000000
>>> googol * googol
1000
00
000

A googolplex is 10**googol (a thousand zeroes, if you want to try it
yourself). This was a suggested name for Google before they decided on
googol, but didn’t check its spelling before registering the domain name
google.com.

In many languages, trying this would cause something called integer
overflow, where the number would need more space than the computer
allowed for it, with various bad effects. Python handles googoly integers
with no problem.

Floats
Integers are whole numbers, but floating-point numbers (called floats in
Python) have decimal points:

>>> 5.
5.0
>>> 5.0
5.0
>>> 05.0
5.0

Floats can include a decimal integer exponent after the letter e:

>>> 5e0
5.0
>>> 5e1
50.0
>>> 5.0e1
50.0

https://oreil.ly/IQfer

>>> 5.0 * (10 ** 1)
50.0

You can use underscore (_) to separate digits for clarity, as you can for
integers:

>>> million = 1_000_000.0
>>> million
1000000.0
>>> 1.0_0_1
1.001

Floats are handled similarly to integers: you can use the operators (+, –, *,
/, //, **, and %) and the divmod() function.

To convert other types to floats, you use the float() function. As before,
booleans act like tiny integers:

>>> float(True)
1.0
>>> float(False)
0.0

Converting an integer to a float just makes it the proud possessor of a
decimal point:

>>> float(98)
98.0
>>> float('99')
99.0

And you can convert a string containing characters that would be a valid
float (digits, signs, decimal point, or an e followed by an exponent) to a real
float:

>>> float('98.6')
98.6
>>> float('-1.5')
-1.5
>>> float('1.0e4')
10000.0

All the integer operations that use a symbol before the equals sign work for
floats as they do for ints. Here’s a floating-point division example, like a =
a / 3:

>>> a = 200.0
>>> a /= 3.0
>>> a
66.66666666666667

When you mix integers and floats, Python automatically promotes the
integer values to float values:

>>> 43 + 2.
45.0

Python also promotes booleans to integers or floats:

>>> False + 0
0
>>> False + 0.
0.0
>>> True + 0
1
>>> True + 0.
1.0

Floats are not exact
Because computers are binary (base two) inside instead of decimal (base
ten), many numbers that we commonly use can’t be represented exactly as
floating-point values:

>>> 1/3
0.3333333333333333

(That 3 would go on infinitely. Because computers only have so much space
for values, they cut it off at a certain nunber of bits.)

This means that you need to be careful with floats. The official Python
documentation has a discussion at Floating-Point Arithmetic: Issues and
Limitations.

The next two sections discuss some solutions.

Fractions
Python has a standard module named fractions that handles these difficult
rational numbers. We don’t get to modules until Chapter 12 and objects
until Chapter 11, so this is a sneak peek. The examples define, in various
ways, a Fraction object that stores and displays a numerator and
denominator. This is a more exact way of defining some numbers than as
floats.

>>> from fractions import Fraction
>>> Fraction(97, 1)
Fraction(97, 1)
>>> Fraction('97')
Fraction(97, 1)
>>> Fraction(97.0)
Fraction(97, 1)
>>> Fraction('97.0')
Fraction(97, 1)

Read fractions at python.org for details.

Decimals
Another standard Python module called decimal handles exact
representation of decimal numbers. This is useful for Python accounting
applications. Again, check the official decimal documentation.

Another common trick is to multiply currency values to get more exact
arithmetic. For example, represent dollar or euro amounts as pennies
(multiply by 100), calculate with integer pennies as much as possible, and
convert back to dollars when done.

https://docs.python.org/3/tutorial/floatingpoint.xhtml
https://docs.python.org/3/tutorial/floatingpoint.xhtml
https://docs.python.org/3/library/fractions.xhtml
https://docs.python.org/3/library/decimal.xhtml

Math Functions
Python supports complex numbers and has the usual math functions such as
square roots, cosines, and so on. Let’s save them for Chapter 27, in which
we also discuss using Python in scientific contexts. If you’re curious now,
I’ll again point you to the standard Python math documentation.

Review/Prview
This chapter showed how to represent Booleans and integer and floating
point numbers, as well as some of the things you can do with them.

Next: moving up to the exciting world of text strings.

Practice
This chapter introduced the atoms of Python: numbers, Booleans, and
variables. Let’s try a few small exercises with them in the interactive
interpreter. Try these exercises before looking up the answers in Appendix
A.

3.1 How many seconds are in an hour? Use the interactive interpreter as a
calculator and multiply the number of seconds in a minute (60) by the
number of minutes in an hour (also 60).

3.2 Assign the result from the previous task (seconds in an hour) to a
variable called seconds_per_hour.

3.3 How many seconds are in a day? Use your seconds_per_hour variable.

3.4 Calculate seconds per day again, but this time save the result in a
variable called seconds_per_day.

3.5 Divide seconds_per_day by seconds_per_hour. Use floating-point
(/) division.

3.6 Divide seconds_per_day by seconds_per_hour, using integer (//)
division. Did this number agree with the floating-point value from the

https://docs.python.org/3/library/math.xhtml

previous question, aside from the final .0?

Chapter 4. Strings

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

I always liked strange characters.
—Tim Burton

Computer books often give the impression that programming is all about
math. Actually, most programmers work with strings of text more often
than numbers. Logical (and creative!) thinking is often more important than
math skills.

Strings are our first example of a Python sequence. In this case, they’re a
sequence of characters. But what’s a character? It’s the smallest unit in a
writing system, and includes letters, digits, symbols, punctuation, and even
white space or directives like linefeeds. A character is defined by its
meaning (how it’s used), not how it looks. It can have more than one visual
representation (in different fonts), and more than one character can have the
same appearance (such as the visual H, which means the H sound in the
Latin alphabet but the Latin N sound in Cyrillic).

This chapter concentrates on how to make and format simple text strings,
using ASCII (basic character set) examples. Two important text topics are
deferred to Chapter 19: Unicode characters (like the H and N issue I just
mentioned) and regular expressions (pattern matching).

Unlike other languages, strings in Python are immutable. You can’t change
a string in place, but you can copy parts of strings to a new string to get the
same effect. We look at how to do this shortly.

Single characters don’t exist on their own in Python. They’re always part of
a string. A string can have one character, a million, or even none (an empty
string).

One last note before we dive in: strings are the first example in this book of
a sequence in Python. A sequence is an ordered collection of elements.
Some of the things that you can get from any sequence are:

If an element is in the sequence.

The index of an element by its value.

The element at a particular index.

A slice of elements in a given range.

The length of the sequence.

The minimum and maximum element values.

Other sequences that you’ll see in coming chapters include tuples and lists
(Chapter 8) and bytes and bytearrays (Chapter 5).

Create with Quotes
You make a Python string by enclosing characters in matching single or
double quotes:

>>> 'Snap'
'Snap'
>>> "Crackle"

'Crackle'
>>> 'Flop'
'Flop'

The interactive interpreter echoes strings with a single quote, but all are
treated exactly the same by Python.

Python has a few special types of strings, indicated by a letter before the
first quote:

f or F starts an f string, used for formatting, and described near the
end of this chapter.

r or R starts a raw string, used to prevent escape sequences in the
string (see “Escape with \” and Chapter 19 for its use in string
pattern matching).

Then, there’s the combination fr (or FR, Fr, or fR) that starts a raw
f-string.

A u starts a Unicode string, which is the same as a plain string.

And a b starts a value of type bytes (Chapter 5).

Unless I mention one of these special types, I’m always talking about plain
old Python text strings. Each character in a string can be anything defined
in the Unicode standard. Again, I’m holding off a big discussion of Unicode
until Chapter 19, but the main thing to know for now is that it’s much
bigger than ASCII.

Why have two kinds of quote characters? The main purpose is to create
strings containing quote characters. You can have single quotes inside
double-quoted strings, or double quotes inside single-quoted strings:

>>> "'Nay!' said the naysayer. 'Neigh?' said the horse."
"'Nay!' said the naysayer. 'Neigh?' said the horse."
>>> 'The rare double quote in captivity: ".'
'The rare double quote in captivity: ".'
>>> 'A "two by four" is actually 1 1⁄2" × 3 1⁄2".'
'A "two by four" is actually 1 1⁄2" × 3 1⁄2".'

>>> "'There's the man that shot my paw!' cried the limping hound."
"'There's the man that shot my paw!' cried the limping hound."

You can also use three single quotes (''') or three double quotes ("""):

>>> '''Boom!'''
'Boom'
>>> """Eek!"""
'Eek!'

Triple quotes aren’t very useful for short strings like these. Their most
common use is to create multiline strings, like this classic poem from
Edward Lear:

>>> poem = '''There was a Young Lady of Norway,
... Who casually sat in a doorway;
... When the door squeezed her flat,
... She exclaimed, "What of that?"
... This courageous Young Lady of Norway.'''
>>>

This was entered in the interactive interpreter, which prompted us with >>>
for the first line and continuation prompts ... until we entered the final
triple quotes and went to the next line.

If you tried to create that poem without triple quotes, Python would make a
fuss when you went to the second line:

>>> poem = 'There was a young lady of Norway,
 File "<stdin>", line 1
 poem = 'There was a young lady of Norway,
 ^
SyntaxError: EOL while scanning string literal
>>>

If you have multiple lines within triple quotes, the line ending characters
will be preserved in the string. If you have leading or trailing spaces, they’ll
also be kept:

>>> poem2 = '''I do not like thee, Doctor Fell.
... The reason why, I cannot tell.
... But this I know, and know full well:
... I do not like thee, Doctor Fell.
... '''
>>> print(poem2)
I do not like thee, Doctor Fell.
 The reason why, I cannot tell.
 But this I know, and know full well:
 I do not like thee, Doctor Fell.

>>>

By the way, there’s a difference between the output of print() and the
automatic echoing done by the interactive interpreter:

>>> poem2
'I do not like thee, Doctor Fell.\n The reason why, I cannot tell.\n But
this I know, and know full well:\n I do not like thee, Doctor Fell.\n'

print() strips quotes from strings and prints their contents. It’s meant for
human output. It helpfully adds a space between each of the things it prints,
and a newline at the end:

>>> print('Give', "us", '''some''', """space""")
Give us some space

If you don’t want the space or newline, Chapter 19 explains how to avoid
them.

The interactive interpreter prints the string with individual quotes and
escape characters such as \n, which are explained in “Escape with \”.

>>> """'Guten Morgen, mein Herr!'
... said mad king Ludwig to his wig."""
"'Guten Morgen, mein Herr!'\nsaid mad king Ludwig to his wig."

Finally, there is the empty string, which has no characters at all but is
perfectly valid. You can create an empty string with any of the
aforementioned quotes:

>>> ''
''
>>> ""
''
>>> ''''''
''
>>> """"""
''
>>>

Create with str()
You can make a string from another data type by using the str() function:

>>> str(98.6)
'98.6'
>>> str(1.0e4)
'10000.0'
>>> str(True)
'True'

Python uses the str() function internally when you call print() with
objects that are not strings and when doing string formatting, which you’ll
see later in this chapter.

Escape with \
Python lets you escape the meaning of some characters within strings to
achieve effects that would otherwise be difficult to express. By preceding a
character with a backslash (\), you give it a special meaning. The most
common escape sequence is \n, which means to begin a new line. With this
you can create multiline strings from a one-line string:

>>> palindrome = 'A man,\nA plan,\nA canal:\nPanama.'
>>> print(palindrome)
A man,
A plan,
A canal:
Panama.

You may see the escape sequence \t (tab) used to align text:

>>> print('\tabc')
 abc
>>> print('a\tbc')
a bc
>>> print('ab\tc')
ab c
>>> print('abc\t')
abc

(The final string has a terminating tab which, of course, you can’t see.)

You might also need \' or \" to specify a literal single or double quote
inside a string that’s quoted by the same character:

>>> testimony = "\"I did nothing!\" he said. \"Or that other thing.\""
>>> testimony
'"I did nothing!" he said. "Or that other thing."'
>>> print(testimony)
"I did nothing!" he said. "Or that other thing."
>>> fact = "The world's largest rubber duck was 54'2\" by 65'7\" by 105'"
>>> print(fact)
The world's largest rubber duck was 54'2" by 65'7" by 105'

And if you need a literal backslash, type two of them (the first escapes the
second):

>>> speech = 'The backslash (\\) bends over backwards to please you.'
>>> print(speech)
The backslash (\) bends over backwards to please you.
>>>

As I mentioned early in this chapter, a raw string negates these escapes:

>>> info = r'Type a \n to get a new line in a normal string'
>>> info
'Type a \\n to get a new line in a normal string'
>>> print(info)
Type a \n to get a new line in a normal string

(The extra backslash in the first info output was added by the interactive
interpreter.)

A raw string does not undo any real (not '\n') newlines:

>>> poem = r'''Boys and girls, come out to play.
... The moon doth shine as bright as day.'''
>>> poem
'Boys and girls, come out to play.\nThe moon doth shine as bright as day.'
>>> print(poem)
Boys and girls, come out to play.
The moon doth shine as bright as day.

Combine with +
You can combine literal strings or string variables in Python by using the +
operator:

>>> 'Release the kraken! ' + 'No, wait!'
'Release the kraken! No, wait!'

You can also combine literal strings (not string variables) just by having
one after the other:

>>> "My word! " "A gentleman caller!"
'My word! A gentleman caller!'
>>> "Alas! ""The kraken!"
'Alas! The kraken!'

If you have a lot of these, you can avoid escaping the line endings by
surrounding them with parentheses:

>>> vowels = ('a'
... "e" '''i'''
... 'o' """u"""
...)
>>> vowels
'aeiou'

Python does not add spaces for you when concatenating strings, so in some
earlier examples, we needed to include spaces explicitly. Python does add a
space between each argument to a print() statement and a newline at the
end.

>>> a = 'Duck.'
>>> b = a
>>> c = 'Grey Duck!'
>>> a + b + c
'Duck.Duck.Grey Duck!'
>>> print(a, b, c)
Duck. Duck. Grey Duck!

Duplicate with *
You use the * operator to duplicate a string. Try typing these lines into your
interactive interpreter and see what they print:

>>> start = 'Na ' * 4 + '\n'
>>> middle = 'Hey ' * 3 + '\n'
>>> end = 'Goodbye.'
>>> print(start + start + middle + end)

Notice that the * has higher precedence than +, so the string is duplicated
before the line feed is tacked on.

Get a Character with []
To get a single character from a string, specify its offset inside square
brackets after the string’s name. The first (leftmost) offset is 0, the next is 1,
and so on. The last (rightmost) offset can be specified with –1, so you don’t
have to count; going to the left are –2, –3, and so on:

>>> letters = 'abcdefghijklmnopqrstuvwxyz'
>>> letters[0]
'a'
>>> letters[1]
'b'

>>> letters[-1]
'z'
>>> letters[-2]
'y'
>>> letters[25]
'z'
>>> letters[5]
'f'

If you specify an offset that is the length of the string or longer (remember,
offsets go from 0 to length–1), you’ll get an exception:

>>> letters[100]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

Indexing works the same with the other sequence types (lists and tuples),
which I cover in Chapter 8.

Because strings are immutable, you can’t insert a character directly into one
or change the character at a specific index. Let’s try to change 'Henny' to
'Penny' and see what happens:

>>> name = 'Henny'
>>> name[0] = 'P'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

Instead you need to use some combination of string functions such as
replace() or a slice (which we look at in a moment):

>>> name = 'Henny'
>>> name.replace('H', 'P')
'Penny'
>>> 'P' + name[1:]
'Penny'

We didn’t change the value of name. The interactive interpreter just printed
the result of the replacement.

Get a Substring with a Slice
You can extract a substring (a part of a string) from a string by using a slice.
You define a slice by using square brackets, a start offset, an end offset,
and an optional step count between them. You can omit some of these.
The slice will include characters from offset start to one before end:

[:] extracts the entire sequence from start to end.

[start :] specifies from the start offset to the end.

[: end] specifies from the beginning to the end offset minus 1.

[start : end] indicates from the start offset to the end
offset minus 1.

[start : end : step] extracts from the start offset to the
end offset minus 1, skipping characters by step.

As before, offsets go 0, 1, and so on from the start to the right, and –1,–2,
and so forth from the end to the left. If you don’t specify start, the slice
uses 0 (the beginning). If you don’t specify end, it uses the end of the
string.

Let’s make a string of the lowercase English letters:

>>> letters = 'abcdefghijklmnopqrstuvwxyz'

Using a plain : is the same as 0: (the entire string):

>>> letters[:]
'abcdefghijklmnopqrstuvwxyz'

Here’s an example from offset 20 to the end:

>>> letters[20:]
'uvwxyz'

Now, from offset 10 to the end:

>>> letters[10:]
'klmnopqrstuvwxyz'

And another, offset 12 through 14. Python does not include the end offset in
the slice. The start offset is inclusive, and the end offset is exclusive:

>>> letters[12:15]
'mno'

The three last characters:

>>> letters[-3:]
'xyz'

In this next example, we go from offset 18 to the fourth before the end;
notice the difference from the previous example, in which starting at –3 gets
the x, but ending at –3 actually stops at –4, the w:

>>> letters[18:-3]
'stuvw'

In the following, we extract from 6 before the end to 3 before the end:

>>> letters[-6:-2]
'uvwx'

If you want a step size other than 1, specify it after a second colon, as
shown in the next series of examples.

From the start to the end, in steps of 7 characters:

>>> letters[::7]
'ahov'

From offset 4 to 19, by 3:

>>> letters[4:20:3]
'ehknqt'

From offset 19 to the end, by 4:

>>> letters[19::4]
'tx'

From the start to offset 20 by 5:

>>> letters[:21:5]
'afkpu'

(Again, the end needs to be one more than the actual offset.)

And that’s not all! Given a negative step size, this handy Python slicer can
also step backward. This starts at the end and ends at the start, skipping
nothing:

>>> letters[-1::-1]
'zyxwvutsrqponmlkjihgfedcba'

It turns out that you can get the same result by using this:

>>> letters[::-1]
'zyxwvutsrqponmlkjihgfedcba'

Slices are more forgiving of bad offsets than are single-index lookups with
[]. A slice offset earlier than the beginning of a string is treated as 0, and
one after the end is treated as -1, as is demonstrated in this next series of
examples.

From 50 before the end to the end:

>>> letters[-50:]
'abcdefghijklmnopqrstuvwxyz'

From 51 before the end to 50 before the end:

>>> letters[-51:-50]
''

From the start to 69 after the start:

>>> letters[:70]
'abcdefghijklmnopqrstuvwxyz'

From 70 after the start to 70 after the start:

>>> letters[70:71]
''

Get Length with len()
So far, we’ve used special punctuation characters such as + to manipulate
strings. But there are only so many of these. Now let’s begin to use some of
Python’s built-in functions: named pieces of code that perform certain
operations. They get a whole chapter in Chapter 10.

The len() function counts characters in a string:

>>> len(letters)
26
>>> empty = ""
>>> len(empty)
0

You can use len() with other sequence types, too, as you’ll see in
Chapter 8.

Split with split()
Unlike len(), some functions are specific to strings. To use a string
function, type the name of the string variable, a dot, the name of the
function, and any arguments that the function needs:
string.function(arguments). There’s a longer discussion of
functions in Chapter 10.

You can use the built-in string split() function to break a string into a list
of smaller strings based on some separator. Again, we look at lists in
Chapter 8. A list is a sequence of values, separated by commas and
surrounded by square brackets:

>>> tasks = 'get gloves,get mask,give cat vitamins,call ambulance'
>>> tasks.split(',')
['get gloves', 'get mask', 'give cat vitamins', 'call ambulance']

In the preceding example, the string was called tasks and the string
function was called split(), with the single separator argument ','. If you
don’t specify a separator, split() uses any sequence of white space
characters — newlines, spaces, and tabs:

>>> tasks.split()
['get', 'gloves,get', 'mask,give', 'cat', 'vitamins,call', 'ambulance']

You still need the parentheses when calling split with no arguments —
that’s how Python knows you’re calling a function.

Combine with join()
Not too surprisingly, the join() function is the opposite of split(): it
collapses a list of strings into a single string. It looks a bit backward
because you specify the string that glues everything together first, and then
the list of strings to glue: string .join(list). So, to join the list
lines with separating newlines, you would say '\n'.join(lines). As
you’ll see in Chapter 8, one way to make a list is with square brackets ([
and]) surrounding a comma-separated sequence of items. In the following
example, let’s join some names in a list with a comma and a space:

>>> crypto_list = ['Yeti', 'Bigfoot', 'Loch Ness Monster']
>>> crypto_string = ', '.join(crypto_list)
>>> print('Found and signing book deals:', crypto_string)
Found and signing book deals: Yeti, Bigfoot, Loch Ness Monster

Substitute with replace()
You use replace() for simple substring substitution. Give it the old
substring, the new one, and how many instances of the old substring to
replace. It returns the changed string but does not modify the original string.
If you omit this final count argument, it replaces all instances. In this
example, only one string ('duck') is matched and replaced in the returned
string:

>>> setup = "a duck goes into a bar..."
>>> setup.replace('duck', 'marmoset')
'a marmoset goes into a bar...'
>>> setup
'a duck goes into a bar...'

Change up to 100 of them:

>>> setup.replace('a ', 'a famous ', 100)
'a famous duck goes into a famous bar...'

When you know the exact substring(s) you want to change, replace() is a
good choice. But watch out. In the second example, if we had substituted
for the single character string 'a' rather than the two character string 'a '
(a followed by a space), we would have also changed a in the middle of
other words:

>>> setup.replace('a', 'a famous', 100)
'a famous duck goes into a famous ba famousr...'

Sometimes, you want to ensure that the substring is a whole word, or the
beginning of a word, and so on. In those cases, you need regular
expressions, which are described in numbing detail in Chapter 19.

Prefixes and Suffixes
You may need to find, change, or delete the prefix or suffix of a string. If
this never happens to you, feel free to make yourself a sandwich now.
Otherwise, here are a few useful Python string methods:

>>> s = "inconceivable"
>>> s.startswith("in")
True
>>> s.startswith("un")
False
>>> s.endswith("able")
True
>>> s.endswith("abominable")
False
>>> s.removeprefix("in")
'conceivable'
>>> s.removesuffix("conceivable")
'in'

removeprefix() and removesuffix() were added in Python 3.9.

To add a prefix or suffix, use the + to concatenate (join) the old word and
the new part:

>>> "ultra" + s
'ultrainconceivable'
>>> s + "ness"
'inconceivableness'

Strip with strip()
It’s very common to strip leading or trailing “padding” characters from a
string, especially spaces. The strip() functions shown here assume that
you want to get rid of whitespace characters (' ', '\t', '\n') if you don’t
give them an argument. strip() strips both ends, lstrip() only from the
left, and rstrip() only from the right. Let’s say the string variable world
contains the string "earth" floating in spaces:

>>> world = " earth "
>>> world.strip()
'earth'
>>> world.strip(' ')
'earth'
>>> world.lstrip()
'earth '
>>> world.rstrip()
' earth'

If the character was not there, nothing happens:

>>> world.strip('!')
' earth '

Besides no argument (meaning whitespace characters) or a single character,
you can also tell strip() to remove any character in a multicharacter
string:

>>> blurt = "What the...!!?"
>>> blurt.strip('.?!')
'What the'

Here are some character groups that are useful with strip():

>>> import string
>>> string.whitespace
' \t\n\r\x0b\x0c'
>>> string.punctuation
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
>>> blurt = "What the...!!?"
>>> blurt.strip(string.punctuation)
'What the'
>>> prospector = "What in tarnation ...??!!"
>>> prospector.strip(string.whitespace + string.punctuation)
'What in tarnation'

Search and Select
Python has a large set of string functions. Let’s explore how the most
common of them work. Our test subject is the following string containing

the text of the immortal poem “What Is Liquid?” by Margaret Cavendish,
Duchess of Newcastle:

>>> poem = '''All that doth flow we cannot liquid name
... Or else would fire and water be the same;
... But that is liquid which is moist and wet
... Fire that property can never get.
... Then 'tis not cold that doth the fire put out
... But 'tis the wet that makes it die, no doubt.'''

Inspiring!

To begin, get the first 13 characters (offsets 0 to 12):

>>> poem[:13]
'All that doth'

How many characters are in this poem? (Spaces and newlines are included
in the count.)

>>> len(poem)
250

Does it start with the letters All?

>>> poem.startswith('All')
True

Does it end with That's all, folks!?

>>> poem.endswith('That\'s all, folks!')
False

Python has two methods (find() and index()) for finding the offset of a
substring, and has two versions of each (starting from the beginning or the
end). They work the same if the substring is found. If it isn’t, find()
returns -1, and index() raises an exception.

Let’s find the offset of the first occurrence of the word the in the poem:

>>> word = 'the'
>>> poem.find(word)
73
>>> poem.index(word)
73

And the offset of the last the:

>>> word = 'the'
>>> poem.rfind(word)
214
>>> poem.rindex(word)
214

But if the substring isn’t in there:

>>> word = "duck"
>>> poem.find(word)
-1
>>> poem.rfind(word)
-1
>>> poem.index(word)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: substring not found
>>> poem.rfind(word)
-1
>>> poem.rindex(word)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: substring not found

How many times does the three-letter sequence the occur?

>>> word = 'the'
>>> poem.count(word)
3

Are all of the characters in the poem either letters or numbers?

>>> poem.isalnum()
False

Nope, there were some punctuation characters.

Case
In this section, we look at some more uses of the built-in string functions.
Our test string is again the following:

>>> setup = 'a duck goes into a bar...'

Remove . sequences from both ends:

>>> setup.strip('.')
'a duck goes into a bar'

NOTE
Because strings are immutable, none of these examples actually changes the setup
string. Each example just takes the value of setup, does something to it, and returns the
result as a new string.

Capitalize the first word:

>>> setup.capitalize()
'A duck goes into a bar...'

Capitalize all the words:

>>> setup.title()
'A Duck Goes Into A Bar...'

Convert all characters to uppercase:

>>> setup.upper()
'A DUCK GOES INTO A BAR...'

Convert all characters to lowercase:

>>> setup.lower()
'a duck goes into a bar...'

Swap uppercase and lowercase:

>>> setup.swapcase()
'A DUCK GOES INTO A BAR...'

Alignment
Now, let’s work with some layout alignment functions. The string is aligned
within the specified total number of spaces (30 here).

Center the string within 30 spaces:

>>> setup.center(30)
' a duck goes into a bar... '

Left justify:

>>> setup.ljust(30)
'a duck goes into a bar... '

Right justify:

>>> setup.rjust(30)
' a duck goes into a bar...'

Next, we look at more ways to format a string.

Formatting
You’ve seen that you can concatenate strings by using +. Let’s look at how
to interpolate data values into strings using various formats. You can use
this to produce reports, forms, and other outputs where appearances need to
be just so.

Besides the functions in the previous section, Python has three ways of
formatting strings:

Old style (supported in Python 2 and 3)

New style (Python 2.6 and up)

F-strings (Python 3.6 and up)

I prefer using f-strings, but you’ll see the older styles and should at least
understand them.

Old style: %
The old style of string formatting has the form format_string % data.
Inside the format string are interpolation sequences. Table 4-1 illustrates
that the very simplest sequence is a % followed by a letter indicating the
data type to be formatted.

Table 4-1. Conversion types

%s string

%d decimal integer

%x hex integer

%o octal integer

%f decimal float

%e exponential float

%g decimal or exponential float

%% a literal %

You can use a %s for any data type, and Python will format it as a string
with no extra spaces.

Following are some simple examples. First, an integer:

>>> '%s' % 42
'42'
>>> '%d' % 42
'42'
>>> '%x' % 42
'2a'
>>> '%o' % 42
'52'

A float:

>>> '%s' % 7.03
'7.03'
>>> '%f' % 7.03
'7.030000'
>>> '%e' % 7.03
'7.030000e+00'
>>> '%g' % 7.03
'7.03'

An integer and a literal %:

>>> '%d%%' % 100
'100%'

Let’s try some string and integer interpolation:

>>> cat = 'Chester'
>>> weight = 28
>>> "My cat %s weighs %s pounds" % (cat, weight)
'My cat Chester weighs 28 pounds'

That %s inside the string means to interpolate a string. The number of %
appearances in the string needs to match the number of data items after the
% that follows the string. A single data item such as actor goes right after
that final %. Multiple data must be grouped into a tuple (details in Chapter 8;
it’s bounded by parentheses, separated by commas) such as (cat,
weight).

Even though weight is an integer, the %s inside the string converted it to a
string.

You can add other values in the format string between the % and the type
specifier to designate minimum and maximum widths, alignment, and
character filling. This is a little language in its own right, and more limited
than the one in the next two sections. Let’s take a quick look at these
values:

An initial '%' character.

An optional alignment character: nothing or '+' means right-align,
and '-' means left-align.

An optional minwidth field width to use.

An optional '.' character to separate minwidth and maxchars.

An optional maxchars (if conversion type is s) saying how many
characters to print from the data value. If the conversion type is f,
this specifies precision (how many digits to print after the decimal
point).

The conversion type character from the earlier table.

This is confusing, so here are some examples for a string:

>>> thing = 'woodchuck'
>>> '%s' % thing
'woodchuck'
>>> '%12s' % thing
' woodchuck'
>>> '%+12s' % thing
' woodchuck'
>>> '%-12s' % thing
'woodchuck '
>>> '%.3s' % thing
'woo'
>>> '%12.3s' % thing
' woo'
>>> '%-12.3s' % thing
'woo '

Once more with feeling, and a float with %f variants:

>>> thing = 98.6
>>> '%f' % thing
'98.600000'
>>> '%12f' % thing
' 98.600000'
>>> '%+12f' % thing
' +98.600000'
>>> '%-12f' % thing
'98.600000 '

>>> '%.3f' % thing
'98.600'
>>> '%12.3f' % thing
' 98.600'
>>> '%-12.3f' % thing
'98.600 '

And an integer with %d:

>>> thing = 9876
>>> '%d' % thing
'9876'
>>> '%12d' % thing
' 9876'
>>> '%+12d' % thing
' +9876'
>>> '%-12d' % thing
'9876 '
>>> '%.3d' % thing
'9876'
>>> '%12.3d' % thing
' 9876'
>>> '%-12.3d' % thing
'9876 '

For an integer, the %+12d just forces the sign to be printed, and the format
strings with .3 in them have no effect as they do for a float.

New style: {} and format()
“New style” formatting has the form format_string.format(data).

The format string is not exactly the same as the old style in “Old style: %”.
The simplest usage is demonstrated here:

>>> thing = 'woodchuck'
>>> '{}'.format(thing)
'woodchuck'

The arguments to the format() function need to be in the order as the {}
placeholders in the format string:

>>> thing = 'woodchuck'
>>> place = 'lake'
>>> 'The {} is in the {}.'.format(thing, place)
'The woodchuck is in the lake.'

With new-style formatting, you can also specify the arguments by position
like this:

>>> 'The {1} is in the {0}.'.format(place, thing)
'The woodchuck is in the lake.'

The value 0 referred to the first argument, place, and 1 referred to thing.

The arguments to format() can also be named arguments

>>> 'The {thing} is in the {place}'.format(thing='duck', place='bathtub')
'The duck is in the bathtub'

or a dictionary:

>>> d = {'thing': 'duck', 'place': 'bathtub'}

In the following example, {0} is the first argument to format() (the
dictionary d):

>>> 'The {0[thing]} is in the {0[place]}.'.format(d)
'The duck is in the bathtub.'

These examples all printed their arguments with default formats. New-style
formatting has a slightly different format string definition from the old-style
one (examples follow):

An initial colon (':').

An optional fill character (default ' ') to pad the value string if it’s
shorter than minwidth.

An optional alignment character. This time, left alignment is the
default. '<' also means left, '>' means right, and '^' means

center.

An optional sign for numbers. Nothing means only prepend a
minus sign ('-') for negative numbers. ' ' means prepend a
minus sign for negative numbers, and a space (' ') for positive
ones.

An optional minwidth. An optional period ('.') to separate
minwidth and maxchars.

An optional maxchars.

The conversion type.

>>> thing = 'wraith'
>>> place = 'window'
>>> 'The {} is at the {}'.format(thing, place)
'The wraith is at the window'
>>> 'The {:10s} is at the {:10s}'.format(thing, place)
'The wraith is at the window '
>>> 'The {:<10s} is at the {:<10s}'.format(thing, place)
'The wraith is at the window '
>>> 'The {:^10s} is at the {:^10s}'.format(thing, place)
'The wraith is at the window '
>>> 'The {:>10s} is at the {:>10s}'.format(thing, place)
'The wraith is at the window'
>>> 'The {:!^10s} is at the {:!^10s}'.format(thing, place)
'The !!wraith!! is at the !!window!!'

Newest Style: f-strings
f-strings appeared in Python 3.6, and are now the recommended way of
formatting strings.

To make an f-string:

Type the letter f or F directly before the initial single or triple
quote characters.

Include variable names or expressions within curly brackets ({}) to
get their values interpolated into the string.

It’s like the previous section’s “new-style” formatting, but without the
format() function, and without empty brackets ({}) or positional ones
({1}) in the format string. F-strings use curly brackets ({}) differently.

>>> thing = 'wereduck'
>>> place = 'werepond'
>>> f'The {thing} is in the {place}'
'The wereduck is in the werepond'

As I already mentioned, expressions are also allowed inside the curly
brackets:

>>> f'The {thing.capitalize()} is in the {place.rjust(20)}'
'The Wereduck is in the werepond'

This means that the things that you could do inside format() in the
previous section, you can now do inside a {} in your main string. This
seems easier to read.

F-strings use the same formatting language (width, padding, alignment) as
new-style formatting, after a ':'.

>>> f'The {thing:>20} is in the {place:.^20}'
'The wereduck is in thewerepond......'

Starting in Python 3.8, f-strings gain a new shortcut that’s helpful when you
want to print variable names as well as their values. This is handy when
debugging. The trick is to have a single = after the name in the {}-enclosed
part of the f-string:

>>> f'{thing =}, {place =}'
thing = 'wereduck', place = 'werepond'

The name can actually be an expression, and it will be printed literally:

>>> f'{thing[-4:] =}, {place.title() =}'
thing[-4:] = 'duck', place.title() = 'Werepond'

Finally, the = can be followed by a : and the formatting arguments like
width and alignment:

>>> f'{thing = :>4.4}'
thing = 'were'

More String Things
Python has many more string functions than I’ve shown here. Some will
turn up in later chapters (especially Chapter 19), but you can find all the
details at the standard documentation link.

Review/Preview
Strings are a strong component of the Python language. In usual daily
programming jobs, you’ll probably spend a lot of time messing with strings.
They’re an example of a sequence, and include methods to access
characters by their position or pattern.

Because strings are immutable, you can’t change the contents of one after
it’s been defined. But you can use slices to copy out the characters that you
want, and combine with others to make a new string. Say you wanted to
grab the first two and last two characters of an existing string, and add a !
in the middle (people have done stranger things):

>>> s1 = "abcdef"
>>> s2 = s1[0:2] + "!" + s1[-2:]
>>> s2
'ab!ef'

Coming next: the binary counterparts of text strings: bytes and bytearray.

Practice
4.1 Capitalize the word starting with m:

http://bit.ly/py-docs-strings

>>> song = """When an eel grabs your arm,
... And it causes great harm,
... That's - a moray!"""

4.2 Print each list question with its correctly matching answer, in the form:

Q: question
A: answer

>>> questions = [
... "We don't serve strings around here. Are you a string?",
... "What is said on Father's Day in the forest?",
... "What makes the sound 'Sis! Boom! Bah!'?"
...]
>>> answers = [
... "An exploding sheep.",
... "No, I'm a frayed knot.",
... "'Pop!' goes the weasel."
...]

4.3 Write the following poem by using old-style formatting. Substitute the
strings 'roast beef', 'ham', 'head', and 'clam' into this string:

My kitty cat likes %s,
My kitty cat likes %s,
My kitty cat fell on his %s
And now thinks he's a %s.

4.4 Write a form letter by using new-style formatting. Save the following
string as letter (you’ll use it in the next exercise):

Dear {salutation} {name},

Thank you for your letter. We are sorry that our {product}
{verbed} in your {room}. Please note that it should never
be used in a {room}, especially near any {animals}.

Send us your receipt and {amount} for shipping and handling.
We will send you another {product} that, in our tests,
is {percent}% less likely to have {verbed}.

Thank you for your support.

Sincerely,
{spokesman}
{job_title}

4.5 Assign values to variable strings named 'salutation', 'name',
'product', 'verbed' (past tense verb), 'room', 'animals', 'percent',
'spokesman', and 'job_title'. Print letter with these values, using
letter.format().

4.6 After public polls to name things, a pattern emerged: an English
submarine (Boaty McBoatface), an Australian racehorse (Horsey
McHorseface), and a Swedish train (Trainy McTrainface). Use % formatting
to print the winning name at the state fair for a prize duck, gourd, and spitz.

4.7 Do the same, with format() formatting.

4.8 Once more, with feeling, and f-strings.

Chapter 5. Bytes and Bytearray

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 5th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

I’m feeling a bit off.
—Byte calling in sick

Python 3 introduced the following sequences of eight-bit integers, with
possible values from 0 to 255, in two types:

An immutable sequence of 8-bit values: bytes

A mutable sequence of 8-bit values: bytearray

This chapter covers the basics of both types. Chapter 20 goes into more
detail on their real-life uses, including binary file formats. You’ll probably
deal with binary data much less often than text strings.

The official Python docs have all the details on these data types. I’m
including just the most common and useful in this chapter.

Here’s one way to think of bytes versus strings:

Bytes are like equally-sized beads on a wire.

https://docs.python.org/3/library/stdtypes.xhtml#binary-sequence-types-bytes-bytearray-memoryview

Strings are like a charm bracelet.

Bytes
Bytes, like strings, are immutable. You can’t append, insert, or change the
contents of a bytes value after you’ve created it.

Create with Quotes
A literal bytes object is surrounded by quotes like a text string, but has a b
right before the initial quote character. Each byte in it is specified either as
an ASCII character or a two-character hex literal:

>>> b1 = b'ABC\x01\x02\x03\x41\x42\x43'
>>> b1
b'ABC\x01\x02\x03ABC'
>>> b2 = b'abc\x01\x02\x03\x61\x62\x63'
>>> b2
b'abc\x01\x02\x03abc'

This doesn’t mean that a bytes value can contain text characters. It means
that you can specify a byte with its hex value or its ASCII equivalent, if it
has one. Python allows this ASCII shortcut for convenience on input and
displaying output.

Create with bytes()
Beginning with a list (a sequence of any kind of values; see Chapter 8)
called blist, this next example creates a bytes variable called the_bytes:

>>> blist = [1, 2, 3, 255]
>>> the_bytes = bytes(blist)
>>> the_bytes
b'\x01\x02\x03\xff'

This next example demonstrates that you can’t change a bytes variable:

>>> blist = [1, 2, 3, 255]
>>> the_bytes = bytes(blist)
>>> the_bytes[1] = 127
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'bytes' object does not support item assignment

In “Bytearray”, you’ll see that you can change the innards of a bytearray.

Each of these would create a 256-element result, with values from 0 to 255:

>>> the_bytes = bytes(range(0, 256))

When printing bytes or bytearray data, Python uses \xxx for
nonprintable bytes and their ASCII equivalents for printable ones (plus
some common escape characters, such as \n instead of \x0a). Here’s the
printed representation of the_bytes (manually reformatted to show 16
bytes per line):

>>> the_bytes
b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f
\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f
!"#$%&\'()*+,-./
0123456789:;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\\]^_
`abcdefghijklmno
pqrstuvwxyz{|}~\x7f
\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f
\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f
\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf
\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf
\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf
\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf
\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef
\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff'

This can be confusing, because they’re bytes (teeny integers), not
characters, and Python displays some of them as their ASCII chaacter
equivalents.

Create from a Hex String
To convert from a hex string to bytes, each hex value needs to be two hex
characters, so you can’t use the single-character ASCII equivalents. A hex
string can contain the digits 0 through 9, and the letters a through f, or A
through F. Python has a fromhex() convenience function, but it’s a bit
picky about how you enter the hex string:

>>> hex_string = "FF 01 A B C DEF"
>>> the_bytes = bytes.fromhex(hex_string)
Traceback (most recent call last):
 File "<python-input-53>", line 1, in <module>
 the_bytes = bytes.fromhex(hex_string)
ValueError: non-hexadecimal number found in fromhex() arg at position 7

Using two characters for each, and ignoring spaces:

>>> hex_string = "FF 01 61 62 63 64 6566"
>>> the_bytes = bytes.fromhex(hex_string)
>>> the_bytes
b'\xff\x01abcdef'

Notice that we needed to say bytes.fromhex(hexstring) instead of
something like hexstring.bytes() or plain fromhex(hexstring). This
fromhex() is a class method that’s included in the definition of bytes
objects. Chapter 11 gets into what this means.

Decode and Encode Bytes and Strings
In Chapter 19, we get into the gory details on Unicode, including how to
encode text strings to bytes and decode bytes back to strings. You’ll see that
the correspondence between bytes and text characters can be expressed in
many ways. The hex string representation in the preceding section was just
another way of specifying integers. But whenever we store or transport
strings, they’re reduced to bytes, and we have to track what they represent.

Convert to a Hex String
To go back from bytes to a hex string representation:

>>> the_bytes = b'\xff\x01abcdef'
>>> hex_string = the_bytes.hex()
>>> hex_string
'ff01616263646566'
>>> bytes.hex(the_bytes)
'ff01616263646566'

Get One Byte with []
As with strings and other sequences (tuples and lists in Chapter 8), use
square brackets and specify the index (position, starting at 0) of the byte
that you want:

>>> b = b'\xff\x01abcdef'
>>> b[2]
97
>>> chr(b[2])
'a'

That b[2] was specified as a, but that really was th same as \x61, which is
a decimal 97. Here, the chr() function converts an integer value to its
ASCII equivalent. (Actually, it converts an integer Unicode value, which
has millions of entries. Much more on chr() and others in Chapter 19.)

Get a Slice
As with strings, get more than one element with a slice:

>>> b = b'\xff\x01abcdef'
>>> b[0:2]
b'\xff\x01'
>>> b[-3:]
b'def'

Combine with +

>>> b1 = bytes((1, 2, 3))
>>> b2 = bytes((4, 5, 6))
>>> b1 + b2
b'\x01\x02\x03\x04\x05\x06'

A bytes value is immutable, but you can appear to change it. You’re
actually creating a new bytes value, then assigning it to the old variable
name. Remember from Chapter 1 that in Python a variable is just a
reference (or name, or label) to a value somewhere in memory, not the
value itself. Let’s append the contents of b2 to b1:

>>> b1 += b2
>>> b1
b'\x01\x02\x03\x04\x05\x06'

This is the same as saying b1 = b1 + b2.

Python took the bytes values that b1 and b2 referred to, combined them
into a brand new bytes value, then assigned that value back to the old b1
variable name. The old b1 value is now gone forever.

Repeat with *
Repeat a sequence of bytes by using *:

>>> b = b'\xff\x01abcdef'
>>> b * 2
b'\xff\x01abcdef\xff\x01abcdef'

Bytearray
Now we’ll delve into the mutable cousin of bytes: bytearray. The first
(read-only) group of operations that follow are similar to those of
immutable bytes and strings.

Create with bytearray()
The function bytearray() is, shockingly, used to create a Python
bytearray. If you don’t provide any arguments (values inside the
parentheses), you’ll get an empty bytearray:

>>> b = bytearray()
>>> b
bytearray(b'')

Provide a list (see Chapter 8) and see its elements inserted into the
bytearray:

>>> blist = [1, 2, 3, 255]
>>> ba = bytearray(blist)
>>> ba
bytearray(b'\x01\x02\x03\xff')

Similarly, provide a tuple (also in Chapter 8):

>>> btuple = 4, 5, 6
>>> ba = bytearray(btuple)
>>> ba
bytearray(b'\x04\x05\x06')

If you give it a single integer, you’ll get a bytearray of that length, with
each element equal to zero:

>>> ba = bytearray(5)
>>> ba
bytearray(b'\x00\x00\x00\x00\x00')

Finally, if you provide a text string, you’ll also need to specify the encoding
(how the string characters map to their byte equivalents). You may learn
more about encoding that you care to in Chapters 19 and 20.

>>> ba = bytearray("abc", "ascii")
>>> ba
bytearray(b'abc')

Get One Byte
This is also called indexing, and it works as it does for bytes:

>>> ba = bytearray(b'\xff\x01abcdef')
>>> ba[2]
97

Get Multiple Bytes with a Slice
As with strings and bytes, access multiple elements with a slice:

>>> ba = bytearray(b'\xff\x01abcdef')
>>> ba[4:6]
bytearray(b'cd')

Modify One Byte by its Index
Now we get into the mutable stuff, and do things that we can’t with bytes,
like change an element in-place:

>>> ba = bytearray(b'\x01\x02\x03\xff')
>>> ba[1] = 127
>>> ba
bytearray(b'\x01\x7f\x03\xff')

Modify Multiple Bytes with replace()
The replace() method actually finds the byte sequence that matches its
first argument, and replaces it with its second argument:

>>> ba = bytearray(b'\xff\x01abcdef')
>>> ba
bytearray(b'\xff\x01abcdef')
>>> ba.replace(b'\x01ab', b'XYZ\x6F')
bytearray(b'\xffXYZocdef')

Modify Multiple Bytes with a slice
Now the slice can be on the left-hand side of the = assignment:

>>> ba = bytearray(b'\xff\x01abcdef')
>>> ba[2:5] = b'oops'
>>> ba
bytearray(b'\xff\x01oopsdef')

Insert a Byte with insert()
Use insert(__index__, __value__) to insert byte value at index index:

>>> ba = bytearray(b'\xff\x01abcdef')
>>> ba.insert(0, 2)
>>> ba
bytearray(b'\x02\xff\x01abcdef')

Append One Byte with append()
Add a byte to the end of a bytearray wire:

>>> ba = bytearray(b'\xff\x01abcdef')
>>> ba.append(4)
>>> ba
bytearray(b'\xff\x01abcdef\x04')

Unfortunately, the argument to append() must be an integer, not a bytes
object:

>>> ba.append(b'\x04')
Traceback (most recent call last):
 File "<python-input-45>", line 1, in <module>
 ba.append(b'\x04')
    ~~~~~~~~~^^^^^^^^^
TypeError: 'bytes' object cannot be interpreted as an integer

Append Multiple Bytes with extend()
Use extend() to tack bytes onto the end of a bytearray:

>>> ba = bytearray(b'\xff\x01abcdef')
>>> ba.extend(b'!!!')
>>> ba
bytearray(b'\x02\xff\x01abcdef!!!')



Review/Preview
Unlike text strings, which only have an immutable version, byte sequences
can be mutable (bytearray) or immutable (bytes).

In the next chapter, we switch gears a bit and move from basic data
structures (numbers, strings, bytes) to basic code structures that let us make
decisions and express comparisons: if and match.

Practice
5.1 …​



Chapter 6. If and Match

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 6th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

If you can keep your head when all about you
Are losing theirs and blaming it on you, …​

—Rudyard Kipling, If—

In the previous chapters, you’ve seen many examples of data but haven’t
done much with them. Most of the code examples used the interactive
interpreter and were short. In this chapter, you learn how to structure
Python code, not just data.

Many computer languages use characters such as curly braces ({ and }) or
keywords such as begin and end to mark off sections of code. In those
languages, it’s good practice to use consistent indentation to make your
program more readable for yourself and others. There are even tools to
make your code line up nicely.

When he was designing the language that became Python, Guido van
Rossum decided that the indentation itself was enough to define a
program’s structure, and avoided typing all those parentheses and curly



braces. Python is unusual in this use of white space to define program
structure. It’s one of the first aspects that newcomers notice, and it can seem
odd to those who have experience with other languages. It turns out that
after writing Python for a little while, it feels natural, and you stop noticing
it. You even get used to doing more while typing less.

Our initial code examples have been one-liners. Let’s first see how to make
comments and multiple-line commands.

Comment with #
A comment is a piece of text in your program that is ignored by the Python
interpreter. You might use comments to clarify nearby Python code, make
notes to yourself to fix something someday, or for whatever purpose you
like. You mark a comment by using the # character; everything from that
point on to the end of the current line is part of the comment. You’ll usually
see a comment on a line by itself, as shown here:

>>> \# 60 sec/min * 60 min/hr * 24 hr/day
>>> seconds_per_day = 86400

Or, on the same line as the code it’s commenting:

>>> seconds_per_day = 86400 # 60 sec/min * 60 min/hr * 24 hr/day

The # character has many names: hash, sharp, pound, or the sinister-
sounding octothorpe.1 Whatever you call it2, its effect lasts only to the end
of the line on which it appears.

Python does not have a multiline comment. You need to explicitly begin
each comment line or section with a #:

>>> \# I can say anything here, even if Python doesn't like it,
... \# because I'm protected by the awesome
... \# octothorpe.
...
>>>



However, if it’s in a text string, the mighty octothorpe reverts back to its
role as a plain old # character:

>>> print("No comment: quotes make the # harmless.")
No comment: quotes make the # harmless.

Continue Lines with \
Programs are more readable when lines are reasonably short. The
recommended (not required) maximum line length is 80 characters. If you
can’t say everything you want to say in that length, you can use the
continuation character: \ (backslash). Just put \ at the end of a line, and
Python will suddenly act as though you’re still on the same line.

For example, if I wanted to add the first five digits, I could do it a line at a
time:

>>> sum = 0
>>> sum += 1
>>> sum += 2
>>> sum += 3
>>> sum += 4
>>> sum
10

Or, I could do it in one step, using the continuation character:

>>> sum = 1 + \
...       2 + \
...       3 + \
...       4
>>> sum
10

If we skipped the backslash in the middle of an expression, we’d get an
exception:

>>> sum = 1 +
  File "<stdin>", line 1



    sum = 1 +
            ^
SyntaxError: invalid syntax

Here’s a little trick — if you’re in the middle of paired parentheses (or
square or curly brackets), Python doesn’t squawk about line endings:

>>> sum = (
...     1 +
...     2 +
...     3 +
...     4)
>>>
>>> sum
10

You also saw in Chapter 4 that paired triple quotes let you make multiline
strings.

Compare with if, elif, and else
Now, we finally take our first step into the code structures that weave data
into programs. Our first example is this tiny Python program that checks the
value of the Boolean variable disaster and prints an appropriate comment:

>>> disaster = True
>>> if disaster:
...     print("Woe!")
... else:
...     print("Whee!")
...
Woe!
>>>

The if and else lines are Python statements that check whether a condition
(here, the value of disaster) is a Boolean True value, or can be evaluated
as True. Remember, print() is Python’s built-in function to print things,
normally to your screen.



NOTE
If you’ve programmed in other languages, note that you don’t need parentheses for the
if test. For example, don’t say something such as if (disaster == True) (the
equality operator == is described in a few paragraphs). You do need the colon (:) at the
end. If, like me, you forget to type the colon at times, Python will display an error
message.

Each print() line is indented under its test. I used four spaces to indent
each subsection. Although you can use any indentation you like, Python
expects you to be consistent with code within a section — the lines need to
be indented the same amount, lined up on the left. The recommended style,
called PEP-8, is to use four spaces. Don’t use tabs, or mix tabs and spaces;
it messes up the indent count.

We did a number of things here, which I explain more fully as the chapter
progresses:

Assigned the boolean value True to the variable named disaster

Performed a conditional comparison by using if and else,
executing different code depending on the value of disaster

Called the print() function to print some text

You can have tests within tests, as many levels deep as needed:

>>> furry = True
>>> large = True
>>> if furry:
...     if large:
...         print("It's a yeti.")
...     else:
...         print("It's a cat!")
... else:
...     if large:
...         print("It's a whale!")
...     else:
...         print("It's a human. Or a hairless cat.")
...
It's a yeti.

http://bit.ly/pep-8


In Python, indentation determines how the if and else sections are paired.
Our first test was to check furry. Because furry is True, Python goes to
the indented if large test. Because we had set large to True, if large
is evaluated as True, and the following else line is ignored. This makes
Python run the line indented under if large: and print It's a yeti.

If there are more than two possibilities to test, use if for the first, elif
(meaning else if) for the middle ones, and else for the last:

>>> color = "mauve"
>>> if color == "red":
...     print("It's a tomato")
... elif color == "green":
...     print("It's a green pepper")
... elif color == "bee purple":
...     print("I don't know what it is, but only bees can see it")
... else:
...     print("I've never heard of the color", color)
...
I've never heard of the color mauve

In the preceding example, we tested for equality by using the == operator.
Table 6-1 shows Python’s comparison operators:



Table 6-1. Comparison operators

Equality ==

Inequality !=

Less than <

Less than or equal <=

Greater than >

Greater than or equal >=

These return the Boolean values True or False. Let’s see how these all
work, but first, assign a value to x:

>>> x = 7

Now, let’s try some tests:

>>> x == 5
False
>>> x == 7
True
>>> 5 < x
True
>>> x < 10
True

Note that two equals signs (==) are used to test equality; remember, a single
equals sign (=) is what you use to assign a value to a variable.

If you need to make multiple comparisons at the same time, you use the
logical (or Boolean) operators and, or, and not to determine the final



Boolean result.

Logical operators have lower precedence than the chunks of code that
they’re comparing. This means that the chunks are calculated first, and then
compared. In this example, because we set x to 7, 5 < x is calculated to be
True and x < 10 is also True, so we finally end up with True and True:

>>> 5 < x and x < 10
True

The easiest way to avoid confusion about precedence is to add parentheses:

>>> (5 < x) and (x < 10)
True

Here are some other tests:

>>> 5 < x or x < 10
True
>>> 5 < x and x > 10
False
>>> 5 < x and not x > 10
True

If you’re and-ing multiple comparisons with one variable, Python lets you
do this:

>>> 5 < x < 10
True

It’s the same as 5 < x and x < 10. You can also write longer
comparisons:

>>> 5 < x < 10 < 999
True



What Is True?
What if the element we’re checking isn’t a Boolean? What does Python
consider True and False?

A false value doesn’t necessarily need to explicitly be a Boolean False.
For example, in Table 6-2, these are all considered False:

Table 6-2. False equivalents

Boolean False

Null None

Zero integer 0

Zero float 0.0

Empty string ''

Empty list []

Empty tuple ()

Empty dict {}

Empty set set()

Anything else is considered True. Python programs use these definitions of
“truthiness” and “falsiness” to check for empty data structures as well as
False conditions:



>>> some_list = []
>>> if some_list:
...     print("There's something in here")
... else:
...     print("Hey, it's empty!")
...
Hey, it's empty!

If what you’re testing is an expression rather than a simple variable, Python
evaluates the expression and returns a Boolean result. So, if you type:

if color == "red":

Python evaluates color == "red". In our earlier example, we assigned the
string "mauve" to color, so color == "red" is False, and Python moves
on to the next test:

elif color == "green":

Do Multiple Comparisons with in
Suppose that you have a letter and want to know whether it’s a vowel. One
way would be to write a long if statement:

>>> letter = 'o'
>>> if letter == 'a' or letter == 'e' or letter == 'i' \
...     or letter == 'o' or letter == 'u':
...     print(letter, 'is a vowel')
... else:
...     print(letter, 'is not a vowel')
...
o is a vowel
>>>

Whenever you need to make a lot of comparisons like that, separated by or,
use Python’s membership operator in, instead. Here’s how to check vowel-
ness more Pythonically, using in with a string made of vowel characters:



>>> vowels = 'aeiou'
>>> letter = 'o'
>>> letter in vowels
True
>>> if letter in vowels:
...     print(letter, 'is a vowel')
...
o is a vowel

Here’s a preview of how to use in with some data types that you’ll read
about in detail in the next few chapters:

>>> letter = 'o'
>>> vowel_set = {'a', 'e', 'i', 'o', 'u'}
>>> letter in vowel_set
True
>>> vowel_list = ['a', 'e', 'i', 'o', 'u']
>>> letter in vowel_list
True
>>> vowel_tuple = ('a', 'e', 'i', 'o', 'u')
>>> letter in vowel_tuple
True
>>> vowel_dict = {'a': 'apple', 'e': 'elephant',
...               'i': 'impala', 'o': 'ocelot', 'u': 'unicorn'}
>>> letter in vowel_dict
True
>>> vowel_string = "aeiou"
>>> letter in vowel_string
True

For the dictionary, in looks at the keys (the lefthand side of the :) instead
of their values.

New: I Am the Walrus
Arriving in Python 3.8 is the walrus operator, which looks like this:

name := expression

See the walrus? (Like a smiley, but tuskier.)

Normally, an assignment and test take two steps:



>>> tweet_limit = 280
>>> tweet_string = "Blah" * 50
>>> diff = tweet_limit - len(tweet_string)
>>> if diff >= 0:
...     print("A fitting tweet")
... else:
...     print("Went over by", abs(diff))
...
A fitting tweet

With our new tuskiness (aka assignment expressions) we can combine these
into one step:

>>> tweet_limit = 280
>>> tweet_string = "Blah" * 50
>>> if diff := tweet_limit - len(tweet_string) >= 0:
...     print("A fitting tweet")
... else:
...     print("Went over by", abs(diff))
...
A fitting tweet

The walrus also gets on swimmingly with for and while, which we look at
in Chapter 7.

Match
The match statement is a recent (version 3.10) addition to Python. It’s
similar to the switch statement in other languages like C and Java. You
give it a subject, then one or more patterns to match against that subject’s
value and/or type.

match subject:

    case pattern1:

        # ...
    case pattern2:

        # ...
    # other patterns ...
    case _:
        # if nothing else matches

https://oreil.ly/fHPtL


You can do the same job with a bunch of if, else, and elif statements. So
you really don’t need to use match! It’s sometimes a bit more compact — 
and, by some benchmarks, a bit faster.

This is actually called structural pattern matching, to distinguish it from
pure text matching. You’ll see the difference in the coming examples.

NOTE
This match is not the same as the match() function in the regular expression library that
you’ll see in Chapter 19.

Simple Matches
The simplest use is like the switch statement in languages like C. Except 
— you don’t to use something like break to avoid “falling through” to the
next case. If a case does match, its code is executed, and the match
statement finishes.

>>> superhero = "Spiderman"
... match superhero:
...     case "Superman":
...         secret_identity = "Clark Kent"
...     case "Batman":
...         secret_identity = "Bruce Wayne"
...     case "Spiderman":
...         secret_identity = "Peter Parker"
...     case _:
...         secret_identity = "?"
...
... print(secret_identity)
Peter Parker

You could have used if ... elif ... else instead:

>>> superhero = "Spiderman"
... if superhero == "Superman":
...     secret_identity = "Clark Kent"
... elif superhero == "Batman":
...     secret_identity = "Bruce Wayne"



... elif superhero == "Spiderman":

...     secret_identity = "Peter Parker"

... else:

...     secret_identity = "?"

... print(secret_identity)
Peter Parker

Or, more succinctly (a sneak peak at dictionaries in Chapter 9):

>>> superhero = "Spiderman"
... secret_identities = {
...     "Superman": "Clark Kent",
...     "Batman": "Bruce Wayne",
...     "Spiderman": "Peter Parker"
... }
... secret_identity = secret_identities.get(superhero, "?")
>>> print(secret_identity)
Peter Parker

That second argument ("?") to secret_identities.get() serves the
same purpose as the case _ in the first example and the else in the second
example: catch any mismatch.

Structural Matches
In this example, the subject contains multiple values, and we want to match
partly on a given pattern.

Even though the subject is a list, it doesn’t matter if you express the patterns
as lists or tuples. They’re both sequences.

>>> subject = [3, 5]
... match subject:
...     case x, y if y > 6:
...         print("y > 6")
...     case 2, 5:
...         print("2, 5")
...     case x, 5:
...         print(f"{x=}", f"{y=}")
...     case 3, 5:
...         print("3, 5")
...     case _:



...         print("no match for", subject)
x=3 y=5

Notes:

The first pattern (x, y) contained the guard if y > 6. And that
isn’t true, so …​

The second pattern ([2, 5]) didn’t match the second value (6) in
the subject, so we carry on.

Aha! The third pattern ([x, 5]) matches, so we’re done.

Which is too bad for the fourth pattern, which would have been an
exact match. If this had been the third pattern instead, it would
have won.

And no luck for the default _.

Review/Preview
You can make decisions with if, elif, amd else. These are the first
Python control structures. If you’re comparing a variable with more than
one pattern, match is an alternative to if …​ elif …​ else lines.

The next chapter introduces for and while, which let you express
repetitions (loops).

Practice
6.1 Choose a number between 1 and 10 and assign it to the variable secret.
Then, select another number between 1 and 10 and assign it to the variable
guess. Next, write the conditional tests (if, else, and elif) to print the
string 'too low' if guess is less than secret, 'too high' if greater than
secret, and 'just right' if equal to secret.



6.2 Assign True or False to the variables small and green. Write some
if/else statements to print which of these matches those choices: cherry,
pea, watermelon, pumpkin.

1  Like that eight-legged green thing that’s right behind you!

2  Please don’t call it. It might come back.



Chapter 7. For and While

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 7th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

For a’ that, an’ a’ that, Our toils obscure, an’ a’ that …​
—Robert Burns, For a’ That and a’ That

Testing with if, elif, and else runs down the page, a line at a time, from
top to bottom. Sometimes, we need to do something more than once. We
need a loop, and Python gives us two choices: while and for.

Repeat with while
The simplest looping mechanism in Python is while. Using the interactive
interpreter, try a simple loop that prints the numbers from 1 to 5:

>>> count = 1
>>> while count <= 5:
...     print(count)
...     count += 1
...
1
2



3
4
5
>>>

We first assigned the value 1 to count. The while loop compared the value
of count to 5 and continued if count was less than or equal to 5. Inside the
loop, we printed the value of count and then incremented its value by one
with the statement count += 1. Python goes back to the top of the loop,
and again compares count with 5. The value of count is now 2, so the
contents of the while loop are again executed, and count is incremented to
3.

This continues until count is incremented from 5 to 6 at the bottom of the
loop (the count += 1 line). On the next trip to the top, count is now 6, so
count <= 5 is now False, and the while loop ends. Python moves on to
the next lines.

Cancel with break
If you want to loop until something occurs, but you’re not sure when that
might happen, you can use an infinite loop with a break statement. This
time, let’s read a line of input from the keyboard via Python’s input()
function and then print it with the first letter capitalized. We break out of the
loop when a line containing only the letter q is typed:

>>> while True:
...     stuff = input("String to capitalize [type q to quit]: ")
...     if stuff == "q":
...         break
...     print(stuff.capitalize())
...
String to capitalize [type q to quit]: test
Test
String to capitalize [type q to quit]: hey, it works
Hey, it works
String to capitalize [type q to quit]: q
>>>



Skip Ahead with continue
Sometimes, you don’t want to break out of a loop but just want to skip
ahead to the next iteration for some reason. Here’s a contrived example:
let’s read an integer, print its square if it’s odd, and skip it if it’s even. I even
added a few comments. Again, we use q to stop the loop:

>>> while True:
...     value = input("Integer, please [q to quit]: ")
...     if value == 'q':      # quit
...         break
...     number = int(value)
...     if number % 2 == 0:   # an even number
...        continue
...     print(number, "squared is", number*number)
...
Integer, please [q to quit]: 1
1 squared is 1
Integer, please [q to quit]: 2
Integer, please [q to quit]: 3
3 squared is 9
Integer, please [q to quit]: 4
Integer, please [q to quit]: 5
5 squared is 25
Integer, please [q to quit]: q
>>>

Check break Use with else
If the while loop ended normally (no break call), control passes to an
optional else. You use this when you’ve coded a while loop to check for
something, and breaking as soon as it’s found. The else would be run if the
while loop completed but the object was not found:

>>> numbers = [1, 3, 5]
>>> position = 0
>>> while position < len(numbers):
...     number = numbers[position]
...     if number % 2 == 0:
...         print('Found even number', number)
...         break
...     position += 1
... else:  # break not called



...     print('No even number found')

...
No even number found

NOTE
This use of else might seem nonintuitive. Consider it a break checker.

Iterate with for and in
Python makes frequent use of iterators, for good reason. They make it
possible for you to traverse data structures without knowing how large they
are or how they are implemented. You can even iterate over data that is
created on the fly, allowing processing of data streams that would otherwise
not fit in the computer’s memory all at once.

To show iteration, we need something to iterate over. You’ve already seen
strings in Chapter 4, but have not yet read the details on other iterables like
lists and tuples (Chapter 8) or dictionaries (Chapter 9). I’ll show two ways
to walk through a string here, and show iteration for the other types in their
own chapters.

It’s legal Python to step through a string like this:

>>> word = 'thud'
>>> offset = 0
>>> while offset < len(word):
...     print(word[offset])
...     offset += 1
...
t
h
u
d

But there’s a better, more Pythonic way:



>>> for letter in word:
...     print(letter)
...
t
h
u
d

String iteration produces one character at a time.

Cancel with break
A break in a for loop breaks out of the loop, as it does for a while loop:

>>> word = 'thud'
>>> for letter in word:
...     if letter == 'u':
...         break
...     print(letter)
...
t
h

Skip with continue
Inserting a continue in a for loop jumps to the next iteration of the loop,
as it does for a while loop.

Check break Use with else
Similar to while, for has an optional else that checks whether the for
completed normally. If break was not called, the else statement is run.

This is useful when you want to verify that the previous for loop ran to
completion instead of being stopped early with a break:

>>> word = 'thud'
>>> for letter in word:
...     if letter == 'x':
...         print("Eek! An 'x'!")
...         break
...     print(letter)



... else:

...     print("No 'x' in there.")

...
t
h
u
d
No 'x' in there.

NOTE
As with while, the use of else with for might seem nonintuitive. It makes more sense
if you think of the for as looking for something, and else being called if you didn’t
find it. To get the same effect without else, use some variable to indicate whether you
found what you wanted in the for loop.

Generate Number Sequences with range()
The range() function returns a stream of numbers within a specified range.
without first having to create and store a large data structure such as a list or
tuple. This lets you create huge ranges without using all the memory in your
computer and crashing your program.

You use range() similar to how to you use slices: range( start, stop,
step ). If you omit start, the range begins at 0. The only required value
is stop; as with slices, the last value created will be just before stop. The
default value of step is 1, but you can go backward with -1.

Like zip(), range() returns an iterable object, so you need to step through
the values with for ... in, or convert the object to a sequence like a list.
Let’s make the range 0, 1, 2:

>>> for x in range(0,3):
...     print(x)
...
0
1
2
>>> list( range(0, 3) )
[0, 1, 2]



Here’s how to make a range from 2 down to 0:

>>> for x in range(2, -1, -1):
...     print(x)
...
2
1
0
>>> list( range(2, -1, -1) )
[2, 1, 0]

The following snippet uses a step size of 2 to get the even numbers from 0
to 10:

>>> list( range(0, 11, 2) )
[0, 2, 4, 6, 8, 10]

Other Iterators
Chapter 22 shows iteration over files. In Chapter 11, you can see how to
enable iteration over objects that you’ve defined yourself. Also, Chapter 12
talks about itertools — a standard Python module with many useful
shortcuts.

Review/Preview
We progressed from line-at-a-time execution to loops, using for and while.
Using for with in is an example of iteration, which is a core Python
pattern.

In the next chapter, we go back to data types: tuples and lists, which can
contain any number of any type of data.

Practice
7.1 Use a for loop to print the values of the list [3, 2, 1, 0].



7.2 Assign the value 7 to the variable guess_me, and the value 1 to the
variable number. Write a while loop that compares number with guess_me.
Print 'too low' if number is less than guess me. If number equals
guess_me, print 'found it!' and then exit the loop. If number is greater
than guess_me, print 'oops' and then exit the loop. Increment number at
the end of the loop.

7.3 Assign the value 5 to the variable guess_me. Use a for loop to iterate a
variable called number over range(10). If number is less than guess_me,
print 'too low'. If it equals guess_me, print found it! and then break out
of the for loop. If number is greater than guess_me, print 'oops' and then
exit the loop.



Chapter 8. Tuples and Lists

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 8th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

The human animal differs from the lesser primates in his passion for lists.
—H. Allen Smith

In the previous chapters, we started with some of Python’s basic data types:
Booleans, integers, floats, and strings. If you think of those as atoms, the
data structures in this chapter are like molecules. That is, we combine those
basic types in more complex ways. You will use these every day. Much of
programming consists of chopping and gluing data into specific forms, and
the tuples and lists of this chapter are some of our first examples.

Most computer languages can represent a sequence of items indexed by
their integer position: first, second, and so on down to the last. You’ve
already seen Python strings (Chapter 4; sequences of text characters) and
bytes and bytearrays (Chapter 5; sequences of 8-bit binary values).

Python has more sequence structures: tuples and lists. These contain zero or
more elements. Unlike strings, the elements can be of different types. In



fact, each element can be any Python object. This lets you create structures
as deep and complex as you like.

Why does Python contain both lists and tuples? Tuples are immutable; when
you assign elements (only once) to a tuple, they’re baked in the cake and
can’t be changed. Lists are mutable, meaning you can insert and delete
elements with great enthusiasm. I’ll show many examples of each, with an
emphasis on lists.

Tuples
Let’s get one thing out of the way first. You may hear two different
pronunciations for tuple. Which is right? If you guess wrong, do you risk
being considered a Python poseur? No worries. Guido van Rossum, the
creator of Python, said via Twitter:

I pronounce tuple too-pull on Mon/Wed/Fri and tub-pull on Tue/Thu/Sat.
On Sunday I don’t talk about them. :)

Create with Commas and ()
The syntax to make tuples is a little inconsistent, as the following examples
demonstrate. Let’s begin by making an empty tuple using ():

>>> empty_tuple = ()
>>> empty_tuple
()

To make a tuple with one or more elements, follow each element with a
comma. This works for one-element tuples:

>>> one_marx = 'Groucho',
>>> one_marx
('Groucho',)

You could enclose them in parentheses and still get the same tuple:

http://bit.ly/tupletweet


>>> one_marx = ('Groucho',)
>>> one_marx
('Groucho',)

Here’s a little gotcha: if you have a single thing in parentheses and omit that
comma, you would not get a tuple, but just the thing (in this example, the
string 'Groucho'):

>>> one_marx = ('Groucho')
>>> one_marx
'Groucho'
>>> type(one_marx)
<class 'str'>

If you have more than one element, follow all but the last one with a
comma:

>>> marx_tuple = 'Groucho', 'Chico', 'Harpo'
>>> marx_tuple
('Groucho', 'Chico', 'Harpo')

Python includes parentheses when echoing a tuple. You often don’t need
them when you define a tuple, but using parentheses is a little safer, and it
helps to make the tuple more visible:

>>> marx_tuple = ('Groucho', 'Chico', 'Harpo')
>>> marx_tuple
('Groucho', 'Chico', 'Harpo')

You do need the parentheses for cases in which commas might also have
another use. In this example, you can create and assign a single-element
tuple with just a trailing comma, but you can’t pass it as an argument to a
function:

>>> one_marx = 'Groucho',
>>> type(one_marx)
<class 'tuple'>
>>> type('Groucho',)
<class 'str'>



>>> type(('Groucho',))
<class 'tuple'>

Tuples let you assign multiple variables at once:

>>> marx_tuple = ('Groucho', 'Chico', 'Harpo')
>>> a, b, c = marx_tuple
>>> a
'Groucho'
>>> b
'Chico'
>>> c
'Harpo'

This is sometimes called tuple unpacking.

You can use tuples to exchange values in one statement without using a
temporary variable:

>>> password = 'swordfish'
>>> icecream = 'tuttifrutti'
>>> password, icecream = icecream, password
>>> password
'tuttifrutti'
>>> icecream
'swordfish'
>>>

Create with tuple()
The tuple() conversion function makes tuples from other things:

>>> marx_list = ['Groucho', 'Chico', 'Harpo']
>>> tuple(marx_list)
('Groucho', 'Chico', 'Harpo')

Combine with +
This is similar to combining strings:

>>> ('Groucho',) + ('Chico', 'Harpo')
('Groucho', 'Chico', 'Harpo')



Duplicate with *
This is like repeated use of +:

>>> ('yada',) * 3
('yada', 'yada', 'yada')

Compare
This works much like list comparisons:

>>> a = (7, 2)
>>> b = (7, 2, 9)
>>> a == b
False
>>> a <= b
True
>>> a < b
True

Iterate with for and in
Tuple iteration is like iteration of other types:

>>> words = ('fresh','out', 'of', 'ideas')
>>> for word in words:
...     print(word)
...
fresh
out
of
ideas

Modify?
You can’t! Like strings, tuples are immutable, so you can’t change an
existing one. As you saw just before, you can concatenate (combine) tuples
to make a new one, as you can with strings:

>>> t1 = ('Fee', 'Fie', 'Foe')
>>> t2 = ('Flop,')



>>> t1 + t2
('Fee', 'Fie', 'Foe', 'Flop')

This means that you can appear to modify a tuple like this:

>>> t1 = ('Fee', 'Fie', 'Foe')
>>> t2 = ('Flop,')
>>> t1 += t2
>>> t1
('Fee', 'Fie', 'Foe', 'Flop')

But it isn’t the same t1! Python made a new tuple from the original tuples
pointed to by t1 and t2, and assigned the name t1 to this new tuple. In
Python, variables are just names, not pointers to values. You can see with
id() when a variable name is pointing to a new value:

>>> t1 = ('Fee', 'Fie', 'Foe')
>>> t2 = ('Flop',)
>>> id(t1)
4365405712
>>> t1 += t2
>>> id(t1)
4364770744

Named Tuples
A named tuple is a variety of tuple that lets you access its elements by
names as well as positions. I’ll discuss such creatures in Chapter 11.

Lists
Lists are good for keeping track of things by their order, especially when
the order and contents might change. Unlike strings, lists are mutable. You
can change a list in place, add new elements, and delete or replace existing
elements. The same value can occur more than once in a list.



Create with []
A list is made from zero or more elements, separated by commas and
surrounded by square brackets:

>>> empty_list = [ ]
>>> weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
>>> big_birds = ['emu', 'ostrich', 'cassowary']
>>> first_names = ['Graham', 'John', 'Terry', 'Terry', 'Michael']
>>> leap_years = [2000, 2004, 2008]
>>> randomness = ['Punxsatawney", {"groundhog": "Phil"}, "Feb. 2"}

The first_names list shows that values do not need to be unique.

NOTE
If you want to keep track of only unique values and don’t care about order, a Python set
might be a better choice than a list. In the previous example, big_birds could have
been a set. We explore sets in Chapter 9.

Create or Convert with list()
You can also make an empty list with the list() function:

>>> another_empty_list = list()
>>> another_empty_list
[]

Python’s list() function also converts other iterable data types (such as
tuples, strings, sets, and dictionaries) to lists. The following example
converts a string to a list of one-character strings:

>>> list('cat')
['c', 'a', 't']

This example converts a tuple to a list:



>>> a_tuple = ('ready', 'fire', 'aim')
>>> list(a_tuple)
['ready', 'fire', 'aim']

Create from a String with split()
As I mentioned earlier in “Split with split()”, use split() to chop a string
into a list by some separator:

>>> talk_like_a_pirate_day = '9/19/2024'
>>> talk_like_a_pirate_day.split('/')
['9', '19', '2024']

What if you have more than one separator string in a row in your original
string? Well, you get an empty string as a list item:

>>> splitme = 'a/b//c/d///e'
>>> splitme.split('/')
['a', 'b', '', 'c', 'd', '', '', 'e']

If you had used the two-character separator string //, instead, you would
get this:

>>> splitme = 'a/b//c/d///e'
>>> splitme.split('//')
>>>
['a/b', 'c/d', '/e']

Get an Item by [ offset ]
As with strings, you can extract a single value from a list by specifying its
offset:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[0]
'Groucho'
>>> marxes[1]
'Chico'
>>> marxes[2]
'Harpo'



Again, as with strings, negative indexes count backward from the end:

>>> marxes[-1]
'Harpo'
>>> marxes[-2]
'Chico'
>>> marxes[-3]
'Groucho'
>>>

NOTE
The offset has to be a valid one for this list — a position you have assigned a value
previously. If you specify an offset before the beginning or after the end, you’ll get an
exception (error). Here’s what happens if we try to get the sixth Marx brother (offset 5
counting from 0), or the fifth before the end:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[5]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: list index out of range
>>> marxes[-5]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: list index out of range

Get Items with a Slice
You can extract a subsequence of a list by using a slice:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[0:2]
['Groucho', 'Chico']

A slice of a list is also a list.

As with strings, slices can step by values other than one. The next example
starts at the beginning and goes right by 2:



>>> marxes[::2]
['Groucho', 'Harpo']

Here, we start at the end and go left by 2:

>>> marxes[::-2]
['Harpo', 'Groucho']

And finally, the trick to reverse a list:

>>> marxes[::-1]
['Harpo', 'Chico', 'Groucho']

None of these slices changed the marxes list itself, because we didn’t assign
them to marxes. To reverse a list in place, use list.reverse():

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes.reverse()
>>> marxes
['Harpo', 'Chico', 'Groucho']

NOTE
The reverse() function changes the list but doesn’t return its value.

As you saw with strings, a slice can specify an invalid index, but will not
cause an exception. It will “snap” to the closest valid index or return
nothing:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[4:]
[]
>>> marxes[-6:]
['Groucho', 'Chico', 'Harpo']
>>> marxes[-6:-2]
['Groucho']
>>> marxes[-6:-4]
[]



Add an Item to the End with append()
The traditional way of adding items to a list is to append() them one by
one to the end. In the previous examples, we forgot Zeppo, but that’s alright
because the list is mutable, so we can add him now:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes.append('Zeppo')
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo']

Add an Item by Offset with insert()
The append() function adds items only to the end of the list. When you
want to add an item before any offset in the list, use insert(). Offset 0
inserts at the beginning. An offset beyond the end of the list inserts at the
end, like append(), so you don’t need to worry about Python throwing an
exception:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes.insert(2, 'Gummo')
>>> marxes
['Groucho', 'Chico', 'Gummo', 'Harpo']
>>> marxes.insert(10, 'Zeppo')
>>> marxes
['Groucho', 'Chico', 'Gummo', 'Harpo', 'Zeppo']

Duplicate with *
In Chapter 4, you saw that you can duplicate a string’s characters with *.
The same works for a list:

>>> ["blah"] * 3
['blah', 'blah', 'blah']

Combine with extend() or +
You can merge one list into another by using extend(). Suppose that a
well-meaning person gave us a new list of Marxes called others, and we’d



like to merge them into the main marxes list:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> others = ['Gummo', 'Karl']
>>> marxes.extend(others)
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo', 'Gummo', 'Karl']

Alternatively, you can use + or +=:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> others = ['Gummo', 'Karl']
>>> marxes += others
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo', 'Gummo', 'Karl']

If we had used append(), others would have been added as a single list
item rather than merging its items:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> others = ['Gummo', 'Karl']
>>> marxes.append(others)
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Zeppo', ['Gummo', 'Karl']]

This again demonstrates that a list can contain elements of different types.
In this case, four strings, and a list of two strings.

Change an Item with [ offset ]
Just as you can get the value of a list item by its offset, you can change it:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes[2] = 'Wanda'
>>> marxes
['Groucho', 'Chico', 'Wanda']

Again, the list offset needs to be a valid one for this list.



You can’t change a character in a string in this way, because strings are
immutable. Lists are mutable. You can change how many items a list
contains as well as the items themselves.

Change Items with a Slice
The previous section showed how to get a sublist with a slice. You can also
assign values to a sublist with a slice:

>>> numbers = [1, 2, 3, 4]
>>> numbers[1:3] = [8, 9]
>>> numbers
[1, 8, 9, 4]

The righthand thing that you’re assigning to the list doesn’t even need to
have the same number of elements as the slice on the left:

>>> numbers = [1, 2, 3, 4]
>>> numbers[1:3] = [7, 8, 9]
>>> numbers
[1, 7, 8, 9, 4]
>>> numbers = [1, 2, 3, 4]
>>> numbers[1:3] = []
>>> numbers
[1, 4]

Actually, the righthand thing doesn’t even need to be a list. Any Python
iterable will do, separating its items and assigning them to list elements:

>>> numbers = [1, 2, 3, 4]
>>> numbers[1:3] = (98, 99, 100)
>>> numbers
[1, 98, 99, 100, 4]
>>> numbers = [1, 2, 3, 4]
>>> numbers[1:3] = 'wat?'
>>> numbers
[1, 'w', 'a', 't', '?', 4]



Delete an Item by Offset with del
Our fact checkers have just informed us that Gummo was indeed one of the
Marx Brothers, but Karl wasn’t, and that whoever inserted him earlier was
very rude. Let’s fix that:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Gummo', 'Karl']
>>> marxes[-1]
'Karl'
>>> del marxes[-1]
>>> marxes
['Groucho', 'Chico', 'Harpo', 'Gummo']

When you delete an item by its position in the list, the items that follow it
move back to take the deleted item’s space, and the list’s length decreases
by one. If we deleted 'Chico' from the last version of the marxes list, we
get this as a result:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Gummo']
>>> del marxes[1]
>>> marxes
['Groucho', 'Harpo', 'Gummo']

NOTE
del is a Python statement, not a list method — you don’t say marxes[-1].del(). It’s
sort of the reverse of assignment (=): it detaches a name from a Python object and can
free up the object’s memory if that name were the last reference to it.

Delete an Item by Value with remove()
If you’re not sure or don’t care where the item is in the list, use remove() to
delete it by value. Goodbye, Groucho:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes.remove('Groucho')
>>> marxes
['Chico', 'Harpo']



If you had duplicate list items with the same value, remove() deletes only
the first one it finds.

Get an Item by Offset and Delete It with pop()
You can get an item from a list and delete it from the list at the same time
by using pop(). If you call pop() with an offset, it will return the item at
that offset; with no argument, it uses -1. So, pop(0) returns the head (start)
of the list, and pop() or pop(-1) returns the tail (end), as shown here:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> marxes.pop()
'Zeppo'
>>> marxes
['Groucho', 'Chico', 'Harpo']
>>> marxes.pop(1)
'Chico'
>>> marxes
['Groucho', 'Harpo']

NOTE
It’s computing jargon time! Don’t worry, these won’t be on the final exam. If you use
append() to add new items to the end and pop() to remove them from the same end,
you’ve implemented a data structure known as a LIFO (last in, first out) queue. This is
more commonly known as a stack. pop(0) would create a FIFO (first in, first out)
queue. These are useful when you want to process data with the oldest first (FIFO) or
the newest first (LIFO).

Delete All Items with clear()
Python 3.3 introduced a method to clear a list of all its elements:

>>> work_quotes = ['Working hard?', 'Quick question!', 'Number one 
priorities!']
>>> work_quotes
['Working hard?', 'Quick question!', 'Number one priorities!']
>>> work_quotes.clear()
>>> work_quotes
[]



Find an Item’s Offset by Value with index()
If you want to know the offset of an item in a list by its value, use index():

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> marxes.index('Chico')
1

If the value is in the list more than once, only the offset of the first one is
returned:

>>> simpsons = ['Lisa', 'Bart', 'Marge', 'Homer', 'Bart']
>>> simpsons.index('Bart')
1

Test for a Value with in
The Pythonic way to check for the existence of a value in a list is using in:

>>> marxes = ['Groucho', 'Chico', 'Harpo', 'Zeppo']
>>> 'Groucho' in marxes
True
>>> 'Bob' in marxes
False

The same value may be in more than one position in the list. As long as it’s
in there at least once, in will return True:

>>> words = ['a', 'deer', 'a' 'female', 'deer']
>>> 'deer' in words
True

NOTE
If you check for the existence of some value in a list often and don’t care about the order
of items, a Python set is a more appropriate way to store and look up unique values.
Read about sets in Chapter 9.



Count Occurrences of a Value with count()
To count how many times a particular value occurs in a list, use count():

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> marxes.count('Harpo')
1
>>> marxes.count('Bob')
0
>>> snl_skit = ['cheeseburger', 'cheeseburger', 'cheeseburger']
>>> snl_skit.count('cheeseburger')
3

Convert a List to a String with join()
“Combine with join()” discussed join() in greater detail, but here’s
another example of what you can do with it:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> ', '.join(marxes)
'Groucho, Chico, Harpo'

You might be thinking that this seems a little backward. join() is a string
method, not a list method. You can’t say marxes.join(', '), even though
it seems more intuitive. The argument to join() is a string or any iterable
sequence of strings (including a list), and its output is a string. If join()
were just a list method, you couldn’t use it with other iterable objects such
as tuples or strings. If you did want it to work with any iterable type, you’d
need special code for each type to handle the actual joining. It might help to
remember: join() is the opposite of split(), as shown here:

>>> friends = ['Harry', 'Hermione', 'Ron']
>>> separator = ' * '
>>> joined = separator.join(friends)
>>> joined
'Harry * Hermione * Ron'
>>> separated = joined.split(separator)
>>> separated
['Harry', 'Hermione', 'Ron']
>>> separated == friends
True



Reorder Items with sort() or sorted()
You’ll often need to sort the items in a list by their values rather than their
offsets. Python provides two functions:

The list method sort() sorts the list itself, in place.

The general function sorted() returns a sorted copy of the list.

If the items in the list are numeric, they’re sorted by default in ascending
numeric order. If they’re strings, they’re sorted in alphabetical order:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> sorted_marxes = sorted(marxes)
>>> sorted_marxes
['Chico', 'Groucho', 'Harpo']

sorted_marxes is a new list, and creating it did not change the original list:

>>> marxes
['Groucho', 'Chico', 'Harpo']

But calling the list function sort() on the marxes list does change marxes:

>>> marxes.sort()
>>> marxes
['Chico', 'Groucho', 'Harpo']

If the elements of your list are all of the same type (such as strings in
marxes), sort() will work correctly. You can sometimes even mix types —
for example, integers and floats — because they are automatically
converted to one another by Python in expressions:

>>> numbers = [2, 1, 4.0, 3]
>>> numbers.sort()
>>> numbers
[1, 2, 3, 4.0]

The default sort order is ascending, but you can add the argument
reverse=True to set it to descending:



>>> numbers = [2, 1, 4.0, 3]
>>> numbers.sort(reverse=True)
>>> numbers
[4.0, 3, 2, 1]

Get Length with len()
len() returns the number of items in a list:

>>> marxes = ['Groucho', 'Chico', 'Harpo']
>>> len(marxes)
3

Assign with =
When you assign one list to more than one variable, changing the list in one
place also changes it in the other, as illustrated here:

>>> a = [1, 2, 3]
>>> a
[1, 2, 3]
>>> b = a
>>> b
[1, 2, 3]
>>> a[0] = 'surprise'
>>> a
['surprise', 2, 3]

So what’s in b now? Is it still [1, 2, 3], or ['surprise', 2, 3]? Let’s
see:

>>> b
['surprise', 2, 3]

Remember the box (object) and string with note (variable name) analogy in
Chapter 2? b just refers to the same list object as a (both name strings lead
to the same object box). Whether we change the list contents by using the
name a or b, it’s reflected in both:



>>> b
['surprise', 2, 3]
>>> b[0] = 'I hate surprises'
>>> b
['I hate surprises', 2, 3]
>>> a
['I hate surprises', 2, 3]

Copy with copy(), list(), or a Slice
You can copy the values of a list to an independent, fresh list by using any
of these methods:

The list copy() method

The list() conversion function

The list slice [:]

Our original list will be called a again. We make b from a with the list
copy() function, c with the list() conversion function, and d with a list
slice:

>>> a = [1, 2, 3]
>>> b = a.copy()
>>> c = list(a)
>>> d = a[:]

Again, b, c, and d are copies of a: they are new objects with their own
values and no connection to the original list object [1, 2, 3] to which a
refers. Changing a does not affect the copies b, c, and d:

>>> a[0] = 'integer lists are boring'
>>> a
['integer lists are boring', 2, 3]
>>> b
[1, 2, 3]
>>> c
[1, 2, 3]
>>> d
[1, 2, 3]



Copy Everything with deepcopy()
The copy() function works well if the list values are all immutable. As
you’ve seen before, mutable values (like lists, tuples, or dicts) are
references. A change in the original or the copy would be reflected in both.

Let’s use the previous example but make the last element in list a the list
[8, 9] instead of the integer 3:

>>> a = [1, 2, [8, 9]]
>>> b = a.copy()
>>> c = list(a)
>>> d = a[:]
>>> a
[1, 2, [8, 9]]
>>> b
[1, 2, [8, 9]]
>>> c
[1, 2, [8, 9]]
>>> d
[1, 2, [8, 9]]

So far, so good. Now change an element in that sublist in a:

>>> a[2][1] = 10
>>> a
[1, 2, [8, 10]]
>>> b
[1, 2, [8, 10]]
>>> c
[1, 2, [8, 10]]
>>> d
[1, 2, [8, 10]]

The value of a[2] is now a list, and its elements can be changed. All the
list-copying methods we used were shallow (not a value judgment, just a
depth one).

To fix this, we need to use the deepcopy() function. It’s in Python’s
standard library, but is not a built-in (base) feature, so we need to import it
(see Chapter 12 for more than you ever wanted to know about imports):



>>> import copy
>>> a = [1, 2, [8, 9]]
>>> b = copy.deepcopy(a)
>>> a
[1, 2, [8, 9]]
>>> b
[1, 2, [8, 9]]
>>> a[2][1] = 10
>>> a
[1, 2, [8, 10]]
>>> b
[1, 2, [8, 9]]

deepcopy() can handle deeply nested lists, dictionaries, and other objects.

Compare Lists
You can directly compare lists with the comparison operators like ==, <, and
so on. The operators walk through both lists, comparing elements at the
same offsets. If list a is shorter than list b, and all of its elements are equal,
a is less than b:

>>> a = [7, 2]
>>> b = [7, 2, 9]
>>> a == b
False
>>> a <= b
True
>>> a < b
True

Iterate with for and in
In Chapter 7, you saw how to iterate over a string with for, but it’s much
more common to iterate over lists:

>>> cheeses = ['brie', 'gjetost', 'havarti']
>>> for cheese in cheeses:
...     print(cheese)
...
brie



gjetost
havarti

As before, break ends the for loop and continue steps to the next
iteration:

>>> cheeses = ['brie', 'gjetost', 'havarti']
>>> for cheese in cheeses:
...     if cheese.startswith('g'):
...         print("I won't eat anything that starts with 'g'")
...         break
...     else:
...         print(cheese)
...
brie
I won't eat anything that starts with 'g'

You can still use the optional else if the for completed without a break:

>>> cheeses = ['brie', 'gjetost', 'havarti']
>>> for cheese in cheeses:
...     if cheese.startswith('x'):
...         print("I won't eat anything that starts with 'x'")
...         break
...     else:
...         print(cheese)
... else:
...     print("Didn't find anything that started with 'x'")
...
brie
gjetost
havarti
Didn't find anything that started with 'x'

If the initial for never ran, control goes to the else also:

>>> cheeses = []
>>> for cheese in cheeses:
...     print('This shop has some lovely', cheese)
...     break
... else:  # no break means no cheese
...     print('This is not much of a cheese shop, is it?')
...
This is not much of a cheese shop, is it?



Because the cheeses list was empty in this example, for cheese in
cheeses never completed a single loop and its break statement was never
executed.

Iterate Multiple Sequences with zip()
There’s one more nice iteration trick: iterating over multiple sequences in
parallel by using the zip() function:

>>> days = ['Monday', 'Tuesday', 'Wednesday']
>>> fruits = ['banana', 'orange', 'peach']
>>> drinks = ['coffee', 'tea', 'beer']
>>> desserts = ['tiramisu', 'ice cream', 'pie', 'pudding']
>>> for day, fruit, drink, dessert in zip(days, fruits, drinks, desserts):
...     print(day, ": drink", drink, "- eat", fruit, "- enjoy", dessert)
...
Monday : drink coffee - eat banana - enjoy tiramisu
Tuesday : drink tea - eat orange - enjoy ice cream
Wednesday : drink beer - eat peach - enjoy pie

zip() stops when the shortest sequence is done. One of the lists
(desserts) was longer than the others, so no one gets any pudding unless
we extend the other lists. Read the next section (“Iterate Multiple
Sequences with zip_longest()”) for a new function that gives you more
control if the sequqnces have different lengths.

Chapter 9 shows you how the dict() function can create dictionaries from
two-item sequences like tuples, lists, or strings. You can use zip() to walk
through multiple sequences and make tuples from items at the same offsets.
Let’s make two tuples of corresponding English and French words:

>>> english = 'Monday', 'Tuesday', 'Wednesday'
>>> french = 'Lundi', 'Mardi', 'Mercredi'

Now, use zip() to pair these tuples. The value returned by zip() is itself
not a tuple or list, but an iterable value that can be turned into one:

>>> list( zip(english, french) )
[('Monday', 'Lundi'), ('Tuesday', 'Mardi'), ('Wednesday', 'Mercredi')]



Feed the result of zip() directly to dict() and voilà: a tiny English-French
dictionary!

>>> dict( zip(english, french) )
{'Monday': 'Lundi', 'Tuesday': 'Mardi', 'Wednesday': 'Mercredi'}

Iterate Multiple Sequences with zip_longest()
As you just saw, if you use plain zip(), it runs out of gas when the shortest
sequence ends. There’s a variant that keeps going until the longest one ends.
zip_longest() will supply None unless you provide a fillvalue for the
unmatched items at the end of the shorter sequence.

>>> from itertools import zip_longest
>>> a = [1, 2, 3]
>>> b = [1, 2, 3, 4, 5]
>>> for x in zip(a, b):
...     print(x)
...
(1, 1)
(2, 2)
(3, 3)
>>> for x in zip_longest(a, b):
...     print(x)
...
(1, 1)
(2, 2)
(3, 3)
(None, 4)
(None, 5)
>>> for x in zip_longest(a, b, fillvalue='!'):
...     print(x)
...
(1, 1)
(2, 2)
(3, 3)
('!', 4)
('!', 5)



Create a List with a Comprehension
You saw how to create a list with square brackets or the list() function.
Here, we look at how to create a list with a list comprehension, which
incorporates the for/in iteration that you just saw.

You could build a list of integers from 1 to 5, one item at a time, like this:

>>> number_list = []
>>> number_list.append(1)
>>> number_list.append(2)
>>> number_list.append(3)
>>> number_list.append(4)
>>> number_list.append(5)
>>> number_list
[1, 2, 3, 4, 5]

Or, you could also use an iterator and the range() function:

>>> number_list = []
>>> for number in range(1, 6):
...     number_list.append(number)
...
>>> number_list
[1, 2, 3, 4, 5]

Or, you could just turn the output of range() into a list directly:

>>> number_list = list(range(1, 6))
>>> number_list
[1, 2, 3, 4, 5]

All of these approaches are valid Python code and will produce the same
result. However, a more Pythonic (and often faster) way to build a list is by
using a list comprehension. The simplest form of list comprehension looks
like this:

[expression for item in iterable]

Here’s how a list comprehension would build the integer list:



>>> number_list = [number for number in range(1,6)]
>>> number_list
[1, 2, 3, 4, 5]

In the first line, you need the first number variable to produce values for the
list: that is, to put a result of the loop into number_list. The second
number is part of the for loop. To show that the first number is an
expression, try this variant:

>>> number_list = [number-1 for number in range(1,6)]
>>> number_list
[0, 1, 2, 3, 4]

The list comprehension moves the loop inside the square brackets. This
comprehension example really wasn’t simpler than the previous example,
but there’s more that you can do. A list comprehension can include a
conditional expression, looking something like this:

[expression for item

in iterable if condition]

Let’s make a new comprehension that builds a list of only the odd numbers
between 1 and 5 (remember that number % 2 is True for odd numbers and
False for even numbers):

>>> a_list = [number for number in range(1,6) if number % 2 == 1]
>>> a_list
[1, 3, 5]

Now, the comprehension is a little more compact than its traditional
counterpart:

>>> a_list = []
>>> for number in range(1,6):
...     if number % 2 == 1:
...         a_list.append(number)
...
>>>  a_list
[1, 3, 5]



Finally, just as there can be nested loops, there can be more than one set of
for ... clauses in the corresponding comprehension. To show this, let’s
first try a plain old nested loop and print the results:

>>> rows = range(1,4)
>>> cols = range(1,3)
>>> for row in rows:
...     for col in cols:
...         print(row, col)
...
1 1
1 2
2 1
2 2
3 1
3 2

Now, let’s use a comprehension and assign it to the variable cells, making
it a list of (row, col) tuples:

>>> rows = range(1,4)
>>> cols = range(1,3)
>>> cells = [(row, col) for row in rows for col in cols]
>>> for cell in cells:
...     print(cell)
...
(1, 1)
(1, 2)
(2, 1)
(2, 2)
(3, 1)
(3, 2)

By the way, you can also use tuple unpacking to get the row and col values
from each tuple as you iterate over the cells list:

>>> for row, col in cells:
...     print(row, col)
...
1 1
1 2
2 1
2 2



3 1
3 2

The for row ... and for col ... fragments in the list comprehension
could also have had their own if tests.

Lists of Lists
Lists can contain elements of different types, including other lists, as
illustrated here:

>>> small_birds = ['hummingbird', 'finch']
>>> extinct_birds = ['dodo', 'passenger pigeon', 'Norwegian Blue']
>>> carol_birds = [3, 'French hens', 2, 'turtledoves']
>>> all_birds = [small_birds, extinct_birds, 'macaw', carol_birds]

So what does all_birds, a list of lists, look like?

>>> all_birds
[['hummingbird', 'finch'], ['dodo', 'passenger pigeon', 'Norwegian Blue'], 
'macaw',
[3, 'French hens', 2, 'turtledoves']]

Let’s look at the first item in it:

>>> all_birds[0]
['hummingbird', 'finch']

The first item is a list: in fact, it’s small_birds, the first item we specified
when creating all_birds. You should be able to guess what the second
item is:

>>> all_birds[1]
['dodo', 'passenger pigeon', 'Norwegian Blue']

It’s the second item we specified, extinct_birds. If we want the first item
of extinct_birds, we can extract it from all_birds by specifying two
indexes:



>>> all_birds[1][0]
'dodo'

The [1] refers to the list that’s the second item in all_birds, and the [0]
refers to the first item in that inner list.

Tuples Versus Lists
You can often use tuples in place of lists, but they have less functions —
there is no append(), insert(), and so on — because they can’t be
modified after creation. Why not just use lists instead of tuples everywhere?

Tuples use less space.

You can’t clobber tuple items by mistake.

You can use tuples as dictionary keys (see Chapter 9).

Named tuples (see “Named Tuples”) can be a simple alternative to
objects.

I won’t go into much more detail about tuples here. In everyday
programming, you’ll use lists and dictionaries more.

There Are No Tuple Comprehensions
Mutable types (lists, dictionaries, and sets) have comprehensions.
Immutable types like strings and tuples need to be created with the other
methods listed in their sections.

You might have thought that changing the square brackets of a list
comprehension to parentheses would create a tuple comprehension. And it
would appear to work because there’s no exception if you type this:

>>> number_thing = (number for number in range(1, 6))



The thing between the parentheses is something else entirely: a generator
comprehension, and it returns a generator object:

>>> type(number_thing)
<class 'generator'>

I’ll get into generators in more detail in “Generators”. A generator is one
way to provide data to an iterator.

Review/Preview
Tuples and lists are sequences, and you access their elements by their
relative positions. Lists can also be changed in-place (mutable), but tuples
can’t (immutable). Sequences are a type of iterable that you can step
through with for and in.

The next chapter is about sets and dictionaries, which emphasize the values
of their elements rather than their positions in some sequence.

Practice
Use lists and tuples with numbers (Chapter 3) and strings (Chapter 4) to
represent elements in the real world with great variety.

8.1 Create a list called years_list, starting with the year of your birth, and
each year thereafter until the year of your fifth birthday. For example, if you
were born in 1980, the list would be years_list = [1980, 1981, 1982,
1983, 1984, 1985]. If you’re less than five years old and reading this
book, I don’t know what to tell you.

8.2 In which year in years_list was your third birthday? Remember, you
were 0 years of age for your first year.

8.3 In which year in years_list were you the oldest?

8.4 Make a list called things with these three strings as elements:
"mozzarella", "cinderella", "salmonella".



8.5 Capitalize the element in things that refers to a person and then print
the list. Did it change the element in the list?

8.6 Make the cheesy element of things all uppercase and then print the list.

8.7 Delete the disease element from things, collect your Nobel Prize, and
print the list.

8.8 Create a list called surprise with the elements "Groucho", "Chico",
and "Harpo".

8.9 Lowercase the last element of the surprise list, reverse it, and then
capitalize it.

7.10 Use a list comprehension to make a list called even of the even
numbers in range(10).

8.11 Let’s create a jump rope rhyme maker. You’ll print a series of two-line
rhymes. Start with this program fragment:

start1 = ["fee", "fie", "foe"]
rhymes = [
    ("flop", "get a mop"),
    ("fope", "turn the rope"),
    ("fa", "get your ma"),
    ("fudge", "call the judge"),
    ("fat", "pet the cat"),
    ("fog", "walk the dog"),
    ("fun", "say we're done"),
    ]
start2 = "Someone better"

For each tuple (first, second) in rhymes:

For the first line:

Print each string in start1, capitalized and followed by an
exclamation point and a space.

Print first, also capitalized and followed by an exclamation point.

For the second line:



Print start2 and a space.

Print second and a period.



Chapter 9. Sets and
Dictionaries

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 9th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

If a word in the dictionary were misspelled, how would we know?
—Steven Wright

Dictionaries are particularly useful key:value data structures, and you’ll see
them used everywhere in Python. Sets are just bags of unique keys, anbd
are also often vary handy.

Dictionaries
A dictionary is similar to a list, but the order of items doesn’t matter, and
they aren’t selected by an offset such as 0 or 1. Instead, you specify a
unique key to associate with each value. This key is often a string, but it can
actually be any of Python’s immutable types: Boolean, integer, float, tuple,
string, and others that you’ll see in later chapters. Dictionaries are mutable,
so you can add, delete, and change their key-value elements. If you’ve



worked with languages that support only arrays or lists, you’ll love
dictionaries.

NOTE
In other languages, dictionaries might be called associative arrays, hashes, or
hashmaps. In Python, a dictionary is also called a dict to save syllables and make
teenage boys snicker.

Create with {}
To create a dictionary, you place curly brackets ({}) around comma-
separated key : value pairs. The simplest dictionary is an empty one,
containing no keys or values at all:

>>> empty_dict = {}
>>> empty_dict
{}

Let’s make a small dictionary with quotes from Ambrose Bierce’s The
Devil’s Dictionary:

>>> bierce = {
...     "day": "A period of twenty-four hours, mostly misspent",
...     "positive": "Mistaken at the top of one's voice",
...     "misfortune": "The kind of fortune that never misses",
...     }
>>>

Typing the dictionary’s name in the interactive interpreter will print its keys
and values:

>>> bierce
{'day': 'A period of twenty-four hours, mostly misspent',
'positive': "Mistaken at the top of one's voice",
'misfortune': 'The kind of fortune that never misses'}



NOTE
In Python, it’s okay to leave a comma after the last item of a list, tuple, or dictionary.
Also, you don’t need to indent, as I did in the preceding example, when you’re typing
keys and values within the curly braces. It just helps readability.

Create with dict()
Some people don’t like typing so many curly brackets and quotes. You can
also create a dictionary by passing named arguments and values to the
dict() function.

The traditional way:

>>> acme_customer = {'first': 'Wile', 'middle': 'E', 'last': 'Coyote'}
>>> acme_customer
{'first': 'Wile', 'middle': 'E', 'last': 'Coyote'}

Using dict():

>>> acme_customer = dict(first="Wile", middle="E", last="Coyote")
>>> acme_customer
{'first': 'Wile', 'middle': 'E', 'last': 'Coyote'}

One limitation of the second way is that the argument names need to be
legal variable names (no spaces, no reserved words):

>>> x = dict(name="Elmer", def="hunter")
  File "<stdin>", line 1
    x = dict(name="Elmer", def="hunter")
                             ^
SyntaxError: invalid syntax

Convert with dict()
You can also use the dict() function to convert two-value sequences into a
dictionary. You might run into such key-value sequences at times, such as



“Strontium, 90, Carbon, 14.”1 The first item in each sequence is used as the
key and the second as the value.

First, here’s a small example using lol (a list of two-item lists):

>>> lol = [ ['a', 'b'], ['c', 'd'], ['e', 'f'] ]
>>> dict(lol)
{'a': 'b', 'c': 'd', 'e': 'f'}

We could have used any sequence containing two-item sequences. Here are
other examples.

A list of two-item tuples:

>>> lot = [ ('a', 'b'), ('c', 'd'), ('e', 'f') ]
>>> dict(lot)
{'a': 'b', 'c': 'd', 'e': 'f'}

A tuple of two-item lists:

>>> tol = ( ['a', 'b'], ['c', 'd'], ['e', 'f'] )
>>> dict(tol)
{'a': 'b', 'c': 'd', 'e': 'f'}

A list of two-character strings:

>>> los = [ 'ab', 'cd', 'ef' ]
>>> dict(los)
{'a': 'b', 'c': 'd', 'e': 'f'}

A tuple of two-character strings:

>>> tos = ( 'ab', 'cd', 'ef' )
>>> dict(tos)
{'a': 'b', 'c': 'd', 'e': 'f'}

The section “Iterate Multiple Sequences with zip()” introduces you to the
zip() function, which makes it easy to create these two-item sequences.



Add or Change an Item by [ key ]
Adding an item to a dictionary is easy. Just refer to the item by its key and
assign a value. If the key was already present in the dictionary, the existing
value is replaced by the new one. If the key is new, it’s added to the
dictionary with its value. Unlike lists, you don’t need to worry about Python
throwing an exception during assignment by specifying an index that’s out
of range.

Let’s make a dictionary of most of the members of Monty Python, using
their last names as keys, and first names as values:

>>> pythons = {
...     'Chapman': 'Graham',
...     'Cleese': 'John',
...     'Idle': 'Eric',
...     'Jones': 'Terry',
...     'Palin': 'Michael',
...     }
>>> pythons
{'Chapman': 'Graham', 'Cleese': 'John', 'Idle': 'Eric',
'Jones': 'Terry', 'Palin': 'Michael'}

We’re missing one member: the one born in America, Terry Gilliam. Here’s
an attempt by an anonymous programmer to add him, but he’s botched the
first name:

>>> pythons['Gilliam'] = 'Gerry'
>>> pythons
{'Chapman': 'Graham', 'Cleese': 'John', 'Idle': 'Eric',
'Jones': 'Terry', 'Palin': 'Michael', 'Gilliam': 'Gerry'}

And here’s some repair code by another programmer who is Pythonic in
more than one way:

>>> pythons['Gilliam'] = 'Terry'
>>> pythons
{'Chapman': 'Graham', 'Cleese': 'John', 'Idle': 'Eric',
'Jones': 'Terry', 'Palin': 'Michael', 'Gilliam': 'Terry'}



By using the same key ('Gilliam'), we replaced the original value
'Gerry' with 'Terry'.

Remember that dictionary keys must be unique. That’s why we used last
names for keys instead of first names here—two members of Monty Python
have the first name 'Terry'! If you use a key more than once, the last
value wins:

>>> some_pythons = {
...     'Graham': 'Chapman',
...     'John': 'Cleese',
...     'Eric': 'Idle',
...     'Terry': 'Gilliam',
...     'Michael': 'Palin',
...     'Terry': 'Jones',
...     }
>>> some_pythons
{'Graham': 'Chapman', 'John': 'Cleese', 'Eric': 'Idle',
'Terry': 'Jones', 'Michael': 'Palin'}

We first assigned the value 'Gilliam' to the key 'Terry' and then
replaced it with the value 'Jones'.

Get an Item by [ key ] or with get()
This is the most common use of a dictionary. You specify the dictionary and
key to get the corresponding value: Using some_pythons from the previous
section:

>>> some_pythons['John']
'Cleese'

If the key is not present in the dictionary, you’ll get an exception:

>>> some_pythons['Groucho']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'Groucho'



There are two good ways to avoid this. The first is to test for the key at the
outset by using in, as you saw in the previous section:

>>> 'Groucho' in some_pythons
False

The second is to use the special dictionary get() function. You provide the
dictionary, key, and an optional value. If the key exists, you get its value:

>>> some_pythons.get('John')
'Cleese'

If not, you get the optional value, if you specified one:

>>> some_pythons.get('Groucho', 'Not a Python')
'Not a Python'

Otherwise, you get None (which displays nothing in the interactive
interpreter):

>>> some_pythons.get('Groucho')
>>>

Iterate with for and in
Iterating over a dictionary returns the keys, in the order they were defined
or added originally. In this example, the keys are the types of cards in the
board game Clue (Cluedo outside of North America):

>>> accusation = {'room': 'ballroom', 'weapon': 'lead pipe',
...               'person': 'Col. Mustard'}
>>> for card in accusation:
...     print(card)
...
room
weapon
person

Using the dictionary’s keys() method does the same thing:



>>> accusation = {'room': 'ballroom', 'weapon': 'lead pipe',
...     'person': 'Col. Mustard'}
>>> for card in accusation.keys():
...     print(card)
...
room
weapon
person

NOTE
In Python 2, keys() just returns a list. Python 3 returns dict_keys(), which is an
iterable view of the keys which works with for ... in. This is handy with large
dictionaries because it doesn’t use the time and memory to create and store a list that
you might not use. But often you actually do want to save all the keys in a list. In
Python 3, you need to call list() to convert a dict_keys object to a list.

>>> card_list = list(accusation.keys())
>>> card_list
['room', 'weapon', 'person']

To iterate over the values rather than the keys, use the dictionary’s
values() function:

>>> for value in accusation.values():
...     print(value)
...
ballroom
lead pipe
Col. Mustard

To return both the key and value as a tuple, you can use the items()
function:

>>> for item in accusation.items():
...     print(item)
...
('room', 'ballroom')
('weapon', 'lead pipe')
('person', 'Col. Mustard')



You can assign the pair of values returned in each step to a tuple. For each
tuple returned by items(), assign the first value (the key) to card, and the
second (the value) to contents:

>>> for card, contents in accusation.items():
...     print('Card', card, 'has the contents', contents)
...
Card weapon has the contents lead pipe
Card person has the contents Col. Mustard
Card room has the contents ballroom

Get Length with len()
Count your key-value pairs:

>>> len(signals)
3

Combine/update dicts
There’s more than one way to merge dictionaries, contrary to the dictum
from the Zen of Python (There should be one — and preferably only one — 
obvious way to do it.).

Use update()
You can use the update() method to copy the keys and values of one
dictionary into another.

Let’s define the pythons dictionary, with all members:

>>> pythons = {
...     'Chapman': 'Graham',
...     'Cleese': 'John',
...     'Gilliam': 'Terry',
...     'Idle': 'Eric',
...     'Jones': 'Terry',
...     'Palin': 'Michael',
...     }
>>> pythons



{'Chapman': 'Graham', 'Cleese': 'John', 'Gilliam': 'Terry',
'Idle': 'Eric', 'Jones': 'Terry', 'Palin': 'Michael'}

We also have a dictionary of other humorous persons called others:

>>> others = { 'Marx': 'Groucho', 'Howard': 'Moe' }

Now, along comes another anonymous programmer who decides that the
members of others should be members of Monty Python:

>>> pythons.update(others)
>>> pythons
{'Chapman': 'Graham', 'Cleese': 'John', 'Gilliam': 'Terry',
'Idle': 'Eric', 'Jones': 'Terry', 'Palin': 'Michael',
'Marx': 'Groucho', 'Howard': 'Moe'}

What happens if the second dictionary has the same key as the dictionary
into which it’s being merged? The value from the second dictionary wins:

>>> first = {'a': 1, 'b': 2}
>>> second = {'b': 'platypus'}
>>> first.update(second)
>>> first
{'a': 1, 'b': 'platypus'}

Use {**a, **b}
Starting with Python 3.5, there’s a new way to merge dictionaries, using the
** unicorn glitter, which has a very different use in Chapter 10:

>>> first = {'a': 'agony', 'b': 'bliss'}
>>> second = {'b': 'bagels', 'c': 'candy'}
>>> {**first, **second}
{'a': 'agony', 'b': 'bagels', 'c': 'candy'}

Actually, you can pass more than two dictionaries:

>>> third = {'d': 'donuts'}
>>> {**first, **third, **second}
{'a': 'agony', 'b': 'bagels', 'd': 'donuts', 'c': 'candy'}



These are shallow copies. See the discussion of deepcopy() (“Copy
Everything with deepcopy()”) if you want full copies of the keys and
values, with no connection to their origin dictionaries.

Use |
Python 3.9 added the ability to use the operator |. Adapting one of the
earlier examples:

>>> first = {'a': 1, 'b': 2}
>>> second = {'b': 'platypus'}
>>> first | second
{'a': 1, 'b': 'platypus'}
>>> first
{'a': 1, 'b': 2}
>>> first |= second
>>> first
{'a': 1, 'b': 'platypus'}

In many ways, this is the best approach. Using update() always modifies
the target string in place, and the bang-bang (**) method isn’t very
intuitive.

Delete an Item by Key with del
The earlier pythons.update(others) code from our anonymous
programmer was technically correct, but factually wrong. The members of
others, although funny and famous, were not in Monty Python. Let’s undo
those last two additions:

>>> del pythons['Marx']
>>> pythons
{'Chapman': 'Graham', 'Cleese': 'John', 'Gilliam': 'Terry',
'Idle': 'Eric', 'Jones': 'Terry', 'Palin': 'Michael',
'Howard': 'Moe'}
>>> del pythons['Howard']
>>> pythons
{'Chapman': 'Graham', 'Cleese': 'John', 'Gilliam': 'Terry',
'Idle': 'Eric', 'Jones': 'Terry', 'Palin': 'Michael'}



Get an Item by Key and Delete It with pop( key )
This combines get() and del. You give pop() a key; if it exists in the
dictionary, it returns the matching value and deletes the key-value pair. If it
doesn’t exist, it raises an exception:

>>> len(pythons)
6
>>> pythons.pop('Palin')
'Michael'
>>> len(pythons)
5
>>> pythons.pop('Palin')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'Palin'

But if you give pop() a second default argument (as with get()), all is well
and the dictionary is not changed:

>>> pythons.pop('First', 'Hugo')
'Hugo'
>>> len(pythons)
5

Delete All Items with clear()
To delete all keys and values from a dictionary, use clear() or just reassign
an empty dictionary ({}) to the name:

>>> pythons.clear()
>>> pythons
{}
>>> pythons = {}
>>> pythons
{}

Test for a Key with in
If you want to know whether a key exists in a dictionary, use in. Let’s
redefine the pythons dictionary again, this time omitting a name or two:



>>> pythons = {'Chapman': 'Graham', 'Cleese': 'John',
... 'Jones': 'Terry', 'Palin': 'Michael', 'Idle': 'Eric'}

Now let’s see who’s in there:

>>> 'Chapman' in pythons
True
>>> 'Palin' in pythons
True

Did we remember to add Terry Gilliam this time?

>>> 'Gilliam' in pythons
False

Drat.

Assign with =
As with lists, if you make a change to a dictionary, it will be reflected in all
the names that refer to it:

>>> signals = {'green': 'go',
... 'yellow': 'go faster',
... 'red': 'smile for the camera'}
>>> save_signals = signals
>>> signals['blue'] = 'confuse everyone'
>>> save_signals
{'green': 'go',
'yellow': 'go faster',
'red': 'smile for the camera',
'blue': 'confuse everyone'}

This is another example of the point I made in Chapter 2. You can have
more than one name (variable) pointing to the same value, so changing it by
one name changes it for the others.



Copy with copy()
To actually copy keys and values from a dictionary to another dictionary
and avoid this, you can use copy():

>>> signals = {'green': 'go',
... 'yellow': 'go faster',
... 'red': 'smile for the camera'}
>>> original_signals = signals.copy()
>>> signals['blue'] = 'confuse everyone'
>>> signals
{'green': 'go',
'yellow': 'go faster',
'red': 'smile for the camera',
'blue': 'confuse everyone'}
>>> original_signals
{'green': 'go',
'yellow': 'go faster',
'red': 'smile for the camera'}
>>>

This is a shallow copy, and works if the dictionary values are immutable (as
they are in this case). If they aren’t, you need deepcopy().

Copy Everything with deepcopy()
Suppose that the value for red in the previous example was a list instead of
a single string:

>>> signals = {'green': 'go',
... 'yellow': 'go faster',
... 'red': ['stop', 'smile']}
>>> signals_copy = signals.copy()
>>> signals
{'green': 'go',
'yellow': 'go faster',
'red': ['stop', 'smile']}
>>> signals_copy
{'green': 'go',
'yellow': 'go faster',
'red': ['stop', 'smile']}
>>>



Let’s change one of the values in the red list:

>>> signals['red'][1] = 'sweat'
>>> signals
{'green': 'go',
'yellow': 'go faster',
'red': ['stop', 'sweat']}
>>> signals_copy
{'green': 'go',
'yellow': 'go faster',
'red': ['stop', 'sweat']}

You get the usual Python change-by-either-name behavior. The copy()
method copied the values as-is, meaning signal_copy got the same list
value for 'red' that signals had.

The solution is deepcopy(), which makes true copies all the way down:

>>> import copy
>>> signals = {'green': 'go',
... 'yellow': 'go faster',
... 'red': ['stop', 'smile']}
>>> signals_copy = copy.deepcopy(signals)
>>> signals
{'green': 'go',
'yellow': 'go faster',
'red': ['stop', 'smile']}
>>> signals_copy
{'green': 'go',
'yellow':'go faster',
'red': ['stop', 'smile']}
>>> signals['red'][1] = 'sweat'
>>> signals
{'green': 'go',
'yellow': 'go faster',
red': ['stop', 'sweat']}
>>> signals_copy
{'green': 'go',
'yellow': 'go faster',
red': ['stop', 'smile']}



Compare Dictionaries
Much like lists and tuples in Chapter 8, dictionaries can be compared with
the simple comparison operators == and !=:

>>> a = {1:1, 2:2, 3:3}
>>> b = {3:3, 1:1, 2:2}
>>> a == b
True

Other operators won’t work:

>>> a = {1:1, 2:2, 3:3}
>>> b = {3:3, 1:1, 2:2}
>>> a <= b
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: '<=' not supported between instances of 'dict' and 'dict'

Python compares the keys and values one by one. The order in which they
were originally created doesn’t matter. In this example, a and b are almost
equal, except key 1 has the list value [1, 2] in a and the list value [1, 1]
in b:

>>> a = {1: [1, 2], 2: [1], 3:[1]}
>>> b = {1: [1, 1], 2: [1], 3:[1]}
>>> a == b
False

Dictionary Comprehensions
Not to be outdone by those bourgeois lists, dictionaries also have
comprehensions. The simplest form looks familiar:

{key_expression : value_expression for expression in iterable}

>>> word = 'letters'
>>> letter_counts = {letter: word.count(letter) for letter in word}
>>> letter_counts
{'l': 1, 'e': 2, 't': 2, 'r': 1, 's': 1}



We’re running a loop over each of the seven letters in the string 'letters'
and counting how many times that letter appears. Two uses of
word.count(letter) are a waste of time because we have to count all the
e’s twice and all the t’s twice. But when we count the e’s the second time,
we do no harm because we just replace the entry in the dictionary that was
already there; the same goes for counting the t’s. So, the following would
have been a teeny bit more Pythonic:

>>> word = 'letters'
>>> letter_counts = {letter: word.count(letter) for letter in set(word)}
>>> letter_counts
{'t': 2, 'l': 1, 'e': 2, 'r': 1, 's': 1}

The dictionary’s keys are in a different order than the previous example
because iterating set(word) returns letters in a different order than iterating
the string word.

Similar to list comprehensions, dictionary comprehensions can also have if
tests and multiple for clauses:

{key_expression : value_expression for expression in iterable if 

condition}

>>> vowels = 'aeiou'
>>> word = 'onomatopoeia'
>>> vowel_counts = {letter: word.count(letter) for letter in set(word)

if letter in vowels}
>>> vowel_counts
{'e': 1, 'i': 1, 'o': 4, 'a': 2}

See PEP-274 for more examples of dictionary comprehensions.

Sets
A set is like a dictionary with its values thrown away, leaving only the keys.
As with a dictionary, each key must be unique. You use a set when you only
want to know that something exists, and nothing else about it. It’s a bag of
keys. Use a dictionary if you want to attach some information to the key as
a value.

https://oreil.ly/6udkb


Create with set() or {}
Create an enpty set with set():

>>> empty = set()
>>> empty
set()

You can also create sets by surrounding an iterable data type with curly
brackets ({}). But it can’t be empty:

>>> empty = {}
>>> empty
{}
>>> type(empty)
<class 'dict'>

Why do dicts win the empty definition war? Dicts got there first, and
possession is 90% of the law2.

To create a non-empty set, use {} with values, or use the set() function
with an iterable argument (a tuple, list, string, or dict).

>>> evens = {0, 2, 4, 6, 8}
>>> evens
{0, 2, 4, 6, 8}
>>> evens = set( [0, 2, 4, 6, 8] )
>>> evens
{0, 2, 4, 6, 8}
>>> evens = set( (0, 2, 4, 6, 8) )
>>> evens
{0, 2, 4, 6, 8}
>>> evens = set( {0:1, 2:4, 4:8, 6:12, 8:16} )
>>> evens
{0, 2, 4, 6, 8}

Sets contain unique values, so any duplicates are dropped:

>>> set( 'letters' )
{'l', 'r', 's', 't', 'e'}



Notice that set() doesn’t accept multiple values, as {} does:

>>> evens = set(0, 2, 4, 6, 8)
Traceback (most recent call last):
  File "<python-input-37>", line 1, in <module>
    evens = set(0, 2, 4, 6, 8)
TypeError: set expected at most 1 argument, got 5

If you do give set() a single-item tuple, you need parentheses and the
following comma:

>>> x = set( (1) )
Traceback (most recent call last):
  File "<python-input-39>", line 1, in <module>
    x = set( (1) )
TypeError: 'int' object is not iterable
>>> x = set( 1, )
Traceback (most recent call last):
  File "<python-input-42>", line 1, in <module>
    x = set( 1, )
TypeError: 'int' object is not iterable
>>> x = set( (1,) )
>>> x
{1}

Sets are unordered, so iterating over one is like dumping a bag of values.

Get Length with len()
Let’s count our reindeer:

>>> reindeer = set( ['Dasher', 'Dancer', 'Prancer', 'Mason-Dixon'] )
>>> len(reindeer)
4

Add an Item with add()
Throw another item into a set with the set add() method:

>>> s = set((1,2,3))
>>> s



{1, 2, 3}
>>> s.add(4)
>>> s
{1, 2, 3, 4}

Delete an Item with remove()
You can delete a value from a set by value:

>>> s = set((1,2,3))
>>> s.remove(3)
>>> s
{1, 2}

Iterate with for and in
Like dictionaries, you can iterate over all items in a set:

>>> furniture = set(('sofa', 'ottoman', 'table'))
>>> for piece in furniture:
...     print(piece)
...
ottoman
table
sofa

Test for a Value with in
This is the most common use of a set. We’ll make a dictionary called
drinks. Each key is the name of a mixed drink, and the corresponding
value is a set of that drink’s ingredients:

>>> drinks = {
...     'martini': {'vodka', 'vermouth'},
...     'black russian': {'vodka', 'kahlua'},
...     'white russian': {'cream', 'kahlua', 'vodka'},
...     'manhattan': {'rye', 'vermouth', 'bitters'},
...     'screwdriver': {'orange juice', 'vodka'}
...     }



Even though both are enclosed by curly braces ({ and }), a set is just a
bunch of values, and a dictionary contains key : value pairs.

Which drinks contain vodka?

>>> for name, contents in drinks.items():
...     if 'vodka' in contents:
...         print(name)
...
screwdriver
martini
black russian
white russian

We want something with vodka but are lactose intolerant, and think
vermouth tastes like kerosene:

>>> for name, contents in drinks.items():
...     if 'vodka' in contents and not ('vermouth' in contents or
...         'cream' in contents):
...         print(name)
...
screwdriver
black russian

We’ll rewrite this a bit more succinctly in the next section.

Combinations and Operators
At some bygone time, in some places, set theory was taught in elementary
school along with basic mathematics. If your school skipped it (or you were
staring out the window), Figure 9-1 shows the ideas of set union and
intersection.

Suppose that you take the union of two sets that have some keys in
common. Because a set must contain only one of each item, the union of
two sets will contain only one of each key. The null or empty set is a set
with zero elements. In Figure 9-1, an example of a null set would be female
names beginning with X.



Figure 9-1. Common things to do with sets

What if you want to check for combinations of set values? Suppose that you
want to find any drink that has orange juice or vermouth? Let’s use the set
intersection operator, which is an ampersand (&):

>>> for name, contents in drinks.items():
...     if contents & {'vermouth', 'orange juice'}:
...         print(name)
...
screwdriver



martini
manhattan

The result of the & operator is a set that contains all of the items that appear
in both lists that you compare. If neither of those ingredients were in
contents, the & returns an empty set, which is considered False.

Now, let’s rewrite the example from the previous section, in which we
wanted vodka but neither cream nor vermouth:

>>> for name, contents in drinks.items():
...     if 'vodka' in contents and not contents & {'vermouth', 'cream'}:
...         print(name)
...
screwdriver
black russian

Let’s save the ingredient sets for these two drinks in variables, just to save
our delicate fingers some typing in the coming examples:

>>> bruss = drinks['black russian']
>>> wruss = drinks['white russian']

The following are examples of all the set operators. Some have special
punctuation, some have special functions, and some have both. Let’s use
test sets a (contains 1 and 2) and b (contains 2 and 3):

>>> a = {1, 2}
>>> b = {2, 3}

As you saw earlier, you get the intersection (members common to both sets)
with the special punctuation symbol &. The set intersection() function
does the same:

>>> a & b
{2}
>>> a.intersection(b)
{2}



This snippet uses our saved drink variables:

>>> bruss & wruss
{'kahlua', 'vodka'}

In this example, get the union (members of either set) by using | or the set
union() function:

>>> a | b
{1, 2, 3}
>>> a.union(b)
{1, 2, 3}

And here’s the alcoholic version:

>>> bruss | wruss
{'cream', 'kahlua', 'vodka'}

The difference (members of the first set but not the second) is obtained by
using the character - or the difference() function:

>>> a - b
{1}
>>> a.difference(b)
{1}
>>> bruss - wruss
set()
>>> wruss - bruss
{'cream'}

By far, the most common set operations are union, intersection, and
difference. I’ve included the others for completeness in the examples that
follow, but you might never use them.

The exclusive or (items in one set or the other, but not both) uses ^ or
symmetric_difference():

>>> a ^ b
{1, 3}



>>> a.symmetric_difference(b)
{1, 3}

This finds the exclusive ingredient in our two russian drinks:

>>> bruss ^ wruss
{'cream'}

You can check whether one set is a subset of another (all members of the
first set are also in the second set) by using <= or issubset():

>>> a <= b
False
>>> a.issubset(b)
False

Adding cream to a black russian makes a white russian, so wruss is a
superset of bruss:

>>> bruss <= wruss
True

Is any set a subset of itself? Yup3.

>>> a <= a
True
>>> a.issubset(a)
True

To be a proper subset, the second set needs to have all the members of the
first and more. Calculate it by using <, as in this example:

>>> a < b
False
>>> a < a
False
>>> bruss < wruss
True



A superset is the opposite of a subset (all members of the second set are
also members of the first). This uses >= or issuperset():

>>> a >= b
False
>>> a.issuperset(b)
False
>>> wruss >= bruss
True

Any set is a superset of itself:

>>> a >= a
True
>>> a.issuperset(a)
True

And finally, you can find a proper superset (the first set has all members of
the second, and more) by using >, as shown here:

>>> a > b
False
>>> wruss > bruss
True

You can’t be a proper superset of yourself:

>>> a > a
False

Set Comprehensions
No one wants to be left out, so even sets have comprehensions. The
simplest version looks like the list and dictionary comprehensions that
you’ve just seen:

{ expression for expression in iterable }

And it can have the optional condition tests:

{ expression for expression in iterable if condition }



>>> a_set = {number for number in range(1,6) if number % 3 == 1}
>>> a_set
{1, 4}

Create an Immutable Set with frozenset()
If you want to create a set that can’t be changed, call the frozenset()
function with any iterable argument:

>>> frozenset([3, 2, 1])
frozenset({1, 2, 3})
>>> frozenset(set([2, 1, 3]))
frozenset({1, 2, 3})
>>> frozenset({3, 1, 2})
frozenset({1, 2, 3})
>>> frozenset( (2, 3, 1) )
frozenset({1, 2, 3})

Is it really frozen?

>>> fs = frozenset([3, 2, 1])
>>> fs
frozenset({1, 2, 3})
>>> fs.add(4)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'add'

Yes, pretty frosty.

Review/Preview
You’ll see dictionaries everywhere in Python code. They’re particulzrly
useful in data processing, when you want to group things by some value.

The next chapter goes from data structure land back to code structure land:
functions wrap chunks of code, give them names, take inputs, and return
outputs.



Practice
9.1 Make an English-to-French dictionary called e2f and print it. Here are
your starter words: dog is chien, cat is chat, and walrus is morse.

9.2 Using your three-word dictionary e2f, print the French word for
walrus.

9.3 Make a French-to-English dictionary called f2e from e2f. Use the
items method.

9.4 Print the English equivalent of the French word chien.

9.5 Print the set of English words from e2f.

9.6 Make a multilevel dictionary called life. Use these strings for the
topmost keys: 'animals', 'plants', and 'other'. Make the 'animals'
key refer to another dictionary with the keys 'cats', 'octopi', and
'emus'. Make the 'cats' key refer to a list of strings with the values
'Henri', 'Grumpy', and 'Lucy'. Make all the other keys refer to empty
dictionaries.

9.7 Print the top-level keys of life.

9.8 Print the keys for life['animals'].

9.9 Print the values for life['animals']['cats'].

9.10 Use a dictionary comprehension to create the dictionary squares. Use
range(10) to return the keys, and use the square of each key as its value.

9.11 Use a set comprehension to create the set odd from the odd numbers in
range(10).

9.12 Use a generator comprehension to return the string 'Got ' and a
number for the numbers in range(10). Iterate through this by using a for
loop.

9.13 Use zip() to make a dictionary from the key tuple ('optimist',
'pessimist', 'troll') and the values tuple ('The glass is half
full', 'The glass is half empty', 'How did you get a glass?').



9.14 Use zip() to make a dictionary called movies that pairs these lists:
titles = ['Creature of Habit', 'Crewel Fate', 'Sharks On a
Plane'] and plots = ['A nun turns into a monster', 'A haunted
yarn shop', 'Check your exits']

1  Also, the final score in the Strontium-Carbon game.

2  According to lawyers and exorcists.

3  Although, paraphrasing Groucho Marx, “I wouldn’t want to belong to a club that would have
someone like me as a member.”



Chapter 10. Functions

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 10th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

The smaller the function, the greater the management.
—C. Northcote Parkinson

So far, all of our Python code examples have been little fragments. These
are good for small tasks, but no one wants to retype fragments all the time.
We need some way of organizing larger code into manageable pieces.

The first step to code reuse is the function: a named piece of code, separate
from all others. A function can take any number and type of input
parameters and return any number and type of output results.

You can do two things with a function:

Define it, with zero or more parameters

Call it, and get zero or more results



Define a Function with def
To define a Python function, you type def, the function name, parentheses
enclosing any input parameters to the function, and then finally, a colon (:).
Function names have the same rules as variable names (they must start with
a letter or _ and contain only letters, numbers, or _).

Let’s take things one step at a time, and first define and call a function that
has no parameters. Here’s the simplest Python function:

>>> def do_nothing():
...     pass

Even for a function with no parameters like this one, you still need the
parentheses and the colon in its definition. The next line needs to be
indented, just as you would indent code under an if statement. Python
requires the pass statement to show that this function does nothing. It’s the
equivalent of This page intentionally left blank (even though it isn’t
anymore).

Call a Function with Parentheses
You call this function just by typing its name and parentheses. It works as
advertised, doing nothing, but doing it very well:

>>> do_nothing()
>>>

Now let’s define and call another function that has no parameters but prints
a single word:

>>> def make_a_sound():
...     print('quack')
...
>>> make_a_sound()
quack



When you called the make_a_sound() function, Python ran the code inside
its definition. In this case, it printed a single word and returned to the main
program.

Let’s try a function that has no parameters but returns a value:

>>> def agree():
...    return True
...

You can call this function and test its returned value by using if:

>>> if agree():
...     print('Splendid!')
... else:
...     print('That was unexpected.')
...
Splendid!

You’ve just made a big step. The combination of functions with tests such
as if and loops such as while make it possible for you to do things that you
could not do before.

Arguments and Parameters
At this point, it’s time to put something between those parentheses. Let’s
define the function echo() with one parameter called anything. It uses the
return statement to send the value of anything back to its caller twice,
with a space between:

>>> def echo(anything):
...    return anything + ' ' + anything
...
>>>

Now let’s call echo() with the string 'Rumplestiltskin':

>>> echo('Rumplestiltskin')
'Rumplestiltskin Rumplestiltskin'



The values you pass into the function when you call it are known as
arguments. When you call a function with arguments, the values of those
arguments are copied to their corresponding parameters inside the function.

NOTE
Saying it another way: they’re called arguments outside of the function, but parameters
inside.

In the previous example, the function echo() was called with the argument
string 'Rumplestiltskin'. This value was copied within echo() to the
parameter anything, and then returned (in this case doubled, with a space)
to the caller.

These function examples were pretty basic. Let’s write a function that takes
an input argument and actually does something with it. We’ll adapt the
earlier code fragment that comments on a color. Call it commentary and
have it take an input string parameter called color. Make it return the string
description to its caller, which can decide what to do with it:

>>> def commentary(color):
...     if color == 'red':
...         return "It's a tomato."
...     elif color == "green":
...         return "It's a green pepper."
...     elif color == 'bee purple':
...         return "I don't know what it is, but only bees can see it."
...     else:
...         return "I've never heard of the color "  + color +  "."
...
>>>

Call the function commentary() with the string argument 'blue'.

>>> comment = commentary('blue')

The function does the following:



Assigns the value 'blue' to the function’s internal color
parameter

Runs through the if-elif-else logic chain

Returns a string

The caller then assigns the string to the variable comment.

What did we get back?

>>> print(comment)
I've never heard of the color blue.

A function can take any number of input arguments (including zero) of any
type. It can return any number of output results (also including zero) of any
type. If a function doesn’t call return explicitly, the caller gets the result
None.

>>> print(do_nothing())
None

None Is Useful
None is a special Python value that holds a place when there is nothing to
say. It is not the same as the Boolean value False, although it looks false
when evaluated as a Boolean. Here’s an example:

>>> thing = None
>>> if thing:
...     print("It's some thing")
... else:
...     print("It's no thing")
...
It's no thing

To distinguish None from a boolean False value, use Python’s is operator:

>>> thing = None
>>> if thing is None:



...     print("It's nothing")

... else:

...     print("It's something")

...
It's nothing

This seems like a subtle distinction, but it’s important in Python. You’ll
need None to distinguish a missing value from an empty value. Remember
that zero-valued integers or floats, empty strings (''), lists ([]), tuples
((,)), dictionaries ({}), and sets (set()) are all False, but are not the same
as None.

Let’s write a quick function that prints whether its argument is None, True,
or False:

>>> def whatis(thing):
...     if thing is None:
...         print(thing, "is None")
...     elif thing:
...         print(thing, "is True")
...     else:
...         print(thing, "is False")
...

Let’s run some sanity tests:

>>> whatis(None)
None is None
>>> whatis(True)
True is True
>>> whatis(False)
False is False

How about some real values?

>>> whatis(0)
0 is False
>>> whatis(0.0)
0.0 is False
>>> whatis('')
 is False
>>> whatis("")



 is False
>>> whatis('''''')
 is False
>>> whatis(())
() is False
>>> whatis([])
[] is False
>>> whatis({})
{} is False
>>> whatis(set())
set() is False
>>> whatis(0.00001)
1e-05 is True
>>> whatis([0])
[0] is True
>>> whatis([''])
[''] is True
>>> whatis(' ')
  is True

Positional Arguments
Python handles function arguments in a manner that’s very flexible, when
compared to many languages. The most familiar types of arguments are
positional arguments, whose values are copied to their corresponding
parameters in order.

This function builds a dictionary from its positional input arguments and
returns it:

>>> def menu(wine, entree, dessert):
...     return {'wine': wine, 'entree': entree, 'dessert': dessert}
...
>>> menu('chardonnay', 'chicken', 'cake')
{'wine': 'chardonnay', 'entree': 'chicken', 'dessert': 'cake'}

Although very common, a downside of positional arguments is that you
need to remember the meaning of each position. If we forgot and called
menu() with wine as the last argument instead of the first, the meal would
be very different:



>>> menu('beef', 'bagel', 'bordeaux')
{'wine': 'beef', 'entree': 'bagel', 'dessert': 'bordeaux'}

Keyword Arguments
To avoid positional argument confusion, you can specify arguments by the
names of their corresponding parameters, even in a different order from
their definition in the function:

>>> menu(entree='beef', dessert='bagel', wine='bordeaux')
{'wine': 'bordeaux', 'entree': 'beef', 'dessert': 'bagel'}

You can mix positional and keyword arguments. Let’s specify the wine first,
but use keyword arguments for the entree and dessert:

>>> menu('frontenac', dessert='flan', entree='fish')
{'wine': 'frontenac', 'entree': 'fish', 'dessert': 'flan'}

If you call a function with both positional and keyword arguments, the
positional arguments need to come first.

Specify Default Parameter Values
You can specify default values for parameters. The default is used if the
caller does not provide a corresponding argument. This bland-sounding
feature can actually be quite useful. Using the previous example:

>>> def menu(wine, entree, dessert='pudding'):
...     return {'wine': wine, 'entree': entree, 'dessert': dessert}

This time, try calling menu() without the dessert argument:

>>> menu('chardonnay', 'chicken')
{'wine': 'chardonnay', 'entree': 'chicken', 'dessert': 'pudding'}

If you do provide an argument, it’s used instead of the default:



>>> menu('dunkelfelder', 'duck', 'doughnut')
{'wine': 'dunkelfelder', 'entree': 'duck', 'dessert': 'doughnut'}

NOTE
Default parameter values are calculated when the function is defined, not when it is run.
A common error with new (and sometimes not-so-new) Python programmers is to use a
mutable data type such as a list or dictionary as a default parameter.

In the following test, the buggy() function is expected to run each time
with a fresh empty result list, add the arg argument to it, and then print a
single-item list. However, there’s a bug: it’s empty only the first time it’s
called. The second time, result still has one item from the previous call:

>>> def buggy(arg, result=[]):
...     result.append(arg)
...     print(result)
...
>>> buggy('a')
['a']
>>> buggy('b')   # expect ['b']
['a', 'b']

It would have worked if it had been written like this:

>>> def works(arg):
...     result = []
...     result.append(arg)
...     return result
...
>>> works('a')
['a']
>>> works('b')
['b']

The fix is to pass in something else to indicate the first call:

>>> def nonbuggy(arg, result=None):
...     if result is None:
...         result = []



...     result.append(arg)

...     print(result)

...
>>> nonbuggy('a')
['a']
>>> nonbuggy('b')
['b']

This is sometimes a Python job interview question. You’ve been warned.

Explode/Gather Positional Arguments with *
If you’ve programmed in C or C++, you might assume that an asterisk (*)
in a Python program has something to do with a pointer. Nope, Python
doesn’t have pointers.

When used inside the function with a parameter, an asterisk groups a
variable number of positional arguments into a single tuple of parameter
values. In the following example, args is the parameter tuple that resulted
from zero or more arguments that were passed to the function
print_args():

>>> def print_args(*args):
...     print('Positional tuple:', args)
...

If you call the function with no arguments, you get nothing in *args:

>>> print_args()
Positional tuple: ()

Whatever you give it will be printed as the args tuple:

>>> print_args(3, 2, 1, 'wait!', 'uh...')
Positional tuple: (3, 2, 1, 'wait!', 'uh...')

This is useful for writing functions such as print() that accept a variable
number of arguments. If your function has required positional arguments, as
well, put them first; *args goes at the end and grabs all the rest:



>>> def print_more(required1, required2, *args):
...     print('Need this one:', required1)
...     print('Need this one too:', required2)
...     print('All the rest:', args)
...
>>> print_more('cap', 'gloves', 'scarf', 'monocle', 'mustache wax')
Need this one: cap
Need this one too: gloves
All the rest: ('scarf', 'monocle', 'mustache wax')

NOTE
When using *, you don’t need to name the tuple parameter *args, but it’s a standard
idiom in Python.

Summarizing:

You can pass positional arguments to a function, which will match
them inside to positional parameters. This is what you’ve seen so
far in this book.

You can pass a tuple argument to a function, and inside it will be a
tuple parameter. This is a simple case of the preceding one.

You can pass positional arguments to a function, and gather them
inside as the parameter *args, which resolves to the tuple args.
This was described in this section.

You can also “explode” a tuple argument called args to positional
parameters *args inside the function, which will be regathered
inside into the tuple parameter args:

>>> print_args(2, 5, 7, 'x')
Positional tuple: (2, 5, 7, 'x')
>>> args = (2,5,7,'x')
>>> print_args(args)
Positional tuple: ((2, 5, 7, 'x'),)
>>> print_args(*args)
Positional tuple: (2, 5, 7, 'x')



You can only use the * syntax in a function call or definition:

>>> *args
  File "<stdin>", line 1
SyntaxError: can't use starred expression here

So:

Outside the function, *args explodes the tuple args into comma-
separated positional parameters.

Inside the function, *args gathers all of the positional arguments
into a single args tuple. You could use the names *params and
params, but it’s common practice to use *args for both the outside
argument and inside parameter.

Readers with synesthesia might also faintly hear *args as puff-args on the
outside and inhale-args on the inside, as values are either exploded or
gathered.

Explode/Gather Keyword Arguments with **
You can use two asterisks (**) to group keyword arguments into a
dictionary, where the argument names are the keys, and their values are the
corresponding dictionary values. The following example defines the
function print_kwargs() to print its keyword arguments:

>>> def print_kwargs(**kwargs):
...     print('Keyword arguments:', kwargs)
...

Now try calling it with some keyword arguments:

>>> print_kwargs()
Keyword arguments: {}
>>> print_kwargs(wine='merlot', entree='mutton', dessert='macaroon')
Keyword arguments: {'dessert': 'macaroon', 'wine': 'merlot',
'entree': 'mutton'}



Inside the function, kwargs is a dictionary parameter.

Argument order is:

Required positional arguments

Optional positional arguments (*args)

Optional keyword arguments (**kwargs)

As with args, you don’t need to call this keyword argument kwargs, but
it’s common usage1.

The ** syntax is valid only in a function call or definition2:

>>> **kwparams
  File "<stdin>", line 1
    **kwparams
     ^
SyntaxError: invalid syntax

Summarizing:

You can pass keyword arguments to a function, which will match
them inside to keyword parameters. This is what you’ve seen so
far.

You can pass a dictionary argument to a function, and inside it will
be dictionary parameters. This is a simple case of the preceding
one.

You can pass one or more keyword arguments (name=value) to a
function, and gather them inside as **kwargs, which resolves to
the dictionary parameter called kwargs. This was described in this
section.

Outside a function, **kwargs explodes a dictionary kwargs into
name=value arguments.

Inside a function, **kwargs gathers name=value arguments into
the single dictionary parameter kwargs.



If auditory hallucinations help, imagine a puff for each asterisk exploding
outside the function, and a little inhaling sound for each one gathering
inside.

Keyword-Only Arguments
It’s possible to pass in a keyword argument that has the same name as a
positional parameter, probably not resulting in what you want. Python 3 lets
you specify keyword-only arguments. As the name says, they must be
provided as name=value, not positionally as value. The single * in the
function definition means that the following parameters start and end
must be provided as named arguments if we don’t want their default values:

>>> def print_data(data, *, start=0, end=100):
...     for value in (data[start:end]):
...         print(value)
...
>>> data = ['a', 'b', 'c', 'd', 'e', 'f']
>>> print_data(data)
a
b
c
d
e
f
>>> print_data(data, start=4)
e
f
>>> print_data(data, end=2)
a
b

Mutable and Immutable Arguments
Remember that if you assigned the same list to two variables, you could
change it by using either one? And that you could not if the variables both
referred to something like an integer or a string? That was because the list
was mutable and the integer and string were immutable.



You need to watch for the same behavior when passing arguments to
functions. If an argument is mutable, its value can be changed from inside
the function via its corresponding parameter3:

>>> outside = ['one', 'fine', 'day']
>>> def mangle(arg):
...    arg[1] = 'terrible!'
...
>>> outside
['one', 'fine', 'day']
>>> mangle(outside)
>>> outside
['one', 'terrible!', 'day']

So, don’t do this. Either document that an argument may be changed, or
return the new value.

Docstrings
Readability counts, the Zen of Python verily saith. You can attach
documentation to a function definition by including a string at the
beginning of the function body. This is the function’s docstring:

>>> def echo(anything):
...     'echo returns its input argument'
...     return anything

You can make a docstring quite long, and even add rich formatting if you
want:

def print_if_true(thing, check):
    '''
    Prints the first argument if a second argument is true.
    The operation is:
        1. Check whether the *second* argument is true.
        2. If it is, print the *first* argument.
    '''
    if check:
        print(thing)



To print a function’s docstring, call the Python help() function. Pass the
function’s name to get a listing of arguments along with the nicely
formatted docstring:

>>> help(echo)
Help on function echo in module __main__:

echo(anything)
    echo returns its input argument

If you want to see just the raw docstring, without the formatting:

>>> print(echo.__doc__)
echo returns its input argument

That odd-looking __doc__ is the internal name of the docstring as a
variable within the function. Double underscores (aka dunder in Python-
speak) are used in many places to name Python internal variables, because
programmers are unlikely to use them in their own variable names.

Functions Are First-Class Citizens
I’ve mentioned the Python mantra, everything is an object. This includes
numbers, strings, tuples, lists, dictionaries—and functions, as well.
Functions are first-class citizens in Python. You can assign them to
variables, use them as arguments to other functions, and return them from
functions. This gives you the capability to do some things in Python that are
difficult-to-impossible to carry out in many other languages.

To test this, let’s define a simple function called answer() that doesn’t have
any arguments; it just prints the number 42:

>>> def answer():
...     print(42)

If you run this function, you know what you’ll get:



>>> answer()
42

Now let’s define another function named run_something. It has one
argument called func, a function to run. Once inside, it just calls the
function:

>>> def run_something(func):
...     func()

If we pass answer to run_something(), we’re using a function as data, just
as with anything else:

>>> run_something(answer)
42

Notice that you passed answer, not answer(). In Python, those parentheses
mean call this function. With no parentheses, Python just treats the function
like any other object. That’s because, like everything else in Python, it is an
object:

>>> type(run_something)
<class 'function'>

Let’s try running a function with arguments. Define a function add_args()
that prints the sum of its two numeric arguments, arg1 and arg2:

>>> def add_args(arg1, arg2):
...     print(arg1 + arg2)

And what is add_args()?

>>> type(add_args)
<class 'function'>

At this point, let’s define a function called run_something_with_args()
that takes three arguments:



func

The function to run

arg1

The first argument for func

arg2

The second argument for func

>>> def run_something_with_args(func, arg1, arg2):
...     func(arg1, arg2)

When you call run_something_with_args(), the function passed by the
caller is assigned to the func parameter, whereas arg1 and arg2 get the
values that follow in the argument list. Then, running func(arg1, arg2)
executes that function with those arguments because the parentheses told
Python to do so.

Let’s test it by passing the function name add_args and the arguments 5
and 9 to run_something_with_args():

>>> run_something_with_args(add_args, 5, 9)
14

Within the function run_something_with_args(), the function name
argument add_args was assigned to the parameter func, 5 to arg1, and 9 to
arg2. This ended up running:

add_args(5, 9)

You can combine this with the *args and **kwargs techniques.

Let’s define a test function that takes any number of positional arguments,
calculates their sum by using the sum() function, and then returns that sum:



>>> def sum_args(*args):
...    return sum(args)

I haven’t mentioned sum() before. It’s a built-in Python function that
calculates the sum of the values in its iterable numeric (int or float)
argument.

Let’s define the new function run_with_positional_args(), which takes
a function and any number of positional arguments to pass to it:

>>> def run_with_positional_args(func, *args):
...    return func(*args)

Now go ahead and call it:

>>> run_with_positional_args(sum_args, 1, 2, 3, 4)
10

You can use functions as elements of lists, tuples, sets, and dictionaries.
Functions are immutable, so you can also use them as dictionary keys.

Function Arguments Are Not a Tuple
Even though we call functions with comma-separated arguments, they’re
not the same as a tuple.

>>> t = 1, 2, 3
>>> type(t)
<class 'tuple'>
>>> def list_arg(thing):
...     print(thing, type(thing))
...
>>> list_arg(t)
(1, 2, 3) <class 'tuple'>
>>> list_arg(1, 2, 3)
Traceback (most recent call last):
  File "<python-input-68>", line 1, in <module>
    list_arg(1, 2, 3)
    ~~~~~~~~^^^^^^^^^


TypeError: list_arg() takes 1 positional argument but 3 were given
>>>

If you wrap the arguments in another pair of parentheses, then it’s a single
tuple:

>>> list_arg((1, 2, 3))
(1, 2, 3) <class 'tuple'>

As you saw earlier (“Explode/Gather Positional Arguments with *”) you
can implode any number of arguments into a tuple paremeter with *args:

>>> t = 1, 2, 3
>>> def list_args(*args):
... print(args, type(args))
...
>>> list_args(t)
((1, 2, 3),) <class 'tuple'>
>>> list_args(1, 2, 3)
(1, 2, 3) <class 'tuple'>

Inner Functions
You can define a function within another function:

>>> def outer(a, b):
... def inner(c, d):
... return c + d
... return inner(a, b)
...
>>>
>>> outer(4, 7)
11

An inner function can be useful when performing some complex task more
than once within another function, to avoid loops or code duplication. For a
string example, this inner function adds some text to its argument:

>>> def knights(saying):
... def inner(quote):

... return "We are the knights who say: '%s'" % quote

... return inner(saying)

...
>>> knights('Ni!')
"We are the knights who say: 'Ni!'"

Closures
An inner function can act as a closure. This is a function that is dynamically
generated by another function and can both change and remember the
values of variables that were created outside the function.

The following example builds on the previous knights() example. Let’s
call the new one knights2(), because we have no imagination, and turn
the inner() function into a closure called inner2(). Here are the
differences:

inner2() uses the outer saying parameter directly instead of
getting it as an argument.

knights2() returns the inner2 function name instead of calling it:

>>> def knights2(saying):

... def inner2():

... return "We are the knights who say: '%s'" % saying

... return inner2

...

The inner2() function knows the value of saying that was passed in and
remembers it. The line return inner2 returns this specialized copy of the
inner2 function (but doesn’t call it). That’s a kind of closure: a
dynamically created function that remembers where it came from.

Let’s call knights2() twice, with different arguments:

>>> a = knights2('Duck')
>>> b = knights2('Hasenpfeffer')

Okay, so what are a and b?

>>> type(a)
<class 'function'>
>>> type(b)
<class 'function'>

They’re functions, but they’re also closures:

>>> a
<function knights2.<locals>.inner2 at 0x10193e158>
>>> b
<function knights2.<locals>.inner2 at 0x10193e1e0>

If we call them, they remember the saying that was used when they were
created by knights2:

>>> a()
"We are the knights who say: 'Duck'"
>>> b()
"We are the knights who say: 'Hasenpfeffer'"

Anonymous Functions: lambda
A Python lambda function is an anonymous function expressed as a single
statement. You can use it instead of a normal tiny function.

To illustrate it, let’s first make an example that uses normal functions. To
begin, let’s define the function edit_story(). Its arguments are the
following:

words—a list of words

func—a function to apply to each word in words

>>> def edit_story(words, func):
... for word in words:
... print(func(word))

Now we need a list of words and a function to apply to each word. For the
words, here’s a list of (hypothetical) sounds made by my cat if he
(hypothetically) missed one of the stairs:

>>> stairs = ['thud', 'meow', 'thud', 'hiss']

And for the function, this will capitalize each word and append an
exclamation point, perfect for feline tabloid newspaper headlines:

>>> def enliven(word): # give that prose more punch
... return word.capitalize() + '!'

Mixing our ingredients:

>>> edit_story(stairs, enliven)
Thud!
Meow!
Thud!
Hiss!

Finally, we get to the lambda. The enliven() function was so brief that we
could replace it with a lambda:

>>> edit_story(stairs, lambda word: word.capitalize() + '!')
Thud!
Meow!
Thud!
Hiss!

A lambda has zero or more comma-separated arguments, followed by a
colon (:), and then the definition of the function. We’re giving this lambda
one argument, word. You don’t use parentheses with lambda as you would
when calling a function created with def.

Often, using real functions such as enliven() is much clearer than using
lambdas. Lambdas are mostly useful for cases in which you would
otherwise need to define many tiny functions and remember what you

called them all. In particular, you can use lambdas in graphical user
interfaces to define callback functions.

Generators
A generator is a Python sequence creation object. With it, you can iterate
through potentially huge sequences without creating and storing the entire
sequence in memory at once. Generators are often the source of data for
iterators. If you recall, we already used one of them, range(), in earlier
code examples to generate a series of integers. In Python 2, range() returns
a list, which limits it to fit in memory. Python 2 also has the generator
xrange(), which became the normal range() in Python 3. This example
adds all the integers from 1 to 100:

>>> sum(range(1, 101))
5050

Every time you iterate through a generator, it keeps track of where it was
the last time it was called and returns the next value. This is different from a
normal function, which has no memory of previous calls and always starts
at its first line with the same state.

Generator Functions
If you want to create a potentially large sequence, you can write a generator
function. It’s a normal function, but it returns its value with a yield
statement rather than return. Let’s write our own version of range():

>>> def my_range(first=0, last=10, step=1):
... number = first
... while number < last:
... yield number
... number += step
...

It’s a normal function:

>>> my_range
<function my_range at 0x10193e268>

And it returns a generator object:

>>> ranger = my_range(1, 5)
>>> ranger
<generator object my_range at 0x101a0a168>

We can iterate over this generator object:

>>> for x in ranger:
... print(x)
...
1
2
3
4

NOTE
A generator can be run only once. Lists, sets, strings, and dictionaries exist in memory,
but a generator creates its values on the fly and hands them out one at a time through an
iterator. It doesn’t remember them, so you can’t restart or back up a generator.

If you try to iterate this generator again, you’ll find that it’s tapped out:

>>> for try_again in ranger:
... print(try_again)
...
>>>

Generator Comprehensions
You’ve seen comprehensions for lists, dictionaries, and sets. A generator
comprehension looks like those, but is surrounded by parentheses instead of
square or curly brackets. It’s like a shorthand version of a generator
function, doing the yield invisibly, and also returns a generator object:

>>> genobj = (pair for pair in zip(['a', 'b'], ['1', '2']))
>>> genobj
<generator object <genexpr> at 0x10308fde0>
>>> for thing in genobj:
... print(thing)
...
('a', '1')
('b', '2')

Decorators
Sometimes, you want to modify an existing function without changing its
source code. A common example is adding a debugging statement to see
what arguments were passed in.

A decorator is a function that takes one function as input and returns
another function. Let’s dig into our bag of Python tricks and use the
following:

*args and **kwargs

Inner functions

Functions as arguments

The function document_it() defines a decorator that will do the following:

Print the function’s name and the values of its arguments

Run the function with the arguments

Print the result

Return the modified function for use

Here’s what the code looks like:

>>> def document_it(func):
... def new_function(*args, **kwargs):
... print('Running function:', func.__name__)
... print('Positional arguments:', args)
... print('Keyword arguments:', kwargs)

... result = func(*args, **kwargs)

... print('Result:', result)

... return result

... return new_function

Whatever func you pass to document_it(), you get a new function that
includes the extra statements that document_it() adds. A decorator doesn’t
actually have to run any code from func, but document_it() calls func
partway through so that you get the results of func as well as all the extras.

So, how do you use this? You can apply the decorator manually:

>>> def add_ints(a, b):
... return a + b
...
>>> add_ints(3, 5)
8
>>> cooler_add_ints = document_it(add_ints) # manual decorator assignment
>>> cooler_add_ints(3, 5)
Running function: add_ints
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 8
8

As an alternative to the manual decorator assignment we just looked at, you
can add @decorator_name before the function that you want to
decorate:

>>> @document_it
... def add_ints(a, b):
... return a + b
...
>>> add_ints(3, 5)
Start function add_ints
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 8
8

You can have more than one decorator for a function. Let’s write another
decorator called square_it() that squares the result:

>>> def square_it(func):
... def new_function(*args, **kwargs):
... result = func(*args, **kwargs)
... return result * result
... return new_function
...

The decorator that’s used closest to the function (just above the def) runs
first and then the one above it. Either order gives the same end result, but
you can see how the intermediate steps change:

>>> @document_it
... @square_it
... def add_ints(a, b):
... return a + b
...
>>> add_ints(3, 5)
Running function: new_function
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 64
64

Let’s try reversing the decorator order:

>>> @square_it
... @document_it
... def add_ints(a, b):
... return a + b
...
>>> add_ints(3, 5)
Running function: add_ints
Positional arguments: (3, 5)
Keyword arguments: {}
Result: 8
64

Namespaces and Scope
Desiring this man’s art and that man’s scope

—William Shakespeare

A name can refer to different things, depending on where it’s used. Python
programs have various namespaces — sections within which a particular
name is unique and unrelated to the same name in other namespaces.

Each function defines its own namespace. If you define a variable called x
in a main program and another variable called x in a function, they refer to
different things. But the walls can be breached: if you need to, you can
access names in other namespaces in various ways.

The main part of a program defines the global namespace; thus, the
variables in that namespace are global variables.

You can get the value of a global variable from within a function:

>>> animal = 'fruitbat'
>>> def print_global():
... print('inside print_global:', animal)
...
>>> print('at the top level:', animal)
at the top level: fruitbat
>>> print_global()
inside print_global: fruitbat

But if you try to get the value of the global variable and change it within the
function, you get an error:

>>> def change_and_print_global():
... print('inside change_and_print_global:', animal)
... animal = 'wombat'
... print('after the change:', animal)
...
>>> change_and_print_global()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in change_and_print_global
UnboundLocalError: local variable 'animal' referenced before assignment

If you just change it, it changes a different variable also named animal, but
this variable is inside the function:

>>> def change_local():
... animal = 'wombat'
... print('inside change_local:', animal, id(animal))
...
>>> change_local()
inside change_local: wombat 4330406160
>>> animal
'fruitbat'
>>> id(animal)
4330390832

What happened here? The first line assigned the string 'fruitbat' to a
global variable named animal. The change_local() function also has a
variable named animal, but that’s in its local namespace.

I used the Python function id() here to print the unique value for each
object and prove that the variable animal inside change_local() is not the
same as animal at the main level of the program.

To access the global variable rather than the local one within a function, you
need to be explicit and use the global keyword (you knew this was
coming: explicit is better than implicit):

>>> animal = 'fruitbat'
>>> def change_and_print_global():
... global animal
... animal = 'wombat'
... print('inside change_and_print_global:', animal)
...
>>> animal
'fruitbat'
>>> change_and_print_global()
inside change_and_print_global: wombat
>>> animal
'wombat'

If you don’t say global within a function, Python uses the local namespace
and the variable is local. It goes away after the function completes.

Python provides two functions to access the contents of your namespaces:

locals() returns a dictionary of the contents of the local
namespace.

globals() returns a dictionary of the contents of the global
namespace.

And here they are in use:

>>> animal = 'fruitbat'
>>> def change_local():
... animal = 'wombat' # local variable
... print('locals:', locals())
...
>>> animal
'fruitbat'
>>> change_local()
locals: {'animal': 'wombat'}
>>> print('globals:', globals()) # reformatted a little for presentation
globals: {'animal': 'fruitbat',
'__doc__': None,
'change_local': <function change_local at 0x1006c0170>,
'__package__': None,
'__name__': '__main__',
'__loader__': <class '_frozen_importlib.BuiltinImporter'>,
'__builtins__': <module 'builtins'>}
>>> animal
'fruitbat'

The local namespace within change_local() contained only the local
variable animal. The global namespace contained the separate global
variable animal and a number of other things.

Uses of _ and __ in Names
Names that begin and end with two underscores (__) are reserved for use
within Python, so you should not use them with your own variables. This
naming pattern was chosen because it seemed unlikely to be selected by
application developers for their own variables.

For instance, the name of a function is in the system variable
function.__name__, and its documentation string is
function.__doc__:

>>> def amazing():
... '''This is the amazing function.
... Want to see it again?'''
... print('This function is named:', amazing.__name__)
... print('And its docstring is:', amazing.__doc__)
...
>>> amazing()
This function is named: amazing
And its docstring is: This is the amazing function.
 Want to see it again?

As you saw in the earlier globals printout, the main program is assigned
the special name __main__.

Recursion
So far, we’ve called functions that do some things directly, and maybe call
other functions. But what if a function calls itself?4 This is called recursion.
Like an unbroken infinite loop with while or for, you don’t want infinite
recursion. Do we still need to worry about cracks in the space-time
continuum?

Python saves the universe again by raising an exception if you get too deep:

>>> def dive():
... return dive()
...
>>> dive()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in dive
 File "<stdin>", line 2, in dive
 File "<stdin>", line 2, in dive
 [Previous line repeated 996 more times]
RecursionError: maximum recursion depth exceeded

Recursion is useful when you’re dealing with “uneven” data, like lists of
lists of lists. Suppose that you want to “flatten” all sublists of a list5, no
matter how deeply nested. A generator function is just the thing:

>>> def flatten(lol):
... for item in lol:
... if isinstance(item, list):
... for subitem in flatten(item):
... yield subitem
... else:
... yield item
...
>>> lol = [1, 2, [3,4,5], [6,[7,8,9], []]]
>>> flatten(lol)
<generator object flatten at 0x10509a750>
>>> list(flatten(lol))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Python 3.3 added the yield from expression, which lets a generator hand
off some work to another generator. We can use it to simplify flatten():

>>> def flatten(lol):
... for item in lol:
... if isinstance(item, list):
... yield from flatten(item)
... else:
... yield item
...
>>> lol = [1, 2, [3,4,5], [6,[7,8,9], []]]
>>> list(flatten(lol))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Async Functions
For most of Python’s existence, code was executed a line at a time, in order.
If you called something that took a while, like accessing a web service or
reading a file, you couldn’t do anything else until it finished.

Well, sort of. More recently, the keywords async and await were added to
Python 3.5 to define and run asynchronous functions.

You’ll recognize an asynchronous function in two ways:

It starts with async def instead of just def.

It may contain at least one line containing the keyword await. A
normal function (defined with def) cannot contain an await.

For a number of reasons, I’ve pushed the details on all things async to
Chapter 23, which covers the overall issue of concurrency, because:

Async is confusing.

You don’t actually need to ever write an async function, although
you should understand how one works.

There are alternative techniques, such as threads and
multiprocessing.

Exceptions
In some languages, errors are indicated by special function return values.
When things go south6, Python uses exceptions: code that is executed when
an associated error occurs.

You’ve seen some of these already, such as accessing a list or tuple with an
out-of-range position, or a dictionary with a nonexistent key. When you run
code that might fail under some circumstances, you also need appropriate
exception handlers to intercept any potential errors.

It’s good practice to add exception handling anywhere an exception might
occur to let the user know what is happening. You might not be able to fix
the problem, but at least you can note the circumstances and shut your
program down gracefully. If an exception occurs in some function and is
not caught there, it bubbles up until it is caught by a matching handler in
some calling function. If you don’t provide your own exception handler,
Python prints an error message and some information about where the error

occurred and then terminates the program, as demonstrated in the following
snippet:

>>> short_list = [1, 2, 3]
>>> position = 5
>>> short_list[position]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

Handle Errors with try and except
Do, or do not. There is no try.

—Yoda

Rather than leaving things to chance, use try to wrap your code, and
except to provide the error handling:

>>> short_list = [1, 2, 3]
>>> position = 5
>>> try:
... short_list[position]
... except:
... print('Need a position between 0 and', len(short_list)-1, ' but got',
... position)
...
Need a position between 0 and 2 but got 5

The code inside the try block is run. If there is an error, an exception is
raised and the code inside the except block runs. If there are no errors, the
except block is skipped.

Specifying a plain except with no arguments, as we did here, is a catchall
for any exception type. If more than one type of exception could occur, it’s
best to provide a separate exception handler for each. No one forces you to
do this; you can use a bare except to catch all exceptions, but your
treatment of them would probably be generic (something akin to printing
Some error occurred). You can use any number of specific exception
handlers.

Sometimes, you want exception details beyond the type. You get the full
exception object in the variable name if you use the form:

except exceptiontype as name

The example that follows looks for an IndexError first, because that’s the
exception type raised when you provide an illegal position to a sequence. It
saves an IndexError exception in the variable err, and any other
exception in the variable other. The example prints everything stored in
other to show what you get in that object:

>>> short_list = [1, 2, 3]
>>> while True:
... value = input('Position [q to quit]? ')
... if value == 'q':
... break
... try:
... position = int(value)
... print(short_list[position])
... except IndexError as err:
... print('Bad index:', position)
... except Exception as other:
... print('Something else broke:', other)
...
Position [q to quit]? 1
2
Position [q to quit]? 0
1
Position [q to quit]? 2
3
Position [q to quit]? 3
Bad index: 3
Position [q to quit]? 2
3
Position [q to quit]? two
Something else broke: invalid literal for int() with base 10: 'two'
Position [q to quit]? q

Inputting position 3 raised an IndexError as expected. Entering two
annoyed the int() function, which we handled in our second, catchall
except code.

Make Your Own Exceptions
The previous section discussed handling exceptions, but all of the
exceptions (such as IndexError) were predefined in Python or its standard
library. You can use any of these for your own purposes. You can also
define your own exception types to handle special situations that might
arise in your own programs.

NOTE
This requires defining a new object type with a class—something we don’t get into until
Chapter 11. So, if you’re unfamiliar with classes, you might want to return to this
section later.

An exception is a class. It is a child of the class Exception. Let’s make an
exception called UppercaseException and raise it when we encounter an
uppercase word in a string:

>>> class UppercaseException(Exception):
... pass
...
>>> words = ['eenie', 'meenie', 'miny', 'MO']
>>> for word in words:
... if word.isupper():
... raise UppercaseException(word)
...
Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
__main__.UppercaseException: MO

We didn’t even define any behavior for UppercaseException (notice we
just used pass), letting its parent class Exception figure out what to print
when the exception was raised.

You can access the exception object itself and print it:

>>> try:
... raise OopsException('panic')
... except OopsException as exc:

... print(exc)

...
panic

Review/Preview
We’re starting to get serious about programming now, with functions.
They’re the first big step into large-scale code structures, essential for
writing any serious programs.

The next chapter is a deep dive into objects: a core concept for an object-
oriented language like Python. This is often a confusing topic, sometimes
with more opinions than practical advice. Luckily, there will be much more
of the latter.

Practice
10.1 Define a function called good() that returns the following list:
['Harry', 'Ron', 'Hermione'].

10.2 Define a generator function called get_odds() that returns the odd
numbers from range(10). Use a for loop to find and print the third value
returned.

10.3 Define a decorator called test that prints 'start' when a function is
called, and 'end' when it finishes.

10.4 Define an exception called OopsException. Raise this exception to
see what happens. Then, write the code to catch this exception and print
'Caught an oops'.

1 Although Args and Kwargs sound like the names of pirate parrots.

2 Or, as of Python 3.5, a dictionary merge of the form {**a, **b}, as you saw in Chapter 5.

3 Like the teens-in-peril movies where they learn “The call’s coming from inside the house!”

4 It’s like saying, “I wish I had a dollar for every time I wished I had a dollar.”

5 Another Python interview question. Collect the whole set!

6 Is this Northern Hemispherism? Do Aussies and Kiwis say that things go “north” when they
mess up?

Chapter 11. Objects

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 11th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

No object is mysterious. The mystery is your eye.
—Elizabeth Bowen

Take an object. Do something to it. Do something else to it.
—Jasper Johns

As I’ve mentioned on various pages, everything in Python, from numbers to
functions, is an object. However, Python hides most of the object machinery
by means of special syntax. You can type num = 7 to create an object of
type integer with the value 7, and assign an object reference to the name
num. The only time you need to look inside objects is when you want to
make your own or modify the behavior of existing objects. You’ll see how
to do both in this chapter.

What Are Objects?
An object is a custom data structure containing both data (variables, called
attributes) and code (functions, called methods). It represents a unique
instance of some concrete thing. Think of objects as nouns and their
methods as verbs. An object represents an individual thing, and its methods
define how it interacts with other things.

For example, the integer object with the value 7 is an object that facilitates
methods such as addition and multiplication, as you saw in Chapter 3. 8 is a
different object. This means there’s an integer class built in somewhere in
Python, to which both 7 and 8 belong. The strings 'cat' and 'duck' are
also objects in Python, and have string methods that you’ve seen in
Chapter 4, such as capitalize() and replace().

Unlike modules, you can have multiple objects (often referred to as
instances) at the same time, each with potentially different attributes.
They’re like super data structures, with code thrown in.

Simple Objects
Let’s start with basic object classes; we’ll save the discussion of inheritance
for a few pages.

Define a Class with class
To create a new object that no one has ever created before, you first define a
class that indicates what it contains.

In Chapter 2, I compared an object to a plastic box. A class is like the mold
that makes that box. For instance, Python has a built-in class that makes
string objects such as 'cat' and 'duck', and the other standard data types
— lists, dictionaries, and so on. To create your own custom object in
Python, you first need to define a class by using the class keyword. Let’s
walk through some simple examples.

Suppose that you want to define objects to represent information about
cats.1 Each object will represent one feline. You’ll first want to define a
class called Cat as the mold. In the examples that follow, we try more than
one version of this class as we build up from the simplest class to ones that
actually do something useful.

NOTE
We’re following the naming conventions of Python’s PEP-8.

Our first try is the simplest possible class, an empty one:

>>> class Cat():
... pass

You can also say:

>>> class Cat:
... pass

Just as with functions, we needed to say pass to indicate that this class was
empty. This definition is the bare minimum to create an object.

You create an object from a class by calling the class name as though it
were a function:

>>> a_cat = Cat()
>>> another_cat = Cat()

In this case, calling Cat() creates two individual objects from the Cat class,
and we assigned them to the names a_cat and another_cat. But our Cat
class had no other code, so the objects that we created from it just sit there
and can’t do much else.

Well, they can do a little.

https://oreil.ly/gAJOF

Attributes
An attribute is a variable inside a class or object. During and after an object
or class is created, you can assign attributes to it. An attribute can be any
other object. Let’s make two cat objects again:

>>> class Cat:
... pass
...
>>> a_cat = Cat()
>>> a_cat
<__main__.Cat object at 0x100cd1da0>
>>> another_cat = Cat()
>>> another_cat
<__main__.Cat object at 0x100cd1e48>

When we defined the Cat class, we didn’t specify how to print an object
from that class. Python jumps in and prints something like <__main__.Cat
object at 0x100cd1da0>. In “Magic Methods”, you’ll see how to change
this default behavior.

Now assign a few attributes to our first object:

>>> a_cat.age = 3
>>> a_cat.name = "Mr. Fuzzybuttons"
>>> a_cat.nemesis = another_cat

Can we access these? We sure hope so:

>>> a_cat.age
3
>>> a_cat.name
'Mr. Fuzzybuttons'
>>> a_cat.nemesis
<__main__.Cat object at 0x100cd1e48>

Because nemesis was an attribute referring to another Cat object, we can
use a_cat.nemesis to access it, but this other object doesn’t have a name
attribute yet:

>>> a_cat.nemesis.name
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Cat' object has no attribute 'name'

Let’s name our archfeline:

>>> a_cat.nemesis.name = "Mr. Bigglesworth"
>>> a_cat.nemesis.name
'Mr. Bigglesworth'

Even the simplest object like this one can be used to store multiple
attributes. So, you can use multiple objects to store different values, instead
of using something like a list or dictionary.

When you hear attributes, it usually means object attributes. There are also
class attributes, and you’ll see the differences later in “Class and Object
Attributes”.

Methods
A method is a function in a class or object. A method looks like any other
function, but can be used in special ways that you’ll see in “Properties for
Attribute Access” and “Method Types”.

Initialization
If you want to assign object attributes at creation time, you need the special
Python object initialization method __init__():

>>> class Cat:
... def __init__(self):
... pass

This is what you’ll see in real Python class definitions. I admit that the
__init__() and self look strange. __init__() is the special Python name
for a method that initializes an individual object from its class definition2.
The self argument specifies that it refers to the individual object itself.

When you define __init__() in a class definition, its first parameter
should be named self. Although self is not a reserved word in Python, it’s
common usage. No one reading your code later (including you!) will need
to guess what you meant if you use self.

But even this second Cat class definition didn’t create an object that really
did anything. The third try is the charm that really shows how to create a
simple object in Python and assign one of its attributes. This time, we add
the parameter name to the initialization method:

>>> class Cat():
... def __init__(self, name):
... self.name = name
...
>>>

Now we can create an object from the Cat class by passing a string for the
name parameter:

>>> furball = Cat('Grumpy')

Here’s what this line of code does:

Looks up the definition of the Cat class

Instantiates (creates) a new object in memory

Calls the object’s __init__() method, passing this newly created
object as self and the other argument ('Grumpy') as name

Stores the value of name in the object

Returns the new object

Attaches the variable furball to the object

This new object is like any other object in Python. You can use it as an
element of a list, tuple, dictionary, or set. You can pass it to a function as an
argument, or return it as a result.

What about the name value that we passed in? It was saved with the object
as an attribute. You can read and write it directly:

>>> print('Our latest addition: ', furball.name)
Our latest addition: Grumpy

Remember, inside the Cat class definition, you access the name attribute as
self.name. When you create an actual object and assign it to a variable like
furball, you refer to it as furball.name.

It is not necessary to have an __init__() method in every class definition;
it’s used to do anything that’s needed to distinguish this object from others
created from the same class. It’s not what some other languages would call
a “constructor.” Python already constructed the object for you. Think of
__init__() as an initializer.

NOTE
You can make many individual objects from a single class. But remember that Python
implements data as objects, so the class itself is an object. However, there’s only one
class object in your program. If you defined class Cat as we did here, it’s like the
Highlander—there can be only one.

Inheritance
When you’re trying to solve some coding problem, often you’ll find an
existing class that creates objects that do almost what you need. What can
you do?

You could modify this old class, but you’ll make it more complicated, and
you might break something that used to work.

Or you could write a new class, cutting and pasting from the old one and
merging your new code. But this means that you have more code to
maintain, and the parts of the old and new classes that used to work the
same might drift apart because they’re now in separate places.

One solution is inheritance: creating a new class from an existing class, but
with some additions or changes. It’s a good way to reuse code. When you
use inheritance, the new class can automatically use all the code from the
old class but without you needing to copy any of it.

Inherit from a Parent Class
You define only what you need to add or change in the new class, and this
overrides the behavior of the old class. The original class is called a parent,
superclass, or base class; the new class is called a child, subclass, or
derived class. These terms are interchangeable in object-oriented
programming.

So, let’s inherit something. In the next example, we define an empty class
called Car. Next, we define a subclass of Car called Yugo.3 You define a
subclass by using the same class keyword but with the parent class name
inside the parentheses (class Yugo(Car) here):

>>> class Car():
... pass
...
>>> class Yugo(Car):
... pass
...

You can check whether a class is derived from another class by using
issubclass():

>>> issubclass(Yugo, Car)
True

Next, create an object from each class:

>>> give_me_a_car = Car()
>>> give_me_a_yugo = Yugo()

A child class is a specialization of a parent class; in object-oriented lingo,
Yugo is-a Car. The object named give_me_a_yugo is an instance of class

Yugo, but it also inherits whatever a Car can do. In this case, Car and Yugo
are as useful as deckhands on a submarine, so let’s try new class definitions
that actually do something:

>>> class Car():
... def exclaim(self):
... print("I'm a Car!")
...
>>> class Yugo(Car):
... pass
...

Finally, make one object from each class and call the exclaim method:

>>> give_me_a_car = Car()
>>> give_me_a_yugo = Yugo()
>>> give_me_a_car.exclaim()
I'm a Car!
>>> give_me_a_yugo.exclaim()
I'm a Car!

Without doing anything special, Yugo inherited the exclaim() method from
Car. In fact, Yugo says that it is a Car, which might lead to an identity
crisis. Let’s see what we can do about that.

NOTE
Inheritance is appealing, but can be overused. Years of object-oriented programming
experience have shown that too much use of inheritance can make programs hard to
manage. Instead, it’s often recommended to emphasize other techniques like aggregation
and composition. We get to these alternatives in this chapter.

Override a Method
As you just saw, a new class initially inherits everything from its parent
class. Moving forward, you’ll see how to replace or override a parent
method. Yugo should probably be different from Car in some way;

otherwise, what’s the point of defining a new class? Let’s change how the
exclaim() method works for a Yugo:

>>> class Car():
... def exclaim(self):
... print("I'm a Car!")
...
>>> class Yugo(Car):
... def exclaim(self):
... print("I'm a Yugo! Much like a Car, but more Yugo-ish.")
...

Now make two objects from these classes:

>>> give_me_a_car = Car()
>>> give_me_a_yugo = Yugo()

What do they say?

>>> give_me_a_car.exclaim()
I'm a Car!
>>> give_me_a_yugo.exclaim()
I'm a Yugo! Much like a Car, but more Yugo-ish.

In these examples, we overrode the exclaim() method. We can override
any methods, including __init__(). Here’s another example that uses a
Person class. Let’s make subclasses that represent doctors (MDPerson) and
lawyers (JDPerson):

>>> class Person():
... def __init__(self, name):
... self.name = name
...
>>> class MDPerson(Person):
... def __init__(self, name):
... self.name = "Doctor " + name
...
>>> class JDPerson(Person):
... def __init__(self, name):
... self.name = name + ", Esquire"
...

In these cases, the initialization method __init__() takes the same
arguments as the parent Person class but stores the value of name
differently inside the object instance:

>>> person = Person('Fudd')
>>> doctor = MDPerson('Fudd')
>>> lawyer = JDPerson('Fudd')
>>> print(person.name)
Fudd
>>> print(doctor.name)
Doctor Fudd
>>> print(lawyer.name)
Fudd, Esquire

Add a Method
The child class can also add a method that was not present in its parent
class. Going back to classes Car and Yugo, we’ll define the new method
need_a_push() for class Yugo only:

>>> class Car():
... def exclaim(self):
... print("I'm a Car!")
...
>>> class Yugo(Car):
... def exclaim(self):
... print("I'm a Yugo! Much like a Car, but more Yugo-ish.")
... def need_a_push(self):
... print("A little help here?")
...

Next, make a Car and a Yugo:

>>> give_me_a_car = Car()
>>> give_me_a_yugo = Yugo()

A Yugo object can react to a need_a_push() method call:

>>> give_me_a_yugo.need_a_push()
A little help here?

But a generic Car object cannot:

>>> give_me_a_car.need_a_push()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Car' object has no attribute 'need_a_push'

At this point, a Yugo can do something that a Car cannot, and the distinct
personality of a Yugo can emerge.

Get Help from Your Parent with super()
We saw how the child class could add or override a method from the parent.
What if it wanted to call that parent method? “I’m glad you asked,” says
super(). Here, we define a new class called EmailPerson that represents a
Person with an email address. First, our familiar Person definition:

>>> class Person():
... def __init__(self, name):
... self.name = name
...

Notice that the __init__() call in the following subclass has an additional
email parameter:

>>> class EmailPerson(Person):
... def __init__(self, name, email):
... super().__init__(name)
... self.email = email

When you define an __init__() method for your class, you’re replacing
the __init__() method of its parent class, and the latter is not called
automatically anymore. As a result, we need to call it explicitly. Here’s
what’s happening:

The super() gets the definition of the parent class, Person.

The __init__() method calls the Person.__init__() method. It
takes care of passing the self argument to the superclass, so you

just need to give it any optional arguments. In our case, the only
other argument Person() accepts is name.

The self.email = email line is the new code that makes this
EmailPerson different from a Person.

Moving on, let’s make one of these creatures:

>>> bob = EmailPerson('Bob Frapples', 'bob@frapples.com')

We should be able to access both the name and email attributes:

>>> bob.name
'Bob Frapples'
>>> bob.email
'bob@frapples.com'

Why didn’t we just define our new class as follows?

>>> class EmailPerson(Person):
... def __init__(self, name, email):
... self.name = name
... self.email = email

We could have done that, but it would have defeated our use of inheritance.
We used super() to make Person do its work, the same as a plain Person
object would. There’s another benefit: if the definition of Person changes in
the future, using super() will ensure that the attributes and methods that
EmailPerson inherits from Person will reflect the change.

Use super() when the child is doing something its own way but still needs
something from the parent (as in real life).

Multiple Inheritance
You’ve just seen some class examples with no parent class, and some with
one. Actually, objects can inherit from multiple parent classes.

If your class refers to a method or attribute that it doesn’t have, Python will
look in all the parents. What if more than one of them has something with
that name? Who wins?

Unlike inheritance in people, where a dominant gene wins no matter who it
came from, inheritance in Python depends on method resolution order. Each
Python class has a special method called mro() that returns a list of the
classes that would be visited to find a method or attribute for an object of
that class. A similar attribute, called __mro__, is a tuple of those classes.
Like a sudden-death playoff, the first one wins.

Here, we define a top Animal class, two child classes (Horse and Donkey),
and then two derived from these:4

>>> class Animal:
... def says(self):
 return 'I speak!'
...
>>> class Horse(Animal):
... def says(self):
... return 'Neigh!'
...
>>> class Donkey(Animal):
... def says(self):
... return 'Hee-haw!'
...
>>> class Mule(Donkey, Horse):
... pass
...
>>> class Hinny(Horse, Donkey):
... pass
...

If we look for a method or attribute of a Mule, Python will look at the
following things, in this order:

1. The object itself (of type Mule)

2. The object’s class (Mule)

3. The class’s first parent class (Donkey)

4. The class’s second parent class (Horse)

5. The grandparent class (Animal) class

It’s much the same for a Hinny, but with Horse before Donkey:

>>> Mule.mro()
[<class '__main__.Mule'>, <class '__main__.Donkey'>,
<class '__main__.Horse'>, <class '__main__.Animal'>,
<class 'object'>]
>>> Hinny.mro()
[<class '__main__.Hinny'>, <class '__main__.Horse'>,
<class '__main__.Donkey'>, <class '__main__.Animal'>,
class 'object'>]

So what do these fine beasts say?

>>> mule = Mule()
>>> hinny = Hinny()
>>> mule.says()
'hee-haw'
>>> hinny.says()
'neigh'

We listed the parent classes in (father, mother) order, so they talk like their
dads.

If the Horse and Donkey did not have a says() method, the mule or hinny
would have used the grandparent Animal class’s says() method, and
returned 'I speak!'.

Mixins
You may include an extra parent class in your class definition, but as a
helper only. That is, it doesn’t share any methods with the other parent
classes, and avoids the method resolution ambiguity that I mentioned in the
previous section.

Such a parent class is sometimes called a mixin class. Uses might include
“side” tasks like logging. Here’s a mixin that pretty-prints an object’s

attributes:

>>> class PrettyMixin():
... def dump(self):
... import pprint
... pprint.pprint(vars(self))
...
>>> class Thing(PrettyMixin):
... pass
...
>>> t = Thing()
>>> t.name = "Nyarlathotep"
>>> t.feature = "ichor"
>>> t.age = "eldritch"
>>> t.dump()
{'age': 'eldritch', 'feature': 'ichor', 'name': 'Nyarlathotep'}

In self Defense
One criticism of Python (besides the use of whitespace) is the need to
include self as the first argument to instance methods (the kind of method
you’ve seen in the previous examples). Python uses the self argument to
find the right object’s attributes and methods. For an example, I’ll show
how you would call an object’s method, and what Python actually does
behind the scenes.

Remember class Car from earlier examples? Let’s call its exclaim()
method again:

>>> a_car = Car()
>>> a_car.exclaim()
I'm a Car!

Here’s what Python actually does, under the hood:

Look up the class (Car) of the object a_car

Pass the object a_car to the exclaim() method of the Car class as
the self parameter

Just for fun, you can even run it this way yourself and it will work the same
as the normal (a_car.exclaim()) syntax:

>>> Car.exclaim(a_car)
I'm a Car!

However, there’s never a reason to use that lengthier style. I mean, come on,
Guido did all that work.

Attribute Access
In Python, object attributes and methods are normally public, and you’re
expected to behave yourself (this is sometimes called a consenting adults
policy). Let’s compare the direct approach with some alternatives.

Direct Access
As you’ve seen, you can get and set attribute values directly:

>>> class Duck:
... def __init__(self, input_name):
... self.name = input_name
...
>>> fowl = Duck('Daffy')
>>> fowl.name
'Daffy'

But what if someone misbehaves?

>>> fowl.name = 'Daphne'
>>> fowl.name
'Daphne'

The next two sections show ways to get some privacy for attributes that you
don’t want anyone to stomp by accident.

Getters and Setters
Some object-oriented languages support private object attributes that can’t
be accessed directly from the outside. Programmers then may need to write
getter and setter methods to read and write the values of such private
attributes.

Python doesn’t have private attributes, but you can write getters and setters
with obfuscated attribute names to get a little privacy. (The best solution is
to use properties, described in the next section.)

In the following example, we define a Duck class with a single instance
attribute called hidden_name. We don’t want people to access this directly,
so we define two methods: a getter (get_name()) and a setter
(set_name()). Each is accessed by a property called name. I’ve added a
print() statement to each method to show when it’s being called:

>>> class Duck():
... def __init__(self, input_name):
... self.hidden_name = input_name
... def get_name(self):
... print('inside the getter')
... return self.hidden_name
... def set_name(self, input_name):
... print('inside the setter')
... self.hidden_name = input_name
>>> don = Duck('Donald')
>>> don.get_name()
inside the getter
'Donald'
>>> don.set_name('Donna')
inside the setter
>>> don.get_name()
inside the getter
'Donna'

Properties for Attribute Access
The Pythonic solution for attribute privacy is to use properties.

There are two ways to do this. The first way is to add name =
property(get_name, set_name) as the final line of our previous Duck

class definition:

>>> class Duck():
>>> def __init__(self, input_name):
>>> self.hidden_name = input_name
>>> def get_name(self):
>>> print('inside the getter')
>>> return self.hidden_name
>>> def set_name(self, input_name):
>>> print('inside the setter')
>>> self.hidden_name = input_name
>>> name = property(get_name, set_name)

The old getter and setter still work:

>>> don = Duck('Donald')
>>> don.get_name()
inside the getter
'Donald'
>>> don.set_name('Donna')
inside the setter
>>> don.get_name()
inside the getter
'Donna'

But now you can also use the property name to get and set the hidden name:

>>> don = Duck('Donald')
>>> don.name
inside the getter
'Donald'
>>> don.name = 'Donna'
inside the setter
>>> don.name
inside the getter
'Donna'

In the second method, you add some decorators and replace the method
names get_name and set_name with name:

@property, which goes before the getter method

@name.setter, which goes before the setter method

Here’s how they actually look in the code:

>>> class Duck():
... def __init__(self, input_name):
... self.hidden_name = input_name
... @property
... def name(self):
... print('inside the getter')
... return self.hidden_name
... @name.setter
... def name(self, input_name):
... print('inside the setter')
... self.hidden_name = input_name

You can still access name as though it were an attribute:

>>> fowl = Duck('Howard')
>>> fowl.name
inside the getter
'Howard'
>>> fowl.name = 'Donald'
inside the setter
>>> fowl.name
inside the getter
'Donald'

NOTE
If anyone guessed that we called our attribute hidden_name, they could still read and
write it directly as fowl.hidden_name. In “Name Mangling for Privacy”, you’ll see
how Python provides a special way to hide attribute names.

Properties for Computed Values
In the previous examples, we used the name property to refer to a single
attribute (hidden_name) stored within the object.

A property can also return a computed value. Let’s define a Circle class
that has a radius attribute and a computed diameter property:

>>> class Circle():
... def __init__(self, radius):
... self.radius = radius
... @property
... def diameter(self):
... return 2 * self.radius
...

Create a Circle object with an initial value for its radius:

>>> c = Circle(5)
>>> c.radius
5

We can refer to diameter as if it were an attribute such as radius:

>>> c.diameter
10

Here’s the fun part: we can change the radius attribute at any time, and the
diameter property will be computed from the current value of radius:

>>> c.radius = 7
>>> c.diameter
14

If you don’t specify a setter property for an attribute, you can’t set it from
the outside. This is handy for read-only attributes:

>>> c.diameter = 20
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

There’s one more advantage of using a property over direct attribute access:
if you ever change the definition of the attribute, you need to fix only the
code within the class definition, not in all the callers.

Name Mangling for Privacy
In the Duck class example a little earlier, we called our (not completely)
hidden attribute hidden_name. Python has a naming convention for
attributes that should not be visible outside of their class definition: begin
with two underscores (__).

Let’s rename hidden_name to __name, as demonstrated here:

>>> class Duck():
... def __init__(self, input_name):
... self.__name = input_name
... @property
... def name(self):
... print('inside the getter')
... return self.__name
... @name.setter
... def name(self, input_name):
... print('inside the setter')
... self.__name = input_name
...

Take a moment to see whether everything still works:

>>> fowl = Duck('Howard')
>>> fowl.name
inside the getter
'Howard'
>>> fowl.name = 'Donald'
inside the setter
>>> fowl.name
inside the getter
'Donald'

Looks good. And you can’t access the __name attribute:

>>> fowl.__name
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Duck' object has no attribute '__name'

This naming convention doesn’t make it completely private, but Python
does mangle the attribute name to make it unlikely for external code to
stumble upon it. If you’re curious and promise not to tell everyone5, here’s
what it becomes:

>>> fowl._Duck__name
'Donald'

Notice that it didn’t print inside the getter. Although this isn’t perfect
protection, name mangling discourages accidental or intentional direct
access to the attribute.

Class and Object Attributes
You can assign attributes to classes, and they’ll be inherited by their child
objects:

>>> class Fruit:
... color = 'red'
...
>>> blueberry = Fruit()
>>> Fruit.color
'red'
>>> blueberry.color
'red'

But if you change the value of the attribute in the child object, it doesn’t
affect the class attribute:

>>> blueberry.color = 'blue'
>>> blueberry.color
'blue'
>>> Fruit.color
'red'

If you change the class attribute later, it won’t affect existing child objects:

>>> Fruit.color = 'orange'
>>> Fruit.color

'orange'
>>> blueberry.color
'blue'

But it will affect new ones:

>>> new_fruit = Fruit()
>>> new_fruit.color
'orange'

Method Types
Some methods are part of the class itself, some are part of the objects that
are created from that class, and some are none of the above:

If there’s no preceding decorator, it’s an instance method, and its
first argument should be self to refer to the individual object
itself.

If there’s a preceding @classmethod decorator, it’s a class method,
and its first argument should be cls (or anything, just not the
reserved word class), referring to the class itself.

If there’s a preceding @staticmethod decorator, it’s a static
method, and its first argument isn’t an object or class.

The following sections have some details.

Instance Methods
When you see an initial self argument in methods within a class definition,
it’s an instance method. These are the types of methods that you would
normally write when creating your own classes. The first parameter of an
instance method is self, and Python passes the object to the method when
you call it. These are the ones that you’ve seen so far.

Class Methods
In contrast, a class method affects the class as a whole. Any change you
make to the class affects all of its objects. Within a class definition, a
preceding @classmethod decorator indicates that that following function is
a class method. Also, the first parameter to the method is the class itself.
The Python tradition is to call the parameter cls, because class is a
reserved word and can’t be used here. Let’s define a class method for A that
counts how many object instances have been made from it:

>>> class A():
... count = 0
... def __init__(self):
... A.count += 1
... def exclaim(self):
... print("I'm an A!")
... @classmethod
... def kids(cls):
... print("A has", cls.count, "little objects.")
...
>>>
>>> easy_a = A()
>>> breezy_a = A()
>>> wheezy_a = A()
>>> A.kids()
A has 3 little objects.

Notice that we referred to A.count (the class attribute) in __init__()
rather than self.count (which would be an object instance attribute). In
the kids() method, we used cls.count, but we could just as well have
used A.count.

Static Methods
A third type of method in a class definition affects neither the class nor its
objects; it’s just in there for convenience instead of floating around on its
own. It’s a static method, preceded by a @staticmethod decorator, with no
initial self or cls parameter. Here’s an example that serves as a
commercial for the class CoyoteWeapon:

>>> class CoyoteWeapon():
... @staticmethod
... def commercial():
... print('This CoyoteWeapon has been brought to you by Acme')
...
>>>
>>> CoyoteWeapon.commercial()
This CoyoteWeapon has been brought to you by Acme

Notice that we didn’t need to create an object from class CoyoteWeapon to
access this method. Very class-y.

Duck Typing
Python has a loose implementation of polymorphism; it applies the same
operation to different objects, based on the method’s name and arguments,
regardless of their class.

Let’s use the same __init__() initializer for all three Quote classes now,
but add two new functions:

who() just returns the value of the saved person string

says() returns the saved words string with the specific
punctuation

And here they are in action:

>>> class Quote():
... def __init__(self, person, words):
... self.person = person
... self.words = words
... def who(self):
... return self.person
... def says(self):
... return self.words + '.'
...
>>> class QuestionQuote(Quote):
... def says(self):
... return self.words + '?'
...
>>> class ExclamationQuote(Quote):

... def says(self):

... return self.words + '!'

...
>>>

We didn’t change how QuestionQuote or ExclamationQuote were
initialized, so we didn’t override their __init__() methods. Python then
automatically calls the __init__() method of the parent class Quote to
store the instance variables person and words. That’s why we can access
self.words in objects created from the subclasses QuestionQuote and
ExclamationQuote.

Next up, let’s make some objects:

>>> hunter = Quote('Elmer Fudd', "I'm hunting wabbits")
>>> print(hunter.who(), 'says:', hunter.says())
Elmer Fudd says: I'm hunting wabbits.
>>> hunted1 = QuestionQuote('Bugs Bunny', "What's up, doc")
>>> print(hunted1.who(), 'says:', hunted1.says())
Bugs Bunny says: What's up, doc?
>>> hunted2 = ExclamationQuote('Daffy Duck', "It's rabbit season")
>>> print(hunted2.who(), 'says:', hunted2.says())
Daffy Duck says: It's rabbit season!

Three different versions of the says() method provide different behavior
for the three classes. This is traditional polymorphism in object-oriented
languages. Python goes a little further and lets you run the who() and
says() methods of any objects that have them. Let’s define a class called
BabblingBrook that has no relation to our previous woodsy hunter and
huntees (descendants of the Quote class):

>>> class BabblingBrook():
... def who(self):
... return 'Brook'
... def says(self):
... return 'Babble'
...
>>> brook = BabblingBrook()

Now run the who() and says() methods of various objects, one (brook)
completely unrelated to the others:

>>> def who_says(obj):
... print(obj.who(), 'says', obj.says())
...
>>> who_says(hunter)
Elmer Fudd says I'm hunting wabbits.
>>> who_says(hunted1)
Bugs Bunny says What's up, doc?
>>> who_says(hunted2)
Daffy Duck says It's rabbit season!
>>> who_says(brook)
Brook says Babble

This behavior is sometimes called duck typing, after the old saying:

If it walks like a duck and quacks like a duck, it’s a duck.
—A Wise Person

Who are we to argue with a wise saying about ducks?

Figure 11-1. Duck typing is not hunt-and-peck

Magic Methods
You can now create and use basic objects. What you’ll learn in this section
might surprise you—in a good way.

When you type something such as a = 3 + 8, how do the integer objects
with values 3 and 8 know how to implement +? Or, if you type name =
"Daffy" + " " + "Duck", how does Python know that + now means to
concatenate these strings? And how do a and name know how to use = to get
the result? You can get at these operators by using Python’s special methods
(or, more dramatically, magic methods).

The names of these methods begin and end with double underscores (__).
Why? They’re very unlikely to have been chosen by programmers as

variable names. You’ve already seen one: __init__() initializes a newly
created object from its class definition and any arguments that were passed
in. You’ve also seen how “dunder” naming helps to mangle class attribute
names as well as methods.

Suppose that you have a simple Word class, and you want an equals()
method that compares two words but ignores case. That is, a Word
containing the value 'ha' would be considered equal to one containing
'HA'.

The example that follows is a first attempt, with a normal method we’re
calling equals(). self.text is the text string that this Word object
contains, and the equals() method compares it with the text string of
word2 (another Word object):

>>> class Word():
... def __init__(self, text):
... self.text = text
...
... def equals(self, word2):
... return self.text.lower() == word2.text.lower()
...

Then, make three Word objects from three different text strings:

>>> first = Word('ha')
>>> second = Word('HA')
>>> third = Word('eh')

When strings 'ha' and 'HA' are compared to lowercase, they should be
equal:

>>> first.equals(second)
True

But the string 'eh' will not match 'ha':

>>> first.equals(third)
False

We defined the method equals() to do this lowercase conversion and
comparison. It would be nice to just say if first == second, just like
Python’s built-in types. So, let’s do that. We change the equals() method
to the special name __eq__() (you’ll see why in a moment):

>>> class Word():
... def __init__(self, text):
... self.text = text
... def __eq__(self, word2):
... return self.text.lower() == word2.text.lower()
...

Let’s see whether it works:

>>> first = Word('ha')
>>> second = Word('HA')
>>> third = Word('eh')
>>> first == second
True
>>> first == third
False

Magic! All we needed was the Python’s special method name for testing
equality, __eq__(). Table 11-1 and Table 11-2 list the names of the most
useful magic methods.

Table 11-1. Magic methods for
comparison

Method Description

__eq__(self, other) self == other

__ne__(self, other) self != other

__lt__(self, other) self < other

__gt__(self, other) self > other

__le__(self, other) self <= other

__ge__(self, other) self >= other

Table 11-2. Magic methods for math

Method Description

__add__(self, other) self + other

__sub__(self, other) self – other

__mul__(self, other) self * other

__floordiv__(self, other) self // other

__truediv__(self, other) self / other

__mod__(self, other) self % other

__pow__(self, other) self ** other

You aren’t restricted to use the math operators such as + (magic method
__add__()) and – (magic method __sub__()) with numbers. For instance,
Python string objects use + for concatenation and * for duplication. There
are many more, documented online at Special method names. The most
common among them are presented in Table 11-3.

http://bit.ly/pydocs-smn

Table 11-3. Other, miscellaneous
magic methods

Method Description

__str__(self) str(self)

__repr__(self) repr(self)

__len__(self) len(self)

Besides __init__(), you might find yourself using __str__() the most in
your own methods. It’s how you print your object. It’s used by print(),
str(), and the string formatters, which you can read about in Chapter 19.
The interactive interpreter uses the __repr__() function to echo variables
to output. If you fail to define either __str__() or __repr__(), you get
Python’s default string version of your object:

>>> first = Word('ha')
>>> first
<__main__.Word object at 0x1006ba3d0>
>>> print(first)
<__main__.Word object at 0x1006ba3d0>

Let’s add both __str__() and __repr__() methods to the Word class to
make it prettier:

>>> class Word():
... def __init__(self, text):
... self.text = text
... def __eq__(self, word2):
... return self.text.lower() == word2.text.lower()
... def __str__(self):
... return self.text
... def __repr__(self):
... return 'Word("' + self.text + '")'
...

>>> first = Word('ha')
>>> first # uses __repr__
Word("ha")
>>> print(first) # uses __str__
ha

To explore even more special methods, check out the Python
documentation.

Aggregation and Composition
Inheritance is a good technique to use when you want a child class to act
like its parent class most of the time (when child is-a parent). It’s tempting
to build elaborate inheritance hierarchies, but this couples child classes
tightly to details of the parent class. Sometimes composition or aggregation
make more sense. What’s the difference? In composition, one thing is part
of another. A duck is-a bird (inheritance), but has-a tail (composition). A
tail is not a kind of duck, but part of a duck. In this next example, let’s make
bill and tail objects and provide them to a new duck object:

>>> class Bill():
... def __init__(self, description):
... self.description = description
...
>>> class Tail():
... def __init__(self, length):
... self.length = length
...
>>> class Duck():
... def __init__(self, bill, tail):
... self.bill = bill
... self.tail = tail
... def about(self):
... print('This duck has a', self.bill.description,
... 'bill and a', self.tail.length, 'tail')
...
>>> a_tail = Tail('long')
>>> a_bill = Bill('wide orange')
>>> duck = Duck(a_bill, a_tail)
>>> duck.about()
This duck has a wide orange bill and a long tail

http://bit.ly/pydocs-smn
http://bit.ly/pydocs-smn

Aggregation expresses relationships, but is a little looser: one thing uses
another, but both exist independently. A duck uses a lake, but one is not a
part of the other.

When to Use Objects or Something Else
Here are some guidelines for deciding whether to put your code and data in
a class, module (discussion coming in Chapter 12), or something entirely
different:

Objects are most useful when you need a number of individual
instances that have similar behavior (methods), but differ in their
internal states (attributes).

Classes support inheritance, modules don’t.

If you want only one of something, a module might be best. No
matter how many times a Python module is referenced in a
program, only one copy is loaded. (Java and C++ programmers:
you can use a Python module as a singleton.)

If you have a number of variables that contain multiple values and
can be passed as arguments to multiple functions, it might be better
to define them as classes. For example, you might use a dictionary
with keys such as size and color to represent a color image. You
could create a different dictionary for each image in your program,
and pass them as arguments to functions such as scale() or
transform(). This can get messy as you add keys and functions.
It’s more coherent to define an Image class with attributes size or
color and methods scale() and transform(). Then, all the data
and methods for a color image are defined in one place.

Use the simplest solution to the problem. A dictionary, list, or tuple
is simpler, smaller, and faster than a module, which is usually
simpler than a class.

Guido’s advice:

Avoid overengineering datastructures. Tuples are better than
objects (try namedtuple, too, though). Prefer simple fields over
getter/setter functions. Built-in datatypes are your friends. Use
more numbers, strings, tuples, lists, sets, dicts. Also check out
the collections library, especially deque.

—Guido van Rossum

A newer alternative is the dataclass, in “Dataclasses”.

Named Tuples
Because Guido just mentioned them and I haven’t yet, this is a good place
to talk about named tuples. A named tuple is a subclass of tuples with which
you can access values by name (with .name) as well as by position (with [
offset]).

Let’s take the example from the previous section and convert the Duck class
to a named tuple, with bill and tail as simple string attributes. We’ll call
the namedtuple function with two arguments:

The name

A string of the field names, separated by spaces

Named tuples are not automatically supplied with Python, so you need to
load a module before using them. We do that in the first line of the
following example:

>>> from collections import namedtuple
>>> Duck = namedtuple('Duck', 'bill tail')
>>> duck = Duck('wide orange', 'long')
>>> duck
Duck(bill='wide orange', tail='long')
>>> duck.bill
'wide orange'
>>> duck.tail
'long'

You can also make a named tuple from a dictionary:

>>> parts = {'bill': 'wide orange', 'tail': 'long'}
>>> duck2 = Duck(**parts)
>>> duck2
Duck(bill='wide orange', tail='long')

In the preceding code, take a look at **parts. This is a keyword argument.
It extracts the keys and values from the parts dictionary and supplies them
as arguments to Duck(). It has the same effect as:

>>> duck2 = Duck(bill = 'wide orange', tail = 'long')

Named tuples are immutable, but you can replace one or more fields and
return another named tuple:

>>> duck3 = duck2._replace(tail='magnificent', bill='crushing')
>>> duck3
Duck(bill='crushing', tail='magnificent')

We could have defined duck as a dictionary:

>>> duck_dict = {'bill': 'wide orange', 'tail': 'long'}
>>> duck_dict
{'tail': 'long', 'bill': 'wide orange'}

You can add fields to a dictionary:

>>> duck_dict['color'] = 'green'
>>> duck_dict
{'color': 'green', 'tail': 'long', 'bill': 'wide orange'}

But not to a named tuple:

>>> duck.color = 'green'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'Duck' object has no attribute 'color'

To recap, here are some of the pros of a named tuple:

It looks and acts like an immutable object.

It is more space and time efficient than objects.

You can access attributes by using dot notation instead of
dictionary-style square brackets.

You can use it as a dictionary key.

Dataclasses
Many people like to create objects mainly to store data (as object
attributes), not so much behavior (methods). You just saw how named
tuples can be an alternative data store. Python 3.7 introduced dataclasses.

Here’s a plain old object with a single name attribute:

>> class TeenyClass():
... def __init__(self, name):
... self.name = name
...
>>> teeny = TeenyClass('itsy')
>>> teeny.name
'itsy'

Doing the same with a dataclass looks a little different:

>>> from dataclasses import dataclass
>>> @dataclass
... class TeenyDataClass:
... name: str
...
>>> teeny = TeenyDataClass('bitsy')
>>> teeny.name
'bitsy'

Besides needing a @dataclass decorator, you define the class’s attributes
using variable annotations of the form name: type or name: type =
val, like color: str or color: str = "red". (Also see Chapter 15 on
type hints.) The type can be any Python object type, including classes
you’ve created, not just the built-in ones like str or int.

https://oreil.ly/NyGfE

When you’re creating the dataclass object, you provide the arguments in the
order in which they were specified in the class, or use named arguments in
any order:

>>> from dataclasses import dataclass
>>> @dataclass
... class AnimalClass:
... name: str
... habitat: str
... teeth: int = 0
...
>>> snowman = AnimalClass('yeti', 'Himalayas', 46)
>>> duck = AnimalClass(habitat='lake', name='duck')
>>> snowman
AnimalClass(name='yeti', habitat='Himalayas', teeth=46)
>>> duck
AnimalClass(name='duck', habitat='lake', teeth=0)

AnimalClass defined a default value for its teeth attribute, so we didn’t
need to provide it when making a duck.

You can refer to the object attributes like any other object’s:

>>> duck.habitat
'lake'
>>> snowman.teeth
46

I haven’t mentioned that dataclasses define many things for you
automatically, so you don’t have to write them, and this can be a big time
saver. See this guide or the official (heavy) docs for many examples.

Attrs
You’ve seen how to create classes and add attributes, and how they can
involve a lot of typing—things like defining __init__(), assigning its
arguments to self counterparts, and creating all those dunder methods like
__str__(). Named tuples and dataclasses are alternatives in the standard
library that may be easier when you mainly want to create a data collection.

https://oreil.ly/czTf-
https://oreil.ly/J19Yl

The One Python Library Everyone Needs compares plain classes, named
tuples, and dataclasses. It recommends the third-party package attrs for
many reasons — less typing, data validation, and more. Take a look and see
whether you prefer it to the built-in solutions.

Review/Preview
Objects! Whew. That’s a lot to absorb. But you should know that you may
never actually need to define a class! It may sound heretical6, but you can
survive in Python by using all the other built-in data and code structures.

In fact, some of the reasons you would define an object class can also be
handled by modules and packages, which are, conveniently, in the next
chapter.

Practice
11.1 Make a class called Thing with no contents and print it. Then, create
an object called example from this class and also print it. Are the printed
values the same or different?

11.2 Make a new class called Thing2 and assign the value 'abc' to a class
attribute called letters. Print letters.

11.3 Make yet another class called, of course, Thing3. This time, assign the
value 'xyz' to an instance (object) attribute called letters. Print letters.

101.4 Make a class called Element, with instance attributes name, symbol,
and number. Create an object of this class with the values 'Hydrogen', 'H',
and 1.

11.5 Make a dictionary with these keys and values: 'name': 'Hydrogen',
'symbol': 'H', 'number': 1. Then, create an object called hydrogen
from class Element using this dictionary.

11.6 For the Element class, define a method called dump() that prints the
values of the object’s attributes (name, symbol, and number). Create the

https://oreil.ly/QbbI1
https://oreil.ly/Rdwlx

hydrogen object from this new definition and use dump() to print its
attributes.

11.7 Call print(hydrogen). In the definition of Element, change the name
of the method dump to __str__, create a new hydrogen object, and call
print(hydrogen) again.

11.8 Modify Element to make the attributes name, symbol, and number
private. Define a getter property for each to return its value.

11.9 Define three classes: Bear, Rabbit, and Octothorpe. For each, define
only one method: eats(). This should return 'berries' (Bear), 'clover'
(Rabbit), or 'campers' (Octothorpe). Create one object from each and
print what it eats.

11.10 Define these classes: Laser, Claw, and SmartPhone. Each has only
one method: does(). This returns 'disintegrate' (Laser), 'crush'
(Claw), or 'ring' (SmartPhone). Then, define the class Robot that has one
instance (object) of each of these. Define a does() method for the Robot
that prints what its component objects do.

1 Or even if you don’t want to.

2 You’ll see many examples of double underscores in Python names; to save syllables, some
people pronounce them as dunder.

3 An inexpensive but not-so-good car from the ’80s.

4 A mule has a father donkey and mother horse; a hinny has a father horse and mother donkey.

5 Can you keep a secret? Apparently, I can’t.

6 But see my earlier quote from Guido himself.

Chapter 12. Modules and
Packages

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 12th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at ccollins@oreilly.com.

Information about the package is as important as the package itself.
—Frederick W. Smith

During your bottom-up climb, you’ve progressed from built-in data types to
constructing ever-larger data and code structures. In this chapter, you finally
learn how to write realistic whole programs in Python. You’ll write your
own modules and learn how to use others from Python’s standard library
and other sources.

The text of this book is organized in a hierarchy: words, sentences,
paragraphs, and chapters. Otherwise, it would be unreadable pretty
quickly1. Code has a roughly similar bottom-up organization: data types are
like words; expressions and statements are like sentences; functions are like
paragraphs; and modules are like chapters. To continue the analogy, when I
say that something is explained in Chapter 8 in this book, in programming
that’s like referring to code in another module.

Modules and the import Statement
We’ll create and use Python code in more than one file. A module is just a
file of any Python code. You don’t need to do anything special — any
Python code can be used as a module by others.

We refer to code of other modules by using the Python import statement.
This makes the code and variables in the imported module available to your
program.

Import a Module
The simplest use of the import statement is import module, where
module is the name of another Python file, without the .py extension.

Let’s say you and a few others want something fast for lunch, but don’t
want a long discussion, and you always end up picking what the loudest
person wants anyhow. Let the computer decide! Let’s write a module with a
single function that returns a random fast-food choice, and a main program
that calls it and prints the choice. The Python standard library contains a
module called random.py, and within it is function called choice():

The module is shown in Example 12-1.

Example 12-1. fast.py
from random import choice

places = ['McDonalds", "KFC", "Burger King", "Taco Bell",
 "Wendys", "Arbys", "Pizza Hut"]

def pick(): # see the docstring below?
 """Return random fast food place"""
 return choice(places)

And Example 12-2 shows the main program that imports it.

Example 12-2. lunch.py
import fast

place = fast.pick()
print("Let's go to", place)

If you have these two files in the same directory and instruct Python to run
lunch.py as the main program, it will access the fast module and run its
pick() function. We wrote this version of pick() to return a random result
from a list of strings, so that’s what the main program will get back and
print:

$ python lunch.py

Let's go to Burger King
$ python lunch.py

Let's go to Pizza Hut
$ python lunch.py

Let's go to Arbys

We used imports in two different places:

The main program lunch.py imported our new module fast.

The module file fast.py imported the choice function from
Python’s standard library module named random.

We also used imports in two different ways in our main program and our
module:

In the first case, we imported the entire fast module but needed to
use fast as a prefix to pick(). After this import statement,
everything in fast.py is available to the main program, as long as
we prepend fast. to its name. By qualifying the contents of a
module with the module’s name, we avoid any nasty naming
conflicts. There could be a pick() function in some other module,
and we would not call it by mistake.

In the second case, we’re within a module and know that nothing
else named choice is here, so we imported the choice() function
from the random module directly.

We could have written fast.py, as shown in Example 12-3, importing
random within the pick() function instead of at the top of the file.

Example 12-3. fast2.py
places = ['McDonalds", "KFC", "Burger King", "Taco Bell",
 "Wendys", "Arbys", "Pizza Hut"]

def pick():
 import random
 return random.choice(places)

Like many aspects of programming, use the style that seems clearest to you.
The module-qualified name (random.choice) is safer but requires a little
more typing.

Consider importing from outside the function if the imported code might be
used in more than one place, and from inside if you know its use will be
limited. Some people prefer to put all their imports at the top of the file, just
to make all the dependencies of their code explicit. Either way works.

Import a Module with Another Name
In our main lunch.py program, we called import fast. But what if you:

Have another module named fast somewhere?

Want to use a name that is more mnemonic?

Caught your fingers in a door and want to minimize typing?

In these cases, you can import using an alias, as shown in Example 12-4.
Let’s use the module alias f.

Example 12-4. fast3.py
import fast as f
place = f.pick()
print("Let's go to", place)

Import Only What You Want from a Module
You can import a whole module or just parts of it. You just saw the latter:
we only wanted the choice() function from the random module.

Like the module itself, you can use an alias for each thing that you import.

Let’s redo our example a few more times. First, import pick() from the
fast module with its original name (Example 12-5).

Example 12-5. fast4.py
from fast import pick
place = pick()
print("Let's go to", place)

Now import it as who_cares (Example 12-6).

Example 12-6. fast5.py
from fast import pick as who_cares
place = who_cares()
print("Let's go to", place)

Packages
We went from single lines of code, to multiline functions, to standalone
programs, to multiple modules in the same directory. If you don’t have
many modules, the same directory works fine.

To allow Python applications to scale even more, you can organize modules
into file and module hierarchies called packages. A package is just a
subdirectory that contains .py files. And you can go more than one level
deep, with directories inside those.

We just wrote a module that chooses a fast-food place. Let’s add a similar
module to dispense life advice. We’ll make one new main program called
questions.py in our current directory. Now make a subdirectory named
choices and put two modules in it: fast.py and advice.py. Each module has a
function that returns a string.

The main program (questions.py) has an extra import and line (Example 12-
7).

Example 12-7. questions.py
from sources import fast, advice

print("Let's go to", fast.pick())
print("Should we take out?", advice.give())

That from sources makes Python look for a directory named sources,
starting under your current directory. Inside sources it looks for the files
fast.py and advice.py.

The first module (choices/fast.py) is the same code as before, just moved
into the choices directory (Example 12-8).

Example 12-8. choices_fast.py
from random import choice

places = ["McDonalds", "KFC", "Burger King", "Taco Bell",
 "Wendys", "Arbys", "Pizza Hut"]

def pick():
 """Return random fast food place"""
 return choice(places)

The second module (choices/advice.py) is new, but it works a lot like its
fast-food relative (Example 12-9).

Example 12-9. choices_advice.py
from random import choice

answers = ["Yes!", "No!", "Reply hazy", "Sorry, what?"]

def give():
 """Return random advice"""
 return choice(answers)

NOTE
If your version of Python is earlier than 3.3, you’ll need one more thing in the sources
subdirectory to make it a Python package: a file named __init__.py. This can be an
empty file, but pre-3.3 Python needs it to treat the directory containing it as a package.
(This is another common Python interview question.)

Run the main questions.py program (from your current directory, not in
sources) to see what happens:

$ python questions.py

Let's go to KFC

Should we take out? Yes!
$ python questions.py

Let's go to Wendys
Should we take out? Reply hazy
$ python questions.py

Let's go to McDonalds
Should we take out? Reply hazy

The Module Search Path
I just said that Python looks under your current directory for the
subdirectory choices and its modules. Actually, it looks in other places, as
well, and you can control this.

Earlier, we imported the function choice() from the standard library’s
random module. That wasn’t in your current directory, so Python needed to
look elsewhere also.

To see all the places that your Python interpreter looks, import the standard
sys module and use its path list. This is a list of directory names and ZIP
archive files that Python searches in order to find modules to import.

You can access and modify this list. Here’s the value of sys.path for
Python 3.7 on my Mac:

>>> import sys
>>> for place in sys.path:
... print(place)
...

/Library/Frameworks/Python.framework/Versions/3.7/lib/python37.zip
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/lib-dynload

That initial blank output line is the empty string '', which stands for the
current directory. If '' is first in sys.path, Python looks in the current
directory first when you try to import something: import fast looks for
fast.py. This is Python’s usual setup. Also, when we made that subdirectory
called sources and put Python files in it, they could be imported with
import sources or from sources import fast.

The first match will be used. This means that if you define a module named
random and it’s in the search path before the standard library, you won’t be
able to access the standard library’s random now.

You can modify the search path within your code. Let’s say you want
Python to look in the /my/modules directory before any other:

>>> import sys
>>> sys.path.insert(0, "/my/modules")

Relative and Absolute Imports
In our examples so far, we imported our own modules from:

The current directory

The subdirectory choices

The Python standard library

This works well until you have a local module with the same name as a
standard one. Which do you want?

Python supports absolute or relative imports. The examples that you’ve
seen so far are absolute imports. If you typed import rougarou, for each
directory in the search path, Python will look for a file named rougarou.py
(a module) or a directory named rougarou (a package).

If rougarou.py is in the same directory as your calling problem,
you can import it relative to your location with from . import
rougarou.

If it’s in the directory above you: from .. import rougarou.

If it’s under a sibling directory called creatures: from
..creatures import rougarou.

The . and .. notation was borrowed from Unix’s shorthand for current
directory and parent directory.

For a good discussion of Python import problems that you may run into, see
Traps for the Unwary in Python’s Import System.

Namespace Packages
You’ve seen that you can package Python modules as:

A single module (.py file)

A package (directory containing modules, and possibly other
packages)

You can also split a package across directories with namespace packages.
Say you want a package called critters that will contain a Python module
for each dangerous creature (real or imagined, supposedly with background
info and protective hints). This might get large over time, and you’d like to
subdivide these by geographic location. One option is to add location
subpackages under critters and move the existing .py module files under
them, but this would break things for other modules that import them.
Instead, we can go up and do the following:

Make new location directories above critters

Make cousin critters directories under these new parents

Move existing modules to their respective directories.

This needs some illustration. Say we started with this file layout:

critters
 ⌞ rougarou.py
 ⌞ wendigo.py

Normal imports of these modules would look like this:

from critters import wendigo, rougarou

Now if we decided on US locations north and south, the files and
directories would look like this:

https://oreil.ly/QMWHY

north
 ⌞ critters
 ⌞ wendigo.py
south
 ⌞ critters
 ⌞ rougarou.py

If both north and south are in your module search path, you can import the
modules as though they were still cohabiting a single-directory package:

from critters import wendigo, rougarou

Modules Versus Objects
When should you put your code into a module, and when into an object?

They look similar in many ways. An object or module called thing with an
internal data value called stuff would let you access the value as
thing.stuff. stuff may have been defined when the module or class was
created, or it may have been assigned later.

All the classes, functions, and global variables in a module are available to
the outside. Objects can use properties and “dunder” (__ …​) naming to hide
or control access to their data attributes.

This means you can do this:

>>> import math
>>> math.pi
3.141592653589793
>>> math.pi = 3.0
>>> math.pi
3.0

Did you just ruin calculations for everyone on this computer? Yes! No, I’m
kidding2. This did not affect the Python math module. You only changed the
value of pi for the copy of the math module code imported by your calling
program, and all evidence of your crimes will disappear when it finishes.

There’s only one copy of any module imported by your program, even if
you import it more than once. To use smart-sounding jargon, a module is a
singleton. You can use it to save global things, of interest to any code that
imports it. This is similar to a class, which also has only one copy, although
you can have many objects created from it. A class is used to define
multiple object instances, each varying in some little way from its
classmates.

Goodies in the Python Standard Library
One of Python’s prominent claims is that it has “batteries included” — a
large standard library of modules that perform many useful tasks. They are
kept separate to avoid bloating the core language. When you’re about to
write some Python code, it’s often worthwhile to first check whether there’s
a standard module that already does what you want. It’s surprising how
often you encounter little gems in the standard library. Python also provides
authoritative documentation for the modules, along with a tutorial. Doug
Hellmann’s website Python Module of the Week and book The Python
Standard Library by Example are also very useful guides.

Upcoming chapters in this book feature many of the standard modules that
are specific to the web, systems, databases, and so on. In this section, I talk
about some standard modules that have generic uses.

Handle Missing Keys with setdefault() and defaultdict()
You’ve seen that trying to access a dictionary with a nonexistent key raises
an exception. Using the dictionary get() function to return a default value
avoids an exception. The setdefault() function is like get(), but also
assigns an item to the dictionary if the key is missing:

>>> periodic_table = {'Hydrogen': 1, 'Helium': 2}
>>> periodic_table
{'Hydrogen': 1, 'Helium': 2}

http://docs.python.org/3/library
http://bit.ly/library-tour
http://bit.ly/py-motw
https://learning.oreilly.com/library/view/the-python-3/9780134291154
https://learning.oreilly.com/library/view/the-python-3/9780134291154

If the key was not already in the dictionary, the new value is used:

>>> carbon = periodic_table.setdefault('Carbon', 12)
>>> carbon
12
>>> periodic_table
{'Hydrogen': 1, 'Helium': 2, 'Carbon': 12}

If we try to assign a different default value to an existing key, the original
value is returned and nothing is changed:

>>> helium = periodic_table.setdefault('Helium', 947)
>>> helium
2
>>> periodic_table
{'Hydrogen': 1, 'Helium': 2, 'Carbon': 12}

defaultdict() is similar, but specifies the default value for any new key
up front, when the dictionary is created. Its argument is a function. In this
example, we pass the function int, which will be called as int() and
return the integer 0:

>>> from collections import defaultdict
>>> periodic_table = defaultdict(int)

Now any missing value will be an integer (int), with the value 0:

>>> periodic_table['Hydrogen'] = 1
>>> periodic_table['Lead']
0
>>> periodic_table
defaultdict(<class 'int'>, {'Hydrogen': 1, 'Lead': 0})

The argument to defaultdict() is a function that returns the value to be
assigned to a missing key. In the following example, no_idea() is executed
to return a value when needed:

>>> from collections import defaultdict
>>>
>>> def no_idea():

... return 'Huh?'

...
>>> bestiary = defaultdict(no_idea)
>>> bestiary['A'] = 'Abominable Snowman'
>>> bestiary['B'] = 'Basilisk'
>>> bestiary['A']
'Abominable Snowman'
>>> bestiary['B']
'Basilisk'
>>> bestiary['C']
'Huh?'

You can use the functions int(), list(), or dict() to return default
empty values for those types: int() returns 0, list() returns an empty list
([]), and dict() returns an empty dictionary ({}). If you omit the
argument, the initial value of a new key will be set to None.

By the way, you can use lambda to define your default-making function
right inside the call:

>>> bestiary = defaultdict(lambda: 'Huh?')
>>> bestiary['E']
'Huh?'

Using int is one way to make your own counter:

>>> from collections import defaultdict
>>> food_counter = defaultdict(int)
>>> for food in ['spam', 'spam', 'eggs', 'spam']:
... food_counter[food] += 1
...
>>> for food, count in food_counter.items():
... print(food, count)
...
eggs 1
spam 3

In the preceding example, if food_counter had been a normal dictionary
instead of a defaultdict, Python would have raised an exception every
time we tried to increment the dictionary element food_counter[food]

because it would not have been initialized. We would have needed to do
some extra work, as shown here:

>>> dict_counter = {}
>>> for food in ['spam', 'spam', 'eggs', 'spam']:
... if not food in dict_counter:
... dict_counter[food] = 0
... dict_counter[food] += 1
...
>>> for food, count in dict_counter.items():
... print(food, count)
...
spam 3
eggs 1

Count Items with Counter()
Speaking of counters, the standard library has one that does the work of the
previous example and more:

>>> from collections import Counter
>>> breakfast = ['spam', 'spam', 'eggs', 'spam']
>>> breakfast_counter = Counter(breakfast)
>>> breakfast_counter
Counter({'spam': 3, 'eggs': 1})

The most_common() function returns all elements in descending order, or
just the top count elements if given a count:

>>> breakfast_counter.most_common()
[('spam', 3), ('eggs', 1)]
>>> breakfast_counter.most_common(1)
[('spam', 3)]

You can combine counters. First, let’s see again what’s in
breakfast_counter:

>>> breakfast_counter
>>> Counter({'spam': 3, 'eggs': 1})

This time, we make a new list called lunch, and a counter called
lunch_counter:

>>> lunch = ['eggs', 'eggs', 'bacon']
>>> lunch_counter = Counter(lunch)
>>> lunch_counter
Counter({'eggs': 2, 'bacon': 1})

The first way we combine the two counters is by addition, using +:

>>> breakfast_counter + lunch_counter
Counter({'spam': 3, 'eggs': 3, 'bacon': 1})

As you might expect, you subtract one counter from another by using -.
What’s for breakfast but not for lunch?

>>> breakfast_counter - lunch_counter
Counter({'spam': 3})

Okay, now what can we have for lunch that we can’t have for breakfast?

>>> lunch_counter - breakfast_counter
Counter({'bacon': 1, 'eggs': 1})

Similar to sets in Chapter 9, you can get common items by using the
intersection operator &:

>>> breakfast_counter & lunch_counter
Counter({'eggs': 1})

The intersection chose the common element ('eggs') with the lower count.
This makes sense: breakfast offered only one egg, so that’s the common
count.

Finally, you can get all items by using the union operator |:

>>> breakfast_counter | lunch_counter
Counter({'spam': 3, 'eggs': 2, 'bacon': 1})

The item 'eggs' was again common to both. Unlike addition, union didn’t
add their counts, but selected the one with the larger count.

Order by Key with OrderedDict()
This is an example run with the Python 2 interpreter:

>>> quotes = {
... 'Moe': 'A wise guy, huh?',
... 'Larry': 'Ow!',
... 'Curly': 'Nyuk nyuk!',
... }
>>> for stooge in quotes:
... print(stooge)
...
Larry
Curly
Moe

NOTE
Starting with Python 3.7, dictionaries retain keys in the order in which they were added.
OrderedDict is useful for earlier versions, which have an unpredictable order. The
examples in this section are relevant only if you’re a version of Python earlier than 3.7.

An OrderedDict() remembers the order of key addition and returns them
in the same order from an iterator. Try creating an OrderedDict from a
sequence of (key, value) tuples:

>>> from collections import OrderedDict
>>> quotes = OrderedDict([
... ('Moe', 'A wise guy, huh?'),
... ('Larry', 'Ow!'),
... ('Curly', 'Nyuk nyuk!'),
...])
>>>
>>> for stooge in quotes:
... print(stooge)
...
Moe

Larry
Curly

Stack + Queue == deque
A deque (pronounced deck) is a double-ended queue, which has features of
both a stack and a queue. It’s useful when you want to add and delete items
from either end of a sequence. Here, we work from both ends of a word to
the middle to see whether it’s a palindrome. The function popleft()
removes the leftmost item from the deque and returns it; pop() removes the
rightmost item and returns it. Together, they work from the ends toward the
middle. As long as the end characters match, it keeps popping until it
reaches the middle:

>>> def palindrome(word):
... from collections import deque
... dq = deque(word)
... while len(dq) > 1:
... if dq.popleft() != dq.pop():
... return False
... return True
...
...
>>> palindrome('a')
True
>>> palindrome('racecar')
True
>>> palindrome('')
True
>>> palindrome('radar')
True
>>> palindrome('halibut')
False

I used this as a simple illustration of deques. If you really wanted a quick
palindrome checker, it would be a lot simpler to just compare a string with
its reverse. Python doesn’t have a reverse() function for strings, but it
does have a way to reverse a string with a slice, as illustrated here:

>>> def another_palindrome(word):
... return word == word[::-1]

...
>>> another_palindrome('radar')
True
>>> another_palindrome('halibut')
False

Iterate over Code Structures with itertools
itertools contains special-purpose iterator functions. Each returns one
item at a time when called within a for …​ in loop, and remembers its state
between calls.

chain() runs through its arguments as though they were a single iterable:

>>> import itertools
>>> for item in itertools.chain([1, 2], ['a', 'b']):
... print(item)
...
1
2
a
b

cycle() is an infinite iterator, cycling through its arguments:

>>> import itertools
>>> for item in itertools.cycle([1, 2]):
... print(item)
...
1
2
1
2
.
.
.

And, so on.

accumulate() calculates accumulated values. By default, it calculates the
sum:

http://bit.ly/py-itertools

>>> import itertools
>>> for item in itertools.accumulate([1, 2, 3, 4]):
... print(item)
...
1
3
6
10

You can provide a function as the second argument to accumulate(), and it
will be used instead of addition. The function should take two arguments
and return a single result. This example calculates an accumulated product:

>>> import itertools
>>> def multiply(a, b):
... return a * b
...
>>> for item in itertools.accumulate([1, 2, 3, 4], multiply):
... print(item)
...
1
2
6
24

The itertools module has many more functions, notably some for
combinations and permutations that can be time savers when the need
arises.

Get Random
We played with random.choice() at the beginning of this chapter. That
returns a value from the sequence (list, tuple, dictionary, string) argument
that it’s given:

>>> from random import choice
>>> choice([23, 9, 46, 'bacon', 0x123abc])
1194684
>>> choice(('a', 'one', 'and-a', 'two'))
'one'
>>> choice(range(100))
68

>>> choice('alphabet')
'l'

Use the sample() function to get more than one value at a time:

>>> from random import sample
>>> sample([23, 9, 46, 'bacon', 0x123abc], 3)
[1194684, 23, 9]
>>> sample(('a', 'one', 'and-a', 'two'), 2)
['two', 'and-a']
>>> sample(range(100), 4)
[54, 82, 10, 78]
>>> sample('alphabet', 7)
['l', 'e', 'a', 't', 'p', 'a', 'b']

To get a random integer from any range, you can use choice() or
sample() with range(), or use randint() or randrange():

>>> from random import randint
>>> randint(38, 74)
71
>>> randint(38, 74)
60
>>> randint(38, 74)
61

randrange(), like range(), has arguments for the start (inclusive) and end
(exclusive) integers, and an optional integer step:

>>> from random import randrange
>>> randrange(38, 74)
65
>>> randrange(38, 74, 10)
68
>>> randrange(38, 74, 10)
48

Finally, get a random real number (a float) between 0.0 and 1.0:

>>> from random import random
>>> random()
0.07193393312692198

>>> random()
0.7403243673826271
>>> random()
0.9716517846775018

More Batteries: Get Other Python Code
Sometimes, the standard library doesn’t have what you need, or doesn’t do
it in quite the right way. There’s an entire world of open source, third-party
Python software. Good resources include the following:

PyPi (also known as the Cheese Shop, after an old Monty Python
skit)

GitHub

readthedocs

You can find many smaller code examples at activestate.

Almost all of the Python code in this book uses the standard Python
installation on your computer, which includes all the built-ins and the
standard library. External packages are featured in some places, with details
on how to install and use them.

Review/Preview
Modules are the next high-level code structure above functions. They
isolate code and data in a namespace that qualifies names and allows the
same name to be used in different places without confusion.

The next chapter is a review of all of Part One: the basic data types and
control structures of Python.

http://pypi.python.org/
https://github.com/Python
https://readthedocs.org/
https://oreil.ly/clMAi

Practice
12.1 Create a file called zoo.py. In it, define a function called hours() that
prints the string 'Open 9-5 daily'. Then, use the interactive interpreter to
import the zoo module and call its hours() function.

12.2 In the interactive interpreter, import the zoo module as menagerie and
call its hours() function.

12.3 Staying in the interpreter, import the hours() function from zoo
directly and call it.

12.4 Import the hours() function as info and call it.

12.5 Make a dictionary called plain with the key-value pairs 'a': 1, 'b':
2, and 'c': 3, and then print it.

12.6 Make an OrderedDict called fancy from the same pairs listed in the
previous question and print it. Did it print in the same order as plain?

12.7 Make a defaultdict called dict_of_lists and pass it the argument
list. Make the list dict_of_lists['a'] and append the value
'something for a' to it in one assignment. Print dict_of_lists['a'].

1 At least, a little less readable than it already is.

2 Or am I? Bwa ha ha.

About the Author
Bill Lubanovic has been busy with Unix since 1977, GUIs since 1981,
databases since 1990, and the web since 1993:

1982–1988 (Intran): Developed MetaForm on the first commercial
graphic workstation.

1990–1995 (Northwest Airlines): Wrote a graphic yield
management system; got the airline on the internet; and wrote its
first Internet marketing test.

1994 (Tela): Cofounded an early ISP.

1995–1999 (WAM!NET): Developed web dashboards and 3M
Digital Media Repository.

1999–2005 (Mad Scheme): Cofounded a web development/hosting
company.

2005 (O’Reilly): Wrote parts of Linux Server Security.

2007 (O’Reilly): Coauthored Linux System Administration .

2010–2013 (Keep): Designed and built Core Services between web
frontend and database backends.

2014 (O’Reilly): Wrote the first edition of Introducing Python .

2015–2016 (Internet Archive): Worked on APIs and a Python
version of the Wayback Machine.

2016–2018 (CrowdStrike): Managed Python-based services
processing billions of daily security events.

2020 (O’Reilly): Wrote the second edition of Introducing Python.

2019-2023 (Flywheel): ...

2023 (O’Reilly): Wrote FastAPI

http://shop.oreilly.com/product/9780596006709.do
http://shop.oreilly.com/product/9780596009526.do
http://shop.oreilly.com/product/0636920028659.do
http://shop.oreilly.com/product/0636920028659.do

Bill enjoys life in the Sangre de Sasquatch mountains of Minnesota with his
wonderful family:

Tom, Roxie, and Lettie

Karin, Erik, and Maeve

Critters: Tonks, Beans, Chester and Lucy.

Colophon
The animal on the cover of Introducing Python is a python—that is, a
member of the Python genus, which consists of 10 recognized snake
species. Pythons are nonvenomous, constricting snakes native to the tropics
and subtropics of the Eastern Hemisphere.

Pythons vary in length, based on species and sex, from approximately 3 feet
long (ball python) to reported cases of more than 20 feet long (reticulated
python). They are recognizable by their flat triangular-shaped heads and
long backward-curving teeth. Generally, they have a combination of brown,
tan, and black skin, arranged in diamond or interlocking blotch patterns.
Albino pythons are white and yellow, and while at a disadvantage in the
wild, are popular in zoos and as pets.

Pythons are strong swimmers, but these snakes almost exclusively ambush
prey on land or in trees, attacking with their fangs and then immediately
wrapping themselves around the quarry to asphyxiate it. Unlike boas,
another well-known group of constrictor snakes, pythons lay eggs rather
than birth live young. The female python will brood over the eggs until they
hatch, shivering with her large muscular coils to keep the eggs warm.

The Burmese python has become an invasive species in Florida, competing
with the American alligator for prey and significantly reducing the number
of native birds and small mammals in the Everglades. Along with increased
popularity as a pet in the 1990s, it is thought that Hurricane Andrew in 1992
is responsible for allowing captive Burmese pythons into the wild by
destroying a zoo and breeding facility.

Most species of python have a conservation status of Least Concern, but the
Bermese (native population) and Borneo short-tailed python are currently
listed as Vulnerable. Many of the animals on O’Reilly covers are
endangered; all of them are important to the world.

The cover illustration is by Jose Marzan, based on a black and white
engraving from Johnson’s Natural History. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the

heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Brief Table of Contents (Not Yet Final)
	Preface
	Audience
	Changes in the Third Edition
	Outline
	Python Versions
	About the Author
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Introduction
	Mysteries
	Little Python Programs
	Setup
	Install Python
	Upgrade Python
	Run Python Programs
	The Python Interactive Interpreter
	Python Files

	Built-In Python Features
	The Python Standard Library
	Third-Party Python Packages
	A Bigger Example
	Review/Preview

	2. Types and Variables
	A Caveman Computer
	Bits and Bytes
	Multibyte Types
	Variables
	Assign a Value to a Variable
	Change the Value of a Variable
	Delete a Variable
	Name Variables
	Naming Conventions

	Python Types
	Specify Values
	Review/Preview
	Practice

	3. Numbers
	Booleans
	Integers
	Literal Integers
	Integer Operations
	Integers and Variables
	Precedence
	Bases
	Type Conversions
	How Big Is an int?

	Floats
	Floats are not exact
	Fractions
	Decimals
	Math Functions
	Review/Prview
	Practice

	4. Strings
	Create with Quotes
	Create with str()
	Escape with \
	Combine with +
	Duplicate with *
	Get a Character with []
	Get a Substring with a Slice
	Get Length with len()
	Split with split()
	Combine with join()
	Substitute with replace()
	Prefixes and Suffixes
	Strip with strip()
	Search and Select
	Case
	Alignment
	Formatting
	Old style: %
	New style: {} and format()
	Newest Style: f-strings

	More String Things
	Review/Preview
	Practice

	5. Bytes and Bytearray
	Bytes
	Create with Quotes
	Create with bytes()
	Create from a Hex String
	Decode and Encode Bytes and Strings
	Convert to a Hex String
	Get One Byte with []
	Get a Slice
	Combine with +
	Repeat with *

	Bytearray
	Create with bytearray()
	Get One Byte
	Get Multiple Bytes with a Slice
	Modify One Byte by its Index
	Modify Multiple Bytes with replace()
	Modify Multiple Bytes with a slice
	Insert a Byte with insert()
	Append One Byte with append()
	Append Multiple Bytes with extend()

	Review/Preview
	Practice

	6. If and Match
	Comment with #
	Continue Lines with \
	Compare with if, elif, and else
	What Is True?
	Do Multiple Comparisons with in
	New: I Am the Walrus
	Match
	Simple Matches
	Structural Matches

	Review/Preview
	Practice

	7. For and While
	Repeat with while
	Cancel with break
	Skip Ahead with continue
	Check break Use with else

	Iterate with for and in
	Cancel with break
	Skip with continue
	Check break Use with else
	Generate Number Sequences with range()

	Other Iterators
	Review/Preview
	Practice

	8. Tuples and Lists
	Tuples
	Create with Commas and ()
	Create with tuple()
	Combine with +
	Duplicate with *
	Compare
	Iterate with for and in
	Modify?
	Named Tuples

	Lists
	Create with []
	Create or Convert with list()
	Create from a String with split()
	Get an Item by [offset]
	Get Items with a Slice
	Add an Item to the End with append()
	Add an Item by Offset with insert()
	Duplicate with *
	Combine with extend() or +
	Change an Item with [offset]
	Change Items with a Slice
	Delete an Item by Offset with del
	Delete an Item by Value with remove()
	Get an Item by Offset and Delete It with pop()
	Delete All Items with clear()
	Find an Item’s Offset by Value with index()
	Test for a Value with in
	Count Occurrences of a Value with count()
	Convert a List to a String with join()
	Reorder Items with sort() or sorted()
	Get Length with len()
	Assign with =
	Copy with copy(), list(), or a Slice
	Copy Everything with deepcopy()
	Compare Lists
	Iterate with for and in
	Iterate Multiple Sequences with zip()
	Iterate Multiple Sequences with zip_longest()
	Create a List with a Comprehension
	Lists of Lists

	Tuples Versus Lists
	There Are No Tuple Comprehensions
	Review/Preview
	Practice

	9. Sets and Dictionaries
	Dictionaries
	Create with {}
	Create with dict()
	Convert with dict()
	Add or Change an Item by [key]
	Get an Item by [key] or with get()
	Iterate with for and in
	Get Length with len()
	Combine/update dicts
	Use update()
	Use {**a, **b}
	Use |

	Delete an Item by Key with del
	Get an Item by Key and Delete It with pop(key)
	Delete All Items with clear()
	Test for a Key with in
	Assign with =
	Copy with copy()
	Copy Everything with deepcopy()
	Compare Dictionaries
	Dictionary Comprehensions

	Sets
	Create with set() or {}
	Get Length with len()
	Add an Item with add()
	Delete an Item with remove()
	Iterate with for and in
	Test for a Value with in
	Combinations and Operators
	Set Comprehensions
	Create an Immutable Set with frozenset()

	Review/Preview
	Practice

	10. Functions
	Define a Function with def
	Call a Function with Parentheses
	Arguments and Parameters
	None Is Useful
	Positional Arguments
	Keyword Arguments
	Specify Default Parameter Values
	Explode/Gather Positional Arguments with *
	Explode/Gather Keyword Arguments with **
	Keyword-Only Arguments
	Mutable and Immutable Arguments

	Docstrings
	Functions Are First-Class Citizens
	Function Arguments Are Not a Tuple
	Inner Functions
	Closures

	Anonymous Functions: lambda
	Generators
	Generator Functions
	Generator Comprehensions

	Decorators
	Namespaces and Scope
	Uses of _ and __ in Names
	Recursion
	Async Functions
	Exceptions
	Handle Errors with try and except
	Make Your Own Exceptions

	Review/Preview
	Practice

	11. Objects
	What Are Objects?
	Simple Objects
	Define a Class with class
	Attributes
	Methods
	Initialization

	Inheritance
	Inherit from a Parent Class
	Override a Method
	Add a Method
	Get Help from Your Parent with super()
	Multiple Inheritance
	Mixins

	In self Defense
	Attribute Access
	Direct Access
	Getters and Setters
	Properties for Attribute Access
	Properties for Computed Values
	Name Mangling for Privacy
	Class and Object Attributes

	Method Types
	Instance Methods
	Class Methods
	Static Methods

	Duck Typing
	Magic Methods
	Aggregation and Composition
	When to Use Objects or Something Else
	Named Tuples
	Dataclasses
	Attrs
	Review/Preview
	Practice

	12. Modules and Packages
	Modules and the import Statement
	Import a Module
	Import a Module with Another Name
	Import Only What You Want from a Module

	Packages
	The Module Search Path
	Relative and Absolute Imports
	Namespace Packages
	Modules Versus Objects

	Goodies in the Python Standard Library
	Handle Missing Keys with setdefault() and defaultdict()
	Count Items with Counter()
	Order by Key with OrderedDict()
	Stack + Queue == deque
	Iterate over Code Structures with itertools
	Get Random

	More Batteries: Get Other Python Code
	Review/Preview
	Practice

