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Author’s Preface

This book has grown out of a course of introductory lectures formerly
given to intending honours mathematics students at the University
College of North Wales, Bangor. The main purpose of the course was to
give a largely descriptive and intuitive survey of some of the concepts
encountered in a study of topology.

Many university courses in topology plunge immediately into a
formalized and entirely abstract presentation of topological concepts.
Students often find it difficult in the early stages of such courses to get
any real sort of ‘feel’ for the subject. Even the more simple ideas
become difficult to grasp if their simplicity is obscured by the unfami-
liar formality of the language in which they are being presented. On the
other hand, there is often insufficient time available for a more intuitive
and leisurely approach, since it is important that students should come
to terms with the real ‘meat’ of the subject as quickly as possible.
This book has been written with the aim of bridging the gap between
intuitive and largely geometrical ideas and the formal study of topology.

The first three chapters of the book provide a link from geometry
to topology by considering equivalence classes defined by various
suitable transformations in real Euclidean space. The general theme
here is that, by increasing the number of ‘permitted’ transformations,
the congruence classes of Euclidean geometry are gradually enlarged
and the common topological properties remaining within these enlarged
classes are thus eventually highlighted. This follows the pattern of
Klein’s famous Erlangen Programme (see Historical Note, page 168).
The next nine chapters are devoted to a largely intuitive presentation
of certain selected topics in topology designed to stimulate and enlarge
the imagination whilst, at the same time, making the fullest possible
use of reasonably familiar concepts. Chapter 13 enlarges on the impor-
tant underlying concept of continuity and introduces the concepts of
netghbourhood and distance in an intuitive way so as to be able to
discuss the traditional e-6 approach to the continuity of a function at a
point. However, at this point it becomes clear that the minimal use of
set theoretic concepts and language adopted so far will no longer be
adequate for a more formal presentation of topological ideas, and so
necessary set concepts are introduced in Chapter 14 so that the follow-
ing chapter can discuss functions representing the rigid and elastic
transformations encountered earlier in the book. The last two chapters
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vi Author’s Preface

are devoted to metric spaces and topological spaces respectively. The aim
here is to formalize the concept of distance, which invariably and natur-
ally underlies any initial understanding of transformations of real
Euclidean space, so that the concept of continuity can be freed from
purely geometric overtones and, ultimately, be re-expressed in terms
of open sets. The nature of the ‘permitted’ topological transformations
of earlier chapters can thus eventually be appreciated in their formalized
mathematical context. The final chapter also discusses a few important
properties of topological spaces, and concludes with some particular
remarks about the real number line.

I make no apology for the initial very elementary approach
adopted in this book. The approach has been deliberately elementary
because the book is not intended as a university text-book, but as a
lead-in to a university course for those who would welcome a fairly
informal preview of what the earlier part of a university course in
topology might entail. Indeed, I have had young men and women in
the sixth forms in mind just as much as the first-year university
undergraduate,and Lhope also that much of the book will prove suitable
for the more general reader who does not intend taking a formal course
at any time but who is genuinely interested in finding out what topology
is all about. There are no exercises at the ends of the chapters, but a
selection of exercises and problems is provided at the end of the text for
those who want to test their understanding of the material and would
like suggestions for discussion. The chapter on the language of sets has
been specifically included for the benefit of these who are studying (or
have studied) at schools where the ‘modern’ mathematics syllabuses
have not been (or were not) yet introduced.

Some of the topics introduced are unlikely to be encountered in first
courses in topology, because they belong to the ‘fringes’ only of the
formal study of topological spaces. These have been included in the
belief that a ‘general excursion’ is preferable at this stage to a narrow
specialist development. The serious mathematical student should not
be misled, however, into thinking that these sidelines are part of the real
core of the subject, attractive and interesting though some of them may
be. This book is not meant to be a substitute for a serious formalized
study of topological ideas; it is intended to do little more than give
a list of some of the dramatis personae, to indicate where the ‘plot’
might possibly lead, and to raise the curtain on the scene for the
first act.

H. GRAHAM FLEGG

BANGOR 1969,
MILTON KEYNES 1973
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Congruence Classes

What geometry is about—congruence—the rigid transformations:
translation, reflection, rotation—invariant properties—congruence
as an equivalence relation-—congruence classes as the concern of
Euclidean geometry.

The traditional study of geometry is concerned with certain properties
of figures in Euclidean space. For example, consider the triangle of

Fig. 1.1

Figure 1.1. This triangle has certain properties such as:

the values of its angles,

the lengths of its sides,

the number of sides,

its separation of a plane surface into a region inside and a region
outside its perimeter,

the length of its perimeter,

the area enclosed by its perimeter,

its orientation with respect to some given axes in space,

its colour.

Not all these properties are geometric, and, in order to determine
which are and which are not, it is necessary to introduce the concept of
geometric equivalence, often termed congruence.

Intuitively, two plane figures are congruent if and only if one may
be placed on top of the other so as to coincide perfectly. The properties
which are shared by every figure congruent to a given figure are

1




2 From Geometry to Topology

geometric properties. Clearly, all but the last two of the properties
listed above are geometric. .

The operation of placing one plane figure upon another needs more
precise definition. The triangle of Figure 1.2, for example, is congruent

Fig. 1.2

to that of Figure 1.1. Superimposing this second triangle upon the first
involves what is known as a rigid transformation (or isometry). There are
three fundamental rigid transformations: translation, rotaiton and
reflection. Every rigid transformation can be expressed in terms of
these.

Translation of a point P in a plane is shown in Figure 1.3. If P has
co-ordinates (z, y) with respect to the given axes, then the point P’ to
which it is translated has co-ordinates (2, y') where

z' = zx+a, ¥ = y+b,

a being the distance moved in the positive x-direction and b the
distance moved in the positive y-direction. (In fact, the figure shows
that the transformation of P to P’ can be naturally decomposed into
two translations, one in the positive z-direction and one in the positive
y-direction.)

A plane figure, however, consists not of a single point but of an
infinite number of points, though in the case of a triangle three points
(the vertices) are sufficient to specify it uniquely. Figure 1.4 shows the
translation of a triangle under the same transformation as that of
Figure 1.3. Every point belonging to the original triangle is translated
by the same amount a in the positive z-direction and by the same

Congruence Classes 3

\

P(xy)

Fig. 1.3

Fig. 1.4

amount b in the positive y-direction. Thus the translation, I' say, is
given by

T:z,y) » (x+a,y+d)
(which is read as ‘““points (z, y) map to points (z+a, y+b)”’), where the
set of all points {(z, y)} is the subset of the plane consisting of the



4 From Geometry to Topology

perimeter and interior of the original triangle. In a similar way, we can
think of any plane figure, or the entire plane itself, being translated
under 7. In the latter case, z and y would be any real number pair,
and the set of all points {(z, y)} would be the whole plane, R xR (the
Cartesian product of the set of real numbers with itself).

Certain properties, such as the number of sides, the number of

vertices, and the separation of the plane into an area inside and an’

area outside the perimeter of the triangle, are obviously preserved under
translations such as 7. To show that lengths are preserved, consider
any two points Py, Pz with co-ordinates (21, y1), (%2, y2) respectively.
The length of the line Py P; is defined as

VIxe—21)2+(y2—y1)%).

Under 7, the line Py P is translated to Py'Py’, say, with co-ordinates
(214 a, y1+b), (x2+a, y2+b) respectively. The length of P1'Py’ is thus
V[((#2+a)— (z1+a))2+ ((y2 +b) — (y1+b))?]

= /[(x2—21)%+ (y2—1)%),

showing that length is preserved under 7'. Since 7' represents any
translation in the plane, length is preserved under all such translations.

Rotation of a point P about the origin of a plane co-ordinate system
is shown in Figure 1.5. If P has co-ordinates (, y), then P’ will have
co-ordinates (z cos ¢ —y sin ¢, z sin ¢ +y cos ¢), where ¢ is the angle

y

Fig. 1.6

Congruence Classes 5

through which the line OP is rotated, as shown, to give OP’. Consider
again any two points Py, Py with co-ordinates (i1, y1), (%2, ¥2) respec-
tively. The length of the line joining the two points Py’, Py’ to which
P;, Py are transformed under a rotation through angle ¢ about the
origin is
V(w2 cos ¢ —yz sin @) — (z1 cos p—y, sin $))?
+ ((z2 8in ¢ +y2 cos ¢) — (z1 sin §+y1 cos ¢))?]

= y/[((®s—21) cos ¢ — (y2—y1) sin $)?+ ((x2— 1) sin ¢
+(y2—41) cos $)?]

= 4/[(x2—x1)% (cos? ¢ +sin? @) + (y2—y1)? (sin? ¢ +cos? @)
—2((x2—»1)(y2—~y1) cos ¢ sin ¢ — (T2 —21)(y2—¥1)
x 8in ¢ cos ¢)]

= /[(xa—21)%+ (y2—91)],

showing that length is again preserved under rotation about the origin.
This can be extended to rotations about any point in the plane quite
simply. Figure 1.6 shows the rotation of a square in the plane about a
point O’ with co-ordinates (a, b). This transformation must preserve
length, since the axes can be regarded as temporarily translated (as
shown) for the purposes of the rotation. 0’ is now the new origin, and
rotations about the origin have already been shown to preserve length.
The temporary translation of the axes does not affect the situation,
since it has previously been shown that length is preserved under all
translations of the plane.

®)
®7

Fig. 1.6



6 From Geometry to Topology

Reflection of two points Py, Py in a given line is shown in Figure 1.7.
Rather than repeat a direct formula method for showing that the length
of any line P, P; is preserved under reflection, it is simpler first to rotate
the whole system about the point of intersection of the given line with
the z-axis (or translate the system if the given line and the z-axis are
parallel) so that they coincide. The rotation (or translation) preserves

P,

P,

Fig. 1.7

length. It is now necessary only to consider the situation shown in
Figure 1.8. If the co-ordinates of Py, Py are (1, ¥1), (w2, y3) respectively,
then the co-ordinates of Py’, P2’ are (z1,—y1), (x2, —¥2) respectively;
and since, in determining length according to +/[(xa— 1)+ (y2—¥1)%],
the formula is unaffected by the substitution of —y1, —y2 for y1, y2
respectively, because the term involving the y’s is squared, reflection
in the z-axis, and hence in any line, preserves length.

The three rigid transformations, translation, rotation and reflection,
thus all have this important property of preserving length. Length is
therefore said to be snvariant under these transformations. Clearly,
many other properties of figures are also preserved under the rigid
transformations, for example, values of angles, area, the number of
sides of a polygon, and so on. One of the most obvious properties not
preserved is orientation. Properties which are preserved are said to be
geometric.

The examples of transformations considered so far have been
confined to transformations in a plane. It is not difficult, however, to

Congruence Classes 7

Y
!
P,
\Pz
given line + —X
P,
P
Fig. 1.8

extend the same principles to three dimensions and to consider solid
three-dimensional objects. The length of a line Py P; is then defined as

VI(za—21)2+ (Y2 —y1)2+ (22 —~21)?],

where the rectangular Cartesian co-ordinates of Pi, Py are (%1, ¥1, 21),
(%2, ¥2, 22) respectively. Indeed, there is no mathematical reason for
stopping at three dimensions, and the formula for length clearly has its
general counterpart in n-dimensional space. The same extension to
three- and higher dimensional space applies to the consideration of
invariance under the rigid transformations, though it becomes extremely
difficult to visualise what is happening in any space of dimension
greater than three.

A space consisting of all points (zy, %3, . . ., ;) where the distance
between x = (x1, %2, . . ., 5) and ¥ = (¥1, Y2, . . ., Yn) is defined by

diz, y) = [gllzt—mlz]*

is termed a n-dimensional Euclidean space. The set of all figures in any
n-dimensional Euclidean space can be divided up into distinct subsets
such that in any given subset all the figures are equivalent, in the sense
that they can be transformed into each other under one or more of the
three rigid transformations. Thus the triangles of Figures 1.1 and 1.2
would each belong to one subset, the two squares of Figure 1.6 would
each belong to another subset, and so on. The two triangles shown in
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Fig. 9

Fig. 10

Figure 1.9 would, however, belong to different subsets, as would the
square and circle of Figure 1.10. Such subsets are termed equivalence
classes, and the relation

“is congruent to”’

on the set of all figures in Euclidean space, which holds for all members
of any one equivalence class, is an equivalence relation. (An equivalence
relation, i.e. a relation having the reflexive, symmetric, and transitive
properties, separates the set on which it is defined into disjoint equival-
ence classes in a unique manner. Thus, if the equivalence relation is
changed, the equivalence classes are also necessarily changed.)

In the study of Euclidean geometry, no distinction is made between
the members within any one equivalence class. They all share identically
the same geometric properties, each is congruent to the other, and
hence the equivalence classes of Euclidean geometry are often termed
congruence classes. To determine that two figures belong to different
congruence classes, it is sufficient to find one geometric property
which they do not have in common. For example, the triangles of
Figure 1.9 do have the same area, since the lengths of their bases are
the same and they have the same perpendicular heights. However,
they have different angles, and this on its own is sufficient to determine
that they belong to different classes, notwithstanding the fact that there
are a number of geometric properties which they do share.

Euclidean geometry is thus concerned with the study of classes of
figures, and in this context the properties of interest are those which
enable it to be determined that two figures belong to different con-
gruence classes by virtue of not sharing any one of these properties.

2

Non-Euclidean Geometries

Orientation as & prgperty—-orientation geometry divides congruence
cla'.sses——'—ma.gmﬁgat.lon.(and contraction) combine congruence classes
—invariants of similarity geometry—affine and projective transform-

a.;,lons and invariants—continuing process of combining equivalence
classes.

The individual congruence classes discussed in Chapter 1 can be further
divided by taking account, in some way, of orientation in space. For
example, in the plane, it may be required that the sides of equivalent
polygonal figures make the same angles with some given line. In Figure
2.1 the two triangles are congruent, but in addition they are identically

Fig. 2.1

orientated with respect to the line PQ. Triangles not so orientated now
belong to different equivalence classes. Within any one equivalence
class, the members still share all the same geometric properties, but
they share also the non-geometric property of defined orientation.
In this new orientated geometry, the only transformation permitted
is the rigid transformation of translation.

Free vectors provide an example of a set of one-dimensional
‘figures’ for which identical orientation is a requirement for equivalence.
Thus the study of free vectors involves equivalence classes, within any
one of which all the members have the same length and direction
(orientation). Members of one such equivalence class are depicted in
Figure 2.2. Each individual vector can be thought of as tied to its
starting point in space, but, for the purposes of developing a vector

9



10  From Geometry to Topology
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algebra this distinction is ignored, and only the properties common to
all, namely length and direction, are considered.

Certain of the geometric congruence classes may, however, be
combined by permitting a difference in one or more geometric properties
within one equivalence class. For example, it is possible to drop the
requirement that lengths should be the same within a class, and to
permit transformations which involve proportional magnification
(or contraction) in addition to the rigid transformations. In such a
geometry, which may be called similarity geometry, the two triangles
of Figure 2.3 belong to the same equivalence class, and no distinction
is made between them.

Fig. 2.3

All straight line segments are equivalent in similarity geometry.
All squares are equivalent, and all circles are equivalent. Rectangles
having the same ratio of side lengths are equivalent, but rectangles of
different side-length ratio belong to different equivalence classes.
Clearly, area is no longer an invariant under the permitted trans-
formations, but a considerable number of geometric properties are
nevertheless retained. In particular, values of angles are preserved,
straight line segments remain straight line segments {though their
lengths are proportionately changed), and overall ‘shape’ is preserved
without distortion. In three dimensions, no distinction is now made
between spheres of differing radii, nor between cubes of differing edge

Non-Euclidean Geometries 11

lengths. Certain of the congruence classes of ordinary geometry have
now been combined. Congruent figures are indeed still equivalent, but
so are all figures which in terms of geometric properties would merely
be classed as similar.

The pattern which is beginning to emerge is that by increasing
the number of permitted transformations, equivalence classes of figures
are combined as certain properties cease to be invariant. At each
particular stage, it is the study of the invariant properties which forms
the basis of the appropriate ‘geometry’. This process may now be
continued by permitting more and more transformations. For example,
in the plane the transformations given by

(x,y) b (ax+by+c, de+ey+f),

where a, b, ¢, d, e, f are real numbers and ae # bd, preserves neither
length, nor angle, nor ‘shape’. The geometry which now results is known
as affine geometry, and its equivalence classes are combinations of equiva-
lence classes of similarity geometry. In affine geometry the two triangles
of Figure 2.4 are equivalent, as are also the two triangles of Figure 2.5.

Fig. 2.5

In Figure 2.4, the particular transformation involved, in addition
to a translation, is known as a shear. The two triangles have the same
base length and the same perpendicular height, but the upper vertex
has been moved along a line parallel to the translated base. In Figure
2.5, the particular transformation involved, in addition to a trans-
lation, is known as a sfrain. Again each triangle has one side which is
merely a translation of a corresponding side in the other, but following
a translation the remaining vertex has been moved along a line not
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parallel to the common side. This can be seen more clearly in Figure
2.8, which depicts the strain transformation alone.

Fig. 2.6 ~

In the case of shear, it can be seen from Figure 2.4 that it so
happens that the areas of the two triangles are the same. It is not
generally true, however, that area is preserved under affine trans-
formations, as can be immediately seen from Figures 2.5 and 2.6.
Indeed, since magnifications and contractions are permitted as in
similarity geometry, area cannot be an affine invariant.

Fig. 2.7

Figure 2.7 depicts a square transformed under shear and also
under strain. The two resulting figures are each equivalent to the
original square and to each other. Thus, no distinction is made between
squares and parallelograms. Further, no distinction is made between
circles and ellipses. There are, however, & number of very important
properties which are preserved under affine transformations.

Reference to Figure 2.7 shows that under shear and strain, lines
which were originally parallel remain parallel although angles between
lines are not invariant. It is not difficult to show that this is generally
true under all transformations of the plane defined by

Non-Euclidean Geometries 13
(x,y) & (az+by+c, de+ey+f),

ae # bd. If PQ and RS are parallel, and P, @, R, 8 have co-ordinates

(z1, 1), (%2, ¥2), (@3, ¥3), (%4, y4) respectively, then the equality of their
slopes is expressed by

Y2—Y1 _ Ya—Ys3

XTo—2y  T4—23
Under the transformation, P, @, R, S map to P, @, R, § with
co-ordinates (ax1+by1+c¢, dzi+eyi+f), (axrs+bys+c, dva+eys+ SR

(az3+bys+c, drs+eys+f), (axra+dyatc, dag+eys+f), respectively.
The slope of P'Q’ is thus given by

d(za—x1)+e(y2—y1)
a(xe—x1)+b(y2—y1)

Y2—y1
X2 —x1

a+b Yo—n
Te—2

d+e

Ya—Yys
T4—T3
Ya—Ys
Ty—23

d+e

a+b

_ H@a—m3) +e(ya—ys)
a(x4—2x3)+b(ys—y3)

which is the slope of R'S’. This parallel-preserving property of affine
transformations means that not all four-sided polygons are equivalent.
A square or a parallelogram cannot be transformed into, for example, a
trapezium since this would contravene the invariance of parallelism.
All triangles are, however, equivalent; no parallel lines are involved,
and successive transformations of shear and strain in addition to the
rigid transformations will transform any given triangle into any other
triangle.

Another important invariant under affine transformations is
the ratio in which points divide straight line segments. (A proof of
this on lines similar to that for the case of parallelism is not difficult to
construct.) A further invariant is that finite configurations remain
finite.

These properties are no longer invariants in a geometry, known as
projective geomelry, in which projective transformations are permitted.
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Intuitively, such transformations may be thought of as perspective
projections of a figure from a point lying outside it. Given two planes
in space, not necessarily parallel, then figures in one plane may be
transformed into figures in the other either by parallel projection or by
projection from an exterior point, as shown in Figures 2.8 and 2..9
respectively. Clearly, the important affine invariant of parallef§ym is
now lost, and hence a square is equivalent to any quadrilateral. How-
ever, a straight line remains a straight line under projective trans-

Fig. 2.9

Non-Euclidean Geometries 15

formations, collinearity of points and concurrence of lines is preserved,
and finite configurations remain finite.

One particular invariant of considerable importance in projective
geometry is cross-ratio. If four collinear points P, @, R, S are trans-
formed under any projective transformation, then, not only are their
images P’, @', R’, §' collinear, but their respective cross ratios are
equal, that is

PRIQR  P'R'|Q'R’
PS/QS ~ P'S|QS

The case for projection from an exterior point is shown in Figure 2.10.
By equating areas of triangles calculated as } x base length x perpendi-
cular height with those using product of lengths of two sides x sine of
the included angle, it follows that

PRIQR _ OP.OR.sin POR 0Q.08.sin Q08
PS/@S ~ 0Q.OR.sin QDR OP.0S.sin POS
_sin POR .sin QOS
"~ sin QOR.sin POS’
which remains the same for any four points P’, @', R’, 8’ into which

P, Q.R.8 may be projected from O. A simple proof, based on similar
triangles, can be constructed for the parallel projection case.
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Fig. 2.10

It might seem at first sight that so few of the original geometric
invariants now remain that the study of these on their own would not
constitute a worth-while ‘geometry’. This is far from the case, however.
Projective geometry has its own intricate and interesting collection of
theorems, which illustrate, amongst other things, the striking principle
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of duality whereby every definition and every theorem holds und?r th(f
interchange of ‘point’ and ‘line’, ‘lie on’ and ‘pass through’, ‘collinear

and ‘concurrent’, and so on. In fact, the process of permitting additional
transformations and, hence, of combining equivalence classes even
further may be valuably continued.

3

From Geometry to Topology

Elastic deformations—intuitive idea of preservation of neighbour-
hoods—topological equivalence classes—derivation of “topology’’—
close connection with study of continuity.

In all the geometries considered so far, one important invariant under
the permitted transformation is the preservation of straight lines as
straight lines. Thus, in none of these geometries does a circle, for
example, belong to the same equivalence class as a polygon. In taking
a further step from projective geometry to topology, even this invariant
is abandoned.

In determining which properties of figures are topological, any
one-one bi-continuous transformation is permitted. Intuitively, such
transformations and their inverses map each point to a unique image
point, and points which are ‘near’ remain ‘near’, that s, neighbourhoods are
preserved. The additional transformations now permitted are sometimes
referred to as elastic deformations, and include stretching, bending and
twisting. Cutting is not, however, permitted unless the cut is subse-
quently ‘repaired’ in such a way that the ‘nearness’ of original points is
restored. Joins may not be made in such a way as to bring together
points which were originally separated.

Figure 3.1 depicts some plane figures which all belong to the same
topological equivalence class. Each may be transformed into any of the
others by permitted transformations. If the plane on which the figures
are drawn is thought of as a rubber sheet, it is not difficult to envisage

Fig. 3.1
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the transformation of, say, the triangle into the square, the square into
the circle, and so on.

Figure 3.2 shows a plane closed curve and a knot. These.a.re
topologically equivalent, though it is not possible to deform one into
the other in three-dimensional space without cutting and subsequent
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Fig. 3.2

Figure 3.3 illustrates what is meant by the preservation of neighbour-
hoods under topological transformations. Here, the plane closed curve
C is deformed into the plane closed curve C’. P and @ are two points
inside C, and R is a point outside C. Under the transformation, P, @, B
are mapped respectively to P', @', R'. But, even though P", (44 R: are
further apart that P, @, R, the important fact is that P’ and Q" are
inside ¢’ and R’ is outside C’. Indeed, distance apart is irrelevant-to the
question of ‘nearness’ in the topological sense, and ha‘s no bea.rmg on
the preservation of topological invariants under elastic deformations.

C o R
C
(A

Fig. 3.3

Figure 3.4 again illustrates the preservation of neighbourhoods.
Here the circular hole in the centre of the disc is deformed into a DaITow
glit, but P’ and @' still retain the original relationship of P and .Q in tl'lat
they are separated by the boundary of the hole. A tran.sforma’.tlon w‘hxc.h
involves joining up the edges of the hole, that is, ‘sewing up the slit, is

itted.
et P’]?;? study of properties which are invariant under the tra.l.ls-
formations now permitted belongs to that branch of mathematics
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known as fopology. Because measurement of distance (in the ordinary
sense of the word) is not involved, topology may be thought of as the
study of non-metric spatial relationships. Topological equivalence
classes include within one and the same class many figures with widely
differing geometric properties. Some properties, invariant under the
rigid transformations of ordinary geometry, are still preserved under
topological transformations. For example, in the list of properties of a
triangle at the beginning of Chapter 1, the property of separating a
plane surface into a region inside and a region outside the perimeter of a
triangle is included. This property is a topological invariant even
though the perimeter of a triangle is now equivalent to any non-
self-intersecting closed curve in a plane.

The word ‘topology’ is derived from the Greek words tomog
meaning place and 10yia meaning study. At one time topology was known
as analysis situs, a Latin name emphasising its concern with ‘situation’.
Traditionally, the properties of surfaces in Euclidean space formed a
major part of topological study. More recently, however, topology has
come to be very largely identified with the study of continuity, and it is
now regarded as fundamental to a proper understanding of the branch
of mathematios known as analysis and, in particular, of the limiting
processes of calculus. It is the fundamentality of topology that is the key
to its importance as a corner-stone of modern mathematics. (For a
brief account of the genesis of topology as a branch of mathematics see
the Historical Note, page 168.)
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Surfaces

Surface of sphere—properties of regions, paths and curves on a s?phere
— similar considerations for torus and n-fold torus—separation of
surface by curves—genus as a topological property—closed and open
surfaces—two-sided and one-sided surfaces—special surfaces: Moe-
bius band and Klein bottle—intuitive idea of orientability-—import-
ant properties remain under one-one bicontinuous transformations.

Figure 4.1 depicts a sphere on whose surface a continuous non-sgelf-
intersecting closed curve C has been drawn. It is readily seen that'the
curve C separates the surface of the sphere into the two distinct regions
R; and R;. The regions R, and R; are said to be distinct because it is

Fig. 4.1

not possible to travel on the surface from a point inside one region to a
point inside the other without crossing the curve C. This is .true of all
points of Ry and Rs. (For the moment, points lying on .0 itself, and
therefore not strictly in either regions Ry, Rq are being discounted.)
In Figure 4.2, the points P; and P; belong to regions Ry and Ry
respectively, and therefore cannot be joined by any curve on the
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Fig. 4.2

surface not crossing C. The path a illustrates the simplest way of
joining P; and P,. This path crosses C once. The points Py and @,
however, both belong to R; and may therefore be joined without
crossing C, as illustrated by the path b. Similarly, the points Ps and Qg
both belong to Bz and may also be joined by paths not crossing C.
Nevertheless, two points belonging to one and the same region may be
joined by paths which do cross C, but in every case it is clear that such
paths must cross C an even number of times, since any path joining two
such points must eventually return to the region in which it started.
A similar argument leads to the conclusion that a point belonging to
one region may be joined to a point belonging to the other by paths
which cross C' an odd number of times. The path a’, for example, in
Figare 4.3 crosses C three times. The path b’ crosses C twice, and the
path b” crosses C four times. It is, of course, possible to envisage paths
which, at some point or other, touch the curve C but do not actually
cross it. Provided that such a touching of C is regarded as an even
crossing, such paths do not need any special consideration here.

Another property of the continuous non-self-intersecting closed
curve C is that it may be gradually contracted on the surface of the
sphere so that the smaller of the two regions decreases continuously
in size until ultimately the curve shrinks into a point. The important
facts here are that the process of contraction may be continuously
performed, and that the process may be continued to the limiting stage
where the curve C is finally reduced to a single point. This property
holds for all continuous non-self-intersecting closed curves on the
surface of a sphere.
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surface not crossing C. The path a illustrates the simplest way of
joining P; and P;. This path crosses C once. The points P; and Q,
however, both belong to R; and may therefore be joined without
crossing C, as illustrated by the path b. Similarly, the points P3 and Q;
both belong to R; and may also be joined by paths not crossing C.
Nevertheless, two points belonging to one and the same region may be
joined by paths which do cross C, but in every case it is clear that such
paths must cross C an even number of times, since any path joining two
such points must eventually return to the region in which it started.
A similar argument leads to the conclusion that a point belonging to
one region may be joined to a point belonging to the other by paths
which cross C' an odd number of times. The path a’, for example, in
Figure 4.3 crosses C three times. The path b’ crosses C twice, and the
path b” crosses C four times. It is, of course, possible to envisage paths
which, at some point or other, touch the curve € but do not actually
cross it. Provided that such a touching of C is regarded as an even
crossing, such paths do not need any special consideration here.

Another property of the continuous non-self-intersecting closed
curve C is that it may be gradually contracted on the surface of the
sphere so that the smaller of the two regions decreases continuously
in size until ultimately the curve shrinks into a point. The important
facts here are that the process of contraction may be continuously
performed, and that the process may be continued to the limiting stage
where the curve C is finally reduced to a single point. This property
holds for all continuous non-self-intersecting closed curves on the
surface of a sphere.
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Fig. 4.3

Fig. 4.4

Figure 4.4 depicts the surface of a one-fold torus. This has the form
of the surface of a traditional ring-doughnut, or of the inner-tube for a
car or bicycle tyre. Two distinct non-self-intersecting closed curves
C and ¢’ are shown drawn on the surface. Examination of the curve C
shows that it has exactly the properties of the curve C previously
drawn on the surface of the sphere, namely that it separates the surface
on which it is drawn into two distinct regions and that it may be
continuously contracted on the surface into a point. The curve Q’,
on the other hand, has different properties. The points P and ¢ in
Figure 4.5, although at first sight possibly appearing to be separated
from each other by C’, may in fact be joined by paths on the surface
of the torus which do not cross ¢'. For example, the path a joins P
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and @ but does not cross C". Indeed, P and @ may be joined by paths
crossing ¢’ any number of times, even or odd. Thus, a’ crosses " once,
and a” crosses (" four times.

Fig. 4.5

There is, however, another important difference between curves
such as C and curves such as ¢’. No matter how ' is deformed on the
surface of the torus there is no way of continuously contracting it to a
single point. The fact that on the surface of the torus it is possible to
draw curves such as C’, but not so on the surface of the sphere, provides
a means of distinguishing the two surfaces topologically. The sphere
and the torus thus belong to different topological equivalence classes.
Topologically equivalent surfaces are said to be homeomorphic. The
sphere and the torus are therefore not homeomorphic: there is no
one-one bicontinuous transformation by means of which the surface
of the sphere may be mapped to the surface of the torus.

If now a further distinct continuous non-self-intersecting closed
curve is drawn on the surface of the torus, such as the curve ¢ shown
in Figure 4.6, then it is easily seen that such a curve inevitably separates
the surface into two distinet regions, shown as R; and Rg, and it is no
longer possible to join points such as P and Q without crosging either
O’ or C”. Indeed, any path on the surface joining P and @ must make
an odd total number of crossings of ¢’ and C”: that is, either ¢’ or cr,
but not both, must be crossed an odd number of times.

Figure 4.7 depicts the surface of a two-fold torus. This may be
thought of as a doughnut with two holes. Again it is possible to draw a
continuous non-self-intersecting closed curve, such as C, on the surface
so that the surface is immediately divided into two distinct regions.
The important issue, however, is the number of continuous non-self-
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Figure 4.4 depicts the surface of a one-fold torus. This has the form
of the surface of a traditional ring-doughnut, or of the inner-tube for a
car or bicycle tyre. Two distinct non-self-intersecting closed curves
C and €’ are shown drawn on the surface. Examination of the curve C
shows that it has exactly the properties of the curve C previously
drawn on the surface of the sphere, namely that it separates the surface
on which it is drawn into two distinct regions and that it may be
continuously contracted on the surface into a point. The curve C',
on the other hand, has different properties. The points P and @ in
Figure 4.5, although at first sight possibly appearing to be separated
from each other by (', may in fact be joined by paths on the surface
of the torus which do not cross C’. For example, the path a joins P
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and @ but does not cross ". Indeed, P and Q may be joined by paths
crossing C’ any number of times, even or odd. Thus, a’ crosses " once,
and a” crosses C’ four times.

Fig. 4.5

There is, however, another important difference between curves
such as C and curves such as ¢". No matter how ¢’ is deformed on the
surface of the torus there is no way of continuously contracting it to a
single point. The fact that on the surface of the torus it is possible to
draw curves such as ', but not so on the surface of the sphere, provides
a means of distinguishing the two surfaces topologically. The sphere
and the torus thus belong to different topological equivalence classes.
Topologically equivalent surfaces are said to be homeomorphic. The
sphere and the torus are therefore nof homeomorphic: there is no
one—one bicontinuous transformation by means of which the surface
of the sphere may be mapped to the surface of the torus.

If now a further distinct continuous non-self-intersecting closed
curve is drawn on the surface of the torus, such as the curve 0” shown
in Figure 4.6, then it is easily seen that such a curve inevitably separates
the surface into two distinet regions, shown as R; and Rg, and it is no
longer possible to join points such as P and @ without crossing either
C' or C”. Indeed, any path on the surface joining P and Q must make
an odd total number of crossings of ¢’ and C”: that is, either ¢" or 0,
but not both, must be crossed an odd number of times.

Figure 4.7 depicts the surface of a two-fold torus. This may be
thought of as a doughnut with two holes. Again it is possible to draw a
continuous non-self-intersecting closed curve, such as C, on the surface
so that the surface is immediately divided into two distinct regions.
The important issue, however, is the number of continuous non-self-
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Fig. 4.8

Fig. 4.7

intersecting closed curves which may be drawn on the surface without
5o dividing it. The curve ¢ does not, on its own, separate the surface
of the two-fold torus into distinct regions. Thus the points P and @
may be joined by paths not crossing C'. If, in addition to (", a curve
such as C” is drawn around the centre ‘limb’, P and @ may still be
joined by paths crossing neither ¢’ nor C”. Similarly, if C” were to be
drawn around the right-hand limb, instead of around the centre limb,
the surface would not be divided into distinct regions. If howex.re?,
as in Figure 4.8, curves ¢, C”, C" are all drawn on the surfac:e, then 1.t is
inevitably divided into distinct regions and it is not possible to link
the points P and @ by any path not crossing at least one of the three
curves. It is easily seen that any two of C', C7, cr, takgn togef,her,
fail to separate the surface of the two-fold torus into distinct regions,
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but, any two of these having been already drawn, any further con-
tinuous non-self-intersecting closed curve drawn on the surface
necessarily does so. For the particular points P and Q, shown in Figures
4.7 and 4.8, to be separated so as to belong to different distinct regions,
it is, of course, necessary that the third curve be appropriately positioned.
The principle, however, is not whether certain prescribed points are
specifically separated, but whether or not distinct regions may be
identified on the surface. In Figure 4.8, the three curves c,ono”
enable the distinct regions By and Rs to be identified.

Fig. 4.8

In order to prevent the separating of distinct regions as long as
possible, it has been necessary in each case considered to draw contin-
uous non-self-intersecting closed curves which cannot be gradually
contracted into points on the surface. In each case, a curve such as C
in Figures 4.1, 4.4, and 4.7 immediately separates out distinct regions,
In the case of the sphere, it is impossible to draw a curve on the surface
which cannot be continuously contracted into a point. The one-fold
torus, on the other hand, by virtue of its hole, and also the two-, three-,
and n-fold torus for the same reason, all permit the drawing of curves
which cannot be contracted.

The greatest number of distinct continuous non-self-intersecting
closed curves which may be drawn on a surface without separating it
into distinct regions defines the genus of the surface. Thus the genus of
the surface of a sphere is 0. The genus of the surface of a one-fold torus
is 1, of a two-fold torus 2, and, generally, of an n-fold torus n. The genus
of & surface is a topological property of that surface; that is, it is
invariant under all one-one bicontinuous transformations. All surfaces
belonging to one and the same topological equivalence class have the
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intersecting closed curves which may be drawn on the surface without
so dividing it. The curve ¢’ does not, on its own, separate the surface
of the two-fold torus into distinct regions. Thus the points P and @
may be joined by paths not crossing C". If, in addition to (', a curve
such as C” is drawn around the centre limb’, P and @ may still be
joined by paths crossing neither ¢’ nor C”. Similarly, if C" were to be
drawn around the right-hand limb, instead of around the centre limb,
the surface would not be divided into distinct regions. If howe?'ef',
as in Figure 4.8, curves C’, C”, C" are all drawn on the surfatfe, then 1.t is
inevitably divided into distinct regions and it is not possible to link
the points P and @ by any path not crossing at least one of the three
curves. It is easily seen that any two of C’, C”, C”, taken toge?her,
fail to separate the surface of the two-fold torus into distinct regions,
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but, any two of these having been already drawn, any further con-
tinuous non-self-intersecting closed curve drawn on the surface
necessarily does so. For the particular points P and @, shown in Figures
4.7 and 4.8, to be separated so as to belong to different distinct regions,
it is, of course, necessary that the third curve be appropriately positioned.
The principle, however, is not whether certain prescribed points are
specifically separated, but whether or not distinct regions may be
identified on the surface. In Figure 4.8, the three curves (O LN 9
enable the distinct regions R; and Rj to be identified.
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In order to prevent the separating of distinct regions as long as
possible, it has been necessary in each case considered to draw contin-
uous non-self-intersecting closed curves which cannot be gradually
contracted into points on the surface. In each case, a curve such as C
in Figures 4.1, 4.4, and 4.7 immediately separates out distinct regions.
In the case of the sphere, it is impossible to draw a curve on the surface
which cannot be continuously contracted into a point. The one-fold
torus, on the other hand, by virtue of its hole, and also the two-, three-,
and n-fold torus for the same reason, all permit the drawing of curves
which cannot be contracted.

The greatest number of distinet continuous non-self-intersecting
closed curves which may be drawn on a surface without separating it
into distinct regions defines the genus of the surface. Thus the genus of
the surface of a sphere is 0. The genus of the surface of a one-fold torus
is 1, of a two-fold torus 2, and, generally, of an n-fold torus n. The genus
of a surface is a topological property of that surface; that is, it is
invariant under all one—one bicontinuous transformations. All surfaces
belonging to one and the same topological equivalence class have the
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same genus. In fact, for the kinds of surface so far considered (i.e. for
closed two-sided surfaces), the converse is also true. Two such surfaces,
having the same genus, are topologically equivalent. Thus the genus
of such a surface characterizes it completely from a topological stand-
point. .
Suppose that the torus of Figure 4.4 is now regarded as a solid
figure (e.g. as a doughnut). The curve ¢’ may now be taken to define a
complete cut made with a knife. The resulting cut doughnut may then
be imagined to be straightened out into a solid cylinder, which may

(a) (b)

(© (d

Fig. 4.9

then be continuously deformed into a solid sphere (or ball). The stages
of this deformation are depicted in Figure 4.9 (a) to (f) which is not
intended to suggest in any way that a torus may be continuously
deformed into a sphere. This is not possible, since the two belong to
different topological equivalence classes. Once the solid torus has been
cut through, as at C’ in Figure 4.9 (a), it then ceases to be a solid torus
or to be topologically equivalent to it, and, as the cut is not subsequent!y
‘repaired’, the resulting ball cannot be equivalent to the original solid
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torus. (The cut through at ¢’ also produces in the solid torus two new
areas of bounding surface not previously there.)

It is important to appreciate that separations into regions made by
drawing curves on a surface, such as that of a sphere or n-fold torus,
must not in any way destroy the closed nature of the surface. Intuit-
ively, a surface is closed if it has no boundary curves. By this definition,
the surfaces of a sphere and any n-fold torus are closed, whilst the
surfaces of a hollow cylinder and of a disc are open. In this context,
boundary curves are not to be taken to include edges of a solid body
(for example, the edges of a cube or of a pyramid), nor to include
boundaries of regions separated out on a surface by the drawing of
continuous non-self-intersecting closed curves. Boundary curves of two-
sided surfaces are curves which separate one side of a surface from the
other, such as, for example, the edges of a piece of infinitely thin paper.

When the original torus of Figure 4.9 (a) was thought of as a dough-
nut rather than as an inner tube, the cut through at ¢’ eventually gave
rise to a solid cylinder and not to a hollow cylinder, which would be
open-ended. The solid cylinder, like the solid sphere into which it is
deformed, has a closed surface. The circular edges of the ends of the
cylinder are not to be regarded as boundary curves. On the other hand,
the drawing of a curve such as C in Figure 4.1, Figure 4.4, or Figure 4.7
can be taken as defining a region which may then be removed from a
surface. For this purpose, the torus should be thought of as an inner
tube since it is only its surface which is being considered. If, for
example, the closed curve C of Figure 4.1 defines a small region which
is then removed from the sphere, the resulting surface is open and not
closed, and € now becomes a boundary curve locally separating the
outside of the new surface from the inside. The new surface obtained
will no longer, of course, be topologically equivalent to that of a sphere.

So far, all the surfaces considered have been two-sided: intuitively
they have the property that a boundary curve must be crossed, where
one exists, in order to pass from a point on one side of a given surface
to a point on the other side. (If the surface is closed, then it would have
to be penetrated in some way.) Figure 4.10, for example, depicts a

boundary cup
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Fig. 4.10
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disc with a point P lying on the upper side and the point ¢ on the under
side. To pass from P to Q it is necessary to cross the boundary curve.
Any disc has one and only one boundary curve. A completely open
cylinder (open at both ends) has two boundary curves. To pass from a
point on the outer side of such a cylinder to a point on the inner side,
it is necessary to cross one of the boundary curves an odd number of
times. A cylinder which is half-open (open at one end only) has only one
boundary curve, and is continuously deformable into, and therefore
topologically equivalent to, a disc. Similarly, the removal of a disc from
the surface of a sphere leaves an open surface with one boundary curve
which is then continuously deformable into, and therefore topologically
equivalent to, a disc, and hence also to a half-open cylinder. The removal
of two separate discs from the surface of a sphere leaves an open surface
with two boundary curves topologically equivalent to a completely
open cylinder.

Not all surfaces, however, are two-sided. Figure 4.11 depicts the
stages in the formation of a surface by taking a strip of paper and
joining up its ends after a 180° twist. The resulting surface is known as
& Moebius band. Because of the half-twist one side of the original strip

(d)
Fig. 4.11
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of paper has been joined to the other side, and the resulting surface
is therefore one-sided. It is now possible to travel from any point
originally on one side of the strip of paper to any point originally on the
other side without crossing a boundary curve. In fact, a Moebius band
has only one boundary curve, since another effect of the half-twist is
that the original opposite long edges of the paper strip have been joined
so as to form a continuous curve topologically equivalent to a circle.

There are therefore at least two topologically different types of
open surface having one boundary curve only. In all cases, the single
boundary curve locally separates points on one side of a surface from
points on the other; but, for example, in the case of the Moebius band,
looked at overall, there is only one side, so the separation is purely local
and does not hold in the context of the band as a whole.

Another example of a one-sided surface is provided by the surface
of a Klein bottle. Such a ‘bottle’ is not physically constructable in three-
dimensional space. Figure 4.12 conceptually depicts stages in the
formation of a Klein bottle. Starting from a completely open cylinder,
one end is stretched out, bent over, ‘passed through’ the curved surface
(without breaking or intersecting it), and finally joined up with the
other end of the original cylinder from the inside. The operation of
‘passing through’ the curved surface without breaking or intersecting it
cannot be performed in three-dimensional space. It can, however, be
‘performed’ in an abstract mathematical space of four dimensions. By
analogy, the Moebius band, although a two-dimensional surface,
cannot be physically constructed in two dimensions only, because of
the half-twist. It is not too difficult to see that any two points on the
surface of a Klein bottle may be joined by a continuous path not
crossing any boundary curve, notwithstanding the fact that from a
purely local point of view such points appear to be on opposite sides of
the surface. Indeed, the surface of a Klein bottle has no boundary
curve whatever. At the final stage of its ‘construction’, as depicted in
the change from (¢) to (d) of Figure 4.12, the two open ends of the
original cylinder are joined together in such a way that the original
outside of the surface is joined to the original inside so that ‘outside’
and ‘inside’ may no longer be distinguished. The surface of a Klein
bottle is thus both closed and one-sided. (Those familiar with the works
of Lewis Carroll will recognise in his purse of Fortunatus, as described in
‘Sylvie and Bruno’, exactly the properties just discussed.)

Closely allied to the property of one-sidedness is the property of
non-orientability. This is a difficult concept which it is not possible to
define fully here. Some intuitive appreciation of what is involved may
be obtained, however, from the explanation which follows. If P is any
point on a surface and if C is any small continuous closed curve, traced
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Fig. 4.12

around P on the surface and having a definite orientation, then the
surface is said to be orientable if the orientation of C is preserved for
every continuous closed path traced around P. Otherwise, the surface
is said to be non-orientable. For example, suppose that P is a given point
on a Moebius band. From a purely local point of view there is a corre-
sponding point P’ on the other side of the surface. But, since a Moebius
band is a one-sided surface, it is possible to draw continuous paths
from P to P’ without crossing the boundary curve. Such a path is
depicted in Figure 4.13. If the small orientated closed curve shown
drawn around P is now slid along the path PP’, when it eventually
arrives at P’ its orientation will be reversed.
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Another way of seeing that a Moebius band is non-orientable is to
consider moving a normal to the surface at P along the continuous
path from P to P’, so that the foot of the normal is in contact with the
path throughout. The normal at P’ has the opposite direction to that at
P, and yet it has been continuously defined on the surface as it moves
along PP'. This is a situation which is not possible with two-sided
surfaces.

Fig. 4.13

Like the Moebius band, the surface of a Klein bottle is non-
orientable. For example, an insect walking about on a Klein bottle may
find itself in its original location in space but upside-down relative to
its starting orientation (though, of course, this would be a ‘mathe-
matical’ species of insect capable of taking a four-dimensional walk!).
It would appear at first sight, therefore, that the terms ‘orientable’ and
‘two-sided’ are synonymous, and the terms ‘non-orientable’ and
‘one-sided’ also. For the types of surface considered here there is, in
fact, no distinguishable difference between the properties, but at & more
advanced stage of study it is sometimes necessary to make a distinction.

A further issue which arises from the discussion of one-sided and
two-sided surfaces is that, whereas there is some meaning in distinguish-
ing intuitively between points such as P and P’ of Figure 4.13 in the case
of two-sided surfaces (because of orientability), there is no reason to
make such a distinction in the case of one-sided surfaces. In fact,
points such as P and P’ are identically located spatially whether the
surface be one- or two-sided, so, strictly, P and P’ are necessarily
one and the same point. The real distinction is not between a point and
its opposite point on the other side of a surface, but between a surface
which is one-sided and one that is two-sided.
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Some of the concepts introduced in this chapter involve taking an
unfamiliar view of the generally accepted notion of a surface. The
distinction between an open surface and a closed surface is easy to
understand and, in the context of the surfaces so far discussed, does not
involve any departure from commonplace ideas, even for surfaces such
as that of a Klein bottle. Properties such as one-sidedness, however,
involve less familiar concepts, but the necessary extension from the
commonplace should not prove particularly difficult, and the subse-
quent discussion on the identification of surfaces with rectangles and
other plane figures (to be found in Chapters 11 and 12) should greatly
assist in the understanding of the less familiar properties of surfaces.

Distinction has also been made between a solid, such as a solid torus
or ball, and the surface of such a solid. Care has been taken to specify,
for example in the case of a torus or sphere, exactly when it is the surface
which is being specifically considered. But by convention, topologists
normally take words, such as ‘sphere’, ‘torus’, ete. used by themselves,
to refer to a surface and not to a solid, and this convention is adopted
in the remainder of this book. Whenever a figure is to be understood as
a solid, this will be specifically stated.

The really important thing, however, is that there are a great many
fundamental and interesting properties left for study even when all
one—one bicontinuous transformations are allowed. Figures, including
surfaces, may still be classified into their respective equivalence classes
by a consideration of their topological properties. Such properties are
invariant under the rigid transformations of ordinary geometry, but
it is only when the restrictions on permitted transformations are suitably
relaxed that their existence is sufficiently highlighted and the study of
topology comes into its own.

5

Connectivity

Further topological properties of surfaces—connected and discon-
nected surfaces—connectivity—contraction of simple closed curves
to a point—homotopy classes—relation between homotopy classes
and connectivity—cuts reducing surfaces to a disc—rank of open
and closed surfaces—rank and connectivity.

A one-sided surface is said to be connected if it is possible to travel
continnously upon it from any point of the surface to each and every
other point of the surface. A two-sided surface is connected if its sides
taken separately, are both connected. The sphere and the torus are
examples of two-sided connected surfaces. If a disc is separated from a
sphere, as depicted in Figure 5.1, then the original total surface will have
become disconnected. It will, in fact, have been separated into two

Fig. 5.1

distinet surfaces, each connected in itself and each homeomorphic to a
disc. In what follows, the word ‘surface’ is to be taken as meaning a
single connected surface.

It was seen in Chapter 4 that all continuous non-self-intersecting
closed curves drawn on a sphere may be contracted into a point. It was

33
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also seen that this is & property which does not hold for certain other
surfaces such as, for example, a torus. This property may be used
intuitively as the basis of the definition of the connectivity of a surface,

A surface is said to be simply connected if every continuous non-
self-intersecting closed curve upon it may be continuously contracted
on the surface into a point. Clearly, any surface homeomorphic to a
disc or to a sphere is simply connected. Figure 5.2 depicts a continuous
non-self-intersecting closed curve € drawn on an annulus (the portion
of a plane bounded by two concentric circles and topologically equiva-
lent to a cylinder) which cannot be continuously contracted into a point
without leaving the surface on which it is drawn, An annulus is thus not
simply connected.

Fig. 5.2

Figure 5.3 depicts an annulus in which a single cut has been made.
For the purposes of this discussion, a cut is defined as a continuous
incision made from a point on a boundary to another point on a boundary
which does not disconnect the surface. Clearly, for an annulus, such a cut
cannot start and end on one and the same boundary otherwise the
surface would be disconnected. The annulus with one cut is topologic-
ally equivalent to a disc and is thus simply connected. A surface requir-
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ing only one ocut to make it homeomorphic to a disc is said to be
doubly connected.

Figure 5.4 depicts an annulus with three holes. It is not possible
to reduce this to a surface homeomorphic to a disc unless three cuts are
made, Such a surface is said to be quadruply connected. There are several

Fig. 5.4

alternative ways of making the three cuts which will render this
annulus homeomorphic to a disc. Figure 5.5 depicts the cuts made in
each instance from the boundary of one of the holes to the exterior
boundary of the annulus. Figure 5.6, on the other hand, depicts the
first two cuts made so as to link the holes together. At this point, the
surface is now equivalent to the annulus with a single hole, and a final
cut from the interior boundary to the exterior boundary will make it
simply connected.

Fig. 5.5

Fig. 5.8
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This concept of the connectivity of a surface may now be general-
ized. A surface requiring n—1 cuts in order to render it homeomorphic
to a disc is said to be n-tuply connected. The cuts are not, of course,
allowed to intersect each other. This follows from the definition of ‘cut’
(given earlier), since, once a cut has been made, it forms parts of a
boundary. Crossing an already made cut with another would involve
the completion of one new cut and the commencement of another. An
n-tuply connected surface for which # is greater than 1 is said to be
multiply connected. A further example of such a surface is the curved
surface of a cylinder (for which n = 2).

In the case of closed surfaces, such as a sphere and a torus, it is not
possible to make an initial cut from one boundary to another since these
surfaces have no boundaries. However, if it is first imagined intuitively
that a ‘pinhole’ is made in the surface, the process of making cuts may
then proceed, so long, of course, as the surface is not thereby dis-
connected. The two cuts required to make a one-fold torus homeo-
morphic to a disc are depicted in Figure 5.7. The original surface is
triply connected. The first cut made renders it homeomorphic to the
curved surface of a cylinder, which is doubly connected. The second cut
finally makes it simply connected.

Fig. 6.7

In the case of the sphere, it is not possible to make any cut, follow-
ing the making of a ‘pinhole’, which does not disconnect the surface.
The sphere thus requires zero cuts, according to the principles discussed
above, in order to make it homeomorphic to a disc. However, it is clear
from previous discussions that the sphere is not topologically equivalent
to a disc, since a disc is open whilst the sphere is closed. The sphere with
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the ‘pinhole’ is, however, to be regarded as the starting point, and a
sphere with any single hole in it and a disc are homeomorphie.

Because it is possible to contract any continuous non-self-
intersecting closed curve to a point on a simply connected surface, it
follows that every such curve may be continuously deformed on the
surface into any other such curve. This property is expressed by stating
that all continuous non-self-intersecting closed curves on a simply
connected surface are homotopic to each other. Figure 5.8 depicts two
closed curves C and C’ on a disc. These curves are homotopic to each
other since either can first be contracted into some common point, such

Fig. 5.8

as P, and then re-expanded into the other. Figure 5.9, however, depicts
two continuous non-self-intersecting closed curves on a disc which
enclose no common point. In this case, it is possible to deform one of the
curves so that some common point is eventually enclosed. The condi-
tions of Figure 5.8 then apply.

Figure 5.10 depicts four continuous non-self-intersecting closed
curves C, C1', Cg, C3’ on the surface of a torus. In this case Cy and Cy’
are a homotopic pair, and Cz and (3’ another homotopic pair. These
represent two distincet homotopy classes, however. €y and C;’ are not
homotopic to Cz and Cs’. One distinction between these two homotopy
classes is immediately evident. C; and €y’ may both be continuously
contracted to a point, Cz and C3’ may not. This does not, however,
prevent Cz and Cs’ being deformed into each other. In the case of these
two particular curves, such a deformation merely involves ‘sliding’ one
of them around the surface. This may be regarded as a simple trans-
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Fig. 5.9

Fig. 5.10

lation. Curves such as C; and Cy’, which may be continuously contracted
into a point on a surface, are said to belong to the null homotopy class.

There is clearly a direct relation between homotopy classes on a
surface and the connectivity of that surface. A surface is simply con-
nected if every continuous closed curve upon it belongs to the null
homotopy class.

The rank of an open surface is defined as the least number of cuts
required to make the surface homeomorphic to a disc. The rank of a
closed surface is defined as the rank of the open surface obtained from
the closed surface by the removal of a single disc. The rank of an
n-tuply connected surface is therefore n—1. Thus, a disc and a sphere
have rank zero. A simple annulus (an annulus with one hole), the curved
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surface of a cylinder, and a Moebius band have rank 1. A one-fold torus
and an annulus with two holes have rank 2.

An alternative definition of rank is possible. The rank of a surface
may be defined as the greatest number of non-intersecting cuts which
can be made in it without disconnection. This alternative definition
applies equally to open and closed surfaces.

It is not difficult to see that the two definitions of rank are equiva-
lent. A two-fold torus from which a disc has been removed provides an
example demonstrating this equivalence. Such a surface is depicted in
Figure 5.11. A first cut having been made, either as shown or in any
other way not disconnecting the surface, two further cuts must be made
before the surface becomes homeomorphic to a disc. Alternatively,
although it is possible to disconnect the surface by a single cut, it is
possible to make a maximum of three cuts without disconnecting the
surface. If more than three cuts are made the surface is necessarily
disconnected.. From either stand-point, therefore, the rank of the
surface is 3.

Fig. 5.11

Because of the direct relationship between the rank of a surface
and its connectivity, reference to rank is often omitted in discussion of
the properties of surfaces. It will, however, be encountered again in this
book during the discussion of the standard model of a surface in
Chapter 12.
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Euler Characteristic

Maps—interrelation between vertices, arcs and regions—Euler
characteristic—polyhedra-—five Platonic polyhedra—Euler’s formula
—Euler characteristic as a topological property—relation with genus
—flow on a surface—singular points: sinks, sources, vortices, etc.—
index of a singular point—singular points and Euler characteristic.

Figure 6.1 depicts five vertices linked together by eight non-intersecting
arcs in such a way as to separate the enclosed area into five simply
connected regions. Such a separation of a surface is termed a map.

Fig. 6.1

The map may be regarded as drawn on the surface of a sphere, as in
Figure 6.2. In both cases, the given map separates the surface on which
it is drawn into the five regions 4, B, C, D, E. If the number of vertices
of such a map is ¥V, the number of ares (or edges) is £, and the number of
regions (or faces) is F, then, for the map of Figures 6.1 and 6.2,
V=5E=8F=5.

This particular map will now be designated M, and the corresponding
numbers of vertices, arcs, and regions, V1, By, F1 respectively.

Figure 6.3 depicts a second map, M3, which has three vertices
and three arcs, and which separates the sphere on which it is drawn into
two regions. In this case,

Voa=38,E; =3, F2 = 2.

Euler Characteristic 41

Fig. 6.2

Fig. 6.3

The maps My and Mz may be superimposed as they are drawn on
equivalent surfaces. Such a superimposition gives the composite map
M3 depicted in Figure 6.4. In superimposing two such maps, care must
be taken to ensure that vertices of one map have not been placed
directly upon vertices of the other, and that arcs of one have not been
placed directly upon arcs of the other. For any such composite map
constructed from two basic maps, the number of vertices must be equal
to the sum of the numbers of vertices of the basic maps together with
the number of additional vertices defined by the intersections of the
arcs of the two basic maps consequent upon their superimposition. Thus,
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Fig. 6.4

the number of vertices of a composite map M3, formed from two basic
maps M; and M3 in the way described, is given by

Vs = V1+ V2+vr
where v is the number of intersections of arcs of My with arcs of Ms.

In the particular example discussed, v = 4, and therefore, V3 = 5§43
+4 =12,

Fig. 6.5

Figure 6.5 depicts the original map M; modified by the inclusion
of the vertices defined by the intersections of the edges of M; and M2
when these maps are superimposed on each other. This modified map

Euler Characteristic 43

may be denoted by M’. Clearly, each additional vertex divides some arc
of the basic map M, into two separate arcs. Thus, if

V' = V1+v,
then
E = Ei+v.

On the other hand, the number of regions remains unchanged ; that is
F' = F,.

For the map M’ of Figure 6.5, V' =5+4 =9, B’ = 8+4 = 12,
F' = 5. In particular,

V' —E'+F = (Vi+v)—(B1+v)+F, )
= Vi—E1+F;.

The composite map M3 is now obtainable from the modified
map M’ by adding successive chains of arcs, each chain linking two
vertices and dividing a region into two parts. If a chain includes »
arcs, then it introduces » — 1 new vertices. At the same time, it increases
the number of regions by one. For example, the chain depicted in
Figure 6.6 consists of two arcs and introduces one new vertex to the map
of Figure 6.5. At the same time it separates the region B into two parts,

Fig. 6.6

B' and B". When all the chains required for the completion of the
composite map M3 have been included, the number of vertices V3 will
be given by V’, the number of vertices of the modified map, together
with the total number of vertices added as a result of the inclusion of
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the various chains. Similarly, the number of arcs E3 will be given by £’
together with the total number of ares in all the added chains, and the
number of regions F3 will be given by F' together with the number of
added chains. Thus, in particular,

Vs—E3+Fs =V —E +F +) [(n—1)—n+1],

where the right-hand term is summed over all the chains added to the
modified map. Hence,

Va—Es+Fs

fl

V—E 4+ F
Vi—E1+F

1

from (1) above. For the particular maps depicted in Figures 6.2 to
8.5,

Vi—Ei+F, = 5— 845 =2,
Vo—Es+Fs = 3— 342 =2,
Va—E3+Fg = 12—~194-9 = 2,
V' —-E+F 9-12+5 = 2.

Since any map on a given surface can be built up by superimposing
simple basic maps on each other, it follows that the expression

V—-E+F

is invariant for any given surface, and hence for all surfaces homeo-
morphic to the given surface. The number obtained from the expression
V—E+F is denoted by x, and is termed the Euler characteristic of the
surface. It is a topological property of the surface and is independent
of any map to which actual values of V, E and F apply.

Clearly, for a sphere, y = 2. Thus, if any two of the quantities V
E, F for a map on a sphere are determined, the third quantity is auto-
matically determined from the expression V—E+F = 2. It follows
that, for example, it is not possible to draw a map on a sphere having
six vertices linked by ten arcs and defining four regions. That x for a
sphere differs from that for a torus may be seen from Figure 6.7. For
the map shown,

V=2E=4F =2;
hence, y = 2—-4+2 = 0.
Any polyhedron, which is both closed and convex, is termed a

simple polyhedron. Such a polyhedron may be continuously deformed
into a sphere, and hence it follows that

V—E+F =2,
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where V is the total number of its vertices, & is the total number of its
edges, and F is the total number of its faces. This must hold since the
original vertices, edges and faces simply deform into a map on the
surface of the sphere. If, in addition to being closed and convex, a
polyhedron has each of its faces congruent to the same regular polygon
then it is termed regular.

Fig. 6.7

Let a regular polyhedron have each face an n-sided regular
polygon, and let f faces meet at each vertex. Since each edge is an edge
of two faces and links two vertices, it follows that

JV = 2E = nF.
However, V—E+F = 2; hence, substituting for ¥ and F gives
2?‘?_ B+2E
Division by 2E and rearrangement gives
1,1 11 "
f n E 2

Now, the minimum number of faces which meet at any vertex must be

three. Similarly, the minimum number of sides of a regular polygon is
three. Thus

fZz3andn = 3.

However, if f and » were both greater than three, the right-hand side
of (2) would not exceed one half. Hence, either

f=38o0rn=23.
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When F = 3 holds, n cannot be greater than five, since again the right-
side of (2) must exceed one half. Similarly, when n = 3 holds, the same
applies to the value of f. There can therefore be at most five regular
polyhedra, namely those for which

f=833=2=n=50rn=33=f55.
Such five regular polyhedra were known in Plato’s day, and find a
place in the Platonic writings. For this reason, they are frequently

termed Platonic polyhedra. The five regular polyhedra are listed in the
table below, and depicted in Figure 6.8.

f n V E F name

6 4 tetrahedron

6 12 8 octahedron

12 6 cube

12 30 20 icosahedron
20 30 12 dodecahedron

W v W o W
St W B W W
w

&
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The expression
V—_E+F =2,

when applied to polyhedra is known as Buler’s formula. A direct proof
of this formula for polyhedra may be obtained using the method of
triangulation. Starting with a polyhedron having V vertices, E edges,
and F faces, it is first necessary to remove one face. The surface so
obtained is then deformed until the & edges and the remaining F—1
faces lie in a plane and thus may be regarded topologically as a disc. It
is important to note that the removal of a face does not involve any
reduction in the number of vertices, nor in the number of edges. The
process of triangulation is now carried out. Each face is divided by
the drawing of diagonals in such a way that at least one triangle is
formed each time a diagonal is drawn. The process is continued until
only triangular faces remain. Clearly, each time a diagonal is drawn,
E and F will both increase by one. Hence, if the total triangulation
process requires the drawing of d diagonals, the expression

V—E+F.
applicable to the original polyhedron, will now become
V—(E+d)+(F+d-1). (3)

The triangles are now removed one by one. In each instance,
the triangle removed must be one which has at least one edge on the
original or subsequent boundary. If a triangle so removed has one edge
on the boundary, as depicted in Figure 6.9, then after its removal V
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will be unchanged for the remaining figure, but £ and F will each have
decreased by one. There will thus be no overall change in the value of
expression (3). If a removed triangle has two edges on the boundary, as
depicted in Figure 6.10, then V and F will each decrease by one, whilst
E will decrease by two. Again there will be no overall change in the

Fig. 6.10

value of expression (3). Ultimately, one triangle only will remain, and
the value of expression (3) will still be unchanged. This one triangle
will have three vertices, three edges and one face, giving

V—E4+F =1.

Since the value of ¥ —E + F has not been altered by the triangulation
process, it follows that for the original polyhedron with one face
removed V—E+ F = 1 also. Reconstitution of the original polyhedron
by the restoration of the missing face increases the value of F, and
hence also of V—~E+F by one. The validity of Euler’s formula for
polyhedra is thus established.

©An 'eié)lhﬁl'e of the. triangulation process is depicted in Figures
+6.11'to 6.14. A cube has

' V=8E=12F =6
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Qne of the faces, EFGH say, must now be removed and the
resulting surface deformed so as to lie in a plane. This is depicted in
Figure 6.12. At this stage

V=8,E=l2,F=5,

Triangulation may now be carried out as depicted in Figure 6.13,
after which
V=8E=117F = 10.

Tx:ia,ngles are now removed from the boundary inwards until only one
trm.ngle remains. An intermediate stage is depicted in Figure 6.14.
Ultimately only one triangle, ABC say, remains for which

V=3,E=3,F=l_

Fig. 6.12
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Fig. 6.13
E F
A B
G
Fig. 6.14

The expression V—E+F is, in fact, invariant within any one topo-
logical equivalence class, though this is quite difficult to prove. All
polyhedra are topologically equivalent, and the distinction between, for
example, the different Platonic polyhedra rightly lies outside the study
of topology.

Figure 6.15 depicts a map on the surface of a torus. Because of the
requirement that all regions of a map should be simply connected, a
map on a torus must include arcs which will ensure that this holds.
(The map of Figure 6.7 did include appropriate arcs). Arcs C1 and C:
ensure this. For the map of Figure 6.15,

V=4,E=1F=3.

Euler Characteristic 51

Fig. 6.15

The Euler characteristic is therefore given by 4—7+3 = 0, as in the
case of the map of Figure 6.7.

Figure 6.16 depicts a map drawn on the surface of a two-fold torus.
Again, arcs have been included so as to ensure that all regions are

Fig. 6.16

simply connected. For this map,
V=5E=9F=2,
and the Euler characteristic is therefore 5—9+2 = —2,

Now a sphere has genus g = 0, a torus has genus ¢ = 1, and a
two-fold torus has genus g = 2. The number of special arcs which have
to be included in any map on a surface which is not simply connected
is directly related to the genus of the surface. Hence, the Euler character-
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istic is also directly related to the genus of a surface. The relationship
is given by the expression

x=V—E+F =2-2,

which: confirms the results already obtained for the particular maps
which have been considered. Further discussion of this is deferred until
Chapter 12.

The Euler characteristic of a smooth closed surface may be obtained
from considerations of an entirely different character which rightly
belong to a part of the study of topology known as differential topology.
Suppose that with each point on a sphere there is associated a direction.
One way of thinking of this from a purely intuitive standpoint is to
imagine that the exterior of the sphere is entirely covered with hair.
When the hair is brushed down, so that each hair can be thought of as

underside showing “hole”

Fig. 6.17

underside showing “crown”

Fig. 6.18
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lying on the surface, the direction in which any single hair is lying
defines the direction associated with the point at its base. Continuity of
direction may be obtained locally by appropriate brushing so that there
is no sudden reversal of direction.

It is not possible to brush a ‘hairy’ sphere in such a way that there
is no discontinuity of direction anywhere on its surface. Figure 6.17
depicts a sphere brushed upwards. Continuity of direction on the
surface is achieved everywhere except at the top and the bottom of
the surface, where there must be a ‘tuft’ and a ‘hole’ respectively.
Figure 6.18 depicts the sphere brushed horizontally. Again, continuity
of direction is achieved everywhere on the surface except at the top
and the bottom where there will be ‘crowns’. With a ‘hairy’ torus,
however, it is possible to brush the hairs in such a way that continuity
of direction is achieved everywhere on the surface. Figures 6.19 and 6.20

Fig. 6.19

Fig. 6.20




54 From Geometry to Topology

depict two ways of doing this. The fact that it is possible to brush a
‘hairy’ torus so as to achieve continuity of direction on the whole of the
surface whilst it is not possible in the case of the sphere is further
evidence of the topological distinction between the sphere and the torus.

An alternative way of considering continuity of direction on a
smooth closed surface is to replace the concept of brushing hair on the
surface by that of fluid fiow. The ‘tuft’ now becomes & sink, the ‘hole’
becomes a source, and the ‘crown’ becomes a vortex. These are depicted
in Figure 6.21. Sinks, sources and vortices are examples of singular

I 3
A\ 4

Q

sink source vortex
Fig. 6.21

points on a surface. Other kinds of singular points are also possible,
such as crosspoints, dipoles, and foci, which are depicted in Figure
6.22. Each singular point has an integer, called its i¢ndex, associated
with it, and this is obtained for any particular singular point by travel-
ling around the point in a circular path once in a counter-clockwise
direction and counting the number of counter-clockwise revolutions
made by a little arrow with its base on the path and its head always
pointing in the direction of the flow on the surface. For a sink, a source,

crosspoint dipole focus
Fig. 6.22
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Fig. 6.23

a vortex, and a focus the index is 1. For a dipole, the index is 2, and for
the crosspoint depicted in Figure 8.22 the index is —1. Figure 6.23
shows how the index-value 2 is obtained in the case of a dipole. The
negative value for the crosspoint arises because one revolution is made
by a little arrow clockwise as a path circles the point counter-clockwise.
This is depicted in Figure 6.24. Singular points with other integer
values may be obtained by combining together two or more of the
points already described.

The sum of the indices of the singular points of any surface is the
same as the Euler characteristic of the surface. Thus a sphere has Euler
characteristic y = 2, and for the flow as depicted in Figure 6.17 there is
one sink and one source, each having index 1. The flow depicted in
Figure 6.18 has two vortices, each having index 1, again summing to
give the Euler characteristic y = 2. The flows on the torus depicted in
Figures 6.19 and 6.20 each confirm the Euler characteristic y = 0. The
fact that the Euler characteristic is a topological property of a surface
means that the introduction of a singular point into the flow on a given
surface must lead to the appearance of a compensating singular point
which will maintain the overall sum of the indices constant. Figure 6.25
depicts what happens if a vortex is introduced into the original flow on



56 From Geometry to Topology

4

Fig. 6.24

Fig. 6.25

a torus depicted in Figure 6.20. The vortex has index 1, hence a singular
_point with index — 1 has to appear also, in this case a crosspoint similar
to that of Figure 6.24.

It is not difficult to show that the sum of the indices of singular
points on & surface must be equal to its Euler characteristic. Earlier
in this chapter it has been shown that the expression V—-E+F is
invariant for any map on a given surface, and that this gives the Euler
characteristic of the surface. A flow can be constructed on any surface
on which a map has been drawn, according to the following three
conditions:

1. A source is put at each vertex.

2. A crosspoint is put at the centre of each arc.

3. A sink is put at the centre of each region.

Such a flow constructed on a sphere is depicted in Figure 6.26. There
will thus be V sources of index 1, E crosspoints of index —1, and F sinks
of index 1, giving a total index of

V—-E+F,
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which is the same as the Euler characteristic. Since the introduction
of additional singular points into the flow is always compensated so
that the index total remains constant, the result is true generally.

Fig. 6.26
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that the index total remains constant, the result is true generally.

Fig. 6.26
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Networks

Networks—odd and even vertices—planar and non-planar networks
—paths through networks—connected and disconnected networks—
trees and co-trees—specifying a network : cutsets and tiesets—travers-
ing a network-—the Koenigsberg Bridge problem and extensions.

Closely allied to the study of maps on surfaces is the corresponding
study of networks. A network consists of a finite number of vertices
linked by a number of arcs. The arcs must be non-intersecting, though
two or more may meet at a vertex. No single arc may link directly more
than two vertices, and no vertex may be left isolated. Such a figure is
also frequently termed a linear graph, and the vertices are then usually
termed points or nodes, and the arcs are usually termed line-segments
or branches.

Figures 7.1 to 7.3 depict simple networks. If the number of vertices
in a given network is denoted by » and the number of arcs by a, then,
for the network of Figure 7.1, » = 4, @ = 6. Figures 7.2 and 7.3 depict
five vertices linked by four and seven arcs respectively.

Fig. 7.1

Fig. 7.2
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Fig. 7.3

Each vertex is said to have an order, this being the number of
arc-ends which meet at the vertex. Figure 7.4 depicts a network in which
the orders of the various vertices are shown. A vertex whose order is
an odd number is termed an odd vertex. Similarly, a vertex whose order
is an even number is termed an even vertex. It is clear that the total

Fig. 7.4

number of arc-ends in any network must be even, since this number
must be twice the number of arcs in the network. Further, the number
of arc-ends must be equal to the sum of the orders of all the vertices.
Since this sum must be even, it follows that the total number of odd
vertices must also be even.

If a given network can be mapped on to a simply connected surface
(i.e. the plane) in such a way that the non-intersecting property of each
and every arc is preserved, then the network is termed planar. Figure
7.5. depicts a planar network. This may be mapped on to a sphere as
shown in Figure 7.6, or on to a disc as shown in Figure 7.7.

Two non-planar networks are depicted in Figures 7.8 and 7.9.
Figure 7.8 depicts the familiar problem, weil-known to schoolboys, of
connecting the maing services of water, gas and electricity to three
neighbouring houses. Figure 7.9 depicts what is termed the complete
network on five vertices, that is, the network obtained when five vertices
are joined by the minimum number of arcs in such a way that each
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Fig. 7.5

Fig. 7.6

Fig. 1.7
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vertex is directly linked to every other vertex. These are the two
simplest non-planar networks, and it can be proved that every non-
planar network must contain either one or the other of these as a
sub-network.

w G E
N
—
A B C
Fig. 7.8
Fig. 7.9

A network is termed complete if its vertices are all directly mutually
linked by the minimum number of arcs.

A path is defined as a sequence of arcs which can be followed
continuously without any arc being used more than once. A path is
said to traverse a network if every arc of the network is included. For
example, the four arcs of the network of Figure 7.2 form a single path
which traverses the network. A path is said to be closed when it starts
and finishes at the same vertex; otherwise, it is open. A closed path is
frequently termed a circust. Figures 7.10 and 7.11 depict an open path
and a closed path respectively. In Figure 7.10, the open path is ABCD.
In Figure 7.11 the closed path is BOCDEFGB, In neither case is the
network traversed, since there are arcs excluded from the paths.

Figure 7.12 depicts an example of a network which cannot be
traversed by a single path. The network is comprised of arcs linking
three vertices of order one, one vertex of order two, one vertex of order
three, and one vertex of order four. Clearly, an even vertex may be the
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Fig. 7.11

starting and terminating point of a closed path traversing a network.
If, however, a path traversing a network is open, then the vertices at
which it starts and terminates must be odd. From this it follows that
if a network has more than two odd vertices it cannot be traversed by a
single path. The network of Figure 7.12 has four odd vertices and
cannot be traversed by a single path. The network of Figures 7.10 and
7.11, however, has exactly two odd vertices and can be traversed by a
single path. The condition of having exactly two odd vertices is
necessary and sufficient for a connected network to be traversed by a
single open path.

Fig. 7.12

A network is said to be connected if every pair of vertices belongs
to some path; otherwise it is said to be disconnected. The network of
Figure 7.12 is connected, but that of Figure 7.13 is disconnected. In
Figure 7.13 it will be seen that every individual vertex belongs to some
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Ae— oD
Fig. 7.13

path, but that the vertex-pair 4B, for example, does not. If a network
is connected, then the total number of its arcs cannot be less than the
number of its vertices minus one. This may be written

This is a necessary but not a sufficient condition for a network to be
connected. That it is not sufficient can be seen from Figure 7.13,
where the network depicted has @ = 3, n = 4. The condition

azn-1

is satisfied, but the network is disconnected.

A connected network, having the number of its arcs exactly one
less than the number of its vertices, is called a free. The network of
Figure 7.14 is an example of a tree. It will be seen that it has five

Fig. 7.14

vertices and four arcs. Any connected network can be reduced to a tree
by the removal of suitable arcs. Thus, every connected network must
include at least one tree. Figure 7.15 depicts a connected network.
Removal of those arcs indicated by hatched lines leaves the tree
ABOD. This tree has four vertices and three arcs.

The arcs removed from a connected network so as to leave a
tree form a co-tree. Any arc having been so removed forms, when
replaced, a closed path in association with one or more of the tree arcs
in one way only. Thus, in the network of Figure 7.15, either of the arcs
BD forms a closed path with BC and CD, and in no other way. Where a
connected network includes more than one tree, there are alternative
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Fig. 7.15

selections of arcs which may be removed so as to leave a tree. This is
the case with the network of Figure 7.15, and Figure 7.16 depicts such
an alternative selection.

If a network is mapped on to a simply connected surface so that
no arcs intersect, except at vertices, then the surface is separated into
a number of bounded regicns. (Such a network must be, by definition,
planar.) The number of independent bounded regions is given by

a—n+1.

A very simple example is provided by the network having » vertices
and comprising a single closed path of # ares mapped on to a sphere.
Clearly, this network divides the surface into two bounded regions,
These regions are not, however, independent: once one is defined, the
other is automatically defined also. Figure 7.17 depicts a planar net-
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work having four vertices and seven arcs. The number of its independent
bounded regions is thus 7—4+1 = 4. These are the regions By to Ry
shown in the figure. The exterior region is automatically defined.

A planar network may be completely specified either in terms of its
independent bounded regions or in terms of paths between its independ-
ent vertex-pairs. (A network has n(n—1)/2 vertex pairs. It is not
necessary in specifying a network for all the paths between each and

u
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Fig. 7.17

every pair of vertices to be defined. In this sense, the number of
independent vertex-pairs is n—1.) If the network is specified in the
former way, then it is said to be defined by tie-sets, where a tie-set is a
connected sub-set of vertices and ares, such that exactly two arc-ends
meet at each vertex. A tie-set is thus a single closed path of the kind
depicted in Figure 7.18. The closed paths which specify the independent

IVAN

Fig. 7.18

bounded regions do not have to correspond to the paths which form
the boundaries of the regions. Thus, in Figure 7.17, the tie-sets specify-
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ing the network could be those forming the boundaries of the individual
regions, namely

tuyz: Ry, wuv: Ra, vwz: Rg, xyz: Ry,
but they could equally well be
tvyz: Bi+ Ry, wvwzy: R3+ Ry, wwzy: Ro+R3+ R4, twxyz: Ri+

R2+R3>
or any other set of four independent closed paths.

If the network is specified by the paths between its independent
vertex-pairs, then it is said to be defined by cut-sets, where a cut-set is a
subset of arcs of a connected network such that its removal is exactly
sufficient (and no more) to disconnect the original network. In this case,
the network may either be separated into distinet subnetworks or a

single vertex may be isolated. Figure 7.19 depicts some possible
cut-sets. The use of the term ‘cut-set’ may readily be understood by
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reference to Figure 7.19 and seeing that in each case a cut across the
arcs comprising the cut-set would effectively disconnect the network
concerned. The network of Figure 7.17 may be defined by cut-sets by,
for example, selecting the three independent vertex-pairs 4A-B, 4-C,
A-D and specifying all possible paths between the vertices of each
individual pair. )

If the number of independent bounded regions given by a—n+1
is less than the number of independent vertex-pairs, n—1, that is, if
a < 2(n—1), then tie-set definition of a network may be preferred as
requiring a minimum of information for the complete specification of
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the network. However, if a network is non-planar, tie-set definition
is not appropriate, and thus the cut-set approach may be considered
to be more general.

If a network is to be traversed by a single path then a first require-
ment is that it be connected. If there are no odd vertices, then the path
must be closed, and it follows that the initial vertex and arc of the path
may be selected arbitrarily. If there are exactly two odd vertices, then
the path must be open, and it follows that the odd vertices must be
selected as the initial and final vertices of the path. For an even
number of odd vertices greater than two, it has already been seen that
the network cannot be traversed by a single path. Such a network
needs at least k paths to traverse it, where 2k is the number of odd
vertices. This follows because the even vertices can be initially dis-
regarded and, by removal of closed paths, the odd vertices can be
reduced to order one. For 2k vertices of order one, k separate paths are
required, and the closed paths can then be rejoined to various of these
as appropriate.

Figure 7.20 (a) and (b) depicts a network with four odd vertices
from which three closed paths are removed in order to reduce its odd
vertices to order one. First, the even vertex E is disregarded. Then,
the two upper closed paths 4BA and BCB are removed, as also is the
lower closed path DED. Two separate paths AD and BEC remain.

B

(a) (b)
Fig. 7.20

The closed paths which have been removed can then be rejoined either
to AD or BEC, but because of being closed, the resulting path obtained
in each case still terminates at the point where it is rejoined. Thus
ABA and DED may be rejoined to AD, giving a total path ABADED.
There is now no way of linking this path with the remainder of the
network since possible connecting arcs have already been used up.
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Adding BCB to BEC gives a second total path BCBEC, and this, in
addition to ABADED, provides the second path by means of which the
network is traversed.

One of the best known traditional problems involving the theory
of networks is the Koenigsberg bridge problem. Figure 7.21 depicts the
seven bridges over the divided waters of the River Pregel as they had
been built by the eighteenth century. The problem, solved by Euler in
1736, was whether or not it was possible to visit each of the four
separated parts of the city whilst crossing each and every bridge once
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S
Fig. 7.21

only. The corresponding network is depicted in Figure 7.22. This has
four vertices and seven arcs. Examination of the vertices reveals that
they are all odd, hence it follows that at least two paths are required to
traverse the network, so the whole city could not be toured in the way
desired.

The problem may easily be extended. For example, it may be
asked where an eighth bridge should be built so that it would be possible

N

W Island

Fig. 7.22
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to make the kind of round tour envisaged starting in the North region
and finishing on the Island, there still being a requirement to cross each
bridge once and once only. Clearly, the effect of such a bridge on the
network is to add an arc so as to make two of the odd vertices even.
From the previous theory, the vertices at which the path begins and
ends must be odd. It follows, therefore, that the eighth bridge should be
built from the West region to the South region. If it is now assumed
that this bridge has in fact been built, and also a ninth bridge providing
a direct link between the North and South regions, the new network

N
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S
Fig. 7.23

would be as depicted in Figure 7.23. The orders of the vertices are now:
North: 4, West: 4, South: 5, Island: 5.

A round tour, crossing each bridge once and once only, would still be
possible, but only if the end points of the path were located in the South
region and on the Island respectively.

The study of planar networks has a considerable number of
practical applications, particularly in electrical engineering, economics,
and sociology. However, topology is more particularly concerned with
those properties of networks which distinguish planar networks and
the various types of non-planar networks from each other. Such
properties belong to the simplest surface on which it is possible to map
a given network without intersection of its constituent arcs.
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The Colouring of Maps

Colouring maps—chromatic number—regular maps—six-colour
theorem-—general relation to Euler characteristic—five-colour theo-
rem for maps on a sphere.

It is a well accepted fact that printers of maps require only four
different colours to ensure that in any map or on any page of an atlas no
two regions having a common boundary are given the same colouring.
Nevertheless, it has never been proved that the existence of a planar
map requiring five colours is an impossibility.

Tt is clear that three colours alone are insufficient to meet the needs
of the printers. The map depicted in Figure 8.1, for example, demon-
strates this fact. It would be impossible to colour the region in the centre
with one of the three colours already used whilst still meeting the
requirement that there should always be different colourings on two
sides of any boundary. It will be proved later in this chapter that five
colours are sufficient for the colouring of any map on a plane surface
or on a sphere satisfying the printers’ requirement.
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Fig. 8.1

The least number of colours required to colour a map on any
given surface is termed its chromatic number, and it is a topological
property of the surface. Thus, for a dise and for a sphere, it is assumed
that the chromatic number ¢ is equal to four, though this has never been
proved. A map drawn on a finite plane surface is equivalent to the
corresponding map on a sphere. This follows from the fact that a disc
may be cut out of the centre of any one region of a map on a sphere, as
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depicted in Figure 8.2, and the resulting surface may then be deformed
so as to lie in a plane. The region from which the disc has been removed
then forms the surrounding region of the map on the plane. Similarly,
if the surrounding area of any map on a plane is counted as a region,
then this region may be joined up at all its outer edges and the plane
thus transformed into a sphere.

Fig. 8.2

Before proceeding with a detailed consideration of the colouring
of maps, it is necessary first to refer to the definition of a map given at
the beginning of Chapter 6. This definition states that a map consists of a
number of vertices linked together by non-intersecting ares in such a
way that simply-connected regions are defined by the area. Figure 8.3
depicts such a map, but, clearly, this does not correspond to any map
which could be found on the page of an atlas. Not only are vertices
C, D and F superfluous, but, in addition, the pair of arcs EF, EG play
no part in defining any region, since the areas immediately above and
immediately below the arc-pair belong to one and the same region
of the map.
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A map is said to be regular if, in addition to complying with the
requirements of the definition given above, it also satisfies the following
three conditions:

1. No vertex is of order less than three.
2. Each arc joins two distinet vertices.
3. Each arc separates two distinct regions.

Clearly, the map of Figure 8.3 is not regular since vertices O, D, F
do not comply with condition (1), the loop from vertex G does not com-
ply with condition (2), and arcs EF, FG do not comply with con-
dition (3).

To any map on a closed surface there corresponds some regular
map which may be obtained from it. (The same applies to any map on a
finite plane, but it is sufficient here to consider the case where the map
is assumed drawn on a closed surface.) Figure 8.4, for example, shows a

Fig. 8.4

regular map obtained from the map of Figure 8.3. In order to arrive at &
regular map, it has been necessary to add the two vertices H, I together
with several arcs, thus increasing the total number of distinet regions
from four to eight. The map of Figure 8.4 does correspond to one which
might possibly be found on the page of an atlas. In fact, with the
exception of the cases where one region is entirely surrounded by
another, geographical and similar maps satisfy the conditions for
regular maps on a finite plane or on a sphere. Clearly, when one region
is entirely surrounded by another, there is no special problem of colour-
ing involved since any colour different from that of the surrounding
region may be used.

If a regular map having F regions, ¥ arcs, and V vertices is defined
on a surface of Euler characteristic y > 0, where from Chapter 6, y =
V—~E+F, then V—-E+F > 0, and thus

6V —6E+6F > 0.

It follows from condition (1) above that 2E = 3V, and hence sub-
stitution for 6V gives

6F —-2E > 0.
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This may be expressed, using condition (3), in the form
6LF i— Yo F i > 0

where F; is the number of regions with boundaries formed of exactly 4
arcs, and where, clearly by condition (2), ¢ is greater than one. This
inequality may be written in the form

Z(6—~3)F; > 0,

from which it is seen that some ¢ less than six must exist. Thus, any
regular map on a surface of Euler characteristic greater than zero must
have at least one region bounded by fewer than six arcs.

It is now possible to prove by induction the result that any regular
map on a surface of Euler characteristic greater than zero requires at
most six colours if no adjoining regions are to be coloured the same. If
F < 6, then the required result is immediate. For general F, it is first
supposed that the result holds for some F’, and then the map with
F’ 41 regions is considered. It has already been shown that at least
one region must have a boundary consisting of less than six arcs. If this
region is contracted to a point, there are four possibilities, and these
are depicted in Figures 8.5 to 8.8. In each of the cases depicted the
contracted map, having F’ regions, is by assumption colourable with
six colours. So, when the contracted region is restored, there will be a
colour available for it without the total of six colours being exceeded.
Thus, if the result holds for F = ¥, then it holds also for F = F'+1.
Now, since maps for which F £ 6 can be coloured with not more than
six colours, the general result that any regular map on a surface, for
which y > 0, requires at most six colours follows by induction. This
general result is termed the stz colour theorem.

Fig. 8.5

Fig. 8.6
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Fig. 8.7

Fig. 8.8

A more general theorem states that any regular map on a surface
of Euler characteristic y can be coloured by at most y colours, where y
satisfies the inequality

7F > 6(F—7) 1)

for all ¥ > y. The validity of this theorem may be demonstrated by an
inductive proof similar to that used in substantiating the six colour
theorem.

First, it is assumed for some given surface of Euler characteristic
1, that y, satisfying the inequality (1), is such that all regular maps
having F < F' on the surface may be coloured with at most y colours.
In particular this is trivially true for ¥ < y. Now, since

x=V—E+F, and 2E = 3V,
it follows that
6(F—~y) = 6(E—V) 2 2F,
whence, from (1),
y¥ > 2E.

Thus, at least one region must have a boundary comprised of less than
y arcs. If such a region is contracted into a point, y is unchanged and
the map is still colourable with y colours. When the contracted region
is restored, there is still, at worst, a y’th colour available for it. Hence,
by a process of inductive reasoning, analogous to that used in the proof
of the six colour theorem, y colours are sufficient for any regular map
on a surface of Euler characteristic y.
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The problem remaining is the determination of the smallest integer
y satisfying inequality (1) when F > 9. Let this smallest integer be
denoted by §. Now six colour theorem gives

= 6 when y = 2 and when y = 1.
If the inequality (1) is expressed in the form

X
v>6@—7> @)

it can immediately be seen that its right-hand side approaches six from
below with increasing ¥ when y = 2 or 1. Thus (2) gives

§=26for y =2 and F > 12,
and also gives
=206 for y=1 and F > 6.

These values of § equate with the value six of the six colour theorem,
When y = 0, the right-hand side of inequality (2) is exactly equal
to six, and hence the expression gives

§=17"for y =0.
For y < 0, the smallest admissible y+1 may be substituted for F

in (2) to give
X
>6[1-———1
! < v+1)
This may be rearranged as

y+1) > 6y+6—6y,
whence
y2—5y > 6-—6y,

@—9* > -6y
and thus
P > $+34/(49—24y).

Using square brackets to denote the largest integer in a given expression
gives
7= B+3v(49—24y)]. (3)

(The positive root is intended to be taken.) Expression (3) gives a
minimum value for the number of colours which are required at most
for the colouring of a regular map on a surface of Euler characteristic
less than zero. The table following, gives the values of § obtained from
expression (3) for values of y from two to minus twelve. (The values for
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X = 2,1 and 0 have been given in brackets because, though these are
values which from other considerations would be expected, they are not
strictly applicable because of the original assumption that ¥y < 0, made
when determining the expression (3) for $.) It can be seen from the table
that, for example, any map on a Klein bottle requires at most seven
colours, and any map on a two-fold torus requires at most eight
colours.

—~
Do
~
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——
=N
o~
—~—
~1 O
~—

11

-10
-11
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For regular maps on a sphere, and hence also on a plane, it has been
proved that the maximum number of colours required is six. It can be
demonstrated that this maximum can be reduced by one to five in the
following way.

It has already been established that in any regular map on a sphere
some region myst have a boundary consisting of fewer than six arcs.
Clearly, any region with two, three, or four arcs forming its boundary
must be colourable with a fifth colour. Figure 8.9 depicts a region having
its boundary made up of exactly five arcs. Now, some pair of the regions
A, B, C, D, E must have no common boundary. This is demonstrable as
follows. If, for example, regions A and C adjoin, then region B must be
isolated from regions D and E. Region B can therefore be coloured with
the same colour as either of the two regions D and E. Since this holds
generally, a fifth colour is always available for the region having its
boundary made up of exactly five arcs. If one arc is removed from a
region bounded by two, three, or four arcs, so as to make the region
coalesce with an adjoining one, then a map with ¥ —1 regions results
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where F is the number of regions of the original map. If this map can be
coloured with five colours, then so can the original map. If two arcs are
reraoved from a region bounded by five arcs in such a way as to make
the region coalesce with a separated pair of regions, then a map with
F —2 regions results, and, if this can be coloured with five colours, then
80 can the original map. The number of regions can therefore be

Fig. 8.9

successively reduced by the removal of arcs so as to lead to a sequence of
maps having fewer and fewer regions, and, if these maps can be coloured
with five colours, then so can the original map. Eventually, a map is
arrived at having less than six regions in all, and, since this can clearly
be coloured with at most five colours, the original map does not require
more than five. This result establishes what is termed Heawood’s five
colour theorem.

It should be remembered that, in the cases of the six and five
colour theorems and the derivation of the expression for y (known as
Heawood’s theorem), what has in fact been demonstrated is the sufficiency
of a certain number of colours for the colouring of any regular map on a
given surface of known Euler characteristic. The necessity for any
specific number of colours in any particular case has still to be justified.
Figure 8.1 establishes the necessity for at least four colours for maps
on a surface of Euler characteristic y = 2. In certain other cases,
notably those for surfaces with Euler characteristic y = 1 or 0 or y
an even negative integer, the value obtained from expression (5) is
necessary as well as sufficient. In these cases, therefore, the calculated
values for y are also the chromatic numbers of the surfaces concerned.
Further reference will be made to this topic following the initial
discussion of plane diagrams in Chapter 11.

e e
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The Jordan Curve Theorem

Separating properties of simple closed curves—difficulty of general
proof—definition of inside and outside—polygonal paths in a plane—
proof of a Jordan curve theorem for polygonal paths.

At the beginning of Chapter 1, it was assumed that one of the properties
of a triangle is that it separates a plane surface into an area inside its
perimeter and an area outside its perimeter. Again, at the beginning of
Chapter 4, a similar property was assumed for a non-self-intersecting
continuous closed curve on the surface of a sphere. These assumptions
are intuitively very reasonable. It would appear obvious that the closed
curve C, depicted in Figure 9.1, separates the plane of the paper into
a set of points, such as 4, lying inside the curve, and a set of points,
such as B lying outside the curve (neglecting for the moment the set of
points in the curve C itself).

Fig. 9.1

Figure 9.2 also depicts a continuous non-self-intersecting closed
curve on a plane surface. However, it is now not so immediately obvious
that points 4 and B lie respectively inside and outside the curve. Thus,
the more complex the curve being investigated, the greater is the need
for some sort of formal test to determine for any given point whether it
lies inside or outside the curve. Further, the terms ‘inside’ and ‘outside’
have been used here and earlier in a purely intuitive kind of way, and
there is also a need for defining exactly what these two terms mean.

Any curve homeomorphic (i.e. topologically equivalent) to a circle
is termed a Jordan curve. Thus, the curves of Figures 9.1 and 9.2 are
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both Jordan curves. The Jordan curve theorem states that on a plane or
on the surface of a sphere a Jordan curve separates the surface into two
regions having no point in common and having the curve as a common
boundary. Surprisingly perhaps, a general proof of this theorem is not
particularly easy to present. The special case when the curve defines a
closed polygonal path will be considered here.

—
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L

Fig. 9.2

First, it is necessary to define a polygonal path. This is defined as n
straight line segments joining a sequence of » distinct points in a plane
in such a way that no two line segments intersect except possibly at
their end points, and each line segment joins two points uniquely. The
number » is assumed to be finite. The straight line segments form the
sides of the polygon whose perimeter is the given polygonal path.

Fig. 9.3

Since 7 is finite, it must be possible to choose some straight line
segment AB in the plane which is not parallel to any of the sides of the
polygon. Figure 9.3 depicts a polygonal path and a line segment AB
not parallel to any side of the polygon defined. The set of points of the
plane not on the polygonal path itself is now separated into two
disjoint subsets, the subset to which any given point of the set belongs
being determined according to whether a ray from the point in a




80  From Geometry to Topology

direction parallel to 4B intersects the polygonal path an even or an
odd number of times. If these subsets are labelled S and T respectively,
then it is clear that, for example, points Py, Py, P4, depicted in Figure
9.4. belong to subset S8, whilst points P, P5 belong to subset T

Fig. 9.4

It is now assumed that a variable point P moves continuously
along the length of some line segment not intersecting the polygonal
path, and not parallel to A.B. As P moves, the number of intersections
of its ray parallel to 4B with the polygonal path changes only when the
ray crosses a vertex. Thus the number of intersections always changes
by two, or, in the case where more than one vertex is crossed simul-
taneously, by a multiple of two. For example, as a point P moves along
the line segment CD, depicted in Figure 9.5, its ray has initially no
intersections with the polygonal path. As P moves from a to b, however,
its ray crosses the vertex W and the number of intersections increases
to two. It remains at two until P moves from ¢ to d, when Y is crossed
by the ray and the intersections increase by a further two to a total
of four.

It should be noted that the crossing of a vertex by the ray does not
necessarily lead to a change in the number of intersections with the
polygonal path. For example, as P moves from d to ¢ two vertices are
crossed, but the number of intersections remains unchanged at four.
As the point moves from e to f, vertex X is crossed and the number of
intersections decreases, again by two, but, as P moves from f to g,
vertices ¥V and Z are crossed simultaneously, and there is an increase
of four in the number of intersections bringing the total up to six. For
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Fig. 9.5

each position of P on CD, the number of intersections is indicated in
Figure 9.5 at the arrow-head of the appropriate ray. Eventually, P
reaches %, by which time the ray has entirely cleared the polygonal
path, and the number of intersections has reduced to zero and remains
zero thereafter. Similar considerations apply to a point moving along
the line segment EF depicted in Figure 9.6.
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It now follows that if any point belonging to subset § is joined to
any point belonging to subset T' by a path consisting of a sequence of
line segments, such a path must cross the polygonal path an odd
number of times. Figures 9.7 and 9.8 depict points P, P’ belonging to
the same subset. In each case, even if the straight line PP’ intersects
the polygonal path it can be seen that the points could have been
joined by a sequence of line segments forming a path not intersecting
the polygonal path. This could be achieved by breaking off from PP’
at a, just before the first intersection shown in the figures, following
round close to the polygonal path itself but not touching or intersecting
it, and rejoining PP’ at b just after the last intersection. It is therefore
possible in each case to identify subset S as the set of points outside the
polygonal path, and subset 7' as the set of points inside the polygonal
path.

Fig. 9.8

An alternative method of separating the set of points of the plane
into the two distinct subsets S and 7' is to define the order of any point
P with respect to a polygonal path not passing through P as the net
number of complete revolutions of a straight line joining P to a point
completing one circuit of the polygonal path. For example, if the
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point P, depicted in Figure 9.9, makes & circuit of the polygonal path
in a counter-clockwise direction as shown in the figure, then the total
number of revolutions completed by the straight line Py P’ is one.
In the same way, the total number completed by PeP’ is zero. The
subset S may now be defined as the subset of all points of the plane of
even order, and the subset 7' as the subset of all points of the plane of
odd order. These two subsets correspond exactly to those defined in
terms of the intersections of rays with the polygonal path.

Fig. 9.9 P,

The ease with which the Jordan curve theorem may be justified
in the case of a polygonal path is, of course, due to the fact that the
finite number of sides of the polygon defined permits the definition
of a direction not parallel to any side. Clearly, once curved paths are
permitted, it may no longer be possible to define a direction which is in
no instance tangential to any curve. For example, for a circular path
in a plane, there is no straight line in the plane which is not parallel
to some'tangent to the circle. The general case is, however, of consider-
able importance in topology. It also provides a typical example of the
fact that it is not always simple to prove what is in fact true even when
it appears intuitively obvious.
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Fixed Point Theorems

Rotating a disc: fixed point at centre—contrast with annulus—
continuous transformation of dise to itself—fixed point principle—
simple one-dimensional case-—proof based on labelling line segments
—two-dimensional case with triangles—Sperner’s lemma—three-
dimensional case with tetrahedra.

One of the simplest ways in which a disc may be mapped to itselfis by a
rotation about its centre. Figure 10.1 depicts a disc which is assumed to
be rotated in its own plane about its centre by some fixed angle ¢. This
is a rigid transformation preserving the topological properties of the
disc. In particular, it is one-one and continuous so that each point z
of the disc is mapped to some unique point 2, which is the image of »

Fig. 10.1

and of no other point, and neighbourhoods are preserved so that points
which are ‘near’ remain ‘near’. (A more precise discussion of this
concept of continuity will be given in Chapter 13.)

1t is clear that for the rotation through ¢ depicted in Figure 10.1
there is one point and, for ¢ not an integer multiple of 2r, one point
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only which maps to itself, namely the centre of the disc. On the other
hand, for a similar rotation of an annulus, depicted in Figure 10.2, it is
clear that, unless ¢ is an integer multiple of 27, there is no point which
is mapped to itself.

Fig. 10.2

The example given by the rotation of a disc is a simple and very
obvious illustration of Brouwer’s fixed point theorem in two dimensions.
However, the general case of this theorem is by no means so obvious.
The theorem states that, for any continuous transformation of a disc
to itself, there is at least one point which is mapped to itself. Since this
is in fact a topological property, it holds equally for any region homeo-
morphic to a dise. For example, if the wind blows over the surface of a
pool of oil in the road, then, provided the surface of the oil is moved
about the same overall area and is not broken in any way, there is at
least one point at any one time where the oil is in exactly the same place
as it was originally before the wind began to blow.

A similar fixed point theorem may be stated in one dimension.
In this case instead of a disc, a line segment or interval is considered,
and the theorem states that if an interval is continuously transformed
to itself there is at least one point of the interval which remains fixed.

One way of arriving at proofs of the fixed point theorems is to
start from a consideration of dividing up a triangle into small triangles
(in the two-dimensional case) or a line segment into small line segments
(in the one-dimensional case) according to certain rules which also
include adopting a specific system of numbering of vertices and end-
points of segments. Figure 10.3 depicts a line segment AB which is
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divided into small segments by arbitrarily selecting a number of its i

points. These points and the original end-points A and B are then
labelled O or 1 in an arbitrary manner, and a cross is put on each side of
every 0 within the original line segment AB, and on the ‘inside’ only
of any 0 which may appear at the end-points of 4B. Figure 10.4 depicts
several possible ways of dividing up 4B in this way.

A e *—eo . * «——=o B
Fig. 10.3
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Fig. 10.4

A complete segment is now defined as a small segment having a 0
at one end and a 1 at the other. Thus, for the top example depicted in
Figure 10.4, there are altogether seven small segments whose end-points
are labelled successively

00, 01, 11, 10, 00, 01, 11,

and for the bottom example there are ten small segments labelled

successively
10, 00, 01, 11, 11, 10, 01, 11, 10, 01.

In the former case there are three complete segments (shown in bold
face), and in the latter case there are six. It is clear that each complete
segment has one cross, whereas any other small segment has either no
cross or two crosses.

If n is the total number of complete segments in any particular
decomposition of a given line segment, then the total number of crosses
is n + some even positive integer. However, the total number of crosses
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is also given by the number of 0’s at the end-points of the original line
segment, which each have one cross, plus an even positive integer
representing twice the number of ‘internal’ 0’s (which will each have
two crosses). Since these two totals must be equal it follows that if the
number of 0’s at the end-points of the original line segment is odd,
that is, if the end-points of the original line segments are labelled 0 and
1, then the number of complete segments must also be odd. This in
turn means that there must be at least one complete segment however
the original line segment (labelled 01 or 10) is divided up.

If the original line segment, assumed to be labelled 01, is now
continuously transformed to itself, then, subsequent to this trans-
formation, points whose distance from the end-point labelled 0 has not
decreased may be labelled 0, and points whose distance from the end-
point labelled 1 has not decreased may be labelled 1. The earlier result
now means that there must be some segment, which may be chosen as
arbitrarily small as desired (since the process of labelling points may be
continued indefinitely) such that at least one of its points has not
decreased in distance from the end-point of the original line segment
labelled 0 and at least one of its points has not decreased in distance
from the end-point labelled 1. In the limit, this arbitrarily small
complete segment tends to a single point, which is then the fixed
point whose existence the argument has been seeking to justify.

Figure 10.5 depicts a triangle which has been arbitrarily divided
up into small triangles. The vertices of the original triangles and the

Fig. 10.5

small triangles have then been arbitrarily labelled 0, 1, or 2. Crosses are
shown in the figure and these have been placed inside the original
triangle against every line segment labelled 01. Thus a line segment
labelled 01 on the boundary of the original triangle has one cross (on
the inside), whereas a line segment labelled Ol inside the original

e e < e

S




88  From Geometry to Topology

triangle has two crosses (one on either side). A complete triangle is now :
defined as a small triangle whose vertices are labelled 012. Thus, there

are three complete triangles in Figure 10.5.

If » is the total number of complete triangles in any particular “

decomposition of an original triangle into small triangles, then the
number of crosses will be » + some even positive integer. This follows
since each complete triangle has one cross, whereas all other small
triangles have either no cross or two crosses. (The possible cases are
depicted in Figure 10.6.) However, the total number of crosses are also
given by the number of line segments labelled 01 on the boundary of
the original triangle, which each have one cross, plus an even positive
integer representing twice the number of internal line segments
labelled 01 (which will each have two crosses). Since these two totals
must be equal it follows that if the number of line segments labelled
01 on the boundary of the original triangle is odd, then the number of
complete triangles must also be odd.

0 1 2 0 0

0 0 0 0o 0 0 1 1 1 2
0 1 1 1 2

2 2 1 1 1 2 2 2 2 2

Fig. 10.6

A special case of the result just obtained is provided if the original
triangle is labelled 012, and there is a restriction on the labelling of the
line segments on its boundary, so that vertices lying on the original side
labelled 01 may be labelled either 0 or 1 only, vertices on 02 may be
labelled O or 2 only, and vertices on 12 may be labelled 1 or 2 only. A
decomposition with numbering according to this restricted system is
depicted in Figure 10.7. From the general result, it now follows that for
such a special case there is always at least one complete triangle. This
special form of the theorem is known as Sperner’s lemma, which may
be used to prove the two-dimensional fixed-point theorem in a manner
analogous to the proof for the one-dimensional case.

In three dimensions, a decomposition of a tetrahedron is considered,
with numbering of vertices using 0, 1, 2 and 3. A complete tetrahedron
is then defined as a small tetrahedron having its vertices labelled 0123,
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A

1 2 2
Fig. 10.7

and a corresponding three-dimensional fixed-point theorem may then
be proved. In more than four dimensions, similar arguments may be
used, though the decompositions are much less easily visualised.
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Plane Diagrams

Definition of manifold—construction of manifolds from rectangle—
plane diagram representations of sphere, torus, Moebius band, etc.—
the real projective plane—Euler characteristic from plane diagrams—
seven colour theorem on a torus—symbolic representation of surfaces
—indication of open and closed surfaces—orientability.

A two dimensional manifold is a connected surface having the property
that, given any point P on the surface all the points near to P on the
surface together with the point P itself form a set of points which is
topologically equivalent to a disc. The set of points near to P is termed
a neighbourhood of P. A sphere, a torus, a Moebius band and a Klein
bottle all provide examples of surfaces which are also manifolds. A
sphere with a spike sticking out of it, as depicted in Figure 11.1, is not,

Fig. 11.1

however, & manifold since points on the spike do not have neighbour-
hoods fulfilling the requirements for all points on a manifold and, in
particular, there is a dimensional change at the spike. (The spike must
not be thought of as a ‘thin cone’, otherwise the sphere with the spike
is still & manifold.) It should be noted also that a manifold is not
necessarily & closed surface; neither is it necessarily two-sided.
Certain manifolds may be identified by specifying the way in
which the sides of a rectangle are to be joined together. Figure 11.2
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depicts a cylinder with curved boundaries « and y. The curved surface
of the cylinder may be cut in & direction perpendicular to its boundaries
as depicted in Figure 11.3, where such a cut is shown from 4 to B. It
can then be opened up to form the rectangle of Figure 11.4. The method
adopted for labelling the vertices of the rectangle ensures that there
can be no doubt as to the correct way in which the cylinder is to be
reconstituted. This is shown by the use of the identical letter a for the
two sides of the rectangle which are to be joined up, together with an
indication by means of arrow-heads that there is to be no twisting
before the two sides a are joined. A diagram such as that of Figure 11.4

Fig. 11.2

Fig. 11.3
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Plane Diagrams

Definition of manifold—construction of manifolds from rectangle—
plane diagram representations of sphere, torus, Moebius band, etc.—
the real projective plane—Euler characteristic from plane diagrams—
seven colour theorem on & torus—symbolic representation of surfaces
—indication of open and closed surfaces—orientability.

A two dimensional manifold is a connected surface having the property
that, given any point P on the surface all the points near to P on the
surface together with the point P itself form a set of points which is
topologically equivalent to a disc. The set of points near to P is termed
a metghbourhood of P. A sphere, a torus, a Moebius band and a Klein
bottle all provide examples of surfaces which are also manifolds. A
sphere with a spike sticking out of it, as depicted in Figure 11.1, is not,

Fig. 11.1

however, a manifold since points on the spike do not have neighbour-
hoods fulfilling the requirements for all points on a manifold and, in
particular, there is a dimensional change at the spike. (The spike must
not be thought of as a ‘thin cone’, otherwise the sphere with the spike
is still a manifold.) It should be noted also that a manifold is not
necessarily & closed surface; neither is it necessarily two-sided.
Certain manifolds may be identified by specifying the way in
which the sides of a rectangle are to be joined together. Figure 11.2
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depicts a cylinder with curved boundaries « and y. The curved surface
of the cylinder may be cut in a direction perpendicular to its boundaries
as depicted in Figure 11.3, where such a cut is shown from 4 to B. It
can then be opened up to form the rectangle of Figure 11.4. The method
adopted for labelling the vertices of the rectangle ensures that there
can be no doubt as to the correct way in which the cylinder is to be
reconstituted. This is shown by the use of the identical letter a for the
two sides of the rectangle which are to be joined up, together with an
indication by means of arrow-heads that there is to be no twisting
before the two sides @ are joined. A diagram such as that of Figure 11.4

Fig. 11.2

Fig. 11.3
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A X A

av v a

B y B
Fig. 114

is termed a plane diagram. Plane diagrams do not necessarily have to be
rectangular, but in this chapter only rectangular plane diagrams will
be discussed.

Figure 11.5 depicts & way in which a sphere may be cut in order to
give the plane diagram of Figure 11.6. Clearly, some deformation other
than simple unfolding is needed in order to obtain the rectangle from
the sphere, and also to reconstitute the sphere from the rectangle.

In Figures 11.3 and 11.4, x and y are used for boundaries of the
cylinder which become sides of the corresponding rectangular plane
diagram, whilst a is used for the sides of the cut which have subse-
quently to be rejoined in order to restore the original surface. Again,
in Figures 11.5 and 11.6, ¢ and b are used for sides of cuts, no other
letters being needed since a sphere is a closed surface. In general, small
letters from the latter part of the alphabet will be reserved for sides of
plane diagrams representing original boundaries of surfaces, whilst

Fig. 11.5
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A a B
bY Aa
C b A

Fig. 11.6

small letters from the beginning of the alphabet will be reserved for
sides resulting from cuts.

Figure 11.7 depicts a one-fold torus together with cuts needed to
obtain its corresponding plane diagram, depicted in Figure 11.8. Here
again, the surface is closed, hence the small letters used come entirely
from the early part of the alphabet. The fact that the surface is closed
is also inferable from the plane diagram because the four vertices of the
rectangle are all labelled with the same letter. Not all closed surfaces,
however, give rise to rectangular plane diagrams having all four vertices

Fig. 11.7
A l;) A
ay va
A 4 A
Fig. 11.8
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identically labelled. The rectangle of Figure 11.6, for example, identifies
a closed surface, but three letters are needed for its vertices.

Figures 11.9 and 11.10 depict respectively a Moebius band and its
corresponding plane diagram. Only one cut is needed in this case, but a
subsequent twist must be made before the manifold can be represented
in a plane. Although the Moebius band has only one boundary, it is
necessary to denote this in its plane diagram by separate letters z
and y, since the sides of the plane diagram denoted by those letters are
not joined together when the manifold is reconstituted. (In fact, they
are joined end to end.)

A X B

a + a

B y A
Fig. 11.10

Figure 11.11 is the plane diagram representing a Klein bottle.
In this case, it is not possible to reconstitute the surface by mani-
pulation in three-dimensional space. (This can easily be verified by
practical experiment.) The fact that the surface ultimately obtained is
closed is immediately seen from the use of the same letter 4 as the label
for all four vertices of the rectangle.

Reference to the plane diagram for the Moebius band (Figure
11.10) reveals a special relation between that diagram and that for the
Klein bottle. If arrows are placed on the sides labelled x and y of the
former so that consistency of direction is maintained when these are
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A b A

ay AQa

A b A
Fig. 11.11

joined end to end to form to manifold, then the resulting diagram with
these additional arrows is that of Figure 11.12. Comparison of Figures
11.11 and 11.12 now shows that a Klein bottle can be regarded as a
Moebius band with its continuous boundary divided into two parts
which are then joined up in a particular way which, in fact, requires
four-dimensional space for its completion.

A X B

av A Q

B y A
Fig. 11.12

In order to reconstitute the Klein bottle, the opposite sides of its
rectangular plane diagram are joined, one pair in the same sense and
the other pair in the opposite sense, all vertices coming together so as
to form a closed surface. Figure 11.13 depicts a plane diagram where
again opposite sides of the rectangle are to be joined together, but this

A b B

avy W)

B b A
Fig. 11.13
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time both pairs are to be joined in the opposite sense leaving two
vertices distinct. The surface which results is termed the real projective
plane.

The real projective plane may be represented in a number of ways.
For example, the points of a sphere may be mapped to points in a
tangential plane as depicted in Figure 11.14. Here, the plane is tangen-
tial to the sphere at the point 7'. Points Py, P are mapped to the single
point P’ in the plane by extending the diameter P10Ps so as to meet the
plane at P’. Every great circle of the sphere is mapped to a line in the
tangential plane with the exception of the equator defined by the plane
through the centre of the sphere parallel to the tangential plane. In
order to allow for the mapping of the equator, a line at infinity is added
to the Euclidean tangential plane, each point of this line representing a
pair of diametrically opposite points of the equator. This extended
plane is the real projective plane. Any straight line through a given
point P in ordinary three-dimensional Euclidean space is a point of the
real projective plane.

T
Fig. 11.14

Another way of representing the real projective plane is to project
each point of a hemisphere on to the plane of its equator by a line
perpendicular to this plane as depicted in Figure 11.15. There is now a
one-one correspondence between the points of the hemisphere and the
points on and inside a circle. If each pair of diametrically opposite points
on the circumference of this circle are now made to coincide, a repre-
sentation of the real projective plane results. Comparison of Figure11.13
with the circumference of the equatorial plane of Figure 11.15 shows
that essentially the same representation has been obtained, since a
circle and a rectangle are topologically equivalent.
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The real projective plane may also be constituted from a Moebius
band and a disc. The boundary of a Moebius band is a closed curve
topologically equivalent to a circle. It can therefore be. imagined
attached by its boundary to the boundary of the disc so as to form a
closed surface. This resulting closed surface is again the real projective
plane. Thus a Moebius band may be thought of as thereal projective

Fig. 11.15

plane with a disc cut out of it. Like a Moebius band and a Klein bottle
the real projective plane is one-sided. The deformations needed to
produce the real projective plane cannot be performed in ordinary
three-dimensional Euclidean space.

The Euler characteristic of a manifold may easily be determined
from its plane diagram using the already established expression

x=V—-E+F

For example, the plane diagram for the cylinder (Figure 11.4) has two
distinct vertices only, namely 4 and B, since the two upper and the two
lower pairs of vertices are to be identified respectively with each other.
Further, this rectangular plane diagram has only three distinct sides
(edges), namely a, z and y, since the two sides a are to be identified.
There is, of course one face. Hence for the cylinder, y = 2—3+1 = 0.

The plane diagram for the sphere, depicted in Figure 11.6, has
three vertices, two distinct sides, and, of course, one face, giving
x = 3—2+41 = 2. Again, the plane diagram for the torus (Figure 11.8)
gives y = 1—2+41 = 0 and that for the Moebius band (Figures 11.10)
gives y = 2—3+1 = 0. (In this case, the sides # and y are regarded as
distinet, since they do not become identified, that is ‘sewn up’, when
the Moebius band is re-constituted, but only joined end to end.) The
plane diagram for the Klein bottle (Figure 11.11) gives y = 1-2+1 =0,
and that for the real projective plane (Figure 11.13) gives y = 2—2+1
= 1. This last provides the first example encountered so far of a manifold
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whose Euler characteristic is an odd number. The possibility of such
surfaces was envisaged, however, when in Chapter 8 the table of upper
bounds of the number of colours required for maps upon various sur-
faces was calculated.

Reference to the table of Chapter 8, p. 76 gives an upper bound
7 of the number of colours required for any map on the surface of a torus
as seven. It is now relatively simple to determine the chromatic number
for this surface by reference to a map drawn on its plane diagram as is
depicted in Figure 11.16. In viewing this map, it must be remembered

A b A
e [1]
4 2
ay Ya
3 5
1] K 1
A b A
Fig. 11.16

that edge to edge adjacencies apply because of the identification of the
two upper and the two lower sides respectively of the rectangle. This
map clearly shows a case where seven colours are essential in order to
ensure that no two regions having a common boundary are coloured
with the same colour. Since an upper bound for y is seven, and since at
least one case can be found where seven colours are required, it follows
that seven colours are both necessary and sufficient for maps on the
surface of a torus; that is, the chromatic number of the surface is seven.
This result is often known as the seven colour theorem.

A symbolic representation of manifolds based upon the sides of the
corresponding plane diagrams is often used. This method depends not
only on the identification of the sides, but also on their directional
sense. To take account of directional sense a reference orientation is
assigned to the perimeter as a whole (i.e. clockwise or counter-clockwise)
and a positive or negative sense is recorded for each edge accordingly
as its arrow agrees or disagrees with this reference.

Figure 11.6 represented the plane diagram for the surface of a
sphere. Commencing at the top left-hand of the diagram and assigning
a clockwise orientation to the perimeter of the rectangle yields the
following order of sides:

+a—a+b-b.
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Clearly, any vertex of the rectangle may be taken as the starting point
and, since either a clockwise or a counter-clockwise overall orientation
may be assigned, this immediately yields three alternative but equiva-
lent symbolic representations:

—a+b—b+a,
+b—-b+a—a,
—b+a—a+b.

An alternative plane diagram representing the surface of a sphere is
depicted in Figure 11.17. The only relevant difference is that whilst the
b sides still ‘converge’ according to the sense of their arrow-heads, the a
sides now ‘diverge’. This gives rise to the further symbolic representa-
tions:

—a+a+b—>b,
+a+b—b-—a,
+b—~b—a+a,
—b—a+a+d.
A a B
by vya
o ® A
Fig. 11.17

Tt is clear that the symbolic representation of a sphere requires two
letters only, each letter appearing once with positive sign and once with
negative sign, and that any cyclic permutation preserving the adjacency
of the two occurrences of each letter suffices.

An alternative symbolic representation, sometimes encountered,
gives the index —1 to a side whose direction conflicts with the reference
direction. This representation gives, for example,

aa~1bb-1
in place of
+a—a+b->.
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Figure 11.4 is the rectangular plane diagram for a cylinder.
Clearly, arbitrary directions may be assigned to sides « and y. All that is
required is that « and y should appear alternately with the two oceur-
rences of a, and that a should appear once with a positive sign and once
with a negative sign. Thus, any cyclic permutation of

tatz—aty
suffices.

Similar representations may be obtained for the torus, the Moebius
band, the Klein bottle, and the real projective plane by references to the
corresponding plane diagrams. For each topologically distinct surface,
there is a unique set of arrangements of signed letters, and thus
equivalence classes of surfaces may be identified from symbolic repre-
sentations. Further, certain particular sets of equivalence classes may
be identified by specific types of arrangements of letters. For example,
wherever each and every letter occurring appears exactly twice it is
clear that the surface represented is closed. Further, noting that since
sides are identified in pairs for closed surfaces, each such pair involves
either like signs or unlike signs; if each and every pair consists of unlike
signs the closed surface represented is orientable, otherwise it is non-
orientable. The abstract study of sets of symbols together with re-
arrangements which may be permitted without altering the ‘value’
of the overall expression (in this case, the type of manifold represented)
is properly included in the branch of mathematics known as combina-
torics.

12

The Standard Model

Removal of dise from a sphere—addition of handles—standard model
of two-sided surfaces—addition of cross-caps—general standard
model—rank—relation to Euler characteristic—decomposition of
surfaces—general classification as open or closed, two-sided or one-
sided—homeomorphic classes.

If a dise is removed from a sphere, it may be regarded as removed from
a region of some map, as in Figure 12.1, or it may be regarded as a
complete region of a map, as in Figure 12.2. In the case of Figure 12.1,
removal of the disc may be regarded as equivalent to adding one
complete arc to the map. In the case of Figure 12.2, it may be regarded
as equivalent to reducing the number of regions of the map by one. In
either event, the Euler characteristic is reduced by one. The sphere with
a disc removed is homeomorphic to a disc.

Figure 12.3 depicts a sphere with two distinet discs removed. The
removal of this second disc again results in the Euler characteristic being
reduced by one. The sphere with two discs removed is homeomorphic
to an open cylinder. This process of removing distinct discs from a

Fig. 12.1
101
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Fig. 12.2
sphere may be continued. Clearly, such a surface with » discs removed
has Euler characteristic

r=2-r
it is termed a sphere with r holes.

Fig. 12.3

Figure 12.4 depicts a cylinder, suitably deformed, attached to a
sphere with two holes so that its two end boundaries are exactly married
to the boundaries of the two holes. Attaching such a cylinder in this way
is termed adding a handle. A sphere with two holes to which a handle has
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been added is homeomorphic to a torus. The process of adding handles
to pairs of holes may be continued. Any number of handles may be
added to a sphere with r holes provided that for p handles there are r
holes available, wherer = 2p. A sphere with two handlesand noremaining
holes is homeomorphic to a two-fold torus. Generally, a sphere with p
handles and no remaining holes is homeomorphie to a p-fold torus.

Fig. 12.4

When a map is drawn on a sphere with p handles and no remaining
holes, the surface may be topologically deformed so that no vertex and
no arc segment of the map lies along any of the former boundaries where
a handle has been rejoined on to the surface. Because of the requirement
for every region of a map to be simply connected, it follows that at least
one arc must travel lengthwise along every handle in the manner
depicted in Figure 12.5.

Fig. 12.5

B R
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Fig. 12.5
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It is now intended to detach each handle at one end only, resulting
in a sphere with p holes and p ‘tubes’ protruding from it. Such ‘tubes’ are
termed cuffs. Before this is done, however, further vertices are added
to the map, one at every intersection of an arc of the map and a bound-
ary where a handle is to be detached. Any such boundary now becomes
regarded as an arc of the map, as depicted in Figure 12.6. If the

Fig. 12.6

number of additional vertices added to the map in the way just
described is v, then the increase in the total number of arcs is 20 and the
increase in the total number of regions is ». Thus, if the original map
had V vertices, E arcs, and F regions, the modified map has V+v
vertices, B+ 2v arcs, and F +v regions. When the handles are detached
at one end so as to form cuffs, the arcs and vertices on the boundaries
are thereby duplicated. Thus, a further v vertices and v arcs are added,
making a total of ¥+ 2v vertices, £+ 3v arcs, and F' + v regions.

Fig. 12.7
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The resulting surface may be made closed if the holes left by the
removal of handle ends and the open cuff ends are all filled in by the
addition of discs. Clearly, 2p discs are required to complete this task.
The resulting surfaces is homeomorphic to a sphere, and has a map on it
having V + 20 vertices, E + 3v arcs, and F +v+ 2p regions, part of such
a map being depicted in Figure 12.7.

Since the Euler characteristic of a sphere is equal to two, it follows
that

(V+20)—(E430)+(F+v+2p) = 2,
whence
V—E+F =2-2p.

Thus, the Euler characteristic of a surface homeomorphic to a sphere
with p handles is given by
X = 2—2p.

For a sphere with handles and holes, the Euler characteristic is given by
X =2-2p-—r.

Now the Euler characteristic of a disc is one, and that of a cylinder
is zero. It would thus appear that the Euler characteristic of a sphere
with p handles and r holes can be obtained by the addition or sub-
traction of the various surfaces which are respectively attached or
removed. For example, a sphere with four handles and three holes has
Euler characteristic

x=2-2p-r
=2-8-3 = -9,
and this can also be obtained as
x = x(sphere)— (2p+71) y(disc)+ py(cylinder)
=2-(11x1)+(4x0) = —-9.

Further, a sphere can be reconstituted from a sphere with  holes
together with r dises. It can also be reconstituted from p open cylinders.
joined end to end so as to form one single cylinder, together with two
discs, Addition of the corresponding Euler characteristics in each case
yields respectively

x(sphere) = x(sphere with r holes)+ry(disc)

= 2~-1r)+r=2
and
x(sphere) = py(cylinder)+ 2y (disc)

= (px0)+(2x1) = 2.
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The resulting surface may be made closed if the holes left by the
removal of handle ends and the open cuff ends are all filled in by the
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The resulting surfaces is homeomorphic to a sphere, and has a map on it
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x = x(sphere)— (2p+7) x(disc)+ py(cylinder)
=2—(11x1)4+(4x0) = —-9.

Further, a sphere can be reconstituted from a sphere with  holes
together with r dises. It can also be reconstituted from p open cylinders.
joined end to end so as to form one single cylinder, together with two

discs. Addition of the corresponding Euler characteristics in each case
yields respectively

x(sphere) = y(sphere with » holes) +ry(disc)

= 2-1r)+r=2
and
x(sphere) = py(cylinder)+ 2y(disc)

= (px0)+(2x1) = 2.
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Generally, if » open surfaces Sy, . . ., Sy are joined together along
boundaries so as to give some resulting surface, the Euler character-
istic of this resulting surface is given by

x(resulting surface) = y(S1)+ ... +x(Sa).

All the surfaces obtained by removing dises from a sphere and
adding handles are two-sided. Figure 12.8 repeats the plane diagram of
the real projective plane discussed in Chapter 11. This rectangle may be
topologically deformed into a sphere with a hole having a boundary
corresponding to the original sides of the rectangle. Such a deformation
is depicted in Figure 12.9. When the corresponding sides of the hole are

A b B

a Y 44

B b A
Fig. 12.8

Fig. 12.9

married up, the directional senses being strictly observed, the result is a
closed surface ‘intersecting itself’ in a line segment as depicted in
Figure 12.10.

The closed surface of Figure 12.10 is one-sided. The end points
of the line AB are single points, but all other points on AB are double
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points. If the lower hemisphere, which is homeomorphic to a dise, is
now removed, a surface results which is termed a cross-cap. This is
depicted in Figure 12.11. Since it is equivalent to the real projective
plane with a disc removed, a cross-cap has Euler characteristic

% = x(real projective plane)— y(disc)
=1-1=0.
This value of y is the same as that for & Moebius band. In fact, a cross-

cap results if a Moebius band is deformed so that its boundary becomesa
circle.

Fig. 12.11
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Generally, if n open surfaces S, . . ., Sy are joined together along
boundaries so as to give some resulting surface, the Euler character-
istic of this resulting surface is given by

x(resulting surface) = x(S1)+ ... +x(Sn)-

All the surfaces obtained by removing discs from a sphere and
adding handles are two-sided. Figure 12.8 repeats the plane diagram of
the real projective plane discussed in Chapter 11. This rectangle may be
topologically deformed into a sphere with a hole having a boundary
corresponding to the original sides of the rectangle. Such a deformation
is depicted in Figure 12.9. When the corresponding sides of the hole are
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Cross-caps may be added directly to a sphere with holes, thus
making the resulting total surface one-sided. Since the Euler character-
istic of a cross-cap is zero, and since one hole is required for each cross-
cap, the Euler characteristic of a sphere with ¢ cross-caps and r remain-
ing holes is given by

r=2—q-r.
Overall, a sphere with p handles, ¢ cross-caps, and r holes has Euler

characteristic
X=2-2p—q-—r,

2p+q+r being the total number of holes before the addition of the
handles and cross-caps. A sphere with a handle, a cross-cap, and a hole
is depicted in Figure 12.12.

Fig. 12.12

When a surface is described as a sphere with p handles, ¢ cross-
caps, and 7 holes, it is said to be presented in standard model form. A
number of examples are given in the table following,

surface P q r x

sphere 0 0 O 2

dise 0 0 1 1

real projective plane 0 1 O 1
Moebius band o 1 1 0
eylinder 0O 0 2 0

torus 1 0 0 0

two-fold torus 2 0 0 -2
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In Chapter 5, the rank of an open surface was defined as the least
number of cuts required to make the surface homeomorphic to a dise,
and the rank of a closed surface was defined as that of the corre-
sponding open surface obtained by the removal of a disc. It follows,
therefore, that the rank of a surface whose standard model is a sphere
with p handles, ¢ cross-caps, and no holes is that of the open surface
with a corresponding standard model having p handles, ¢ cross-caps,
and one hole.

The simplest example is provided by a sphere. Its standard model
has

p = q =7 = 0’
and its rank is that of a disc, for which
p=q=0,r=1

The rank in each case is zero.
For a torus with a hole,

p=r=1¢=0.

To make this surface equivalent to a dise, two cuts are required. Such
cuts are depicted in Figure 12.13. Once these cuts have been made, the

Fig. 12.13

surface may be deformed to give the pentagonal plane diagram depicted
in Figure 12.14. This has the symbolic representation

+a+b—a—b + z,
the direction assigned to the side « being arbitrary. Since two cuts were
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Fig. 12.14

required to reduce the surface to a dise, the rank of the torus with a hole
is two, and the Euler characteristic is

X =2-2p—q-r,
=2-2-0-1= —1.

This value is confirmed by the plane diagram of Figure 12.14 which
has one distinct vertex, three distinct sides, and one face, giving

x=V—-E+F
=1-34+1= —1.

Figure 12.15 depicts a sphere with one cross-cap and one hole.
This may be cut once, as shown, and deformed to give the triangular

Fig. 12.15
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plane diagram depicted in Figure 12.16. The symbolic representation
of this surface is
+a+a + x

A

A X A
Fig. 12.16

The rank of this surface is one, and the Euler characteristic is

X=2-2p—q-r

=2-0-1-1=0,
or, alternatively,
x=V-E+F
=1-2-1=0.
Y
Fig. 12.17

The triangular plane diagram of Figure 12.16 may also be obtained
by a single cut in a Moebius band as depicted in Figure 12.17. This
confirms the values of p, ¢ and r for & Moebius band already given in
the standard model table.
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plane diagram depicted in Figure 12.16. The symbolic representation
of this surface is

+a+a + x.
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A X A
Fig. 12.16

The rank of this surface is one, and the Euler characteristic is
r=2-8p-gor
=2-0-1-1=0,

or, alternatively,
V—-E+F

1-2-1=0.
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The triangular plane diagram of Figure 12.16 may also be obtained
by a single cut in a Moebius band as depicted in Figure 12.17. This
confirms the values of p, ¢ and r for a Moebius band already given in
the standard model table.
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Figure 12.18 depicts a sphere with one handle, one cross-cap,
and one hole. This surface may be cut twice, as depicted by cuts d and e,
so that the two ‘protrusions’ become detached. The handle, together
with the portion of the sphere attached to it, may be deformed into a
torus with a hole. The cross-cap, together with the portion of the sphere
attached to it, is equivalent to a sphere with

g=r=1,p=0.

Fig. 12.18

These are the two surfaces discussed above, and whose plane diagrams
are depicted in Figures 12.14 and 12.16. Once these ‘protrusions’ are
removed, the remaining surface may be deformed into the triangle
depicted in Figure 12.19.

Fig. 12.19
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Thus, the sphere with one handle, one cross-cap, and one hole may
be decomposed into the three plane diagrams, depicted in Figure 12.20,
whose sides correspond to the two cuts d and e, the boundary z of the
hole, and cuts similar to those depicted in Figures 9.13 and 9.15. These
plane diagrams have symbolic representations

+a+b—a-b—d,
+c+c—e,
+d+e + z.

Fig. 12.20

The plane diagrams of Figure 12.20 may now be joined together by the
identification of sides d and e, as in Figure 12.21. Once these sides have
been married up and eliminated as boundaries, the resulting figure may
be deformed in the plane to give the polygonal plane diagram of
Figure 12,22, which has the symbolic representation

+a+b—a—-b+c+c + 2.

This diagram thus corresponds to the sphere with one handle, one
cross-cap, and one hole, and the original surface may be reconstituted
by suitable deformation of the polygonal plane diagram such that sides
which are identified are married up in conformity with the arrow-head

Fig. 12.21
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Fig. 12.22

directions. (It is not, however, possible to carry out this deformation in
its entirety in ordinary three-dimensional space.) The polygon of
Figure 12.22 has one distinet vertex, four distinct sides, and one face,
giving

r=1-44+1= -2
This agrees with the value of y obtained from the numbers of handles,
cross-caps and holes.

A two-way process has now been established. Polygonal plane
diagrams may be obtained from standard models, and surfaces may be
built up from polygonal plane diagrams. When a surface is built up in
this way, it is clear that the addition of every plane diagram equivalent
to a handle increases the rank by two, and the addition of every plane
diagram equivalent to either a cross-cap or a hole increases the rank
by one. Thus, for a closed surface, the rank is

2p+g =2y,
and for an open surface,
2p+q4r—1=1—y.

If a closed surface is also two-sided, its rank is 2p and its Euler charact-
eristic is 2—2p. From Chapter 6, p. 52

x=2-2g,

where g is the genus. Hence, for a closed two-sided surface, the genus is
equal to the number of handles of its standard model.
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Surfaces may be classified by reference to the symbolic representa-
tions of their corresponding polygonal plane diagrams. Thus, if a
symbolic representation contains at least one term which occurs only
once, the surface represented must be open. For example, a symbolic
representation of a cross-cap is

+a+a + x.

This is an open surface, and hence at least one symbol, in this case
just z, appears once only. If, on the other hand, a symbolic expression
is made up entirely of terms which oceur twice, the surface represented
must be closed. For example, a symbolic representation of a torus is

+a+b—a—>,

and here each of the two terms a and b appear twicé. The signs of the
terms are not of relevance in determining whether a surface is open
or closed.

In the case of closed surfaces, if each term of a symbolic repre-
sentation occurs once with positive sign and once with negative sign, the
surface represented must be two-sided, that is, its standard model does
not include a cross-cap. Similar considerations apply to the terms which
appear twice in the symbolic representations of open surfaces. Thus,
the representation

+a+b—a-b + x
denotes an open two-sided surface, whilst the representation
+a+b—a—-b+c+d—c—d

represents a closed two-sided surface. Since the standard model of any
one-sided surface must include a cross-cap, the symbolic representation
of such a surface must include a term appearing twice, on each occasion
with the same sign. The representations

+a+b—a+b
and
4a+b—a—b+c+c + 2,

for example, both represent one-sided surfaces, the former being closed
and the latter open.

The classification procedure described above leads to four distinct
classes of surface, namely:

closed two-sided surfaces, for which p = 0, ¢ = r = 0;

closed one-sided surfaces, for which ¢ > 0, r = 0;

open one-sided surfaces; for which ¢ > 0, r > 0;

open two-sided surfaces, for which ¢ = 0, r > 0.
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If two surfaces are homeomorphic they must clearly belong to the same
class from the four listed above. In addition, their corresponding values
for p, ¢ and r must be respectively the same, and their symbolic
representations must therefore be identified according to certain
prescribed rules. This topic admits of very considerable genmeral
development under a special topological study termed combinatorial

topology.

13

Continuity

Preservation of neighbourhood—distance—continuous and discon-
tinuous curves—formal definition of distance—triangle inequality—
distance in n-dimensional Euclidean space—formal definition of
neighbourhood—e¢-J definition of continuity at a point—definition of
continuous transformation.

In Chapter 3 the concept of a one—one bicontinuous transformation
was introduced, and this concept has underpinned the whole idea of
topological equivalence. Thus, two figures are homeomorphic if one can
be transformed into the other by any one—one bicontinuous trans-
formation. The intuitive approach to such transformations is clearly
inadequate for any precise development of topological concepts,
though it is useful where it is intended merely to give a general intro-
duction to the kinds of topies which are studied under the heading of
‘topology’. By requiring that such transformations and their inverses
preserve neighbourhoods, in that points which are in some sense ‘near’
remain ‘near’, only a very imprecise definition is in fact presented,
because the word ‘near’ needs to be precisely defined in mathematical
language. Clearly, in order to define ‘near’, some sort of understanding
of ‘distance’ is also required, and, whilst this is easily understood in the
familiar context of three-dimensional Euclidean space, it is not so
obvious when the more abstract spaces of the mathematician are being
considered. It is also true that the neighbourhood approach, even when
precisely defined in terms of distance, is too restrictive for the needs of
the topologist, since it is often required to consider sets for which any
intuitive understanding of distance, and hence of nearness, would be
largely meaningless. To make a first intuitive approach to confinuity
is, however, generally helpful.

Figure 13.1 depicts a continuous curve in a plane. If axes are added,
as in Figure 13.2, then the curve defines a one-one bicontinuous
transformation of the set of real numbers to itself. The transformation
is one—one because, given any point z, a single point y is defined as the
image of that x and of no other z, in the way indicated. The trans-
formation is biconfinuous, because any point ‘near’ z is mapped to a
point ‘near’ y by the transformation, and any point ‘near’ z by its

117
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Fig. 13.1

v

Fig. 13.2

Fig. 13.3
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inverse. The - and y-axes both represent the set of real numbers R.
A number ‘near’  may intuitively be regarded as lying within some
prescribed distance from  on the axis, as depicted in Figure 13.2.

Figure 13.3 depicts a transformation that is not one-one, although
the original curve is very similar to that of Figures 13.1 and 13.2. The
difference between these curves is, however, very important. The curve
of Figures 13.1 and 13.2 increases throughout, that is, any increase in
necessarily involves an increase in y. However, that of Figure 13.3 does
not so increase. It reaches a peak, then temporarily decreases before
finally increasing again. As a consequence, it is possible to find pairs
of points, for example the pair (o, 1), each mapping to a single point y.
Such a transformation is termed many—one. The curve is again con-
tinuous, however, and a point ‘near’ to any point z is still mapped to a
point ‘near’ to the point y corresponding to z.

Yip—<¢—n

e o
I
e~
v

Yo—-<

Fig. 13.4

Figure 13.4 depicts what can intuitively be seen to be a discon-
tinuous curve. This particular curve increases everywhere so that it
still represents a one—one transformation, but the neighbourhood
preserving property of the earlier transformations is now lost. The
points zp and x; may be thought of as in some sense ‘near’ each other,
but the two points yo, y1 to which they are respectively mapped are
clearly not ‘near’ in the same sense. In the first place, a continuous
progress from the value z¢ to the value z; involves a sudden jump in
the corresponding progress from yo to yi. This jump takes place
immediately after the point P indicated on the curve, that is, there is a
continuous increase in y as x increases up to and including the values
corresponding to P, thereafter as z further increases continuously
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there is the jump in the value of y. In the second place, for the inverse
transformation, there are values of y for which no corresponding values
of z are defined, namely those values of y which are in the ‘gap’ where
the jump in the curve occurs.

In order to be mathematically precise about ‘nearness’ and
ultimately about ‘continuity’ also, it is necessary first to be precise
about ‘distance’. If o, z; are two points on an axis representing the set
of real numbers R, the distance between z¢ and 2; is defined as

d(xo, 1) = |wo—21|,

that is, as the modulus of the difference between the two real numbers
being represented. It is now possible to specify ‘nearness’ by requiring
that for two points considered ‘near’ each other the distance between
them must be less than some prescribed positive quantity.

Tt is clear that distance as defined above satisfies certain conditions.
In the first place, the distance between any two distinet points must be
a positive quantity. Secondly, if the distance between two points is zero
then it follows that the points are not distinct, but are one and the same
point. Thirdly, the distance from any point o to another point z; is by
definition the same as the distance from z; to zg; the direction of travel
is irrelevant. Fourthly, distances may be added so that the sum of the
distances from & point o to a point 21 and from a point z; to a point
x2 gives the total distance from zp to w2 provided that the same
direction of travel is maintained, that is, provided that z lies between
xo and xz. This is depicted in Figure 13.5.

€ — — —-d(Xg, X )~ — — »ed(x;, X, )

Xo X1 X2

- ——— d(xg, X3)-————-—— >
Fig. 13.6

Tt is not necessary, however, to confine the concept of distance to
the one dimensional case of points lying on an axis representing the set
of real numbers R. If Py, P; are two points lying in a plane with co-
ordinates (zo, ¥o), (%1, y1) relative to a set of rectangular Cartesian
axes, then the distance from Py to Py is defined as

d(Py, P1) = +/[(xo—x1)2+ (o—41)?],

where the positive square root is to be assumed. This formula is an
expression for Pythagoras’ theorem, as may be seen from Figure 13.6.
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Fig. 13.6

Distance, as now defined, satisfies the same first three conditions
of the one-dimensional case, but, instead of being simply additive, it
now satisfies the triangle inequality

d(Po, P1)+d(Py, P3) 2 d(Py, Ps).

This is an expression of the familiar geometric theorem which states
that the sum of the lengths of two sides of a triangle is greater than the
length of the third side, with the equality allowing for the degenerate
case where all three points lie on a straight line. The one-dimensional
case also satisfies this inequality. The triangle inequality is depicted
in Figure 13.7. It will be seen that because the expression is an inequality,
there is no longer any requirement for a restriction on the relative
positions of the three points Py, Py, Pj in the plane.

The two-dimensional expression for distance can be generalized
to three or more dimensions. Thus, in the three dimensional case,
distance is defined by

d(Py, P1) = 4/[(o—21)2+ (yo—¥1)%+ (20—21)?),
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where (zo, Yo, 20), (%1, ¥1, 21) are the respective co-ordinates of Py, Py
relative to an appropriate set of three axes, as depicted in Figure 13.8.

In each of the definitions of distance given so far, the context in
which the definition has been made is an n-dimensional Euclidean
space, in which each axis represents the set R. This is a far too restrictive

Zy

Zy

e D ———-1%

N

A4

Fig. 13.8

context for the purposes of topology, though it provides a useful
starting point. The emphasis, however, should be placed, not on the
formula for calculating distances, but on the properties satisfied,
namely:

d(Po, P1) 2 0;

d(Po, P1) = 0 if and only if P = Py;
d(Po, P1) = d(P1, Po);

d(Py, P1)+d(Py, P3) = (dPg, P2).

Still remaining within the context of n-dimensional Euclidea
space, it is now possible to give a more precise definition of ‘nearnes:
and hence also of ‘continuity’. If xg, 21 are points on a real axis (th
is, an axis representing the set R) then zo and 71 can be said to
o-near if

d(zo, xl) <4,
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where § is some preseribed positive real number. The set of all points
3 for which the given condition is satisfied is termed a neighbourhood
(or open ball) of z.

The intuitive definition of ‘continuity’ can now be made more
precise. Given a many-one or one—one transformation which maps the
set R to itself (or a subset of itself), such as that depicted in Figure
13.9, the transformation is said to be continuous at the point xy if, given
any positive quantity ¢, however small, there exists a positive quantity
4 such that for all points x; for which

d(xo, :tl) < 5,
it is true that
d(yo, y1) < &,

where ¥, y1 are the points to which ¢, 21 respectively are mapped
under the given transformation. Thus, the neighbourhood of zg is
mapped to a neighbourhood of yo.

v

Fig. 13.9

Figure 13.10 repeats the discontinuous transformation of Figure
13.4. If ¢ is first chosen as depicted, then it is not possible to find any
positive quantity § satisfying the prescribed condition for continuity.
The condition is satisfied for points z; lying to the left of xp on the
axis, but if x; lies to the right of zg, no matter how close, the point y1
to which it is mapped is necessarily at a distance greater than ¢ from
yo at xo. It is, however, continuous everywhere else. If, for example,
the point ' is considered, where xp’ < g, then, however small the
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value of ¢ is chosen to be, there is always some § such that for-all points
z, for which

d(xo’, 21) < 9, then d(yo’, 11) < e

It is important to note that it is the quantity ¢ which is first specified,
and that the condition for continuity at a point is then defined in terms
of the existence of the quantity J.

v

YO'_"/‘

Fig. 13.10

A transformation is said to be continuous if it is continuous at every
point z of its domain, where the domain of a transformation is the set
of all points which are to be mapped by the transformation concerned.
A transformation is said to be bicontinuous if it is continuous ‘both
ways’, that is, if it is itself continuous and if its inverse is a continuous
transformation also.

So far, the language of set theory has been kept to a minimum.
It now becomes necessary however to extend the use of this language
to a certain extent in order to present topological concepts precisely
and in a form which is not restricted to the context of n-dimensional
Euclidean space. The next chapter is therefore devoted to a brief
resumé of those concepts and terms from set theory which will be
required in subsequent chapters as some of the concepts of topology
are presented in formal mathematical language. Readers who are
familiar with set-theoretical language may proceed directly to
Chapter 15.

14

The Language of Sets

Sets and subsets defined—set equality—null set—power set—union
and intersection—complement—laws of set theory—Venn diagrams
—index set—infinite sets—intervals—Cartesian product—n-dimen-
sional Euclidean space.

In a number of the preceding chapters, the words ‘set’ and ‘subset’
have been used in contexts where their meanings should have been
intuitively clear. For example, in the proof of the Jordan curve
theorem for a polygonal path (see Chapter 9), the set of points of the
plane not belonging to the path itself was divided into two disjoint
subsets, subsequently defined as the subsets of points outside and
inside the path respectively. In this instance, the term ‘set’ was used
to denote the collection of all points in the plane, and the term ‘subset’
to denote a collection consisting of some but not all of the points
belonging to the original set.

A set is simply a collection of distinct objects such that, given any
object whatever, it is possible to determine whether or not the given
object belongs to that set. Thus, a typical set is the set of all integers
Z. Given any object whatever, it is possible to determine whether or
not it belongs to the set Z. For example, given the objects:

lemon, moon, 21, 2-75, 3/2,

it is possible to see that only the number 21 belongs to Z, the remaining
four objects not belonging to Z.
The expression
zeX

is the symbolic representation of the statement ‘the element x belongs
to the set X°, whilst the expression

z¢ X

is the symbolic representation of the statement ‘the elements = does
not belong to the set X’. The elements belonging to a set may be listed
or described. Thus, alternative representations of the set of integers
from 1 to 9 are

{1,2,3,4,5,6,7,8, 9},

125
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often abbreviated to
{2..,9}
and
{z:xis an integer and 1 < 2 < 9},
read as ‘the set of elements z, such that x is an integer and one is less
than or equal to x, which is less than or equal to nine’. Two sets are
equal if and only if they comprise exactly the same elements.

If every element of the set X is also an element of the set Y, then
the set X is a subset of the set Y. This is written

Xc?Y,

in which case Y is also a superset of X. If, in addition, X and Y are not
equal, then X is a proper subset of Y, written

XecV.

Thus, every set is a subset but not a proper subset of itself. Clearly,
also,
fXc Yand Y < X,then X = Y.

The null set (or the empty set) is the set having no elements, and is
denoted by the Scandinavian letter . The null set is a subset of every
set, including itself; that is @ = X for every set X. It is usually
regarded as an improper subset of any set X.

The power set of a set X is the set of all subsets of X. Thus, if

X = {zo, 21, 22},
then the power set of X is given by

P(X) = {X, {=o, 21}, {wo, z2}, {1, @2}, {wo}, {1}, {22}, T}

Clearly, if X has a finite number of elements, n, say, then the power set
of X will consist of 27 subsets of X.

The union of two sets, X and Y, is the set whose elements are
either elements of X, or of Y, or of both X and Y. Thus, if

X = {a,b,c,d,e}, Y ={d, e, f g},
the union of X and Y, written X u Y, is given by
XuY={abcdelfg}

The intersection of two sets, X and Y, is the set whose elements are
elements both of X and of Y. Thus for the two sets X and Y defined
above, the intersection of X and Y, written X n Y, is given by

XY ={de}
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If there are no elements common to both X and Y, then X n ¥ = ¢,
and they are said to be disjotnt.

The union and intersection of sets may often be usefully illustrated
by means of Venn diagrams. Figure 14.1 is a Venn diagram in which
sets X and Y are depicted by intersecting circles, and the shaded area

X Y

Fig. 14.2

represents X U Y. Similarly, the shaded area of Figure 14.2 represents
X A Y. Figure 14.3 depicts two sets which are disjoint. In all these
Venn diagrams, the set of elements belonging to X and Y is represented
by the areas inside the respective circles labelled X and Y.

X Y

Fig. 14.3
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The complement of a set X, written X', is the set of all elements
not belonging to X. Usually, the total set of elements being considered
is restricted to some overall set, termed the universal set U, and the
complement of any set X is defined relative to this universal set U.

Fig. 14.4

The shaded area of the Venn diagram of Figure 14.4 represents the
complement of X with respect to the universal set U. From the definition
of complement it follows that for any set X,

XuX =T
and that
XnX =¢.

The relative complement of a set X in a set Y is the set of all
elements of ¥ which are not also elements of X. The relative comple-
ment of X in Y is often written using the difference sign as

Y-X.
Clearly,
Y-X=YnX.

An illustration of set union, intersection and complementation
is provided by a continuous closed curve on a plane surface. The
universal set U of all points of the plane may be divided into three
disjoint subsets, the set C of points belonging to the curve, the set X of
points inside the curve, and the set Y of points outside the curve. This
is depicted in Figure 14.5. The set of points of the plane which are not
inside the curve is the complement of X, given by

X' =U-X
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Fig. 14.5

and the set of points of the plane which are not outside the curve is the
complement of Y, given by

Y=U-Y.

The sets X’ and ¥’ are not respectively equal to ¥ and X. Y and X are
proper subsets of X’ and Y’ respectively; thus,

YcX and X< Y.
Further, despite the fact that X and Y are disjoint, that is,
XnY =g,

X’ and Y’ are not disjoint since both include the set C' of points
belonging to the curve, thus,
XnY =0C.

In a similar manner, the regions of a map on a surface are disjoint
only if their boundaries are excluded. Thus, if regions F, F3 have a
common boundary, included in both F; and Fy, that common boundary
is given by the intersection

F 1N F 2.
The union of all such pairwise intersections, which may be written
U(F N Fy)
is the set of all points of the network comprising the boundaries of the
regions only.
The set operations of union, intersection and complementation

satisfy a great number of laws, the most fundamental of which are
given below:

Idempotent laws:
XuX=2X,
XnX=X;
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Commutative laws:
XuY=YulX,
XnY=YnX;
Associative laws :
(XuY)yuZ=Xu(Yu2Z,
XnYNnNnZ=Xn(Yn2Z),;
Distributive laws :
Xu¥nZ)=XuvY)n(XuZ),
XnYuZ)=(XnY)u(XnZ);

Identity lows:

Xug=2X,
Xng =0,
XuU=T,
XnU=X;

Complementation laws:
XuX =17,
XnX =g,
X'y = X,
g =71,
U =g,

De Morgan's laws :
XuYY=XnY,
XnYYy=XuvY.

If X is a subset of ¥, that is if X < Y, then the following expres-
sions are all equivalent and true:

XuY=7,
XnY=2X,

Y X,
XuY=01,
XnY =g,
XuvY =X,
X'nY =Y,

T e R
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These relationships can more easily be seen by reference to the Venn
diagram of Figure 14.6, where the set X’ is denoted by vertical shading
and the set Y’ by horizontal shading.

U
™~
A

D/*xk\

‘I\

/
N
— L

Fig. 14.6

The symbolic representation for the union of a number of sets, Xj,
has already been introduced above, and may be written as

U X
*

The corresponding symbolic representation for the intersection of a
number of sets, X;, is

N X.

i

In order to make these symbolic representations precise, it is necessary
to introduce the concept of an index set, the elements of which may be
considered simply as names or labels. Given a collection of sets (or
subsets of a set), any one may be identified if to each is assigned a
unique element of the index set. Thus, if a collections of eight sets is to
be indexed, the index set may be the set of integers

{0,1,2,3,4,56,7),
or the set of letters
{a,b,¢c,d, e, f, g, b},

or any other suitable set consisting of eight elements. The two just
suggested would give, for example,

(Ko, X1, . . > X;)
or
(X, X, .. 0 X,
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The collection of sets to be indexed is thus put in one-one corre-
spondence with the elements of the index set chosen. Where & collection
of sets is indexed by means of a set M, then this is represented sym-
bolically by

{Xs:ie M.
The symbolic representations for the union and intersection of the
collection of sets are thus
U X¢ and ﬂ X¢
ieM eM
respectively. If ¥ = @, then
UXi=Zand (| X; =U.
ieM ieM

The most frequently encountered sets used to index a collection of
sets are the set of non-negative integers, {0, 1, 2, . . .}, and the set of
positive integers, {1, 2, 3, . . ., }. These may be used to index infinite sets
and infinite collections of sets. An infinite set which can be so indexed
is said to be denumerable (or countable). The set of all rational numbers is
an example of a denumerable set, though it is not immediately obvious
that it can be put into one-one correspondence with the positive integers.
The set of all real numbers is not denumerable, neither is any interval of
the set of real numbers, such as the unit interval [0, 1].

The Cartesian product of two sets, X and Y, is the set of all ordered
pairs of elements (z, y), such that = is an element of X, and y is an
element of Y. For example, if

X = {a,b,¢c,d}, Y = {0, 1},
then the Cartesian product of X and Y, denoted by X x Y, is given by
XxY = {(a,0), (a 1), (5,0), (b, 1), (c, 0), (¢, 1), (d, 0), (d, 1)}.
Clearly, if X has m elements and Y has n elements, then X x ¥ will
have mn elements. For the sets X, Y above, the Cartesian product
Y x X is given by

Y xX = {(0, a), (0, ), (0, ¢), (0, d), (1, a), (1, 0), (1, ¢), (1, d)}.
This is not the same set as X x ¥ because the ordering of the elements
within the pairs is taken into consideration. If X x ¥ = ¥ x X then it
follows that X = Y.

In the same way the Cartesian product of three sets, X, ¥, Z, is
the set of all ordered triples (z, y, 2), such that € X, y € ¥, z € Z. This
concept may be generalized to an infinite number of sets by using the
set of positive integers Z as an index set, and writing

11 X.

TeZ
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If X and Y are each the set of all real numbers R, then the Car-
tesian plane will be represented by the Cartesian product R x R. This
will be denoted by R2. Generalizing this, gives

R*"=Rx ... xR
\._____Y.___J
7 times

as the set of all points in n-dimensional Euclidean space, each point
being identified by an n-tuple of real numbers (x1,..., zs). It is
important to remember, however, that the formal definition of «-
dimensional Euclidean space also includes the definition of the general-
ized distance function (see page 122).
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Functions

Definition of function—domain and codomain—image and image
set—injection, bijection, surjection—examples of functions as trans-
formations—complex functions—inversion—point at infinity—bilin-
ear functions—inverse functions—identity function—open, closed,
and half-open subsets of R—tearing by discontinuous functions.

A function is a rule or correspondence which assigns to each element
of a given set, known as the domain of the function, an element of a
second set, known as the codomain of the function. Thus a function

[ XY
assigns to each z € X a single element y € Y. In the example shown in

Figure 15.1, the domain of the function is the set {a, b, ¢, d, ¢} and the
codomain is the set {1, 2, 3}.

XC\\°7/>
N

Fig. 15.1

The element of ¥ which corresponds to a given element x of X is
termed the value of the function at z, and also the image of the element
# under the function f. It is usually denoted by f(z). Thus, for the
example of Figure 15.1,

fla) =1, f() =3, f(c) = 2, f(d) = 3, fle) = 3.
The set of all values f(x), = € X, is called the image set and is denoted
by f(X). Thus, in this instance,

f(X)=11,2,3} = Y.
134
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The image set must necessarily be a subset of the codomain of a function;
it does not, however, have to be equal to the codomain. Figure 15.2
depicts a function whose image set is a proper subset of its codomain.
Tt is important to note, however, that although there may be elements

ISR,
RN

Fig. 15.2
of the codomain which are not the image of any element of the domain
(as when the image set is a proper subset of the codomain), there must
be no element of the domain without a corresponding image.
If a function f: X — Y assigns elements of ¥ to elements of X
in such a way that no element of ¥ is the image of more that one element
of X, then the function is termed an injection. Figure 15.3 depicts an

—

X

UPC\C\O
v // \\\\
<133;5%89>

Fig. 15.3

injection f: X — Y. The correspondence of Figure 15.3 is one-one, but
the image set is not equal to the codomain of the function. If the
correspondence is one—one and if at the same time f(X) = Y, then the
function is termed a bijection. Figure 15.4 depicts a bijection
f: X = Y. If, on the other hand, f(X) = ¥, but the correspondence is
many-one, that is, some y € Y is the image of more than one x € X, the
function is called a surjection. Figure 15.5 depicts such a surjection,
f: X = Y (as also does Figure 15.1). (Most mathematicians regard
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i)
)

P

Y

Y

Fig. 15.56

bijections as a special case of surjections, i.e. the expression ‘many-one
correspondences’ is taken to include one—one correspondences.) Clearly,
if the domain and codomain both consist of finite numbers of elements,
then the codomain will have more elements than the domain in the
case of an injection, the same number of elements in the case of a
bijection, and fewer elements in the case of a surjection which is not a
bijection.
A simple example of a function f: R — R is provided by

f(x) = az+b,

where a, b are real constants, and a is non-zero. Such a function, for
example the one shown in Figure 15.6, is a bijection, since it is one—one,
and the image set and the codomain are the same, thatis X = ¥ = R.
If, however, the constant a is zero, then the function f: X — ¥ becomes
many-one and is therefore no longer a bijection. In this case, every
point « of the domain maps to the one point b of the codomain, and the
image set becomes the proper subset of the codomain consisting of the
one element b, as shown in Figure 15.7. In this case, the function is
neither an injection, nor a bijection, nor a surjection. It can be made a
surjection, however, by redefining the codomain from the start as the
image set {b}.
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y b---

N\

—» X
l/,
Fig. 15.6
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Fig. 15.7

The particular bijection of Figure 15.6 provides an example of a
linear transformation which stretches or compresses without tearing.
Figure 15.8 shows how a bijection stretches a subset X of R onto its
image f(X). Figure 15.9 shows a similar situation, but in this case X is
compressed rather than stretched. Clearly, for the bijection f: R — R,
given by f(x) = ax+b, it is the value of the constant a that determines
whether a given interval X of R is stretched or compressed onto its
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A

v

Fig. 15.9

image f(X). If @ > 1, then X is stretched, and if ¢ < 1, then X is
compressed. If ¢ = 1, then X is neither stretched nor compressed.

An example of stretching and compressing which is not linear is
shown in Figure 15.10, where f: R — R} is the function

fl@) = 22,

(R$ is the set of all non-negative real numbers.) Since each element of
R{ is assigned to two elements of the domain, except in the case of
zero, the correspondence is many-one. However, f(R) = R§, so the
function is a surjection. It will readily be seen that whether or not any
particular interval X < R is stretched or compressed depends on
whether the interval is a subset of {z: |x| 2 1}, orof {z: |z} £1}. In
Figure 15.10 the subset X, is compressed whilst the subset X, is
stretched.

In considering whether or not a given interval is stretched or
compressed it is necessary to consider respectively those intervals

(o)~ \ 1|/t

i
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lying wholly in 1 £ ¢ < 0 or —o0 < 2 £ —1, and those lying in
0fL£2=21or ~1 %<2 =<0. In other words, the interval must be
selected so that it lies either wholly in the area of stretching or wholly
in the area of compression, and also so that the transformation is
effectively one-one. If, for example, an interval were considered which
included both positive and negative values of z, then, although the
condition for continuity may be satisfied, there would now be a many-
one situation where pairs of elements of the domain would map to a
single element of the codomain. In the context of topological trans-
formations, such coalescence of points is not permitted.

The first three chapters considered the way in which the equivalence
classes of the various geometries could be determined in terms of
permitted transformations. Congruence classes, for example, were
defined as equivalence classes obtained when only rigid transformations
are permitted between elements belonging to the same class. By
contrast, topological equivalence classes allow elastic deformations
such as bending and stretching, or even cutting provided that the cut is
subsequently exactly repaired.

The rigid transformation of translation in ordinary three.
dimensional Euclidean space is a bijection, f: R3 — R3, such that each
point z of R3, given by the ordered triple (21, 3, 23), is mapped to a
unique point f(z) of R3, given by the ordered triple (x;+a;, z2+as,
xz3+ag), where aj, a2, ag are real constants. The rigid transformation
of rotation in R? is a bijection, f: R2 — R2, such that one point of R,
termed the centre of rotation, is mapped to itself, whilst all other
points of R2 are mapped so that each and every ray from the centre of
rotation is mapped to a corresponding ray of a fixed angle from it. If
the centre of rotation is taken as the origin of a polar co-ordinate system
(r, ), then f maps according to the rule,

(r, 0) = (r, 0+)

where the fixed angle o is termed the angle of rotation. The rigid
transformation of reflection in R3 is a bijection, f: R3 — R3 which
maps each point on some line L in R3 to itself, whilst each point of R2?
not belonging to L is mapped to the corresponding point perpendicu-
larly opposite to it with respect to the line L.

When the equivalence classes are such that similar figures are
within one and the same class, magnification and contraction are
permitted transformations. The elastic transformation of magnification
in R3 is a bijection, f: R3 — R3, which maps one point of R3, termed
the centre of magnification, to itself, whilst all other points are mapped
so that the image of every point lies on the same ray as the point itself
but at a distance greater (or smaller in the case of contraction) from the
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centre of magnification. If the centre of magnification is taken as the
origin of a rectangular Cartesian co-ordinate system, then the bijection
f: R3 > R3 maps according to the rule

f: (xlt e, 3:3) — (axly azy, a'zs),
where a is a positive real constant greater than one in the case of
magnification, and less than one in the case of contraction. If the centre

of magnification is taken as the origin of a conventional spherical co-
ordinate system (r, 8, ¢), then f maps according to the rule

(r» 69 ¢) L (ar, 0: ¢)’

It has already been seen that where the domain and codomain of a
function are both identifiable with the set of real numbers R {or with
subsets of R), it is possible to give a pictorial representation of the
function as was done, for example, in Figures 15.6 to 15.10. Such simple
pictorial representation is, however, confined to functions of a single
real variable.

Functions of a complex variable are functions where the domain
and codomain are both identifiable with the set of complex numbers C,
which is, in turn identifiable with R2. Thus, the complex number
z = w41y, where 2 = —1, is identifiable with the ordered pair of real
numbers (z, ¥). It is usual to express the rule for a function f: C - C
in the form

w = f(2),
where
w = u+w, and z = z+y.

Any particular subset of C taken as the two-dimensional equivalent
of an interval of R, then becomes a subset of a plane representing R2
with z- and y-axes, and the corresponding image set of the codomain of

a function f is then a subset of a second plane, also representing R?2
but with u- and v-axes.

As an example, Figure 15.11 depicts the elastic deformation of the
boundary of a triangle under the complex function having the rule

flz) = 22+ 1.
The domain of f is the subset of C consisting of all elements z € G such

that they may be represented by the sides of the triangle ABC with
vertices given by the ordered pairs (0, 0), (1, 0), (1.1). Now

w = ut+w
= f) = 2+1
= (x+iy)2+1
= 22— y2+14422y.

Functions 141

Since ordered pairs (o, yo), (%1, 1) are equal if and only if xg = z; and
Yo = y1, it follows that

u=a2—y2+1, v = 2zy.

The function thus assigns the ordered pairs (1, 0), (2, 0), (1, 2) in the

codomain to (0, 0), (1, 0), (1, 1) in the domain. The side AB of triangle
ABC is the subset

{(z,0):0 2z £ 1}.
Substituting ¥y = 0 into the expressions obtained for u and v now yields
u=224+1,v =0,
Thus the image of {(x,0):0 £ z £ } is thus
{(u,0):1 = u £ 2}.

This is the side 4’B’ in Figure 15.11. The image of the side BC is
obtained by substituting # = 1 into the expressions for » and v, giving

u=2-y2v=_2y.
Elimination of y yields v2 = 8 —4u. Thus the image of
{Ly:0=sy=s1}

fe-sosres

This is the curved side B'C’ depicted in Figure 15.11. Finally, the image
of the side C4 is obtained by substituting y = x into the expressions
for u and v, giving

is

u=1,0= 22
Thus the image of
{(z,2):1 2 2= 0}
is
{(L,v):2 2 v 2 0}.
This completes the triangle A’B'C’ of Figure 15.11.
If the interior points of triangle ABC of Figure 15.11 are con-

sidered as well as the set of points comprising its boundary, then the
domain of the function f becomes

{,9):0 <z <1and 0 <y <z}

Tt is not difficult to show that this set of interior points maps to the set
of interior points of triangle 0'B'C’. The deformation is not an affine
transformation since straight lines are not preserved. Both triangles
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Fig. 15.11

are, however, homeomorphic to a dise, so such a deformation is clearly a
permitted topological transformation.
Another function f: G — G is that having the rule
1
flz) = =, where z # 0
2

Here,

z+1y

x . Yy
—— e Y, .
x2+y2 x2+y2

Thus,
d Y
=—— = ———
x2+y2 x2+y2

The effect of this function upon a subset of R? can more readily be
appreciated if polar coordinates are used. Thus, if the ordered pairs
(x, y) are replaced by their corresponding polar representations (r, 0),
where

x=rcosf,y =rsind,

the image of each point (r, 8), will be the point (1/r, —68). Each and
every point z on a given ray from the origin is mapped to a corre-
sponding point w which lies on the reflection of that ray across the
line § = 0 or n and which is at a reciprocal distance from the origin.
This deformation thus combines reflection across the z-axis with what
is termed inversion with respect to the unit circle 22+y2 = 1.
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Figure 15.12 shows the transformation by f of the line 4B, which
is the subset
{(z,2):1 £z < 2}.

Substituting y = z in the appropriate expressions for u and v yields

1 1
U= —, 0= ——,

Also, the ordered pairs (1, 1), (2, 2) are mapped respectively to (3, —1),
(3, —1). Hence the image of {(z,2):1 < « < 2} is

{w, —u):3 2 u 2 3}

In Figure 15.12, only one plane representing R2 has been used. The two
components of the transformation have been indicated by also depicting
the intermediate stage where AB is simply inverted with respect to the
unit circle.
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Clearly, the function with the rule f(z) = 1/z maps all points
outside the unit circle to points inside the unit circle and vice versa,
whilst at the same time mapping points above the x-axis to points
below the z-axis and vice versa. The image of the point (0, 0), if allowed,
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lies at an infinite distance from (0, 0) and is termed the point at infinity.
Similarly the point at infinity, if included in the domain of the function,
maps to (0, 0). This preserves the function as a bijection.

An extremely important class of functions f:C — C which
combine translation, inversion, reflection, magnification and rotation
is the class with the rule

az+b

f(Z) = m’

where a, b, ¢, d are complex constants and ad # bc. By the following
simple algebraic manipulation such functions may be rewritten in a
form where the various components of the overall transformation can
readily be interpreted:

az+b
cz+d

f) =
_ (acz+be)/c?
T z4de
_ (bc—ad)[c® acz+ad
T 24dfe c2(z+dJc)
_ (be—ad)[cz a
T Tztdlc ¢

(1)

In the step-by-step analysis of the overall function (1), the first step
maps z to z+ (d/c). Since djc is a constant, the corresponding trans-
formation is a translation. The next step maps 21 to 1/z1, where

21 =2+~-.
[

The corresponding transformation is inversion with respect to the unit
circle together with reflection across the z-axis. Next 23 is mapped to
[(bc—ad)/c?]z2, Where

1 1

n zt+@e)

Since (bc—ad)/c? is a constant, the corresponding transformation is
magnification (or contraction) together with rotation. This is easily
seen in terms of polar coordinates, for, if the polar form of (bc—ad)/c? is
(p, ¢), then multiplication by (p, ¢) magnifies and rotates each point
(r, 6) representing zs so that the resulting distance from (0, 0) becomes
pr and the resulting angle is 6+ ¢. The final addition of the constant
alc is simply a further translation. It can be shown that this class of

g =
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functions, known as the class of bilinear functions, maps the set of
straight lines and circles to the set of straight lines and circles.

Figure 15.13 depicts a mapping under the bilinear function
f: C - C with the rule

1—2
fe) = z_-q-—z
Here,
w = U+
1—2z
=f(z) = it
_i=(x+y)
1+ (x+iy)
—22—y24 14022
22+ (I +y)?

This gives

u z24-y2—-1 2z
= — s P =
22+ (L +y)? 22+ (1+y)?
The image of the z-axis {(z, 0)} is obtained by substitution of y = 0
in the expressions for » and v, giving

22—-1 2x
= - , V= 5
2241 x2+4+1

whence, on eliminating z,

u4+v2 =1,

which is the unit circle. By direct substitution into

1—z
flz) = i
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it is seen that (—1,0) is mapped to the point at infinity and that
(0, 1) is mapped to the origin. It can further be shown that the upper
half plane, ¥y > 0, maps to the interior of the unit circle.

If a function f: X — Y is a bijection, it has an inverse f-1: ¥ - X
which is also a bijection. For example, the bijection of Figure 15.4 (page
136) has the inverse shown in Figure 15.14. Similarly, the function
f:R = R, where

f(z) = 2z,
has the inverse f~1: R — R, where
z
“1(g) = —.
Jm) =3

w

Fig. 15.14

TENED.
)

If, however, a function f is only an injection, then, strictly, it does
not have an inverse since there are elements of the codomain which are
not images of any element in the domain. In reversing domain and
codomain on forming the inverse, there would be elements with no
image, and the result is thus not a function at all. If, however, the
domain of the ‘inverse’ is restricted to the original image set, then the
problem is circumvented. For example, the function with domain and
codomain the set of non-negative integers Z} and with the rule

fle) = 2

does not strictly have an inverse, since the images of the odd positive
integers under the ‘inverse’ would not belong to Z§. Restricting the
domain to the even non-negative integers circumvents the problem,
but the resulting function is not the inverse of f: Z4 — Z3 but of the
bijection which maps elements of Z} onto the even non-negative
integers with the same rule, f(z) = 2z.

Again, the function f: R —» R where
fl@) = 22
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does not have an inverse since not only does f(R) # R but also the
function is not one-one. In this case, for which f-1(z) = 4/, the
element 1, for example, maps to both —1 and +1, and the images of
negative numbers belong to C and not to R. The function f: RY » R}
with the rule f(x) = 22 does, however, have an inverse with

@) = va,
since only the positive root is taken and the function is a bijection.

By the definition of inverse function, it follows that the inverse of
the inverse of a function is the original function, that is,

)=y

Thus inversion of functions obeys the snvolution law. Further, there is a
class of functions for which each function is its own inverse. This is
the class of identity functions, f: X — X, with the rule

f(x) = .

The following functions are all examples of rigid or elastic trans-
formations which do not necessarily involve tearing:

f:R > R with the rule f(z) = az+b,

f:R{ = R{ with the rule f(z) = 22,

f:R2 - R2 with the rule f(xq, z1) = (wo+ao, x1+a1),
f: R2% 5 R? with the rule f(xo, 1) = (axg, ax1),

az+b
cz+d

J: C > C with the rule f(z) = , Where ad # be.

Some functions, however, do involve tearing, and two examples
are depicted in Figures 15.15 and 15.16. In Figure 15.15, which depicts
an injection f: R — R, the subset X of R which is the interval

{#:a £ 2 <b}
has an image f(X) consisting of two intervals of R:

{y:csy=sd}
and

{yresy=sf}

which are separated from each other. Thus X may be thought of as
having been ‘torn into two pieces’ by the function f. In order to
preserve the one-one correspondence, it is necessary to specify which of
d and e is the image of xo. In Figure 15.15, it has been carefully
indicated that d is the image of 9. This means that the boundary point
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Fig. 15.16

e of the interval {y:e <y < f} is not to be included. The subsets
{z:a <z <b}and {y:¢c Sy < d} are said to be closed since their
boundary points are included. The subset {y : ¢ < y < f} is not closed,
and further, if the other boundary point f is also excluded giving
{y:e <y <f}, then it is said to be open. The ‘intermediate’ case
where only one boundary point is included is sometimes said to be
half-open. The concept of an open set plays a fundamental role in the
definition of continuity in topology.

Figure 15.16 depicts an injection f: R2 — R2 where the particular
subset of R2 represented by the disc PQRS is considered. The function
maps (z, y) to (—1—z, y) for non-negative z, and (z, y) to (1-=,¥) for
negative z. The disc is thus ‘torn in half’ by the function as well as
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being reflected. One—one correspondence is preserved by mapping all
points lying on PR to points on P'R’. Thus the left-hand half-disc
P'R'S’ is a closed set, since the whole of its boundary is included,
whilst the right-hand half-disc is not closed, only part of its boundary
being included.

It has been seen in this chapter that rigid and elastic trans-
formations can be defined by appropriate functions, and that tearing is
intuitively associated with functions that are discontinuous. So long as
the domains and codomains of functions are either finite sets or subsets
of R or R2 (or even R3) then a pictorial representation in one form or
another is both practicable and useful. In order to arrive at a more
general understanding of continuity, however, it is necessary to develop
the concepts so far introduced in a more abstract context.
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Metric Spaces

Distance in Rr-—definition of metric—neighbourhoods—continuity
in terms of neighbourhoods—complete system of neighbourhoods—
requirement for proof of non-continuity—functional relationships
between ¢ and e—limitations of metric.

In Chapter 13 it was seen that for three-dimensional Euclidean space,
the distance between two points Po, P; satisfies the conditions:

d(Po, P1) 2 0;

d(Py, P1) = 0 if and only if Py = Py;

d(Po, P1) = d(Py, Py);

d(Po, P1)+d(Py, P) 2 d(Py, P2).
Generally, for z and y belonging to R#, the distance d(x, y) may be
defined as

d(z,y) = '\/[(xl_“yl)z'l' coo FH(Tn—yn)?,

where the n-tuples (21, . . ., Z»), (¥1, . - ., ¥a) are the coordinates of z
and y respectively. For any points z, y, z of R#, distance satisfies the
conditions:

d(z,y) 2 0;

d(z,y) = 0if and only if x = y;

d(z, y) = d(y, x);

d(z, y)+d(y, 2) 2 d(z, 2).
It is not, however, necessary to confine the concept of distance to
n-dimensional Euclidean space. If X is any non-empty set for which a
non-negative real number d(z, y) is defined for all elements z,y e X
satisfying the four conditions above, then d is termed a mefric and the
set X together with the metric d is termed a metric space. The metric d

is a function X x X — R}. A simple example of a metric space is

provided by any non-empty set X together with a metric d defined by
Oifx=y
d s = .
= 9) {a>01fx¢y
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for all z,y € X. It can easily be seen that the four conditions for a
metric are satisfied by d as defined above.

Another example providing a set of metric spaces is the set of all
n-figure binary numbers with the metric d defined as the number of
changes of digits required in going from one number to another. Thus
if in the set of five-figure binary numbers x = 01101 and y = 10111,
then d(z, y) = 3, since there is a change in each of the first, second and
fourth digit places (reading from left to right).

In Chapter 13, it was seen that for any point 2o € R, the set of all
points z of R satisfying

d(zg, ) < 6

(where d is the usual metric in R) is termed a neighbourhood (or open
ball) of zy. Clearly, a different neighbourhood of xy is defined for each
chosen value of 3. The subset satisfying d(zg, ) < p is termed the
neighbourhood of zo of radius p and denoted by N(zo; p).

Figure 16.1 depicts a point xy belonging to a subset X of R2,
where X is the set of all points within and on the continuous closed
curve C. The neighbourhood of y in R2? of radius p is represented by the
circle with centre xzp and radius 7, excluding the circumference. The
neighbourhood of g in X of radius p is represented by that part of the
interior of the circle which is shaded, including interior points of the
circle belonging to C. Clearly,

N(xoe X; p) = X n N(zo € R?; p),
and a similar relationship will hold for any point z € X < R2,

Fig. 16.1

In the case of the non-empty set X and the metric d defined by
d(x,y) ={0 if = Y
a>0ifz # y,
the neighbourhood in X of any point # € X of radius a consists of the

single point z itself, since any point other than x is defined to have
distance @ from z. In the case of the set of five-figure binary numbers
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with d defined as the number of changes of digits in going from one
number to another, the neighbourhood of 01101 of radius 3 is the
subset

{01101, 11101, 00101, 01001, 01111, 01100, 10101, 11001,
11111, 11100, 00001, 00111, 00100, 01011, 01000, 01110}.

This is the subset of all five-figure binary numbers differing by zero,
one, or two digits from 01101. The concept of a neighbourhood of given
radius may thus be generalised to sets other than subsets of R%.

The definition of continuity of functions, given in Chapter 13,
may now be re-expressed in terms of neighbourhoods where functions
are mapping one metric space to another. If X, ¥ are two metric spaces
with metrics d, e respectively, and if #p € X, then a functionf: X —» Y
is said to be continuous at xo if, for each neighbourhood of f(xzo) in ¥,
there is some neighbourhood of zg in X whose image is in the neighbour-
hood of f(z) in Y. Symbolically, if for every radius ¢ there is a radius ¢
such that

fiNxeX;0) c N(f®) e Y;e),

then f is continuous at zo. If this holds for all 2 € X, then the function
is continuous at each and every point of its domain and is said simply
to be continuous. Thus ‘continuous’ means ‘continuous everywhere’.

The term open ball for a neighbourhood of given radius arises
from a consideration of neighbourhoods in R3. Such a neighbourhood
in R3 has a radius defining its boundary and consists of the set of all
the points within this boundary. Such a set is an open set, and a given
point of R3 together with the given radius defines the interior of a
sphere. Hence the term ‘open ball’ (rather than open sphere) is used to
emphasise that it is not the surface of the sphere which is being con-
sidered. A neighbourhood of a general nature is simply a subset of
points containing & given point together with some open ball about that
point. The set of all neighbourhoods of & given point z € X is termed
the complete system of neighbourhoods of z.

An example of a function which is continuous over a certain
subset of R2 but not continuous everywhere was depicted in Figure
15.16 (page 148). The same function is depicted in Figure 16.2 where
X = {#,9):z <0}, and ¥ = {(2,): = = 0}. The images f(X), f(Y)
are as depicted in the figure. If a = (0, a) is some point of the subset
{(0, y)}, then @’ = f(a) = (—1, a) is a point of the subset {(-Ly} If
0 < ¢ < 2, then the neighbourhood of a' in R2, N(a'; ¢) contains no
points of f(X). However, all neighbourhoods of a in R2 do contain points
belonging to X. There is thus no § corresponding to ¢ such that

fN(a;0) < N';e),
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and the function is therefore not continuous at a. Since a was taken as
an arbitrary point of {(0, y)} it follows that f is nowhere continuous on
{(0, )}. If, however, any point of X or Y is chosen not belonging to
{(0, ¥)}, there will always be some §, however small, satisfying the
continuity condition. The function is thus continuous everywhere in R
except for the subset {(0, ¥)}.

N\
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To prove that a function is not continuous it is only necessary to
find some ¢ for which no § exists satisfying the continuity condition.
Proving that a function is continuous is more difficult because it is
necessary to establish that some § exists for every point of its domain
and every possible choice of &. This may sometimes be done by finding
a suitable functional relationship between & and ¢. In certain cases it is
possible to take & equal to &, the simplest example of which is the
identity function f: R» — R” for which f(x) = x. Other examples are
provided by the various rigid transformations. In the case of similarity
transformations § may be taken equal to ¢ if the transformation is one
of contraction. But, if the function increases distances by a factor a
greater than unity it is necessary to take § = ¢fa.

An example of finding an appropriate functional relationship
between & and ¢ is provided by consideration of the continuity of the
radial projection f: R3--¢ — 8, which projects all points of R3 except ¢
on to the surface S of a sphere of unit radius and centre c. This is
depicted in Figure 16.3. The distance between any two points exterior
to the sphere is shrunk by the function f, and the distance between any
two points on the surface § remains unchanged. Hence, f is continuous
if its domain is restricted to elements z of R3 for which

d(z,c) = 1.

For pairs of points inside S, however, the function f magnifies distances
more and more as the points become closer and closer to ¢, and con-
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tinuity cannot be established by the argument applying to exterior
points.

The continuity of f may be established, however, as follows.
Let 29 be some point of R3 inside S, and let yo be the corresponding
image f(zo) on S. Let a neighbourhood of yo be denoted by N(yo; &)
and let ¥ be some point on the intersection of the sphere, having centre
yo and radius g, with the surface S. Now, let S be the perpendicular
distance from xg to the radius c-y. The continuity of f at xo follows,
gince it is clear that for any & the chosen § will satisfy f(N(x; d)) <
N(y; ¢), and since xg is an arbitrary point inside S, continuity follows
for all points inside S, and hence also for all points belonging to R3—c.
The functional relationship between & and ¢ is given by:

é = d(xo, ¢)-8in 6

= 2-d(zy, c)'sing cos 3

= 2-d(ao, c)-;—\/(l—azz)
= d(xo, c)-\/(sz—e—:)

Since topology is concerned with the study of properties which
remain invariant under certain permitted transformations, and since
these transformations are defined as comtinuous functions having
continuous inverses, the establishment of continuity by the methods
discussed in this chapter is an important stage in the investigation of
topological invariants. However, these methods are dependent upon the
existence of a metric, and so can apply to metric spaces only. A still
more general approach is needed, and this will require continuity to be
defined without recourse to any metric so that sets representing non-
metric spaces may be embraced. It has already been seen that neighbour-
hoods are a particular kind of open sef, and it is this concept of open set
which provides the basis for a definition of continuity not requiring
any reference to a metric. Such a general approach will be developed
in the next chapter.

B
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Topological Spaces

Concept of open set—definition of a topology on a set—topological
space—eoxamples of topological spaces—open and closed sets—
redefining neighbourhood—metrizable topological spaces—closure—
interior, exterior, boundary—continuity in terms of open sets—
homeomorphic topological spaces—connected and disconnected
spaces—covering—compactness—completeness: not a topological
property-—completeness of the real numbers—topology, the starting
point of real analysis.

In Chapter 16 a formal definition of continuity in the context of metric
spaces was given which depends ultimately on the existence of the
appropriate metrics. If the concept of distance is dropped altogether,
but the concept of open set is retained, then a new concept arises,
namely that of a topological space.

Jf X is any non-empty set and 7 a collection of subsets of X
including the empty set f and the set X itself, then the collection 7 is
termed & topology on X provided that it satisfies each of the following
conditions:

1. The union of any number of the subsets of X which are in I~
must also be in .

2. The intersection of any two of the subsets of X which are in 7~
must also be in 7.

These two conditions may be written symbolically as:
1. If A; € T for all i € M, then
U A,; eg.

{eEM
2. If B, CeJ, then
BnCed.

The various members of the collection J are said to be 7 -open (or
simply open). Thus the statement that a given set B is a J -open set is
simply equivalent to the statement that B belongs to the collection 7.
The set X together with the collection 7~ comprises a topological space.
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A first example of a topological space is provided by the set
X = {a,b,¢,d}
together with the collection of subsets of X,
I = {J, {a}, {a, b}, {a, b, d}, X}.

The union of any number of these subsets belongs to .7". This is
ensured in this instance by the hierarchical relationship

O < {a} < {a,b} c {a,b,d} = X,

which also ensures that the intersection of any number of these subsets
(and hence of any two of them) belongs to 7. The collection of subsets

{Q’ {a}, {a, b}, {b, ¢, a}, X}

is not, however, a topology on X since the intersection, {a, b} N
{b,c,d} = {b} gives a subset not belonging to the collection.

A second example of a topological space is provided by the set of
integers Z and the collection of subsets of Z,

T = {Qr Zodd» Zeven’ Z}

In this case, there is no longer the same hierarchical structure as in the
previous example, but two ‘parallel’ relationships

b cZogacl,
& < Zeyen < Z,

the middle elements of which are disjoint subsets of Z. This type of
hierarchy, however, still guarantees that the two conditions are
satisfied.

A third example of a topological space is provided by the set of
real numbers R together with the collection of all open subsets of R,
that is, every continuous open interval of R including R itself and the
empty set . This particular collection is a topology on R termed the
usual topology on R. Similar collections form the usual topologies on R»
for higher order spaces.

Any non-empty set X has two trivial topologies. One of these,
termed the indiscrete topology on X, consists of the two subsets ¥ and
X only. Together with X, it forms an indiscrete topological space. The
other, termed the discrete topology on X, consists of all possible subsets
of X (including J and X), and together with X forms a discrete
topological space. Thus, if as before

X = {a,b,¢,d},
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the indiscrete topology on X is the pair of subsets

{2, {a, b, ¢, d}},

neither of which is a proper subset of X, and the discrete topology on
X is the power set

P2(X) = {@, {a}, (b}, {c}, {d}, {a, B}, {a, ¢}, {a, d}, {b, c}, {b, d},
{¢,d}, {a, b, c}, {a, b, d}, {a, ¢, d}, {b, ¢, d}, {a,], ¢, d}}.

The intersection of any number of topologies on a given set X is
also a topology on X, since it is easily seen that the intersection of any
two topologies on X satisfies the two prescribed conditions, and this is
readily generalized to the intersection of any number of topologes.
The union of topologies on a given set X need not, however, be a
topology on X. A demonstration of this is provided by the set

X = {a,b,¢c}
and the two topologies on X,
I = {, {a}, X},
T2 ={g, {b}, X}.
The union,

T1u T2 ={Q, {a}, b}, X},

violates the second prescribed condition since {a} and {b} both belong
to 71U I but {a} U {b} = {a, b} does not.

An alternative definition of a topological space may be given in
terms of F -closed subsets. A subset A = X is J -closed (or simply
closed) if its relative complement in X, namely X —A4, is J -open. A
collection " of such subsets of X which includes X and (¥ is a topology
on X if it satisfies the two conditions:

1. The intersection of any number of subsets of X which are in
X must also be in K.

2. The union of any two of the subsets of X which are in X" must
also be in .

Symbolically, these conditions become:

1. If Age A forall i € M, then
n A(Ef.

1€EM
2. If B, Ce X, then
BuCe X.
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If X = {a, b, c, d} as before, the relative complements in X of the
members of the topology on X consisting of the open subsets

o, {a}, {a, b}, {a,b.d}, X
are the closed subsets
X, {b,c,d}, {c,d}, {c}, &

respectively. These closed subsets form a collection which is a closed
set topology on X since, as can readily be seen, the two prescribed
conditions are satisfied. In this instance, however, the collection of
subsets

{@, {e}, {c, 4}, {b, c, d}, X}

also satisfies the two conditions for open sets, and the collection of
relative complements

{X, {a,b,d}, {a, b}, {a}, &},

originally considered as a Z -open collection, also satisfies the two
conditions for closed sets. A given subset may therefore be open in one
topology and closed in another. Clearly, the empty set (J and the set X
itself, whatever its elements, are always both open and closed. Also,
given a topology J on a set X, there may be subsets which are both
J -open and 7 -closed, and also subsets which are neither J -open nor
T -closed.

The definitions of open and closed sets given in the context of
topological spaces is more general than the intuitive definition arrived
at by considering subsets of R3, and defining a subset as open if it
contains no points of its boundary and closed if it contains all points
of its boundary. Metric spaces are, however, examples of topological
spaces, since for any metric space X with metric d, the set X together
with the collection of all open subsets of X gives an associated topo-
logical space. There is thus a need for a link between the concept of
neighbourhood in a metric space and the concept of open set in a
topological space. This is provided by redefining neighbourhood in a
purely topological context: if X is a set which, together with some
topology J on X, is a topological space, then any subset N of X is a
nesghbourhood of an element z € X if it includes an open set containing
z. This particular redefinition of neighbourhood ensures that its inter-
pretations in a metric context and in a topological context are con-
sistent.

A given set may give rise to several distinct topological spaces.
Thus, the set X = {z, y} has four distinct topologies on it, namely
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.7-1 = {g, X}:
T = {@, (=}, X},
T = {g’ {v}, X}»

Ty= {Q, {=}, {v}, X}

Each of I, ..., 74 satisfy the two conditions for a topology, and
hence there are four distinet topological spaces (X, 7)), (X, T 2),
(X, 73), (X, T 4) each arising out of the same set X. Any metric d
defined on the set X must satisfy the three conditions:

d(z, z) = 0;
dly,y) = 0;
dx,y) =d(y,z) = a > 0.

A topological space associated with the metric space (X,d) is
obtained from the collection of all open subsets of the metric space,
that is, the collection of all possible unions of neighbourhoods of
elements of X. Consider the neighbourhoods

N(x;af2), N(y;al2).

These neighbourhoods consist of the two subsets having the single
elements x and y respectively. The unions of these give as the associated
topology, the set

{&, {=}, {9}, X},

which is the topology Z 4 above. Since, an arbitrary metric was chosen,
in that ¢ was arbitrary, J; is the only topology arising from the
metric d and hence (X, J4) is the only possible associated topology.
When a topological space can be associated with a metric space in this
way, it is said to be metrizable. Thus (X, J 4) is metrizable, but (X, 1),
(X, 2), (X, I 3) are not metrizable.

Metrizable topological spaces are examples of an important class
of topological spaces termed Hausdorff spaces. Hausdorff spaces are
topological spaces satisfying the condition that for each pair of distinct
points z, y of a set X with topology .7, there are neighbourhoods N ; and
Ny of z and y respectively such that their intersection is empty.

The closure of a subset A of a topological space X will be denoted
by A- and is defined to be the intersection of all closed subsets of X
containing 4. That is:

A- = ({F:F < X, Fis closed, and F 2 4}.

Clearly, since A~ is the intersection of a number of closed sets, it must
iteelf be closed. Further, it is immediately seen that A~ is the smallest
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closed subset of X containing A4, so that, if F is a closed subset of X
containing 4, then 4 € A- € F. A itself will be a closed subset of X
if it is equal to its closure.

Returning to an earlier example where X = {a, b, c,d} and the
collection

{X, {b, ¢, d}, {c, 4}, {c}, &}
is a collection of closed subsets of X, it follows that {b}~ = {b, ¢, d},
{a,b}~ = X and {c,d}~ = {c, d}.
The association of a new subset A~ with each subset 4 of a
topological space X satisfies the following five properties:

g =0,
X- =X,
A c A- for every 4 of X,
(A uB)y-=A4~u B~ forevery 4, Bof X,
(4-)- = A- for every A of X.

These properties may be used as a set of axioms for what may be
defined as a closure space. There is then a one—one correspondence
between the collection of closure spaces and the collection of topo-
logical spaces.

Another important subset which may be associated with a subset
A of a topological space X is the interior of A. A point a € 4 is called
an interior point of A if it belongs to an open subset of 4, that is, if it
has a neighbourhood contained in 4. The set of all interior points of 4
is called the ¢nterior of 4 and is denoted by int (4). Clearly, the interior
of 4 is the union of all open subsets of 4, and is itself the largest open
subset of A. That is, if G is an open subset of 4, then

G < int (4) € A.
The set 4 will be an open subset of X if it is equal to its own interior.

The exterior of A is the set of all exterior points of A, that is, of all
points which have a neighbourhood having no points in common with 4.
It is denoted by ext (4), and is the interior of the complement of 4 in X :

ext (4) = int (X —A4).

The boundary of A, denoted by bdy (4), is the set of points not
belonging either to int (4) or to ext (4). This means that a point x is in
the boundary of 4 if it is in both the closure of 4 and the closure of the
complement of 4 in X:

bdy (4) = A~ n (X —A4)-,

and it follows that
A- = int (4) L bdy (4).
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Since the boundary of A is the intersection of two closed sets, it must
itself be closed.

Consider again, for example, the set X = {a, b, ¢, d} with topology
g given by the collection

{D, {a}, {a, b}, {a,b,d}, X},

and let the subset 4 of X be the set {a, b, ¢}. The points a and b are
interior points of A since a, b € {a, b} = A and {a, b} is an open set.
The point ¢ is not, however, an interior point of 4, hence

int (4) = {a, b}.

The complement of 4 in X, X —A4, is {d}, and int ({d}) = (, since d
is not an interior point of X —A4. Hence

ext (4) = .
Accordingly,
bdy (4) = {c, d}.

As a second example, consider the set of real numbers R and four
subsets of R given by the intervals {zeR: a £« S b}, {zeR:
a<z<b}, reR:a <z =b}, zcR:a £ 2 <b}. These subsets
of R may be denoted by [a, b], la, B[, Ja, b], [a, b[ respectively. Each
of these has as interior the set {zxeR:a < z < b} = ]Ja, b[, and as
boundary the set {a, b}.

For a third example, let zp be a point in the space R3, and consider
the set S defined by

S = {zeR3:d(xo,x) = 1},
The set S is closed in R3 and (R3—8)~ = R3. Hence
bdy (8) = 8- n(R3—-8)-=8nR3=24§.

Thus, when considered as a subset of R3, the set § is its own boundary.
However, suppose that S is to be considered as a subset of itself. The
complement of § in § is the null set (¥, hence the boundary of S is
empty.

These formal definitions of interior, exterior and boundary are
precise ways of putting into rigorous and more general form what is
intuitively understood by the same terms when used in the context
of some interval, area or volume in ordinary one-, two- or three-
dimensional Euclidean space respectively.

The continuity of a function has been defined earlier (in Chapter
13, p. 123) in terms of neighbourhoods. Since all neighbourhoods are
open sets, the continuity of a function may be defined alternatively,
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and more generally, in terms of open sets. Let (X, 1) and (Y, 73) be
two topological spaces. A function

[(X,T1) = (Y,T)

is said to be continuous if the inverse image of every J s-open subset of
Y is a J 1-open subset of X, that is if 4 € 73 implies that f-(4) e J .

A further alternative definition in terms of closed sets is also
possible since the complement in X of the inverse image of a subset
A < Y is the same as the inverse image of the complement of 4 in Y.
Hence, a function

[i(X, T1) » (Y, T%)

is continuous if the inverse image of every  s-closed subset of ¥ is a
T'1-closed subset of X.

It is important to notice that these two definitions of the con-
tinuity of a function are expressed in terms of inverse images. There are,
for example, numerous cases where a function

[ilX, T1) - (Y, T2)

has the property that the image f(4) of every open subset 4 of X is an
open subset of Y, and yet the function is not continuous.

The concept of homeomorphism can now be defined in terms of
topological spaces. Two topological spaces (X, 771), (Y, T 2) are
homeomorphic if there exists a bijection f: X — Y such that a subset
A of X is 7 1-open if and only if f(4) is 7 s-open.

Two non-empty subsets 4, B of a topological space (X, ) are
said to be separated if each is disjoint from the closure of the other, that
is, if

A-NnB=AnB =¢.
The space (X, J") may, alternatively, be said to have a separation if
A and B are both open, and
AuB =X,
whilst
AnB=g.

For example, consider the subset of R defined by the interval
[a, b]. Let ¢ be an interior point of this interval, that is, let a < ¢ < b,
so that ¢ divides [a, b] into two parts. If the two parts are taken to be
the closed sub-intervals [a, c], [c, b], it will immediately be seen that
these are not disjoint since

la, e} N[, b] = {c} # &.
Suppose, however, that ¢ is removed from one of the parts, say the
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second, so that the division is into the closed sub-interval [a, ¢} and the
half-open sub-interval J¢, b]. The two parts are now disjoint-

[a,c} N e, 8] = &,

and their union is the whole subset [a, b] of R. However, the closure of
Je, b] is {¢, b] and so
[a,c] N e, b]- # .

If [a, c] and [c, b] are to be separated, it is necessary to remove ¢ from
both sub-intervals so that each becomes a half-open set. Thus, [a, ¢[
and Je, b] are separated and the two conditions

[, c[- N e, b] = [a,c} N ], b] = &,
[a, [N ]e, 0] = [a,c[ N [e,b] = &

are satisfied. In order to obtain this separation of the interval [a, b] of
R it has been necessary to remove an interior point ¢ entirely. Thus, it
is the complement of ¢ in [a, b], namely [a, b]—{c}, and not [a, b]
which has the separation. It is not possible to obtain such a separation
of any continuous interval of R, nor of R itself, without removing some
interior point. R, thus, has no separation and is therefore said to be
connected. Any topological space which is not connected is said to be
disconnected. It should readily be appreciated that the formal definition
of a connected space just given is equivalent in the case of surfaces to
the more intuitive definition given at the beginning of Chapter 5.

An alternative definition of connectivity may be given in terms of
subsets of a topological space which are at the same time both open and
closed. Thus a topological space (X, .J") is connected if the only two
subsets of X that are at the same time open and closed are the set X
itself and the null set .

Connectedness is a topological property, thus, if

[:(X,T1) = (Y,T)

is a permitted topological transformation, then f(X) is connected if X
is connected. Connectedness has a number of important applications.
For example, it is the basis of the intermediate value theorem, which
states that if an interval [a, b] of R is mapped by a continuous function
finto R, then each value between f(a) and f(b) must be the image of at
least one point in [a, b]. This can be seen intuitively in Figure 17.1.
No matter what value y, such that f(a) < y < f(b), is chosen, it must be
the image of some z € [a, b].

In Chapter 10, the concept of a fized point theorem was introduced.
Formal proofs of fixed point theorems also depend upon the concept
of a connected topological space.
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A collection € of subsets of a topological space (X, .J) is called a
covering of a subset 4 = X if the union of the members of € contains
A. Formally, % is a covering of 4 if

Acs|J{0:Ce%}.

If each C € € is an open set, then the collection ¥ is called an open

covering of A. If the collection ¥ is finite, then ¥ is a finite covering
of 4.

f(a)

P S —
4

Fig. 17.1

A subset 4 of a topological space (X, J) is said to be compact if
every open covering of 4 contains a finite covering of A4, that is, if
from any infinite collection of open subsets whose union contains 4 it is
possible to select a finite subcollection whose union also contains 4.
Again consider the set of real numbers R, and let 4 be the closed
interval [a, b] of R.

Let
€ = {Ci:ie M}

be a collection of open intervals which is a covering of 4, that is

AEUC:.

An important property of this interval [a, b] is that € does in fact
contain a finite subcollection, also a covering of A. Suppose, however,
that the interval is infinite, say [a, oco[. In this case, no finite sub-
collection of a covering € can be a covering of A. Thus, any closed
finite interval of R is compact, but open or infinite intervals are not
compact. It is also clear that R itself is not compact. Any subset of R
is compact if and only if it is closed and bounded (that is, contained in
some interval ]— N, N[ for sufficiently large N). An important property
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of Hausdorff spaces, of which the real line is an example, is that in a
compact space any subset which is closed is also compact and con-
versely ; thus closure and compactness may be thought of as equivalent
for this particular class of topological spaces.

The final property of spaces to be considered here is the property
of completeness. This, however, is not a topological property, but it is
included in this chapter because of its importance in relation to the
set of real numbers R. Let X be a metric space with metric d, and let

{xp:n e N}

be a sequence in X. This is termed a Cauchy sequence if, for every
g > 0, there is some positive integer no e N such that the distance
between every two members of the sequence beyond the ng'th is less
than g, that is, if n, m > ng, then d(z,, v5) < & The metric space X
is complete if every Cauchy sequence in X converges to a member of X.
Similarly, if 4 « X, 4 is complete if every Cauchy sequence in 4
converges to a member of 4. Clearly, the concept of completeness is
related to that of compactness. In fact, every compact subset of a
metric space is complete, but not every complete subset is compact.
The set of real numbers R, for example, is complete but not compact.

To see that completeness is not a topological property, consider the
subset X < R defined by the interval ]—1, 1[. X is not complete since
the Cauchy sequence in X given by

1
l1—-—-,ne N
n

converges to 1, and 1 is not in X. Now the function f: R - X defined
by

z
&) = o

is one-one, continuous and has a continuous inverse, and hence
preserves topological properties. Neither R nor X, for example, are
compact. R is, however, complete, whilst X has been shown not to be
complete. Completeness therefore cannot be a topological property.

The concept of irrational numbers, that is, numbers, such as /2,
which cannot be expressed in the form m/n where m and n are integers
is a familiar concept which has been known since the days of Pytha-
goras. The more general concept of non-algebraic numbers, such as =,
which are not roots of any polynomial equation with integer coeffi-
cients, is more recent but has certainly been a familiar concept for
more than a century. The completeness of the real numbers R can be
thought of as expressing formally the intuitive idea that it is now no

Topological Spaces 167

longer possible to discover a new kind of real number. Another way of
putting it is to say that the real line is completely filled by the numbers
which are now known. There is thus a hierarchy of numbers commenc-
ing with the set of integers Z, and proceeding through the set of rational
numbers Q, and the set of real algebraic numbers A to the set of
real numbers R, so that

ZcQcAcCcR

It can be shown that all these numbers can be represented in decimal
form, those with a finite or repeating decimal expansion forming only a
very small minority. It can also be shown that every decimal expansion,
finite or infinite, represents some member of R. The set of all decimal
expansions and the set of all real numbers are therefore equivalent.
The topological and other properties of the set R now form the
starting point of most courses on real analysis. Intuitive ideas of limits
and continuity are, it is true, to be found in most ‘advanced level’
school curricula, but the foundations of analysis lie firmly in the study
of topology, and, whilst it is possible to develop considerable mani-
pulative skill in the calculus without any formal topological background,
it is the development of the formal concepts of topology that has
provided a firm foundation by means of which much earlier work in
analysis has been rigorously confirmed and upon which modern
developments are rapidly being built. The value of an intuitive
approach to mathematical concepts should not, however, be derided.
Progress in mathematics is often the result initially of intuition; the
rigorous proofs then follow. Intuition can sometimes lead to false
conclusions, and it is for this reason that the value of an intuitive
approach depends largely on the experience which underlies the
intuition. In this book, the pattern of ‘intuition first, formalization
later’ has been adopted, and it is hoped that the reader has obtained an
intuitive grasp of some of the concepts which are properly the study of
topology as well as having had an initial encounter with the kind of
language and approach which formalization involves. Further study of
topology will require an increasing familiarity with the formal concepts
introduced in the later chapters of this book, and, for those who wish to
pursue such studies, a selection (very incomplete) of books which may
be read at this stage with profit is provided in the bibliography, page 182.




Historical Note

In the study of the development of man two main influences are
recognized to have played and to continue to play decisive roles—
environment and heredity. In a similar manner it is possible to discern
both external and internal stresses at work shaping the genesis and
growth of mathematical ideas. New branches of mathematics come
into being, not because they are created overnight out of nothing by
some individual genius, but because the soil has been prepared over the
previous decades (or even centuries) and because some internal or
external stress (or perhaps a combination of both) provides the
appropriate impetus and motivation at the crucial point in time. More
often than not, it is the case that several minds produce independently
and almost simultaneously the germs of what subsequently develops
into & new theatre of mathematical investigation. For this reason it is
usually ill-advised to point to any one man as being the founder or
inventor of any particular branch of mathematics.®

In the case of topology it is possible to see two particular and
apparently quite separate areas of mathematics as providing much of the
fertile soil out of which topology as a topic in its own right was to grow
—the development of the calculus and the formulation of non-Euclidean
geometries.

Some of the ideas which we today accept as commonplace in the
study of the calculus can be traced back to the attempts of the Greeks
to determine areas and volumes by the method of exhaustion. Newton
and Leibniz put the calculus on its modern footing through their work
on differentiation and integration showing the link between the two
processes, and by providing appropriate notation by means of which
problems involving rates of change could be formulated mathematically.
However, the expositions of Newton and Leibniz created a number of
difficulties which neither they nor their immediate followers were able
to resolve. Many of these difficulties centred upon the fundamental
concept of limit. The limit concept, essential to a proper understanding
of the calculus, is inexorably tied to the concept of nearness, and in the
late seventeenth and early eighteenth centuries the various inter-

*For a full discussion of stresses in the historical development' of
mathematics see R. L. Wilder: Evolution of Mathematical Concepts, Wiley
1968 (Paper-back edition, Transworld 1974).
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pretations of the term ‘limit’ led to a number of conflicting principles
which could be resolved only by some new approach allowing the
concept to be restated in an unambiguous and rigorous manner.

The motivation for much of the basic investigation of the funda-
mentals of the calculus came from a number of physical problems of
which the problem of the vibrating spring is a typical example. A purely
internal motivation arose from the discovery of pathological curves
which highlighted the distinction between continuity and differenti-
ability and undermined the purely visual approach to the study of
functions. Such investigations brought into prominence the need for a
much more sophisticated method for the abstract formulation of
mathematical problems which was only to become available with the
advent of Cantor’s theory of sets.

One of the major constraints under which mathematicians of these
earlier days had to work was the over-riding veneration paid universally
to the geometry of Euclid. Until the stranglehold of purely Euclidean
concepts could be broken there was little chance that developments
necessary for continuing the investigations into the foundations of the
calculus could take place. It was the geometries of Lobachevsky and
Riemann that provided exactly the release from Euclidean thraldom
that was needed. In particular, it had been universally accepted for
many centuries not only that Euclidean geometry was founded upon
an unshakable axiomatic basis but also that it uniquely represented the
real world in which all physical problems were assumed to arise. If the
various non-Euclidean geometries had proved to be nothing more than
impractical mathematical abstractions, it is doubtful if the necessary
break from a purely Euclidean concept of space would have been
achieved at the crucial moment; it was the realization that some of these
geometries applied to practical and easily visualizable situations, such
as geometry on the surface of a sphere, that set men’s minds free and
led to rapidly developing investigations into the nature of spaces,
which continue until the present day.

The theory of point sets revolutionized the whole approach to the
investigation of the nature of spaces by enabling it to be carried out in
terms of sets of points having certain prescribed properties, and the
rise of functional analysis, which led to the introduction of Hilbert and
Banach spaces, underlined the importance of this mode of approach.
The Euclidean distance function was, of course, used extensively in the
definition of the important concept of neighbourhood, but early in this
present century Hausdorff built up a theory of abstract spaces using a
definition of neighbourhood presented entirely in set theoretic terms
and not dependent upon the introduction of a metric.

The purely combinatorial aspects of topology may be said to go




170 From Geometry to Topology

back to some of the geometrical work of Leibniz in which he sought to
formulate basic geometrical properties of figures in terms of location
rather than magnitude. Some seventy years later Euler was concerning
himself with the relation between the numbers of edges, faces and
vertices of closed convex polyhedra and also with the famous Koenigs-
berg Bridge problem. During the nineteenth century Moebius and
Riemann pioneered the detailed study of surfaces and, in particular,
Riemann linked the study of functions with the theorems of what was
at the time known as analysis situs.

A further bonus arising from the liberation from earlier Euclidean
restrictions was the extension of mathematical investigations to spaces
of more than three dimensions. Much of the early work on combina-
torial topology had been confined very largely to surfaces. A much more
general attack on the combinatorial theory of geometrical figures was
carried out at the close of the nineteenth theory by Poincaré. His study
of configurations in higher-dimensional spaces was not, however,
motivated entirely by theoretical considerations. He was especially
interested in the qualitative theory of differential equations and this
led him to investigate the structure of four-dimensional surfaces used
in the representation of functions of complex variables, and hence to
the systematic study of n-dimensional geometry.

Poincaré was not strictly concerned with the study of topological
invariants. The concept of invariants under transformations in
Euclidean space can be traced back to Desargues in the seventeenth
century, whose work in this field was itself a development of earlier
considerations of perspective in Renaissance art. The resulting geometry,
known as projective geometry, together with the non-Euclidean geo-
metries of Lobachevsky and Riemann were the subject of intensive
investigation by Klein in the latter part of the nineteenth century. In
particular, Klein concerned himself with the question of the consistency
of non-Eucl*lean geometries and developed the idea that each geometry
can be characterized by an appropriate group of transformations. This
characterization was first presented on the occasion of his admission
to the Faculty of Philosophy at the University of Erlangen in 1872
and is known as the Erlangen Programme.

All these various threads are drawn together in the study of
topology. In each case the initial development has involved generali-
zation which has in turn established links between different areas of
mathematics; thus, the various generalizations have resulted in a
considerable unification of mathematical concepts. In particular,
conflicts between geometry and analysis have been resolved by a
proper axiomatization of the concept of space. This is a not untypical
way in which mathematics has developed over the centuries. Problems

gj(
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arise in a number of apparently distinct areas none of which can be
adequately solved until a new methodology becomes available. Once
such a methodology is developed the previously distinct problems are
seen to have common foundations, threads are drawn together, and a
new branch of mathematics is born. This is a continuing process, and
can be found within topology itself. Once the new branch appears, then
further processes of unification become possible as it interacts with
other branches not previously involved in its genesis. Thus, there has
been considerable fusion between topology and algebra, giving rise to a
new system, algebraic topology, which has very substantially influenced
the development and teaching of algebra in recent times. Indeed, it
would be difficult to discover at the present time a branch of mathe-
matics which could be said with any degree of confidence to be entirely
independent of any topological considerations.




A Selection of
Exercises and Problems

These exercises and problems are designed primarily for the reader who,
having completed a perusal of the whole book, would like to test his
understanding of the material. They are not designed to test or to
improve technique in any way. Some of them are intended to encourage
thought or discussion, and certainly for these there is not necessarily
any one ideal ‘solution’. For this reason, ‘answers’ are not provided.
Clearly, there are specific correct answers to many of the questions,
but, rather than ask the reader to check his own work mechanically
against printed solutions, it is hoped that he will satisfy himself as to
the validity of his work by subsequent reference back to the text, by
re-working the same questions independently after a lapse of time
and comparing results, and (in the last resort) by seeking out some
suitable person who can correct his work and discuss problems which
arise out of the solutions actually obtained (whether right or wrong).

1 Demonstrate that translation is the only rigid transformation
permitted in the orientated geometry described on page 9.

2 Show by a direct formula method that reflection of any two points
about a given straight line in a plane preserves the distance (in the
conventional sense) between the points.

3 Which of the following pairs are necessarily pairs of equivalent
figures in the similarity geometry described on page 10.

(a) two triangles of equal area,

(b) two rhombi of equal area,

(¢) two rhombi of unequal area,

(d) a rectangle and a square of equal area,
(e) two rectangles of equal perimeter length,
(f) two cones of equal volume,

(g) two regular tetrahedra ?

4 Which of the following statements are true:

(a) each affine equivalence class is a subset of a similarity equivalence
class,
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(b) the set of all affine transformations is a subset of the set of all
similarity transformations,

(c) each similarity equivalence class is a subset of a projective
equivalence class,

(d) the set of all projective transformations is a subset of the set of
all affine transformations,

(e) the set of all isometries is a subset of the set of all topological
transformations ?

C, G,
Figure A

5 Two closed ‘contours’ ¢ and Cg are shown in Figure A drawn on a
plane surface. Which of the following properties are geometrie, which
are topological, and which are neither geometric nor topological

(a) the two contours define respectively a pentagon and a semi-circle,
(b) the area enclosed by C; is larger than that enclosed by Cs,

(¢) no one point of the plane is inside both C; and Cb,

(d) C1 and O3 do not intersect,

(e) the diameter of the semi-circle defined by Cz is equal in length to
one of the sides of the pentagon defined by C,

(f) Oy consists entirely of straight lines, whilst Cp consists of a
straight line and a curved line,

(g) C1 and Cj3 are on one and the same surface,

(h) C; and O3 are drawn in black upon a white background,

(i) a line joining a point inside C; to a point inside Cp will cross U
and O at least once each.

(j) the areas enclosed by C; and C3 together form only a part of the
total surface upon which they are drawn,

(k) O has more vertices than Co,

(1) C1 lies to the left of Cp?

6 What is the least number of continuous non-self-intersecting closed
curves which may separate the surface of:

(a) & two-fold torus,
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(b) & sphere,
(c) & sphere with a hole in its surface ?

7 What is the genus of the surface of:

(a) a piece of wood with four screw holes right through it,
(b) a hockey stick,

(c) a ladder having exactly seven rungs,

(d) a frame of a tennis racquet ?

8 Take several long narrow strips of paper and form a number of
continuous bands by pasting the two ends of a strip to each other in
each case after a differing number of 180° twists. Cut each band down
its centre as partially depicted in Figure B, and investigate the effects
of the various differing twists. In particular determine which of the
original bands are one-sided and which cuts entirely separate the
original surface. Discuss your results.

| cut A
d I

Figure B

9 Distinguish between the ‘connectivity of a surface’ and a surface
‘being connected’.

10 To which of the following surfaces does the statement ‘every
continuous non-self-intersecting closed curve belongs to the null
homotopy class’ apply-

(a) a torus,
(b) a sphere,
{¢) a Klein bottle ?

11 What is the rank of:

(a) a kettle without its lid,

(b) a T-junction of piping,

{c) a ten-hole Meccano strip,

(d) a sphere with 3 handles and 4 holes?

In (a) to (c) assume that the item is made of ‘infinitely thin’ metal.
Think of a variety of every-day objects and determine the respective
rank of each.

12 Form a polyhedron by taking a point outside the centre of each face
of a cube and joining each of these points to all the vertices of its corre-
sponding face. Determine V, E, and F for this polyhedron. Repeat the
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process, and again determine V, E and F. Verify that V—-E+F
remains unchanged.

13 Which of the maps having values of V, E and F given below can
be drawn upon the surface of a sphere:

(a) V=8, E =18, F =10,
(b)V=5,E=12,F=3,
() V=6E=11,F =1,
(d) V=12 E =16, F = 5,
(e) V=23, E=811F=60?
Upon what surfaces can these maps be drawn if not on a sphere

14 Tt is possible to brush a ‘hairy’ sphere so that it has only one
singular point. Sketch such a brushing, name the type of singular
point, and state its index.

15 Figure C depicts the ground floor plan of a factory with geps
indicating doorways. Is it possible to make a tour of the factory starting

l_ I I 1
HALL
I I I

l [

Figure C

from outside and passing through each doorway exactly once ? Suppose
that it was desired to make a similar tour starting inside the factory and
without leaving the building. Indicate where doorways would have to
be provided for this to be possible

(a) starting in the hall and finishing in the store,

(b) starting and finishing in the hall,

(c) starting and finishing in any room whatsoever.

16 From the non-regular map of Figure D derive the regular map
which has the least number of additional arcs and vertices.

17 The surtace of a unit sphere in n-dimensional Euclidean space may
be denoted by the expression
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1

Figure D

Give a specific formula in the same form to define a curve homeo-
morphic to a Jordan curve.

18 The following is the major part of an alternative method of proving
(by exhaustion) that if a line segment is divided into small segments
by points arbitrarily labelled O or 1 (see page 86), then, if the number
of 0’s at the original end-points is odd (even), the number of complete
segments is odd (even).

Consider a segment labelled 00. If this is divided into two by a
point labelled 0, then no complete segment is formed; if by a point
labelled 1, then two complete segments are formed. In either case
the change in the total number of complete segments is even.
Consider a segment labelled 01. If divided by a point labelled either
0 or 1, then there is still only one complete segment, again giving
an even (zero) change . . ..

{(a) Complete this proof by exhaustion.

(b) Why is it not necessary to consider segments originally labelled
10 and 11 as well as those already considered

() Try to complete the corresponding two-dimensional proof
{using triangles) in a similar way. Why is this not possible

19 Sketch a two-fold torus and indicate how cuts may be made in
order to obtain the corresponding plane diagram. By drawing an
appropriate map upon the plane diagram, confirm the number of
colours both necessary and sufficient for the colouring of maps on a
two-fold torus.

20 Obtain the plane diagram of the interwoven surface consisting of
the surfaces of two spheres, one inside the other, cut and then rejoined
{as depicted in Figure E) so that the outer sheet of the ‘Western’
hemisphere joins the inner sheet of the ‘Eastern’ hemisphere and vice-
versa along the lines AB and CD. Hence show that the interwoven
surface is topologically equivalent to the surface of a torus.
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21 Any surface homeomorphic to a sphere with p handles has y =
2—2p. Prove this by considering flow on a sphere with p sources and p
sinks, and determining the index. Prove it also by considering only
vortices in the flow.

22 Which of the following statements are true:

(a) a bicontinuous transformation is continuous,

(b) a transformation which is continuous at every point x in its
domain is bicontinuous,

(c) a transformation, whose inverse is continuous, is continuous,

(d) a transformation, whose inverse is continuous, is continuous
at some point in its domain,

(e) a transformation which is continuous at at least one point in its
domain has an inverse which is continuous at at least one point in
its domain ?

93 If the universal set is taken to be the first twelve letters of the
alphabet, and if X = {a,b,¢,d}, Y = {d,e,f. 4, h,,5}, and Z =
{3, §, k}, write down the members of:

(a) P(X),
b)Xul,
P.Ya P
dXn2Z
(e) Y',
fHlXnY,
®YnZ,




178  From Geometry to Topology

N (XnY)yu?Z
() Yn(Xvu2),
k) (XU Yy,

N Xn{YnZy,
(m) X xZ,

n) Xx Y xZ.

24 Draw a Venn diagram representing three sets X, ¥, Z, no pair of
which are disjoint. Shade in the areas representing:

(a) XN 7Y,
(b) (X v YY),
(&)Y LZ.

Hence, determine the simplest form of expressing
(XnYYu(XuYYuYulZy.
If Y = Z, what further simplification is possible ?

256 If X = {a,b,¢,d, e} and Y = {1, 2, 3, 4, 5}, which of the following
functions f: X — Y are injections and which are bijections:

(@) f = [(a, 1), (8, 3), (¢, 1), (d, 2), (e, 2)],
(b) f = [(a, 1), (b, 3), (¢, 2), (d, 5), (e, 4)],
(©) f = [(a,2), (6, 4), (¢, 1), (d, B), (e, 3)),
(d) f = [(a, 1), (b, 4), (¢, 3), (d, 2), (e, B)],
(e) f = [(a, 5), (b, 3), (¢, 1), (d, 2), (e, 3)],
(f) f = la, 5), (b, 5), (c, 5), (d, 1), (¢, 2)],
@) f = [(a, 5), (b, 3), (¢, 4), (d, 2), (¢, 1)]?

In the case of each injection, write down the subset of ¥ which should
be taken as the codomain of the function so that f may be a surjection.

26 A triangle is defined by the three points in R2 represented by (1, 1),
(0, 0), (—1, 1). Find functions which will transform it into the triangle
defined by (3, —3), (1, —5), (3, =17).

27 If f(z) = 22—z, where z = x+1y, find the image of the rectangle
defined by the points in the complex plane (-1, 1), (—1,0), (1,0),
(1, 1).

28 If f(z) = (2—1)/(224+1+1), where z"= x+1y, determine the image
of the axis (z, 0), and, in particular, of the set {( — o0, 0), (0, 0), (00, 0)}.

29 If C is a circle passing through the point (1, 0), enclosing the point
{—1,0), and having its centre in the left-upper-half-plane, find the
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image of C when f(z) = }(z+1/z). What difference can be observed in
f(C) when C encloses the whole of the unit circle and when it does not ?

30 Figures F and G depict two functions f: R - R. In each case
determine what subsets of R may be taken as domains or codomains
of f in order that the inverse function f~! may be defined.

L 3

\
\

|

|,__b__.:
/_a“ ----- o, 4 -
Figure F
/
' //f
L N/ d
/—d -b o a b ¢ d -
e
/

Figure G

31 If X is the subset of R? in and on the unit circle centered at (0, 0),
and if f is the function which rotates all points of X about (0, 0) through
90 degrees clockwise and all points of R2—X through 90 degrees
counter-clockwise, for what subset of R? is f continuous and for what
subset is it discontinuous? At points of discontinuity, for what values
of ¢ are there no corresponding values of § ¢

32 Show that the set of all four-figure binary numbers with the metric
d defined as the number of changes of digits required in going from one
binary number to another is a metric space.

33 Let F be the set of all continuous real functions with domain
[0, a]. Which of the following are metrics on F':

(a) d(f1, f2) is the maximum value of | fy(2) —fa(z)| for z € [0, a],
() d(f1, f2) = [5|f1l@)] | fel2),

(¢) d(f1, fo) = [3 | fil@)—fa(x)],

@) d(f1, f2) = [3|f1(@) . fa(2)|?
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34 If X = {a,b, ¢, d,e [}, determine which of the following collections
are topologies on X:

(a) {{a}, {8}, {a, B}, {a,d, ¢}, {a, b, d, e}, X},

(b) {Q» {a'}’ {a, b, ¢}, {b,¢c,d}, {d, e, f}, X}:

(c) {gs {a}, {c}, {e}, {a, ¢}, {a, e}, {e, f}, {a,c, e}, {a, ¢, f}, {c, d, ¢},
{c,e,f}, {a,c,d, e}, {a,c,e,f}, {a,c,d, e, f}, X},

(d) {g’ {a}, {a, ¢}, {c, e}, {a, ¢, 3}},

(e) {Q» {6}, {b, 2}, {b, d,f}, X},

(f) {2, {a}, X},

® {D, {a}, {}, {a. 1}, {a, &, f}, {a, ¢, d, f}, {@, b, ¢, d, f}, X},

(h) {@, {a}, (8}, {e}, {f}. {a. 8}, {a, ¢}, {a,f}, {b, €}, {0, f}, e f}
{a,b, ¢}, {a,b,f}, {b,¢e,f}, {a, b, &, f}, {a, b, ¢, e, f}, {a, b, d, ¢,f},
X}?

35 If X = {a,b,¢,d,e} and J is a topology on X comprising the
collection

{D, {a}, {a, b}, {a, ], ¢}, {a, ¢, d}, {a, b, ¢, d}, X}
write down all the closed subsets of X. Find also:

(a) {a},
(b) {b}-,
() {¢, ¢},
(d) int {a, b, c},
(e) ext {a, b, ¢},
(f) bdy {a, b, c}.
36 Which of the following sets are connected:

(a) the circumference together with the interior of a circle, but with
the centre point removed,

(b){z:zecRand0 22 < 2,2 <z 2 o0},

(c) a single point zg € R3,

(d) the set of all points on all circles in R2 having centres at (0, 0)
and radii 7, r € Q,

(e) the union of all connected subsets of a set, no two of which are
separated,

) f(X),if f: X —» Y is continuous and X is connected,

(g) the null set ¥,

(h) {(z,y): 2z, ye R and z+y < 1}?

In each case where the set is not connected find a separation of the set.
37 Which of the following sets are compact:

(a) the interval Ja, ] of R, a # b,
(b) a finite subset of a topological space (X, ),
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(e) fIX), if f: X - Y is continuous and X is compact.
(d) the indiscrete topology on R,

(e) the discrete topology on R2,

(f) a closed subset of a compact set ?

38 Which of the following sets are complete:

(a) the set Z of all integers,

b){r:zeRand 0 <z £ 1},

(c) the set Q of all rational numbers,

{(d) the set R—Q,

(e) the empty set ¢,

) {(x,y):z,yeRand0 S 2 =5 1,1 £y < 2}?

Consider why the completeness of R implies the existence of irrational
numbers.

39 Discuss briefly the concept of continuily on the basis of

(a) an intuitive approach,
(b) & metric space approach,
(c). a topological space approach.

40 Discuss the concept of neighbourhood and, in particular, consider
how it provides an extremely useful conceptual link between the
concept of a metric space and that of a fopological space.
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INTRODUCTION TO THE THEORY OF GAMES, J. C. C. McKinsey. This com-
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FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS,
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192pp. 5% x 8%. 652327




CATALOG OF DOVER BOOKS

Math—-Geometry and Topology

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegant, intu-
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Ball. One of clearest, most authoritative surveys from the Egyptians and Phoenicians
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Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of modern
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tions. 320pp. 5% x 8%. 25563-8

A HISTORY OF MATHEMATICAL NOTATIONS, Florian Cajori. This classic
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ularity, its eventual decline or ultimate survival. Original 1929 two-volume edition
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David. Episodes from the lives of Galileo, Fermat, Pascal, and others illustrate this
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ences to classics, archaeology, biography, poetry. 1962 edition. 304pp. 5% x 8%
{Available in U.S. only.) 40023-9

OF MEN AND NUMBERS: The Story of the Great Mathematicians, Jane Muir.
Fascinating accounts of the lives and accomplishments of history’s greatest mathe-
matical minds—Pythagoras, Descartes, Euler, Pascal, Cantor, many more. Anecdotal,
illuminating. 30 diagrams. Bibliography. 256pp. 5% x 8%. 28973-7

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
5% x 8%. Two-vol. set. Vol. I: 20429-4 Vol. II: 20430-8

A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief his-
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Near East to 19th century. 41 illustrations. 195pp. 5% x 8%. 60255-9
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OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen and J. H. Eberly.
Clear, comprehensive introduction to basic principles behind all quantum optical
resonance phenomena. 53 illustrations. Preface. Index. 256pp. 5% x 8%4.  65533-4

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
sents the quantum theory in terms of qualitative and imaginative concepts, followed
by specific applications worked out in mathematical detail. Preface. Index. 655pp.
5% x 8%. 65969-0

ATOMIC PHYSICS: 8th edition, Max Born. Nobel laureate’s lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp.
5% x 8%. 65984-4

A SOPHISTICATE’S PRIMER OF RELATIVITY, P. W. Bridgman. Geared
toward readers already acquainted with special relativity, this book transcends the
view of theory as a working tool to answer natural questions: What is a frame of ref-
erence? What is a “law of nature”? What is the role of the “observer”? Extensive
treatment, written in terms accessible to those without a scientific background. 1983
ed. xlviii+172pp. 5% x 8%. 42549-5

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv+360pp. 5% x 8. 67597-1

PRIMER OF QUANTUM MECHANICS, Marvin Chester. Introductory text
examines the classical quantum bead on a track: its state and representations; opera-
tor eigenvalues; harmonic oscillator and bound bead in a symmetric force field; and
bead in a spherical shell. Other topics include spin, matrices, and the structure of
quantum mechanics; the simplest atom; indistinguishable particles; and stationary-
state perturbation theory. 1992 ed. xiv+314pp. 6% x 9%. 42878-8

LECTURES ON QUANTUM MECHANICS, Paul A. M. Dirac. Four concise, bril-
liant lectures on mathematical methods in quantum mechanics from Nobel
Prize-winning quantum pioneer build on idea of visualizing quantum theory through
the use of classical mechanics. 96pp. 5% x 8. 41713-1

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac’s anti-particles, Bohr’s model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 24895-X

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The Physics
of the Chemical Bond, Walter A. Harrison. Innovative text offers basic understanding
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and their compounds. Problems. 1980 edition. 582pp. 6% x 9%. 66021-4
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HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekbar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 8%. 64071-X

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8%. 60304-0

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
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PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg.
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Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 8%. 60113-7

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
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AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L. Hill.
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THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
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PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND
PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems,
detailed solutions in coverage of quantum mechanics, wave mechanics, angular
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cises. 430pp. 6% x 9%. 65236-X

THEORETICAL SOLID STATE PHYSICS, Vol. I: Perfect Lattices in
Equilibrium; Vol. II: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties of perfect crystalline solids, non-equilibrium properties, defects and dis-
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WHAT IS RELATIVITY? L. D. Landau and G. B. Rumer. Written by a Nobel Prize
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