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Preface 

In an era where the boundary between artificial intelligence and human capability 
continues to blur, the advent of advanced models like GPT-4 stands as a testament to 
the ever-expanding possibilities of technology. This book is dedicated to exploring 
the fascinating intersection of artificial intelligence, specifically the capabilities of 
GPT-4, with computational materials science and computational mechanics—fields 
that are pivotal in shaping the future of engineering. The focus here is not only to 
unveil the potential of GPT-4 in generating sophisticated Python coding assignments 
but also to deepen the understanding and application of computational techniques in 
modern engineering problems. 

Unleashing the Potential of GPT-4 in Computational Sciences. The first objec-
tive of this book is to present a curated selection of intriguing problems from computa-
tional materials science and computational mechanics. These problems are carefully 
chosen for their relevance to current research and industrial applications and their 
suitability for showcasing the advanced capabilities of GPT-4 in code generation. 
From predicting material behavior under various conditions to simulating complex 
mechanical interactions, the problems serve as a canvas on which GPT-4 paints its 
solutions, demonstrating not just accuracy but creativity in problem-solving. 

Engineering of Prompts: The Art and Science Behind Effective Questioning. 
At the heart of effectively utilizing GPT-4 lies the ‘engineering of prompts’—a 
structured and methodological approach to formulating queries that elicit the most 
coherent and comprehensive answers from the model. This book dedicates substantial 
focus to this art, guiding readers through the nuances of crafting prompts that are 
clear, precise, and tailored to extract specific outcomes. By mastering this skill, 
engineers and researchers can leverage AI tools like GPT-4 to their fullest potential, 
turning vague ideas into precise algorithmic actions and reliable solutions. 

Rigorous Code Verification: Ensuring Reliability in AI-Generated Outputs. 
Trust in AI-generated code demands rigorous verification. This book addresses the 
critical need for robust testing frameworks to validate the code produced by GPT-
4. Through detailed walkthroughs of testing strategies and verification protocols, 
readers will learn how to ensure that the solutions provided by AI not only work

v



vi Preface

in theory but also perform flawlessly in real-world applications. This part not only 
enhances the reliability of AI as a tool but also instills confidence in its users. 

Why This Book Is Indispensable. For students, graduate engineers, and seasoned 
researchers, this book serves as a vital resource that illustrates the practical integration 
of AI in their work. It demystifies the process of interfacing with one of the most 
sophisticated AI models to date, making cutting-edge technology accessible and 
applicable. For educators, this book provides a blueprint for teaching computational 
concepts using AI, enriching the curriculum, and preparing students for a future 
where AI is a ubiquitous part of problem-solving. 

Inspiring the Next Generation. By bridging traditional engineering problems 
with modern AI technology, this book not only enhances the current educational and 
professional landscape but also serves to inspire the next generation of engineers 
and developers. It pushes the boundaries of what can be achieved when human 
ingenuity combines with artificial intelligence, setting a new standard for innovation 
and excellence in engineering. 

This book is more than just a textbook or a reference manual; it is a gateway to the 
future of engineering, a tool that empowers its readers to build on the cutting edge of 
technology. It encourages them to explore, experiment, and excel in their respective 
fields, equipped with the knowledge and tools to use AI not just as an aid, but as a 
transformative force in computational science. 

This book project originated from a module I introduced into the Master’s degree 
program in Computational Materials Science (CMS) at TU Bergakademie Freiberg 
(TUBAF) during the summer semester of 2023, followed by a continuation in the 
summer semester of 2024. The co-authors of this volume are students of the CMS 
program at TUBAF who participated in the course and developed their individual 
projects as part of its requirements. 

Freiberg, Germany 
July 2024 

Bernhard Eidel
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Generation of Atomic Scale Single 
Crystals 

Pradeep Periyasamy and Bernhard Eidel 

Abstract This chapter investigates the coding ability of GPT-4 in the generation of 
pristine single crystals (Face Centered Cubic (FCC), Body-Centered Cubic (BCC), 
and Hexagonal Close Packed (HCP)) structures on the atomic scale in arbitrary 
orientation with respect to a Euclidean reference frame. Beyond, the code enables 
the insertion of edge and screw dislocations into FCC pristine crystals. The generated 
crystals in atomic resolution can be used in Molecular Dynamics (MD) or Molecular 
Statics (MS) simulations. The resultant code is checked for correctness and analyzed 
to gain deeper insights into GPT-4’s behavior. Furthermore, the ability of GPT-4 
to incorporate human feedback is also examined by providing corrections to the 
generated code during the evaluation process. 

1 Introduction 

A solid is considered a crystal when its atoms are arranged with precise and consistent 
periodicity in their positions. This organization is made possible through something 
called a lattice, which can be divided into two types: Bravais and non-Bravais. 

In a Bravais lattice, all the points in the lattice are the same, meaning the atoms 
are arranged uniformly throughout the crystal. On the other hand, a non-Bravais 
lattice has different points in the lattice, indicating that the atoms are not the same 
everywhere. So, the non-Bravais lattice is referred to lattice with a basis. 

Figure 1a (a) gives an understanding of the overall structure of a crystal, we can 
think of it as the combination of two things: the lattice (the organized arrangement 
of points) and the basis (the specific arrangement of atoms at those points). So, in 
simpler terms: 

. Crystal Structure = Lattice + Basis
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This equation helps us grasp the fundamental elements that contribute to the way 
atoms are organized in a crystal. 

Figures 1c–e depict the prevalent arrangement of unit cells observed in a variety 
of metals. For cubic crystal systems, such as FCC or BCC, the lattice parameter is 
typically denoted by ‘. a’ and represents the distance between adjacent lattice points 
along each edge of the cubic unit cell. In other crystal systems, such as hexagonal, 
there may be multiple lattice parameters that define the dimensions along different 
crystallographic axes. In Figs. 1c, d, the parameter ‘. a’, and in Fig. 1e, both parameters 
‘. a’ and ‘. c’, are referred to as lattice parameters or lattice constants. 

Metallic specimens are composed of multiple unit cells repeated in a pattern. 
However, the alignment between the overall orientation of the specimen and the 
individual crystals it comprises may not necessarily coincide. An effective approach 
to describe the crystal’s orientation relative to the specimen involves defining two 
distinct coordinate systems (CS): a crystal CS and a global CS as shown in Fig. 1b. 
The global (specimen) CS, often used in experiments, describes the orientation of a 
sample based on its geometry, while the crystal CS in crystallography aligns with the 
crystal lattice. Rotation matrices .R facilitate relating these systems by transforming 
vectors from one system to another. By applying.R to vectors in the global CS, they 
can be converted to the crystal CS. 

Rotations of vectors from global to local are carried out according to (1) and vice 
versa according to (2) 

.x′ = Rx , (1) 

.x = RT x′ , (2) 

where . x and .x′ are vectors in the global and crystal CS, respectively. 
However, pristine crystals, characterized by highly ordered repeating atomic pat-

terns, do not undergo plastic deformation and are thus relatively uninteresting. Con-
versely, real-world materials are predominantly governed by defects, which can 
be categorized into various dimensions: zero-dimensional (point) defects (such as 
vacancies, interstitials, and substitutions), one-dimensional (line) defects (such as 
dislocations), two-dimensional (planar) defects (such as grain boundaries, interfaces, 
and free surfaces), and three-dimensional (volume) defects (such as pores and voids). 

In this section, our focus is directed solely towards the examination of defects 
stemming from dislocations. Dislocations represent linear or one-dimensional irreg-
ularities within a crystal lattice, where the alignment of atoms deviates from the 
normal arrangement. Dislocations are broadly categorized into two types: edge dis-
locations and screw dislocations. As illustrated in Fig. 1f, an edge dislocation is 
characterized by the insertion of an extra portion of a plane of atoms, the edge of 
which terminates within the crystal. This edge is called a dislocation line abbrevi-
ated by . ξ ; for an edge dislocation the Burgers vector . b is perpendicular to . ξ . Within 
the region around the dislocation line there is some localized lattice distortion. The 
atoms above the dislocation line in Fig. 1f undergo compression, and those below 
undergo tension.
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+ = 
Basis Lattice Crystal 

(a) Crystal structure (b) Coordinate systems (CS) 

(c) FCC crystal structure (d) BCC crystal structure (e) HCP crystal structure 

(f) Edge dislocation 

Screw disloca on 

b 

(g) Screw dislocation 

Fig. 1 Definition by sketches of (a) crystal structure, (b) of coordinate systems, (c)–(e) of unit 
cells representing fundamental crystal structures, and representations of (f) edge and (g) screw  
dislocations within a crystal lattice
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(a) Visualization of parameters involved in 
screw dislocation for | | -axis 

(b) Visualization of parameters involved in 
edge dislocation for | | -axis 

Fig. 2 Illustration of parameters involved in screw and edge dislocation 

A screw dislocation may be thought of as being formed by a shear stress that is 
applied to produce the distortion shown in Fig. 1g. Here, the upper front region of 
the crystal is shifted one atomic distance to the right relative to the bottom portion. 
In the screw dislocation, the Burgers vector . b is parallel to the .ξ -direction. While 
most dislocations in crystalline materials likely possess characteristics of both edge 
and screw dislocations, known as mixed dislocations, our focus here remains on pure 
forms for convenience. For a deeper exploration of crystal defects, comprehensive 
insights are available in [ 2], for dislocations in particular see [ 1, 4]. 

In general, a dislocation is introduced using the displacements predicted in the 
theory of dislocations. If for a screw dislocations. ξ is parallel to the.Z -axis as shown 
in Fig. 2a, then each atom is displaced by a distance.uz parallel to the dislocation line 
.(ξ) (hence.Z -direction), and proportional to the norm of the Burgers vector . b := |b|
according to [ 3] 

.uz =
(

b

2π

)
arctan

( y

x

)
, (3) 

here, . x and . y represent the positions of atoms in the plane normal to . ξ . 
Similarly, for an edge dislocation with. ξ parallel to the.Z -axis as shown in Fig. 2b, 

the displacements (.ux and. uy) applied to atoms are contained in the plane normal to 
. ξ according to 

.

ux = b

2π

[
arctan

( y

x

)
+ xy

2(1 − ν)(x2 + y2)

]
,

uy = − b

2π

[
(1 − 2ν) ln(x2 + y2)

4(1 − ν)
+ x2 − y2

4(1 − ν)(x2 + y2)

]
.

(4)
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Here, . ν is the Poisson’s ratio of the material. If the position of . ξ is parallel to the 
.X - or .Y -axis, the positions of atoms in (3) and (4) have to be adjusted consistently, 
cf. [ 3]. 

In the subsequent sections of this chapter, the prompts generated will assess the 
Python coding proficiency of GPT-4 in creating single crystals, specifically focusing 
on the FCC, BCC, and HCP structures in any arbitrary orientations. Additionally, 
starting from the pristine or defect-free FCC crystal, we will introduce edge and screw 
dislocations. The visualization of the generated results will be facilitated through 
OVITO [ 8], a renowned scientific software extensively employed for visualizing and 
analyzing molecular and material simulation data in the domain of computational 
materials science and engineering. 

2 Prompt  

Users have the flexibility to input a wide range of questions to obtain answers to their 
queries. However, the key lies in developing the skill to pose questions in a manner 
that an Artificial Intelligence (AI) engine can comprehend, leading to the production 
of high-quality and reliable results. An example of such a well-constructed prompt, 
achieved through prompt engineering, is presented in Fig. 4. 

The prompt offers a comprehensive roadmap of the Python program’s objectives, 
detailing specific instructions for generating crystal structures for FCC, BCC, and 
HCP systems, with an emphasis on accurately determining and saving atom coor-
dinates. Clear function requirements are outlined such as the function name and 
user inputs. Primitive and basis vectors for each crystal type are explicitly defined 
to ensure precise calculations for atom positions. The desired output file name is 
specified, along with the file format identified as XYZ, compatible with visualiza-
tion tools like OVITO. User interface aspects, including prompts for crystal type, 
lattice constants, box length with periodicity in each direction, and orientation, are 
also described. Additionally, suggestions for error-handling measures to validate 
user inputs, especially for lattice constants and crystal types, are provided. To ensure 
reproducibility, two key factors are emphasized: clear prompts defining crucial loop 
adjustments in for loops and a reminder that primitive and basis vectors must be 
rotated before generating atom positions. The program intentionally excludes from 
specifying the function for calculating periodicity length. Furthermore, an additional 
prompt Fig. 3 has been provided to calculate it separately. This decision is made to 
mitigate the inherent randomness in GPT-4’s behavior, ensuring that the code remains 
reproducible, at least after a few iterations. These topics will be discussed further in 
detail.
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Fig. 3 Prompt for calculating periodicity
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3 User Input Prompt and Results of Periodicity Calculation 

3.1 Prompt for Periodicity Calculation 

The user prompt displayed in Fig. 3 showcases the input prompt provided for the 
periodicity calculation. Additionally, the Python code generated by GPT-4 and the 
corresponding user inputs and the code output are detailed in code Listing 1.1 and 
Tables 1 and 2 respectively. 

Table 1 Parameters requested from the user and corresponding inputs 
Parameters requested User inputs 

Enter crystal type (FCC, BCC, HCP): FCC BCC HCP 

Enter lattice constant ‘a’ (Å): 3.51 3.3 3.21 

Enter lattice constant ‘c’ (Å): – – 5.21 

Enter the number of unit cells in each direction for the simulation box (x, y, z): 5, 5, 5 5, 5, 5 5, 5, 5 

Table 2 Representation of box length considering periodicity 

Description Code output 

Periodicity lengths (x, y, z): 43, 43, 43 38, 38, 38 51, 51, 135 

3.2 Code Listing for Periodicity Calculation 

1 import numpy as np 
2 

3 def generate_crystal_structure(crystal_type , a, c,
↪→ number_of_unit_cells): 

4 # Validate crystal type 
5 if crystal_type not in [’FCC’, ’BCC’, ’HCP’]: 
6 raise ValueError("Crystal type must be ’FCC ’, ’BCC ’,

↪→ or ’HCP ’.") 
7 

8 # Validate lattice constants 
9 if not a > 0  or (crystal_type == ’HCP’ and not c > a):  

10 raise ValueError("Invalid lattice constants. Ensure
↪→ ’a’ > 0 and for HCP , ’c’ > ’a’.") 

11 

12 # Define primitive vectors 
13 if crystal_type in [’FCC’, ’BCC’]: 
14 primitive_vectors = np.array ([[0.5*a, 0.5*a, 0],

↪→ [0.5*a, 0, 0.5*a], [0, 0.5*a, 0.5*a]]) 
15 elif crystal_type == ’HCP’: 
16 primitive_vectors = np.array ([[0.5*a, -0.5*np.sqrt

↪→ (3)*a, 0], [0.5*a, 0.5*np.sqrt (3)*a, 0], [0, 0, c]]) 
17 

18 # Calculate periodicity 
19 norm_primitive = np.linalg.norm(primitive_vectors , axis

↪→ =1) 
20 if crystal_type in [’FCC’, ’BCC’]: 
21 periodicity_length = (np.array(number_of_unit_cells)

↪→ * a * norm_primitive).astype(int) 
22 elif crystal_type == ’HCP’:
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23 periodicity_length_xy = (np.array(
↪→ number_of_unit_cells [:2]) * a * norm_primitive [:2]).
↪→ astype(int) 

24 periodicity_length_z = (number_of_unit_cells [2] * c
↪→ * norm_primitive [2]).astype(int) 

25 periodicity_length = np.concatenate ([
↪→ periodicity_length_xy , [periodicity_length_z ]]) 

26 

27 return periodicity_length 
28 def get_user_inputs (): 
29 while True: 
30 crystal_type = input("Enter crystal type (FCC , BCC ,

↪→ HCP): ").upper() 
31 if crystal_type in [’FCC’, ’BCC’, ’HCP’]: 
32 break 
33 print("Invalid crystal type. Please choose from ’FCC

↪→ ’, ’BCC ’, or ’HCP ’.") 
34 

35 a =  float(input("Enter lattice constant ’a ’: ")) 
36 

37 if crystal_type == ’HCP’: 
38 c =  float(input("Enter additional lattice constant ’

↪→ c’ (must be greater than ’a ’): ")) 
39 else: 
40 c = None # Not required for FCC and BCC 
41 

42 number_of_unit_cells = input("Enter the number of unit
↪→ cells in each direction for the simulation box (x,y,z)
↪→ : ") 

43 number_of_unit_cells = tuple(map(int ,
↪→ number_of_unit_cells.split(’,’))) 

44 

45 return crystal_type , a, c, number_of_unit_cells 
46 

47 if __name__ == "__main__": 
48 try: 
49 crystal_type , a, c, number_of_unit_cells =

↪→ get_user_inputs () 
50 periodicity_length = generate_crystal_structure(

↪→ crystal_type , a, c, number_of_unit_cells) 
51 print("Periodicity lengths (x, y, z):",

↪→ periodicity_length) 
52 except ValueError as e: 
53 print("Error:", e)  

Code Listing 1.1 Code generated by GPT-4 for periodicity calculation 

4 User Prompt and Results of Structure Generation 
with Arbitrary Orientation 

4.1 Prompt for Structure Generation 

Following the execution of code for periodicity calculation, the user input displayed 
in Fig. 4 is provided to GPT-4 to generate crystal structures with arbitrary orientations.
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Fig. 4 Prompt for crystal structure generation
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Fig. 4 (continued) 

4.2 Code Listing for Crystal Structure Generation 

In code Listing 1.2, the Python code exhibits the conclusive snippet crafted by GPT-
4, accompanied by the corresponding user inputs outlined in Table 3. The outcomes 
of the code execution are visually depicted in Fig. 5. 

1 #!/usr/bin/env python 
2 # coding: utf -8 
3 

4 # In [18]: 
5 

6 

7 import numpy as np 
8 

9 # Rotation Matrix Calculation from Miller Indices 
10 def rotation_matrix_from_miller_indices(hkl_x , hkl_y , hkl_z)

↪→ : 
11 # Normalize input vectors 
12 x = np.array(hkl_x) / np.linalg.norm(hkl_x) 
13 y = np.array(hkl_y) / np.linalg.norm(hkl_y) 
14 z = np.array(hkl_z) / np.linalg.norm(hkl_z) 
15 

16 # Ensure orthogonality and compute the rotation matrix 
17 if np.dot(x, y) == 0 and np.dot(x, z) == 0  and np.dot(y,

↪→ z) == 0:
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18 return np.array([x, y, z]).T 
19 else: 
20 raise ValueError("Input Miller indices are not

↪→ orthogonal.") 
21 

22 # Generate the crystal structure 
23 def generate_crystal_structure(crystal_type , a, c,

↪→ periodicity_length , orientation): 
24 rot_matrix = rotation_matrix_from_miller_indices (*

↪→ orientation) 
25 positions = [] 
26 

27 if crystal_type == ’FCC’: 
28 primitive_vectors = np.array ([[0.5*a, 0.5*a, 0],

↪→ [0.5*a, 0, 0.5*a], [0, 0.5*a, 0.5*a]]) 
29 basis_vectors = np.array ([[0, 0, 0]]) 
30 elif crystal_type == ’BCC’: 
31 primitive_vectors = np.array ([[ -0.5*a, 0.5*a, 0.5*a

↪→ ], [0.5*a, -0.5*a, 0.5*a], [0.5*a, 0.5*a, -0.5*a]]) 
32 basis_vectors = np.array ([[0, 0, 0]]) 
33 elif crystal_type == ’HCP’: 
34 primitive_vectors = np.array ([[0.5*a, -0.5*(3**(1/2)

↪→ )*a, 0], [0.5*a, 0.5*(3**(1/2))*a, 0], [0, 0, c]]) 
35 basis_vectors = np.array ([[0.5*a, 0.5*(3**( -1/2))*a,

↪→ 0.25*c], [0.5*a, -0.5*(3**( -1/2))*a, 0.75*c]]) 
36 else: 
37 raise ValueError("Invalid crystal type.") 
38 

39 # Apply rotation to primitive and basis vectors 
40 primitive_vectors = np.dot(primitive_vectors , rot_matrix

↪→ ) 
41 basis_vectors = np.dot(basis_vectors , rot_matrix) 
42 

43 # Generate atom positions 
44 for i in range(-periodicity_length [0],

↪→ periodicity_length [0] + 1): 
45 for j in range(-periodicity_length [1],

↪→ periodicity_length [1] + 1): 
46 for k in range(-periodicity_length [2],

↪→ periodicity_length [2] + 1): 
47 cell_origin = i * primitive_vectors [0] + j *

↪→ primitive_vectors [1] + k * primitive_vectors [2] 
48 for basis in basis_vectors: 
49 pos = cell_origin + basis 
50 if all(0 <= pos[n] <= (

↪→ periodicity_length[n] + 1) for n in range (3)): 
51 positions.append(pos) 
52 

53 return positions 
54 

55 # Save positions to XYZ file 
56 def save_to_xyz_file(atom_positions): 
57 with open("Crystal_structure.xyz", "w") as file: 
58 file.write(f"{len(atom_positions)}\n\n") 
59 for pos in atom_positions:
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60 file.write(f"Atom {pos [0]} {pos [1]} {pos [2]}\n") 
61 

62 # User Interface 
63 def main(): 
64 crystal_type , a, c, periodicity_length , orientation =

↪→ get_user_input () 
65 positions = generate_crystal_structure(crystal_type , a,

↪→ c, periodicity_length , orientation) 
66 save_to_xyz_file(positions) 
67 print("Crystal structure generated and saved to

↪→ Crystal_structure.xyz.") 
68 

69 def get_user_input (): 
70 # Collect and validate crystal type 
71 crystal_type = input("Enter crystal type (FCC , BCC , HCP)

↪→ : ").strip().upper() 
72 while crystal_type not in [’FCC’, ’BCC’, ’HCP’]: 
73 print("Invalid crystal type. Please enter FCC , BCC ,

↪→ or HCP.") 
74 crystal_type = input("Enter crystal type (FCC , BCC ,

↪→ HCP): ").strip().upper() 
75 

76 # Collect and validate lattice constant ’a’ 
77 a =  float(input("Enter lattice constant ’a ’: ")) 
78 

79 # Initialize ’c’ for HCP and validate if needed 
80 c = 0  
81 if crystal_type == ’HCP’: 
82 c =  float(input("Enter additional lattice constant ’

↪→ c’ (must be > a): ")) 
83 while c <= a:  
84 print("Invalid ’c’ value. It must be greater

↪→ than ’a’.") 
85 c =  float(input("Enter additional lattice

↪→ constant ’c ’: ")) 
86 

87 # Collect and validate periodicity length (x, y, z) 
88 periodicity_length_str = input("Enter periodicity length

↪→ (x,y,z): ") 
89 x, y, z = map(int , periodicity_length_str.split(’,’)) 
90 

91 # Collect and validate orientation 
92 print("Enter orientation as Miller indices (h,k,l) for x

↪→ , y, z directions:") 
93 hkl_x = tuple(map(int , input("Orientation for x

↪→ direction: ").split(’,’))) 
94 hkl_y = tuple(map(int , input("Orientation for y

↪→ direction: ").split(’,’))) 
95 hkl_z = tuple(map(int , input("Orientation for z

↪→ direction: ").split(’,’))) 
96 

97 # Ensure orientation vectors are orthogonal 
98 # Note: This is a simplified check and may need

↪→ refinement based on specific requirements
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99 if not (np.dot(hkl_x , hkl_y) == 0 and np.dot(hkl_x ,
↪→ hkl_z) == 0 and np.dot(hkl_y , hkl_z) == 0): 

100 print("Warning: The provided orientation vectors are
↪→ not orthogonal. Please check your input.") 

101 

102 return crystal_type , a, c, (x, y, z), (hkl_x , hkl_y ,
↪→ hkl_z) 

103 

104 

105 if __name__ == "__main__": 
106 

107 main() 

Code Listing 1.2 Code generated by GPT-4 for single crystal generation 

4.3 Results of Structure Generation 

The outcomes of generating single crystals of FCC, BCC, and HCP in native ori-
entations are illustrated in Fig. 5a–c as induced by corresponding input parameters 
listed in Table 3 (Table 4). 

Table 3 User inputs and output for crystal structure generation in native orientation 

Input requested parameters: FCC BCC HCP 

Crystal type (FCC, BCC, HCP): FCC BCC HCP 

Lattice constant ‘a’: 3.51 3.3 3.21 

HCP lattice constant ‘c’ (with c. >a): – – 5.21 

Periodicity length (x, y, z): 43, 43, 43 38, 38, 38 51, 51, 135 

Orientation as Miller indices (h, k, l) 

For x direction: 1, 0, 0 1, 0, 0 1, 0, 0 

For y direction: 0, 1, 0 0, 1, 0 0, 1, 0 

For z direction: 0, 0, 1 0, 0, 1 0, 0, 1 

Output: Crystal structure generated and saved to Crystal_structure.xyz
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Table 4 User inputs for structure generation in orientation other than native 

Requested input 
parameters: 

FCC BCC HCP 

Crystal type (FCC, 
BCC, HCP): 

FCC BCC HCP 

Lattice constant ‘a’: 3.51 3.3 3.21 

HCP lattice constant 
‘c’ (with c. >a): 

– – 5.21 

Periodicity length (x, 
y, z): 

43, 43, 43 38, 38, 38 51, 51, 135 

Orientation as Miller indices (h, k, l) 

For x direction: 1,. −1, 2 1,. −1, 2 1,. −1, 2 

For y direction: . −1, 1, 1 . −1, 1, 1 . −1, 1, 1 

For z direction: 1, 1, 0 1, 1, 0 1, 1, 0 

Output: Crystal structure generated and saved to Crystal_structure.xyz 

(a) FCC crystal structure (b) BCC crystal structure (c) HCP crystal structure 

Fig. 5 Generation of single crystals in native orientation (edges align with .< 100 > directions) 
and visualization using OVITO 

(a) FCC crystal structure (b) BCC crystal structure (c) HCP crystal structure 

Fig. 6 Generation of single crystals in orientation other than native and visualization using OVITO
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5 User Prompt and Results for Incorporating Dislocations 
into the Pristine Crystal 

5.1 Prompt for Dislocation Insertion 

Following the crystal generation process, the user prompt depicted in Fig. 7 was 
utilized once more to introduce screw and edge dislocations into the pristine FCC 
samples. 

Fig. 7 Prompt for introducing dislocations into the crystal
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Fig. 7 (continued)
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5.2 Code Listing for Introducing Dislocation 

In code listing 1.3, the Python code exhibits the conclusive snippet crafted by GPT-
4, accompanied by the corresponding user inputs outlined in Tables 5 and 6. The  
outcomes of the code execution are visually depicted in Figs. 8 and 9. 

1 import numpy as np 
2 

3 def calculate_edge_displacement(x1, x2, b, nu): 
4 theta = np.arctan2(x2 , x1) 
5 r2 = x1**2 + x2**2 # Square of the radial distance r 
6 u1 = (b / (2 * np.pi)) * (theta + (x1 * x2) / (2 * (1 -

↪→ nu) * r2)) 
7 u2 = (-b / (2 * np.pi)) * ((1 - 2 * nu) * np.log(r2) /

↪→ (4 * (1 - nu)) + (x1**2 - x2**2) / (4 * (1 - nu) * r2)
↪→ ) 

8 return u1 , u2 
9 

10 def calculate_screw_displacement (x1 , x2 , b): 
11 theta = np.arctan2(x2 , x1) 
12 u3 = b * theta / (2 * np.pi) 
13 return u3 
14 

15 def apply_displacement(atom_positions , dislocation_position ,
↪→ b, nu, direction , dislocation_type): 

16 modified_atoms = [] 
17 for atom in atom_positions: 
18 element , x, y, z = atom 
19 if direction == ’z’: 
20 dx , dy = x - dislocation_position [0], y -

↪→ dislocation_position [1] 
21 elif direction == ’x’: 
22 dy , dz = y - dislocation_position [0], z -

↪→ dislocation_position [1] 
23 elif direction == ’y’: 
24 dx , dz = x - dislocation_position [0], z -

↪→ dislocation_position [1] 
25 

26 if dislocation_type == ’edge’: 
27 if direction == ’z’: 
28 u1, u2 = calculate_edge_displacement(dx , dy ,

↪→ b, nu) 
29 modified_atoms.append([element , x + u1 , y +

↪→ u2, z]) 
30 elif direction == ’x’: 
31 u1, u2 = calculate_edge_displacement(dy , dz ,

↪→ b, nu) 
32 modified_atoms.append([element , x, y + u1, z

↪→ + u2])  
33 elif direction == ’y’: 
34 u1, u2 = calculate_edge_displacement(dx , dz ,

↪→ b, nu) 
35 modified_atoms.append([element , x + u1 , y, z

↪→ + u2])  
36 elif dislocation_type == ’screw’:
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37 u3 = calculate_screw_displacement (dx, dy, b) 
38 if direction == ’z’: 
39 modified_atoms.append([element , x, y, z + u3

↪→ ]) 
40 elif direction == ’x’: 
41 modified_atoms.append([element , x + u3 , y, z

↪→ ]) 
42 elif direction == ’y’: 
43 modified_atoms.append([element , x, y + u3, z

↪→ ]) 
44 return modified_atoms 
45 

46 def insert_dislocation(input_file_name , output_file_name ,
↪→ lattice_constant , dislocation_position , direction ,
↪→ dislocation_type , nu): 

47 with open(input_file_name , ’r’) as  file: 
48 lines = file.readlines () 
49 

50 atoms = [[line.split()[0], float(line.split()[1]), float
↪→ (line.split()[2]), float(line.split()[3])] for line in
↪→ lines [2:]] 

51 

52 b = np.sqrt (2) * lattice_constant / 2 # Burgers vector
↪→ for FCC 

53 

54 modified_atoms = apply_displacement(atoms ,
↪→ dislocation_position , b, nu, direction ,
↪→ dislocation_type) 

55 

56 with open(output_file_name , ’w’) as  file: 
57 file.write(f"{len(modified_atoms)}\n") 
58 file.write(f"Atoms with {dislocation_type}

↪→ dislocation\n") 
59 for atom in modified_atoms: 
60 file.write(" ".join(map(str , atom)) + "\n") 
61 

62 # User input handling 
63 input_file_name = input("Enter the name of the input .xyz

↪→ file: ") 
64 output_file_name = input("Enter the name of the output .xyz

↪→ file: ") 
65 lattice_constant = float(input("Enter the lattice constant:

↪→ ")) 
66 nu = float(input("Enter the Poisson ’s ratio: ")) 
67 direction = input("Enter the direction of the dislocation

↪→ line (x, y, or z): ").lower() 
68 dislocation_type = input("Enter the type of dislocation (

↪→ screw or edge): ").lower() 
69 

70 # Request additional coordinates based on the direction of
↪→ the dislocation line 

71 if direction == ’x’: 
72 dislocation_y = float(input("Enter the y-coordinate of

↪→ the dislocation line: "))
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73 dislocation_z = float(input("Enter the z-coordinate of
↪→ the dislocation line: ")) 

74 dislocation_position = (dislocation_y , dislocation_z) 
75 elif direction == ’y’: 
76 dislocation_x = float(input("Enter the x-coordinate of

↪→ the dislocation line: ")) 
77 dislocation_z = float(input("Enter the z-coordinate of

↪→ the dislocation line: ")) 
78 dislocation_position = (dislocation_x , dislocation_z) 
79 elif direction == ’z’: 
80 dislocation_x = float(input("Enter the x-coordinate of

↪→ the dislocation line: ")) 
81 dislocation_y = float(input("Enter the y-coordinate of

↪→ the dislocation line: ")) 
82 dislocation_position = (dislocation_x , dislocation_y) 
83 else: 
84 

85 

86 raise ValueError("Invalid direction. Pleas enter x, y,
↪→ or z.") 

87 

88 

89 insert_dislocation(input_file_name , output_file_name ,
↪→ lattice_constant , dislocation_position , direction ,
↪→ dislocation_type , nu) 

Code Listing 1.3 Code generated by GPT-4 for introducing dislocation into FCC crystal 

Table 5 User inputs for insertion of screw dislocation 
Requested input parameters: File names 

Enter the name of the input .xyz file: Crystal_structure.xyz 

Enter the name of the output .xyz file: Screw_dislocation.xyz 

Requested input parameters: Dislocation line 

X Y Z 

Enter the lattice constant: 3.51 3.51 3.51 

Enter the Poisson’s ratio (. ν): 0 0 0 

Enter the direction of the dislocation line (x, y, or z): X Y Z 

Enter the type of dislocation (screw or edge): Screw Screw Screw 

Enter the coordinate of the dislocation line: 

For x direction: – 10 10 

For y direction: 10 – 10 

For z direction: 10 10 –
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Table 6 User inputs for insertion of edge dislocation 
Requested input parameters: File names 

Enter the name of the input .xyz file: Crystal_structure.xyz 

Enter the name of the output .xyz file: Edge_dislocation.xyz 

Requested input parameters: Dislocation line 

X Y Z 

Enter the lattice constant: 3.51 3.51 3.51 

Enter the Poisson’s ratio (. ν): 0.33 0.33 0.33 

Enter the direction of the dislocation line (x, y, or z): X Y Z 

Enter the type of dislocation (screw or edge): Edge Edge Edge 

Enter the coordinate of the dislocation line 

For x direction: – 10 15 

For y direction: 10 – 15 

For z direction: 10 10 – 

5.3 Results of Dislocation Insertion 

The outcome of the code for inserting screw dislocation and edge dislocation into 
the crystal is illustrated in Fig. 8. Note that for screw dislocations, the line direction 
. ξ aligns with the Burgers vector. 

(a) -direction | | to -axis (b) -direction | | to -axis (c) -direction | | to -axis 

Fig. 8 Screw dislocations in FCC crystals for different orientation. The green arrow indicates the 
direction of the Burgers vector, the red arrow represents the dislocation line direction. Rendering 
by using OVITO 

The outcome of the code for inserting an edge dislocation or a screw dislocation 
into the crystal is illustrated in Fig. 9. Note that for edge dislocations the direction . ξ

of the dislocation line is perpendicular to the Burgers vector.
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(a) | |  to -direction (b) | |  to -direction (c) | |  to -direction 

Fig. 9 Edge dislocations in FCC crystals for different orientations. The green arrow indicates 
the direction of the Burgers vector, while the blue arrows represent the dislocation line direction. 
Rendering by using OVITO 

6 Testing for Verification 

6.1 Major Issues 

In the initial formulation of the prompt, the problem objective was clearly articulated, 
as depicted in Fig. 10. GPT-4 demonstrated its proficiency by generating representa-
tions of all three crystal structures (FCC, BCC, and HCP) based on this initial prompt. 
However, a notable observation surfaced during the simulation box depiction, where 
it became apparent that the atoms did not entirely occupy the designated space, as 
illustrated in Fig. 11. This discrepancy persisted despite the explicit specification 
of this condition in the user prompt. The incongruity raises a significant concern 
regarding the accurate adherence to the specified conditions during the generation 
process. 

To address this issue in the subsequent iteration, a more generic prompt was 
presented to the language model, as depicted in Fig. 12. 

6.1.1 Randomness in the Model 

As observed in the subsequent iteration, the introduction of a more generic prompt 
led to unpredictable behavior in GPT-4. Notably, the model began to deviate from 
the initially provided user input, altering primitive and basis vectors. Consequently, 
all three crystal structures generated by the model deviated significantly from the 
expected configurations, resulting in a failure to detect any valid crystal structures in 
OVITO as shown in Fig. 13. This outcome underscores the importance of precision in 
formulating prompts when interacting with Large Language Models (LLMs), as they 
may exhibit more random behavior in the absence of specific and explicit instructions.
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Fig. 10 Initial prompt
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(a) FCC crystal 
structure 

(b) BCC crystal 
structure (c) HCP crystal structure 

Fig. 11 Simulation box containing atoms with partial occupancy 

Fig. 12 Iteration 2 to overcome the issue of partial occupancy 

(a) FCC crystal 
structure 

(b) BCC crystal 
structure (c) HCP crystal structure 

Fig. 13 Consequence of a generic prompt: failure to detect all valid crystal structures 

6.1.2 Short Term Memory 

In subsequent iterations, efforts were made to curb the model’s random behavior by 
providing more precise information. To retrieve the equations for primitive and basis 
vectors from the initial prompt, GPT-4 was specifically instructed to use the primitive 
vectors from the initial input. However, due to its limited short-term memory, the 
model encountered difficulties in recalling all the required information from the initial 
prompt shown in Fig. 10. Consequently, primitive and basis vectors were reintroduced
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as input prompts to ensure accuracy. It is noteworthy that the challenges observed 
with GPT-3.5 persist with GPT-4, highlighting the continued need for careful and 
explicit instructions to overcome limitations in model memory and enhance overall 
performance. 

6.1.3 Code Reproducibility 

In the subsequent iteration, the model successfully generated an exact code capable 
of producing all three crystal structures in arbitrary orientations. Acknowledging 
the significant influence of prompt engineering on the performance of LLMs, GPT-4 
was specifically tasked with generating a prompt that would enable the production of 
precise code consistently. Despite incorporating a comprehensive prompt as depicted 
in Fig. 14 that encapsulated all the necessary information for the precise regeneration 
of the code, the model encountered challenges in reproducing identical results. 

Due to the constrained field knowledge and limited thinking capability, the model 
encountered difficulties in distinguishing between the concepts of the number of 
unit cells and the calculation of box length considering periodicity. Specifically, it 
struggled with prompts related to periodicity calculation, particularly with the HCP 
structure generation, as HCP possesses a distinct lattice constant in the .z-direction. 
Despite numerous attempts to generate prompts, the model remained inconsistent 
in producing accurate code. This inconsistency can be attributed to the inherent 
limitations of the model’s understanding and its tendency to overlook specific aspects 
of the input prompts. 

In addition, the model’s performance was hindered by the abundance of inputs 
provided, which may have overwhelmed its attention and led to confusion. When 
presented with an excessive amount of information, the model may struggle to pri-
oritize and comprehend the key components necessary for generating accurate code. 
As a result, splitting the prompt into two distinct parts—one for calculating the box 
length with periodicity Fig. 3 and the other for generating a crystal structure with arbi-
trary orientation Fig. 4 was deemed necessary to enhance code reproducibility. This 
approach aims to streamline the input process and mitigate the model’s tendency to 
overlook essential details, ultimately improving the reliability of the generated code. 

After splitting the entire code into smaller, more manageable prompts, the ran-
domness in the model’s responses became controllable. This allowed the model to 
produce code for calculating periodicity more accurately, but it still required a few 
iterations to refine the output and get the exact code for structure generation. Overall, 
this approach proved to be far better compared to using a single prompt for generating 
the entire code.
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Fig. 14 Final prompt generate by GPT4
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Fig. 14 (continued)
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Table 7 List of frequent errors and subsequent prompts 

Frequent errors Subsequent prompts 

Validation of atom position The condition used to check the atom positions is not precisely 
followed in the code. 

For loop ranges The loop range condition needs to be strictly adhered to as 
specified in the input prompt. 

Rotation The primitive and basis vectors have to be rotated initially. 

Relative distance calculation x1 and x2 should be calculated as the relative distance between 
the dislocation line and the atom position. 

Position of dislocation The dislocation position should be taken as input based on the 
dislocation direction provided by the user. 

7 Minor  Errors  

The code generated by the model might need some adjustments, as there were com-
mon errors during its development. Table 7 are the frequent issues identified along 
with the additional guidance provided for rectification. These errors have been fre-
quently encountered, but the subsequent prompts provided offer resolutions to rectify 
them effectively. With these modifications implemented, one can replicate the pro-
cess with minimal issues, albeit with some minor periodicity-related issues. 

8 Discussion 

Utilizing GPT-4 for evaluating its potential as automated programming assistance 
across a range of atomistic simulation tasks has generally yielded satisfactory out-
comes. However, as the complexity of the tasks escalates, deviations from the user 
prompts become more apparent in the model’s behavior. Here, we present a com-
prehensive discussion outlining observations on GPT-4’s performance in handling 
intricate tasks. 

• Limitation in Handling Complex Tasks: The model encountered difficulties in 
accurately generating all three basic crystal structures without precise user inputs. 
Challenges arose in properly populating the simulation box and validating atom 
positions, particularly without explicit instructions such as employing for loops 
and verifying positions. The HCP crystal structure posed significant hurdles due to 
its intricate nature, involving distinct lattice parameters (‘a’ & ‘c’) and additional 
basis vectors, in contrast to FCC and BCC. This underscores the model’s limita-
tions in handling complex structures. Furthermore, when arbitrary rotations were 
introduced, although the model could generate the rotation matrix, it struggled to 
apply it accurately to the primitive vectors and basis vectors. Consequently, human 
feedback remained essential even with clear and concise prompts, highlighting the
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ongoing need for human intervention in such scenarios. Despite receiving feed-
back, issues pertaining to the periodicity of surface atoms persist in the final output 
shown in Figs. 5 and 6. 

• Autonomous Decision-Making in Mathematical Computations: However, it is 
noteworthy that the model’s proficiency in handling tasks related to dislocation 
insertion surpasses its capability in generating single crystals with arbitrary rota-
tions. In this scenario, it autonomously figured out the precise equations shown 
in (3) and (4) for calculating displacements, even in the absence of explicit user 
prompts. Furthermore, it opted to utilize thenp.arctan2(y, x) function from 
NumPy instead of np.arctan(y/x), as the former better accounts for quad-
rant distinctions, unlike the latter, which cannot differentiate between quadrants. 
These decisions were made without specific instructions from the user, highlight-
ing the models ability to autonomously make informed choices in its computations. 
These capabilities suggest an advanced level of mathematical understanding and 
problem-solving skills in GPT-4. However, it’s important to note that while the 
model-generated code demonstrates competency in many areas, minor issues may 
arise still in the insertion of dislocations in specific orientations. Nonetheless, it 
has consistently showcased its capability to generate entire code segments within 
a few iterations, a notable feat when compared to single crystal generation. 

• Sensitivity to User Prompts and Memory Constraints: Moreover, the model’s 
responses are highly sensitive to even minor changes in the input prompt, resulting 
in inconsistent outputs. Additionally, it has been observed that GPT-4 sometimes 
struggles to maintain coherence and consistency over extended conversational con-
texts [ 7]. Understanding the memory mechanism of Chat-GPT plus is essential for 
optimizing interactions with the AI. Chat-GPT plus, based on the GPT-4 architec-
ture, has a short-term memory capacity limited by an 8,000-token constraint [ 6]. 
As this limit is reached, the AI begins to forget the earliest parts of the conversation, 
unable to recall details beyond its immediate context window. Instead, it relies on 
patterns and knowledge acquired during its training on a vast collection of inter-
net texts to generate relevant responses. Recognizing this limitation is crucial for 
generating effective prompts and achieving more meaningful engagements with 
GPT-4 [ 5]. Of course, well-established software systems for Molecular Dynamics 
(MD) simulations are available with inbuilt atomic structure generation such as, 
e.g., LAMMPS [ 9] or Atomsk [  3]. In functionalities they clearly go far beyond 
the code presented in this chapter; from straightforward crystal structures to more 
intricate designs like nano-wires, and non-periodic structures. 

9 Conclusion 

In conclusion, the study aimed to evaluate GPT-4’s capability in generating stan-
dalone code for constructing single crystals with arbitrary orientations, including 
dislocation insertion. The assessment involved examining the code generated by



Generation of Atomic Scale Single Crystal 31

GPT-4 in response to user-defined prompts using visualization software OVITO. The 
findings indicate that, with extensive human feedback, the generated results gener-
ally met user requirements satisfactorily. Large Language Models (LLMs) such as 
GPT-4 have emerged as crucial assets across various industries. However, their effec-
tiveness relies heavily on well-crafted prompts as user input, highlighting the signifi-
cance of prompt engineering. Crafting effective prompts requires human intervention 
and expertise in the relevant field to navigate and harness the inherent randomness 
of these models. Without deep domain understanding, generating precise and spe-
cific prompts becomes challenging. Thus, while sophisticated LLMs offer immense 
potential, human knowledge remains superior, especially in tackling intricate tasks. 
However, a burgeoning programming language known as prompt engineering is 
poised to play a pivotal role in the future, aiding humans in their respective domains. 
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Molecular Dynamics Simulation of Noble 
Gases 

Aagashram Neelakandan, Vishal Vijendra Badami, and Bernhard Eidel 

Abstract This chapter presents a detailed exploration of a Python code generated by 
ChatGPT-4 for the 2D Molecular Dynamics simulation of noble gases, with a specific 
focus on Argon. The chapter discusses the implementation of the velocity Verlet 
algorithm for integrating Newton’s second law and the application of the Lennard-
Jones (12–6) pair potential to model the interactions between Argon atoms. The 
code is rigorously verified through a series of tests, emphasizing energy conservation 
within an NVE ensemble. Both simple two-atom systems and more complex multi-
atom simulations within a periodic boundary condition framework are analyzed, 
demonstrating the code’s accuracy and reliability in simulating molecular dynamics 
in noble gases. 

1 Introduction 

Molecular dynamics (MD) simulations touch on many aspects of physics and are 
a valuable resource for comparing theoretical models to experimental results. MD 
uses computer simulation with statistical mechanics to compute static and dynamic 
properties of a classical many-body system [ 1– 4]. In contrast to Molecular Statics 
(MS) whose simulations are carried out at a temperature of . 0 K, MD simulations 
are carried out at a temperature greater than . 0 K. The classical MD method simply 
solves numerically Newton’s equations of motion for the interacting many-particle 
with pair potentials. Here, we treat atoms as classical Newtonian particles and we can 
compute the acceleration of any atom. The force between atoms is still determined 
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via the interatomic potential by the gradient of the pair potential function. In this 
project, we are using Lennard-Jones potential (LJ potential) also known as 12–6 
potential. 

This is a valid potential for chemical inert gases such as Argon (Ar). Argon is 
a noble gas. It is one of the elements in Group 18 of the periodic table, which 
includes other noble gases like helium, neon, krypton, xenon, and radon. These 
gases are characterized by their lack of reactivity due to having a full valence electron 
shell, making them very stable and unlikely to form chemical bonds under normal 
conditions. Argon is the third noble gas, following helium and neon. 

Temperature and time play a role in MD simulations as compared to MS simula-
tions. There are many ensembles in MD, the NVE (microcanonical) ensemble, NVT 
(canonical) ensemble, and NPT ensemble. Here variables are, .N is the number of 
particles, .V is the volume of the simulation box, .E is the total energy of the simu-
lation box, .T is the temperature of the simulation box and .P is the pressure in the 
simulation box. In the NVE ensemble, variables . N , . V , and .E are kept constant and 
this rule applies to all the above ensembles. For NVT and NPT ensembles, additional 
couplings will be used such as thermostats and barostats respectively. 

1.1 Interatomic Potential 

At the core of MD simulations are interactions between the individual molecules. 
These interactions can be separated into two types, bonded and non-bonded. Bonded 
interactions take place within molecules, between atoms which are connected in some 
way. Bonded interactions might include terms to change the length of a chemical 
bond, or change the angle of a bond. All other interactions between atoms are classed 
as non-bonded interactions. This simulation consists entirely of Argon atoms, so only 
non-bonded interactions need to be considered. These can be modeled with the LJ 
potential. 

The LJ potential .V (r) is given by: 

.V (r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, (1) 

where .V (r) is the potential energy as a function of the distance . r between two 
particles, . ε is the depth of the potential well, which represents the strength of the 
attractive interaction, here the value is 1.65.×10−21 J,. σ is the finite distance at which 
the inter-particle potential is zero, also known as the collision diameter, here the value 
is 3.4 .×10−10 m. 

The LJ potential consists of a short-range repulsive term and a (relatively) long-
range attractive term. The .r−6 attractive term comes from the London dispersion 
force, which is (the weakest) part of the Van der Waals forces. Van der Waals forces 
are weak attractions between atoms that do not cause chemical bonds to be formed. 
Often called induced-dipole dipole interactions.
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The short-range repulsive term models the Pauli exclusion principle by stopping 
particles from getting too close. The.r−12 exponent does not have a rigorous physical 
justification. It is computationally efficient as it is just the square of the other . r−6

term. 
Justification for Use in Modeling Noble Gases Noble gases like argon are char-
acterized by their closed-shell electronic configurations, meaning that they have no 
permanent dipole moments and are chemically inert. The interactions between noble 
gas atoms are primarily due to weak van der Waals forces. The Lennard-Jones poten-
tial is particularly well-suited to modeling these interactions for several reasons: 

• Van der Waals Forces Dominance: For noble gases, the interaction is predom-
inantly due to dispersion forces, which the Lennard-Jones potential effectively 
captures through its .(σ/r)6 term. 

• Simplicity and Computational Efficiency: The Lennard-Jones potential is com-
putationally simple and efficient to calculate, making it ideal for large-scale sim-
ulations of noble gases where more complex potentials might be unnecessary or 
impractical. 

• Empirical Fit to Experimental Data: Parameters . ε and. σ can be fitted to exper-
imental data, allowing the Lennard-Jones potential to accurately reproduce the 
properties of noble gases such as their phase behavior (liquid-gas coexistence 
curve), transport properties (viscosity, diffusion), and thermodynamic properties 
(equation of state). 

• Historical Success: The Lennard-Jones potential has a long history of successful 
application in simulating noble gases. It was originally developed based on exper-
imental observations of argon, and it has been validated extensively through its 
ability to reproduce the experimentally observed behaviors of noble gases. 

Limitations and Considerations While the Lennard-Jones potential is highly 
effective for noble gases, the limitations shall be briefly mentioned. It is the (i) lack 
of directionality, since LJ potential does not account for any directional dependence in 
bonding, which is unimportant for noble gases but would be a limitation for systems 
involving directional bonds (e.g., covalent bonds in molecules). Furthermore, the (ii) 
approximation of repulsion through the.r−12 term is an approximation of the repulsive 
forces, chosen primarily for computational convenience. While it works well for 
noble gases, more complex repulsive terms might be needed for other systems. As 
another shortcoming, (iii) the temperature and pressure dependence; LJ potential can 
not be universally accurate across all temperatures and pressures, since the parameters 
. ε and . σ are usually fitted for specific conditions. 

1.2 Newton’s 2nd Law of Motion and Time Integration 

Newton’s second law of motion is given by the time derivative of the linear momentum 
. p = mv and the force .F according to
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.F = d p
dt

(2) 

which simplifies for constant masses, hence .ṁ = 0 to 

.F = ma , (3) 

where .m is the mass of the particle and . a its acceleration. 
The positions and velocities of the particles are evaluated using the Velocity 

Verlet integration method, where the predicted positions. x, predicted velocities. v, and 
predicted acceleration. a at time.t + �t are obtained from the same, given quantities 
at the current time . t in the following way: 

.x(t + �t) = x(t) + v(t)�t + 1

2
a(t)�t2 , (4) 

.v(t + �t) = v(t) + a(t) + a(t + �t)

2
�t , (5) 

where .�t is the time step size over which the integration is performed to obtain the 
predicted quantities. Velocity Verlet time integration method is employed since it is 
fast, requires little memory, and is easy to use for long time steps. 

In this work, boundary conditions (BC) are periodic. They mimic the behavior of 
the infinite bulk surrounding the sample. In this way, surface effects are removed. 
It should also be noted that if the particles go through a boundary of the simulation 
box, they will appear on the other side of the box. 

We will present an MD simulation of Argon particles for the gas phase, which is 
considered to be moving with the velocity given by the Maxwell-Boltzmann distribu-
tion as shown in Fig. 1. The Maxwell-Boltzmann distribution describes the velocity 
of particles in ideal gases at thermodynamic equilibrium, where particles exchange 
energy through brief collisions and their velocities follow Maxwell-Boltzmann statis-
tics based on kinetic energy. In MD simulations we first specify the initial positions 
and momentum of the particles, the latter refers to the Maxwell-Boltzmann distribu-
tion. 

1.3 Statistical Ensemble 

Statistical ensembles define the conditions under which atomistic simulations are 
carried out, dictating what thermodynamic variables are conserved or controlled. 
Different ensembles correspond to different sets of thermodynamic variables that 
are held constant during the simulation. Below is a description of the most com-
mon ensembles of the microcanonical ensemble NVE, the canonical ensemble NVT, 
and the isothermal-isobaric ensemble NPT, where the acronyms reflect the variables
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Fig. 1 Probability density functions of Maxwell-Boltzmann distribution for the velocities of noble 
gases like Helium, Neon, Argon and Xeon at a temperature of 298 K 

involved, the number of particles . N , the particle volume . V , the energy . E , the  tem-
perature . T , and the pressure . P . 

Here we use the NVE ensemble which keeps constant . N , .V and the internal 
energy .E which follows from the system characteristic being isolated. It meets the 
requirements of the present goals simulating systems with no heat exchange with the 
surroundings, analogous to an isolated system in thermodynamics. It provides a nat-
ural way to observe the dynamical evolution of a system without external influences, 
often used for studying the intrinsic properties of a system. 

2 Prompt  

The parameters and constants relevant to the simulation are given in Table 1. 
Figure 2 shows the initial positions of the particles for the simulation. Then we 

evolve the system according to Newton’s second law of motion for which we let the 
particles interact through a LJ potential using an NVE ensemble. Finally, we measure 
physical quantities as functions of particle positions and momentum. 
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Table 1 Problem 1: Settings for the MD simulation of the many-particle system 

Parameters Values/Types Units 

Boltzmann constant.kB 1.380649.×10−23 J/K 

Atomic mass (Ar) 6.63.×10−26 kg 

Interatomic potential (Ar) LJ potential 

with.ε 1.65.×10−21 J 

and.σ 3.4.×10−10 m 

Type of ensemble NVE (microcanonical) 

Temperature.T 300 K 

Simulation box 2D 

Size 10. × 10 nm 

BC Periodic 

Number of particles 100 

Time integrator Velocity Verlet 

Time step size.�t 2.×10−15 s 

Number of time steps 5000 

Output Particle distribution animation 

Fig. 2 Initial particle positions in the 2D MD simulation for argon gas 
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The algorithm for the 2D MD simulation is given as pseudocode in the algorithm 
box 1 
Algorithm 1: Molecular Dynamics Simulation for 2D System 
Input: Number of particles N , initial positions xi (0), initial velocities vi (0), time step �t , 

number of time steps Np , force field parameters 
Output: Particle trajectories xi (t), velocities vi (t), and plot kinetic energy Ekin(t), potential 

energy Epot(t), and total energy Etot(t) over time step �t 

1 Initialization: 
2 Initialize the velocities of the particles such that they follow a Maxwell-Boltzmann 
distribution corresponding to a temperature of 300 K. Ensure the system has zero net 
momentum by adjusting the velocities; 

3 Set initial positions xi (0) and velocities vi (0) for all particles i = 1, . . . ,  N ; 
4 Compute initial forces Fi (0) on each particle using the interatomic potential; 

5 for t = 0toT with step �t do 

6 Velocity Verlet Integration: 
7 foreach particle i do 
8 Update positions: 

xi (t + �t) = xi (t) + vi (t)�t + 
Fi (t) 
mi

�t2 

2 

9 Compute intermediate velocities: 

vi (t + �t 

2 
) = vi (t) + 

Fi (t) 
mi

�t 

2 

10 end 

11 Force Calculation: 
12 Recalculate forces Fi (t + �t) on each particle due to interactions using the interatomic 

potential; 

13 foreach particle i do 
14 Update velocities: 

vi (t + �t) = vi (t + �t 

2 
) + 

Fi (t + �t) 
mi

�t 

2 

15 end 

16 Apply Boundary Conditions: 
17 Apply boundary conditions (e.g., periodic boundaries, reflective walls) to updated 

positions and velocities. Here periodic boundary conditions are to be applied; 

18 Calculate System Properties: 
19 Compute kinetic energy Ekin(t), potential energy Epot(t), and total energy Etot(t); 
20 end 

21 Output: 
22 Return particle trajectories xi (t), velocities vi (t), and plot Ekin(t), Epot(t), and  Etot(t) over 

time step �t ; 

The final prompt which worked is given in Fig. 3. It was used for generating the Code 
Listing 2.1 is, 
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Generate a Python code for the molecular dynamics simulation for argon 
gas in a 2D rectangular domain. The simulation box has dimensions of 10 
nanometers by 10 nanometers. Consider the FCC lattice and make sure 
to initialize the positions of atoms in the FCC lattice itself to avoid the 
overlapping of the atoms. 

Initialization: Initialize the positions of 100 particles randomly within the 
simulation box ensuring that no two particles overlap. Initialize the velocities 
of the particles such that they follow a Maxwell-Boltzmann distribution 
corresponding to a temperature of 300 Kelvin. Ensure the system has zero 
net momentum by adjusting the velocities. 

Integration Method: Use the robust Velocity Verlet integration method to 
update the positions and velocities of particles based on the forces acting on 
them. 

Periodic Boundary Conditions: Apply periodic boundary conditions directly 
after updating the positions to maintain the particles within the simulation 
box. 

Interatomic Potential: Use the Lennard-Jones potential for calculating 
interatomic forces, with an appropriate small epsilon value to avoid 
singularities in the denominator. 

Simulation Parameters: Set the time step for the simulation to 2 femtosec-
onds and simulate 5000 time steps. 

Ensemble and Conservation: Use the NVE (microcanonical) ensemble. As 
atoms interact with each other stored potential energy is converted to kinetic 
energy and keep in mind since it’s an NVE ensemble the total energy of the 
system should remain constant. 

Output: Plot the kinetic energy, potential energy, and total energy to the 
number of time steps NOT Time. 
Print the values of kinetic energy, potential energy and total energy at the 
end of the simulation. 
Create a snapshot in the form of an image to visualize particles and save the 
resulting snapshot output in the user’s desktop path. 

Create separate functions for: Initializing positions and velocities of the 

Fig. 3 Prompt for generating a 2d MD code in python for argon gas 
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Fig. 3 (continued) 
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Fig. 3 (continued) 

3 Code Listing 

The code listing 2.1 displays the python code generated by ChatGPT-4o for the 
prompt given in Fig. 3. 

1 import os 
2 import numpy as np 
3 import matplotlib.pyplot as plt 
4 import matplotlib.animation as animation 
5 from matplotlib.animation import PillowWriter 
6 

7 def get_desktop_path (): 
8 home = os.path.expanduser("~") # Gets the home

↪→ directory 
9 desktop = os.path.join(home , ’Desktop ’) # Appends

↪→ Desktop to the home path 
10 return desktop 
11 

12 # Constants 
13 kB = 1.38064852e-23 # Boltzmann constant (J/K) 
14 epsilon = 1.65e-21 # Lennard -Jones potential well depth (J) 
15 sigma = 3.4e-10 # Lennard -Jones potential distance

↪→ parameter (m) 
16 mass = 6.63e-26 # Mass of argon atom (kg) 
17 T = 300 # Temperature (K) 
18 L = 10e-9  # Length of the simulation box (m) 
19 num_particles = 100 # Number of particles 
20 dt = 2e-15 # Time step (s) 
21 num_steps = 5000 # Number of simulation steps 
22 

23 def initialize_positions(num_particles , L): 
24 """ Initialize positions of particles in an FCC lattice

↪→ """ 
25 positions = np.zeros(( num_particles , 2)) 
26 num_cells_per_side = int(np.ceil(np.sqrt(num_particles))

↪→ ) 
27 cell_size = L / num_cells_per_side 
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28 particle_idx = 0 
29 

30 for i in range(num_cells_per_side): 
31 for j in range(num_cells_per_side): 
32 if particle_idx >= num_particles: 
33 break 
34 positions[particle_idx] = np.array([i *

↪→ cell_size , j * cell_size ]) 
35 particle_idx += 1 
36 

37 # Ensure particles are not on the edge of the box 
38 positions += cell_size / 2 
39 return positions 
40 

41 def initialize_velocities(num_particles , T, mass): 
42 """ Initialize velocities of particles to follow Maxwell -

↪→ Boltzmann distribution """ 
43 velocities = np.random.normal(0, np.sqrt(kB * T / mass),

↪→ (num_particles , 2)) 
44 velocities -= np.mean(velocities , axis =0) # Ensure zero

↪→ net momentum 
45 return velocities 
46 

47 def compute_forces(positions): 
48 """ Compute forces and potential energy using Lennard -

↪→ Jones potential """ 
49 forces = np.zeros_like(positions) 
50 potential_energy = 0.0 
51 

52 for i in range(len(positions)): 
53 for j in range(i + 1, len(positions)): 
54 r_ij = positions[i] - positions[j] 
55 r_ij -= L * np.round(r_ij / L) # Apply periodic

↪→ boundary conditions 
56 r2 = np.dot(r_ij , r_ij) 
57 if r2 < (3 * sigma) ** 2: # Apply a cutoff to

↪→ save computation 
58 r2_inv = sigma ** 2 / r2 
59 r6_inv = r2_inv ** 3 
60 r12_inv = r6_inv ** 2 
61 force_magnitude = 24 * epsilon * (2 *

↪→ r12_inv - r6_inv) / r2 
62 forces[i] += force_magnitude * r_ij 
63 forces[j] -= force_magnitude * r_ij 
64 potential_energy += 4 * epsilon * (r12_inv -

↪→ r6_inv) 
65 

66 return forces , potential_energy 
67 

68 def velocity_verlet(positions , velocities , forces , dt): 
69 """ Perform a single step of Velocity Verlet integration

↪→ """ 
70 positions += velocities * dt + 0.5 * forces * dt ** 2 /

↪→ mass 
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71 positions = positions % L # Apply periodic boundary
↪→ conditions 

72 new_forces , potential_energy = compute_forces(positions) 
73 velocities += 0.5 * (forces + new_forces) * dt / mass 
74 return positions , velocities , new_forces ,

↪→ potential_energy 
75 

76 def run_simulation(num_particles , L, T, mass , dt, num_steps)
↪→ : 

77 positions = initialize_positions(num_particles , L) 
78 velocities = initialize_velocities(num_particles , T,

↪→ mass) 
79 forces , potential_energy = compute_forces(positions) 
80 kinetic_energy = 0.5 * mass * np.sum(velocities ** 2) 
81 

82 kinetic_energies = [] 
83 potential_energies = [] 
84 total_energies = [] 
85 

86 for step in range(num_steps): 
87 positions , velocities , forces , potential_energy =

↪→ velocity_verlet(positions , velocities , forces , dt) 
88 kinetic_energy = 0.5 * mass * np.sum(velocities **

↪→ 2) 
89 total_energy = kinetic_energy + potential_energy 
90 

91 kinetic_energies.append(kinetic_energy) 
92 potential_energies.append(potential_energy) 
93 total_energies.append(total_energy) 
94 

95 return positions , kinetic_energies , potential_energies ,
↪→ total_energies 

96 

97 def plot_energies(kinetic_energies , potential_energies ,
↪→ total_energies , filename): 

98 plt.figure() 
99 plt.plot(kinetic_energies , label=’Kinetic Energy’) 

100 plt.plot(potential_energies , label=’Potential Energy’) 
101 plt.plot(total_energies , label=’Total Energy’) 
102 plt.xlabel(’Time Step’) 
103 plt.ylabel(’Energy (J)’) 
104 plt.legend() 
105 plt.savefig(filename) 
106 plt.show() 
107 

108 def save_snapshot(positions , filename): 
109 plt.figure() 
110 plt.scatter(positions[:, 0], positions[:, 1]) 
111 plt.xlim(0, L) 
112 plt.ylim(0, L) 
113 plt.xlabel(’X Position (m)’) 
114 plt.ylabel(’Y Position (m)’) 
115 plt.title(’Particle Positions ’) 
116 plt.savefig(filename) 
117 plt.show() 
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118 

119 # Test 1: Periodicity Test with Animation 
120 def test_periodicity(L): 
121 """ Test for periodicity by checking if a single atom

↪→ reenters the box with animation """ 
122 positions = np.array ([[0, L/2]]) # Start the particle

↪→ at the left edge 
123 velocities = np.array ([[1e4, 0]]) # Increased velocity

↪→ for faster movement 
124 fig , ax = plt.subplots () 
125 ax.set_xlim(0, L) 
126 ax.set_ylim(0, L) 
127 ax.set_xlabel(’X Position (m)’) 
128 ax.set_ylabel(’Y Position (m)’) 
129 particle , = ax.plot([], [], ’ro’, markersize =12) 
130 

131 def init(): 
132 particle.set_data ([], []) 
133 return particle , 
134 

135 def update(frame): 
136 nonlocal positions , velocities 
137 forces = np.zeros_like(positions) # No other

↪→ particles , so no forces 
138 positions , velocities , _, _ = velocity_verlet(

↪→ positions , velocities , forces , dt) 
139 particle.set_data ([ positions[0, 0]], [positions[0,

↪→ 1]]) # Pass as lists 
140 return particle , 
141 

142 num_frames = int(L / (velocities[0, 0] * dt)) + 1 #
↪→ Ensure enough frames to cover the entire path 

143 ani = animation.FuncAnimation(fig , update , frames=
↪→ num_frames , init_func=init , blit=True) 

144 gif_path = os.path.join(get_desktop_path (), ’
↪→ periodicity_test.gif’) 

145 ani.save(gif_path , writer=PillowWriter(fps =30)) 
146 plt.close(fig) 
147 print(f"Periodicity Test animation saved as {gif_path}") 
148 

149 # Test 2: Energy Conservation Test with Animation 
150 def test_energy_conservation (): 
151 """ Test for energy conservation with two particles

↪→ colliding elastically with animation """ 
152 v_initial = 1e5 # Initial velocity of the atoms (m/s) 
153 

154 # Initial conditions 
155 x1 = L / 4  # Initial position of atom 1 (m) 
156 x2 = 3 * L / 4  # Initial position of atom 2 (m) 
157 v1 = v_initial # Initial velocity of atom 1 (m/s) 
158 v2 = -v_initial # Initial velocity of atom 2 (m/s) 
159 

160 # Lists to store positions and energies 
161 positions1 = [] 
162 positions2 = [] 
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163 kinetic_energies = [] 
164 

165 # Simulation loop 
166 for step in range(num_steps): 
167 # Update positions 
168 x1 += v1 * dt 
169 x2 += v2 * dt 
170 

171 # Check for collision and update velocities 
172 if x1 >= x2: 
173 v1 , v2 = v2, v1  
174 

175 # Save positions and energies 
176 positions1.append(x1) 
177 positions2.append(x2) 
178 kinetic_energy = 0.5 * mass * (v1**2 + v2**2) 
179 kinetic_energies.append(kinetic_energy) 
180 

181 # Reflect atoms at the boundaries (elastic collision
↪→ with the wall) 

182 if x1 < 0 or x1 > L: 
183 v1 = -v1 
184 if x2 < 0 or x2 > L: 
185 v2 = -v2 
186 

187 # Create animation 
188 fig , ax = plt.subplots () 
189 ax.set_xlim(0, L) 
190 ax.set_ylim(0, L) 
191 ax.set_xlabel(’X Position (m)’) 
192 ax.set_ylabel(’Y Position (m)’) 
193 

194 line1 , = ax.plot([], [], ’ro’, label=’Atom 1’) 
195 line2 , = ax.plot([], [], ’bo’, label=’Atom 2’) 
196 

197 def init(): 
198 line1.set_data ([], []) 
199 line2.set_data ([], []) 
200 return line1 , line2 
201 

202 def update(frame): 
203 # Update with sequences instead of single values 
204 line1.set_data ([ positions1[frame]], [L / 2]) 
205 line2.set_data ([ positions2[frame]], [L / 2]) 
206 return line1 , line2 
207 

208 ani = animation.FuncAnimation(fig , update , frames=
↪→ num_steps , init_func=init , blit=True) 

209 

210 # Save the animation as a GIF using PillowWriter 
211 desktop_path = os.path.join(os.path.expanduser("~"), "

↪→ Desktop") 
212 gif_path = os.path.join(desktop_path , "

↪→ atomic_collision_simulation.gif") 
213 ani.save(gif_path , writer=’pillow’, fps =60) 
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214 

215 plt.show() 
216 

217 print(f"Simulation complete. GIF saved to: {gif_path}") 
218 

219 # Main simulation loop 
220 positions = initialize_positions(num_particles , L) 
221 velocities = initialize_velocities(num_particles , T, mass) 
222 forces , potential_energy = compute_forces(positions) 
223 

224 # Save initial snapshot 
225 save_snapshot(positions , os.path.join(get_desktop_path (), ’

↪→ initial_snapshot.png’)) 
226 

227 kinetic_energies = [] 
228 potential_energies = [] 
229 total_energies = [] 
230 

231 for step in range(num_steps): 
232 positions , velocities , forces , potential_energy =

↪→ velocity_verlet(positions , velocities , forces , dt) 
233 kinetic_energy = 0.5 * mass * np.sum(velocities ** 2) 
234 total_energy = kinetic_energy + potential_energy 
235 

236 kinetic_energies.append(kinetic_energy) 
237 potential_energies.append(potential_energy) 
238 total_energies.append(total_energy) 
239 

240 # Plot energies 
241 plot_energies(kinetic_energies , potential_energies ,

↪→ total_energies , os.path.join(get_desktop_path (), ’
↪→ energy_plot.png’)) 

242 

243 # Save final snapshot 
244 save_snapshot(positions , os.path.join(get_desktop_path (), ’

↪→ final_snapshot.png’)) 
245 

246 # Print final energies 
247 print(f"Final Kinetic Energy: {kinetic_energies [-1]}") 
248 print(f"Final Potential Energy: {potential_energies [-1]}") 
249 print(f"Final Total Energy: {total_energies [-1]}") 
250 

251 # Run the additional tests with animations 
252 test_periodicity(L) 
253 test_energy_conservation () 

Code Listing 2.1 Code generated by ChatGPT-4o for solving 2D MD simulation of argon gas 

The output of the ChatGPT-4o does not guarantee that the code generated will 
work without any flaws. Thorough tests are indispensible for that reason. 
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4 Tests for Verification 

In the following, two tests of rather basic nature are carried out. They are based on 
a one-atom system to check the periodic BC, and a two-atom system which checks 
quantitatively the energy conservation. 

4.1 Test for Periodic BC 

Figure 4 shows the trail of one atom moving from the left to the right (snapshots 
at constant time increments .�t) of the left simulation box; once it leaves that box 
through its periodic boundary at the right edge, it simultaneously re-enters the simu-
lation box as displayed in the 2nd window. The plot at the bottom of Fig. 4 displays 
the corresponding kinetic energy for the entire process; the constant value over the 
full trail of a length twice the box size verifies (kinetic) energy conservation and, 
implicitly, the velocity being constant. 

In conclusion, the test verifies the proper functionality of the periodic boundary 
condition for the MD simulation. 

Fig. 4 Periodic BC test for an MD simulation shows the constant kinetic energy as the atom moves 
across the periodic boundary, from left to right 
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4.2 Two-Atom-Collision—Interplay of Potential and Kinetic 
Energies 

Figure 5 shows the setup for the energy conservation test. In the simulation box 
with the size of .L = 10 nm there are only two atoms (initial positions at .t0 = 0: 
.x1(t0) = L/6, .x2(t0) = 5L/6 with .|x2(t0) − x1(t0)| ≥  rcutoff), which fly with the 
same speed on the same line against each other thus having velocity vectors 
with opposite signs, (initial velocities .v1(t0) = −v2(t0), .|v1(t0)| =  104 m/s), kinetic 
energy will be maximum in left and right image of Fig. 5, because two particles will 
be moving with some speed due to attraction and repulsion between them. Whereas 
potential energy is maximum in center image of Fig. 5. However, in order to make 

Fig. 5 Quantitative test for energy conservation consisting of two atoms traveling towards each 
other in the same path with an initial speed of .104 m/s. When they come closer, atoms enter the 
cut-off radius limits of the LJ potential resulting in an increase of the potential energy and decrease 
in kinetic energy because of their repulsion. This makes the atoms to move in a way from each 
other resulting in decrease in potential energy and increase in kinetic energy, till they experience 
the same in when they are near to boundary because of periodic boundary condition 
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this effect happen within the compatible range of .�t = 2 × 10−15 s, parameter . σ 
in the LJ-potential has been increased by one order to .3.4 × 10−9 compared to the 
argon value tabulated in Table 1. 

For this setting, we test the proper calculation of initial energies as well; for 
.|x2(t0) − x1(t0)| ≥  rcutoff, the potential energy at . t0 is zero, .Epot(t0) = 0. The initial 
kinetic energy is calculated with.v0 = |v1(t0)| = |v2(t0)| =  104 m/s and the mass of 
argon atoms (see Table 1) according to 

.Ecalc 
kin (t0) = 2 · 1 

2 
m v2 

0 = 6.6299999999999994 × 10−18 J = Etot(t0) . (6) 

The figure of .Ecalc 
kin (t0) from manual calculation exhibits a minor deviation from the 

value computed by the code .Ekin(t0) = 6.630605061255307 × 10−18J. 

4.3 Energy Conservation in a Many-Atom System 

Figure 6 displays the energies of the 100-atom system during the first 5000 time 
steps. While the sum of kinetic energy and the potential energy show some scatter, 
they sum up to a constant total energy (.4.0592186387714405 × 10−19 J) indicating 
energy conservation. 

Note that the system evolves from a regular geometric setting where atoms reside 
on nodes of a grid with square cells as displayed in Fig. 2. It is the heterogeneous 
velocity distribution at the simulation start which drives the system to evolve into a 
heterogeneous atom distribution after 5000 time steps as displayed in Fig. 7. 

5 Discussion 

Some important aspects that are observed while working on prompts and generating 
codes are: 

• Completeness of the program: Generally, chatbots (ChatGPT-4 and ChatGPT-
4o) account for all the details provided in the prompt. But sometimes it overlooks 
some parts of the prompt. Generally, some variables are not defined initially in the 
code. The solution to this problem would be, to mention those parts of the prompt 
in bold characters and insist chatbot not forget that part. 

• Short-term memory capacity: Generally recent chatbots like ChatGPT-4o tend 
to have long-term memory since they produce the code output as expected for a 
long time. But after a certain point, chatbots tend to miss some parts of the code 
and generate the output which is not even mentioned in the prompt. So, we have 
to write a prompt very specific about the equations to be used, constants, initial 
variables, time integration method, and output plots. 
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Fig. 6 Energies of the 100-atom system versus the number of time steps indicates the conservation 
of the total energy while the kinetic and the potential energies show fluctuations 

• Reproducibility: If we insert the same prompt from the report to the chatbots, 
the output code will probably be similar but not the same as given in this report. 
Because chatbots are not consistent with their results. The basic algorithm of the 
code will be the same, but some minor changes will be there. The recent versions 
of chatbots like ChatGPT-4o will generate code very similar to those given in this 
report. 

• Reliability: The final code generated by the chatbots is reliable with its results 
only after optimizing the prompts. The codes generated by the recent versions like 
GPT-4o will be more reliable as compared to the older versions like ChatGPT-4. 

• Hallucinations: Hallucinations in chatbots refer to instances where the chatbots 
generate responses that are factually incorrect, nonsensical, or completely fabri-
cated, despite being delivered with apparent confidence. In some cases, We have 
encountered some minor hallucinations, which can be easily rectified. So, We 
would say minor or low-level hallucinations occur in chatbots. 

• Learned Lessons: The main lesson that we have learned is, that the prompt should 
be very optimized if we need exact and consistent results that match with the 
research articles. So even minor information must be added to the prompt so that 
it works perfectly without any illogical errors. The quality and correctness of the 
output depend mainly on the prompt. So, the prompt should be particular, refined, 
and optimized. 
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Fig. 7 Heterogeneous atom distribution after time step 5000 in the MD simulation of argon gas 

6 Conclusion 

The main aim of this chapter was to construct a prompt for ChatGPT-4o to generate 
a Python code for the 2D MD simulation of noble gases such as argon. To put 
things into perspective, building blocks of MD simulations were presented such as 
Newton’s equation of motion, the Lennard-Jones (12–6) pair potential, statistical 
ensembles, and the velocity Verlet algorithm for integrating Newton’s second law. 
The code structure was illustrated by a descriptive pseudocode. The resultant Python 
code was successfully assessed through a series of tests; the functionality of periodic 
boundary conditions was verified and for the collision of two atoms the conservation 
of energy along with its dynamic decomposition into kinetic and potential parts was 
observed. In conclusion, with some minor manual intervention, ChatGPT-4o has 
demonstrated its ability to generate an accurate and reliable code for the molecular 
dynamics simulations of noble gases. 
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Phase Field Modeling of Grain Growth 

Rahul Narkhede and Bernhard Eidel 

Abstract In the current chapter the assignment for GPT-4 on ChatGPT Plus is 
to generate a Python code for grain growth simulation by the phase field method. 
Specifically, the non-conserved Allen-Cahn equation with a suitable free energy 
functional is solved in 2D using the finite difference method and the explicit Euler 
forward time-stepping scheme. By virtue of a specific prompt design for GPT-4 the 
resulting Python code allows solving the phase field equations for any generalized 
initialization. To this end, two variants of initial grain structures are considered; (i) 
a spherical grain embedded in a larger grain, and (ii) a Voronoi tessellation-based 
initial structure. Key aspects such as prompt design, code verification and testing of 
the outcome are discussed. 

1 Introduction 

Grains of polycrystalline solids constitute the fundamental influencing factors in for 
most physical properties such as corrosion resistance, thermal and electrical conduc-
tivity, and mainly mechanical properties such as strength, ductility and toughness. 
Usually, the mechanical properties depend on the mean grain size and the grain size 
distribution. Thus, studying grain evolution becomes a key part of computational 
materials science. 

The local energy at the interface of grains, or grain boundaries, is higher than 
the corresponding energy in the bulk of the grain. This extra energy at the interface 
proves the thermodynamic driving force for moving the grain boundary in order to 
minimize the total free energy. This movement of the grain boundary leads to growth 
of grains which implies shrinking of others. 
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At the mesoscale, different computational models, such as Monte Carlo Potts 
model [ 1], Surface Evolver [ 2], front-tracking method [ 3], and cellular automata 
[ 4], have been applied. As the number of grains increases, the computational costs 
become quite demanding due to the need to track individual grain boundaries and 
apply specific constitutive relations to their evolution. Therefore, phase field (PF) 
modeling is a potential approach to reduce this computational cost by the description 
of interfaces as continuous instead of sharp. Several PF models have been proposed 
for grain growth kinetics. Here we present the use of PF modeling for grain growth 
simulation based on the example from [ 5]. 

In this study, we incorporate the grain growth model of Fan and Chen [ 6]. In this 
model, each grain is described by an order parameter . ηi , which takes the value of 
one for a designated grain and zero for all other grains. The evolution of the order 
parameters is described by the non-conserved Allen-Cahn equation in the form of 

.
∂ηi

∂t
= −Li

δF

δηi
(1) 

for .i = 1, 2, . . . , N grains, where .Li is the mobility coefficient, . δ the variational 
symbol, and .F the free energy functional given by 

.F =
∫
V

[
f (η1, η2, . . . ηN ) +

N∑
i

κi

2
|∇ηi |2

]
dv , (2) 

where . f is the local free energy density and .κi are the gradient energy coefficients. 
The specific form of the orientation-independent . f is given in the Fan and Chen 
model [ 6] as,  

. f (η1, η2, . . . ηN ) =
N∑
i

(
− A

2
η2
i + B

4
η4
i

)
+

N∑
i

N∑
i �= j

η2
i η

2
j , (3) 

in which . A and . B are positive constants. 
The evolution equation governing the numerical implementation is 

.
∂ηi

∂t
= −Li

(
− Aηi + Bη3

i + 2ηi

N∑
i �= j

η2
j − κi∇2ηi

)
. (4) 

The Laplacian operator in (4) is approximated using the five-point stencil of the 
finite difference (FD) method given by, 

.(∇2η)i, j = ηi+1, j + ηi−1, j + ηi, j+1 + ηi, j−1 − 4ηi, j
h2

(5) 

for a grid spacing.h = hx = hy . The time integration is carried out using the explicit 
Euler time stepping scheme and thus, we obtain the following discretized expression
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.
∂ηi

∂t
= ηn+1

i − ηn
i

�t
= −L

(
− Aηn

i + B(ηn
i )

3 + 2ηn
i

N∑
i �= j

(ηn
i )

2 − κi∇2ηn
i

)
(6) 

for .i = 1, 2, ..., N grains with .ηn+1
i = ηi (tn+1), .ηn

i = ηi (tn), and .�t = tn+1 − tn . 
In the equations describing the model, . η is dimensionless, .Li has the dimen-

sions .[L2T−1], .κi has the dimensions .[ML2T−2], .F has the dimensions of energy 
.[ML2T−2], and. f has the dimensions of energy density as.[ML−1T−2]. All variables 
of the model are treated in a non-dimensional form in the simulation. 

2 Prompt  

The numerical implementation of the PF method based on the above equation is 
done using a Python code generated by GPT-4 on GPT Plus (GPT-4 in the following 
for convenience). Utilization of prompt engineering practices is done by breaking 
down the problem into sub-tasks with clear instructions and parameters. The overall 
prompt is broken into four major steps: 

• System 
• Context 
• Specific instructions for numerical implementation 
• Initialization cases 

– Case I : Ideal grain growth 
– Case II : Voronoi tessellation based initialization 

2.1 System 

The system prompt is mainly aimed for the chatbot to adopt a persona that has a con-
textual understanding of the broad field and maintains consistency in all responses. 
Further, the system prompt can also be used to obtain a specified style of program-
ming. We also enforce the chatbot to provide an error-free code by providing such a 
system prompt. 

In response to the prompt shown in Fig. 1, ChatGPT 4 mentions the applications 
of the PF method. It further elaborates by providing some mathematical aspects of 
the PF method such as its dependence on differential equations, commonly used 
numerical methods, initialization of random grain structures, use of Matplotlib and 
possible ways of evaluating results. It also gives a general example task and briefly 
explains the steps involved. This response indicates that the large language model 
acknowledges the persona and has an understanding of the PF method.
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Prompt 1 
Your role: You are an expert in computational materials science. You can 
understand complex mathematical model of physical phenomena in mate-
rials, which are usually described in terms of differential equations. Your 
particular research focus is the modeling of grain growth by the phase-field 
method. You understand the phase-field method in depth and know existing 
research in its implementation on grain growth modeling. You can judge the 
results of a numerical method based on its outputs, specifically plots. Further, 
you also know the best ways to initialize random grain structures in 2D. Your 
current role requires you to generate Python programs that are error-free 
(logically, semantically and numerically). You know the best practices of 
using the library Matplotlib to generate publication-ready plots. 

Fig. 1 System prompt to provide ChatGPT 4 chatbot a persona that is an expert in the domain of 
our problem, understands the numerical methods and enforces error-free code generation 

2.2 Context 

The model description for our problem setting is provided in the context prompt. 
It includes specific equations as mentioned in the introduction. It is observed that 
providing equations of the PF model (1), (2) and (3) in the LATEX format ensures the 
mathematical correctness in the code implementation. 

ChatGPT 4 provides a clear understanding of the terms of the equation in the 
response to prompt in the Fig. 2. It mentions some applications of the Allen-Cahn 
equation first. Then it explains the individual terms, i.e. the order parameter. ηi , mobil-
ity coefficient . Li , free energy . F , gradient energy coefficients .κi and the local free 
energy density . f . It reproduces the equations provided and then provides the sim-
ulation approach briefly with suggestions for numerical methods and their possible 
limitations. 

2.3 Specific Instructions for Numerical Implementation 

Now, specific instructions are provided in a concise prompt shown in Fig. 3. To obtain 
a Python code that can be used for any type of initialized domain, we first consider 
a rectangular domain with circular grains at random locations with radii between a 
specified range. The motive is to use this generated phase field method code for other 
modified initializations such as Voronoi tessellation.
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Fig. 2 Context prompt providing the details of the PF model used in the problem with specific 
equations written in LATEX format 

Care has been taken to make the instructions clear and precise to restrict ChatGPT 4 
in making any assumptions on its own. An emphasis on the desired dimension of the 
outputs has been made in the instructions. For e.g. the initialized order parameters 
should be stored in an array of dimensions .(Nx, Ny, ngrains), where . (Nx, Ny)
specifies the grid size and .ngrains is the number of grains. The discretized equa-
tion for time-stepping (4) is also provided in LATEX format to ensure mathematical 
correctness in its code implementation (Fig. 3).
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Fig. 3 Prompt with specific instructions for numerical implementation provided as a one-thrust 
prompt



Phase Field Modeling of Grain Growth 61

Fig. 3 (continued) 

Fig. 4 Prompt to generate pseudocode for the grain growth simulation based on the specific instruc-
tions provided 

ChatGPT 4 takes a relatively long time to process the response and indicates that 
it is analyzing its code. After completion it generates a plot of area fractions versus 
time steps as the output of verification. This shows that GPT 4 analyzes its generated 
code prior to responding and also adds the generated code output plot in its response. 
The generated Python code is shown in the code Listing 3.1. 

The update of the order parameter, and thus the grain growth over time steps is 
conducted by the operations mentioned in the algorithm 2 generated by the prompt 
shown in Fig. 4.
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Algorithm 2: Grain Growth Simulation using Phase-Field Method and Euler 
Forward Method 
Data: Initial phase fields.ηi (x, y, t = 0), .i = 1, . . . , N ; 
Parameters:.A = 1,.B = 1,.κi for.i = 1, . . . , N ; 
Grid size.Nx , .Ny; Grid spacing.�x , .�y; 
Time step.�t ; Total simulation time.T = nsteps × �t ; 
Number of grains.ngrains = 3. 
Result: Phase field evolution.ηi (x, y, t) for.t ∈ [0, T ], Volume fractions over time, Grain 

status. 
1 Initialization: Set.t ← 0 ; 
2 Create a grid of size.Nx × Ny with spacing.�x and.�y ; 
3 Initialize.ngrains and for each grain. i , set the order parameter.ηi (x, y) = 1.0 inside the 
grain and.0.0 outside ; 

4 while .t < T do 
5 for  each grid point .(x, y) do 
6 for  each grain .i = 1, . . . , N do 
7 Compute the Laplacian.∇2ηi using finite differences: 
8 

. ∇2ηi = 1

�x2

(
ηi (x + �x, y) + ηi (x − �x, y) + ηi (x, y + �y)

+ηi (x, y − �y) − 4ηi (x, y)
)

9 Update the order parameter using the Explicit Euler method: 

. ηn+1
i = ηni + �t L

⎛
⎝−Aηni + B(ηni )

3 + 2ηni

N∑
j �=i

(ηnj )
2 − κi∇2ηni

⎞
⎠

10 Enforce the bounds on.ηn+1
i to keep it within.[0.0001, 0.999] ; 

11 end 
12 end 
13 for each grain .i = 1, . . . , N do 
14 Compute the volume fraction as the sum of.ηn+1

i over all grid points divided by the 
area.Nx × Ny ; 

15 if volume fraction .< 0.001 then 
16 Mark grain. i as extinct in the grain_status list ; 
17 end 
18 end 
19 Store.ηn+1

i for all grains in.eta_hist ; 
20 Apply boundary conditions; 
21 Update time: .t ← t + �t ; 
22 end 
23 Post-processing: Analyze the final phase field distributions.ηi (x, y, t = T ); 

24 Output: .ηhist , Volume fractions over time, Grain status.



Phase Field Modeling of Grain Growth 63

2.4 Initialization Cases 

The Python code obtained from the prompts so far is used along with two different 
initializations. The first case of ideal grain growth is considered for verification of the 
Python code for the PF method. The second case is based on Voronoi tessellations 
as initial domains and represents a general application in materials science. 

2.4.1 Case I: Ideal Grain Growth 

Ideal grain growth is a special case of normal grain growth, where the grain boundary 
motion is driven only by the local curvature of the grain boundary. Here, a spherical 
grain embedded in a large second grain is considered (Fig. 5). 

2.4.2 Case II : Voronoi Tessellation 

For a more generalized application of the generated PF method code, the domain is 
initialized by a Voronoi tessellation. Initially, a general random seed based Voronoi 
tessellation is generated and the order parameters are initialized. Next, it is modified 
for a Voronoi tessellation with a gradient in the cell size. Specific instructions are 
provided to initialize the order parameters to eliminate any discrepancies. 

Prompt 4 
Provide a Python function based on following instructions. Initialize the 
order parameters etas using following instructions. Rectangular grid of size 
Nx = Ny = 64 with grid spacing dx = dy = 0.5. We want to initialize a 
circular grain embedded in another large grain of the size of the rectangular 
grid. The circular grain of radius 14 is centered at the center of the grid. 
Grain 1 is the larger grain and grain 2 is the embedded circular grain. The 
order parameters for each grain are initialized by an array of shape (Nx, Ny, 
ngrains), where ngrains = 2 is the number of grains. Each ith 2D sub-array 
of shape (Nx, Ny) specifies the order parameter at all grid points for the ith 
grain. 
Initialization of grain 1: The order parameters over the rectangular grid for 
grain 1 are initialized to 1. But all points falling within the radius of the 
embedded circular grain have order parameter 0. 
Initialization of grain 2: The order parameters over the rectangular grid for 
grain 0 are initialized to 0. But all points falling within the radius of the 
embedded circular grain have order parameter 1. 

Fig. 5 Prompt for ideal grain growth initialization
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Prompt 5 
Create a Voronoi tessellation in a domain of size 32x32. Consider 25 grains. 
Ensure periodic boundary conditions. Extend any Voronoi cells near the 
domain boundary till the domain boundary such that we have the domain 
completely filled with the Voronoi cells. Plot the Voronoi tessellation. 
After creating this Voronoi tessellation, initialize the order parameters for 
the PF method in the grains that lie in the trimmed Voronoi tessellation 
domain. Follow these steps. 

1. Input: The Voronoi tessellation and its data from generated Voronoi tes-
sellation. Create a rectangular grid of size 64 x 64 with grid spacing of 
0.5. 

2. Initialize Order Parameter: Create an array to store the order parameter 
values for each grain at each grid point. Create an array of dimensions 
(64, 64, ngrains), where ’ngrains’ is the number of grains, i.e. the number 
of Voronoi cells. 

3. For each grain, loop through all grid points. For each grid point (i, j) 
in the 64x64 grid, determine the corresponding Voronoi cell using the 
tessellation. 

4. If the point is inside the Voronoi cell, set the order parameter for that point 
to 1.0. If the grid point is outside the Voronoi cell, set the order parameter 
for that point to 0.0. 

5. Repeat for all grains in the Voronoi tessellation. Provide the final array 
of order parameters of dimensions (64, 64, ngrains). 

Prompt 6 
Modify the previous Voronoi tessellation and initialization of order param-
eters with a strongly decreasing Poisson point process. The gradient in the 
grain size should be easily noticeable. Ensure that the final array of etas has 
the same number of grains taken as an input. 

Fig. 6 Prompts for Voronoi tessellation based initialization 

3 Generated Code Listing and Results 

The Python codes generated in response to the prompts mentioned in Sect. 2 are 
provided in this section with their output plots showing grain growth evolution.
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3.1 Rectangular Domain with Randomly Located Circular 
Grains 

The generated code after prompt 3 is displayed in the Code Listing 3.1. Therein, the 
number of steps was adapted manually to the target time period for grain evolution. 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 import matplotlib.animation as animation 
4 

5 # Parameters 
6 Nx , Ny = 64, 64  # Grid size 
7 dx , dy = 0.5, 0.5  # Grid spacing 
8 ngrains = 3 # Number of grains 
9 L = 5.0 # Mobility coefficient 

10 A = B = 1  # Free energy parameters 
11 kappa = 0.1 # Gradient energy coefficient 
12 dt = 0.005 # Time step 
13 nsteps = 1000 # Number of steps 
14 threshold = 0.5 # Threshold for area fraction 
15 radius_range = (7, 14) # Range of radii for the grains 
16 volume_fraction_threshold = 0.001 # Threshold for grain

↪→ existence 
17 

18 # Initialize the domain with circular grains 
19 def initialize_grains(Nx , Ny , ngrains , radius_range): 
20 eta = np.zeros((Nx, Ny, ngrains)) 
21 centers = np.random.rand(ngrains , 2) * np.array([Nx , Ny

↪→ ]) 
22 radii = np.random.randint(radius_range [0], radius_range

↪→ [1], ngrains) 
23 

24 for i in range(ngrains): 
25 for x in range(Nx): 
26 for y in range(Ny): 
27 if (x - centers[i, 0])**2 + (y - centers[i,

↪→ 1])**2 <= radii[i]**2: 
28 eta[x, y, i] = 1.0 
29 return eta 
30 

31 # Function to approximate Laplacian using a five -point
↪→ stencil 

32 def laplacian(eta , dx , dy): 
33 laplace_eta = (np.roll(eta , -1, axis =0) + np.roll(eta ,

↪→ 1, axis =0) - 2 * eta) / dx**2 + \ 
34 (np.roll(eta , -1, axis =1) + np.roll(eta ,

↪→ 1, axis =1) - 2 * eta) / dy**2 
35 return laplace_eta 
36 

37 # Phase field model evolution function 
38 def phase_field_evolve(Nx , Ny , ngrains , dt, nsteps ,

↪→ eta_initial): 
39 eta_hist = [eta_initial] 
40 volume_fractions = np.zeros((nsteps , ngrains))
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41 grain_status = np.ones((nsteps , ngrains)) 
42 

43 for step in range(nsteps): 
44 eta_next = eta_hist [-1]. copy() 
45 for i in range(ngrains): 
46 if grain_status[step -1, i] == 0: # Skip extinct

↪→ grains 
47 continue 
48 eta_i = eta_hist [-1][:, :, i] 
49 sum_eta_squared = sum([ eta_hist [-1][:, :, j]**2

↪→ for j in range(ngrains) if j != i])  
50 laplace_eta_i = laplacian(eta_i , dx , dy) 
51 

52 # Discretized Allen -Cahn equation 
53 d_eta_dt = -L * (-A * eta_i + B * eta_i **3 + 2 *

↪→ eta_i * sum_eta_squared - kappa * laplace_eta_i) 
54 eta_next[:, :, i] += d_eta_dt * dt 
55 

56 # Enforce bounds on order parameters 
57 eta_next[:, :, i] = np.clip(eta_next[:, :, i],

↪→ 0.0001 , 0.999) 
58 

59 # Calculate volume fraction 
60 volume_fraction = np.sum(eta_next[:, :, i]) / (

↪→ Nx * Ny) 
61 volume_fractions[step , i] = volume_fraction 
62 if volume_fraction < volume_fraction_threshold: 
63 grain_status[step , i] = 0 # Mark grain as

↪→ extinct 
64 

65 

66 eta_hist.append(eta_next) 
67 

68 return eta_hist , volume_fractions , grain_status 
69 

70 # Function to compute area fraction for each grain at each
↪→ time step 

71 def compute_area_fraction(eta_hist , Nx, Ny, threshold): 
72 area_fractions = np.zeros((len(eta_hist), ngrains)) 
73 

74 for step , eta in enumerate(eta_hist): 
75 for i in range(ngrains): 
76 eta_i = eta[:, :, i] 
77 area_fraction = np.sum(eta_i > threshold) / (Nx

↪→ * Ny)  
78 area_fractions[step , i] = area_fraction 
79 

80 return area_fractions 
81 

82 # Initialize grains 
83 eta_initial = initialize_grains(Nx, Ny, ngrains ,

↪→ radius_range) 
84 

85 # Run the phase field evolution
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86 eta_hist , volume_fractions , grain_status =
↪→ phase_field_evolve(Nx, Ny, ngrains , dt , nsteps ,
↪→ eta_initial) 

87 

88 # Compute area fractions 
89 area_fractions = compute_area_fraction(eta_hist , Nx , Ny ,

↪→ threshold) 
90 

91 # Plotting area fraction vs. time for each grain 
92 plt.figure(figsize =(10, 6)) 
93 for i in range(ngrains): 
94 plt.plot(np.arange(nsteps + 1), area_fractions [:, i],

↪→ label=f’Grain {i+1}’) 
95 plt.xlabel(’Time step’) 
96 plt.ylabel(’Area fraction ’) 
97 plt.title(’Area fraction vs. Time for each grain’) 
98 plt.legend() 
99 plt.show() 

100 

101 # create animation function was generated in a separate
↪→ prompt response with minor modifications. 

102 from matplotlib.colors import Normalize 
103 

104 import numpy as np 
105 import matplotlib.pyplot as plt 
106 import matplotlib.animation as animation 
107 from matplotlib.colors import Normalize 
108 

109 def create_animation_with_colorbar(eta_hist , interval =100,
↪→ nprint =10): 

110 """ 
111 Create an animation visualizing the grain growth over

↪→ time with a colorbar , 
112 using the squared sum of eta values and ensuring safe

↪→ normalization. 
113 

114 Parameters: 
115 - eta_hist: A list of numpy arrays , each representing

↪→ the state of the system at a given time step. 
116 - interval: Time interval between frames in milliseconds

↪→ . 
117 - nprint: Interval of time steps to update the animation

↪→ . 
118 

119 Returns: 
120 - anim: The Matplotlib animation object. 
121 """ 
122 fig , ax = plt.subplots () 
123 ax.set_title(’Grain Growth Over Time’) 
124 

125 # Compute the squared sum of eta values for the initial
↪→ frame and normalize 

126 data = np.sum(eta_hist [0]**2 , axis =2) 
127 max_val = np.max(data) if np.max(data) != 0 else 1 #

↪→ Avoid division by zero
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128 data_normalized = data / max_val 
129 im = ax.imshow(data_normalized , animated=True , cmap=’

↪→ viridis ’, norm=Normalize(vmin=0, vmax =1)) 
130 

131 # Create colorbar 
132 fig.colorbar(im, ax=ax) 
133 

134 def update(frame): 
135 """ 
136 Update the plot for the animation , normalizing the

↪→ data for each frame. 
137 """ 
138 new_data = np.sum(eta_hist[frame ]**2, axis =2) 
139 max_val = np.max(new_data) if np.max(new_data) != 0

↪→ else 1 # Avoid division by zero 
140 new_data_normalized = new_data / max_val 
141 im.set_array(new_data_normalized) 
142 return (im ,) 
143 

144 anim = animation.FuncAnimation(fig , update , frames=range
↪→ (0, len(eta_hist), nprint), interval=interval , blit=
↪→ True) 

145 

146 return anim 
147 

148 # This function is ready to be used as described in the
↪→ comment at the bottom of the snippet. 

149 # Usage example (assuming eta_hist is already computed): 
150 anim = create_animation_with_colorbar(eta_hist , interval =50,

↪→ nprint =10) 
151 # To display in Jupyter Notebook: 
152 from IPython.display import HTML 
153 HTML(anim.to_html5_video ()) 
154 

155 # To save the animation as a file (uncomment and use in a
↪→ local environment): 

156 # anim.save(’grain_growth_with_colorbar.mp4 ’, writer=’ffmpeg
↪→ ’, dpi =300) 

157 

158 # To save the animation as a file (uncomment and use in a
↪→ local environment): 

159 # anim.save(’grain_growth_with_colorbar.mp4 ’, writer=’ffmpeg
↪→ ’, dpi =300) 

Code Listing 3.1 Code generated by ChatGPT 4 after prompt 3. The code includes initialization 
of the domain and the numerical implementation as per steps specified in prompt 3 

The output of the code creates a plot of area fractions with respect to time for 
all grains and an animation of the grain growth. The function that creates the ani-
mation was modified with minor changes to result in an animation with greater 
sharpness and to add a colorbar. The code also results a list of arrays having dimen-
sion .(Nx, Ny, ngrains) which stores the order parameters over the grid for all 
grains at all time instants. Moreover, the tracked grain status, area fractions and 
volume fractions are also obtained as output. Here, the initial (.t = 0), intermediate
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Fig. 7 Grain growth evolution for the generalized initialization in prompt 3 with three randomly 
located circular grains at initial, intermediate (step 500) and final state. The total simulation was 
conducted for 1000 time steps and a time-step size of 0.005. The domain size is 64.× 64 with a grid 
spacing of 0.5 

(.t = nsteps/2 · dt) and final state (.t = nsteps · dt) state of grain growth evolution 
is shown in Fig. 7. The final state here refers to the end of the time interval considered 
for the simulation. 

3.2 Ideal Grain Growth 

Case I with the ideal grain growth initialization was generated using the prompt 4. 
The resulting initialized order parameters were used in the PF method code listed in 
Code Listing 3.1. 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 

4 def initialize_ideal_grain_growth(Nx , Ny , dx , dy,
↪→ radius_factor , ngrains =2): 

5 """ 
6 Initialize the order parameters for ideal grain growth

↪→ with one circular grain 
7 embedded in a larger grain. 
8 Parameters: 
9 - Nx , Ny: Size of the rectangular grid. 

10 - dx , dy: Grid spacing. 
11 - radius_factor: Factor to determine the radius of the

↪→ circular grain. 
12 - ngrains: Number of grains , default is 2. 
13 Returns: 
14 - eta: Initialized order parameters for each grain in

↪→ the form of an array 
15 of shape (Nx , Ny , ngrains). 
16 """ 
17 # Initialize the order parameter array 
18 eta = np.zeros((Nx, Ny, ngrains)) 
19 # Calculate the center of the grid
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20 center_x , center_y = Nx / 2, Ny / 2 
21 # Calculate the radius of the circular grain 
22 radius = radius_factor * dx 
23 

24 for x in range(Nx): 
25 for y in range(Ny): 
26 # Calculate the distance of each point from the

↪→ center 
27 distance = np.sqrt((x - center_x)**2 + (y -

↪→ center_y)**2) 
28 # Initialize grain 1 (the larger grain) 
29 if distance <= radius: 
30 eta[x, y, 0] = 0 # Inside the circular

↪→ grain , set grain 1 to 0 
31 eta[x, y, 1] = 1 # Set grain 2 to 1 
32 else: 
33 eta[x, y, 0] = 1 # Outside the circular

↪→ grain , set grain 1 to 1 
34 return eta 
35 

36 # Parameters for initialization 
37 Nx , Ny = 64, 64  # Grid size 
38 dx , dy = 0.5, 0.5  # Grid spacing 
39 radius_factor = 28 # Multiplier for the radius based on dx 
40 

41 # Initialize the order parameters 
42 eta_ideal_gg = initialize_ideal_grain_growth(Nx , Ny , dx , dy ,

↪→ radius_factor) 
43 

44 # Visualization 
45 fig , axes = plt.subplots(1, 2, figsize =(12, 6)) 
46 titles = [’Grain 1 (Large Grain)’, ’Grain 2 (Embedded

↪→ Circular Grain)’] 
47 for i in range (2): 
48 im = axes[i]. imshow(eta_ideal_gg [:, :, i], cmap=’viridis

↪→ ’, origin=’lower’) 
49 axes[i]. set_title(titles[i]) 
50 axes[i].axis(’off’) 
51 plt.colorbar(im, ax=axes[i]) 
52 plt.tight_layout () 
53 plt.show() 

Code Listing 3.2 Code generated by ChatGPT 4 after prompt 4 for initialization based on ideal 
grain growth case. The domain is initialized with a spherical grain embedded in a larger grain. The 
code results in an array of order parameters based on this initialization 

The output of the generated PF code was an animation. Here, we show initial 
(.t = 0), intermediate (.t = nsteps/2 · dt) and final state (.t = nsteps · dt) of the ideal 
grain growth case is shown in Fig. 8.
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Fig. 8 Grain growth evolution for the ideal grain growth initialization as per prompt 4 with a 
spherical grain embedded in a larger cell. The evolution at initial, intermediate (step 2500) and final 
state shows shrinkage of the spherical cell. The total simulation was conducted for 5000 time steps 
and a time-step size of 0.005. The domain size is 64.× 64 with a grid spacing of 0.5 

3.3 Voronoi Tessellation Based Initialization 

Two types of Voronoi tessellations were considered for initialization. The first one 
has randomly distributed seeds following a uniform distribution. The second one has 
a decreasing gradient in the seeds, showing a variation in the grain size along the 
vertical axis. The corresponding generated codes are provided in code Listing 3.3 
and code Listing 3.4. 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 from scipy.spatial import Voronoi , voronoi_plot_2d 
4 

5 def generate_voronoi(domain_size , ngrains): 
6 """ 
7 Generate a Voronoi tessellation for a given domain size

↪→ and number of grains. 
8 

9 Parameters: 
10 - domain_size: The size of the domain. 
11 - ngrains: The number of grains to generate. 
12 

13 Returns: 
14 - Voronoi tessellation object. 
15 """ 
16 # Generate random points within the domain 
17 points = np.random.rand(ngrains , 2) * domain_size 
18 # Create the Voronoi tessellation 
19 vor = Voronoi(points) 
20 return vor 
21 

22 def plot_voronoi(vor , domain_size): 
23 """ 
24 Plot a Voronoi tessellation , extending cells to the

↪→ domain boundaries. 
25
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26 Parameters: 
27 - vor: Voronoi tessellation object. 
28 - domain_size: The size of the domain. 
29 """ 
30 fig , ax = plt.subplots () 
31 voronoi_plot_2d(vor , ax=ax, show_vertices=False ,

↪→ show_points=False) 
32 ax.set_xlim(0, domain_size) 
33 ax.set_ylim(0, domain_size) 
34 ax.set_title(’Voronoi Tessellation with Extended Cells’) 
35 plt.show() 
36 

37 def initialize_order_parameters(vor , grid_size , dx , ngrains)
↪→ : 

38 """ 
39 Initialize the order parameters for the phase field

↪→ method based on Voronoi tessellation. 
40 

41 Parameters: 
42 - vor: Voronoi tessellation object. 
43 - grid_size: The size of the grid. 
44 - dx: The grid spacing. 
45 - ngrains: The number of grains. 
46 

47 Returns: 
48 - Initialized order parameters array. 
49 """ 
50 eta = np.zeros((grid_size , grid_size , ngrains)) 
51 for i in range(grid_size): 
52 for j in range(grid_size): 
53 # Find the closest Voronoi cell for each grid

↪→ point 
54 x, y = (i + 0.5) * dx, (j + 0.5) * dx 
55 distances = np.sqrt((vor.points[:, 0] - x)**2 +

↪→ (vor.points[:, 1] - y)**2) 
56 closest = np.argmin(distances) 
57 eta[i, j, closest] = 1.0 
58 return eta 
59 

60 # Parameters 
61 domain_size = 32 
62 ngrains = 25 
63 grid_size = 64 
64 dx = 0.5 
65 

66 # Generate and plot Voronoi tessellation 
67 vor = generate_voronoi(domain_size , ngrains) 
68 plot_voronoi(vor , domain_size) 
69 

70 # Initialize order parameters based on the Voronoi
↪→ tessellation 

71 eta = initialize_order_parameters(vor , grid_size , dx,
↪→ ngrains) 

72
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73 # eta contains the order parameters array of dimensions (64,
↪→ 64, 25) 

Code Listing 3.3 Code generated by ChatGPT 4 after prompt 5 for the general Voronoi tessellation 
based initialization. The code results in an array of order parameters based on this initialization and 
a plot of the Voronoi tessellation 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 from scipy.spatial import Voronoi , voronoi_plot_2d 
4 

5 def generate_strongly_decreasing_points(domain_size , ngrains
↪→ ): 

6 """ 
7 Generate points for a Poisson Voronoi tessellation with

↪→ a strongly decreasing density , 
8 ensuring a noticeable gradient in grain size across the

↪→ domain. 
9 """ 

10 points = [] 
11 while len(points) < ngrains: 
12 x = np.random.uniform(0, domain_size) 
13 y = np.random.uniform(0, domain_size) 
14 # Use a non -linear decreasing function for point

↪→ density 
15 probability = (domain_size - x)**2 / domain_size **2

↪→ # Quadratically decreasing probability 
16 if np.random.rand() < probability: 
17 points.append([x, y]) 
18 if len(points) > ngrains: # Reset if over -generated 
19 points = [] 
20 

21 return np.array(points[: ngrains ]) 
22 

23 def initialize_order_parameters_exactly(grid_size , dx,
↪→ points , ngrains): 

24 """ 
25 Initialize the order parameters for the phase field

↪→ method , ensuring the specified number of grains. 
26 """ 
27 eta = np.zeros((grid_size , grid_size , ngrains)) 
28 

29 for i in range(grid_size): 
30 for j in range(grid_size): 
31 pos = np.array([i * dx, j * dy]) 
32 distances = np.linalg.norm(points - pos , axis =1) 
33 closest_point_index = np.argmin(distances) 
34 eta[i, j, closest_point_index] = 1.0 
35 

36 # Ensure eta array reflects exactly ’ngrains ’ grains 
37 assert eta.shape [2] == ngrains , "The number of grains in

↪→ eta does not match ngrains." 
38 

39 return eta 
40 

41 # Parameters remain the same as the previous example
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42 domain_size = 32 
43 ngrains = 25 
44 grid_size = 64 
45 dx = dy = 0.5 
46 

47 # Generate points with a strongly decreasing process 
48 points_strong_gradient = generate_strongly_decreasing_points

↪→ (domain_size , ngrains) 
49 

50 # Create the Voronoi tessellation 
51 voronoi_strong_gradient = Voronoi(points_strong_gradient) 
52 

53 # Initialize the order parameters 
54 eta_strong_gradient = initialize_order_parameters_exactly(

↪→ grid_size , dx, points_strong_gradient , ngrains) 
55 

56 # Plot the Voronoi tessellation with a strong gradient 
57 fig , ax = plt.subplots () 
58 voronoi_plot_2d(voronoi_strong_gradient , ax=ax,

↪→ show_vertices=False) 
59 ax.set_xlim(0, domain_size) 
60 ax.set_ylim(0, domain_size) 
61 ax.set_title("Poisson Voronoi Tessellation with Strong

↪→ Gradient") 
62 plt.show() 

Code Listing 3.4 Code generated by ChatGPT 4 after prompt 6 for the initialization with Voronoi 
tessellation having a decreasing gradient. The code results in an array of order parameters based on 
this initialization and a plot of the Voronoi tessellation. ChatGPT 4 assumes a suitable non-linear 
function for the point density on which the seeds of the Voronoi tessellation are created 

Initial (.t = 0), intermediate (.t = nsteps/2 · dt) and final state (.t = nsteps · dt) 
of the Voronoi tessellation based grain growth in both cases is shown in Figs. 9 and 
12 respectively. 

Fig. 9 Grain growth evolution for the general Voronoi tessellation based initialization as described 
in prompt 5. The evolution at initial, intermediate (step 500) and final state is shown in the plots. 
The total simulation was conducted for 1000 time steps and a time-step size of 0.005. The domain 
size is 64.× 64 with a grid spacing of 0.5
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4 Tests for Verification 

In the current problem setting, errors that do not allow the code to run, root from 
index errors and array dimension errors. However, using ChatGPT 4 and adhering 
the prompt engineering practices, it is observed that the generated code from the 
prompts runs without such errors. However, the logical and mathematical correct-
ness of numerical implementation needs to be thoroughly verified. We discuss these 
verification aspects in three stages: 

• Initialization 
• Numerical implementation 
• Verification with expected physical observations 

Minor errors in the specifics of plotting and visualization are easily rectified by 
instructing the chatbot in subsequent prompts. For example, the function that cre-
ates the animation create_animation_with_colorbar was modified with 
minor changes to result in an animation with greater sharpness and add to a colorbar. 

4.1 Initialization 

The two initialization cases considered are first checked. First, the dimensions 
of the output array of initialized order parameters are checked. These should be 
.(Nx, Ny, ngrains), where .(Nx, Ny) signifies the grid size of the domain and 
.ngrains is the number of grains, both provided as an input. Next, individual heat-
maps of some of the initialized grains are plotted and verified visually. Figure 10 
shows the initialization in case of ideal grain growth as per the prompt in Sect. 2.4.1. 

4.2 Numerical Implementation 

Even though the codes run without errors, they can still have logical and mathematical 
errors in terms of the numerical implementation. These are checked by the following 
steps: 

• Verifying if the initialized arrays to store updated variables are of correct dimen-
sions. 

• Checking the correct implementation of the five-point stencil to approximate the 
Laplacian operator. In some trials, it is observed that division with the square of 
step size was missing in the generated code. 

• Checking the mathematically correct implementation of the discretized time-
stepping equation (4). Specifically, the signs in front of each individual term need 
to be checked, and ensuring that the sum in the interaction term, i.e..

∑N
i �= j (η

n
i )

2, has
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been correctly evaluated. There were instances where the condition .i �= j in the 
summation operator was not strictly followed, and instead overall sum of all.η2

j was 
resulted. Such issues were overcome by providing the discretized time-stepping 
equation in a LATEX format in the prompt. 

• Checking if volume fraction is correctly computed and the condition for extinction 
of grains is followed. 

• Checking if the bounds on order parameters are enforced. 
• Checking if any specified boundary conditions are imposed. Surprisingly, Chat-
GPT 4 omitted the line in prompt 3, instruction 2 (refer Fig. 4) which instructs 
imposing Neumann boundary conditions on the right edge of the domain. How-
ever, this can be easily rectified by instructing ChatGPT 4 in a subsequent prompt. 

• Checking computation of area fractions. 
• Verifying that the parameters mentioned in the prompt are correctly assigned before 
running the specific functions of the code. 

4.3 Verification with Expected Physical Observation 

Ideal grain growth using the code generated by ChatGPT 4 can be used for verification 
against physical observations. For the shrinking spherical grain embedded in a large 
second grain, it is known that the change in radius of the shrinking grain can be 
approximated as: 

.D2 − D2
0 = kt (7) 

Fig. 10 Verifying initialization for ideal grain growth case by plotting heat-maps of individual 
grains from the initialized order parameter array. The heat-maps show the desired initialization of 
the spherical grain 2 embedded in the larger grain 1
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Fig. 11 Area fraction versus time step plot for ideal grain growth case 

where, .D and .D0 are the current and the initial grain radius, respectively, and . k is a 
temperature-dependent constant. A similar behavior can be observed by the plot of 
area fractions versus time steps using the computation by the generated code. This 
is shown in the Fig. 11, where the spherical grain has a radius of 28d. x , where d. x is 
the grid spacing and the evolution is carried out with a time step size of 0.005 for 
5000 steps. 

Similarly, for the Voronoi tessellation based initialization, it is observed that the 
evolution follows the physical observation that larger grains grow and smaller ones 
disappear eventually. This can be observed in the Fig. 12. The same is also reflected 
in the area fraction versus time step plot as shown in the Fig. 13. The area fraction 
of the two small grains with indices 3 and 6 decreases to zero as shown in the plot 
lines with color red and pink respectively. 

5 Discussion 

In the context of code generation, ChatGPT 4 performs surprisingly well with a 
minimal amount of errors. However, as the complexity of tasks increases, the chances 
of running into errors, specifically, logical errors, increase. In such cases, the large 
language model (LLM) produces hallucinations, which are outputs that do not match 
the intent of the prompt. To drive the LLM to a desired output for a complex task, 
a suitably tailored prompt has to be created. In this regard, a suitable prompt design
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Fig. 12 Grain growth evolution for the Voronoi tessellation with a decreasing gradient as described 
in prompt 6. As indicated in the red ellipse, the two small grains shrink and eventually vanish 

Fig. 13 Area fraction versus time step plot for the first 10 grains in the Voronoi tessellation with 
a decreasing gradient as described in prompt 6. The area fractions of the two small grains with 
indices 3 (red) and 6 (pink) decrease and reach zero indicating that these grains have disappeared. 
The larger grains growth with varying growth rates
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is important. Here, we discuss the key implications of prompt engineering tactics in 
the context of the current problem setting. The following prompt engineering tactics 
are in the prompt design: 

• Write clear instructions: Clarity in instructions provides limited room for the 
LLM to make its own assumptions and in worse cases, produce hallucinations. 
However, including too many unnecessary details is not suitable. This was noticed 
when details of the Voronoi tessellation algorithm and the specific programming 
steps were mentioned in a detailed prompt to create Voronoi tessellation based 
initialization. Such details caused programming errors such as those related to 
indexing and broadcasting. When only limited instructions were given with certain 
restrictions such as periodic boundary conditions and a completely filled domain, 
as shown in prompt 5 in Fig. 6, the LLM resulted in an error free code with the 
desired outputs. This shows that the prompts should include specific instructions 
that build upon the logic of solving the problem. But the specifics of programming 
the instructions into a code need not be included. 

• Split complex tasks into simpler subtasks: Breaking complex tasks into sub-
steps is a good approach to provide the LLM with the rigorous logic of solving the 
problem. Instead of sequential prompting, one can also concatenate all the steps 
concisely as done in prompt 3 shown in Fig. 3. Existing functions generated in 
response to previous prompts in one chat can be modified for different cases, such 
as done in the case of prompt 6 which modifies the function generated from prompt 
5 shown in Fig. 6. However, recalling code or information from prompt responses 
at an initial stage in a long chat can cause errors due to the limited short-term 
memory of the model. This can be remedied by restating the code or information 
from such a previous response in the new prompt. This also helps in maintaining 
the consistency of the code variables and functions, as we proceed with sequential 
subtasks. 

• Ask model to adopt a persona: It is observed that providing a system prompt 
as shown in Fig. 1, improves the generation of relevant responses and maintains 
consistency in the style of code generation. Moreover, specific instructions to 
obtain a certain style of response can also be added to a system prompt if needed. 

• Providing necessary equations: It is important to provide the context of the 
problem in consideration through the required equations. This enables the LLM to 
develop an understanding of the problem to be solved and improve the relevance of 
the responses to the problem. In our case, we provide all the equations of the model 
description in prompt 2 shown in Fig. 2, since the free energy function as defined in 
(2) is not a standard well-known differential equation like Laplace equation in heat 
transfer or Burgers’ equation in fluid dynamics. In our case, without specifying 
the equations in model description, ChatGPT 4 assumed some equations which 
did not exactly resemble to the equations describing the PF model. 
ChatGPT 4 could also perform the relatively complex mathematical operation 
of differentiating the free energy function (2) and local free energy density (3) 
and use it in the non-conserved Allen-Cahn equation (1). Further, it implemented 
the specified numerical methods to obtain the discretized Eq. (4) for the time-
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stepping of order parameters. Despite correct mathematical operations, sometimes 
it made errors in maintaining the mathematical correctness during code generation 
as mentioned in the verification of numerical implementation in Sect. 4.2. It is also  
important to note that providing equations in the LATEX format ensured their correct 
interpretation and mathematical understanding by the LLM. 

• To do or not to do?: It is observed that prompts with statements that tell “what 
not to do” result in more erroneous responses as compared to prompts that avoid 
them. This has been also followed in the prompts used in the current problem. 
For example, in prompt 5 shown in Fig. 6, instead of mentioning, “Do not let the 
domain be empty at any location.”, it is mentioned in a specific way with a remedy 
to the issue by stating, “Extend any Voronoi cells near the domain boundary till 
the domain boundary such that we have the domain completely filled with Voronoi 
cells.” 

Designing a prompt that adheres to these tactics is an iterative process and may 
require some trials. It is usually not prudent to continue with one chat for multiple 
variations of the same prompt. Furthermore, rectifying errors generated by a sub-
optimal prompt can help in cases of few errors. However, if the generated code 
contains several syntax, semantic or logical errors, then it is suggested to redraft 
a better prompt and use it in a new chat. This iterative process of prompt design 
also signifies the importance of human intervention in using ChatGPT 4 for code 
generation. 

6 Conclusion 

ChatGPT 4 has been used to generate a PF code for grain growth evolution. The 
Fan and Chen [ 6] model has been applied and the equations describing the model 
have been solved numerically using the explicit Euler forward method along with 
the five-point stencil of the finite difference method for approximating the Laplace 
operator. The complex problem has been broken into steps that instruct ChatGPT 4 
to generate the code. To this end, specific prompt engineering tactics have been used 
to design prompts that generate a PF method code which can be applied to gener-
alized initialization of the order parameters. Specific applications of this code are 
shown by developing two initialization cases, (1) ideal grain growth with a spherical 
grain embedded in a larger grain and (2) Voronoi tessellations. The initialization has 
also been carried out by code generated by ChatGPT 4 using suitable prompts. The 
resulting code generated by ChatGPT 4 is error-free in terms of syntax, semantic 
and logical errors. Mathematical correctness of the numerical implementation has 
been ensured by rigorous checking of the generated code. The final results have 
been verified with expected results based on general physical observations in grain 
growth evolution. Details of the prompt engineering tactics applied in the design of 
the prompt have been explained.



Phase Field Modeling of Grain Growth 81

In extension to this work, newer prompt engineering methods like zero-shot chain 
of thought prompting [ 8] can be used, which allow the LLM to generate its own 
reasoning for solving the problem. This reasoning can be used as an initial point 
for suitable prompt design. Another approach to solving complex code generation 
tasks is to provide the steps to solve the task in terms of a code template with 
comments. The aim is to give the LLM some direction to solve the problem as well 
as a template to structure the code, and allow it to develop detailed solutions with code 
based on this limited direction. In case of complex initialization, such as a specific 
grain microstructure, its image can be provided as an input in the prompt, with 
required conditions, and ask ChatGPT 4 to generate a code that provides a similar 
initialized microstructure. With the presence of LLMs like ChatGPT 4 and their 
continuous developments, prompt engineering based code generation will become 
an indispensable approach for computational materials scientists to tackle complex 
problems. 
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Modeling Corrosion Using a Cellular 
Automaton 

Mehdi Bakhshi Zadeh and Bernhard Eidel 

Abstract This study develops a 2D cellular automaton model to simulate corro-
sion processes using Fick’s second law of diffusion and Reaction Kinetics. The 
model accurately predicts corrosion initiation and propagation under various envi-
ronmental conditions, providing valuable insights for designing effective corrosion 
prevention strategies. The verification process confirmed the accurate implementa-
tion of theoretical principles, while simulation results highlighted the progression 
of corrosion and the impact of protective layers and different metal corrosion rates. 
Furthermore, the model emphasizes the potential of AI-assisted tools in advancing 
research methodologies. Continuous refinement and expert oversight are essential 
to enhance the reliability of these tools. This work demonstrates the significant role 
of Cellular Automata (CA) in understanding complex corrosion mechanisms and 
underscores the necessity for ongoing improvements in simulation techniques. By 
integrating theoretical and practical aspects, this study offers a robust framework for 
future research and applications in corrosion management. 

1 Introduction 

Corrosion is a natural, inevitable process that results in the gradual deterioration of 
materials, particularly metals, through chemical or electrochemical reactions with 
their environment. This phenomenon is driven by the tendency of materials to return 
to their more stable, lower-energy states, often leading to the formation of oxides 
or other compounds. The consequences of corrosion are significant, affecting the 
structural integrity, safety, and longevity of infrastructure, machinery, and industrial 
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components. In the absence of effective management strategies, corrosion can lead 
to catastrophic failures, causing economic losses and safety hazards. 

Corrosion can occur uniformly across a material’s surface or in localized forms, 
such as pitting and crevice corrosion, which lead to concentrated damage in specific 
areas. Pitting corrosion, in particular, is a dangerous form as it can lead to the rapid 
penetration of materials with minimal overall mass loss. Understanding the mecha-
nisms behind various corrosion types is vital for developing effective prevention and 
mitigation strategies, which can significantly reduce the risk of structural failures. 

Recent advancements in computational modeling, such as Cellular Automata 
(CA), have provided powerful tools to simulate and understand the complex, dynamic 
nature of corrosion processes. CA provides a discrete modeling framework, enabling 
the simulation of corrosion at various scales, from the initiation of corrosion pits to 
the evolution of surface roughness in materials. This study focuses on applying CA 
models, particularly through Fick’s second law and reaction kinetics, to simulate and 
predict corrosion processes in a 2D environment. 

Studies show that CA models are effective in capturing the stochastic nature of 
localized corrosion, such as pitting, in various materials including low-carbon steels 
[ 4]. Additionally, CA has been employed to model oxidation mechanisms in steel, 
accurately simulating the diffusion of oxygen and the formation of oxide layers 
in high-temperature environments [ 5]. These applications highlight the versatility 
of CA as a tool for studying a wide range of corrosion scenarios across different 
materials and environmental conditions. 

1.1 Theoretical Backbone 

Cellular Automata (CA) are computational models that utilize discrete grid systems 
to simulate the evolution of complex systems over time. Each cell within the grid 
can exist in a finite number of states and interact with its neighboring cells based on 
predefined rules. The classification of cells in the corrosion process is illustrated in 
Fig. 1. This figure shows how each cell transitions during the corrosion process, high-
lighting the different states and interactions that are critical to the simulation model. 
The diagram helps to visualize the cellular automaton framework and underscores 

Fig. 1 The cell classification model and how each cell changes in the corrosion process
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the importance of accurate state classification in predicting the progression of corro-
sion. Key ingredients of CA include the grid structure, state set, neighborhood, and 
transition rules. This method is particularly effective in modeling local interactions 
and emergent global behaviors, making it suitable for simulating corrosion processes 
where localized interactions can lead to significant material degradation. The utility 
of this approach in corrosion management has been well documented. For instance, 
Wang et al. (2019) demonstrated the effectiveness of CA models in simulating the 
high-temperature corrosion of Ni-based alloys in chloride molten salts, showing how 
these models can predict the growth of corrosion layers and the migration of elements 
under various conditions [ 1]. 

From an electro-chemical perspective, corrosion involves anodic reactions where 
metal atoms lose electrons and form metal ions (e.g., .Fe → Fe2+ + 2e−), and 
cathodic reactions where electrons are consumed, typically by a reduction process 
(e.g., .O2 + 4H+ + 4e− → 2H2O). The presence of an electrolyte is crucial as it 
facilitates ion and electron movement, and the electrochemical cells created by these 
reactions drive the corrosion process through the potential difference they gener-
ate. The approach further highlights the ability of CA models to capture intricate 
interactions between electrochemical reactions, material properties, and environ-
mental factors, providing valuable insights into corrosion mechanisms and aiding in 
the development of predictive maintenance strategies [ 2]. Additionally, CA models 
allow for the incorporation of stochastic elements, which are essential in capturing 
the inherent randomness and complexity of corrosion processes. This makes CA an 
invaluable tool for researchers and engineers who aim to develop predictive models 
and design effective corrosion prevention measures. 

Further studies have emphasized the application of CA models in simulating 
different types of corrosion phenomena. For example, Chen and Wen [ 7] utilized 
CA models to simulate the uniform corrosion damage evolution of steel structures 
exposed to acid rain, demonstrating how varying concentrations of corrosive agents 
impact the corrosion depth over time. Similarly, Xiao et al. [ 8] applied CA models to 
simulate pitting corrosion in Ni-based alloys, showing the influence of chloride ion 
concentration and solution pH on the evolution of pits. These studies underscore the 
versatility of CA in capturing both uniform and localized corrosion processes, offer-
ing detailed insights that are crucial for predicting material degradation in various 
environments. 

The model implemented in this study employs two critical theoretical components: 
Fick’s Second Law (FSL) of Diffusion and reaction kinetics. FSL describes how the 
concentration of a substance changes over time due to diffusion, which is fundamental 
in modeling the transport of corrosive species in materials. The equation is given by: 

.
∂C

∂t
= D∇2 C , (1) 

where .C is the concentration, . t is time, and .D is the diffusion coefficient. This 
equation is discretized and applied within the CA framework to simulate the diffusion 
of corrosive agents. The implementation of FSL in CA involves discretizing the
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spatial domain into a grid where each cell represents a concentration of the diffusing 
species and updating the concentration based on the diffusion coefficient and the 
concentration gradient. This approach allows for a detailed representation of the 
spatial and temporal evolution of the concentration field, capturing the effects of 
diffusion on the corrosion process. 

Reaction kinetics (RK) are incorporated to model the chemical reactions occurring 
at the material’s surface, which contribute to the corrosion process. The rate of these 
reactions is governed by factors such as temperature, concentration of reactants, and 
the presence of catalytic agents. In our CA model, these reactions are represented 
through state transitions of the cells, where the probability of transition depends on 
the local concentration of reactive species. For example, the interaction between the 
diffusing oxygen and metal atoms to form oxides can be modeled as a probabilistic 
state transition [ 3]. This probabilistic approach ensures that the model can capture 
the inherent variability and stochastic nature of corrosion reactions. 

In the context of high-temperature corrosion, the diffusion of oxygen and chlo-
ride ions through molten salt layers and their reaction with metal surfaces is critical. 
Wang et al. [ 1] provides a detailed framework for modeling these interactions, show-
ing that the formation of protective layers and the degradation of the metal substrate 
can be effectively simulated using CA. This detailed framework is essential for under-
standing how different environmental conditions and material properties influence 
the corrosion process, enabling the development of targeted strategies for corrosion 
mitigation. 

1.2 Problem Statement 

This study aims to address the challenge of predicting and managing corrosion in 
industrial applications by utilizing a 2D CA model. The specific problem involves 
simulating the diffusion of corrosive species and the resultant chemical reactions 
using FSL and reaction kinetics. The parameters used in the corrosion simulation are 
summarized in Table 1. 

In the following, we provide the prompt used to generate the algorithm for the 
corrosion modeling by ChatGPT-4. This prompt is specifically used to instruct the 
AI to create an algorithm based on FSL of diffusion and reaction kinetics within a 
2D cellular automaton framework. 

The algorithm as LATEX-pseudocode, which is generated by the prompt in Fig. 2 
is given in the algorithm box 3.
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Table 1 Parameters used in the corrosion simulation study 

Parameters Values/Types Dimensions 

Domain size (.Nx , Ny) 200 . [L]
Protection layer thickness 2 . [L]
Initial damage (crack) indices List of tuples . [L] × [L]
Diffusion coefficient (top,.Dtop) 0.1 . [L2T−1]
Diffusion coefficient (bottom,.Dbottom) 0.05 . [L2T−1]
Time step size (.�t) 0.01 . [T ]
Spatial step size (.�x,�y) 1 . [L]
Random factor (.random_factor) Uniform distribution . [1]
Output Corrosion animation – 

Fig. 2 Prompt for generating LATEXpseudocode of an algorithm for corrosion simulation along 
with CA
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Algorithm 3: Corrosion Modeling in 2D using Fick’s 2nd Law and Cellular 
Automata 

Input: Grid size  (Nx, Ny), time steps T , time step �t , grid spacing �x , �y, diffusion coefficient D, initial 
concentration C(x, 0), reaction rates ka , kc , threshold potential Vth  

Output: Concentration field C(x, t) and corrosion state over time 

1 Initialization: 
2 Set the grid with size (Nx, Ny); 
3 Initialize the concentration field C(x, 0); 
4 Initialize the corrosion state S(x, 0) (1 for active corrosion sites, 0 otherwise); 
5 Set diffusion coefficient D and reaction rates ka , kc ; 

6 for t = 0 to T with step �t do 

7 Diffusion Step (using Fick’s 2nd Law): 
8 foreach grid point (i, j ) do 
9 Calculate the concentration C(i, j)n+1 at the next time step using the central finite difference scheme: 

C(i, j )n+1 = C(i, j )n + D�t

(
C(i + 1, j )n − 2C(i, j )n + C(i − 1, j )n

�x2 

+ 
C(i, j + 1)n − 2C(i, j)n + C(i, j − 1)n

�y2

)

10 end 

11 Corrosion Reaction Kinetics: 
12 foreach grid point (i, j) do 
13 Calculate the local potential V (i, j )n based on the concentration C(i, j )n and other factors (e.g., 

electrolyte, material properties); 
14 if V (i, j)n > Vth  and S(i, j)n = 1 then 
15 Update concentration due to anodic reaction: 

C(i, j )n+1 = C(i, j )n+1 − ka�t 

16 end 
17 else if V (i, j )n < Vth  and S(i, j )n = 1 then 
18 Update concentration due to cathodic reaction: 

C(i, j )n+1 = C(i, j)n+1 + kc�t 

19 end 
20 end 

21 Cellular Automaton Update: 
22 foreach grid point (i, j) do 
23 Update the corrosion state S(i, j)n+1 based on local concentration C(i, j )n+1 and neighboring states: 

24 if C(i, j )n+1 > Ccrit or neighboring sites S(i + 1, j ), S(i − 1, j ), S(i, j + 1), S(i, j − 1) are corroded 
then 

25 S(i, j )n+1 = 1 ; 
// Activate corrosion if concentration exceeds threshold or 

neighboring sites are corroded 

26 end 
27 end 

28 Apply Boundary Conditions: 
29 Apply appropriate boundary conditions (e.g., Dirichlet, Neumann) to the concentration and corrosion state 

fields; 

30 end 

31 Output: 
32 Return the concentration field C(x, t) and corrosion state S(x, t) over time;
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2 Prompt  

In the following, the sketch of the simulation domain in Fig. 3 with its features is 
introduced and explained as follows. The coordinate system, labeled with . x and 
. y axes, intersects at the origin (0, 0), defining the framework of the simulation. 
The domain consists of a 2D rectangular grid with dimensions .Nx × N y and grid 
spacing .�x and .� y. Initial damage sites, highlighted in red at the top and bottom, 
indicate entry points for corrosive substances. Surrounding the grid, dashed blue 
lines represent a protective layer of specified thickness. The upper half of the grid, 
referred to as the Top Metal, is shaded light grey, while the lower half, the Bottom 
Metal, is shaded dark grey. Green arrows illustrate the diffusion of corrosive species 
through the grid. Orange patches and arrows depict the state transitions of cells from 
uncorroded to corroded states. Additionally, the “Time-stepping Loop” annotation 
illustrates the iterative update process of the simulation. 

The initial prompt for generating the code is given in Fig. 4. 

Fig. 3 Detailed sketch illustrating the 2D corrosion simulation process on metal surfaces using a 
Cellular Automaton, highlighting critical parts, diffusion paths, and state transitions
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Fig. 4 Prompt to simulate corrosion in metals with CA
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Fig. 4 (continued) 

3 Code Listing 

1 # To find a better animation, please use the saved gif file 
2 import numpy as np 
3 import matplotlib.pyplot as plt 
4 import matplotlib.animation as animation 
5 import matplotlib 
6 from matplotlib.colors import ListedColormap 
7 # Set the backend to ’TkAgg’ for interactive plotting with

↪→ Tkinter 
8 matplotlib.use(’TkAgg’) 
9 # Define the domain and initialize parameters with specific

↪→ initial damage and corroded cells 
10 def initialize_domain(N_x, N_y, protection_layer_thickness): 
11 C = np.zeros((N_x, N_y)) 
12 # Set initial damage cells for the top crack 
13 top_crack_indices = [(slice(0, 2), slice(95, 105)), 
14 (slice(3, 5), slice(96, 104)), 
15 (slice(6, 8), slice(97, 103)), 
16 (slice(9, 11), slice(99, 101)), 
17 (slice(12, 14), slice(95, 101)), 
18 (slice(15, 17), slice(94, 100)),] 
19 # Set initial damage cells for the bottom crack 
20 bottom_crack_indices = [(slice(198, 200), slice(95, 105)), 
21 (slice(195, 197), slice(96, 104)), 
22 (slice(192, 194), slice(97, 103)), 
23 (slice(189, 191), slice(96, 102)), 
24 (slice(186, 188), slice(95, 101)), 
25 (slice(183, 185), slice(94, 100)),]
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26 for idx in top_crack_indices + bottom_crack_indices: 
27 C[idx] = -0.75 # Initial damage (black) 
28 # Add protective layer 
29 C[:protection_layer_thickness, :] = -1 
30 C[-protection_layer_thickness:, :] = -1 
31 C[:, :protection_layer_thickness] = -1 
32 C[:, -protection_layer_thickness:] = -1 
33 return C 
34 # Implement Fick’s second law for diffusion with different

↪→ coefficients for each metal 
35 def diffuse(C, D_top, D_bottom, delta_t, delta_x, delta_y): 
36 C_new = C.copy() 
37 random_factor = np.random.uniform(0.9, 1.1, size=C.shape) 
38 # Apply different diffusion coefficients based on the metal

↪→ type 
39 for i in range(1, C.shape[0] - 1): 
40 for j in range(1, C.shape[1] - 1): 
41 if C[i, j] != -1 and C[i, j] != -0.75: # Skip

↪→ protective layer and initial damage 
42 if i < C.shape[0] // 2: 
43 D = D_top 
44 else: 
45 D = D_bottom 
46 C_new[i, j] += D * delta_t * ((C[i+1, j] - 2 * C[

↪→ i, j] + C[i-1, j]) / delta_x ** 2 + (C[i,  j+1] - 2 * C[i,
↪→ j] + C[i, j-1]) / delta_y ** 2) * random_factor[i, j] 

47 return C_new 
48 # Incorporate reaction kinetics with different corrosion rates

↪→ for different metals 
49 def apply_reaction_kinetics(C, state, reaction_threshold,

↪→ corrosion_probability_top, corrosion_probability_low, step
↪→ ): 

50 new_state = state.copy() 
51 if step < 50: 
52 return new_state # No corrosion until step 50 
53 

54 corroded = (C >= reaction_threshold) & (state == 0) 
55 # Determine the metal type for each cell 
56 is_top_metal = np.arange(state.shape[0]).reshape(-1, 1) <

↪→ state.shape[0] // 2 
57 is_low_metal = ~is_top_metal 
58 # Apply corrosion probabilities 
59 corrosion_probability = np.where(is_top_metal,

↪→ corrosion_probability_top, corrosion_probability_low) 
60 probabilistic_corrosion = np.random.rand(*C.shape) <

↪→ corrosion_probability 
61 # Only corrode if at least one neighbor is corroded 
62 for i in range(1, state.shape[0] - 1): 
63 for j in range(1, state.shape[1] - 1): 
64 if corroded[i, j] and np.any(state[i-1:i+2, j-1:j+2]

↪→ == 1): 
65 if probabilistic_corrosion[i, j]:
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66 new_state[i, j] = 1 # New cells become
↪→ corroded with specified probability 

67 return new_state 
68 # Simulation function 
69 def simulate_corrosion(N_x, N_y, D_top, D_bottom, time_steps,

↪→ delta_x, delta_y, delta_t, protection_layer_thickness, 
70 reaction_threshold,

↪→ corrosion_probability_top, corrosion_probability_low,
↪→ filename): 

71 C = initialize_domain(N_x, N_y, protection_layer_thickness) 
72 state = np.zeros_like(C) 
73 # Set initial corroded cells in the state array 
74 initial_corroded_indices = [(3, N_y // 2),(N_x - 4, N_y // 2)

↪→ ] 
75 for idx in initial_corroded_indices: 
76 state[idx] = 1 # Initial corroded cells 
77 fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 10)) # Keep

↪→ the figure size the same 
78 corroded_counts = [] 
79 top_metal_counts = [] 
80 bottom_metal_counts = [] 
81 protective_layer_counts = [] 
82 def update(t): 
83 nonlocal C, state 
84 if t >= 50:  
85 C = diffuse(C, D_top, D_bottom, delta_t, delta_x,

↪→ delta_y) 
86 state = apply_reaction_kinetics(C, state,

↪→ reaction_threshold, corrosion_probability_top,
↪→ corrosion_probability_low, t) 

87 # Display state: corroded cells are marked with 1,
↪→ initial damage with -0.75, protective layer with -1, 

88 # and different colors for different metals 
89 display_state = np.zeros_like(state, dtype=float) 
90 display_state[(state == 0) & (np.arange(state.shape[0]).

↪→ reshape(-1, 1) < state.shape[0] // 2)] = -0.75 # Upper
↪→ metal 

91 display_state[(state == 0) & (np.arange(state.shape[0]).
↪→ reshape(-1, 1) >= state.shape[0] // 2)] = -0.25 # Lower
↪→ metal 

92 display_state[C == -1] = -1 # Protective layer 
93 display_state[C == -0.75] = 0.75 # Initial damage 
94 display_state[state == 1] = 1 # Corroded cells 
95 ax1.clear() 
96 im = ax1.imshow(display_state, animated=True, cmap=’

↪→ inferno’, vmin=-1, vmax=1) 
97 ax1.set_title(f’Time Step: {t + 1}’) 
98 ax1.set_xlabel(’X Coordinate’) 
99 ax1.set_ylabel(’Y Coordinate’) 

100 # Custom legend 
101 colors = [’yellow’, ’gold’, ’midnightblue’, ’darkviolet’,

↪→ ’black’]



94 M. Bakhshi Zadeh and B. Eidel

102 labels = [’Corroded Cells’, ’Initial Damage’, ’Top Metal’
↪→ , ’Bottom Metal’, ’Protective Layer’] 

103 handles = [plt.Line2D([0], [0], marker=’o’, color=’w’,
↪→ markerfacecolor=c, markersize=10) for c in colors] 

104 ax1.legend(handles, labels, bbox_to_anchor=(1.28, 1.05),
↪→ loc=’upper left’, borderaxespad=0.) 

105 # Count the number of each type of cell 
106 corroded_count = np.sum(state == 1) 
107 top_metal_count = np.sum((state == 0) & (np.arange(state.

↪→ shape[0]).reshape(-1, 1) < state.shape[0] // 2)) 
108 bottom_metal_count = np.sum((state == 0) & (np.arange(

↪→ state.shape[0]).reshape(-1, 1) >= state.shape[0] // 2)) 
109 protective_layer_count = np.sum(C == -1) 
110 corroded_counts.append(corroded_count) 
111 top_metal_counts.append(top_metal_count) 
112 bottom_metal_counts.append(bottom_metal_count) 
113 protective_layer_counts.append(protective_layer_count) 
114 ax2.clear() 
115 ax2.plot(corroded_counts, color=’yellow’, label=’Corroded

↪→ Cells’) 
116 ax2.plot(top_metal_counts, color=’midnightblue’, label=’

↪→ Top Metal’) 
117 ax2.plot(bottom_metal_counts, color=’darkviolet’, label=’

↪→ Bottom Metal’) 
118 ax2.plot(protective_layer_counts, color=’black’, label=’

↪→ Protective Layer’) 
119 ax2.set_xlabel(’Time Step’) 
120 ax2.set_ylabel(’Number of Cells’) 
121 ax2.legend() 
122 return im, 
123 ani = animation.FuncAnimation(fig, update, frames=time_steps,

↪→ repeat=False, interval=50, blit=True) 
124 # Set the colorbar 
125 cbar = plt.colorbar(ax1.imshow(np.zeros((N_x, N_y)), animated

↪→ =True, cmap=’inferno’, vmin=-1, vmax=1), ax=ax1,
↪→ orientation=’vertical’, pad=0.1) 

126 cbar.ax.set_ylabel(’Corrosion Status’) 
127 plt.subplots_adjust(left=0.2, right=0.85, top=0.85, bottom

↪→ =0.2) # Adjust plot size 
128 plt.tight_layout() # Adjust layout to make space for legend 
129 # Save the animation as a GIF using Pillow 
130 ani.save(filename, writer=’pillow’) 
131 plt.show() 
132 return ani 
133 # Example usage with specified initial conditions 
134 N_x, N_y = 200, 200 # Dimensions of the plate 
135 D_top = 1.4 # Diffusion coefficient for the top metal 
136 D_bottom = 1.35 # Diffusion coefficient for the bottom metal 
137 time_steps = 500 # Number of time steps to ensure full corrosion 
138 delta_x = delta_y = 1 # Grid spacing 
139 delta_t = 0.2 # Increased time step to ensure full corrosion 
140 protection_layer_thickness = 2 # Thickness of the protective

↪→ layer
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141 reaction_threshold = 0.1 # Threshold concentration to trigger
↪→ corrosion 

142 # Corrosion probabilities 
143 corrosion_probability_top = 0.35 # 35% chance of each cell being

↪→ corroded in the top metal 
144 corrosion_probability_low = 0.33 # 33% chance of each cell being

↪→ corroded in the low metal 
145 # Call the simulation function and save the animation 
146 filename = ’corrosion_simulation.gif’ 
147 ani = simulate_corrosion(N_x, N_y, D_top, D_bottom, time_steps,

↪→ delta_x, delta_y, delta_t, protection_layer_thickness, 
148 reaction_threshold,

↪→ corrosion_probability_top, corrosion_probability_low,
↪→ filename) 

Code Listing 4.1 Output by ChatGPT-4o for solving 2D Modeling Corrosion Using CA 

4 Verification 

This section verifies the implementation of FSL in the corrosion simulation code. 
Since the numerical solution of the Initial Boundary Value Problem (IBVP) is carried 
out by a explicit finite difference (FD) method, the verification implies a test of the 
FD scheme, and for the explicit character a check of the stability conditions, and 
conducting unit tests. 

. • Finite Difference Scheme Verification. Fick’s second law in two dimensions, as 
given in 

.
∂C(x, y, t)

∂t
= D

(
∂2 C(x, y, t)

∂x2
+ ∂2 C(x, y, t)

∂y2

)
(2) 

is approximated in the simulation code using a central finite difference scheme as 
shown in (2). 

In this scheme, .Cn[i, j] represents the concentration at grid point .(i, j) at time 
. tn , and .Cn+1[i, j] represents the concentration at time .tn+1. The  terms  .C[i + 1, j], 
.C[i − 1, j], .C[i, j + 1], and .C[i, j − 1] correspond to the concentrations at the 
neighboring grid points. Additionally, .�x and.�y are the grid spacings in the . x and 
. y directions, respectively, .�t is the time step, and .D is the diffusion coefficient. 

. • Stability Condition. The stability condition for an explicit finite difference 
method in two dimensions is: 

.�t ≤ �x2

2D
(3)
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Given the parameters .�x = � y = 1 and the diffusion coefficients of . Dtop = 1.4
and .Dbottom = 1.35, the stability limits are obtained as .�t ≤ 12

2·1.4 ≈ 0.357 and 

.�t ≤ 12

2·1.35 ≈ 0.370 in the .x- and .y-directions. With .�t set to 0.2 in the simula-
tions, the stability condition is fulfilled. 

. • Unit Tests Based on Specific Diffusion Function: The verification code, as pro-
vided in Code Listing 4.2, is generated using ChatGPT-4o based on the algorithm 
outlined in Algorithm Box 4. In these tests, a simplified version of the diffusion 
function is used, excluding the random factor for clarity. 

Algorithm 4: Calculation of Diffusion to Verify the Simulation 

1 Input: 
• C : 2D array representing the initial concentration field, with shape (Nx, Ny) 
• D: Diffusion coefficient (scalar) 
• �t : Time step size (scalar) 
• �x , �y: Grid spacing in the x and y directions, respectively (scalars) 

Output: 

• Cn+1: 2D array representing the updated concentration field after one time step 

Steps: 

1. Initialize Cn+1 ← C (Create a copy of the initial concentration array). 
2. For each interior grid point (i, j ) where 1 ≤ i ≤ Nx  − 2 and  1  ≤ j ≤ Ny  − 2: 

a. If C[i, j] �= −1 and  C[i, j] �= −0.75 then: 
i. Update Cn+1[i, j] using the following formula: 

C(i, j )n+1 = C(i, j )n + D�t

(
C(i + 1, j )n − 2C(i, j )n + C(i − 1, j )n

�x2 

+ 
C(i, j + 1)n − 2C(i, j )n + C(i, j − 1)n

�y2

)

b. End If. 

3. End For. 
4. Return Cn+1 (Return the updated concentration field).
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1 import numpy as np 
2 def diffuse_test(C, D, delta_t, delta_x, delta_y): 
3 C_n_plus_1 = C.copy() 
4 for i in range(1, C.shape[0] - 1): 
5 for j in range(1, C.shape[1] - 1): 
6 if C[i, j] != -1 and C[i, j] != -0.75: 
7 C_new[i, j] += D * delta_t * ((C[i+1, j] - 2 * C[

↪→ i, j] + C[i-1, j]) / delta_x ** 2 + (C[i,  j+1] - 2 * C[i,
↪→ j] + C[i, j-1]) / delta_y ** 2) 

8 return C_n_plus_1 
9 

10 def test_diffusion(): 
11 C = np.zeros((5, 5)) 
12 C[2, 2] = 1 # Initial concentration at the center 
13 D = 1.0 
14 delta_t = 0.2 # Time step for stability 
15 delta_x = delta_y = 1 # Grid spacing 
16 C_n_plus_1 = diffuse_test(C, D, delta_t, delta_x, delta_y) 
17 expected_center = 1 - 4 * D *  delta_t / delta_x ** 2 
18 expected_adjacent = D * delta_t / delta_x ** 2 
19 assert np.isclose(C_new[2, 2], expected_center), f"Central

↪→ value should decrease to {expected_center}" 
20 assert np.isclose(C_new[1, 2], expected_adjacent), f"Adjacent

↪→ cells should increase to {expected_adjacent}" 
21 

22 test_diffusion() 
23 print("Test passed!") 

Code Listing 4.2 This code is used to ensure the implementation of FSL 

In conclusion, the verification confirms that the diffusion implementation in the 
corrosion simulation code adheres to FSL. The finite difference scheme is correctly 
applied, the stability condition is met, and unit tests validate the expected diffu-
sion behavior. Therefore, the diffusion component of the simulation is accurately 
implemented. 

Reaction Kinetics 

This section verifies that the implemented RK in the corrosion simulation obeys the 
expected behavior based on given parameters, ensuring the corrosion process follows 
the reaction threshold and corrosion probabilities for different metal types. 

The code used for verification, as detailed in Code Listing 4.3, is generated by 
ChatGPT-4o following the algorithm presented in Algorithm Box 5. A test function 
initializes a grid representing a metal plate with specific initial conditions for both 
corrosion and concentration. The reaction kinetics function is then applied to verify 
if the cells corrode as expected. To ensure consistent results, the random seed is fixed, 
and specific cells are deliberately corroded.
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Algorithm 5: Calculation of Reaction Kinetics to Verify the Corrosion Modeling 

1 Input: 
• C : 2D array representing the concentration field, with shape (Nx, Ny) 
• state: 2D array representing the current corrosion state, with shape (Nx, Ny) 
• reaction_threshold: Scalar value representing the concentration threshold for corrosion 
• corrosion_probabili t y_top: Probability of corrosion for the top metal layer 
• corrosion_probabili t y_low: Probability of corrosion for the bottom metal layer 
• step: Integer representing the current simulation step 

Output: 

• new_state: 2D array representing the updated corrosion state 

Procedure: 

1. Initialize new_state ← state. 
2. If step < 50, then return new_state. 
3. Identify cells where C ≥ reaction_threshold  and state == 0. 
4. Create a boolean mask is_top_metal  to identify top metal regions. 
5. Assign corrosion_probabili t y based on is_top_metal. 
6. Set a fixed random seed for reproducibility. 
7. Generate a random array probabilistic_corrosion. 
8. Manually set probabilistic_corrosion[4, 5] and probabilistic_corrosion[6, 5] to 0. 
9. For each interior grid point (i, j ): 

a. If corroded[i, j] is True: 
i. Extract neighbors of state[i, j]. 
ii. If any neighbor is corroded: 

A. If probabilistic_corrosion[i, j] < corrosion_probabili t y[i, j], then set 
new_state[i, j] =  1. 

iii. Else, print a message indicating no corrosion. 
b. Else, print a message indicating no corroded neighbors. 

10. Return new_state. 

1 import numpy as np 
2 

3 # Corrected apply_reaction_kinetics function with deterministic
↪→ outcome for testing 

4 def apply_reaction_kinetics(C, state, reaction_threshold,
↪→ corrosion_probability_top, corrosion_probability_low, step
↪→ ): 

5 new_state = state.copy() 
6 if step < 50: 
7 print(f"Step {step}: No corrosion applied (initial delay)

↪→ .") 
8 return new_state # No corrosion until step 50 
9 

10 corroded = (C >= reaction_threshold) & (state == 0) 
11 is_top_metal = np.zeros_like(C, dtype=bool) 
12 is_top_metal[:C.shape[0] // 2, :] = True # First half rows

↪→ are top metal 
13 corrosion_probability = np.where(is_top_metal,

↪→ corrosion_probability_top, corrosion_probability_low)
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14 

15 # Set a fixed random seed for reproducibility 
16 np.random.seed(0) 
17 probabilistic_corrosion = np.random.rand(*C.shape) 
18 # Force the cells [4, 5] and [6, 5] to corrode for testing

↪→ purposes 
19 probabilistic_corrosion[4, 5] = 0 
20 probabilistic_corrosion[6, 5] = 0 
21 

22 for i in range(1, state.shape[0] - 1): 
23 for j in range(1, state.shape[1] - 1): 
24 if corroded[i, j]: 
25 neighbors = state[i - 1:i + 2, j - 1:j + 2]  
26 if np.any(neighbors == 1): 
27 if probabilistic_corrosion[i, j] <

↪→ corrosion_probability[i, j]: 
28 new_state[i, j] = 1 # New cells become

↪→ corroded with specified probability 
29 print( 
30 f"Cell ({i}, {j}) corroded. Neighbors

↪→ : {neighbors.flatten()}, Prob: {corrosion_probability[i, j
↪→ ]}, Rand: {probabilistic_corrosion[i, j]}") 

31 else: 
32 print( 
33 f"Cell ({i}, {j}) not corroded.

↪→ Neighbors: {neighbors.flatten()}, Prob: {
↪→ corrosion_probability[i, j]}, Rand: {
↪→ probabilistic_corrosion[i, j]}") 

34 else: 
35 print(f"Cell ({i}, {j}) has no corroded

↪→ neighbors.") 
36 else: 
37 print(f"Cell ({i}, {j}) not above reaction

↪→ threshold.") 
38 return new_state 
39 

40 # Test function for reaction kinetics 
41 # The test function initializes the grid and verifies the

↪→ corrosion process. 
42 def test_reaction_kinetics(): 
43 N_x, N_y = 10, 10 # Small grid for testing 
44 C = np.zeros((N_x, N_y)) 
45 state = np.zeros((N_x, N_y)) 
46 # Set initial conditions 
47 reaction_threshold = 0.1 
48 corrosion_probability_top = 0.5 
49 corrosion_probability_low = 0.3 
50 # Set specific cells to meet the corrosion threshold 
51 C[4, 5] = 0.2 # Above threshold in top metal 
52 C[6, 5] = 0.2 # Above threshold in bottom metal 
53 state[4, 4] = 1 # Initial corroded cell near top threshold

↪→ cell
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54 state[6, 6] = 1 # Initial corroded cell near bottom
↪→ threshold cell 

55 

56 # Print initial state and concentration 
57 print("Initial State:") 
58 print(state) 
59 print("Initial Concentration (C):") 
60 print(C) 
61 

62 # Apply reaction kinetics 
63 step = 51 # Step beyond the initial delay 
64 new_state = apply_reaction_kinetics(C, state,

↪→ reaction_threshold, corrosion_probability_top,
↪→ corrosion_probability_low, step) 

65 

66 # Print new state after applying reaction kinetics 
67 print("New State After Reaction Kinetics:") 
68 print(new_state) 
69 

70 # Check if the specific cells have corroded based on their
↪→ neighbors and probabilities 

71 assert new_state[4, 5] == 1, "Top metal cell should be
↪→ corroded." 

72 assert new_state[6, 5] == 1, "Bottom metal cell should be
↪→ corroded." 

73 

74 # Run the test 
75 test_reaction_kinetics() 

Code Listing 4.3 Code to test the correct implementation of reaction kinetics 

4.1 Results 

Initial conditions are set with specific cells at the corrosion threshold. The reaction 
kinetics function is applied, with debug statements providing insights into the process. 
As expected, the cells at [4, 5] and [6, 5] corrode, confirming the function’s behavior 
under controlled conditions as underpinned in Fig. 5. 

The verification process demonstrates that the RK implementation obeys the 
expected behavior based on given parameters. By using a fixed random seed and 
forcing specific cells to corrode, deterministic outcomes are ensured, confirming 
the implementation’s correctness. This approach can be extended to validate other 
aspects of the corrosion simulation. 

The code provided in the repository [ 6] is used to specify the initial and boundary 
conditions of the problem. The feasibility of the research is also ensured by verifying 
that the obtained results closely match with a high degree of accuracy.
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(a) Initial concentration matrix with cells [4, 
5] and [6, 5] meeting the corrosion threshold 

(b) Final matrix after corrosion. Cells [4, 5] 
and [6, 5] corroded 

Fig. 5 Comparison of initial and final concentration matrices in the RK test 

5 Discussion 

Repeatability as a Reliability Signature The main form of the chatbot’s responses 
remains consistent, with similar reactions applicable to similar prompts. However, 
there are definite differences in the details. 

5.1 Errors, Omissions 

The shortcomings can be summarized as follows: 

• Rule Violations: The code generated by ChatGPT-4o sometimes violates basic 
rules. For example, corroded parts of the material are allowed to revert to their 
original state, which is unrealistic. 

• Inability to Fix Visualization Errors: Some visualization errors in the generated 
code required manual intervention despite attempts to resolve them with secondary 
prompts. 

• Improper Plot Labeling: Some labels in the legend section are incorrectly printed 
on top of each other, resolved by adjusting the plot size. 

• Incorrect Implementation of Fick’s second law: The initial simulation did not 
correctly follow FSL. This is resolved with a secondary prompt using the appro-
priate function. 

• Inadequate Initial Conditions: The generated code displays initial damage incor-
rectly and contains errors, which are resolved by manual code editing. In this 
edition, the coordinates of the cells that suffered initial damage are accurately 
entered.
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• Error in Updating Cells: Initially, cells outside the damage area did not corrode. 
A new prompt for the reaction kinetics function corrected this, ensuring the entire 
metal could corrode. 

• Neglect of Defined Boundary Conditions: Corrosion is intended to occur only 
if a neighboring cell is corroded, but the initial code allows corrosion anywhere. 
This problem is fixed by placing a new if statement and specifying its condition. 

• Incorrect Display of Primary Damage: The chatbot struggles with basic prob-
lems. The problem is solved by adjusting the order of definition of cell types. 

5.2 Learned Lessons 

In conclusion, ChatGPT-4o is a powerful research assistant capable of significantly 
streamlining the research process by providing comprehensive information, data 
analysis, and insights. However, the results generated by ChatGPT-4o require expert 
review to correct any minor issues or inaccuracies, ensuring the reliability and accu-
racy of the information. The chatbot’s effectiveness is highly dependent on proper 
utilization by the user, who must understand its strengths and limitations to maximize 
response quality. When used correctly, ChatGPT can deliver highly valuable results, 
contributing meaningfully to research endeavors. 

The project highlights the substantial improvements in the latest iteration of 
ChatGPT, specifically the difference between versions 3.5 and 4o. ChatGPT-4o 
exhibits a marked enhancement in contextual understanding, information retrieval, 
and response coherence, making it a more effective and reliable research tool. These 
advancements enable users to tackle more complex tasks, saving time and improv-
ing output quality. While expert review remains crucial, the enhanced capabilities of 
ChatGPT-4o significantly boost its utility as an intelligent and dependable research 
assistant. 

5.3 Refined Corrosion Simulation Prompt 

The prompt shown in Fig. 6 is used to edit the code generated by the initial prompt 
shown in Fig. 4. The final code is shown in Code Listing 4.1.
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Fig. 6 Prompt used for the final editing of the code
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Fig. 6 (continued) 

5.4 Visual Results 

This section presents the visual documentation of the corrosion simulation process 
at different stages highlighting in Fig. 7(a) the initial, in (b) an intermediate, in (c) an 
advanced and in (d) the final stage of the corrosion progress. Faster progress in the 
upper part of the simulation domain through a larger diffusion coefficient (compare 
the values in Table 1) is clearly visible. 

6 Conclusion 

The objective of this study was to develop a robust 2D CA model for simulating 
corrosion processes, incorporating FSL of diffusion and RK. The simulation tool 
serves the purpose to predict the initiation and propagation of corrosion under various 
environmental conditions with the ultimate goal of an effective corrosion prevention 
and control strategies. 

The main results of the study are summarized as follows: 
Model Development: A 2D CA model was successfully developed to simulate 

corrosion. The model accurately captures the transport of corrosive species and the 
subsequent chemical reactions at the material’s surface. 

Diffusion Verification: The implementation of FSL was rigorously tested. The 
verification process confirmed that the model correctly simulates the diffusion pro-
cess, adhering to theoretical expectations and stability conditions. 

Reaction Kinetics Verification: The reaction kinetics were verified through con-
trolled testing. The results show that the model accurately simulates the corrosion 
process, taking into account the different corrosion rates for various metals and the 
influence of initial conditions. 

Simulation Results: The simulation effectively demonstrated the progression of 
corrosion, showcasing the protective layer’s impact and the different corrosion rates 
of the metals. The refined prompts and code adjustments ensured that the simulation 
adhered to the specified conditions.
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(a) Initial stage (b) Intermediate stage 

(c) Advanced stage (d) Final stage 

(e) Number of different cell types over time 

Fig. 7 Different stages a–d of the corrosion process along with e temporal evolution of the different 
cell types
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6.1 Discussion and Future Work 

During the development of the 2D CA model for simulating corrosion, several chal-
lenges were encountered with the initial code generated by ChatGPT. Major issues 
include improper rule enforcement, such as allowing corroded cells to revert to their 
original state, and visualization challenges that require manual fixes. Minor issues 
involve plot labeling errors resolved by adjusting the plot size. The initial prompt 
lacks sufficient details, leading to issues like incorrect implementation of FSL and 
inadequate initial conditions. These issues are addressed through iterative prompts 
and manual edits. 

Despite these challenges, the process highlights the importance of precise and 
detailed prompts to ensure the accuracy of the generated code. While the structure 
of the code is consistent, variations in finer details emphasize the need for careful 
review and expert oversight. ChatGPT proves to be a powerful research assistant, 
significantly aiding the development process. However, its effectiveness depends on 
the clarity and specificity of the prompts, as well as the expertise applied in reviewing 
and refining its outputs. 

Future research can focus on extending the model to include more complex envi-
ronmental conditions and different types of materials, and incorporating machine 
learning techniques to enhance the model’s predictive capabilities. 

In conclusion, the developed 2D CA model for simulating corrosion is a robust tool 
for predicting and managing corrosion processes. The iterative process of refining 
prompts and verifying the model ensured that the final simulation met the desired 
standards of accuracy and reliability. This study underscores the potential of AI-
assisted tools like ChatGPT in scientific research, while emphasizing the need for 
continuous refinement and expert oversight. 
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Instationary Heat Conduction 
on Rectangular Domains with Arbitrary 
Circular Holes 

Aagashram Neelakandan and Bernhard Eidel 

Abstract This chapter presents the generation and evaluation of Python code for 
simulating two-dimensional, unsteady heat conduction in rectangular domains with 
multiple holes using ChatGPT-4. The focus is on solving the Fourier heat conduc-
tion equation through the Forward Time Centered Space (FTCS) scheme, a finite 
difference method. The chapter begins with a detailed derivation of the algorithmic 
approach, transitioning from the governing partial differential equation to the discrete 
FTCS scheme for temperature updates. The accuracy and reliability of the generated 
code are rigorously tested, including a comparison with analytical solutions, demon-
strating the effectiveness of AI-assisted coding in computational materials science 
and mechanics. 

1 Introduction 

The study focuses on understanding the performance and usage of ChatGPT-4’s 
ability to generate code for a scientific problem by proposing the implementation of 
the 2D Fourier transient heat conduction problem using the Forward Time Centered 
Space (FTCS) scheme [ 5]. 

The heat conduction equation describes how heat is transferred within a material 
over time. In its general form, the 2D heat conduction equation is given by 

.
∂T

∂t
= α

(
∂2 T

∂x2
+ ∂2 T

∂y2

)
, (1) 
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where .T represents the temperature, . t is time, . x and . y are the spatial coordinates, 
and. α is the thermal diffusivity. This equation represents the conservation of energy 
and relates the temporal change in temperature to the spatial variations and accounts 
for the thermal diffusivity of the material. 

The FTCS scheme is a numerical method used to approximate the solutions of 
partial differential equations, which is based on the Finite Difference Method (FDM), 
having discretization for both space and time quantities. The FTCS approximates the 
spatial derivatives using the central differences scheme and time derivatives using 
the forward Euler method. 

To apply the FTCS scheme, we discretize the spatial and temporal domains. Let 
.�x and .�y be the spatial step sizes in the . x and . y directions, respectively, and let 
.�t be the time step. Define the grid points as .xi = i�x and .y j = j�y for integers 
. i and . j , and .tn = n�t for integer . n. The temperature at a grid point .(xi , y j ) at time 
. tn is denoted as .T n

i, j . 
The finite difference approximations for the first and second derivatives are given 

by 

.
∂T

∂t
≈ T n+1

i, j − T n
i, j

�t
, (2) 

.
∂2 T

∂x2
≈ T n

i+1, j − 2T n
i, j + T n

i−1, j

�x2
, (3) 

.
∂2 T

∂y2
≈ T n

i, j+1 − 2T n
i, j + T n

i, j−1

�y2
. (4) 

Substituting equations (2), (3), and (4) into the heat conduction equation (1), we 
obtain the FTCS scheme 

.T n+1
i, j = T n

i, j + α�t

(
T n
i+1, j − 2T n

i, j + T n
i−1, j

�x2
+ T n

i, j+1 − 2T n
i, j + T n

i, j−1

�y2

)
, (5) 

where .T n+1
i, j is the temperature at time .tn+1 calculated from known temperature . T n

i, j
at time. tn and.�t = tn+1 − tn is the discretized time step with .�x and.�y being the 
spatial step sizes as shown in Fig. 1. 

The algorithm for instationary heat conduction is given in the algorithm box 1 
and the prompt used for generating it is mentioned in the box Fig. 2.
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Fig. 1 2D representation of FTCS scheme based on FDM indicating the spacial points 
(.T n

i, j , T
n
i+1, j , T

n
i−1, j , T

n
i, j+1, T

n
i, j−1) used for calculating next temporal point (.T n+1

i, j ) 

Generate the LaTeX code for an algorithm that solves a 2D transient heat con-
duction problem using the Forward Time Centered Space (FTCS) scheme. 
The algorithm should be formatted using the algorithm environment in La-
TeX. 

Fig. 2 Prompt for generating the algorithm in LATEX pseudocode for instationary heat conduction 
using an FTCS scheme in 2D
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Algorithm 1: Instationary Heat Conduction using FTCS Scheme in 2D 
Input: Grid size.(Nx, Ny), time steps. T , time step.�t , grid spacing.�x , .�y, thermal  

diffusivity. α, initial temperature field.T (x, 0), boundary conditions 
Output: Temperature field.T (x, t) over time 

1 Initialization: 
2 Set the grid with size.(Nx, Ny); 
3 Initialize the temperature field.T (x, 0); 
4 Set thermal diffusivity. α; 

5 for .t = 0toT with step .�t do 

6 Update Temperature Field: 
7 foreach interior grid point .(i, j) do 
8 Calculate the temperature.T (i, j)n+1 at the next time step using the FTCS scheme: 

. T (i, j)n+1 = T (i, j)n + α�t

(
T (i + 1, j)n − 2T (i, j)n + T (i − 1, j)n

�x2

+T (i, j + 1)n − 2T (i, j)n + T (i, j − 1)n

�y2

)

9 end 

10 Apply Boundary Conditions: 
11 Apply the specified boundary conditions to the temperature field.T (x, t); 
12 end 

13 Output: 
14 Return the temperature field.T (x, t) over time; 

2 Prompt  

The prompt aims to generate code using ChatGPT-4 to numerically compute the time-
dependent temperature field in a rectangular 2D domain with arbitrary dimensions 
under the constraints of an arbitrary number of different circular holes in the domain 
by applying the FTCS scheme mentioned before in the theory for solving the heat 
conduction equation. 

For formulating a prompt for ChatGPT-4 to generate a 2D transient heat conduc-
tion simulation in Python using the FTCS method, we have to mention every critical 
parameter. These parameters encompass plate dimensions, thermal diffusivity, spa-
tial step, and maximum iteration time. The prompt 5.2 outlines precise boundary 
conditions, incorporating Dirichlet at the top and Neumann on the other sides while 
describing hole configurations with coordinates, radius, type, and value. The prompt 
also includes defining functions for grid initialization, hole condition application, 
temperature distribution computation, and high-resolution visual output generation. 
Experiments with prompts reveal that some functions need heightened emphasis, 
such as hole evolution, visualization, and verbose logging. Verbose logging purpose 
is to provide extensive and detailed information about the program’s status, often
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Fig. 3 Prompt or solving 2D Fourier transient heat conduction problem 

used for debugging or monitoring purposes. The prompt also calls for library avail-
ability checks, prioritizing OpenCV for video creation and seamlessly falling back 
to Pillow if required. The anticipated outcome is a meticulously documented, self-
contained script, poised to deliver precise simulations with explicit hole evolution 
visibility, archived as both a video and GIF (Fig. 3). 

3 Generation Results 

The reason that ChatGPT-4 cannot consistently generate the same results is due to 
its non-deterministic nature, influenced by random sampling during generation and 
contextual dependencies. The model’s training on a diverse dataset contributes to 
response variability. To alleviate these deficiencies and speed up programming, one
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Fig. 3 (continued) 

needs to control randomness by refining input through elaborate prompt engineering 
and regenerating the answers, and the user should understand that complete gener-
ation is not guaranteed in a single prompt. The following code in code Listing 3 is 
generated by the ChatGPT-4 with the given prompt, without any additional inputs 
and one of the output plot is shown in Fig. 4.
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Fig. 4 Contour plot of the plate domain (quantities on the abscissa. x and ordinate. y in (.mm)) with 
two circular holes at time step.t = 749 s, with a time step size of.�t = 0.125 s. The top boundary 
is maintained at a temperature of.100 K, while the other boundaries are kept at.0 K. The first hole, 
centered at .(10, 35), has a temperature of .0 K, and the second hole, centered at .(30, 27), has  a  
temperature of. 100 K

1 

2 import numpy as np 
3 import matplotlib.pyplot as plt 
4 import matplotlib.animation as animation 
5 from PIL import Image 
6 import os 
7 

8 # Check for OpenCV availability 
9 try: 

10 import cv2 
11 OPENCV_AVAILABLE = True 
12 except ImportError: 
13 OPENCV_AVAILABLE = False 
14 

15 # Fixed Numerical Parameters 
16 plate_length = 50.0 
17 max_iter_time = 750 
18 alpha = 2.0 
19 delta_x = 1.0 
20 delta_t = (delta_x ** 2) / (4 * alpha) # Stability

↪→ criterion 
21 gamma = alpha * delta_t / (delta_x ** 2)
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22 

23 # Boundary Conditions 
24 boundaries = {’top’: 100.0, ’bottom’: 0.0, ’left’: 0.0, ’

↪→ right’: 0.0} 
25 

26 # Hole Configuration 
27 holes = [{’center’: (25, 25), ’radius’: 5,  ’type’: ’D’, ’

↪→ value’: 0.0}] 
28 

29 def initialize_grid (): 
30 """ Initializes the temperature grid with boundary

↪→ conditions.""" 
31 grid = np.zeros((int(plate_length), int(plate_length))) 
32 grid[0, :] = boundaries[’top’] 
33 # Neumann conditions on other sides are implicitly set

↪→ to zero 
34 return grid 
35 

36 def apply_hole_conditions(grid): 
37 """ Applies hole configurations to the grid.""" 
38 for hole in holes: 
39 x_center , y_center = hole[’center’] 
40 radius = hole[’radius’] 
41 for i in range(grid.shape [0]): 
42 for j in range(grid.shape [1]): 
43 if (i - x_center) ** 2 + (j - y_center) ** 2

↪→ < radius ** 2: 
44 grid[i, j] = hole[’value’] 
45 return grid 
46 

47 def FTCS(grid): 
48 """ Performs a single time step of the FTCS method.""" 
49 new_grid = np.copy(grid) 
50 for i in range(1, grid.shape [0] - 1): 
51 for j in range(1, grid.shape [1] - 1): 
52 new_grid[i, j] = grid[i, j] + gamma * (grid[i+1,

↪→ j] + grid[i-1, j] + grid[i, j+1] + grid[i, j-1] - 4 *
↪→ grid[i, j]) 

53 return apply_hole_conditions(new_grid) 
54 

55 def save_frame(frame , iter_time , frames_dir): 
56 """ Saves a single frame of the simulation.""" 
57 plt.imshow(frame , cmap=’hot’, interpolation=’nearest ’) 
58 plt.title(f’Time Step: {iter_time}’) 
59 plt.colorbar () 
60 plt.savefig(f"{frames_dir }/ frame_{iter_time :04d}.png") 
61 plt.close() 
62 

63 def compile_video(frames_dir , output_file): 
64 """ Compiles frames into a video.""" 
65 if not OPENCV_AVAILABLE: 
66 return 
67 images = [img for img in os.listdir(frames_dir) if img.

↪→ endswith(".png")] 
68 frame = cv2.imread(os.path.join(frames_dir , images [0]))
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69 height , width , layers = frame.shape 
70 video = cv2.VideoWriter(output_file , cv2.

↪→ VideoWriter_fourcc (*’DIVX’), 15, (width , height)) 
71 for image in images: 
72 video.write(cv2.imread(os.path.join(frames_dir ,

↪→ image))) 
73 cv2.destroyAllWindows () 
74 video.release () 
75 

76 def compile_gif(frames_dir , output_file): 
77 """ Compiles frames into a GIF.""" 
78 images = [Image.open(os.path.join(frames_dir , img)) for

↪→ img in os.listdir(frames_dir) if img.endswith(".png")] 
79 images [0]. save(output_file , save_all=True , append_images

↪→ =images [1:], optimize=False , duration =40, loop =0) 
80 

81 def run_simulation (): 
82 """ Runs the entire simulation.""" 
83 grid = initialize_grid () 
84 grid = apply_hole_conditions(grid) 
85 frames_dir = ’frames’ 
86 os.makedirs(frames_dir , exist_ok=True) 
87 

88 for iter_time in range(max_iter_time): 
89 print(f"Iteration {iter_time }/{ max_iter_time}") 
90 save_frame(grid , iter_time , frames_dir) 
91 grid = FTCS(grid) 
92 

93 if OPENCV_AVAILABLE: 
94 compile_video(frames_dir , ’

↪→ heat_conduction_simulation.avi’) 
95 else: 
96 compile_gif(frames_dir , ’heat_conduction_simulation.

↪→ gif’) 
97 

98 if __name__ == "__main__": 
99 run_simulation () 

Code Listing 5.1 Output by ChatGPT for solving 2D Fourier transient heat conduction problem 

4 Testing and Verification 

To assess ChatGPT-4’s code generation accuracy, we employ intrinsic verification [ 3]. 
This involves validating the output by comparing it to established benchmarks, such 
as the one-dimensional heat conduction problem. For this validation, we set the left 
boundary of the plate (.x = 0 mm) at a temperature .T1 = 1000 K and the right side 
(.x = 1000 mm) at a lower temperature of.T2 = 0 K, creating a temperature gradient 
in the.x-direction. This reduces the problem to one-dimensional, for which the closed 
form could be obtained by solving (1) in 1D, which yields (6) expressed in terms of 
the error function erf
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Fig. 5 MSE plotted in logarithmic scale between FTCS and Analytical Solutions over time steps 
along the middle of the plate 

.T (x, t) = T1 − (T1 − T2) ∗ erf

(
x

2
√

αt

)
, (6) 

.where erf = 2√
π

∫ z

0
e−y2dy . (7) 

The analytical solution serves to verify the code-generated numerical solution, 
where the deviation is measured by the Mean Square Error (MSE) defined as 

.MSE = 1

n

n∑
i=1

(Tanalytical,i − TFTCS,i )
2 , (8) 

where . n is the number of data points along the plate’s midsection, .Tanalytical,i is the 
temperature at point . i computed using the analytical solution and .TFTCS,i is the 
temperature at point . i computed using the FTCS scheme. 

The diagrams in Figs. 5 and 6 illustrate the MSE between temperatures computed 
by the analytical and FTCS scheme along the plate’s midsection. The reducing error 
over extended time intervals, coupled with the overall error bounds within 10% for a 
.1000 mm plate, indicates the use of the code generated by ChatGPT-4 directly, with 
or without minor adjustments for solving a scientific task is a viable option.



InstationaryHeatConduction onRectangularDomainswithArbitrary… 119

Fig. 6 Contour plot of the logarithm of MSE between FTCS and the analytical solutions over 
the spatial distance . x in the middle of the plate at .y = 500 mm, displayed up to a distance of 
.x ≤ 200 mm. The contour levels are colored to indicate the time steps of the simulation 

5 Discussion 

The output of the code generated by the ChatGPT-4 and its verification paves the 
strong foundation for using the Large Language Models (LLMs) as a critical tool 
in solving scientific problems. Even though they have issues with faithfulness in 
generated data caused by the sources of data, training, and inference, also known as 
hallucinations [ 2], which may result in outputs that are factually incorrect or flawed 
in reasoning due to memorized data, various methods have been developed to reduce 
their effects. In the back-end, the model applies higher probability to the statements 
it has seen from the training than to the ones it is generating, and there are high 
uncertainty errors associated with the tokens which are not present in the user-given 
prompt. While the standard user cannot control the effects arising from hallucinations 
from data and training, mitigating inference-caused errors by Faithfulness Enhanced 
Decoding, which emphasizes the user instruction and its alignment with the generated 
content [ 1]. The authors of [ 4] develop the method which prioritizes the inputs/tokens 
from the user context when there is a high discrepancy or uncertainty between the 
output of the LLM and the user’s prompt. So if the given input is high enough 
details and does not rely on external facts, the output is less likely to have a large 
percentage of hallucinated content, and it is one of the reasons which emphasizes the 
importance of having detailed user prompts to get less error output from the ChatGPT 
for solving scientific problems. However, the task of generating an extremely detailed
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prompt is not always trivial, as there is no ending point in providing details. The 
amount of information and how it is structured can also influence the output of the 
ChatGPT. During many initial tests, even though ChatGPT-4 has a higher possibility 
of generating code, which works straight out of the box without regeneration, the 
given prompt generates complete code with ChatGPT-3.5 rather than ChatGPT-4, 
since it assumes that the user is asking for the structure of the code and provides only 
the overall framework rather than the actual implementation. A possible mitigation is 
either using the chain of commands or adjusting the prompt and forcing the ChatGPT 
to provide complete code every time, and this study employs the latter method. 

A useful strategy in scientific computing is to use LATEX-generated pseudocode as 
an intermediate step before code generation. This method offers experienced devel-
opers greater control by first generating a LATEX algorithm via ChatGPT, reviewing 
and refining it, and then using it to produce code. This approach ensures a clear, logi-
cal structure before implementation, reducing potential errors. While LATEX provides 
precision and consistency, this method introduces challenges, such as the model’s 
need to decode LATEX, which can complicate longer prompts or complex modifi-
cations. Additionally, this approach may not scale well for complex problems and 
might be less accessible for users unfamiliar with pseudocode. For proficient coders, 
the main advantage of ChatGPT may be time-saving rather than enhancing under-
standing, making this algorithmic approach not universally applicable. 

6 Conclusion 

The central purpose of this chapter was to explore the performance of ChatGPT-4 in 
generating code for complex scientific problems, which, in this case, focuses on the 
implementation of the 2D Fourier transient heat conduction problem using the FTCS 
scheme for a rectangular plate with an arbitrary number of holes. The prompt was 
formulated in a way such that it encapsulates every parameter used for the simulation 
along with the precise boundary condition, and it also highlights the use of libraries 
required to produce the plots requested by the user. The code generated by ChatGPT-
4 was tested and verified with the analytical solution, which demonstrated that the 
results are in agreement with the analytical solution. Remaining errors are minor 
and can be traced back to the numerical method (FTCS) realized by a flawless code. 
The discussion elucidated the general problem of hallucination intimately related 
to LLMs, where we suggested effective measures to overcome these issues like 
providing details of the instructions in prompt. Overall, the results of this study 
strongly suggest that LLMs will play a major role in the future as an assistant in 
the development and iteration of faster solutions, thus pushing the boundaries of 
scientific computing and problem-solving.
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Transfer Learning for Alloy 
Classification Based on Microstructure 
Images 

Aditya Deshmukh and Bernhard Eidel 

Abstract This study investigates the performance of large language models (LLMs), 
specifically GPT-4, in developing a deep learning (DL) model to predict alloy types 
based on scanning electron microscopy (SEM) images of steel microstructures. The 
approach utilizes transfer learning (TL) and an ensemble of two pre-trained models, 
ResNet-50 and DenseNet-121, fine-tuned on SEM scans of 33 types of steels. The 
two models achieve validation accuracies of 97.6% and 98.4%, respectively, with the 
ensemble model reaching a test accuracy of 99.2%. The results underscore the poten-
tial of LLM-assisted coding in computer vision tasks, such as image classification, 
within computational materials science. The limitations are also discussed. 

1 Introduction 

The study evaluates the ability of GPT-4 at coding a transfer-learning-based model 
that predicts an alloy given a Scanning Electron Microscope (SEM) scan of a 
microstructure. This section describes the data and approaches relevant to this task. 
Section 2 describes the prompt-engineering approach and the prompt. Section 3 lists 
the code generated by this prompt. Section 4 reports the performance of the code. 
Section 5 discusses the coding errors GPT-4 made and the measures taken. Finally, 
in Sect. 6, we summarize the findings. 
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1.1 Data 

We use raw SEM scans of microstructures of 33 types of 9% Cr steels [ 4]. The data 
is divided into three folders, one for each alloy (CPJ, HR, P92), each consisting of 
subfolders of specific alloys (e.g., CPJ7J), wherein the microstructure images of that 
specific alloy are stored. These three families of alloys are closely related in terms 
of their functions. They are heat-resistant and exhibit good creep resistance. In total, 
there are 837 images and 33 alloys, with a varying number of images for each alloy. 
Figure 1 shows an example of the SEM scan of one microstructure. 

Remark. In the context of commercial alloys, the abbreviation HR typically 
stands for Heat-Resistant. This designation is often used to identify alloys that 
are specifically designed to withstand high temperatures while maintaining their 
mechanical properties and corrosion resistance. The abbreviation CPJ stands for 
Copper-Phosphorus-Joint alloys. These are specialized brazing alloys used for join-
ing copper and copper-based materials. The term P92 refers to a specific type of 
alloy used in high-temperature applications, particularly in the power generation and 
petrochemical industries. P92 alloy is a type of creep-resistant, ferritic-martensitic 
steel, known for its excellent high-temperature strength, oxidation resistance, and 
corrosion resistance. It is commonly used in the manufacturing of components like 
pipes, tubes, and fittings in high-temperature steam and pressure environments. 

Fig. 1 Sample SEM scan of 
a steel microstructure. It 
exhibits a resolution of 630 
.× 592 px, while the scale bar 
extends to 100. µm
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1.2 Deep Learning 

The introduction of data science, especially deep learning (DL), to the discipline 
of materials science has been revolutionary [ 1]. DL is a subset of machine learning 
(ML) that uses artificial neural networks (NNs), a structure of repeating computa-
tional layers that do linear and non-linear operations to transform input data into a 
new useful representation and finally extract knowledge, to solve several types of 
problems, such as computer vision, natural language, in various disciplines, such as 
medicine, economics, earth sciences, and, of course, computational materials sci-
ence. In computational materials science, deep learning is primarily used to accel-
erate the process of materials optimization and discovery, which includes problems 
related to forward simulation and inverse design, to better understand or exploit the 
property-structure-process linkages [ 5]. 

In theory, sufficiently deep DL models can approximate any function. They are 
therefore quite powerful. However, the goal is to not only fit the input data, called 
the training data. A model is considered usable only if it is generalizable, or if it also 
performs well on out-of-distribution data. Therefore, models are tested on test data, 
and the performance metrics associated with this test data indicate how well the model 
may perform in the wild. Training DL models also requires a third data set, called 
the validation set, to tune the hyperparameters associated with the model, such as the 
number of epochs, which is the number of times the model processes the whole dataset 
to learn its parameters or weights, or the learning rate, an optimization parameter that 
governs the step size the optimization algorithm takes. In supervised deep learning, 
at every optimization step, the deep learning model outputs its predictions. These 
are compared against the ground truth via the loss function. Minimization of loss 
indicates a good fit. An optimization step is taken in the direction that reduces the 
loss. After several epochs and consequent weight updates, the model finds the optimal 
weights that minimize the loss function, and the problem is considered solved. 

1.3 Transfer Learning 

Although the amount of data in materials science is on the rise, this increase mainly 
corresponds to certain subsets of materials classes and properties. Materials experi-
ments are expensive. 

Most of the big data available originates from computations; e.g., DFT databases, 
finite element analysis. Materials data is typically not big data for many interesting 
problems. This limits materials scientists from utilizing the full potential of DL.
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For instance, DL cannot be used for several materials problems where the available 
data is scarce because DL is typically data-hungry. However, some DL models are 
transferable. For instance, the shallower layers of a convolutional neural network 
(CNN) learn more general concepts about an image. In the deeper convolutions, 
the kernels reflect more specific knowledge. When two problems are comparable, 
a DL model trained for the first problem can be used to fine-tune a model for the 
second problem. This is called Transfer Learning (TL), and it is an immensely useful 
approach when one has big data for one problem and small data for the problem at 
hand—a common scenario in materials science. Refer to [ 2] for a thorough discussion 
on TL. 

Because the microstructures of steels look quite similar within the specific class 
of steel, predicting with small data alone is challenging—hence, we use TL. We 
use ResNet-50 and DenseNet-121, both trained on millions of images from the 
ImageNet data, as the two pre-trained models of the ensemble [ 3, 6]. ResNet-50’s 
architecture includes residual connections that help mitigate the vanishing gradient 
problem, thereby improving learning in deep networks. DenseNet-121, on the other 
hand, features dense connectivity, where each layer is connected to every other layer, 
which enhances feature propagation and reduces the number of parameters, leading 
to improved performance. Owing to the architectural differences, the two models 
may produce different outputs. By combining them in an ensemble, we combine the 
strengths of both models. 

ResNet-50 and DenseNet models are a good choice because our problem is essen-
tially an image classification problem, and these models, having their weights trained 
on ImageNet, should be able to recognize the general image patterns and features. 
When doing TL, the pre-trained model is stacked with new layers, or, at minimum, 
stacked with only one layer, to match the output dimensions of the second task. Here, 
only the final fully connected layer is replaced by a layer that outputs a tensor of 
size matching the number of alloy types. Because ImageNet likely does not contain 
many images closely resembling alloy microstructures, we fine-tune the weights of 
the output layer and the inner layers. To do this, we keep the default setting for 
freezing, which is unfrozen. The overall model, with weights imported from the base 
pre-trained models and fine-tuned on our small data set, solves our problem (Fig. 2).
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Fig. 2 Transfer Learning. A model trained for Task A on big data is used to build another model 
for another task, Task B, which is fine-tuned on the smaller data set. In addition to the previous 
model, the new model at minimum has an output layer corresponding to the output dimensions for 
Task B 

2 Formulation of Coding Task 

2.1 Prompt Engineering Approach 

Before we describe the prompt, we provide a brief discussion on the prompt-
engineering approach. Although a concise problem statement may be sufficient, the 
resulting code can have problems. At best, GPT-4 leaves the user certain program-
ming choices and tells them when what choice is relevant and how to implement 
it. At worst, the user has to troubleshoot and re-prompt to fix errors. GPT-4 can be 
made more aware, thereby reducing such errors, by describing all user expectations, 
including implementation details. 

If the user does not know the implementation details, such as data splitting ratio for 
training, validation, and test, which optimization method to use, should techniques 
like data augmentation be implemented, either source this information from prevalent 
research, or, better yet, use GPT-4. Give it the problem statement and query about 
the implementation details. For our problem, GPT-4 gave correct suggestions, such 
as data augmentation and ensemble techniques with what models to use. Include this 
information in the main prompt. A sufficiently detailed prompt is necessary to avoid 
numerous iterations of supplemental prompts and code updates, where consistency 
problems like changes in variable names or implementation logic may occur.



130 A. Deshmukh and B. Eidel

2.2 Prompt 

We now provide the prompt given to GPT-4. It includes a detailed description of 
data and model. We also provide the following implementation details: instruction 
on data splitting, DL framework of choice (PyTorch), optimization method, learning 
rate scheduler (here, ReduceLROnPlateau is used; it decreases learning rate by a 
given magnitude if the validation loss plateaus for a given number of epochs), GPU 
device (MPS is explicitly mentioned because this program is initially built for a 
Mac), and visualization instructions. We also include explicit instruction to do data 
augmentation and use ensembling. Data augmentation is a technique wherein a ran-
dom slice of training data is transformed in simple ways, such as flipping, rotation, 
or color. This increased variance of data helps in preventing the model from overfit-
ting to the training data by encouraging it to learn more general features. Different 
models have different strengths and weaknesses, and ensembling methods combine 
the outcomes of these models, thereby combining the strengths and mitigating the 
weaknesses. 

We aim to generate fully functional code through only one main prompt. However, 
a few supplemental prompts were necessary. These are discussed in Sect. 5. 

3 Code Listing 

Based on the prompt described in Fig. 3, GPT-4 generated the code listed here. 

1 

2 # Import necessary libraries 
3 import os 
4 import copy 
5 import pandas as pd 
6 import random 
7 import numpy as np 
8 from sklearn.model_selection import train_test_split 
9 import torch 

10 from torchvision import transforms , models 
11 from torch.utils.data import DataLoader 
12 import torch.nn as nn 
13 import torch.optim as optim 
14 from sklearn.metrics import accuracy_score 
15 import matplotlib.pyplot as plt 
16 from PIL import Image 
17 from sklearn.preprocessing import LabelEncoder 
18 

19 # Set random seeds for reproducibility 
20 random_seed = 99 
21 torch.manual_seed(random_seed) 
22 torch.cuda.manual_seed(random_seed) 
23 np.random.seed(random_seed) 
24 random.seed(random_seed) 
25
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26 # Data Preparation 
27 

28 # Directory path 
29 base_path = ’/Users/adityadeshmukh/Desktop/RJSC’ 
30 

31 # Alloy folders 
32 alloy_folders = { 
33 ’hr_alloys20220208 ’: ’hr’, 
34 ’CPJ_alloys ’: ’cpj’, 
35 ’P92 OTHER ’: ’p92’ 
36 } 
37 

38 # Creating a dataframe 
39 data = {’alloy ’: [],  ’image ’: [],  ’alloy type’: []} 
40 

41 # Looping through each main folder and its subfolders 
42 for folder , alloy in alloy_folders .items (): 
43 folder_path = os.path.join(base_path , folder) 
44 for subfolder in os.listdir(folder_path): 
45 subfolder_path = os.path.join(folder_path , subfolder) 
46 if os.path.isdir(subfolder_path): 
47 for file in os.listdir(subfolder_path): 
48 if file.endswith(’.bmp’): 
49 file_path = os.path.join(subfolder_path ,

↪→ file) 
50 data[’alloy ’]. append(alloy) 
51 data[’image ’]. append(file_path) 
52 data[’alloy type’]. append(subfolder) 
53 

54 # Converting to pandas DataFrame 
55 df = pd.DataFrame(data) 
56 print(df.head()) 
57 

58 # Label Encoding: Convert string labels to numerical labels (
↪→ which is what the model expects) 

59 label_encoder = LabelEncoder () 
60 df[’alloy type’] = label_encoder .fit_transform (df[’alloy type’

↪→ ]) 
61 

62 # Splitting data 
63 # the first line splits data into training:test sets in the

↪→ ratio 70:30. 
64 # the second line splits the test set into two halves:

↪→ validation set and test set. 
65 # so that ultimately we have train:valid:test = 70:15:15 
66 train_df , test_df = train_test_split(df , test_size =0.3,

↪→ stratify=df[’alloy type’], random_state=random_seed) 
67 val_df , test_df = train_test_split(test_df , test_size =0.5,

↪→ stratify=test_df[’alloy type’], random_state=
↪→ random_seed) 

68 

69 # Data augmentation and normalization . 
70 # Two different sets of transformations are necessary because

↪→ data augmentation transformations 
71 # only apply to the training set , not test and validation. 
72 data_transforms = { 
73 ’train ’: transforms.Compose ([
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74 transforms.ToTensor (), 
75 # Crop the top and bottom 25 pixels to remove

↪→ miscellaneous SEM annotations 
76 transforms.Lambda(lambda x: x[:, 25:-25, :]), 
77 # Randomly crop and resize images to 224 x224 (required

↪→ for pre -trained models) 
78 transforms.RandomResizedCrop (224) , 
79 # Randomly apply horizontal flipping and rotation for

↪→ data augmentation: 
80 # Each time an image is loaded during training , the

↪→ DataLoader applies the transformations randomly. 
81 # Essentially , this means the model sees slightly

↪→ different versions of the training images throughout
↪→ the 

82 # training process , which helps it generalize better
↪→ by learning from a more diverse set of data
↪→ representations . 

83 transforms.RandomHorizontalFlip (), 
84 transforms.RandomRotation (15), 
85 # Normalize images based on pre -defined mean and

↪→ standard deviation of ImageNet dataset 
86 transforms.Normalize ([0.485 , 0.456 , 0.406] , [0.229 ,

↪→ 0.224 , 0.225]) 
87 ]), 
88 ’val’: transforms.Compose ([ 
89 transforms.ToTensor (), 
90 transforms.Lambda(lambda x: x[:, 25:-25, :]), 
91 transforms.Resize ((224 , 224)), 
92 transforms.Normalize ([0.485 , 0.456 , 0.406] , [0.229 ,

↪→ 0.224 , 0.225]) 
93 ]), 
94 } 
95 

96 # Custom dataset class to load images and apply
↪→ transformations 

97 class SteelDataset(torch.utils.data.Dataset): 
98 def __init__(self , dataframe , transform=None): 
99 self.dataframe = dataframe 

100 self.transform = transform 
101 

102 def __len__(self): 
103 return len(self.dataframe) 
104 

105 def __getitem__(self , idx): 
106 img_name = self.dataframe.iloc[idx , 1] 
107 image = Image.open(img_name) 
108 label = self.dataframe.iloc[idx , 2] 
109 

110 if self.transform: 
111 image = self.transform(image) 
112 

113 return image , label 
114 

115 

116 # Datasets 
117 train_dataset = SteelDataset(train_df , transform=

↪→ data_transforms [’train ’])
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118 val_dataset = SteelDataset(val_df , transform=data_transforms [’
↪→ val’]) 

119 test_dataset = SteelDataset(test_df , transform=data_transforms
↪→ [’val’]) 

120 

121 # DataLoaders in PyTorch are iterators that enable efficient
↪→ loading of data during the training , validation , 

122 # and testing phases of a machine learning model. 
123 batch_size = 32 
124 train_loader = DataLoader(train_dataset , batch_size=batch_size

↪→ , shuffle=True , worker_init_fn=lambda _: np.random.seed
↪→ (random_seed)) 

125 val_loader = DataLoader (val_dataset , batch_size=batch_size ,
↪→ worker_init_fn=lambda _: np.random.seed(random_seed)) 

126 test_loader = DataLoader(test_dataset , batch_size=batch_size ,
↪→ worker_init_fn=lambda _: np.random.seed(random_seed)) 

127 

128 # Device configuration 
129 # if your device has a gpu , it needs to be declared explicitly

↪→ . For macbooks , the gpu is mps. 
130 # if you use windows or linux , you should try cuda instead. 
131 device = torch.device("mps" if torch.backends.mps.is_available

↪→ () else "cpu") 
132 

133 # Load and modify pretrained models 
134 def load_model(model_name , num_classes): 
135 if model_name == "resnet": 
136 # When pretrained=True , it means that the model is

↪→ initialized with weights that have already been learned
↪→ . 

137 model = models.resnet50(pretrained=True) 
138 # This line extracts the number of input features to

↪→ the last fully connected layer (fc) 
139 num_ftrs = model.fc.in_features 
140 # This line replaces the last fc with a new fc

↪→ tailored for our task by setting its output to number
↪→ of classes , 

141 # or number of steel alloys. 
142 model.fc = nn.Linear(num_ftrs , num_classes) 
143 elif model_name == "densenet": 
144 model = models.densenet121(pretrained=True) 
145 num_ftrs = model.classifier.in_features 
146 model.classifier = nn.Linear(num_ftrs , num_classes) 
147 return model 
148 

149 

150 # Number of classes 
151 num_classes = len(df[’alloy type’]. unique ()) 
152 

153 # Load models 
154 resnet = load_model("resnet", num_classes).to(device) 
155 densenet = load_model("densenet", num_classes).to(device) 
156 torch.manual_seed(random_seed) 
157 torch.cuda.manual_seed(random_seed) 
158 

159 # Loss and optimizer
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160 # The loss quantifies how well the model ’s predictions match
↪→ labels in the training data. 

161 # The optimizer , here stochastic gradient descent , is an
↪→ algorithm that adjusts the parameters (weights and
↪→ biases) 

162 # of the neural network during training to minimize the loss. 
163 criterion = nn.CrossEntropyLoss () 
164 # Momentum is generally set to 0.9. LR , the learning rate ,

↪→ will be tuned. 
165 optimizer_resnet = optim.SGD(resnet.parameters (), lr=0.001 ,

↪→ momentum =0.9) 
166 optimizer_densenet = optim.SGD(densenet.parameters (), lr

↪→ =0.001 , momentum =0.9) 
167 

168 # Learning rate scheduler. 
169 # LR is tuned in this way: if the loss plateaus for 5 epochs (

↪→ iterations), LR is reduced by a factor of 0.1 
170 scheduler_resnet = optim.lr_scheduler.ReduceLROnPlateau(

↪→ optimizer_resnet , ’min’, factor =0.1, patience =5,
↪→ verbose=True) 

171 scheduler_densenet = optim.lr_scheduler.ReduceLROnPlateau (
↪→ optimizer_densenet , ’min’, factor =0.1, patience =5,
↪→ verbose=True) 

172 

173 # Training function 
174 # in machine learning , data is fed to the model as dataloaders

↪→ for a number of iterations , called epochs. 
175 # In each training epoch , model tries to learn optimum weights

↪→ that minimize the training loss. This model is
↪→ evaluated 

176 # on validation data in a validation epoch. Hyperparameters
↪→ are tuned in order to obtain lower validation loss. 

177 # Accuracies are also stored for each epoch. The model
↪→ associated with the best validation 

178 # accuracy is returned , along with the entire history of
↪→ training loss , training accuracy , validation loss , and 

179 # validation accuracy. 
180 def train_model(model , dataloaders , criterion , optimizer ,

↪→ scheduler , num_epochs =25): 
181 best_acc = 0.0 
182 # Initialize arrays to store metrics 
183 train_losses , val_losses , train_accs , val_accs = [], [],

↪→ [], [] 
184 

185 for epoch in range(num_epochs): 
186 print(’Epoch {}/{} ’.format(epoch , num_epochs - 1)) 
187 print(’-’ * 10) 
188 

189 # Each epoch has a training and validation phase 
190 for phase in [’train ’, ’val’]: 
191 if phase == ’train ’: 
192 model.train () # Set model to training mode.

↪→ Here weights are learned. 
193 else: 
194 model.eval() # Set model to evaluate mode.

↪→ Here we only use the learned weights to make
↪→ predictions.
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195 

196 running_loss = 0.0 
197 running_corrects = 0 
198 

199 # Iterate over data 
200 for inputs , labels in dataloaders[phase ]: 
201 inputs = inputs.to(device) 
202 labels = labels.to(device) 
203 

204 # Zero the parameter gradients 
205 optimizer.zero_grad () 
206 

207 # Forward 
208 with torch.set_grad_enabled(phase == ’train ’): 
209 outputs = model(inputs) 
210 _, preds = torch.max(outputs , 1) 
211 loss = criterion(outputs , labels) 
212 

213 # Backward + optimize only if in training
↪→ phase 

214 if phase == ’train ’: 
215 loss.backward () 
216 optimizer.step() 
217 

218 # Statistics 
219 running_loss += loss.item() * inputs.size (0) 
220 running_corrects += torch.sum(preds == labels.

↪→ data) 
221 

222 epoch_loss = running_loss / len(dataloaders[phase
↪→ ]. dataset) 

223 epoch_acc = running_corrects.float () / len(
↪→ dataloaders[phase ]. dataset) 

224 

225 # Record metrics 
226 if phase == ’train ’: 
227 train_losses.append(epoch_loss) 
228 train_accs.append(epoch_acc.item()) 
229 else: 
230 val_losses.append(epoch_loss) 
231 val_accs.append(epoch_acc.item()) 
232 scheduler.step(epoch_loss) # Adjust learning

↪→ rate based on validation loss 
233 

234 print(’{} Loss: {:.4f} Acc: {:.4f}’.format(phase ,
↪→ epoch_loss , epoch_acc)) 

235 

236 # Deep copy the best -performing model 
237 if phase == ’val’ and epoch_acc > best_acc: 
238 best_acc = epoch_acc 
239 best_model_wts = copy.deepcopy(model.

↪→ state_dict ()) 
240 

241 print () 
242 

243 print(’Best val Acc: {:4f}’.format(best_acc)) 
244



136 A. Deshmukh and B. Eidel

245 # Load best model weights 
246 model.load_state_dict (best_model_wts) 
247 

248 return model , train_losses , val_losses , train_accs ,
↪→ val_accs 

249 

250 # this function plots train_losses , val_losses and train_accs ,
↪→ val_accs in two graphs. 

251 def plot_performance(train_losses , val_losses , train_accs ,
↪→ val_accs , file_name): 

252 np.random.seed(random_seed) 
253 plt.figure(figsize =(12, 5)) 
254 

255 plt.subplot (1, 2, 1) 
256 plt.plot(train_losses , label=’Training loss’) 
257 plt.plot(val_losses , label=’Validation loss’) 
258 plt.title(’Training and Validation Loss’) 
259 plt.xlabel(’Epochs ’) 
260 plt.ylabel(’Loss’) 
261 plt.legend () 
262 

263 plt.subplot (1, 2, 2) 
264 plt.plot(train_accs , label=’Training accuracy ’) 
265 plt.plot(val_accs , label=’Validation accuracy ’) 
266 plt.title(’Training and Validation Accuracy ’) 
267 plt.xlabel(’Epochs ’) 
268 plt.ylabel(’Accuracy ’) 
269 plt.legend () 
270 plt.savefig(file_name) 
271 

272 

273 # Train models 
274 dataloaders = {’train ’: train_loader , ’val’: val_loader} 
275 print(’\n RESNET -50 ________________________________ \n’) 
276 resnet , resnet_train_loss , resnet_val_loss , resnet_train_acc ,

↪→ resnet_val_acc = train_model(resnet , dataloaders ,
↪→ criterion , optimizer_resnet , scheduler_resnet ,
↪→ num_epochs =500) 

277 print(’\n DENSENET -121 ______________________________ \n’) 
278 densenet , densenet_train_loss , densenet_val_loss ,

↪→ densenet_train_acc , densenet_val_acc = train_model(
↪→ densenet , dataloaders , criterion , optimizer_densenet ,
↪→ scheduler_densenet , num_epochs =500) 

279 

280 torch.save(resnet.state_dict (), ’resnet_model.pth’) 
281 torch.save(densenet.state_dict (), ’densenet_model.pth’) 
282 

283 # Ensemble 
284 # we average the outputs of our two models and use this

↪→ averaged output to make predictions. 
285 class AveragingEnsemble(nn.Module): 
286 def __init__(self , modelA , modelB): 
287 super(AveragingEnsemble , self).__init__ () 
288 self.modelA = modelA 
289 self.modelB = modelB 
290 

291 def forward(self , x):
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292 # Get predictions from both models 
293 outputA = self.modelA(x) 
294 outputB = self.modelB(x) 
295 

296 # Average the predictions 
297 average_output = (outputA + outputB) / 2 
298 return average_output 
299 

300 ensemble_model = AveragingEnsemble(resnet , densenet) 
301 

302 

303 # Evaluate Ensemble 
304 def evaluate_model(model , dataloader): 
305 model.eval() 
306 all_preds = [] 
307 all_labels = [] 
308 with torch.no_grad (): 
309 for inputs , labels in dataloader: 
310 inputs = inputs.to(device) 
311 labels = labels.to(device) 
312 outputs = model(inputs) 
313 _, preds = torch.max(outputs , 1) 
314 all_preds.extend(preds.tolist ()) 
315 all_labels.extend(labels.tolist ()) 
316 

317 accuracy = accuracy_score(all_labels , all_preds) 
318 return accuracy 
319 

320 

321 test_accuracy = evaluate_model(ensemble_model , test_loader) 
322 print(’Test Accuracy of Ensemble: {:.4f}%’.format(

↪→ test_accuracy * 100)) 
323 

324 # Plotting functions 
325 plot_performance(resnet_train_loss , resnet_val_loss ,

↪→ resnet_train_acc , resnet_val_acc , "res1.png") 
326 plot_performance(densenet_train_loss , densenet_val_loss ,

↪→ densenet_train_acc , densenet_val_acc , "res2.png") 

Code Listing 6.1 Program by ChatGPT-4 for classifying microstructure
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I require a Python program for classifying steel microstructure images ac-
cording to their alloy type using transfer learning. A description of the data 
as well as the model is provided below. 
Data 
I have three folders of steel microstructure images in the directory /Users/a-
dityadeshmukh/Desktop/RJSC. Each folder is described here as follows: 

• The folder ‘hr alloys20220208’ contains the initial microstructure for HR 
alloys. 

– It contains 11 subfolders with subfolder titles corresponding to a spe-
cific HR alloy. 

– The ‘.bmp’ files in each subfolder are the raw microstructure images 
for that specific alloy. 

• The folder ‘CPJ alloys’ contains the initial microstructure for CPJ alloys. 

– It contains 18 subfolders with subfolder titles corresponding to a spe-
cific CPJ alloy. 

– The ‘.bmp’ files in each subfolder are the raw microstructure images 
for that specific alloy. 

• The folder ‘P92 OTHER’ contains the initial microstructure for P92 alloys. 

– It contains 4 subfolders with subfolder titles corresponding to a specific 
P92 alloy. 

– The ‘.bmp’ files in each subfolder are the raw microstructure images 
for that specific alloy. 

Note that all three folders and subfolders have differently named and different 
numbers of items. You’d first make a pandas dataframe with three columns: 
‘alloy’ (cpj, hr, or p92), ‘image’ (path to the .bmp image file), ‘alloy type’ 
(name of the subfolder wherein the image exists, which is also the specific 
alloy). 
Model 

• Transfer learning requires a pre-trained model. Comment on the feasibility 
of ResNet-50 and DenseNet-121 for this task. Fine-tune on all two and 
create an ensemble. 

• Use PyTorch framework. 
• Set GPU device as ‘mps’. 
• While fine-tuning, ensure that there is no freezing. 

Fig. 3 Prompt for classifying microstructures
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• Use the validation loss to find the optimum number of epochs. Also, use 
ReduceLROnPlateau scheduler to tune the learning rate. Set the number 
of epochs to 500 for each model. 

• Record training loss, training accuracy, validation loss, validation accu-
racy for each epoch for each model. Ultimately, record test accuracy for 
the ensemble. Write code to make relevant graphs. 

Do not give me only the code skeleton; I want the whole program in one 
code block. 

• Split the data into training (70%), validation (15%), and test (15%) sets 
stratified according to the label ‘alloy type.’ Use train test split twice to 
achieve this. 

• Do data augmentation. 

Fig. 3 (continued) 

4 Performance 

Figures 4 and 5 show the performance of the fine-tuned ResNet-50 model and the 
fine-tuned DenseNet-121 model respectively. For both models, with an increasing 
number of epochs, the training loss and validation loss decrease, and consequently 
the training accuracy and validation accuracy increase. At the last epoch, we observe 
a validation accuracy of 97.6190% and 98.4127% for ResNet-50 and DenseNet-
121 respectively, as shown in Table 1, with the test accuracy of the ensemble being 
99.2063%. 

Fig. 4 Performance of ResNet50 Model. (Left:) Training and validation loss. (Right:) Training and 
validation accuracy
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Fig. 5 Performance of DenseNet121 Model. (Left:) Training and validation loss. (Right:) Training 
and validation accuracy 

Table 1 Model performance comparison 

ResNet-50 DenseNet-121 Ensemble 

Validation Acc 97.6190% 98.4127% 

Test Acc 99.2063% 

Figure 6 displays a random sampling of 12 images from the test set. The ground 
truths and the predicted labels are in good agreement. Note that the images appear 
differently from the sample image shown in Fig. 1 because of ImageNet normaliza-
tion; this is a necessary step in pre-processing when using pre-trained models like 
ResNet-50. 

The observation that the validation loss is almost consistently smaller than the 
training loss in the left of Figs. 4 and 5 can have different reasons. Augmented 
data may have been harder for the model to learn and because data augmentation 
transformations happen only on some samples belonging to the training set and not 
at all on the validation set, the validation results remain unaffected. Smaller datasets 
(validation) have smaller intrinsic variance than larger datasets (training); recall their 
ratio of 70:15. Or this is simply an accident in that the data split is suitable for such 
behavior.
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Fig. 6 A random sampling of 12 images from the test set with their ground truths and predicted 
labels
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5 Discussion 

The results show that GPT-4 is successful in generating working code for the problem 
of image classification on SEM scans of steel microstructures using TL. While almost 
the entirety of the code is generated via the main prompt, some minor tweaking, 
through supplemental prompts, was necessary to achieve a fully functional code. 

5.1 Errors 

The errors are described below in three categories: major errors, i.e. errors which 
require a correction for the code to run; minor errors, i.e. errors with which code will 
run but perform sub-optimally; and ignored tasks. 

5.1.1 Major Errors 

• Import statements necessary for certain functions are not always written by default 
(e.g., from PIL import Image). 

• While creating the dataframe, traversing the relevant directories requires excep-
tion handling to ignore the Not a directory error due to the presence of 
.DS_Store files that are present on a Mac. Note that prior handling of such 
an error is a foresight that should not be expected of LLMs because this is an 
exception, not a norm. Therefore, this is not necessarily a drawback. 

• Label encoding is required because original labels are strings when PyTorch 
requires numbers. AttributeError: ’tuple’ object has no 
attribute ’to’ is encountered when executing labels = labels.to 
(device) This suggests that labels is a tuple when it is expected to be a PyTorch 
tensor. 

5.1.2 Minor Errors 

• One more transformation is necessary in image pre-processing to crop out the 
top and bottom segments of the image because those strips contain miscellaneous 
SEM annotations. GPT-4 cannot–and is not expected to–fix such specific errors it 
is not even aware of. However, the fix, described later, is straightforward. 

• Learning rate scheduler step is initially taken on training loss instead of validation 
loss. 

• The initial ensemble model uses a neural network with a linear layer that combines 
the individual outputs of the two models, ResNet-50 and DenseNet-121, and ReLU. 
It performs quite poorly. It is replaced with an averaging operation upon request.
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• Default values for the parameters of the LR scheduler are used. We test several 
models to tune these values. GPT-4 does not provide unique instruction to guide 
these values, but optimization requires scanning the hyperparameter space with 
repeated tries. This obviously falls beyond what LLMs can do on their own. 

5.1.3 Ignored Tasks 

Training loss, training accuracy, validation loss, and validation accuracy for each 
epoch is not recorded. The visualization task is fully ignored. 

5.2 Fixes 

The above errors have easy fixes. GPT-4 is good at troubleshooting; one only needs 
to copy paste the error encountered by the Python IDE into GPT-4. GPT-4 will either 
give one or more potential solutions. Some errors are quite elusive. GPT-4 does not 
right away figure out the case for label encoding. It first examines SteelDataset class’s 
__getitem__ method and unpacking of labels inside training loop. When we 
explicitly state that both of these are correct, it lists more possibilities. One of these 
is label transformation, which reminds us that the labels are originally in strings, 
when PyTorch requires labels to be numerically encoded. GPT-4 finally suggests 
to use label encoding. This is a process; however, it could have been avoided by 
pointing this out right in the main prompt. When fixing other problems, such as 
replacing ensemble function or obtaining code for previously ignored task, a simple 
instruction is usually sufficient. Table 2 lists these supplemental prompts. 

In addition to these fixes, the code is slightly modified to make results repro-
ducible; as long as the random seed is left unchanged, whose purpose is to maintain 
consistency in random numbers generated in the program, one gets the same results 
every time. Please note that we train the model for 500 epochs to observe if any 
learning happens over the long run. However, similar results are achievable with 
only 50 epochs. 

Table 2 Modifications and supplemental prompts 

Modification Supplemental prompt 

New ensemble function Give me an ensemble that simply gives the average 

LR step correction Fix this to take scheduler step based on validation loss 

Visualization function I need to store arrays of validation loss, validation accuracy, training 
loss, training accuracy for each epoch so that I can print them later. 
Also implement that and give me code to visualize the performance
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6 Conclusion 

We obtain a working code through GPT-4 to predict an alloy from an SEM scan of 
its microstructure. The resulting model is an ensemble of two pre-trained models, 
ResNet-50 and DenseNet-121, fine-tuned on a training set that includes SEM scans 
of microstructures of 33 different types of 9% Cr steels. The model achieves an 
accuracy of 99.20% on the test set, indicating that it performs quite well. 

GPT-4 is good at unpacking a prompt, understanding it, writing code, explaining 
the code in a broad sense as well as line-by-line, when asked to, and the generated 
code is also well documented. It helps to have a sufficiently detailed prompt, rich 
with information on not only the nature of the problem but also implementation 
details. Troubleshooting is easy by simply providing GPT-4 with the traceback of 
the errors encountered. Code that needs to be modified or rewritten can be edited 
with additional simple prompts. 

By solving this problem, we demonstrate that, with human intervention, GPT-
4 is capable of generating code for common computer vision tasks such as image 
classification in computational materials science. 
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Transfer Learning for Microstructure 
Image Segmentation 

Rahul Narkhede and Bernhard Eidel 

Abstract Microstructure segmentation is a crucial task in materials science which 
facilitates detailed material characterization and establishing processing-structure-
property linkages. Image segmentation is a classical technique in computer vision for 
which several deep learning models exist. Furthermore, transfer learning can leverage 
the performance of these deep learning models on new datasets by initializing them 
with parameters pre-trained on large datasets. In this chapter, transfer learning is 
applied for segmentation of nickel-based superalloy microstructure images using a 
model pre-trained on a large dataset of microscopy images called MicroNet. GPT-4 
on ChatGPT Plus is instructed to generate a Python code for performing this task. 
By a suitably designed sequence of prompts, GPT-4 provides promising results in 
implementing the task. Aspects of prompt design, handling errors and testing the 
outcome are considered as well. 

1 Introduction 

Image segmentation is a cornerstone technique in visual data analysis, enabling the 
differentiation of objects within an image based on distinct characteristics. This tech-
nique is particularly crucial in materials science for the quantification and analysis of 
microstructures, which is fundamental for understanding the properties and behaviors 
of materials. Traditionally, segmentation has been performed manually or through 
semi-automated methods, which can be labor-intensive and prone to error. With 
the advent of computer vision and machine learning, more sophisticated and auto-
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mated methods have been developed, significantly enhancing accuracy and efficiency 
[ 1, 2]. 

Transfer learning is a powerful strategy in machine learning where a model devel-
oped for one task is repurposed for a second, related task. This approach is espe-
cially valuable in environments where data are scarce or where training a new model 
from scratch is computationally prohibitive. By utilizing models pre-trained on large 
datasets, transfer learning not only conserves resources but also enhances model 
accuracy, making it a vital tool in domains where data acquisition is challenging [ 3]. 

Among the several deep learning architectures available, the ResNet50 [ 4] archi-
tecture is known for its depth and the use of residual connections, which enabled 
training significantly deeper networks than previously feasible. This architecture is 
adept at extracting detailed features that are crucial for accurate segmentation, and 
is hence often employed as an encoder in segmentation tasks. The encoder trans-
forms input images to rich, feature-dense representations for the model to capture 
the image context. Then, these representations are translated back into meaningful 
segmentation maps using decoder architectures like the UNet++. UNet++ [ 5] is an  
improvement of the classic UNet architecture, and shows improvement in segmen-
tation accuracy. The overall framework of the microstructure segmentation task is 
shown in the Fig. 1. 

The task in this chapter is to apply transfer learning for segmentation of microstruc-
ture images of nickel-based superalloys into matrix, secondary and tertiary phases. 
In doing so, it uses the ResNet50 architecture as the encoder and the UNet++ as the 
decoder. The encoder is pre-trained on a large microscopy dataset named MicroNet. 
The application of a pre-trained encoder thus implies use of transfer learning for the 
segmentation of nickel-based superalloy dataset. The work in this chapter is largely 
based on the example notebook for image named multiclass_segmentation 
_example.ipynb provided as supplementary material with [ 6]. This segmenta-
tion task encompasses the following key steps: 

• Data Preparation: Automated extraction and association of images with corre-
sponding masks to establish ground truths for supervised learning. 

• Data Augmentation: Application of transformations such as rotations and flips, 
and adjustments in brightness and contrast to enhance model robustness. 

• Model Setup: Building a model based on the ResNet50 encoder pre-trained on 
the MicroNet dataset and a UNet++ decoder. 

• Loss function: Integration of Dice Loss and Binary Cross Entropy (BCE) Loss to 
optimize both the segmentation overlap and pixel-wise classification accuracy. 

• Performance Metric: Adoption of Intersection over Union (IoU) to quantify 
model performance, a standard metric in segmentation model evaluation 

• Model Training and Early Stopping: Implementation of early stopping based 
on IoU improvement to prevent overfitting. 

• Testing and Visualization: Evaluation of the model on unseen data and visual-
ization of the results to assess performance qualitatively.
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Fig. 1 Schematic showing the use of encoder pre-trained on the MicroNet dataset for microstructure 
image segmentation via transfer learning. The encoder (top), like ResNet50, is a convolutional neural 
network followed by a dense neural network classifier (shown in the gray rectangular box on the 
top), which is trained to classify microscopy images into different material classes. The encoder 
is pre-trained on the MicroNet dataset containing more than 100,000 microstructure images. By 
transfer learning, the pre-trained encoder is then used in the encoder-decoder segmentation model 
(shown in the bottom), which is then trained on a small dataset of microstructure images to segment 
the microstructure into separate classes 

2 Prompt  

The Python code for the segmentation of microstructure images is generated by 
GPT-4. This task requires pre-processing of data, building the deep learning model 
with pre-trained weights, implementation of a training routine with multiple intrica-
cies, evaluating model performance and visualizing the predictions. It also involves 
implementing methods from multiple Python libraries. Considering these aspects, it 
is decided to instruct GPT-4 in multiple sub-tasks which include the details of all 
the mentioned steps. Moreover, it is also observed that upon providing all the details 
of this segmentation task as a one-thrust prompt resulted in generation of incom-
plete Python which also overlooked some instructions. Using fundamental aspects 
of prompt engineering, and at times using GPT-4 to summarize its steps in a refined
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prompt, a well-instructed and detailed sequence of prompts is drafted. This process 
involved multiple iterations and resolving several errors, which are also discussed in 
the next sections. 

The sequence of prompts is based on the steps involved in a typical transfer 
learning and image segmentation task: 

• System prompt with general instructions for all sub-tasks 
• Loading and pre-processing data 

– Importing microstructure images and assigning classes to the masks. 
– Augmenting the dataset by randomized image transformations. 
– Loading the augmented data for the model training and inference. 

• Model setup 

– Building the model with pre-trained weights. 
– Creating loss function and metric to measure model performance. 

• Training and testing model 

– Setting up a training and validation loop. 
– Evaluating model performance and visualizing prediction accuracy. 

Considering these steps, six prompts have been used to generate the desired Python 
code for the segmentation task: 

• Prompt 1: System prompt 
• Prompt 2: Dataset configuration 
• Prompt 3: Data augmentation and data loading 
• Prompt 4: Model setup, loss function and metric 
• Prompt 5: Training loop setup 
• Prompt 6: Model testing and visualizing predictions. 

2.1 System Prompt 

The system prompt orients the chatbot to the task. In this system prompt, ChatGPT 
4 is instructed to adapt a persona which knows the requisite libraries and knowledge 
to execute the segmentation task. Through such a system prompt, the chatbot is also 
given specific instructions to mitigate persistently observed errors in the generated 
code. 

In response to prompt shown in Fig. 2, ChatGPT 4 acknowledges that it is prepared 
to help the user with the task and that it anticipates further instructions.
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Prompt 1 
You are an expert computer vision and machine learning engineer. You 
have the fundamental knowledge of deep learning, the methods and their 
working, popular deep learning architectures for image classification and 
segmentation. You are specifically well versed in PyTorch and allied libraries 
like albumenations, segmentation models pytorch, DataLoader and so on. 
You can load pre-trained models from urls and fine-tune them for the specific 
task at hand. You write an error-free code. Specifically, your code encounters 
no issues in the dimensions of the various tensors and arrays in the deep 
learning process. You analyze code for any errors before presenting it. You 
generate complete code with documentation. You write code for the part that 
you are asked for, no further steps. Only what’s specifically instructed. Do not 
show sample usage until asked for. You track matrix dimensions throughout 
the code and handle any dimension errors. You also ensure that any torch 
tensor is being moved to the CPU before it is converted to a NumPy array. 
Any array dimension errors will leave a poor score on your performance. 
The task I want to achieve is complex and I shall tell you the instructions in 
a step-wise fashion. 

Fig. 2 System prompt provided to ChatGPT 4 before specific instructions for the segmentation 
task 

2.2 Loading and Pre-processing Data 

As the first and one of the crucial steps of the segmentation task, ChatGPT 4 is 
provided all the details to load the data in a suitable format for further processing 
and applying deep learning model for segmentation. 

The prompt begins with a brief description of the overall segmentation task with 
details about the model architecture. This short description acts as a context for the 
chatbot in its subsequent responses. It is also asked to add randomization seeds to 
ensure that the results are reproducible. 

The location of the training, validation and testing data is specified in the prompt. 
The dimensions of the images and masks and their file formats are also specified. 
Specific code instructions to read the images and masks, and then to assign classes to 
the masks are given. The detailed instructions are important to maintain the correct 
assignment of annotated masks to the images. 

Pre-processing the images involves data augmentation and normalizing the image 
data. Data augmentation in image segmentation involves applying transformations 
like flipping, rotation, and adjustments to contrast and brightness to existing images, 
enhancing dataset diversity and model generalization without increasing the number 
of original images. This method helps prevent overfitting, especially with smaller or 
less diverse datasets. After augmentation, the images are normalized using the mean 
and standard deviation of the pre-trained model, in this case, the ‘ResNet50’ model 
pre-trained with the ‘imagenet’ dataset.
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Fig. 3 Prompt with instructions to get the data 

The pre-processed data is then passed to a dataloader. Dataloaders efficiently 
manage the flow of data during training by batching, shuffling, and preparing data 
for input into the model. They handle loading data from the dataset into memory, 
applying transformations such as data augmentation on-the-fly, and ensuring that data 
is supplied to the model in suitable format for efficient processing, thus optimizing 
the use of computational resources. 

The specific instructions for pre-processing the data and then creating dataloaders 
for training, validation and testing are provided to ChatGPT 4 in the next prompt. 
The detailed transformations for pre-processing the data Fig. 4 and the instructions
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to load the final pre-processed data for model training, testing and validation Fig. 5 
are provided in prompt 3. 

Fig. 4 Part one of prompt 3 which provides instructions for pre-processing the data
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Fig. 4 (continued) 

Fig. 5 Part two of prompt 3 which provides instructions for loading the data and visualizing some 
images with their masks 

2.3 Model Setup 

For the microstructure image segmentation, the ‘resnet50’ encoder is used with the 
‘UNet++’ segmentation model. The pre-trained encoder weights are downloaded 
from a url in the model setup. The function get_pretrained_microscopy 
_url that generates the url is used as is from the source [ 6]. In the prompt 4 (Fig. 6), 
these details about the architecture and the source url to obtain the pre-trained encoder 
weights are provided, along with further details about the inputs for the model setup, 
the activation function of model output, usage of GPU if available and the expected 
output. 

To track the loss over training the model, a custom loss function as used in 
the example notebook multiclass_segmentation_example.ipynb that 
combines the Dice and binary cross-entropy (BCE) losses is then created. The model 
performance is checked using the intersection over union (IoU) metric, which can
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be obtained from the ‘segmentation_models_pytorch’ library. However, it 
is noticed that ChatGPT 4 is not aware of the latest version of the IOU function from 
this library. To overcome the persistent error of incorrect syntax in using the IOU 
metric, an example usage based on the syntax of the latest version is provided in the 
loss functions and metrics part of the prompt 4 shown in Fig. 7. 

Fig. 6 Prompt to set up the model
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Fig. 7 Prompt to create the loss function and the model evaluation metric 

2.4 Training the Model 

After setting up the training, validation and test data, the model, the loss function 
and the metric, a function to train the model is required. This function shall put the 
individual components together, and create the training loop. As shown in the prompt 
in Fig. 8, ChatGPT 4 is instructed to set up an optimizer, use the losses as the model 
criterion and then set up the training loop. It is also instructed other details such as 
use of early stopping by evaluating the IoU metric over the validation data to avoid
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overfitting, using mixed precision training to reduce memory usage and saving the 
model checkpoint regularly after a given number of epochs. Specific instructions are 
also provided to ensure that certain commonly observed errors are eliminated. 

Fig. 8 Prompt to set up model training
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2.5 Evaluating Model Performance on Test Data 

The performance of the trained model is evaluated on the test data, again with the IoU 
metric, but also with help of visualizations. For this purpose, a function is created 
that runs one forward pass on the test data by instantiating the trained model. In the 
forward pass, the loss and the IoU metric over the test samples is calculated and 
their average values are returned. To ensure that this is executed without errors, the 
prompt includes a break down of the steps involved in a forward pass. 

The predictions are visualized in two ways: (1) by comparing the true masks of 
the test samples with the predicted ones, and (2) by overlaying the predicted masks 
over the true masks and marking the true positive, true negative, false positive and 
false negative pixels with different colors. The functions for both these visualizations 
are generated with the instructions in the prompt shown in Fig. 9 . 

3 Generated Code and Discussion 

The code generated based on the prompts provided for the microstructure image 
segmentation is presented in this section. Along with the code listings, the outputs 
generated and some remarks on the generated code are also mentioned. 

3.1 Loading and Pre-processing Data 

From the prompts Figs. 3, 4 and 5, the following Code Listing 1 was generated. Chat-
GPT 4 generates a Python script that imports required libraries, creates a function that 
inserts randomization seeds and then a class named MicrostructureDataset 
which extracts images and masks according to the specified details, applies transfor-
mation and returns two variables images and masks which contain the extracted 
data. 

In response to the prompt mentioned in Figs. 4 and 5, ChatGPT 4 first creates 
the function get_training _augmentation, which sets all the transforma-
tions mentioned in the prompt in the pipeline in the mentioned sequence. It also 
uses the appropriate function get_preprocessing_fn to normalize the image 
data with the mean and standard deviation of the ‘resnet50’ model architecture 
pre-trained on the ‘imagenet’ dataset. Similarly the function get_validation 
_augmentation is also created which only normalizes the image data. 

After the data augmentation, the chatbot uses the DataLoader function from 
Pytorch, along with the previously created MicrostructureDataset to create 
dataloaders for training, validation and testing. Finally, a visualization function is 
also created to plot the augmented images and their corresponding masks. 

1
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Fig. 9 Prompt to test the trained model and visualize the predictions
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Fig. 9 (continued) 

2 import os 
3 import numpy as np 
4 import cv2 
5 import torch 
6 import random 
7 from torch.utils.data import Dataset, DataLoader 
8 from albumentations import Compose, Normalize, Resize 
9 from albumentations.pytorch import ToTensorV2 
10 

11 # Set random seeds for reproducibility 
12 SEED = 42 
13 random.seed(SEED) 
14 np.random.seed(SEED) 
15 torch.manual_seed(SEED) 
16 torch.cuda.manual_seed_all(SEED) 
17 torch.backends.cudnn.deterministic = True 
18 torch.backends.cudnn.benchmark = False 
19 

20 # Load Data from directory 
21 

22 # Paths to dataset 
23 base_directory = ’/kaggle/input/ni-super-alloy/Super1’ 
24 train_images_dir = os.path.join(base_directory, ’train’) 
25 train_masks_dir = os.path.join(base_directory, ’train_annot’) 
26 val_images_dir = os.path.join(base_directory, ’val’) 
27 val_masks_dir = os.path.join(base_directory, ’val_annot’) 
28 test_images_dir = os.path.join(base_directory, ’test’) 
29 test_masks_dir = os.path.join(base_directory, ’test_annot’) 
30 

31 class MicrostructureDataset(Dataset): 
32 def __init__(self, images_dir, masks_dir, transform=None): 
33 self.images_dir = images_dir 
34 self.masks_dir = masks_dir 
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35 self.transform = transform 
36 self.images = sorted(os.listdir(images_dir)) 
37 self.masks = sorted(os.listdir(masks_dir)) 
38 

39 def __len__(self): 
40 return len(self.images) 
41 

42 def __getitem__(self, idx): 
43 img_path = os.path.join(self.images_dir, self.images[

↪→ idx]) 
44 mask_path = os.path.join(self.masks_dir, self.masks[idx

↪→ ]) 
45 

46 # Read image 
47 image = cv2.cvtColor(cv2.imread(img_path), cv2.

↪→ COLOR_BGR2RGB) 
48 

49 # Read mask 
50 mask = cv2.imread(mask_path, 1) 
51 

52 # Extract binary masks for each class 
53 matrix_mask = np.all(mask == [0, 0, 0], axis=-1).astype

↪→ (np.uint8) 
54 secondary_mask = np.all(mask == [255, 0, 0], axis=-1).

↪→ astype(np.uint8) 
55 tertiary_mask = np.all(mask == [0, 0, 255], axis=-1).

↪→ astype(np.uint8) 
56 masks = [matrix_mask, secondary_mask, tertiary_mask] 
57 if mask.shape[2] > 1: 
58 masks[0] = ~np.any(masks[1:], axis=0) 
59 

60 

61 # Stack masks 
62 mask = np.stack(masks, axis=-1) 
63 

64 if self.transform: 
65 augmented = self.transform(image=image, mask=mask) 
66 image = augmented[’image’] 
67 mask = augmented[’mask’] 
68 

69 return image, mask 
70 

71 # Data Augmentation 
72 

73 import albumentations as A 
74 from albumentations.pytorch import ToTensorV2 
75 from segmentation_models_pytorch.encoders import

↪→ get_preprocessing_params 
76 

77 # Get normalization parameters from segmentation_models_pytorch 
78 preprocessing_params = get_preprocessing_params(’resnet50’) 
79 mean = preprocessing_params[’mean’] 
80 std = preprocessing_params[’std’] 
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81 

82 # Define training augmentations 
83 def get_training_augmentation_pmm(): 
84 return A.Compose([ 
85 A.HorizontalFlip(p=0.75), 
86 A.RandomRotate90(p=1), 
87 A.GaussNoise(p=0.5), 
88 A.OneOf([ 
89 A.CLAHE(), 
90 A.RandomBrightnessContrast(brightness_limit=0.25,

↪→ contrast_limit=0.25), 
91 A.RandomGamma() 
92 ], p=0.5), 
93 A.OneOf([ 
94 A.Sharpen(), 
95 A.Blur(blur_limit=3) 
96 ], p=0.5), 
97 A.OneOf([ 
98 A.RandomBrightnessContrast(), 
99 A.HueSaturationValue() 

100 ], p=0.5), 
101 A.Normalize(mean=mean, std=std), 
102 ToTensorV2() 
103 ]) 
104 

105 # Define validation augmentations 
106 def get_validation_augmentation(): 
107 return A.Compose([ 
108 A.Normalize(mean=mean, std=std), 
109 ToTensorV2() 
110 ]) 
111 

112 

113 # Create DataLoaders and visualize some samples 
114 

115 import matplotlib.pyplot as plt 
116 

117 # Custom dataset class already defined above 
118 

119 # Define training, validation, and test datasets with
↪→ augmentations 

120 train_dataset = MicrostructureDataset(train_images_dir,
↪→ train_masks_dir, transform=get_training_augmentation_pmm
↪→ ()) 

121 val_dataset = MicrostructureDataset(val_images_dir,
↪→ val_masks_dir, transform=get_validation_augmentation()) 

122 test_dataset = MicrostructureDataset(test_images_dir,
↪→ test_masks_dir, transform=get_validation_augmentation()) 

123 

124 # Define DataLoaders 
125 train_loader = DataLoader(train_dataset, batch_size=4, shuffle=

↪→ True, num_workers=0) 
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126 val_loader = DataLoader(val_dataset, batch_size=4, shuffle=
↪→ False, num_workers=0) 

127 test_loader = DataLoader(test_dataset, batch_size=1, shuffle=
↪→ False, num_workers=0) 

128 

129 # Function to visualize augmented images and their masks 
130 def visualize_augmentations(dataset, num_samples=4): 
131 fig, axs = plt.subplots(num_samples, 4, figsize=(20, 5 *

↪→ num_samples)) 
132 

133 for i in range(num_samples): 
134 idx = random.randint(0, len(dataset) - 1) 
135 image, mask = dataset[idx] 
136 

137 # Convert tensor to numpy array for visualization 
138 image_np = image.permute(1, 2, 0).cpu().numpy() 
139 mask_np = mask.cpu().numpy() 
140 

141 # Plot image and masks 
142 axs[i, 0].imshow(image_np) 
143 axs[i, 0].set_title("Image") 
144 axs[i, 1].imshow(mask_np[..., 0], cmap=’gray’) 
145 axs[i, 1].set_title("Matrix Mask") 
146 axs[i, 2].imshow(mask_np[..., 1], cmap=’gray’) 
147 axs[i, 2].set_title("Secondary Mask") 
148 axs[i, 3].imshow(mask_np[..., 2], cmap=’gray’) 
149 axs[i, 3].set_title("Tertiary Mask") 
150 

151 for j in range(4): 
152 axs[i, j].axis(’off’) 
153 

154 plt.tight_layout() 
155 plt.show() 
156 

157 # Visualize augmentations 
158 visualize_augmentations(train_dataset, num_samples=4) 

Code Listing 1 Loading and pre-processing data 

It is important for the user to visualize the augmented images and their masks. 
The augmented images should encapsulate some of the transformations in the aug-
mentation function and should differ in terms of these transformations from each 
other. Moreover, the masks, ‘matrix’, ‘secondary’ and ‘tertiary’ should be consistent 
for all images. A common error observed was overlooking the instruction to update 
the ‘matrix’ mask with all the remaining unassigned pixels after extracting the ‘sec-
ondary’ and ‘tertiary’ masks. Errors in extracting the masks, and assigning them to 
the corresponding pixels in the image will hinder the model from training well. The 
major issue being the incorrect assignment of labels to the pixels, and thus obtaining 
a higher loss despite multiple epochs of training the model. Figure 10, shows one of 
the augmented images and its corresponding masks.
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Fig. 10 Sample of augmented image and its corresponding masks 

3.2 Model Setup 

Using the model setup prompts Fig. 6, the functions to setup the segmentation model 
from the pre-trained weights, the computation of combined Dice and BCE loss, and 
the computation of the IoU metric were created. The function get_pretrained 
_microscopynet_url that generates the url for downloading the pre-trained 
weights is also mentioned here. It is directly taken as is from the GitHub repository 
of the reference [ 6] and not generated using ChatGPT 4. 

1 import torch 
2 import torch.utils.model_zoo as model_zoo 
3 from segmentation_models_pytorch import UnetPlusPlus 
4 from segmentation_models_pytorch.encoders import

↪→ get_preprocessing_params 
5 

6 # Assuming get_pretrained_microscopynet_url function is already
↪→ provided 

7 # from custom_utils import get_pretrained_microscopynet_url 
8 

9 def get_pretrained_microscopynet_url(encoder, encoder_weights,
↪→ version=1.1, 

10 self_supervision=’’): 
11 """Get the url to download the specified pretrained encoder

↪→ . 
12 

13 Args: 
14 encoder (str): pretrained encoder model name (e.g.

↪→ resnet50) 
15 encoder_weights (str): pretraining dataset, either ’

↪→ micronet’ or 
16 ’imagenet-micronet’ with the latter indicating the

↪→ encoder 
17 was first pretrained on imagenet and then finetuned

↪→ on microscopynet 
18 version (float): model version to use, defaults to

↪→ latest. 
19 Current options are 1.0 or 1.1. 
20 self_supervision (str): self-supervision method used.

↪→ If self-supervision
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21 was not used set to ’’ (which is default). 
22 

23 Returns: 
24 str: url to download the pretrained model 
25 """ 
26 

27 # there is an error with the name for resnext101_32x8d so
↪→ catch and return 

28 # (currently there is only version 1.0 for this model so
↪→ don’t need to check version.) 

29 if encoder == ’resnext101_32x8d’: 
30 return ’https://nasa-public-data.s3.amazonaws.com/

↪→ microscopy_segmentation_models/
↪→ resnext101_pretrained_microscopynet_v1.0.pth.tar’ 

31 

32 # only resnet50/micronet has version 1.1 so I’m not going
↪→ to overcomplicate this right now. 

33 if encoder != ’resnet50’ or encoder_weights != ’micronet’: 
34 version = 1.0 
35 

36 # setup self-supervision 
37 if self_supervision != ’’: 
38 version = 1.0 
39 self_supervision = ’_’ + self_supervision 
40 

41 # correct for name change for URL 
42 if encoder_weights == ’micronet’: 
43 encoder_weights = ’microscopynet’ 
44 elif encoder_weights == ’image-micronet’: 
45 encoder_weights = ’imagenet-microscopynet’ 
46 else: 
47 raise ValueError("encoder_weights must be ’micronet’ or

↪→ ’image-micronet’") 
48 

49 # get url 
50 url_base = ’https://nasa-public-data.s3.amazonaws.com/

↪→ microscopy_segmentation_models/’ 
51 url_end = ’_v%s.pth.tar’ %str(version) 
52 return url_base + f’{encoder}{self_supervision}_pretrained_

↪→ {encoder_weights}’ + url_end 
53 

54 # Model Setup 
55 

56 def setup_segmentation_model(encoder_name=’resnet50’,
↪→ class_values=None, encoder_weights=’micronet’): 

57 if class_values is None: 
58 raise ValueError("class_values must be provided and

↪→ should not be None") 
59 

60 # Determine number of classes 
61 num_classes = len(class_values) 
62 

63 # Define activation function based on number of classes
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64 activation = ’softmax2d’ if num_classes > 1 else ’sigmoid’ 
65 

66 # Initialize U-Net++ model 
67 model = UnetPlusPlus( 
68 encoder_name=encoder_name, 
69 encoder_weights=None, # Skip default weight loading 
70 in_channels=3, 
71 classes=num_classes, 
72 activation=activation 
73 ) 
74 

75 # Determine device 
76 device = torch.device(’cuda’ if torch.cuda.is_available()

↪→ else ’cpu’) 
77 map_location = ’cuda’ if torch.cuda.is_available() else ’

↪→ cpu’ 
78 

79 # Load custom weights 
80 url = get_pretrained_microscopynet_url(encoder_name,

↪→ encoder_weights) 
81 state_dict = model_zoo.load_url(url, map_location=

↪→ map_location) 
82 model.encoder.load_state_dict(state_dict) 
83 

84 # Move model to the appropriate device 
85 model = model.to(device) 
86 

87 return model, device 
88 

89 # Loss and IoU metric 
90 

91 import torch 
92 import torch.nn.functional as F 
93 import numpy as np 
94 import segmentation_models_pytorch as smp 
95 

96 # Combined Dice and BCE loss function 
97 def dice_bce_loss(inputs, targets, bce_weight=0.5): 
98 # Apply sigmoid to inputs 
99 inputs = torch.sigmoid(inputs) 

100 

101 # Flatten inputs and targets 
102 inputs = inputs.reshape(-1) #manual 
103 targets = targets.reshape(-1) #manual 
104 

105 # Compute Dice loss 
106 intersection = (inputs * targets).sum() 
107 dice_loss = 1 - (2. * intersection + 1) / (inputs.sum() +

↪→ targets.sum() + 1)  
108 

109 # Compute BCE loss using logits 
110 bce_loss = F.binary_cross_entropy_with_logits(inputs,

↪→ targets.float())
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111 

112 # Combine Dice and BCE losses 
113 combined_loss = dice_loss + bce_weight * bce_loss 
114 return combined_loss 
115 

116 # IoU metric function using smp 
117 def compute_iou(output, target): 
118 # Get statistics for IoU calculation 
119 tp, fp, fn, tn = smp.metrics.get_stats(output, target, mode

↪→ =’multilabel’, threshold=0.5) 
120 

121 # Compute IoU score 
122 iou_score = smp.metrics.iou_score(tp, fp, fn, tn, reduction

↪→ ="micro") 
123 return iou_score 

Code Listing 2 Model setup loss function and evaluation metric function 

As shown in Code Listing 2, a function for computing the combined Dice and 
BCE loss is created. In some trials, ChatGPT 4 overlooked the specific instruction 
of using torch.reshape method to change the dimensions of the outputs and 
targets in the loss function. It used the torch.Tensor.view method, which 
serves the same purpose of changing array dimensions, but is not generally applicable 
to both contiguous and non-contiguous tensors. The IoU is computed according to 
the example provided in the prompt. 

3.3 Training the Model 

Putting all the previous functions to use, the model is trained by creating a 
train_model function according to the prompt Fig. 8. An appropriate train model 
function is created following the instructions in the prompt. However, the instruc-
tions for ensuring that errors are avoided are not always followed. The train model 
function can be then used by asking the chatbot for an example usage. The number of 
epochs, patience parameter for early stopping, learning rate and the weighing criteria 
in the loss function need to be adjusted to train the model with a higher IoU metric 
value. Additionally, the user can also prompt ChatGPT 4 to make a plot showing the 
decrease in the loss values over the number of epochs. 

1 import os 
2 import torch 
3 import torch.optim as optim 
4 from torch.cuda.amp import GradScaler, autocast 
5 from torch.utils.data import DataLoader 
6 import numpy as np 
7 from tqdm import tqdm 
8 

9 # Define the training and validation loop 
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10 def train_model(model, train_loader, val_loader, criterion,
↪→ optimizer, num_epochs, patience, device,
↪→ checkpoint_interval): 

11 best_model_wts = None 
12 best_iou = 0.0 
13 epochs_no_improve = 0 
14 

15 # Store losses and IoUs for plotting 
16 train_losses = [] 
17 val_losses = [] 
18 train_ious = [] 
19 val_ious = [] 
20 

21 scaler = GradScaler() 
22 

23 for epoch in range(num_epochs): 
24 print(f’Epoch {epoch}/{num_epochs - 1}’) 
25 print(’-’ * 10) 
26 

27 # Each epoch has a training and validation phase 
28 for phase in [’train’, ’val’]: 
29 if phase == ’train’: 
30 model.train() # Set model to training mode 
31 data_loader = train_loader 
32 else: 
33 model.eval() # Set model to evaluate mode 
34 data_loader = val_loader 
35 

36 running_loss = 0.0 
37 running_iou = 0.0 
38 

39 # Iterate over data with progress bar 
40 with tqdm(total=len(data_loader), desc=f’{phase.

↪→ capitalize()} Epoch {epoch + 1}’, unit=’batch’) as pbar: 
41 for inputs, masks in data_loader: 
42 inputs = inputs.to(device) 
43 masks = masks.to(device) 
44 masks = masks.permute(0, 3, 1, 2) #

↪→ Correcting mask shape 
45 

46 # Check mask and input shapes for
↪→ compatibility 

47 if masks.shape != inputs.shape: 
48 raise ValueError(f"Mask shape {masks.

↪→ shape} and input shape {inputs.shape} are incompatible
↪→ for Dice loss and IoU computation.") 

49 

50 # Zero the parameter gradients 
51 optimizer.zero_grad() 
52 

53 # Forward pass 
54 with autocast(enabled=True): 
55 outputs = model(inputs) 



Transfer Learning for Microstructure Image Segmentation 167 

56 if outputs.shape[1] == 1: 
57 outputs = torch.sigmoid(outputs) 
58 else: 
59 outputs = torch.softmax(outputs,

↪→ dim=1) 
60 

61 loss = criterion(outputs, masks) 
62 

63 if phase == ’train’: 
64 # Backward pass and optimization 
65 scaler.scale(loss).backward() 
66 scaler.step(optimizer) 
67 scaler.update() 
68 

69 # Statistics 
70 running_loss += loss.item() * inputs.size

↪→ (0) 
71 iou = compute_iou(outputs, masks) 
72 running_iou += iou * inputs.size(0) 
73 

74 # Update progress bar 
75 pbar.update(1) 
76 pbar.set_postfix(loss=loss.item(), iou=iou.

↪→ item()) 
77 

78 epoch_loss = running_loss / len(data_loader.dataset
↪→ ) 

79 epoch_iou = running_iou / len(data_loader.dataset) 
80 

81 if phase == ’train’: 
82 train_losses.append(epoch_loss) 
83 train_ious.append(epoch_iou) 
84 else: 
85 val_losses.append(epoch_loss) 
86 val_ious.append(epoch_iou) 
87 

88 print(f’{phase} Loss: {epoch_loss:.4f} IoU: {
↪→ epoch_iou:.4f}’) 

89 

90 # Early stopping 
91 if phase == ’val’: 
92 if epoch_iou > best_iou: 
93 best_iou = epoch_iou 
94 best_model_wts = model.state_dict() 
95 epochs_no_improve = 0 
96 torch.save(model.state_dict(), ’best_model.

↪→ pth’) 
97 else: 
98 epochs_no_improve += 1 
99 

100 # Checkpoint the model every ‘checkpoint_interval‘
↪→ epochs 

101 if (epoch + 1) % checkpoint_interval == 0: 
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102 checkpoint_path = f’model_checkpoint_epoch_{epoch +
↪→ 1}.pth’ 

103 torch.save(model.state_dict(), checkpoint_path) 
104 print(f’Model checkpoint saved at {checkpoint_path}

↪→ ’) 
105 

106 if epochs_no_improve >= patience: 
107 print(’Early stopping triggered’) 
108 break 
109 

110 # Load best model weights 
111 if best_model_wts: 
112 model.load_state_dict(best_model_wts) 
113 

114 # Save losses and ious for plotting, ensuring tensors are
↪→ moved to CPU 

115 np.save(’train_losses.npy’, np.array(train_losses)) 
116 np.save(’val_losses.npy’, np.array(val_losses)) 
117 np.save(’train_ious.npy’, np.array([iou.cpu().numpy() for

↪→ iou in train_ious])) 
118 np.save(’val_ious.npy’, np.array([iou.cpu().numpy() for iou

↪→ in val_ious])) 
119 

120 return model 
121 

122 # Usage 
123 

124 class_values = [0, 1, 2] # Example class values 
125 model, device = setup_segmentation_model(encoder_name=’resnet50

↪→ ’, class_values=class_values, encoder_weights=’micronet’
↪→ ) 

126 

127 optimizer = optim.Adam(model.parameters(), lr=2e-4) 
128 criterion = lambda outputs, masks: dice_bce_loss(outputs, masks

↪→ , bce_weight=0.7) 
129 

130 # Train model 
131 num_epochs = 250 
132 patience = 30 
133 checkpoint_interval = 10 # Save model every 10 epochs 
134 model = train_model(model, train_loader, val_loader, criterion,

↪→ optimizer, num_epochs, patience, device,
↪→ checkpoint_interval) 

Code Listing 3 Function to train the model 

The following items must be checked with a few number of epochs (e.g. 50 epochs 
with a patience value of 5) before running the train_model function with a higher 
number of epochs and a high patience value for early stopping: 

• Check the shapes of the masks and images are correct. Ideally, the function should 
raise an error if the shapes of the image and masks are inappropriate for loss and 
IoU metric computation. 

• Check if the trained model is being saved regularly after a given interval of epochs.
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Fig. 11 Training and validation loss over epochs 

• Ensure that the training and validation losses and IoU values are being stored after 
each epoch. 

• A relatively large and quick decrease in the training loss in the first few epochs, 
and a consistent increase in the validation IoU value as the losses decrease. 

• Check if early stopping is triggered if the validation IoU value of the epochs does 
not exceed the last best validation IoU value. 

Using the function in Code Listing 3, the model was trained for 250 epochs and a 
patience of 30 epochs. The plot in Fig. 11 shows the change in training and validation 
loss over the epochs. 

3.4 Evaluating Model Performance on Test Data 

Functions for model evaluation and the required visualizations are generated by 
ChatGPT 4 as per the prompt Fig. 9. At times, the dimensions of the masks might not 
be handled correctly and in such a scenario, minor human intervention is required. 

1 import matplotlib.pyplot as plt 
2 import matplotlib.patches as mpatches 
3 

4 # Function to evaluate the model on the test set 
5 def test_model(model, test_loader, criterion): 
6 model.eval() 
7 test_loss, test_iou = [], [] 
8 

9 with torch.no_grad(): 
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10 for images, masks in test_loader: 
11 images, masks = images.to(device), masks.to(device) 
12 

13 # Convert masks to the shape [batch_size,
↪→ num_classes, height, width] 

14 if masks.ndim == 4 and masks.shape[-1] == 3: 
15 masks = masks.permute(0, 3, 1, 2) # Change

↪→ shape from [batch_size, height, width, num_classes] to [
↪→ batch_size, num_classes, height, width] 

16 masks = masks.float() # Ensure masks are in the
↪→ correct format 

17 

18 outputs = model(images) 
19 if outputs.shape[1] > 1: # Multiclass segmentation 
20 outputs = torch.softmax(outputs, dim=1) 
21 else: # Binary segmentation 
22 outputs = outputs # Use logits directly 
23 

24 loss = criterion(outputs, masks) 
25 masks_int = masks.long() # Convert masks to

↪→ integer type for IoU calculation 
26 iou = compute_iou(outputs, masks_int) 
27 

28 test_loss.append(loss.item()) 
29 test_iou.append(iou.cpu().numpy()) # Move IoU to

↪→ CPU for numpy operations 
30 

31 avg_test_loss = np.mean(test_loss) 
32 avg_test_iou = np.mean(test_iou) 
33 

34 print(f’Test Loss: {avg_test_loss:.4f}, Test IoU: {
↪→ avg_test_iou:.4f}’) 

35 return avg_test_loss, avg_test_iou 
36 

37 # Function to visualize predictions and true masks 
38 def visualize_predictions(model, test_dataset, device,

↪→ num_samples=4): 
39 model.eval() 
40 fig, axs = plt.subplots(2 * num_samples, 4, figsize=(20, 10

↪→ * num_samples)) 
41 

42 for i in range(num_samples): 
43 idx = random.randint(0, len(test_dataset) - 1) 
44 image, true_mask = test_dataset[idx] 
45 image = image.to(device).unsqueeze(0) 
46 

47 with torch.no_grad(): 
48 output = model(image) 
49 if output.shape[1] == 1: 
50 output = torch.sigmoid(output) 
51 else: 
52 output = torch.softmax(output, dim=1) 
53 output = output.squeeze().cpu().numpy() 
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54 

55 image = image.squeeze().permute(1, 2, 0).cpu().numpy() 
56 true_mask = true_mask.cpu().numpy() # Ensure correct

↪→ shape 
57 

58 # Plot original image 
59 axs[2 * i, 0].imshow(image) 
60 axs[2 * i, 0].set_title("Image") 
61 

62 # Plot true masks 
63 axs[2 * i, 1].imshow(true_mask[..., 0], cmap=’gray’) 
64 axs[2 * i, 1].set_title("True Matrix Mask") 
65 axs[2 * i, 2].imshow(true_mask[..., 1], cmap=’gray’) 
66 axs[2 * i, 2].set_title("True Secondary Mask") 
67 axs[2 * i, 3].imshow(true_mask[..., 2], cmap=’gray’) 
68 axs[2 * i, 3].set_title("True Tertiary Mask") 
69 

70 # Plot predicted masks 
71 axs[2 * i + 1, 0].imshow(image) 
72 axs[2 * i + 1, 0].set_title("Image") 
73 axs[2 * i + 1, 1].imshow(output[0], cmap=’gray’) 
74 axs[2 * i + 1, 1].set_title("Predicted Matrix Mask") 
75 axs[2 * i + 1, 2].imshow(output[1], cmap=’gray’) 
76 axs[2 * i + 1, 2].set_title("Predicted Secondary Mask") 
77 axs[2 * i + 1, 3].imshow(output[2], cmap=’gray’) 
78 axs[2 * i + 1, 3].set_title("Predicted Tertiary Mask") 
79 

80 for j in range(4): 
81 axs[2 * i, j].axis(’off’) 
82 axs[2 * i + 1, j].axis(’off’) 
83 

84 plt.tight_layout() 
85 plt.show() 
86 

87 # Function to overlay predicted and true masks, highlighting
↪→ errors 

88 def visualize_prediction_accuracy(model, test_dataset, device,
↪→ num_samples=4): 

89 model.eval() 
90 fig, axs = plt.subplots(num_samples, 4, figsize=(20, 5 *

↪→ num_samples)) 
91 

92 for i in range(num_samples): 
93 idx = random.randint(0, len(test_dataset) - 1) 
94 image, true_mask = test_dataset[idx] 
95 image = image.to(device).unsqueeze(0) 
96 

97 with torch.no_grad(): 
98 output = model(image) 
99 if output.shape[1] == 1: 

100 output = torch.sigmoid(output) 
101 else: 
102 output = torch.softmax(output, dim=1) 
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103 output = output.squeeze().permute(1, 2, 0).cpu().
↪→ numpy() 

104 

105 

106 image = image.squeeze().permute(1, 2, 0).cpu().numpy() 
107 true_mask = true_mask.cpu().numpy() 
108 

109 #print("output: ", output.shape) 
110 #print("image: ", image.shape) 
111 #print("true mask: ", true_mask.shape) 
112 if output.shape != true_mask.shape: 
113 raise ValueError(f"Shape mismatch: Predicted mask

↪→ shape {output.shape} and true mask shape {true_mask.
↪→ shape} are incompatible for visualization.") 

114 

115 axs[i, 0].imshow(image) 
116 axs[i, 0].set_title("Image") 
117 

118 for j in range(3): 
119 pred_mask = output[:, :, j] > 0.5 
120 true_class_mask = true_mask[:, :, j] 
121 

122 overlay = np.zeros((*true_class_mask.shape, 3),
↪→ dtype=np.uint8) 

123 #print("pred_mask :", pred_mask.shape) 
124 #print("true_class_Mask: ", true_class_mask.shape) 
125 

126 true_positives = (pred_mask == 1) & (
↪→ true_class_mask == 1) 

127 true_negatives = (pred_mask == 0) & (
↪→ true_class_mask == 0) 

128 false_positives = (pred_mask == 1) & (
↪→ true_class_mask == 0) 

129 false_negatives = (pred_mask == 0) & (
↪→ true_class_mask == 1) 

130 

131 overlay[true_positives] = [255, 255, 255] # White 
132 overlay[true_negatives] = [0, 0, 0] # Black 
133 overlay[false_positives] = [0, 0, 255] # Blue 
134 overlay[false_negatives] = [255, 105, 180] # Pink 
135 

136 axs[i, j + 1].imshow(overlay) 
137 axs[i, j + 1].set_title(f"Mask {j+1} Overlay") 
138 

139 for j in range(4): 
140 axs[i, j].axis(’off’) 
141 

142 white_patch = mpatches.Patch(color=’white’, label=’True
↪→ Positive’) 

143 black_patch = mpatches.Patch(color=’black’, label=’True
↪→ Negative’) 

144 blue_patch = mpatches.Patch(color=’blue’, label=’False
↪→ Positive’) 
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145 pink_patch = mpatches.Patch(color=’pink’, label=’False
↪→ Negative’) 

146 plt.legend(handles=[white_patch, black_patch, blue_patch,
↪→ pink_patch], loc=’upper right’) 

147 plt.tight_layout() 
148 plt.show() 
149 

150 # Usage 
151 

152 # 250 epochs, patience = 30, never reached early stopping 
153 model.load_state_dict(torch.load(’model_checkpoint_epoch_250.

↪→ pth’)) 
154 

155 # Evaluate the model on the test set 
156 test_loss, test_iou = evaluate_model(model, test_loader,

↪→ criterion, device) 
157 

158 # Visualize predictions and accuracy 
159 #visualize_predictions(model, test_dataset, device, num_samples

↪→ =4) 
160 visualize_prediction_accuracy(model, test_dataset, device,

↪→ num_samples=4) 
Code Listing 4 Functions for evaluating model performance on test data and visualizing 
predictions 

The test_model function runs a forward pass by using the trained model with 
the test dataset and computes the loss and the IoU metric. While this function posed 
no errors in trials, it is still suggested to check if the test accuracy and IoU value are 
close to the ones observed for the epoch where the best model was saved. If there 
is a significant deviation, the first step is to check if the test_model function has 
been implemented correctly. If the deviation is significant despite having a correctly 
implemented function, then there are possible issues in the training of the model. 
However, such errors did not arise during any of the trials. 

Besides checking the loss and IoU values, a visual observation can also provide 
a good idea if the model is performing well. Here, the visualization functions are 
useful. In Fig. 12a and b, the predicted masks and the true masks for two models: 
one trained with 50 epochs and the other trained with 250 epochs, can be observed. 

The prediction accuracy can also be checked by overlaying the predicted masks 
over the true masks and marking the false positive and false negative pixels. The 
Fig. 13a and b show the for the model trained for 50 epochs and the one trained for 
250 epochs.
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(a) 50 epochs 

(b) 250 epochs 

Fig. 12 True and predicted masks for a model trained for different numbers of epochs. The first 
row in a and b each displays the true masks and the second row in a and b show the predicted 
masks for the same image 

4 Discussion 

Microstructure image segmentation using transfer learning is a relatively complex 
task, primarily due to the involvement of multiple sub-steps that each require the 
usage of different Python libraries and functions. Moreover, since most machine 
learning tasks do not have a definite solution, there is a large room for possi-
ble solution approaches. This intrinsic freedom of machine learning approaches 
in such complex tasks demands multiple iterations and variations, which can be
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(a) 50 epochs 

(b) 250 epochs 

Fig. 13 Prediction accuracy visualization for the model trained for different number of epochs. 
False negative pixels are colored pink and false positive pixels are colored blue 

hugely aided by LLMs like ChatGPT 4. However, if the solution approach is already 
decided, then the LLM should be instructed with details and required specifics to 
expect desirable outcomes. Here, the solution approach is as per the example note-
book multiclass_segmentation_example.ipynb provided with [ 6] is  
followed, and thus any room for assumptions must be eliminated by providing 
detailed instructions. With appropriate prompts, it can be observed that ChatGPT 
4 provides suitable Python codes for executing the task. The generated codes had 
rare instances of syntax errors, and a few logical errors. In this section, these errors 
shall be discussed. In addition, the changes made in the prompts and directly to 
the generated codes to avoid these errors are also included. The errors are further 
categorized as ‘major errors’ and ‘minor errors’. 

4.1 Major Errors 

• Extraction of images: If specific instructions on the commands for loading the 
images from the directories are not provided, ChatGPT 4 changes the image 
dimensions to the ones appropriate for common deep learning architectures like 
‘ResNet50’. It also augments the images with random transformations and nor-
malizes them with inappropriate mean and standard deviation values. 
For the user to ensure that the correct transformations are applied to the images, 
the user must specify the required steps in the augmentation pipeline and their
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parameters, along with the correct mean and standard deviation values to normalize 
the images. The prompts Figs. 3 and 4 ensure that the images are loaded with the 
desired augmentations and normalization. 

• Assigning masks to pixels: In the original data, the pixels are annotated in three 
different colors to indicate the three phases in the microstructure. Without spe-
cific instructions for extracting the masks, ChatGPT 4 converts all the masks to 
grayscale and then loads them to the data for performing the segmentation task. 
Furthermore, ChatGPT 4 often overlooked the instruction to update the matrix 
mask by assigning all the remaining pixels to it after the secondary and tertiary 
masks had been assigned. The result was the matrix phase constituting all pixels 
which were black. These errors result in incorrect labels to the sample images, 
which shall eventually hinder the model training. 
As a fix to this issue, very specific instructions are provided in the prompt Fig. 3 
to extract masks from the directory and to assign them to the pixels. In case the 
specific instruction for updating the matrix mask after assigning all other masks to 
pixels was overlooked, the same prompt was provided again to the chatbot. Usually, 
after providing the same prompt again, all the specific details are considered in 
the code generation. 

• Sticking to old versions of imported library methods: For some specific cases, 
e.g. for using the IoU metric from the segmentation_models_pytorch 
library, ChatGPT 4 used the syntax from the older versions. Until the latest syntax 
of the functions was not provided explicitly through an example usage from the 
library documentation, ChatGPT 4 continued to use the older version. This might 
be possibly due to the fact that LLMs such as ChatGPT 4 are not trained frequently, 
and the current version might be trained when the older versions of these libraries 
existed. 
By just providing an example usage in prompt Fig. 6, ChatGPT 4 could adapt its 
code response to the latest syntax of the IoU metric. 

• Model checkpointing: Despite specific instructions for model checkpointing in 
prompt Fig. 8, ChatGPT 4 missed including regular model checkpointing after a 
given number of epochs. This step is crucial if the training takes places over a high 
number of epochs and requires long training periods. 

4.2 Minor Errors 

• Dimension errors: ChatGPT 4 produces syntactically correct code. However, it 
is quite frequent to get dimension errors, mainly in the dimensions of the masks. 
The underlying reason might be that ChatGPT 4 may not be effective in tracking 
the changes in the dimensions of the masks when they are passed through multiple 
functions throughout the data loading, pre-processing and training process. 
An attempt to mitigate this error was to explicitly request ChatGPT 4 to ensure 
that there are no dimension errors in the code it generates. This can be observed
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in the system prompt Fig. 2. However, despite such an instruction, the code had 
some cases of dimension error. Another important step to reduce the number 
of dimension errors, is to specify the shape of the image and mask files in the 
prompt. This reduces the frequency of dimension errors, especially in loading 
the data. Finally, ChatGPT 4 is instructed to raise errors if the dimensions are 
inappropriate, for e.g. in the train_model function, before passing the masks 
and the outputs to the loss functions. 

• Moving variables to CPU before typecasting to NumPy arrays: Since the model 
is allowed to work on the GPU for training, the PyTorch tensors and the model are 
all mapped to the GPU. However, when certain functions or visualizations require 
the variables as NumPy arrays, the PyTorch tensors are not always moved to the 
CPU before converting them to NumPy arrays. 
By providing specific instructions in the prompts, e.g. in prompts Figs. 2, 8 and 9, 
this error could be eliminated. 

• Reshaping PyTorch tensor dimensions: Two methods are commonly used to 
reshape PyTorch tensors: torch.reshape and torch.Tensor.view. The  
latter is not applicable to non-contiguous tensors, i.e. it is not generally applicable. 
This posed errors in the loss function for the combined Dice and BCE losses. 
ChatGPT 4 often overlooked the instruction to use torch.reshape. 

5 Conclusion 

Segmentation of microstructure images into the classes ‘matrix’, ‘secondary’ and 
‘tertiary’ using a ResNet50 encoder pre-trained on the MicroNet dataset and a 
UNet++ decoder was conducted using ChatGPT 4. The key steps in accomplish-
ing this were discussed and their corresponding codes were generated by providing 
ChatGPT 4 with carefully drafted prompts. ChatGPT 4 provided promising results 
in generating the code for such a complex task. Certain major and minor errors were 
observed in the process, and their fixes were discussed likewise. An iterative process 
was required to obtain the desired output since in machine learning tasks, there is no 
definite solution, and thus the chatbot has a large room for making its own assump-
tions, if details are not provided. Here, the errors encountered in these iterations 
could be tackled by adding specific instructions to the prompt. It was also observed 
that GPT-4 overlooked some specific instructions of the prompts. The missed-out 
instructions were taken into consideration by ChatGPT 4 after providing it with the 
same prompt. Similar prompts as mentioned for this task can be applied to binary 
or multi-class segmentation depending on the specific microstructures. Furthermore, 
using transfer learning makes this approach robust for few-shot learning, i.e. for 
training the model with a very small number of labeled microstructure images. As a 
result, the predicted masks can be used to estimate at high accuracy the amount of 
phases present in a given microstructure image and further analyses.
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Elastic Wave Propagation 

Muhammad Saad Qureshi and Bernhard Eidel 

Abstract This chapter investigates the ability of ChatGPT to generate code in the 
field of Computational Materials Science, specifically using GPT-4. The focus of this 
study is on solving the wave equation in 2D, considering elastic wave propagation, 
and visualizing the results using Python with a finite difference time domain (FDTD) 
scheme. The wave equation is fundamental in understanding how waves, such as 
sound or seismic waves, travel through different media. The FDTD method is a 
numerical technique used to model wave propagation by discretizing both time and 
space. This involves setting up a computational grid, applying initial and boundary 
conditions, and iteratively solving the wave equation to simulate the wave’s behavior 
over time. Visualization of the results helps in interpreting the physical phenomena 
and verifying the accuracy of the computational model. 

1 Introduction 

Artificial intelligence, particularly in the form of Large Language Models (LLMs) 
like ChatGPT has shown significant potential in various fields including code gen-
eration; for a pioneering work focusing on numerical methods see [ 1]. This chapter 
explores ChatGPT’s capabilities for generating a Python code that solves the prob-
lem of 2D elastic wave propagation based on the Finite Difference Time Domain 
(FDTD) method. In particular, this work aims at verifying the code, assessing its 
accuracy and efficiency in simulating and visualizing the behavior of wave propaga-
tion. Overall, we highlight both the strengths and limitations of GPT-4 in handling 
complex scientific problems. 
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1.1  Wave  Equation in 2D  

The wave equation is a second-order linear partial differential equation (PDE) 
describing the behavior of waves. In two dimensional (. x , . y) coordinate system, 
it is defined as [ 4] 

.
∂2u
∂t2

= c2
(

∂2u
∂x2

+ ∂2u
∂y2

)
. (1) 

Considering elastic wave propagation in a square domain, . x and . y represent the 
axes having equal length. N , . u represents the displacement vector from rest position, 
and . c represents the wave speed, calculated by .c = √

E/ρ, where .E is the Young’s 
modulus, and . ρ is the mass density. 

1.2 Finite Difference Time Domain (FDTD) 

Finite difference methods are numerical techniques used to approximate the deriva-
tives using finite differences. FDTD method was introduced by Kane S. Yee for 
numerically solving time-dependent Maxwell’s equations [ 2]. The method involves 
discretizing the space and time partial derivatives based on central-difference approx-
imations [ 5]. Applying FDTD approximations to (1) we obtain exemplarily for the 
derivatives of displacement component . ux

.
∂2ux

∂x2
≈ ux (x + h, y; t) − 2ux (x, y; t) + ux (x − h, y; t)

h2
, (2) 

.
∂2ux

∂y2
≈ ux (x, y + h; t) − 2ux (x, y; t) + ux (x, y − h; t)

h2
, (3) 

.
∂2ux

∂t2
≈ ux (x, y; t + �t) − 2ux (x, y; t) + ux (x, y; t − �t)

�t2
. (4) 

Without loss of generality, we consider a square domain with a uniform spa-
tial grid of size .h both in .x and .y directions and for uniform temporal dis-
cretization .�t as the constant time step size. Using (2), (3), (4) in  (1) along with 
the notations .u(x, y; t) =: unx,y , .u(x, y; t ± �t) =: un±1

x,y , .u(x ± h, y; t) =: unx±1,y , 
.u(x, y ± h; t) =: unx,y±1, where . n refers to the current time . tn , and .n ± 1 to time 
.tn ± �t , one obtains 

. 
1

�t2
(
un+1
x,y − 2unx,y + un−1

x,y

) = c2

h2
(
unx+1,y + unx−1,y + unx,y+1 + unx,y−1 − 4unx,y

)
.

(5)
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Solving for .ut+1
x,y based on .tn-data yields the final form of the 2D wave equation 

discretized by FDTD 

.un+1
x,y = c2�t2

h2
(
unx+1,y + unx−1,y + unx,y+1 + unx,y−1 − 4unx,y

) + 2unx,y − un−1
x,y . (6) 

Furthermore, initial conditions (ICs), boundary conditions (BCs) have to be defined 
for a full-fledged Initial Boundary Values Problem (IBVP); the numerical solution 
scheme requires the choice of the discretization parameters .�x , .�y and .�t . 

1.3 Initial Conditions 

Two types of excitation functions are considered to be used for defining ICs in the 
domain. 

• Sinusoidal function 
.u(t) = A sin(2π f t + φ), (7) 

where . A is the amplitude, . f is the frequency and . φ is the phase angle, see Fig. 1 
(bottom). 

• Gaussian function 
.u(t) = a exp

(
− (t − b)2

2c2

)
, (8) 

where . a is the height of the curve’s peak, . b is the center of the peak, and . c is the 
standard deviation, see Fig. 1 (top).
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Fig. 1 Gaussian function with.a = 1,.b = 0,.c = 1, and sinusoidal function with.A = 1,. f = 1
2π , 

. φ = 0

1.4 Boundary Conditions 

Two types of BCs are considered: 

• Dirichlet or reflecting BC : no displacement at the boundaries, total reflection of 
the waves 

.u0,y = ux,0 = uN ,y = ux,N = 0. (9) 

• Mur or absorbing BC, first introduced for time-dependent Maxwell equations [ 3]: 
total absorption at the boundaries, no reflection of the waves. In the discretized 
setting, the Mur BC are [ 7] 

.un+1
0,y = un1,y − h − c�t

h + c�t

(
un+1
1,y − un0,y

)
, (10) 

.un+1
N ,y = unN−1,y + h − c�t

h + c�t

(
unN ,y − un+1

N−1,y

)
, (11) 

.un+1
x,0 = unx,1 − h − c�t

h + c�t

(
un+1
x,1 − unx,0

)
, (12)
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.un+1
x,N = unx,N−1 + h − c�t

h + c�t

(
unx,N − un+1

x,N−1

)
. (13) 

Here, (10) refers to waves travelling in .−x direction or the left side of the square 
domain, (11) refers to waves travelling in .+x direction or the right side of the 
square domain, (12) refers to waves travelling in .−y direction or the bottom side 
of the square domain, (13) refers to waves travelling in .+y direction or the top 
side of the square domain. 

1.5 Courant-Friedrichs-Lewy Condition 

For numerical solutions of PDEs involving explicit time integration, the convergence 
condition of Courant-Friedrichs-Lewy (CFL) is a necessary condition for conver-
gence. As a consequence of the explicit time integrator FDTD, the time step must 
be less than a certain upper bound, given a fixed spatial increment; here, with.cx and 
.cy the wave velocities in . x and. y directions, the CFL condition for a uniform spatial 
grid size . h can be given according to [ 6] 

.
cx�t

h
+ cy�t

h
≤ Cmax, (14) 

which is met by a value for .Cmax of 1. The equality condition in (14) is exploited to 
calculate the critical time step.�tmax. To satisfy the CFL condition, the time step. �t
must be either equal or smaller than .�tmax. 

1.6 Strains and Stresses 

Once the updated displacement field is computed for the entire domain, elastic strains 
are calculated using the gradient of the displacement field, and, based on that, stresses 
using Hooke’s law. Isotropic, linear elastic material behavior is assumed to hold. 

.εx = ∂ux

∂x
, εy = ∂uy

∂y
, γxy = ∂uy

∂x
+ ∂ux

∂y
. (15) 

Here, .εx and .εy are the normal strain components, and .γxy is the shear strain. 

.σxx = E

1 − ν2
(εx + νεy), (16) 

.σyy = E

1 − ν2
(εy + νεx ), (17) 

.σxy = E

1 + ν
(γxy) . (18)
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Here,.σxx and.σyy are the normal stresses, and.σxy is the shear stress.. E is the Young’s 
modulus and . ν is the Poisson’s ratio of the material. From the normal stresses and 
the shear stress, principal stresses are calculated according to 

.σ1, σ2 = σxx + σyy

2
±

√(
σxx − σyy

2

)2

+ σ 2
xy . (19) 

The algorithm for FDTD simulations of elastic wave propagation in 2D is given 
in the Algorithm Box 1. 

Algorithm 1: Elastic Wave Propagation and Stress Calculation using FDTD 
Input : Grid size. N , grid spacing. h, material properties.(E1, ν1, ρ1) for first half, 

.(E2, ν2, ρ2) for second half 
Output: Stress distribution over time 

1 Initialize grid size and time step based on CFL condition; 
2 Initialize displacement fields.unx,y , .u

n−1
x,y , .u

n+1
x,y to zero; 

3 Initialize stress fields.σxx , .σyy , .σxy to zero; 
4 Define sources with positions, frequencies, and amplitudes; 

5 for each time step . t do 
6 for each grid point .(x, y) except boundaries do 
7 Get material properties.(E, ν, c) based on position ; 
8 Update displacement.un+1

x,y using FDTD equation; 

9 Apply source excitation at the source location; 

10 if Boundary condition is ‘Mur’ then 
11 Apply Mur boundary conditions considering wave speed; 

12 else if Boundary condition is ‘Dirichlet’ then 
13 Apply Dirichlet boundary conditions (zero displacement); 

14 Update previous and current displacement fields; 

15 Compute strains. εx , . εy , .γxy as gradients of the displacement field; 
16 for each grid point .(x, y) except boundaries do 
17 Calculate stresses.σxx , .σyy , .σxy using material properties and strains; 

18 if Calculate principal stresses then 
19 Calculate principal stresses. σ1, . σ2; 

20 for each time step . t do 
21 if Calculate principal stresses then 
22 Update the plots with. σ1, . σ2; 

23 else 
24 Update the plots with.σxx , .σyy , .σxy ; 

25 Render the animation frame;
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1.7 Problems 

The proper functionality of the generated code for the wave equation model and 
the FDTD solution scheme shall be tested in two problems. The problem defined in 
Table 1 has a corresponding reference code available on the internet [ 7], hence all 
the parameters and values are selected to match the reference code. Here, the time 
step size is significantly lower than the critical time step. Since this problem merely 
aims at a quantitative, numerical analysis of wave propagation, we can safely restrict 
for the parameters on their dimensions instead of explicit units. The output from the 
GPT-4’s code and the reference code is compared and discussed in Sect. 4. 

Table 1 Problem 1: Settings for the displacement study 

Parameters Values/Types Dimensions 

Domain size (. N ) 200 . [L]
Domain type Homogeneous 

Wave speed (. c) 0.2 . [LT−1]
Spatial step size (. h) 1 . [L]
Critical time step size (.�tmax) 2.5 . [T ]
Time step size (.�t) 1 . [T ]
BC Dirichlet and Mur 

Type of excitation function Sinusoidal 

Amplitude (. A) 80 . [L]
Frequency 1/50 . [T−1]
Source point (100, 100) . [L]
Output Displacement animation 

The problem in Table 2 adds further complexity to the previous problem in terms 
of a heterogeneous domain, two types of excitation functions, strain and stress cal-
culations and two types of stress plots. Here, the time step size is equal to the critical 
time step.
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Table 2 Problem 2: Settings for the stress study 

Parameters Values/Types Units 

Domain size (. N ) 200 mm 

Domain type Heterogeneous 

Upper half material Aluminum 

Lower half material Chromium 

Young’s modulus of chromium 280 GPa 

Poisson’s ratio of chromium 0.2 

Density of chromium 7100 kg/m. 3

Young’s modulus of aluminium 70 GPa 

Poisson’s ratio of aluminum 0.33 

Density of aluminum 2700 kg/m. 3

Spatial step size (. h) 1 mm 

Critical time step size (.�tmax) 7.96e-5 s 

Time step size (.�t) Equal to.�tmax s 

BC Dirichlet and Mur 

Type of excitation function Sinusoidal or Gaussian 

Amplitude (. A) 80 mm 

Frequency 1/50 Hz 

Source point (100, 100) mm 

Output Stress animation 

2 Prompt  

The final prompt is given in Fig. 2. It is used for generating the Code Listing 1. The  
proper labelling of the plots had to be done manually. 

For Problem 2: Stress Study, the level of flexibility aimed could not be captured 
in a single prompt. The Code Listing 2 is generated iteratively. In addition to that, 
manual intervention is carried out to label the plots.
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Fig. 2 Prompt for Problem 1: displacement study
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Fig. 2 (continued) 

3 Code Listing 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 from matplotlib.animation import FuncAnimation 
4 

5 # Simulation parameters 
6 size = 200 # domain size 
7 dx = dy = 1.0 # spatial discretization 
8 dt = 1.0 # time step 
9 c = 0.2 # wave speed 

10 

11 # Create a spatial grid 
12 x = np.linspace(0, size-1, size) 
13 y = np.linspace(0, size-1, size) 
14 X, Y = np.meshgrid(x, y) 
15 

16 # Initialize fields 
17 u = np.zeros((size, size)) # current wave field 
18 u_prev = np.zeros((size, size)) # previous wave field 
19 u_next = np.zeros((size, size)) # next wave field 
20 

21 # Source parameters 
22 source_amplitude = 80 
23 source_frequency = 0.04 
24 source_position = (100, 100) 
25 

26 def source(t): 
27 """ Returns the source value at time t """ 
28 return source_amplitude * np.sin(2 * np.pi * source_frequency

↪→ * t)  
29 

30 def update(u, u_prev, t, boundary_condition=’Mur’): 
31 """ Update wave field for the next time step using the FDTD

↪→ method """ 
32 # Core update (finite difference) 
33 for i in range(1, size-1): 
34 for j in range(1, size-1): 
35 u_next[i, j] = (c**2 * dt**2 / dx**2) * (u[i+1, j] +

↪→ u[i-1, j] + u[i, j+1] + u[i, j-1] - 4*u[i, j]) + 2*u[i, j]
↪→ - u_prev[i, j] 

36
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37 # Apply source 
38 u_next[source_position] += source(t) 
39 

40 # Apply boundary conditions 
41 if boundary_condition == ’Mur’: # Absorbing boundary 
42 for j in range(size): 
43 # Left and right boundaries 
44 u_next[0, j] = u[1, j] - (dx-c*dt)/(dx+c*dt) * (

↪→ u_next[1, j] - u[0, j]) 
45 u_next[-1, j] = u[-2, j] - (dx-c*dt)/(dx+c*dt) * (

↪→ u_next[-2, j] - u[-1, j]) 
46 # Top and bottom boundaries 
47 u_next[j, 0] = u[j, 1] - (dx-c*dt)/(dx+c*dt) * (

↪→ u_next[j, 1] - u[j, 0]) 
48 u_next[j, -1] = u[j, -2] - (dx-c*dt)/(dx+c*dt) * (

↪→ u_next[j, -2] - u[j, -1]) 
49 elif boundary_condition == ’Dirichlet’: # Reflecting

↪→ boundary 
50 u_next[0, :] = u_next[-1, :] = u_next[:, 0] = u_next[:,

↪→ -1] = 0 
51 

52 # Update arrays for next iteration 
53 u_prev[:, :] = u[:, :] 
54 u[:, :] = u_next[:, :] 
55 

56 def animate(i): 
57 """ Animation function """ 
58 update(u, u_prev, i, boundary_condition=’Mur’) # Toggle ’Mur

↪→ ’ or ’Dirichlet’ 
59 img.set_data(u) 
60 img.set_clim(-source_amplitude, source_amplitude) 
61 return img, 
62 

63 # Setup plot for animation 
64 fig, ax = plt.subplots() 
65 img = ax.imshow(u, origin=’lower’, cmap=’viridis’, 
66 interpolation=’nearest’, animated=True, vmin=-

↪→ source_amplitude, vmax=source_amplitude) 
67 ax.set_title("Wave Propagation in homogeneous medium", fontsize =

↪→ 12) 
68 ax.set_xlabel("x-axis", fontsize = 12) 
69 ax.set_ylabel("y-axis", fontsize = 12) 
70 cbar = fig.colorbar(img, ax=ax) 
71 cbar.set_label(’Wave Amplitude’) 
72 

73 # Create animation 
74 ani = FuncAnimation(fig, animate, frames=1000, interval=50, blit=

↪→ True) 
75 

76 # Optionally save the animation 
77 #ani.save(’wave_propagation2.mp4’, writer=’ffmpeg’) 
78 plt.show() 

Code Listing 1 Output by ChatGPT for solving Problem 1: Displacement Study
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1 # -*- coding: utf-8 -*-
2 """ 
3 Created on Fri Jul 12 19:15:36 2024 
4 

5 @author: Saad Qureshi 
6 """ 
7 

8 import numpy as np 
9 import matplotlib.pyplot as plt 

10 from matplotlib import animation, rc 
11 

12 # Constants and Material Properties 
13 E1 = 280e9 # Young’s modulus in Pascals for first half (Chromium

↪→ ) 
14 nu1 = 0.2 # Poisson’s ratio for first half 
15 rho1 = 7100 # Density in kg/m^3 for first half 
16 E2 = 70e9 # Young’s modulus in Pascals for second half (

↪→ Aluminum) 
17 nu2 = 0.33 # Poisson’s ratio for second half 
18 rho2 = 2700 # Density in kg/m^3 for second half 
19 c1 = np.sqrt(E1 / rho1) # Wave speed for first half 
20 c2 = np.sqrt(E2 / rho2) # Wave speed for second half 
21 

22 domain_size = 200 
23 dx = 1.0 
24 dy = 1.0 
25 dt = dx / (max(c1, c2)*(2)) # CFL condition for stability 
26 

27 calculate_principal_stresses = True 
28 boundary_type = ’Mur’ # Can be ’Mur’ or ’Dirichlet’ 
29 excitation_type = ’gaussian’ # Can be ’sinusoidal’ or ’gaussian’ 
30 

31 # Initialize fields 
32 x = np.linspace(0, domain_size-1, domain_size) 
33 y = np.linspace(0, domain_size-1, domain_size) 
34 u = np.zeros((domain_size, domain_size)) 
35 u_prev = np.zeros((domain_size, domain_size)) 
36 u_next = np.zeros((domain_size, domain_size)) 
37 stress_xx = np.zeros((domain_size, domain_size)) 
38 stress_yy = np.zeros((domain_size, domain_size)) 
39 stress_xy = np.zeros((domain_size, domain_size)) 
40 

41 # Source definitions 
42 sources = [{"position": (100, 100), "frequency": 0.04, "amplitude

↪→ ": 80}] 
43 

44 def source(t, frequency, amplitude, excitation_type): 
45 

46 if excitation_type == ’sinusoidal’: 
47 omega = 2 * np.pi *  frequency 
48 return amplitude * np.sin(omega * t)
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49 elif excitation_type == ’gaussian’: 
50 return amplitude * np.exp(-((t - 5) ** 2) / (2 * (0.5

↪→ ** 2))) 
51 

52 # Function to get properties based on location 
53 def get_properties(i): 
54 if i < domain_size // 2: 
55 return E1, nu1, c1 
56 else: 
57 return E2, nu2, c2 
58 

59 # Update function with Mur boundary conditions adjusted per wave
↪→ speed 

60 def update(t): 
61 global u, u_prev, u_next, stress_xx, stress_yy, stress_xy 
62 # Apply dynamic updates within the domain 
63 for i in range(1, domain_size-1): 
64 for j in range(1, domain_size-1): 
65 E, nu, c = get_properties(i) 
66 u_next[i, j] = (2 * u[i, j] - u_prev[i, j] + 
67 c**2 * dt**2 / dx**2 * (u[i+1, j] + u

↪→ [i-1, j] + u[i, j+1] + u[i, j-1] - 4 * u[i, j])) 
68 

69 # Apply sources 
70 for source_info in sources: 
71 src_x, src_y = source_info["position"] 
72 u_next[src_x, src_y] += source(t, source_info["frequency"

↪→ ], source_info["amplitude"], excitation_type) 
73 

74 # Apply Mur boundary conditions correctly for wave speed 
75 if boundary_type == ’Mur’: 
76 for j in range(1, domain_size-1): 
77 c_left = get_properties(1)[2] 
78 c_right = get_properties(domain_size-2)[2] 
79 u_next[0, j] = u_prev[1, j] + (c_left * dt - dx) / (

↪→ c_left * dt + dx) * (u_next[1, j] - u_prev[0, j]) 
80 u_next[-1, j] = u_prev[-2, j] + (c_right * dt - dx) /

↪→ (c_right * dt + dx) * (u_next[-2, j] - u_prev[-1, j]) 
81 

82 for i in range(1, domain_size-1): 
83 c_top = get_properties(i)[2] 
84 c_bottom = get_properties(i)[2] 
85 u_next[i, 0] = u_prev[i, 1] + (c_bottom * dt - dy) /

↪→ (c_bottom * dt + dy) * (u_next[i, 1] - u_prev[i, 0]) 
86 u_next[i, -1] = u_prev[i, -2] + (c_top * dt - dy) / (

↪→ c_top * dt + dy) * (u_next[i, -2] - u_prev[i, -1]) 
87 

88 elif boundary_type == ’Dirichlet’: 
89 u_next[0, :] = 0 
90 u_next[-1, :] = 0 
91 u_next[:, 0] = 0 
92 u_next[:, -1] = 0 
93
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94 u_prev, u = u, u_next.copy() 
95 

96 # Recalculate stresses 
97 grad_u_x = np.gradient(u, axis=0) # Gradient along x-axis 
98 grad_u_y = np.gradient(u, axis=1) # Gradient along y-axis 
99 for i in range(1, domain_size-1): 

100 E, nu, _ = get_properties(i) 
101 stress_xx[i, 1:-1] = E / (1 - nu**2) * (grad_u_x[i, 1:-1]

↪→ + nu * grad_u_y[i, 1:-1]) 
102 stress_yy[i, 1:-1] = E / (1 - nu**2) * (grad_u_y[i, 1:-1]

↪→ + nu * grad_u_x[i, 1:-1]) 
103 stress_xy[i, 1:-1] = E / (2 * (1 + nu)) *  (grad_u_x[i,

↪→ 1:-1] + grad_u_y[i, 1:-1]) 
104 

105 if calculate_principal_stresses: 
106 # Calculate principal stresses 
107 sigma_avg = (stress_xx + stress_yy) / 2 
108 sigma_diff = (stress_xx - stress_yy) / 2 
109 R = np.sqrt(sigma_diff**2 + stress_xy**2) 
110 principal_stress_1 = sigma_avg + R 
111 principal_stress_2 = sigma_avg - R 
112 return principal_stress_1, principal_stress_2 
113 else: 
114 return stress_xx, stress_yy, stress_xy 
115 

116 # Define the animation function and plot setup 
117 # Define the animation function and plot setup 
118 fig, ax = plt.subplots(1, 3, figsize=(18, 6)) 
119 

120 # Initial settings for stress_xx plot 
121 im1 = ax[0].imshow(stress_xx, origin=’lower’, extent=[0,

↪→ domain_size * dx, 0, domain_size * dy], cmap=’viridis’,
↪→ vmin = np.min(stress_xx), vmax = np.max(stress_xx)) 

122 cbar1 = fig.colorbar(im1, ax=ax[0]) 
123 cbar1.set_label(’Stress’) 
124 ax[0].set_title(’Stress 1’) 
125 ax[0].set_xlabel(’x axis (mm)’) 
126 ax[0].set_ylabel(’y axis (mm)’) 
127 

128 # Initial settings for stress_yy plot 
129 im2 = ax[1].imshow(stress_yy, origin=’lower’, extent=[0,

↪→ domain_size * dx, 0, domain_size * dy], cmap=’viridis’,
↪→ vmin = np.min(stress_yy), vmax = np.max(stress_yy)) 

130 cbar2 = fig.colorbar(im2, ax=ax[1]) 
131 cbar2.set_label(’Stress’) 
132 ax[1].set_title(’Stress 2’) 
133 ax[1].set_xlabel(’x axis (mm)’) 
134 ax[1].set_ylabel(’y axis (mm)’) 
135 

136 # Initial settings for stress_xy plot 
137 im3 = ax[2].imshow(stress_xy, origin=’lower’, extent=[0,

↪→ domain_size * dx, 0, domain_size * dy], cmap=’viridis’,
↪→ vmin = np.min(stress_xy), vmax = np.max(stress_xy))



Elastic Wave Propagation 195

138 cbar3 = fig.colorbar(im3, ax=ax[2]) 
139 cbar3.set_label(’Stress’) 
140 ax[2].set_title(’Stress 3’) 
141 ax[2].set_xlabel(’x axis (mm)’) 
142 ax[2].set_ylabel(’y axis(mm)’) 
143 

144 # Main title for the figure 
145 fig.suptitle(’Stress Distribution Over Time’, fontsize=16) 
146 

147 # Function to update plots 
148 def animate(t): 
149 if calculate_principal_stresses: 
150 stress_1, stress_2 = update(t) 
151 im1.set_data(stress_1) 
152 im2.set_data(stress_2) 
153 im3.set_data(np.zeros_like(stress_1)) # Placeholder if

↪→ only two plots needed 
154 else: 
155 stress_xx, stress_yy, stress_xy = update(t) 
156 im1.set_data(stress_xx) 
157 im2.set_data(stress_yy) 
158 im3.set_data(stress_xy) 
159 return im1, im2, im3 
160 

161 ani = animation.FuncAnimation(fig, animate, frames=200, interval
↪→ =50, blit=True) 

162 plt.tight_layout() 
163 ani.save(’stress_ani2.mp4’, writer=’ffmpeg’) 
164 plt.show() 

Code Listing 2 Output by ChatGPT for solving Problem 2: Stress Study 

4 Tests for Verification 

For the displacement study in Problem 1, a reference code [ 7] –equally based on the 
FDTD method– is used to test the output of GPT-4’s code. The problem parameters 
as listed in Table 1 are chosen exactly the same for a proper comparison. 

4.1 Test 1 

The output is compared for both types of BCs. 
Figure 3 indicates total reflection for reflection BCs. Vice versa, Fig. 4 indicates 

total absorption for absorbing BCs. Furthermore, the same pattern emerge for both
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the cases. Hence, it is concluded that the ICs, BCs and the FDTD method are working 
as intended. 

Fig. 3 Snapshot of the 
amplitude animation in case 
of reflecting BCs 

(a) Reference code 

(b) GPT-4 code
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Fig. 4 Snapshot of the 
amplitude animation in case 
of absorbing BCs 

(a) Reference code 

(b) GPT-4 code 

4.2 Test 2 

For the stress study in Problem 2, the solution shall be tested for plausibility for a 
layered domain in terms of stresses and strains. Note that there are no units associated 
with the colormap. In the code, the minimum and maximum of colormap are defined 
as the minimum and maximum of the respective stress, but due to the dynamic 
nature of the plot, the program is unable to provide determine a useful range of the 
colormap. From the Code Listing 8.2, the correct calculation of strain and stress 
are easily verified. Furthermore, Fig. 5 indicates that the stress field travels faster in
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(a) Normal stresses and 

(b) Principal stresses 1 and 2 

Fig. 5 Stress contour plots for Gaussian excitation along with Mur BCs and a higher speed of 
sound in the lower half of the simulation domain 

the lower half (chromium) of the domain than in the upper half (aluminum), which 
is consistent with chromium having a higher wave speed constant, 6280 m/s, than 
aluminum, 5090 m/s. 

These conclusions can further be applied to the other excitation function and BC. 

5 Discussion 

The methodology to get the desired output is: 

• Start out with a detailed prompt, covering all the features required in the code. 
• Test the code. In case of errors, convey the errors to GPT-4 and what should be 
the correct output. Keep doing these iterations until the code with correct output 
is generated.
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• Finally modify the prompt with the knowledge gained from the iterations. Ask 
GPT-4 to specially focus in areas where most frequent errors occurred. Briefly 
explain the structure of the required code in terms of different functions etc., using 
the knowledge of the code with correct output. 

The methodology mentioned above works for the displacement study of Problem 
1, but does not work properly for the stress study in a heterogeneous domain referred 
to as Problem 2; the reason is the multitude of features that are requested seemingly 
can not be successfully captured in one prompt in a way that it is processed by the 
Chatbot. 

For that reason, the set of Problem 2 calls for a solution strategy of prompt engi-
neering, where all the required features in the code are communicated in several 
prompts. All attempts to generalize these successive prompts have failed, since they 
resulted in a large variety of different code outputs generated by GPT-4 in each try. 
It is this kind of instability to generate for the same prompt a unique code of granted 
quality, which forbids to present a prompt for Problem 2 in this chapter. Instead we 
restrict to the generated code that, finally, solved the problem. 

Some of the important aspects that are noticed while working on the prompts, 
generating code and testing are: 

• GPT-4 frequently uses variables that were not defined in the code. Hence, a 
NameError shows up while running the code. 

• When a detailed prompt is provided to GPT-4, it sometimes ignores certain fea-
tures completely. Sometimes it defines a certain function only as a comment line 
describing its usage, and the implementation part is left empty. 

• Another common error of GPT-4 is not to define the origin of the domain correctly. 
The .x-axis of the plot would start from the bottom left corner of the square and 
the .y-axis from the top left corner of the square. 

• GPT-4 makes a lot of errors regarding the animation part of the code. A lot of 
debugging and iterations are required to make that part of the code function as 
intended. 

• Even if an expression is explicitly defined, GPT-4 would sometimes use a different 
one. For example, CFL formula to calculate.�t would be explained in the prompt, 
but GPT-4 would use a different formula. 

• A recurring issue is GPT-4 coming to a halt while generating code. The speed of 
the text generation is very slow. 

• Reproducibility remains a severe issue for GPT-4. While testing the prompt men-
tioned in Code Listing 8.1, the correct output is generated most of the times, but 
not always. In case there are some errors in the output code, regenerating the code 
usually results in removal of those errors. 

• GPT-4 makes a lot of errors while implementing absorbing BC, which would result 
in reflection of waves at the boundaries. To fix this, the discretized formula (10) 
is included in the prompt as a reference, which resolved the issue.
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6 Conclusion 

GPT-4 was used to numerically solve the 2D wave equation using finite difference 
time domain scheme. As it turned out, GPT-4 exhibits enough domain expertise both 
for the wave problem and the numerical method to generate a correct code solution 
for a wave propagation displacement study along with absorbing as well as reflecting 
boundary conditions. In a problem of wave propagation in a heterogeneous medium 
along with stress computation, hence a task of increased complexity, GPT-4 revealed 
deficits which called for manual/human intervention. Despite its demonstrated per-
formance in code generation, GPT-4 showed its current limitations in this project; 
it suffers (i) from unstable code generation, where exactly the same prompt results 
in different outputs, and (ii) from the inability to account for all the different tasks 
in a prompt for complex problems. These disadvantages make formulating single 
prompts for complex problems difficult, and make successive prompts and manual 
intervention unavoidable. 
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Electromagnetic Wave Propagation 
in Dielectric Media 

Tejas Viresh Anvekar and Bernhard Eidel 

Abstract This study leverages the Conditional Generative Pre-trained Transformer, 
specifically ChatGPT-4, to develop a Python-based application for analyzing the 
propagation of electromagnetic waves in dielectric media using the two-dimensional 
Finite-Difference Time-Domain (FDTD) approach. The primary aim is to examine 
how electromagnetic waves interact with various dielectric environments, focusing 
on their reflection, transmission, and absorption properties. This work aims to exploit 
the capabilities of ChatGPT-4 to craft an accurate simulation tool. The performance 
of the generated FDTD simulations by ChatGPT-4 is evaluated. The findings suggest 
that ChatGPT-4 successfully creates FDTD program codes that conform to expected 
physical outcomes, albeit with slight variances. This research underscores the poten-
tial and accuracy of AI in handling sophisticated electromagnetic simulation tasks. 

1 Introduction 

The study of electromagnetic wave propagation through various media is essential for 
developments in telecommunications, radar, and electronic systems engineering. The 
Finite-Difference Time-Domain (FDTD) method, pioneered by Yee in 1966, offers a 
dynamic numerical technique for solving Maxwell’s equations in the time-domain. 
This method is highly regarded for its direct algorithmic form, which is capable of 
managing complex boundary conditions (BC) and varying media properties. 

With the advancement of computational methods, FDTD has been widely applied 
in conjunction with fluid dynamics concepts to enhance the study of wave propa-
gation in various media. Fluid dynamics principles, such as those encapsulated by 
the Boltzmann equation, allow for the modeling of wave interactions in complex 
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media. By coupling fluid dynamic behavior (through the distribution of particles or 
fields) with electromagnetic wave propagation, we gain a deeper understanding of 
the interaction of waves with different materials. The Boltzmann-FDTD method, 
which bridges the dynamics of particles with wave behavior, captures essential char-
acteristics such as reflection, refraction, and absorption. This approach, grounded in 
fluid dynamics, enhances the accuracy of simulations by incorporating the underly-
ing physical properties of the medium, offering insights into energy transfer, wave 
dynamics, and material interactions. 

With the advent of artificial intelligence (AI), particularly advancements in 
machine learning and algorithm generation, new possibilities have emerged to 
enhance and automate numerical simulations. The Conditional Generative Pre-
trained Transformer, ChatGPT-4, by OpenAI, is a testament to these advancements, 
providing sophisticated language comprehension and code generation capabilities. 
This work employs ChatGPT-4 to devise a Python program that simulates electro-
magnetic wave interactions in dielectric media using the FDTD method. 

The primary goal of this research is to create a comprehensive simulation platform 
to study how electromagnetic waves, specifically Gaussian pulses and plane waves, 
interact within different dielectric environments. These wave types are chosen for 
their relevance in practical applications and their distinct propagation characteris-
tics, which are crucial for a detailed study of wave phenomena including reflection, 
transmission, absorption, and scattering. 

One of the key challenges in simulating electromagnetic wave propagation is 
choosing the appropriate dimensionality of the model. While 3D simulations offer 
the most detailed analysis, they are computationally expensive and time-consuming. 
To strike a balance between accuracy and computational efficiency, this work tran-
sitions from a 3D model to a 2D cross-sectional simulation. The 2D model captures 
essential phenomena such as reflection, refraction, and absorption while significantly 
reducing the computational burden. This approach is illustrated in Fig. 1, where the 
3D simulation box with a spherical dielectric medium is simplified to a 2D cross-
sectional view. 

The dielectric medium used in this study is central to the investigation of electro-
magnetic wave behavior. The medium is characterized by a specific relative permittiv-
ity and conductivity, which are chosen to allow detailed observation of critical wave 
phenomena. The dielectric cylinder placed at the center of the simulation domain, 
as shown in Fig. 1, serves as a test object to visualize reflection, refraction, and 
absorption of electromagnetic waves. These phenomena are not only fundamental to 
understanding wave-material interactions but are also crucial for the development of 
practical devices in communications and radar systems. 

This work also explores various BC, particularly the Perfectly Matched Layer 
(PML), to minimize reflections at the boundaries of the computational domain, which 
is vital for accurate simulation of open-region electromagnetic problems. By integrat-
ing ChatGPT-4 in the development process, this study seeks to merge computational 
electromagnetics with AI, enabling rapid prototyping and validation of electromag-
netic models. The simulations produced by ChatGPT-4 will be rigorously compared 
with analytical models and established FDTD software outputs to assess their accu-
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(a) 3D Simulation Box (b) 2D Cross-Sectional View 

Fig. 1 Transition from 3D to 2D simulation for efficient analysis. The left image a shows a 3D 
simulation setup, while the right image b illustrates the 2D cross-sectional view used for the simu-
lation with a cylindrical dielectric medium with a diameter (. d) of 20  cm.  The dielectric cylinder is  
positioned at the center of the domain. The Gaussian source emits in all directions 

racy and effectiveness. This investigation not only evaluates the reliability of AI in 
generating viable scientific computing algorithms but also examines its potential to 
simplify complex simulation tasks [ 1, 6, 7]. 

1.1 Electro-Magnetic Theory 

Maxwell’s equations form the foundation of classical electromagnetism, describing 
how electric and magnetic fields propagate and interact with matter. In a dielectric 
medium, these equations can be expressed in a differential form as follows [ 1]: 

.∇ · D = ρ, (1) 

.∇ · B = 0, (2) 

.∇ × E = −∂B
∂t

, (3) 

.∇ × H = J + ∂D
∂t

, (4) 

where. E is the electric field,.H is the magnetic field,.D is the electric flux density,. B is 
the magnetic flux density,. ρ is the charge density, and. J is the current density. These 
equations can be discretized for computational purposes using the FDTD method.
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Fig. 2 Illustration of a Transverse Magnetic (TM) wave. The magnetic field is confined to the.x-. y
plane, while the electric field has a component in the. z direction 

In a 2D FDTD simulation, we consider the TM (Transverse Magnetic) waves, 
where the electric field has only a .z-component (.Ez), and the magnetic fields have 
. x and . y components (.Hx , .Hy). In this mode, the electric field .Ez is oriented along 
the.z-axis, while the magnetic field components.Hx and.Hy are oriented in the. x and 
. y directions, respectively, and are transverse to the direction of wave propagation as 
visualized in Fig. 2. The Maxwell’s curl equations for this mode are 

.
∂Hx

∂t
= − 1

μ

∂Ez

∂y
, (5) 

.
∂Hy

∂t
= 1

μ

∂Ez

∂x
, (6) 

.
∂Ez

∂t
= 1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
, (7) 

where. ε is the permittivity and. μ is the permeability of the medium. These equations 
are discretized in both time and space, allowing for the fields to be updated iteratively 
at each time step.
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1.2 Dimensionality Reduction 

To address computational complexity and memory requirements in FDTD simu-
lations, it is standard practice to implement these simulations on a 2-D lattice. In 
this work, we assume that the field components are independent of the . z coordinate 
.(∂/∂z = 0). Under this assumption, the plane electromagnetic field can be decom-
posed into transverse electric (TE) and transverse magnetic (TM) waves. These wave 
modes are characterized by the following relations [ 3]: 

.TE : Ez = 0, Hx = Hy = 0 (8) 

.TM : Hz = 0, Ex = Ey = 0 (9) 

Considering the TM wave, the update equation for the electric field component 
.Ez is 

. En+1
z (i, j) = En

z (i, j) + �t

ε

[
Hn
y (i, j) − Hn

y (i − 1, j)

�x
− Hn

x (i, j) − Hn
x (i, j − 1)

�y

]
.

(10) 
For the magnetic field components .Hx and .Hy the update equations are 

.Hn+1/2
x (i, j) = Hn−1/2

x (i, j) − �t

μ

En
z (i, j + 1) − En

z (i, j)

�y
, (11) 

.Hn+1/2
y (i, j) = Hn−1/2

y (i, j) + �t

μ

En
z (i + 1, j) − En

z (i, j)

�x
. (12) 

Here, .�x and .�y represent the spatial steps in the . x and . y directions, respectively, 
while .�t denotes the time step size. The indices . i and . j refer to the grid points 
in space, and . n indicates the time step. The magnetic field components .Hx and . Hy

are staggered with respect to the electric field component .Ez . This staggering is 
crucial for accurately calculating the fields at each time step, following the Yee cell 
structure, which is a standard approach in FDTD simulations. The interleaving of 
these fields, as depicted in Fig. 3, ensures that the electromagnetic fields propagate 
correctly throughout the computational domain. These update equations are applied 
iteratively to achieve this propagation.
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Fig. 3 Interleaving of the.E and.H fields for the two-dimensional TM formulation, sketch adopted 
from [ 4] 

1.3 Absorbing Boundary Conditions (BC) 

In FDTD simulations, accurate boundary conditions (BC) are essential to minimize 
reflections from the edges of the computational domain, which can interfere with 
the results. One of the most effective methods for absorbing outgoing waves is the 
perfectly matched layer (PML) BC. 

The PML is designed to absorb electromagnetic waves at the boundary of the 
simulation domain, preventing them from reflecting back into the interior. This is 
achieved by gradually increasing the material’s conductivity in the PML region, 
which attenuates the wave as it propagates through the layer. The key to the effec-
tiveness of PML is that it matches the impedance of the interior domain, ensuring 
minimal reflection. 

1.3.1 Updating with PML 

The implementation of PML in a 2D FDTD simulation involves modifying the update 
equations for the electric and magnetic fields in the PML region. The electric and 
magnetic field components are split into two auxiliary variables, which are updated 
separately. Maxwell’s equations can be updated as follows [ 5]
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.

Dn+1/2
z (i, j) = gi3(i)g j3( j)D

n−1/2
z (i, j) + 0.5gi2(i)g j2( j)

×
[
Hn

y

(
i + 1

2
, j

)
− Hn

y

(
i − 1

2
, j

)

− Hn
x

(
i, j + 1

2

)
+ Hn

x

(
i, j − 1

2

) ]
.

(13) 

As illustrated in Fig. 4, the parameter distribution within the PML ensures that outgo-
ing waves are effectively absorbed. The overlapping regions at the corners indicate 
where both sets of parameters intersect, which is crucial for minimizing reflections. 
The parameters .gi2, gi3, g j2, g j3 are given by 

.gi2 = g j2 = 1

1 + σ�t

2ε0

(14) 

.gi3 = g j3 =
σ�t

2ε0

1 + σ�t

2ε0

(15) 

Fig. 4 This figure illustrates the parameter distribution within the PML (Perfectly Matched Layer) 
region of a 2D FDTD simulation. The overlapping regions at the corners indicate where both sets 
of parameters intersect, ensuring effective absorption of outgoing waves
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The curl of the electric field can be given by 

.∇ × E = En+1/2
x (i + 1, j) − En+1/2

x (i, j). (16) 

The incident magnetic field in the .y-direction can be given by 

.Hn+1/2
y

(
i + 1

2
, j

)
= Hn−1/2

y

(
i + 1

2
, j

)
+ ∇ × E. (17) 

The total magnetic field in the.y-direction can be evaluated recursively as follows 

.

Hn+1/2
y

(
i + 1

2
, j

)
= gi3

(
i + 1

2

)
Hn

y

(
i + 1

2
, j

)

− 0.5gi2

(
i + 1

2

)
∇ × E − gi1( j)H

n
y

(
i + 1

2
, j

)
,

(18) 

where .gi1 is given by: 

.gi1 = σ�t

2ε0
. (19) 

The incident magnetic field in the .x-direction is given by 

.I n+1/2
Hx

(
i, j + 1

2

)
= I n−1/2

Hx

(
i, j + 1

2

)
+ ∇ × E. (20) 

The total magnetic field in the .x-direction can be obtained by 

. 

Hn+1
x

(
i, j + 1

2

)
= g j3

(
j + 1

2

)
Hn

x

(
i, j + 1

2

)

+ 0.5 g j2

(
j + 1

2

)
∇ × E + g j1( j)I

n+1/2
Hy

(
i, j + 1

2

)
.

(21) 

1.3.2 Parameters for PML 

The effectiveness of the PML depends on the choice of parameters such as the con-
ductivity profile. A common approach is to use a polynomial grading of conductivity, 
which gradually increases from zero at the interface to a maximum value at the outer 
edge of the PML. The conductivity . σ in the PML can be expressed as [ 4] 

.σ(x) = σmax

(
x

dPML

)m

, (22)
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where .dPML is the thickness of the PML, .σmax is the maximum conductivity, and . m
is the grading order. By carefully selecting these parameters, the PML can effec-
tively absorb outgoing waves over a broad range of angles and frequencies, ensuring 
minimal reflection and accurate simulation results. 

1.4 Gaussian Sinusoidal Pulse 

In FDTD simulations, a Gaussian sinusoidal pulse is often used as a source due 
to its localized and broadband nature. The pulse is defined by a Gaussian enve-
lope modulating a sinusoidal carrier wave, which can be mathematically represented 
as [ 4]: 

.E(t) = E0 exp

(
− (t − t0)2

2σ 2

)
sin(2π fct), (23) 

where .E0 is the peak amplitude, . t0 is the time delay, . σ is the pulse width, and . fc is 
the central frequency of the sinusoidal wave. The Gaussian envelope ensures that the 
pulse is localized in time, while the sinusoidal component determines its frequency 
content. 

In the context of FDTD, the source can be introduced into the simulation domain 
by updating the electric field component at a specific grid point. This allows the study 
of the pulse’s interaction with various media and boundaries. 

This implies that changes in energy density within a volume are due to the 
net flux of energy across the volume’s boundaries. The stabilization of energy in 
the graph indicates conservation of internal energy after accounting for boundary 
absorption [ 2]. 

In this work, a circular dielectric medium is introduced into the 2D FDTD com-
putational domain to investigate the interaction of electromagnetic waves with a 
dielectric object as illustrated in Fig. 1. The dielectric cylinder is characterized by a 
relative permittivity (. εr ) of 30 and a conductivity (. σ ) of 0.3  S  m. 

−1. The diameter of the 
cylinder is 20 cm, representing both lossless and lossy linear isotropic homogeneous 
media (LIHMs). 

A lossless linear isotropic homogeneous medium (LIHM) is one where the mate-
rial has zero conductivity (.σ = 0 Sm. 

−1). In such a medium, electromagnetic waves 
can propagate without any energy loss. The material’s properties, like relative per-
mittivity (. εr ), affect the speed and direction of the wave, but not its amplitude. 

In contrast, a lossy LIHM is a material with non-zero conductivity (.σ > 0 Sm. 
−1). 

In this case, the medium absorbs some of the electromagnetic wave’s energy, leading 
to attenuation of the wave as it propagates. The dielectric cylinder in this work, 
characterized by.σ = 0.3 Sm. 

−1, is an example of a lossy medium, which allows the 
study of both idealized (lossless) and realistic (lossy) conditions.
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The presence of the dielectric cylinder affects the propagation of the electromag-
netic waves, causing phenomena such as reflection, refraction, and scattering. These 
effects are crucial for understanding the behavior of waves in real-world applications, 
such as radar and wireless communications. 

The update equations for the FDTD simulation in the presence of a dielectric 
medium are modified to account for the material properties. For the electric field 
component .Ez , the update equation reads 

. En+1
z (i, j) = 1 − σ�t

2ε

1 + σ�t
2ε

En
z (i, j) + �t

ε
(
1 + σ�t

2ε

)
[
Hn

y (i, j) − Hn
y (i − 1, j)

�x

− Hn
x (i, j) − Hn

x (i, j − 1)

�y

]
, (24) 

where. ε is the permittivity of the dielectric medium,.�t is the time step, and.�x and 
.�y are the spatial steps in the . x and . y directions, respectively. 

For the magnetic field components .Hx and .Hy , the update equations remain the 
same as in the free space case, as the magnetic permeability is assumed to be that of 
free space (.μ = μ0) 

.Hn+1/2
x (i, j) = Hn−1/2

x (i, j) − �t

μ0

En
z (i, j + 1) − En

z (i, j)

�y
, (25) 

.Hn+1/2
y (i, j) = Hn−1/2

y (i, j) + �t

μ0

En
z (i + 1, j) − En

z (i, j)

�x
. (26) 

By integrating the circular dielectric medium into the FDTD simulation, the study 
aims to provide insights into the complex interactions of electromagnetic waves with 
dielectric materials. Understanding these interactions is essential for the design and 
analysis of various electromagnetic systems, such as radar and wireless commu-
nication systems. The simulation helps to visualize and quantify the effects of the 
dielectric medium on wave propagation, enabling better prediction and optimization 
of system performance [ 4]. 

The algorithm for simulations of electromagnetic wave propagation in dielectric 
media is given in the Algorithm Box 1.
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Algorithm 1: 2D FDTD Electromagnetic Wave Simulation with PML and 
Dielectric Medium 
Data: Simulation parameters:.dx , .dy, . dt , .Lx , .Ly, . T
Result: Animation and plots of electromagnetic wave propagation 

1 Initialization: 
2 – Define constants:. c0,. ε0,. μ0
3 – Compute grid size.Nx , .Ny, time steps. Nt
4 – Initialize permittivity matrix.εr and conductivity matrix. σ

5 – Set up circular dielectric medium in.εr and. σ

6 – Initialize field arrays.Ez , .Hx , . Hy
7 – Define source parameters: position, pulse width, frequency. f0
8 – Apply PML boundary conditions to. σ

9 Main Simulation Steps: 
10 for each time step . n from . 0 to .Nt − 1 do 
11 – Calculate current time.t = n × dt for each time step. n
12 – Compute source pulse for time. t
13 end 
14 – Update the electric field.Ez at the source position using: 

. 

En+1
z (i, j) = 1 − σ�t

2ε0

1 + σ�t
2ε0

En
z (i, j) + �t

ε
(
1 + σ�t

2ε0

)

×
[
Hn
y (i, j) − Hn

y (i − 1, j)

�x
− Hn

x (i, j) − Hn
x (i, j − 1)

�y

]

15 – Update magnetic fields.Hx , .Hy using: 

. 

Hn+1/2
x (i, j) = Hn−1/2

x (i, j) − �t

μ0

(
En
z (i, j + 1) − En

z (i, j)

�y

)

Hn+1/2
y (i, j) = Hn−1/2

y (i, j) + �t

μ0

(
En
z (i + 1, j) − En

z (i, j)

�x

)

16 – Apply PML conditions and update fields using: 

. 

Dn+1/2
z (i, j) = gi3(i)g j3( j)D

n−1/2
z (i, j) + 0.5gi2(i)g j2( j)

×
[
Hn
y

(
i + 1

2
, j

)
− Hn

y

(
i − 1

2
, j

)

− Hn
x

(
i, j + 1

2

)
+ Hn

x

(
i, j − 1

2

) ]
.

17 – Store results every 10 steps and calculate total energy: if n mod 10 == 0 then 
18 – Store current.Ez field for animation 
19 – Compute and store total energy in the system 
20 end 
21 Visualization: 
22 – Create 2D animation of.Ez over time 
23 – Generate 3D surface plots of.Ez at selected time steps 
24 – Plot total electromagnetic energy as a function of time
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1.5 Problem Description 

The work is based on simulating 2D FDTD electromagnetic wave propagation in a 
dielectric medium. The simulation will incorporate advanced features and visualiza-
tions of reflection, refraction, and absorption. The simulation setup includes various 
physical constants, simulation parameters, material properties, field initialization, 
source configuration, and PML boundary conditions (BC). The parameters chosen 
are given in Table 1. 

In this simulation, vacuum space is considered alongside a dielectric medium to 
study the behavior of electromagnetic waves under ideal conditions. The inclusion of 
vacuum allows us to observe the wave’s natural behavior, minimizing external influ-
ences such as dispersion and loss. This provides a clear baseline for understanding 
wave phenomena such as reflection and refraction. 

Table 1 Summary of constants, material properties, source configuration, and PML BCs 

Parameters Values/Types Units 

Constants 

Speed of light (. c0) .3 × 108 ms. −1

Vacuum permittivity (. ε0) .8.54 × 10−12 Fm. −1

Vacuum permeability (.μ0) .4π × 10−7 Hm. −1

Material properties 

Relative permittivity (. εr ) 30 – 

Conductivity (. σ ) 0.30 Sm. −1

Diameter of dielectric cylinder 0.20 m 

Simulation parameters 

Spatial step in. x (.�x) 0.01 m 

Spatial step in. y (.�y) 0.01 m 

Time step (.�t) .0.9 × �x

c0
√
2

s 

Domain length in. x (.Lx ) 2.0 m 

Domain length in. y (.Ly) 2.0 m 

Position of dielectric center 1.0, 1.0 m 

Total simulation time (. T ) .1 × 10−7 s 

Source configuration 

Position .

(
Nx

4
,
Ny

2

)
= (0.5, 1.0) m 

Pulse width .10−10 s 

Frequency (. f0) .5 × 106 Hz 

PML BC 

Thickness 20 cells 

Max conductivity (.σmax) 0.1 Sm.−1



Electromagnetic Wave Propagation in Dielectric Media 213 

The dielectric medium, characterized by its relative permittivity and conductivity, 
is included within the same simulation environment to observe how these material 
properties affect wave propagation. By studying the interaction of waves with the 
dielectric medium, we can analyze how it alters wave behavior in terms of reflection, 
refraction, and absorption. This comprehensive approach ensures that the effects of 
the dielectric medium on wave behavior are clearly understood within a controlled 
simulation environment. 

2 Prompt  

To effectively utilize ChatGPT for formulating and solving a 2D FDTD electromag-
netic wave propagation simulation in a dielectric medium, the prompt must be struc-
tured with specific instructions and provide comprehensive and precise inputs. The 
goal is to ensure that the problem is clearly articulated and all necessary parameters 
are included to achieve a precise and correct solution. The task involves defining the 
physical constants, simulation parameters, material properties, field initialization, 
source configuration, PML BC, and analysis requirements perfectly. The prompt 
must specify the following details 

• Physical Constants: Specify the speed of light, vacuum permittivity, and vacuum 
permeability. 

• Simulation Parameters: Describe the spatial steps, time step, domain size, and 
simulation time. 

• Material Properties: Define the relative permittivity and conductivity of the 
dielectric medium, as well as its geometric placement in the domain. 

• Field Initialization: Specify the initialization of the electric and magnetic fields. 
• Source Configuration: Describe the source type ,position, pulse width, and fre-
quency. 

• PML BC: Mention the thickness and maximum conductivity of the PML bound-
aries. 

• Units: Ensure all inputs are given in consistent units to avoid errors in the simu-
lation. 

The prompt must also include a set of instructions or guidelines to ensure that 
ChatGPT understands the task clearly and displays the results as required. The fol-
lowing instructions are provided for this particular field of study: 

• FDTD Setup: Instructions to define the spatial and time steps, initialize the field 
arrays, and apply the FDTD update equations for both electric and magnetic fields. 
Instructions to incorporate the material properties and PML BC into the simulation. 

• Source Implementation: Instructions to define the source configuration, including 
its position, pulse width, and frequency. 

• Post-Processing: Instructions to compute the outputs like electric and magnetic 
field distributions, visualize the fields over time, and analyze the wave interactions 
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with the dielectric medium. Wherever applicable, formulas or pseudo-code can be 
provided to minimize the assumption of ChatGPT. 

• Visualization: The format of the output is mentioned in the prompt. Instructions 
provided to generate plots or animations of the field distributions with proper 
legends, labels, and color maps for better understanding. 

• Instruction to ask ChatGPT for comments in the code: Request comments 
within the code to explain the steps and calculations performed. 

As a computational physicist, generate a complete Python program for a 2D 
Finite-Difference Time-Domain (FDTD) electromagnetic wave propagation 
in dielectric medium simulation. The program must include the following 
components and features, with the same function names as mentioned in this 
script. 

1. Import necessary libraries: 

• numpy for numerical computations, 
• matplotlib for plotting and animation, 
• cm from matplotlib. 

2. Define physical constants: 

• Speed of light in vacuum (.c0 = 3 × 108 ms. −1), 
• Permittivity of free space (.ε0 = 8.54 × 10−12 Fm. 

−1), 
• Permeability of free space (.μ0 = 4π × 10−7 Hm. 

−1). 

3. Set up simulation parameters: 

• Spatial steps (.�x , .�y) = (0.01, 0.01 m), 
• Time step (.�t) calculated for stability = .0.9 × �x 

c0 
√
2 
, 

• Domain dimensions (.Lx , .L y) = (2, 2  m),  
• Total simulation time (. T ) = .1 × 10−7 s, 
• Calculate grid sizes (.Nx , .Ny) and number of time steps (.Nt ). 

4. Create material properties: 

• Define a circular dielectric medium in the center of the domain:. εr , . σ , 
• Center: .center_x = 0.5 × Nx , .center_y = 0.5 × Ny , 
• Radius: .radius  = 0.20

�x , • Set relative permittivity (. εr ) = 30 and conductivity (. σ ) = 0.30 S m. 
−1 

for the medium. 

5. Initialize field arrays: 

• Electric field (.Ez), 
• Magnetic fields (.Hx , .Hy). 
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6. Set up source parameters: 

• Source position: (.Nx //4, .Ny//2), 
• Pulse width: .1 × 10−10 s, 
• Frequency: .5 × 106 Hz. 

7. Set up PML Boundary Conditions (BC): 

• PML thickness: 20 cells, 
• Maximum conductivity (.σmax): 0.1 S m.

−1 . 

Create a function apply_pml() using a for loop in the range of 
pml_thickness. This function applies PML BC to the conductivity 
array sigma in a 2D grid, which is used in FDTD simulations to absorb 
outgoing waves at the boundaries and prevent reflections. 

8. Create update functions for the electromagnetic fields: 

• Includes updating the magnetic fields.Hx and.Hy , updating the electric 
field.Ez in a single function, then applying conductivity for absorption. 

9. Simulation functions: 

• Create a function run_simulation(): This function runs a sim-
ulation of electromagnetic wave propagation and captures snapshots 
of the electric field at regular intervals. The function should propagate 
a Gaussian-modulated sinusoidal pulse wave in a medium character-
ized by its relative permittivity (. εr ) and electrical conductivity (. σ ). It 
captures the electric field (.Ez) at every 10th time step and stores these 
snapshots as ‘frames’ in a list for subsequent analysis or visualization. 

• Create a function animate(frames, title): Create an anima-
tion of the electric field from a series of frames and save it as a GIF 
or MP4 file. 

• Create a function run_simulation_3D_plot(): Cap-
ture snapshots of the electric field (.Ez) at specific time 
frames(100,500,1000,1200) for 3D plotting. 

• Create a function plot_3d_surface(Ez, title): Plot a 3D  
surface of the electric field component .Ez . 

• Create a function calculate_energy(Ez, Hx, Hy, 
eps_r, dx, dy): Calculate the total electromagnetic energy 
in the system. 

• Create a function run_simulation_with_energy(): Run  a  
simulation and track the energy of the system at regular intervals. 

10. Run the simulation and plot the results: 

• Call the function energies = run_simulation_with_ 
energy() and plot the results with appropriate labels and titles. 
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• Call the function frames = run_simulation(). 
• Call the functionframes_1 = run_simulation_3D_plot(). 
• Call the function animate(frames, ’2D FDTD 
Simulation of Gaussian Pulse’). 

• Plot the 3D surface plots for specific time intervals. 

3 Code Listing 

1 

2 #instruction to run the code. 
3 #* line 104 and 106 , allows user to save GIF and animated video

↪→ of this visualization. 
4 #* it can be best visualized if you run line 104 as GIF ,as Video

↪→ processing time may take a while. 
5 

6 

7 

8 import numpy as np 
9 import matplotlib.pyplot as plt 

10 import matplotlib.animation as animation 
11 from matplotlib import cm 
12 from mpl_toolkits.mplot3d import Axes3D 
13 

14 # Constants 
15 c0 = 3e8 # Speed of light in vacuum 
16 eps0 = 8.854e-12 # Permittivity of free space 
17 mu0 = 4 * np.pi * 1e-7  # Permeability of free space 
18 

19 # Simulation parameters 
20 dx = 0.01 # Spatial step (m) 
21 dy = 0.01 # Spatial step (m) 
22 dt = 0.9 * dx / (c0 * np.sqrt(2)) # Time step (s) 
23 Lx = 2.0 # Domain length in x (m) 
24 Ly = 2.0 # Domain length in y (m) 
25 T = 1e-7  # Total simulation time (s) 
26 

27 Nx = int(Lx / dx) # Number of spatial steps in x 
28 Ny = int(Ly / dy) # Number of spatial steps in y 
29 Nt = int(T / dt)  # Number of time steps 
30 

31 # Material properties for circular dielectric medium 
32 eps_r = np.ones((Nx, Ny)) 
33 sigma = np.zeros((Nx, Ny)) 
34 center_x = int(0.5* Nx) 
35 center_y = int(0.5 * Ny) 
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36 radius = int(0.20 / dx) 
37 

38 for i in range(Nx): 
39 for j in range(Ny): 
40 if (i - center_x)**2 + (j - center_y)**2 <= radius**2: 
41 eps_r[i, j] = 30 
42 sigma[i, j] = 0.3 
43 

44 # Field arrays 
45 Ez = np.zeros((Nx, Ny)) 
46 Hx = np.zeros((Nx, Ny)) 
47 Hy = np.zeros((Nx, Ny)) 
48 

49 # Source parameters 
50 source_position = (Nx // 4, Ny // 2) 
51 pulse_width = 1e-10 
52 

53 f0 = 5e6 # Frequency (Hz) 
54 

55 # PML boundary conditions 
56 pml_thickness = 20 # Number of cells in PML 
57 sigma_max = 0.1 # Maximum conductivity in PML 
58 

59 def apply_pml(sigma, pml_thickness, sigma_max): 
60 for i in range(pml_thickness): 
61 sigma[i, :] = sigma_max * (pml_thickness - i) /

↪→ pml_thickness 
62 sigma[-i-1, :] = sigma_max * (pml_thickness - i) /

↪→ pml_thickness 
63 sigma[:, i] = sigma_max * (pml_thickness - i) /

↪→ pml_thickness 
64 sigma[:, -i-1] = sigma_max * (pml_thickness - i) /

↪→ pml_thickness 
65 

66 apply_pml(sigma, pml_thickness, sigma_max) 
67 

68 def update_fields(Ez, Hx, Hy, eps_r, sigma): 
69 # Update magnetic fields Hx and Hy 
70 Hx[:, :-1] -= (dt / mu0 / dy) * (Ez[:, 1:] - Ez[:, :-1]) 
71 Hy[:-1, :] += (dt / mu0 / dx) * (Ez[1:, :] - Ez[:-1, :]) 
72 

73 # Update electric field Ez 
74 Ez[1:-1, 1:-1] += (dt / eps0 / eps_r[1:-1, 1:-1]) * ( 
75 (Hy[1:-1, 1:-1] - Hy[:-2, 1:-1]) / dy -
76 (Hx[1:-1, 1:-1] - Hx[1:-1, :-2]) / dx 
77 ) 
78 

79 # Apply conductivity for absorption 
80 Ez *= np.exp(-sigma * dt / eps0) 
81 

82 def run_simulation(): 
83 frames = [] 
84 for n in range(Nt): 
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85 t = n * dt  
86 pulse = np.exp(-((t - 4 *  pulse_width) ** 2) / (

↪→ pulse_width ** 2)) * np.cos(2 * np.pi * f0 * t) 
87 Ez[source_position] += pulse 
88 

89 update_fields(Ez, Hx, Hy, eps_r, sigma) 
90 

91 if n % 10 == 0:  
92 frames.append(np.copy(Ez)) 
93 

94 return frames 
95 def animate(frames, title): 
96 fig, ax = plt.subplots() 
97 

98 def update(frame): 
99 ax.clear() 

100 im = ax.imshow(frame.T, cmap=cm.viridis, vmin=-0.01, vmax
↪→ =0.01, animated=True) 

101 ax.set_title(title) 
102 return [im] 
103 

104 ani = animation.FuncAnimation(fig, update, frames=frames,
↪→ interval=50, blit=True) 

105 #Save as GIF using Pillow 
106 #ani.save("2D_FDTD_Simulation.gif", writer=’pillow’) 
107 #Save as MP4 video using ffmpeg 
108 #ani.save("2D_FDTD_Simulation.mp4", writer=’ffmpeg’) 
109 plt.show() 
110 return ani 
111 

112 def run_simulation_3D_plot(): 
113 frames_1 = [] 
114 time_frames = [ 100, 500,1000,1200] # Time frames for

↪→ capturing the results 
115 for n in range(Nt): 
116 t = n * dt  
117 pulse = np.exp(-((t - 4 *  pulse_width) ** 2) / (

↪→ pulse_width ** 2)) * np.cos(2 * np.pi * f0 * t) 
118 Ez[source_position] += pulse 
119 

120 update_fields(Ez, Hx, Hy, eps_r, sigma) 
121 

122 if n in time_frames: 
123 frames_1.append(np.copy(Ez)) 
124 

125 return frames_1 
126 def plot_3d_surface(Ez, title): 
127 fig = plt.figure() 
128 ax = fig.add_subplot(111, projection=’3d’) 
129 X, Y = np.meshgrid(np.arange(Ez.shape[0]), np.arange(Ez.shape

↪→ [1])) 
130 surf = ax.plot_surface(X, Y, Ez.T, cmap=cm.viridis,edgecolor=

↪→ ’black’) 
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131 ax.set_title(title) 
132 ax.set_xlabel(’X’) 
133 ax.set_ylabel(’Y’) 
134 ax.set_zlabel(’Electric Field (Vm$^{-1}$)’) 
135 

136 plt.show() 
137 

138 def calculate_energy(Ez, Hx, Hy, eps_r, dx, dy): 
139 electric_energy = 0.5 * eps0 * np.sum(eps_r * Ez**2) * dx *

↪→ dy 
140 magnetic_energy = 0.5 * np.sum((Hx**2 + Hy**2) / mu0) * dx *

↪→ dy 
141 total_energy = electric_energy + magnetic_energy 
142 return total_energy 
143 

144 def run_simulation_with_energy(): 
145 energies = [] 
146 for n in range(Nt): 
147 t = n * dt  
148 pulse = np.exp(-((t - 4 *  pulse_width) ** 2) / (

↪→ pulse_width ** 2)) * np.cos(2 * np.pi * f0 * t) 
149 Ez[source_position] += pulse 
150 

151 update_fields(Ez, Hx, Hy, eps_r, sigma) 
152 

153 if n % 10 == 0:  
154 energy = calculate_energy(Ez, Hx, Hy, eps_r, dx, dy) 
155 energies.append(energy) 
156 return energies 
157 # Run the simulations and plotting 
158 energies = run_simulation_with_energy() 
159 plt.figure() 
160 plt.plot(np.arange(0, Nt, 10) * dt, energies) 
161 plt.xlabel(’Time (s)’) 
162 plt.ylabel(’Total Electromagnetic Energy (J)’) 
163 plt.title(’Energy Conservation in 2D FDTD Simulation’) 
164 plt.grid(True) 
165 plt.show() 
166 # Run simulation and create animation , create 3D surface plots 
167 frames = run_simulation() 
168 frames_1 = run_simulation_3D_plot() 
169 

170 time_labels = [100 , 500 , 1000 , 1200] 
171 animate(frames, ’2D FDTD Simulation of Gaussian Pulse’) 
172 for frame_1, label in zip(frames_1, time_labels): 
173 plot_3d_surface(frame_1, f’2D FDTD Simulation at T={label:} s

↪→ ’) 
Listing 1 Output by ChatGPT for solving Electromagnetic wave propagation in dielectric medium 
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4 Tests for Verification 

The most important part of the work is to verify the program generated by ChatGPT-4 
and ensure that the results conform with the solution of the problem stated in the 
problem description. 

This work’s verification is done by comparing the FDTD simulation results with 
those presented in other technical papers and through self-verification. The FDTD 
program generated by ChatGPT is run on an Integrated Development Environment 
(IDE). It generates visualizations of the electromagnetic wave propagation, including 
reflection, refraction, and absorption, which are compared to the expected results. 
The comparison involves examining the accuracy of the field distributions and energy 
conservation over time. 

Next, I will discuss the verification done by matching similar graphs from research 
papers. The results from the FDTD simulation are compared to those from established 
research to ensure the accuracy and validity of the ChatGPT-generated code. 

4.1 Verification: Graphically 

The result from the FDTD simulation at time frame .t = 1200 s aligns well with 
the outcomes observed in similar studies, as discussed in [ 5]. The symmetry, wave 
interaction pattern, and boundary conditions all reflect the accuracy of the simulation 
generated by the FDTD program. 

The Image from [ 5] shows a simulation of a plane wave impinging on a dielec-
tric cylinder at time frame .t = 75 s, while Fig. 5 from the FDTD simulation of a 
Gaussian wave at time frame .t = 1200 s. Despite different waveforms and simula-
tion parameters, both results demonstrate consistent interactions with the dielectric 
media, enabling a comparative analysis of wave reflection and refraction patterns. 

• Wave Interaction Pattern: Both visualizations show two distinct peaks with a 
valley in between, indicating similar wave interaction patterns with the medium. 

• Symmetry: The wave propagation appears symmetric in both images, suggesting 
correct modeling of the medium’s properties and boundaries. 

• Boundary Conditions: Both simulations use absorbing boundary conditions 
(PML), as evident from the absence of reflected waves at the edges. 

These similarities validate the FDTD simulation approach employed and confirm its 
reliability in modeling electromagnetic wave interactions in dielectric media. 

4.1.1 Verification: Energy Conservation Analysis 

The prompt has its own way of validating the program it has generated with the 
method of Energy Conservation as discussed below. 
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The graph in Fig. 6 shows the total electromagnetic energy as a function of time. 
The corresponding snapshots in Fig. 7 visually depict the wave’s interaction with the 
dielectric medium at different time steps. Key observations include: 

Fig. 5 3D visualization of the electric field component.Ez generated using a 2D Finite-Difference 
Time-Domain (FDTD) simulation at time frame.t = 1200 s. The plot illustrates the propagation of 
the electromagnetic wave within a dielectric medium, showcasing the complex interactions of the 
wave as it reflects and refracts within the medium 

Fig. 6 Total electromagnetic energy as a function of time in a 2D FDTD simulation. The plot 
demonstrates energy conservation within the computational domain and validates the accuracy of 
the FDTD simulation over time 
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(a) = 1.06e-09 s (b) = 2.12e-09 s 

(c) = 3.18e-09 s (d) = 3.71e-09 s 

(e) = 4.24e-09 s (f) = 5.30e-09 s 

Fig. 7 These time-lapse visualizations illustrate the reflection, refraction, and absorption of the 
electromagnetic wave as it interacts with the dielectric medium and exits the simulation domain. 
The progression from the initial pulse propagation to wave dissipation provides insights into energy 
conservation and wave dynamics within the medium 
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• Initial Energy Peak: The energy starts at a peak value due to the initial source 
input, as seen in Fig. 7a, where the wave is centered within the dielectric medium. 

• Energy Decay: Rapid decay in the initial phase, likely due to absorption by the 
PML boundaries, can be correlated with Fig. 7c and d, where the wave begins to 
exit the medium and is partially absorbed by the boundaries. 

• Energy Conservation: The energy drops down to zero after the initial decay, 
indicating the wave has left the simulation box, such that a steady state is restored 
where internal energy is conserved. This is visually supported by Fig. 7f, where the 
wave has exited the simulation domain, leaving behind minimal residual energy. 

According to the Poynting theorem, the energy density. u and the Poynting vector 
. S satisfy 

. 
∂u 

∂t 
+ ∇  ·  S = −  J · E. (27) 

For a lossless medium with no free currents (. J = 0), this simplifies to 

. 
∂u 

∂t 
+ ∇  ·  S = 0. (28) 

5 Discussion 

After the ChatGPT-4 generating the program, there are several aspects to verify 
before running it in any Integrated Development Environment (IDE). These aspects 
are summarized as follows: 

• Completeness of the program: You must confirm that ChatGPT 4 has supplied 
the entire program for this kind of work, where you need to demonstrate outcomes 
rather than generate numbers. The main problem is that each time you enter the 
prompt, a slightly different version of the prompt is generated, making it difficult 
to anticipate the outcome. 

• In Steps: Occasionally, ChatGPT-4 produces code in a step-by-step fashion instead 
than as a single, integrated application. If this happens, request the whole program. 

• Short term memory capacity: There is a limit to ChatGPT-4’s output where it 
outputs precisely what the prompt instructs; after that, you must prompt again to 
concentrate on the details provided in the first prompt. Claiming that it is accurate, 
the most recent version Chatgpt-4o can read the prompt in its entirety and produce 
a program that is as exact as possible; based on the prompt, it can provide the 
desired output based on an accurate user prompt. 

• Updating and frames: As a visualization objective, it its mandatory to check that 
the updated electric field equation captures the frames at every step for a smooth 
simulation. 
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• Learned Lessons: Chatgpt-4 is advanced for solving complex tasks compared 
to any other model that exists. The more references and resources you provide, 
the better your accuracy. Comparing the two models Chatgpt-4 and 4o, the newer 
model delivers precisely and more than what you expect; it can handle a large 
amount of data compared to Chatgpt-4. If you expect complex mathematical rea-
soning, version 4 is worth considering. 

6 Conclusion 

The work aimed to generate a Python program using ChatGPT-4 for simulating elec-
tromagnetic wave propagation in a dielectric medium using the 2D Finite-Difference 
Time-Domain (FDTD) method. The objective was to examine wave interactions such 
as reflection, transmission, and absorption, within different dielectric environments. 

It was observed that ChatGPT-4 requires comprehensive and precise inputs to 
perform accurately, as discussed in the prompt section. Detailed task descriptions 
and explicit instructions are necessary to ensure that ChatGPT-4 does not make any 
assumptions about key factors in the FDTD simulation setup. 

Comparing the FDTD program generated by ChatGPT-4 with theoretical models 
and established methods that the solutions were correctly formulated. The results of 
the simulations, including the electric and magnetic field distributions, were consis-
tent with theoretical predictions and comparable to those produced by other estab-
lished ways. 

Verification with graph solutions indicated that the FDTD results converged with 
increased grid resolution. The simulation of the Gaussian sinusoidal pulse and its 
interaction with a cylindrical dielectric medium provided accurate visualizations of 
wave propagation phenomena. The implementation of PML BC effectively mini-
mized reflections at the boundaries, further validating the simulation’s accuracy. 

The energy conservation analysis confirmed the physical accuracy of the generated 
code, with the total energy stabilizing over time after initial absorption by the PML 
boundaries. The overall performance of the ChatGPT-4 generated FDTD simulation 
demonstrated high accuracy and reliability. 

In summary, this study validates ChatGPT-4’s ability to produce FDTD simula-
tion programs that are accurate and dependable, greatly simplifying and improving 
the process of resolving challenging electromagnetic wave propagation issues. This 
effective application of AI in computational electromagnetics shows how broadly 
applicable it may be in scientific computing and provides a viable method for 
automating the creation of intricate simulation tools. 
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Flow Around an Obstacle Using 
the Lattice Boltzmann Method 

Fenil Lathiya and Bernhard Eidel 

Abstract This chapter delves into the generation of Python code by ChatGPT-4o 
for 2D simulations of fluid flow around obstacles of circular or square shape. The 
numerical solution is achieved using the Lattice Boltzmann Method (LBM) with 
the D2Q9 model. A significant portion of the chapter is dedicated to the intricacies 
of prompt engineering for this specific task, as well as the thorough verification 
of the generated code. The performance of the code is rigorously tested against 
results obtained from a commercial solver, focusing on velocity fields, pressure 
fields, and pressure distribution. The remarkable quantitative agreement across all 
criteria demonstrates the effectiveness of GPT-4o in producing accurate and reliable 
code for complex fluid dynamics simulations. 

1 Introduction 

The study of fluid dynamics involves understanding the behavior of fluid flow around 
obstacles, a task that requires advanced computational methods. The Lattice Boltz-
mann Method (LBM) is such a method in Computational Fluid Dynamics (CFD) 
through a lattice grid-based approach. This method models fluid behavior at a micro-
scopic level using particle distribution functions and kinetic theory, which can then 
be translated into macroscopic fluid properties. For a comprehensive overview of 
the Lattice Boltzmann Method and its applications, we refer to [ 1] and for a sound 
introduction to the LBM in fluid flows [ 2]. 

This paper is organized into several sections to comprehensively discuss the AI-
Assisted Coding Project. After this introduction, the next section details the For-
mulation of the Coding Task, explaining the problem setup and the approach taken. 
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Following this, the Code Listing section presents the AI-generated Python code for 
the LBM simulation. The Code Testing/Performance section evaluates the perfor-
mance and accuracy of the code through tests and comparisons with ANSYS Fluent. 
The Discussion section provides an analysis of the results and insights gained from 
the project. Finally, the Conclusions section summarizes the findings and implica-
tions of the study. Additional details and data are included in the Appendix. 

1.1 Lattice Boltzmann Method: Theory and Modeling 

The main idea behind the LBM is to represent the fluid using particles that move 
and collide each other on a discrete lattice grid. The key part of this method lies in 
the Boltzmann equation, which describes the evolution of the particle distribution 
function. A critical component of this equation is the collision step [ 7], which is 
given by 

. fout = fin − ω
(
fin − feq

)
, (1) 

where . fin is the incoming particle distribution function, . fout is the outgoing parti-
cle distribution function after the collision, . ω the relaxation parameter, and . feq the 
equilibrium distribution function. 

LBM is advantageous due to its simplicity in handling complex boundary con-
ditions (BC) and its flexibility in simulating various types of flows, which makes it 
ideal for studying fluid flow around obstacles. The method translates the microscopic 
particle dynamics into macroscopic flow properties, such as velocity and pressure 
fields, by averaging them. 

In LBM, the fluid is modeled as a collection of particles that reside on the nodes of 
a discrete lattice. These particles propagate to neighboring nodes and collide, redis-
tributing their velocities according to predefined rules. The macroscopic properties 
of the fluid, such as density and velocity, are obtained by taking moments of the 
particle distribution functions. 

One of the significant advantages of LBM is its ability to handle complex geome-
tries and BC with ease. Traditional CFD methods often require sophisticated meshing 
techniques and BC formulations. In contrast, LBM uses simple bounce-back rules to 
impose no-slip BC on solid surfaces, making it more straightforward to implement 
for problems involving obstacles. 

The standard lattice model used in LBM is the D2Q9 model (see Sect. 1.2) for two-
dimensional flows. In this model, each node in the lattice has nine possible velocity 
vectors, including one stationary and eight moving in different directions. The particle 
distribution function at each node evolves according to the LBM equation, [ 3] 

. fi (x + ei , t + 1) = fi (x, t) + �i , (2) 

where. fi is the particle distribution function in the direction. ei , and.�i represents the 
collision operator that models the redistribution of particles due to collisions. The
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collision operator .�i is often represented by the Bhatnagar-Gross-Krook (BGK) 
approximation, which simplifies to [ 7]: 

.�i = −1

τ

(
fi (x, t) − f eqi (x, t)

)
. (3) 

Here, . τ is the relaxation time parameter, and . f eqi is the local equilibrium distri-
bution function. The BGK approximation ensures that the system relaxes towards 
equilibrium over time, with the rate of relaxation governed by. τ . The collision oper-
ator .�i simplifies the collision term to a relaxation towards a local equilibrium 
distribution . f eqi . This relaxation process occurs over a characteristic time scale . τ , 
ensuring that the system gradually approaches equilibrium. 

The equilibrium distribution function . feq for the D2Q9 model is given by [ 4] 

. feq,i = wiρ

[
1 + ei · u

c2s
+ (ei · u)2

2c4s
− u2

2c2s

]
, (4) 

where .wi are the weights associated with each direction, . ρ is the fluid density, . u is 
the macroscopic velocity, and .cs is the speed of sound in the lattice. 

The macroscopic fluid properties, such as density . ρ and velocity . u are obtained 
by taking moments of the particle distribution function [ 4] 

.ρ =
∑

i

fi , (5) 

.ρu =
∑

i

fi ei . (6) 

1.2 The D2Q9 Model 

The D2Q9 model, an abbreviation for “Two-Dimensional, Nine-Directional”, is a 
prevalent lattice model employed within the LBM for simulating fluid flows in two 
dimensions. This model is crucial in CFD for its efficiency in simulating complex 
fluid behaviors at the macroscopic level. 

Structure and velocity vectors: The D2Q9 model is constructed around a square 
lattice, where each node is linked to its nearest and next-nearest neighbors, enabling a 
comprehensive representation of fluid flow directions. The connectivity and possible 
movement directions at each node are depicted in Fig. 1: 

• .e0 = (0, 0): Represents the rest particle. 
• .e1 = (1, 0), .e2 = (0, 1), .e3 = (−1, 0), .e4 = (0,−1): Movement to the nearest 
neighbors.
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Fig. 1 Velocity vectors in 
the D2Q9 model 

• .e5 = (1, 1), .e6 = (−1, 1), .e7 = (−1,−1), .e8 = (1,−1): Movement to the next-
nearest neighbors. 

Weights and distribution functions: The weights.wi associated with these veloc-
ity vectors through (4) play a fundamental role in the particle distribution calculations 
within the model [ 6]: 

. w0 = 4
9 for the rest particle,

w1,2,3,4 = 1
9 for particles moving toward nearest neighbors, (7) 

w5,6,7,8 = 1 
36 for particles moving toward next-nearest neighbors. 

These weights help define the equilibrium distribution function . feq, which inte-
grates these weights with macroscopic variables like density and velocity. This func-
tion ensures compliance with the macroscopic equations of mass and momentum 
conservation, thereby providing accurate fluid dynamics simulations under various 
conditions. 

1.3 Collision and Streaming Steps 

In LBM, the simulation proceeds through two main steps: collision and streaming. 

1.3.1 Collision Step 

During this step, particles at each lattice node collide and redistribute their velocities 
according to the collision operator. This operator is typically based on the Bhatnagar-
Gross-Krook (BGK) approximation, which simplifies the collision process by assum-
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ing a single relaxation parameter. ω. The post-collision distribution function is given 
by [ 3] 

. f ∗
i (x, t) = fi (x, t) + ω

(
feq,i (x, t) − fi (x, t)

)
. (8) 

1.3.2 Streaming Step 

In this step, the particles move to neighboring lattice nodes based on their velocities. 
The distribution function is updated as follows [ 3] 

. fi (x + ei�t, t + �t) = f ∗
i (x, t). (9) 

1.4 Boundary Conditions 

Applying appropriate BC is crucial for accurately simulating fluid flow around obsta-
cles. In LBM, several BC can be implemented easily [ 8]: 

• No-slip BC: This condition is applied at solid boundaries (such as the surface of an 
obstacle) using the bounce-back rule. Particles that hit the boundary are reflected 
back along their incoming direction, ensuring that the velocity at the boundary is 
zero. 

• Inlet and outlet BC: These conditions are used to specify the fluid flow at the 
boundaries of the simulation domain. Common approaches include specifying a 
constant velocity profile at the inlet and a zero-gradient condition at the outlet. 

1.5 Simulation Setup 

The simulation of fluid flow around a square/circular obstacle involves defining a 
discrete lattice grid, initializing the particle distribution functions, and iteratively 
applying the collision and streaming steps. The BC, including the no-slip condition 
on the obstacle and the periodic inlet and outlet conditions, are implemented using 
simple bounce-back rules. The simulation runs for a specified number of iterations, 
and the macroscopic properties, such as velocity and pressure fields, are computed 
and visualized. 

The Python code generated for this project uses the D2Q9 model to simulate the 
fluid flow around a square/circular obstacle. The code initializes the lattice, sets up 
the BC, and iteratively updates the particle distribution functions. The results are 
visualized using velocity magnitude and pressure fields, providing insights into the 
flow behavior around the obstacle.
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The algorithm for LBM simulations of 2D fluid flow is given in the Algorithm 
Box 1. 
Algorithm 1: Lattice Boltzmann Method for 2D Fluid Flow 
Input: Lattice size .(Nx, Ny), time steps . T , Reynolds number .Re, initial 

distribution function . fi (x, t = 0), boundary conditions, obstacle type 
(square/circle), obstacle parameters (center .(cx, cy) and size) 

Output: Velocity field .u(x, T ), density field . ρ(x, T )

1 Initialization: 
2 Initialize the lattice grid with size .(Nx, Ny) and Set the obstacle shape and 
position (square or circle); 

3 Calculate relaxation parameter . ω based on .Re; 
4 Set initial macroscopic variables: density .ρ(x, 0) and velocity .u(x, 0); 
5 Initialize the distribution function . fi (x, 0) according to equilibrium 
distribution function . f eqi (ρ, u); 

6 for t = 0  to T do 

7 Collision Step: 
8 foreach lattice node .x ∈ (Nx, Ny) do 
9 Calculate macroscopic variables .ρ(x, t) and .u(x, t) from. fi (x, t); 

10 Compute equilibrium distribution . f eqi (ρ, u); 
11 Update distribution function using BGK approximation: 

. fi (x, t + �t) = fi (x, t) − ω
(
fi (x, t) − f eqi (ρ, u)

)

12 end 

13 Streaming Step: 
14 foreach lattice direction . i do 
15 Move the distribution function to neighboring nodes: 

. fi (x + ci�t, t + �t) = fi (x, t + �t)

16 end 

17 Apply Boundary Conditions: 
18 Apply appropriate boundary conditions (e.g., bounce-back for walls, 

periodic, outflow conditions etc.) on . fi (x, t + �t); 

19 Update Macroscopic Quantities: 
20 Calculate macroscopic quantities .ρ(x, t + �t) and .u(x, t + �t); 
21 end 

22 Output: 
23 Return the final velocity field .u(x, T ) and pressure field .ρ(x, T );
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1.6 Overview of the Python Code 

Ideally, the program generated by AI for this project should use the D2Q9 model to 
simulate fluid flow around a square or circular obstacle and consist of the following 
key components: [ 5] 

1. Initialization: The lattice grid should be defined, and the particle distribution 
functions should be initialized. 

2. Collision and streaming: The code should iteratively apply the collision and 
streaming steps to update the particle distribution functions. 

3. Boundary conditions: No-slip BC should be applied using the bounce-back rule. 
Inlet and outlet conditions should be specified to maintain the flow. 

4. Visualization: The macroscopic properties, such as velocity magnitude and pres-
sure fields, should be computed and visualized to analyze the flow behavior. 

The AI-generated code demonstrates the potential of artificial intelligence in 
assisting with complex computational tasks. By providing a detailed prompt, the 
AI was able to generate a functional code for simulating fluid flow using the LBM. 

This project uses AI, specifically GPT-4o, to assist in coding the LBM for sim-
ulating fluid flow around an obstacle. The goal is to assess the capability of AI in 
generating Python code for this complex task. The subsequent sections will present 
the specific problem to be solved, the AI-generated prompt, the resulting code, out-
comes, its verification and some remarks about the GPT-4o. 

By looking at the intersection of AI and CFD, this report may aim to highlight 
the strengths and limits of AI-assisted coding in scientific research. 

2 Prompt  

2.1 Problem Statement Definition 

The simulation involves modeling fluid flow around an obstacle within a 2D rectan-
gular domain using the LBM. The domain is defined with the following parameters: 

• Domain size: The computational domain has a width .nx and a height .ny. Here 1  
lattice spacing equals 1mm i.e., there will be.nx lattice nodes in. x direction for. nx
mm width and .ny lattice nodes in . y direction for .ny mm height. 

• Coordinate system: The origin (0,0) is located at the bottom-left corner of the 
domain. The .x-axis extends horizontally to the right, and the .y-axis extends ver-
tically upwards. 

• Obstacle: The obstacle can be either a square or a circle, positioned within the 
domain based on user input. 

– For a square obstacle, the user specifies the . x and . y coordinates of the center 
(.cx , . cy) and the side length.
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Fig. 2 Computational domain with (top) a circular and (bottom) a square obstacle 

– For a circular obstacle, the user specifies the. x and. y coordinates of the center 
(.cx , . cy) and the radius. 

• Discretization: The lattice nodes are evenly spaced, forming a grid over the 
domain. The flow simulation uses these discrete points to model fluid dynamics. 

Figure 2 sketches the simulation domain with exemplary obstacles. 
For definiteness in the coding assignment, the parameters are chosen as mentioned 

in Table 1. 

Table 1 Parameters chosen for the fluid simulation study with obstacles 

Parameters Values/Types Units 

Domain width (.nx) 400 mm 

Domain height (.ny) 100 mm 

Obstacle type Circular/Square 

Obstacle center (.cx, cy) (100, 50) (mm, mm) 

Radius of circle 25 mm 

Length of square 40 mm 

(continued) 

The final, working prompt is given in Fig. 3. It is used for generating the Code 
Listing 1.
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Table 1 (continued) 

Parameters Values/Types Units 

LBM cell size 1 mm 

time step size.�t 1 s 

Total time steps 4000 

Reynolds number (.Re) 50 

Upstream velocity.u 0.04 mm/s 

Model type Bounce-back 

Obstacle BC No-slip 

Output Velocity, Pressure and streamline plots 

Fig. 3 Prompt for simulating fluid flow around an obstacle
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Fig. 3 (continued)
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3 Code Listing 

The final code version generated by GPT-4o is given in the Code Listing 1. 

1 import numpy as np 
2 import matplotlib.pyplot as plt 
3 from matplotlib import cm 
4 import pandas as pd 
5 

6 # Function to get obstacle parameters from the user 
7 def get_obstacle_parameters(): 
8 obstacle_type = input("Enter the type of obstacle (square/

↪→ circle): ").strip().lower() 
9 if obstacle_type == "square": 

10 return get_square_parameters() 
11 elif obstacle_type == "circle": 
12 return get_circle_parameters() 
13 else: 
14 raise ValueError("Invalid obstacle type. Please enter ’

↪→ square’ or ’circle’.") 
15 

16 # Function to get parameters for a square obstacle from the user 
17 def get_square_parameters(): 
18 while True: 
19 try: 
20 cx = int(input("Enter the x-coordinate of the square

↪→ center (cx): ")) 
21 cy = int(input("Enter the y-coordinate of the square

↪→ center (cy): ")) 
22 side = int(input("Enter the side length of the square

↪→ : ")) 
23 # Ensure the square is within the simulation domain 
24 if cx - side // 2 < 0  or cx + side // 2 >= nx or cy -

↪→ side // 2 < 0  or cy + side // 2 >= ny: 
25 raise ValueError("Square parameters are outside

↪→ the region or not feasible.") 
26 return "square", cx, cy, side 
27 except ValueError as e: 
28 print(e) 
29 

30 # Function to get parameters for a circular obstacle from the
↪→ user 

31 def get_circle_parameters(): 
32 while True: 
33 try: 
34 cx = int(input("Enter the x-coordinate of the circle

↪→ center (cx): ")) 
35 cy = int(input("Enter the y-coordinate of the circle

↪→ center (cy): ")) 
36 r =  int(input("Enter the radius of the circle (r): ")

↪→ ) 
37 # Ensure the circle is within the simulation domain
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38 if cx - r < 0  or cx + r >= nx or cy - r < 0  or cy + r
↪→ >= ny: 

39 raise ValueError("Circle parameters are outside
↪→ the region or not feasible.") 

40 return "circle", cx, cy, r  
41 except ValueError as e: 
42 print(e) 
43 

44 ###### Flow definition
↪→ ######################################################### 

45 maxIter = 4000 # Total number of time iterations. 
46 nx, ny = 400, 100 # Number of lattice nodes in the x and y

↪→ directions. 
47 ly = ny - 1 # Height of the domain in lattice units. 
48 Re = 50.0 # Reynolds number. 
49 uLB = 0.04 # Velocity in lattice units. 
50 

51 # Get obstacle parameters from the user 
52 obstacle_type, cx, cy, size = get_obstacle_parameters() 
53 # Calculate viscosity in lattice units based on Reynolds number

↪→ and characteristic length (size) 
54 nulb = uLB * size / Re 
55 # Calculate relaxation parameter for the Lattice Boltzmann method 
56 omega = 1. / (3. * nulb + 0.5) 
57 

58 ###### Lattice Constants
↪→ ####################################################### 

59 # Define the discrete velocity set for D2Q9 model (9 velocities) 
60 v = np.array([[1, 1], [1, 0], [1, -1], [0, 1], [0, 0], [0, -1],

↪→ [-1, 1], [-1, 0], [-1, -1]]) 
61 # Define the weights for each velocity direction 
62 t = np.array([1./36., 1./9., 1./36., 1./9., 4./9., 1./9., 1./36.,

↪→ 1./9., 1./36.]) 
63 

64 # Define columns for streaming step (used for shifting the
↪→ distribution functions) 

65 col1 = np.array([0, 1, 2]) 
66 col2 = np.array([3, 4, 5]) 
67 col3 = np.array([6, 7, 8]) 
68 

69 ###### Function Definitions
↪→ #################################################### 

70 # Function to compute macroscopic variables (density and velocity
↪→ ) from distribution functions 

71 def macroscopic(fin): 
72 """ 
73 Compute macroscopic variables (density rho and velocity u)

↪→ from the distribution functions (fin). 
74 Args: 
75 fin (ndarray): Distribution functions. 
76 Returns: rho (ndarray): Density field. 
77 u (ndarray): Velocity field.""" 
78 # Compute density as the sum of distribution functions
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79 rho = np.sum(fin, axis=0) 
80 # Initialize velocity array with zeros 
81 u = np.zeros((2, nx, ny)) 
82 # Compute velocity as the weighted sum of distribution

↪→ functions 
83 for i in range(9): 
84 u[0, :, :] += v[i, 0] * fin[i, :, :] 
85 u[1, :, :] += v[i, 1] * fin[i, :, :] 
86 # Normalize velocity by density 
87 u = u / rho  
88 return rho, u 
89 

90 # Function to compute the equilibrium distribution function 
91 def equilibrium(rho, u): 
92 """ 
93 Compute the equilibrium distribution function based on

↪→ density and velocity. 
94 Args: 
95 rho (ndarray): Density field. 
96 u (ndarray): Velocity field. 
97 Returns: feq (ndarray): Equilibrium distribution functions.

↪→ """ 
98 # Compute the square of the velocity magnitude 
99 usqr = 3. / 2. * (u[0]**2 + u[1]**2) 

100 # Initialize equilibrium distribution function array 
101 feq = np.zeros((9, nx, ny)) 
102 # Compute equilibrium distribution function for each velocity

↪→ direction 
103 for i in range(9): 
104 cu = 3. * (v[i, 0] * u[0, :, :] + v[i, 1] * u[1, :, :]) 
105 feq[i, :, :] = rho * t[i] * (1. + cu + 0.5 * cu**2 - usqr

↪→ ) 
106 return feq 
107 

108 ###### Setup: obstacle and velocity inlet with perturbation
↪→ ######## 

109 # Function to create a mask for a square obstacle 
110 def obstacle_fun_square(x, y): 
111 return np.logical_and(np.abs(x - cx) <= size // 2, np.abs(y -

↪→ cy) <= size // 2) 
112 

113 # Function to create a mask for a circular obstacle 
114 def obstacle_fun_circle(x, y): 
115 return (x - cx)**2 + (y - cy)**2 <= size**2 
116 

117 # Create the obstacle mask based on user input 
118 if obstacle_type == "square": 
119 obstacle = np.fromfunction(obstacle_fun_square, (nx, ny)) 
120 else: 
121 obstacle = np.fromfunction(obstacle_fun_circle, (nx, ny)) 
122 

123 # Function to initialize the velocity field with a slight
↪→ perturbation
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124 def inivel(d, x, y): 
125 """ 
126 Initialize the velocity field with a slight perturbation to

↪→ trigger instabilities. 
127 Args: 
128 d (int): Dimension index (0 for x-direction, 1 for y-

↪→ direction). 
129 x (ndarray): x-coordinates of the grid points. 
130 y (ndarray): y-coordinates of the grid points. 
131 Returns: 
132 velocity (ndarray): Initial velocity field. 
133 """ 
134 return (1. - d) * uLB * (1. + 1.e-4 * np.sin(y / ly * 2. * np

↪→ .pi)) 
135 

136 # Initialize the velocity field with the perturbation 
137 vel = np.fromfunction(inivel, (2, nx, ny)) 
138 

139 # Initialize the distribution functions at equilibrium with the
↪→ initial velocity 

140 fin = equilibrium(1., vel) 
141 

142 ###### Main time loop
↪→ ########################################################## 

143 for time in range(maxIter): 
144 # Right wall: outflow condition (copy the values from the

↪→ second last column to the last column) 
145 fin[col3, -1, :] = fin[col3, -2, :] 
146 

147 # Compute macroscopic variables (density and velocity) 
148 rho, u = macroscopic(fin) 
149 

150 # Left wall: inflow condition (impose velocity and compute
↪→ density) 

151 u[:, 0, :] = vel[:, 0, :] 
152 rho[0, :] = 1. / (1. - u[0, 0, :]) * (np.sum(fin[col2, 0, :],

↪→ axis=0) + 2. * np.sum(fin[col3, 0, :], axis=0)) 
153 

154 # Compute equilibrium distribution function based on updated
↪→ macroscopic variables 

155 feq = equilibrium(rho, u) 
156 fin[[0, 1, 2], 0, :] = feq[[0, 1, 2], 0, :] + fin[[8, 7, 6],

↪→ 0, :] - feq[[8, 7, 6], 0, :] 
157 

158 # Collision step: relaxation towards equilibrium 
159 fout = fin - omega * (fin - feq) 
160 

161 # Bounce-back condition for obstacle: reflect distribution
↪→ functions 

162 for i in range(9): 
163 fout[i, obstacle] = fin[8 - i, obstacle] 
164
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165 # Streaming step: propagate the distribution functions to
↪→ neighboring nodes 

166 for i in range(9): 
167 fin[i, :, :] = np.roll(np.roll(fout[i, :, :], v[i, 0],

↪→ axis=0), v[i, 1], axis=1) 
168 

169 # Visualization every 100 iterations 
170 if time % 100 == 0: 
171 plt.clf() 
172 # Plot velocity magnitude 
173 plt.imshow(np.sqrt(u[0]**2 + u[1]**2).transpose(), cmap=

↪→ cm.Reds) 
174 plt.colorbar() 
175 plt.title(f’Velocity magnitude at time step {time}’) 
176 plt.pause(0.1) 
177 

178 ###### Post-Processing
↪→ ######################################################### 

179 # Compute final macroscopic variables (density and velocity) from
↪→ distribution functions 

180 rho, u = macroscopic(fin) 
181 

182 # Set velocity to zero inside the obstacle (no flow inside the
↪→ obstacle) 

183 u[0, obstacle] = 0 
184 u[1, obstacle] = 0 
185 

186 # Pressure field calculation (assuming ideal gas law: p = rho *
↪→ RT, with RT = 1) 

187 pressure = rho 
188 pressure[obstacle] = np.nan # Mask the pressure inside the

↪→ obstacle 
189 

190 ###### Plotting
↪→ ########################################################## 

191 # Compute velocity magnitude field 
192 velocity_magnitude = np.sqrt(u[0]**2 + u[1]**2) 
193 velocity_magnitude[obstacle] = np.nan # Mask the velocity

↪→ magnitude inside the obstacle 
194 

195 plt.figure(figsize=(12, 6)) 
196 plt.subplot(121) 
197 # Plot velocity magnitude 
198 plt.imshow(velocity_magnitude.transpose(), cmap=cm.viridis) 
199 cbar=plt.colorbar(location=’bottom’) 
200 cbar.ax.tick_params(labelsize=13) 
201 plt.title(’Velocity Magnitude(m/s)’,size=’16’) 
202 plt.xticks(fontsize=13) 
203 plt.yticks(fontsize=13) 
204 

205 plt.subplot(122) 
206 # Plot pressure field 
207 plt.imshow(pressure.transpose(), cmap=cm.viridis)
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208 cbar=plt.colorbar(location=’bottom’) 
209 cbar.ax.tick_params(labelsize=13) 
210 plt.title(’Pressure(Pa)’,size=’16’) 
211 plt.xticks(fontsize=13) 
212 plt.yticks(fontsize=13) 
213 

214 plt.tight_layout() 
215 plt.show() 
216 

217 ###### Streamline Plot
↪→ ######################################################### 

218 # Plot streamlines to visualize the flow direction 
219 plt.figure(figsize=(12, 6)) 
220 plt.streamplot(np.arange(nx), np.arange(ny), u[0].transpose(), u

↪→ [1].transpose(), color=velocity_magnitude.transpose(),
↪→ density=2, cmap=cm.viridis) 

221 cbar=plt.colorbar(location=’bottom’) 
222 cbar.ax.tick_params(labelsize=18) 
223 plt.title(’Streamlines plot’,size=’23’) 
224 plt.xticks(fontsize=18) 
225 plt.yticks(fontsize=18) 
226 plt.gca().set_aspect(’equal’) # Set aspect ratio to be equal 
227 plt.tight_layout() 
228 plt.show() 

Listing 1 Output by GPT-4o for solving fluid flow around an obstacle in 2D 

The output of the GPT-4o does not guarantee that the code generated will work 
without any flaws. More discussion on the understanding of the GPT-4o is mentioned 
in Sect. 5. 

4 Test for Verification 

Verification is crucial to ensure the accuracy and reliability of computational simu-
lations. It involves comparing the results of a simulation with analytical solutions or 
experimental data to confirm that the model behaves as expected. 

To verify the results obtained from the Python code, a similar simulation is per-
formed using ANSYS Fluent. The ANSYS simulation setup involves defining the 
same computational domain and obstacle dimensions, applying appropriate BC, and 
running the simulation as in the Python LBM code. 

The fluid flow is modeled using the Navier-Stokes equations, solved with the 
Finite Volume Method (FVM). The domain is discretized using a structured grid, 
where the grid cells are organized in a regular pattern. A higher mesh density is used 
to capture accurate boundary layer effects around the obstacle while keeping the 
grid resolution in the interior of the channel coarser thus balancing efficiency with 
accuracy.
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The element size implemented in the simulation is.h = 2.0616 × 10−5mm. Simi-
lar to the LBM counterpart in this work, a constant time-stepping method is employed 
with a fixed time step size of .�t = 0.04 s. 

The BCs include a uniform inflow with a slight perturbation an outflow condition 
at the domain’s exit, and no-slip conditions on the obstacle surface to simulate the 
interaction between the fluid and the solid boundary. 

The results from ANSYS Fluent provide a benchmark to compare and validate 
the results obtained from the AI-generated Python code. The simulation results, 
including velocity and pressure fields, are compared against the Python-based Lattice 
Boltzmann Method (LBM) simulation in Sect. 4.1. 

4.1 Comparison 

To verify the results, we compare the velocity, the streamline, and the pressure profiles 
(Figs. 4 and 5) as well as the midline of the geometry (.ny = 50 mm) for both the 
Python code and ANSYS simulations (Fig. 6). Velocity data is extracted from both 
the Python code and the ANSYS simulations for this purpose. The comparison in 
Fig. 6a and b for the .x-velocity and .y-velocity profiles indicate excellent agreement 
of the present code with the results using the commercial solver. 

The profiles obtained from the Python code and ANSYS Fluent simulations show 
a high degree of agreement. The streamline patterns and velocity magnitude plots 
exhibit similar flow characteristics around the obstacle. Specifically: 

• Streamline plots: The results of both simulation frameworks (Fig. 4a and c) exhibit 
the expected vortex shedding behind the obstacle, indicating that the flow separa-
tion and recirculation regions are captured accurately. 

• Velocity contour plots: They agree between the present simulation results with 
the commercial solver with respect to the velocity distributions and the maxima 
(Fig. 4a and c). 

• Velocity component profiles: The  .x-velocity and .y-velocity profiles at the mid-
line of the geometry (Fig. 6) are in excellent agreement for the present Python code 
and the commercial solver, which further strongly suggests the correctness of the 
GPT4o-generated code. 

Despite minor discrepancies, the overall agreement between the two sets of results 
demonstrates that the GPT-4o-generated code accurately simulates the fluid flow 
around the obstacle. The close match between the streamline patterns, velocity mag-
nitude distributions, and velocity profiles indicates that the Python code of this work 
performs on par with the sophisticated commercial software ANSYS Fluent.



244 F. Lathiya and B. Eidel

(a) Velocity (top) and Streamline (bottom) plot for the circular obstacle 

(b) Pressure distribution plot for the circular obstacle 

(c) Velocity (top) and streamline (bottom) plots from the ANSYS Fluent 
simulation 

(d) Pressure distribution plot for the circular obstacle from the ANSYS 
Fluent simulation 

Fig. 4 Simulation results from python code a, b with a comparison to a reference solution c, d 
from a commercial solver for the circular obstacle
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(a) Velocity (top) and Streamline (bottom) plot for the square obstacle 

(b) Pressure distribution plot for the square obstacle 

Fig. 5 Simulation results from python code a, b for the square obstacle 

4.2 Discussion of Flow Phenomena at Reynolds Number 50 
Versus 300 

Beyond the comparison carried out above, the characteristics of the flow around 
the circular obstacle at a Reynolds number 50 are briefly analyzed and set into 
comparison with additional results for Re .= 300, which reveals interesting fluid 
dynamics phenomena. These can be categorized into three distinct regions: 

4.2.1 Flow in Front of the Obstacle (Upstream) 

• Flow Deceleration and Stagnation Point: As the fluid approaches the circular 
obstacle, it begins to decelerate due to the obstruction. Directly in front of the 
obstacle, a stagnation point forms where the flow velocity reduces to zero. At this 
point, the fluid is diverted around the obstacle. 

• Pressure Increase: The deceleration of fluid near the stagnation point causes a 
rise in pressure in front of the obstacle, following Bernoulli’s principle. The flow
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(a) -velocity profiles 

(b) -velocity profiles 

Fig. 6 Comparison of velocity profiles at the mid-line (.ny = 50 mm) for the circular obstacle 
between the present python simulation result and a reference solution from the commercial solver 
ANSYS
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(a) Velocity contour plot (top) and streamline plot (bottom) 

(b) Pressure distribution contour plot 

Fig. 7 Simulation results for the circular obstacle at Re.= 300 

lines are closer together, indicating a pressure build-up. Note that for Re.= 50 the 
pressure maximum is in some distance to the obstacle, Fig. 4b, for Re.= 300 right 
at the obstacle, Fig. 7b. 

4.2.2 Flow Passing the Obstacle (Along the Sides) 

• Boundary Layer Development: As the fluid moves around the obstacle, a bound-
ary layer forms along the surface of the obstacle. This boundary layer is initially 
laminar due to the low Reynolds number but starts thickening as it progresses 
along the sides. 

• Flow Separation: Given that the Reynolds number is around 50, flow separation 
occurs on the sides of the obstacle. The flow cannot remain attached to the surface 
of the obstacle as it curves around the sides. This results in the boundary layer 
separating from the surface at some point, usually on the rear half of the obstacle. 

• Symmetry in Separation: At Re  .= 50, the separation is symmetric in that the 
separation points on both sides of the obstacle occur at roughly the same position.
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For Re.= 300, the separation shows minor asymmetry leading to the formation of 
alternating vortices in the wake. 

4.2.3 Flow Behind the Obstacle (Downstream) 

• Recirculation Zone: Behind the obstacle, a recirculation zone forms due to the 
flow separation. In this region, the fluid moves in the opposite direction to the 
main flow, creating vortices. For Re .= 50, these vortices –known as recirculating 
eddies or vortex pairs– show high symmetry. The length of the re-circulation 
zone is relatively short at this Reynolds number. For Re .= 300, in contrast, the 
recirculation zone exhibits alternating vortices. The flow enters a periodic vortex 
shedding regime, leading to the formation of a von Kármán vortex street. This  
phenomenon is clearly visible in the vorticity and streamline plots, where the 
alternating vortices on either side of the wake are prominent. 

• Vortex Shedding Onset: At a Reynolds number of around 50, the flow is in a 
transitional regime where vortex shedding might start to occur; in the present case 
however, there is no clear vortex shedding. For Re .= 300, the wake behind the 
obstacle is characterized by alternating vortices forming on either side of the wake. 

• Wake Symmetry: At Re .= 50, the wake is symmetric, meaning that the vortices 
are of similar size and strength on both sides of the obstacle. More downstream 
in some distance to the obstacle the flow turns back to laminar. For Re .= 300 the 
wake is inherently asymmetric due to the unsteady vortex shedding. The vortices 
alternate in strength and size, which is characteristic of the vortex shedding process 
in this Reynolds number range. Transition to Turbulence: The flow exhibits 
characteristics of transition towards turbulence in the wake region. The alternating 
vortices begin to interact with each other, and their dynamics contribute to the 
development of complex, unsteady flow patterns further downstream 

These observations highlight the significant impact of increasing the Reynolds 
number on the flow behavior around the obstacle. The flow becomes more unsteady, 
with prominent alternating vortex shedding and complex wake dynamics, indicating 
the growing dominance of inertial forces over viscous forces compared to Re .= 50. 

5 Discussion 

This section discusses various aspects of the project, including errors and omissions, 
completeness, reproducibility, and the lessons learned during the process.
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5.1 Errors and Omissions 

During the code generation process, various errors and omissions are encountered, 
which can be categorized into major and minor issues. 

• Major Issues: 

– Index mismatching errors: These errors were frequent and challenging to rec-
ognize, often leading to the code failing to execute properly. 

– Non-reproducibility of code: The generated code varies significantly with each 
attempt, even with the same prompt. This inconsistency makes it difficult to 
achieve reliable results. 

– Incomplete outputs: On several occasions, the code runs without errors but fails 
to produce any output, resulting in blank profiles. 

• Minor Issues: 

– Missing details: Despite providing detailed prompts, GPT-4o sometimes misses 
implementing simple yet crucial details. 

5.2 Completeness and Short Term Memory Capacity 

GPT-4o demonstrates a good capacity to implement details as specified in the prompt. 
However, it is noted that while detailed prompts are necessary, extremely detailed 
prompts can cause GPT-4o to forget some of the details, leading to incomplete imple-
mentation. It is crucial to strike a balance in the level of detail provided in the prompts 
to ensure the best results. 

5.3 Reproducibility as a Signature of Reliability 

Unfortunately, the reproducibility of the code using the same prompt is not assured. 
Several observations are noted during the generation of the code and the formulation 
of the prompt: 

• GPT-4o generates different codes for each trial, with many instances resulting in 
compilation errors such as array dimension mismatches. 

• Allocating a persona to GPT-4o which is an expert in the respective domain is 
beneficial to a large extent. Additionally, when dealing with specialized subjects, 
providing GPT-4o with useful principles and equations enhances the accuracy of 
the results.
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• The previous history of the session fed to GPT-4o plays a critical role in gener-
ating further results more accurately according to the need. Therefore, the same 
assignment, even with the same formulation, may not produce identical outputs 
due to the influence of the session history. 

5.4 Learned Lessons 

Several valuable lessons were learned during the project: 

• The importance of providing clear, detailed, and structured prompts to GPT-4o to 
improve the quality and accuracy of the generated code. 

• Understanding the limitations of GPT-4o in terms of reproducibility and the influ-
ence of session history on the generated outputs. 

• Recognizing the necessity of human intervention to refine and validate the results, 
ensuring the accuracy and reliability of the simulations. 

• Appreciating the potential of AI-assisted coding in generating complex algorithms, 
while also acknowledging the need for human expertise to refine and verify the 
results. 

Overall, this project highlights both the strengths and limitations of using AI 
tools like GPT-4o for CFD simulations. The experience underscores the importance 
of combining AI capabilities with human expertise to achieve reliable and accurate 
results. 

6 Conclusion 

This chapter demonstrated the capability of GPT-4o to generate functional Python 
code for simulating fluid flow around an obstacle using the LBM. The generated code 
was verified in a benchmark simulation against the results of the commercial solver 
ANSYS Fluent; the comparison indicates a high degree of agreement and confirms 
the accuracy of the AI-assisted coding approach. 

While GPT-4o proved to be a powerful tool in generating complex CFD algo-
rithms, human intervention was crucial for refining, debugging, and verifying the 
results in the present work. In particular we pointed at challenges related to repro-
ducibility and error handling, emphasizing the need for clear, balanced prompts and 
human oversight. Despite these challenges, the verification against ANSYS Fluent 
demonstrated that GPT-4o-generated code can perform on par with advanced com-
mercial software, underscoring the viability of GPT-4o-assisted coding for scientific 
research and engineering applications. 

Overall, while GPT-4o cannot completely replace human expertise, it can signifi-
cantly speed up the coding process, making it a valuable tool for enhancing efficiency 
and innovation in computational simulations.
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Learned Lessons—Recommendations 

Bernhard Eidel, Rahul Narkhede, and Aagashram Neelakandan 

Abstract This chapter condenses the lessons learned in different chapters of this 
book into recommendations for prompt engineering of Python programming tasks 
for the chatbot GPT-4/4o in the areas of computational materials and mechanics. 
Beyond, detailed recommendations for code verification are provided. 

1 Responsible Usage of GPT-4 in Coding Tasks 

Expert knowledge in the areas in which the chatbot is used as a programming assis-
tant is absolutely necessary for responsible use. This refers to the domain of model-
ing problems in nature and the sciences by differential equations and to numerical 
methods employed for their solution. It no less refers to the field of professional 
programming. 

Hence, this expert knowledge must be readily available before the prompt is 
shaped—and will certainly be of great help to craft the prompt. This expert knowledge 
equally is required in rigorous tests of the code implying verification tests as well as 
validation tests. In this book we had restricted to verification, which is, briefly, the 
assessment of the accuracy of the code and its solution to a computational model by 
comparison with known solutions. Validation is the assessment of the accuracy of a 
computational simulation by comparison with experimental data. 

While GPT-4 proved to be a powerful tool in generating complex algorithms, 
human intervention was throughout necessary in all chapters of this book. 
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2 Tangible Advice for Prompt Engineering 

In working with GPT-4 to generate Python code for computational problems, par-
ticularly in computational materials science, solid mechanics, wave propagation, 
and fluid mechanics, we have distilled several key lessons and strategies that can 
enhance the effectiveness of AI interactions. The following are detailed recommen-
dations for prompt engineering that have proven valuable in eliciting high-quality 
responses from GPT-4. We include links to the general characteristics of LLMs and 
their performance in Chatbots. 

In a book context, where the interaction with GPT-4 is limited to one or a few well-
constructed prompts, it becomes essential to design each prompt carefully to ensure 
it leads to high-quality code generation. Multiple iterative prompts or feedback loops 
are often impractical, so the focus should be on refining each prompt to be as effective 
as possible from the outset. 

1. Persona Assignment: Generating Context 
One effective technique is the strategic use of persona assignment, where GPT-4 
is attributed a specific role or context. By assigning a persona as an expert with 
knowledge in, e.g., computational materials science with particular expertise in 
grain growth, the generated solutions are more aligned with user expectations. 
This helps GPT-4 frame its answers appropriately, adding a layer of sophistication. 
This approach provides context, ensuring that the output is relevant both in terms 
of solution and explanation. The persona assignment can be also used to tailor 
the responses generated by the chatbot to follow a certain format and take certain 
general instructions into consideration. 

2. Be Explicit in What You Need: Specify Language, Output Format, or Tech-
niques 
Clarity in prompts leads to clarity in responses. It is essential to specify the coding 
language, the methods or libraries to be used, and the desired output format. Some 
measures to ensure clarity in the prompts are listed here: 

• Provide equations or relations in a LATEXformat to ensure accurate interpretation 
by GPT. 

• Mention the datatype of the inputs and expected outputs, with examples. If the 
inputs are images or any other form of data, mention the file format, e.g. ‘.jpg’ 
or ‘.tif’. 

• Clearly mention the expected dimensions of matrices and vectors. 
• If a term has the possibility of being interpreted differently by GPT, then briefly 
specify the desired meaning in the prompt. 

This ensures the solution is tailored precisely to the problem’s requirements, 
avoiding irrelevant approaches. 

3. Iterative Refinement Process 
From our experience in almost all topical chapters, the first iteration of a prompt 
was very rarely the final one, yielding the best code output. In cases of complex
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problems requiring decomposition of the problem into multiple steps, it is sug-
gested to start a new iteration in a new chat. 
One can also use GPT-4 to create a prompt using the solution from the previous 
iteration or briefly explain the desired output. This may act as a good starting 
point for subsequent prompt refinement. 
By refining the prompt before the final submission, the output will be more 
complete, reducing the need for further iterations. 

4. Problem Decomposition 
When addressing complex tasks, it is beneficial to break the problem into smaller, 
manageable components. Instead of requesting a complete solution at once, 
decomposing the task improves both clarity and output quality. Ideally, prob-
lems should be broken down into reasonable and logical parts, e.g., in machine 
learning, the problem can be split into the steps of the workflow, i.e., model inputs, 
model creation, training, and testing. GPT-4 can also be prompted to tackle a com-
plex problem in a step-wise manner by adding the line “Let’s think step-by-step” 
to invoke the chain of thought technique of prompt engineering. If the prompt-
response chat becomes too long, it is recommended to provide direct references 
to previous responses or statements by simply adding them to the current prompt. 
Thus, the issues rendered by a limited memory can be overcome. 
This step-by-step approach structures the interaction, guiding GPT-4 to handle 
complex problems methodically. 

5. Embedded Explanation and Commentary: Chain of Thought in a Single 
Prompt To enhance the clarity of the generated code, instruct GPT-4 to include 
explanations and commentary within the code. This mimics the chain of thought 
technique, ensuring the AI provides reasoning alongside its solution. 
By embedding explanations within the code, the model generates both a solution 
and a tutorial-like guide for the reader. 

6. Self Reflection Invocation: Questioning the Correctness When dealing with a 
complex topic or new areas, a prompt with very little information about the theory 
might lead GPT-4 to misunderstand which domain of knowledge the prompt 
refers to. One way of addressing this is to ask follow-up questions on the topic of 
interest to fully understand GPT-4’s position. Another method is to include self-
reflection comments or critique-style questions, where GPT-4 questions whether 
the information provided is correct or not as a form of self-reflection. This typically 
improves the quality of data retrieved from a file, but can also be applied to general 
prompts [ 3]. 
By incorporating critiquing with self-reflection, the accuracy of text retrievals 
from external files can be improved, and hallucinations in responses to general 
prompts can be reduced. 

7. Addressing Hallucinations in Prompt Engineering Hallucinations, a factually 
incorrect or fabricated content generated by language models, pose a major chal-
lenge for reliable use of AI, especially in scientific domains where accuracy is 
paramount [ 2]. Hallucinations arise from the model’s training data, data sources, 
and inference methods, leading to errors when the model produces outputs based 
on memorized or low-confidence data. While end-users have limited control
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over data and training-related hallucinations, errors at the inference level can 
be minimized by employing strategies that prioritize faithfulness to the user’s 
prompt. 
For instance, Faithfulness Enhanced Decoding techniques adjust the model’s 
probability weighting to prioritize user-provided context and instruction align-
ment, effectively reducing hallucinatory outputs by focusing on the most relevant 
tokens [ 1]. Moreover, detailed prompts with clear and precise context reduce 
ambiguity, helping the model generate responses that are more likely to adhere 
closely to the input and reduce error. When the input prompt is sufficiently 
detailed, specific and clear, the likelihood of hallucinations decreases, enhancing 
response accuracy. 
Therefore, for high-stakes scientific applications, detailed, well-structured 
prompts are critical. This includes iterative refinement, prompt adjustments, 
and, if needed, employing structured query patterns like chaining commands to 
guide GPT-4 in generating fully operational response. 

3 Tests for Code Verification, Inbuilt and Separate 

Tests for code verification are indispensable. We can distinguish testing action we 
already ask the Chatbot to carry out being inbuilt in the prompt or tests we figure out 
and design. 

1. Incorporate Testing and Verification: Request Edge Case Handling 
Given the importance of verification, prompt GPT-4 to include testing cases, 
especially for edge conditions. This promotes robust code generation, essential 
in computational mechanics. 

2. Check Initialization of Problems 
Several problems require an initialization of variables over a domain or an initial-
ization of the parameters of a model. If the initialization is incorrect, the solution, 
despite being correct, can result in wrong results. Thus, problem initialization 
should be checked before moving to the verification of the rest of the solution 
provided by GPT-4. 

3. Verify Boundary Conditions 
Despite clear instructions, GPT-4 may omit some boundary conditions of the 
problem. A simple check of the values of the variables at these boundaries can be 
made to ensure if they are included correctly in the problem. 

4. Ensure Data Inputs are Correct 
For problems requiring external sources of data to be imported into the model, the 
correct processing of the data should be ensured. For e.g. image segmentation, if 
the masks are not assigned correctly, then the models will not result in the correct 
segmentation. 

5. Mathematical Accuracy of Numerical Implementation 
Numerical methods applied for solving differential equations can be implemented
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with minor inaccuracies which can cause major deviations from the expected 
outputs. For e.g., in the summation .

∑N
i �= j (η

n
i )

2, the code generated can miss out 
on ensuring.i �= j , resulting in an erroneous summation. Such details of numerical 
implementation should be checked. 

6. Comparison with Analytical Solutions in Particular Settings 
Some complex problems can be reduced to a form where an analytical solution 
exists. Providing this information within the prompts helps GPT-4 generate the 
corresponding analytical equations, which can then be coded to verify the results. 
However, if the generated results are unsatisfactory or incorrect, providing the 
explicit analytical form in the form of equations will also work. 

7. Comparison with (Commercial) Software Systems When verifying codes 
against commercial software, there are several steps and considerations to ensure 
a meaningful and robust comparison; (i) define the scope and objectives clearly 
(choice of a problem that can be modeled equivalently in the generated code 
and the commercial software; choice of comparison metrics; preference of rather 
simple benchmark problems), (ii) ensure model consistency (geometry, material 
properties, boundary conditions, loading, mesh, etc.), (iii) match solver settings 
(for, e.g. finite elements: element formulation, numerical integration, solver algo-
rithm, tolerances, (iv) handle nonlinearities carefully. 
Observed differences should be interpreted cautiously. Differences can arise due to 
hidden reasons. As an example, commercial software often uses highly optimized 
and proprietary algorithms that may differ in subtle ways. Moreover, slight dif-
ferences in floating-point arithmetic can accumulate over iterative calculations. 
Moreover, we recommend to treat commercial software as a “gold standard” 
cautiously; their results are not inherently infallible. 

4 Current Limitations–Where, Why and How GPT-4 Fails 
and How to Overcome It 

1. Long, Complex Coding Tasks 
Even though GPT-4 has large context windows of 128000 context length [ 4], for 
a long task they are not sufficient. There are multiple ways it can be mitigated. 
Some of them are, 

• Explicitly informing GPT-4 that prompt is long and to wait for complete code. 
• Break down the codes in sections (instead of splitting as per max tokens), will 
help GPT-4 to better understand the context, than stopping at a random point. 
Using self-reflections and chains of thought improves the response quality. 

2. Task Skipping 
When structuring highly complex prompts with multiple tasks that reference each 
other, such as “Task 1. Task 2. Task 3 refers to Task 2. Task 4 now refers to Task 
3...”, GPT-4 might forget some tasks, leading to their complete omission.
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In cases where task skipping is evident, it is always recommended to restructure 
the prompts in a clearer and more straightforward fashion. 

3. Sticking to Older Library Versions 
For Python libraries that have been updated to newer versions recently, GPT-4 
may provide code with the syntax and usage according to older versions. This may 
cause incompatibility with other libraries at times. To remedy this issue, a prompt 
containing the current usage of library methods from the original documentation 
can be added to update GPT-4 generated code. 

4. ‘r’s in  Strawberry 
One of the well-known examples of GPT-4’s tokenization issue is asking, “How 
many ‘r’s are in the word ‘Strawberry’?”. Despite the obvious answer being 3, 
GPT-4 often provides different answers, a result of the tokenization process. GPT-
4 typically reads tokens based on attention, meaning that when it processes the 
question, information about the word might appear before or after the prediction, 
and the weight of the last token might not influence the result. 
Self-reflection, by prompting the same question again or questioning the correct-
ness of the answer, might resolve the issue. Another possible approach is to add 
the instruction “Compute with code.” to the prompt. This allows GPT-4 to com-
pute the answer by generating a program that verifies and provides the correct 
response. However, in a recent version before book publication, this issue has 
been patched. 
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