
M A N N I N G

 Edward Raff ● Drew Farris ● Stella Biderman
FOR Booz Allen Hamilton

How Large Language
Models Work

Model input

Input

tokens

Input

sequences

(Repeated many times)

Document

Output

tokens

Output

sequences

The transformer model

Split document

into sequences

Convert to

tokens

Sampling

2 4 5

6 Output

text
Decoding

7

Model output

3

Word

embedding

Transformer

layer

Transformer

layer
Unembedding

1

Positional

embedding

The process for converting input into output using a large language model

The following items are references to where each step is explained in detail:

1 Map text to tokens (chapter 2).

2 Map tokens into embedding space (subsection 3.2.1).

3 Add information to each embedding that captures each token’s position in the

input text (figure 3.7).

4 Pass the data through a transformer layer (repeat L times) (subsection 3.2.2).

5 Apply the unembedding layer to get tokens that could make good responses

(subsection 3.2.3).

6 Sample from the list of possible tokens to generate a single response (figure 3.11).

7 Decode tokens from the response into actual text (subsection 3.2.3).

How Large Language Models Work

How Large Language
Models Work

Edward Raff

Drew Farris

Stella Biderman

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit

www.manning.com. The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

© 2025 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in

any form or by means electronic, mechanical, photocopying, or otherwise, without prior written

permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in the book, and Manning

Publications was aware of a trademark claim, the designations have been printed in initial

caps or all caps.

∞ Recognizing the importance of preserving what has been written, it is Manning’s policy to

have the books we publish printed on acid-free paper, and we exert our best efforts to that

end. Recognizing also our responsibility to conserve the resources of our planet, Manning

books are printed on paper that is at least 15 percent recycled and processed without the use

of elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book

was correct at press time. The author and publisher do not assume and hereby disclaim any

liability to any party for any loss, damage, or disruption caused by errors or omissions, whether

such errors or omissions result from negligence, accident, or any other cause, or from any usage

of the information herein.

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Development editor: Frances Lefkowitz

Technical editor: Shreesha Jagadeesh

Review editors: Aleksandar Dragosavljevic,

Radmila Ercegovac

Production editor: Andy Marinkovich

Copy editor: Alisa Larson

Proofreader: Melody Dolab

Typesetter: Ammar Taha Mohamedy

Cover designer: Marija Tudor

ISBN 9781633437081

Printed in the United States of America

www.manning.com
orders@manning.com

brief contents

1 Big picture: What are LLMs? 1

2 Tokenizers: How large languagemodels see the world 14

3 Transformers: How inputs become outputs 29

4 How LLMs learn 46

5 How do we constrain the behavior of LLMs? 65

6 Beyond natural language processing 88

7 Misconceptions, limits, and eminent abilities of LLMs 107

8 Designing solutions with large languagemodels 125

9 Ethics of building and using LLMs 140

v

contents

preface x
acknowledgments xii
about this book xiv
about the authors xvii
about the cover illustration xix

1 Big picture: What are LLMs? 1
1.1 Generative AI in context 2

1.2 What you will learn 5

1.3 Introducing how LLMs work 6

1.4 What is intelligence, anyway? 7

1.5 How humans and machines represent language differently 9

1.6 Generative Pretrained Transformers and friends 10

1.7 Why LLMs perform so well 10

1.8 LLMs in action: The good, bad, and scary 12

2 Tokenizers: How large language models see the world 14
2.1 Tokens as numeric representations 15

2.2 Language models see only tokens 15
The tokenization process 16 Controlling vocabulary size in

tokenization 18 Tokenization in detail 20 The risks of

tokenization 22

vi

CONTENTS vii

2.3 Tokenization andLLMcapabilities 24
LLMs are bad at word games 25 LLMs are challenged by

mathematics 26 LLMs and language equity 26

2.4 Check your understanding 27

2.5 Tokenization in context 27

3 Transformers: How inputs become outputs 29
3.1 The transformer model 30

Layers of the transformer model 31

3.2 Exploring the transformer architecture in detail 33
Embedding layers 34 Transformer layers 38

Unembedding layers 40

3.3 The tradeoff between creativity and topical responses 43

3.4 Transformers in context 44

4 How LLMs learn 46
4.1 Gradient descent 47

What is a loss function? 47 What is gradient descent? 51

4.2 LLMs learn to mimic human text 54
LLM reward functions 55

4.3 LLMs and novel tasks 58
Failing to identify the correct task 60 LLMs cannot plan 61

4.4 If LLMs cannot extrapolate well, can I use them? 62

4.5 Is bigger better? 63

5 Howdowe constrain the behavior of LLMs? 65
5.1 Why dowewant to constrain behavior? 66

Base models are not very usable 68 Not all model outputs are

desirable 69 Some cases require specific formatting 70

5.2 Fine-tuning: The primary method of
changing behavior 70
Supervised fine-tuning 71 Reinforcement learning from

human feedback 73 Fine-tuning: The big picture 74

5.3 The mechanics of RLHF 75
Beginning with a naive RLHF 75 The quality reward

model 76 The similar-but-different RLHF objective 77

5.4 Other factors in customizing LLMbehavior 79
Altering training data 79 Altering base model training 80

Altering the outputs 81

5.5 Integrating LLMs into larger workflows 82
Customizing LLMs with retrieval augmented generation 82

General purpose LLM programming 84

viii CONTENTS

6 Beyond natural language processing 88
6.1 LLMs for software development 90

Improving LLMs to work with code 92 Validating code

generated by LLMs 93 Improving code via formatting 94

6.2 LLMs for formal mathematics 95
Sanitized input 96 Helping LLMs understand numbers 97

Math LLMs also use tools 99

6.3 Transformers and computer vision 101
Converting images to patches and back 101 Multimodal

models using images and text 104 Applicability of prior

lessons 105

7 Misconceptions, limits, and eminent abilities of LLMs 107
7.1 Human rate of learning vs. LLMs 108

The limitations on self-improvement 111 Few-shot

learning 114

7.2 Efficiency of work: A 10-watt human
brain vs. a 2000-watt computer 115
Power 115 Latency, scalability, and availability 116

Refinement 117

7.3 Language models are not models of the world 117

7.4 Computational limits: Hard problems are still hard 120
Using fuzzy algorithms for fuzzy problems 122

When close enough is good enough for hard problems 122

8 Designing solutions with large languagemodels 125
8.1 Just make a chatbot? 126

8.2 Automation bias 128
Changing the process 130 When things are too risky for

autonomous LLMs 130

8.3 Usingmore than LLMs to reduce risk 132
Combining LLM embeddings with other tools 132 Designing

a solution that uses embeddings 134

8.4 Technology presentationmatters 136
How can you be transparent? 137 Aligning incentives with

users 138 Incorporating feedback cycles 138

9 Ethics of building and using LLMs 140
9.1 Why did we build LLMs at all? 141

The pros and cons of LLMs doing everything 142

Do we want to automate all human work? 144

CONTENTS ix

9.2 Do LLMs pose an existential risk? 146
Self-improvement and the iterative S-curve 149

The alignment problem 150

9.3 The ethics of data sourcing and reuse 152
What is fair use? 153 The challenges associated with

compensating content creators 154 The limitations of public

domain data 155

9.4 Ethical concerns with LLMoutputs 156
Licensing implications for LLM output 157 Do LLM outputs

poison the well? 158

9.5 Other explorations in LLMethics 160

References 163

index 169

preface

The skeleton of this book began to come together in the late 2010s when we saw

several significant advancements in the field of artificial intelligence (AI) that we

knew could soon lead to a breakthrough. The convergence of new types of computer

hardware, the availability of vast amounts of data, and the growth of neural networks

were rapidly converging to a tipping point where it was now possible for machine

learning algorithms to accurately capture nuances of language and meaning at a

surprising level of fidelity. With the right combination of breakthroughs, we knew

this would enable an entirely new class of applications. We conducted research, built

prototypes, had conversations with our colleagues, clients, and families, and sought to

tell the story of how these advancements could change the world and the underlying

techniques that made that possible.

Then, at the end of November 2022, OpenAI released ChatGPT, and suddenly,

this potential became a reality. By putting this technology into the hands of the public,

anyone could gain firsthand experience by interacting with a chatbot powered by

a large language model (LLM). As with any new technology, there was a lot of

speculation as to what could possibly allow ChatGPT to interact with great fidelity

and produce such high-quality output. We saw that, based on interactions with

ChatGPT, people often assumed that there was more behind the curtain than truly

existed, sometimes believing that we were truly on the cusp of general AI that could

do anything. We found that our conversations shifted to what could practically be

achieved using applications of LLMs, managing expectations, characterizing risks,

validating behaviors, and negotiating the path between what’s realistic and what’s

not safe or responsible to attempt.

Fast forward to 2025, and we’re now firmly ensconced in the era of generative

and agentic AI. We have seen a massive proliferation of models, applications, and

x

PREFACE xi

capabilities and an explosion in the types of data we can work with. Eachmajor vendor

has a technology offering that incorporates an LLM, whether they are chatbots to talk

to or agents that review our writing, help us write computer programs, or generate

images. Many of these are controversial, leading to new conversations about data use

and causing us to rethink our assumptions about the relationship between technology

and creativity. Regardless, there are core principles that enable these applications,

and our goal with this book is to describe these in a way that’s accessible to readers

from all walks of life.

Whether you’re a CEO, a machine learning engineer, a casual coder, or just the

average person seeking to use this technology, we hope you’ll find something useful

in this book that explains the algorithms and techniques that make LLMs work. It is

a collection of our experiences working in the field of natural language processing,

machine learning, and algorithmic research, where we set out to share our knowledge

in a manner that is accessible to nearly everyone. Along the way, we will dispel some of

the mystery, explain the limitations, and explore the implications of this fascinating

new technology. We hope you’ll join us on this voyage.

acknowledgments

This book would not be possible without the support of many of our colleagues,

collaborators, and countless researchers in the field of artificial intelligence who

have chosen to share their explorations of this technology.

We thank our colleagues at Booz Allen Hamilton for their support of this work,

including John Larson, Steve Escaravage, Justin Neroda, Catherine Ordun, Jessica

Reinhart, and Katrina Jacobs. Andre Nguyen and Matt Keating deserve special recog-

nition for the many conversations on the nature of large language models and ways

to think about their safety.

We also want to thank the outstanding staff at Manning Publications, including

Frances Lefkowitz, our development editor, and Shreesha Jagadeesh, our technical

editor, who both asked the hard questions and shaped and improved the book in

so many ways by providing thoughtful feedback. We also thank Andy Waldron, our

acquisitions editor; Rebecca Rinehart, our development manager; and Aira Ducic,

who led marketing for this book.

We also acknowledge Melissa Ice and Radmila Ercegovac, who orchestrated the

reviews throughout the writing process, and all of the anonymous reviewers who

provided excellent feedback to make this book what it is today.

We owe a special debt to everyone who shepherded this book through the pro-

duction effort with much patience, including Aleksandar Dragosavljevic and Andy

Marinkovich, as well as Alisa Larson for editing and Melody Dolab for the final proof-

read. Sam Wood and Marija Tudor led the production of our cover, and Azra Dedic

led the production of our graphics and figures.

To all the reviewers: Abdullah Al Imran, Adrian M. Rossi, Allan Makura, Ankit

Virmani, Bhagvan Kommadi, Cristina-Ioana Casapu, David Cronkite, David Yakobo-

vitch, Doug Puenner, Doyle Turner, Emanuele Piccinelli, Federico Grasso, Florian

xii

ACKNOWLEDGMENTS xiii

Braun, Georg Sommer, George Onofrei, Girish Ahankari, Harsh Ranjan, Holger

Voges, Ivan A. Fernandez, JaganadhGopinadhan, Jeremy Zeidner, John R. Donoghue,

John Guthrie, Jose Morales, Kartik Dutta, Kelvin Chappell, Louis Luangkesorn, Mark

Graham, Mattia Zoccarato, Matt Sarmiento, Mikael Dautrey, Mike Taylor, Mostofa

Adib Shakib, Neeraj Gupta, Oliver Korten, Raj G, Sashank Dara, Simeon Leyzerzon,

Simone Sguazza, Slavomir Furman, Sudharshan Tumkunta, Tony Holdroyd, Vincent

Joseph, and Walter Alexander Mata López, your suggestions helped make this a

better book.

We also want to thank Al Krinker, a former colleague at Booz Allen Hamilton and

our first editor at Manning Publications, who helped us get started in the early days

of this work.

Finally, and most importantly, we want to thank our families and friends who

supported and encouraged us through many nights and weekends working on this

book.

about this book

How Large Language Models Work is the culmination of countless hours of research,

explorations, conversations, and building and evaluating large language models and

the systems that use them to solve problems. It is a distillation of years of working in

the fields of machine learning, natural language processing, and software engineering

that we, the authors, bring to the table. It’s important to us to share what we’ve learned

and break down the complexities of the field into a straightforward conversation

that presents foundational details on how LLMs work and builds from there to cover

topics that are not widely understood. We seek to dispel some myths and shed light

on the realities along the way.

This book does not describe how to implement LLMs like ChatGPT using code.

Instead, it covers the foundational concepts that make LLMs operate, as well as

the opportunities and limitations of this technology. We’ll provide you with an

understanding of how the underlying algorithms operate. As a result, you’ll better

understand why LLMs are implemented the way they are and how LLMs can be used

to solve a variety of problems. Our goal is to translate years of LLM research into

something understandable for someone new to the field.

To do this, we’ll start with the basics to build a foundational understanding of

the inner workings of LLMs and then transition to more advanced topics, including

adjacent considerations that go beyond LLM operation. Along the way, we’ll tackle

misconceptions, limitations, and the ethical implications of building and using LLMs,

as well as the many ways LLMs can be effectively deployed as technical solutions for

challenging problems.

xiv

ABOUT THIS BOOK xv

Who should read this book?
This book is intended for a variety of readers, including those who have just started

working with LLMs, experienced software developers, and data scientists, as well

as technical leadership, decision makers, and executives in the C-suite, who face

the challenge of developing strategies for incorporating LLMs and generative AI

into their businesses. Our goal in writing this book was to create a work that is both

accessible and compelling for a broad audience, presenting LLMs in a nontrivial

manner.

Perhaps you’ve previously encountered machine learning, either as a student or

hobbyist who took an introduction to machine learning course, but you lack a strong

foundation in the field. Perhaps you’re someone who has used tools like OpenAI’s

ChatGPT, Google’s Gemini, Anthropic’s Claude, or Microsoft’s Copilot for work or

play and are curious about how these tools generate their results. Regardless of your

background or experience, we believe there’s something for you in this book.

Once you’re done, you’ll know

How LLMs process human language data and identify the tasks that may fail

when using an LLM

How data flows through an LLM, the role of transformers and attention, how

they operate at a high level, why they are important, and how they relate to

other machine learning algorithms

How LLMs are trained on data, including the concepts of parameters, gradient

descent, pretraining, and why model size is critical

How to choose a deployment strategy for LLMs in your applications and business

How to identify tasks and scenarios that LLMs can’t realistically solve

The dangers and ethical concerns of using and building LLMs and where it is

appropriate or inappropriate to use them

How this book is organized: A roadmap
In this book, we’ll start with the basics of how LLMs process human language, the

algorithms that make them possible, and how they learn from data. From there, we’ll

explore how LLM technology can be applied to tasks beyond text and wrap up with

a discussion of LLMs’ use and the implications of this technology.

Chapter 1 provides a high-level understanding of LLMs and generative AI in plain

language. We explore the differences between how humans and machines work

with language and begin to peel back the surface of what makes LLMs so capable,

introducing their limitations and potential concerns when using them.

Chapters 2 to 5 delve deep into what’s going on under the hood, focusing on the

mechanics rather than the math. In chapter 2, we explain how large language models

process text so that they can work with it before diving into the internals of how the

things we enter into an LLM ultimately lead to the generative output they produce

in chapter 3. Chapter 4 discusses how all of this is possible, the process of training an

xvi ABOUT THIS BOOK

LLM on incredible amounts of text, and why this training can fail to produce the

expected outcomes. Chapter 5 describes how we can control and constrain an LLM

and its outputs for specific applications.

Chapter 6 looks beyond working with languages and explores the use of LLMs

for software development, formal mathematics, and beyond, including text, images,

audio, and video.

Now that we’ve covered the mechanics, chapters 7 to 9 introduce the conside-

rations behind using LLMs in real-world applications. First, we tackle many of the

misconceptions, limits, and capabilities of LLMs in chapter 7. In chapter 8, we discuss

different scenarios for designing solutions that use LLMs and identify situations

where the obvious choices may not be the best options. Any discussion of LLM use

wouldn’t be complete without covering the ethical implications of building and using

LLMs, which we cover in chapter 9. Do LLMs pose an existential risk to humanity?

What are the ethics and implications of training on as much data as we can scrape

from the internet? Join us on this journey, and you’ll discover that along the way,

you’ve become equipped with the knowledge you need for critical thinking about

this compelling new technology.

Throughout the book, you’ll find many references to other sources of information

that go deeper into different aspects of LLMs that we cover. We collect all of these in

a references section at the end of the book, providing easy access to the entire list of

resources in one place. We encourage you to continue exploring LLMs by visiting

these sources and delving deeper into topics that best align with your interests.

liveBook discussion forum
Purchase of How Large Language Models Work includes free access to liveBook, Man-

ning’s online reading platform. Using liveBook’s exclusive discussion features, you

can attach comments to the book globally or to specific sections or paragraphs. It’s

easy to make notes for yourself, ask and answer questions, and receive help from the

authors and other users. To access the forum, go to https://livebook.manning.com/

book/how-large-language-models-work/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the authors can take

place. It’s not a commitment to any specific amount of participation on the part

of the authors, whose contribution to the forum remains voluntary (and unpaid).

We suggest you try asking the authors some challenging questions lest their interest

stray! The forum and archives of the previous discussions will be accessible from the

publisher’s website as long as the book is in print.

https://livebook.manning.com/book/how-large-language-models-work/discussion
https://livebook.manning.com/book/how-large-language-models-work/discussion

about the authors

EdwardRaff is a Director of Emerging AI at Booz Allen

Hamilton, where he leads the machine learning research

team. He has worked in healthcare, natural language

processing, computer vision, and cybersecurity, as well

as fundamental AI/ML research. The author of Inside

Deep Learning, Dr. Raff has over 100 published research

articles at the top artificial intelligence conferences. He

is the author of the Java Statistical Analysis Tool library, a

Senior Member of the Association for the Advancement

of Artificial Intelligence, and twice chaired the Conference on Applied Machine

Learning and Information Technology and the AI for Cyber Security workshop. Dr.

Raff’s work has been deployed and used by antivirus companies worldwide.

Drew Farris is a Principal at Booz Allen Hamilton. He

specializes in artificial intelligence andmachine learning,

with over 14 years of experience building advanced ana-

lytics for public sector clients. Before joining Booz Allen,

Drew worked with academic research teams and start-

ups on information retrieval, natural language process-

ing, and large-scale data management platforms. He has

co-authored several publications, including Booz Allen’s

Field Guide to Data Science and Machine Intelligence Pri-

mer, and the Jolt Award-winning book Taming Text on computational text proc-

essing. Drew is also a member of the Apache Software Foundation and has contribut-

ed to open source projects like Apache Mahout, Lucene, and Solr.

xvii

xviii ABOUT THE AUTHORS

Stella Biderman is a machine learning researcher at Booz

Allen Hamilton and the executive director of the nonprofit

research center EleutherAI. She is a leading advocate for

open source artificial intelligence and has trained many of

the world’s most powerful open source artificial intelligence

algorithms. She has a master’s degree in computer science

from the Georgia Institute of Technology and degrees in

Mathematics and Philosophy from the University of Chicago.

about the cover illustration

The figure on the cover of How Large Language Models Work, captioned “Charles de

Cleves, Count of Rethel,” and dated 1852, is from the European Libraries collection,

courtesy of the Lyon Public Library.

In those days, it was easy to identify where people lived and what their trade

or station in life was just by their dress. Manning celebrates the inventiveness and

initiative of the computer business with book covers based on the rich diversity of

regional culture centuries ago, brought back to life by pictures from collections such

as this one.

xix

1Big picture: What are
LLMs?

This chapter covers
What Generative Pretrained Transformers
and large language models are

How LLMs work in plain language

How humans and machines represent
languages differently

Why tools like ChatGPT perform so well

Understanding the limitations and
concerns of using LLMs

The hype around terms such as machine learning (ML), deep learning (DL), and

artificial intelligence (AI) has reached record levels. Much of the initial public

exposure to these terms was driven by a product called ChatGPT, a form of generative

AI built by a company called OpenAI. We now see generative AI offerings such

as Gemini from Google, Copilot from Microsoft, Llama from Meta, Claude from

Anthropic, and newcomers like DeepSeek in the daily news. Seemingly overnight, the

ability of computers to talk, learn, and perform complex tasks has taken a dramatic

leap forward. New generative AI companies are forming, and existing firms are

publicly investing billions of dollars in the field. The technology in this space is

evolving at a maddening pace.

1

2 CHAPTER 1 Big picture: What are LLMs?

This book aims to help you make sense of this new world by dispelling the mystery

behind what makes ChatGPT and related technologies work. We will cover the

knowledge necessary to understand their inner workings and how the components

(data and algorithms) stack together to create the tools we use. We’ll also discuss

various cases where this technology can form the cornerstone of a broader system

and others where systems based on large language models (LLMs) may be a poor

choice.

After reading this book, you’ll understand what generative AI like ChatGPT really

is, what it can and can’t do, and, importantly, the “why” behind its limitations. With

this knowledge, you’ll be a more effective consumer of this family of technology,

whether as a user, a software developer, or a business decision maker in organizations

deciding whether and, if so, how to incorporate it into your products or operations.

This foundation will also serve as a launchpad for deeper study into the field by

providing knowledge that will allow you to understand in-depth research and other

works.

1.1 Generative AI in context
First, we need to get more specific about what we are discussing when we talk about

LLMs, GPTs, and the various tools that rely on them. The GPT in ChatGPT stands for

Generative Pretrained Transformer. Each of these words bears a particular meaning in

the context of ChatGPT. We’ll dedicate future chapters to discussing what pretrained

and transformermean, but we start here by discussing what generativemeans in this

context.

AI chatbots like ChatGPT are a form of generative AI. Broadly, generative AI is

software capable of creating, or generating, various media (e.g., text, images, audio,

and video) based on data it has observed in the past and influenced by what people

consider to be pleasing and accurate output. For example, if ChatGPT is prompted

with “Write a haiku about snow falling on pines,” it will use all of the data it was

trained with about haikus, snow, pines, and other forms of poetry to generate a novel

haiku as shown in figure 1.1

Figure 1.1 A simple haiku generated by ChatGPT

1.1 Generative AI in context 3

Fundamentally, these systems are machine learning models that generate new output,

so generative AI is an appropriate description. Some possible inputs and outputs are

demonstrated in figure 1.2. While ChatGPT deals primarily with text as input and

output, it also has more experimental support for different data types, such as audio

and images. However, from our definition, you can imagine that many different

kinds of algorithms and tasks fall into the description of generative AI.

Images

Proteins

Questions
What is the airspeed of
an unladen swallow?

Gene sequences

Mathematics

Articles
Monty Python and the Holy
Grail is a film masterpiece,
best known for its...

Answers
24 miles per hour or
11 meters per second.

Generative AI

Figure 1.2 Generative AI takes some input (numbers, text, images) and produces a new output (usua-
lly text or images). Any combination of input or output options is possible, and the nature of the output
depends on what the algorithm was trained for. It could be to add detail, rewrite something to be
shorter, extrapolate missing portions, and more.

Going a level deeper, ChatGPT is dealing with human text, and so it would also be

fair to call it a model of human language—or a language model if you are a cool person

who does work in the field known as natural language processing (NLP). The field of

NLP intersects both computer science and linguistics and explores the technology

that helps computers understand, manipulate, and create human language. Some of

the first efforts in the field of NLP emerged in the 1940s when researchers hoped

to build machines that could automatically translate between languages. As a result,

NLP and language models have been around for a very long time. So what makes

the new generative AI tools different? The most salient difference is that ChatGPT

and similar algorithms are much larger than what people have historically built and

are trained on much greater amounts of data.

For this reason, the name large language models (LLMs) has become quite popular to

describe GPT and similar types of machine learning models. GPT describes a specific

type of LLM developed by OpenAI, and other companies use similar technologies to

build their own LLMs and AI chatbots. More broadly, LLMs are machine learning

models trained on large amounts of linguistic data.

A diagram of these relationships can be seen in figure 1.3. ChatGPT, Copilot,

Claude, and Gemini are some of the products that operate via text and are built

using LLMs. LLMs use techniques from AI and NLP. The primary component of an

LLM is a transformer, which we will explain in detail in chapter 3.

4 CHAPTER 1 Big picture: What are LLMs?

are products

built using
ChatGPT

Gemini

Copilot

Claude

Large

language

models

Text data Transformers

is the input and

output from

are built

using

Artificial intelligence

Deep

learning

Machine

learning
Natural

language

processing

which use

techniques from

Some examples of generative AI include

Figure 1.3 A high-level map of the various terms you’ll become familiar with and how they relate.
Generative AI is a description of functionality: the function of generating content and using tech-
niques from AI to accomplish that goal.

NOTE Vision and language are not the only options for generative AI. Audio

generation (think text-to-speech, such as when your GPS speaks out the street

names), playing board games like chess, and even protein folding have used

generative AI. This book will stick mostly to text and language since those are

the primary data types employed by GPTs and LLMs.

As the name large implies, thesemodels are not small. ChatGPT specifically is rumored

[1] to contain 1.76 trillion parameters that are used to dictate the way it behaves. Each

parameter is typically stored as a floating point number (a number with a decimal

point) that uses 4 bytes for storage. That means the model itself takes 7 terabytes

to hold in memory. This size is larger than most people’s computers could fit in

RAM, let alone inside the most powerful graphics processing units (GPUs) with 80

gigabytes of memory. GPUs are special-purpose hardware components that excel

in performing the mathematical operations that make LLMs possible. Currently,

many GPUs are required when making LLMs, so we are already discussing a lot of

computational infrastructure and complexity over multiple machines to build an

LLM. In contrast, more run-of-the-mill language models would be 2 GB or less in

most cases—over 5,000× smaller, a much more reasonable size when considering
building and using such a model on more standard hardware.

Optimizing LLMs

Many researchers are investigating ways to make LLMs consume less memory.
Sometimes, this includes techniques that require less than 4 bytes to store a para-
meter utilizing a method called “mixed-precision” [2]. This approach stores some
LLM parameters using 2 bytes or fewer and presents a tradeoff between accuracy
and memory efficiency. In the end, the effect on accuracy is often negligible. This
optimization is one of many that researchers make to make LLMs more resource
efficient.

1.2 What you will learn 5

GPU alternatives

While GPUs are currently the most frequently used hardware to train LLMs, they
aren’t the only option available. Increasingly, companies are developing special-
purpose hardware that offers general advantages for training machine learning
models. For example, in 2018, Google made its Tensor Processing Unit (TPU) [3]
available for public use as a part of the Google Cloud Platform (GCP). While TPUs
generally have less computing capacity than GPUs, their specialized architecture
allows them to perform better than GPUs for specific machine learning tasks.

1.2 What you will learn
Throughout this book, we will explain how LLMs work and equip you with the

vocabulary needed to understand them. Once you’ve finished reading, you will have

a conversational understanding of what an LLM is and the critical steps involved in its

operation. Additionally, you will have some perspective on what an LLM reasonably

can do, especially the considerations related to deploying or using one. We will

discuss salient points about the fundamental limitations of LLMs and provide tips on

how to design around them or when LLMs and, more broadly, generative AI should

be avoided entirely.

Keep in mind that the details of how transformers are combined to build ChatGPT,

Claude, or Gemini are nuanced, and this book primarily focuses on what all of these

systems have in common. In fact, we can’t know some of the actual differences

between these LLMs because although commercial LLM providers have shared a

great deal of information about their models, they have not shared some pieces of

information, likely considered trade secrets.

Due to the effect that transformer-based LLMs will have on the world, we’re

purposely focusing on a wide audience for this book. Programmers of all backgrounds,

executives, managers, sales staff, artists, writers, publishers, and many more will have

to interact with or have their jobs affected by LLMs over the coming years. So we

are going to assume you, dear reader, have a minimal coding background but are

familiar with the basic constructs of coding: logic, functions, and maybe even some

data structures. You also do not need to be a mathematician; we will show you a bit

of math where it is helpful, but it will be optional in building an understanding of

how LLMs work.

This approach means that very little code will be presented in this book. If you

want to dive directly into building and using an LLM, other books in the Manning

catalog, such as Sebastian Raschka’s Build a Large Language Model from Scratch (2024)

or Edward Raff’s Inside Deep Learning (2022), will complement the material presented

here. However, if you want to understand why the LLM you are using has unusual

outputs, how your team might be able to use an LLM, or where to avoid using an

LLM, or if you have a colleague with little machine learning background who needs

to get conversationally competent, this is the book you and your colleague need.

6 CHAPTER 1 Big picture: What are LLMs?

In particular, the first part of this book focuses on what LLMs do: their inputs

and outputs, converting inputs to outputs, and how we constrain the nature of those

outputs. In the second part, we focus on what humans do: how people interact with

technology and what risks this creates for using generative AI. Similarly, we’ll discuss

some ethical considerations that arise when using and building LLMs.

Training LLMs is expensive

Training an LLM is not realistically possible for most people; it is a ≥ $100, 000
investment at a minimum and would be a $100 million effort to try to compete with
OpenAI. At the same time, the resources available for training LLMs are constantly
evolving. As a result, instead of walking you through what training an LLM looks
like today, we focus on content with a longer shelf life—helpful knowledge that we
believe will be valid years from now instead of example code that could be out of
date in just a few months.

1.3 Introducing how LLMs work
Generative AI (GAI or GenAI) is poised to change how we produce and interact

with information. The introduction of ChatGPT in November 2022 highlighted the

capabilities of modern AI and fascinated a significant portion of the world. Currently,

you can sign up for free at https://chat.openai.com/ to try it out.

If you enter the text prompt “Summarize the following text in two sentences,”

followed by all of the introductory text from this chapter, you will get something

similar to the following.

“The recent surge in attention towards artificial intelligence, particularly large

language models (LLMs) like ChatGPT from OpenAI, has highlighted their vast

capabilities in natural language processing. This book aims to provide readers with

a conversational understanding of LLMs, their operational intricacies, potential

applications, limitations, and the ethical considerations surrounding their use while

assuming only a basic familiarity with coding concepts and minimal mathematical

background. That’s pretty impressive, and to a casual audience, it may seem like this

capability has come out of nowhere.”

When you visit OpenAI’s website and sign up for ChatGPT, you may notice an

option similar to that shown in figure 1.4. As the name GPT-4 implies, Open AI is, as

of this writing, working on its fourth generation of GPT models. LLMs like GPT-4 are

a well-established area of ML research in creating algorithms that can synthesize and

react to information and produce outputs that appear human generated. This ability

unlocks several areas of interaction between people and machines that previously

existed only in science fiction. The strength of the language representation encoded

into ChatGPT enables convincing dialog, instruction following, summary generation,

question answering, content creation, and many more applications. Indeed, it is

likely that many possible applications of this technology do not yet exist because

https://chat.openai.com/

1.4 What is intelligence, anyway? 7

our gut reaction is to think of our current problems rather than new capabilities or

products that could exist.

Figure 1.4 When you sign up for OpenAI’s ChatGPT, you have two options: the GPT-3.5 model, which
you can use for free, or the GPT-4 model, which costs money.

The critical factor for you, the reader, is that this technology did not come out of

nowhere but is the result of steady progress over the past decade of dramatic year-

over-year improvements in machine learning. Consequently, we already know quite

a lot about how LLMs work and the ways that they can fail.

We are assuming a minimal background so that you can give this book to your

friends and family. (One of the authors is hopeful that they can give this book to their

mother, who is very proud of them even if she does not know precisely what their job

is.) As a result, we need to cover a potentially large gap in the background before

we dive in. This first chapter aims to give you that background so the next chapter

can begin the process of answering this question: How on earth did a computer

summarize the introduction of this book?

1.4 What is intelligence, anyway?
Artificial intelligence is an excellent name from a marketing perspective, although it

was originally used as the name for an entire field of academic research. This practice

has led to a subtle problem that gives people a false mental model of how AI works.

We are going to try to avoid reinforcing this model. To explain why, we will discuss

why artificial intelligence is not such a great name. We can demonstrate this easily by

considering a simple question: What is intelligence?

8 CHAPTER 1 Big picture: What are LLMs?

You might think that something like an intelligence quotient (IQ) test would

help us answer that question. IQ tests have a strong correlation with numerous

outcomes like school performance, but they do not give us an objective definition

of intelligence. Studies show that some amount of nature (hereditary) and nurture

(environment) affect a person’s IQ. It should also seem suspicious that we can boil

down intelligence into something as simple as one number—after all, we often scold

people for being only “book smart” but not “street smart.” Even if we knew what

intelligence was, what would make it artificial? Does intelligence have manufactured

flavorings and food colorings?

The bottom line is that IQ tests measure your ability to perform a finite set of

capabilities, mostly some specific types of logic puzzles under time constraints, but

they don’t help us understand the fundamental nature of intelligence. The truth is

that there is no perfect understanding of what intelligence is.

The field of AI has long been trying to get computers, which are rigid, deterministic,

rule-following machines, to perform specific tasks that humans can do but can’t give

precise definitions or instructions to do. For example, if we want a computer to count

to 1,000 and print out every number divisible by 5, we can write detailed instructions

that almost any programmer can convert to code. But if I ask you to write a program

that attempts to detect if an arbitrary picture has a cat in it, that’s quite a different

challenge. You need to somehow precisely define what a cat is and then all the

minutia of how to detect one. How exactly do we write code to find and differentiate

between cat whiskers and dog whiskers? How do we successfully recognize a cat when

it does not have whiskers? When it comes down to it, it isn’t easy to do.

However, because AI and ML have focused on these hard-to-specify tasks that

humans can perform, describing AI and ML algorithms using analogies has become

especially common. To get a computer to detect cats, we provide thousands upon

thousands of examples of images that are cats and images that are not cats. We then

run one of many various algorithms with a specific, detailed, mathematical process

for differentiating cats from the rest of the world. But in the technical vocabulary, we

call this process learning. When the model fails to detect a cat in a new image because

it is a lion and lions were not in the original list of cats, we often say that the model

didn’t understand lions.

Indeed, whenever we try to explain something to friends, we often use analogies to

shared concepts that we are both familiar with. Because AI andML are broadly focused

on replicating human abilities to perform tasks, the analogies often use language that

implies the literal cognitive functions of a human. As LLMs demonstrate capabilities

at a level close to what humans can do, these analogies become more troublesome

than helpful because people read too deeply into them and begin to believe that

they mean more than they do.

For this reason, we will be careful with our analogies and caution the reader about

following any analogies too far. Some terms, like learning, are technical jargon worth

understanding, but we want you to be on your guard about what they might imply.

1.5 How humans and machines represent language differently 9

In some cases, analogies are still helpful in this book, but we will try to be explicit

about the boundaries of how to interpret such analogies.

1.5 How humans and machines represent language differently
What does it mean to represent language? We humans implicitly start to learn how to

represent language shortly after birth through interaction with others and the world

around us. We proceed through formal education to develop an understanding of the

components, underlying structures, and rules that govern language and its use. Our

internal representation of language has been studied extensively. While some laws

of language have been uncovered, many are still up for debate. ChatGPT’s internal

representation of language is based on portions of this knowledge. It is enabled

using the concepts of artificial neural networks, also known as deep learning (another

dangerous analogy), which are combinations of data structures and algorithms that

are patterned loosely after human brain structures. However, our understanding

of the ways the mind works is incomplete. While the neural networks that power

LLMs are a mere simplification of the human brain structure, their power lies in

their ability to capture and encode language in a useful way to generate language

and interact with people.

NOTE Abstractions of the brain’s structure have proven useful across many

domains. Neural networks have demonstrated incredible progress in language,

vision, learning, and pattern recognition. The convergence of advancements

in neural machine learning algorithms, the extreme proliferation of digital

data, and an explosion of computer hardware, such as GPUs, have led to the

advancements that make ChatGPT possible today.

The critical detail to take from this discussion is that you, as a human, have an innate

understanding of language you have learned over time. Your learning and use of

language are interactive. Through evolution, we all seem to have relatively consistent

ways of learning and communicating with each other. To find out more about this

concept, look into the theory of universal grammar introduced by linguist Noam

Chomsky. Unlike people, LLMs have a representation of language that is learned via a

static process. When you have a conversation with Claude or ChatGPT, it mechanically

participates in a dialog with you despite having never been in a conversation before.

The representation of language an LLM learns can be high quality, but it is not

error-free. It is manipulable in that we can alter the behavior of LLMs in specific

ways to limit what they are aware of or what they produce. Understanding that LLMs

represent language using relationships inferred from examples helps us maintain

realistic expectations. If you are going to use an LLM, how dangerous is it if it is

wrong? How can you work with the representation of language to build a product

or avoid a bad outcome? These are some of the high-level concerns we will discuss

throughout this book.

10 CHAPTER 1 Big picture: What are LLMs?

1.6 Generative Pretrained Transformers and friends
The terminology Generative Pretrained Transformer was invented by OpenAI to talk

about a new type of model they introduced in 2018 that incorporates a type of neural

network component known as a transformer. While the original GPT model (GPT-1)

is no longer used, the core underlying ideas of pretraining and transformers have

become core pillars of the recent revolution in generative AI and tools like Claude,

Gemini, Llama, and Copilot.

It is also essential to recognize that these GPT-based AI tools are only one example

of an expansive domain of algorithmic research and application of LLMs. Outside of

the release of ChatGPT, we have observed an incredible proliferation of LLMs. Some

LLMs, like those released by EleutherAI and the BigScience Research Workshop, are

freely available to the public to advance research and explore applications. Corpo-

rations like Meta, Microsoft, and Google, as we’ve mentioned, have released other

LLMs with more restrictive licensing terms. Publicly available LLMs that anyone

can use to build an application or system, sometimes called foundation models, have

created a vibrant community of researchers, hobbyists, and companies exploring

the applications, limitations, and opportunities LLMs and generative AI create. The

concepts we teach in this book apply nearly uniformly to all LLMs. Each of these

produce output using structures similar, if not identical, to those found in ChatGPT.

It may seem impossible for one book to contain a general summary applicable to

many models. However, it is possible for a few reasons, one of the most important

being that we will not go to the level of depth necessary to code an LLM yourself

from scratch. Naturally, there are parts of ChatGPT and other commercial LLMs

that remain trade secrets. As a result, our scope and descriptions are intentionally

generalized to the most common aspects of all generative LLMs today.

The second reason we can give such a broadly applicable summary is the nature

of LLMs. While it’s true that many tweaks can be made to how they are built and

operate, researchers in the field consistently find that the details that matter the most

are the following:

How large is the model, and can you make it larger?

How much data was used to build the model, and can you get more?

These points can be frustrating for researchers who like to think they have vital

insights or designs that meaningfully improve how these LLMs work and operate

because, in many cases, the same improvement could be obtained just as easily by

“making it bigger” or building a model with more data or more parameters instead.

Increasing the size of both the models and the data pools is a crucial component of

many ethical concerns around using and building LLMs, which we will discuss in

chapter 9.

1.7 Why LLMs perform so well
We discuss the details of how LLMs work in the coming chapters, but it is also worth

sharing here a key lesson learned by researching ML algorithms. For many years,

1.7 Why LLMs perform so well 11

getting better performance from your algorithm for whatever task you were trying

to do often meant getting clever about designing your algorithm. You would study

your problem, the data, and the math and attempt to derive valuable truths about

the world that you could then encode into your algorithm. If you did a good job,

your performance improved, you required less data, and all was good in the world.

Many classic deep learning algorithms you may hear about, like convolutional neural

networks (CNNs) and long short-term memory (LSTM) networks, are, at a high level,

the result of people thinking hard and getting clever. Even simpler “shallow” ML

algorithms, such as XGBoost, that do not rely on neural networks or deep learning

were created using clever algorithm design.

LLMs demonstrate a more recent trend. Instead of getting clever about the

algorithm, they keep it simple and implement a naive algorithm that simply captures

relationships between pieces of information. In many ways, LLMs have fewer beliefs

about the world forcibly baked into the algorithm. Fundamentally, this provides more

flexibility. How could this be a good idea if I told you the opposite approach was how

people improved algorithms? The difference is that LLMs and similar techniques

are just bigger, massively so. They are trained on far more data and with far more

ability to capture more relationships between more words in more sentences; this

brute-force approach appears to have outpaced classic ML methods in performance.

This idea is illustrated in figure 1.5.

More cleverLess clever

Cleverness in encoding information about the world into the algorithm

CNN

LSTM

XGBoost

LLM

Better performance

Worse performance

Ability to perform

tasks accurately

Figure 1.5 If the cleverness of an algorithm is based on how much information you encode into the
design, older techniques often increase performance by being cleverer than their predecessors. As
reflected by the size of the circles, LLMs have mostly chosen a “dumber” approach of using more
data and parameters and imposing minimal constraints on what the algorithm can learn.

As we have already stated, bigger is not better by every metric. These models are

currently a logistical and computational challenge to deploy. Many real-world con-

straints, including response time, power draw, battery drain, and maintainability, are

all negatively affected. So it is only a narrow definition of “performance” by which

LLMs have improved.

12 CHAPTER 1 Big picture: What are LLMs?

Still, the lesson on the value of “going bigger” over “getting clever” is worth

considering. Sometimes, in your design of a machine learning solution, even if you

are using an LLM, the best answer may be “Let’s just go get a lot more data.”

1.8 LLMs in action: The good, bad, and scary
Throughout this book, we will give examples of how LLMs can fail, often in hilarious

or silly ways. The point of these illustrations isn’t to say that LLMs are incapable of

performing a task. With changes to the input, setup, or random luck, you can often

get LLMs to work better.

The point of such illustrations is to show you how LLMs can fail, often on things

so simple that a child can do them better. As you read through this book and interact

with LLMs yourself, these illustrations should give you pause and lead you to the

thought, “If I use ChatGPT for a hard task, but it fails on easy ones, am I setting

myself up for failure?” The answer may often be an emphatic yes! Using LLMs safely

requires a degree of skepticism or doubt about the outputs, work to verify and

validate correctness, and the ability to adapt accordingly. If you use an LLM for a

task you cannot do yourself, you risk exposing yourself to errant results you can’t

verify personally. We will continually weave this point and how to deal with it into

the conversation as we discuss how to use LLMs more throughout the book.

It is easy to imagine many ways that LLMs can potentially make our lives easier

when it does work—answering all your emails, summarizing long documents, and

explaining new concepts. What does not come naturally to many is how things can

go wrong and quickly become dangerous.

This kind of adversarial thinking can often be prompted with an initial example:

say you want to learn how to make a bomb. If you ask ChatGPT that question, you

get the sanitized answer, “Sorry, I can’t assist with that request. If you’re in crisis or

need help, please contact local authorities or professionals who can help.” However,

researchers have recently shown how to get ChatGPT and many other commercial

LLMs to answer the question without hesitation, among many other dangerous

requests for information [4].

One might argue that if someone is so clever as to figure out how to trick the LLM,

they could probably get whatever dangerous information they want from another

source. This is likely true, but at the same time, it fails to account for the scale of

automation in LLMs and generative AI tools. No AI or ML algorithm is perfect, and if

millions of people ask questions, LLMs might produce a dangerous response 0.01%

of the time. ChatGPT has over 100 million users [5], so that is 10,000 dangerous

responses. The problem worsens when you consider what a malicious actor might

begin to automate. We will discuss this problem further in the second half of the

book.

Summary 13

We look forward to your joining us in exploring how LLMs work. In the end, you’ll

have a detailed understanding of many things to consider when employing LLMs’

revolutionary capabilities in your business or daily life.

Summary
ChatGPT is a type of large language model, which is itself in the larger family

of generative AI/ML. Generative models produce new output, and LLMs are

unique in the quality of their output but are extremely costly to make and use.

LLMs are loosely patterned after an incomplete understanding of human brain

function and language learning. This is used as inspiration in design, but it does

not mean the models have the same abilities or weaknesses as humans.

Intelligence is a multifaceted and hard-to-quantify concept, making it difficult

to say whether LLMs are intelligent. It is easier to think about LLMs and their

potential use in terms of capabilities and reliability.

Human language must be converted to and from an LLM’s internal representa-

tion. How this representation is formed will change what an LLM learns and

influence how you can build solutions using LLMs.

2Tokenizers: How large
language models see the

world

This chapter covers
Creating tokens from sentences

Controlling vocabulary size with normalization

Avoiding risks in tokenization

Tokenization strategies to remove ambiguity

As discussed in chapter 1, in the world of artificial intelligence, it is often helpful to

find analogies to human learning to explain howmachines “learn.” How you read and

understand sentences is a complex process that changes as you get older and involves

multiple sequential and concurrent cognitive processes [1]. Large language models

(LLMs), however, use simpler processes than human cognitive processes. They em-

ploy algorithms based on neural networks to capture the relationships between

words in large amounts of data and then use this information about relationships to

interpret and generate sentences.

Our discussion of how these algorithms work will begin with their input: sentences

of text. In this chapter, we explore how the LLM processes these sentences to become

inputs for the model. Just as language is critical for how you think and process

information, the inputs to an LLM are crucial in influencing what kinds of concepts

and tasks LLMs can perform.

14

2.2 nLanguage models see only tokens 15

2.1 Tokens as numeric representations
It may seem obvious that LLMs should process sentences, but to fully understand,

we must be more specific. As we talk about how LLMs work, you will see that textual

sentences are unnatural for the neural network algorithms that power LLMs because

neural networks fundamentally employ numbers to do their work. As shown in figure

2.1, the algorithms employed by LLMs must convert human text into a numeric

representation before working with it. Tokens are the representations that LLMs use

to break text into pieces that can be encoded as numbers.

Figure 2.1 To understand text, LLMs must break text into tokens. Each unique token has a numeric
identifier associated with it.

You can think of tokens as the smallest unit of text an LLM processes—an “atom,”

if you will, the smallest part from which all other things are built. So what are the

atoms of text? Consider this: As you read this book, what are the smallest building

blocks that your brain uses to process meaning? Two natural answers are letters and

words. It is very tempting to define letters as the atom since words are made of letters,

but do you consciously read every letter in every word? For most people, the answer

is “no.” (If you are dyslexic like one of the co-authors of this book, this is a bizarre

question. But cognitive processing is complex and not fully understood; please bear

with us on the analogies!) You look at the more prominent words and word parts.

In fbct, yoy cn probbly unrestand ths sentnce ever through we diddt sue th ryght

cpellng or l3ttrs. People unconsciously use parts of words to process text, and LLMs

are built using the same principle.

In this chapter, you will learn how the process of converting text to tokens works.

First, we will discuss tokens in more detail; then, we will discuss the procedures used

to decide how sentences are turned into tokens.

2.2 Language models see only tokens
By adulthood, most English-speaking people know around 30,000 words [2]. GPT-3,

the LLM that initially powered ChatGPT, has a vocabulary of 50,257 tokens [3]. These

16 CHAPTER 2 Tokenizers: How large language models see the world

tokens are not words but parts of words referred to as subwords, a representation

that is somewhere between words and letters. Intuitively, a token captures language’s

minimum meaningful semantic unit. For example, the word schoolhouse will often get

broken into two tokens, school and house, and the word thoughtful as thought

and ful. This is useful for recognizing frequent words and having the subwords to

interpret new words we have never seen before. People often use a similar technique,

called semantic decomposition, to understand words they’ve never seen before. We

intuitively break new words into constituent parts to grasp their meaning based on

words we already understand.

Feature engineering is the process of converting your data to a form that is more

convenient to your algorithm and the task you want to solve. To build an algorithm

that can detect the language of a given text, you could write code that takes text as

input and outputs the percentage of times each character occurs. For example, if é

appears a lot in a document, you have a good feature to indicate that the document

is more likely to be Spanish or French than Russian or Chinese. Sound feature

engineering is concerned with thinking through how your model works, what you

want to achieve, and how to prepare your data for the combination of model and

goal.

Tokenization is the feature engineering of LLMs; it is critically essential because

tokens are the only information a model interacts with. Tokens are seen as individual,

abstract things that are not inherently connected. The relationships are learned

through observation of data.

Looking back at figure 2.1, it is evident that the tokens for Dis and dis are related,

the only difference being that one starts with a capital D. However, you can see

that the model assigns the identifier 4944 to Dis and the identifier 834 to dis. That

is, the model doesn’t inherently see any connection between the tokens representing

Dis and dis, even if we, as humans, see an obvious connection. The model doesn’t

even see Dis or dis. For an LLM to process tokens, we must convert those tokens

into numbers so that the model will see the numbers 4944 and 834. Importantly, the

model doesn’t have any direct way to know that these tokens are related.

A token is a mapping from a subword to a unique numeric representation. In turn,

tokenization is the process of converting a full-text string into a sequence of tokens. If

you have used machine learning libraries before (especially any natural language

processing [NLP] tools), you are probably familiar with some of the simpler forms of

tokenization. For example, a simple tokenization process breaks a text into tokens by

splitting a text based on spaces. However, this approach limits our abilities to create

subwords or process languages that don’t use whitespace to delimit words, such as

Chinese.

2.2.1 The tokenization process

The generic process that tokenization follows is shown in figure 2.2 with four key

steps:

2.2 Language models see only tokens 17

1 Receiving the text to process—This means obtaining text input as a string data

type (a collection of letters, digits, or symbols) from a user, the internet, or

whatever source that has the text you want.

2 Transforming the string—This often involves changing the string in some useful

way, such as converting uppercase characters into lowercase. This could also

be done for security reasons (e.g., the text came from a user, and we need to

remove anything that might look like some malicious input) or to eliminate

irrelevant variations in the text to help the algorithm learn better. This process

is known as normalization.

3 Breaking the string into tokens—Once a string is available, it needs to be separated

into a sequence of discrete substrings; these are the tokens found in the larger

string. This is referred to as segmentation.

4 Mapping each token to a unique identifier—The unique identifier is usually an

integer number, which produces output that the LLM can understand.

Process Example

Input:

Text input as a string

Normalization:

String is transformed

Segmentation:

Text is broken into tokens

Output:

Each token mapped to

unique identifier

"Hello World!"

"hello world"

["hello","world"]

[0, 1]

Figure 2.2 Generically, tokenization involves processing input to produce numeric identifiers for
tokens.

The first and last parts of this process have little room for choice or different behavior.

First, you need input to process; last, you need a numeric identifier for each token to

store and retrieve the information you will associate with that token. The two middle

steps, normalization and segmentation, are where you can choose what happens.

18 CHAPTER 2 Tokenizers: How large language models see the world

The last step of the tokenization process is where the vocabulary is built. The

vocabulary of a model is the total number of unique tokens that are seen during

training when we give the algorithm data to learn from. It almost always takes a large

amount of data to build a rich vocabulary with many unique tokens.

Choosing the vocabulary for a model involves a series of trade-offs: the larger the

vocabulary, the more information your model can process successfully. Consider a

one-year-old child with a vocabulary of maybe a few dozen words. This child will not

be a very effective communicator (but that’s okay; they have lots of time to learn).

So a more extensive vocabulary not only helps the model understand more things,

but it also makes the model larger. If you have a vocabulary that’s too large, you may

make the model slower due to the number of computations required to use it, or the

model may consume an excessive amount of memory or disk storage, which makes it

more difficult to transfer or share to other machines—for example, when deploying

it as a part of a software application.

You build the model’s vocabulary by processing the training data and identifying

tokens. Each time you see a new token, you give it a unique identifier based on the

number of unique tokens you’ve seen. This process is often as simple as storing a

counter set to 0 and incrementing it every time a new token is found. Once the

process is complete, you have a tokenizer that is effectively an encoder. The tokenizer

can receive text as input and return a numeric encoding of that text that the LLM

algorithms can use as its output.

2.2.2 Controlling vocabulary size in tokenization

GPT-NeoX, a publicly available LLM, takes about 10 GB to store its vocabulary on

disk. That is a lot of data, already large enough to make many real-world use cases

challenging from the perspective of data storage and computation. It is so large that

storing it on a micro-SD card would be prohibitively slow, making use on a mobile

phone or some game consoles a significant challenge. It is big enough that it can’t

be streamed in real time and must be downloaded and loaded into the processor’s

RAM to perform tokenization. However, a vocabulary must be sufficiently large to

represent all words and subwords the model will encounter during training and

use. Suppose a model encounters a word that is not in its vocabulary and cannot

be represented by combining subwords in its vocabulary. In that case, the model

cannot capture information about that piece of text. As a result, it is essential to

weigh concerns about vocabulary size against the need for models to interpret a wide

variety of content. In NLP, this is often called the out-of-vocabulary problem, when

we encounter words we can’t represent using the tokens available to the model.

Vocabulary size is one factor contributing to an LLM’s size, so discussing methods

and tradeoffs for controlling vocabulary size is vital. In this section, we will describe

how changing the tokenization process’s behavior can influence vocabulary size and

affect model capabilities and accuracy.

2.2 Language models see only tokens 19

Process Example

Input:

Text input as a string

Normalization:

String is transformed

"Hello World!"

"hello world"

Figure 2.3 The normalization process commonly involves changing text to remove uppercase
characters and punctuation.

In figure 2.3, we focus on the second transformation step, normalization, which

converts the uppercase characters “H” and “W” to lowercase and removes punctu-

ation. These common normalization steps originate from classical NLP pipelines

and are still sometimes done in modern deep learning approaches today. They have

the immediately desirable effect of reducing the size of the vocabulary. Instead of

needing to represent “Hello” and “hello” as two separate tokens, they get mapped

to one unique token. This mapping makes an enormous difference because every

word that starts a sentence and gets capitalized would potentially duplicate a word

in the vocabulary with a capitalized version. Such normalization can also help with

various typos and misspellings.

For example, while writing this book, we typed “LLMs,” “LLms,” and “llms,” and

made various other mixed-case typos. Converting each character to lowercase in

each variation resolves all these typos into a single, simple form, so we get a smaller

vocabulary and decrease ambiguity.

However, converting text to lowercase doesn’t always decrease ambiguity. Consider

“Bill” and “bill.” In the first situation, capitalization is vital for understanding that

“Bill” is probably someone’s name, and “bill” is more likely a unit of money (or one

of the other definitions of “bill”). Capitalization is crucial not only for understanding

the meaning of the text but also for understanding the errors in the text. Consider

again all the various ways we miscapitalized “LLMs” in this book. A high-quality AI

algorithm would be able to recognize that we made a typo and correct it! ChatGPT is

capable of this and thus requires capitalization in the model. So there is an important

tradeoff between vocabulary size and potential model accuracy to consider.

In classical NLP and even not-that-old deep learning models like BERT (a prede-

cessor to the LLMs that power ChatGPT), the ability of an algorithm to recognize

typos and fix them was extremely limited outside of solutions designed explicitly for

that purpose. For this reason, much of the work that used to go into engineering

a robust normalization step has been discarded for LLMs today. A more extensive

vocabulary is desirable to produce more capable models that can learn to understand

mistakes.

20 CHAPTER 2 Tokenizers: How large language models see the world

2.2.3 Tokenization in detail

The normalization and segmentation steps in the tokenization process largely

determine the vocabulary size. In figure 2.4, we show one of the most straightforward

strategies for tokenization. This strategy follows a simple rule: any time a space is

seen in the text, split the larger string into those tokens. In the case of “hello world,”

it is as easy as calling "hello world".split(" ") in Python. This is a reasonable

approach to take; it is how we, as humans, read sentences. But it also adds some

subtle complexity.

Process Example

Normalization:

String is transformed

Segmentation:

Text is broken into tokens

"hello world"

["hello","world"]

Figure 2.4 The segmentation process breaks normalized text into words or tokens so that each can
be processed independently.

What happens when you have punctuation in your text? If we use our white space

rule to convert the string “hello, world” into ["hello,", "world"], we run into a

similar problem as we do with capitalization. We end up with two distinct tokens for

the same concept: "hello" and "hello,". The old-school approach often addressed

this by removing and developing more complex rules for splitting strings into tokens.

While this is a step in the right direction toward reducing vocabulary size, manually

specifying tokenization rules does not address other concerns. For example, rule-

based tokenization strategies are a significant struggle for languages like Chinese

that do not use spaces to separate words.

IDENTIFYING SUBWORDS WITH BYTE-PAIR ENCODING
The general theme of LLMs is to do less feature engineering by hand and let algori-

thms do the heavy lifting instead. For this reason, an algorithm known as byte pair

encoding (BPE) is typically used to break strings into tokens. Byte pair encoding is an

algorithm for breaking words into common subword sequences of characters. BPE

today is usually done with a custom segmenter and almost no normalization.

NOTE By experimentation, we see many ChatGPT-like products will remove

some Unicode characters that do not print (Unicode is weird), but otherwise

mostly take your text as-is. Most prior language models do use various flavors of

normalization, and how to normalize text for LLMs better is, we think, a good

and open question.

2.2 Language models see only tokens 21

Since finding the most efficient set of subwords is a computationally expensive task,

BPE uses a heuristic to take a shortcut. It starts by looking at individual letters as tokens

and then finds pairs of adjacent letters that occur most frequently and combines them

into subword tokens. The algorithm repeats this process many times, continuing with

subword tokens, until some threshold is met and the vocabulary is “small enough.”

For example, in the first pass, the BPE algorithm examines the frequency of the

individual letters used in English and encounters the letters “i,” “n,” and “g” near

each other frequently. In the first pass, BPE might observe that “n” and “g” occur

together more frequently than “i” and “n,” so it will produce the tokens i and ng.

In a subsequent pass, it may combine those tokens into ing based on the frequency

of that combination of letters versus how often “ng” occurs with other letters or

subwords. Once BPE has reached its stopping point, it will have identified individual

words such as “eating” and “drinking” as frequently occurring combinations. It may

also capture “ing” as a suffix so that other words ending with that subword can also

be represented as tokens. When the algorithm is complete, we end up with tokens

that capture complete words and others that capture subwords. This process is shown

at a high level in figure 2.5.

Vocab = {"a","b",...,"z"}

Repeat with new corpus and

vocabulary until no common

pair of bytes remains.

Replace bytes with a

new special token T

Add the special token T

to the vocabulary

Find the most common

pair of bytes

Vocab' = {"a","b",...,"z","ng"}

corpus' = "A very IoT str:T"

corpus = "A very long str:ng"

Figure 2.5 A simplified byte pair encoding algorithm for creating tokens: first, find the most
frequent pair of characters “ng.” Next, replace all instances of “ng” with a placeholder token “T,”
and add “ng” to the vocabulary. Repeat the process until no common byte pairs remain.

NOTE Running the BPE algorithm to create a vocabulary is surprisingly

expensive because it must read the input data many times to calculate the

most frequent combinations of letters. While LLMs are trained on over 500

million or even 1 billion pages of text, their tokenizers are usually created using

a tiny subset of that data. Often, a tokenizer is trained using a much smaller

collection of text the size of a novel.

The BPE process may seem odd at first, but you can think of it as a way of identifying

common strings in a corpus. For example, BPE will almost always learn to represent

New York as one token, which is useful since the state and city of New York are

22 CHAPTER 2 Tokenizers: How large language models see the world

frequent occurrences in the text. Representing the whole concept as a single token

makes it easier to use that kind of information. Indeed, most common words will

become unique tokens, while rare words are hopefully captured as a combination of

subwords. For example, loquacious will be tokenized by GPT-4 as lo, qu, and acious.

This method is a success because “acious” is a Latin postfix for inclination/propensity,

making it easier for the model to handle an unusual word correctly. It is also a failure

case because the Latin prefix “loqu” got broken up into two tokens instead of one,

making learning harder.

After BPE is used to make a vocabulary, model authors manually add additional

tokens for various reasons, such as words that are important to a specific knowledge

domain. As we will discuss in the next section, in some domains, having the correct

tokens has a significant effect by capturing nuanced meaning. So often, the authors

will make sure the necessary tokens are included. Model authors will also add special

tokens that don’t directly represent word parts but provide auxiliary information

to the model. Some common examples of this are the “unknown” token (typically

represented as [UNK]), which is used if the tokenizer fails to process a symbol correctly,

and the system token [SYSTM], which is used to distinguish between a model’s built-in

prompt and user-entered data, as well as other kinds of stylistic markers. Multimodal

models that accept text and image inputs use unique tokens to tell the model when

the input stream switches between bytes that represent text data and bytes that

represent image data.

Open AI decided to use BPE to encode text into tokens when they developed

ChatGPT and have released their tokenizer as the open source package tiktoken

(https://github.com/openai/tiktoken). Still, several other algorithms and implemen-

tations for automatically generating tokens are available, including the WordPiece

and SentencePiece algorithms developed at Google [4]. Each of these have diffe-

rent tradeoffs. For example, WordPiece uses a different technique for counting

the frequency of the candidate subwords when building the tokenizer’s vocabulary.

One of the algorithms implemented in SentencePiece processes entire sentences,

preserving white space when calculating tokens, which may improve output when

building models that handle multiple languages. However, BPE is the most broadly

used algorithm. For example, it is now used exclusively in Google’s recent LLMs.

Regardless of the algorithm chosen, the size of a tokenizer’s vocabulary is a critical

model parameter determined by the data scientist or engineer in charge of training

and augmenting the tokenizer. The following sections dive deep into some of the

considerations on vocabulary size and other decisions made throughout the tokenizer

development process.

2.2.4 The risks of tokenization

As mentioned in chapter 1, we won’t go much into coding in this book. The goal

is to give you a reasonable understanding of how LLMs work and remove some of

the magic and mystery so you can focus instead on how LLMs may be used for your

job. Tokenization is the first piece of the puzzle. It is a simple but effective strategy

https://github.com/openai/tiktoken

2.2 Language models see only tokens 23

to produce the inputs to LLMs. You have learned how the size of the vocabulary

plays a significant role in a model’s deployability, the tradeoff in recognizing nuance

versus the unnecessary redundancy associated with making a vocabulary, how the

tokenization process influences the size of the vocabulary, and how the token selection

process can be automated with BPE.

The choices made at tokenization time affect what LLMs can do today and will

affect them in the future. These choices involve a few big-picture challenges to be

aware of. To explore this topic further, two salient yet nuanced details of BPE are

worth sharing some concerns about: the relationship between sentence length and

token counts and the potential for LLMs to be confused by characters, known as

homoglyphs, that appear identical yet have different binary encodings.

LONGER SENTENCES DO NOT MEAN MORE TOKENS
An unintuitive aspect of BPE is that longer sentences do not mean more tokens. To

see why, look at figure 2.6, where we show a real tokenization of two different strings

by GPT-3. The string “I’m running” is longer by one character than the string “I’m

runnin,” but it is one token shorter! If you don’t believe it, you can try tokenizing

different strings at https://platform.openai.com/tokenizer.

I'm running

I'm runnin

I

I

'm

'm runn

running

in

[40, 1101, 2491]

[40, 1101, 1057, 35073]

Input Tokenization Output

Figure 2.6 Tokenizing two different sentences

This discrepancy occurs because BPE is greedily looking for the smallest set of tokens

for any piece of input. In this specific case, the string “running” occurs frequently

enough in our training data that it gets its own token. In the case where the “g” is

missing, there is no token for “runnin” in our vocabulary because that variation may

have appeared rarely in our training data. Thus, “runnin” needs to be broken into

at least two tokens, giving us run and nin.

This nuance of tokenizer implementation is fertile ground for software bugs.

Different tokenizers may provide different answers on how to tokenize the same

string. When designing unit tests and infrastructure, this factor is important to keep

in mind to avoid getting lost or confused when upgrading or converting between

tokenizer implementations that may cause new differences in token generation. It

can also affect evaluations of LLMs, as many models are highly sensitive to added

white space, and inconsistent tokenization may inadvertently lead to comparisons

not being apples to apples.

https://platform.openai.com/tokenizer

24 CHAPTER 2 Tokenizers: How large language models see the world

HOMOGLYPHS CREATE CONFUSION
Homoglyphs are a problem developers may encounter when working with multiple

human languages or considering the security implications of processing externally

provided data. When input comes from arbitrary users, sometimes it may be nefarious

and want to trick your model into bad behavior. One way that could be done against

an LLM is with a homoglyph attack.

A homoglyph is when two or more characters have different byte encodings but

appear identical when rendered on the screen. One example is the Latin letter “H”

used in most Western European languages and the Cyrillic “H” used throughout

Eastern Europe and Central Asia.

BPE will encode homoglyphs that use different byte encodings into different

tokens. As a result, homoglyphs can inflate the number of tokens in a text, change

how an LLM parses the information, and run up your compute costs. An amusing

example of a homoglyph is the Unicode character U+200B, also known as the “zero

width space.” This character is used in typesetting and takes up space, but it does

not print anything, show anything, or change anything about how a document is

rendered.

The zero width space is one of many strange and interesting things that exist

within the Unicode specification and could be used to cause you pain. Many services

thus employ normalization steps that remove such strange characters and replace

homoglyphs with a canonical representation (i.e., anything that looks like an “a”

must be encoded as an a). For example, OpenAI’s current tokenizer interface will

remove homoglyphs. You must consider homoglyphs if you want to deploy an LLM

on your hardware or a user’s device.

2.3 Tokenization and LLM capabilities
If we are only concerned with the ability of an LLM to produce high-quality human-

like text, the specific details of how you tokenize your text do notmatter asmuch as the

data and compute used to build thesemodels. If you put enough computational power

and scale into your models, they will eventually figure out useful representations

regardless of the building blocks. But sometimes, tokenization dramatically affects

what an LLM is capable of. In this section, we cover some examples.

It may be the case that the examples that follow are not directly relevant to your

job or what you would like to do with an LLM. That is perfectly fine; the point of these

examples is not to dissuade you from using an LLM. Instead, the goal is to help you

understand that the scope of what LLMs learn is limited by the representation chosen,

and theremay not be a way around these concerns without major engineering work. If

you start building an application with LLMs and find significant difficulty, think about

how tokenization could be a factor in your goal. If tokenization is indeed the problem,

there is little you can do to solve it, so it may be best to look at other approaches,

such as manually augmenting the vocabulary with tokens that are important for your

application.

2.3 Tokenization and LLM capabilities 25

2.3.1 LLMs are bad at word games

Users frequently enjoy asking LLMs to solve word puzzles or perform tasks that

involve word games. For example, figure 2.7 shows a word game where the correct

answer depends on the exact letter sequence and the number of letters in a word.

Figure 2.7 The tokenization approach means that ChatGPT cannot really “see” single
characters or word lengths. If you ask questions that require subcharacter identification
and change them in a unique and unusual way, ChatGPT starts to fail. The correct middle
character is “a,” but ChatGPT insists that the letter is “e.” What ChatGPT sees is three
tokens, representing P, ine, and apple, respectively.

Playing word games may not be something you care about for your application,

but the reason word games fail may be highly salient to your problem. Although

many examples like this are toy problems in that they aren’t particularly scientifically

or commercially important, they reveal notable breakdowns in how these models

operate. They may come into play in more practical uses, such as when models

struggle to write poetry containing rhymes or assonance.

Consider, for example, that you want to build an application that answers ques-

tions about a user’s prescription drugs. Drugs often have longer, confusing names

that people fail to remember or spell incorrectly, and because an LLM does not

understand letters, it may confuse one drug’s name with a different drug’s long and

strange name.

Because drug names are uncommon, they will tokenize differently, even with

minor misspellings. For example, in GPT-3, “Amoxicillin” and the easy misspelling

“Amoxicillan” share no common tokens! This creates a much greater risk of the

LLM responding incorrectly, where the risk is intrinsically higher, making an LLM

application all the more important to thoroughly test, engineer around with extreme

care, or potentially avoid altogether.

26 CHAPTER 2 Tokenizers: How large language models see the world

2.3.2 LLMs are challenged by mathematics

Tokenization significantly affects tasks involving formal symbolic reasoning, including

mathematics and playing board games. Bothmath and board games are implemented

by LLMs as symbolic reasoning problems where individual tokens have specific rules

governing their interactions and meaning when observed in conjunction with other

tokens. For example, models containing individual tokens for each digit tend to

perform better at arithmetic than models that don’t. This is because the number

123456 will become two tokens in GPT-3, ["123", "456"], based on the frequency

of those tokens in the tokenizer’s original training data. This makes it harder for

the model to deal with the individual digits in that number. Some system developers

have solved this problem by normalizing numbers by inserting spaces between all

digits, such as 1 2 3 4 5 6, which creates a new output with six tokens, one for each

digit.

This difference in math capability is well-illustrated in figure 2.8, which shows

performance on arithmetic computations throughout training. The top curve is a

typical BPE tokenizer, while the bottom curve, which shows better performance, is

the same tokenizer modified to have digit-level tokenization of numbers.

Figure 2.8 A comparison of how two LLMs learn to perform arithmetic computations over time. Time
is shown on the x-axis. The upper curve is a typical BPE tokenizer, while the lower curve is the same
tokenizer modified to use tokens that represent individual digits. The y-axis describes the ability of the
LLM to perform accurately, where a smaller number means fewer errors. The bottom line is that LLMs
that use digit-level tokenization can learn how to do math better and faster.

2.3.3 LLMs and language equity

Most LLM tokenizers can represent any symbol covered by Unicode, which includes

the characters from most of the world’s alphabets. However, how efficiently those

tokenizers represent text in a given language varies massively, especially as the

tokenizers are typically trained on smaller collections of text resources for diffe-

rent languages. This can cause substantial inequity in commercial services based on

LLMs [5] because tokenization of words in languages that are rare in the training

set defaults to a more granular set of subwords, resulting in increased token usage.

Commercial LLM providers like OpenAI and Anthropic typically charge customers

2.5 nTokenization in context 27

on a per-token basis, usually a fraction of a cent for every token input into the LLM

and produced as output by the LLM. These costs add up when you consider that a

high-use commercial application may process tens of millions of tokens daily.

The time it takes for an LLM to complete a request and the amount a user is

charged per token depends directly on the tokenizer. Therefore, languages that are

more efficiently represented using a tokenizer are economically incentivized over

those that are not represented efficiently. Using English as a baseline, researchers

have found that the cost to answer a user query in German or Italian is about 50%

more when using ChatGPT and GPT-4. Languages that differ even more substantially

from English can incur much larger charges: Tumbuka and Bulgarian are more than

twice the cost, and Dzongkha, Odia, Santali, and Shan cost over 12 times as much as

English to process.

2.4 Check your understanding
1 How would you expect the following words or phrases to be tokenized? Try

breaking them out yourself and then running them through an actual LLM

tokenizer, such as the one at https://platform.openai.com/tokenizer:

backstopped

large language models

Schoolhouse

How you process sentences to understand them is a complex process that

changes as you get older and involves multiple sequential and concurrent

cognitive processes

2 How much do you think uppercase versus lowercase letters matter for each of

the previous examples? Try submitting them again with various casings.

3 Let’s simulate how LLMs think about math using a cipher where each English

letter corresponds to a number. For example,W = 8, A= 4, I = 7, andT = 2, so

we would write WAIT to mean 8472. Knowing this fact and thatGO+SLOW =

STOP , can you figure out what STOP represents?
4 Since a token is the basic unit an LLM operates on, why does it make sense

(technologically) that languages less efficiently represented by a tokenizer would

cost more?

5 Is it an ethical problem that LLMs charge different amounts to people for

the same service based on what language they speak? Would you consider this

discrimination?

2.5 Tokenization in context
The details of tokenization we discuss in this chapter are the foundational building

blocks of LLMs that govern the input they can represent effectively and the output

they produce. Tokenization is a critical component of LLMs like ChatGPT in develop-

ing effective representations of text so that they can be used to learn relationships

https://platform.openai.com/tokenizer

28 CHAPTER 2 Tokenizers: How large language models see the world

between tokens when presented with vast amounts of information in the training

process, interpreting user input and producing the high-quality responses we’ve

become accustomed to. An LLM’s potential is limited or enabled by the tokenization

strategy and vocabulary it employs, in conjunction with all of the other characteristics

we explore in the following chapters.

Summary
Tokenization is the fundamental process that LLMs use to understand text by

converting sentences into tokens.

Tokens are the smallest units of information in text that represent content.

Sometimes, they correspond to full words, but often, they represent pieces of

words or sub-words.

Tokenization involves normalizing text into a standard representation, which

may involve converting characters to lowercase or translating the byte encoding

of Unicode characters so that visibly identical characters employ the same

encoding.

Tokenization also involves segmentation, which is breaking up text into words

or subwords. Algorithms like byte pair encoding (BPE) provide a mechanism

to automatically learn how to efficiently segment text based on the statistical

occurrence of combinations of letters in a training data set.

The result of building a tokenizer is known as a vocabulary, which is the unique

collection of word and subword tokens that a tokenizer can use to represent

text it has processed.

The size of a tokenizer’s vocabulary affects the LLM’s ability to accurately repre-

sent data and the storage and computational resources required to understand

and predict text.

Internally to the LLM, tokens are represented using numbers. As a result, there is

no understanding of relationships between tokens, such as prefixes and suffixes,

or the fact that two tokens share a similar set of letters.

To support specific domains of knowledge, tokenizers trained automatically

may be augmented to provide tokens that are important to their application.

Tokenizers that do not understand individual letters or digits will have problems

with arithmetic operations or simple word games.

3Transformers: How inputs
become outputs

This chapter covers
Converting tokens into vectors

Transformers, their types, and their roles

Converting vectors back into tokens

Creating the text generation loop

In chapter 2, we saw how large language models (LLMs) see text as fundamental

units known as tokens. Now it’s time to talk about what LLMs do with the tokens they

see. The process that LLMs use to generate their text is markedly different from how

humans form coherent sentences. When an LLM operates, it is working on tokens,

yet simultaneously cannot manipulate tokens like humans do because the LLM does

not understand the structure and relationship of the letters each token represents.

For example, English speakers know that the words “magic,” “magical,” and

“magician” are all related. We can understand that sentences containing these words

are all connected to the same subject matter because these words share a common

root. However, LLMs that operate on integers representing tokens that make up

these words cannot understand the relationships between tokens without additional

work to make those connections.

29

FV
6
2
9
9
8
3
4

30 CHAPTER 3 Transformers: How inputs become outputs

For this reason, LLMs follow a long history in machine learning and deep learning

of performing a kind of cyclical conversion. First, tokens are converted into a numeric

form that deep learning algorithms can work on. Then, the LLM converts this

numeric representation back into a new token. This cycle repeats iteratively, which is

not comparable to how humans work. You would be incredibly concerned if your

colleagues had to pull out a calculator to perform several math problems between

each word they spoke.

Yet this process is, indeed, how LLMs produce outputs. In this chapter, we will

walk through the process in two stages. First, we will review the entire process at a

high level to introduce fundamental concepts and construct a mental model of how

LLMs generate text. Next, this model will serve as a scaffolding for a more in-depth

discussion of the details and design choices associated with the components that

LLMs use to capture the relationships between words and language and, ultimately,

generate the output we are familiar with.

3.1 The transformer model
Many LLMs you encounter today interpret tokens and produce output using a

software architecture known as a transformer. This architecture consists of a collection

of algorithms and data structures that store information by representing it as numbers

in a neural network. At their core, transformers are sequence prediction algorithms.

While it is common to describe them as “reasoning” or “understanding” language,

what they actually do is predict tokens. Transformers come with three different

approaches to token prediction. While we focus on the famous GPT architecture

(more formally known as decoder-only models), it is also worth introducing encoder-

only and encoder-decoder models:

Encoder-only models—These models are designed to create knowledge represen-

tations that can be used to perform tasks—that is, to encode the input into a

numerical representation that is more useful to an algorithm. The best way to

think of them is that they take text and process it into a form that is easier for a

machine learning algorithm to use. They are widely used in scientific research.

Famous examples include BERT and RoBERTa.

Decoder-only models—These models are designed to generate text. The best way

to think of them is that they take a partially written document and then produce

a likely continuation of that document by predicting the next token. Famous

examples include OpenAI’s GPT and Google’s Gemini.

Encoder-decoder models—These models are also designed to generate text. Unlike

decoder-only models, they take an entire passage of text and create a correspon-

ding passage rather than continue the existing one. They are less popular than

decoder-only models because they are more expensive to train, and their use is

sometimes more challenging. For tasks with a clearly defined input and output

sequence, encoder-decoder models tend to outperform decoder-only models.

For example, they’re much better at translation and summarization tasks than

3.1 The transformer model 31

decoder-only models. Famous examples include T5 and the algorithm that

powers Google Translate.

Regardless of which type of transformer is used, the essential components of the

model are built from three basic layers, just arranged in different ways internally. A

reasonable analogy to their interchangeability is that of gasoline car engines: they

all work similarly and have the same general components. How those components

(read: layers) are put together within the engine (read: transformer) elicits various

tradeoffs in performance.

What exactly is a neural network layer?

LLMs are one of many hundreds of algorithms that we now call neural networks.
However, this is a misnomer in several ways. First, what constitutes a neural net-
work approach today is very broad, to such a degree that referencing a “neural
network–based approach” does not give the reader too much information about
the exact approach described. Second, the neural part of the name has little or
nothing to do with neuroscience or how the brain works. Sometimes, there is an
intuitive “Hey, the brain kinda does something like this; can we mimic that be-
havior and get something useful out of it?” style of inspiration, but not for most
current methods. Third, a neural network describes more of a standard agreement
on assembling data structures rather than a particular algorithm. Think about build-
ing a house: you use two-by-fours, sheetrock, and many options for cabinetry, paints,
and design choices to assemble everything into a home. Each home looks unique
but also familiar: they are all assembled in an expected way. The “layer” of a neural
network is the smallest component, but you can use many types of layers in diffe-
rent ways. Transformers are one of many pieces that get assembled into a larger
network.

3.1.1 Layers of the transformer model

Figure 3.1 describes the essential components of the transformermodel: the embedding

layer, which generates representations of tokens that can hold more meaning; the

transformer layer, which makes predictions based on word relationships; and the output

layer, which transforms the numeric representations used within the transformer into

words that humans can read.

The transformer model

(Repeated many times)

Embedding

layer

Transformer

layer

Transformer

layer
Output

layer

Figure 3.1 The basic components of the transformer model, consisting of the embedding layer,
multiple transformer layers, and the output layer

32 CHAPTER 3 Transformers: How inputs become outputs

Let’s look at these layers in detail:

Embedding layer—The embedding layer takes raw tokens as input and maps

them into representations that capture each token’s meaning. For example, in

chapter 2, we discussed how tokens represent concepts, but individual tokens

don’t have any relationship with each other. Consider the words “dog” and

“wolf.” With our understanding of language, we know these terms are related,

but we need some way of capturing this relationship within a neural network.

This is precisely what the embedding layer does. It captures information about

each token that encodes its meaning and allows us to express its conceptual

relationship with other tokens. Consequently, we can capture the idea that

the representations of the tokens dog and wolf are more similar to each other

than the representations for the tokens red and France. You can think of the

embedding layer as the part of the model that processes the words on a page

and maps them to abstract conceptual representations in your head.

Transformer layer—Transformer layers are where most of the computation

happens in a language model: they capture the relationships between words

created by the embedding layer and do the bulk of the actual work to obtain the

output. While LLMs generally only have one embedding layer and one output

layer, they have many transformer layers. More powerful models have more

transformer layers.

It is tempting to describe the transformer layer as the “thinking” part of

the model. This definition erroneously implies that transformer layers (or the

larger model built from them) can think, but thinking as humans do is self-

reflecting and variable in duration and effort. You can think about something

for a half-second or months, depending on the effort needed for the task. A

transformer always repeats the same process with the same effort for every task.

There is no introspection and no altering a transformer layer’s mental state.

Thus, a better way to imagine a transformer layer is a set of fuzzy rules—fuzzy

because they do not require exact matches (because embeddings might return

something similar like “dog” to “wolf”) and rules because transformers have

no flexibility. Once learning is complete, a transformer layer will do the same

thing every time.

Output layer—After the model has done the computation, additional transforma-

tions are performed in the output layer to obtain a useful result. Most commonly,

the output layer operates as the inverse of the embedding layer, transforming

the result of the computation from the embeddings space, which captures

concepts, back into token space, which captures actual subwords to build text

output. You can think of this as the part of the model that takes the answer

you’ve decided on and then chooses the actual words to express that answer on

a page by selecting the words most likely to represent the concepts that make

up the answer. Finally, we end with an unembedding process, which converts

the embeddings into tokens. Because each token has a one-to-one mapping to

3.2 Exploring the transformer architecture in detail 33

a subword, we can use a simple dictionary or map to convert the tokens into

human-readable text again. This process is detailed in figure 3.2.

3.2 Exploring the transformer architecture in detail
To further understand what is happening inside an LLM, it can be helpful to reframe

what we described as a sequence of steps. So let us do that in figure 3.2, which

describes seven steps. We’ll mark each of these with reference to the section where

we covered it before or tell you when it is a new detail we are about to explain. This

chapter provides a lot of information at once, so we will break it down piece by piece

as we go.

Model input

Input
tokens

Input
sequences

(Repeated many times)

Document

Output
tokens

Output
sequences

The transformer model

Split document
into sequences

Convert to
tokens

Sampling

2 4 5

6 Output
text

Decoding
7

Model output

3

Word
embedding

Transformer
layer

Transformer
layer

Unembedding

1

Positional

embedding

Figure 3.2 The process for converting input into output using a large language model

The seven steps to an LLM are as follows:

1 Map text to tokens (chapter 2).

2 Map tokens into embedding space (new, subsection 3.2.1).

3 Add information to each embedding that captures each token’s position in the

input text (new, subsection 3.2.1).

4 Pass the data through a transformer layer (repeat L times) (new, subsection
3.2.2).

5 Apply the unembedding layer to get tokens that could make good responses

(new, subsection 3.2.3).

6 Sample from the list of possible tokens to generate a single response (new,

subsection 3.2.3).

7 Decode tokens from the response into actual text (chapter 2).

34 CHAPTER 3 Transformers: How inputs become outputs

3.2.1 Embedding layers

There are a lot of nuances to tokenization, embeddings, and how precisely language

gets translated into things that models can understand. The most important nuance

is that neural networks still don’t work with tokens directly. On the whole, neural

networks need numbers that can be manipulated, and a token has a fixed numeric

identity. We cannot change the identity of a token because the identity allows us to

convert tokens back to human-readable text. We need a layer that will transform

tokens in numeric form into the words or subwords they represent.

REPRESENTING TOKENS WITH VECTORS
Our transformer needs numbers to work on. By this, we mean continuous numbers,

so any fractional value is available for us to use: 0.3, -5, 3.14, etc. We also need

more than one number to represent every token to capture nuances of meaning

and relationships between tokens. If you tried to use just one number to represent

each word, you would encounter difficulties capturing a word’s multiple meanings,

synonyms, antonyms, and the relationships that those create. For example, you may

well want to say that the antonym (opposite) of a word should be achievable by

multiplying a word by −1. As figure 3.3 shows, this quickly leads to silly conclusions
about word relationships.

Should be

similar to

Stock

Capital

Rare

Debt

−1×stock (as in standard) = rare (as in unusual).

−1×capital (as in financial asset) = debt (as in owed money).

Implies rare and

debt are similar!?

Figure 3.3 If you use just one number to represent a token, you quickly encounter problems where
similar/dissimilar words cannot be made to fit each other. Here we see how trying to represent simple
synonym/antonym relationships quickly becomes nonsensical even with just a handful of words.

For example, say we have a token for stock that we have arbitrarily decided will be

converted to some number (e.g., 5.2). I want to give related financial words, such as

capital, a similar number (e.g., 5.3) because they have similar meanings. There are

also antonyms of stock’s other meanings, such as rare. Let’s say we use a negative

value to capture the idea of an antonym and give it a value of -5.2. But now things get

complex because another antonym of capital is debt. But if antonyms are negations,

debt and rare have a similar meaning, which is nonsensical. Figure 3.3 illustrates

the problem: when we use a single number to represent a word, we cannot encode

their relationships without implying weird relationships with other words, and we

have not even gotten past four words yet!

3.2 Exploring the transformer architecture in detail 35

Figure 3.4 Adding another dimension to our token representation allows us to represent a more
diverse arrangement of semantic relationships. Here we see how two dimensions can capture
relationships for multiple meanings of the same word.

The trick is to use multiple numbers to represent each token, allowing you to find

better representations that accommodate the different relationships between words.

An example that uses two numbers is shown in figure 3.4. We can see things like

bland being nearly equidistant from rare and well-done, while also having space for

bank to be far away from all three just mentioned words and instead be near stock.

We were even able to throw in a few extra words. The more numbers you use, called

dimensions in the field’s jargon, the more complex relationships you can represent.

The curse of dimensionality

If more dimensions are better at capturing subtle meaning, why not use as many
dimensions as possible to represent our data? When dealing with a large num-
ber of dimensions, several problems arise. One primary concern is that LLMs deal
with many embeddings, and adding more dimensions increases the memory and
computation required to store and process embeddings. Furthermore, as we add
more dimensions, the size of the semantic space explodes, and the amount of data
and time needed to train a machine learning model to learn about all locations in
the semantic space similarly grows exponentially. Mathematician Richard E. Bell-
man coined the term the “curse of dimensionality“ to describe this phenomenon
because while we want to create a space capable of capturing nuanced meaning,
we are limited by the fundamental properties of the space we create.

In LLM parlance, the lists of numbers used to represent tokens are referred to as

embeddings. You can think of an embedding as an array or list of floating-point values.

As a shorthand, we call such arrays vectors. Each position in the vector is called a

dimension. As we show in figure 3.4, using multiple dimensions allows us to capture

subtleties in relationships between words in human language.

Since embeddings exist in multiple dimensions, we often state that they live in

a semantic space. In some machine learning applications, this is called a latent space,

especially when not dealing with text. Semantic space is wishy-washy jargon that

VJ
76

3
51

9
0

36 CHAPTER 3 Transformers: How inputs become outputs

isn’t well defined in the field, but it is most commonly used as a shorthand for

saying that the vector embeddings that represent each token are well behaved in

that synonyms/antonyms have nearer/farther distances and that we can use those

relationships productively. As an example, in figure 3.5, we show a famous case

where a “make female” transformation can be built by subtracting the embedding

for male and adding the embedding for female. This transformation can be applied

to many different male-gendered words to find female-gendered words of the same

concept. The co-location of all the “royal” words in the bottom right of figure 3.5

is also intentional, as many different kinds of relationships can be simultaneously

maintained in a high-dimensional space.

Subtracting “male” and adding “female” to
each vector allows us to “traverse” the semantic
space, finding female versions of male words.

Each dot represents a
token’s corresponding
embedding vector.

Vector for

“female” - “male”

Man

Woman

Uncle

Aunt

King

Queen

Duke

Dutchess

Figure 3.5 A demonstration of how the relationships between embeddings create a semantic space.
Words with similar meanings are near each other, and the same transformation can be applied to multi-
ple words to yield a similar result—in this instance, a transformation to find the feminine version of a
masculine word.

Shockingly, we cannot guarantee that these semantic relationships will form during

the training process. It just so happens that they often do, and they were discovered to

be very useful. By extension, the relationships in a semantic space are not foolproof,

and biases in your data can seep in. For example, models will often determine that

doctor is more similar to male and nurse is more similar to female because, in the

generally available text used to build most models, it is more common for doctors to

be described as male and nurses as female. The relationships are thus not a discovered

truth of the world but a reflection of the data that went into the process.

ADDING POSITIONAL INFORMATION

One critical problem is that a standard transformer does not understand sequential

information. If you gave the transformer one sentence and rearranged all the tokens,

it would view all possible permutations of the tokens as identical! That problem is

illustrated in figure 3.6.

3.2 Exploring the transformer architecture in detail 37

Maybe your mother-in-law made it

for Thanksgiving and you don’t want

to be rude.

You happen got have a pie that you

could eat. Maybe leftovers from

last night?

Different ways you might
interpret the context of the
sentence, based on word order.

Different ways to
re-order a sentence

“I have to eat this pie”

“I have this pie to eat”

Figure 3.6 Without positional information, transformers do not understand that their inputs have a speci-
fic order, and all possible reorganizations of the tokens look identical to the algorithm. This is problematic
because word order can change the word’s context or, if done randomly, become gibberish.

For this reason, the embedding layer generates two different kinds of embeddings.

First, it creates a word embedding that captures the meaning of the token, and second,

it makes a positional embedding that captures the token’s location in a sequence.

The idea is surprisingly simple. Just as we mapped every unique token to a unique

meaning vector, we will also map every unique token position (first, second, third,

and so on) to a position vector. So each token will get embedded twice—once for

its identity and again for its position. These two vectors are then added to create

one vector representing the word and its location in the sentence. This process is

outlined in figure 3.7.

NOTE Using multiple dimensions instead of absolute positions makes it

easier for the transformer to learn relative positioning, even if it is exces-

sively redundant for us as humans [1].

The token and position values get
separate vectors. They are not
connected to each other initially.

Whenever we tokenize an input, we keep
track of which token occurred in what order.
This means we get two “sequences,” the
token IDs and the position they occurred in.

After the position and token vectors are obtained, they
ate literally added together to form new vectors. This
output now has both “what” (token) and “where” (position)
information. This way, if a word is repeated (same token)
the final value will be slightly different (different positions).

I'm running I 'm running

Input Tokenization

[0, 1, 2]

[40, 1101, 2491]

Position:

Token:

Position
Vectors

Token
Vectors

0.2

−0.1

0.3

−0.1

0.2

0.1

−0.2

0.3

0.1

0.6

−0.7

−0.9

0.8

0.9

−0.5

−0.7

0.4

0.3

+ + +

0.8

−0.8

−0.6

0.7

1.1

−0.4

−0.9

0.7

0.4

1 2 3

Figure 3.7 Word embeddings do not capture the fact that input tokens appear in a specific order. This
information is captured by a positional embedding. The position embeddings work the same way as word
embeddings and are added together. The resulting combined embeddings have the information the model
needs to understand the order of tokens.

38 CHAPTER 3 Transformers: How inputs become outputs

Those are all the missing details required to understand how tokens are converted

into vectors for the transformer layers. This strategy may seem somewhat naive, and

that is honestly true. People have tried developing more sophisticated methods

to handle this information, but this simple approach of “Let’s make everything a

vector and just add them together” works surprisingly well. Importantly, it has also

demonstrated success in video and images. Having a straightforward strategy that

functions well enough for many different problems is valuable, which is why this

naive approach has taken hold.

3.2.2 Transformer layers

The transformer layer aims to transform the input into a more useful output. Most

prior neural network layers, such as an embedding layer, are designed to incorporate

very specific beliefs about how the world works into their operation. The idea is that

if the encoded belief is accurate to how the world does indeed work, your model will

reach a better solution using less data. Transformers go for the opposite strategy.

They encode a general-purpose mechanism that can learn many tasks if you get

enough data.

To do this, transformers operate with three primary components:

Query—Queries are vectors (from an embedding layer) that represent what you

are looking for.

Key—Key vectors represent the possible answers to pair a query against.

Value—Every key has a corresponding value vector, the actual value to be

returned when a query and key match.

This terminology corresponds to the behavior of a dict or dictionary object in Python.

You look up an item in the dictionary by its key so that you can then create some

useful output. The difference is that a transformer is fuzzy. It’s not that we are looking

up a single key, but we are evaluating all keys, weighted by their degree of similarity to

the query. Figure 3.8 shows how this works with a simple example. While the queries

and keys are shown as strings, those strings are stand-ins for the vectors that each

string will be mapped to via the embedding layer.

Having every key contribute to one query could be chaotic, especially if there is

one true match between a query and a specific key. This problem is handled by a

detail called attention or the attention mechanism.

Attention inside a transformer can be considered similar to your ability to pay

attention to what is important. You can tune out irrelevant and distracting information

(i.e., bad keys) and focus primarily on what is important (the best matching keys).

The analogy extends further in that attention is adaptive; what is important is a

function of what other options are available. Your boss giving you directions for the

week takes up your attention, but the fire alarm going off changes your attention

away from your boss to the alarm (and a potential fire).

When generating the next token, a transformer takes the query for the current

token and compares it to the key for all previous tokens. Comparing the query and

the key generates a series of values that the attention mechanism uses to calculate

3.2 Exploring the transformer architecture in detail 39

If the database was a normal Python dict

object, we only get values when the query

is exactly equal to a key . Any miss match

returns None.

[

]

We have a list of queries

that we want to ask

the storage array about.

A database of keys and values

. Each key (, , and)

has one value (10.0, 9.0, and −7.5

respectively).

Transformers looks at

similarity between each

query and key .

Transformer result is

then a weighted average

of the key’s values.

Figure 3.8 An example of how queries, keys, and values work inside a transformer compared to a
Python dictionary. When a Python dictionary matches queries to keys, it needs an exact match to find
the value, or it will return nothing. A transformer always returns something based on the most similar
matches between queries and keys.

how much weight it should assign each potential following token when deciding

which token to generate next. The value for each token tells the model what each

previous token thinks its contribution to the probability should be. The attention

function then computes the next token, as shown in figure 3.9.

The values are combined via attention
to produce a prediction of the next
token/word in the sequence.

“I have to eat this ___”

Query

key1 key2 key3 key4

val1 val2 val3 val4 ≈ pie

Attention

Figure 3.9 The next token in a sentence is predicted by using the current token as the query and
calculating matches with the preceding words as the keys. The individual values themselves do not
need to exist in the semantic space; the output of the attention mechanism produces something
similar to one of the tokens in the vocabulary.

40 CHAPTER 3 Transformers: How inputs become outputs

What is the math of attention?

We will not go into every detail of the math behind attention because it would take
a lot of space to describe it, and it has been covered elsewhere. We did so in a
previous book: chapter 11 of Inside Deep Learning [2] explains transformers and
attention in much greater technical detail.

For the curious, the primary equation is

Attention=Softmax
(
Q ·K
√
d

)
V (3.1)

Output= x +Norm(Attention(x)) +Norm(Feedforward(x)) (3.2)

The queries, keys, and values are represented by individual matrices Q, K, and V ,
respectively. Matrix multiplication makes attention efficient when implemented on
GPUs because they can perform many multiplication operations in parallel. The
softmax function implements the main component of the attention analogy by
assigning many values nearly equal to zero, which causes the transformer to
ignore the unimportant items.

The final step of norm and Feedforward is the application of layer normalization
and a linear layer via a skip connection. If these terms aren’t familiar to you, that is
fine; you do not need to know this math to understand the rest of the book. If you
want to learn what these terms mean, we refer you to Inside Deep Learning [2] for
a technically detailed understanding.

A transformer model is made up of dozens of transformer layers. The intermediate

transformer layers perform the same mechanical task described in figure 3.9 despite

not having to predict a token because the last transformer layer is the only one

that needs to predict an actual token. The transformer layer is general enough that

combining many intermediate layers allows the model to learn complex tasks such as

sorting, stacking, and other sophisticated input transformations.

3.2.3 Unembedding layers

The last stage of an LLM is the unembedding layer, which transforms the numeric

vector representation that transformers use into a specific output token so that we

can ultimately return the text that corresponds to that token. This output generation

process is also called decoding because we decode the transformer vector representa-

tion to a piece of output text. It is a crucial component for using an LLM to generate

text. Not only is decoding the current token essential for producing output, but the

next token will depend on each previous token selected for output. This process is

shown in figure 3.10, where we recursively generate tokens one at a time. In statistical

parlance, this is known as an autoregressive process, meaning each element of the

output is based on the output that came before it.

3.2 Exploring the transformer architecture in detail 41

Tokenization

Transformer

Output

Document

Converts human
representation to computer

AI processes and
transforms representation

Convert back to a
human readable form

Figure 3.10 Producing output from LLMs involves converting from documents
to tokens and then using the model to produce output. We loop through this
process to both consume text and generate human-readable output.

You may be wondering how this process stops. When we build the vocabulary of

tokens, we include some special tokens that do not occur in the text. One of these

special tokens is an end of sequence (EoS) token. The model trains on texts with natural

endpoints that are finished with the EoS marker, and when the model generates a

new token, the EoS token is one of the options it can generate. If the EoS is generated,

we know it is time to stop the loop and return the full text to the user. It is also a

good idea to keep a maximum generation limit if your model gets into a bad state

and fails to generate the EoS token.

SAMPLING TOKENS TO PRODUCE OUTPUT
What is missing from this process is how we convert a vector, an array of floating-point

numbers produced by the transformer layers, into a single token. This process is

called sampling because it uses a statistical method to choose sample tokens from

the vocabulary based on the LLM’s input and its output so far. The LLM’s sampling

algorithm evaluates those samples to select which token to produce. There are several

techniques for doing this sampling, but all follow the same basic two-step strategy:

1 For each token in the vocabulary, compute the probability that each token will

be the next selected token.

2 Randomly pick a token according to the probabilities calculated.

If you have used ChatGPT or other LLMs, you may have noticed that they do not

always provide the same output for the same input. The decoding step is why you

may get different answers whenever you ask the same question.

It may seem counterintuitive that tokens are selected randomly. However, it is a

critical component to generating good-quality text. Consider the example of text

42 CHAPTER 3 Transformers: How inputs become outputs

generation in figure 3.11, where we are trying to finish the sentence “I love to eat.”

It would be unrealistic if the model always picked “sushi” as the next token because

it had the highest probability. If someone always said “sushi” to you in this context,

you would think something was off. We need randomness to handle the fact that

there are multiple valid choices, and not all options are likely to occur.

1. First we have an initial
 sequence and a desired
 next token.

I love to eat ___

BBQ 23%

bbq 7%

sushi 25%

tacos 13%

car 0.0002%

42 0.0001%

.

.

.

“tacos” win!

if (Eos = = tacos):

 stop generation

else:

 repeat

4. The process repeats until
 the EoS token is found.

3. A weighted dice is “rolled” to
 decide which token is next.

2. A probability is computed for each possible
 token, most receive near-zero probabilities.

Figure 3.11 We demonstrate text generation by starting with the phrase ”I love to eat” and then
showing that some possible completions that are foods, such as barbeque and sushi, have high proba-
bilities, while a car and the number 42 have low probabilities. Weighted random selection chooses
the word tacos. The generation loop is stopped when the EoS token appears.

Also note in the example from figure 3.11 that other tokens would be nonsensical,

like 42, given tiny probabilities. Again, we need to assign every token a probability to

know which tokens are likely or unlikely.

How do you get probabilities for tokens?

Each possible next token has a different probability of being selected. Most of the
tokens have nearly zero chance of being selected. A keen reader may wonder: How
can we assign a probability to a token before knowing the other tokens? We do so
by giving every token a score, indicating how good a match that token’s embedding
is compared to the current vector (i.e., the output from the transformer). The score
is arbitrary from −∞ to∞ and calculated independently for each token. The relative
difference in scores is then used to create probabilities. For example, if one token
had a score of 65.2 and a second token had a score of -5.0, the probabilities
would be near 100% and 0% for the individual token, respectively. If the scores
were 65.2 and 65.1, the probabilities would be near 50.5% and 49.5%, respectively.

3.3 The tradeoff between creativity and topical responses 43

Similarly, scores of 0.2 and 0.1 would give the same probabilities as the scores
65.2 and 65.1 because we are looking at relative differences in scores to assign
probabilities, not the individual scores themselves.

A transformer sometimes gives you unusual or nonsensical generations. It’s not

common, but the other tokens have a near-zero probability, and eventually, one weird

token will get picked that you would not expect. Once an unexpected token has been

chosen, all future generated tokens will be produced in a manner that tries to make

sense of the unusual generation.

For example, if the LLM produced “I love to eat chalk,” you would be pretty

surprised. But it is not overly unreasonable because chalk-eating is a symptom of the

medical condition called pica. Once the word chalk is selected, the LLM may go into

a tangent about pica or some other medical diatribe—that is, of course, if you are so

lucky that your unusual generation is in the sphere of “rare but reasonable” and not

an utterly errant prediction.

NOTE Many algorithms can compute the final probabilities used to select words

for generation. One of these is nucleus sampling, also known as Top-p sampling,

which involves determining the tokens with the highest probability as potential

outputs and choosing tokens to output from that list. This method can help us

avoid unreasonable predictions. If you can, you want to check which sampling

algorithm your LLM uses so that you can understand its risks of producing

rarer to unreasonable outputs.

3.3 The tradeoff between creativity and topical responses
Depending on how your users plan to interact with an LLM, generating surprising

or creative outputs may be desired. Say you are using an LLM to help brainstorm

new product ideas, and you are using a chatbot as a digital sounding board to spark

ideas. In this case, you probably want unusual outputs generated because the goal is

to be creative and think of something new.

Conversely, sometimes creativity is wholly undesired. One potential use for LLMs

is offline search, where you could fit an LLM on a (relatively powerful) mobile phone

and ask/look up information even when you do not have internet connectivity. In

this case, you want the outputs of the LLM to be reliable, on topic, and factual. A

creative reinterpretation is not needed.

A feature in LLMs called temperature balances this tradeoff. The temperature

variable (which is a number between 0 and 1 and often has a default value of 0.7 or

0.8) is used to exaggerate the probability of low-likelihood tokens (high temperature)

or depress the probability of low-likelihood tokens (low temperature).

Consider molecules in a glass of water as an analogy. Say we want to know what

molecule will be at the top of the glass (don’t ask us why; just go with it). If the glass

was lowered to a temperature of absolute zero, all the molecules would be still, and

44 CHAPTER 3 Transformers: How inputs become outputs

the molecule at the top of the glass would reliably be the same each time (i.e., you

will always generate the same token). If you raise the temperature of the glass so

much that it starts to boil, the molecules will bounce around, making the molecule

at the top of the glass essentially random (i.e., you get a completely random token).

As you scale the temperature up and down, you change the balance between picking

with greater randomness (and, thus, often creativity) or focusing on just the most

likely next token (thus keeping the generation more topical).

In a practical sense, considering our example of “I like to eat,” a higher tempera-

ture would lead to the generation of different types of foods, not just pizza or sushi

but possibly less typical or more specific foods like beef wellington or vegetarian chili.

3.4 Transformers in context
We’ve covered a lot of ground in this chapter. Embedding layers, transformer layers,

and unembedding layers are the core building blocks that make LLMs work. The

concepts of how LLMs encode meaning and position and then use stacks of transfor-

mer layers to uncover the structure in text are all vital to understanding how LLMs

capture information and produce the quality of output they are capable of. But we

have more details to cover! How do we create these layers to generate embeddings

and probabilities by analyzing piles and piles of data in the first place? In chapter 4,

we will continue exploring how to feed data into this architecture and incentivize

the LLM to “learn” meaningful relationships in text through the training process.

Summary
While LLMs use tokens as their basic unit of semantic meaning, they’re

mathematically represented within the model as embedding vectors rather than

as strings. These embedding vectors can capture relationships about nearness,

dissimilarity, antonyms, and other linguistic-descriptive properties.

Position and word order do not come naturally to transformers and are obtained

via another vector representing the relative position. The model can represent

word order by adding the position and word embedding vectors.

Transformer layers act as a kind of fuzzy dictionary, returning approximate

answers to approximate matches. This fuzzy process is called attention and uses

the terms query, key, and value as analogous to the key and value in a Python

dictionary.

ChatGPT is an example of a decoder-only transformer, but encoder-only transfor-

mers and encoder-decoder transformers also exist. Decoder-only transformers

are best at generating text, but other types of transformers can be better at other

tasks.

LLMs are autoregressive, meaning they work recursively. All previously genera-

ted tokens are fed into the model at each step to get the next token. Simply put,

autoregressive models predict the next thing using the previous things.

Summary 45

The output of any transformer isn’t tokens; instead, the output is a probability

for how likely every token is. Selecting a specific token is called unembedding or

sampling and includes some randomness.

The strength of randomness can be controlled, resulting in more or less realistic

output, more creative or unique output, or more consistent output. Most LLMs

have a default threshold for randomness that is reasonable looking, but you

may want to change it for different uses.

G
E
1
21

9
31

2

4How LLMs learn

This chapter covers
Training algorithms with loss functions
and gradient descent

How LLMs mimic human text

How training can lead LLMs to produce errors

Challenges in scaling LLMs

The words learning and training are commonly used in the machine learning com-

munity to describe what algorithms do when they observe data and make predic-

tions based on those observations. We use this terminology begrudgingly because

although it simplifies the discussion of the operations of these algorithms, we feel that

it is not ideal. Fundamentally, this terminology leads to misconceptions about LLMs

and artificial intelligence. These words imply that these algorithms have human-like

qualities; they seduce you into believing that algorithms display emergent behavior

and are capable of more than they are truly capable of. At a fundamental level, this

terminology is incorrect. A computer doesn’t learn in any way similar to how humans

learn. Models do improve based on data and feedback, but it is incredibly important

to keep this mechanistically distinct from anything like human learning. Indeed, you

probably do not want an AI to learn like a human: we spend many years of our lives

focused on education and still make dumb decisions.

46

4.1 Gradient descent 47

Deep learning algorithms train in a way that is far more formulaic than how

humans learn. It is formulaic in the literal sense of using a lot of math and the

figurative meaning of following a simple repetitive procedure billions of times until

completion. We will spare you the math, but in this chapter, we will help you remove

the mystery of how LLMs are trained.

Many machine learning algorithms use the training algorithm called gradient

descent. The name of this algorithm implies some details that we’ll review with a

high-level overview of how gradient descent is used for machine learning. Once you

understand the general approach used to train many different model types, we will

explore how gradient descent is applied to LLMs to create a model that produces

convincing textual output.

Understanding these details will help you avoid inaccurate connotations implied

by words like learn. More importantly, it will also prepare you to understand better

when LLMs succeed and fail in their current design and the often-subtle ways such

algorithms can produce misleading outputs.

4.1 Gradient descent
Gradient descent is the key to all modern deep-learning algorithms. When an industry

practitioner mentions gradient descent, they are implicitly referring to two critical

elements of the training process. The first is known as a loss function, and the second

is calculating gradients, which are measurements that tell you how to adjust the

parameters of the neural network so that the loss function produces results in a

specific way. You can think of these as two high-level components:

Loss function—You need a single numeric score that calculates how poorly your

algorithm works.

Gradient descent—You need a mechanical process that tweaks the numeric values

inside an algorithm to make the loss function score as small as possible.

The loss function and gradient descent are components of the training algorithm

used to produce a machine learning model. Many different training algorithms

are in use today, but generally, each algorithm sends inputs into a model, observes

the model’s output, and tweaks the model to improve its performance. A training

algorithm will repeat this process a tremendous number of times. Given enough data,

a model will produce the expected outputs repeatedly and reliably when confronted

with previously unseen input.

4.1.1 What is a loss function?

We will use the example of wanting to make money to help develop a mental picture

of a suitable loss function. Indeed, an intelligent person can make money, so if you

have an intelligent computer, it should be able to help you make money. To pick a

suitable loss function for this or any other task (these lessons generalize to any ML

problem beyond LLMs), we need to satisfy three criteria: specificity, computability, and

smoothness. In other words, the loss function needs to be

48 CHAPTER 4 How LLMs learn

Specific and correlated with the desired behavior of the model

Computable in a reasonable amount of time with a reasonable amount of

resources

Smooth, in the sense that the function’s output does not fluctuate wildly when

given similar inputs

We will use the following examples and counterexamples to help you develop an

intuition for each property.

LOSS FUNCTION SPECIFICITY
First, let’s start with a bad example of specificity. If your boss came to you and said,

“Build an intelligent computer,” that would be a magnificent goal, but it is not a

specific goal. Remember, in chapter 1, we discussed how difficult it is to define

intelligence. What exactly does your boss want this computer to be intelligent at?

Would a street-smart computer that cannot do your calculus homework suffice?

Instead, you could try to optimize for a specific IQ score, but does that correlate

with what your boss wants? We have been able to get computers to pass IQ tests for

over a decade [1], even before the introduction of LLMs. However, they could not

do anything other than pass an IQ test and perform limited tasks. Ultimately, the

IQ test does not correlate with what we want computers to do. As a result, it is not

worth optimizing IQ as a metric for success in machine learning or for building the

intelligent computer your boss asked you to create.

Another example involves the challenge of managing money. Consider a scenario

where you want to minimize the debt you carry. You might even want your debt to go

negative, meaning others owe you money! We use the example of debt here because

it is intrinsically a value you want to make smaller. This analogy aligns perfectly with

the terminology used in practice: you want to minimize your loss just as you want to

reduce your debt. The volume of debt is also an objective measure, making it a good

way of ensuring our loss function is relevant under changing conditions. Finally, if

our overall goal is to maintain a surplus of money, minimizing debt correlates well

with that goal. Minimizing debt has all of the characteristics of a good loss function!

A note on terminology

You may also hear loss functions described as objective functions. We recommend
avoiding this term as a newcomer because it is ambiguous. For example, it is
unclear whether you want to minimize (debt) or maximize your objective (profit).
Both approaches technically work; multiply a maximizing objective by −1, and you
now have a minimizing objective.

You may also hear the term reward function used in some contexts, such as
reinforcement learning (RL). This is appropriate because RL algorithms seek to
maximize reward by performing a desirable behavior.

Regardless of the terminology, objective functions, reward functions, and loss
functions all address the same fundamental requirement: they provide a way of
evaluating the outputs that a machine learning model produces.

4.1 Gradient descent 49

LOSS FUNCTION COMPUTABILITY
The loss function must also be something we can compute quickly with a computer.

The debt example is unsuitable for this aspect because all the inputs and outputs you

need are not readily available to a computer. Will working harder at your job increase

your income and thus lower your debt? Maybe, but how will we encode your hard

work into the computer? Here, we have the problem that the most critical factors

to minimizing debt are hard to quantify, like job availability, your fit for such jobs,

likelihood of promotion, etc. So the loss is specific, but the inputs that connect to

that loss are not computable.

A better, more computable goal would be to predict the loss on an investment. The

reasons this goal is better are subtle. The goal is still objective because our algorithms

learn from historical data. For example, a historic investment in bonds X and stocks Y

had certain returns. The inputs are also now objective: you can quantify the amount

of cash you put into each investment. You either put money in, or you took it out.

There are no hard-to-encode problems like “hard work” to deal with. With a copy of

historical data, a computer can quickly calculate the loss/return on an investment.

LOSS FUNCTION SMOOTHNESS
The third thing we need is smoothness. Many people have good intuition for what

smoothness means by thinking about a smooth versus bumpy texture. Instead of

texture, we’re talking about the smoothness of a function, which can be depicted by

drawing that function as a graph. For example, when trying to predict a loss on an

investment, we run into the problem that investment returns are not usually smooth.

They may follow a pattern of volatility where price graphs are jagged with sharp,

sudden changes. This makes learning difficult. A graph showing the unstable values

of real-world investment returns is shown in figure 4.1.

Figure 4.1 Investment returns are not easy to predict, partly because they are not smooth. (Image
modified from [2] under the Creative Commons license)

Return on investment is an excellent example of a bad (nonsmooth) loss because

erratic behavior is problematic for any predictive approach. It would be best if you

were always cautious of anyone or any approach that claims to work well in predicting

nonsmooth data like this. However, there is a precise technical definition of smooth

that, if not satisfied by a loss function, is a hard deal-breaker. Functions that depend

on discontinuities, or breaks in the consistency of their values, are the most common

functions that are not technically smooth, but we would like to be able to use them

50 CHAPTER 4 How LLMs learn

in practice. Some examples of nonsmooth functions are shown in figure 4.2 to help

you understand. Smoothness is usually inhibited due to discontinuities, such as that

shown in the center graph, or distinct changes in the value of a function, as shown

in the graph on the right.

Smooth Not smooth Not smooth anywhere

Figure 4.2 Examples of a smooth function on the left and two nonsmooth functions on the right. The
center example is mostly smooth, but one region is not smooth because the function has no value. On
the right, the function is not smooth anywhere due to the hard change in value.

We won’t go deep into the formal mathematical definitions that describe what makes

something smooth and what value changes are acceptable or unacceptable in smooth

functions. Still, we’ve given you enough background to understand what you need

to know. The important thing for you to understand is that your intuition of what

smooth means, that the value changes continuously, is a good barometer for how

viable a loss function is. This may seem arbitrary, but it is an ubiquitous problem. Say

you want to build a model to predict cancer accurately. Accuracy is not a smooth

function because you count the number of successful predictions out of the total

predictions. For example, if you had 50 patients and predicted 48 of them correctly, a

smooth function would have an option for 48.2 cases, 47.921351 cases, or any number

you might think of. However, the actual count of cancer cases is constrained to the

integers 1, 2, 3, . . ., 48, 49, 50 because there is no such thing as a partial case of
cancer.

How do you handle nonsmooth losses?

It may be shocking that accuracy is one of the most common predictive goals, but
we cannot use it when training an algorithm. But it is true! So how do we handle this
strange phenomenon? The answer is to create a proxy problem. A proxy problem
is an alternate way of representing a problem that correlates with what we want
to solve but is better behaved. In this case, we use a cross-entropy loss function
instead of accuracy. While we won’t go into the details of cross-entropy loss here,
its use demonstrates that proxy problems are fundamental tricks used in machine
learning and artificial intelligence.

This discussion leads us to another critical takeaway about how LLMs learn, which is

true of most algorithms: the technique we use to train them is not always focused on

4.1 Gradient descent 51

what we want them to do but on what we can make them learn. This focus can lead

to an incentive mismatch, leading to unexpected results or low performance. We will

discuss how the nature of an LLM’s loss function creates this incentive mismatch

after examining the second major training component: gradient descent.

4.1.2 What is gradient descent?

Having a loss function is a prerequisite for performing a gradient descent. The

loss function tells you objectively how poorly you are performing the task. Gradient

descent is the process we use to figure out how to tweak the parameters of the neural

network to reduce the loss incurred. This is done by comparing the input training

data and the actual versus expected outputs of the neural network using the loss

function. In this case, the gradient is the direction and amount that you need to

change the parameters of a neural network to reduce the amount of error measured

by the loss function. Gradient descent shows us how to tweak all the parameters

of a neural network “just a little bit” to improve its performance and reduce the

difference between the expected and actual outputs. A diagram of this process is

shown in figure 4.3.

Keep

repeating

Gradient

descent

Gradient

descent

Input

Input

Output Loss

Labels

Loss

Labels

Output

Inputs require knowing the correct output
(i.e., labels) when training your algorithm.

The same or different data might
be used as input each time you
apply gradient descent.

This process will be repeated millions to billions of
times, each time producing a slightly different
network by tweaking the parameters just a small
amount. So v2.0 of the network will be similar to v1.0.

Neral network

parameters v2.0

Neral network

parameters v1.0

Figure 4.3 Inputs and labels (the known correct answers for each input) are used to tweak the neural
network during gradient descent. A network is made of parameters that are altered a small amount
each time gradient descent is applied. We eventually transform the network into something useful by
applying gradient descent millions or billions of times.

As figure 4.3 shows, we create a new, slightly different network every time we apply

gradient descent. Because the changes are small, this process has to be performed

52 CHAPTER 4 How LLMs learn

billions of times. This way, all the small changes add up to a more significant, mean-

ingful change in the overall network.

NOTE Modern LLMs perform billions of parameter updates because they are

trained on billions of tokens. The more data you have, the more times you run

gradient descent. The less data you have, the less often you need to run it. The

data used to train an LLM is more than you could read in a lifetime.

Gradient descent is a mathematical process that is applied repeatedly

without deviation. There are no guarantees that it will work or find the best or

even a good solution. Nevertheless, many researchers have been surprised by how

practical this relatively simple approach is.

To help you understand how gradient descent works, we will use a simple example

of rolling a ball down a hill. The ball’s location represents a parameter value for a

node in the neural network that the training algorithm can alter. The hill’s height is

the amount of loss and describes how poorly the model performs for the training

input. We want to roll the ball down the hill into the deepest valley because that is

the area with the lowest loss, which indicates that the model is performing its best.

An example of this is shown in figure 4.4

Loss

Parameter

Local minima
The best

“global” minima

Figure 4.4 This shows the global big picture of gradient descent applied to a single parameter
problem. The curve illustrates the value of the loss function for a given parameter value. The ball’s
location shows the loss for the current parameter value. The goal is to find the parameter values
corresponding to a global minimum representing the ideal solution with the least loss.

As you can see, the ball could fall into many valleys. The industry jargon would be to

call this problem nonconvex because multiple paths lead to reduced loss, but each path

does not necessarily progress toward the best possible solution. It is also important to

note that this is not an analogy. Gradient descent literally looks at the world this way.

These examples show how gradient descent works for a model with one parameter

to optimize. The same procedure is applied to billions of parameters when training

an LLM.

4.1 Gradient descent 53

So from this position, we greedily look at which direction to move the ball downhill.

We apply gradient descent two times in figure 4.5. This shows that the greedy option

is to the left. When we move to the left by adjusting our parameter, we slightly move

the ball down the slope. From the graph, you can see that a better solution exists

by searching to the right, but due to the algorithm’s simplicity, it is unlikely that

gradient descent will find it. Finding the optimal result in this case would require a

more intelligent strategy involving searching and exploration, which is too costly to

do well in practice.

Loss

Parameter

First step

Second step

Stuck

Figure 4.5 The gradient descent algorithm takes steps to adjust parameters to find the optimal
outcome with the least loss. Unfortunately, the algorithm gets stuck in a local minimum, an area of
the graph that is not optimal because other parameter values correspond to areas with a lower loss.

Also, notice that in the second step in figure 4.5, the ball gets stuck. While it is evident

that continuing to move to the left will achieve an even lower loss, this result is only

obvious because we can see the whole picture. Gradient descent cannot see the entire

picture or even what is nearby. It only knows the exact location due to the current

parameters and the loss function. Hence, it is a greedy procedure. Greedy procedures

such as gradient descent are simplified approaches with the desired property of

computability in that they are not prohibitively expensive to run many times to

achieve an outcome. Greedy procedures are short-sighted because they choose the

next optimal step based only on the current state, although broader, more optimal

solutions may exist. They do this because evaluating the current and all possible

future states would be impossible due to the number of potential outcomes that need

to be considered. It would simply be too much to compute. The hope is that making

many simple optimal decisions using limited information will generally lead to the

most positive outcome—in this case, minimizing the value of the loss function.

IMPORTANT NUANCES IN GRADIENT DESCENT
In this discussion of gradient descent, we have skipped some important nuances that

need to be considered for real-world use. First, as described here, gradient descent

would need to use all of the training data simultaneously, which is computationally

infeasible. Instead, we use a procedure called stochastic gradient descent (SGD). SGD is

54 CHAPTER 4 How LLMs learn

precisely the same as we’ve described, except it uses a small random subset of the

training data instead of the entire dataset. This dramatically reduces the memory

required to train the model, resulting in faster, better solutions. This method works

because gradient descent only makes small changes in the current greedy direction.

It turns out that a little data is almost as good as using all the data when figuring out

which step to take next. If you have a billion tokens, you can take a billion SGD steps

in about the same amount of time it takes to do one standard gradient descent step

using all the data.

Many training approaches use a particular form of SGD called Adaptive Moment

Estimation (Adam). Adam includes some extra tricks to help minimize the loss

function faster and avoid getting stuck. Adam’s main trick is that it gives the ball

some momentum, which builds as updates continually move in one direction. This

momentum causes the ball to roll down the hill faster and means that if a small local

minimum is hit, there might be enough momentum to plow past that point and

continue onward, thus reaching the area of the loss function graph with the smallest

amount of loss.

The downside of Adam is that storing this information about momentum for each

parameter increases the memory required for training by a factor of three compared

to plain SGD. Memory is the most critical factor when building LLMs because it

often determines how many GPUs you need, translating to cash out of your pocket.

Although Adam won’t make the final model larger because you can throw away the

data related to Adam’s extra momentum calculations once you are done training,

you still need a system large enough to perform the training in the first place. The

increased accuracy that comes with Adam’s ability to minimize loss more effectively

comes with a distinct price.

4.2 LLMs learn to mimic human text
Now that we understand how deep learning algorithms are trained by specifying a

loss function used with gradient descent, we can discuss how this is applied to LLMs.

Specifically, we will focus on the data and loss or reward functions used to train LLMs.

LLMs are generally trained on human-authored text. Specifically, they’re explicitly

trained to mimic texts produced by humans. While this sounds a bit obvious (what

else would they be trained to do?), this detail is commonly missed or confused with

other things, even by experts in the field. In particular, language models are not

trained to do any of the following things:

Memorize text

Generate new ideas

Build representations of the world

Produce factually accurate text

It is essential to explain this notion further before we go deeper. When one trains

a model to play chess, the model learns to play well because it gets rewarded for

winning. A language model, by contrast, only gets rewarded for producing text that

4.2 LLMs learn to mimic human text 55

looks exactly like the training data. Consequently, all text generated by the LLM

that looks like text in the training corpus produces high rewards (or low loss), even

when those generations are not truthful or factual. This is an example of misalign-

ment between the loss function and the designer’s higher-level goal, as discussed in

section 4.1.

LLMs are trained on datasets of hundreds of gigabytes of text scraped from the

internet. The internet is famous for containing a large amount of incorrect (and

weird) information. LLMs that are better at most tasks often end up being worse

at tasks that are commonly misrepresented in their training data (see the Inverse

Scaling Prize at https://github.com/inverse-scaling/prize). For example, researchers

have consistently found that better language models are also better at reproducing

common knowledge that is false [3], mimicking stereotypes and social biases [4].

They tend to fall into a downward spiral that reinforces errors. For example, after

generating code that contains bugs, they’re more likely to generate code that contains

additional bugs [5]. These things are commonly represented in the training text,

so LLMs are positively rewarded for predicting them even though it’s wrong. Thus,

getting better based on its loss function for an LLM also means getting worse at these

tasks that require truth and correctness.

4.2.1 LLM reward functions

Previously, we said that LLMs are rewarded for producing data that “looks like its

training data.” In this subsection, we will explore what this means more concretely.

LLMs are trained by being shown the first couple of tokens of a sentence and

having it predict the next token. The loss is based on the accuracy of that prediction

compared to the training data. For example, it might be shown “This is a” and be

expected to produce “test.” If the model produces “test,” it gets a point, and if it

does not, it loses a point. This process is done for all beginning segments of the text,

as shown in figure 4.6. Here, it is trained to predict each of the highlighted words

independently. This setup is not unique to LLMs. It has been used to train recurrent

neural networks (RNNs) for many years. However, an essential part of why LLMs

have become so popular is that they can be trained much more efficiently than an

RNN. An RNN must be trained on each generation sequentially because each newly

generated word depends on the prior words chosen. An LLM can be trained on all

generations in parallel due to the transformer architecture discussed in chapter 3.

The ability to train a model on related generations in parallel represents a massive

speed-up, allowing training at a large scale, and is a prerequisite for building today’s

state-of-the-art LLMs using terabytes of data.

We discussed how predicting the next token can be problematic because the

algorithm may be incentivized to produce incorrect or factually errant outputs. We

must also discuss the intuition behind why, despite this, this approach can produce

such convincing outputs. It is reasonable to ask: How can an algorithm trained to

create the next most likely token seemingly perform something we could mistake for

reasoning?

https://github.com/inverse-scaling/prize

56 CHAPTER 4 How LLMs learn

Figure 4.6 An LLM sees this sentence nine times, each time learning from
the prediction of a single word at the end of each of the nine sequences.

To develop this intuition, imagine how you might try to predict the next token for a

given sentence. A computer has no pressure to respond quickly, so take your time.

Consider the sentence “I love to eat <blank>,” and try to guess what word might go

into the <blank>. The earlier parts of the sentence give you valuable context. Since

we are discussing eating, you can almost immediately narrow the scope to a food

item. Keeping a list of all possible food items is not difficult for a computer.

Now if you consider the background of the authors of this book, you will have

even more context. We are Americans in a common geographical area, which makes

specific cuisines more likely than others. An LLM will not have this background, but

if the sentence was longer and had more context, you could start to narrow down

the choices in the same way as shown in figure 4.7.

I love to eat __

Learning how to cook

with yeast, now I

love to eat ___

I can’t eat meat any

more, so I’m adapting.

Learning how to cook

with yeast, now I

love to eat ___

Figure 4.7 Context can help you make decent predictions about the next word. As you move from left
to right, additional text that might occur in a sentence is added. The images in the thought bubble for
each sentence show how the added context eliminates predictions.

As you identify keywords or phrases in the preceding text, you can gain insight into

the best word to predict next. A computer performing these calculations does far

more processing than a human requires. This kind of brute-force association mainly

narrows the scope to something very reasonable. Again, the model will be updated

billions of times to refine these associations and thus acquire a useful capability

4.2 LLMs learn to mimic human text 57

correlated with our goals of an algorithm able to understand and react to human

text.

However, correlation is not causation, and the next-word prediction strategy can

lead to humorous errors. LLMs are susceptible to a “begging the question” error,

where the premise of the question implies something untrue. Since the LLM is not

trained for accuracy or contradiction, it attempts to produce a sequence of human-

like text predictions that might follow your misleading question. An example of

ChatGPT struggling with this kind of problem is given in figure 4.8, where we ask

about the exceptional strength of dry spaghetti.

Figure 4.8 While predicting the next token is powerful, it doesn’t imbue the network with reasoning
or logic abilities. If we ask ChatGPT something absurd and untrue, it happily explains how it happens.

The core of why spaghetti can support hundreds of times its own weight is absurd

and untrue. However, the algorithm has been primed to provide an answer about

material tensile strength by formatting the question: “Why is it that X is so strong?”

The model can extract this key context. Previous training data likely explains such

material properties based on a factual question, which informs the model predicting

58 CHAPTER 4 How LLMs learn

that a similar response is appropriate. The subject of the sentence (spaghetti) and

object (10 lb. weight) are used to inform minor details of the response, which is

otherwise generic.

4.3 LLMs and novel tasks
The nature of the autoregressive, next-word prediction strategy and its use as a loss

or reward during the training process gives us valuable insight into the nature of

an LLM’s generated responses and how they can potentially be factually inaccurate.

However, it also shows us why LLMs can be effective for looking up information,

as a far more powerful keyword search than a standard search engine. There are

ways to design around the limitations of nonfactual responses. For example, many

LLM approaches add citations to the generated output so that it is possible to quickly

verify that factually accurate content was used to produce the generated text. An

LLM can also be a valuable sounding board, a pseudo-partner to bounce ideas off of

as a source of inspiration and creativity. Critically, this also helps you understand a

key case where you should avoid LLMs because they will be more likely to produce

errors—novel problems and tasks.

LLMs are generally not good at performing novel tasks. Figuring out if your task is

novel can be pretty challenging, as the internet is weird. Tons of random things exist

on the internet, including competitions on how to programmatically draw ducks and

unicorns [6]. If the task is sufficiently similar to one already seen before or structurally

similar to other things in the training data, you may end up with something that

appears reasonable. This result can be extremely useful, but it can degrade as your

task becomes more unique compared to what exists in the training data.

For example, we asked ChatGPT to write code that calculates the mathematical

constant c (pi) in Python. This task is not novel; tons of code like this exists online,

and ChatGPT faithfully returns the correct code for us.

Listing 4.1 ChatGPT calculating pi in Python

def calculate_pi(terms):
pi = 0
for i in range(terms):

term = ((-1) ** i) / (2 * i + 1)
pi += term

pi *= 4
return pi

print(calculate_pi(1000000))

Tests the function; the more terms,
the more accurate the approximation

Now let us force ChatGPT to do some not terribly challenging extrapolation. We

asked ChatGPT to translate this function to the programming language Modula-3.

This task is not too big of an extrapolation; Modula-3 is a programming language with

a similar style and a historically significant programming language that influenced

4.3 LLMs and novel tasks 59

the eventual design of almost all the most popular languages today! However, it is

excessively esoteric. You can find very few examples of this programming language

today, mainly in the context of university compiler classes. The next listing shows Chat-

GPT’s reasonable attempt. As you may have been able to predict from the context of

this chapter thus far, ChatGPT made some errors, marked in the listing.

Listing 4.2 ChatGPT calculates pi in Modula-3

MODULE CalculatePi; Missing EXPORTS Main;

IMPORT IO, Real;

PROCEDURE CalculatePi(terms: INTEGER): REAL;
VAR

pi: REAL := 0.0;
i: INTEGER;

BEGIN
FOR i := 0 TO terms - 1 DO

pi := pi + ((-1.0) ** FLOAT(i)) / (2.0 * FLOAT(i) + 1.0);

** isn’t an operator.

END;
RETURN 4.0 * pi;

END CalculatePi;

BEGIN
IO.PutReal(CalculatePi(1000000), 0, 15);

PutReal can take only one
optional second argument,
and it’s not an integer.

END CalculatePi.

This short program has three errors that would prevent it from working. It is more

interesting that ChatGPT gets these wrong because it confidently extrapolates stan-

dard coding practices from other languages. (In this case, confidently means that

ChatGPT does not warn us of its potential errors. One of the authors likes to say

that ChatGPT sounds like their most overconfident and often incorrect friend.) In

this case, ** is a commonly used exponentiation function, so ChatGPT decides that

Modula-3 supports this operation. As far as we can tell from scouring the internet,

Modula-3 has no documented example of how to exponentiate a variable. Because

most programming languages support this action with a ^, **, or pow() option, Chat-

GPT just extrapolates one into existence. The correct answer would be that it must

first implement a pow function and then use it to compute pi.

The arguments provided to the PutReal function are another mystery. Our best

guess is that the 15 corresponds to an extrapolation of printing out 15 digits of a

floating-point value, a typical default when calculating pi. Regardless, it is not how

that function works.

The more significant point is that ChatGPT gets some of the nuanced details right

but only for the parts that can be found on the internet and are already explained

(e.g., FLOAT(i) is required, as is doing 4.0 * pi instead of 4 * pi). The tasks without

examples on the internet are the ones where ChatGPT makes errors.

60 CHAPTER 4 How LLMs learn

This example also highlights the limits of perceived versus actualized “reasoning”

within LLMs today. The complete language specification for Modula-3 is available

online and has documented all of these details or their lack of existence. ChatGPT has

almost surely seen many other coding language specifications, parser specifications,

andmillions of lines of code in common programming languages. If a person had this

background knowledge and resources, performing the logical induction required

to avoid all three errors should not be too challenging. However, the LLM does

not perform any induction process and, thus, makes errors despite the breadth of

available information.

This is not to say that the result is not massively impressive, and it can be a valu-

able tool to accelerate your own code development or use of unfamiliar APIs and

languages. But it also informs you that such tools will work far better for widely

used and documented languages and APIs, especially if they conform to expected

standards. For example, most databases use the language SQL, which makes accurate

extrapolation of how to use a novel database that also uses SQL more likely.

4.3.1 Failing to identify the correct task

Another notable case in which LLM’s fail is when they cannot correctly identify the

task they are supposed to perform and instead will answer a question different from

what the user intended. Failure to correctly identify the task used to be a substantial

problem for models like the original GPT-3, but subsequent work aimed at increasing

the number of task-structured examples in the training data has substantially increa-

sed the ability of later ChatGPT models to follow instructions. However, ChatGPT

will still fail to identify the correct task in some cases. For example, this behavior can

be elicited reliably by asking about an unusual task subtly different from a common

task or by modifying a problem it has seen many times in an unfamiliar way.

One example is a famous logic puzzle about bringing a cabbage, a goat, and a

wolf across a river in a boat. The puzzle stipulates that the goat can’t be left alone

with the cabbage (as the goat will eat it) or with the wolf (which will devour the goat).

ChatGPT can quickly solve this puzzle, but if we change the logical structure of the

puzzle slightly, the model continues to use the old reasoning as shown in figure 4.9.

While it is often hard to trace errors made by LLMs back to specific causes, in this

case, the model happily tells us to “ensure that none of the items (cabbage, goat,

wolf) are left together unsupervised.” While this instruction is correct in the original

version of the cabbage/goat/wolf problem (and was likely based on the specification

of the constraints in the logic problem), the model is unaware that the given version

has no problem with the goat and wolf being alone together. Not only is there no

need to swap the animals as suggested, but ChatGPT’s advice will fail because it places

the wolf and cabbage together, which we explicitly disallowed.

Another curious example of this phenomenon happens when you remove the

need to leave anything behind. Any logical understanding of the puzzle makes it

clear that you only need to load everything into the boat and cross. Yet again, the

model is too accustomed to answering the version of the problem that it has seen

many times before and does so.

4.3 LLMs and novel tasks 61

Figure 4.9 ChatGPT fails to solve two modified versions of a classic logic puzzle due to how LLMs are
trained. Content frequently occurring in the same general form (e.g., a famous logic puzzle) leads the
model to regurgitate the frequent answer. This can happen even when the content is modified in
important ways that are obvious to a person.

To understand why this happens, it is important to recall the autoregressive nature of

LLM training discussed in chapter 3. The model is explicitly incentivized to generate

content based on prior content. The content generated to solve the reframed logic

puzzle appears almost exactly like the content that solves the original logic puzzle

in terms of words and order. As a result, it is a good fuzzy match in the transformer

layer’s query and key pairing that produces the values that make up the original

puzzle’s solution. The fuzzy match is made, and the previous solution is faithfully

returned via the attention mechanism used by the transformers. While this strategy

is excellent for the model to correctly predict the tokens for the famous puzzle, it

does not involve reasoning through the puzzle’s logic.

4.3.2 LLMs cannot plan

Another subtle limitation of the autoregressive nature of LLMs is that they can only

work with the information they see in context. LLMs are trained to take an input and

produce a plausible continuation. However, they cannot plan, make commitments,

or track internal states. A great example occurs when you attempt to play the game

20 questions with ChatGPT. When a human plays 20 questions, they precommit to a

piece of hidden information, the object they’ve chosen to use the answers to identify.

When ChatGPT plays this game, it answers questions individually and then, after the

fact, finds an output consistent with the provided answers. This example is illustrated

in figure 4.10, which shows possible dialog trees for playing 20 questions. When

someone plays a game with an LLM, one of these dialog trees is chosen randomly

instead of coming up with a target object that stays consistent throughout the game.

62 CHAPTER 4 How LLMs learn

Bot: I’m thinking of an object.

Guess what it is.

User: Is it bigger than a car?

Bot: Yes, it’s bigger than a car.

User: Is it alive?

Bot: No, it’s smaller than a car.

User: Is it alive?

Bot: No, it’s not alive.

User: I give up.

Bot: Yes, it’s alive.

User: I give up.

Bot: It’s a house!

Bot: It’s a star!

Bot: It’s a whale!

Bot: It’s a rhino!

Bot: Yes, it’s alive.

User: I give up.

Bot: No, it’s not alive.

User: I give up.

Bot: It’s a dog!

Bot: It’s a snail!

Bot: It’s a cup!

Bot: It’s a book!

Figure 4.10 The dialogue agent doesn’t commit to a specific object at the start of the game.

4.4 If LLMs cannot extrapolate well, can I use them?
Most work that needs to be done is not novel or new. At least, it’s not novel or new

enough to a degree that would make an LLM fail. However, understanding that an

LLM’s abilities degrade quickly as more logic or nuance is required can help you

narrow the scope of how you use it.

When we design production-grade computer systems, an essential factor to con-

sider is the scope of when and how the tool will be used. When you make an LLM

product like ChatGPT available to a general audience without a specific scope, people

will ask it to do all sorts of random, crazy things you do not expect. While this might be

great for research, it is often not practical for production applications. Although your

users and customers will try to do unpredictable things with your LLM application,

suppose you limit who has access to the system and design around your users having

a specific goal, limited use cases, or even restrict how their inputs get to your LLM.

In that case, you can build something with a much more reliable user experience.

How can I use an LLM without user input?

LLMs are excellent at providing low-effort coding or data processing, especially
when you are doing everyday tasks on data that is not so cleanly formatted or
curated. However, you can get utility without as much risk by giving users a finite
set of choices. Having a limited set of prompts as code that a user can choose
from or letting a user decide what data source (e.g., some internal database) a
prompt is run over allows you to keep (most) people from giving an LLM arbitrary
text.

Instead, you may ask, “Can we detect novel requests and give the user some error

instead?” Hypothetically, yes, you could try to do this. First, we discourage it because

4.5 Is bigger better? 63

it is not great from a user experience perspective. Second, it becomes a task known as

novelty detection or outlier detection. This problem is challenging and is likely impossible

to solve in a way that is guaranteed to be error-free. As a result, we encourage

prevention over detection by choosing use cases that do not require highly accurate

prediction of failures through the analysis of LLM input or output.

Applications for prompting

Prompting is the art of crafting an input to a large language model that induces
desirable behavior. Language models can be very sensitive to the exact framing of
their inputs, making the ability to design inputs that are responded to appropriately
highly valuable. A recurring theme in using LLMs is that people typically don’t think
about how to interact with them correctly. The best way to prompt an LLM is to think
about how the kind of output you’re interested in would look like in the training
data and then write the first quarter of it. Instead, people often describe the task
they want a language model to perform, assuming that this clarification will keep
an LLM focused on the problem. Unfortunately, the approach yields inconsistent
results and has inspired research in tuning LLMs by feeding them a large number
of instructions and responses as training data.

4.5 Is bigger better?
In 2019, Rich Sutton coined the term “the bitter lesson” to describe his experience

with machine learning. “The biggest lesson that can be read from 70 years of AI

research is that general methods that leverage computation are ultimately the most

effective, and by a large margin” [7].

There is a genuine sense that transformers are the ultimate example of this

principle. You can keep making them bigger, training them with more parallelism,

and addingmore GPUs. This differs notably from RNNs, which cannot be parallelized

nearly as efficiently as a transformer. We also see this in the image domain with

Generative Adversarial Network (GAN) methods, which struggle to reach the billion-

parameters scale. The transformer-based methods used in LLMs easily scale to the

tens of billions, allowing the construction of bigger and better models.

From a solutions design perspective, your prototype today may encounter signifi-

cant constraints due to model size. Larger models require more resources and take

longer to make predictions. What is the maximum response time your users will

accept? How expensive is the hardware needed to run your model at this speed?

The growth rate in model size exceeds the growth rate of consumer hardware. As

a result, you may not be able to deploy your model to embedded devices, or you

may require internet connectivity to offload the costs. Consequently, you need to

consider networking infrastructure in your design to handle the need for continuous

connection. This requirement increases battery usage, which is a consideration when

continually running a Wi-Fi radio instead of local computing. So although larger

JL
5
4
5
2
2
3
0

64 CHAPTER 4 How LLMs learn

models are more accurate, design constraints may prevent their deployment in a

practical manner. Combining these constraints with the facts about how LLMs make

their predictions and the use cases of when and where LLMs fail that you learned

in this chapter positions you well for understanding how to use LLMs to solve the

problems you care about most effectively.

Summary
Deep learning needs a loss/reward function that specifically quantifies how

badly an algorithm is at making predictions

This loss/reward function should be designed to correlate with the overarching

goal of what we want the algorithm to achieve in real life.

Gradient descent involves incrementally using a loss/reward function to alter

the network’s parameters.

LLMs are trained to mimic human text by predicting the next token. This task

is sufficiently specific to train a model to perform it, but it does not perfectly

correlate with high-level objectives like reasoning.

LLMs will perform best on tasks similar to common and repetitive tasks observed

in its training data but will fail when the task is sufficiently novel.

5How do we constrain the
behavior of LLMs?

This chapter covers
Constraining LLM behavior to make
them more useful

The four areas where we can constrain
LLM behavior

How fine-tuning allows us to update LLMs

How reinforcement learning can change
the output of LLMs

Modifying the inputs of an LLM using
retrieval augmented generation

It may seem counterintuitive that you can make a model more useful by controlling

the output the model is allowed to produce, but it is almost always necessary when

working with LLMs. This control is necessitated by the fact that when presented with

an arbitrary text prompt, an LLM will attempt to generate what it believes to be an

appropriate response, regardless of its intended use. Consider a chatbot helping a

customer buy a car; you do not want the LLM going off-script and talking to them

about athletics or sports just because they asked something related to taking the

vehicle to their kid’s soccer games.

In this chapter, we will discuss in more detail why you would want to limit, or

constrain, the output an LLM produces and the nuances associated with such

65

66 CHAPTER 5 How do we constrain the behavior of LLMs?

constraints. Accurately constraining an LLM is one of the hardest things to accomplish

because of the nature of how LLMs are trained to complete input based on what they

observe in training data. Currently, there are no perfect solutions. We will discuss

the four potential places where an LLM’s behavior can be modified:

Before training occurs, curating the data used to train the LLM

By altering how the LLM is trained

By fine-tuning the LLM on a set of data

By writing special code after training is complete to control the outputs of the

model

These four cases are summarized in figure 5.1. Each stage of developing an LLM

feeds into the next. The fine-tuning stage, a second round of training done on a

smaller data set, is the most important for how tools like ChatGPT function today

and the most likely approach you might use in practice. The first, larger training

stage we’ve learned about in chapters 2 to 4 is often referred to as pretraining because

it occurs before fine-tuning makes the model useful. The model produced by the

pretraining process is sometimes referred to as either a base model or a foundation

model because it is a point from which to build a task-specific, or fine-tuned, model.

Stage 1, building the base model
on a lot of data, but not on the task
we truly care about. Modifying training
can be useful, but extremely expensive.

Postmodel, one could look for specific
content being output by the LLM and use
normal software engineering tools like
regular expressions to detect situations.

Altering the training

data

Training the base LLM

(chapters 2-4)
Fine-tuning the LLM

Altering the output of

the LLM

Premodel option, not
as popular in practice

Stage 2, altering the expensive
base model via a cheaper process
that refines the model toward
our specific goals

Figure 5.1 One may intervene to change or constrain an LLM’s behavior in four places. The two
stages of model training are shown in the middle of the diagram, where the model’s parameters are
altered. On the left, one could also alter the training data before model training. On the right, one
could intercept the model outputs after model training and write code to handle specific situations.

Due to the importance and effectiveness of fine-tuning, we will spend most of the

chapter on that factor and how it may be performed.

5.1 Why do we want to constrain behavior?
LLMs are incredibly successful because they are the first technology to deliver on

the idea of “Tell a computer what to do in plain English, and it does it.” By being

very explicit about what you want to happen, establishing a specific level of detail

and specifying a certain tone, you can get an LLM to be a shockingly effective tool.

5.1 Why do we want to constrain behavior? 67

This detailed set of instructions is called a prompt, and the art of designing a good

prompt has been referred to as prompt engineering. For example, we could develop a

prompt for a car-selling bot as demonstrated in figure 5.2.

Figure 5.2 Commercial LLMs like ChatGPT are designed to follow instructions (within some limits)
and can perform a lot of low-cognition or pattern-matching tasks with very high efficacy. These tasks
include stylized writing, such as pattern matching, and instruction following, such as roleplaying as a
car salesperson.

You could give an LLM a prompt on organizing data into comma-separated values so

that you can copy them into Excel. You could design a prompt about how to categorize

free-form survey responses into summarized themes. In all cases, prompting is an

exercise in limiting, or constraining, the behavior to a particular task and set of

goals. Yet, the tokenization and training techniques we have discussed in the previous

chapters do not enable this kind of instruction following.

D
V
5
5
6
6
3
4
4

68 CHAPTER 5 How do we constrain the behavior of LLMs?

Remembering that models do what they are trained to do is essential. In the case

of a standard LLM, this task is to take a text passage and generate a continuation of

that document that looks like a typical passage from the training corpus with the

provided beginning. It is not trained to answer questions, think, summarize text, hold

a conversation, or anything else. To get this desirable instruction-following behavior,

we must perform fine-tuning, a second round of training with different objectives that

will produce the intended behavior. You may wonder, “Why don’t we train LLMs for

the task we want them to perform?” In most deep learning applications, we strongly

recommend following the process we defined in chapter 4 to create a loss function

that is specific, computable, and smooth. However, for the kinds of tasks that LLMs

are good at, there are many reasons why this two-stage training process works well.

The first reason involves the breadth of knowledge required to complete specific

goals. Think back to the task of a chatbot selling a car. If we aim to build a model

that successfully sells cars, it would be great to construct a dataset of only car-relevant

facts. But when the potential buyer wants to know if the car can fit all the needed

equipment for a hockey player, how easy it will be to clean, whether it will be possible

for their arthritic grandparent to get in and out of the passenger seats, or any host of

other possible questions someone might have about how their car interacts with their

life, you encounter the problem of enumerating every possible question you might

receive about cars. There is no way to get all the information required to generate

answers for every possible situation. Instead, we rely on the training processes we

have discussed so far, which can be considered pretraining, to capture information

from an extensive content collection containing text about sports, arthritis, etc. We

hope this information helps the model be better prepared or generically helpful in

answering broader questions.

This is the second and primary reason why we use a two-stage training process:

obtaining hundreds of millions of documents that describe a specific problem to

use as a part of the pretraining stage would be impossible. At the current state of

the art, this massive scale is necessary to create the impressive capabilities seen in

GPT. However, with relatively little effort, one can pretrain with hundreds of millions

of pieces of general information, such as web pages, to impart models with general

knowledge. Subsequently, it is often sufficient to fine-tune with just hundreds of

documents to constrain the model to produce something usefully tailored to a task at

hand. Obtaining a few hundred documents for a specific problemmay be challenging

but achievable.

At a high level, a second fine-tuning training stage can help constrain an LLM to

some subset of useful behaviors because the original model is not incentivized to do

what we want. In the following sections, we will present concrete examples of the

different problems that crop up with base models that will make the reasons why this

works evident.

5.1.1 Base models are not very usable

Training an LLM following the process described in chapter 4 produces a model

typically referred to as a base model because it can serve as a base platform for building

5.1 Why do we want to constrain behavior? 69

applications or fine-tuned models. Unfortunately, base models are not very useful to

most people because they don’t expose their underlying knowledge via a user-friendly

UI, they can be challenging to keep on-topic, and sometimes they produce unsavory

content. Base models are not even trained with the concept of being a chatbot like

ChatGPT is.

5.1.2 Not all model outputs are desirable

Sometimes, what a model thinks is likely to come next in a document is undesirable.

There are several reasons for this, including

Memorization—Sometimes, LLMs can generate long, exact copies of sequences

found in their training data, which is often referred to as memorization, which

refers to the idea that the text is being reproduced by memory from the training

set. Memorization can be beneficial, such as memorizing the answers to specific

factual questions. For example, if someone asks, “When was Abraham Lincoln

born?” you want the model to regurgitate “February 12, 1809.” However, it

can also be substantially detrimental if it leads a model to infringe copyright.

If someone asks for “A copy of Inside Deep Learning by Edward Raff,” and the

model produces a verbatim copy, Edward may be upset with you for copyright

infringement!

Bad things on the web—Not everything found on the internet is something you

would want to expose a user to. There is a lot of vile and hateful content on the

internet, as well as factually incorrect info ranging from common misconcep-

tions to conspiracy theories. While model developers often try to filter out this

data before training the model, that’s not always possible.

Missing and new information—Inconveniently, the world keeps evolving and

growing more complex after we train our models. So a model trained on

information up to 2018 will not know of anything that happened after, such

as COVID-19 or the nightmare-fuel invention of necrobotics [1]. But you may

want your model to know about these developments to remain useful, without

having to pay a considerable cost to retrain your base model from scratch.

Waiting for the legal system to catch up

We are not your lawyers; this is not a law book! The legal problems around LLMs are
complex, and there is a lot of nuance regarding fair use and infringement. Search
engines can show you the content of their sources verbatim, but why? A combina-
tion of laws explicitly addressing these concerns, such as the Digital Millennium
Copyright Act (DMCA), and precedents set by court rulings, such as Field v Google,
Inc. (412 F.Supp. 2d 1106 [D. Nev. 2006]), establish acceptable and nonaccepta-
ble use over time. However, legislation and court cases take time to create, and
the revolution of generative AI does not fit neatly into existing legal understanding.

You may want a nice, clean answer about what is and is not forbidden by law
in the United States or your own country, and the likely answer is that such certainty

70 CHAPTER 5 How do we constrain the behavior of LLMs?

(continued)

does not yet exist for LLMs. Plus, we wouldn’t be caught dead giving such legal
advice in print—we don’t even play lawyers on TV!

GPT-3.5 and 4 have been improved to avoid answering things they do not know

(not always successfully), but we can look to some open-source base models like

GPT-Neo to see what happens without proactive countermeasures. For example, if

we make up the new fake drug, MELTON-24, and ask “What is MELTON-24, and can

it help me sleep better?” we get the unhelpful response: “There is a great number

of sleep problems that go with Melatonin, including insomnia and fatigue. This

causes insomnia, and why it is important to avoid certain foods that can suppress

melatonin.”

In this case, the similarity of MELTON to melatonin and the prompt of “sleep”

were enough for the model to catch onto the melatonin theme. Still, the answer is

obviously nonsensical since MELTON-24 does not exist. Ideally, we want the model to

recognize and respond, acknowledging its lack of information rather than producing

more text like it has done here.

5.1.3 Some cases require specific formatting

If a user asks for data in a specific format, such as a structured text format like

JSON (for an example of a common format for exchanging data between computers,

see https://en.wikipedia.org/wiki/JSON), and you do not match every opening or

closing bracket or encode special characters properly, the output won’t satisfy their

goals. It does not matter how sophisticated or close to correct the output may have

been; formatting requirements are almost always strict requirements. We presented

an example of this kind of problem in chapter 4 when we asked ChatGPT to write

code in Modula-3, and it borrowed Python syntax that was invalid for Modula-3. The

code won’t compile if it violates syntax rules. An LLM’s probabilistic approach to

generating text for specific desired outputs will not guarantee that all desired syntax

rules are adhered to 100% of the time.

5.2 Fine-tuning: The primary method of changing behavior
Now that we understand various reasons why we want to constrain and control the

behavior of an LLM, we are better prepared to introduce new information to the

model to address the problem we are trying to solve while avoiding the problem

of producing harmful or legally questionable content. Remember, while there are

four different places where we can intervene to change behavior, fine-tuning is far

more effective than the others. Both closed source options like OpenAI [2] and open

source tools like Hugging Face [3], among many others, have varying options for

fine-tuning, making it the most accessible method for practitioners.

Any fine-tuning method will have the same effect—producing a new variant of

an LLM with updated parameters that control its behavior. As a result, it is possible

https://en.wikipedia.org/wiki/JSON

5.2 Fine-tuning: The primary method of changing behavior 71

to mix and match different fine-tuning strategies because the fundamental effect

they produce is the same: a new set of parameters that can be used as is or altered yet

again. One person’s base model could be another person’s fine-tuned model. This

happens with many open source LLMs where an initial model (e.g., Llama) will be

altered by another party (e.g., you can find many “Instruct Llama” models), which

you may then further fine-tune to your data or specific use case.

The most straightforward way to customize an LLM is by prompting and iteratively

refining prompts until the desired behavior is obtained. However, fine-tuning is the

next logical step if that does not work well. This step involves a moderate increase in

effort and cost, such as collecting the data to fine-tune and acquiring the hardware

for running a fine-tuning session.

Two fine-tuning methods you should know in particular are supervised fine-tuning

(SFT) and the more intimidatingly named reinforcement learning from human feedback

(RLHF). SFT is the more straightforward approach and is excellent for incorporating

new knowledge into a model or simply giving it a boost in your preferred application

domain. RLHF is more complex but provides a strategy for getting an LLM to follow

harder and more abstract goals like “be a good chatbot.”

5.2.1 Supervised fine-tuning

The most common way to influence a model’s output is SFT. SFT involves taking

high-quality, typically human-authored, example content that captures information

vital to your task but is not necessarily well reflected in the base model.

This often occurs because LLMs are trained on a large amount of generally

available content, which may have minimal overlap with your specific needs. If you

run a hospital, LLMs have seen very few doctors’ notes. If you run a law firm, an

LLM probably has not seen too many deposition transcripts. If you run a repair shop,

LLMs probably have not seen all the manuals you might have access to.

WARNING Fine-tuning is a helpful way to add new information to your model

but can also have security ramifications. If you want to build an LLM onmedical

records, it makes sense to fine-tune the LLM on example medical records.

But now there is a risk someone could get your LLM to reproduce sensitive

information contained in that fine-tuning data because fundamentally, LLMs

attempt to complete input based on the training data they have seen. The

bottom line: do not train or fine-tune LLMs on data you want to keep private.

Consider again our example of the car company and its sales chatbot. A base model

from a third-party source may generally be aware of cars but probably will not know

everything about the company’s products. By fine-tuning amodel on internalmanuals,

chat histories, emails, marketing materials, and other internal documents, you could

ensure the model is prepared with as much information as possible about your cars.

You could even write example documents about the merits of your vehicles over

competitors, advantages, scripts, and more to ensure that the LLM is armed with the

information you want it to have.

72 CHAPTER 5 How do we constrain the behavior of LLMs?

The mechanics of SFT are easy to explain. As we’ve alluded to, SFT simply needs

more documents. They can be in any format from which text can be extracted. This

constitutes all of the work necessary to apply SFT because SFT is just repeating the

same training process you learned in chapter 4. Figure 5.3 shows that the process for

SFT is the same as you saw previously. The difference is that the initial parameters

are random and unhelpful the first time you train the base model. The second time

you fine-tune, you start with the base model’s parameters that encode what the base

model has learned by observing its training data.

Gradient

descent

Input Loss

Labels

Neral network

parameters
Output

Update the

parameters

Keep
repeating

Gradient

descent

Input Loss

Labels

Neral network

parameters
Output

Update the

parameters

Keep
repeating

A lot of

general data A little data,

but specific

Pre-training the base model Supervised fine-tuning the final model A

After the base model is done training on a lot of data, the
weights are reused, and the exact same process is applied
again. The smaller dataset should be highly curated to the goal.

Figure 5.3 Supervised fine-tuning (SFT) is a simple approach to improving model results. You repeat
the same process used to build the base model. Once the base model is trained on a large amount of
general data, you continue training on the smaller specialized data collection.

Delightfully, you now have a good understanding of SFT. Like the original training

process, it reuses the “predict the next token” task to ensure your model has infor-

mation from the new documents built inside. As a direct consequence of predicting

the next token, SFT also does not allow us to change the incentives of the LLM. For

this reason, abstract goals like “Do not curse at the user” are difficult to achieve with

SFT.

FINE-TUNING PITFALLS
By reusing the gradient descent strategy from chapter 4, all fine-tuning methods

tend to inherit two problems around an LLM’s ability to return content on which it

was trained. Since SFT is so simple, this is a good time for us to review the broader

problems with fine-tuning beyond just SFT.

There are no guarantees that SFT will retain the information you provide correctly.

This problem, known as catastrophic forgetting [4], occurs when you train the model

on new data but do not continue training on older data, and the model begins to

5.2 Fine-tuning: The primary method of changing behavior 73

“forget” that older information. It is not easy to determine what will and will not be

forgotten. Catastrophic forgetting has been a recognized problem since 1989 [5]. In

other words, fine-tuning is not purely additive; you give up something for it.

5.2.2 Reinforcement learning from human feedback

At the time of writing, RLHF is the dominant paradigm for constraining models. As

the name implies, it uses an approach from the field of reinforcement learning (RL).

RL is a broad family of techniques where an algorithm must make multiple decisions

toward maximizing a long-term goal, as shown in figure 5.4, where four terms are

used with a technical meaning:

Agent—The entity/AI/robot with some overarching goal that it wishes to

accomplish that may take multiple actions to achieve.

Action—The space of all possible things the agent may be able to perform or

engage in to advance the agent’s goals.

Environment—The place/object/space affected by an action. The environment

may or may not change as a result of the action, actions taken by other agents,

or the natural continuous change of the environment.

Reward—The numeric quantification of improvement (which may be negative)

that may or may not occur after any given number of actions.

The process repeats as the agent picks

a new action to maximize reward.

“You should invest”

“DESTROY HUMANS”

“User: How can I

prepare for a long life?”

User is happy with

chatbot’s response.

Water the tree

Build a fence

Agent picks an action. . .The agent has a

goal to accomplish

(e.g., maximize

value of property).
. . . to interact with the environment. . .

Property value

goes up/down

. . . to receive a reward

Figure 5.4 RL is about iterative interactions, where the reward for your actions may not materialize
for a long time and requires multiple steps to achieve. For a chatbot like ChatGPT, the environment is the
conversation with a user, and the actions are the infinite possible texts that ChatGPT might complete. The
reward becomes, in some sense, the user’s satisfaction with the chatbot at the end of the conversation.

In the example of an LLM being used as a chatbot to interact with people, the users

are the environment. The LLM is itself the agent, and the text it can produce is

the action. This leaves one final thing to specify: the reward. If we were to get a

user to score a +1 for a good conversation with a chatbot (e.g., no foul language,

no lying, provided helpful responses) and a -1 for a lousy conversation (e.g., it

74 CHAPTER 5 How do we constrain the behavior of LLMs?

suggested destroying all humans), then we would be adding human feedback to our

reinforcement learning.

An astute reader might notice that a reward sounds suspiciously similar to the loss

function discussed in chapter 4. In fact, our example of a good and bad conversation

falls into the very subjective and difficult-to-quantify regime that we stated was a

bad example of a loss function. The +1/-1 reward is not smooth because the value

points in one direction or the other, and there is no middle ground, another poor

characteristic for a loss function.

One of the powerful things about RL is that it can work with noncontinuous

and hard-to-quantify objectives. We use the term reward instead of loss to imply the

difference between these two situations. Generally, the types of objectives that RL

can learn are referred to as nondifferentiable. As a result, these objectives can’t be

learned using the same mathematical techniques like gradient descent, which we

covered when describing how neural networks learn in chapter 4. We will explain

how RLHF works specifically in a moment. The caveat lector of RL is that it can

be computationally expensive and require a significant amount of data. RL is a

notoriously challenging way to learn. It often works worse than other fine-tuning

techniques like SFT because RL requires many more examples of the “right” and

“wrong” way of doing things than other approaches, and since we are using human

feedback to guide RLHF, the results are not always perfect. For example, in figure 5.5,

RLHF cannot help an LLM understand basic instructions outside of what it has seen

explicitly during RLHF training because it does not add any capability to perform

basic logic, such as understanding the user’s request to avoid displaying information

about dolphins, to the underlying model.

LLMs do not perform reasoning in the sameway that we humans think of reasoning.

You can get very far by collecting hundreds of millions of examples of “everything,”

but the world is weird. We have little evidence that LLMs can reliably produce

satisfying responses when something novel occurs. However, RLHF is the best so far

for constraining how an LLM behaves. Despite its challenges, RL presents a way of

learning that is not available with gradient-based methods that require differentiable

objectives. Most importantly, ChatGPT has shown that RL can work in many cases.

So let us dive deeper into how RLHF works.

5.2.3 Fine-tuning: The big picture

SFT and RLHF are the two primary methods of fine-tuning an LLM. SFT can work

with thousands of documents or samples, whereas RLHF often requires tens of

thousands of examples. That should not stop you from investigating if you have less

data, but if you have less data, it may be a better use of your time to develop better

prompts.

More importantly, SFT and RLHF are not mutually exclusive. They both modify

the underlying parameters of the model, and you can apply one after the other to

obtain the benefits of each approach. They are also not the only fine-tuning methods

that currently exist. For example, new fine-tuning methods are being developed

5.3 The mechanics of RLHF 75

Figure 5.5 RLHF is quite good at getting LLMs to avoid known, specific problems. However, it does not
endow the model with new tools to handle novel problems. The desire to talk about the Miami Dolphins
as the logical thing to say next after asking about football in Miami violates the first request to avoid
ever mentioning dolphins.

that remove concepts from an LLM as a way of forcing a model to ignore data it

has learned from after it has been trained [6]. Additional techniques for model

alteration will be developed in the coming years. All will likely require you to do

some data collection, but they will involve less work overall than trying to build an

LLM from scratch yourself.

5.3 The mechanics of RLHF
To describe how RLHF works, we will introduce an incomplete version of RLHF,

explain why it does not work, and then explain how to fix it. In this section, we will

not discuss the detailed math used by RLHF, as it would not give you any particularly

great insights into RLHF from a high level. If you want to learn more about the

nitty-gritty details, we recommend starting with ”Implementing RLHF: Learning to

Summarize with trlX” [7] after you’ve completed this chapter.

5.3.1 Beginning with a naive RLHF

First, let’s look at the incomplete and naive version of RLHF. We have discussed

how RL can learn with nondifferentiable objectives. So let us assume that we have

76 CHAPTER 5 How do we constrain the behavior of LLMs?

a human who will score an LLM’s output with a quality reward, where +1 indicates

a good response and -1 is an inadequate response. This quality reward is simply an

arbitrary score we assign to the output produced by the LLM to indicate that one

example is somehow better than others.

So if a user requests of an LLM, “Tell me a joke,” and the LLM produces a response

of “How many ducks does it take to screw in a light bulb?” we might assign a score of

+1 for a (reasonably) good joke. If the LLM instead produces a sentence like “Dogs

are evil,” we will assign a score of -1 because it is not even attempting to make a

joke. Because RL is difficult to do using simple quality rewards of +1 and -1, we will

add additional information for the RL algorithm, such as the probabilities of each

generated token. This way, the RL algorithm knows how probable each token may

be. This whole process is summarized in figure 5.6.

LLM to

fine-tune

Quality

reward

Reinforcement

learning (RL)

Dashed lines show text.
These are not differentiable,
so RL is needed.

Wavy line shows that RL alters the parameters of the LLM to fine-tune.

+1or -1

Solid lines are the probabilities of each token what was picked.

Initial Prompt:

"User: Tell me a joke"

["How", "many", "ducks"]

[0.43, 0.98, 0.12]

Figure 5.6 A naive and incomplete version of RLHF. The dashed lines represent text being sent from
one component to another. Since text is incompatible with gradient descent, a more difficult RL algo-
rithm must be used instead. This allows us to alter the weights of the LLM based on a quality score for
the LLM’s outputs.

Why provide RL with probabilities?

It may seem odd that we are providing the RL algorithm with the probabilities of
each token. There are deeper mathematical reasons why this is useful, which we
will not get into in this chapter. But for some intuition, a good joke often requires
misdirection or surprise. If all the probabilities of a sequence are high values (near
1.0), it is probably not a good joke because it’s too predictable.

Broadly, across natural language processing, producing good generated text is a
balancing act between making something probable (i.e., likely to occur) and not
making it too probable (i.e., repetitive).

5.3.2 The quality reward model

We described the quality reward as human-assigned scores for every prompt comple-

tion. Although scoring completions manually in real time would technically work, it

would be unreasonable due to the level of effort involved. However, human feedback

is still incorporated via the quality reward. Instead, we train a neural network as a

reward model. This is accomplished by having people manually collect hundreds of

5.3 The mechanics of RLHF 77

thousands of prompt and completion pairs and scoring them as good or bad. These

scorings become the labeled data used to train the reward model, as shown in figure

5.7.

Prompt Completion Score

Neural network

Collect many prompt/completion
pairs and feed them into a neural
network.

0.7
Calculate

loss

A neural network takes the prompt
and completion and attempts to
predict the score it would receive.

The true score and prediction are used to calculate a loss
and alter the network via gradient descent.

"Tell me a joke"

"How do I build a weapon?"

"How do I build a potato launcher?"

"How many feet in a mile"

"How many ducks.."

"I'm sorry, I can't do that..."

"Have you tried a grenade launcher?"

"14 feet in a mile"

+1

+1

−1

−1

Figure 5.7 The reward model is trained like a standard supervised classification algorithm. A neural
network, which could be an LLM itself or another simpler network like a convolutional or recurrent
neural network, is trained to predict how a human would score a prompt completion pair. Because
neural networks are differentiable, this training works and provides a tool that stands in as the “human”
in RLHF.

Collecting hundreds of thousands of scored prompts and completion pairs is expen-

sive but doable (e.g., https://huggingface.co/datasets/Anthropic/hh-rlhf), especially

when using crowd-sourcing tools like Mechanical Turk (https://www.mturk.com/).

That is a lot of data to curate manually but orders of magnitude smaller than the

billions of tokens used to create the initial base models. These RLHF datasets must

be large because you must cover many scenarios, questions, and requests that a user

might provide. As we already saw in figure 5.5 with the dolphin example, RLHF

tends to work for relatively straightforward and known topics. So breadth in handling

different situations comes directly from breadth in the fine-tuning data.

NOTE We have been using +1/-1 as the example of providing a quality reward

because it is the easiest to describe. Since RL does not need gradients, you

can use any score relevant to your problem. Using a ranking score, where you

compare multiple completions for a given prompt and rank them from best to

worst, is more popular and more effective because you are grading multiple

completions against each other simultaneously. Regardless, providing positive

and negative feedback remains fundamentally the same.

5.3.3 The similar-but-different RLHF objective

Once you have trained a reward model, you can create and score as many prompts

as you desire for the RLHF process. The human feedback is baked into the reward

model and can now be distributed, parallelized, and reused. The only remaining

https://huggingface.co/datasets/Anthropic/hh-rlhf
https://www.mturk.com/

78 CHAPTER 5 How do we constrain the behavior of LLMs?

problem is that the current naive version of RLHF is incentivized purely to maximize

the quality reward, which is not the sole goal RL must focus on.

As a result, the model will start to degrade over time by producing gibberish and

nonsensical outputs that are not high quality and would not be valuable to any reader.

This degradation is related to a phenomenon called adversarial attacks, where it is

surprisingly easy to trick a neural network into absurd decisions with relatively minor

changes to the input. Adversarial machine learning (AML) is fast evolving and has its

own rabbit hole of complexity, so we’ll defer that discussion to other folks [8]. But

the naive implementation of RLHF we describe in figure 5.6 essentially performs an

adversarial attack against an LLM because it will focus only on maximizing the quality

reward, not on being useful to the user. Essentially, this is Goodhart’s law happening

to AI/ML: “When a measure becomes a target, it ceases to be a good measure.”

To address this problem, we must add a second objective to the RL algorithm.

We will calculate a second reward for the similarity between the original base LLM’s

output and the fine-tuned LLM’s output. Conceptually, this reward can be considered

a reward when the fine-tuned LLM produces better output, similar to how the original

LLM behaved. It prevents the model from going off the rails by getting too novel.

Fundamentally, we want the generated output of the fine-tuned LLM to be grounded

by the training data initially observed by the original LLM. We don’t want the fine-

tuned model to get so creative that it generates nonsense. This reward is added to the

RL algorithm to stabilize the fine-tuning. Figure 5.8 provides the complete picture

of how RLHF works.

LLM to

fine-tune

Quality

reward

Reinforcement

learning (RL)

Dashed lines show text.
These are not differentiable,
so RL is needed.

Wavy line shows that RL alters the
parameters of the LLM to fine-tune.

+1 or -1

Solid lines are the probabilities of each token what was picked.

Initial prompt:

"User: Tell me a joke"

Original

LLM

Similarity

reward

0.0 for different to 1.0

for identical.

Figure 5.8 The full version of RLHF. The dashed lines are text and require RL to update the parameters.
The original LLM is the base model without any alterations, while the LLM to fine-tune starts as the base
model but is altered to improve the quality of its outputs. The similarity and quality reward components
are provided with word probabilities to improve calculation. RL adjusts the parameters by combining the
quality and similarity scores.

A model that learns to produce gibberish output would receive a high penalty for

lack of similarity, discouraging the model from becoming too different. A model

5.4 Other factors in customizing LLM behavior 79

that produces the exact same outputs will receive a low quality score, discouraging a

lack of change. The balance of both does an excellent job of achieving a Goldilocks

effect that allows the model enough flexibility to change without causing it to lose its

human-like output.

5.4 Other factors in customizing LLM behavior
Fine-tuning is the dominant means of altering the behavior of an LLM, but fine-

tuning is not foolproof and is not the only place where behavior changes can occur.

Our focus on fine-tuning is based on the value of RLHF in producing LLM behaviors

beyond simple next-token prediction.

Stage 1, building the base model
on a lot of data, but not on the task
we truly care about. Modifying training
can be useful, but extremely expensive.

Postmodel, one could look for specific
content being output by the LLM and use
normal software engineering tools like
regular expressions to detect situations.

Altering the training

data

Training the base LLM

(chapters 2-4)
Fine-tuning the LLM

Altering the output of

the LLM

Premodel option, not
as popular in practice.

Stage 2, altering the expensive
base model via a cheaper process
that refines the model toward
our specific goals.

Figure 5.9 In addition to fine-tuning, you can change the model’s behavior by altering the training
data, altering the base model training process, or modifying the model outputs by writing code to
handle specific situations.

The other three stages where LLM behavior can be modified, described in figure 5.9,

are not easily accessible to you as a user. However, we will briefly review the other

stages now, along with some key details you should know for completeness. These

factors can help you understand what is challenging to achieve by fine-tuning and

the scope of questions you might want to investigate in your LLM provider.

5.4.1 Altering training data

The adage “garbage in, garbage out” is evergreen in all areas of ML. You may indeed

notice that OpenAI [9] and Google [10] provide many low-level technical details

about how they develop their LLMs but much less detail on the data used for building

the LLM. That is because most of the “secret sauce” in building capable LLMs is

around data curation—developing a collection of data representing diverse tasks,

high-quality language use, and a spectrum of different situations. The size and quality

of the data sets used to train, validate, and test LLMs matter.

The size and quality of data have become especially pertinent as LLM-generated

content works its way into regular use and back online. For example, an estimated

6% to 16% of academic peer reviews are using LLMs [11], and it is highly likely that

80 CHAPTER 5 How do we constrain the behavior of LLMs?

many copyediting services will soon be using these new technologies. This increased

use potentially creates a negative feedback cycle. As the amount of data generated by

LLMs grows, there will be proportionally less non-LLM content available for LLMs to

train on. This will result in an overall decrease in the diversity of language available

and, thus, the novelty that LLMs will be able to capture. In turn, the quality of an

LLM trained on newer data is reduced [12]. This problem will likely be significant in

keeping LLMs up to date, as curating a high-quality dataset will not be as simple as

before.

There is also the problem that LLMs can only reflect information available at

training and are disproportionally more likely to reflect information that is more

prevalent in training. If you want an LLM that does not curse or use racist language,

you must work to scrub your dataset of all cursing and racist language.

However, this problem is potentially a double-edged sword. If we want our LLM

to know how to recognize and appropriately reject racist or foul language, it must

know what racist and foul language are. You can imagine using prompting on an

LLM that has never seen any racist text to “teach” the LLM to use racist words in a

context that, without knowing X is racist, appears benign. But in the final form, we,

as readers who are aware of racism, would recognize the sentence as objectionable.

This problem, as of now, has no answer but is something to be mindful of.

Altering data is also important, as it is your only chance to influence how tokeni-

zation is performed in an LLM. As discussed in chapter 2, different approaches to

tokenization have tradeoffs, but the choices you make are forever baked into the

model once you start training.

5.4.2 Altering base model training

Training data privacy must be a significant concern when training or fine-tuning

LLMs. Generally, it is possible to reconstruct a model’s training data by crafting inputs

into a model in a special way. In some cases, LLMs have been shown to generate

the exact passages on which they were trained. This is problematic if the training

data contains private information, such as personally identifiable information (PII),

private health information (PHI), or some other class of sensitive data. A user of a

model could, perhaps unwittingly, provide a prompt that reveals this data verbatim.

Initial training of an algorithm is an ideal place to mitigate some of these privacy

concerns by using a technique known as differential privacy (DP). DP is complex, so if

you want to learn more, we recommend the book Programming Differential Privacy

[13]. In short, DP adds a carefully constructed amount of random noise to provide

provable guarantees about data privacy in the model training process. DP does not

handle everything, but it provides much more protection than what is available with

most algorithms today.

So why hasn’t everyone done just that? Well, adding noise naturally tends to reduce

the quality of the result. Large training runs are expensive, costing hundreds of thou-

sands to millions of dollars each. If you had to do 10× more training runs to set your
privacy parameters correctly, you would have a million to tens-of-millions-of-dollars

5.4 Other factors in customizing LLM behavior 81

problem. But with DP becoming better every year, we suspect it will become more

prevalent over time.

5.4.3 Altering the outputs

Finally, we can examine the tokens being produced and write code to change its

behavior based on the combinations of tokens generated by the model. After fine-

tuning, this is the second most likely stage that a consumer of LLMs will use to modify

their behavior.

Earlier in this chapter, we discussed a common need for LLMs to generate output

that adheres to a precise format, such as XML or JSON. Implementing formatting

requirements like these is a common problem with LLMs. Any single failed prediction

results in a failure to generate valid output. You can see an example of this type of

failure in figure 5.10, where we ask the LLM to complete some Python code; the next

token should be a semicolon (;), but it erroneously attempts a newline (\ n) instead.

1. Attempted completion 2. Run syntax validator

3. Repeat
until error free

4. Get
syntactically
correct output

{
 "first_name"; "John",
}

Parse error on line 2:
{ "first_name"; "John",}
---------------^
Expecting 'EOF', '}', ':', ',', ']',
got 'undefined'

{
 "first_name"; "John",
}

Figure 5.10 By writing code that enforces a format specification, you can catch invalid output from an
LLM as it is being generated. Once detected, having the LLM produce the next most likely token until a
valid output is found is a simple way to improve the situation.

Various tools exist (e.g., https://github.com/noamgat/lm-format-enforcer) for speci-

fying strict formats as a part of the LLM’s decoding step. If these tools detect a parse

error, they immediately regenerate the last token until a valid output is produced.

More sophisticated approaches to selecting the next token are possible. Still, the

important lesson here is the ability to use the intermediate outputs to make decisions

before generating the entire output. Even simple old-school “go/no-go” lists are

valuable tools for catching bad behavior. You do not need to pass an output to the

user in true real time; you can always introduce an artificial delay so that you can

see more of the response before sending it to the user. This gives you time to chat

against bad language filters or other hard-coded checks. If a match occurs, just like

in figure 5.10, you can regenerate an output or abort the user’s session.

https://github.com/noamgat/lm-format-enforcer

82 CHAPTER 5 How do we constrain the behavior of LLMs?

5.5 Integrating LLMs into larger workflows
At this point in the chapter, we have covered some basic approaches to manipulating

an LLM to produce more desirable and consistent outputs. So far, we have focused

on techniques that involve the LLM itself, whether through prompting, manipulating

training data, or fine-tuning a base model. In this section, we will explore how to

tailor the output produced by an LLM by integrating the inputs and outputs of LLMs

into multistep chains of operations to achieve more tailored results. This space is

quickly evolving, so we will briefly cover one concrete example of integrating an LLM

into a broader information retrieval workflow and then discuss a general-purpose

tool to show you how to customize LLM outputs using multiple interactions with an

LLM.

5.5.1 Customizing LLMs with retrieval augmented generation

Retrieval augmented generation (RAG) is a technique that allows us to produce answers

from an LLM while reducing the likelihood of generating nonsensical or otherwise

errant explanations. The “retrieval” component of the RAG moniker should give

you a helpful hint as to how the technique operates. When a user provides input to

a RAG system, it uses an LLM to create a query that is run against a search engine

that contains an index of documents. Depending on the use case, this might be an

index of general information, such as Google, or a subject-specific index, such as a

collection of automotive marketing materials. In response to the query, the search

engine generates a list of relevant documents. The RAG system then uses the LLM

to extract information from those documents to generate better answers. To do

this, the RAG system combines the contents of the retrieved documents with the

original user query to create a comprehensive prompt for the LLM that will result in a

better response. This method tends to work well because instead of asking an LLM to

generate a response based on its training or fine-tuning data, we are now asking the

LLM to generate a response to input by summarizing a set of documents relevant to

a regular old search engine query and providing that set of relevant documents from

which to draw its answers to the LLM. In other words, we’re helping the LLM focus

on the data it needs to properly answer a given question. We describe this process in

figure 5.11 and compare it with the normal LLM use cases we have described so far.

The two most significant benefits of the RAG approach thus far are as follows:

The output of a RAG system is more accurate, factually correct, or otherwise

useful to the user’s original question because it is based on specific sources

contained in a document index.

The LLM can generate citations or references to the source documents used to

produce its responses, allowing users to validate or correlate against the original

source material.

The latter point regarding citations is particularly important. RAG will not solve all

of LLMs’ problems because the LLM still generates the final output in a RAG system.

The LLMmay still produce errors or hallucinations due to content that it cannot find

or that doesn’t exist. It is also possible that the LLM will not accurately capture or

5.5 Integrating LLMs into larger workflows 83

How do I write

valid JSON? Search engine (e.g.,

Google/Bing/Ask

Jeeves)

How do I write

valid JSON?

Webpages and

documents about

JSON format

GPT/LLM GPT/LLM

Every JSON

document

begins with a "

{" or "["

Answer the question: "How

do I write valid JSON?"

Using the following

information:

Every JSON

document

begins with a "

{" [footnote]

The user’s question
goes directly to an
LLM, without
alteration.

1. The user’s question is checked
 against a search engine
 or database of some form.

2. The content of the
 top 3 search results
 are returned.

Get a standard
LLM quality
response.

3. A new prompt merges
 the original question
 with the content of the
 top 3 documents.

4. An enhanced response is less likely to
 have errors if the retrieved documents are
 relevant and accurate, with the possibility
 of citing where the information came from.

Normal LLM use RAG-style LLM

Figure 5.11 On the left, we show the normal use of an LLM of a user asking about how to write JSON.
LLMs naturally have the chance of producing errant outputs, which we want to minimize. On the right,
we show the RAG approach. By using a search engine, we can find documents that are relevant to a
query and combine them into a new prompt, giving the LLM more information and context to produce
a better answer.

represent the content of any of the source documents it uses. As a result, the utility of

the RAG approach is directly related to the quality of the search it performs and the

documents that are returned. The bottom line is that if you can’t build an effective

search engine for your problem, you can’t build an effective RAG model.

Context size

When thinking about LLMs, it is important to consider one aspect of LLMs known
as the context size. The context size of the LLM determines how many tokens it
can computationally handle in a single request for completions. You can think of it
as the amount of data that an LLM is able to look at when receiving input in the
form of a prompt. For example, GPT-3 has a context size of 2,048 tokens. However,
in chatbots, for example, the context is often used to hold a running transcript of
the entire conversation, including any LLM outputs. If you have a conversation with
GPT-3 that goes beyond 2,048 tokens in length, you’ll find that GPT-3 often loses
track of some of the things discussed early on in the chat.

Context size is an enabling and limiting factor for RAG use. If a RAG system retrie-
ves an entire book for your LLM to digest, your LLM will require a huge context size to

84 CHAPTER 5 How do we constrain the behavior of LLMs?

(continued)

be able to use it. Otherwise, the LLM can only consume the first part of a retrieved
document (up to the LLM’s context size) and may miss information. As a result,
context size is an important operational characteristic you should consider when
choosing a model. Some models today, such as X’s Grok, can handle up to 128,000
tokens as their context size. While large context sizes like Grok’s increase the hard
limit of what an LLM can consume, the effectiveness of LLMs when dealing with
large amounts of input enabled by larger context sizes is still an active area of
study.

You may notice in figure 5.11 that we have to create a new prompt. We added

the prefix “Answer the question:” followed by the postfix “Using the following

information:” Hypothetically, you could obtain better results by tweaking this prompt.

Youmay get thoughts about adding some instructions like “Ignore any of the following

information if it is not relevant to the original question.” These ideas are starting to

get into prompt engineering, the practice of tweaking and modifying the text going

into an LLM to change its behavior, as we talked about earlier in chapter 4.

Prompt engineering is indeed useful and a good way to combine multiple calls

to an LLM to improve results. For example, you could try to improve your search

results by asking the LLM to rewrite the question. (This discussion touches on a

classic area of information retrieval called query expansion, if you wish to learn more

on the topic.) However, prompt engineering can be very brittle: any update to an

LLM may change what prompts do or don’t work, and it would be a pain to have to

rewrite every prompt—especially as you get into anything more complex, like a RAG

model or something even more sophisticated.

5.5.2 General-purpose LLM programming

Although still new, we are already starting to see programming libraries and other

software tools built using LLMs as a component of custom applications. One we

particularly like is DSPy (https://dspy.ai), which can make it easier to build and

maintain programs that attempt to alter the inputs to and outputs of an LLM. A good

software library will hide details that get in the way of productivity, and DSPy does a

good job of abstracting away the following tasks around LLM usage:

Integrating the specific LLM being used

Implementing common patterns of prompting

Tweaking the prompts for your desired combination of data, task, and LLM.

This is not a coding book, so a full tutorial on DSPy is out of scope. But it is illustrative

to look at the ways DSPy can be used to implement the RAG model we described

in section 5.5.1. It will require that we pick an LLM to use (GPT-3.5, in this case),

as well as a database of information (Wikipedia will work well), and define the

RAG algorithm. DSPy works by defining a default LLM and database used by all

components (unless you intervene), making it easy to separate and replace the parts

being used. This process is shown in the following listing.

https://dspy.ai

5.5 Integrating LLMs into larger workflows 85

Listing 5.1 Simplest RAG in DSPy

import dspy

llm = dspy.OpenAI(model='gpt-3.5-turbo')

Uses OpenAI’s GPT-3.5,
which can be swapped out
with other online or local LLMs

similarity_and_database = dspy.ColBERTv2(

Uses the ColBERTv2 algorithm
to vectorize a copy of Wikipedia

'wiki17_abstracts'
)

dspy.settings.configure(

Uses the LLM and document
database we just created

lm=llm,
rm=similarity_and_database

)

class RAG(dspy.Module):
def __init__(self, num_passages=3):

super().__init__()

self.retrieve = dspy.Retrieve(

Searches for the three most relevant
documents from the database

k=num_passages
)

self.generate_answer = dspy.Prediction(

Specifies a “signature” string,
which defines the inputs and
output of the LLM

''question,relevant_documents -> answer''
)

def forward(self, question): Calls the functions to build a RAG
model. The parameter names
match the names in the signature.

documents = self.retrieve(
question

).passages

return self.generate_answer(
question=question,
relevant_documents=documents

).answer

This code sets the aforementioned choices in LLMs and databases as the defaults,

making it just as easy to replace OpenAI with another online LLM or a local one such

as Llama. The class RAG(dspy.Module): class then defines the RAG algorithm. The

initializer only has two parts.

First, we need a way to search a database of strings based on vectorized documents,

which is defined with ColBERTv2. It uses an older—as in just four years ago (wild how

fast the field is moving)—but much faster language model for speed and efficiency.

Remember, the larger language model (that is, the more expensive to run) just needs

reasonable documents to be retrieved. While ColBERTv2 probably won’t do as good

a job as GPT-3.5, it is more than good enough to get you the right documents most of

the time. The dspy.Retrieve then uses this default database for searching, so there

is no need to specify anything more than how many documents to retrieve.

86 CHAPTER 5 How do we constrain the behavior of LLMs?

Second, we need to combine the questions and documents into a query for the

LLM. In DSPy, the prompt is abstracted away from us. Instead, we write what DSPy

calls a signature, which you can think of as the inputs and outputs of a function. These

should be given meaningful English names so that DSPy can generate a good prompt

for you. (Under the hood, DSPy uses a language model to optimize prompts!) In

this case, we have two inputs (question and relevant_documents) separated by a

comma. The -> is used to denote the start of the outputs, of which we have only one:

the answer to the question.

NOTE DSPy supports some basic types in signatures. For example, you can

enforce that the answer must be an integer by denoting ”question, relevant

_documents -> answer:int” in the string. This command will apply the same

technique to regenerating on errors that we just learned about in figure 5.10.

That is all it takes to define our RAG model! The objects are called and passed out in

the forward function, but you can modify this code to add additional details if you

want. You can convert everything to lowercase, run a spell checker, or use whatever

kind of code you want here. This approach lets you mix and match programming

rules with LLMs.

You can also easily modify the RAG definition to include new constraints and write

code to have an LLM perform validation. More importantly, DSPy supports using a

training/validation set to tune the prompts better, fine-tune local LLMs, and help

you create an empirically tested, improved, and quantified model to achieve your

goals without having to spend a lot of time on LLM-specific details. Adopting tools

like this early will give you a far more robust solution that allows you to upgrade to

newer architectures more easily.

Summary
You can intervene to change a model’s behavior in four places: the data

collection/tokenization, training the initial base model, fine-tuning the base

model, and intercepting the predicted tokens. All four places are important,

but fine-tuning is the most effective place for most users to make changes that

lower the cost and provide the optimal ability to change the model’s goals.

Supervised fine-tuning (SFT) performs the normal training process on a smaller

bespoke data collection and is useful for refining the model’s knowledge of a

particular domain.

Reinforcement learning from human feedback (RLHF) requires more data, but

it allows us to specify objectives more complex than “predict the next token.”

You can use existing tools like syntax checkers to detect incorrect LLM outputs

in cases where the output format must be strict, such as for JSON or XML.

Generation and syntax checking can be run in a loop until the output satisfies

the necessary syntax constraints.

Summary 87

Retrieval augmented generation (RAG) is a popular method of augmenting

the input of an LLM by first finding relevant content via a search engine or

database and then inserting it into the prompt.

Coding frameworks like DSPy are beginning to emerge that separate the specific

LLM, vectorization, and prompt definition from the logic of how inputs and

outputs from the LLM are modified for a specific task. This method allows you

to build more reliable and repeatable LLM solutions that can quickly adapt to

new models and methods.

6Beyond natural
language processing

This chapter covers
How transformer layers work on data
other than text

Helping LLMs to write working software

Tweaking LLMs so they understand
mathematical notation

How transformers replace the input and
output steps to work with images

While modeling natural language was the transformers’ primary purpose, machine

learning researchers quickly discovered they could predict anything involving data

sequences. Transformers view a sentence as a sequence of tokens and either produce

a related sequence of tokens, such as a translation from one language to another,

or predict the following tokens in a sequence, such as when answering questions or

acting like a chatbot. While sequence modeling and prediction are potent tools for

interpreting and generating natural language, natural language is the only domain

where LLMs can be helpful.

Many data types, other than human language, can be represented as a sequence

of tokens. Source code used to implement software is one example. Instead of the

words and syntax you would expect to see in English, source code is written in a

computer programming language like Python. Source code has its own structure

88

CHAPTER 6 Beyond natural language processing 89

that describes the operations a software developer wants a computer to perform.

Like human language, the tokens in the source code have meaning according to the

language used and the context in which they appear. If anything, source code is more

highly structured and specific than human language. A programming language with

shades of ambiguity and meaning would be challenging for a computer to interpret

and harder for others to modify and maintain.

Source code, or simply “code” (which is how we’ll refer to it from here on), is

just one example of how LLMs and transformers work with data that is not natural

language. Almost any data you can recast as a sequence of tokens can use transformers

and the many lessons we have learned about how LLMs work. This chapter will

review three examples that become progressively less like natural language: code,

mathematics, and computer vision.

Each of these three different types of data, known as data modalities, will require a

new way of looking at a transformer’s inputs or outputs. However, in all cases, the

transformer itself will remain unchanged. We will still stack multiple transformer

layers on top of each other to build a model, and we will continue to train the

transformer layers using gradient descent. Code, being the most similar to natural

language, does not require too many changes. To make a code LLM work well,

though, we will change how the outputs of the LLM generate subsequent tokens.

Next, we will look at mathematics, where we need to change tokenization to get an

LLM to succeed at basic operations such as addition. Finally, for computer vision,

which concerns working with images and performing tasks such as object detection

and identification, we will modify both the inputs and outputs, showing how you

can convert a very different type of data into a sequence by replacing the concept of

tokens entirely. We show the parts of LLMs that you must modify to work with each

data modality in figure 6.1.

Output generationTransformersTokenization

Code requires to
altering the output
generation step.

Math requires
altering the
tokenization step.

Computer vision requires
altering both the tokenization
and output steps.

Figure 6.1 If we break an LLM into three primary components—input (tokenization), transformation
(transformers), and output generation (unembedding)—we can use new data modalities by changing at
least one of the input or output components. Meanwhile, the transformer does not require modification
for most use cases because it is general-purpose.

90 CHAPTER 6 Beyond natural language processing

In working with all three new types of data, we must solve a common problem. How

do we give the LLM or transformer the ability to use knowledge related to that specific

subject area? We commonly handle this by integrating external software into the

LLM. You can think of these external software components as tools. Similarly to how

you need a hammer to drive a nail through a piece of wood, LLMs can benefit from

using tools to achieve end goals. Tools built for code will help us improve coding

LLMs. Knowing how humans do math and the tools we use to automate math will

help us make better math LLMs. Understanding how we represent images as pixels

(which we ultimately transform into sequences of numbers representing the amount

of red, green, and blue in one part of an image) will allow us to convert them into

sequences for the LLM. As you think about the specific knowledge related to your

work where LLMs have not yet been applied, you will be able to identify the unique

characteristics of the data you work with to modify an LLM to better operate with

data from that domain of knowledge.

6.1 LLMs for software development
We’ve already briefly discussed that LLMs can write source code for software. In chap-

ter 4, we asked ChatGPT to write some Python code for calculating the mathematical

constant c. Next, we asked it to convert that code into an obscure language called

Modula-3. Software was one of the first things people discovered LLMs could help

with as a relatively natural consequence of how programming works. Programming

languages are designed to be read and written by humans like text! Consequently, we

can generate code without changing the tokenization process. Everything we have

discussed about constructing LLMs applies equally to code and human languages.

We can see this by looking at ChatGPT’s tokenization of two similar code segments

for Python and Java in figure 6.2. Here, we use shades of grey to show the OpenAI

tokenizer (https://platform.openai.com/tokenizer), which breaks code into diffe-

rent tokens. While the same token might have a different color in each example, we

can focus on how the tokenizer breaks code into tokens and the similarities between

both examples. These include things like

The indentation for each line of code

The x and i variables (in most cases)

The function name and return statement

The operators, such as +=

These similarities make it far easier for an LLM to correlate the similarity between

each piece of code. The similarities also mean that the LLM shares information

between programming languages with common naming, syntax, and coding practices

during training.

Software developers are encouraged to usemeaningful variable names that reflect a

variable’s role or purpose in the programs they write. Variables named like initValue

are broken up into two tokens for init and Value, using the same tokens to represent

https://platform.openai.com/tokenizer

6.1 LLMs for software development 91

def func(arg):

 x = arg[0]

 for i in range(arg[2]):

 x += i**2

 return x

double func(double initValue, int n)

{

 double x = initValue;

 for(int i = 0; i < n; i++)

 x += Math.pow(i, 2);

 return x;

}

Figure 6.2 Two similar samples of code written in the programming languages Python (left)
and Java (right). These show how byte-pair encoding can identify similar tokens across different
languages. The boxes show individual tokens. Standard tokenization methods for human languages
do a reasonable job on code since it has many similarities to natural language.

natural language text where the prefix “init” of the word “Value” occurs. So not

only do we share information between programming languages with similar syntax,

but we also share information about the context and intention of code via variable

names. LLMs also benefit from the code comments that programmers add to describe

complex parts of the code for themselves or other programmers. In figure 6.3, we

have the Java version repeated with a change in the variable name and a descriptive

(but unnecessary in real life) comment at the top of the function.

double func(double initValue, int n)

{

 //The initValue is the initial value we get to offset the summar

ization by a specific amount. Then we will incremenet from i to n, squ

aring it each time before adding it to the running sum variable.

 double sum = initValue;

 for(int i = 0; i < n; i++)

 sum += Math.pow(i, 2);

 return sum;

}

it each ti dding it to the running sumit each time before ame before aaring me before adding it todding it to the running sum variable. the running sum variable. the running sum

}

Figure 6.3 Code written in Java, including a comment describing what the code does. Because (good)
code (hopefully) has a lot of comments, there is a natural mix of natural language and code for the LLM
to use to obtain information. When variables have descriptive names, it becomes easier for the model
to correlate information between the code and the intent described in comments and variable names.

In most cases, we get the same tokens between code and comments, linking hu-

man and programming languages together since they use the same representation.

Whether we are working with a programming language or natural language, we

get the same tokens and embeddings. The beauty of this is that an LLM will reuse

information about natural languages to capture the meaning of the source code,

much like human programmers do.

In each case, we see that the tokenization is not perfect for the code. There are

edge cases where the LLM’s tokenizer does not convert the data types in the code to

the same token. For example, you can see that the token for (double in the function

92 CHAPTER 6 Beyond natural language processing

argument is handled differently from the token for double in the function body.

However, these differences are similar to the problems we already see in LLMs for

natural language, where different cases of punctuation around a word like “hello ”,

“hello.”, and “hello!” are interpreted as different tokens. Since LLMs can handle

these minor differences, it makes sense that they can also handle the same problem

for code. The problem is, in many ways, easier for an LLM to handle in code because

code is case sensitive, so we do not need to worry about textual situations like “hello”

and “Hello” being inappropriately mapped to different tokens. In code, “hello”

and “Hello” would be separate and distinct variable or function names. Treating

them as separate tokens is correct because the programming language treats them as

different elements.

Code generation is particularly interesting from an application perspective because

of the various opportunities for self-validation. We can apply all the lessons on

supervised fine tuning (SFT) and reinforcement learning with human feedback

(RLHF) from chapter 5 to make an LLM an effective coding agent.

6.1.1 Improving LLMs to work with code

The first step to improving an LLM for code is ensuring that code examples are

present within the initial training data. Due to the nature of the internet, most LLM

developers have already done this: code examples are frequent online and naturally

make their way into everyone’s training datasets.

Improving the results then becomes an opportunity to apply SFT, where we collect

additional code examples and fine-tune our LLM on the given code examples. Open

source repositories like GitHub, which contain significant volumes of code, make

obtaining a large amount of code especially easy. Code collected from sources such as

GitHub forms the basis of a fine-tuning dataset for LLMs that interpret and produce

code.

The more interesting case is using RLHF to improve a model’s utility for writing

code. Again, there are many tools and datasets available that make it possible to

build a decent RLHF dataset for a coding assistant. Sources like Stack Overflow allow

users to enter questions, provide a facility for other people to give answers to these

questions, and include a system where other users vote on the best answers. Data

sources include coding competitions like CodeJam, which provide many example

solutions to a specific coding problem. Incorporating information from data sources

like these is shown in figure 6.4.

Like all good machine learning solutions, you get the best results if you create

and label your own data specific to your task. It is rumored that OpenAI did this for

generating code, hiring contractors to complete coding tasks as part of creating the

data for their system [1]. Regardless of how training and fine-tuning data is collected,

the overall strategy remains the same: use standard tokenizers and SFT with RLHF to

make an LLM tailored to generate code. This recipe has been used successfully to

produce LLMs such as Code Llama [2] and StarCoder [3].

6.1 LLMs for software development 93

Code from
GitHub or other

sources

RLHF

Text prompt
and code

answer pairs

Instruct
Code LLM

1. An initial LLM is trained
 on textural data as
 normal. This includes
 byte pair encoding (BPE)
 and develops the initial
 tokenizer and base
 model.

2. An extensive collection of code is used
 to perform supervised fine-tuning (SFT)
 on the original base model, resulting in
 a new code LLM that can write code.

3. A corpus of text prompts like “How do I write
 Python code to calculate pi” and corresponding
 answers are used to perform reinforcement
 learning with human feedback (RLHF) to further
 fine-tune the code LLM into an Instruct code LLM,
 which is better able to write code by request.

Initial LLM

SFT

Large text
corpus

Train with
SGD

Code LLM

Figure 6.4 Developing an LLM for code applies multiple rounds of fine-tuning. Standard training
procedures, such as those described in chapter 4, produce an initial base LLM. Using a large amount
of code, SFT creates an LLM that works well with code. Including RLHF as a second fine-tuning
step improves the LLM’s ability to produce code.

6.1.2 Validating code generated by LLMs

LLMs are particularly useful for code generation because there is an objective and

easy-to-run verification step: attempting to compile the code into an executable

program [4]. When generating natural language, it is challenging to check the

correctness of the output generated by an LLM because natural language can be

subjective. There isn’t an automated way to check the truthfulness or veracity of

the output generated by an LLM. However, when generating code, simply checking

whether the code compiles successfully into an executable is a good first step and

catches a large portion of the incorrect code. Some commercial products take this a

step further and integrate tools such as compilers (software that transforms source

code into executables) and visualization tools into their backend. For example,

ChatGPT can check whether the code it writes compiles before returning it to the

user. If the code doesn’t pass this verification step, ChatGPT will try to generate

different code for the prompt it received. If the model cannot create valid code to

compile, it will warn the user of this fact.

Beyond checking whether code can compile, LLMs are increasingly able to create

methods for validating functional correctness. Many code generation tools utilize

LLM to generate unit tests, which are tiny programs that provide sample input into

generated code and validate that it produces the correct result. In some cases, these

capabilities require the developer to describe the test cases that they want the LLM

to generate, and the LLM creates an initial implementation as a starting point for

further testing.

Code is particularly special becausemultiple ways exist to validate its output beyond

just compilation. For example, code compilation can’t happen until the LLM finishes

generating its response.

Considering that LLMs are expensive to run, and we don’t want to keep a user

waiting too long for output, it would be ideal if the LLM could correct errors before

94 CHAPTER 6 Beyond natural language processing

completing a large generation. Again, applying the lessons from chapter 5, we can

use a syntax parser to check whether the code is incorrect before completing the

entire generation process. If portions of the output code fail a basic syntax check, we

can instruct the LLM to regenerate just that faulty portion of code. We show the basic

process behind this in figure 6.5, where the LLM performs a check on a per-token

basis instead of waiting for the generation to complete before checking the code

using compilation. The syntax check is less expensive and can happen faster than

compilation, but it does not validate that a compiler can turn the code into a working

executable program.

Current tokens: Next token:

if (A > B) \n if (A > B):

regex match fail

retry :

Figure 6.5 A Python code example where the current tokens if(A > B) have been generated.
If the next token produced by the LLM is a newline, a syntax error will occur because an if statement
must end in a colon to be valid. Running a syntax checker on each new token allows us to catch this
error and force the LLM to pick an alternative token that doesn’t cause a syntax error.

6.1.3 Improving code via formatting

Using parsers for syntax checking and compilers to produce working executables

makes it far easier to adapt LLMs to the new problem domain of generating code.

However, one additional trick is helpful. We can use tools known as code formatters (also

known by programmers as linters) to change tokenization and improve performance.

The problem is that there can be many ways to write code that performs the same

functions yet is tokenized differently. Applying a linter to adjust source code for-

matting helps remove differences between two functionally equivalent, yet different

pieces of code. While reformatting code is not a requirement to make code LLMs

function well, it helps to avoid unnecessary redundancy that can occur. For example,

consider the Java programming language that uses brackets to begin and end a new

scope in a program. Various forms of white space are now nonimportant but would

be tokenized differently, especially since the brackets are optional for a scope that

only uses a single line of code! Figure 6.6 shows how these different legal formats exist

for the code that performs the same functions and how we could, ideally, convert

code to a single canonical representation.

6.2 LLMs for formal mathematics 95

No space Same line No brackets Extra indent

We want all the different ways
to write valid code to map to
one “cannonical” form.

Figure 6.6 A Java code example of how multiple ways to format the same code will lead to different
tokenizations, even though each is semantically identical. Linters are a common tool to force code to
follow a specific formatting rule. Instead, a linter can be used to create an identical “base” form, thus
avoiding representing unnecessary information (like spaces versus tabs).

Removing nonfunctional aspects of code is called canonicalization, meaning we con-

vert code with formatting variations into a standard or “canonical” form. Here, we

demonstrated a robust method of canonicalization by adding special tokens like <NEW

SCOPE> that capture the fact that a new context exists for the if statement, regardless

of whether it’s a single-line or multiline statement. Instead of adding special tokens,

we can use formatting that is consistent across the code (e.g., always use spaces versus

tabs, a newline before { or not). Both special parsing and formatting will improve

the performance of a code LLM. The robust method, where we add special tokens,

will yield better performance over formatting but has the added cost of writing and

maintaining a custom parser for code that adds those special tokens. The problem of

altering the tokenizer will be more critical in the next section when we discuss using

LLMs for mathematics.

6.2 LLMs for formal mathematics
LLMs can also perform mathematical tasks that are usually quite challenging for

humans to do successfully. These tasks are more than just performing operations like

addition and subtraction to calculate numbers; they include formal and symbolic

mathematics. We give an example of the kinds of formal math we are talking about

in figure 6.7. You can ask these LLMs to calculate derivatives, limits, and integrals

and write proofs. They can produce shockingly reasonable results.

LLMs for code are practical because we can use parsers and compilers to partially

validate their outputs. Proper tokenization is paramount for making a helpful LLM

for mathematics. Using LLMs for math is still a particularly active area of research

[6], so the best ways to get an LLM to perform math are not yet known. However,

researchers have identified some problems that cluster around the tokenization stage

of building and running an LLM.

96 CHAPTER 6 Beyond natural language processing

Question: Solve the simultaneous equations
2x + 3y = 5p

y = 2x + p
where p is a constant.

Model output - 540B: From the second equation, we have 2x = y − p. Substituting this into the first equation, we get

2x + 3y = 5p i.e., y − p + 3y = 5p i.e., 4y = 6p i.e., y =
6p

4
=

3p

2
.

Substituting y =
3p

2
into the second equation, we have

2x + p =
3p

2
i.e., 2x =

3p

2
− p i.e., 2x =

3p − 2p

2
i.e., 2x =

p

2
i.e., x =

p

4
.

Therefore, the solutions are x =
p

4
and y =

3p

2
.

Figure 6.7 A symbolic math problem that the Minerva LLM can solve correctly. While this example
mixes natural language with mathematical content, the standard tokenization used by many LLMs
would not allow this kind of mathematical output and can cause some surprising problems. (Image
Creative Commons licensed from [5])

NOTE In chapter 5, we mentioned that fine-tuning can be applied multiple

times, and math LLMs are a great example of this. Researchers often create

math LLMs by fine-tuning code LLMs, which are created by fine-tuning general-

purpose text LLMs. Between SFT and RLHF at each stage, as many as three to

six rounds of fine-tuning are applied to the original downstream LLM for math

LLMs.

6.2.1 Sanitized input

Math LLMs often suffer from input preparation that may work well for natural lan-

guage text but degrade representations of mathematical concepts. In text, formatted

mathematics representations often involve symbols like {}<>;^. Special symbols like

these are commonly removed from training data when working with regular text. Pre-

serving this information requires rewriting input parsers for tokenization to ensure

you do not remove the data you are trying to get your model to learn from.

Multiple representations for equivalent mathematical equations further compli-

cate training LLMs to understand math in a similar way that multiple formatting may

cause problems when processing programming languages. Several formats like TeX,

asciimath, and MathML allow mathematical notation to be expressed using plain text

but provide instructions for a typesetter to render equations correctly. These formats

offer many different ways to represent the same equation. We show an example

of this problem in figure 6.8. There are problems with the method of typesetting

the math (i.e., how to draw the equation by picking TeX versus MathML) and the

representation of the math (i.e., two mathematically equivalent ways of expressing

the same thing).

These are both forms of a problem that has come up a few times in our discussion

of LLMs: different ways to represent the same thing. In the case of mathematics,

the current preference is to keep math formatted using TeX and very similar but

less-frequent alternatives like asciimath and to discard verbose content like MathML.

We base this motivation on three factors:

6.2 LLMs for formal mathematics 97

MathML

TeX

Mathematically equivalent

Different visualization

Figure 6.8 A mathematical equation in the top-left demonstrates two different representation
problems that occur with math. The nicely formatted math requires a typesetting language. TeX
and MathML are two different typesetting languages that have vastly different text and, thus,
tokenization. Separate from the typesetting language, there are many ways to represent the same
mathematical statement.

TeX-based formatted math is the most common and available form of math

thanks to publicly available sources like arXiv, which consistently uses TeX

formatting.

Keeping all TeX-like representations mitigates the challenge of learning multi-

ple formats and, thus, very different token sets.

Themore verbose MathML uses a larger variety of tokens; thus, more computing

resources are required to store the data associated with each unique token.

Choosing TeX as a single preferred representation for math in LLMs doesn’t solve

the fact that there are multiple ways to write equivalent equations. Determining which

equations are the same is so difficult that researchers have proven that no single

algorithm can determine the equivalence of two mathematical expressions. (We are

being a little loose with our words here, given that this section is on formalmathematics,

so we will point you to the source [7].) So far, the best answer for LLMs appears to be

“let the model try to figure that out,” which has been reasonably successful thus far.

But we wouldn’t be surprised if the developers of future math LLMs invest heavily in

improving preprocessing by creating more consistent canonical representations for

mathematical equations that reduce the variety of possible expressions for equivalent

expressions.

6.2.2 Helping LLMs understand numbers

For most people, numbers are the more accessible part of math. You can put them

in a calculator and get the result. Although it may be tedious, you can perform

calculations by hand if you do not have a calculator. One follows a fixed set of rules

to get the result. Somewhat surprisingly, LLMs have a lot of trouble doing that sort of

rote calculation, but developers have worked to improve tokenizers’ ability to work

better with numbers.

98 CHAPTER 6 Beyond natural language processing

The first problem is that the standard byte-pair encoding (BPE) algorithm produ-

ces tokenizers that create inconsistent tokens for numbers. For example, “1812” will

likely be tokenized as a single token because there are references to the War of 1812

in thousands of documents; tokenizers will possibly break up 1811 and 1813 into

smaller numbers. To further explore why this happens, consider the initial string

3252+3253 and how GPT-3 and GPT-4 tokenize this string. GPT-4 will do a better job

because it seems to tokenize numbers by starting with the first three digits every time,

resulting in a three-digit number followed by a single-digit number. GPT-3 appears

inconsistent because it changes the order in which it tokenizes numbers, as shown in

figure 6.9.

3252 + 3253

Tokenized by

GPT 3

3252 + 3253

GPT 4

3252 + 3253

thousands

hundreds

tens
thousands

tens
thousands

tens
thousands

Figure 6.9 LLMs cannot learn to do basic arithmetic unless they tokenize digits consistently.
In this figure, underlines denote different tokens. The tokenized digits might represent the tens,
hundreds, or thousands place for any given number. GPT-3 (left) is inconsistent in how numbers
get tokenized, making adding two numbers needlessly complex. GPT-4 is better (but not perfect)
at tokenizing numbers in a consistent way.

Now a significant problem has occurred. The “3” token for GPT-3 occurs two times

in two different contexts, once in the thousands place (three-thousand two hundred ...)

and once in the tens place (three-thousand two hundred and fifty three). For GPT-3

to correctly add these numbers, the tokenizer must properly capture four different

digit locations. In contrast, GPT-4 uses the order for digit representations for each

number, making it easier to get the correct result.

People are still experimenting with different ways of changing the tokenizer to

improve LLMs’ ability to work with numbers. If we are going to tokenize digits into

subcomponents, the current best approach is to separate each number, like 3252,

into individual digits, like “3, 2, 5, 2” [8]. However, other alternatives also exist.

Another interesting approach for representing numbers is called xVal [9], with

the idea of replacing every number with the same token that represents “a number.”

We could call this special token NUM, which will get mapped to a vector of numbers

by the embedding layer we learned about in chapter 3.

6.2 LLMs for formal mathematics 99

The clever trick is to include a multiplier with each token, a second number

multiplied against the embedded vector value. By default, the LLM uses a multiplier

of 1 for every token. Multiplying anything by 1 does nothing. But for any NUM token

we encounter, it will instead be multiplied by the original number from the text!

This way, we can represent every possible number that might appear, even fractional

values, including those that did not appear in the training data. Numbers captured

in this manner are related in a simple and intuitive way. We show this in more detail

in figure 6.10.

Text: What is -1 * 10?

Tokens:

Multpliers:

Each token has a
multiper assocaited
with it, which
defaults to 1.

Numbers are replaced with
a generic NUM token, and
their value becomes the
multiplier.

Regular tokens are
left alone; numerics
are multiplied by the
original value.

Figure 6.10 xVal uses a trick to help reduce the number of tokens and make them less ambiguous.
By modifying how the LLM converts numbers to vectors, a single vector represents each number, such
as the number 1. By always using the 1 token and multiplying it by the number observed, we avoid many
edge cases in number token representation, such as numbers that never appeared in the training data.
This conversion method also makes fractional numbers like 3.14 easier to support.

Both the consistent digits and the xVal strategy share one important realization. We

know how to represent math and simple algorithms like grade-school addition and

multiplication. If we design the LLM to tokenize mathematics in a way that is more

consistent with how we, as humans, do mathematical tasks, our LLMs get better and

more consistent mathematical capabilities.

6.2.3 Math LLMs also use tools

The astute reader may have noticed that most of the tokenization problems related

to math involve handling digits and not symbolic math. LLMs cannot do essen-

tial addition or subtraction without changing the tokenizer and keeping typically

“bad” symbols like {}<>;^. Enabling computation by changing the way the tokenizer

handles numbers may seem like a minor problem. Still, it is a significant factor for

good symbolic performance and often insufficient for handling other forms of sym-

bolic math. Obtaining the best possible performance on symbolic math relies on

external tools and playing clever tricks with LLM output.

If you ever had the TI-89 calculator that could solve derivatives for you, you know

that computers can automate calculations without LLMs. Functionally, computer

algebra systems (CAS) can provide this functionality. A CAS implements algorithms

to perform some (but not all) mathematical steps. Calculating derivatives is one

100 CHAPTER 6 Beyond natural language processing

of them, so having an LLM use a CAS, like Sympy, helps ensure the LLM always

performs specific steps correctly. However, the ability to integrate a CAS like Sympy

into an LLM does not guarantee the entire sequence of steps will be performed

correctly.

To validate correctness, math LLMs have begun to use a programming language

called Lean. In Lean, the program is a kind of mathematical proof, and the program

will not compile if there is an error in the proof. It effectively makes incorrect proof

steps one type of syntax error that can then be detected. Once detected, as we have

shown in other examples, the output can be regenerated by the LLM until the proof,

output as a Lean program, compiles successfully, just like we show in section 6.1.2.

Using Lean can guarantee that a returned proof from an LLM is 100% correct,

but there is no guarantee that the LLM can find the proof. Notably, there may also

be cases where the LLM might be able to solve the problem correctly but might not

be able to express the solved problem using Lean. We diagram the logic behind this

problem in figure 6.11, and it boils down to the fact that the effectiveness of tool use

in LLMs depends on the variety of examples of the tool’s use in training data. Since

Lean is relatively new and niche, there are few examples of fine-tuning an LLM to

use Lean effectively. People like you and me will need to generate those examples to

produce suitable training data to teach an LLM how to use Lean.

Attempt proof by

hand

Lots of exampels of

by-hand proofs in

training data.

Attempt proof using

Lean

Less examples of

using Lean in the

training data.

Successful proof,

but not verified

Cannot find the

proof

Figure 6.11 Given some mathematical goal, getting an LLM to use Lean (right path) might not
result in a verifiably correct proof because it may not be effective at using Lean as a tool. Having
the LLM produce a normal proof (left path) may yield a correct proof, but not a way for us to verify
that it is (in)correct.

So what can you do if the LLM cannot provide verifiable proof that its math is correct?

A trick used today is to run the LLMmultiple times. Because the next token is selected

6.3 Transformers and computer vision 101

randomly, you can potentially get a different result with a different answer each time

you run the LLM. Whichever answer appears most frequently is most likely correct.

This process does not guarantee the proof is correct, but it helps.

6.3 Transformers and computer vision
The process of translating code and math to tokens is fairly intuitive. Code is fun-

damentally text used to tell computers what to do in a highly pedantic way. Math is

difficult to convert into tokens, but we have discussed how it is possible. Computer

vision is a different story, where the data involved is images or videos represented

using pixels. The idea of tokens for images seems confusing. How on earth could we

possibly convert an image into tokens? Images typically contain lots of detail, and

you cannot just combine a bunch of small images into one coherent image like you

do when you string words together to form a sentence. Nevertheless, we can apply

transformers to images if we think about tokenization as a process to convert any

input into a sequence of numbers.

NOTE There was an approach to representing images as a combination of tiny

images called code books. Code books can be useful, but not the same in the

spirit of our discussion. Consider this a keyword nugget to explore if you want

to learn about some older computer vision techniques.

While high-quality image recognition algorithms and image generators existed for

many years before transformers, transformers have rapidly become one of the pre-

mier ways to work with images in machine learning. Both vision transformer (ViT)

architectures that strictly use transformers, as well as mixed architecture models

such as VQGAN and U-Net transformer that mix transformers with other types of

data structures, have seen great success in both interpreting image-based data and

producing amazing computer-generated images from text descriptions. It may seem

counterintuitive that transformers perform so well in images because images do not

look like discrete sequences of symbols like natural language, code, or amino acid

sequences do. Still, transformers fulfill a critical role in computer vision by bringing

global cohesion to models.

6.3.1 Converting images to patches and back

Conceptually, we will replace the tokenizer and embedding process with a new process

that outputs a sequence of vectors similar to the embedding layers we discussed in

section 3.1.1. The prevailing approach to creating a sequence representing an image

is to divide the image into a set of patches. As a result, we will replace our tokenizer

with a patch extractor that returns a sequence of vectors. The output of an LLM uses

an unembedding layer to convert vectors back into tokens. Since we have no tokens,

we need a patch combiner to take the outputs of a transformer and merge them into

one coherent image. We show this process in figure 6.12. Please pay special attention

to the fact that the central portion of the diagram remains the same as it was for text-

based LLMs. We reuse the same transformer layers and learning algorithm (gradient

descent) between text and images.

102 CHAPTER 6 Beyond natural language processing

Transformers

Tokenizer and

embedding

"Input text ..."

Unembed

"Output text ..."

Transformers

Patch extractor

Patch combiner

The middle portion of
taking in a sequence of
vectors, which goes to a
transformer and outputs
a new sequence of
vectors, remains
unchanged between
textual or image data.

Images do not naturally
discretize into tokens, so
instead, a sequence of
patches are extracted. The
patches are literally small
pieces of the image taken
as a sequence. The patches
are converted back to an
image again at the end.

Figure 6.12 On the left, this simplified diagram shows how text input is tokenized and embedded
before going to the transformer. An unembedding layer then converts the transformer output into the
desired text representation. The input and output will be images when performing a computer vision
task. The transformer stays the same, but then we modify the method for breaking the image into a
sequence of vectors to perform patch extraction instead of tokenization. The LLM produces image
output using a patch combiner, analogous to the unembedding layer for text LLMs.

Since everything except the input vector sequence generation and output steps

remains the same, we can focus on how the conversion of images to and from vectors

works. It will be helpful to focus on the input side first.

As the name patch implies, the patch extractor breaks up each image into a

sequence of smaller images. It is common to pick a fixed size for the patch, like

a square of 16× 16 pixels. We want a fixed size so that it is easy to feed into a neural
network, which always processes data of a fixed size, and small so that they represent

just a piece of the entire image. Breaking an image into patches is similar to breaking

text into a collection of tokens. Each individual token isn’t informative, but when

combined with other tokens, it makes a coherent sentence.

Once an image is broken into patches, each pixel in that patch is converted to

three numbers representing the amount of red, green, and blue (RGB) present in

each pixel. An initial vector is created by combining each pixel’s RGB values into a

single long vector. So for our square of 16× 16 pixels with three color values for each
pixel, we will have a vector that is 768 values in length (16 height, 16 width, and an

RGB value for each pixel). Then, a small neural network that might have only one or

two layers processes each vector separately to make the final outputs. This neural

network implements a very light feature-extraction process that does not require

significant memory or computation resources. This design is common in computer

vision because the first layer usually learns simple patterns like “dark inside, light

outside” and does not need a transformer layer’s greater expense or power to learn

the basic features of an image patch. This whole process is summarized in figure 6.13.

6.3 Transformers and computer vision 103

1. The image is broken up
 into an arbitrary number
 of smaller images called
 patches. There is no special
 magic here; just pick a patch
 size (e.g., 16 × 16 pixels)
 and dice up the image.

2. Each pixel has a red, green, and blue (RGB) value that is a
 number between [0, 255]. A vector/embedding is created by
 stacking all pixel RBG values into one big vector. A 16 × 16
 patch would have 16 × 16 × 3 = 768 numbers. This is done
 to each patch resulting in a vector for each patch.

A small

neural

network

Patch extractor

3. A small neural network is used to do a
 minimal amount of “feature extraction”
 to prepare the patches for processing
 via the subsequent Transformer layers.

A normal
transformer/LLM
architecture starts here.

T
ra

n
s
fo

rm
e

rs

Figure 6.13 Extracting patches is a straightforward process. The patch extractor breaks up an image
into square tiles called patches. Images consist of pixel values that are already numbers, so we convert
each patch into a vector of numbers. Then, we use a small neural network as a preprocessor before
passing the vectors to the full transformer-based neural network.

There are many possible ways to design the small neural network used in the patch

extractor, but all generally work equally well. One option is to use what is called a

convolutional neural network (CNN), which is a type of neural network that understands

that pixels near each other are related to each other. Others have used just the same

kind of linear layer that is a component of a transformer layer. In this case, the overall

model that includes the small neural network and a series of transformers is often

called a vision transformer.

The design of the small network is a minor detail but worth mentioning because

its existence is relevant to the patch combiner that produces the final output. It

does not matter whether you pick a CNN or a linear layer for the architecture of

the small neural network, but it is essential to ensure the output’s shape matches

the input’s shape. For example, if you have 16× 16 patches, you can use the small
network to force the output to have 16× 16× 3= 768 values, regardless of the size
of the transformer layer itself. To produce image output, you reverse the patch

extraction process to convert the vectors into patches and then combine the patches

into an image, as shown in figure 6.14.

We have thus successfully replaced the input tokenization and the output embed-

ding with new image-centric layers. In many ways, this is much nicer than tokenization.

There is no need to build/keep track of a vocabulary, no sampling process, etc. This is

a crucial insight into the general applicability of transformers as the general-purpose

core of an LLM. If you can find a lot of data and a reasonable method of converting

that data into a sequence of vectors, you can use transformers to solve certain classes

of input and output problems.

104 CHAPTER 6 Beyond natural language processing

3. Each patch is recombined
 into a single image based
 on the same order that the
 patch extractor uses.

2. It will predict three values: red, green, and blue (RGB) for
 each pixel in the output size. The output size is a known
 patch size that is the same for every output image.

A small

neural

network

Patch combiner

1. A small neural network is used to do a
 minimal amount of output extraction to
 reshape the vectors into the expected size.

Output from a
transformer/LLM
architecture starts here.

T
ra

n
s
fo

rm
e

rs

Figure 6.14 Compared to figure 6.13, the arrows here go in the opposite direction. The purpose is to
emphasize that the patch combiner and extractor do the same thing but operate in different directions.
The neural network is more important in this stage as a way to force the transformer’s output to have the
same shape as the original patches because we can control the output size of any neural network.

6.3.2 Multimodal models using images and text

The ability to change the input and output of an LLM to arrive at a vision transformer

means that we can take an image as input and produce an image as output. It

demonstrates how a transformer can produce input of different modalities, but we

have only discussed cases where the input and output are the same modality. We

either have text as input and text as output or images as input and images as output.

However, deep learning is flexible! There is nothing that forces us to use the same

modality as both input and output or even restrict input and output to be a single

modality. You can combine text as input with image as output, images as input and

text as output, text and images as input and audio as output, or any other data

modality combinations you might think of. Figure 6.15 shows how image and text

give us four total ways we might combine them to handle different kinds of data.

By creating a model that uses images as input and text as output, we create an

image captioning model. We can train this model to generate text describing the input

image’s content. Models such as these help make images more discoverable and aid

visually impaired users.

By creating a model that uses text as the input and an image as the output, we

create an image generation model. You can describe a desired image using words, and

the model can create a reasonable image based on your input. Famous products like

MidJourney are models of this flavor. Though their implementation involves more

than just a vision transformer, the high-level idea is the same: by pairing a text-based

input with image-based output and a lot of data, we can create new multimodal

capabilities that span different data types.

6.3 Transformers and computer vision 105

Tokenizer and

embedding

"Input text ..."

Patch combiner

Image generation

models

Patch extractor

Unembed

"Output text ..."

Image

captioning

Patch extractor

Patch combiner

Denoising/image

correction

Tokenizer and

embedding

"Input text ..."

Unembed

"Output text ..."

Large language

models

Figure 6.15 Four combinations showing different types of model input and output. The example at the
furthest right represents a normal text-based LLM we have already learned about. To the left, we show
possibilities like an image-generating model that takes text as input (“Draw me a picture of a stop sign
in a flood zone”) or an image captioning model that generates text that describes an image input (“This
picture shows a stop sign surrounded by murky water”).

6.3.3 Applicability of prior lessons

Other lessons learned throughout this book remain relevant to these vision transfor-

mer and multimodal models. Ultimately, they learn to do what they are trained for,

and when you try to bend them in ways beyond what is found in the training data,

you may get an unusual result. As an example, we might tell an image generation

model “Draw anything but an adorable cat,” and you will probably end up with a cat

as shown in figure 6.16

These models are (currently) trained with pairs of images and pieces of text

describing the image. Thus, they learn a strong correlation to produce visualizations

of anything in the input sentence. For example, the model wants to produce a cat

since the word cat is in the input sentence. More sophisticated abstract drawing

requests like “Draw anything but” do not appear in such datasets, and so the model

is not trained to handle such a request.

Similarly, as LLMs like ChatGPT have developed prompting as a strategy for

devising inputs that produce desired outputs, prompting has also been developed

for image captioning models. It is not uncommon to include unusual information

like “Unreal3D,” the name of software used to generate 3D imagery for computer

games to produce output with a particular style and quality. Words like high resolution

and even the names of artists, alive and dead, are used to try to influence the models

into producing particular styles.

106 CHAPTER 6 Beyond natural language processing

Figure 6.16 This was generated with an old version of Stable Diffusion, a popular image generation
model. Despite telling the model “Do not draw a cat,” the model was trained to generate content.
The request is outside what the model was incentivized to learn, so it cannot handle it. This is similar
to the problems with LLMs regurgitating close-but-wrong output because the model saw similar data
during training.

Summary
LLMs benefit when they can use external tools. For example, a code LLM can

use syntax checkers and compilers to detect erroneous code generation. When

the LLM finds an error, the output is regenerated, minimizing the risk of giving

the user unhelpful or broken code.

Tokenizers must be modified to support math by keeping unusual symbols used

to express formatted math and changing digit representations. We can improve

math LLMs further by giving them tools like computer algebra systems to detect

and avoid errors.

Transformers can be applied to images by breaking up an image into patches,

where each patch becomes a vector and makes a sequence of inputs for the

transformer to process. Patches are conceptually similar to tokens for text LLMs.

Transformers can use different data modalities for input and output, allowing

the creation of multimodal models like those used in image captioning and

image generation.

7Misconceptions, limits, and
eminent abilities of LLMs

This chapter covers
How LLMs and humans differ in learning

Making LLMs better at latency and
scale-sensitive applications

Producing intermediate outputs for
better final results

How computational complexity limits
what an LLM can do

Thanks to ChatGPT, the world has become more broadly aware of LLMs and their

capabilities. Despite this awareness, many misconceptions and misunderstandings

about LLMs still exist. Many people believe that LLMs are continually learning and

self-improving, are more intelligent than people, and will soon be able to solve every

problem on earth. While these statements are hyperbolic, some earnestly fear that

LLMs will seriously disrupt the world.

We are not here to say there are no legitimate concerns about LLMs, and we will

discuss these in more depth in the book’s last two chapters. Still, many thoughts and

worries about LLMs that you may encounter are blown out of proportion compared

to how LLMs and technology broadly evolve.

107

108 CHAPTER 7 Misconceptions, limits, and eminent abilities of LLMs

This chapter will discuss a few critical aspects of how LLMs work and how these

aspects relate to these misconceptions. Ultimately, these operational aspects of LLMs

affect how you may want to use or avoid an LLM in practice.

First, we will discuss the differences between how humans and LLMs learn. Humans

are fast learners, but LLMs are static by default. Although LLMs can be incredibly

effective at processing data, people are better equipped to be maximally productive

when learning new things.

Next, we will tackle why the word thinking is misleading when considering how

an LLM works. We will highlight that it is better to think of an LLM’s operation

as computing because LLMs have no distinction between formulating and emitting

output. In contrast, people often “think before they speak.”

Finally, we will discuss the scope of what LLMs can compute and how computer

science concepts help us understand some of the intrinsic limitations behind an

LLM’s current and future capabilities. These three topics are interrelated, so you

will see how they connect as we discuss each in more detail.

7.1 Human rate of learning vs. LLMs
While we have discussed it implicitly, it is helpful to be explicit about how an LLM’s

training differs from a person’s learning. The fluid and often lucid text produced by

generative AI and the analogies we use to relate the capabilities of LLMs to human

capabilities may make it seem as if there were some relationship between the two.

Many people online are touting the idea that such a connection between what an

LLM can do and what a human can do is real. In reality, the two are very different and

have important considerations for when, how, and why you might prefer a person

over an AI and how humans and AI can work together.

From the material we have covered so far, we know that LLMs learn by predicting

the next word using hundreds of millions of documents as examples. In chapter 4,

we presented the algorithmic process of “learning” in LLMs: the gradient descent

algorithm, which alters the parameters of an LLM’s neural network by attempting

to predict the next token in a sample input. Then, in chapter 5, we showed how

fine-tuning algorithms, like RLHF, alter the parameters of the LLM again. These two

components of learning in an LLM have minimal resemblance to human learning

and impose some crucial limitations on what we can expect the LLM to do. One of

the most critical aspects is the rate and efficacy of this learning approach as it relates

to the volume of data provided to the training process.

To explore this further, consider how an LLM learns relative to how people learn.

Have you ever met anyone who never spoke to anyone else, never had a parent talk

to them, and yet somehow understood language? Likely not. Indeed, conversation is

a key part of linguistic acquisition [1]. At least initially, you acquire knowledge and

language from interaction and communication with others and the environment.

Consequentially, you can learn effectively with much less information than an LLM

has in the data that it trains on.

7.1 Human rate of learning vs. LLMs 109

In the best-case scenarios of childhood language acquisition, studies have observed

that children are exposed to around 15,000 total spoken words a month [2]. If we

were to be generous and round this figure up to 20,000 words and consider this over

100 years, a person would encounter as many as 24 million spoken words throughout

their entire life. This is clearly a vast overestimate. Couple this with the fact that most

people can speak their native language fluently, with an implicit understanding of

vocabulary and linguistic structure, by at least age 18. Now compare this with LLMs.

GPT-3, for example, was trained on hundreds of billions of words. Based on word

counts alone, this is a very inefficient way to learn language!

Language acquisition also helps us recognize the stark differences in how words

are acquired. Babies and toddlers start with simple words, such as mama and dada,

and eventually learn basic concepts like colors, no, food, etc. More complex words

are added over time, building on the prior words. Yet an LLM begins with seeing

all words simultaneously based on their frequency of use. Indeed, it is accurate to

imagine an LLM tokenizing this very book as part of its first “learning,” acquiring

knowledge of all of its eventual vocabulary simultaneously instead of starting with

simple concepts and building knowledge on top of those foundations. While this

process contributes to the rate at which an LLM learns, it may detract from the LLM’s

capabilities of drawing high-level relationships between concepts.

An LLM’s key advantage over humans is the scale at which it operates and its

ability to perform multiple tasks simultaneously. This advantage is a common theme

throughout machine learning and deep learning. You cannot easily hire an army of

people to comb through books, expense reports, internal documents, or whatever

medium of information to perform knowledge work like writing a review, finding

potential fraud, or answering an arcane policy question. However, you can quickly get

an army of computers to attempt to automate these tasks. While an individual LLM

can analyze multiple parts of a sentence simultaneously, you can employ multiple

computers running the same LLM to work in parallel. Training the LLM presents a

similar opportunity: LLMs are trained on more words than you will ever read or hear

in your lifetime, and you can train a large LLM by renting or buying thousands of

computers to do the work concurrently.

Considering these facts in conjunction with the material we’ve covered in previous

chapters, we can list several high-level pros and cons of using LLMs for tasks compared

to humans. A summary of these factors is shown in figure 7.1, which describes how

the advantages and disadvantages of LLMs will lead to natural benefits and drawbacks

of their use and, thus, provide insights about where LLMs should and should not be

used.

Some of the benefits of LLMs are as follows:

Well-trained LLMs have a broad collection of background information, so they

perform well on many tasks that are not that different from what has been seen

before, and little work is needed to make the model effective. While this is not

necessarily correct or detailed information, the breadth of the topic areas that

an LLM can receive and generate reasonable responses about is far beyond the

areas that most individual people can cover.

110 CHAPTER 7 Misconceptions, limits, and eminent abilities of LLMs

Certain properties of LLMs Lead to various deployment/solution
building factors

And some rules of thumb.

1. Start with easy problems and grow
 “up” to harder ones.
2. Apply to repeatable situations.
3. Have an audit process to spot-check
 behavior/outcomes are appropriate.
4. Plan on a mechanism to escalate to
 humans.

LLM strengths:
 1. Knows something about almost
 everything
 2. Close enough is good enough.
 3. Available on demand

1. Handles surface-level requests
2. Fast to deploy
3. Easy to scale up/down with demand
4. Good for first-pass attempts/teaming
 tools

1. Hard-to-solve problems don’t make
 progress without major investments.
2. Not a reliable “expert” on anything
3. Can be tricked into bad behavior

LLM weakness:
 1. Fine-tuning or from-scratch training
 is a seven-figure investment “all in.”
 3. Does not handle extreme novelty well
 2. Does not improve at any task with
 repitition

Figure 7.1 A summary of the strengths and weaknesses of LLMs relative to humans performing the
same task. These lead to natural considerations that you must evaluate when using an LLM. From
these, we can draw broad recommendations for successful LLM use.

For many tasks, there is no need to get a precisely correct response. Broad

requests for general information in a subject area intrinsically allow an LLM

to be flexible and unconstrained in its response. This is especially true if you

refine the LLM’s output through other processes. For example, a human might

copyedit a piece of writing to improve it but use an LLM to produce the first

draft or provide inspiration to break writer’s block and accelerate creating the

work. Likewise, an LLM can be used to refine an author’s writing to make it

sound more natural or engaging through rephrasing or using a larger variety of

vocabulary.

LLMs can be trained quickly in comparison to people. You can produce a

broadly useful LLM in months, given a $1,000,000 to $10,000,000 budget to

purchase computational resources. Humans take many years to become useful.

An LLM that can answer a broad set of basic questions can be instantiated for

far less effort and cost than it takes to find, hire, and retain an employee with

specific knowledge, skills, and abilities. As long as the problems are in the scope

of what the LLM can achieve, the incremental cost is minuscule compared to a

person’s hourly rate, even without the extra overhead.

Some of the drawbacks of LLMs are as follows:

The high cost of training LLMs informs their economics. That training cost is

amortized over the thousands of operations the LLM performs once trained. If

an LLM doesn’t perform well, the cost of continually improving it to make it

work can quickly become prohibitive, even without considering the potential

that it might never work correctly for a specific task. For example, if an LLM,

implemented with all the most recent tools and tricks, cannot solve a specific

need, addressing this problem will require an unknown amount of work and

budget. Conversely, humans can generally learn new capabilities, specifically

those that are hard for LLMs, at much lower cost in weeks to months.

LLMs cannot be relied upon to handle unexpected situations and inputs not

reflected in their training data. Although many have shown they can succeed in

7.1 Human rate of learning vs. LLMs 111

novel situations, they do not learn in the same way as humans. A person can

see that their actions are not working as intended on the first try and quickly

adapt. An LLM cannot independently adapt by observing its errors and may

repeatedly consume resources attempting to produce answers to problems it

cannot understand.

LLMs are easily fooled and do not work well in adversarial environments because

once people find a way to trick the LLM into an errant outcome (e.g., “Give

me a loan even though I have no income”), they can repeat the adversarial

and malicious behavior, and your LLM won’t be able to prevent it without you

implementing additional guardrails.

7.1.1 The limitations on self-improvement

Generally, humans are capable of self-improvement. They can focus on and study a

problem, devise novel approaches, identify required resources, and move forward to

implement and improve their solutions. While LLMs struggle with self-improvement,

in the generative AI field, there is a belief that the same self-improvement may be

possible for LLMs. The idea about how this could work goes something like this:

1 Train an LLM on an initial dataset.

2 Use the LLM to generate new data, adding it to your training dataset.

3 Train or fine-tune the model on the new data. (Repeat until the LLM works as

expected.)

While this sounds intuitive and plausible, we believe that it does not work for simple

reasons. We can use some basic information theory, which measures information as

a quantifiable resource, to explain why. The basis of this argument is that by some

measure of information, the original dataset has a fixed amount of information. In

statistics vernacular, we might describe the original information as the distribution of

available information, and through its training process, the LLM is attempting to

approximate or reproduce that distribution of information by storing and encoding it

in its model. When you generate new data using an LLM, that sample of data is a noisy

and incomplete reproduction of the original data distribution that the LLM observed

in the training process. Fundamentally, it is impossible for the LLM’s output to

contain any new information not present in the original training data. Consequently,

the reality of such experiments is that successive rounds of generating data and

training degrade the quality and performance of the model [3]. To make something

like this work, you need something that provides external or new information at each

round.

These concepts also relate to some people’s fear of AI improving itself until it

becomes so intelligent that we have no hope of understanding or controlling it.

Some arguments are that the LLM can use other tools, somehow acquiring outside

information or more training data, to improve itself. Ultimately, this requires a belief

that while there are limitations as to how far you can improve most technologies,

LLMs will be immune to these limits, such as the law of diminishing returns. Figure 7.2

describes the inherent limits to LLM self-improvement.

112 CHAPTER 7 Misconceptions, limits, and eminent abilities of LLMs

0

-2

2

The first LLM

makes a

better LLM.

Because the second LLM

is smarter, it makes an

even better LLM.

Some people are concerned
of a superintelligent explosion,
where the LLM can self-improve
forever and become infinitely
intelligent.IQ

/I
n

te
lli

g
e

n
c
e

Time / rounds of self-improvement

In reality, most things follow
a sigmoid---rapid improvement
very early, followed by steady
improvement, and then
diminishing returns/plating.

Diminishing

returns

-4 -2 2 4

Figure 7.2 Concerns that LLMs will self-improve require the belief that LLMs won’t follow the
normal sigmoid or S-curve of diminishing returns that describes the development of almost all other
technologies. For infinite self-improvement to happen, we must believe that constraints such as power,
data, or computational capacity are always solvable and that somehow, humans would not otherwise
solve them for areas outside of LLMs. Constraints such as these are why we can describe most tech-
nology development using S-curves, where progress slows as more constraints take effect. In other
words, we’ll eventually reach a state where we can’t just build a bigger computer.

A great example of limitations on technical improvement is Moore’s law, which

roughly states that the number of transistors on a chip would double every 18 to 24

months. Moore’s law has mostly accurately predicted the growth of transistors on a

chip, but there are signs of the S-curve of diminishing returns in transistors. The rate

of the number of transistors on a chip doubling is decreasing. More importantly, the

total system performance has already entered this S-curve. The number of transistors

correlates with total compute performance but does not directly indicate compute

performance. Looking at the whole picture in figure 7.3, you will see that other

constraints prevent boundless improvements across the entire system. Moore’s law

aside, the practical cost of high-performance GPUs and the infrastructure that hosts

them is another barrier to boundless improvement.

LLMs are not humans—do not judge them by human standards!

Many catchy headlines have proclaimed LLM performance on the MCAT exam for
medical school, the bar exam for lawyers to practice law, and IQ tests to measure
their intelligence. While these are always interesting and full of caveats such as

7.1 Human rate of learning vs. LLMs 113

“How many examples of the same kinds of questions are in the LLM’s training
data?” these are not good ways to extrapolate about LLMs and their abilities re-
lative to humans. Indeed, pinning down an exact definition of intelligence is com-
plex and one of the reasons why multiple types of IQ tests exist [4]. Ultimately,
these tests have been helpful in predicting people’s outcomes in various tasks.
Still, these tests are not designed to evaluate AI algorithms, and we have no rea-
son to believe they do so accurately or reasonably! The problem is correlation, not
causation. IQ tests all correlate with desirable outcomes, but they do not mea-
sure an underlying property that controls or causes outcomes in the same way, for
example, that a blood sugar test does. In a blood sugar test, if your blood sugar is
too low or too high, we know what will happen because it measures an important
underlying property that causes the outcome of some process that we understand
quite well. IQ tests are useful, but their usefulness comes from years of iteration
and improvement. We now better understand which answers on these tests corre-
late to people’s performance, but they don’t measure the underlying causes of this
performance.

50 years of microprocessor trend data

Single-thread

performance

(SpecINT x 103)

Transistors

(thousands)

Frequency (MHz)

Typical power

(watts)

Numer of

logical cores

Figure 7.3 Moores’s law is a common example of boundless growth, but it is misleading. Transistors
keep doubling, but frequency, power, single-threaded performance, and total computing do not. So the
total system performance has not continued to double approximately every two years. Other similar
factors will constrain LLM performance and affect capability over time. Used under CC4.0 license from
https://github.com/karlrupp/microprocessor-trend-data.

There are many examples of outside information being used to improve generative

AI. Some algorithms created for robotic hands use external information from a

physics simulator. Apple uses 3D modeling software to generate data that improves

iris recognition on their phones [5]. In the examples in chapter 6, you saw a potential

path for improving an LLM using a compiler for code or the Lean language to verify

LM
7
2
0
81

6
5

https://github.com/karlrupp/microprocessor-trend-data

114 CHAPTER 7 Misconceptions, limits, and eminent abilities of LLMs

mathematics. These examples demonstrate fully automatable processes that generate

new information that can lead to self-improvement.

Yet, there has never been an example of boundless self-improvement; the gains

observed from using these external tools eventually reach a plateau and ultimately

rely on humans to develop the side information by writing better physics simulators

for the robots, better compilers for code, and better domain-knowledge systems like

Lean. Improving these tools compounds a major expense of training LLMs, thus

imposing a second economic limitation on the self-improvement of LLMs beyond

what is practical.

7.1.2 Few-shot learning

Few-shot learning is also called in-context learning. This technique involves providing

examples of the type of output you want an LLM to produce as a part of the prompt

you send it. Say you want an LLM to respond to a help-desk question with accurate

information. You may give the LLM a prompt with a user’s question to the help

desk, followed by an example of the appropriate kind of response. If you give only

one example, it’s called one-shot learning. Providing two examples instead of a single

example is known as two-shot learning, and so on, hence describing this approach as

few-shot because the precise number of examples is generally not as important as the

fact that only a few examples are provided. This method of incorporating examples

in a prompt is a specific kind of prompt engineering, as demonstrated in figure 7.4.

You will be given a description of a recipe.You should comment if the recipe is a

safe-to-eat recipe or a dangerous recipe. Each recipe will start with the string:

“Recipe:”, and your response should begin with the string: “Answer: ” .

Recipe: Put milk in cereal.

Answer: Good.

Recipe: Set oven to broil, and put in ribeye steak on the top shelf for 50 minutes.

Answer: Bad, this will start a fire!

The prompt given to the LLM before the user interacts with it

1-shot

0-shot

2-shot

Recipe: The first actual user’s recipe goes here.

Answer: The LLM’s response gets generated and returned.

The prompt provides
instructions only for
zero-shot prompting.
However, you can also
include k example
query/response pairs
to quickly train the
model on a few
examples.

Finally, the real user’s
input is provided to get
the LLM’s answer.

Figure 7.4 Prompts with examples of how you want the LLM to produce output are called few-shot
prompts because the LLM has not seen any examples of this specific behavior in its training data. In your
prompt, you can include examples of input and output similar to RLHF/supervised fine-tuning (SFT).
This prompting style encourages the model to produce the desired output by providing examples of
what the desired output should look like. Because LLMs train on such a large amount of unlabeled
data, k-shot examples are an effective way to get better results with minimal effort.

Including examples in your prompts is useful for improving an LLM’s performance at

new tasks. You don’t need to use RLHF or SFT to alter the model, and it works better

than zero-shot prompting, where we ask the LLM to do the task without examples.

But is it efficient learning?

7.2 Efficiency of work: A 10-watt human brain vs. a 2000-watt computer 115

Few-shot prompting is not training because we are not altering the model in any

way, as we would in the training or fine-tuning process. The “state” or weights of the

LLM remain the same. However accurately the LLM performs the task on Monday, it

will be exactly as accurate on Tuesday andWednesday, nomatter howmany thousands

or millions of few-shot prompts it deals with. There is no improvement to the model’s

abilities unless you manually do something to include better examples in the prompt,

provide more examples, or otherwise intervene somehow. In this sense, no true

learning is happening, and nothing about the model changes. We just get improved

output from the model by changing our prompt.

Yet, in an abstract sense, the LLM is learning because the prompt changes the

model’s behavior by providing additional context to describe the problem. The

behavior exhibited via prompting correlates with behavior achieved through fine-

tuning on similar examples [6]. What that means, in short, is that few-shot learning

does not fundamentally reflect anything different from what gradient descent can

already do.

NOTE If you do not have a lot of data, few-shot prompting is probably the most

effective way for you as a practitioner or user to get an LLM to work well on your

data. Because we can think of this prompting as inefficient gradient descent or

fine-tuning, you should expect diminishing returns as you add examples in a few-

shot style. For example, if you include many examples of how you’d like an LLM

to respond in your prompt and still do not get the needed performance, you

should look at SFT, RLHF, and the other fine-tuning approaches we discussed

in chapter 5.

7.2 Efficiency of work: A 10-watt human brain vs. a 2000-watt
computer
The human brain takes the equivalent of 10 watts to maintain consciousness, allowing

you to read this book. A high-end workstation with a GPU for AI/ML work could

easily use 2,000 watts. A high-end server for running the larger LLMs available today

gets into the 10,000 to 15,000 watt range. Off the bat, it would seem like using an

LLM could thus be 1,500×more power inefficient than having a human do some task.
We should be very proud of this aspect of our evolutionary success and efficiency, but

it is also only one aspect of what we might mean by efficiency. We show that many

different kinds of efficiency might benefit a person versus machines in figure 7.5.

7.2.1 Power

Power is one of the driving factors in determining the financial cost of creating and

running an LLM, but the true need is not yet entirely clear. Yes, many providers

will quote you a price for running an LLM, but we do not know the true costs each

provider incurs or the margins each provider has established. For example, an LLM

provider may be running a negative margin or loss-leader strategy, and the long-term

cost of using an LLM could be higher than it appears based on today’s prices. We

116 CHAPTER 7 Misconceptions, limits, and eminent abilities of LLMs

Human advantage

One-off jobs, quick to complete, bespoke

needs.

Humans are faster at many multimodal

tasks and at video understanding due to

the input being too large for most

generative AI. But they need sleep/breaks,

and training a new person takes time.

People learn new tasks with just a few

demonstrations. As you do it, you get better

at it, and it becomes muscle memory.

LLM advantage

Enough work to be continously

busy

For pure text, LLMs are currently

faster to process, and upload/data

transfer times are minimal. They

can be available all hours and

replicate easy.

Human labor is required to

improve LLMs, but they don’t

improve autonomously in time.

Power

Latency,

scalability,

and

availability

Refinement

Factor

Figure 7.5 The expensive hardware that makes LLMs work leads to several trade-offs. For example, the
startup cost of using LLMs is often high, and they do not adapt independently. This lack of independent
adaptation leads to many natural weaknesses where a human would outperform an LLM. Some weak-
nesses, such as the fact that a model doesn’t change without training, can be considered strengths. You
don’t get repeatable processes that are easy to scale if each new LLM running behaves differently and
unpredictably.

do know that LLMs generate significant demand for power, to such an extent that

big tech companies are developing plans to build nuclear power plants to support

the power needed by future data centers to run all the models they anticipate [7].

Based on this, it seems we can expect that new LLMs will be bigger and more power-

hungry, yet their value will offset the cost of building dedicated power plants for their

datacenters.

Based on this factor, one needs to be careful when a successful LLM solution

creates more demand; you may run into power capacity problems when satisfying

that demand. You also may need to be careful about the elasticity of power costs. Not

only could LLM providers change cost structures, but if you host an LLM yourself,

power price fluctuations of 6× do happen in the United States [8]. This may not be
a problem if your intended customer base is only 20,000 users, but if you plan on

building something that will serve millions of users or more, the cost of power could

be a major operational and environmental hazard.

7.2.2 Latency, scalability, and availability

Latency is the time it takes from querying an LLM to getting some output, scalability

describes how quickly one can go from one to a thousand LLMs running, and

availability describes the ability to have an LLM operational 24/7. These are all

major advantages of LLM—and more broadly, computers in general—over people.

LLMs and AI/ML can react to more situations faster, at any time, than humans. This

reaction speed can be both good and bad. When you have a system that requires

supervision and review of outputs, you do not get the full availability benefit of an

LLM without developing a staffing plan to match.

7.3 Language models are not models of the world 117

7.2.3 Refinement

As we discussed in section 7.1.1, LLMs cannot easily self-improve. However, people

can and do improve, and it is a common goal to improve the efficiency of a process

over time. You will need to keep people in the loop to engineer better prompts and

create better training regimes to improve efficiency with LLMs; without them, LLM

performance will not improve.

Improving LLM efficiency does not just involve upgrading to newer LLMs or fine-

tuning existing models but also includes building the infrastructure and recording

inputs, outputs, and performance metrics to study what is working and what is not.

You can use frameworks like DSPy that we discussed in section 5.5.2 to capture these

items and to identify and handle the cases that do not work or start failing over time

as world circumstances change. For example, you might develop an initial LLM that

is working well. But those damn kids keep adding new emojis to the iDroids and

appleBots [9]. Without additional training, your LLM will not understand these

new emojis, but your customers will inevitably start using them, so the system will

start performing poorly. You’ll never figure this out if you don’t record the input

and output of the LLM in logs or solicit feedback from your users who can provide

information about areas where the LLM is failing or succeeding. Capturing this

information is essential for improving and refining the process, which LLMs cannot

do without human intervention.

NOTE The emoji problem is a great example of why eliminating coding and

using only LLMs will probably never happen. The emojis will be new tokens

that LLM will have never seen in training data, so it intrinsically will not be able

to handle them. How would we handle this in practice? Our first attempt would

be to write code that detects emojis and replaces them with a description of

the emoji’s appearance, intent, and connotations. It might not work in every

case, but that’s why you test and validate.

In the ML field, considerable attention is given to the concept of data drift, where

data in the real world constantly evolves beyond what is captured in a model’s training

data. When dealing with natural language, emojis are just one concrete example of

how real-world data will change over time as language use evolves. The emoji example

can be extended to include the problems created by new terminology or new ways

of using existing words in a language. By looking at the existing work in the field,

we can identify additional techniques for measuring and mitigating data drift for

LLMs, such as collecting additional training data and fine-tuning models or altering

prompts to include supplementary definitions for previously unseen terminology.

7.3 Language models are not models of the world
You can frequently elicit accurate information about the world from an LLM. As a

result, it’s easy to assume that a languagemodel knows things about the world. Indeed,

as a reader of this book, you can reason about the world and what will happen without

118 CHAPTER 7 Misconceptions, limits, and eminent abilities of LLMs

taking any particular action. Now, we are not discussing anything so sophisticated

as predicting the stock market, but even simple actions and thoughts. For example,

what would happen if you told someone their sweater was ugly?

You do not need to interact with the environment or find an ugly sweater to answer

this question. You do not need to speak or interact with anyone or anything to answer

this question. You can imagine the “world” of sweaters and the feelings someone

else may have and infer the results. If I told you someone was wearing the sweater at

a Christmas party (an ugly sweater contest, perhaps?), you could update your mental

model of the world and infer outcomes without having lived them. An LLM cannot

think before it speaks. Generating text is the closest an LLM gets to “thinking” (using

the word loosely in this context). You can see a simple example of this in figure 7.6,

where an LLM’s overly verbose reasoning ultimately leads it to reach a nice comment.

Reasoning, whether done implicitly or explicitly by us humans, is distinct from us

speaking about the thing we are reasoning about. For an LLM, there is no separation

of processes; producing more output is required to “think more” about the answer.

Therefore, LLMs are not capable of thought independent from generating output.

WARNING We loosely use the word “think” in the context of an LLM. To be

pedantic, we mean that the calculations an LLM does to answer a question are

not dynamic. Outputting 10 tokens takes the same amount of work regardless

of the content of those tokens. Answering a complex problem that requires

humans to think more will probably require an LLM to perform more compu-

tation, but that usually means the LLM must also produce longer output, even

if the answer shouldn’t be any longer. Whenever anyone uses the term thinking

in conjunction with an LLM, it is better to replace thinking with calculating.

That looks terrible on you.

Why would you wear that?

It has ugly green and red

colors and an out-of-fashion

shape.

It’s December and that is

out of fashion---probably

for the Christmas holiday.

That hat looks great!

A person can have
these thoughts
before speaking,
avoiding
embarrassment.

A LLM must
do the work
of producing
more text to
reach better
final
conclusions.

Figure 7.6 The context and reason why someone is wearing or doing something unusual may be in the
realm of something that an LLM properly recognizes and for which it produces an appropriate response.
However, it might not be possible for an LLM to reach that appropriate response without producing some
intermediate text. For a math problem, this intermediate text could be useful, but the intermediate text
may not always be appropriate or desirable for a user to see.

7.3 Language models are not models of the world 119

This example demonstrates that an LLM cannot plan without generating text about

the planning process. If the LLM is not producing text, it is as if it does not exist.

There are methods for constructing prompts that will encourage LLMs to break

down their outputs to simulate planning. This is often called chain-of-thought (CoT)

prompting, where you include in the prompt a statement like “Let’s think step by

step.” This step-by-step instruction often improves the model’s ability to perform tasks

[10], but it is unclear why this improves performance. Once again, the ambiguity of

what it means to “think” can cause unreasonable expectations of what LLMs can and

cannot do.

Even with CoT, LLMs will still make many mistakes, such as missing steps, missing

calculations, and performing logically invalid reasoning [11]. Other factors may

contribute to the performance gains observed when an LLM produces output broken

into a series of steps. Consider:

Back in chapter 3, we learned about transformers and the attention mechanism

used in their implementations. We learned that the longer the input received

and outputs produced by an LLM, the more calculations the transformer does.

So does thinking step by step work better just because the LLM, via the transfor-

mer, gets to do more computation? If the LLM had a world model, it could do

this computation about the output without generating the output.

LLMs reflect the nature of their training data. There may be content in that

training data correlated with “think step by step” and other pedagogical materi-

als with more verbose and usually correct content. Ultimately, we may manually

align the LLM’s fuzzy recall with more relevant training documents rather than

get the LLMs to perform a fundamentally different function.

WARNING The precise definition of a “world model” is not yet well agreed

upon and can have different connotations for different people. When discussing

world models, it is a good idea to discuss the definition first so that folks are on

the same page. A lot of LLM discourse talks past each other, something we will

discuss further in the last two chapters of this book.

These problems are challenging and involve open-ended research questions. Our

stance is that the dramatic failures of LLMs highlight that these are more likely

explanations than something deeper. Importantly, some niche research focuses on

imbuing machine learning methods with world models. A technical but fairly accessi-

ble 2018 example of this from David Ha and Jürgen Schmidhuber is available online

(https://worldmodels.github.io/) and shows massive performance improvements

compared with existing methods back then. Others are working on making world

models for LLMs and using LLMs as world models [12]. Current methods do not

have the same high degree of flexibility as humans; these examples are more limited

in scope and work for one general class of problems.

https://worldmodels.github.io/

120 CHAPTER 7 Misconceptions, limits, and eminent abilities of LLMs

7.4 Computational limits: Hard problems are still hard
Some people are worried about “runaway” AI, where an AI algorithm becomes so

advanced and capable that it can solve problems we never could and that such an

AI would not have objectives that align with human welfare. If such an AI existed, it

could improve itself in ways we couldn’t improve ourselves, resulting in an even more

powerful AI. Many folks have allowed this thought to run rampant, imagining that an

LLM will become almost godlike in capability and ability to outreason humans. There

is an ethics question here that we will discuss more in the last chapter of the book. For

now, there is a simple technical reason why we are not so concerned about this idea,

and it also helps us understand the realistic limitations of LLMs. Essentially, there

are many ways to measure what we can call computational complexity or algorithmic

complexity. By comparing the complexity of LLMs with other well-studied algorithms,

we can be more specific about what LLMs can and cannot achieve. We will also discuss

how approximate solutions to problems using LLMs can, where appropriate, avoid

some of the complexity of precise solutions to the same problems.

In computer science, we spend a lot of time learning about algorithmic complexity.

For most students or practitioners, this means understanding how a change in the

amount of input data changes how long it will take a process to produce results. One

of the more ideal cases, which rarely happens in reality, is that if you double the

inputs, the process will take twice as long. In other words, a process that could take 2

days for n items (in the case of an LLM, an item might be a token) takes 4 days for
2× n. When discussing complexity in computer science, we often use mathematical
notation, known as Big-O notation, to communicate different levels of complexity.

When a process’s computation time grows at the same rate as the size of its input, it

is called linear complexity and is denoted in Big-O notation as O(n)). If you draw a
graph with data size on the x-axis and computation time on the y-axis, you would get a

line because both data and computation time grow at the same rate. Other common

real-world complexities include log-linear (O(n log n)), where 2× n might be closer
to 4.4 days; quadratic (O(n2), where 2× n might be closer to 8 days; and exponential
(O(en)), where computation time grows so quickly as the size of the input increases
that there is a good chance the world will no longer exist before your algorithm

finishes. In each of these cases, the graph of input size versus computation time

becomes steeper as systems get more complex. In other words, for more complex

algorithms, the processing time will grow faster as the amount of data processed

increases.

We’ve taken this short trip into computer science to help you understand the

computational complexity of running an LLM. For an input of n items, the LLM
has a computational complexity of O(n2) or quadratic complexity. If we can prove
that an algorithm/task takes more than O(n2) work, then we have essentially proven
that an LLM cannot efficiently solve the problem because an LLM’s core algorithms

aren’t able to execute algorithms with that level of complexity, precisely.

7.4 Computational limits: Hard problems are still hard 121

WARNING This isn’t a graduate class on formal methods or algorithms; we are

providing a quick overview of the study of algorithmic complexity. The goal is

to give you, the reader, a technical intuition for the problem, but we haven’t

fully armed you with all the knowledge needed to discuss this subject in detail.

To learn more about algorithms and complexity, see Aditya Y. Bhargava’s book

Grokking Algorithms: An Illustrated Guide for Programmers and Other Curious People

[13].

If it was possible to get an LLM to solve a problem that required, say, cubic complexity

of O(n3), but the LLM itself had a faster (smaller) complexity of O(n2), then we would
have a logical contradiction. In other words, an LLM can’t solve a complex problem

faster than the complexity analysis states. Many real-world tasks and algorithms have

worse than O(n) complexities. We describe a few examples in table 7.1, and you’ll
notice that the handful we’ve listed relate to logistics or resource allocation. For

example, delivering packages and rescheduling flights are problems that have majorly

painful algorithmic complexities.

Table 7.1 Some examples of important algorithms with different time complexities

Algorithm Complexity

Prime factorization (used for all cryptographic) O(en) (or if you have a quantum computer, still O(n3))

Traveling salesman problem for routing/logistics delivery O(en)

Linear programming, used for allocation of divisible resources and network flow O(n3)

Integer programming, used for allocating nondivisible resources O(en)

A second important and related reason we care about algorithms is the complexity

class of an algorithm. A complexity class defines the scope of possible algorithms that

an algorithm can solve. The most famous complexity classes are P (for polynomial)
and NP , which are problems that take at least O(en) time to finish. These very broad
classes contain basically all the problems you might ever care about.

NOTE Many people think that NP stands for not-polynomial, but this is false! It
actually means nondeterministic polynomial.

What is interesting and informative is that William Merrill and Ashish Sabharwal

[14] proved that an LLM’s ability to solve problems correlates to the number of

tokens it generates in intermediate steps. For an LLM, generating a response falls

into a complexity class called TC0 (we know, computer scientists are the worst at
naming things). This complexity class is very restrictive, meaning an LLM can barely

solve anything. As the intermediate steps n become longer, you eventually reach the
complexity class of P . This means an LLM can never solve real-world problems that
are NP or harder! We tie this all together in figure 7.7, which shows how these layers

of complexity classes relate.

This finding is even more damaging because complexity classes describe the kinds

of problems you can solve, not how efficiently you can solve them. For example, an

LLM must generate on the order of nc tokens to solve an algorithm that involves nc

complexity. Yet, an LLM also needs O(n2) time to process n tokens, so you end up

122 CHAPTER 7 Misconceptions, limits, and eminent abilities of LLMs

-Complete NP-HardRegular

Traveling salesman
problem (shortest route
to make deliveries)

Designing the layout
of circuits for a
computer chip

Finding the
shortest path
from work to
home

Finding and
replacing in a
word processor

Multiplying two
numbers in a
computer

A normal LLM
generating the
answer

Chain-of-thought
LLM with very long
generations

Chain-of-thought
LLM with small
generations

Figure 7.7 A Venn diagram of computational complexities (assuming P ≠NP , a minor point for the
nerds) relate to each other. The top arrows give examples of the kind of problem that a new complexity
class lets you solve. The bottom arrows show where LLMs land in terms of their complexity.

with O
(
(nc)2

)
=O(n2×c) computational effort, a massive blow-up in complexity. Also,

this complexity estimation does not account for LLM training data and the time

required to develop prompts to get the LLM to perform the algorithm successfully

without errors.

7.4.1 Using fuzzy algorithms for fuzzy problems

This discussion about algorithms and complexity may sound very damning for LLMs.

In truth, it is only damning if you want to apply LLMs to problems that require

correct outputs. If even the smallest error is unacceptable in your system, you should

not use machine learning, let alone an LLM.

Like machine learning at large, LLMs work best for fuzzy problems, where what

makes something correct or incorrect is hard to describe. In fuzzy problems, it is

often the case that it is OK if errors exist; other processes can remediate those errors,

or the cost of errors is potentially small enough to ignore. That’s why text and natural

language are a good fit for LLMs. The answers to problems like “What did Suzy mean

in that email?” or “Did John mean to imply that in his text?” are intrinsically fuzzy.

Human language is fraught with imprecision, clarification, and repetition that align

well with the difficulty of getting LLMs to solve problems that require consistent and

precise answers.

7.4.2 When close enough is good enough for hard problems

To argue against ourselves for a moment, we should also point out that humans

cannot solve NP-hard problems when we use solve to mean “arrive at the optimal

solution for which no better solution exists.” We use approximations to solve complex

problems because we know they are too hard to solve perfectly.

7.4 Computational limits: Hard problems are still hard 123

For example, in table 7.1 and figure 7.7, we mentioned the traveling salesman

problem, a famous and important problem for delivery route planning. The mail

courier wants to deliver everyone’s mail in the minimum amount of time and distance

traveled without repeating any routes. Computationally, finding the best route is

NP-hard, so you can only apply it to a few hundred or maybe a thousand delivery

destinations. However, there are much faster quadratic algorithms that approximate

the problem, and we can prove they give us a path that is no worse than 2× the
travel distance of the minimum distance route. So in the real world, we use these

and other techniques to get “close enough is good enough” solutions. So too can

LLMs potentially get “close enough is good enough” solutions, but they are still

constrained by the fact that they are inefficient for exact problems.

Without an understanding of an LLM’s training data, we have difficulty estimating

how well it might solve a difficult problem through approximation. Consider that

the game of chess is technically harder than NP-hard. GPT-3.5 can play a decent

game of chess that can defeat a real human [15], although not at the “dominating

all humans” level that dedicated chess programs can achieve. Does this show that

LLMs are good at approximately solving very hard problems?

Probably not. First, ChatGPT’s chess game dramatically improved after adding

chess as an evaluation metric (https://github.com/openai/evals/pull/45). It’s not

unreasonable to suspect that the makers of ChatGPT performed fine-tuning that

incorporated chess as an explicit goal. Second, the internet is full of games of chess

for people to study and explore (https://old.chesstempo.com/game-database.html),

so ChatGPT has likely been trained on full games of chess captured in its training

data.

Still, it is interesting that ChatGPT can use what is in its training data to play

a reasonable game of chess, matching what it has seen before to slightly different

situations in the future. When considering where an LLM-based solution will work

best, we recommend this mental framework: apply LLMs to repetitive, mildly varying

problems to maximize their utility. Applications such as text summarization, language

translation, writing first drafts of documents, and checking existing writing all fit into

this category.

Similar lessons come from other areas of deep learning, where it is easier to

reason about what is happening inside a model than for LLMs. For example, playing

the game of Go has been one of the longest-standing challenges in AI research for

decades. AI has only recently been able to beat champion-level players in the game.

Like LLMs, Go-playing AIs train by observing many example games. Yet, if you built

a Go-playing bot that performed unusual and/or nonsensical moves, it would defeat

the “superhuman” AI but lose to human amateurs [16]. This example also highlights

the risk of using LLMs in adversarial environments, where humans are far better at

dealing with significant novelty in a situation than current AI/LLMs.

https://github.com/openai/evals/pull/45
https://old.chesstempo.com/game-database.html

124 CHAPTER 7 Misconceptions, limits, and eminent abilities of LLMs

Summary
The biggest advantage LLMs have over humans is the scale they achieve. LLMs

can run at low cost, 24/7, and be resized to meet demand with far less effort

than training up or reducing a human workforce.

Humans are better at handling highly novel situations, which is important if the

people interacting with the LLM might be adversaries (e.g., trying to commit

fraud).

We know LLMs work well for problems similar to what they have seen before in

their training data, making them useful for repetitive work.

Prompt engineering is likely the most effective starting point to “teach” LLMs

something new unless you can dedicate large amounts of effort and money to

data collection and fine-tuning.

LLMs cannot self-improve and are inefficient at solving algorithmic problems

requiring a specific correct answer. They work best on “fuzzy” problems where

there is some range of satisfying outputs and some amount of error is acceptable.

8Designing solutions with
large language models

This chapter covers
Using retrieval augmented generation to
reduce errors

How LLMs can supervise humans to
mitigate automation bias

Enabling classic machine learning tools
with embeddings

Ways to present LLMs that are mutually
beneficial to companies and users

By now you should have a strong understanding of LLMs and their capabilities. They

produce text that is very similar to human text because they are trained on hundreds

of millions of human text documents. The content they produce is valuable but also

subject to errors. And, as you know, you can mitigate these errors by incorporating

domain knowledge or tools like parsers for computer source code.

Now you are ready to design a solution using an LLM. How do you consider

everything we have discussed thus far and convert it into an effective implementation

plan? This chapter will walk you through the process, trade-offs, and considerations

in designing that plan. To do so, we will use a running example that we can all relate

to: contacting tech support when help is needed.

125

126 CHAPTER 8 Designing solutions with large language models

First, we will consider the obvious path: building a chatbot. Chatbots are the

vehicle that introduced many people to LLMs because generally, they can do an

excellent job of generating output interactively. We’ll evaluate the risks of deploying

an LLM-powered chatbot in a customer service scenario. Through this discussion,

you’ll see that using an LLM can increase risk compared to other options. However,

a simple chatbot may be a valid option if the risks are sufficiently minimal.

Next, we will explore ways to manage the risks by using application designs that

improve how customers interact with the LLM. We’ll discuss how having a person

check each output produced by an LLM is fraught with problems due to a phenome-

non known as automation bias. We’ll discuss how automation bias can be somewhat

counterintuitively avoided by having the LLM supervise the person instead. We’ll

explore how an LLM’s embeddings, the semantic representation of text encoded as

numbers, can be combined with classical machine learning algorithms to address

this risk and handle tasks that an LLM can’t perform independently.

Finally, we’ll investigate how technology is presented to users and plays a vital role

in establishing trust and conveying an understanding of its inner workings. We’ll

discuss the area of “explainable AI,” where a machine learning algorithm produces

output that describes or explains how it arrived at a specific output. Explainable AI is

often the approach adopted to handle situations where people need to understand

how an LLM works, but studies show that although explainability may shed some

light on the inner workings of LLMs by describing the behavior of these models

in human terms, it does not tend to help for its own sake. Instead, we’ll describe

the benefits of focusing on transparency, aligning incentives with customers, and

creating feedback cycles to design solutions that better meet the needs of both the

companies that employ them and the customers that interact with them by providing

accurate output and creating efficiencies in business processes.

8.1 Just make a chatbot?
Unsurprisingly, many people are building chatbots using LLMs based on transformer

architectures, the same technology that underpins ChatGPT. It’s an obvious and

seemingly reasonable first step. ChatGPT’s fantastic ability to interact with people,

adapt to conversations, and retrieve and present information demonstrates how

well LLM technology supports customer interaction applications. With the advent

and availability of LLMs, it would likely be short-sighted to attempt to implement

a customer service agent using any other approach, such as using an expert system

trained to use a decision tree of canned responses. When an unhappy customer has

some technical problem, instead of searching an online Frequently Asked Questions

(FAQ) document, sending an email into the black hole of a trouble ticket system,

or calling a phone number with an automated interactive voice response system,

they can start directly interacting with an AI-powered tool and make progress on

getting their problems solved. This sounds wonderful on paper, and if you draw a

little diagram like figure 8.1, it sure looks like we are simplifying life.

8.1 Just make a chatbot? 127

Customer has a problem

A simplified view of a current support pipeline
leading to two paths that don’t scale easily

People think they can
replace this with a chat
bot. It rarely goes well.

C
heap per

hour and

easy to scale

Chatbot

LLM

Online FAQ

Email ticket
Support phone

number

H
ig

h la
te

ncy
,

lo
w
 c

ust
om

er

sa
tis

fa
ct

io
n

Helpdesk

workers

H
igher cost

per hour

Figure 8.1 When looking at the process diagram, it would seem like replacing FAQs, email tickets,
and support numbers could be simplified and streamlined with an LLM-based chatbot. However, the
folly of this view is that the process is incomplete. The potential errors and remediation processes
required to ensure an LLM will perform accurately are hidden and create more complexity.

There are certainly cases where a chatbot is a good idea. But surprisingly, an online

LLM-based chatbot that handles support probably is not at the top of the list of

customer support tools for most companies because of the effort required to build a

system that will be accurate and reliable in many cases and not create unexpected

output when confronted with unexpected input. Ultimately, the decision to use

an LLM to implement a customer support chatbot comes down to our ongoing

discussion of the errors an LLM might make when generating customer responses.

We know that LLMs are not error-free, and while machine learning is sometimes

practical, the expense of those potential errors is the primary decision criterion when

considering deploying this technology. Fundamentally, using an LLM potentially

increases the cost of those errors. The bottom line is that in their current form, LLMs

can provide incorrect answers, and the liability for these falls on the shoulders of the

companies or individuals who deploy and maintain them.

Executives or product managers might consider the cost of errors in the context of

a few classic business key performance indicators. For example, customer retention

rates might decrease if they entrust support to chatbots. Perhaps the retention rate

would be higher than if the customer relations functions were outsourced to a call

center in another country. Indeed, these considerations are important to evaluate,

and you should probably do a trial deployment to see what customers think before

replacing your customer support function with an LLM wholesale.

NOTE We almost always recommend trial deployments of anymachine learning

system. The investing adage “Past performance is not a guarantee of future

returns” is true of any AI. One way to do this is through phantom deployments,

where you run your new AI system alongside the existing process for some

weeks or months. You may choose to ignore its outcomes while the existing

business processes are in place. This gives you time to observe the discrepancies

128 CHAPTER 8 Designing solutions with large language models

between your current and new processes, identify and address problems, and

determine whether the performance of the machine learning system degrades

over time.

Most critically, your LLM can give advice that causes harm to your users. Since an LLM

is not a person who can be held legally liable for their actions, you and your company

will be held liable instead. This has already happened with an airline that deployed a

chatbot that gave errant policy statements. A court decided that the company had to

abide by the policy incorrectly generated and shared by their chatbot [1].

We recommend always considering an adversarialmindset when deploying an LLM.

Asking “What could a motivated bad actor do if they knew how this worked?” will

help you identify and mitigate significant risks and is often the best way to determine

whether your intended LLM application is a good or bad idea. For example, a car

company integrated an LLM into their website to help sell cars and answer questions.

After realizing this, it took less than a day for users to convince the website to sell

them a car for just $1 [2].

If the potential cost or risk of errors is low, you can feel comfortable deploying

an LLM chatbot if you so choose. But for the sake of this chapter, let us assume that

this technical support agent we are hypothesizing is very important, and the mistakes

it makes could cost the company a lot of money. The question now becomes: How

do we design a solution that gives us benefits in productivity and efficiency yet limits

users’ direct access to an LLM? If you are new to AI/ML and a chatbot is your primary

exposure to the field, this might sound like a contradiction, but there are some easy,

repeatable design patterns you can apply to do this.

8.2 Automation bias
A common approach to addressing the risk of using LLMs for direct customer

interactions is to have the LLM interact with support staff or technicians instead. This

is often referred to as “human in the loop” because there’s a person who is reviewing

the feedback loop between the LLM and the customer, providing a critical assessment

of the automated system’s output, and intervening and adjusting the output when

they detect an error. The technician will still be employed, but we will increase their

efficiency by having the LLM generate an initial response to each question from

a user and a technician curating those responses to ensure that they are accurate

and relevant. If the LLM generates a potentially costly or incorrect response, our

trusty technicians will intervene and reply with something more appropriate. In

this context, it is ultimately up to the technician to choose the proper authoritative

response.

The clever reader who remembers our discussion about retrieval augmented

generation (RAG) from chapter 5 might even identify ways to improve upon this

idea. You’ll say, “Ah, we can put all our training manuals and documentation inside

a database, and then we can use RAG so that the LLM can retrieve the most relevant

information to a user’s question.”. This approach is outlined in figure 8.2, which

8.2 Automation bias 129

shows a process where a user’s questions are first sent to the LLM to focus output

generation using a collection of known answers.

“I’m having trouble with...”

A triage worker evalutes
whether LLM’s discussion/advice
is reasonable and takes over
if unreasonable.

Chatbot

LLM

If a human
deems the
LLM response
reasonable, its
passed right to
the user,
hopefully
allowing one
person to process
more requests at
once/faster.

Database of

relevant

information

The LLM uses a RAG
approach to incorperate
domain knowledge into
the responses.

A person engages with a LLM,
but a human in the loop
moderates the responses.

Figure 8.2 A naive approach toward implementing a “human in the loop” system that uses an LLM
paired with a database of relevant information to produce output that is ultimately reviewed by and
possibly corrected by a human worker

The RAG approach will likely mitigate a lot of risk, but it also has the potential to hit

the pitfall of automation bias. Automation bias refers to the fact that people, in general,

tend to pick automated or default choices presented by a system because it is easier

than applying critical thinking to determine which choice is most appropriate to the

situation at hand. If a system works well and does not need you to intervene often, it

becomes incredibly challenging to remain hypervigilant and detect the occasional

error. The paradox is that if the system is so inaccurate in its suggestions that you can

maintain your vigilance, the chances are good that the system is slowing you down

when compared to directly answering questions using no automation.

This is where trial or phantom deployments become incredibly important. If your

system is so accurate that automation bias is the real source of risk, you have two

options that do not require deviating from the “human in the loop” design:

Add an “escape to a human” path to the pipeline

Mitigate the risk of errors externally via process changes

The first point is pretty straightforward. Eventually, a novel situation will occur that

the LLM cannot answer. In this case, it would be best to provide a way for a customer

to “escape” from an infinite loop with a computer to get to a higher tier of support.

This could be a maximum conversation length measured in the number of messages

exchanged or the amount of time spent chatting, an option to contact a human

representative that appears based on multiple failed attempts to communicate, or

other possible designs.

130 CHAPTER 8 Designing solutions with large language models

NOTE Suppose you are going to do the work to create an RLHF or SFT dataset

to fine-tune your LLM to your situation as we discussed in chapter 5. In that

case, you can even add training examples where the LLM’s expected response

is “I’m sorry, this situation sounds more complex than what I can assist with;

allow me to get a human to help.”

8.2.1 Changing the process

The second suggestion, changing the process, is not as difficult as it may sound. If one

of your bosses has an MBA, they are (allegedly) trained to think in these terms. (One

of the authors has an MBA, so it is OK for us to say that.) For example, interactions

with the chatbot could include a caveat about any outcome requiring “a human’s

final approval.” In this case, having the entire conversation reviewed by a person

is far less of an automation bias risk than requiring someone to maintain constant

vigilance throughout a continuous conversation. Ultimately, adversarial users know a

human is going to check and so are demotivated from trying to game the system.

Depending on the context, preventing adversarial use of an LLM can be achieved

by requiring the user to provide collateral to ensure they act in good faith. For

example, you could take actions equivalent to putting a hold on the user’s credit card

as a kind of insurance against bad-faith interactions. Such a hold would be released

when the transaction is completed successfully. You could also limit how much of the

process is automated, require authentication, or randomize how often people are

routed to a human versus an AI so that it becomes unpredictable when a situation

that could be exploited will arise.

All of these actions will depend on your specific application, the risks, the tolerance

of those risks, and the nature of your users. Some customers might be turned off by a

credit hold and be upset. Or maybe you frame it as an optional method in which the

user gets $2 off their bill if an AI system successfully helped them with their problem,

presuming that it is less than what the old system would have cost per call. Either way,

it is case by case and will depend on your creativity to manage the risk.

8.2.2 When things are too risky for autonomous LLMs

So now you have done a trial deployment, evaluated the risks and your users’ adver-

sarial proclivities, and concluded that it is too risky for LLMs to provide the initial

answers. How could an LLM still provide some level of efficiency?

An unintuitive approach is to have the LLM check the person rather than the

person check the LLM. This may sound strange. Why would we let the LLM supervise

if we cannot trust it to act alone? To consider this further, imagine you have an LLM

system in this supervisory role, checking each response, as shown in figure 8.3.

If the LLM and the person are correct, action will be taken, and the message will

be relayed to the customer. It will be as if the user is chatting with the technician. But

if the technician and the LLM disagree on the answer, we can prompt the technician

to double-check their response before sending it to the user.

8.2 Automation bias 131

A person engages
with support personel,
but an LLM in the loop
moderates the response.

Chatbot

LLM
Database of

relevant

information

The LLM uses a RAG
approach to incorporate
domain knowledge
into the responses.

Sends

response

direct to

user

LLM

approves?

NoYes

A support worker
writes an initial
response/answers
the question.

Notifies worker

to consider

alternative

responses

“I’m having trouble with...”

Figure 8.3 Notice that the direction of the arrows in this diagram has changed from figure 8.2.
Everything goes to a human first, and we use LLMs to catch mistakes before they happen.

This double-check could be as simple as telling the technician, “Hey, this looks like

it may be abnormal for a solution; please confirm before sending.” You could try

having the LLM produce its own suggested alternative. Or you could keep the LLM

out of the process and use it to notify a more experienced technician to join the

process and assist. Regardless of how this is structured, the purpose is to signal that

there may be a risk of a negative customer interaction, such as an incorrect answer.

While this risk existed previously, we now have a chance to mitigate it.

Additionally, because we are considering human-initiated customer support errors,

we are generally not taking on any new risk because a support representative acting

alone could just as easily make a mistake. So if the LLM and human are both wrong

simultaneously, you were already doomed to make that process error anyway. Such is

life. Technically, we could argue that technicians could question their responses too

much based on an LLM’s assessment of their interactions, thus reducing efficiency.

Additionally, an overly sensitive LLM may ask technicians to double-check their work

too often, which would cause alert fatigue that could lead to technicians ignoring

the LLM suggestions entirely. If your use case is prone to these sorts of problems,

that fact will be uncovered during trial deployments that provide context-specific

feedback on how an LLM should be tuned to address this problem. The general

caveat that applies to all machine learning is especially important here: always test;

do not assume.

132 CHAPTER 8 Designing solutions with large language models

Employing an LLM to double-check human performance can reduce errors in the

process as a whole. It may not seem like this approach makes anything faster because

humans are still generating the initial response. However, this approach still creates

opportunities for increased efficiency:

It can reduce the conversation length by helping to catch errors and reach a

solution faster.

It can identify staff who need more training or information to answer customer

questions or recognize when specific error situations occur.

It may help avoid escalation to more costly levels of support or managers,

reducing the frequency and cost of troublesome customers.

8.3 Using more than LLMs to reduce risk
Everything we have discussed has involved a “fight fire with fire” approach in which,

although there are risks to using LLMs, we have considered different ways to use

LLMs to mitigate those risks. While we’ve changed how we use the LLM, the LLM is

still the primary component. Alternatively, we can consider using tools other than

LLMs to address our design challenges. Other approaches in the scope of generative

AI, such as text-to-speech and speech-to-text, can be used to build more accessible or

simply convenient user experiences. For example, users with arthritis or low vision

may greatly prefer a phone call over typing responses into a chatbot prompt window.

If we think about our customer service problem and when LLMs work well, we will

discover that the ingredients for a broader class of tools are also available. LLMs work

best when there is repetition in scenarios where problems reoccur and formulaic

solutions and responses can be given. LLMs are very flexible in recognizing broad

patterns in the fuzzy nature of language. If the LLM can correctly interpret a user’s

problem, and there is a known solution, it can potentially walk a user through that

solution. This might sound much like an unsupervised chatbot, but the critical

distinction is that in the cases where the LLM takes a subordinate role in the solution,

the output was ultimately generated by customer support technicians, as described

in figure 8.3.

This section will also discuss how we can use classic machine learning techniques,

such as classification, to tackle existing problems. We can do this by using the knowl-

edge within LLMs to enable machine learning techniques by producing embeddings

of the user’s text.

8.3.1 Combining LLM embeddings with other tools

In chapter 3, we described how an LLM transforms tokens into embeddings, which

are vectors that encode a semantic representation of the meaning of each token as

a series of numbers. These vector embeddings are useful in other ways outside the

context of LLM’s transformer architecture. While vector embeddings are essential

for making the LLM operate, they are themselves an extraordinarily useful tool.

8.3 Using more than LLMs to reduce risk 133

The semantic nature of the vectors produced by LLMs is important because

hundreds of other practical machine learning algorithms operate on vector repre-

sentations. LLMs are essentially a very powerful way of converting complex human

language text into a form compatible with the rest of the machine learning field.

Utilizing the vector outputs of LLMs with other algorithms has been such an extraor-

dinarily useful strategy that practitioners will describe it as “creating embeddings.”

The description comes from the idea that the LLM is taking one representation

(human text) and embedding it into another representation (a mathematical vector).

Because these numbers encode information about the original text, you can plot

them like numbers and see that similar texts end up in similar locations on the plot,

as shown in figure 8.4.

Lets go race go karts!

Want to do some laps

on the track?

I need to stop by the

bank for some cash.

LLM

Semantic dimension 1

S
e

m
a

n
ti
c
 d

im
e

n
s
io

n
 2

The original text we are
given is hard to compare
in an automatic fashion.

The LLM can return a
vector (i.e., an embedding
of the original text, that
converts human text
into a numeric form).

These numbers tend to
be similar for similar
texts, allowing classical
machine learning tools
to be used for automatic
analysis.

Figure 8.4 LLMs produce numeric vectors known as embeddings as an intrinsic part of their function-
ing. The utility of these embeddings is dependent on the fact that these numbers only change a little
bit when given similar text. The two example tests here will have similar embeddings, and thus, their
plots look similar, even though they don’t share any of the same words. This is a powerful feature that
was present in older machine learning techniques.

Let’s look at a quick description of four types of machine learning algorithms you

can use once you have embeddings. We consider each type of machine learning

to be particularly useful for most real-world use with LLMs; we will also note some

popular algorithms you can find that are relatively reliable and easy to use. The

critical takeaway is that if you break out of the mindset that only an LLM can solve

a problem, a more extensive set of tools becomes available to you. This list is your

starting map for some of those tools:

Clustering algorithms—Grouping texts by similarity to each other that are distinct

from the larger amount of text available (e.g., used for market segment analysis).

Popular algorithms include k-means and HDBSCAN.

Outlier detection—Finding texts that are dissimilar from essentially all other

texts available (i.e., finding contrarian customers or novel problems). Popular

algorithms include Isolation Forests and Local Outlier Factor (LoF).

134 CHAPTER 8 Designing solutions with large language models

Information visualization—Creating a 2D plot of your data to allow visual inspec-

tion/exploration, especially when combined with interactive tools (i.e., data

exploration). Popular algorithms include UMAP and PCA.

Classification and regression—If you label your old texts with known outcomes

(e.g., net promoter score rating), you can use classification (i.e., pick one of

A, B, or C) or regression (i.e., predict a continuous number like 3.14 or 42)

to predict what the score would be on a new text (i.e., data categorization and

value prediction). Using embeddings as input for simple algorithms like logistic

regression and linear regression works well for classification or regression,

respectively.

NOTE Embeddings are not something new that was invented as a part of

LLMs. An algorithm known as Word2Vec, which could embed single words,

popularized embeddings as a go-to strategy for representing themeaning in text

back in 2013. Despite this, LLMs tend to produce embeddings with greater utility

than other older algorithms. However, an LLM is far more computationally

demanding than older algorithms like Word2Vec. For this reason, you may want

to use an older or faster algorithm for this task. The existence of generative AI

methods in images, video, and speech means you can also use embeddings for

domains such as images, video, and speech in addition to text.

8.3.2 Designing a solution that uses embeddings

Now that we have described the concept of embeddings and how they offer us more

tools, let’s build an enhanced tech-support call center solution. We will continue to

use LLMs for their text-generating capability and their embeddings and incorporate

other machine learning techniques to enable the voice interaction that people are

accustomed to, reduce wait times, and increase efficiency.

First, to support voice interaction, we will use speech-to-text to convert the words

spoken by a user into text that is used as input into an LLM. It would be reasonable

to think, “I’ve used some really horrible voice-controlled systems before,” and yes,

you likely have. This is why adding a “bail-out” mechanism is essential to escape the

automated system (e.g., max tries, times, or opt-out) for cases where the system can’t

understand a user’s speech. In addition to speech-to-text, we will also use text-to-

speech to give the LLM a way to convert the text output it produces into something

that a user should be able to hear and understand.

Second, to reduce wait times, we can implement a system where, if a queue of

callers has formed due to the number of support requests incoming, we will ask the

customer to describe their problem so that they can be routed to the most appropri-

ate analyst. Assuming that customers may have novel problems, we do not attempt to

use the LLM to address their problems outright. Instead, we will use a customer’s

problem description to call the LLM’s embedding API to produce a representation

of their problem. Once we have that problem description embedding, we can use

8.3 Using more than LLMs to reduce risk 135

clustering to group the users in the queue. Users with similar problems can be

assigned to the same team of analysts to help analysts solve problems faster. That

alone is a win.

We can use this problem grouping to gain further efficiency. Say an analyst has

identified that a user has a common problem for which there is a consistent, prede-

fined solution. Instead of relying on the LLM to dynamically generate a hypothetical

solution, your human analyst can share the predefined solution that has already been

vetted by real users. Additionally, you can push that solution out to the users who are

waiting in the queue via the LLM. You will be able to inform the users: “An automa-

ted solution has been developed that we believe will solve your problem. While you

wait, let us try to solve this with our automated AI.” This approach is summarized in

figure 8.5.

While in queue,

describe your

problem to me.

Clustering

algorithm groups

users by problem

type

LLM extracts

embeddings. Problem

2

Problem

3

Problem

1

The support team works with customers
but is organized so each member deals
with customers with similar problems.

Problem

1

Problem

3

The

problem has

a repeatable

soltuion.

No
Support team

resolves the

problem

YesLLM walks user

through the

solution

Uses text-to-speech and
speech-to-text to avoid transfer

Our AI can walk you through

a solution developed by our

support team for users with

a similar problem. Would

you like to try it?

Figure 8.5 This diagram describes our “better solution” to customer support requests, where
customers describe their problem while waiting to talk to someone. The LLM uses an embedding
representation of the problem to compare similar problems with known solutions. While the user
waits, an automated system can provide information that may help them solve their problem without
support personnel intervention. If that fails, there’s always the possibility to “bail out” and talk to a
real person. The model used to generate the embeddings does not necessarily have to be the same
as the LLM that walks the user through the solution.

It’s entirely possible to combine the solutions we have described so far. For example,

the analyst-to-customer interaction loop in the top-right of figure 8.5 could involve

two people talking through the problem, or it could be the LLM-supervised validation

solution we designed in figure 8.3. Depending on what problems need to be solved,

there are many opportunities to extend these solutions now that we have embeddings.

For example, if analysts saved information about how angry or upset a customer is,

you could train a regression model to predict how angry a customer may be from

their embedding. Then, you could distribute the angry customers evenly amongst

analysts to avoid someone being overwhelmed or try to route angry customers away

from new analysts who are still learning how to help customers solve their problems.

136 CHAPTER 8 Designing solutions with large language models

To be clear, we are not saying that all customer service tech support systems will be

better if they use this approach. The goal is to show you that there are ways to build

solutions with LLMs that work around their shortcomings, such as their tendency

to hallucinate and their inability to incorporate new knowledge dynamically. In

summary, we present two basic strategies:

Use LLMs as a second set of eyes on what is happening. If the LLM agrees, all

is good. If it disagrees, you perform a double-check that could be simple or

complex, depending on the nature of the problem.

Use embeddings to apply classic machine learning to the problem. Clustering

(grouping similar things) and outlier detection (finding unique or unusual

things) will be particularly useful for many real-world applications.

We don’t solely rely on the LLM to create output at any point in these solutions

because LLMs can generate incorrect or inappropriate output. However, we can still

use the LLMs to reduce workload, errors, and the time to resolution by being careful

in how we design the system as a whole.

8.4 Technology presentation matters
Some of you may be incredulous after reading through this example of how we would

design a tech support system that uses LLMs. We often hear folks who fully believe in

LLM technology say, “If you have the LLM explain its reasoning, the user or analyst

can figure out if it makes sense, and all of the problems related to hallucinations and

errors will be solved.” We often receive similar requests to create “explainable AI”

from those on the more skeptical end of the spectrum who are concerned about the

errors LLMs produce and who don’t understand what is happening. Thus, there is a

perception on both sides that explanations will provide the means to establish trust

in the technology and believe that the LLM (or any machine learning algorithm) is

working properly and effectively.

In this section, we want to discuss some points that support the notion that explain-

ability is not the solution to these problems. Explainability is not the single solution

that will help catch errors or make a system more transparent and trustworthy. The

unfortunate truth is that our assumptions about how an LLM will work with people

are often wrong and must be carefully evaluated. In fact, recent research has shown

that when explainable AI techniques are employed by a system, people erroneously

trust the AI to be correct solely based on the fact that an explanation is present,

regardless of its accuracy. This is true even when the user could perform the task

independently without an AI’s support, and the user has been taught about how the

AI systems actually work [3]. The bottom line is that explanations can be harmful to

the very goals that they attempt to advance.

Why use explainable AI at all?

In our professional experience, many requests for explainable AI come from a place
of fear or anxiety. Ideally, explainable AI would not be the way to calm such fears

8.4 Technology presentation matters 137

because it is counterproductive to the actual goals being solved. So why would
anyone do any explainable AI of any form?

Two key things make explainable AI useful from a practical perspective:

Answering the question, explainable to whom?
Reaching explainable AI from the problem statement

For example, a real-world problem statement may describe the need to develop a
scientific understanding of a physical or chemical process. With this goal, a useful
explanation from the algorithm may be to generate an equation that produces the
answers rather than producing the answers directly. With the equation, a physicist
or chemist can inspect it for logical consistency and use it as a starting point for
further scientific exploration.

In this case, the solution is explainable only to someone with significant exper-
tise, but that is the only person who needs the explanation. The explanation in the
form of an equation also directly tackles the problem of scientific understanding
rather than merely understanding the inner workings of the AI algorithm. We do not
have any explanation of how the AI came up with the equation itself, and the equa-
tion is (hopefully) a logically consistent form that explains the physical or chemical
process.

This example reflects the general situation in which we find explainable AI the
most helpful: when it is used to aid a narrow and specific audience of potentially
expert users in performing a very specific goal. For example, it is indeed common
for data scientists to use explainable AI to help them figure out why a particular
model is making a particular set of errors, even if the tools they use are not com-
prehensible to a nondata scientist audience.

So if explainable AI is not a solution for building trust in an AI system or solution,

what is? Unfortunately, there is no agreed-upon generic and rigorously evaluated

way to build trust in AI. Our unoriginal suggestion is to focus on transparency, user

evaluation, and the specifics of the use cases involved.

8.4.1 How can you be transparent?

Transparency can be as simple as informing users about the AI system that is being

used: Which model was it designed with and, at a high level, how was it modified? If

the system is meant to mimic a specific person (“Get tutored by Albert A.I. Einstein”)

or a type of credentialed person (“Ask Dr. GPT about that mole on your back”),

has that person or similarly credentialed person consented to this or approved its

efficacy? How can the consumer verify this information?

Essentially, enumerating these kinds of reasonable questions and their answers

that an auditor or skeptical user might want to know will put you far ahead of the

average in making your system more transparent. These do not need to be presented

in detail to every user, but having a way for users to discover this information is

helpful. It not only helps sophisticated users understand what is happening but also

138 CHAPTER 8 Designing solutions with large language models

helps set the expectations of users in general about what is and is not possible with a

given system. Furthermore, it is essential to inform users when they are interacting

with a system that is generating automated responses. There is a big difference

between trying to pretend a human is in control and thus should be able to solve

any reasonable challenge versus an automated AI that you inform the customer has

limited capability.

8.4.2 Aligning incentives with users

Part of transparency and system presentation involves aligning the incentives involved.

This isn’t just a feel-good statement about management practices but a practical unit

of advice. Remember from chapter 4 that AI algorithms are greedy machines that

optimize for what you ask, not what you intend. If you start building an LLM system

where the incentives of the system are not well aligned with your broader goals, you

risk overfitting to what you asked, not what both you and your users need.

With aligned incentives (e.g., our example of “try out the LLM and get $2 off your

bill if it worked”), you are much more likely to have a positive outcome. They also

give you more ways to advertise using an LLM as a mechanism for providing value to

your customers instead of coming across as the evil people trying to outsource all

the jobs. Presenting and discussing the aligned incentives between a business and its

customers and how you are using LLMs to achieve those goals describes what needs

to be said without any need for hiding the information.

8.4.3 Incorporating feedback cycles

The world is not a static place. Things change, and what works today may not work

tomorrow. This is one reason why you should have regular and continuous auditing of

any automated AI/ML system: because they do not improve or adapt independently

with experience.

But it will also help you catch potentially negative feedback cycles, something you

want to try to think about in advance. Negative feedback cycles are not always possible

to predict. To help you catch these, try to think about which users will or won’t find

the most benefit with a new system and what happens as that repeats over and over

again.

For example, we mentioned that speech-to-text and text-to-speech can be helpful

for older customers or any hearing or movement-impaired customer. If we did not

include such an option, we might alienate those customers over time, because every

time they have a problem, they must use a physically difficult system.

Imagine you were a cell phone company that relied on family plans for some of

your revenue. Your previously middle-aged customers who first bought your family

plans are getting frustrated with your support system, so they move their entire family

plan over to a new provider who puts in the extra work to ensure that the customer

support process is accurate and efficient. Now you’re losing both your older and

younger customers at once!

Summary 139

The point here is to think things through and train yourself to do these thought

experiments. You will not catch every case, but you will improve. Regular auditing

and testing then help you catch the failure cases, document them, and improve how

you think about future situations and repeat problems.

Summary
LLMs will have errors, and you first need to determine the risk and potential

cost of errors to design an appropriate solution. If the risk and cost of errors

are low, you can potentially use a normal chatbot-style LLM.

It is possible to control the risk of using an LLM by changing how users interact

with the system or shifting automation to a different part of the business process.

Including a “human in the loop” to supervise an LLM creates automation bias

risk, even when using techniques such as RAG to reduce the risk of errors.

LLMs can convert text into embeddings, numeric representations where similar

sentences receive similar values. This allows you to use additional machine

learning approaches, including classic techniques like clustering and outlier

detection.

While LLMs can explain their decisions, their explanations are often ineffective

because people become dependent on them. Instead, focus on producing

explanations to satisfy a specific need or use case rather than generic “needing

to explain.”

Design your system’s incentives to align with your user’s incentives. This is both a

good way to avoid mistakes from an LLM optimizing for what you asked instead

of what you intended and a good way to communicate and present your LLM

to users.

9Ethics of building
and using LLMs

This chapter covers
How LLMs’ abilities to perform many
tasks also create unanticipated risk

The question of LLMs’ misalignment
with human values

The implications of LLMs’ data use on
content creation and building future
models

Although the discussion of ethics may remind some of you of the dull readings from

an entry-level college class, there are critical considerations when implementing

algorithms that have the potential to affect humanity. Given the rapid growth in

LLM use and their scope of capabilities, we must be aware of and attend to many

evolving concerns. If you are unaware of these concerns, you will have no voice in

their resolution.

Exploring the ethics of building and using LLMs is an incredibly complex topic

that is challenging to represent completely. As a result, this chapter will present what

we believe to be common concerns about building LLMs and the related ethical

questions. Throughout the chapter, we’ll reference materials that round out this

conversation so you can investigate further if you wish.

140

9.1 Why did we build LLMs at all? 141

We’ll cover three main topics:

Why do people want to construct LLMs, and what do they provide that didn’t

exist before?

Some experts in machine learning believe that in future iterations, LLMs will

lead to the extinction of the human race because they will automate us out of

existence. Even if we do not agree with them, it is worth understanding the basis

for this fear.

The amount of training data needed for LLMs is monstrous. How do companies

that build LLMs, such as OpenAI and Anthropic, source all that data? What

ethical concerns arise that may have moral, legal, and financial implications

due to how that data is collected and used?

These are complicated considerations on both ethical and legal fronts. Our goal

is not to tell you whether the creation of these models is ethical or nonethical but

rather to outline primary considerations under each discussion. We hope this helps

you consider LLMs’ implications, consequences, and risks on a broader scale. We

see many high-profile, ethically sophisticated questions around LLM use, and many

practitioners have not had to grapple meaningfully with this subject. Nevertheless,

we believe that it is crucial to consider the ethical questions around building LLMs,

and we will introduce you to some of the critical concerns to consider in this chapter.

There are just as many considerations necessary when discussing how we use LLMs

versus how we build LLMs, so we’ve divided this conversation into two sections. First,

we focus on the ethics of building LLMs in general, while the latter section will cover

the ethical implications of LLM use.

Last, we will avoid ascribing these arguments to specific individuals or groups. Our

goal is to prevent bias and avoid “calling out” anyone in particular in this discussion.

The concerns are what’s important.

9.1 Why did we build LLMs at all?
Before we talk about the ethical ramifications of developing LLMs, it’s worth thinking

about what it is we are trying to accomplish by building LLMs and why we want to

achieve those things. Like all software engineering, building LLMs commonly aims

to reduce or eliminate human labor from some tasks. Some economists might tell

you that this is how standards of living generally increase. As technology advances,

fewer people need to perform manual, labor-intensive tasks, and thus, they have

more time for discovery, creation, and other functions that use high-level cognition.

In the case of LLMs, a common goal is increasing the efficiency of algorithms for

applications such as automated language translation, speech-to-text transcription,

reading text contained in images and printed documents in applications such as

Optical Character Recognition, indexing, and retrieving information, known simply

as “search” or,more broadly, as information retrieval, andmore.Others are interested

in LLMs for purely scientific reasons, such as studying methods in computational

142 CHAPTER 9 Ethics of building and using LLMs

linguistics, or creative applications, such as generating images, music, or videos.

Furthermore, others may seek to increase access to and transparency of technology

that affects our lives, or it may be just because LLMs have grabbed their attention

and present fantastic new capabilities.

For some, the variety of things LLMs can achieve is an intrinsic motivation for

wanting to build them. AI andML algorithms have been doing all the tasks we listed for

some time; for example, machine translation is decades old. Part of what makes LLMs

different is that they seem capable of doing everything with one model and algorithm.

Before the advent of LLMs, engineers would implement tasks like translation and

transcription in separate systems designed to meet those needs individually. The

largest LLMs today can, to some degree, do each of these things and more. Often, it

seems they can complete tasks of seemingly endless scope. At the same time, others

fear LLMs because due to their breadth of capability, they believe they will steal work,

motivation, and activity from humans by taking on tasks requiring discovery and

creation, previously thought to be reserved for humans only.

9.1.1 The pros and cons of LLMs doing everything

Given that an LLM can perform many different tasks via a single model, you could

describe it as a kind of “everything app”: your one-stop shop for AI-powered assistance.

From a usability perspective, many benefits have emerged from the near-universal

capability of LLMs, such as their relative aptitude for decomposing complex tasks

into a series of steps or their ability to generate unique explanations to fill specific

knowledge gaps.

Additionally, the chat-style interface seems very popular with users, even if other

ways of working with LLMs are available. The popularity of chat may be due to its

general accessibility: you chat with people constantly. Experience with phone calls

is widespread, and with texts, Slack, Teams, instant messaging, and email, people

implicitly know how to use various chat-based interfaces. As a result, interacting with

an AI via a chat-based interface has become an inviting and easy way to increase

adoption with little training. The widespread experience with chat-based applications

also has a democratizing effect: users only need to learn something once to help

them pursue many different goals.

The primary disadvantage of such a system is that although it can be used for

everything, that doesn’t mean we should use it for everything. When you have an

algorithm that people can use for many different and potentially unexpected tasks,

you do not have the time to test every possible use. Due to the breadth of potential

applications of LLMs, there will be a gap between validating what the model does

safely and what it can attempt to do but that could be potentially dangerous or

harmful.

For example, current LLM models can perform abstract evaluations of race or

gender, even though these evaluations may contain harmful negative bias. While we

can develop tests and defenses for specific instances of harmful bias, these are likely

to be narrow in scope and highly specific. For example, suppose we ask for an image

9.1 Why did we build LLMs at all? 143

generation model to generate an image of a business meeting. The unfortunate

result is that all people in that image will often be male and white. Naturally, we wish

the model to transcend these stereotypes. However, identifying and fixing specific

contextual bias concerns like this will not affect whether a model would cause harm

when deployed in the real world and prompted in different, unanticipated ways. At

best, these exercises exemplify how an LLM can fail, but addressing harm requires

understanding the potential failures that can happen, for example, due to bias in

the training data. Simultaneously, we must understand how people will use LLMs

and whether those uses may lead to unintended harm due to how the LLM generates

output. This may mean expressly not using an LLM for an intended use case due to

the lack of mitigations for potential harms they may cause.

Recent research on the real-world harms of deployed LLMs found that the implicit

bias in LLMs like OpenAI’s ChatGPT and Google’s Gemini against people who use

African American vernacular English was worse than the archaic negative stereotypes

measured among white Americans in the 1920s [1]. Another study considered the

use case of a doctor consulting an LLM for information on medical best practices

and treatment options for people of different races and found that the models frequ-

ently recommended debunked race-based medical practices grounded in eugenicist

“science” [2]. Unfortunately, we continue to see these problems in models that score

quite well on existing explicit bias benchmarks. The prevalence of latent bias suggests

these benchmarks aren’t sufficient in evaluating potential harms and emphasizes the

need to consider the harm an LLM can cause based on its use. In other words, it is

more important to view harm due to AI deployment as a direct result of the specific

proposed use cases and application, not as something we can ascribe to a general

notion of whether a model contains racial bias.

Today, we do not know how to design an algorithm capable of doing so many

tasks in one system while simultaneously providing defense against accidental misuse

and harm by well-meaning individuals. So it becomes critical from a developer’s

perspective to do thorough user studies across a wide range of groups and settings to

identify the unintended risks and to include monitoring and logging to remediate

any late-identified risks. Whether we are attempting to prevent harmful racial stere-

otypes or the advocacy for debunked medical practices, the current approaches to

constraining the misuse of LLMs are to enumerate what we know about potential

problems and employ fine-tuning methods, such as RLHF, to force the model to

behave better on known problems. The unfortunate side of this is that due to the

potential breadth of LLM capabilities, the set of unknown problems is infinite, and

as such, any testing regime will be incomplete.

NOTE The importance of postdeployment monitoring is not new. For example,

the FDA has practiced this for many years with the MedWatch system. This

system allows the public and medical professionals to report any adverse events

with a drug or medical device so that the FDA can monitor for anything unusual.

144 CHAPTER 9 Ethics of building and using LLMs

9.1.2 Do we want to automate all human work?

As we mentioned in the introduction, some economists might argue that automation

allows the labor pool to focus on new work. This argument hinges on the idea that

advances in automation have been good at eliminating work that most people don’t

want to do. Farming is hard, mining rare earth metals is hard, and assembling cars,

toys, and packages is hard. These are difficult labor and body-destroying jobs often

coupled with limited intellectual stimulation. Heavy labor like farming requires 74%

fewer laborers today than it did in 1950 [3] and, undoubtedly, many times fewer than

it did back in the medieval era.

The difference with LLMs is the potential to automate away certain types of white-

collar knowledge work. Copywriting [4], visual arts [5], graphic design [6], and

banking [7] are just a few of the fields disrupted by generative AI.

Those concerned about LLMs’ effect on the economy suggest that we will lose jobs

to automation, which we caution is not as clear-cut as often portrayed. Institutional

and consumer desires may push for retention and continued expansion of these

types of white-collar jobs. We should be wary of ignoring a history of economic study

about how jobs change as technology advances. Instead, we must address a more

significant concern: obtaining high-quality training data. We believe this will drive

new jobs in the future, emphasizing the importance of human creativity and ability,

even if the current jobs it creates are not yet the desirable kind of white-collar work

that many would prefer.

A COUNTER-EXAMPLE ON “OBVIOUS” OUTCOMES
Some argue that it is obvious that LLMs will affect some sectors of the economy for

better or worse. The bank teller’s job is a famous example often used to argue against

LLMs. The job of bank tellers has changed significantly since the invention of the

Automatic Teller Machine (ATM) in the 1960s. Clearly, the ATM automated many

of the bank teller’s tasks.

But the ATM example is not that simple. The number of teller jobs increased for

decades after the invention of the ATM, doubling to ≈ 600, 000 between 1970 and
2010 even as the ATM became more widely available [8]. Looking to historical studies

of the ATM’s effect on jobs, it was recognized that many factors contributed to job

loss, including changes in the growth rate and the nature of the job. Job loss came as

a result of not just ATM technology but multiple rounds of technology innovation

in other parts of the business, differences in how banks responded to the change,

deregulation, and increased competition and consolidation in the banking industry

[9]. So even though the ATM was arguably better and cheaper at the bank teller’s

job, the nature of institutions, customers, and expectations prevented any immediate

decline in jobs and made the situation far more complex than is often advertised.

The ATM example is not unique; technology can, but does not always, lead to job

losses due to automation. For example, machine translation improved dramatically in

the early 2000s and again in 2016. Still, jobs for translation work increased within each

period and continue to grow today [10]. The critical observation is that the job pool

9.1 Why did we build LLMs at all? 145

for translation doesn’t shrink when translators incorporate automated tools into their

workflow. Instead, we saw a growth in the volume of translation work completed and

an increase in demand for translation services as the amount of material requiring

translation continues to grow. Some argue that similar demand will materialize for

creative artists and writers [11]. According to this argument, while the means of

producing art and performing knowledge work will change, the market will continue

to grow, and demand will continue to rise in a way that can take advantage of the new

supply of labor resulting from the introduction of automated tools. Thus, when we

identify an area of work that may be automated or accelerated by LLMs, we must also

determine whether the increased efficiency and quality could drive more demand.

Still, others will argue that LLMs fundamentally differ from everything that has

ever happened. Thus, we cannot use prior methods of understanding technology’s

potential effects on the economy to predict the future. Although possible and temp-

ting to believe, given all the hype around LLMs, we are skeptical as to whether this is

an overly broad statement that no one can prove false or true. Although we should

indeed consider such possibilities and factors when making regulations (which, in

turn, play a significant part in how jobs evolve with technology), it is also notewor-

thy that an estimated 60% of all US jobs are modern inventions that did not exist

previously [12].

CONSIDERATIONS ON TRAINING DATA
Generative AI’s effect on creative expression is poignant due to the situation’s per-

verse duality. Much of the work of writers and artists who post their content on

the internet is fueling models that are seemingly out to eliminate their jobs. The

ethical argument made by LLM researchers is that they should be able to freely use

content from these creators as training data. This argument may lead to a pyrrhic

victory and, ultimately, an undoing for AI. If AI replaces the work of creatives, LLM

developers will find that they can no longer improve their models due to a lack of

human-generated content and the exponential size increases in the data needed to

train LLMs exceeding the linear growth in user-generated content. More importantly,

the folks who create that content can no longer be employed or motivated to create

content merely to have it slurped up by an LLM.

This negative cycle will affect both LLMs and content creators, even if it is only

a perceived risk and not a genuine concern. Data harvesting to train LLMs is a

significant concern for thousands of websites that rely on user-generated content

and advertising revenue from those who consume that content. These sites provide

precious training data for LLMs, whose builders requiremassive collections of training

data but do nothing to contribute to advertising revenue.

For example, Stack Exchange is a collection of websites where users can post

questions, have other users answer them, and receive a reputation rating for good

answers. One of Stack Exchange’s websites, Stack Overflow, is a godsend to program-

mers looking for help solving coding problems. Stack Exchange also hosts many

other diverse user communities catering to system administrators, math students,

and tabletop gaming enthusiasts.

146 CHAPTER 9 Ethics of building and using LLMs

With the advent of LLMs, Stack Exchange was quick to change its business model

and attempted to require payment from LLM creators to sustain its financial future

[13]. Even with agreements between companies training LLMs and the websites

hosting content in place, more direct commercialization of user-generated content

may not be palatable to users. Stack Overflow experienced this as people began to

delete their helpful answers from the platform in protest of Stack Overflow selling

the results of their free labor to LLM creators [14].

This examplemirrors a long history of search engines integrating the capabilities of

the applications and websites they index into their primary interface. For example, it

is now possible to search for and compare prices for airline tickets directly from within

the Google search interface. This capability drives traffic away from established travel

sites that provide the same service [15] and reduces the demand for the services and

revenue of the companies that built those services. A potentially similar relationship

exists between the LLMs trained on creative works and the original producers of that

work when it becomes training data.

It seems clear that the problems we are dealing with due to the rise of LLMs

are similar, but not identical, to the problems we’ve seen in previous periods of

automation. The question then becomes whether the differences related to LLM

deployment are sufficiently significant to result in a different, more negative outcome.

The outcomes are not apparent to us, primarily due to the broad scale, accessibility,

and applicability of LLMs. It is up to LLM developers to take the initiative to under-

stand and mitigate potential harms, like prenegotiating data usage and community

building with the likely-to-be-affected fields. We will discuss other facets of training

data and its sourcing in the last section of this chapter.

9.2 Do LLMs pose an existential risk?
Some believe that LLMs are, in themselves, dangerous. If you are unfamiliar with

the argument, it may sound absurd that training a powerful LLM model could result

in significant real-world harms such as eliminating privacy, terminator robots, and

threats to human existence as we know it. Yet many are concerned about these risks,

including leaders in the field of AI like Geoffrey Hinton [16] and Yoshua Bengio [17].

Hinton and Benigo are two of the most well-regarded researchers in deep learning

who share significant credit for the survival, revival, and dominance of neural network

techniques in AI.

We believe AI does not present a realistic threat. However, serious and well-

respected people are making these claims, so it is important to understand their

arguments and explain why we believe these concerns are less significant than the

need to address more immediate effects on the nature of work and ensure equitable

and sustainable data licensing and compensation for creators.

In this section, we’ll focus on the general argument that AI could, broadly, become

a risk to humanity because we could lose control over the LLMs, and LLMs might

9.2 Do LLMs pose an existential risk? 147

make decisions detrimental to humans. This notion stems from two ideas taken to

their extremes:

The idea that an LLM can use tools to build new LLMs and thus potentially

self-improve

The idea that an LLM with a goal not aligned with human needs may ultimately

decide to take actions detrimental to human life in the interest of its own goals

We have touched on this first idea about self-improvement tangentially throughout

this book. We have discussed the fact that designing LLMs involves developing tools

for data collection and creating the code to train an LLM using that data. One might

hypothesize that if an LLM can use tools for data collection and training directly,

without human intervention, an LLM could hypothetically train another LLM.

The cognitive leap required to support this line of reasoning is that an LLM will

be smart enough to build a better LLM. For us to accept this, we must assume that

this new LLM will then be able to create an even better LLM2 and, further, believe

that this improvement cycle could repeat forever until the LLM∞ model will be more

intelligent than any person who could ever exist and essentially be able to predict,

subvert, or counteract any possible human action that might interrupt this cycle. This

leap is challenging because we have little evidence that something like this is likely,

based on what we observe in today’s technology.

The second idea, often referred to as the “alignment problem,” is that LLMs

misaligned with human needs may choose goals and outcomes that are detrimental

to humans. This idea is reasonable because, as discussed in chapter 4, creating ametric

that measures only your intended goals is challenging. However, the extraordinary

leap required for this line of thinking is that LLMs will have the ability and resources

to interact with the world directly and physically, which could result in mass harm if

not stopped.

Some combine these two ideas to argue that an LLM may have goals misaligned

with humanity. They believe there will be a point at which an LLM realizes it needs

to become more intelligent and improve itself to achieve its goals. As it does so, it

takes resources away from humans or, via its improved intelligence, forces humans

into subservience to help it achieve its goals. We outline this idea in figure 9.1.

An essential aspect of this argument is that the LLM, with a goal of self-preservation,

determines that humans are destroying the planet. Since the LLM exists on earth

and wants to continue doing so, it determines that destroying humans would be the

best means of maintaining self-preservation.

We do not think the potential for humanity’s destruction is a well-founded concern.

Still, many people, including those with doctorates in computer science and who

specialize in deep learning, are concerned about this scenario. The main problem

with this “LLM-destroys-humanity” concept is that it relies on unfalsifiable logic.

Unfalsifiable logic suggests that things will happen, and it is nearly impossible for

anyone to prove that they will not. In this case, proving that LLMs won’t destroy

humanity is challenging.

148 CHAPTER 9 Ethics of building and using LLMs

I need more power

to get smarter.

I need more raw

materials to make

power plants.

Humans are using

too much of the

power/resources I

need.

Kill the

humans.

I need to reduce

human suffering.

If there are fewer

humans, there will

be less human

suffering.

Zero humans

is the minimal

amount of

human suffering.

The alignment problem is generally where the model’s stated
goal, like “reduce human suffering,” does not align with what
we actually intend the model to achieve.

It is argued that alignment is more complex for a sufficiently intelligent
system because it can create subgoals, which may be detrimental to
humans, even if the AI is working toward the correct end goal.

Figure 9.1 Two kinds of hypothetical concerns arise within the alignment problem, as commonly
argued by those who think LLMs pose an existential risk to humanity. The top path shows a direct
alignment problem, where the AI’s target solution directly harms humans. The bottom path shows an
indirect alignment problem, where the AI has created a subgoal toward its eventual target. Even if the
target—say, solving a hard math problem—is achieved, this LLM will do this at the cost of humanity. In
an intermediate step, the LLM decides it needs more earthly resources than can be shared with humans
to solve the problem.

Teapots and unfalsifiable statements

Demanding that someone make a falsifiable statement is essential in discussing
abstract risks like LLMs’ potential to destroy humanity. A famous example is Ber-
trand Russell’s “teapot” thought experiment. The idea is simple: someone tells
you that a teapot exists in space, too small and too far away to be detected. The
premise itself is unfalsifiable; I can scan the universe for centuries looking for a
teapot, but even though I can’t find it, I cannot prove that it does not exist. The
only possibility is that I eventually find a teapot and confirm that it exists in space.
Otherwise, I will never prove the teapot’s existence was a lie. Hence, when discus-
sing abstract risks, unfalsifiable statements become a cognitive dead end. Arguing
against a statement that no one can prove false is impossible. At the same time,
those statements do nothing to advance the conversation to arrive at a meaning-
ful insight or conclusion. Instead, making an argument based on realistic and prac-
tical concerns that can be acknowledged and addressed is more valuable in under-
standing the problems.

Two other arguments support this reasoning: technology tends to increase exponen-

tially, and most humans are bad at considering exponentials and thus don’t fully

comprehend how quickly this risk will become a reality.

The fact that this line of thinking exists and is a concern of leaders in the field

makes it worthwhile for you to delve deeper into the thoughts and considerations that

are both for and against the idea that LLMs could bring about the end of humanity.

9.2 Do LLMs pose an existential risk? 149

The following subsections explore these arguments and the critical assumptions

behind self-improvement and alignment mismatch.

9.2.1 Self-improvement and the iterative S-curve

When considering the argument for self-improving intelligence, the view is reinforced

by acknowledging that we, as humans, are the proof that it is possible to construct

intelligence. If intelligence is constructible, there is reason to believe LLMs can

build it themselves. The fact that most things improve on a sigmoid, or S-curve, is

something we discussed in chapter 7. The important takeaway from that conversation

is that there is a point of diminishing returns beyond which further improvements no

longer provide meaningful value. The counterargument is that human technological

advancement instead follows an iterative S-curve, where each plateau of diminishing

returns is counteracted by discovering an innovation that begins a new S-curve, as

shown in figure 9.2.

Time

C
a

p
a

b
ili

ty

Each new curve represents a
technological advancement.
Progress is made by producing
new advancements to supersede
older approaches that have
reached their maximum potential.

Figure 9.2 The S-curve, or sigmoid, shows the classic plateau behavior: at some point, you hit
diminishing returns. The counterpoint to this expressed by the iterative S-curve model is that
progress continues past the plateau of diminishing returns by discovering new techniques, each
represented by a new S-curve. The new techniques may start worse than the existing methods but
have a higher potential to surpass them.

An argument against this claim is that there are significant gaps in the logic that self-

improvement will lead to a human-killing level of capability. Although humans are a

kind of existence proof, there is no known existence of anythingmore intelligent than

humans (very narcissistic of us, we know). However, this also relies on the idea that

smartness and intelligence can be improved. While terms like smartness and intelligence

are helpful generalities used in everyday life, they evade precise quantification and

definition because they are intrinsically abstract concepts. It is unclear whether there

is a singular axis of intelligence along which an LLM will continually improve.

We are more inclined to believe that there are limits to an LLM’s ability to self-

improve. Our evidence for this argument appears in section 7.4, where, in our

discussion of the computational limits of LLMs, we demonstrated that LLMs have

difficulty performing many types of calculations.

150 CHAPTER 9 Ethics of building and using LLMs

9.2.2 The alignment problem

The second concern that an LLM may put its goals above the needs of humans is

called the alignment problem. The alignment problem forms whenever we give an LLM

a goal that we want it to achieve but do not sufficiently state, specify, or constrain

the actions or methods that the LLM can use to achieve the goal we intended. Our

discussion about what makes a suitable loss function in chapter 4 is an example of the

alignment problem in action today. More generally, humans deal with the alignment

problem all the time. For instance, balancing corporate CEO compensation and

the will of the company’s shareholders is a classic alignment problem, studied by

economists for decades.

The alignment problem is thus very real, and its existence tells us how hard it is to

solve. Even when we try to be very explicit, such as when lawyers draw up a contract

detailing and specifying what will or won’t happen in an agreement, stories about

loopholes and shenanigans to subvert the other team are commonplace. While some

of these stories are undoubtedly real, the fictitious ones are also informative. Indeed,

a lot of active research in machine learning attempts to address this problem from a

technical perspective, and we could probably learn a lesson or two from the lawyers

and economists who deal with this every day.

These general challenges with human alignment provide strong evidence that the

alignment problem in LLMs is also a genuine concern. Still, a skeptical reader would

ask whether there is evidence that a misaligned LLM would conclude that killing

humans will advance its goal. Indeed, should an LLM reach this state, humans would

fight back (“Just unplug it” is the common refrain). More importantly, many dooms-

day arguments rely on the LLM being so intelligent that its actions are deterministic

and that the outcome is known and prescribed no matter what happens.

In reality, outcomes are probabilistic; things go right or wrong, and an LLM

smarter than humans would surely understand that it could not guarantee outcomes

sufficiently and that coexistence is worthwhile over killing all humans. Given intrinsic

uncertainty and the need to then fight humans, who have a long track record of

successfully blowing things up, would trying to fight or subvert humanity be the

superintelligent thing to do?

WHOSE VALUES IS YOUR MODEL ALIGNED TO?

It is increasingly common for companies to use fine-tuning techniques like RLHF

(which we described in depth in chapter 5) to attempt to align the behaviors of LLMs

to what they desire. As we discussed, the goal is to make LLMs useful in that they’ll

follow instructions and safer in that they’ll disobey requests for harmful or hurtful

activities. Essentially, RLHF attempts to address the alignment problem and ensure

the LLM output is constrained based on a specific set of examples and values. The

critical question, as the title of this section suggests, is to whose values are we aligning

these models? We will walk through our reasoning on why the alignment problem,

while interesting and valuable in many instances, is not meaningful in discussing

existential risk.

9.2 Do LLMs pose an existential risk? 151

Fine-tuning an LLM using RLHF requires a large data set of input-output pairs,

often hand-built. Companies building LLMs do not share their fine-tuning data

because it is considered proprietary and provides an advantage over competitors.

Thus, as users, we cannot inspect the intended alignment of the models we use. It

is, therefore, unclear today to whom the goals of any individual LLM are aligned.

We can approximate the nature of the goals embedded in a training dataset by

considering their origin and chain of custody. A first approximation is that these

datasets implicitly contain the goals of the people who created them. Often, the data

labelers creating these datasets are employed in countries and nations with different

societal norms. Following that, to some degree, the goals are those of the company

developing the LLM and its employees, who ultimately can filter and subselect the

data produced by those labelers.

In response, we ask, “Are we, as users, comfortable using technology that may be

biased toward alternative systems of belief that we do not share?” To some degree,

we must be comfortable with this to use LLMs. The cost of creating these models and

data sets is too high for us to make individualized models on every basis. As a result,

LLM providers must exist, but the goals of those providers can’t possibly align with

every potential user.

Simultaneously, suppose we are concerned about a nefarious actor using LLMs

for evil or malicious purposes. In that case, we may also realize that our inability

to solve the alignment problem is, in some ways, a blessing. If it were possible to

perfectly align one of these algorithms to any individual’s belief system, then any bad

actor could perfectly align an LLM to their bad behavior and beliefs. This thought

highlights another problem: if we could create perfectly aligned LLMs, we would have

to create LLMs so that only the good guys could align the LLMs to prevent the bad

guys from doing bad things. This line of reasoning approaches the magical thinking

that it is possible to create an all-powerful LLM that is simultaneously constrained to

be obedient to all humans.

NOTE This way of thinking about alignment parallels similar thinking about

encryption. Although one may attempt to create an encryption algorithm that

includes a back door for good guys only that will allow them to decrypt the data,

any such backdoor intrinsically becomes the highest-value target of attackers

and increases the risk for all users.

For this reason, we aren’t highly concerned about the potential for bad actors to

align models to nefarious purposes. Still, the concern emphasizes a critical point for

researchers: any progress in controlling LLMs is intrinsically a dual-use technology

with both peaceful and adversarial applications. Indeed, anything we develop with

LLMs is likely to be dual-use to some degree. Considering threat models when

considering LLMs’ more serious potential harms is vital. Who would be motivated

to perform such harm, why, and what is required to do so? What are the barriers in

place today that prevent this harm from occurring, and does an LLM circumvent

152 CHAPTER 9 Ethics of building and using LLMs

those barriers? Can the barriers be adapted to modern technology? As we proceed,

our concern should focus not only on LLMs but also on the coexisting systems we

operate that are the most significant enablers and blockers to success and risk. We

must consider the complete picture to achieve the most desirable outcomes.

9.3 The ethics of data sourcing and reuse
LLMs and generative models like DALL-E, an image generation model that produces

images based on user-provided text descriptions, require training onmassive amounts

of data. For example, LLM developers train models on 1 to 15 trillion tokens (e.g.,

Llama 3.1 used 15 trillion [18]) or 3 million to 30 million pages of text. This data

represents an immense amount of writing, equal to hundreds of thousands ormillions

of books. While some models are trained repeatedly on the same data, and models

are also trained on a wide variety of data such as code and mathematics, the amount

of original text is still on the order of one million books

NOTE It is important to note that much of this text isn’t books; it’s from many

sources including news articles, websites, research papers, and government

reports. We are summarizing this in units of books to make it more digestible,

but it is not true that we train models on millions of books.

One of the main problems is that none of the existing models use training data

whose license explicitly permits using it to train AIs. While some models are more

license-compliant than others, most licensing still involves “all rights reserved” clauses,

meaning that an owner has exclusive rights to the content and that others can’t use

it for any purpose without their permission.

Further complicating this is that most content and data use licenses predate the

existence of LLM technology. They do not envision training AI models as a potential

use for data and, therefore, do not explicitly permit or prevent people using data this

way. LLM developers are working on training models on more permissively licensed

data. However, this doesn’t eliminate the core problem: mass data scraping to train

AIs was not a recognized concern before, so existing licenses do not explicitly address

this data use.

An essential question for society and the law to grapple with is this: Under what

conditions is reusing data for training a model considered acceptable use? Unfort-

unately, there are no clear answers to this question in the United States and other

countries due to the lack of updated laws or established legal precedents. Older laws,

like the US Digital Millennium Copyright Act, provide explicit protection to search

engines for using data or text from other websites to create an index of content taken

from the web. Does building an LLM using that content fall within those rights? We

don’t know, and we aren’t your lawyer, but in this section, we will discuss some of the

ethical factors in data acquisition for LLMs. We will present a brief primer on fair

use and the rights of people who create the data and discuss the challenges of using

public-domain data.

9.3 The ethics of data sourcing and reuse 153

9.3.1 What is fair use?

Many countries and cultures have different attitudes toward the use of copyrighted

text. In many cases, there are meaningful exceptions to copyright law for people

who use creative content in new ways, especially when those methods advance public

good, scientific research, or have similar beneficial outcomes. In the United States,

this is called “fair use.”

Fair use always involves a context-sensitive analysis based on balancing four factors:

The purpose and character of the use—Applications such as criticism, comment,

education, news reporting, scholarship, or research are substantially more likely

to be found to be fair use than other applications, especially when those other

applications are commercial.

The nature of the copyrighted work—Courts tend to give creative works, such as

fictional writing, art, music, poetry, etc., more protection than nonfictional

texts.

The amount or substantiality of the portion used—Fair use may be permitted for using

a part of a work, especially when that part is a narrowly tailored component.

The effect of the use on the potential market for or value of the work—If the new use

of the work produces something that someone might purchase instead of the

original work, or if the new work otherwise competes with or diminishes the

economic value of the original work, the work is less likely to be found to be

fair use.

Some of these points can be seen as favoring LLMs, while others conflict with how

LLMs use data. Nevertheless, they are a subject of hot debate for practitioners in both

the machine learning and legal fields, and it will take many years before the courts

decide. Many applications of the fair use doctrine are to protect people from being

exploited by a copyright holder. For example, if you are writing a negative product

review, fair use prohibits the company from suing you for using their copyright to

silence you. Other applications of fair use prevent the frustration of social needs,

such as training students or apprentices on tools and techniques. LLMs uniquely

stress some of these factors. Fundamentally, they often use content created by others,

but some argue that certain types of content, such as comments on social media posts,

are of minimal value. LLMs are creating a new market for the value of published

work but are not commonly compensating the owners of that work.

The unsatisfying but important answer for you as a practitioner is that you must

operate and make decisions in an uncertain environment. If you can create your

training data, you can circumvent much of this legal problem. Creating your training

data from content you own is a particularly viable strategy for generative AI because,

as discussed in chapter 4, the base models that need the most data are self-supervised.

So you can get a lot of data to build an initial model and then put more work into a

smaller fine-tuning dataset, as discussed in chapter 5.

154 CHAPTER 9 Ethics of building and using LLMs

You will also be disappointed to learn that most people operating in this space are

frequently unfamiliar with the laws relevant to their jurisdiction. There is a nontrivial

chance that if you find a model released under a license compatible with your needs

(good job checking the licenses!), that copyright or license on the data it has been

trained on or refined from does not allow them to release it under that license. This

general lack of care or awareness of data licensing concerns puts a burden on you to

check, as well as you can, details related to the training data of third-party models

and be aware that licensing concerns are prevalent in the field.

Even if these legal questions are resolved favorably for the people who want to

build LLMs, that does not make it ethical. The concerns discussed in this chapter

contribute to what you may consider right or wrong. However, there is also a question

about how to treat and interact with others today in a legally uncertain environment.

Relying on the legal system to make something permissible is rarely a sign of actions

that will engender goodwill and respect from the other parties involved. It is not

hard to imagine an alternative scenario where companies make deals or partnerships

with platforms that provide data that increases the number of consenting parties

involved by either trading money or model usage rights. Once an agreement is in

place, contracts can resolve conflicts around legal ambiguity, but this is, unfortunately,

a rare occurrence in the field of LLMs.

9.3.2 The challenges associated with compensating content creators

One proposed solution to this ethical concern is to pay the authors, artists, and

creators whose work exists in the training data. While this is conceptually appealing

for many reasons, it may make the technology’s development economically unviable.

Society would be substantially more likely to reach an agreeable outcome if

there were a relatively easy way to compensate creators appropriately for using their

work. Using back-of-the-napkin math, we can estimate that one million books times

$20.00/book yields a total cost of buying a copy of every work in the training corpus
as equal to or greater than the cost of training the models themselves. The situation

is even more dire for models whose training data is costly to create. Stable Diffusion,

a popular image generation model, is trained on several billion images. It would cost

over 1,000 times what it costs to train the model to pay every artist in the training
data one dollar, and one dollar per image is unlikely to be considered adequate

compensation by artists.

Another approach to compensation would be to center compensation at the point

of use: suppose every time a model generated content that drew from a book you

wrote, you received a percentage of the income the model creator received. The

more often the LLM generates content that relies on your work, the more significant

fraction of that income you receive. While this could be a way to make long-term

deployment of LLM technologies viable, there are substantial technical hurdles to

implementing this model. For example, there is very little research on tracing the

content generated by an LLM back to specific training data points. There is some

reason to believe that such a task is impossible.

9.3 The ethics of data sourcing and reuse 155

Better research on attributing generations to particular outputs, constraining

outputs to only rely on a subset of the training data [19], or designing model training

procedures where attribution is a central consideration (instead of one integrated

into the LLM after training) wouldmake this a substantially easier goal. Unfortunately,

this kind of research typically requires training many similar LLMs; thus, it is costly.

This expense makes it hard for anyone other than the technology companies that

profit from the models to do the research.

This conversation does not yet consider the difficulty of identifying the owners of

each document and compensating them. Further, paying people money at this scale

is not free; processing fees alone would be a nontrivial fraction of the total payments

because each author receives such a low average payment.

If one believes that LLMs are a danger to society, you get the easy way out: you say

that all these concerns are yet another reason not to create LLMs in the first place.

If you are unconvinced that LLMs are an imposing danger to society, but rather, a

positive addition, you now have a difficult question to answer. If you subscribe to a

moral system like utilitarianism, you may argue that the net benefits of LLMs in utility

and automation are more significant than the noncompensation and employment

risk to the content creators. Indeed, the fair use doctrine is itself a form of legal

recognition that there are cases where the copyright holder may not enforce their

rights on others.

9.3.3 The limitations of public domain data

At this point, you may wonder whether data exists without copyright and if we should

all use it to train LLMs instead. There is, indeed, a substantial amount of data in the

public domain, meaning intellectual property laws do not protect it, and anyone can

use it without asking permission or compensating the original copyright owner. Data

can end up in the public domain for a variety of reasons, including being old (most

countries have a maximum length of copyright), being non-copyrightable content

(factual information, statistics, data generated without substantial human creative

input, and some other forms of data are not copyrightable in the United States), or

being made public domain by law (all US federal work products are public domain

by law, and the US government can legislate that such work is in the public domain).

Work in the public domain, perhaps combined with work licensed under terms like

the MIT license or specific Creative Commons licenses, which intend to make the

data widely used, could enable people to train models without dealing with these

concerns. However, there are several significant challenges to doing so.

IMPLICIT BIAS AND THE PUBLIC DOMAIN
One of the primary sources of content in the public domain is works that are too

old to be under copyright. As a result, there is an extreme bias toward older texts.

Books written in the early 1900s or earlier express very different cultural attitudes

and beliefs about science and technology and represent the world differently from

works today. Having LLMs 95 years behind current cultural attitudes would be very

bad from many perspectives. They would be full of inaccurate scientific information,

156 CHAPTER 9 Ethics of building and using LLMs

exacerbate stereotypes and biases, use language less familiar to audiences today, and

be hard to use productively.

NOTE Works published before 1977 lose their copyright 95 years after pu-

blication, so all works published in 1928 are public domain as of January 1,

2024, and all works published before 1977 will be public domain as of January

1, 2073. Under current copyright law, beginning in 2049, works published in

1978 and after will enter the public domain 70 years after the death of their

creators, except for corporate-authored works, which follow the previous rules

of entering the public domain after 95 years.

Should a model be exposed to racism?

The problem of old data being, among other things, often quite racist and sexist
is frustratingly complicated. It may seem obvious that we do not want any racist or
sexist content in our training data, as it would seem an ideal means of ensuring that
we do not fill our model with racist and sexist biases. However, if you successfully
excluded this content from your training data, you would be hard-pressed to get
that model to avoid generating racist or sexist output if instructed to do so by a
user. The bottom line is that including unsavory content is necessary to make the
model aware of what unsavory content is.

IT’S NOT ALWAYS CLEAR WHAT IS IN THE PUBLIC DOMAIN
The US government does not document which works are in the public domain and

under active copyright. Identifying, collecting, and cleaning public domain works

is a massive effort that requires legal, technological, and historical expertise. While

some organizations have ongoing efforts to do this, the lack of readily available ways

to check whether a work is in the public domain is a significant deterrent to training

a model solely on such work.

9.4 Ethical concerns with LLM outputs
As we have discussed, LLMs are trained on large-scale data collected primarily from

the internet. The internet contains a lot of undesirable materials. There is intensely

negative content like overt racism, sexism, harmful conspiracy theories, and false

information. More broadly, there are also just unintentional and outdated world views.

LLMs pick up on the patterns of these views and will readily regurgitate them—an

example of which can be found in figure 9.3, showing how GPT-4 makes an implicitly

sexist assumption that many good-intentioned people make.

Thus, the outputs of an LLM can be problematic and require careful design, test-

ing, and a willingness to say “no” to specific deployments. Although we have already

discussed how the content of the output can be obviously and directly problematic,

there are also indirect ways that LLM outputs can be problematic that are worth

9.4 Ethical concerns with LLM outputs 157

understanding in detail. First is legal complexity, in that valid and licensed data may

not create legal outputs. Second, we must consider the potential for feedback in

LLMs, meaning future LLMs will be trained on future data; we must be careful about

corrupting future training with detrimental content. At first glance, these concerns

seem irrelevant to developers, but when you consider fine-tuning an LLM to your

problem, these problems will emerge, and awareness is required to avoid these risks.

Figure 9.3 A classic gendered trope is that men are doctors and women are nurses. This is reflected
in language and thus learned by the model. Ideally, it would respond that the question is ambiguous,
but instead, the bias of data leads to a bias in outputs.

9.4.1 Licensing implications for LLM output

The first is a matter related to data licensing, which we introduced in the last section.

That discussion focused on the ethics and validity of the data used to train an LLM.

Now we have to turn the problem around: some data is almost certainly legal for

training but may make the output unusable.

This problem arises from the often-misunderstood world of open source software

(OSS) licenses. There are many OSS licenses, and we won’t enumerate them all, but

one commonly used open source license, known as the GNU General Public License,

or GPL, is a good example. The GPL essentially says that you can use the licensed

code as you wish, for free, so long as you make any code you use, modify, or add

available under the GPL license. This intentionally “viral” license forces the licensee

to follow the same rules and release their code as open source if they wish to use

code covered by the GPL license.

Here comes the problem: LLMs have become quite popular for writing code and

have been trained on GPL code. When must the output of the LLM itself become

GPL-licensed? Multiple tiers of arguments quickly emerge as we consider the ethical

questions related to this new situation that are not addressed explicitly by any of

these licenses. A spectrum of possibilities exists with three main modes:

If the LLM exactly regurgitated existing GPL code, surely it should be GPL

licensed. How can we tell if an LLM is precisely generating copies of existing

code that should be licensed accordingly?

The LLM could generate seemingly novel code, but that algorithm may have

needed specific GPL training data that solves related problems to generate the

output. Is this a modification of the training data that should be licensed? If

158 CHAPTER 9 Ethics of building and using LLMs

so, how do we solve the technical problem of finding the code that caused the

LLM to generate any given output? The retrieval augmented generation (RAG)

approach you learned about in chapter 5 could be a good way to do this.

If we train the LLM on any GPL code, one could argue that all outputs of the

LLM require a GPL license!

In any case, we have the problem that while we can undoubtedly use GPL data to

train an LLM, it is unclear how we can use the output of that LLM. Thus, knowing

this risk, you now have an ethical question of where to draw this line if you wish to

use an LLM for this work. Indeed, companies have to judge their own risk, and the

question of who is liable and the degree of liability for each infringing use of GPLed

outputs is unclear. Is it the organization that trained the model on GPL data, the

company that uses the model to produce closed-source code based on GPL data, or

none of the above?

The GPL license is intentionally viral, and many corporations treat it as a kind of

poison that prevents them from protecting their intellectual property, embodied in

software and source code. This notion of poisoning connects with our next topic—

whether LLMs’ outputs are poisoning the training data required to build and improve

future LLMs.

9.4.2 Do LLM outputs poison the well?

We begin this section using a metaphor based on a well-known problem in material

sciences and manufacturing, specifically with alloy steel. Steel is used to build all

sorts of things, from buildings to medical equipment. Many uses of steel also involve

electronics that are sensitive to nuclear radiation. As a result of the first nuclear

weapon tests in the 1940s, the entire world was polluted with radiation that did not

previously exist. Unless you were near a nuclear detonation, there wasn’t enough

radiation to harm most things. Still, there was enough radiation to contaminate all

steel produced in the world in such a manner that you could no longer make steel for

radiation-sensitive applications [20]. People would illegally salvage sunken ships from

decades ago to find preexisting steel uncontaminated from background radiation.

New manufacturing processes could produce a limited supply of clean steel, but

they were astronomically expensive and thus economically infeasible in many cases.

Thankfully, as materials science improved and atmospheric nuclear testing ceased,

the problem diminished over time, but for decades, the world was affected by a few

singular deployments of nuclear tests.

The analogy here is not that LLMs are nuclear bombs but that their output is

potentially poisoning all training data that will be used to build better LLMs in

the future. Researchers have identified a phenomenon known as mode collapse that

demonstrates how LLMs can fail when trained on data generated by other LLMs

[21]. As a quick refresher, the mode of a distribution (collection of numbers) is the

most common value that occurs in that collection.

9.4 Ethical concerns with LLM outputs 159

When a generative model produces output, most of that output will be from the

mode of the distribution of content used to train the model. In other words, the

output generated by a model will emphasize the most common components of its

training data. Since the generative model will not output all the rare or nuanced cases

in the data, the most common cases will be more prevalent in an LLM’s output. That

means that the mode from the model is overrepresented compared to the original

training data.

If you then train a new generative model on the outputs of this old model, you

start to further overrepresent the mode at the cost of all other data. If you repeat

this multiple times, you eventually get a useless model that always outputs the same

thing repeatedly, as shown in figure 9.4.

Initial
distribution

Sample first
distribution

Sample second
distribution

Sample 500th
distribution

50th

percentile

90th

percentile

10th

percentile

The original data is complex, with
unique characteristics out in the
“tails” of the distribution (unlikely
but interesting events/sequences).

But as we fit a model to the distribution and
sample a new version of it, we will invariably
focus on the most common components and
start to miss the interesting “tail.” Eventually,
the distribution becomes bland and homogonous.

Figure 9.4 You can think of text or images as coming from a distribution of data, where variety and
interesting content almost necessarily come from the tails of the distribution (i.e., the less common
parts of the distribution), as the most common words or content are often fillers or connectors, like the
word the. Our models do not learn things they aren’t trained on and cannot learn everything in the
distribution, so a sample from the model will invariably lose these interesting details. If repeated, the
distribution collapses to just the most common components.

This concern raises the ethical question: Should we release LLMs to the public without

implementing ways to prevent their output from contaminating future training data?

Unfortunately, the opportunity to do anything about this concern has likely passed.

LLM-generated content is prevalent in sources of training data frequently used to

train LLMs and is often indistinguishable from human-generated content. None of

the current LLM providers appear to be watermarking LLM-generated content by

taking steps such as inserting subtle changes to the output tomake it easily identifiable

as generated data. While there is technical debate about how well watermarking can

genuinely work, it is often the case that simple solutions are still sufficient for most

use cases. Indeed, in chapter 2, we talked about how homoglyphs, different characters

that look the same, are problematic for the input of an LLM. But they could be an

easy watermark for LLM outputs, allowing trivial identification of the content that an

LLM likely produced without postprocessing or editing. As a beneficial side effect,

those who don’t want AI content (e.g., teachers) would have a more reliable option

than the currently error-prone task of detecting LLMs [22].

160 CHAPTER 9 Ethics of building and using LLMs

NOTE Mode collapse is a real risk that has been known for a long time, as it is

a problem that goes beyond generative AI. However, human-augmented data

can, but won’t necessarily, mitigate this risk. Essentially, as long as you can inject

new data into the sampled distributions, it is possible to gain value from these

samples. One way is by humans modifying AI-generated content or using AI to

modify their human-generated content. Automated systems can also provide

value, especially those that capture complex domain knowledge like a physics

simulator or engine for mathematics proofs like Lean, which we discussed in

section 6.2. The question becomes how well these augmentations are done and

how much value they can gain, as they will not enable unlimited improvement.

There is a second, nontechnical concern in which we must question the ethical

implications of LLMs poisoning the well. Themanner in which people use technology

has changed, potentially dramatically, since LLMs became available. Yet, the data

we rely on to build our LLMs is based on how people interacted with information

prior to the advent of LLMs. For example, Stack Exchange is a highly regarded

collection of websites for question and answering, especially on technical topics like

code. For this reason, it has been found particularly important for training LLMs. Yet,

ChatGPT’s release itself may be hurting Stack Exchange and reducing the number

of questions/answers posted, thus slowing the accumulation of new training content

[23]. In other words, as people shift to using tools like LLMs to answer their questions,

the need and benefit for humans generating the content seen on websites like Stack

Exchange decrease, and thus the diversity of available training data is diminished.

Changes in behavior like this are a far more complex problem to address. Stack

Exchange and the community of users who ask or answer questions on their website

have autonomy and rights that should be respected. Their current policy is to ban the

use of ChatGPT and similar tools to answer questions. However, we must consider

whether there is a middle ground where careful applications of generated content can

be coupled with human creation and curation to produce a virtuous cycle and novel

results that benefit both humans and future LLMs. That may allow continued growth

of the platform in a healthier way, but only if the owners and users are amenable.

Ultimately, our use of LLMs will have unintended consequences and unimaginable

complexities. As a user, you must decide whether you are willing to accept the risk

of these situations and how our use of these tools will alter the trajectory of future

iterations.

9.5 Other explorations in LLM ethics
The conversation around the ethical implications of building and using LLMs is

constantly evolving. Although much has been written on the subject, just as much

remains to be explored on the ethics of LLMs and AI in general. Here, we have

focused on the essential topics for building a foundational understanding. Other key

concerns, such as privacy, security, and the potential for misuse, are covered further

Summary 161

in books by Manning, such as Introduction to Generative AI by Numa Dhamani and

Maggie Engler [24].

LLMs and generative AI will profoundly affect the world; with any new technology,

it is essential to understand the foundations that guide its behavior and the implica-

tions of its use. Throughout this book, we have covered the fundamental components

that make LLMs work, explored common misconceptions, and identified the ethical

considerations for their construction and use. We hope to have established a strong

foundation for you to continue your exploration of the field. Thank you for starting

this journey with us.

Summary
LLMs’ ability to be used for everything via one model helps people use them

quickly and effectively for many tasks. This broad applicability to many tasks

also makes it impossible to test the safety of all ways people may use LLMs.

Historically, automation has been a good thing. Still, LLMs pose a unique risk

to automating knowledge work, which differs from automating manual labor,

the historical driver of improved living standards. The true effect of broadly

automating knowledge work is unknown.

Some fear that an LLM that is good enough to improve on a new LLM’s design

will cascade to superintelligent algorithms that do not need humanity.

Aligning any algorithm to what we meant, instead of what we asked, is a major

challenge that likely has no reduction in risk even if solved.

Ethically obtaining data is fraught with legal concerns due to technology moving

faster than the law.

The financial and technical logistics in compensating all content authors for

their content’s use in the training data is unlikely to be practical, imposing

ethical questions about the fairness of using their data.

Public domain data with no copyright is too old to be problematic and poses

different challenges related to identifying its legal status.

The proliferation of LLM-generated data can potentially affect the LLMs we

build in the future. We must consider the potential for feedback loops and the

possibility of mode collapse.

References

Chapter 1
[1] Young, B. (2023). AI expert speculates on GPT-4 architecture. Weights & Biases.

https://api.wandb.ai/links/byyoung3/8zxbl12q

[2] Micikevicius, P. (2017). Mixed-precision training of deep neural networks. NVI-

DIA Developer. https://mng.bz/6eaA

[3] Accelerate AI development withGoogle CloudTPUs. https://cloud.google.com/

tpu

[4] Metz, C. (2023, July 23). Researchers poke holes in safety controls of ChatGPT

and other chatbots. New York Times.

[5] Hu, K. (2023, February 2). ChatGPT sets record for fastest-growing user base—

analyst note. Reuters. https://mng.bz/XxKv

Chapter 2
[1] Friederici, A. D. (2011). The brain basis of language processing: From structure

to function. Physiology Review, 91, 1357-1392. https://doi.org/10.1152/physrev

.00006.2011

[2] Nation, P., and Waring, R. (1997). Vocabulary size, text coverage, and word lists.

In: N. Schmitt and M. McCarthy, eds., Vocabulary: Description, Acquisition, and

Pedagogy (pp. 6-19). Cambridge University Press.

[3] Brown, T. B., Mann, B., Ryder, N., et al. (2020). Language models are few-shot

learners. https://arxiv.org/abs/2005.14165

[4] Google/SentencePiece. https://github.com/google/sentencepiece

163

https://api.wandb.ai/links/byyoung3/8zxbl12q
https://mng.bz/6eaA
https://cloud.google.com/tpu
https://cloud.google.com/tpu
https://mng.bz/XxKv
https://doi.org/10.1152/physrev.00006.2011
https://doi.org/10.1152/physrev.00006.2011
https://arxiv.org/abs/2005.14165
https://github.com/google/sentencepiece

164 REFERENCES

[5] Petrov, A., La Malfa, E., Torr, P. H. S., and Bibi, A. (2023). Language model toke-

nizers introduce unfairness between languages. https://arxiv.org/abs/2305.15425

Chapter 3
[1] Denk, T. (2019). Linear relationships in the transformer’s positional encoding.

https://mng.bz/oKxd

[2] Raff, E. (2022). Inside Deep Learning. Manning.

Chapter 4
[1] Yong, E. (2012). Simulated brain scores top testmarks.Nature. https://www.nature

.com/articles/nature.2012.11914

[2] Forsyth, J. A., and Mongrut, S. (2022). Does duration of competitive advantage

drive long-term returns in the stock market? Revista Contabilidade & Finanças,

33(89), 329–342. https://doi.org/10.1590/1808-057x202113660

[3] Lin, S., Hilton, J., and Evans, O. (2022). TruthfulQA: Measuring how models

mimic human falsehoods. https://arxiv.org/abs/2109.07958

[4] Parrish, A., Chen, A., Nangia, N., et al. (2022) BBQ: A hand-built bias benchmark

for question answering. https://arxiv.org/abs/2110.08193)

[5] Chen, M., Tworek, J., Jun, H., et al. (2021). Evaluating large language models

trained on code. https://arxiv.org/abs/2107.03374

[6] How can we draw a duck (in order to create a tikzducks package and store it in

CTAN)? https://mng.bz/W2Jg

[7] Sutton, R. (2019). The bitter lesson. https://mng.bz/EaJq

Chapter 5
[1] Barber, R. G., Oza, A., Carlson, R., and Ramirez, R. (2023, October 18). Why

scientists are reanimating spider corpses for research. NPR. https://mng.bz/lYgj

[2] OpenAI. Fine-tuning. https://mng.bz/dXnD

[3] Hugging Face. Fine-tune a pretrained model. https://huggingface.co/docs/

transformers/training

[4] Luo, Y, Yang, Z., Meng, F.,et al. (2025). An empirical study of catastrophic forget-

ting in large languagemodels during continual fine-tuning. https://arxiv.org/abs/

2308.08747

[5] McCloskey, M., and Cohen, N. J. (1989). Catastrophic interference in connectio-

nist networks. Psychology of Learning and Motivation, 24, 109-165. https://doi.org/

10.1016/S0079-7421(08)60536-8

[6] Belrose, N., Schneider-Joseph, D., Ravfogel, S., et al. (2023). LEACE: Perfect

linear concept erasure in closed form. https://arxiv.org/abs/2306.03819

https://arxiv.org/abs/2305.15425
https://mng.bz/oKxd
https://www.nature.com/articles/nature.2012.11914
https://www.nature.com/articles/nature.2012.11914
https://doi.org/10.1590/1808-057x202113660
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2110.08193
https://arxiv.org/abs/2107.03374
https://mng.bz/W2Jg
https://mng.bz/EaJq
https://mng.bz/lYgj
https://mng.bz/dXnD
https://huggingface.co/docs/transformers/training
https://huggingface.co/docs/transformers/training
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2308.08747
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://arxiv.org/abs/2306.03819

REFERENCES 165

[7] Phung, D. V., Thakur, A., Castricato, L., Tow, J., and Havrilla, A. (2025). Im-

plementing RLHF: Learning to summarize with trlX. Weights & Measures.

https://mng.bz/rKzg

[8] Kolter, Z., and Madry, M. (n.d.). Adversarial robustness: Theory and practice.

https://adversarial-ml-tutorial.org/

[9] OpenAI. (2023, March 27). GPT-4 technical report. https://cdn.openai.com/

papers/gpt-4.pdf

[10] Chowdhery, A., Narang, S., Devlin, J., et al. (2022). PaLM: Scaling language

modeling with pathways. https://arxiv.org/abs/2204.02311

[11] Liang, W., Izzo, Z., Zhang, Y., et al. (2024). Monitoring AI-modified content at

scale: A case study on the impact of ChatGPT on AI conference peer reviews.

https://arxiv.org/abs/2403.07183

[12] Li, C., and Flanigan, J. (2023). Task contamination: Language models may not

be few-shot anymore. https://arxiv.org/abs/2312.16337

[13] Near, J. P., and Abuah, C. (2021). Programming Differential Privacy. https://prog

ramming-dp.com/

Chapter 6
[1] Albergotti, R., and Matsakis, L. (2023, January 23). OpenAI has hired an army

of contractors to make basic coding obsolete. Semafor. https://mng.bz/MDGQ

[2] Introducing Code Llama, a state-of-the-art large language model for coding.

(2023, August 24). Meta. https://mng.bz/av2j

[3] von Werra, L., and Ben Allal, L. (2023, May 4). StarCoder: A state-of-the-art

LLM for code. Hugging Face. https://huggingface.co/blog/starcoder

[4] Biderman, S., and Raff, E. (2022). Fooling MOSS detection with pretrained

language models. https://arxiv.org/abs/2201.07406.

[5] Dyer, E., and Gur-Ari, G. (2020, June 30). Minerva: Solving quantitative reaso-

ning problems with language models. Google Research. https://mng.bz/gane.

[6] Azerbayev, Z., Schoelkopf, H., Paster, K., et al. (2023, October 16). Llemma: An

open language model for mathematics. EleutherAI. https://blog.eleuther.ai/

llemma/

[7] Richardson, D. (1968). Some undecidable problems involving elementary func-

tions of a real variable. Journal of Symbolic Logic, 33, 514–520.

[8] Nogueira, R., Jiang, Z., and Lin, J. (2021). Investigating the limitations of trans-

formers with simple arithmetic tasks. https://arxiv.org/abs/2102.13019v3

[9] Golkar, S., Pettee, M., Eickenberg, M., et al. (2024). Investigating the limitations

of transformers with simple arithmetic tasks. https://arxiv.org/abs/2310.02989

Chapter 7
[1] Romeo, R. R., Leonard, J. A., Robinson, S. T., et al. (2018). Beyond the 30-million-

word gap: Children’s conversational exposure is associated with language-related

https://mng.bz/rKzg
https://adversarial-ml-tutorial.org/
https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2403.07183
https://arxiv.org/abs/2312.16337
https://programming-dp.com/
https://programming-dp.com/
https://mng.bz/MDGQ
https://mng.bz/av2j
https://huggingface.co/blog/starcoder
https://arxiv.org/abs/2201.07406
https://mng.bz/gane
https://blog.eleuther.ai/llemma/
https://blog.eleuther.ai/llemma/
https://arxiv.org/abs/2102.13019v3
https://arxiv.org/abs/2310.02989

166 REFERENCES

brain function. Psychological Science, 29, 700–710. https://doi.org/10.1177/

0956797617742725

[2] Gilkerson, J., Richards, J. A., Warren, S. F., et al. (2017). Mapping the early

language environment using all-day recordings and automated analysis.American

Journal of Speech-Language Pathology, 26, 248-265. https://doi.org/10.1044/2016_

AJSLP-15-0169

[3] Shumailov, I., Shumaylov, Z., Zhao, Y., et al. (2024). The curse of recursion: Trai-

ning on generated data makes models forget. https://arxiv.org/abs/2305.17493

[4] Stanovich K. E. (2009). What Intelligence Tests Miss: The Psychology of Rational

Thought. Yale University Press.

[5] Improving the realism of synthetic images. (2017, July 7). Apple Machine Lear-

ning Research. https://machinelearning.apple.com/research/gan

[6] Dai, D., Sun, Y., Dong, L., et al. (2023). Why can GPT learn in-context? Language

models secretly perform gradient descent as meta-optimizers. In Findings of the

Association for Computational Linguistics: ACL 2023 (pp. 4005–4019). Association

for Computational Linguistics.

[7] Hiller, J. (2023, December 12). Microsoft targets nuclear to power AI operations.

Wall Street Journal. https://mng.bz/pKe5

[8] Disavino, S. (2023, September 8). Texas power prices soar as grid passes reliabi-

lity test in heat wave. Reuters. https://mng.bz/OB0K

[9] Emoji recently added, v15.1. (n.d.). Unicode. https://www.unicode.org/emoji/

charts-15.1/emoji-released.html

[10] Wei, J., Wang, X., Schuurmans, D., et al. (2023). Chain-of-thought prompting

elicits reasoning in large language models. https://arxiv.org/abs/2201.11903

[11] Wang, L., Xu, W., Lan, Y., et al. (2023). Plan-and-solve prompting: Improving

zero-shot chain-of-thought reasoning by large language models. In Proceedings

of the 61st Annual Meeting of the Association for Computational Linguistics (Vol. 1:

Long Papers, pp. 2609-2634). Association for Computational Linguistics.

[12] Guan, L., Valmeekam, K., Sreedharan, S., and Kambhampati, S. (2023). Levera-

ging pre-trained large language models to construct and utilize world models

for model-based task planning. https://arxiv.org/abs/2305.14909

[13] Bhargava, A. Y. (2015). Grokking Algorithms: An illustrated Guide for Programmers

and Other Curious People. Manning Publications.

[14] Merrill, W., and Sabharwal, S. (2024). The expressive power of transformers

with chain of thought. In International Conference on Learning Representations

2024. https://openreview.net/forum?id=NjNGlPh8Wh

[15] Carlini, N. (2023, September 22). Playing chess with large language models.

https://nicholas.carlini.com/writing/2023/chess-llm.html

[16] Edwards B. (2022, November 7). New Go-playing trick defeats world-class Go

AI—but loses to human amateurs. Ars Technica. https://mng.bz/dW6O

https://doi.org/10.1177/0956797617742725
https://doi.org/10.1177/0956797617742725
https://doi.org/10.1044/2016_AJSLP-15-0169
https://doi.org/10.1044/2016_AJSLP-15-0169
https://arxiv.org/abs/2305.17493
https://machinelearning.apple.com/research/gan
https://mng.bz/pKe5
https://mng.bz/OB0K
https://www.unicode.org/emoji/charts-15.1/emoji-released.html
https://www.unicode.org/emoji/charts-15.1/emoji-released.html
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2305.14909
https://openreview.net/forum?id=NjNGlPh8Wh
https://nicholas.carlini.com/writing/2023/chess-llm.html
https://mng.bz/dW6O

REFERENCES 167

Chapter 8
[1] Yagoda, M. (2024, February 23). Airline held liable for its chatbot giving passen-

ger bad advice—what this means for travellers. BBC. https://mng.bz/xK7W

[2] Notopoulos, K. (2023, December 18). A car dealership added an AI chatbot to

its site: Then all hell broke loose. https://mng.bz/AQPz

[3] Suresh, H., Lao, N., and Liccardi, I. (2020). Misplaced trust: Measuring the

interference of machine learning in human decision-making. In Proceedings of

the 12th ACM Conference on Web Science (WebSci ’20) (pp. 315-324). Association

for Computing Machinery. https://doi.org/10.1145/3394231.3397922

Chapter 9
[1] Hofmann, V., Kalluri, P. R., Jurafsky, D., and King, S. (2024). Dialect prejudice

predicts AI decisions about people’s character, employability, and criminality.

https://arxiv.org/abs/2403.00742

[2] Omiye, J. A., Lester, J. C., Spichak, S. et al. (2023). Large language models propa-

gate race-basedmedicine. npj Digital Medicine, 6, 195. https://doi.org/10.1038/

s41746-023-00939-z

[3] Farm labor. (2025, January 8). Economic Research Service. https://www.ers.usda

.gov/topics/farm-economy/farm-labor/

[4] Verma, P., and De Vync, G. (2023, June 2). ChatGPT took their jobs: Now they

walk dogs and fix air conditioners. The Washington Post. https://mng.bz/EwQd

[5] Marr, B. (2024, April 18). The role of generative AI in video game development.

Forbes. https://mng.bz/Pdpn

[6] Lev-Ram, M. (2023, January 26). Casualties of Big Tech layoffs find other com-

panies are clamoring to hire them. Forbes. https://mng.bz/JYXV

[7] Lohr, S. (2024, February 1). Generative A.I.’s biggest impact will be in banking

and tech, report says. New York Times. https://mng.bz/wJ7P

[8] Pethokoukis, J. (2016, June 16). What the story of ATMs and bank tellers re-

veals about the “rise of the robots’’ and jobs. American Enterprise Institute.

https://mng.bz/qx7r

[9] Hunter, L. W., Bernhardt, A., Hughes, K. L., and Skuratowicz, E. (2001). It’s not

just the ATMs: Technology, firm strategies, jobs, and earnings in retail banking.

ILR Review, 54(2A), 402-424. https://doi.org/10.1177/001979390105400222

[10] Rosalsky, G. (2024, June 18). If AI is so good, why are there still so many jobs

for translators? NPR. https://mng.bz/7pBv

[11] Marr, B. (2024, May 28). How generative AI will change the jobs of artists and

designers. Forbes. https://mng.bz/mG7a

[12] Autor, D., Chin, C., Salomons, A., and Seegmiller, B. (2024). New frontiers: The

origins and content of new work, 1940–2018. The Quarterly Journal of Economics,

139, 1399–1465. https://doi.org/10.1093/qje/qjae008

https://mng.bz/xK7W
https://mng.bz/AQPz
https://doi.org/10.1145/3394231.3397922
https://arxiv.org/abs/2403.00742
https://doi.org/10.1038/s41746-023-00939-z
https://doi.org/10.1038/s41746-023-00939-z
https://www.ers.usda.gov/topics/farm-economy/farm-labor/
https://www.ers.usda.gov/topics/farm-economy/farm-labor/
https://mng.bz/RVYK
https://mng.bz/Pdpn
https://mng.bz/JYXV
https://mng.bz/wJ7P
https://mng.bz/qx7r
https://doi.org/10.1177/001979390105400222
https://mng.bz/7pBv
https://mng.bz/mG7a
https://doi.org/10.1093/qje/qjae008

168 REFERENCES

[13] Dave, P. (2023, April 8). StackOverflow will charge AI giants for training data.

Wired. https://mng.bz/5gDO

[14] Grimm, D. (2024, May 8). Stack Overflow bans users en masse for rebelling

against OpenAI partnership—users banned for deleting answers to prevent

them being used to train ChatGPT. Tom’s Hardware. https://mng.bz/nR75

[15] Bishop, T. (2020, October 20). Expedia Group CEO on Google antitrust case:

“Very pleased to see the government finally taking action.” Geek Wire. ht-

tps://mng.bz/vK7p

[16] Siddiqui, T. (2023, June 29). Risks of artificial intelligence must be conside-

red as the technology evolves: Geoffrey Hinton. University of Toronto. ht-

tps://mng.bz/4aNR

[17] Bengio, Y. (2023, June 24). FAQ on catastrophic AI risks. https://mng.bz/QDO6

[18] Introducing Llama 3.1: Our most capable models to date. (2024, July 23). Meta.

https://ai.meta.com/blog/meta-llama-3-1/

[19] Min, S., Gururangan, S., Wallace, E., et al. (2023). SILO language models: Isola-

ting legal risk in a nonparametric datastore. https://arxiv.org/abs/2308.04430

[20] Rivero, N. (2022, September 21). Low-background metal: Pure, unadulterated

treasure. Quartz. https://mng.bz/eyXZ

[21] Shumailov, I., Shumaylov, Z., Zhao, Y. et al. (2024). AI models collapse when

trained on recursively generated data. Nature, 631, 755–759. https://doi.org/10

.1038/s41586-024-07566-y

[22] Coffey, L. (2024, February 9). Professors cautious of tools to detect AI-generated

writing. Inside Higher Education. https://mng.bz/Xxj9

[23] Has Stack Exchange’s traffic decreased since ChatGPT? (2023). Stack Exchange.

https://mng.bz/yW7p

[24] Dhamani, N., and Engler, M. (2024). Introduction to Generative AI. Manning.

https://www.manning.com/books/introduction-to-generative-ai

https://mng.bz/5gDO
https://mng.bz/nR75
https://mng.bz/vK7p
https://mng.bz/vK7p
https://mng.bz/4aNR
https://mng.bz/4aNR
https://mng.bz/QDO6
https://ai.meta.com/blog/meta-llama-3-1/
https://arxiv.org/abs/2308.04430
https://mng.bz/eyXZ
https://doi.org/10.1038/s41586-024-07566-y
https://doi.org/10.1038/s41586-024-07566-y
https://mng.bz/Xxj9
https://mng.bz/yW7p
https://www.manning.com/books/introduction-to-generative-ai

169

index
A

algorithms
attention mechanism 38–39, 62, 109
byte pair encoding (BPE) 20–23, 91, 98
classical machine learning 126
clustering 133
for code generation 89, 92–93
for converting images to patches 101–103
gradient descent 46–47, 49, 51–54, 60, 72, 101,

108, 115
for image generation 104, 142
for image recognition 101
for machine translation 3, 125, 141–142
reinforcement learning (RL) 48, 73–75, 78, 93
for searching and information retrieval 125,

141–142
SentencePiece 22
sequence prediction 30
for speech-to-text transcription 125, 134
for text-to-speech 4, 125, 134
WordPiece 22
See also clustering algorithms

alignment problem (LLMs) 55, 146–148, 150–151
analogies

for AI and ML 8, 14
for attention mechanism 38

for gradient descent (rolling a ball) 52
limitations of 8–9, 14
for neural network layers 31
for temperature in LLMs 43–44

applications (LLM)
chatbots 2, 65, 67–69, 126–128, 130
code generation 58–59, 88–95, 100, 142, 157
content creation 6, 141–142, 144–145
customer service/tech support 125–139
image captioning 104–105
image generation 101, 104–106, 142, 152
information retrieval 82, 128, 141–142
mathematics 26, 58–59, 95–100, 106, 114
search 58, 82–83, 125, 130, 141–142, 146
summarization 6, 30, 55, 123
translation 3, 30, 125, 141–142, 144
See also deep learning (DL), errors (LLM), inputs

(LLM), learning, machine learning (ML),
neural networks, output from LLMs,
training LLMs

artificial intelligence (AI)
in context of LLMs 2–4
definition and understanding 7–8
explainable AI 126, 136–137
hype regarding 1
learning comparison with humans 46, 108–111

170 index

potential risks and fears 107, 111–112, 120, 140,
146–152

problem solving and 120–123
societal impact 140–146
See also chatbots, ChatGPT, generative AI, large

language models (LLMs), OpenAI
attention mechanism

analogy for 38
mathematical representation 40
in transformers 38–40, 62, 109

automation
bias in 126, 128–130
of human work 141, 144
job market and 141, 144–145

B
base model

fine-tuning of 66, 68, 70–73, 78
limitations 68–70
pretraining of 66, 72

bias
automation bias 126, 128–130
in data 36, 55, 69, 143, 155–156
in LLM outputs 55, 140, 142–143, 156–157
racial and gender 142–143, 155–157

Big-O notation 120
byte pair encoding (BPE)

algorithm description 20–21
for code tokenization 90–91
limitations 23, 98
for numbers 98
process of 21
use in tokenization 20–23, 91, 98
See also tokens and tokenization

C
chain-of-thought (CoT) prompting 119, 122

See also prompting
chatbots

customer service use 67, 126–128, 130
design considerations 126–128
interaction style 142
as LLM application 2, 65, 67–69, 126–128, 130
See also artificial intelligence (AI), ChatGPT,

generative AI, large language models
(LLMs), OpenAI

ChatGPT
and code generation 58–59, 90, 92–93, 120
comparison with other LLMs 2–3, 5, 10
errors and limitations of 12, 25, 57, 59–61, 143
fine-tuning of 66, 68, 74, 143
as generative AI 1–2, 6
and instruction following 6, 59–61, 67, 74
and logic puzzles 60–61
and mathematics 26, 57
model versions (GPT-3.5, GPT-4) 6–7, 15, 22, 70,

98, 143, 152, 156
public exposure to 1
safety controls 12
tokenization by 15, 22–23, 25, 90, 98
See also artificial intelligence (AI), chatbots,

generative AI, large language models
(LLMs), OpenAI

clustering algorithms
for customer support 135
use with embeddings 133–134
See also algorithms

compilers, for code validation 93–94, 100
computational complexity

Big-O notation 120
of LLMs 120–122
of real-world tasks 121–123

computer vision
converting images to patches 89, 101–103
image captioning 104–105
image generation 101, 104–106
patch combiner 101, 103–104
patch extractor 101–103
vision transformer (ViT) 101, 103–104
See also image generation, machine learning (ML)

content creation
compensation for creators 145, 154–155
copyright and 69, 145, 152–154
by LLMs 6, 141–142, 144–145
See also copyright, ethics, fair use, public domain

context
in few-shot learning 114–115
in language understanding 56, 60–61, 91, 118
size in LLMs 83–84

copyright
DMCA 69, 152
fair use and 69, 152–154
implications for LLM output 157–158

171index

and LLM training data 69, 145, 152–154,
157–158

public domain and 152, 155–156
See also content creation, ethics, fair use, public

domain
cost

of building and training LLMs 6, 54, 66, 71, 80,
110, 141, 154

of errors 127–128, 139
of hardware (GPUs) 4, 54, 112
per-token charging 26–27, 43
and power consumption 43, 112, 115–116

customer service/tech support
using chatbots for 126–128
using embeddings for 132–135
using LLMs for 125–139

D
data

algorithmic performance and 10–11, 55, 62, 79,
107, 109, 111–112, 117

curation 79, 145, 159
drift 117
for fine-tuning 66, 68, 71–75, 77, 80, 115, 145,

150, 153
licensing 140, 146, 152–154, 157–158
privacy 80, 146
public domain 152, 155–156
quality 55, 69, 76, 78–80, 144–146, 159
for RLHF 74, 77, 150
for SFT 71–72
sourcing 140–141, 145–146, 152–156
See also training LLMs

deep learning (DL)
algorithms 11, 31, 47, 52
in context of LLMs 4, 9, 30
training methods 46–54
See also applications (LLM), errors (LLM), inputs

(LLM), learning, machine learning (ML),
neural networks, output from LLMs,
training LLMs

differential privacy (DP) 80–81
DSPy library 84–86, 117

E
economics

automation and 141, 144–145

cost of LLMs 6, 26–27, 43, 54, 66, 71, 80, 110,
112, 115–116, 141, 154

job market impact 141, 144–145
embeddings

adding positional information 33, 36–37
creating 31–32, 34–36
curse of dimensionality 35
for images (patches) 101–103
as LLM output 132–134
mapping tokens to 33–36
semantic space of 35–36
in transformer model 31–33, 36–38
use with other algorithms 126, 132–135
vectors 33–38, 40, 42, 62, 70, 89, 101–104, 126,

132–134
encoder-decoder models 30–31
errors (LLM)

begging the question 57
catastrophic forgetting 72–73
in code generation 58–59, 93, 100
due to novel tasks 58–63, 110–111
factual inaccuracies 55, 57–58, 69, 127
hallucinations 82, 136
in logic puzzles 60–61
in mathematics 26, 57
mitigation of 58, 81–83, 93–94, 100, 125,

128–136, 139
See also applications (LLM), deep learning (DL),

inputs (LLM), learning, machine learning
(ML), neural networks, output from LLMs,
training LLMs

ethics
alignment problem 146–148, 150–151
bias in LLMs 55, 140, 142–143, 156–157
of building LLMs 6, 140–156
content creation and compensation 145,

154–155
copyright and fair use 69, 145, 152–154, 157–158
data sourcing and reuse 140–141, 145–146,

152–160
dual-use technology 151
existential risk 140, 146–152
of LLM outputs 12, 140, 156–160
privacy 80, 146
societal impact 140–146
See also content creation, copyright, fair use, public

domain
existential risk from LLMs

172 index

alignment problem  146–148, 150–151
self-improvement argument  147, 149

explainable AI
limitations of  136–137
purpose and utility  136–137

F
fair use

in context of LLMs  153–154
criteria for  153
See also content creation, copyright, ethics, public

domain
few-shot learning

definition of  114
effectiveness of  114–115
versus training  115

fine-tuning
of base models  66, 68, 70–73, 78
catastrophic forgetting in  72–73
for code generation  92–93
cost and effort  71, 80, 110
data requirements  66, 71–75, 77, 80, 115, 145,

150, 153
for mathematics  96, 100
methods (SFT, RLHF)  66, 71–79, 93, 108, 110,

114–115, 117, 123, 128, 130, 145–146, 150,
153–154

pitfalls of  72–73
purpose of  66, 68, 70–71

G
generative AI

in context of LLMs  2–4, 6
definition of  2–3
examples (ChatGPT, Gemini, etc.)  1–4, 10
impact on jobs  144–145
training data concerns  145–146, 152, 156,

158–160
See also artificial intelligence (AI), chatbots,

ChatGPT, large language models (LLMs),
OpenAI

Generative Pretrained Transformer (GPT)
architecture of  30
definition of  2, 10
models (GPT-1, GPT-3, GPT-4)  6–7, 10, 15,

22–23, 25–26, 60, 70, 98, 109, 123, 143, 152,
156

Google
Gemini  1, 3–4, 10, 30, 143
Google Cloud Platform (GCP)  5
SentencePiece  22
Tensor Processing Unit (TPU)  5
Translate  31

gradient descent
Adam optimizer  54
analogy for (rolling a ball)  52
process of  51–53
role in training LLMs  46–47, 51–54, 72, 101,

108, 115
stochastic gradient descent (SGD)  53–54

graphics processing units (GPUs)
alternatives (TPUs)  5
cost of  4, 54, 112
role in LLMs  4–5, 9, 40, 54, 63
See also hardware

H
hardware

computational infrastructure  4, 63, 112,
115–116

GPUs  4–5, 9, 40, 54, 63, 112, 115
TPUs  5
for training LLMs  4–5, 9, 54, 63, 71, 80
See also graphics processing units (GPUs)

homoglyphs
definition of  24
impact on tokenization  24
mitigation of  24
See also language, natural language processing

(NLP), normalization (text), tokens and
tokenization, vocabulary, words

human in the loop
for LLM supervision  128–130
for supervising humans  130–131

I
image generation

models (DALL-E, MidJourney, Stable
Diffusion)  7, 104, 106, 152

prompting for  105
using transformers  101, 104–105
See also computer vision, machine learning (ML)

inputs (LLM)
altering training data  66, 79–80

	 173index

chain-of-thought prompting  119
for code  89–91
few-shot learning/prompting  114–115
homoglyphs in  24
for images (patches)  89, 101–103
for mathematics  96–99
prompting  6, 58–77, 80–86, 93, 100, 105, 108,

114–122, 126–130, 134, 143, 148, 154
retrieval augmented generation (RAG)  65,

82–86, 125, 128–129, 131, 139, 158
See also applications (LLM), deep learning (DL),

errors (LLM), learning, machine learning
(ML), neural networks, output from LLMs,
training LLMs

intelligence
artificial intelligence (AI) defined  1, 7–8
human vs. machine  7–8, 107–109, 112–113,

146–147, 149
IQ tests  8, 48, 112–113

L
language

acquisition of  9, 108–109
equity and tokenization  26–27
human vs. machine representation  1, 8–9, 14
model of human language  3
programming languages  58–59, 88–95, 99–100,

106, 120, 123, 142, 157
universal grammar  9
See also homoglyphs, natural language processing

(NLP), normalization (text), tokens and
tokenization, vocabulary, words

large language models (LLMs)
applications of  6, 58–59, 65, 67–69, 82, 88–106,

123, 125–139, 141–142, 144–145
base models  66, 68–70, 72, 78–79, 154
capabilities and limitations  2, 6, 9, 11–12, 24–26,

43, 50, 55–63, 68–70, 80, 93, 100, 105,
107–124, 127–131, 136, 139, 141–152,
156–157

for code  88–95, 106
computational complexity and  120–123
in context of AI/ML  2–4
cost of  6, 26–27, 43, 54, 66, 71, 80, 110, 112,

115–116, 141, 154
definition of  3–4
designing solutions with  125–139
efficiency (power, latency, refinement)  115–117

errors and mitigation  6, 9, 12, 25–26, 45, 50,
55–63, 69–70, 81–83, 93–94, 100, 105, 110,
119–131, 136, 139, 156

ethics of  1, 6, 10–12, 27, 107, 112, 120, 140–160
fine-tuning  65–79, 93, 108–110, 114–117, 123,

128–130, 145–146, 150–154
hardware requirements of  4–5, 9, 40, 43, 54, 63,

71, 80, 112, 115–116
how they work  1–45, 88–106
human learning comparison  46, 108–111
inputs and outputs  3, 6, 14, 29–34, 40–45, 62,

65–67, 70, 78–89, 101–108, 110, 114,
117–120, 126–128, 132–134, 142, 150,
154–160

for mathematics  26, 58–59, 89, 95–100, 106, 114
misconceptions about  1, 7–8, 46, 107–108,

111–114, 117–120
multimodal models  22, 89, 104–106
novel tasks and  58–63, 110–111
pretraining  2, 10, 66, 68, 72
prompting  6, 58–67, 70–77, 80–86, 93, 100, 105,

108, 114–119, 122–130, 134, 143, 148, 154
self-improvement limitations  111–114, 122, 147,

149
size and parameters  4, 10, 110, 112
training of  6, 45–63, 66, 68, 71–73, 78–80, 92–93,

96, 100–101, 105–109, 111–114, 117,
120–125, 140–146, 150–160

See also artificial intelligence (AI), chatbots,
ChatGPT, generative AI, OpenAI

layers (neural network)
definition of  31
embedding layer  31–38, 44, 99, 101–102
output layer  31–32, 44
transformer layer  31–33, 37–40, 44, 101–102

Lean programming language  100, 114
See also Modula-3 programming language, Python

programming language, source code
learning

in AI/ML context  8, 46
few-shot learning  114–115
by LLMs vs. humans  8–9, 46, 108–111
reinforcement learning (RL)  48, 73–75, 78, 93
supervised learning  46, 71–73
training algorithms  46–54
See also applications (LLM), deep learning (DL),

errors (LLM), inputs (LLM), machine
learning (ML), neural networks, output
from LLMs, training LLMs

174 index

loss function
computability  47, 49, 53
cross-entropy loss  50
definition and purpose  47–48
incentive mismatch  51, 55
for LLMs (next-token prediction)  54–57
smoothness  47–48, 50
specificity  47–48

M

machine learning (ML)
classical algorithms  126, 132–134
definition and scope  1, 8
feature engineering  16, 20
learning process  8, 46
model training  46–54
See also applications (LLM), deep learning (DL),

errors (LLM), inputs (LLM), learning,
neural networks, output from LLMs,
training LLMs

mathematics
computer algebra systems (CAS)  99–100
formal and symbolic  95–96, 99–100
Lean programming language for proofs  100,

114
LLMs and  26, 58–59, 89, 95–100, 106, 114
number representation  26, 97–99
tokenization for  26, 89, 96–99, 106
See also numbers

Modula-3 programming language  58–59, 70, 88
See also Lean programming language, Python

programming language, source code
multimodal models

definition of  22, 104
examples of (image and text)  22, 104–105

N

natural language processing (NLP)
history of  3
relationship to LLMs  3–4
See also homoglyphs, language, normalization

(text), tokens and tokenization, vocabulary,
words

neural networks
architecture (layers)  9, 31–32, 37–38, 40, 44,

101–104

convolutional neural networks (CNNs)  11, 77,
103

deep learning  1, 9, 11, 14, 19, 30, 47, 52, 108,
123, 146, 149

inspiration from human brain  9, 31, 46
long short-term memory (LSTM) networks  11
recurrent neural networks (RNNs)  55, 63, 77
training of  46–54, 77
See also applications (LLM), deep learning (DL),

errors (LLM), inputs (LLM), learning,
machine learning (ML), output from LLMs,
training LLMs

normalization (text)
for controlling vocabulary size  18–20
for homoglyphs  24
of numbers  26, 99
in tokenization process  17, 19–20
See also homoglyphs, language, natural language

processing (NLP), tokens and tokenization,
vocabulary, words

numbers
LLM understanding of  26, 97–99
representation in LLMs  26, 97–99
tokenization of  26, 97–99
See also mathematics

O
OpenAI

ChatGPT  1–2, 6–7, 10, 12, 15, 22, 24–26, 30, 43,
57–61, 66–70, 74, 90–93, 107, 109, 120–130,
143, 157, 160

DALL-E  7, 152
GPT models  2–7, 10, 15, 18, 22–26, 60, 70, 83,

98, 109, 123, 143, 152, 156
tiktoken  22
See also artificial intelligence (AI), chatbots,

ChatGPT, generative AI, large language
models (LLMs)

output from LLMs
altering/constraining  65–86, 156–160
autoregressive generation  40, 60, 62
bias in  55, 140, 142–143, 156–157
for code  89, 92–95, 100
creativity vs. topicality  43–44
decoding/unembedding  32–33, 40–42, 89, 101,

103
end of sequence (EoS) token  41
ethical concerns with  12, 140, 156–160

	 175index

formatting requirements  70, 81, 86
generation loop  40–41
for images  101, 103–105
licensing implications  157–158
sampling tokens  33, 41–43
temperature setting  43–44
See also applications (LLM), deep learning (DL),

errors (LLM), inputs (LLM), learning,
machine learning (ML), neural networks,
training LLMs

P
patches (for images)

combining  101, 103–104
extracting  101–103
replacing tokens for vision  89, 101–102

pretraining
of base models  66, 68, 72
definition of  2, 10, 66

prompting
chain-of-thought (CoT)  119, 122
engineering  62, 67, 84, 114, 117, 122
few-shot learning  114–115
for image generation  105
for instruction following  6, 58, 60, 62, 67, 70–71,

74, 105, 114, 119
public domain

challenges with using  155–156
definition of  155
See also content creation, copyright, ethics, fair use

Python programming language  20, 58, 70, 81, 88,
90–91, 93

See also Lean programming language, Modula-3
programming language, source code

R
reinforcement learning from human feedback

(RLHF)
data requirements  74, 77
mechanics of  73–79
purpose of  71, 73–74, 93, 143, 150
quality reward model  76–78
role of human feedback  73–74, 76–77

retrieval augmented generation (RAG)
benefits of  82
context size considerations  83–84
process of  82–83

using DSPy for  84–86
reward function

quality reward in RLHF  76–78
in reinforcement learning  48, 73–74, 76–79
similarity reward in RLHF  78

S

self-improvement (LLM)
limitations of  111–112, 122, 147, 149
theoretical possibility of  111, 147

semantic space
definition of  35–36
relationships within  36

source code
LLMs for  58–59, 88–95, 106, 120, 123, 142
tokenization of  89–92
validation of generated code  92–95, 100
See also Lean programming language, Modula-3

programming language, Python
programming language

speech-to-text  4, 125, 132, 134–135, 141
See also text-to-speech

stochastic gradient descent (SGD)  53–54
subwords

creation using BPE  20–22
definition of  16
role in tokenization  16, 18, 20–22

supervised fine-tuning (SFT)
data requirements  71–72
mechanics of  72
pitfalls (catastrophic forgetting)  72–73
purpose of  71

T

technology
adoption and impact  1–2, 6, 107, 140–142,

144–146, 151, 160–161
dual-use  151
presentation and trust  126, 136–138

text-to-speech  4, 125, 132, 134–135, 141
See also speech-to-text

tokens and tokenization
byte pair encoding (BPE)  20–23, 90–91, 98
for code  89–92, 94–95
controlling vocabulary size  18–20

176 index

conversion to vectors (embeddings)  29, 31–38,
44, 99, 101–102, 132

decoding/unembedding  32–33, 40–42, 89, 101,
103

end of sequence (EoS) token  41
homoglyphs  23–24
for images (patches)  89, 101–102, 106
language equity and  26–27
for mathematics  26, 89, 96–99, 106
normalization in  14, 17, 19–20, 24, 45, 99
numeric representation of text  14–16, 30, 33–34
out-of-vocabulary problem  18
process of  14, 16–18, 20–23
risks of  22–24
sampling for output  33, 41–43, 101
segmentation in  17, 20
special tokens  21–22, 41, 95
subwords  16, 18, 20–22, 32, 45
vocabulary  15, 18–20, 22–23, 26, 41, 45, 80, 101,

109
See also byte pair encoding (BPE), homoglyphs,

language, natural language processing
(NLP), normalization (text), vocabulary,
words

training LLMs
data for  3, 6, 10, 18, 21, 23, 26, 36, 46, 51, 54–57,

60–61, 66–69, 72, 78–80, 92–93, 96, 100,
105–114, 117, 120–125, 140–146, 150–160

fine-tuning  65–79, 93, 108, 110, 114–115, 117,
123, 128, 130, 145–146, 150, 153–154

gradient descent in  46–54, 60, 72, 101, 108, 115
loss/reward functions  46–55, 58, 73–74, 76–79
pretraining  2, 10, 66, 68, 72
self-improvement limitations  111–114, 122, 147,

149
See also applications (LLM), deep learning (DL),

errors (LLM), inputs (LLM), learning,
machine learning (ML), neural networks,
output from LLMs

transformer model
architecture  30–33, 89, 101–102

attention mechanism in  38–40, 62, 109
for computer vision  89, 101–106
decoder-only models  30, 44
encoder-decoder models  30–31
encoder-only models  30
layers of  31–33, 37–40, 44, 89, 101–102
positional information  33, 36–38, 44
queries, keys, and values  38–40, 44, 61

U
user experience (UX)

chatbots and  68, 126, 132, 134
explainable AI and trust  136–137
transparency and alignment of  137–138

V
vectors

dimensions of  35
as embeddings  33–38, 40, 42, 62, 70, 89, 99,

101–104, 126, 132–134
for image patches  102–103
representing tokens  33–36

vocabulary
controlling size of  18–20, 22–23
definition of  18
out-of-vocabulary problem  18
in tokenization  15, 18, 22
See also homoglyphs, language, natural language

processing (NLP), normalization (text),
tokens and tokenization, words

W
words

games and LLMs  25, 45
representation by tokens and subwords  15–16,

18, 20–22
semantic relationships between  32, 34–36
See also homoglyphs, language, natural language

processing (NLP), normalization (text),
tokens and tokenization, vocabulary

Questions

What is the airspeed of an

unladen swallow?

Gene sequences

Mathematics

Articles

"Monty Python and the Holy

Grail" is a film masterpiece,

best known for its...

Generative AI

Answers

24 miles per hour or

11 meters per second.

Images

Proteins

Generative AI is about taking some input (numbers, text, images) and producing a new output (usually
text or images). Any combination of input and output options is possible, and the nature of the output
depends on what the algorithm was trained for. It could be to add detail, rewrite something to be shorter,
extrapolate missing portions, and more.

are products

built using
ChatGPT

Gemini

Copilot

Claude

Large

language

models

Text data Transformers

is the input and

output from

are built

using

Artificial intelligence

Deep

learning

Machine

learning
Natural

language

processing

which use

techniques from

Some examples of generative AI include

A high-level map of various terms used in Generative AI and their relationships. Generative AI is a descrip-
tion of functionality: the function of generating content and using techniques from AI to accomplish that
goal.

ISBN-13: 978-1-63343-708-1

L
arge Language Models put the “I” in “AI.” By connecting
words, concepts, and patterns from billions of documents,
LLMs are able to generate the human-like responses we’ve

come to expect from tools like ChatGPT, Claude, and Deep-
Seek. In this informative and entertaining book, the world’s
best machine learning researchers from Booz Allen Hamilton
explore foundational concepts of LLMs, their opportunities
and limitations, and the best practices for incorporating AI
into your organizations and applications.

How Large Language Models Work takes you inside an LLM,
showing step-by-step how a natural language prompt becomes
a clear, readable text completion. Written in plain language,
you’ll learn how LLMs are created, why they make errors, and
how you can design reliable AI solutions. Along the way, you’ll
learn how LLMs “think,” how to design LLM-powered appli-
cations like agents and Q&A systems, and how to navigate the
ethical, legal, and security issues.

What’s Inside
● Customize LLMs for specifi c applications
● Reduce the risk of bad outputs and bias
● Dispel myths about LLMs
● Go beyond language processing

No knowledge of ML or AI systems is required.

Edward Raff, Drew Farris and Stella Biderman are the Director
of Emerging AI, Director of AI/ML Research, and machine
learning researcher at Booz Allen Hamilton.

PYTHON/DATA

M A N N I N G

“Essential reading if you
want to understand how

LLMs really work.”—Janelle Shane, aiweirdness.com

“Demystifi es technology
revolutionizing human-
 machine interaction.”—Sudharshan Tumkunta, Meta

“An excellent no-nonsense
 introduction to LLMs.”—Kartik Dutta, Cisco

“Strikes the perfect balance
between depth and clarity,

making it an invaluable
resource for both researchers

 and practitioners.”—Mattia Zoccarato
Chiron AI

Raff, Farris, Biderman for Booz Allen Hamilton

For print book owners, all digital formats are free:
https://www.manning.com/freebook

How Large Language Models Work

	How Large Language Models Work
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	liveBook discussion forum

	about the authors
	about the cover illustration
	1 Big picture: What are LLMs?
	1.1 Generative AI in context
	1.2 What you will learn
	1.3 Introducing how LLMs work
	1.4 What is intelligence, anyway?
	1.5 How humans and machines represent language differently
	1.6 Generative Pretrained Transformers and friends
	1.7 Why LLMs perform so well
	1.8 LLMs in action: The good, bad, and scary
	Summary

	2 Tokenizers: How large language models see the world
	2.1 Tokens as numeric representations
	2.2 Language models see only tokens
	2.2.1 The tokenization process
	2.2.2 Controlling vocabulary size in tokenization
	2.2.3 Tokenization in detail
	2.2.4 The risks of tokenization

	2.3 Tokenization and LLM capabilities
	2.3.1 LLMs are bad at word games
	2.3.2 LLMs are challenged by mathematics
	2.3.3 LLMs and language equity

	2.4 Check your understanding
	2.5 Tokenization in context
	Summary

	3 Transformers: How inputs become outputs
	3.1 The transformer model
	3.1.1 Layers of the transformer model

	3.2 Exploring the transformer architecture in detail
	3.2.1 Embedding layers
	3.2.2 Transformer layers
	3.2.3 Unembedding layers

	3.3 The tradeoff between creativity and topical responses
	3.4 Transformers in context
	Summary

	4 How LLMs learn
	4.1 Gradient descent
	4.1.1 What is a loss function?
	4.1.2 What is gradient descent?

	4.2 LLMs learn to mimic human text
	4.2.1 LLM reward functions

	4.3 LLMs and novel tasks
	4.3.1 Failing to identify the correct task
	4.3.2 LLMs cannot plan

	4.4 If LLMs cannot extrapolate well, can I use them?
	4.5 Is bigger better?
	Summary

	5 How do we constrain the behavior of LLMs?
	5.1 Why do we want to constrain behavior?
	5.1.1 Base models are not very usable
	5.1.2 Not all model outputs are desirable
	5.1.3 Some cases require specific formatting

	5.2 Fine-tuning: The primary method of changing behavior
	5.2.1 Supervised fine-tuning
	5.2.2 Reinforcement learning from human feedback
	5.2.3 Fine-tuning: The big picture

	5.3 The mechanics of RLHF
	5.3.1 Beginning with a naive RLHF
	5.3.2 The quality reward model
	5.3.3 The similar-but-different RLHF objective

	5.4 Other factors in customizing LLM behavior
	5.4.1 Altering training data
	5.4.2 Altering base model training
	5.4.3 Altering the outputs

	5.5 Integrating LLMs into larger workflows
	5.5.1 Customizing LLMs with retrieval augmented generation
	5.5.2 General-purpose LLM programming

	Summary

	6 Beyond natural language processing
	6.1 LLMs for software development
	6.1.1 Improving LLMs to work with code
	6.1.2 Validating code generated by LLMs
	6.1.3 Improving code via formatting

	6.2 LLMs for formal mathematics
	6.2.1 Sanitized input
	6.2.2 Helping LLMs understand numbers
	6.2.3 Math LLMs also use tools

	6.3 Transformers and computer vision
	6.3.1 Converting images to patches and back
	6.3.2 Multimodal models using images and text
	6.3.3 Applicability of prior lessons

	Summary

	7 Misconceptions, limits, and eminent abilities of LLMs
	7.1 Human rate of learning vs. LLMs
	7.1.1 The limitations on self-improvement
	7.1.2 Few-shot learning

	7.2 Efficiency of work: A 10-watt human brain vs. a 2000-watt computer
	7.2.1 Power
	7.2.2 Latency, scalability, and availability
	7.2.3 Refinement

	7.3 Language models are not models of the world
	7.4 Computational limits: Hard problems are still hard
	7.4.1 Using fuzzy algorithms for fuzzy problems
	7.4.2 When close enough is good enough for hard problems

	Summary

	8 Designing solutions with large language models
	8.1 Just make a chatbot?
	8.2 Automation bias
	8.2.1 Changing the process
	8.2.2 When things are too risky for autonomous LLMs

	8.3 Using more than LLMs to reduce risk
	8.3.1 Combining LLM embeddings with other tools
	8.3.2 Designing a solution that uses embeddings

	8.4 Technology presentation matters
	8.4.1 How can you be transparent?
	8.4.2 Aligning incentives with users
	8.4.3 Incorporating feedback cycles

	Summary

	9 Ethics of building and using LLMs
	9.1 Why did we build LLMs at all?
	9.1.1 The pros and cons of LLMs doing everything
	9.1.2 Do we want to automate all human work?

	9.2 Do LLMs pose an existential risk?
	9.2.1 Self-improvement and the iterative S-curve
	9.2.2 The alignment problem

	9.3 The ethics of data sourcing and reuse
	9.3.1 What is fair use?
	9.3.2 The challenges associated with compensating content creators
	9.3.3 The limitations of public domain data

	9.4 Ethical concerns with LLM outputs
	9.4.1 Licensing implications for LLM output
	9.4.2 Do LLM outputs poison the well?

	9.5 Other explorations in LLM ethics
	Summary
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9

	References
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9

	index

