
Andrey Sadovykh · Dragos Truscan ·
Wissam Mallouli · Ana Rosa Cavalli ·
Cristina Seceleanu ·
Alessandra Bagnato Editors

CyberSecurity
in a DevOps
Environment
From Requirements to Monitoring

CyberSecurity
in a DevOps
Environment

Andrey Sadovykh • Dragos Truscan •
Wissam Mallouli • Ana Rosa Cavalli •
Cristina Seceleanu • Alessandra Bagnato
Editors

CyberSecurity
in a DevOps
Environment
From Requirements to Monitoring

Editors
Andrey Sadovykh
SOFTEAM
Ivry-sur-Seine, France

Wissam Mallouli
Montimage
Paris, France

Cristina Seceleanu
Mälardalen University
Västerås, Sweden

Dragos Truscan
Information Technologies
Åbo Akademi University
Turku, Finland

Ana Rosa Cavalli
Montimage
Paris, France

Alessandra Bagnato
SOFTEAM
Ivry-sur-Seine, France

ISBN 978-3-031-42211-9 ISBN 978-3-031-42212-6 (eBook)
https://doi.org/10.1007/978-3-031-42212-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-2384-5447
https://orcid.org/0000-0003-2548-6628
https://orcid.org/0000-0003-2870-2680
https://orcid.org/0000-0002-4367-6225
https://orcid.org/0000-0003-2586-9071
https://orcid.org/0000-0003-2675-0953
https://doi.org/10.1007/978-3-031-42212-6
https://doi.org/10.1007/978-3-031-42212-6
https://doi.org/10.1007/978-3-031-42212-6
https://doi.org/10.1007/978-3-031-42212-6
https://doi.org/10.1007/978-3-031-42212-6
https://doi.org/10.1007/978-3-031-42212-6
https://doi.org/10.1007/978-3-031-42212-6
https://doi.org/10.1007/978-3-031-42212-6
https://doi.org/10.1007/978-3-031-42212-6
https://doi.org/10.1007/978-3-031-42212-6

Preface

The idea behind this book came during a group meeting in one of the VeriDevOps
European project meetings. We came to a realization that while there exist so
many research articles that detail activities related to software security analysis,
some more in-depth view in a DevOps cycle including security requirements
formalization, verification, and continuous monitoring was needed to present the
current state of the art and practice in the field based on the analysis of the literature.

The book aims to provide a comprehensive and systematic overview of the
current state of the art and practice in software security analysis, covering topics
such as security requirements specification, verification, and continuous monitoring.
The book also discusses the challenges and opportunities for future research and
practice in this emerging field.

In recent years, security vulnerability reports are omnipresent in many applica-
tion domains. Skybox Security shows that there were 20,175 new vulnerabilities
published in 2021, up from 18,341 in 2020. That’s the most vulnerabilities ever
reported in a single year, and it’s the biggest year-over-year increase since 2018.
Vulnerabilities in operational technology jumped to 88%, from 690 in 2020 to 1,295
in 2021. A record 26,448 software security flaws were reported in 2022, with the
number of critical vulnerabilities up 59% on 2021 to 4,135 according to analysis
by The Stack of Common Vulnerabilities and Exposures (CVEs) data. For instance,
in a series of experiments, Tencent’s Keen Security Lab exposed critical security
vulnerabilities on several car models in their software which could allow a potential
attacker to gain access to the car and, for instance, lock the brakes or reprogram
some ECUs. Similarly, researchers at CheckPoint Research uncovered a number
of security vulnerabilities in the TikTok mobile application allowing attackers to
take control of and manipulate accounts and content, including getting access to
personal information. In another report, the InfoSec Institute published details about
security vulnerabilities related to railway infrastructure components which again
will allow hackers to take control of the trains and of the traffic management
systems. This alarming trend indicates that the current security practices and tools
are not sufficient to cope with the increasing complexity and diversity of software
systems. Security vulnerabilities can have severe consequences for the users and

v

vi Preface

organizations that rely on these systems, such as data breaches, identity theft,
ransomware attacks, or denial-of-service incidents. Therefore, it is imperative to
develop new methods and techniques to identify, prevent, and mitigate security
vulnerabilities in software systems.

Elaborated security mechanisms must be properly implemented prior to deploy-
ment in order to provide an effective level of protection against intrusion. The
number of security scenarios to be ensured explodes. For example, in the embedded
software domain, the number of system interactions with the environment that are
subject to security attacks is increasing and may result in security vulnerabilities
that can cause losses for end users including a drastic increase in the production and
maintenance costs, especially if iterations in the development process are long and
feedback comes late. In such cases, traditional security verification approaches do
not support continuous feedback loops.

Security is not a one-time task but a continuous process that requires constant
monitoring and updating. The complexity and diversity of security threats increase
with the number and variety of scenarios that need to be covered by the security
mechanisms. Therefore, it is important to conduct a thorough analysis of the security
requirements and design appropriate solutions that can address them effectively.

As numerous examples show, security is an aspect that has to be addressed
holistically from the early phases of the development process and ensured across all
phases of the DevOps. Moreover, security quality attributes are often treated after
delivery on the code or at the infrastructure level with specific patches, while it is
generally agreed that those attributes must be addressed at the design level. DevOps
enables fast and frequent software deliveries, which means that artifacts need to
be verified quickly and efficiently to keep up with the process. DevOps integrates
development and operations to shorten the lead time between a change request and
deployment in production. Automation is a crucial technique in modern software
development relying on DevOps practices and continuous delivery pipelines. It
helps reduce the time between development and normal operations while ensuring
high-quality deliverables.

This book is an overview of the latest techniques and tools that can help engineers
and developers verify the security requirements of large-scale industrial systems. In
addition, it presents novel methods that enable a faster feedback loop for verifying
security-related activities. These methods rely on techniques such as automated
testing, model checking, static analysis, runtime monitoring, and formal methods.
The book aims to provide readers with a practical and theoretical understanding of
how to apply these methods in real-world scenarios.

This book covers several advanced topics related to security verification, such
as optimizing security verification activities, automatically creating verifiable spec-
ifications from security requirements and vulnerabilities, and using these security
specifications to verify security properties against design specifications and generate
artifacts such as tests or monitors that can be used later in the DevOps process.
Security verification is a set of independent procedures that are used to verify that a
product, service, or system meets the requirements and specifications and fulfills its

Preface vii

intended purpose. This book presents the principles, methods, and tools of security
auditing, as well as concrete examples and case studies.

The book is dedicated to a general audience of computer engineers and does not
require specific knowledge. It presents the recent updates on the current state of
the art and practice in the field based on the analysis of the literature up to date. It
is intended for architects, developers, testers, security professionals, tool providers,
and consumers who want to define, build, test, and verify secure applications, web
services, and industrial systems.

This book consists of three parts, each covering a different aspect of security
engineering in the DevOps context. The first part, “Security Requirements,” deals
with how to specify and analyze security issues in a formal way. The second part,
“Prevention at Development Time,” offers a practical and industrial perspective on
how to design, develop, and verify secure applications. The third part, “Protection
at Operations,” introduces tools for continuous monitoring of security events and
incidents.

Part I: Security Requirements Engineering

Security requirements engineering is a vital discipline that ensures the devel-
opment of secure and resilient systems. It involves identifying, analyzing, and
specifying security requirements to protect critical assets from potential threats and
vulnerabilities.

This part of the book explores the recent state-of-the-art updates in taxonomies,
NLP methods applied to security requirements engineering. We delve into the latest
advancements and their practical implications in managing security requirements.
Moreover, illustrative examples are provided to demonstrate how the methods can be
effectively integrated to streamline the security requirements engineering process:

1. “A Taxonomy of Vulnerabilities, Attacks, and Security Solutions in Industrial
PLCs.” With the ultimate goal of enhancing the security of industrial control
systems, this chapter presents a comprehensive taxonomy and mapping study
of security vulnerabilities in PLC software. By extracting information from
existing studies, the chapter identifies and classifies these vulnerabilities, the
corresponding attacks, and the proposed security solutions. This chapter provides
invaluable insights for researchers and practitioners involved in mitigating
security risks in industrial control systems.

2. “Natural Language Processing with Machine Learning for Security Require-
ments Analysis – Practical Approaches.” This chapter explores NLP’s role in
analyzing security requirements. Despite their scattered and generic nature,
experts extract and detail these requirements using best practices from standards
like OWASP ASVS, STIG, or IEC62443. NLP has been applied in requirements
engineering (RE) for analysis tasks, although its effectiveness has been uncertain.
The chapter outlines the state-of-the-art NLP methods in RE, focusing on

viii Preface

security requirements analysis. Additionally, practical examples illustrate the
application of modern transfer learning architectures to important RE tasks.

3. “Security Requirements Formalization with RQCODE.” This chapter presents
an approach for formalizing the requirements by applying the seamless object-
oriented requirements methods and the application of the approach to security
requirements. The formalization offers benefits such as improved reuse, a solid
premise for verification and validation of security requirements, and reinforce-
ment of system security. The chapter discusses the state-of-the-art requirements
formalization and provides illustrative examples.

Part II: Prevention at Development Time

This part focuses on preventing vulnerabilities during the software development
process, by providing first a survey of existing methods for vulnerability detection
and response, followed by two novel approaches for security test generation and
vulnerability identification in the source code, suitable for industrial systems. The
three chapters included in this part are briefly summarized in the following:

1. “Vulnerability Detection and Response: Current Status and New Approaches”
presents a taxonomy and mapping study focusing on security vulnerabilities
in industrial PLC software. The findings extracted from these studies shed
light on the vulnerabilities, corresponding attacks, and proposed solutions. By
providing a taxonomy that identifies and classifies these security issues, this
chapter offers valuable insights for researchers and practitioners working on
mitigating vulnerabilities and attacks in industrial PLC software.

2. “Metamorphic Testing for Verification and Fault Localization in Industrial Con-
trol Systems” presents an integrated approach that combines test generation and
fault localization using metamorphic testing. Metamorphic relations extracted
from system specifications are utilized as derived test oracles to distinguish
passed and failed tests for spectrum-based fault localization. The proposed
method involves two phases, test generation using metamorphic testing and fault
localization for root cause analysis and failure diagnosis, and it has been applied
to an industrial PLC system.

3. “Interactive Application Security Testing with Hybrid Fuzzing and Statistical
Estimators” introduces an approach that automates the assessment of static
analysis results using fuzzing to enable the analysis of large-scale projects. The
approach allows one to explore code sections that are typically difficult for
traditional fuzzers to reach.

Preface ix

Part III: Protection at Operations

Protection at operation involves implementing various techniques to enhance
security and mitigate risks in real-time environments. Intrusion detection and
anomaly detection are crucial components of protection at operations, aimed at
identifying unauthorized or abnormal activities that may indicate security threats.
These detection mechanisms utilize techniques such as complex event processing,
which involves analyzing and correlating events in real time to identify patterns and
detect potential threats. Additionally, the concept of explainability plays a vital role
in protection at operation by providing insights into the decision-making process
of detection algorithms, helping security professionals understand and interpret the
results. The combination of intrusion detection, anomaly detection, complex event
processing, and explainability contributes to a comprehensive approach to ensure
robust protection in operational environments:

1. “CTAM: A Tool for Continuous Threat Analysis and Management.” This chapter
presents an automated threat analysis toolchain integrated into GitLab DevOps.
It enables continuous assessments to threats, monitors progress, and allows
advanced analyses. The approach is evaluated on a real-world application to
assess threat analysis over time. The chapter concludes with a detailed discussion
on using threat modeling in continuous integration.

2. “EARLY – A Tool for Real-Time Security Attack Detection.” This chapter
introduces an enhanced IDS that detects network attacks early, preventing further
harm and downtime. It utilizes deep neural networks trained to extract relevant
features from raw network traffic data. The tool is evaluated on two datasets from
different domains, showing excellent performance and high overall balanced
accuracy.

3. “A Stream-Based Approach to Intrusion Detection.” This chapter explores intru-
sion detection through complex event processing, formalizing pattern matching
and runtime monitoring. It introduces a technique to automatically extract rele-
vant elements explaining intrusions, reducing the volume of evidence for manual
examination. The approach is evaluated on a proof-of-concept implementation.

4. “Toward Anomaly Detection Using Explainable AI.” This chapter presents
MMT, a monitoring framework for anomaly detection. It is extended with
explainable AI (XAI) capabilities for better understanding AI/ML-based clas-
sifications. The chapter includes experimental results using SHAP, LIME, and
SHAPASH technologies.

Acknowledgments We are grateful to the reviewers who dedicated their time and expertise to
evaluate the manuscripts submitted for this book. Their constructive comments and suggestions
have helped the authors to enhance the quality and clarity of their chapters: Tanwir Ahmad,
Hayretdin Bahsi, Jean-Michel Bruel, Eduard Paul Enoiu, Marcel Kyas, Vinh Hoa La, Ángel
Longueira-Romero, Nan Messe, Mikael Ebrahimi Salari, Alessandra Somma, Jüri Vain, Valeria
Valdés, and Anis Bouaziz.

x Preface

This book is largely a result of the VeriDevOps project, which was supported by the Horizon
Europe program of the European Commission. We are grateful for the chance to collaborate with
our partners for 3 years and to contribute to the advancement of knowledge in this field. The
project was a rewarding and enjoyable experience for us, and we hope that the readers will find our
research useful and insightful.

Paris, France Andrey Sadovykh
Turku, Finland Dragos Truscan
Paris, France Wissam Mallouli
Paris, France Ana Rosa Cavalli
Västerås, Sweden Cristina Seceleanu
Paris, France Alessandra Bagnato
June, 2023

Contents

Part I Security Requirements Engineering

1 A Taxonomy of Vulnerabilities, Attacks, and Security
Solutions in Industrial PLCs . 3
Eduard Paul Enoiu, Kejsi Biçoku, Cristina Seceleanu,
and Michael Felderer
1.1 Introduction . 4
1.2 Background: Industrial Control Systems . 5
1.3 Related Work . 6
1.4 Method . 7

1.4.1 Taxonomy Protocol . 7
1.4.2 Mapping Study Protocol . 9

1.5 Search Results . 13
1.6 Taxonomy Results . 14

1.6.1 Security Vulnerabilities . 14
1.6.2 Attacks . 17
1.6.3 Security Solutions . 18
1.6.4 A Taxonomy for PLC-Based Vulnerabilities,

Attacks, and Security Solutions . 21
1.7 Validity Threats. 27
1.8 Conclusions and Relation to DevOps . 28
1.9 Annex: Primary Studies . 29
References . 32

2 Natural Language Processing with Machine Learning for
Security Requirements Analysis: Practical Approaches 35
Andrey Sadovykh, Kirill Yakovlev, Alexandr Naumchev,
and Vladimir Ivanov
2.1 Introduction . 35
2.2 Security Requirements Engineering . 37

xi

xii Contents

2.3 Natural Language Processing for Requirements
Engineering (NLP4RE) . 39
2.3.1 Statistical and Classical Machine Learning Methods 41
2.3.2 Deep Learning . 44
2.3.3 Transfer Learning . 45

2.4 Practical Examples of NLP4RE . 46
2.4.1 ReqExp: Requirements Extraction from a Text 47
2.4.2 SeqReq: Security Requirements Classification. 51
2.4.3 STIGSearch: Semantic Search for Security

Technology Implementation Guides . 54
2.5 Discussion . 58
2.6 Conclusions . 60
References . 61

3 Security Requirements Formalization with RQCODE 65
Andrey Sadovykh, Nan Messe, Ildar Nigmatullin, Sophie Ebersold,
Maria Naumcheva, and Jean-Michel Bruel
3.1 Introduction . 66

3.1.1 Context . 66
3.1.2 Motivation . 67

3.2 Related Work . 69
3.2.1 Requirements Formalization Methods . 69
3.2.2 Static Verification and Security Patterns. 71
3.2.3 Dynamic Verification and Security Patterns 72

3.3 The RQCODE Approach . 73
3.3.1 Seamless Object-Oriented Requirements (SOOR). 73
3.3.2 Requirements as Code (RQCODE) . 74
3.3.3 RQCODE and Temporal Requirements Patterns 77
3.3.4 RQCODE and Security Technical

Implementation Guide (STIG) . 78
3.3.5 RQCODE Framework . 83

3.4 Discussion . 83
3.4.1 Approach for Evaluation . 83
3.4.2 Comparison to Other Requirements

Formalization Methods . 85
3.5 Conclusions . 89
References . 90

Part II Prevention at Development Time

4 Vulnerability Detection and Response: Current Status and
New Approaches . 95
Ángel Longueira-Romero, Rosa Iglesias, Jose Luis Flores,
and Iñaki Garitano
4.1 Introduction . 96
4.2 Background . 96

Contents xiii

4.3 State of the Art of Vulnerability Analysis in ESs 98
4.3.1 Vulnerability Analysis in Security Standards 99
4.3.2 Vulnerability Analysis in the Literature 99

4.4 Vulnerability Analysis Approaches: Analyzing Extended
Dependency Graphs (EDG). 100
4.4.1 Description of the Model . 101
4.4.2 Types of Node . 103
4.4.3 Types of Edge . 106
4.4.4 Steps to Build the Model . 106

4.5 Security Metrics . 108
4.5.1 Basic Definitions . 109
4.5.2 Metrics . 111
4.5.3 Properties . 111

4.6 Use Case . 115
4.6.1 Structure of OpenPLC . 115
4.6.2 Building the EDG . 116
4.6.3 Analysis of the EDG. 117

4.7 Conclusions . 119
References . 120

5 Metamorphic Testing for Verification and Fault Localization
in Industrial Control Systems . 127
Gaadha Sudheerbabu, Tanwir Ahmad, Dragos Truscan, and Jüri Vain
5.1 Introduction . 127
5.2 Prerequisites . 129

5.2.1 Metamorphic Testing . 129
5.2.2 Fault Localization . 130

5.3 Overview of the Approach . 132
5.3.1 Metamorphic Testing Phase . 133
5.3.2 Fault Localization Phase . 135

5.4 Evaluation . 141
5.4.1 Metamorphic Testing Phase . 143
5.4.2 Fault Localization Phase . 147
5.4.3 Tool Support . 153

5.5 Threats to Validity . 154
5.5.1 Construct Validity . 154
5.5.2 External Validity . 154
5.5.3 Conclusion Validity. 155

5.6 Related Work . 155
5.7 Conclusions and Future work . 156
References . 157

xiv Contents

6 Interactive Application Security Testing with Hybrid
Fuzzing and Statistical Estimators . 161
Ramon Barakat, Jasper von Blanckenburg, Roman Kraus,
Fabian Jezuita, Steffen Lüdtke, and Martin A. Schneider
6.1 Introduction . 162
6.2 Related Work . 163

6.2.1 Interactive Application Security Testing 166
6.3 Methodology . 167

6.3.1 Interactive Application Security Testing:
Combining Static Analysis and Security Testing 168

6.3.2 Our Approach to IAST . 170
6.4 Implementation . 176

6.4.1 Static Analysis . 177
6.4.2 Test Case Generation . 178
6.4.3 Test Data Generation . 179
6.4.4 Test Oracle . 181

6.5 Evaluation . 181
6.5.1 Experimental Plan . 182
6.5.2 RQ1: Information Exchange . 182
6.5.3 RQ2: Is IAST Worth the Effort? . 184
6.5.4 RQ3 and RQ4: Identifying True and False

Positives and Uncertainty . 185
6.5.5 Threats to Validity . 187

6.6 Conclusion, Limitations, and Outlook . 188
References . 189

Part III Protection at Operations

7 CTAM: A Tool for Continuous Threat Analysis and Management 195
Laurens Sion, Dimitri Van Landuyt, Koen Yskout, Stef Verreydt,
and Wouter Joosen
7.1 Introduction . 196
7.2 Related Work . 198

7.2.1 Threat Modeling Support During Development 198
7.2.2 Quality Assessment in Continuous Integration

Pipelines . 199
7.3 Continuous Threat Analysis and Management . 200

7.3.1 Threat Analysis Inputs . 201
7.3.2 Threat Analysis Engine. 202
7.3.3 Analysis Activities. 203
7.3.4 Server . 205

7.4 Functional Validation . 205
7.4.1 Description of the Case. 206
7.4.2 Change Scenarios . 207
7.4.3 Results . 208

Contents xv

7.5 Evaluation . 209
7.5.1 Modeling Approach . 210
7.5.2 Results . 211

7.6 Discussion . 214
7.6.1 Using Another Threat Elicitation Engine. 214
7.6.2 Scope of the Model . 214
7.6.3 Model Granularity . 215
7.6.4 Triggering the Analysis Process . 215
7.6.5 Avoiding Model Drift . 216
7.6.6 Using Detailed Threat Analysis Information 216
7.6.7 Security Metrics . 217

7.7 Future Work . 217
7.7.1 DFD Model Inputs. 217
7.7.2 Monitoring and Aligning the Operational System 218
7.7.3 Project-Centric Risk Analysis and Management

Use Cases . 219
7.8 Conclusion . 220
References . 220

8 EARLY: A Tool for Real-Time Security Attack Detection 225
Tanwir Ahmad, Dragos Truscan, and Jüri Vain
8.1 Introduction . 226
8.2 Overview of the Early Tool . 228

8.2.1 Flow Processing . 229
8.2.2 Training . 231
8.2.3 Monitoring . 234

8.3 Evaluation . 236
8.3.1 Datasets . 237
8.3.2 Model Architectures . 238
8.3.3 Evaluation Metrics. 239
8.3.4 RQ1: Classification Performance . 242
8.3.5 RQ2: Earliness Performance . 244

8.4 Related Work . 246
8.5 Conclusion . 248
References . 249

9 A Stream-Based Approach to Intrusion Detection . 253
Sylvain Hallé
9.1 Introduction . 254
9.2 Related Work . 255
9.3 Formalizing Intrusion Detection . 258

9.3.1 Formal Preliminaries . 259
9.3.2 Monitors . 260
9.3.3 Pattern Detection as Monitoring . 262

9.4 State-Based Simplifications . 264
9.4.1 Processor State . 264

xvi Contents

9.4.2 A State-Aware Detection Algorithm . 267
9.4.3 Progressing Subsequences . 268
9.4.4 Combining Reduction Strategies. 270

9.5 A Compositional Approach to Pattern Detection 271
9.5.1 Building Blocks for Pattern Detection . 272
9.5.2 Progressive Subsequences for Processor Pipelines 276

9.6 Experimental Evaluation . 279
9.6.1 Implementation . 279
9.6.2 Empirical Analysis . 281

9.7 Discussion and Conclusion . 286
References . 288

10 Toward Anomaly Detection Using Explainable AI . 293
Manh-Dung Nguyen, Vinh-Hoa La, Wissam Mallouli,
Ana Rosa Cavalli, and Edgardo Montes de Oca
10.1 Introduction . 294
10.2 Network Monitoring Approaches: MMT Monitoring

Framework Example . 295
10.2.1 Classification Techniques . 296
10.2.2 Global MMT Monitoring Architecture . 297
10.2.3 Application of MMT for Anomaly Detection 300

10.3 Interpreting ML Models for User Network Activity
Classification . 304
10.3.1 Motivation . 304
10.3.2 Classification of User Network Activities 305
10.3.3 Evaluation . 309
10.3.4 Explainable AI (XAI) . 312

10.4 Discussion . 321
10.4.1 Conclusion and Future Work. 322

References . 322

Part I
Security Requirements Engineering

Chapter 1
A Taxonomy of Vulnerabilities, Attacks,
and Security Solutions in Industrial PLCs

Eduard Paul Enoiu, Kejsi Biçoku, Cristina Seceleanu, and Michael Felderer

Abstract In recent years, industrial control systems have been extensively utilized
across critical industries, encompassing manufacturing, automation, and power
plants. The widespread implementation of these systems within vital infrastructures
has escalated the imperative of ensuring their security. This chapter aims to provide a
valuable contribution in the form of a taxonomy and a mapping study that addresses
security vulnerabilities present in industrial PLC software. The research contains an
in-depth analysis of security vulnerabilities, the corresponding exploitative attacks,
and the proposed solutions. The primary objective of this chapter is to establish
a comprehensive taxonomy that effectively identifies and classifies vulnerabilities,
attacks, and solutions pertinent to security in industrial PLCs. Notably, the proposed
taxonomy is further demonstrated within the entire DevOps continuum, spanning
from the initial design phase to the operational aspect of PLC systems. The
outcomes of this research endeavor hold substantial potential in assisting both
researchers and practitioners involved in mitigating security vulnerabilities and
combatting attacks targeting industrial PLCs.

Keywords Programmable Logic Controllers · Security · Taxonomy

E. P. Enoiu (�) · K. Biçoku · C. Seceleanu
Mälardalen University, Västerås, Sweden
e-mail: eduard.paul.enoiu@mdu.se; kbu20001@student.mdh.se; cristina.seceleanu@mdu.se

M. Felderer
German Aerospace Center (DLR), Köln, Germany

University of Cologne, Köln, Germany
e-mail: michael.felderer@dlr.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 1&domain=pdf

 885
51310 a 885 51310 a

mailto:eduard.paul.enoiu@mdu.se
mailto:eduard.paul.enoiu@mdu.se
mailto:eduard.paul.enoiu@mdu.se
mailto:eduard.paul.enoiu@mdu.se

 11682 51310 a 11682 51310 a

mailto:kbu20001@student.mdh.se
mailto:kbu20001@student.mdh.se
mailto:kbu20001@student.mdh.se

 22436 51310 a 22436 51310 a

mailto:cristina.seceleanu@mdu.se
mailto:cristina.seceleanu@mdu.se
mailto:cristina.seceleanu@mdu.se

 885
56845 a 885 56845 a

mailto:michael.felderer@dlr.de
mailto:michael.felderer@dlr.de
mailto:michael.felderer@dlr.de
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1
https://doi.org/10.1007/978-3-031-42212-6_1

4 E. P. Enoiu et al.

1.1 Introduction

Industrial control systems (ICSs) refer to systems used to monitor, control, auto-
mate, and manage essential industrial infrastructures such as oil and natural gas,
water, electricity, transportation, and more. These systems play a crucial role in
maintaining the stability and efficiency of various critical industries. While control
systems offer significant benefits, they also pose several challenges, including
critical security vulnerabilities that can have severe consequences [1]. Ensuring the
security of industrial control systems (ICSs) is crucial because attacks on these
systems can have a direct impact on physical entities under their control, unlike
information systems where an attack would only affect the system itself [2]. ICSs
consist of multiple components, including programmable logic controllers (PLCs),
remote terminal units (RTUs), human-machine interfaces (HMIs), control servers,
and more. Each of these components is susceptible to various types of attacks,
highlighting the need for a comprehensive and structured approach to identify and
mitigate potential vulnerabilities.

While many studies have examined vulnerabilities, attacks, and solutions for
industrial PLC software [2–4], none of them has provided a comprehensive
overview. This study focuses on classifying security vulnerabilities in industrial
PLCs, which are among the most crucial components of ICSs. Additionally, we
propose an extensive taxonomy of vulnerabilities, attacks, and solutions related to
programmable logic controllers (PLCs).

The security of programmable logic controllers (PLCs) is a critical concern,
primarily due to the integration of industrial control systems (ICSs) with external
networks and the lack of defensive mechanisms in communication protocols.
Unauthorized access by malicious actors could have severe consequences, including
loss of life. These aspects are particularly crucial when considering the integration
of design and runtime assurance in PLC systems. The DevOps approach aims to
bridge the gap between the design and operational phases of PLC systems, reducing
costs without compromising security or safety. This is especially relevant for PLC
systems, where secure and reliable operation is essential.

We provide a taxonomy of security vulnerabilities, attacks, and solutions in
industrial PLC software. By conducting this mapping study and taxonomy devel-
opment, we aim to achieve the following goals:

1. Address the research gap by focusing on identifying and analyzing security
vulnerabilities in industrial PLC systems.

2. Develop a comprehensive classification of the most prevalent security vulnera-
bilities, attacks, solutions, and preventive measures for industrial PLC software.

3. Create a taxonomy that links these security vulnerabilities, attacks, solutions,
and preventive measures for industrial PLC software, providing a structured and
systematic approach for identifying and mitigating potential security risks.

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 5

1.2 Background: Industrial Control Systems

Industrial control systems (ICS) refer to a collection of control systems, networks,
controllers, and devices that facilitate the automation of industrial processes across
various domains, such as automotive, power plants, water and wastewater, natural
gas, and manufacturing [5]. The two most widely used control systems are
supervisory control and data acquisition (SCADA) systems and distributed control
systems (DCS).

As shown in Fig. 1.1 [6], the components of an ICS include the human machine
interface (HMI), remote diagnostics and maintenance utilities, and the control loop,
which consists of sensors, actuators, controllers (e.g., PLC), and the controlled
process. The sensors deliver variables to the controller, which generates variables for
the actuators. The output of the system is considered a process, which can be fully
automatic or partially intervened by a human [7]. The HMI enables the configuration
of various parameters and provides necessary information in a display. The remote
diagnostics and maintenance utilities allow for remote modification and diagnosis
of parameters.

Communication between different elements of an ICS relies on communication
protocols such as Profibus, Modbus, DNP3, and CIP [8], among others.

Fig. 1.1 Industrial control system operation [6]

6 E. P. Enoiu et al.

1.3 Related Work

Pan et al. [9] provide an overview of industrial control systems (ICS) and specif-
ically focus on various aspects of PLC security issues and vulnerabilities, such
as code, firmware, and network security, Modbus protocol security, and virus
vulnerability. The authors analyze these aspects based on previous research and
provide available security protection methods.

Sandaruwan et al. [2] emphasize the importance of investigating vulnerabilities
in ICSs, with a particular focus on PLCs, which are the most critical components of
ICSs. Through various attack vectors, the authors attempt to reveal vulnerabilities
that can affect the entire infrastructure. They also provide specific solutions to
mitigate the risks associated with these vulnerabilities.

Together, these studies underscore the significance of PLC security in ICSs and
highlight the need for identifying and addressing potential vulnerabilities through
systematic analysis and effective mitigation strategies.

In their research, Wu et al. [10] highlight a shift in attackers’ focus from
individual users to industrial control systems (ICSs) and emphasize the significant
impact of PLCs’ safety on ICSs. They classify security research conducted for
PLCs based on function and structure and investigate various aspects such as
firmware security, operation, and program security. The authors analyze security
measures that focus on defense detention of the PLC program, verification of the
PLC firmware’s integrity, security encryption of the PLC communication protocol,
and formal verification of the PLC code.

On the other hand, Valentine [3] discusses the importance of correct PLC
applications and identifies security threats while introducing potential solutions. The
research contributions include a taxonomy regarding attacks in ladder logic, ladder
logic vulnerabilities, and secure design patterns. However, this taxonomy has a more
narrow scope than ours.

Among the studies mentioned, only Valentine’s research [3] provides a taxon-
omy, while others focus on specific aspects of PLC security. Nevertheless, these
studies collectively highlight the need for comprehensive security measures for
PLCs and the importance of developing taxonomies to identify and address potential
vulnerabilities.

While our study systematically derives a taxonomy of security vulnerabilities in
industrial PLC software, there are other taxonomies of vulnerabilities, attacks, and
security solutions in related domains. For example, Pekaric et al. [11] developed
a taxonomy of attack mechanisms in the automotive domain using a similar
systematic approach. This highlights the importance of developing structured
taxonomies in various domains to enable a better understanding of potential threats
and vulnerabilities and to inform the development of effective mitigation strategies.

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 7

1.4 Method

Our study aims to make a contribution by developing a taxonomy that models and
conceptualizes security vulnerabilities in industrial PLC software. A taxonomy is
a classification system that defines specific entities based on their characteristic
features [12]. By creating a taxonomy, we can systematically identify and classify
different types of security vulnerabilities in industrial PLC software, which can
inform the development of effective mitigation strategies to address and prevent
such vulnerabilities. A mapping study is a crucial component of the taxonomy
development process. In this section, we will discuss the design details of both
the taxonomy and the mapping study. Section 1.4.1 outlines the taxonomy design,
while Sect. 1.4.2 describes the design of the mapping study in detail. By conducting
a systematic protocol, we can effectively map the existing literature to identify gaps
and overlaps in the field, which helps inform the development of a comprehensive
and accurate taxonomy.

1.4.1 Taxonomy Protocol

A taxonomy is a categorization system that aids in differentiating between various
research categories for a specific topic. Its primary advantages include providing
a systematic overview of the research domain and predicting future research
endeavors. The establishment of a taxonomy is supported by conducting a mapping
study, which follows the guidelines presented by Usman et al. [13]. The steps
involved in executing a mapping study are as follows:

1.4.1.1 Planning

During this phase, we established the taxonomy design in accordance with the
following steps:

• Define software engineering knowledge area: In [14], the software engineering
body of knowledge is categorized into 15 distinct areas. Our study, however, is
orthogonal to these areas since it concentrates on software and hardware security.

• Objective of the taxonomy: The aim of this taxonomy is to establish relation-
ships between methods for mitigating identified PLC vulnerabilities and the
corresponding attacks and solutions. This taxonomy can prove useful to both
academics and practitioners, as it enables them to document their research on
industrial PLC software in accordance with the established categories.

• Subject matter: The subject matter is a more specific definition of the knowledge
domain. In this study, the subject matter or units of classification pertain to
security vulnerabilities, attacks, and solutions in industrial PLC software.

8 E. P. Enoiu et al.

• Classification structure type: When constructing a taxonomy, there are four
potential structures that can be employed for the categorization process:
paradigm, faceted analysis, tree, and hierarchy. For this study, we have opted
to use the faceted analysis structure, which includes multiple facets (e.g.,
vulnerabilities, attacks, solutions), each with their own attributes.

• Classification procedure type: The classification procedures can be classified
into two types: qualitative and quantitative. In this particular research, qualitative
classification procedures are more appropriate since they rely on nominal scales.
These nominal scales are utilized to allocate the subject matter types to the
respective dimensions.

• Identify information sources: The mapping study described in Sect. 1.4.2 outlines
the sources of information from which the data is extracted. Additionally, the
study presents the findings obtained from analyzing this information.

1.4.1.2 Identification and Extraction

Once the design of the taxonomy has been planned, the subsequent step involves
identifying and extracting the appropriate data. These two phases are carried out
through the execution of a mapping study. The following is a general description of
each step:

• Extract terms: The terminology used for constructing this taxonomy is derived
from the data extraction process of the mapping study. Relevant terms and
concepts pertaining to vulnerabilities, attacks, and solutions in industrial PLC
software are included in a data extraction form.

• Terminology control: To prevent any inconsistencies, we ensured terminology
control during the data extraction and analysis process.

1.4.1.3 Design

After extracting all relevant data, we must proceed to identify the dimensions,
categories, and relationships using the following steps:

• Identify dimensions: For this taxonomy, we selected the faceted analysis classi-
fication structure, which entails identifying multiple dimensions. The taxonomy
comprises the following dimensions: vulnerabilities, attacks, and solutions.

• Identify categories: To identify the categories within each dimension, we must
utilize either a top-down or bottom-up approach. In this study, we have employed
a bottom-up approach, whereby the categories are identified during the data
extraction process of the mapping study.

• Identify relationships: The dimensions of the taxonomy are interconnected
through their association with the security of PLC software. Vulnerabilities
and attacks are also linked since attacks exploit vulnerabilities, and similarly,
there exists a relationship between attacks and solutions, as solutions aid in

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 9

mitigating attacks. A more comprehensive understanding of this interdependence
is presented in Sect. 1.6.4.

1.4.2 Mapping Study Protocol

A mapping study is utilized to organize data obtained on a specific subject, identify
research trends and gaps, and present findings. To conduct our mapping study, we
adhere to the guidelines proposed by Petersen et al. [15] for mapping studies in
software engineering. Conducting a mapping study comprises various stages. Our
initial step involves defining the overall objective. We then proceed to formulate the
search string, select appropriate digital libraries, establish selection criteria, execute
the query search, eliminate duplicates, screen papers based on their title and abstract
using the selection criteria, screen the full text of papers using the selection criteria,
conduct backward snowballing, define the classification framework, extract data
from the studies, analyze the extracted data, and present the final results. Figure 1.2
depicts this process.

1.4.2.1 Research Goal

The objective of this research is to establish a classification of the most prominent
security vulnerabilities in industrial PLC software, the most prevalent attacks that
exploit these vulnerabilities, and potential solutions to enhance the security of
industrial PLC software. The findings of this study will serve as a foundation for
understanding security vulnerabilities and their underlying causes in industrial PLC
software. Thus, our overarching research objective is to establish a taxonomy for
categorizing security vulnerabilities, associated attacks, and preventive measures
concerning industrial PLC software.

1.4.2.2 Research Questions

This study has formulated the following four research questions that will aid in
achieving the defined goal:

• Which categories of security vulnerabilities have been recognized for industrial
PLC software?

• Which attacks are the most prevalent in exploiting these security vulnerabilities
in industrial PLC software?

• What are the primary solutions or preventive measures for addressing security
vulnerabilities in PLC software?

10 E. P. Enoiu et al.

Fig. 1.2 Research method used for the SMS

Table 1.1 PICO criteria

Population Industrial PLC software

Intervention Security vulnerabilities

Comparison Not applicable

Outcomes Classification of studies based on the vulnerabilities they mention in the context
of PLCs

1.4.2.3 Keywords and Search String

The main focus of this study is on security vulnerabilities in industrial PLC software.
First, we used the Population, Intervention, Comparison and Outcomes (PICO)
criteria to create the search string. The PICO criteria is defined in Table 1.1.
Next, we defined the keywords and their corresponding synonyms and acronyms
shown in Table 1.2.

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 11

Table 1.2 Keywords,
synonyms and acronyms

Keywords Synonyms and acronyms

Programmable logic controller PLC

Security Security

Vulnerability Risk, threat

We used these keywords, wildcards (i.e., *), and Boolean operators (i.e., AND,
OR) and we created the following search string:

(“PLC*” OR “Programmable Logic Controller*”) AND (security) AND (“vul-
nerabilit*” OR “risk*” OR “threat*”)

1.4.2.4 Digital Libraries

To obtain results for this study, we opted to search two primary digital libraries that
are commonly utilized in PLC engineering: IEEE Xplore1 and Scopus.2

1.4.2.5 Selection Criteria

To establish the relevance of studies obtained from our search, we have developed a
set of selection criteria, which are classified as either inclusion or exclusion criteria.
A study is deemed eligible if it meets all the inclusion criteria and none of the
exclusion criteria. Conversely, a study is excluded if it meets at least one exclusion
criterion or fails to meet all the inclusion criteria. The selection process is conducted
in two stages. In the first stage, papers are assessed based on their title, abstract, and
keywords, and in the second stage, the full text of the papers is examined. Inclusion
criteria are listed as follows:

• I1. Papers that identify one or more security vulnerabilities in industrial PLC
software.

• I2. Papers that are published in conferences or journals.

Exclusion criteria are listed as follows:

• E1. Papers which are duplicative or outdated versions of prior papers.
• E2. Papers which are not peer-reviewed.
• E3. Papers which are secondary or tertiary studies.
• E4. Papers which are not accessible in English.
• E5. Papers which are not accessible in full text.

1 https://ieeexplore.ieee.org
2 https://www.scopus.com/

https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
https://www.scopus.com/
https://www.scopus.com/
https://www.scopus.com/
https://www.scopus.com/

12 E. P. Enoiu et al.

• E6. Papers which address security concerns in ICS but not explicitly in relation
to PLCs.

1.4.2.6 Query Search

After the search string and digital libraries are defined, the search string is used in
those digital libraries to get the results from the automatic search. The following
search strings are the specific ones for each library:

IEEE Xplore: (“PLC*” OR“Programmable Logic Controller*”) AND (security)
AND (“vulnerabilit*” OR “risk*” OR “threat*”)

Scopus: (“PLC*”OR“Programmable Logic Controller*”) AND (security) AND
(“vulnerabilit* ” OR “risk*”OR“threat*”) AND (LIMIT-TO (OA , “all”)) AND
(LIMIT-TO(DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE , “cp”)) AND (LIMIT-
TO(SUBJAREA ,“COMP”) OR LIMIT-TO (SUBJAREA , “ENGI”)) AND (LIMIT-
TO(LANGUAGE , “English”)) AND (LIMIT-TO(PUBSTAGE ,“final”)) AND
(LIMIT-TO(SRCTYPE , “j”) OR LIMIT-TO (SRCTYPE , “p”))

All the studies obtained through automated searches of the libraries have been
exported and subsequently examined in two distinct spreadsheets.

1.4.2.7 Selection Criteria Application

Following the elimination of duplicates, it becomes imperative to assess the
pertinence of the remaining papers. Their relevancy is determined based on the
selection criteria outlined in Sect. 1.4.2.5. The process of selecting studies involves
two steps: first, applying the selection criteria to the title, abstract, and keywords,
and, second, applying the selection criteria to the full text.

1.4.2.8 Classification, Extraction, and Analysis

Our inclusion of domain-specific information pertains specifically to topics about
industrial PLC software. The classification framework comprises a vulnerabilities
category, which is populated by extracting information on security vulnerabilities in
industrial PLC software from the papers. Additionally, the framework encompasses
both attacks and solutions categories.

During the analysis phase of data collection, the data extracted from the primary
studies is utilized to construct the taxonomy. Initially, the data for each category
of the classification scheme is scrutinized, and the quantity of studies in a particular
category is determined. Nevertheless, this data is solely applicable to each individual
category, and it is crucial to examine how the categories are interlinked.

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 13

1.5 Search Results

In this section, we present the number of papers that remain for each stage of
the study, starting from the digital library search to the final set of papers, after
outlining all the required steps and components. Figure 1.3 provides a summary of

Fig. 1.3 Search and selection results

14 E. P. Enoiu et al.

Table 1.3 Search Result Digital library Search results

IEEE XPlore 122

SCOPUS 432

Total 554

this process, and a thorough explanation of the process is provided subsequently.
As outlined in Sect. 1.4.2.6, the automatic search process involved the execution of
the search string in two distinct digital libraries. Table 1.3 displays the results of
our search, indicating the number of papers retrieved from both IEEE Xplore and
SCOPUS. Our search criteria matched 122 papers in IEEE Xplore and 432 papers
in SCOPUS. By combining the results from both sources, we obtained a total of 554
papers.

We executed the removal of duplicates, which led to the elimination of 84
papers. Initially, we applied the selection criteria to the papers’ titles, abstracts, and
keywords, resulting in the exclusion of 400 papers. Most of the excluded studies
either did not meet I1 or met E6. In the subsequent stage, we applied the selection
criteria to the full text, excluded 34 studies, and retained 36 studies. The majority of
the papers excluded in this stage either met E5 or E6. Backward snowballing was
conducted to add more papers to the final set to extract more relevant results. From
the 36 papers, we collected 578 studies. From these 578 studies, 493 were excluded
based on the title and keywords, and 67 were excluded based on the abstract. From
applying the selection criteria to the full text, 15 studies were excluded. In total,
from the backward snowballing process, we obtained three additional papers. Since
the snowballing process was the last process before the classification framework
definition, our final set of papers contains 39 studies that can be used to build this
taxonomy.

1.6 Taxonomy Results

In this section, we present a summary of the findings from our data analysis. We
not only identify the different categories of PLC vulnerabilities but also explore
the interconnections among them, as well as between vulnerabilities, attacks, and
solutions.

1.6.1 Security Vulnerabilities

During the data extraction process, ten primary categories of vulnerabilities were
identified. While some of these categories are interconnected (e.g., lack of encryp-
tion or authentication may stem from protocols’ lack of security when used on the

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 15

Fig. 1.4 Vulnerabilities in PLC systems

Internet), we classified them separately as authentication, encryption, and network
to avoid any potential bias. Additionally, this categorization allows us to see how
many studies address networks generally versus specific areas. Figure 1.4 provides
a visual summary of the results.

The category with the highest number of publications is related to authentication,
with 19 studies dedicated to this topic. This category primarily discusses the vulner-
abilities associated with hard-coded passwords, lack of two-factor authentication
mechanisms, and absence of passwords altogether.

The categories that receive the most attention in terms of publications are
authentication and encryption. This is mainly because communication protocols
used in ICS lack security features. Studies such as S4, S8, and S9 focus on this
issue. For instance, the Modbus communication protocol, which is one of the oldest
and most commonly used protocols in ICS, does not offer any authentication or
encryption. As a result, an attacker can easily obtain the necessary information for a
Modbus session to be valid (e.g., function code and address) from a network sniffer
like Wireshark and launch an attack. Moreover, Modbus messages are not encrypted
and are transmitted in plain text. This issue is not limited to Modbus, as other widely
used protocols such as Profibus, Profinet, EtherCAT, and more also lack encryption.

The absence of anomaly detection mechanisms is highlighted as a vulnerability
in five studies, as they emphasize that the inability to detect unusual behavior of
PLCs in real time can result in disastrous consequences. This vulnerability is not
only perilous because of the critical systems that are governed by PLCs but also
because it is challenging to identify the root cause of the attack while it spreads
throughout the system [16].

Operating system security is identified as a vulnerability in four studies that
focus on industrial PLC software. Similar to other operating systems, the operating
systems used in these PLCs also have vulnerabilities that can be exploited by
attackers. For instance, some of the vulnerabilities mentioned in these studies

16 E. P. Enoiu et al.

include the Microsoft Windows server service vulnerability (MS-08-067), the
print spooler vulnerability (MS10-061), and the Microsoft Windows.LNK/.PIF
vulnerability (MS10-046), as noted in S33.

Four studies mention the buffer overflow vulnerability, which is associated with
memory corruption. When this vulnerability is exploited, the attacker can modify
program execution [17]. Additionally, this vulnerability is closely connected to
another vulnerability discussed in three studies, namely, the lack of input validation.
By validating input, the program will only accept values within an acceptable range,
such as input character length, and prevent buffer overflow [17, 18].

The three studies that discuss the lack of information about hardware and
firmware present a conflicting situation. On the one hand, PLC vendors require
security research and measures to be taken against possible attacks. However, since
the hardware and firmware they use are proprietary and not publicly available,
conducting research to obtain reliable results on how to mitigate the possibility of
attacks is nearly impossible [17, 19]. Therefore, this vulnerability is primarily due
to the vendors’ choices rather than the system itself.

Human issues are mentioned as a vulnerability in three studies (S34-S36). This
category encompasses inexperienced developers, naive users who might uninten-
tionally make the system vulnerable to attacks, or personnel who may intentionally
try to attack the system. Access control, on the other hand, is the least frequently
mentioned vulnerability category, with only two papers discussing it. S1 and S43
focus on the importance of providing users with information based on their needs
and granting privileged access only to authorized users. Refer to Table 1.4 for the
papers in each category.

Table 1.4 Vulnerabilities and studies

Vulnerabilities Studies

Encryption S1, S4, S7, S12, S20, S23, S24, S30, S34

Authentication S1–S4, S6–S9, S11, S13, S21–S23, S27,
S30–S32, S34, S37

No anomaly detection S12, S17, S19–S21

Access control S1, S27

Human issues S34–S36

Operating System S15, S19, S33, S34, S37–S39

Buffer Overflow S7, S19, S25–S27

Input validation S11, S14, S27

Lack of information about hardware and firmware S18, S24, S27

Network S5, S10, S15, S16, S27–S29

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 17

The primary outcomes from the gathered data on security vulnerabilities in indus-
trial PLC software are as follows:

The research on security vulnerabilities in industrial PLC software has a
significant focus on issues related to authentication, encryption, networks, and
operating systems.

1.6.2 Attacks

The graphical representation of the number and type of attacks in industrial PLC
software can be seen in Fig. 1.5.

The most commonly mentioned attack that takes advantage of the security
weaknesses in industrial PLC software is denial of service (DoS), discussed in 11
studies. A system is designed to handle a certain amount of traffic, and if more
traffic is directed to a particular address with the intention of rendering the system
unavailable to users, it is considered a DoS attack [20]. In PLC industrial settings,
availability is a critical attribute, making the impact of this attack significant.

Stuxnet is a worm that gained notoriety for infecting PLCs and taking control of
the gas centrifuges in Iran, causing them to spin at high speeds until they burned
out. The worm searched for an industrial automated software called SIMATIC Step
7 used by PLCs on infected PCs. Once it found this software, it would also find a
PLC and inject malicious code into it. The worm was designed to send false data to
cover its tracks and avoid detection by controllers, making it difficult to detect the
attack [21, 22].

Fig. 1.5 Attacks

18 E. P. Enoiu et al.

The man-in-the-middle attack (MITM), which is mentioned in six studies, is
another well-known attack. In this type of attack, the attacker positions themselves
in between an HMI and a PLC and intercepts all the information that the HMI is
attempting to send to the PLC. This allows the attacker to modify the data they
receive from the HMI and send it to the PLC, without the PLC being aware that the
data has been tampered with. Additionally, the attacker can also observe or attempt
to block the traffic [20].

A similar attack is the replay attack mentioned in four studies (i.e., S4, S16,
S27, S30). In this attack, the attacker also gets a copy of the information exchanged
between the two hosts and can later use it by sending duplicate information.

The false data injection attack is mentioned in four studies (i.e., S3, S6, S11,
S17). The PLC receives information from sensors, and during the false data injection
attack, this information is manipulated. When this happens, the PLC will output
commands according to the false data injected and not according to the real
measurements from the sensor. That could lead to damaging incidents.

Two studies (S8 and S30) mention the brute force attack, which involves an
algorithm that attempts all possible combinations for a specific password until the
correct password is identified and the necessary credentials are obtained to access
the system. As a result, it is recommended to use passwords with a minimum number
of characters, as well as a combination of lowercase and uppercase letters, numbers,
and special characters in most applications. A larger alphabet results in a larger
number of possible combinations that must be tried to discover the correct password.
S8 describes a similar attack called the dictionary attack, in which the attacker uses a
list of previously used or common passwords instead of trying all possible character
combinations.

The authentication bypass attack is mentioned in two studies and takes advantage
of the lack of security in the protocol. An attacker can obtain an authentication
packet from a validated user in the system and use it to authenticate themselves
[23]. All other attacks are only mentioned once in the reviewed studies. Table 1.5
presents the papers for each attack category.

The prevalent types of attacks that exploit security vulnerabilities in industrial
PLC software include denial of service, Stuxnet, man-in-the-middle, replay
attacks, and false data injection attacks.

1.6.3 Security Solutions

Figure 1.6 provides a visual depiction of the proposed solutions for mitigating
vulnerabilities and attacks in industrial PLC software. Of the 39 studies examined,
only 19 (or approximately half) discuss potential solutions for mitigating attacks or

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 19

Table 1.5 Attacks and studies

Attacks Studies

Denial of service S1, S5, S11, S12, S17, S21, S22, S14, S25, S28, S36

Stuxnet S11, S24, S28, S29, S31, S33, S36, S39

Man-in-the-middle S12, S13, S16, S22, S24, S30

Replay attack S4, S16, S27, S30

False data injection S3, S6, S11, S17

Brute force S8, S30

Authentication bypass attacks S5, S30, S34

Start stop attack S20, S34

Dictionary attack S8

Phishing S8

PLC-PC worm S10

SQL injection S11

Data execution attack S13

Control logic attack S13

Stealth command modification attack S16

Interception attack S17

Maroochi attack S24

Duqu S29

Havex S24

Firmware modification attack S38, S39

Fig. 1.6 Solutions for vulnerabilities

securing vulnerable system components. In total, we identified 13 distinct solutions,
with nine mentioned only once.

The solutions most frequently cited in the PLC literature involve detection
mechanisms. These mechanisms are designed to identify patterns or events that

20 E. P. Enoiu et al.

diverge from typical system behavior. By monitoring system behavior, changes that
indicate a potential attack can be detected and reported to a control center [24, 25].
Intrusion detection is mentioned in four of the nine papers (S2, S13, S17, S30), while
anomaly detection is mentioned in three of the nine papers (S7, S26, S29). Data
tampering detection is mentioned in one paper (S6), as is attack model detection
(S15). While these mechanisms are all forms of detection, we have grouped them
together. It is important to note that these detection mechanisms only serve to
identify attacks and do not provide a means of mitigating them.

One potential approach is encryption. Many commonly used communication
protocols transmit messages in plain text, leaving them vulnerable to exploitation
by attackers. To address this issue, five papers recommend encrypting the content
of messages to ensure confidentiality. Users can encrypt their messages, which
can then be decrypted by the intended recipients with the proper decryption
key [21]. The underlying concept is to incorporate encryption mechanisms into
communication protocols or replace existing protocols with ones that support
encryption.

Another potential solution is the implementation of demilitarized zones. As a
significant portion of cyber vulnerabilities and attacks stem from Internet connec-
tions, the goal of demilitarized zones is to isolate the primary network from the
Internet, which is generally deemed insecure. In the event of an attack, this setup
prevents the attacker from accessing the primary network, limiting their access to
only the untrusted segment [2, 26]. This approach also allows for partitioning of the
network into multiple zones, each with its own protective layer. If one zone becomes
infected, it is unable to spread the infection to other zones.

As the remaining solutions are mentioned only once, we do not offer a detailed
explanation of them. However, for interested readers, we have included the papers
that discuss these solutions in our data extraction form for further reference. The
relevant papers for each category are listed in Table 1.6.

Table 1.6 Solutions and studies

Solutions Studies

Detection mechanisms S3, S6, S7, S13, S15, S17, S26, S29, S30

Encryption S16, S17, S24, S30, S31

Monitoring S20, S32

Demilitarized zones S30, S32

Challenge-response mechanism S8

Prediction model S10

User authentication S13

Deep packet inspection S13

Open PLC S18

SEABASS S22

Firewall S32

VPN S32

Firmware verification tool S38

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 21

Various techniques have been utilized in research to provide solutions for
security vulnerabilities in PLC software, including the implementation of
detection mechanisms and encryption.

1.6.4 A Taxonomy for PLC-Based Vulnerabilities, Attacks,
and Security Solutions

The data collected in the study was utilized to develop a taxonomy for organizing
the vulnerabilities, attacks, and solutions in PLCs. Figure 1.7 displays a faceted
taxonomy that encompasses all of these elements. The root of the taxonomy
is the PLC, while the taxonomy’s dimensions consist of vulnerabilities, attacks,
and solutions. Each dimension includes multiple categories, with ten categories
identified for vulnerabilities, 20 for attacks, and 13 for solutions.

Since we are connecting the vulnerabilities, attacks, and solutions for industrial
PLC software into a single taxonomy, in Fig. 1.8 we describe the relationship
between these three dimensions. As mentioned throughout this study, vulnerabilities
are weaknesses of the PLC system. They pose a risk to the PLC system as they lead
to a different attack that exploits these vulnerabilities. These attacks are resolved by
different solution mechanisms that mitigate the corresponding vulnerabilities.

Table 1.7 presents a mapping of the security vulnerabilities found in the previous
study to their corresponding attacks and solutions. It can be observed that each
vulnerability can result in multiple attacks and each attack can have multiple
solutions. The majority of the reported attacks were related to PLC network security,
indicating that more research is needed in this area to develop effective PLC security
mechanisms. This tabular taxonomy provides a comprehensive framework that
includes the dimensions of vulnerabilities, attacks, and solutions. The vulnerabilities
dimension is divided into 10 categories, the attacks dimension into 20 categories,
and the solutions dimension into 13 categories.

Figure 1.9 illustrates the relationship between vulnerabilities, attacks, and solu-
tions, focusing only on attacks that exploit a vulnerability and have a possible
solution. Attacks serve as the connecting point between vulnerabilities and solu-
tions. For instance, with respect to FDIA, authentication is the most commonly
identified vulnerability, whereas detection mechanisms and encryption are the
most frequently employed solutions. Regarding the MITM attack, the lack of
encryption is the predominant vulnerability, while encryption mechanisms are the
most common solutions. Similarly, for the replay attack, the primary vulnerabilities
are the lack of authentication, encryption, and network issues, while encryption
mechanisms are the main solutions.

The taxonomy developed in this study provides several contributions. Firstly, the
process used to create this taxonomy can serve as a model for other researchers

22 E. P. Enoiu et al.

F
ig

. 1
.7

Se
cu
ri
ty
 ta
xo
no
m
y
fo
r
PL

C
s

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 23

Fig. 1.8 Generic vulnerabilities, attacks, and solutions cycle

to create taxonomies in similar contexts. Additionally, the taxonomy can aid in
examining the security of PLSs from multiple perspectives. Secondly, academics
can benefit from this taxonomy by identifying security trends and patterns in PLCs
and using them to organize their research outcomes. Industry professionals can also
use the taxonomy to target frequent PLC vulnerabilities, analyze existing solutions,
and improve security measures. The taxonomy can also serve as a checklist to
ensure a system is free of vulnerabilities mentioned in the taxonomy, indicating
improved security. While this taxonomy already classifies vulnerabilities, attacks,
and solutions in industrial PLC software, its significance will increase as researchers
expand it to include other unknown categories.

In our taxonomy, the relation most frequently mentioned is the one between
authentication vulnerabilities and the exploitation of these vulnerabilities by denial
of service (DoS) attacks. A correct authentication mechanism is necessary for
identifying legitimate users in the system. Without it, attackers can intrude into the
PLC system and launch a DoS attack, where more traffic is sent to the system than
it can handle.

The DoS attack also uses encryption vulnerabilities and a lack of anomaly
detection. Encryption vulnerabilities are exploited because sensitive information,
such as passwords, is sent in clear text instead of encrypted format, enabling
the attacker to enter the PLC system. The lack of a detection mechanism allows
attackers to use a DoS attack, and the system is unaware of it because it does not
implement detection mechanisms to identify abnormal traffic and restrict it.

24 E. P. Enoiu et al.

Ta
bl

e
1.

7
PL

C
 s
ec
ur
ity

 v
ul
ne
ra
bi
lit
ie
s,
 a
tta

ck
s,
 a
nd

 s
ol
ut
io
n
m
ap
pi
ng

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 25

26 E. P. Enoiu et al.

Fig. 1.9 Relational display of vulnerabilities, attacks, and solutions

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 27

The man-in-the-middle and replay attacks also exploit encryption vulnerabilities.
The attacks are executed by intercepting the communication between two devices
and either listening or modifying the information being sent. Without encryption,
attackers can easily read the data, although they cannot necessarily compromise the
system. However, if the communication is encrypted, the data in the packet would
require decryption by the user, making it much more difficult for attackers to access
the PLC system.

The absence of an authentication mechanism makes it possible for false data
injection attacks to exploit the authentication vulnerability. This is because it is
difficult to determine if the exchanged messages are authentic or false without such
a mechanism in place. Implementing cryptographic signatures can help authen-
ticate messages, ensuring the data is valid. In addition to exploiting encryption
vulnerabilities, the man-in-the-middle and replay attacks also exploit authentica-
tion vulnerabilities. Although challenge-response authentication mechanisms can
mitigate encryption vulnerabilities, they are currently lacking. Attackers exploit
this vulnerability to launch successful attacks. Another type of attack that exploits
authentication vulnerabilities is the brute force attack. Since single-factor authen-
tication is typically used, a brute-force attack can be successful by simply finding
the password. The lack of a two-factor authentication mechanism can make such
attacks successful.

The prevalent vulnerabilities identified in the context of FDIA are authentication
and lack of anomaly detection. Correspondingly, detection mechanisms and encryp-
tion are the commonly suggested solutions. In contrast, the primary vulnerability in
the case of MITM attack is the absence of encryption, and most solutions revolve
around encryption mechanisms. The replay attack is vulnerable to several issues,
including lack of authentication, lack of encryption, and network problems. The
most popular countermeasures focus on encryption mechanisms.

1.7 Validity Threats

In this section, we discuss the potential validity threats that may arise in our
study and the measures we have taken to mitigate them. According to Wohlin’s
categorization [27], validity threats are broadly classified into four types: construct
validity, internal validity, external validity, and conclusion validity. We discuss each
of these threats and the steps we have taken to minimize their impact on our study.

Construct validity Construct validity refers to the relationship between the data
collected and the research questions. In our study, we mitigated this threat by
defining a search string using the PICO criteria to ensure that the extracted
data would answer our research questions. Additionally, we included all relevant
keywords related to our study in the search string. The two libraries we selected
are reputable sources in the field of PLC engineering, further increasing the
construct validity of our study.

28 E. P. Enoiu et al.

Internal validity To address internal validity, we established protocols for both
the mapping study and the taxonomy, following established guidelines as a
blueprint for conducting the study. This helps to control for external variables
that may affect the outcomes of the study.

External validity To ensure external validity, we aimed to collect a comprehen-
sive set of papers relevant to our study by using both automatic search and
snowballing methods. This approach allowed us to include a wide range of
publications that covered different aspects of PLC security, thus increasing the
generalizability of our findings to other studies.

Conclusion validity To address the threat of conclusion validity, we took several
measures. Firstly, we documented our study’s process systematically and trans-
parently, allowing others to repeat it and obtain the same results. Additionally,
we aimed to minimize the potential impact of any new information that might
be added during the time gap between our searches. Moreover, we defined a
comprehensive data extraction form and classification framework to ensure that
the study’s results could be replicated.

1.8 Conclusions and Relation to DevOps

To get an overview of the existing research on security vulnerabilities, attacks,
and security solutions in industrial PLC software, we performed a mapping study
and developed a taxonomy for PLC-based security vulnerabilities, attacks, and
solutions. The main goal of this work was to bring to the forefront the main
vulnerabilities that malicious actors could exploit to gain access and attack the PLC
system. This study can benefit academics and researchers who work with PLCs and
focus on security. The taxonomy can help with an initial categorization of the most
common vulnerabilities, attacks, and solutions.

Our results can be used by engineers working with security in DevOps. Using
specific solutions and monitors identified using our taxonomy, one can use these
prior to deployment in the design phase as predictors or oracles. For example, one
can use specific detection mechanisms to perform test assessment and verification
during development and to ensure security during the operational phase. This
happens in DevOps when missing and vague security requirements identified by
the monitors are added to the security requirements. The main advantage of the
DevOps approach using our taxonomy is that it can be used further for tighter
integration between design verification activities on executable PLC systems and
runtime monitoring of such industrial systems.

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 29

1.9 Annex: Primary Studies

[S1] Jeong, E., Park, J., Oh, I., Kim, M., and Yim, K. (2020, July). Analysis on
Account Hijacking and Remote Dos Vulnerability in the CODESYS-Based
PLC Runtime. In International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (pp. 457–467). Springer, Cham.

[S2] Sarkar, E., Benkraouda, H., and Maniatakos, M. (2020, October). I came,
I saw, I hacked: Automated Generation of Process-independent Attacks
for Industrial Control Systems. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security (pp. 744–758).

[S3] Gönen, S., Sayan, H. H., Yılmaz, E. N., Üstünsoy, F., and Karacayılmaz, G.
(2020). False data injection attacks and the insider threat in smart systems.
Computers and Security, 97, 101955.

[S4] Lee, J. C., Choi, H. P., Kim, J. H., Kim, J. W., Jung, D. U., Shin, J. H.,
and Seo, J. T. (2020). Identifying and Verifying Vulnerabilities through PLC
Network Protocol and Memory Structure Analysis.

[S5] Khadpe, M., Binnar, P., and Kazi, F. (2020, July). Malware Injection in
Operational Technology Networks. In 2020 11th International Conference on
Computing, Communication and Networking Technologies (ICCCNT) (pp.
1–6). IEEE.

[S6] Negi, R., Dutta, A., Handa, A., Ayyangar, U., and Shukla, S. K. (2020, June).
Intrusion Detection and Prevention in Programmable Logic Controllers: A
Model-driven Approach. In 2020 IEEE Conference on Industrial Cyberphys-
ical Systems (ICPS) (Vol. 1, pp. 215–222). IEEE.

[S7] Bytes, A., and Zhou, J. (2020, October). Post-exploitation and Persistence
Techniques Against Programmable Logic Controller. In International Con-
ference on Applied Cryptography and Network Security (pp. 255–273).
Springer, Cham.

[S8] Son, J., Noh, S., Choi, J., and Yoon, H. (2019). A practical challenge-
response authentication mechanism for a Programmable Logic Controller
control system with one-time password in nuclear power plants. Nuclear
Engineering and Technology, 51(7), 1791–1798.

[S9] Lee, T., Kim, S., and Kim, K. (2019, October). A Research on the Vulner-
abilities of PLC using Search Engine. In 2019 International Conference on
Information and Communication Technology Convergence (ICTC) (pp. 184–
188). IEEE.

[S10] Yao, Y., Sheng, C., Fu, Q., Liu, H., and Wang, D. (2019). A propagation
model with defensive measures for PLC-PC worms in industrial networks.
Applied Mathematical Modelling, 69, 696–713.

[S11] Gonzalez, D., Alhenaki, F., and Mirakhorli, M. (2019, March). Architectural
security weaknesses in industrial control systems (ICS) an empirical study
based on disclosed software vulnerabilities. In 2019 IEEE International
Conference on Software Architecture (ICSA) (pp. 31–40). IEEE.

30 E. P. Enoiu et al.

[S12] Yılmaz, E. N., Sayan, H. H., Üstünsoy, F., Gönen, S., and Karacayılmaz, G.
(2019). Cyber security analysis of DoS and MitM attacks against PLCs used
in smart grids.

[S13] Yoo, H., and Ahmed, I. (2019, June). Control logic injection attacks on
industrial control systems. In IFIP International Conference on ICT Systems
Security and Privacy Protection (pp. 33–48). Springer, Cham.

[S14] Pavesi, J., Villegas, T., Perepechko, A., Aguirre, E., and Galeazzi, L. (2019,
November). Validation of ICS Vulnerability Related to TCP/IP Protocol
Implementation in Allen-Bradley Compact Logix PLC Controller. In Inter-
national Congress of Telematics and Computing (pp. 355–364). Springer,
Cham.

[S15] Zhang, W., Jiao, Y., Wu, D., Srinivasa, S., De, A., Ghosh, S., and Liu, P.
(2019). Armor PLC: A Platform for Cyber Security Threats Assessments for
PLCs. Procedia Manufacturing, 39, 270–278.

[S16] Ghaleb, A., Zhioua, S., and Almulhem, A. (2018). On PLC network security.
International Journal of Critical Infrastructure Protection, 22, 62–69.

[S17] Alves, T., Das, R., andMorris, T. (2018). Embedding encryption and machine
learning intrusion prevention systems on programmable logic controllers.
IEEE Embedded Systems Letters, 10(3), 99–102.

[S18] Alves, T., and Morris, T. (2018). OpenPLC: An IEC 61,131–3 compliant
open source industrial controller for cyber security research. Computers and
Security, 78, 364–379.

[S19] Lee, M., Choi, G., Park, J., and Cho, S. J. (2018, July). Study of Analyzing
and Mitigating Vulnerabilities in uC/OS Real-Time Operating System. In
2018 Tenth International Conference on Ubiquitous and Future Networks
(ICUFN) (pp. 834–836). IEEE.

[S20] Yılmaz, E. N., and Gönen, S. (2018). Attack detection/prevention system
against cyber attack in industrial control systems. Computers and Security,
77, 94–105.

[S21] Ylmaz, E. N., Ciylan, B., Gönen, S., Sindiren, E., and Karacayılmaz, G.
(2018, April). Cyber security in industrial control systems: Analysis of DoS
attacks against PLCs and the insider effect. In 2018 6th International Istanbul
Smart Grids and Cities Congress and Fair (ICSG) (pp. 81–85). IEEE.

[S22] Ng, J., Keoh, S. L., Tang, Z., and Ko, H. (2018, February). SEABASS:
Symmetric-keychain encryption and authentication for building automation
systems. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (pp.
219–224). IEEE.

[S23] Davidson, C. C., Andel, T., Yampolskiy, M., McDonald, J. T., Glisson, B.,
and Thomas, T. (2018). On SCADA PLC and Fieldbus Cyber-Security. In
13th International Conference on Cyber Warfare and Security (pp. 140–149).

[S24] Alves, T., Morris, T., and Yoo, S. M. (2017, December). Securing scada
applications using openplc with end-to-end encryption. In Proceedings of
the 3rd Annual Industrial Control System Security Workshop (pp. 1–6).

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 31

[S25] Abbasi, A., Holz, T., Zambon, E., and Etalle, S. (2017, December). ECFI:
Asynchronous control flow integrity for programmable logic controllers. In
Proceedings of the 33rd Annual Computer Security Applications Conference
(pp. 437–448).

[S26] Pfrang, S., Meier, D., and Kautz, V. (2017, September). Towards a modular
security testing framework for industrial automation and control systems:
Isutest. In 2017 22nd IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA) (pp. 1–5). IEEE.

[S27] Wardak, H., Zhioua, S., and Almulhem, A. (2016, December). PLC access
control: a security analysis. In 2016 World Congress on Industrial Control
Systems Security (WCICSS) (pp. 1–6). IEEE.

[S28] Corbò, G., Foglietta, C., Palazzo, C., and Panzieri, S. (2016, October).
Smart behavioural filter for SCADA network. In International Conference on
Industrial Networks and Intelligent Systems (pp. 101–110). Springer, Cham.

[S29] Stone, S. J., Temple, M. A., and Baldwin, R. O. (2015). Detecting anomalous
programmable logic controller behavior using rf-based hilbert transform
features and a correlation-based verification process. International Journal
of Critical Infrastructure Protection, 9, 41–51.

[S30] Sandaruwan, G. P. H., Ranaweera, P. S., and Oleshchuk, V. A. (2013,
December). PLC security and critical infrastructure protection. In 2013 IEEE
8th International Conference on Industrial and Information Systems (pp. 81–
85). IEEE.

[S31] Clark, A., Zhu, Q., Poovendran, R., and Başar, T. (2013, June). An impact-
aware defense against Stuxnet. In 2013 American Control Conference (pp.
4140–4147). IEEE.

[S32] Milinković, S. A., and Lazić, L. R. (2012, November). Industrial PLC
security issues. In 2012 20th Telecommunications Forum (TELFOR) (pp.
1536–1539). IEEE.

[S33] Masood, R., and Anwar, Z. (2011, December). SWAM: Stuxnet worm
analysis in metasploit. In 2011 Frontiers of Information Technology (pp.
142–147). IEEE.

[S34] Olmstead, S., Stites, J., and Aderholdt, F. (2011, October). A layer cyber
security defense strategy for smart grid programmable logic controllers.
In Proceedings of the Seventh Annual Workshop on Cyber Security and
Information Intelligence Research (pp. 1–1).

[S35] Valentine, S., and Farkas, C. (2011, August). Software security: Application-
level vulnerabilities in SCADA systems. In 2011 IEEE International Confer-
ence on Information Reuse and Integration (pp. 498–499). IEEE.

[S36] Serhane, A., Raad, M., Raad, R., and Susilo, W. (2018, August). PLC code-
level vulnerabilities. In 2018 International Conference on Computer and
Applications (ICCA) (pp. 348–352). IEEE.

[S37] Yang, W., and Zhao, Q. (2014, August). Cyber security issues of critical
components for industrial control system. In Proceedings of 2014 IEEE
Chinese Guidance, Navigation and Control Conference (pp. 2698–2703).
IEEE.

32 E. P. Enoiu et al.

[S38] McMinn, L., and Butts, J. (2012, March). A firmware verification tool
for programmable logic controllers. In International Conference on Critical
Infrastructure Protection (pp. 59–69). Springer, Berlin, Heidelberg.

[S39] Basnight, Z., Butts, J., Lopez Jr, J., and Dube, T. (2013). Firmware modi-
fication attacks on programmable logic controllers. International Journal of
Critical Infrastructure Protection, 6(2), 76–84.

Acknowledgments This work has received funding from H2020 under grant agreement No.
737494, from Vinnova through the SmartDelta project and from KKS through the ACICS project.
This work was partially supported by the Austrian Science Fund (FWF): I 4701-N.

References

1. C.C. Davidson, T. Andel, M. Yampolskiy, J.T. McDonald, B. Glisson, T. Thomas, in 13th
International Conference on Cyber Warfare and Security (2018), pp. 140–149

2. G. Sandaruwan, P. Ranaweera, V.A. Oleshchuk, in 2013 IEEE 8th International Conference on
Industrial and Information Systems (IEEE, 2013), pp. 81–85

3. S.E. Valentine Jr., PLC code vulnerabilities through SCADA systems, Doctoral dissertation
(2013). Retrieved from https://scholarcommons.sc.edu/etd/803

4. W.C. Yew, PLC device security – tailoring needs, GIAC (GSEC) Gold Certification (2019).
https://www.giac.org/research-papers/37612/

5. J. Weiss, Protecting Industrial Control Systems from Electronic Threats (Momentum Press,
2010)

6. J. Falco, J. Falco, A. Wavering, F. Proctor, IT Security for Industrial Control Systems (Citeseer,
2002)

7. K. Stouffer, J. Falco, K. Scarfone, NIST Spec. Publ. 800(82), 16 (2011)
8. Guide to Industrial Control Systems (ICS) Security. Standard, National Institute of Standards

and Technology (2015)
9. X. Pan, Z. Wang, Y. Sun, J. Cybersecur. 2(2), 69 (2020)

10. H. Wu, Y. Geng, K. Liu, W. Liu, in IOP Conference Series: Materials Science and Engineering,
vol. 569 (IOP Publishing, 2019), p. 042031

11. I. Pekaric, C. Sauerwein, S. Haselwanter, M. Felderer, Comput. Stand. Interfaces 78, 103539
(2021)

12. R.C. Nickerson, U. Varshney, J. Muntermann, Eur. J. Inf. Syst. 22(3), 336 (2013)
13. M. Usman, R. Britto, J. Börstler, E. Mendes, Inf. Softw. Technol. 85, 43 (2017)
14. P. Bourque, R. Dupuis, A. Abran, J.W. Moore, L. Tripp, IEEE Softw. 16(6), 35 (1999)
15. K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, in 12th International Conference on Evaluation

and Assessment in Software Engineering (EASE) 12 (2008), pp. 1–10
16. E.N. Yılmaz, S. Gönen, Comput. Secur. 77, 94 (2018)
17. H. Wardak, S. Zhioua, A. Almulhem, in 2016 World Congress on Industrial Control Systems

Security (WCICSS) (IEEE, 2016), pp. 1–6
18. J. Pavesi, T. Villegas, A. Perepechko, E. Aguirre, L. Galeazzi, in International Congress of

Telematics and Computing (Springer, 2019), pp. 355–364
19. T. Alves, T. Morris, Comput. Secur. 78, 364 (2018)
20. E.N. Yrlmaz, H.H. Sayan, F. Üstünsoy, S. Gönen, G. Karacayilmaz, Cyber security analysis

of DoS and MitM attacks against PLCs used in smart grids, in 2019 7th International Istanbul
Smart Grids and Cities Congress and Fair (ICSG), Istanbul, Turkey (2019), pp. 36–40

21. A. Clark, Q. Zhu, R. Poovendran, T. Başar, in 2013 American Control Conference (IEEE,
2013), pp. 4140–4147

https://scholarcommons.sc.edu/etd/803
https://scholarcommons.sc.edu/etd/803
https://scholarcommons.sc.edu/etd/803
https://scholarcommons.sc.edu/etd/803
https://scholarcommons.sc.edu/etd/803
https://scholarcommons.sc.edu/etd/803
https://www.giac.org/research-papers/37612/
https://www.giac.org/research-papers/37612/
https://www.giac.org/research-papers/37612/
https://www.giac.org/research-papers/37612/
https://www.giac.org/research-papers/37612/
https://www.giac.org/research-papers/37612/
https://www.giac.org/research-papers/37612/

1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 33

22. R. Masood, Z. Anwar et al., in 2011 Frontiers of Information Technology (IEEE, 2011), pp.
142–147

23. M. Khadpe, P. Binnar, F. Kazi, in 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT) (IEEE, 2020), pp. 1–6

24. H. Yoo, I. Ahmed, in IFIP International Conference on ICT Systems Security and Privacy
Protection (Springer, 2019), pp. 33–48

25. W. Zhang, Y. Jiao, D. Wu, S. Srinivasa, A. De, S. Ghosh, P. Liu, Procedia Manuf. 39, 270
(2019)

26. S.A. Milinković, L.R. Lazić, in 2012 20th Telecommunications Forum (TELFOR) (IEEE,
2012), pp. 1536–1539

27. C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in
software engineering (Springer Science & Business Media, 2012)

Chapter 2
Natural Language Processing with
Machine Learning for Security
Requirements Analysis: Practical
Approaches

Andrey Sadovykh, Kirill Yakovlev, Alexandr Naumchev, and Vladimir Ivanov

Abstract Analyzing security requirements is a tedious task. Quite often they are
spread around requirements specifications or specified in a very generic form. The
experts have to make sure to extract all the security requirements and properly
detail by applying the best practices from appropriate standards such as OWASP
ASVS, STIG, or IEC62443. The requirements are specified in various forms, most
commonly as statements in natural language. Natural language processing (NLP)
has been applied for many years in requirements engineering (RE) for many analysis
tasks. However, until recently, the performance on NLP methods on the RE tasks has
been questionable. In this chapter, we outline the state of the art in the NLP methods
in RE and in particular analysis of security requirements as well as provide practical
recipes application of modern transfer learning architectures to several important
RE tasks illustrated with an example.

Keywords Security requirements · Requirements engineering · Natural language
processing · Machine learning · Dataset · Classification · Semantic search ·
VeriDevOps

2.1 Introduction

Requirements engineering (RE) is a crucial element in the software development to
meet customers’ expectations for a software product that should be delivered on time
and within a budget. Practically, RE enables to capture users’ needs for the system to
be developed by transferring these needs into precise and clear statements that will

A. Sadovykh (�) · K. Yakovlev · A. Naumchev · V. Ivanov
SOFTEAM, Ivry-sur-Seine, France
e-mail: andrey.sadovykh@softeam.fr; kya@softeam-rd.eu; anau@softeam-rd.eu;
viv@softeam-rd.eu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_2

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 2&domain=pdf

 885 55738 a 885 55738
a

mailto:andrey.sadovykh@softeam.fr
mailto:andrey.sadovykh@softeam.fr
mailto:andrey.sadovykh@softeam.fr

 12402 55738 a 12402
55738 a

mailto:kya@softeam-rd.eu
mailto:kya@softeam-rd.eu
mailto:kya@softeam-rd.eu

 20365 55738 a 20365 55738 a

mailto:anau@softeam-rd.eu
mailto:anau@softeam-rd.eu
mailto:anau@softeam-rd.eu

 -2016 56845 a -2016 56845 a

mailto:viv@softeam-rd.eu
mailto:viv@softeam-rd.eu
mailto:viv@softeam-rd.eu
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2
https://doi.org/10.1007/978-3-031-42212-6_2

36 A. Sadovykh et al.

be the basis for design, development, and validation [2]. Requirements engineering
helps to define the right scope of a project and address all nonfunctional properties
such as security starting from early stages of the design and implementation. This
is often reported as an important approach to improve productivity, speed up the
delivery time, and decrease the costs of software development. In the case of
cybersecurity, building-in the right security mechanisms, addressing the potential
vulnerabilities, and following the standardized guidelines is the most common way
to protect the critical assets by the company, its customers, and system users.
Nowadays, when the security threats are discovered on a daily basis, analyzing
and ensuring implementation of security requirements have become of ultimate
importance. It is reported that the security mechanisms have to be built into
the system starting from the architecture stages, since retrofitting these important
aspects into the system is extremely expensive.

The requirements engineering includes many activities. One of them is a require-
ments analysis involving the requirements categorization among other activities.
Identifying and placing a requirement to the right category, for example, security,
may help to address important concerns by the right specialists as early as possible
in the project life cycle. The current approach for automating quality control in
a continuous manner with the Continuous Integration and Continuous Delivery
(CICD) pipelines with DevOps practices has brought many benefits with respect
to security properties verification. However, the challenge of “left-shifting” the
security verification to early stages of development and even to the requirements
analysis still remains due to the lack of automation.

One of the challenges in creating the automation for requirements analysis and
verification is that the prevailing method to specify requirements is natural language.
Although the formalization approaches exist and help in validating the requirements,
in practice, the requirements statements styles and lexical structures vary a lot.
Natural language processing (NLP) proposes a number of methods to deal with texts
and receive the information, analyze semantic similarity, etc. NPL has been applied
for many years to requirements engineering offering many practical benefits though
the performance of those legacy solutions is questionable. With the appearance of
deep neural networks and transformer architectures in 2018, NLP made a huge leap
forward in terms of performance. Many researchers have started to apply those
methods to requirements engineering and obtained interesting results.

In this chapter, we outline the legacy and novel NLP methods as applied to
requirements engineering. We illustrate the application of transformers architecture
with our own experiments and prototypes for several RE tasks. Finally, discuss the
applicability of these methods and potential usage in the continuous cybersecurity
assessment in the DevSecOps context.

2 NLP and ML for Security Requirements Analysis 37

2.2 Security Requirements Engineering

An important part of developing any system is ensuring a required level of security.
Security needs are usually associated with some resources or assets involved in a
system that stakeholders naturally want to protect from any harm. In particular,
assets are considered as all the information resources that are stored or accessed
by the system or physical resources such as computers. In some cases, assets
may consist of other assets, e.g., system backups are a good example. Despite
that empirical evidence is not fully convincing, it appears that appropriate security
requirements would have as positive an impact on system security as sufficient
general requirements would have on system development success.

In order to integrate security within requirement engineering, we usually have to
consider separately security requirements [3]. Special research showed that early
analysis of security requirements can be beneficial in the context of software
development as this may enable cost reductions in the area of 12–21% [4].
Usually security requirements are processed as functional requirements that can
considerably influence system architecture. In practice, this requires a specific
security expertise. Essentially, security requirements have to be specially processed
independently from other requirements. However, the whole process of manual
identification or extraction of security-related requirements from an entire require-
ment specification is very complex and error-prone, causing the need for automatic
analysis. This is associated with several practical challenges. Firstly, there is no
exact definition for security requirements, since different people may interpret
security requirements in various ways. In practice, different industry subjects –
organizations – define security requirements based on their own conventions and
templates. Secondly, the intrinsic ambiguity of natural language makes it even more
complicated to identify security requirements. Primarily, various people may use
different syntax and terms to define or describe security requirements [5, 6].

The main point is that security cannot be considered as just a quality requirement,
as it is difficult to answer whether a problem is security-related or not. Usually
stakeholders do not tolerate any kind of risks. The main task of security require-
ment engineering is to identify and document requirements for developing secure
software systems. The identification of security requirements heavily depends
upon the context of system and analyst’s assumptions. These assumptions can be
explicit or implicit and relate to expectations over system or environment behavior
with a significant impact on the security of a system. Considering the framework
of security, its goals, and assumptions, one can define security requirements as
constraints on the functions of the system, where these constraints operationalize
one or more security goals. In other words, security requirements engage security
goals by constraining the system’s functional requirements. Security requirements,
like functional requirements, are prescriptive, providing a specification to achieve
the desired effect [3].

Based on these goals, we conclude that we want to prevent any threat or
potential attack aimed at our assets. We consider assets as something that is

38 A. Sadovykh et al.

fulfilled_by

protectachieve
Security

requirements

damage harmThreat

AssetSecurity Property

Countermeasure

Security Mechanism Security Constraints

Restriction Assurance Permission Complience

Fig. 2.1 A conceptual model for security requirements [5]

valuable to an organization (e.g., resources, data) and typically is a main concern
of security requirements. Practically, a security property determines a security
characteristic (e.g., confidentiality, availability) that indicates a security objective
that a requirement intends to achieve. A threat is an undesired event that a
swindler may potentially exploit to attack the system, harms assets or its respective
security properties. In this context, a countermeasure is considered as a protective
measure prescribed to meet the security requirements. The countermeasure may be
represented by a security mechanism as well as a set of security constraints. Each of
the above concepts (Fig. 2.1) contributes with a specific perspective of the security
requirement definition [5].

In order to follow this structure and achieve initial goals, we must somehow
determine whether those requirements have been satisfied. This is difficult for
quality requirements in general, while security requirements present additional
challenges [3]. An important element of the requirements engineering is associated
with the role of natural language (NL). Despite that there is no proof that natural
language is the best option, multiple evidences show that it is the most common way
of expressing requirements in the industry practice. The dominance in describing

2 NLP and ML for Security Requirements Analysis 39

and specifying software and system requirements in natural language was also
confirmed by the recent research [7]. Therefore, based on the past and current
empirical evidence, we can safely assume that NL will continue to serve as the
common way of expression for requirements in the future as well [8]. Conceptually
that implies that solutions should deal with problems like lexical, syntactic, and
pragmatic problems that natural language poses for requirements engineering. It is
stated that the biggest problem is ambiguous semantics, which remains a common
challenge for practitioners arguing that the source of trouble is the information
from which the requirements must be formulated [9]. Consequently, computer-aided
software engineering for processing natural language looks promising in the context
of requirements analysis [8].

2.3 Natural Language Processing for Requirements
Engineering (NLP4RE)

Applying NLP techniques, which are very well suited for comprehensive linguistic
analysis, seems natural in the context of the engineering approach that suggests
using linguistic tools to narrate descriptions of user requirements. NLP is a field
that addresses various approaches in which computers can deal with natural, that is
human, language. Usually, NLP deals with techniques for analyzing, representing
naturally occurring texts for the purpose of achieving human-like language process-
ing for range of tasks or applications [10, 11]. This has led to the emergence of a
separate field, i.e., NLP4RE of applying NLP to support requirements engineering
process as well as various tasks at different RE phases [12]. Dealing with the inputs
to the RE process is a complicated task, as it requires to analyze a wide variety
of documents. Such documents might include different artifacts like interview
transcripts, codes of practice, standards, legislation, etc. In practice, the methods
for RE automation greatly differ depending on the stage of RE they are applied
at. To illustrate, at later stages, such as requirements validation, the methods deal
mainly with documents that are products of the RE process, whereas at early stages
the methods typically process raw information [9]. By applying those methods,
the engineers intend to solve different kinds of tasks like detecting language
issues, identifying key domain concepts and establishing traceability links among
requirements, etc. However, when we split the developed NLP solutions by problem
that they solve, they are mainly focused on detection, classification, clustering,
patterns extraction, and modeling [12]. Those instruments are intended to increase
analysts’ productivity when working with requirements.

Let us outline the key method categories. Detection typically deals with ambigu-
ities in requirements to make them clearer and unequivocal. The range of problems
may include detection of different lexical issues from the debatable usage of
grammatical rules, to the occurrence of vague phrases (e.g., after some time), weak
verbs (e.g., may, might), and the appearance of syntactic ambiguities. In addition,

40 A. Sadovykh et al.

some specific tasks such as following to predefined templates and recognizing
equivalent requirements can also be included in this task, as the main goal is
still to maintain a correctness to requirements texts. Classification task in ML is
usually associated with predicting a categorical class [13]. As for the context of
RE, this task aims at classifying different categories of requirements. For example,
we can classify requirements based on their functional category or based on their
quality category, to identify nonfunctional requirements that may be hidden within
functional ones. Another example is applying classification to users’ feedback in
order to identify new requirements referring to specific features of interest possibly
including a sentiment analysis. Extraction generally tries to retrieve some specific
single or multi-word terms from requirement texts for domain or project glossaries,
as requirements usually contain complex terms that are not commonly used. Those
extracted glossaries may be further applied for other problems including consistency
checking, classification, modeling, or product comparison. Clustering or cluster
analysis, as its name suggests, is focused on organizing data, in our case, documents
or a set of textual requirements into some cohesive subsets or clusters. This method
focuses on organizing the data into meaningful and useful information. Modeling
relates to the extraction task but with some additional usage of extracted data like
generation of unified modeling language (UML) models to support analysis, design,
feature synthesis in product-line engineering, generation of models for early require-
ments and generation of software tests to maintain a necessary security level [12].

In addition to the abovementioned generic problems that NLP solves in require-
ments engineering, one can outline several approaches that are entirely focused
on the security context. Despite the lack of studies in this area, we can highlight
an initial progress in developing and implementing such systems. Security risks
can be analyzed through different perspectives that will define a practical context
of the problem. Vulnerability detection is focused on identifying vulnerable
code sequences by analyzing software code prior to deployment. The approach
concentrates on applying NLP techniques to code to prevent or identify various
vulnerabilities in the code. Vulnerability repair tries to transform a vulnerable code
into a non-vulnerable code by learning from a set of source examples. Millions of
lines of legacy code are analyzed to identify the ways to improve security. When
a new class of vulnerability is found, the training dataset for patches and fixes is
quickly updated. This is intended for creating an automated system that can clean
code with certain types of vulnerabilities that would allow to treat efficiently large
software repositories. Finally, specification analysis assumes that we can deal with
security risks in product before the code is even written. Recent advances in NLP
have provided experts methods to automatically process vulnerability descriptions
or product specifications to assess security risks. Instead of code we can apply
methods to documents and text vulnerabilities in this paradigm to ensure a required
security level for the developed software [14]. Our main interest is associated with
this security perspective.

The subsections below outline specific NLP approaches for classification, extrac-
tion, as well as advanced machine learning architectures, e.g., transfer learning as
applied to RE tasks and security requirements analysis.

2 NLP and ML for Security Requirements Analysis 41

2.3.1 Statistical and Classical Machine Learning Methods

NLP addresses several practical problems in the area of requirements engineering.
To start, let us consider the problem of distinguishing functional requirements
from nonfunctional ones. Abad et al. [15] propose text preprocessing as the main
tool of dealing with that task. To address the generalization problem for the
input requirements texts, they proposed to preprocess the texts and replaced all
context-based names related to products and users with general keywords, such
as “PRODUCT” and “USER,” respectively. Then they apply the Part-Of-Speech
(POS) tagger of the Stanford Parser [16] to assign parts of speech to each word
in each requirement. In the next step, they extract some trivial features including
number of adjectives, number of adverbs and number of cardinals, as well as
specific metrics, such as number of degree adjectives to adverbs. In addition, for
each feature they define its rank based on the probability of its occurrence in the
requirements. The final feature list for the processed dataset consists of the following
nine features: number of cardinals, adverbs, adjectives, modal words, determiners,
verbs, prepositions, singular nouns, and plural nouns. In [15] the authors compare
results of six different algorithms and use a simple decision classifier to achieve
an extra 4.5% accuracy of classifying functional and nonfunctional requirements.
This effect becomes even more visible for classifying groups of requirements. Abad
et al. insist that Binarized Naive Bayes works best for classifying nonfunctional
requirements.

Another example of NLP application to requirements engineering is identifying
critical features in specifications. Boutkova et al.[17] propose a lexical analysis
based technique that could help automate the identification of features in specifi-
cations. They propose to extract features in a semi-supervised fashion by applying
certain Part-of-Speech (POS) tagging approaches. The whole process is divided
into several steps. At the first step, the user chooses the specification in which
the features must be found. At the second step, requirements from the chosen
specification get decomposed into individual words, and only nouns are left; this
step requires lemmatization of each word. At the final step, the user should evaluate
candidates list and choose features for the feature model. The main problem is that
the experiments were conducted for German – a morphologically complex language.
This approach generates a lot of false positives that need further analysis.

It is possible to improve the performance by combining different NLP devel-
opments from different disciplines. Malhotra et al.[18] proposed an approach
combining NLP, ML, and graph analysis. This approach identifies appropriate
narrative structures that may underlie the security requirements of industry stan-
dards and publicly available software documents. First, the authors of [18] apply
text processing that includes tokenization, sentence splitting, POS tagging, mor-
phological analysis, and noun phrase chunking. Then they create an ontology to
define connections between words, phrases, and concepts. They construct features
from key narrative structures – phrases, such as “user must register,” “user must
contain a password,” “password must have complexity” using a special tool called

42 A. Sadovykh et al.

Protégé [19]. Subsequently, each of these processing structures is used to determine
the relationships among features such as “encryption” or “authentication.” After,
it is checked whether the requirement sentence is found among gold standard
requirements. That way it is determined whether an organization follows those
standards.

The idea of checking whether security requirements conform to specific stan-
dards was also presented in Hayrapetian et al. [20]. This study might be considered
as an advancement of the previous study, focusing on empirically evaluating confor-
mance of security requirements to specific standards such as ISO and OWASP. The
main goal was to assess completeness and ambiguity by creating a bridge between
the requirement documents and its compliance to standards. For this purpose,
they proposed a unique two-stage architecture. Initially every statement within a
standard is evaluated against every statement within a test document. To maintain
robustness of an entailment assessment, they proposed nine different configurations
and digested each pair through those components. Each configuration consisted
of the Linguistic Analysis Pipeline and Entailment Decision Algorithms from
Excitement Open Platform [21]. The entailment decision and confidence results
from each transaction were collected along with other data about the transaction,
such as the statements involved, entailment configuration used, processing type
(e.g., parallel), and the time duration of the comparison. These annotations were
used as features during the neural network model training phase to design a classifier
to further determine whether the entailment results for a statement pair indicate
a “complete,” “ambiguous,” or “none” match, with respect to the corresponding
semantic meaning. This approach allowed to achieve 0.79 in terms of F1-score.

One of the main challenges on the way of making all-purpose NLP methods is
a problem of generalization of a model to be applied to several domains. Li et al.
[5] presents the idea of creating a model that could generalize security requirements
extraction for all domains. They stated that the main source of good detection lays
in a good theoretical basis and tried to construct ontology specifically for security
requirements. They defined a set of linguistic rules and security keywords that are
normally used to describe security requirements and used them to train classifiers
applying classical ML algorithms. They proposed a specific approach that involves
a two-level preprocessing with a conceptual layer and linguistic layer. The process
of matching the linguistic features consists of three steps: generate parse trees,
keyword matching, and linguistic rule matching. Each step is explained in detail
as a part of text processing to a feature vector. They decided to compare different
algorithms like decision tree (DT), Naive Bayes classifier (NBC) and logistic
regression (LR) using six different datasets. Results showed that precision/recall
differs among datasets. Only DT and LR showed promising characteristics. In
particular, the average F1-score of all classifiers trained with DT was approximately
0.77. For the case of classifying security requirements from different domains, when
training data was used from one document set and the test data from the other, this
approach showed 0.75 in precision and 0.58 in recall. The authors argued that their
approach behaves significantly better than the existing approach and potentially can
give promising results. They also argued that the main challenge was that different

2 NLP and ML for Security Requirements Analysis 43

people, including security experts, can have various diverse definitions of security
requirements.

Another example of dealing with the generalization problem is the work by
Wang et al. [22]. They address aspects of generalization from a different perspec-
tive such as creating all-domain classifiers. The authors developed methods for
extracting security requirements for open-source projects (OSS). They stated that
previously proposed approaches were unsuitable for this kind of projects due to their
specifics. Notably, requirement specifications in OSS projects are usually organized
by functionality, with nonfunctional (NFR) requirements scattered widely across
multiple documents. Hereby there is no exact boundary to distinguish between
FRs and NFRs. Moreover, the requirements stored in issue tracking systems
are unstructured and seldom obey grammar and punctuation rules. The authors
proposed to rely not on the text but on different external resources. To define
features, they applied a stack of several sources that then were used as an input
for a linear classifier based on linear discriminant analysis (LDA). Initially each
requirement is processed by information processing component (IPC) to obtain so-
called metrics. Metrics are information about a requirement extracted by IPC, which
includes complexity and external resources. Complexity is extracted from comments
of the project assuming that higher intensity of discussion might be associated with
vulnerabilities. In its turn, external resources are the links and other references
provided by stakeholders where they discuss rationale for refinements and explain
their solutions. Subsequently, this information is digested directly by four regression
models: Comment Complexity Regression Model (CRM), Stakeholder Complexity
Regression Model (SRM), Security URLs Regression Model (URM), and Security
Commits Regression Model (CiRM). In addition, the authors apply NFR classifier
(NFR-C) and CVE ID Detector (CID). Each regression model generates a weight
between 0 and 1 for each requirement that signify the likelihood whether this
requirement is a security requirement. In order to summarize weights from NFR-
C, CID, and all RMs, the authors applied a linear discriminant function in a binary
setting that indicate whether a requirement is security one or not. They were able to
achieve F1-scores of 0.83, 0.88, and 0.81 for Axis2, Drools, and GeoServer projects,
respectively, which looks promising given the relative simplicity of the proposed
approach.

In 2017, RE Data Challenge event was conducted in relation to the problem of
requirements extraction and classification. This event produced a set of NLP4RE
studies. Kurtanovic et al. [23] used the dataset from the challenge [24] to solve
the problem of binary classification for functional (FR) and nonfunctional (NFR)
requirements. Simply, they transformed a multiclass dataset into a binary case.
Unlike previous papers, authors did make a research of an effect from applying
only word features and automatically chosen features form binary and multiclass
classification. The whole approach is based in the support vector machines. As a
result, they achieved an F1-score of 0.92 for binary case classifying FR and NFR.
As for classifying security requirements in a binary case, the effect was a bit worse.
If applying only words features, F1-score was about 0.88 and 0.74 with applying
all kinds of features. They found that POS tags are among the most informative

44 A. Sadovykh et al.

features, with cardinal number being the best single feature. As an additional
aspect, authors argued that only word features provide higher recall for classifying
NFRs than employing additional syntax and meta-data features but lower precision
accordingly.

Pérez-Verdejo et al. [25] explored applicability of several machine learning algo-
rithms for classification of software requirements and issue reports. The classifier
that reached the highest weighted geometric mean was TPOT (Tree-Based Pipeline
Optimization Tool), with 0.8363, followed by the RandomForestClassifier classifier
with 0.82. Pérez-Verdejo et al. report, however, that these models showed significant
difficulties in classifying issue reports (often expressed in the form of informal text),
as compared to human experts. It was difficult for automated classifiers to obtain
results greater than 0.3 on classifying requirements-related issues.

Mir Khatian et al. [26] focus on the prediction of the requirements classification
of NFRs (nonfunctional requirements) by using supervised machine learning (ML)
algorithms followed by comparative analysis on five different ML algorithms:
decision tree, k-nearest neighbor (KNN), random forest classifier (RFC), and Naïve
Bayes and logistic regression (LR). The exhaustive results of the comparative
analysis conducted by Mir Khatian et al. demonstrate that the performance of the LR
algorithm is the best of all algorithms with high prediction rates and 75% accuracy.
The Naïve Bayes resulted in 66% accuracy, the decision tree provided 60% accuracy,
the RFC provided 53% accuracy, and KNN – 50% accuracy. According to the study
of Mir Khatian et al., the LR algorithm should be preferred for the prediction of the
classification of NFRs.

2.3.2 Deep Learning

Deep learning and transfer learning are the most recent areas in NLP. Deep learning
is assumed as a sub area of neural networks in ML and is popular for vision-based
classification and NLP tasks. Deep learning is based on the representation-learning
methods obtained by applying nonlinear modules that transform a representation at
one level into a higher, more abstract level [27]. Zhang and Wallace [28] proposed
convolutional neural network [29] for the purpose of sentence classification. They
provided a simple method that is based on Word2Vec representations [30] of each
word with applying set of consecutive convolution filters. Specifically, the process
starts with tokenized sentence which is converted to a sentence matrix, the rows
of which are word representations. By this approach authors achieved significant
accuracy improvements comparing with a baseline on all datasets. Similar approach
was applied to the context of requirements classification. Winkler et al. [31] applied
the same principle to the DOORS requirements database. Specifically, they applied
it for the binary classification task to differentiate requirement from information
sentences. This approach was able to classify requirements with a precision of 0.73
and a recall of 0.89 and information with a precision of 0.90 and a recall of 0.75
accordingly. The authors argued that performance could be improved by increasing

2 NLP and ML for Security Requirements Analysis 45

the amount of training data as well as by improving the quality of requirement
specifications. A similar approach was applied to the previously mentioned NFR
dataset. Dekhtyar et al. [32] presented an idea of combining two methods that
are very popular at the moment, Word2Vec, and convolutional neural networks
(CNN). They used two datasets, SecReq dataset [6] and the quality attributes
(NFR) dataset [24], to compare results of applying Word2Vec with CNN with a
baseline approach. The goal was to observe the performance of CNNs on these
datasets compared to the baselines and measure the impact of pretrained Word2Vec
embeddings on the model. As a baseline method, they considered already mentioned
approach based on Naive Bayes classifier [6] with TF-IDF and word counts as
feature vectors. For SecReq dataset applying Word2Vec provided an overall boost in
scores. By applying 30 filters with 100 training epochs, they scored an F1-score of
91.34%. This configuration allowed to achieve an overall improvement up to 13.5%
compared to the baseline. For NFR dataset Word2Vec again contributed comparable
improvement with 50 filters and 100 epochs accordingly. The authors stated that
CNN classifiers can be successfully applied on relatively small collections of
requirement documents to identify various requirements properties.

2.3.3 Transfer Learning

Recently the transfer learning method was applied as a new promising approach
to deal with generalization problem. Hey et al. [33] stated that the performance
of existing automatic classification methods decreases when applied to unseen
projects, because requirements usually vary in formulation and style. This means
that such systems are impractical to use, as they are either overfit for a specific
dataset, which is heavily relying on wording and sentence structure or require a
processing step (usually manual) for new text samples. Moreover, usually, authors
do not report whether their approaches are able to generalize or do not generalize
sufficiently to be practically applicable. One reason is the lack of available training
data in the requirements engineering community. The authors stated that possible
solution can be found in a transfer learning. Nowadays transfer learning approaches
are heavily used in NLP. They are trained on huge datasets to capture underlying
concepts and meanings of natural language texts. Afterward they can be adapted
and fine-tuned to a specific task. Authors stated that this helps to overcome the
problem of generalization, as these approaches promise both better performance
and generalizability with less training data. That is achieved by fine-tuning of
Bidirectional Encoder Representations from Transformers (BERT) [34], a language
model based on deep learning. BERT, which is pretrained on a large text corpus,
can be fine-tuned for specific tasks by providing only a small amount of input
data such as requirements classification in our case. For experiments NFR dataset
[24] was chosen as a gold standard coming from RE Data Challenge’17. This
whole process is common for BERT-based studies. Specifically, BERT model is
applied with a single layer of NN for classification purposes. The resulting model is

46 A. Sadovykh et al.

called NoRBERT. The authors provided a detailed information about experiments,
which would help to replicate their results in future. For binary tasks, NoRBERT
achieved comparable results with an F1-score of 90% for functional and 93% for
nonfunctional requirements. As it was expected, BERT-based method outperformed
all existing approaches at the moment. Specifically, NoRBERT outperforms all
approaches that do not preprocess the data, and, at the same time, the problem
with unweighted data does not significantly impact performance. Thus, the transfer
learning approach clearly increases the performance for classifying requirements.
As for security requirements, NoRBERT was able to achieve about 0.91 in F1-score
given multilabel classification, which might look promising for a further application.

As Ajagbe et al. [35] point out, BERT underperforms on domain-specific tasks.
They introduce BERT4RE, a BERT-based model retrained on requirements texts,
aiming to support a wide range of requirements engineering (RE) tasks, includ-
ing classifying requirements, detecting language issues, identifying key domain
concepts, and establishing requirements traceability links. Ajagbe et al. also fine-
tune BERT4RE for the task of identifying key domain concepts and conclude that
BERT4RE achieves better results than the BERT base model for the same task.
Ameri et al. [36] and Ranade et al. [37] take further steps in BERT fine-tuning.
Ameri et al. fine-tune BERT using a corpus of labeled sequences from industrial
control systems device documentation collected across a range of vendors and
devices. They claim improvement in classification accuracy from 76% to 94.4%
accuracy as compared with the original BERT architecture. Ranade et al. [37]
fine-tune BERT on a cybersecurity corpus from open-source unstructured and semi-
unstructured cyber threat intelligence (CTI) data, using masked language modeling
(MLM) to recognize specialized cybersecurity entities. They evaluate the resulting
model using downstream tasks that can benefit security operations centers (SOCs).
Ranade et al. claim the fine-tuned model outperforms the base BERT model in the
domain-specific MLM evaluation.

Li et al. [38] apply BERT to treat the problem of poor generalization of other
requirements classification models. They use apply graph attention network (GAT)
to mine the syntactical structure of requirements and take it into account in their
model. Li et al. evaluate the resulting approach, DBGAT, on the PROMISE datasets.
They report up to 91% F1-score for the classification task on already seen projects,
and up to 88% F1-score – for unseen-before projects.

2.4 Practical Examples of NLP4RE

As part of demonstration, we have created several prototypes with different
functionality focused on solving various NLP tasks in requirements engineering
for analysis of security requirements. This section follows the path NLP process for
security requirements analysis starting from an unstructured document to extraction
of requirements, identification of security requirements and finally semantic search
of relevant security countermeasures.

2 NLP and ML for Security Requirements Analysis 47

2.4.1 ReqExp: Requirements Extraction from a Text

In this section we discuss the first NLP task to address the extraction problem.
We analyzed a well-known requirements dataset, PURE [39], manually extracted
requirements and non-requirements sentences, and trained a prototype, ReqExp,
based on the [34] architecture. We discuss the overall approach and our results in
the following part.

The requirements extraction problem may be addressed by the NLP classification
methods. One can notice that text classification is applied in many NLP applications,
such as spam filtering, email categorization, information retrieval, web search,
document classification, etc. Usually, it means assigning predefined categories to
a textual sequence [40]. It has to be noted that requirements are commonly specified
in the form of a sentence rather than in a form of unstructured phrases. We can
thus translate the extraction problem into the classification of a given sentence
into the class of possible “requirements” sentences. In the context of classification
of requirements statements, it is needed to consider the whole sentence since the
context of the requirement is critical for analysis. Despite the existence of several
standardized lexical forms for requirements specification, requirement sentences
oftentimes do not follow these standards formally. This imposes a necessity to have
a system that could extract requirements in any lexical structure form.

For requirement engineering, it is important to process entire documents and
extract the requirements sentences with a high precision. In NLP terms it relates
to two subsequent steps: (1) extracting all sentences from a document and cleaning
them and (2) classifying sentences to the “requirements” and “non-requirements”
classes. The classification task approach and experimental results are addressed
in our previous research [41]. The classification is based on the state-of-art
model architectures, i.e., Bidirectional Encoder Representations from Transformer
(BERT). However, from the perspective of requirements engineering, the require-
ments extraction from documents has several peculiarities that we outline below.

As it usually stands, any classification or extraction process starts with a prepro-
cessing stage where the system processes an input text and produces a set of objects
ready for an NLP analytical task, i.e., sentence classification in our case. It usually
involves removing stop words, typographical symbols, punctuation marks or even
correcting lexical mistakes, etc. This preprocessing may be manually conducted
before experiments, e.g., dataset preparation. In a production environment, in an
application, this preprocessing is automated each time before applying models.
Technically, this automation is defined by analyzing the manual preprocessing
experiments. For example, the stopwords and punctuation are removed during
experiment and training of the model, but also this is done automatically inside
the final application in the production environment.

Nowadays, research teams usually deal with pretrained models (like BERT) that
completely shift their focus from a model architecture design to a thorough and
well-justified fine-tuning of a chosen model. Practically, we adapt model parameters
to a certain domain as well as to a task itself, i.e., the classification in our case.

48 A. Sadovykh et al.

However, this does not imply significant change in the model architecture. The
transformers approaches such as BERT allow shifting the NLP research more to
the steps of theoretical justification of the method choice and dataset preparation.
The first step, a method justification, is usually based on domain expertise, previous
experiments as related to the task that we want to solve. We chose transformers
model architectures and BERT as they outperform the other approaches on the
complex NLP tasks.

The dataset preparation is the most time-consuming, sophisticated, but at the
same time the most important stage, especially considering the complexity of the
RE area. The dataset preparation is executed by running several activities problems
simultaneously:

1. Collecting an appropriate set of samples (e.g., sentences) that most accurately
describe our domain.

2. Defining domain classes with clear lexical and semantic differences.
3. Selecting samples in each class that contain all the necessary features for each

class.

From the first sight, it appears as an overwhelming task, but it can be decomposed
in a set of smaller steps. The process itself starts with researching potential sources
to construct the required dataset. Unfortunately, the RE sphere has not been
popular among NLP researchers so far that resulted in some shortage of nicely
designed datasets for classification or extraction tasks. In our case we focused on
designing a dataset, which contains sentences that can be clearly binary classified
in requirement/non-requirement classes. We observed several critical issues related
the following questions:

● How to exactly identify what a requirement class should look like knowing that
writing styles and lexical structures in different areas greatly differ?

● What should a non-requirement class contain? Should that be just random
sentences or something else?

We have analyzed a significant set of research papers that outlines earlier in this
chapter and in [41] to define what sources are suitable for a dataset construction.
Ferrari et al. [39] (Table 2.1) proposed a comprehensive corpus of documents
that contains publicly available documents from different projects and software
engineering areas. Overall, it contains 79 documents with a focus on applying for
designing NLP systems.

Authors argue that this dataset fairly fits for various tasks such as requirements
categorization, ambiguity detection, equivalent requirements identification, etc.
Moreover, this corpus includes documents with different peculiarities as well as
a lexicon with the widespread writing style of requirements. However, the corpus
needs to be analyzed and processed specifically in order to create a dataset suitable
for requirements sentence classification.

We applied PURE corpus as our main source of both requirements and non-
requirements sentences for designing our dataset. Initially documents were pre-
sented in the form of raw text in different formats, structures, and writing styles. We

2 NLP and ML for Security Requirements Analysis 49

Table 2.1 Comparing PURE corpus with Brown corpus [39]

Indicator PURE Brown

Number of tokens 865,551 1,034,378

Number of lexical words 522,444 542,924

Vocabulary size (lexical words) 21,791 46,018

Vocabulary size (stems) 16,011 29,846

Number of sentences 34,268 57,340

Average sentence length (tokens) 25 18

Average sentence length (lexical words) 15 10

Lexical diversity 0.031 0.054

extracted 7745 requirement/non-requirement sentences, where 4145 were require-
ments and 3600 were non-requirements from 30 documents. Requirement sentences
were extracted from the appropriate sections of the documents. Usually, each
document provides some structural elements like table of contents and requirement-
focused sections with appropriate titles or contextual footnotes. The structural
elements are usually numbered by unique ids, sometimes explained by the authors.
In other cases, it could be useful to rely on lexical elements that are usually
inherent for requirements such as modal verbs, e.g., “must,” “should,” “could,” etc.
In essence, we applied a process of identifying requirements and non-requirements
that had been described in a previous study by Abualhaija [42].

Making experiments with models usually starts with dividing the datasets in
subsets in order to train, test, and validate a model. For this purpose, we separated
the obtained sentences into train, test, and validation sets by following 70%, 20%,
and 10% proportions accordingly. To bring the experiment closer to the application
domain and preserve consistency, it was decided to select an entire group of
sentences from every document only to one specific subset. Thus, some of the
documents were applied for the model training and different ones for validation.
Additionally, we conducted a specific analysis to identify a set of documents that
could fulfill abovementioned proportion constraints (70%, 20%, 10%).

Training process, which is the fine-tuning in our case, usually happens in a
straight way. As we already mentioned, our focus was not training a new model
rather adapting parameters to our domain. In the case of classification, we do not
touch the middle layers that were trained initially by model architecture’s authors.
However, we still needed to adapt this pretrained model to our classification task,
since transformers do not directly provide classification but are designed to generate
numerical representation of digested sentences and words only. For that purpose we
augmented our architecture with additional neural network layers of an appropriate
size.

Figure 2.2 depicts a conceptual design for the requirements extraction from a
document by applying a transformers model architecture to requirements sentences
classification. Usually text samples, e.g., words, sentences, or blocks of text,
exist in the form of a string, which is preprocessed by a group of methods for

50 A. Sadovykh et al.

ReqExp

BERT

PURE-based
requirements data set

Fine-tune

Document
parsing

Sentence
extraction

and cleaning

Extracted
sentences

Document

Candidate
Requirements

req1

req2

req3

Classification
(Filtering)

Fig. 2.2 Requirement classification in ReqExp prototype

Table 2.2 ReqExp
experiment results

Model F1 Precision Recall

Fasttext 0.81 0.72 0.93

ELMO 0.83 0.78 0.88

BERT 0.86 0.92 0.80

cleaning. Afterward this sentence is digested by an architecture-specific tokenizer
that encodes our string into a model input, specifically transforming a text into some
smaller pieces like words or tokens. These tokens are sequentially evaluated on each
layer of the model architecture. The result is a probability for a sentence to belong to
the requirements class. One should decide on an appropriate threshold to assign the
input of the requirements sentence to the “requirement” or “non-requirement” class,
for example, a 0.5 or any other optimal value by the AUC-ROC analysis (Table 2.2).

The experiment results have to be assessed using appropriate metrics. We select
three major classification metrics: precision, recall, and F1-score. Those metrics
are perceived as the golden standard in many research areas of statistical and
mathematical methods including machine learning and deep learning. Let us explain
what those metrics do specifically mean in the requirements engineering domain:

1. Precision indicates the confidence in detecting requirements, since it compares
the number of requirements rightly guessed (TP) with the number of require-
ments wrongly guessed (FP), i.e., Precision = TP / (TP + FP). The better the
precision is, the greater is the confidence in the requirements guessed rightly.

2. Recall is a proxy to assess the number of undetected requirements, since
it compares the number of detected requirements (TP) with the number of
undetected requirements (false negatives or FN), i.e., Recall = TP / (TP + FN).

3. Finally, a combination of the precision and recall, F1-score, is calculated as
follows F1 = 2*Precision*Recall / (Precision + Recall). In other words, F1-score
conveys the balance between the precision and the recall and may serve as a good
measure of overall performance of a specific model.

In our research we collected all those metrics to have a full picture of what
each model is capable of as well as to provide a broad conclusion which model is

2 NLP and ML for Security Requirements Analysis 51

better specifically in the context of requirements engineering. Initially, we expected
that transformers would be leaders; however, it was important to explore the
difference compared to the baseline models such classic Fasttext and ELMO. Our
experiments showed that transformers have the highest potential for dealing with
such uncommon contexts as software requirements. Specifically, the more advanced
BERT model showed better results in almost all aspects, especially in terms of F1-
score. The BERT model showed high precision 0.92 but lower recall 0.8. Still
precision and recall metrics behaved differently for Fasttext and ELMO models.
Fasttext classifier showed impressive recall 0.93 compared with other candidates.
Presumably such property might be useful in cases when it is more important to
extract most of the required sentences regardless of the larger number of false
positives [41].

We recommend BERT-based architectures as a basis for classification (or extrac-
tion) tasks even without retraining the whole architecture and staying with a basic
fine-tuning. However, BERT-based solutions are relatively resource demanding
[43]. This must be considered carefully for real-world applications in the industry
context. Our study showed that traditional less-demanding models may demonstrate
acceptable results in the more constrained environments.

2.4.2 SeqReq: Security Requirements Classification

In the context of the VeriDevOps project [1], our team participated in a study
to design a system that could correctly identify security requirements in various
texts or software specification documents. We manually classified a large dataset
of security and non-security-related requirements and trained a specific prototype,
SecReq, based on the DestilBERT [44] architecture. We present the overall approach
and our results in the section below.

This task is again mainly a classification task, but the context is more specific
since the classifier can only be applied within the restricted set of sentences, e.g.,
identifying security-related context in the set of requirements. Compared to the
binary classification approach that we discussed earlier, the scope of the task is very
narrow and requires a specific solution. Initially our goal was to design a system
based only on machine learning methods to assess its capabilities for solving this
task in an industrial context. Thereby, we focused only on solutions based on ML
architectures like deep neural networks.

Several solutions exist for this NLP task; the selection has to be justified based
on the analysis of the domain with regards to lexical and semantic properties as
well as datasets. We conducted a preliminary analysis resulting in the following
conclusions:

● There exist several definitions of security requirements, which however are not
specific enough with respect to the lexical properties. Moreover, the statement
styles vary a lot from company to company, industry to industry, author to author.

52 A. Sadovykh et al.

● A specific dataset is needed for classifying security requirements. In our cases
this dataset had to be constructed from several sources.

● As with general requirements, there is a clear shortage of well-designed datasets
presumably due to its narrow perspective.

Our analysis showed that this task can again be reduced to the binary clas-
sification task as in the previous case for extracting the requirements sentences.
However, a specific dataset needed to be constructed that would contain security-
related requirements.

We analyzed the available datasets and security text corpora. As a result, we
collected several datasets and other security-related text sources from different
business domains:

1. The first one is the PROMISE dataset, which is considered as a benchmark
dataset widely used in literature. This dataset originated from the RE’17 Data
Challenge. It contains 625 sentences among which 375 are nonfunctional
requirements of 12 classes (like availability, reliability, scalability, security, etc.)
and 255 are functional requirements [45].

2. Additionally, we found requirements in official documentation. CCHIT [46]
published criteria for several products developed in 2006 and 2007. These criteria
consist of 283 requirements, including security-related statements, which are
also useful for our task (Certification Commission for Healthcare Information
Technology Work Groups, 2007).

3. SRS Concordia corpus was constructed as a reconsideration of the PROMISE
dataset. Authors indicated several problems of the PROMISE dataset with respect
to artifact types and sentences, which may have multiple or no labels. They
proposed their own corpus, which contains 6 documents that can be transformed
into 3064 manually labeled sentences [47].

4. OWASP Application Security Verification Standard [48] provides a collection of
security requirements for web applications. The number of security requirements
differs from one version of the standard to another. In order to gather most of the
statements present in the standard, we created a dataset as a union of OWASP
ASVS v3.0.1 and v4.0. This dataset contains 496 security-relevant sentences.

Nevertheless, it was unclear how well each dataset covered the “security-related”
class of requirements. We decided to consolidate all the extracted samples and
aggregate them in a separate dataset. That way, we obtained 2328 text samples,
where 804 sentences represented security requirements, while the other 1518
sentences were non-security requirements. Additionally, we augmented this dataset
with 651 security requirement sentences that we collected by manually labeling
previously mentioned PURE-based dataset. As a validation step, we checked both
datasets for possible intersections and removed them to avoid any possible bias in a
further assessment.

Specifically for the stage of experiments, we applied the PURE set as our train
dataset, whereas the combined set was used for testing. We conducted experiments
with various model architectures to find the most efficient one. Initially, we focused

2 NLP and ML for Security Requirements Analysis 53

on already well-established transformer architectures like BERT [34], MPNET
[49], and their variations. Both transformer architectures, BERT and MPNET, are
pretrained on a huge corpus of English-language texts, and this facilitates building
higher-capacity models for a wide variety of tasks.

Nowadays, one can notice that the industry has made a leap forward by privi-
leging libraries of pretrained deep learning models as, for example, HuggingFace
[50] that includes SBERT [51]. These libraries propose a multitude of solutions
for almost any well-known task in NLP, including classification, text generation,
text similarity, etc. SBERT is dedicated to the analysis of complete sentences. In
addition, those libraries provide many pretrained and ready-to-use architectures
by vendors from different application areas, for example, healthcare, finance, and
information technologies. These models may represent a complete solution for a
variety of NLP tasks or be considered as a starting point for creating a specific
adaptation. To design a solution for the security requirements extraction task, we
considered pretrained architectures that address NLP tasks like in our context. After
several experiments we identified that among other architectures the most promising
model for our goal was a special version of DistilBERT [44] that was fine-tuned
on a special Stanford Sentiment Treebank [52] dataset designed for a sentiment
classification task.

To address the narrow context of the security requirement extraction problem,
we decided to apply a combination of models that are executed sequentially in the
following pipeline (Fig. 2.3):

● Stage 1 “ReqExp”: Fine-tuned BERT for identifying requirements in the text as
described in the previous section.

● Stage 2 “SecReq”: DistilBERT for identifying security requirements in a set of
requirements that was specifically tuned for this task.

The overall structure of the pipeline is shown in the diagram below. Figure 2.3
depicts all the main stages with datasets used for fine-tuning, as well as inputs and
outputs for each stage. Stage 1 “ReqExp” starts with uploading a document where
some preprocessing steps happen to extract all the possible text from a document

Stage 2: SecReq

Combined data set
with sec labels

DistilBERT

Fine-tune

Stage 1: ReqExp

BERT

PURE-based
requirements data set

Fine-tune

Extracted
sentences

Document

Candidate
Security Requirements

sec req1

sec req2

sec req2

Classification
(Filtering 2)

Candidate
Requirements

req1

req2

req3

Classification
(Filtering)

Fig. 2.3 Security requirements classification

54 A. Sadovykh et al.

and transform it to a text with specific lexical elements that are sentences in our
case. Afterward, one-by-one every sentence is digested to the first stage to make
a filtering and extracting requirements statements from the input text samples. At
the second stage, the obtained list of requirements is processed by the fine-tuned
DistilBERT to distinguish security requirements from other types of requirements.
During the process of fine-tuning of the SecReq stage, we were able to achieve an
F1-score of 0.86 using this version of the model.

Let us consider an illustrative example by NIST from [53]. While examining
this source document, one may notice that the authors specified the single security
requirement in the related section: The software system defined in this SRS must
follow industry recommended practices for secure software development. At a
minimum, the software development must practice the principle of least privilege
for defining access-level requirements of the software system and its associated
services. The production-release version of the software system must pass an
automated dynamic application security testing tool (e.g., HP WEBINSPECT). In
contrast, our prototype [54] extracted the following security-related requirements
sentences:

1. The system must have at least a super-user role and a user role defined for
accessing and interacting with the system.

2. Distributing manufacturing data across an enterprise requires the curation and
management of the data within a repository and end-user services to access the
data.

3. The UI for administrative tasks must include the ability to manage users,
manage groups, manage permissions, manage data templates, manage group
assignments, and manage query templates.

4. SuperUserRole/001 maintains all VDS and QDR back-end system configura-
tions, SuperUserRole/002 maintains all VDS and QDR schemas and templates,
SuperUserRole/003 maintains all user groups and user accounts, and Supe-
rUserRole/004 Maintains all QDR predefined queries

5. The user must be presented with a login page when accessing any page, or expect
a landing or front page, as an anonymous user.

We consider this result as relevant and important, since the prototype indicated
several security sensitive functional requirements that have to be analyzed by dedi-
cated specialists mastering the security approaches for development and validation.

2.4.3 STIGSearch: Semantic Search for Security Technology
Implementation Guides

In the example in the previous section, one may also notice that the original
requirements are extremely generic. At most, this specification suggests to follow
“best practices.” The document leaves a great flexibility to developers to select
a standard architecture and apply related recommendations. This approach, quite

2 NLP and ML for Security Requirements Analysis 55

common in industrial practice, represents a great vulnerability since it can easily
lead to omission of numerous concrete guidelines that were created by analyzing the
vulnerabilities. One of the approaches is to de-generalize the security requirements
and map them to right practical recommendations. For this purpose, we created a
specific prototype, STIGSearch, based on the SBERT [51] architecture for semantic
search of relevant countermeasures in the Security Technology Implementation
Guides (STIGs) [55] database. We present the overall approach and our results in
the section below.

Often the security requirements are expressed as a need to comply with a
specific standard, such as Security Technology Implementation Guides (STIGs)
[55], Web Application Security Project (OWASP) recommendations (OWASP
Application Security Verification Standard, n.d.) or standards with an extremely
narrow perspective like ISAIEC 62443 [56]. One of the analysis goals is to locate
the relevant standard requirements, guidelines, or recommendations that relate to
the security requirements that are specified by an engineer specifically for a project.
This may help to relate the project requirements and corresponding implemented
features with security standards. In the NLP context, the semantic search task is
dedicated to identifying semantic proximity among lexical entities. This approach
may be beneficial as a solution for the requirements-to-standard mapping problem.

Traditionally, search techniques are designed based on word computation models
and, in some cases, enhanced by the link analysis. In contrast, the semantic search
technique extends the information retrieval with entity and knowledge retrieval,
instead of looking into the keyword matching frequency only. In other words the
semantic search addresses the search task from a different perspective by assessing
the meaning of words that are formalized and represented in machine processable
format [57].

Practically semantic search is focused on improving the search experience by
understanding the content of the search query. For example, in contrast to traditional
search engines which only find content based on lexical matches, semantic search
can also find synonyms. The idea behind semantic search is to transform all entries
in a corpus, whether they be sentences, paragraphs, or documents, into a vector
space. In our case we deal with high-dimensional representations – tokens or
embeddings that we discussed in the previous sections. At the search time, a query
is embedded into the same vector space in order to find the closest embeddings
from the source corpus. The core idea is that these closest entries should have a high
semantic similarity with the query (Fig. 2.4) [58].

In order to compare the vector representation of a query with all the elements in
the source corpus, one shall use a special metric, which is called a cosine similarity.
Cosine similarity measures the proximity between two vectors of an inner product
space. It is measured by the cosine of the angle between two vectors and determines
to which degree two vectors are pointing in the same direction [59]. This property
is quite useful in various tasks when comparing text pairs, e.g., sentence with
sentence, word with word, etc. Figure 2.5 illustrates the cosine similarity with a
two-dimensional example.

56 A. Sadovykh et al.

Fig. 2.4 Semantic search
principle

Query

Text
samples

Query

Text
samples

θ

France

Italy

France and Italy are quite similar

θ is close to 0
o

cos (θ) ≈ 1

θ

ball

crocodile

ball and crocodile are not similar

θ is close to 90
o

cos (θ) ≈ 0

Rome - Italy

France - Paris

The two vectors are similar but opposite
the first one encodes (city - country)

while the second one encodes (country - city)
θ is close to 180

o

cos (θ) ≈ -1

θ

Fig. 2.5 Cosine similarity [60]

In our approach, we proposed to design a search solution for a combined database
that included security requirements from STIGs and IEC 62443 standards.

The core challenge in the designing process was mainly to identify what
representations could be most adequate to make the search method locate the most
relevant set of standard requirements, given a complex context that we are dealing
with in this case.

We have analyzed various options that include such advanced models as MPNet
and DistilROBERTA that were pretrained specifically for semantic search [61]. As
it was already mentioned, for this NLP task, these are the vector representations that
really matter. Therefore, searching process technically becomes straight following
(Fig. 2.6):

1. Transform the source corpus (e.g., STIGs) using the chosen model architecture
and save it in an optimal format, e.g., CSV file.

2. Transform the query using the same model as the model chosen to represent the
source corpus.

2 NLP and ML for Security Requirements Analysis 57

vectorisation

STIG data

V_xyz

V_xyz

V_xyz

Embeddings
(vector set VS)

Cosine
similarity
search

vectorisationSecurity
requirement

Req
Embedding
(vector V)

Relevant STIGs

V_11111

V_22222

V_33333

Fig. 2.6 Semantic search method applied to security requirements

3. Apply cosine similarity to the query vector representation and each element in
the vector space representing the source corpus.

4. Finally, sort all the obtained metrics and extract indexes of most similar elements
in the source corpus.

In order to evaluate the search method performance and applicability in the
industry context, we designed a separate prototype including several pretrained
models, which implement equivalent functionality – semantic search in security
standards dataset. The principle remains the same regardless of the model archi-
tecture; however, the query results will differ, and their quality has to be assessed
manually by the users.

Let us consider again the illustrative example that we provided in the pre-
vious section, the requirements specification by NIST [53] states: the software
development must practice the principle of least privilege for defining access-level
requirements of the software system and its associated services. This requirement
statement is quite generic and that may lead to a misinterpretation. If we apply the
semantic search in IEC 62443 database [56], we obtain, e.g., the following:

1. Components shall provide an authorization enforcement mechanism for all users
based on their assigned responsibilities and least privilege.

2. Components shall provide, or integrate into a system that provides, the capability
to enforce password minimum and maximum lifetime restrictions for all users.

3. Components shall provide an authorization enforcement mechanism for all
identified and authenticated users based on their assigned responsibilities.

4. Components shall provide the capability to limit the use of resources by security
functions to protect against resource exhaustion.

5. Components shall provide the capability to perform or support integrity checks
on software, configuration, and other information as well as the recording and
reporting of the results of these checks or be integrated into a system that can
perform or support integrity checks.

58 A. Sadovykh et al.

This shows that the original requirement by NIST can be semantically mapped
to several standard requirements. Furthermore, if we apply the semantic search in
the STIG database for Microsoft Windows platform, we may locate a number of
recommendations, e.g.:

1. User rights assignments must meet minimum requirements.
2. The operating system must employ a deny-all, permit-by-exception policy to

allow the execution of authorized software programs.
3. Permissions for program file directories must conform to minimum requirements.
4. The roles and features required by the system must be documented.
5. Unauthorized users are granted right to Act as part of the operating system.
6. Security configuration tools or equivalent processes must be used to configure

and maintain platforms for security compliance.
7. Users with administrative privilege must be documented and have separate

accounts for administrative duties and normal operational tasks.

Each guideline provides concrete steps to check and fix a number of related
issues on the operating system level. Thus, the software developer and the DevOps
specialists may obtain the instructions for security the deployment of the system and
notice a number of design patterns to be implemented in the software.

2.5 Discussion

In this paper we have presented several solutions for classical tasks in NLP4RE
like requirements extraction and semantic search. Our focus was to design systems
based on pretrained state-of-art model architectures.

The first problem was to design an extraction tool for requirements from docu-
mentation or text corpora related to the software specifications. This problem can
be translated into a NLP classification task with an additional preprocessing step.
Usually requirements exist in the form of sentences in a specification document.
That meant that we needed to first extract and clean the sentences from a document,
which was an additional tedious task by itself. Moreover, for classification with
the NLP methods, it is required to have a clear definition of characteristics of
“requirement” sentences that we need to extract. As it was stated earlier, the
requirement statements vary a lot in form. This imposes a potential bias in a further
assessment by the NLP models.

Classifiers based on BERT architecture played a central role in our solution.
There exist different variants and enhancements for this architecture. For our
experiments we applied several basic models. For the requirements extraction
problem, we compared the BERT-based solution with other advanced methods like
Fasttext and ELMO. Nevertheless, BERT clearly overperformed all those methods.
To train this model, we prepared a special binary dataset that was based on PURE
corpus and constructed by manually extracting sentence by sentence and then
labeling it in accordance with its class. Although one can recognize a requirement

2 NLP and ML for Security Requirements Analysis 59

sentence with a certain degree of confidence, the NLP approach also required non-
requirements class sentences, which cannot be defined that easily. It should be
noted that this separation on requirement and non-requirement classes can vary
depending upon the theoretical basis authors take and hypothesis authors are relying
on. Potential changes in hypothesis and in model architecture may significantly
influence final results.

As an advancement of a classification problem, we also designed a classifier
for identifying security requirements in software specification related texts. In this
case we applied a pipeline consisting of two models – our previously trained
model for requirements classification and the model for recognizing security-related
requirements. The first model serves to extract a set of requirements statements.
The second model filters out the security-related requirements with an additional
binary classification step. For this case we created a combined dataset that is
specifically labeled to distinguish security-related requirements from non-related
ones. Relabeling PURE corpus-based dataset specifically for security context was
not enough since the obtained dataset was rather limited. That required us to find
more additional sources of security-based text samples for training our system.
The goal was to achieve completeness and impartiality in our experiments. Due
to inability to assess the class coverage, it might be seen as a biased approach. Still
as with the previous problem, there is still no consistent and well-established guide
to follow for labeling the security-related requirements.

Finally, in this paper we presented our solution for a searching engine to
query requirements databases of the security guidelines and standards. Our method
hypothesis was based on the semantic search theory, which today prevails in tasks
of finding similar text elements, e.g., documents, sentences, etc. In this case, we
followed a path by relying on high-dimensional representations of requirements
sentences. We also applied model architectures adapted to a semantic search. The
essence of the method is to apply a pretrained model and create a set of embeddings
for the source dataset, i.e., STIG guidelines, IEC62443 requirements. The query
sentence is vectorized for the same model architecture. The query embeddings
and dataset vector space are compared using the cosine similarity method. The
query/standard sentence pair with the highest cosine ranking is selected as the most
relevant and similar text. We designed several prototypes with different pretrained
model architectures in order to conduct a thorough evaluation in our future research.

We have identified several ways with the intent to improve our prototypes. As
the baseline, the work on cleaning, augmenting, and validating the datasets has to
continue. There is a need for an improved guide for labeling “requirements” state-
ments and distinguishing “security-related” requirements. In addition, the labeling
work by human specialists has to be cross validated, so that there is a high degree
of coherence. In addition, the “security” class of requirements has to be further
augmented so that it could be possible to filter individual categories of security
requirements such as data integrity or authentication. Our preliminary studies of
the current security requirements datasets have shown that many categories are
underrepresented. Further on, the baseline ML model architecture can be retrained
on the corpus of security-related text as it was illustrated in [36]. This may

60 A. Sadovykh et al.

potentially improve the classification results on several NLP tasks. There is a
difficulty in evaluating performance of the semantic search methods, since there
is a lack of an objective quality metric – the semantic relevance is subjective.
In this context, there is a need to integrate users’ feedback to the evaluation and
improvement of our methods.

2.6 Conclusions

In this chapter we have outlined the current state-of-the-art in NLP for requirements
engineering and have given several practical examples of application of model
transfer learning architectures for several security requirements analysis tasks. This
area is important and is considered an entry point in the VeriDevOps project
[1]. Indeed, the VeriDevOps methodology starts from automatically assessing
the newcoming security requirements, e.g., vulnerability reports, users’ requests,
attacks, and anomalies detected. These requirements have to be properly categorized
and mapped to the corresponding practices for specific design patterns or counter-
measures implementation. Our work contributes to analysis of security requirements
specified in natural language. First, we propose to evaluate an incoming request, e.g.,
document or a textual statement as related to security. Second, we offer a semantic
search mechanism with the goal to map security requirements to an appropriate
practice.

In this chapter we have applied the BERT architecture for requirements extraction
and security requirements filtering as well as MPNet architecture with SBERT for
semantic search over the cosine similarity metrics. The resulting prototypes Req-
Exp, SecReq, and STIGSearch integrated into the ARQAN tool set[54] demonstrate
promising results though further evaluation and improvement may be required.

For providing better support on mapping requirements to recommendations and
countermeasures, we explore possibilities to link user requirements with STIG
recommendations and concrete implementations for the security tests. In particular,
our research on the requirements verification automation with RQCODE [62] is
an enabler that links the security requirements statements in natural language and
security verification mechanisms such as tests.

In the requirements engineering domain, we experiment with the integration of
our prototypes with various requirements modeling and management tools such as
Modelio [63] and GitHub/GitLab issue trackers. In addition, the integration with the
CI/CD tools over the specific pipeline mechanism helps to address the requirements
analysis automation challenge that has been identified for the DevSecOps area [64].

Acknowledgments This work is partially supported by the VeriDevOps [1] project funded by the
Horizon 2020 program under the grant agreement No. 957212 (VeriDevOps project).

2 NLP and ML for Security Requirements Analysis 61

References

1. A. Sadovykh, G. Widforss, D. Truscan, E.P. Enoiu, W. Mallouli, R. Iglesias, A. Bagnto,
O. Hendel, in 2021 Design, Automation Test in Europe Conference Exhibition (DATE) (2021),
pp. 1330–1333. https://doi.org/10.23919/DATE51398.2021.9474185. ISSN: 1558-1101

2. P. Loucopoulos, V. Karakostas, System Requirements Engineering (McGraw-Hill, 1995)
3. C. Haley, R. Laney, J. Moffett, B. Nuseibeh, IEEE Trans. Softw. Eng. 34(1), 133 (2008)
4. Hoo, K. Soo. Tangible ROI through secure software engineering. Secur. Bus. Q. (2001). https://

cir.nii.ac.jp/crid/1571698600432996480
5. T. Li, Z. Chen, J. Syst. Softw. 165, 110566 (2020)
6. E. Knauss, S. Houmb, K. Schneider, S. Islam, J. Jürjens, in International Working Conference

on Requirements Engineering: Foundation for Software Quality (Springer, 2011), pp. 4–18
7. M. Kassab, C. Neill, P. Laplante, Innov. Syst. Softw. Eng.: A NASA J. (2014). https://doi.org/

10.1007/s11334-014-0232-4
8. L. Mich, M. Franch, P.L. Novi Inverardi, Requir. Eng. 9, 40 (2004). https://doi.org/10.1007/

s00766-003-0179-8
9. P. Sawyer, P. Rayson, K. Cosh, IEEE Trans. Softw. Eng. 31, 969 (2005). https://doi.org/10.

1109/TSE.2005.129
10. D. Jurafsky, C. Manning, Instructor 212(998), 3482 (2012)
11. E.D. Liddy, Natural language processing, in Encyclopedia of Library and Information Science,

2nd edn. (Marcel Decker, Inc., NY, 2001)
12. L. Zhao, W. Alhoshan, A. Ferrari, K. Letsholo, M. Ajagbe, E.V. Chioasca, R. Batista-Navarro,

Natural language processing for requirements engineering: a systematic mapping study. ACM
Comput. Surv. 54(3), (2022)

13. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction (Springer Science & Business Media, 2009)

14. S. Kommrusch, arXiv preprint arXiv:1912.06796 (2019)
15. Z.S.H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, K. Schneider, in 2017 IEEE 25th

International Requirements Engineering Conference (RE) (IEEE, 2017), pp. 496–501
16. C.D. Manning, M. Surdeanu, J. Bauer, J.R. Finkel, S. Bethard, D. McClosky, in Proceedings

of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstra-
tions (2014), pp. 55–60

17. E. Boutkova, F. Houdek, in 2011 IEEE 19th International Requirements Engineering Confer-
ence (IEEE, 2011), pp. 313–318

18. R. Malhotra, A. Chug, A. Hayrapetian, R. Raje, in 2016 International Conference on
Innovation and Challenges in Cyber Security (ICICCS-INBUSH) (IEEE, 2016), pp. 26–30

19. N.F. Noy, M. Crubézy, R.W. Fergerson, H. Knublauch, S.W. Tu, J. Vendetti, M.A. Musen, in
AMIA... Annual Symposium Proceedings. AMIA Symposium (2003), pp. 953–953

20. A. Hayrapetian, R. Raje, in Proceedings of the 11th Innovations in Software Engineering
Conference (2018), pp. 1–11

21. B. Magnini, R. Zanoli, I. Dagan, K. Eichler, G. Neumann, T.G. Noh, S. Pado, A. Stern, O. Levy,
in Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations (2014), pp. 43–48

22. W. Wang, K.R. Mahakala, A. Gupta, N. Hussein, Y. Wang, J. Ind. Inf. Integr. 14, 34 (2019)
23. Z. Kurtanović, W. Maalej, in 2017 IEEE 25th International Requirements Engineering

Conference (RE) (IEEE, 2017), pp. 490–495
24. J. Cleland-Huang, S. Mazrouee, H. Liguo, D. Port. NFR (2007). https://doi.org/10.5281/

zenodo.268542
25. J.M. Pérez-Verdejo, Á.J. Sánchez-García, J.O. Ocharán-Hernández, E. Mezura-Montes,

K. Cortés-Verdín, Program. Comput. Softw. 47(8), 704 (2021)
26. V. Mir Khatian, Q. Ali Arain, M. Alenezi, M. Owais Raza, F. Shaikh, I. Farah, in 2021

1st International Conference on Artificial Intelligence and Data Analytics (CAIDA) (IEEE,
Riyadh, Saudi Arabia, 2021), pp. 7–12

https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://cir.nii.ac.jp/crid/1571698600432996480
https://cir.nii.ac.jp/crid/1571698600432996480
https://cir.nii.ac.jp/crid/1571698600432996480
https://cir.nii.ac.jp/crid/1571698600432996480
https://cir.nii.ac.jp/crid/1571698600432996480
https://cir.nii.ac.jp/crid/1571698600432996480
https://cir.nii.ac.jp/crid/1571698600432996480
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1109/TSE.2005.129
https://doi.org/10.1109/TSE.2005.129
https://doi.org/10.1109/TSE.2005.129
https://doi.org/10.1109/TSE.2005.129
https://doi.org/10.1109/TSE.2005.129
https://doi.org/10.1109/TSE.2005.129
https://doi.org/10.1109/TSE.2005.129
https://doi.org/10.1109/TSE.2005.129
https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542
https://doi.org/10.5281/zenodo.268542

62 A. Sadovykh et al.

27. Y. LeCun, Y. Bengio, G. Hinton, Nature 521(7553), 436 (2015)
28. Y. Zhang, B. Wallace, arXiv preprint arXiv:1510.03820 (2015)
29. Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Neural

Comput. 1(4), 541 (1989)
30. T. Mikolov, K. Chen, G. Corrado, J. Dean, arXiv preprint arXiv:1301.3781 (2013)
31. J. Winkler, A. Vogelsang, in 2016 IEEE 24th International Requirements Engineering Confer-

ence Workshops (REW) (IEEE, 2016), pp. 39–45
32. A. Dekhtyar, V. Fong, in 2017 IEEE 25th International Requirements Engineering Conference

(RE) (2017), pp. 484–489. https://doi.org/10.1109/RE.2017.26
33. T. Hey, J. Keim, A. Koziolek, W.F. Tichy, in 2020 IEEE 28th International Requirements

Engineering Conference (RE) (IEEE, 2020), pp. 169–179
34. J. Devlin, M.W. Chang, K. Lee, K. Toutanova, arXiv preprint arXiv:1810.04805 (2018)
35. M. Ajagbe, L. Zhao, in 2022 IEEE 30th International Requirements Engineering Conference

(RE) (2022), pp. 309–315
36. K. Ameri, M. Hempel, H. Sharif, J. Lopez Jr., K. Perumalla, J. Cybersecur. Privacy 1(4), 615

(2021). https://doi.org/10.3390/jcp1040031. https://www.mdpi.com/2624-800X/1/4/31
37. P. Ranade, A. Piplai, A. Joshi, T. Finin, in 2021 IEEE International Conference on Big Data

(Big Data) (2021), pp. 3334–3342
38. G. Li, C. Zheng, M. Li, H. Wang, IEEE Access 10, 30080 (2022)
39. A. Ferrari, G.O. Spagnolo, S. Gnesi, in 2017 IEEE 25th International Requirements Engineer-

ing Conference (RE) (2017), pp. 502–505. https://doi.org/10.1109/RE.2017.29
40. A. Hassan, A. Mahmood, IEEE Access 6, 13949 (2018). https://doi.org/10.1109/ACCESS.

2018.2814818. https://ieeexplore.ieee.org/document/8314136
41. V. Ivanov, A. Sadovykh, A. Naumchev, A. Bagnato, K. Yakovlev, in Recent Trends in Analysis

of Images, Social Networks and Texts, ed. by E. Burnaev, D.I. Ignatov, S. Ivanov, M. Khachay,
O. Koltsova, A. Kutuzov, S.O. Kuznetsov, N. Loukachevitch, A. Napoli, A. Panchenko, P.M.
Pardalos, J. Saramäki, A.V. Savchenko, E. Tsymbalov, E. Tutubalina. Communications in
Computer and Information Science (Springer International Publishing, Cham, 2022), pp. 17–
29. https://doi.org/10.1007/978-3-031-15168-2_2

42. S. Abualhaija, C. Arora, M. Sabetzadeh, L.C. Briand, E. Vaz (2019), pp. 51–62. https://doi.org/
10.1109/RE.2019.00017

43. M.A. Gordon, K. Duh, N. Andrews, Compressing BERT: Studying the Effects of Weight
Pruning on Transfer Learning (2020). http://arxiv.org/abs/2002.08307. arXiv:2002.08307 [cs]

44. V. Sanh, L. Debut, J. Chaumond, T. Wolf, arXiv:1910.01108 [cs] (2020). http://arxiv.org/abs/
1910.01108. arXiv:1910.01108

45. J. Cleland-Huang, R. Settimi, X. Zou, P. Solc, Requir. Eng. 12(2), 103 (2007)
46. Certification Commission for Health Information Technology (2007). https://www.cchit.org/

work/criteria/, https://www.cchit.org/work/inpatient-criteria/
47. A. Rashwan, O. Ormandjieva, R. Witte, in The 37th Annual International Computer Software

& Applications Conference (COMPSAC 2013). IEEE (IEEE, 2013), pp. 381–386. https://doi.
org/10.1109/COMPSAC.2013.64

48. OWASP Application Security Verification Standard. https://github.com/OWASP/ASVS/
49. K. Song, X. Tan, T. Qin, J. Lu, T.Y. Liu, MPNet: Masked and Permuted Pre-training for

Language Understanding (2020). http://arxiv.org/abs/2004.09297. arXiv:2004.09297 [cs]
50. T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu,
T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, A. Rush, in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations (Association
for Computational Linguistics, Online, 2020), pp. 38–45. https://doi.org/10.18653/v1/2020.
emnlp-demos.6. https://www.aclweb.org/anthology/2020.emnlp-demos.6

51. N. Reimers, I. Gurevych, Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks (2019). http://arxiv.org/abs/1908.10084. arXiv:1908.10084 [cs]

52. R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A.Y. Ng, C. Potts, in Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing (2013), pp.
1631–1642

https://doi.org/10.1109/RE.2017.26
https://doi.org/10.1109/RE.2017.26
https://doi.org/10.1109/RE.2017.26
https://doi.org/10.1109/RE.2017.26
https://doi.org/10.1109/RE.2017.26
https://doi.org/10.1109/RE.2017.26
https://doi.org/10.1109/RE.2017.26
https://doi.org/10.1109/RE.2017.26
https://doi.org/10.3390/jcp1040031
https://doi.org/10.3390/jcp1040031
https://doi.org/10.3390/jcp1040031
https://doi.org/10.3390/jcp1040031
https://doi.org/10.3390/jcp1040031
https://doi.org/10.3390/jcp1040031
https://www.mdpi.com/2624-800X/1/4/31
https://www.mdpi.com/2624-800X/1/4/31
https://www.mdpi.com/2624-800X/1/4/31
https://www.mdpi.com/2624-800X/1/4/31
https://www.mdpi.com/2624-800X/1/4/31
https://www.mdpi.com/2624-800X/1/4/31
https://www.mdpi.com/2624-800X/1/4/31
https://www.mdpi.com/2624-800X/1/4/31
https://www.mdpi.com/2624-800X/1/4/31
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/ACCESS.2018.2814818
https://doi.org/10.1109/ACCESS.2018.2814818
https://doi.org/10.1109/ACCESS.2018.2814818
https://doi.org/10.1109/ACCESS.2018.2814818
https://doi.org/10.1109/ACCESS.2018.2814818
https://doi.org/10.1109/ACCESS.2018.2814818
https://doi.org/10.1109/ACCESS.2018.2814818
https://doi.org/10.1109/ACCESS.2018.2814818
https://ieeexplore.ieee.org/document/8314136
https://ieeexplore.ieee.org/document/8314136
https://ieeexplore.ieee.org/document/8314136
https://ieeexplore.ieee.org/document/8314136
https://ieeexplore.ieee.org/document/8314136
https://ieeexplore.ieee.org/document/8314136
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1007/978-3-031-15168-2_2
https://doi.org/10.1109/RE.2019.00017
https://doi.org/10.1109/RE.2019.00017
https://doi.org/10.1109/RE.2019.00017
https://doi.org/10.1109/RE.2019.00017
https://doi.org/10.1109/RE.2019.00017
https://doi.org/10.1109/RE.2019.00017
https://doi.org/10.1109/RE.2019.00017
https://doi.org/10.1109/RE.2019.00017
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://www.cchit.org/work/criteria/
https://www.cchit.org/work/criteria/
https://www.cchit.org/work/criteria/
https://www.cchit.org/work/criteria/
https://www.cchit.org/work/criteria/
https://www.cchit.org/work/criteria/
https://www.cchit.org/work/inpatient-criteria/
https://www.cchit.org/work/inpatient-criteria/
https://www.cchit.org/work/inpatient-criteria/
https://www.cchit.org/work/inpatient-criteria/
https://www.cchit.org/work/inpatient-criteria/
https://www.cchit.org/work/inpatient-criteria/
https://www.cchit.org/work/inpatient-criteria/
https://doi.org/10.1109/COMPSAC.2013.64
https://doi.org/10.1109/COMPSAC.2013.64
https://doi.org/10.1109/COMPSAC.2013.64
https://doi.org/10.1109/COMPSAC.2013.64
https://doi.org/10.1109/COMPSAC.2013.64
https://doi.org/10.1109/COMPSAC.2013.64
https://doi.org/10.1109/COMPSAC.2013.64
https://doi.org/10.1109/COMPSAC.2013.64
https://github.com/OWASP/ASVS/
https://github.com/OWASP/ASVS/
https://github.com/OWASP/ASVS/
https://github.com/OWASP/ASVS/
https://github.com/OWASP/ASVS/
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084

2 NLP and ML for Security Requirements Analysis 63

53. T. Hedberg Jr., M. Helu, M. Newrock, Software requirements specification to distribute manu-
facturing data. Tech. Rep. NIST AMS 300-2, National Institute of Standards and Technology,
Gaithersburg, MD (2017). https://doi.org/10.6028/NIST.AMS.300-2. https://nvlpubs.nist.gov/
nistpubs/ams/NIST.AMS.300-2.pdf

54. A. Sadovykh, K. Iakovlev, A. Abherve, ARQAN Online Demonstrator by SOFTEAM (2022).
http://arqan.softeam-rd.eu:8501/

55. Security Technical Implementation Guide (STIG) Complete List. https://www.stigviewer.com/
stigs

56. I.E. Commission, others, IEC 62443: Security for Industrial Automation and Control Systems–
Part 4-1: Secure Product Development Lifecycle Requirements. Tech. rep. (2018)

57. W. Wei, P.M. Barnaghi, A. Bargiela, Int. J. Commun. SIWN 3, 76 (2008)
58. N. Reimers, Pretrained Models – Sentence-Transformers documentation. https://sbert.net/docs/

pretrained_models.html
59. J. Han, J. Pei, H. Tong, Data Mining: Concepts and Techniques (Morgan Kaufmann, 2022)
60. R. Zhang, Operations on word vectors – Debiasing (2019). https://zhangruochi.com/

Operations-on-word-vectors-Debiasing/2019/03/28/index.html
61. N. Reimers, Semantic Search – Sentence-Transformers documentation. https://sbert.net/

examples/applications/semantic-search/README.html
62. I. Nigmatullin, A. Sadovykh, N. Messe, S. Ebersold, J.M. Bruel, in 2022 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW) (2022), pp. 2–
6. https://doi.org/10.1109/ICSTW55395.2022.00015. ISSN: 2159-4848

63. Modelio – UML/BPMN modeling tool by SOFTEAM. https://www.modeliosoft.com/en/
64. Z. Ahmed, S.C. Francis, in 2019 International Conference on Digitization (ICD) (IEEE,

2019), pp. 178–182. https://doi.org/10.1109/ICD47981.2019.9105789. https://ieeexplore.ieee.
org/abstract/document/9105789

https://doi.org/10.6028/NIST.AMS.300-2
https://doi.org/10.6028/NIST.AMS.300-2
https://doi.org/10.6028/NIST.AMS.300-2
https://doi.org/10.6028/NIST.AMS.300-2
https://doi.org/10.6028/NIST.AMS.300-2
https://doi.org/10.6028/NIST.AMS.300-2
https://doi.org/10.6028/NIST.AMS.300-2
https://doi.org/10.6028/NIST.AMS.300-2
https://doi.org/10.6028/NIST.AMS.300-2
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
https://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.300-2.pdf
http://arqan.softeam-rd.eu:8501/
http://arqan.softeam-rd.eu:8501/
http://arqan.softeam-rd.eu:8501/
http://arqan.softeam-rd.eu:8501/
http://arqan.softeam-rd.eu:8501/
http://arqan.softeam-rd.eu:8501/
https://www.stigviewer.com/stigs
https://www.stigviewer.com/stigs
https://www.stigviewer.com/stigs
https://www.stigviewer.com/stigs
https://www.stigviewer.com/stigs
https://sbert.net/docs/pretrained_models.html
https://sbert.net/docs/pretrained_models.html
https://sbert.net/docs/pretrained_models.html
https://sbert.net/docs/pretrained_models.html
https://sbert.net/docs/pretrained_models.html
https://sbert.net/docs/pretrained_models.html
https://sbert.net/docs/pretrained_models.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://zhangruochi.com/Operations-on-word-vectors-Debiasing/2019/03/28/index.html
https://sbert.net/examples/applications/semantic-search/README.html
https://sbert.net/examples/applications/semantic-search/README.html
https://sbert.net/examples/applications/semantic-search/README.html
https://sbert.net/examples/applications/semantic-search/README.html
https://sbert.net/examples/applications/semantic-search/README.html
https://sbert.net/examples/applications/semantic-search/README.html
https://sbert.net/examples/applications/semantic-search/README.html
https://sbert.net/examples/applications/semantic-search/README.html
https://sbert.net/examples/applications/semantic-search/README.html
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.1109/ICSTW55395.2022.00015
https://www.modeliosoft.com/en/
https://www.modeliosoft.com/en/
https://www.modeliosoft.com/en/
https://www.modeliosoft.com/en/
https://www.modeliosoft.com/en/
https://doi.org/10.1109/ICD47981.2019.9105789
https://doi.org/10.1109/ICD47981.2019.9105789
https://doi.org/10.1109/ICD47981.2019.9105789
https://doi.org/10.1109/ICD47981.2019.9105789
https://doi.org/10.1109/ICD47981.2019.9105789
https://doi.org/10.1109/ICD47981.2019.9105789
https://doi.org/10.1109/ICD47981.2019.9105789
https://doi.org/10.1109/ICD47981.2019.9105789
https://ieeexplore.ieee.org/abstract/document/9105789
https://ieeexplore.ieee.org/abstract/document/9105789
https://ieeexplore.ieee.org/abstract/document/9105789
https://ieeexplore.ieee.org/abstract/document/9105789
https://ieeexplore.ieee.org/abstract/document/9105789
https://ieeexplore.ieee.org/abstract/document/9105789
https://ieeexplore.ieee.org/abstract/document/9105789

Chapter 3
Security Requirements Formalization
with RQCODE

Andrey Sadovykh, Nan Messe, Ildar Nigmatullin, Sophie Ebersold,
Maria Naumcheva, and Jean-Michel Bruel

Abstract Security requirements vary in nature and form. These requirements may
come from compliance checklists, implementation guidelines, corporate standards,
and reports from organizations such as NIST, MITRE, and OWASP. Stakeholders
may express additional requirements, depending on the context, to address threats
and vulnerabilities as quickly as possible. Requirements are usually expressed in
natural language, sometimes accompanied by tests, fixes, or descriptions of attack
vectors. Analyzing, managing, verifying, validating, and tracing the requirements
are therefore challenging as it relies heavily on human activity. Formalizing
requirements for automated analysis and reuse can help to reduce human error-prone
activities. Seamless Object-Oriented Requirement (SOOR) promotes a paradigm of
multi-requirement views. In this paradigm, requirements are classes described in an
object-oriented programming (OOP) language that combines representations in nat-
ural language with those in formal languages, such as LTL or Eiffel. The embedded
formal language representations can provide means for validating requirements. In
addition, the major advantage is that OOP supports seamless reuse of requirements
classes and extensions through inheritance or associations. RQCODE is a novel
approach based firstly on the implementation of SOOR in Java, and secondly on
the applicability of SOOR to security requirements. This is done while providing a
lightweight formalization through the associated tests that validate and strengthen
system security according to the Security Technical Implementation Guide (STIG).
We argue that this approach, also known as RQCODE, offers several advantages for
formalizing, reusing, analyzing, and validating security requirements by automated
means. In this chapter, we discuss the challenges of requirements specification in
the cybersecurity domain and present our RQCODE approach.

A. Sadovykh (�)
SOFTEAM, Ivry-sur-Seine, France
e-mail: andrey.sadovykh@softeam.fr

N. Messe · I. Nigmatullin · S. Ebersold · M. Naumcheva · J.-M. Bruel
IRIT, Toulouse, France
e-mail: Nan.Messe@irit.fr; Ildar.Nigmatullin@irit.fr; Sophie.Ebersold@irit.fr;
Maria.Naumcheva@irit.fr; Jean-Michel.Bruel@irit.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_3

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 3&domain=pdf

 885
51863 a 885 51863 a

mailto:andrey.sadovykh@softeam.fr
mailto:andrey.sadovykh@softeam.fr
mailto:andrey.sadovykh@softeam.fr

 885 55738
a 885 55738 a

mailto:Nan.Messe@irit.fr
mailto:Nan.Messe@irit.fr
mailto:Nan.Messe@irit.fr

 8415
55738 a 8415 55738 a

mailto:Ildar.Nigmatullin@irit.fr
mailto:Ildar.Nigmatullin@irit.fr
mailto:Ildar.Nigmatullin@irit.fr

 18247 55738 a 18247
55738 a

mailto:Sophie.Ebersold@irit.fr
mailto:Sophie.Ebersold@irit.fr
mailto:Sophie.Ebersold@irit.fr

 -2016 56845 a -2016 56845 a

mailto:Maria.Naumcheva@irit.fr
mailto:Maria.Naumcheva@irit.fr
mailto:Maria.Naumcheva@irit.fr

 8236 56845 a 8236 56845 a

mailto:Jean-Michel.Bruel@irit.fr
mailto:Jean-Michel.Bruel@irit.fr
mailto:Jean-Michel.Bruel@irit.fr
mailto:Jean-Michel.Bruel@irit.fr
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3
https://doi.org/10.1007/978-3-031-42212-6_3

66 A. Sadovykh et al.

Keywords Requirement engineering · Natural language processing · Machine
learning · Dataset · Classification · Semantic search · VeriDevOps

3.1 Introduction

3.1.1 Context

Requirements engineering plays a crucial role in software development because it
specifies the main goals of software applications, as well as the constraints of the
environment. For example, the functionality a web browser provides to its users
and the constraints on that functionality are both requirements. Requirements drive
system development and deployment. They are the first step on the way from
the customer’s problem to a technical solution [1]. That is, requirements serve as
a translation of user and business needs into an implementable and operational
solution. Requirements engineering (RE) aims to define, document, and manage
requirements to ensure a seamless transition from a problem space to a solution
space at different stages of development. RE also supports traceability during the
verification process to demonstrate that requirements are effectively implemented.
Besides, RE includes various activities, such as requirements elicitation and anal-
ysis, specification, verification, and validation. Requirements elicitation defines the
process of analysis and review of a set of system requirements through seeking,
uncovering, acquiring, and elaborating [2]. The requirements specification is most
often a structured document that gathers the sets of functional and nonfunctional
requirements that must be imposed on the design and verification of the system [3].
The purpose of verification is to guarantee that a system conforms to its requirement
specification. Validation should ensure that requirements define the system that the
customer really wants.

RE addresses the full lifecycle of requirements, which is a significant effort.
For example, it has been shown that approximately 15% of a project’s effort is
spent on RE activities. RE is considered to be the most important area of software
engineering, since errors produced at this stage, if not detected until a later stage
of software development, can be very costly [4]. Eliciting and specifying adequate
requirements is therefore essential for a successful software development process.

Engineering requirements for business, system, or software applications involves
much more than just functional requirements engineering. One also needs to
engineer their quality requirements, especially security requirements. Security
requirements are particularly critical today, when systems must adapt to a hostile
digital environment [5].

Security requirements are of different nature and come in many different
forms. These requirements can come from compliance checklists, implementation
guidelines, corporate standards, and reports from organizations such as NIST,
MITRE, and OWASP. Standardized security requirements and recommendations
play an important role in the development of secure and trustworthy systems.

3 Security Requirements Formalization with RQCODE 67

For example, the NIST Computer Security Handbook [6] considers requirements
as technical features (e.g., access controls), assurances (e.g., background checks
for system developers), or operational practices, defining security requirements in
terms of features and functions. In this way, we know which objects containing the
features need to be protected. It also highlights the underlying core reasons why
these objects should be protected. In addition, it provides guidance on how to match
and protect the functionality of the system to the security needs. Other standards
also address various domains and systems layers. For example: IEC 62443 standard
[7] deals with the Industrial Internet of Things (IoT) domain; Security Technical
Implementation Guide (STIG) [8] provides security recommendations for a huge
list of platforms at operating system and application level; Open Web Application
Security Project (OWASP) [9] provides best practices and guidelines, mainly for
web and mobile applications.

Stakeholders may express additional security requirements depending on the
context, addressing specific and emergent threats and vulnerabilities in a timely
manner.

There are several security concepts to consider when eliciting security require-
ments. The aim of security requirements is to protect assets, which can be anything
of value to an organization or an individual user. For example, information stored in
a database server is an asset. Assets may present vulnerabilities that can be exploited
by attacks. This represents a potential threat to the asset. For example, if a database
server does not sanitize user input, this constitutes a vulnerability. This vulnerability
can be exploited by an SQL injection attack that compromises the functionality
of the database server. As a result, threats can damage assets – the information
stored in the server. Security requirements provide the verification methods and
countermeasures to eliminate threats and protect assets. These requirements protect
security properties such as confidentiality, integrity, and availability. For example,
“ensure that any user input is validated by a sanitiser” is a security requirement that
includes the countermeasure “user input validation,” and this security requirement
helps to safeguard data integrity. Countermeasures, or security controls, can take the
form of either security mechanisms or security constraints.

3.1.2 Motivation

Most companies rely on natural language (NL) to document their requirements,
either in the form of “requirements documents” or “user stories,” These require-
ments are extracted directly from customer documents, such as a request for
proposal. They can also be the result of interviews with customers. In both cases,
the requirements are specified in the domain language specific to the company and
business area. This is one of the reasons why there are often communication gaps
between different organizational units, especially when a requirement is specified
in a very general form [10]. The abovementioned situation is a typical situation
for security requirements, as a requirement specification may rely entirely on a

68 A. Sadovykh et al.

standard such as OWASP or IEC62443, which provide very general guidelines
that are difficult to verify. In addition, different stakeholders, even within the
same organization, may use different vocabularies, which makes understanding
requirements in NL problematic [11]. Providing well-formulated and unambiguous
requirements in natural language is extremely difficult. It is necessary to increase
their precision to ensure that the requirements are well understood, implemented,
verified, validated, and traceable.

Redundancy of requirements is also a problem. For example, the same require-
ment may be represented several times by different stakeholders and in different
forms. These redundant requirements may be contradictory or even mutually
exclusive, i.e. they cannot exist simultaneously in the system [11]. Therefore,
there is a need for an adequate way to manage customer requirements, avoiding
redundancy and duplication.

In addition, stakeholders are often responsible for a specific concern or business
area and do not necessarily have full technical expertise and understanding of
the other problem-specific domains. This is typically the case for requirements
engineers, who sometimes lack knowledge of implementation and testing, while
testers lack knowledge of the requirements specification [10], making requirements
verification a challenging and complicated activity. Quality assurance is a costly
activity that may represent up to 80% of project costs. It is often suggested to left-
shift the quality assurance and verify the system at the early development stages – as
early as possible. This also concerns the requirements verification and especially for
quality requirement verification [10]. This results in higher quality of the product,
as well as reduced cost and time spent on removal of defects at earlier development
phases.

Requirements engineering approaches need to manage the verification and
also the traceability of requirements in large projects. If the mapping between
requirements and test cases is not clear, it is difficult to ensure traceability. For
example, if a requirement is removed, a lack of traceability makes it difficult to
keep track of the tests that also need to be removed.

Security requirements are usually represented in a natural language form,
sometimes accompanied by tests, fixes, or attack vector descriptions. Analyzing,
managing, verifying, validating, and tracing security requirements are thus chal-
lenged since these activities heavily rely on humans being [12]. Formalizing the
requirements, e.g., requirements documenting and describing in notations such
as BPMN 2.0, UML, IDEF0, Event-B, etc. for their automated analysis and
reuse are thus necessary to rigorously validate and verify candidate designs and
implementations of these requirements and can help reduce human error-prone
activities, but specific competencies in formalization are required.

Most formal approaches focus on requirements per se, not directly connected to
design and implementation [1], which makes it difficult to align requirement engi-
neering with other software engineering tasks. Requirement engineering involves
upfront and detailed analysis, which can be at odds with agile software development
[13] and DevOps. Continuous management of requirements is thus a nontrivial
task, since not all of them are fixed at the beginning, and they may change over

3 Security Requirements Formalization with RQCODE 69

the course of the project [14, 15]. Besides, it is a challenge to not lose sight of the
big picture during the implementation of complex requirements [14]. Nonfunctional
requirements, e.g., security requirements, are often neglected in agile practice [15].
For example, user stories usually satisfy only system/product features.

It therefore appears necessary to unify the software process by allowing require-
ments to benefit from concepts, notations, and tools that are also applicable to other
development tasks.

3.2 Related Work

3.2.1 Requirements Formalization Methods

To make requirements precise, researchers have for years advocated the use of
mathematics-based notations and methods, known as “formal.” Many requirement
formalization approaches exist, differing in their style, scope, and applicability.

Bruel et al. in [1] have identified five categories of approaches to specify
requirements: natural language, semiformal, automata/graphs, mathematical, and
seamless (programming-language-based) that are defined as follows:

1. Natural language approaches express requirements in English or another human
language. Natural language has a significant role during requirements formaliza-
tion that has proved to be crucial in the development of computerized systems.
The required comprehension of system domain knowledge is ensured either via
documents and text analysis or by means of stakeholder interviews. Similarly,
validation of the technical specification is conducted by oral discussions and
interpretation with stakeholders [16].

2. Semiformal approaches are based on notations that are partially formalized,
e.g., SysML. They represent requirements as artifacts (such as SysML.Blocks)
and connects them to other artifacts to demonstrate semantic relations such
as dependency, refinement, or derivation [1]. The analysis still remains mostly
manual by constructing and considering various viewpoints.

3. Automata/graphs methods are based on automata or graph theory. They deal
with the concepts of automata, formal languages, grammar, algorithms, com-
putability, decidability, and complexity. Most commonly the requirements are
formalized as finite automata. A finite automaton is a simply idealized machine
used to recognize patterns within input taken from some character set [17].

4. Mathematical methods are based on fundamental mathematical and algebra
formalisms such as Event-B [18], alloy [19], form-L [20], VDM [21], and tabular
relations [22].

5. Seamless methods are programming language-based methods [23], applying
constraint logic and programming by contract. We provide additional details in
the sections below.

70 A. Sadovykh et al.

One of the most important properties of a requirement is verifiability – the ability
to assess a requirement’s fulfilment. This property directly impacts many other
properties such as understandability or clearness, correctness, absence of ambiguity,
and traceability. One may go to the extreme by stating that the requirement is
properly formalized when a proper verification method is assigned to it. Therefore,
the formalization may be considered as an activity to define proper verification
means. In the same direction, formalization of security requirements is necessary
to rigorously verify and validate candidate designs and implementations against
these requirements. The sections below analyze the state of the art in reusable
formalization of security requirements with the focus on security verification.

3.2.1.1 Formalization Through Verification

Verifiability is one of the most important properties defining quality of a
requirement. Verifiability directly impacts understandability and traceability. In
our approach, a correctly specified requirement has to be verifiable. Verification
always assumes the presence of some specification against which the verification
is performed. We thus just say “security verification patterns” when we actually
mean both specification and verification. Security verification patterns are expected
to contain reusable specification mechanisms for applying them to arbitrary
software systems. They are also expected to contain mechanisms for their own
verification against candidate designs and implementations of the specified system.
By “verification” we mean both static and dynamic methods. In general, approaches
to software security assurance can be categorized into two categories: (1) static
approaches, which work at the implementation level, without running the system
under analysis, and (2) dynamic approaches, which focus on generating and
running security tests with properly generated test inputs and an appropriate oracle
for assessing the test execution results. Static approaches include the following
categories:

• Model checking-based approaches, which take as input a formal model of
the system and model-check the desired properties against that model. These
approaches require an architectural or a behavioral model of the system as input
and do not require that the development phase has already started.

• Code analysis-based approaches, which work with candidate program implemen-
tations of the system. Such approaches require that the development phase has
already started.

Dynamic approaches include the following categories:

• Model-based testing focuses on generating tests and their inputs based on
architectural and behavioral models of the system. These approaches may
facilitate test-driven development of the system if the development phase has
not started yet.

3 Security Requirements Formalization with RQCODE 71

• Vulnerability testing performs attacks on running applications. Vulnerability
testing includes the following subcategories: (a) directly attacking the application
trying to break it using known attack patterns and (b) risk-based testing, which
attacks the application based on identified security risks that are specific to the
given problem domain and behavioral description.

3.2.2 Static Verification and Security Patterns

Konrad [24], Wassermann [25], Siveroni [26, 27], Zisman [28], Dong [29], and
Ouchani [30–32] share common research interest, in the sense that they conduct
model checking of UML models in one or another way. The work by Ouchani et
al. [33], however, has brought to our attention since it describes an approach to
formalize the requirements based on CAPEC – Common Attack Pattern Enumera-
tion and Classification. The Common Attack Pattern Enumeration and Classification
(CAPEC) effort provides a publicly available catalogue of common attack patterns
that helps users understand how adversaries exploit weaknesses in applications
and other cyber-enabled capabilities. Attack patterns define the challenges that
an adversary may face and propose countermeasures; they are descriptions of
the common attributes and approaches employed to exploit known weaknesses
in cyber-enabled capabilities. They derive from the concept of design patterns
[34] applied in a destructive rather than constructive context and are generated
from in-depth analysis of specific real-world exploit examples. Each attack pattern
captures knowledge about how specific parts of an attack are designed and executed
and gives guidance on ways to mitigate the attack’s impact. Attack patterns help
those developing applications or administrating cyber-enabled capabilities to better
understand the specific elements of an attack and how to stop them from succeeding.

In [32], Ouchani and Debbabi defined approaches to specification, verification,
and quantification of security in model-based systems. The authors model both the
target systems and the CAPEC patterns as SysML activity diagrams. They then
compute the probabilities of a given system being vulnerable to each CAPEC pattern
by submitting the resulting activity diagrams to the PRISM [35] probabilistic model
checker.

Kaiya et al. [36] proposed a method for a requirements analyst to automatically
acquire attack candidates against a functional requirement. This method is the first
CAPEC-based method to work with requirements as inputs. One can notice that the
security requirements may only be concretized after functional requirements. This
is because the functional requirements specify the scope of the system. At the same
time, the bias is that very often a requirements specification deals with functional
requirements only, while the security aspects are specified in an extremely generic
way, mostly as a need to comply with “best practices.” This leads to the problem
that security is addressed at the later stages of the software process.

Williams et al. [37, 38] propose an ontology-based collaborative recommender
system for security requirements elicitation. The proposed approach takes use cases

72 A. Sadovykh et al.

on input and identifies relevant CAPEC patterns. It then connects the identified
CAPEC patterns with the system-specific vocabulary to construct abuse cases [39]
for the system in question.

The work of Jurjens [40] proposes encoding security properties in UMLsec,
an extension of UML. The resulting UMLsec specification is then submitted to
AutoFocus – a CASE tool that is capable of generating test sequences. These test
sequences need to be instantiated in the context of a candidate system to actually
test the said system.

3.2.3 Dynamic Verification and Security Patterns

Sudhodanan et al. [41] proposed a methodology in which security experts can create
attack patterns from known attacks. Then they describe a security testing framework
that leverages attack patterns to automatically generate test cases for security testing
of multiparty web applications. This approach relies on proxy-based web security
scanners to record client-server interactions and automatically detect applicability
of attack patterns to the recorded interactions. Sudhodanan et al. implemented their
approach on top of OWASP ZAP proxy-based web security scanner and uncovered
21 previously unknown vulnerabilities in well-known multiparty web applications.

Smith and Williams [42] developed six black box security test patterns – for
(1) input validation vulnerability tests, (2) force exposure tests, (3) malicious file
tests, (4) malicious use of security functions tests, (5) dangerous URL tests, and
(6) audit tests. They also developed a tool called Security Test Pattern Instantiator
(STPI) to help software testers instantiate security test patterns based on functional
requirements. Finally, Smith and Williams conducted a user case study in which 21
graduate and 26 undergraduate students used the STPI tool to develop a black box
security test plan. The study revealed that the novices’ decisions were very close to
the “golden standard” developed by a committee of experts.

A comprehensive review of security testing techniques by Felderer et al. [43]
let us identify another conceptual cluster of pattern-based approaches – risk-based
approaches. The risk-based approaches use numerical evaluations of risks’ severity
to define the required level of test coverage when generating test cases for the
associated risks. That is to say, the higher the risk’s severity is, the more coverage
will be required from the test cases generated from that risk.

The DIAMONDS project (ITEA 2) has developed many relevant contributions.
Schieferdecker et al. provide a general overview of the model-based testing field and
map the abovementioned project on it [44]. The project is said to focus on risk-based
security testing and model-based fuzzing. Grosmann et al. [45] described a tool-
based iterative approach that combines the CORAS [46] approach to model-driven
risk analysis with automated security testing based on patterns such as CAPEC. In
every iteration of the approach, the risk analysis results are fed into the process
of identifying relevant security test patterns and then instantiating these patterns
into actual test cases. The testing results are then fed back into the risk analysis

3 Security Requirements Formalization with RQCODE 73

process and so forth. Botella et al. [47] proposed an approach that starts with
risk analysis, relies on an approach similar to CORAS [46], and concludes with
automated security testing of the target system. The test generation process relies
on CertifyIt [48], an existing model-based testing (MBT) software. CertifyIt takes
on input behavioral models of the system expressed as UML statecharts and risk-
based test purposes – formalizations of vulnerability test patterns. Lebeau et al. [49]
describe the fundamental principles behind model-based security testing.

3.3 The RQCODE Approach

3.3.1 Seamless Object-Oriented Requirements (SOOR)

In the SOOR approach [23], requirements are documented as software classes
which makes them verifiable and reusable. The key notions of the approach are
specification drivers and semantic assertions (contracts expressed by pre- and post-
conditions).

Specification drivers are contracted routines, expressed only in terms of their
formal arguments, that serve specification purposes. Specification drivers take
objects to be specified as arguments and express the effect of operations on those
objects with pre- and post-conditions. The example of a specification driver for the
requirement “(REQ1) A clock tick increments current second if it is smaller than
59.”, adapted from [23] is presented in Listing 3.1.

The Eiffel code in the snippet (Listing 3.1) specifies the clock tick increment
requirement by defining pre- and post-conditions that can be seen under require and
ensure statements.

Seamless Object-Oriented Requirements (SOOR) are concrete classes capturing
requirements as specification drivers. Specification drivers express formal semantics
of requirements. Each specification driver is supported with a comment that captures
a natural language version of the same requirement.

1 req_1 (clock: CLOCK; current_second: INTEGER)

2 -- A clock tick increments current second if it is smaller than 59.

3 require

4 clock.second <59

5 clock.second =current_second

6 do

7 clock.tick

8 ensure

9 clock.second =current_second + 1

10 end

Listing 3.1 REQ1 in Eiffel language

74 A. Sadovykh et al.

Seamless Object-Oriented Requirements serve as:

• Proof obligations, since each specification driver captures formal semantics of a
requirement

• Parameterized unit tests

Seamless Object-Oriented Requirement Templates (SOORT) are requirements
patterns captured in generic and deferred classes. Libraries of requirements tem-
plates for software components and control software temporal properties, imple-
mented in Eiffel, are publicly available [50]. To specify SOOR according to SOORT,
one needs to inherit from SOORT and replace the generic parameters with specified
types.

3.3.2 Requirements as Code (RQCODE)

RQCODE [51] is a novel approach to apply the Seamless Object-Oriented Require-
ments (SOOR) paradigm to be implemented in Java language. The RQCODE
approach stands for the representation of requirements as classes that contain var-
ious representations including the textual one: requirements description in natural
language as well as methods for verifying these requirements, such as an acceptance
test. In this way, the traceability between a requirement and its implementation is
direct and can be checked at any time through the execution of the included test.
Moreover, object-oriented implementation supports easy reuse of requirements and
tests by the standard means, such as inheritance, provided by the language, e.g.,
Java. One requirement can be an extension or a specialization of another one. Each
requirement can be considered as a template for requirements of a similar kind, e.g.,
by initializing a requirement class with different parameters.

It should be noted that we assume that a properly specified requirement should be
verifiable. RQCODE concepts (Fig. 3.1) include the Requirement abstract class that
has a mandatory statement attribute for a textual representation of the requirement
and redefines the check() method from the Checkable interface for the built-in
verification of the requirement. There are three possible verification results, which
are PASS, FAIL, and INCOMPLETE. PASS indicates successful result of verification
execution; FAIL result has to be returned when the verification outputs are incorrect;
INCOMPLETE relates to the situations when a verification could not be performed.
There is also the enforceable interface for the cases where a requirement can
propose a guideline to modify the environment for requirement satisfiability. The
enforce() method returns the status in the similar form of SUCCESS, FAILURE, or
INCOMPLETE. This enforcement mechanism is quite useful in the case of security
requirements, e.g., to initiate countermeasures.

3 Security Requirements Formalization with RQCODE 75

Fig. 3.1 RQCODE concept classes (UML class diagram)

1 public class TickIncrementRequirement extends Requirement {

2 public TickIncrementRequirement() {

3 super("A clock tick increments current second if it is smaller than 59");

4 }

5 @Override

6 public CheckStatus check() {

7 if (Clock.seconds < 59)

8 return ((Clock.seconds + 1) == Clock.tick()) ?

9 CheckStatus.PASS : CheckStatus.FAIL;

10 return CheckStatus.INCOMPLETE;

11 }

12 }

Listing 3.2 REQ1 in Java language

Considering the requirement from the previous section: “(REQ1) A clock tick
increments current second if it is smaller than 59.”; the RQCODE class would be as
follows in Listing 3.2.1

1 More details of the example are in https://github.com/VeriDevOps/RQCODE/tree/master/src/
main/java/rqcode/example

https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example

76 A. Sadovykh et al.

The TickIncrementRequirement is initialized with the statement parameter that is
a textual representation of the requirement. The Clock is an external class that shall
increment its seconds attribute when the tick operation is called. The check() method
verifies the satisfiability of the requirement with a test. This representation of the
requirement is arguably easy to read by anyone familiar with Java. This specification
is verifiable by simple execution of the check() method. One may notice that REQ1
doesn’t specify what happen if the current second is more than 59. Therefore, in the
example above, the default output is CheckStatus.INCOMPLETE.

It is possible to reuse a requirement in this form by using Java mechanisms. In
the example above, one may notice that REQ1 does not set boundaries on the value
of seconds. This means that the check() will PASS in case the seconds are negative,
e.g. Clock.seconds is equal to -1. We can use several ways to set up “(REQ2) Clock
seconds value must be between 0 and 59” and combine it with REQ1. The first reuse
possibility is that TickIncrementRequirement class can be used as a parent class to
the REQ2 requirement that would extend its functionality (Listing 3.3).

This inheritance mechanism provides a direct traceability link between REQ1
and REQ2. One may clearly conclude that REQ2 is derived from the REQ1 and
enhances it. In the meantime, inheritance in Java and OOP has its limitations. In
Java, only one parent class is allowed. Misusing inheritance links may lead to an
artificially deep inheritance tree which is commonly recognized as bad practice.
This practice can lead to difficulties in understanding and maintaining the set of
classes. The second possibility for reuse is that one can simply combine instances
of requirement classes to combine REQ1 and REQ2 classes with the association
mechanism. Imagine that REQ2 is now implemented as a separate Requirement
class – BoundaryRequirement. The combination of REQ1 and REQ2 may look as
follows in Listing 3.4.

Listing 3.3 Derived REQ2 in Java language

3 Security Requirements Formalization with RQCODE 77

Listing 3.4 Combining REQ1 and REQ2 in Java language

The advantage of this method is that multiple requirements may be reused to
form a combined one. The references to these requirements can be easily identified
and navigated.

Since requirements specifications in RQCODE are Java classes, this approach
inherently supports several validation mechanisms. The simplest one is a Java
semantic check that is provided by the compilers, but there are also a number
of static analysis methods that are integrated in Java IDEs. Moreover, object-
oriented programming (OOP) analysis can be applied to the collections of security
requirements. The methods presented in, e.g., [52, 52, 53], may be used to detect
duplicates, circular dependencies, coupling properties, or depth of inheritance. They
are relevant for analyzing if the requirements specifications are clear, atomic, non-
contradicting, and verifiable. RQCODE can be applied to security requirements, and
we present this possibility in the following section.

3.3.3 RQCODE and Temporal Requirements Patterns

By analyzing a large number of requirements specifications for temporal properties,
Dwayer [50, 54] identified that most of those temporal requirements may be mapped
to very few patterns. Based on this work, we have implemented several temporal
requirements patterns with the goal to cover the majority of temporal requirements
kinds. The implemented patterns are listed below:

• Eventually: P always eventually holds.
• Globally, Universally: Globally, it is always the case that P holds.
• After Q Until R Universally P: After Q, it is always the case that P holds until

R holds.
• Globally, Universally, Response: Globally, it is always the case that if P holds

then, unless R holds, Q will eventually hold

78 A. Sadovykh et al.

• Timed Globally, Universally: Globally, it is always the case that if P held for T
time units, then S holds.

• Globally, Real-Time Response: Globally, it is always the case that if P holds,
the S eventually holds within T time units.

Figure 3.2 depicts the structure of the RQCODE temporal patterns package. In
order to verify eventuality, universality, or precedence with the testing approach,
we choose to implement a monitoring service in class MonitoringLoop. This
class periodically checks temporal properties. The other classes implement the
verification of pre-, post-, and exit conditions as required by the patterns that we
listed above.

RQCODE approach supports applying those patterns to requirement specifica-
tions. For example, one may apply the Global Universality pattern to the Tick
Increment requirement (REQ1).2

The above RQCODE example (Listing 3.5) can be translated as the following: Glob-
ally, (REQ1) Tick increment requirement must be held for 10 seconds. The REQ1
will be periodically checked according to the temporal logic of the pattern. We
believe that this approach can reduce the uncertainty about temporal requirements
with a practical solution based on testing.

RQCODE and temporal patterns can be applied to the security requirements that
we demonstrate in the following section.

3.3.4 RQCODE and Security Technical Implementation Guide
(STIG)

Security Technical Implementation Guides (STIGs) [8] are a collection of guidelines
for securing IT systems and products for use by the US Department of Defense
(DoD) and other agencies. These guidelines provide detailed instructions on how
to configure and secure various types of IT systems, including network devices,
software, databases, and operating systems. The goal of the STIGs is to reduce the
risk of cybersecurity threats, breaches, and intrusions by ensuring that IT systems
are configured in a secure manner. These guidelines also cover:

• Database management systems
• Firewalls
• Virtualization
• Network storage
• Industrial control systems
• Email servers
• Identity and access management systems

2 More temporal patterns in Java on Github https://github.com/VeriDevOps/RQCODE/tree/master/
src/main/java/rqcode/temporal_patterns

https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns

3 Security Requirements Formalization with RQCODE 79

rq
co

de
.te

m
po

ra
l_

pa
tt

er
ns

rq
co

de
.c

on
ce

pt
s

Af
te

rU
nt

ilU
ni

ve
rs

al
ity

Af
te

rU
nt

ilU
ni

ve
rs

al
ity

(C
he

ck
ab

le
, C

he
ck

ab
le

, C
he

ck
ab

le
)

pr
ec

on
di

tio
n(

):
bo

ol
ea

n
in

va
ria

nt
()

: b
oo

le
an

ex

itC
on

di
tio

n(
):

bo
ol

ea
n

TC
TL

()
: S

tri
ng

Ev
en

tu
al

ly

Ev
en

tu
al

ly
(C

he
ck

ab
le

)
ex

itC
on

di
tio

n(
):

bo
ol

ea
n

po
st

co
nd

iti
on

()
: b

oo
le

an

TC
TL

()
: S

tri
ng

G
lo

ba
lR

es
po

ns
eT

im
ed

G
lo

ba
lR

es
po

ns
eT

im
ed

(C
he

ck
ab

le
, C

he
ck

ab
le

, i
nt

)
pr

ec
on

di
tio

n(
):

bo
ol

ea
n

po
st

co
nd

iti
on

()
: b

oo
le

an

ex
itC

on
di

tio
n(

):
bo

ol
ea

n
TC

TL
()

: S
tri

ng

G
lo

ba
lR

es
po

ns
eU

nt
il

G
lo

ba
lR

es
po

ns
eU

nt
il(

C
he

ck
ab

le
, C

he
ck

ab
le

, C
he

ck
ab

le
)

pr
ec

on
di

tio
n(

):
bo

ol
ea

n
ex

itC
on

di
tio

n(
):

bo
ol

ea
n

po
st

co
nd

iti
on

()
: b

oo
le

an

TC
TL

()
: S

tri
ng

G
lo

ba
lU

ni
ve

rs
al

ity

p:
 C

he
ck

ab
le

G
lo

ba
lU

ni
ve

rs
al

ity
(C

he
ck

ab
le

)
in

va
ria

nt
()

: b
oo

le
an

TC

TL
()

: S
tri

ng

G
lo

ba
lU

ni
ve

rs
al

ity
Ti

m
ed

G
lo

ba
lU

ni
ve

rs
al

ity
Ti

m
ed

(C
he

ck
ab

le
, i

nt
)

TC
TL

()
: S

tri
ng

M
on

ito
rin

gL
oo

p

bo
un

da
ry

: i
nt

sl
ee

pM
illi

se
co

nd
s(

):
in

t
in

va
ria

nt
()

: b
oo

le
an

pr

ec
on

di
tio

n(
):

bo
ol

ea
n

po
st

co
nd

iti
on

()
: b

oo
le

an

ex
itC

on
di

tio
n(

):
bo

ol
ea

n
ch

ec
k(

):
C

he
ck

St
at

us

TC
TL

()
: S

tri
ng

R
eq

ui
re

m
en

t

F
ig
. 3

.2

R
Q
C
O
D
E
 im

pl
em

en
ta
tio

n
of
 te
m
po

ra
l r
eq
ui
re
m
en
t p

at
te
rn
s
(U

M
L
 c
la
ss
 d
ia
gr
am

)

80 A. Sadovykh et al.

1 TickIncrementRequirement tr = new TickIncrementRequirement();

2 ttr = new GlobalUniversalityTimed(tr, 10);

3 setStatement(ttr.toString());

Listing 3.5 Applying a temporal pattern to REQ1 in Java language

• Web servers
• Security information and event management systems

STIGs provide detailed guidance on how to configure and secure these types
of systems, including specific settings and configurations that should be used to
minimize the risk of cybersecurity threats. The guidelines are regularly updated to
reflect the latest industry best practices and to address newly discovered vulnerabil-
ities. The STIG collection consists of findings which have a specific structure. The
description of each finding includes general information such as version, severity,
ID, and a brief description, as well as details including two sections, Check Text and
Fix Text. The Check Text section describes the conditions that the system should
meet to prevent a security problem, for example, the correct configuration of an
operating system. The Fix Text helps to resolve specific security issues, for example,
through OS configuration.

We applied the SOOR paradigm to implement STIG guidelines as RQCODE
requirements (Fig. 3.3) that incorporate specific check and enforced methods to
verify that the guidelines are enabled or to fix the security issue. The CheckText
translates into test routines for the check() method, while the FixText translates into
the enforce() method. Let us consider a STIG that provides specific recommenda-
tions for configuring and securing systems running on Ubuntu Linux. For example,
STIG recommendation V_2191573 states: The Ubuntu operating system must not
have the Network Information Service (NIS) package installed., since Removing the
Network Information Service (NIS) package decreases the risk of the accidental (or
intentional) activation of NIS or NIS+ services. It recommends disabling certain
packages or services that are not needed for the system’s intended purpose, as they
could potentially introduce security vulnerabilities. In RQCODE this requirement
may look as on Listing 3.6.

In the example above, one may notice the application of the “reuse by inheri-
tance” that we introduced earlier. The UbuntuPackagePattern (Fig. 3.4) is a specific
type of requirement that we call a pattern.

This class implements all required functionality to check the presence of a
specific Ubuntu package as well as to enable or disable this package as a security
enforcement measure. In addition, the UbuntuPackagePattern parameterizes the
requirement statement text to provide the details of the STIG requirement in natural
language. The STIG V_2191584 states that The Ubuntu operating system must not
have the rsh-server package installed. By reusing the UbuntuPackagePattern the
RQCODE expression of this requirement may look like in Listing 3.7:

3 https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
4 https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158

https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158
https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158

3 Security Requirements Formalization with RQCODE 81

rq
co

de
.s

tig
s

rq
co

de
.c

on
ce

pt
s

S
TI

G

fin
di

ng
ID

()
: S

tri
ng

ve

rs
io

n(
):

S
tri

ng

ru
le

ID
()

: S
tri

ng

iA
C

on
tro

ls
()

: S
tri

ng

se
ve

rit
y(

):
S

tri
ng

de

sc
rip

tio
n(

):
S

tri
ng

sT

IG
()

: S
tri

ng

da
te

()
: S

tri
ng

ch

ec
kT

ex
tC

od
e(

):
S

tri
ng

ch

ec
kT

ex
t()

: S
tri

ng

fix
Te

xt
C

od
e(

):
S

tri
ng

fix

Te
xt

()
: S

tri
ng

R
eq

ui
re

m
en

t
E

nf
or

ce
ab

le

en
fo

rc
e(

):
E

nf
or

ce
m

en
tS

ta
tu

s

F
ig
. 3

.3

ST

IG
 s
tr
uc
tu
re
 w
ith

 R
Q
C
O
D
E
 in

 J
av
a
(U

M
L
 c
la
ss
 d
ia
gr
am

)

82 A. Sadovykh et al.

1 public class V_219157 extends UbuntuPackagePattern {

2 public V_219157() {

3 super("nis", false);

4 }

5 }

Listing 3.6 STIG V_219157 in RQCODE by applying UbuntuPackagePattern

Fig. 3.4 UbuntuPackagePattern class in RQCODE (UML class diagram)

1 public class V_219158 extends UbuntuPackagePattern {

2 public V_219158() {

3 super("rsh-server", false);

4 }

5 }

Listing 3.7 STIG V_219158 in RQCODE by applying UbuntuPackagePattern

There are many package-related STIGs in the repository. Applying RQCODE
with UbuntuPackagePattern supports redundancy avoidance, duplication and easy
maintenance of these sets of requirements, since the fixes in this class will be
propagated to all children requirements. In addition, one can notice that the rule
for disabling the NIS package can be applied to many operation environments such
as different versions of Ubuntu (18, 20, etc.) or even different distributions such
as CentOS. To reuse the security implementation guidelines, one can generalize
the UbuntuPackagePattern class for the CentOS as well by simply switching the
package management routines from apt to rpm.

3 Security Requirements Formalization with RQCODE 83

Fig. 3.5 RQCODE framework structure (UML class diagram)

3.3.5 RQCODE Framework

The structure of the RQCODE framework [55] is presented in Fig. 3.5.
The framework includes specific packages for the baseline concepts and temporal

patterns since they represent the foundation. For the experimentation purposes, we
prototyped examples for Windows 10 and Ubuntu 18 related STIGS. STIGS-related
classes are separated in a specific package including specifics for the Windows 10
and Ubuntu 18.4 platforms. In addition, each of these platform packages includes
the patterns sub-package. These pattern sub-packages contain the extracted platform
specific patterns – generalized classes, such as UbuntuPackagePattern, that simplify
the reuse of STIG requirements and guidelines.

The current framework is under evaluation by our industry partners and is subject
to further refactoring, improvements, and enhancements. In particular, we are
implementing a mechanism for users to indicate the need to implement additional
STIGs. There is also ongoing research on integrating the RQCODE framework into
DevSecOps practices.

3.4 Discussion

3.4.1 Approach for Evaluation

RQCODE framework is currently under evaluation in the VeriDevOps Project. In
this subsection we would like to discuss our approach for assessing the RQCODE
performance. When designing RQCODE we intended to contribute with improve-
ments in several RE areas:

84 A. Sadovykh et al.

1. Better specification – RQCODE is more formal than requirements statements in
natural language, since each requirement class incorporates a verification means
that can be executed on the design model or on the target system.

2. Simplified formalization – compared to several other methods based on formal
logic.

3. Better traceability – since a requirement in RQCODE incorporates a verification
method – generally a test case. Thus, it is completely transparent that if a
verification verdict is satisfactory the requirement is fulfilled and vice versa.

4. Better reuse – since RQCODE embrace OOP, requirement is a class that can
be instantiated or extended. New requirements can be created as extensions of
requirements that were previously specified. All that is in accordance with OOP
rules.

5. Support for analysis automation – one can assume several ways to automate
the requirements analysis with RQCODE. First, the verification means can be
executed to assess the requirement fulfilment for each requirement. Second,
OOP analysis tools can be applied to assess the quality of requirements classes
themselves. For example, by applying the depth of inheritance (DI) metrics for
maintainability index metrics, one can draw an analysis for a given requirement
class or a set of requirements classes.

6. Better integration with development environments and CI/CD platforms – a
requirement in RQCODE is a piece of code. The industry has created a multitude
of IDEs, repositories, analysis and management tools that can be directly applied.
These tools are very well-known and adopted by the developers and may
facilitate adoption of the RQCODE approach. Moreover, RQCODE has a natural
capacity to integrate with the modern CI/CD platforms. The usage of those
platforms is mainstream in quality management nowadays. The platforms help to
accelerate delivery in the high pace development environment with quick releases
to address the changing demand and incoming requests. This is of particular
interest since new security requirements may come at any moment and have to
be addressed as quickly as possible in development and in operations.

While conducting preliminary evaluation and interviews with potential users we
discovered several challenges to RQCODE approach:

1. Java code is not necessarily a simple replacement for the requirements in textual
form. While it may be simpler for developers who are acquainted with Java and
OOP, in general, Java requires some substantial background knowledge.

2. Verifying a requirement presumes setting up a test environment. This may not
necessarily be available at any moment, for example, when specifying a property
of a “system to be.”

3. Specifying a comprehensive way to verify a security requirement may be quite
tedious or even impossible in a general case. Simpler testing approaches may
result in useful but extremely partial analysis.

4. There is a need for a proper methodology and tool support that would help users
to apply the RQCODE concepts and automate the analysis.

3 Security Requirements Formalization with RQCODE 85

The above challenges require more analysis. At the time of writing this chapter, we
concentrate on setting up a method for evaluating the potential benefits. For that we
designed a multistep approach:

1. We developed a tutorial with the goal to demonstrate the benefits of the approach
such as specification, traceability, and reuse.

2. Potential users are invited to complete exercises to obtain hands-on experience
with RQCODE.

3. The users are invented to respond to a survey.

For the survey design, we choose the following major categories:

• Ability of RQCODE to correctly represent security requirements
• Ability of RQCODE to correctly verify the security requirement fulfilment
• Easiness to trace a requirement specified in RQCODE
• Easiness to reuse a requirement specified in RQCODE
• Easiness to analyze a requirement specified in RQCODE
• Easiness to maintain a requirement specified in RQCODE

The evaluation approach that we presented above is planned to be run with our
industry partners to collect the feedback on RQCODE applicability to security
requirement specification and verification.

3.4.2 Comparison to Other Requirements Formalization
Methods

In this section we compare RQCODE with approaches mentioned in Sect. 3.2.1)
with a goal to highlight its advantages and limitations. The results used below for
all methods except RQCODE are extracted from the abovementioned survey [1].

The assessed capabilities of the surveyed approaches are:

• Formalization of functional requirements: assess the method capability to
represent system’s functional requirements in a formal notation.

• Formalization of nonfunctional requirements: assess the method possibility
of specifying nonfunctional requirements in a formal notation.

• Validation/verification: assess how the approach evaluates the system’s
response to different inputs. Validation stands for checking systems behavior
against user’s or customers’ needs. Verification represents a capability to assess
the system’s compliance to the specification.

• Traceability: the ability to establish and control the links among requirements,
specifications, design, code, and other artifacts.

• Reuse: the capability to create a new requirement specification as a copy or an
extension of an existing one.

86 A. Sadovykh et al.

• Maintenance: over time requirements change or get refined, the trace links
created, deleted, or updated. The maintenance capability indicates the facility
of a method to handle the updates in the existing requirement specification.

• Tool support: the tool support is often cited as a barrier to adoption of a method.
This property indicates to which extent a method is covered by specific tools,
e.g., requirements elicitation, verification, validation, and management.

• Learning barrier: addresses the expected level of maturity and technical
expertise of the users.

• Analysis: is the ability of a method to support requirements analysis activities
such as determining whether a set of requirements is clear, complete, undupli-
cated, concise, valid, consistent and unambiguous, and resolving any apparent
conflicts.

• Developer friendliness: the developers are the major stakeholders in the system
implementation process; they have to clearly understand the requirements and the
ways these requirements are verified and validated. The developer friendliness
indicates the ability of a method to simplify handling of a requirement by a
developer.

The ability of a method to support the abovementioned capabilities is evaluated
based on the following scale:

• “.+ + +” – Full matching (90–100%)
• “. ++” – Matches with minor deviation (70–90%)
• “. +” – Matches partially (50–69%)
• “.+/−” – Has few matches (0–49%)
• “. −” – Negative match

We provide below a discussion of the approaches and their properties as
compared to RQCODE (Table 3.1):

Natural language is the most used method to specify the requirements on all the
levels of system specification – from business goals to inputs and outputs of specific
functions. The greatest advantage of the natural language is flexibility and the
highest expressive power to specify the requirements in the most natural way. There
exist several formalization enforcement approaches using specific lexical structure
(MoSCoW rules [56]), ontologies and templates, and guidelines for seminatural
language specification (Given-When-Then [57], (T) EARS) [58, 59]. Unfortunately,
as has been pointed out in many papers, the formalization power of natural language
is low, leading to errors of omission and commission due to misunderstanding and
misinterpretation of requirements. Natural language requirements can be handled
using many tools such as DOORS, REUSE, and ticketing systems such as JIRA.
These tools also provide the ability to manually specify relationships between
requirements, e.g., using hyperlinks. However, support for automating analysis,
verification, and validation is rather poor.

Semiformal approaches such as SysML[60] and EAST ADL [61] or ArchiMate
[62] provide notation with defined semantics with the goal to specify various
aspects of a system. SysML and EAST ADL provide means to define the high-

3 Security Requirements Formalization with RQCODE 87

Ta
bl
e
3.
1

C
om

pa
ri
so
n
of
 R
Q
C
O
D
E
 w
ith

 o
th
er
 c
at
eg
or
ie
s
of
 a
pp
ro
ac
he
s
(*
: n

ew
 in

tr
od
uc
ed
 c
ap
ab
ili
ty
)

N
at
ur
al
 la
ng
ua
ge

A
ut
om

at
a/
gr
ap
hs

Se
m
if
or
m
al

M
at
he
m
at
ic
al

C
ap
ab
ili
ty
\a
pp

ro
ac
h

R
Q
C
O
D
E

(e
.g
.,
Te
xt
ua
l)

(e
.g
.,
FS

P/
LT

SA
)

(e
.g
.,
Sy

sM
L
)

(e
.g
.,
E
ve
nt
-B

)

Fo
rm

al
iz
at
io
n
of
 f
un

ct
io
na
l

re
qu
ir
em

en
ts

+
-

+
+
+

+
+
+
+

Fo
rm

al
iz
at
io
n
of

no
nf
un
ct
io
na
l r
eq
ui
re
m
en
ts

+
+
/-

-
+
/-

-

V
al
id
at
io
n/
 V
er
ifi
ca
tio

n
+
+

-
+
+

+
/-

+
+
+

T
ra
ce
ab
ili
ty

+
+

-
+

+
/-

R
eu
se

+
+
+

-
+

+
+
+

M
ai
nt
en
an
ce

+
+
+

-
+

+
/-

-

To
ol
 s
up
po
rt

+
+
+

+
+
+

+
+

+
+

+

L
ea
rn
in
g
ba
rr
ie
r*

+
-

+
+

+
+
+

A
na
ly
si
s*

+
+

-
+
+
+

-
-

D
ev
el
op
er
 f
ri
en
dl
in
es
s*

+
+

+
+
+

+
-

-

88 A. Sadovykh et al.

level components of the system and to specify operational rules and constraints. The
architectural element can be linked to the requirement objects. The requirements
are expressed in natural language, but the relationships between requirements can
have specific meanings such as “refinement” or positive and negative “influence.”
The constraints can be specified in a mathematical language as a function of
parameters specified in the model. There are several methods for analyzing these
models, for example, by mapping them to frameworks such as MATLAB. However,
several challenges remain: (1) the model and the traceability links have to be
maintained manually, (2) there are certain concerns about the maintainability of
large-scale models, and (3) the approaches are aimed at system architects and are
less developer-friendly.

Mathematical approaches, e.g., Isabelle [63], B [64], Event-B [18], etc., are
capable of formalizing functional requirements since they rely on mathematical
formalisms. For example, Event-B is a formal modelling and verification approach
that can model the static and dynamic parts of a system using contexts and
machines based on refinements. Requirements represented in Event-B can be
verified using the proof obligations associated with a model and its refinements,
each of which includes contexts and machines. The expression in each level of
refinement must be proven to be consistent with its higher level. Therefore, this
category of approaches is capable of verifying and validating requirements. As
Even-B is based on refinement, high-level models can be reused in lower levels,
and Even-B models can also be reused by other relevant projects. It is also tool-
supported. Requirement engineers can use the Rodin environment in which they can
define Event-b models, refine models, and verify with proof obligations. However,
users are expected to have some knowledge of how to use Rodin and define
models. Current mathematical approaches are efficient in formalizing, verifying,
and validating functional requirements, which define specific behavior or functions
but are less efficient in dealing with nonfunctional requirements, which specify
criteria by which the operation of a system can be judged.

Automata/graph-based approaches (e.g., LTL [65], problem frames [66] (Jack-
son 2005) and FSP/LTSA [67]), support the formalization of functional require-
ments. These approaches are based on the mathematical theories of graphs and
automata and are supported by effective graphical representations. Thus, despite
their mathematical foundations, they are easy to use (they are particularly popular
with students). These approaches are mainly dedicated to dynamic representations
and can be complemented with formal notations that allow them to be validated and
verified, but if this is true for LTSA, for example, (safety), this is not the case for
problem frames that do not provide any verification way.

RQCODE, compared to the other methods, has several advantages. In particular,
it is considered to be developer friendly as it is implemented as a Java framework.
So developers who are familiar with unit testing – presumably any Java developer –
will be able to use RQCODE. Requirements in RQCODE are source files, which are
handled naturally in version control repositories such as GitHub, and test automation
is applied using continuous integration pipelines. Reuse methods are common in
Java development and are therefore natural in RQCODE. There are a number of

3 Security Requirements Formalization with RQCODE 89

automated tools for static and dynamic analysis of Java code. These tools can be
applied to RQCODE classes representing requirements to provide an analysis of
the RQCODE specification in terms of, for example, maintainability. Expressing
requirements in Java also has its limitations. Java is a programming language that
has its rules and requires quite concrete instructions to obtain compilable code.
Compared to natural language, the expressiveness and flexibility of RQCODE is
lower, while there is a need to learn and use a general purpose programming
language. However, compared to more formal methods, the learning barrier should
be lower, while the number of tools for editing, handling, and managing RQCODE
classes should facilitate the adoption of this approach.

3.5 Conclusions

In this paper we have outlined the current approaches for requirement engineering
that provide formalized means for verification. We claim that these methods are
not necessarily developer-friendly as they require expert knowledge and lack tool
support. To cope with these limitations, we propose the RQCODE method which
suggests using the Java programming language to express requirements within
classes that incorporate verification means, e.g., tests. We argue that this method
enhances reusability and traceability for requirements specifications. We illustrate
how RQCODE can be applied to the security domain and in particular with the set
of requirements from the Security Technical Implementation Guide. We illustrate
the reuse mechanisms with several examples. The work on RQCODE is currently
ongoing, and we prepare the evaluation stage where we plan to gather feedback
from industry partners. In particular we plan to run a dedicated tutorial that targets
to demonstrate the presumed benefits of the RQCODE approach. At the end of the
tutorial, we plan to gather the feedback in a form of a survey that analyses industry
perceptions. The source code of the RQCODE framework and the STIG examples
is publicly available [55]. We plan to further refactor, maintain, and enhance this
project. We are interested in comparing this approach with test-driven development
and analyze the RQCODE usage within the continuous integration and delivery
paradigm. Another area of research is the DevSecOps practices, where RQCODE
requirements related to security may be located, imported, or reused with the goal
to automate security requirements analysis and verification.

Acknowledgments This work is partially supported by the VeriDevOps [68] project funded by
the Horizon 2020 program under the grant agreement No. 957212 (VeriDevOps project).

90 A. Sadovykh et al.

References

1. J.M. Bruel, S. Ebersold, F. Galinier, M. Mazzara, A. Naumchev, B. Meyer, ACM Comput.
Surv. 54(5), 93:1 (2021). https://doi.org/10.1145/3448975

2. D. Zowghi, C. Coulin, in Engineering and Managing Software Requirements, ed. by A. Aurum,
C. Wohlin (Springer, Berlin/Heidelberg, 2005), pp. 19–46. https://doi.org/10.1007/3-540-
28244-0_2

3. IEEE 830-1993, IEEE Recommended Practice for Software Requirements Specifications.
https://standards.ieee.org/ieee/830/1221/

4. A. Chakraborty, M.K. Baowaly, A. Arefin, A.N. Bahar, J. Emerg. Trends Comput. Inf. Sci. 3(5)
(2012)

5. D. Firesmith, et al., J. Object Technol. 2(1), 53 (2003)
6. B. Guttman, E. Roback, NIST (1995). https://www.nist.gov/publications/introduction-

computer-security-nist-handbook. Last Modified: 2018-11-10T10:11-05:00 Publisher: Bar-
bara Guttman, E Roback

7. I.E. Commission, others, IEC 62443: Security for Industrial Automation and Control Systems–
Part 4-1: Secure Product Development Lifecycle Requirements. Tech. rep. (2018)

8. Security Technical Implementation Guide (STIG) Complete List. https://www.stigviewer.com/
stigs

9. OWASP Web Security Testing Guide | OWASP Foundation. https://owasp.org/www-project-
web-security-testing-guide/

10. G. Sabaliauskaite, A. Loconsole, E. Engström, M. Unterkalmsteiner, B. Regnell, P. Runeson,
T. Gorschek, R. Feldt, in Requirements Engineering: Foundation for Software Quality, ed. by
R. Wieringa, A. Persson. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg,
2010), pp. 128–142. https://doi.org/10.1007/978-3-642-14192-8_14

11. L. Karlsson, Å.G. Dahlstedt, B. Regnell, J.N. och Dag, A. Persson, Inf. Softw. Technol. 49(6),
588 (2007)

12. D. Cuddeback, A. Dekhtyar, J. Hayes, in 2010 18th IEEE International Requirements
Engineering Conference (2010), pp. 231–240. https://doi.org/10.1109/RE.2010.35. ISSN:
2332-6441

13. R. Kasauli, G. Liebel, E. Knauss, S. Gopakumar, B. Kanagwa, in 2017 IEEE 25th International
Requirements Engineering Conference (RE) (IEEE, 2017), pp. 352–361

14. E.M. Schön, D. Winter, M.J. Escalona, J. Thomaschewski, in International Conference on
Agile Software Development (Springer, Cham, 2017), pp. 37–51

15. I. Inayat, S.S. Salim, S. Marczak, M. Daneva, S. Shamshirband, Comput. Hum. Behav. 51, 915
(2015)

16. C. Rolland, C. Proix (2006), pp. 257–277. https://doi.org/10.1007/BFb0035136
17. Finite Automata. https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
18. J.R. Abrial, Modeling in Event-B: System and Software Engineering (Cambridge University

Press, 2010). Google-Books-ID: 23UgAwAAQBAJ
19. D. Jackson, Software Abstractions, Revised Edition: Logic, Language, and Analysis (MIT

Press, 2011)
20. D. Bouskela, A. Falcone, A. Garro, A. Jardin, M. Otter, N. Thuy, A. Tundis, Requir. Eng. 27(1),

1 (2022). https://doi.org/10.1007/s00766-021-00359-z
21. D. Bjørner, in Mathematical Studies of Information Processing, ed. by E.K. Blum, M. Paul,

S. Takasu. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 1979), pp. 326–
359. https://doi.org/10.1007/3-540-09541-1_33

22. D.L. Parnas, in The Future of Software Engineering, ed. by S. Nanz (Springer, Berlin/Heidel-
berg, 2011), pp. 125–148. https://doi.org/10.1007/978-3-642-15187-3_8

23. A. Naumchev, B. Meyer, Computer Languages, Systems & Structures 49, 119 (2017). https://
doi.org/https://doi.org/10.1016/j.cl.2017.04.001. https://www.sciencedirect.com/science/
article/pii/S1477842416301981

https://doi.org/10.1145/3448975
https://doi.org/10.1145/3448975
https://doi.org/10.1145/3448975
https://doi.org/10.1145/3448975
https://doi.org/10.1145/3448975
https://doi.org/10.1145/3448975
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2
https://standards.ieee.org/ieee/830/1221/
https://standards.ieee.org/ieee/830/1221/
https://standards.ieee.org/ieee/830/1221/
https://standards.ieee.org/ieee/830/1221/
https://standards.ieee.org/ieee/830/1221/
https://standards.ieee.org/ieee/830/1221/
https://standards.ieee.org/ieee/830/1221/
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.nist.gov/publications/introduction-computer-security-nist-handbook
https://www.stigviewer.com/stigs
https://www.stigviewer.com/stigs
https://www.stigviewer.com/stigs
https://www.stigviewer.com/stigs
https://www.stigviewer.com/stigs
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1007/978-3-642-14192-8_14
https://doi.org/10.1109/RE.2010.35
https://doi.org/10.1109/RE.2010.35
https://doi.org/10.1109/RE.2010.35
https://doi.org/10.1109/RE.2010.35
https://doi.org/10.1109/RE.2010.35
https://doi.org/10.1109/RE.2010.35
https://doi.org/10.1109/RE.2010.35
https://doi.org/10.1109/RE.2010.35
https://doi.org/10.1007/BFb0035136
https://doi.org/10.1007/BFb0035136
https://doi.org/10.1007/BFb0035136
https://doi.org/10.1007/BFb0035136
https://doi.org/10.1007/BFb0035136
https://doi.org/10.1007/BFb0035136
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://www.cs.rochester.edu/u/nelson/courses/csc_173/fa/fa.html
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/s00766-021-00359-z
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/3-540-09541-1_33
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/10.1007/978-3-642-15187-3_8
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://doi.org/https://doi.org/10.1016/j.cl.2017.04.001
https://www.sciencedirect.com/science/article/pii/S1477842416301981
https://www.sciencedirect.com/science/article/pii/S1477842416301981
https://www.sciencedirect.com/science/article/pii/S1477842416301981
https://www.sciencedirect.com/science/article/pii/S1477842416301981
https://www.sciencedirect.com/science/article/pii/S1477842416301981
https://www.sciencedirect.com/science/article/pii/S1477842416301981
https://www.sciencedirect.com/science/article/pii/S1477842416301981
https://www.sciencedirect.com/science/article/pii/S1477842416301981

3 Security Requirements Formalization with RQCODE 91

24. S. Konrad, B.H. Cheng, L.A. Campbell, R. Wassermann, Requirements Engineering for High
Assurance Systems (RHAS’03), vol. 11 (2003). https://documentcloud.adobe.com/link/review?
uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19

25. R. Wassermann, B.H. Cheng, in Michigan State University, PLoP Conference on Cite-
seer (Citeseer, 2003). https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:
562417be-c44d-47d7-a9c5-bc366f207ca9

26. I. Siveroni, A. Zisman, G. Spanoudakis, in 2008 Third International Conference on Availabil-
ity, Reliability and Security (IEEE, 2008), pp. 96–103. https://documentcloud.adobe.com/link/
review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1

27. I. Siveroni, A. Zisman, G. Spanoudakis, Requir. Eng. 15(1), 95 (2010). https://doi.org/10.1007/
s00766-009-0091-y

28. A. Zisman, in Second International Conference on Internet and Web Applications and Services
(ICIW’07) (IEEE, 2007), pp. 8–8

29. J. Dong, T. Peng, Y. Zhao, Inf. Softw. Technol. 52(3), 274 (2010)
30. S. Ouchani, O.A. Mohamed, M. Debbabi, M. Pourzandi, in Software Engineering Research,

Management and Applications 2010 (Springer, 2010), pp. 163–177
31. S. Ouchani, O.A. Mohamed, M. Debbabi, in 2013 IEEE 7th International Conference on

Software Security and Reliability (IEEE, 2013), pp. 227–236. https://documentcloud.adobe.
com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec

32. S. Ouchani, M. Debbabi, Computing 97(7), 691 (2015)
33. S. Ouchani, Y. Jarraya, O.A. Mohamed, in 2011 Ninth Annual International Conference on

Privacy, Security and Trust (IEEE, 2011), pp. 142–149. https://documentcloud.adobe.com/
link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b

34. R.C. Martin, Object Mentor 1(34), 597 (2000)
35. M. Kwiatkowska, G. Norman, D. Parker, in International Conference on Modelling Techniques

and Tools for Computer Performance Evaluation (Springer, 2002), pp. 200–204
36. H. Kaiya, S. Kono, S. Ogata, T. Okubo, N. Yoshioka, H. Washizaki, K. Kaijiri, in International

Conference on Advanced Information Systems Engineering (Springer, 2014), pp. 343–348
37. I. Williams, X. Yuan, in 2017 IEEE Cybersecurity Development (SecDev) (IEEE, 2017), pp.

85–86
38. I. Williams, in 2018 IEEE 26th International Requirements Engineering Conference (RE)

(IEEE, 2018), pp. 448–453
39. G. McGraw, IEEE Secur. Privacy 2(2), 80 (2004)
40. J. Jürjens, in International Conference on The Unified Modeling Language (Springer, 2002),

pp. 412–425
41. A. Sudhodanan, A. Armando, R. Carbone, L. Compagna, others, in NDSS (2016)
42. B. Smith, L. Williams, in 2012 IEEE Sixth International Conference on Software Security and

Reliability (IEEE, 2012), pp. 108–117
43. M. Felderer, M. Büchler, M. Johns, A.D. Brucker, R. Breu, A. Pretschner, in Advances in

Computers, vol. 101, ed. by A. Memon (Elsevier, 2016), pp. 1–51. https://doi.org/10.1016/bs.
adcom.2015.11.003. https://www.sciencedirect.com/science/article/pii/S0065245815000649

44. I. Schieferdecker, J. Grossmann, M. Schneider, arXiv preprint arXiv:1202.6118 (2012)
45. J. Großmann, M. Schneider, J. Viehmann, M.F. Wendland, in International Symposium On

Leveraging Applications of Formal Methods, Verification and Validation (Springer, 2014), pp.
322–336

46. M.S. Lund, B. Solhaug, K. Stølen, Model-Driven Risk Analysis: the CORAS Approach
(Springer Science & Business Media, 2010)

47. J. Botella, B. Legeard, F. Peureux, A. Vernotte, in International Symposium On Lever-
aging Applications of Formal Methods, Verification and Validation (Springer, 2014),
pp. 337–352. https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-
2e7b-45cf-b6fe-0c517eb8b764

48. F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, in Proceedings of the 3rd International
Workshop on Automation of Software Test (2008), pp. 45–48

https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9b2d1580-441d-4aef-8914-2b6cd4e3b3d1
https://doi.org/10.1007/s00766-009-0091-y
https://doi.org/10.1007/s00766-009-0091-y
https://doi.org/10.1007/s00766-009-0091-y
https://doi.org/10.1007/s00766-009-0091-y
https://doi.org/10.1007/s00766-009-0091-y
https://doi.org/10.1007/s00766-009-0091-y
https://doi.org/10.1007/s00766-009-0091-y
https://doi.org/10.1007/s00766-009-0091-y
https://doi.org/10.1007/s00766-009-0091-y
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:f71fe199-99f8-4c77-bd6d-2122f84d3cec
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://doi.org/10.1016/bs.adcom.2015.11.003
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764

92 A. Sadovykh et al.

49. F. Lebeau, B. Legeard, F. Peureux, A. Vernotte, in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops (IEEE, 2013),
pp. 445–452. https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-
23f9-4eec-a146-da36d95333a8

50. A. Naumchev, Requirements templates in Eiffel (2021). https://github.com/anaumchev/
requirements_templates. Original-date: 2018-08-04T06:58:02Z

51. K. Ismaeel, A. Naumchev, A. Sadovykh, D. Truscan, E.P. Enoiu, C. Seceleanu, in 2021 IEEE
29th International Requirements Engineering Conference Workshops (REW) (2021), pp. 357–
363. https://doi.org/10.1109/REW53955.2021.00063

52. S. Chidamber, C. Kemerer, IEEE Trans. Softw. Eng. 20(6), 476 (1994). https://doi.org/10.1109/
32.295895. Conference Name: IEEE Transactions on Software Engineering

53. G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, B. Russo, Empir. Softw. Eng. 10(1), 81 (2005).
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2

54. M.B. Dwyer, G.S. Avrunin, J.C. Corbett, in Proceedings of the 21st International Conference
on Software Engineering (1999), pp. 411–420

55. A. Sadovykh, Rqcode framework on github (2022). https://github.com/VeriDevOps/RQCODE
56. E. Miranda, in Agile Processes in Software Engineering and Extreme Programming, ed. by

V. Stray, K.J. Stol, M. Paasivaara, P. Kruchten (Springer International Publishing, Cham, 2022),
Lecture Notes in Business Information Processing, pp. 19–34. https://doi.org/10.1007/978-3-
031-08169-9_2

57. J. Smart, BDD in Action: Behavior-Driven Development for the Whole Software Lifecycle
(Simon and Schuster, 2014)

58. A. Mavin, P. Wilkinson, in 2010 18th IEEE International Requirements Engineering Confer-
ence (2010), pp. 277–282. https://doi.org/10.1109/RE.2010.39. ISSN: 2332-6441

59. D. Flemström, H. Jonsson, E.P. Enoiu, W. Afzal, in 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST) (2021), pp. 351–361. https://doi.org/10.1109/
ICST49551.2021.00047. ISSN: 2159-4848

60. S. Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML: The Systems Modeling
Language (Morgan Kaufmann, 2014)

61. V. Debruyne, F. Simonot-Lion, Y. Trinquet, in Architecture Description Languages, ed. by
P. Dissaux, M. Filali-Amine, P. Michel, F. Vernadat (Springer US, Boston, MA, 2005), IFIP
The International Federation for Information Processing, pp. 181–195. https://doi.org/10.1007/
0-387-24590-1_12

62. M.M. Lankhorst, H.A. Proper, H. Jonkers, in Enterprise, Business-Process and Information
Systems Modeling, ed. by T. Halpin, J. Krogstie, S. Nurcan, E. Proper, R. Schmidt, P. Soffer,
R. Ukor. Lecture Notes in Business Information Processing (Springer, Berlin/Heidelberg,
2009), pp. 367–380. https://doi.org/10.1007/978-3-642-01862-6_30

63. M. Strecker, in International Conference on Automated Deduction (Springer, 2002), pp. 63–77
64. K. Lano, The B Language and Method: A Guide to Practical Formal Development (Springer

Science & Business Media, 2012). Google-Books-ID: aoPuBwAAQBAJ
65. A. Bauer, M. Leucker, C. Schallhart, ACM Trans. Softw. Eng. Methodol. 20(4), 14:1 (2011).

https://doi.org/10.1145/2000799.2000800
66. M. Jackson, Inf. Softw. Technol. 47(14), 903 (2005). https://doi.org/10.1016/j.infsof.2005.08.

004. https://www.sciencedirect.com/science/article/pii/S0950584905001229
67. H. Foster, S. Uchitel, J. Magee, J. Kramer, in Proceedings of the 28th International Conference

on Software Engineering, ICSE ’06 (Association for Computing Machinery, New York, NY,
USA, 2006), pp. 771–774. https://doi.org/10.1145/1134285.1134408

68. A. Sadovykh, G. Widforss, D. Truscan, E.P. Enoiu, W. Mallouli, R. Iglesias, A. Bagnto,
O. Hendel, in 2021 Design, Automation Test in Europe Conference Exhibition (DATE) (2021),
pp. 1330–1333. https://doi.org/10.23919/DATE51398.2021.9474185. ISSN: 1558-1101

https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9769a8fb-23f9-4eec-a146-da36d95333a8
https://github.com/anaumchev/requirements_templates
https://github.com/anaumchev/requirements_templates
https://github.com/anaumchev/requirements_templates
https://github.com/anaumchev/requirements_templates
https://github.com/anaumchev/requirements_templates
https://github.com/anaumchev/requirements_templates
https://doi.org/10.1109/REW53955.2021.00063
https://doi.org/10.1109/REW53955.2021.00063
https://doi.org/10.1109/REW53955.2021.00063
https://doi.org/10.1109/REW53955.2021.00063
https://doi.org/10.1109/REW53955.2021.00063
https://doi.org/10.1109/REW53955.2021.00063
https://doi.org/10.1109/REW53955.2021.00063
https://doi.org/10.1109/REW53955.2021.00063
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://doi.org/10.1023/B:EMSE.0000048324.12188.a2
https://github.com/VeriDevOps/RQCODE
https://github.com/VeriDevOps/RQCODE
https://github.com/VeriDevOps/RQCODE
https://github.com/VeriDevOps/RQCODE
https://github.com/VeriDevOps/RQCODE
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1007/978-3-031-08169-9_2
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/ICST49551.2021.00047
https://doi.org/10.1109/ICST49551.2021.00047
https://doi.org/10.1109/ICST49551.2021.00047
https://doi.org/10.1109/ICST49551.2021.00047
https://doi.org/10.1109/ICST49551.2021.00047
https://doi.org/10.1109/ICST49551.2021.00047
https://doi.org/10.1109/ICST49551.2021.00047
https://doi.org/10.1109/ICST49551.2021.00047
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/0-387-24590-1_12
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1007/978-3-642-01862-6_30
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1016/j.infsof.2005.08.004
https://doi.org/10.1016/j.infsof.2005.08.004
https://doi.org/10.1016/j.infsof.2005.08.004
https://doi.org/10.1016/j.infsof.2005.08.004
https://doi.org/10.1016/j.infsof.2005.08.004
https://doi.org/10.1016/j.infsof.2005.08.004
https://doi.org/10.1016/j.infsof.2005.08.004
https://doi.org/10.1016/j.infsof.2005.08.004
https://doi.org/10.1016/j.infsof.2005.08.004
https://doi.org/10.1016/j.infsof.2005.08.004
https://www.sciencedirect.com/science/article/pii/S0950584905001229
https://www.sciencedirect.com/science/article/pii/S0950584905001229
https://www.sciencedirect.com/science/article/pii/S0950584905001229
https://www.sciencedirect.com/science/article/pii/S0950584905001229
https://www.sciencedirect.com/science/article/pii/S0950584905001229
https://www.sciencedirect.com/science/article/pii/S0950584905001229
https://www.sciencedirect.com/science/article/pii/S0950584905001229
https://www.sciencedirect.com/science/article/pii/S0950584905001229
https://doi.org/10.1145/1134285.1134408
https://doi.org/10.1145/1134285.1134408
https://doi.org/10.1145/1134285.1134408
https://doi.org/10.1145/1134285.1134408
https://doi.org/10.1145/1134285.1134408
https://doi.org/10.1145/1134285.1134408
https://doi.org/10.1145/1134285.1134408
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185
https://doi.org/10.23919/DATE51398.2021.9474185

Part II
Prevention at Development Time

Chapter 4
Vulnerability Detection and Response:
Current Status and New Approaches

Ángel Longueira-Romero, Rosa Iglesias, Jose Luis Flores, and Iñaki Garitano

Abstract The rapid evolution of industrial components, the paradigm of Industry
4.0, and the new connectivity features introduced by 5G technology all increase
the likelihood of cybersecurity incidents. These incidents have to be managed to
limit or mitigate their impact, and in most cases, they are a consequence of existing
vulnerabilities. This scenario raises the need for a tool that enables a faster (tracking
the vulnerability state over time) and more precise (detect root cause) response.
The defined Extended Dependency Graph (EDG) model is capable to respond to
this need, being able to analyze known vulnerabilities for a given device over
time. The EDG model can be applied throughout the entire lifespan of a device
to track vulnerabilities, identify new requirements, root causes, and test cases. It
also helps prioritize patching activities. This chapter defines the key terms used in
vulnerability analysis, as well as the current state of the art of vulnerability analysis
in both scientific literature and standards. The EDG model is described in more
depth together with its fundamental elements: (1) the directed graph representation
of the internal structure of the device, (2) the set of quantitative metrics based on the
Common Vulnerability Scoring System (CVSS), and (3) the algorithm to build the
EDG for a given device.

Keywords Cybersecurity · Industrial components · Embedded systems ·
Vulnerability analysis · Vulnerability detection · Quantitative metrics · CVSS

Supported by Ikerlan Technology Research Center, Basque Research and Technology Alliance
(BRTA).

Á. Longueira-Romero (�) · R. Iglesias · J.L. Flores
Ikerlan Technology Research Centre, Arrasate, Spain
e-mail: alongueira@ikerlan.es; riglesias@ikerlan.es; jlflores@ikerlan.es

I. Garitano
Mondragon Unibertsitatea, Arrasate, Spain
e-mail: igaritano@mondragon.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_4

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 4&domain=pdf

 885
52970 a 885 52970 a

mailto:alongueira@ikerlan.es
mailto:alongueira@ikerlan.es

 9843 52970 a 9843 52970
a

mailto:riglesias@ikerlan.es
mailto:riglesias@ikerlan.es

 17965 52970 a 17965
52970 a

mailto:jlflores@ikerlan.es
mailto:jlflores@ikerlan.es

 885 56845 a 885 56845 a

mailto:igaritano@mondragon.edu
mailto:igaritano@mondragon.edu
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4
https://doi.org/10.1007/978-3-031-42212-6_4

96 A. Longueira-Romero et al.

4.1 Introduction

Embedded systems (ES) are the driving force of almost every industrial field, such
as automotive, energy production, and transportation [12, 21, 22, 29, 68]. These
types of components are rapidly evolving [55, 63] and increasing in number [70].
This increasing is related to several factors: (1) The reuse of open-source hardware
and software (2) New connectivity features (3) More complex systems

Open-source hardware and software, and commercial off-the-shelf (COTS)
components are being integrated to speed up their development [25, 65, 66]. COTS
are easy to use, but they can introduce vulnerabilities, creating potential entry points
for attackers [46, 77].

Industrial components are providing more advanced connectivity features,
enabling new automation applications, services, and data exchange. This new
connectivity, boost by the fifth generation (5G) of wireless technology for cellular
networks, will further open the window of exposure to any threat [13, 22, 44, 70].

The complexity of industrial systems is also increasing with the integration of
new trends, such as the Internet of Things (IoT) [8, 13, 18, 23], cloud computing,
artificial intelligence (AI) [18, 75], and big data. The extensive use of these
technologies further opens the windows for attackers [9, 15, 37, 45, 71, 73].
Complexity is a critical aspect of industrial components design, because it is closely
related to the number of vulnerabilities [1, 47].

This scenario point security is a key aspect of ESs. Moreover, numerous attacks
have been reported targeting industrial enterprises across the globe since 2010 [36].
An exponential rise in such attacks is predicted for future years [20, 64].

In summary, the rapid evolution of ESs, their connectivity, and the integration
of more and more features increase their attack surface. This makes it essential
to protect their use in environments such as critical infrastructures [60, 69]. The
sophistication of attacks, a larger attack surface, and the ease of attacks thanks to
exploits and tools that decrease the necessary knowledge of the attackers highlight
the need to invest more in cybersecurity. The numerous attacks targeting industrial
enterprises across the globe since 2010 reinforce this fact [36], and an exponential
rise in such attacks is predicted for the upcoming years [20, 64]. As a consequence,
security is turning into a critical issue for ESs [19]. However, security by itself is not
enough, and the degree of coverage of the implemented countermeasures also has
to be evaluated to know whether they are sufficient. Tracking the security status of
an ES [5, 35] and considering both software and hardware in the evaluation would
also be desirable [6, 29, 42, 74].

4.2 Background

In this section, the basic concepts related to embedded systems, cybersecurity, and
vulnerability analysis are presented.

4 Vulnerability Detection and Response 97

• Embedded Device: Special purpose device designed to directly monitor or con-
trol an industrial process (e.g., PLCs, and wireless field sensor devices) [30, 32].
Typical attributes of these devices are limited storage, limited number of exposed
services, programmed through an external interface, embedded operating systems
(OSs), or firmware equivalent, real-time scheduler, may have an attached control
panel, and may have a communications interface.

• System Under Test (SUT): Any system or component that is the objective of any
kind of evaluation [11].

• Vulnerability analysis: Systematic examination of an information system or
product to determine the adequacy of security measures, identify security defi-
ciencies, provide data from which to predict the effectiveness of proposed security
measures, and confirm the adequacy of such measures after implementation,
including the identification and characterization of potential security vulnerabili-
ties [31, 59].

• Weakness: Weaknesses are flaws, faults, bugs, and other errors in software and
hardware design, architecture, code, or implementation that, if left unaddressed,
could result in systems, networks, and hardware being vulnerable to attacks [53]
(e.g., buffer overflow).

• Vulnerability: Flaw in a software, firmware, hardware, or service component
resulting from a weakness that can be exploited, causing a negative impact to
the confidentiality, integrity, or availability of an impacted component or com-
ponents [51]. Vulnerabilities can be classified as both known and unknown [7].
In some cases, unknown vulnerabilities might be known for a group of attackers
that do not want to disclose their knowledge to take malicious advantages of it
(zero-day vulnerabilities) [24].

• Attack Pattern: An attack pattern is a description of the common attributes
and approaches employed by adversaries to exploit known weaknesses in cyber-
enabled capabilities [49]. Attack patterns define the challenges that an adversary
may face and how they go about solving it.

• Common Platform Enumeration (CPE) Scheme: Naming scheme1 for describ-
ing and identifying applications, operating systems, software, and hardware,
including industrial control systems, such as supervisory control and data acqui-
sition (SCADA) [43, 57]. CPE is operated by the NIST [61]. The latest version at
the time this chapter was written is version 2.3.

• Common Weakness Enumeration (CWE): Community-developed list of com-
mon software and hardware weakness types, each one associated with some CVEs
(explained in the next subsection) [53, 54]. CWE is operated by the MITRE
Corporation [48]. The latest version at the time this chapter was written is version
4.3.

• Common Vulnerabilities and Exposures (CVE): List of common identifiers for
publicly known cybersecurity vulnerabilities [52, 53, 58] operated by the MITRE

1 Version 8.0.6001 of Internet Explorer for its beta update can be represented using version 2.3 of
the CPE as cpe:2.3:a:microsoft:internet_explorer:8.0.6001:beta:*:*:*:*:*:*

98 A. Longueira-Romero et al.

Fig. 4.1 Relationship between the security standards defined by MITRE and NIST. (Taken
from [16])

Corporation [48]. Each CVE includes its severity [16]. The latest CVE version is
always available in its official site.2

• Common Vulnerability Scoring System (CVSS): Public framework that pro-
vides a standardized method for assigning quantitative values (scores) to security
vulnerabilities (CVE) [58] according to their severity [17]. A CVSS score is a
decimal number in the range [0.0, 10.0]. The latest version at the time this chapter
was written is version 3.1.

• Common Attack Pattern Enumeration and Classification (CAPEC): Com-
prehensive dictionary that provides a publicly available classification taxonomy
of known attack patterns (security threats) [50]. CAPEC utilizes a qualitative
approach, rating both likelihood and impact in a five-step value scale ranging
from very low to very high. Finally, each CAPEC records the weaknesses (CWEs)
that the attack pattern can exploit. The latest version at the time this chapter was
written is version 3.4.

Figure 4.1 shows the relationship between the different standards [16].

4.3 State of the Art of Vulnerability Analysis in ESs

This section presents the current status of vulnerability analysis, both in the
literature and current standards.

2 https://cve.mitre.org/

https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/

4 Vulnerability Detection and Response 99

4.3.1 Vulnerability Analysis in Security Standards

This review is focused on how standards conduct vulnerability analysis, the use of
metrics, their management of the life cycle of the device, the techniques that they
propose, and the security evaluation of both software and hardware.

4.3.1.1 ISA/IEC 62443

The ISA/IEC 62443-4-1 technical document [31] specifies that vulnerabilities in
a product should be identified and characterized, including known and unknown
vulnerabilities [7, 24]. Two requirements in the standard are related to vulnerability
analysis [31]:

• Requirement SVV-3. Vulnerability Testing Perform tests that focus on identify-
ing and characterizing potential and known security vulnerabilities in the product
(i.e., fuzz testing, or black box known vulnerability scanning).

• Requirement SVV-4. Penetration Testing Identify and characterize security-
related issues, focusing on discovering and exploiting security vulnerabilities in
the product (i.e., penetration testing).

4.3.1.2 Common Criteria

The CC defines five tasks in the Vulnerability Assessment class [14]:

1. Vulnerability survey
2. Vulnerability analysis
3. Focused vulnerability analysis
4. Methodical vulnerability analysis
5. Advanced methodical vulnerability analysis

Every task checks for the presence of publicly known vulnerabilities. Penetration
testing is also performed. The main difference among the five levels of vulnerability
analysis described here is the deepness of the analysis of known vulnerabilities and
the penetration testing.

4.3.2 Vulnerability Analysis in the Literature

In this subsection, the most relevant works related to vulnerability analysis are
reviewed.

Vulnerability analysis efforts are mainly focused on computer networks. For this
reason, most of the current research is based on directed graphs.

100 A. Longueira-Romero et al.

Homer et al. [26] presented a quantitative model for computer networks that
objectively measures the likelihood of a vulnerability. Attack graphs and individual
vulnerability metrics, such as CVSS, and probabilistic reasoning are applied to
produce a sound risk measurement.

Zhang et al. [27, 76] developed a quantitative model that can be used to aggregate
vulnerability metrics in an enterprise network based on attack graphs.

George et al. [20] propose a graph-based model to address the security issues
in Industrial IoT (IIoT) networks. It represents the relationships among entities and
their vulnerabilities, serving as a security framework for the risk assessment of the
network. Risk mitigation strategies are also proposed.

Poolsappasit et al. [67] propose a risk management framework using Bayesian
networks that enables a system administrator to quantify the chances of network
compromise at various levels.

Muñoz-González et al. [56] propose the use of efficient algorithms to make
an exact inference in Bayesian attack graphs, which enables static and dynamic
network risk assessments. This model is able to compute the likelihood of a
vulnerability and can be extended to include zero-day vulnerabilities, attacker’s
capabilities, or dependencies between vulnerability types.

Hu et al. [28] Hu et al. propose a network security risk assessment method that
is based on the improved hidden Markov model (I-HMM).

Longueira-Romero et al. [38] proposed an Extended Dependency Graph (EDG)
model that performs continuous vulnerability assessment to determine the source
and nature of vulnerabilities and enhance security throughout the entire life cycle of
industrial components. The proposal is built on a directed graph-based structure and
a set of metrics based on globally accepted security standards.

4.4 Vulnerability Analysis Approaches: Analyzing Extended
Dependency Graphs (EDG)

In this section, we review in more detail the Extended Dependency Graphs (EDGs)
approach for vulnerability analysis in ESs. EDGs are intended to:

• Identify the root causes and nature of vulnerabilities, which will enable the
extraction of new requirements and test cases.

• Extract new requirements and test cases.
• Support the prioritization of patching.
• Track vulnerabilities during the whole lifespan of industrial components.
• Support the development and maintenance of industrial components.

To accomplish this task, the EDG model comprises two basic elements: (1) the
model itself, which is capable of representing the internal structure of the system
under test, and (2) a set of metrics, which allow conclusions to be drawn about
the origin, distribution, and severity of vulnerabilities. Both the model and metrics

4 Vulnerability Detection and Response 101

are very flexible and exhibit some properties that make them suitable for industrial
components and can also be applied to enhance the ISA/IEC 62443 standard.

The content in this section is distributed into three subsections, namely:

1. Model: The EDG model is explained, together with the systems in which it can
be applied and the algorithms that are used to build it.

2. Metrics: Metrics are a great tool to measure the state of the system and to track
its evolution. The proposed metrics and their usage are described in this section.

3. Properties: The main features of the EDG model and metrics (e.g., granularity
of the analysis, analysis over time, and patching policy prioritization support) are
described in detail.

4.4.1 Description of the Model

The EDG model is based on directed graphs. It requires knowledge of the internal
structure of the device to be evaluated (i.e., the assets, both hardware and software,
that comprise it and the relationships between them). This section defines the most
basic elements that make up the model, the algorithms to build it for any give system,
and its graphical representation.

Definition 4.1 A system under test (SUT) is now represented by an Extended
Dependency Graph (EDG) model .G = (<A,V >, E) that is based on directed graphs,
where A and V represent the nodes of the graphs, and E represents its edges or
dependencies:

• .A = {a1, . . . , an} represents the set of assets in which the SUT can be decom-
posed, where n is the total number of obtained assets. An asset a is any component
of the SUT that supports information-related activities and includes both hardware
and software [4, 34, 41]. Each asset is characterized by its corresponding Common
Platform Enumeration (CPE) [10, 43, 57] identifier, while its weaknesses are
characterized by the corresponding CWE identifier. In the EDG model, the assets
are represented by three types of nodes in the directed graphs (i.e., root nodes,
asset nodes, and cluster).

• .V = {v1, . . . , vq} represents the set of known vulnerabilities that are present
in each asset of A, where q is the total number of vulnerabilities. They are
characterized by the corresponding CVE and CVSS values. In the EDG model,
vulnerabilities are represented using two types of nodes in the directed graphs
(i.e., known vulnerability nodes and clusters).

• .E = {eij |∀i, j ∈ {1, . . . , n + q} such that i /= j} represents the set of edges
or dependencies among the assets and between assets and vulnerabilities. . eij

indicates that a dependency relation is established from asset . ai to asset . aj .
Dependencies are represented using two different types of edges in the EDG (i.e.,
normal dependency and deprecated asset/updated vulnerability edges).

102 A. Longueira-Romero et al.

In other words, the EDG model can represent a system, from its assets to its
vulnerabilities, and dependencies as a directed graph. Assets and vulnerabilities are
represented as nodes, whose dependencies are represented as arcs in the graph. The
information in the EDG is further enhanced by introducing metrics.

The EDG model of a given SUT will include four types of node and two types of
dependencies. The graphical representation for each element is shown in Table 4.1.
Figure 4.2 shows an example of a simple EDG and its basic elements. All of the
elements that make up an EDG will be explained in more detail below.

Table 4.1 Overview of the information that is necessary to define each of the EDG elements

Symbol Notation Meaning Values

.□ .A(t) root Node/ Device
node

. CPEcurrent

.○ .a(t) Asset node . CPEprevious , CPEcurrent , CWEai
(t)

. .a(t) Cluster . {CPEprevious , CPEcurrent , CWEai
(t)},

. {CV Eai
(t), CV SSvi

(t), CAPECwi
(t)},

. {Dependencies}
.▼ .v(t) Known vulnerability . CV Eai

(t), CV SSvi
(t), CAPECwi

(t)

.−→ .e(t) Dependency relation –

.--→ .e(t) Updated asset/patched
vulnerability

–

a4

At

a1

a5a2 a3

Normal

dependency

Deprecated

asset

Deprecated

vulnerability

Root
node

Asset
nodes

Vulnerability
nodes

Fig. 4.2 Basic elements of an EDG. Note that clusters are not displayed in this figure. For clusters,
see Fig. 4.4. For metrics definition, see Sect. 4.5

4 Vulnerability Detection and Response 103

4.4.2 Types of Node

The EDG model uses four types of node:

• Root nodes represent the SUT.
• Asset nodes represent each one of the assets of the SUT.
• Known vulnerability nodes represent the vulnerabilities in the SUT.
• Clusters summarize the information in a subgraph.

Root nodes (collectively, set . GR) are a special type of node that represent the
whole SUT. Any EDG starts in a root node and each EDG will only have one single
root node, with an associated timestamp . (t) that indicates when the last check for
changes was done. This timestamp is formatted following the structure defined in
the ISO 8601 standard for date and time [33].

Asset nodes (collectively, set . GA) represent the assets that comprise the SUT.
The EDG model does not impose any restrictions on the minimum number of assets
that the graph must have. However, the SUT can be better monitored over time when
there are a higher number of assets. Moreover, the results and conclusions obtained
will be much more accurate. Nevertheless, each EDG will have as many asset nodes
as necessary, and the decomposition of assets can go as far and to as low level as
needed.

Each asset node will be characterized by the following set of values:

• .CPEcurrent : Current value for the CPE. This points to the current version of the
asset it refers to.

• .CPEprevious : Value of the CPE that identifies the previous version of this asset.
This will be used by the model to trace back all the versions of the same asset
over time, from the current version to the very first version.

• .CWEai
(t): Set of all the weaknesses that are related to the vulnerabilities present

in the asset. The content of this list can vary depending on the version of the asset.

Figure 4.3 illustrates how the tracking of the versions of an asset using CPE
works. On the one hand, version . ai is the current version of asset a. It contains its
current CPE value and the CPE of its previous version. On the other hand, . a2 and
. a1 are previous versions of asset a. The last value of . a1 points to a null value. This
indicates that it is the last value in the chain and therefore the very first version of
the asset a.

Fig. 4.3 Tracking
dependencies between the
previous and current CPE
values for asset a

a2

At

ai a1

CPEi-1)(CPEi, CPE1)(CPEc2,)(CPE1,

...

104 A. Longueira-Romero et al.

Known vulnerability nodes (collectively, set . GV) represent a known vulnera-
bility present in the asset that it relates to. Each asset will have a known vulnerability
node for each known vulnerability belonging to that asset. Assets alone cannot tell
how severe or dangerous the vulnerabilities might be, so unique characterization of
vulnerabilities is crucial [20].

To identify each known vulnerability node, each will be characterized by the
following set of features (formally defined in Sect. 4.5:

• .CV Eai
(t): This serves as the identifier of a vulnerability of asset . ai .

• .CV SSvi
(t): This metric assigns a numeric value to the severity of vulnerability

. vi . Each CVE has a corresponding CVSS value.
• .CAPECwi

(t): Each vulnerability (CVE) is a materialization of a weakness
(CWE) . wi that can be exploited using a concrete attack pattern. In many
cases, each CWE has more than one Common Attack Pattern Enumeration and
Classification (CAPEC) [49, 50] associated. Consequently, this field is a set that
contains all the possible attack patterns that can exploit the vulnerability that is
being analyzed.

Clusters (collectively, set . GS) are a special type of node that summarizes and
simplifies the information contained in a subgraph in an EDG. Figure 4.4 shows
how the clusters work.

To identify each cluster and to be able to recover the information that they
summarize, each is characterized by the data that define each of the elements
that they contain: .{CPEprevious, CPEcurrent , CWEai

(t)}, . (CV Eai
(t), CV SSvi

(t),

.{CAPECwi
(t)}), and their dependencies.

Two types of criteria can be used to create clusters and to simplify the obtained
graph (Fig. 4.4):

1. Absence of vulnerabilities: Using this criterion, clusters will group all nodes
that contain no associated vulnerabilities.

2. CVSS score below a certain threshold: With this criterion, a threshold for the
CVSS scores will be chosen. Nodes whose CVSS score is less than the defined
threshold will be grouped into a cluster.

It is worth noticing that applying the second set of criteria (establishing a CVSS
threshold) will always return a graph that is at least as simple or as complex as the
one that would be obtained using the absence of vulnerability criterion. In the best
case, the graph will be simpler. This is because both criteria treat assets with no
vulnerabilities in the same way, so those will always be simplified. On the other
hand, establishing a CVSS threshold allows the model for further simplifications.

4 Vulnerability Detection and Response 105

a 4

A
t

a 1
a 6

a 2
a 3

a 5

a 4

A
t

a 1
a 6

a 2
a 3

a 5

a 2

A
t

a 1
a 6

(a
)

(b
1)

(c
1)

a 4

A
t

a 1
a 6

a 2
a 3

a 5

(b
2)

a 2

A
t

a 1
a 6

a 3

(c
2)

E
st

ab
li

sh
in

g
 a

th
re

sh
o

ld
 f

o
r

th
e

C
V

S
S

P
re

se
n

ce
 o

f

v
u
ln

er
ab

il
it

ie
s

v
3
1

v
3
2

v
6

1

v
3

1

v
3
2

v
6

1

v
3
1

v

3
2

v
6

1

v
3

1

v
3

2

v
6

1

v
6

1

IN
IT

IA
L

 G
R

A
PH

D
E

T
E

C
T

IN
G

 P
O

T
E

N
T

IA
L

 C
L

U
ST

E
R

S
C

R
E

AT
IN

G
 C

L
U

ST
E

R
S

a 6

v
6

1

a 6
a 3

v
3

1

v
3

2
v

6
1

A
t

A
t

F
ig

. 4
.4

C
re
at
in
g
cl
us
te
rs
. A

pp
lic

at
io
n
of
 th

e
tw
o
pr
op

os
ed
 c
ri
te
ri
a
to
 th

e
cr
ea
tio

n
of
 c
lu
st
er
s
to
 s
im

pl
if
y
th
e
gr
ap
h:
 (
1)
 E
st
ab
lis
hi
ng

 a
 th

re
sh
ol
d
to
 s
el
ec
t w

hi
ch

vu
ln
er
ab
ili
ty
 s
ta
ys
 o
ut
si
de
 th

e
cl
us
te
r
(u
pp

er
 s
id
e)
. (
2)
 C
ho

os
in
g
th
e
ab
se
nc
e
of
 v
ul
ne
ra
bi
lit
y
as
 th

e
cr
ite

ri
on

 to
 c
re
at
e
cl
us
te
rs
 (
lo
w
er
 s
id
e)
. T

he
 s
ev
er
ity

 v
al
ue

(C
V
SS

)
fo
r .

 v
31

an
d
. v
32

is
 s
up

po
se
d
to
 b
e
lo
w
er
 th

an
 th

e
es
ta
bl
is
h
th
re
sh
ol
d

106 A. Longueira-Romero et al.

4.4.3 Types of Edge

In the EDG model, edges play a key role representing dependencies. Two types of
edge can be identified:

• Normal dependencies relate two assets, or an asset and a vulnerability. They rep-
resent that the destination element depends on the source element. Collectively,
they are known as set . GD .

• Deprecated asset or patched vulnerability dependencies indicate when an
asset or a vulnerability is updated or patched. They represent that the destination
element used to depend on the source element. Collectively, they are known as set
. GU .

The possibility of representing old dependencies brings the opportunity to reflect
the evolution of the SUT over time. When a new version of an asset is released, or a
vulnerability is patched, the model will be updated. Their dependencies will change
then from a normal dependency to a deprecated asset or vulnerability dependency
to reflect that change.

4.4.4 Steps to Build the Model

This section explains the process and algorithms that were used to build the
corresponding EDG of a given SUT. The main scenarios that can be found are also
described.

Before extracting useful information about the SUT, the directed graph associ-
ated with the SUT has to be built. This comprises several steps, which are described
in the following paragraphs (see the flowchart in Fig. 4.5a, b):

Step 1 – Decompose the SUT into assets For the model to work properly, it relies
on the SUT being able to be decomposed into assets. With this in mind, the first step
involves obtaining the assets of the SUT, either software or hardware. In the CC,
this process is called modular decomposition of the SUT [11]. Ideally, every asset
should be represented in the decomposition process, but this is not compulsory for
the model to work properly. Each one of the assets obtained in this step will be
represented as an asset node. In this step, the dependencies among the obtained
assets are also added as normal dependencies.

Step 2 – Assign a CPE to each asset Once the assets and their dependencies have
been identified, the next task is to assign the corresponding CPE identifier to each
asset. If there is no publicly available information of a certain asset and, therefore,
it does not have a CPE identifier, then it is always possible to generate one using the
fields described in the CPE naming specification documents [10] for internal use in
the model.

4 Vulnerability Detection and Response 107

START

END

YES

Decompose the SUT into

its assets

Select an asset

Obtain and assign existing

CPE

YES

NO

CVEs available?

NO

YES

Components left?

YES NO
CPE available?

Generate and assign

created CPE

Compute metrics

Reports

YES

Add known vulnerabilities

Add attack patterns

YES

NO

CWEs available?

YES

Add weaknesses

YES

NO
CAPECs available?

NO

YES Vulnerability

discovered?

YES

NO

Update/patch

available?

NO
End of life?

Add asset dependencies

2
- C

PE
 A

SS
IG

N
M

E
N

T
3

- C
V

E
 A

SS
IG

N
M

E
N

T
4

- C
W

E
 A

N
D

 C
A

PE
C

 A
SS

IG
N

M
E

N
T

5
- M

E
T

R
IC

 C
O

M
PU

TA
T

IO
N

 A
N

D
 T

R
A

C
K

IN
G

1
- D

E
C

O
M

PO
SI

T
IO

N

(a)

a4

At

a1 a6

a2 a3 a5

a4

At

a1 a6

a2 a3 a5

CPErt0

CPE1 CPE4 CPE6

CPE2

CPE3

CPE5

a4

At

a1 a6

a2 a3 a5

CPErt0

CPE1 CPE4 CPE6

CPE2

CPE3

CPE5

CVE31 CVE32

CVE61

CVSS31 CVSS32

CVSS61

a4

At

a1 a6

a2 a3 a5

CPErt0

CPE1 CPE4

CPE6

CPE2

CPE3

CPE5

CVE31 CVE32

CVE61

CVSS31 CVSS32

CVSS61

CWE61

CWE31

CWE32

CAPEC61

CAPEC62

CAPEC32CAPEC31

CAPEC31

CAPEC63

(a)

(b)

(c)

(d)

(b)

Fig. 4.5 Three simple graphs. (a) Algorithm to generate the initial EDG of a given SUT. (b)
Example of the process of building the EDG model of a given SUT A

108 A. Longueira-Romero et al.

Step 3 – Add known vulnerabilities to the assets In this step, the vulnerabilities
(.CV Eai

(t)) of each asset are set. This is done by consulting public databases of
known vulnerabilities [52, 62] looking for existing vulnerabilities for each asset.
When a vulnerability is found, it is added to the model of the SUT, including its
dependencies. If there were no known vulnerabilities in an asset, then the asset
would become the last leaf of its branch. In this step, the corresponding value of
the CVSS of each vulnerability is also added to the model.

Step 4 – Assign to each asset its weaknesses and possible CAPECs After the
vulnerabilities, the corresponding weaknesses to each vulnerability (.CWEai

(t))
are added, along with the corresponding attack patterns (.CAPECwi

(t)) for each
weakness. If there is no known vulnerability in an asset, then there will be no
weaknesses. Meanwhile, it would be possible to have a known vulnerability in an
asset, but no known weakness or attack pattern for that vulnerability. Finally, more
than one CAPEC can be assigned to the same weakness. Consequently, it would
be common to have a set of possible CAPECs that can be used to exploit the same
weakness. It is worth noting that not all of them could be applied in every scenario.

Step 5 – Computing metrics and tracking the SUT At this point, the EDG of
the SUT is completed with all the public information that can be gathered. This
last step is to calculate the metrics defined (for further information, see Sect. 4.5.),
generating the corresponding reports,and tracking the state of the SUT for possible
updates in the information of the model. This step is always triggered when the SUT
is updated. This can imply that a new asset can appear, an old asset can disappear,
an old vulnerability can be patched, or a new one can appear in the SUT. All of these
scenarios will be reflected in the model as they arise during its life cycle.

4.5 Security Metrics

The EDG model that was reviewed in the previous sections is by itself capable
of representing the internal structure of the SUT, and it can display it graphically
for the user. This representation not only includes the internal assets of the SUT
but it also captures their relationships, existing vulnerabilities, and weaknesses.
Moreover, assets, vulnerabilities, and weaknesses are easily identified using their
corresponding CPE, CVE, and CWE values, respectively. All together, this consti-
tutes a plethora of information that the model can use to improve the development
and maintenance steps of the SUT, enhance its security, and track its status during its
whole life cycle. Metrics are a great tool to integrate these features into the model.

Metrics can serve as a tool to manage security, make decisions, and compare
results over time. They can also be used to systematically improve the security level
of an industrial component or to predict its security level in a future point in time.

In this section, the basic definitions that serve as the foundation of the metrics
are described. Then, the corresponding metrics are introduced to complement the
functionality of the EDG model. The main feature of these metrics is that they all

4 Vulnerability Detection and Response 109

depend on time as a variable, so it is possible to capture the actual state of the SUT,
track its evolution over time, and compare the results.

4.5.1 Basic Definitions

In this section, the basic concepts on which the definitions of the metrics will be
based are formalized.

Definition 4.2 The set of all possible weaknesses at a time t is represented as
.CWE(t), where

.CWE(t) = {cwe1, . . . , cwem} (4.1)

and m is the total number of weaknesses at time t. This set contains the whole CWE
database defined by MITRE [54].

Definition 4.3 The set of all of the possible vulnerabilities at a time t is represented
as .CV E(t) where

.CV E(t) = {cve1, . . . , cvep} (4.2)

and p is the total number of vulnerabilities. This set contains the whole CVE
database defined by MITRE [52].

Definition 4.4 The set of all possible attack patterns at a time t is represented as
.CAPEC(t), where

.CAPEC(t) = {capec1, . . . , capecq} (4.3)

and q is the total number of attack patterns at time t. This set contains the whole
CAPEC database defined by MITRE [50].

Definition 4.5 The set of weaknesses of an asset . ai at a time t is defined as

.

CWEai
(t) = {cwej |cwej is in the asset ai at time t ∧ cwej ∈ CWE(t)

∧∀k /= j, cwej /= cwek}
(4.4)

From this expression, the set of all the weaknesses of a particular asset throughout
its life cycle is defined as

.CWEai
=

T⋃

t=1

CWEai
(t) (4.5)

110 A. Longueira-Romero et al.

where .|CWEai
| is the total number of non-repeated weaknesses in its entire life

cycle.

Definition 4.6 The set of vulnerabilities of an asset . ai at a time t is defined as

.CV Eai
(t) = {cvej |cvej is in the asset ai at time t ∧ cvej ∈ CV E(t)} (4.6)

From this expression, the set of vulnerabilities of an asset throughout its entire life
cycle is defined as

.CV Eai
=

T⋃

t=1

CV Eai
(t) (4.7)

where .|CV Eai
| is the total number of vulnerabilities in its entire life cycle.

Definition 4.7 The set of weaknesses of a SUT A with n assets at a time t is defined
as

.CWEA(t) =
n⋃

i=1

CWEai
(t) (4.8)

Definition 4.8 The set of vulnerabilities of a SUT A with n assets at a time t is
defined as

.CV EA(t) =
n⋃

i=1

CV Eai
(t) (4.9)

Definition 4.9 The set of vulnerabilities associated to the weakness .cwej and to
the asset . ai at a time t is defined as

. CV Eai |cwej
(t)={cvek|cvek associated to weakness cwej and to asset ai at time t}

(4.10)

It is worth noting that CWE is used as a classification mechanism that differ-
entiates CVEs by the type of vulnerability that they represent. A vulnerability will
usually have only one associated weakness, and weaknesses can have one or more
associated vulnerabilities [16].

Definition 4.10 The partition j of an asset . ai at time t conditioned by a weakness
.cwek is defined as

.CV Eai |cwek
(t) = {cwel |cwel = cwek ∧ cwel ∈ CV Eai

(t)} (4.11)

4 Vulnerability Detection and Response 111

Definition 4.11 The partition j of the SUT A at time t conditioned by a weakness
.cwek is defined as

.CV EA|cwek
(t) = {cwel |cwel = cwek ∧ cwel ∈ CV EA(t)} (4.12)

Definition 4.12 The set of attack patterns associated to a weakness . wi at a time t
is defined as

.

CAPECwi
(t) = {capecj |capecj can exploit weakness wi at time

t ∧ capecj ∈ CAPEC(t)} (4.13)

.

Definition 4.13 The set of metrics that are defined in this research work based on
the EDG model is defined as

.M = {m1, . . . , mr } (4.14)

where r is the total number of metrics. This set can be extended, defining more
metrics according to the nature of the SUT.

4.5.2 Metrics

This section will describe the metrics that were defined based on the EDG model and
the previous definitions. Although it might seem trivial, the most interesting feature
of these metrics is that they all depend on time. Using time as an input variable
for the computation of the metrics opens the opportunity to track results over time,
compare them, and analyze the evolution of the status of the SUT. Furthermore,
some metrics take advantage of time to generate an accumulated value, giving
information about the life cycle of the SUT. Table 4.2 shows all of the defined
metrics, their definition, and their reference values.

In addition to the metrics in Table 4.2, the model allows the definition of other
types of metrics according to the analysis to be performed, and the nature of the
SUT (e.g., the vulnerability evolution function for SUT A up to time t for all
vulnerabilities could be defined as the linear regression of the total number of
vulnerabilities in each time t for SUT A, or using any other statistical model).

4.5.3 Properties

Together, the EDG model and the defined metrics exhibit a series of characteristics
that make them suitable for vulnerability assessment.

112 A. Longueira-Romero et al.

Table 4.2 Defined metrics for the EDG model

Metric Definition Reference value

V
ul
ne
ra
bi
lit
ie
s

M0(A) = |CV EA(t)|
n(t)

Arithmetic mean of
vulnerabilities in the SUT
A, where n(t) is the number
of assets in a SUT at a time
t . M0 shows how many
vulnerabilities would be
present in each asset if they
were evenly distributed
among the assets of the
SUT. The result of M0 can
serve as a preliminary
analysis of the SUT, related
to the criticality of its state.
From Eq. 4.8

M0 < 1: The number of
vulnerabilities is lower than
the number of assets.
M0 ≥ 1: Every asset has at
least one vulnerability

M1(A, t) = |CV EA(t)| Number of vulnerabilities in
a SUT A at time t . From
Eq. 4.8

Ideally, the values of M1
should be zero (no
vulnerability in A), but the
lower the value of M1, the
better

M2(A) =∑T
t=1 |CV EA(t)| =

∑T
t=1 M1(A, t)

Number of vulnerabilities in
a SUT A throughout its
entire life cycle T . This
metric computes the
accumulated value of the
number of vulnerabilities of
a SUT throughout its entire
life cycle. From Eq. 4.8

The lower the value of M2,
the better.

M3(ai , t) = |CV Eai (t)| Number of vulnerabilities in
an asset ak at time t The
values of M3 can be useful
during a vulnerability
analysis, or when
performing a penetration
test, to identify the asset
with more vulnerabilities.
From Eq. 4.6

Ideally, the value of M3
should be zero

(continued)

4 Vulnerability Detection and Response 113

Table 4.2 (continued)

Metric Definition Reference value

M4(ak, t) = |CV Eak (t)|∑n
i=1 |CV Eai (t)|

Relative frequency of
vulnerabilities of the asset
ak at a time t . From Eq. 4.6

Ideally, the value of M4
should be zero, or at least
M4 ≤ 1

n(t)
, being n(t) the

number of assets in the SUT.
This value can also be
expressed as the percentage
of vulnerabilities of asset ai
respect to the total number
of vulnerabilities in the
SUT, M4 (ak, t) =

|CV Eak (t)|∑n
i=1 |CV Eai (t)|

·100
M5(ai , cwej , t) =
|CV Eai |cwej (t)|

Multiplicity of weakness
cwej of the asset ai at a
time t . This metric
represents the number of
times a weakness is present
among the vulnerabilities of
the asset ai . This is possible
because a vulnerability can
have associated the same
weakness as other
vulnerabilities. From Eq. 4.9

Ideally, the value of M5
should be zero, or at least,

M5 ≤
|CV EA|cwej (t)|

n(t)
, being

n(t) the number of assets in
the SUT. The value of the
metric could be further
narrowed by assuming that
cwej will be present in all
but one asset, so M5

≤
|CV EA|cwej (t)|

n(t)−1 to be in
acceptable values

M6(A, cwej , t) =
|CV EA|cwej (t)|

Multiplicity of weakness
cwej of the SUT A at a time
t . This metric represents the
number of times a weakness
is present among the
vulnerabilities of the SUT
A. From Eq. 4.11

Ideally, the value of M6
should be zero

W
E
A
K
N
E
SS

E
S

M7(A, t) = |CWEA(t)| Number of weaknesses in a
SUT A at time t . From
Eq. 4.7

Ideally, the value of M7
should be zero (no weakness
in A), but the lower the
value of M7, the better

M8(A) =∑T
t=1 |CWEA(t)| =

∑T
t=1 M7(A, t)

Number of weaknesses in a
SUT A throughout its entire
life cycle T . This metric
computes the accumulated
value of weaknesses of a
SUT throughout its entire
life cycle. From Eq. 4.7

The lower the value of M8,
the better

114 A. Longueira-Romero et al.

4.5.3.1 Automatic Inference of Root Causes

Each CWE natively contains information that is directly related to the root cause
of a vulnerability. From this information, new requirements and test cases can be
proposed.

4.5.3.2 Spatial and Temporal Distribution of Vulnerabilities

The key feature of the EDG model is the addition of the temporal dimension in
the analysis of vulnerabilities. This makes it possible to analyze the location of the
vulnerabilities both in space (in which asset) and time (their recurrence), which
allows us to track the state of the device throughout the whole life cycle. This
approach also enables a further analysis of the SUT, by updating data in the model,
such as new vulnerabilities that are found or new patches that are released.

Each time that a new vulnerability is found, or an asset is patched (i.e., via an
update), the initial EDG is updated to reflect those changes. An example of this
process can be seen in Fig. 4.6.

At time . t0, the initial graph of the SUT A is depicted in Fig. 4.6. Because there is
no vulnerability at that time, this graph can be simplified using the cluster notation,
with just a cluster containing all assets. At time . t1, a new vulnerability that affects
the asset . a2 is discovered. At time . t2, the asset . a2 is updated. This action creates
a new version of asset . a2, asset . a3. Because the vulnerability was not corrected in
the new update, both versions contain the vulnerability that was initially presented

a1

At0

a2 a1

At2

a3 a2 a1

At3

a3 a2a4

(t0) (t2) (t3)

a1

At1

a2

(t1)

a3 a2 a3 a2a4a2
At0

At1 At2 At3

C
L

U
ST

E
R

 N
O

TA
T

IO
N

E
X

PA
N

D
E

D
 N

O
TA

T
IO

N

Initial EDG Vulnerability V1 is

discovered

v1 v1 v1

v1
v1v1

Asset a2 is updated by a3, but V1 is

not patched

Asset a3 is updated by a4 and V1 is

patched

Fig. 4.6 Representation of the temporal behavior in the graphical model using the two kinds of
dependencies of the model. It is worth mentioning that these graphs could be further simplified by
taking advantage of the cluster notation, as shown at the bottom of this figure

4 Vulnerability Detection and Response 115

in asset . a2. Finally, at time . t3, the asset . a3 is updated to its new version . a4, and the
vulnerability is corrected.

This approach enables a further analysis of the SUT, including updated data,
according to new vulnerabilities that are found or new patches that are released.

4.5.3.3 Patching Policies Prioritization Support

The EDG model provides a relative importance sorting of vulnerabilities by CVSS.
Relying on the resulting value, it is possible to assist in the vulnerability patching
prioritization process. Furthermore, the presence of an existing exploit for a known
vulnerability can be also be taken into account, when deciding which vulnerabilities
need to be patched first. A high CVSS value combined with an available exploit for
a given vulnerability is a priority when patching.

4.6 Use Case

In this section, the EDG model and its metrics will be applied to perform a
vulnerability assessment of the OpenPLC project, which will be the SUT.

OpenPLC is the first functional standardized open-source Programmable Logic
Controller (PLC), both in software and hardware [72]. It was mainly created for
research purposes in the areas of industrial and home automation, Internet of Things
(IoT), and SCADA. Given that it is the only controller that provides its entire source
code, it represents an engaging low-cost industrial solution – not only for academic
research but also for real-world automation [2, 3].

4.6.1 Structure of OpenPLC

The OpenPLC project consists of three parts:

1. Runtime: It is the software that plays the same role as the firmware in a
traditional PLC. It executes the control program.

2. Editor: Application that is used to write and compile the control programs that
will be later executed by the runtime.

3. HMI Builder: This software creates web-based animations that will reflect the
state of the process, in the same manner as a traditional HMI.

When installed, the OpenPLC runtime executes a built-in webserver that allows
OpenPLC to be configured and new programs for it to run to be uploaded.

116 A. Longueira-Romero et al.

OPLC
Compiler

OpenPLC cpe:2.3:o:openplcproject:openplc_v1_firmware:-:*:*:*:*:*:*:*

OPLC
Starter

server.js

linux-
vdso

libstdc++libgcc_s

/lib64
/ld-linux-
x86-64

libpthread

libc

nodejs

openplc libz

libcares

libv8librt

libdl

libssl

libcrypto

libm

CVE-2016-
1234
CVSS: 5.0

CVE-2015-
7547
CVSS: 6.8

CVE-2015-
5277
CVSS: 7.2

CVE-2014-
9984
CVSS: 7.5

CVE-2014-
6040
CVSS: 5.0

CVE-2017-16997
CVSS: 9.3

CVE-2014-
4043
CVSS: 7.5

CVE-2014-
0475
CVSS: 6.8

CVE-2013-
7423
CVSS: 5.0

CVE-2018-
12886

CVSS: 7.5

CVE-2019-
15847

CVSS: 5.0

CVE-2016-
9843
CVSS: 7.5CVE-2016-

9842
CVSS: 6.8

CVE-2016-
9841
CVSS: 7.5

CVE-2016-
9840
CVSS: 6.8

CVE-2017-
1000381
CVSS: 5.0

CVE-2019-
15847
CVSS: 7.5

CVE-2018-
12115
CVSS: 5.0

CVE-2018-
7159

CVSS: 5.0

CVE-2018-
5407
CVSS: 1.9 CVE-2017-

16024
CVSS: 4.0

CVE-2016-5325
CVSS: 4.3

CVE-2016-7099
CVSS: 4.3

CVE-2016-
3956
CVSS: 5.0

CVE-2016-
2216
CVSS: 4.3

CVE-2016-
2086
CVSS: 5.0

CVE-2016-
8610
CVSS: 5.0

CVE-2016-6306
CVSS: 4.3

CVE-2016-6304
CVSS: 7.8

CVE-2016-6303
CVSS: 7.5

CVE-2016-
6302
CVSS: 5.0

CVE-2016-
2842
CVSS: 10.0

Z

CVE-2016-
2182
CVSS: 7.5

CVE-2016-
2181
CVSS: 5.0

CVE-2016-2180
CVSS: 5.0

CVE-2016-2179
CVSS: 5.0

CVE-2016-
2178
CVSS: 2.1

CVE-2016-2177
CVSS: 7.5

CVE-2016-
0800
CVSS: 4.3

CVE-2016-0799
CVSS: 10.0

CVE-2016-
0798
CVSS: 7.8

CVE-2016-
0797
CVSS: 5.0

CVE-2016-
0705
CVSS: 10.0

CVE-2016-
0704
CVSS: 4.3

CVE-2016-
0703
CVSS: 4.3 CVE-2016-

0702
CVSS: 1.9

CVE-2015-
4000
CVSS: 4.3

CVE-2015-
3197
CVSS: 4.3

CVE-2015-
3194
CVSS: 5.0

CVE-2015-
1792
CVSS: 5.0

CVE-2015-1791
CVSS: 6.8

CVE-2015-
1790
CVSS: 5.0

CVE-2015-1789
CVSS: 4.3

CVE-2015-1788
CVSS: 4.3

CVE-2015-
0293
CVSS: 5.0

CVE-2015-
0289
CVSS: 5.0

CVE-2015-
0288
CVSS: 5.0

CVE-2015-
0287
CVSS: 5.0

CVE-2015-
0286
CVSS: 5.0

CVE-2015-
0209CVSS: 6.8

CVE-2017-3735
CVSS: 5.0

CVE-2015-
3196
CVSS: 4.3

CVE-2015-0292
CVSS: 7.5

CVE-2014-
8176
CVSS: 7.5

CVE-2014-5139
CVSS: 4.3

CVE-2014-
3568
CVSS: 4.3

CVE-2014-
3567
CVSS: 7.1

CVE-2014-
3566
CVSS: 4.3

CVE-2014-
3513
CVSS: 7.1

CVE-2014-
3512
CVSS: 7.5

CVE-2014-
3511
CVSS: 4.3

CVE-2014-
3509
CVSS: 6.8

CVE-2014-
3510
CVSS: 4.3

CVE-2014-
3508
CVSS: 4.3

CVE-2014-3507
CVSS: 5.0

CVE-2014-
3506
CVSS: 5.0

CVE-2014-3505
CVSS: 5.0

CVE-2014-
3470
CVSS: 4.3

CVE-2014-
0224
CVSS: 5.8

CVE-2014-
0221
CVSS: 4.3

CVE-2014-
0198
CVSS: 4.3

CVE-2014-0195
CVSS: 6.8

CVE-2014-0160
CVSS: 5.0

CVE-2013-
6450
CVSS: 5.8

CVE-2013-
6449
CVSS: 4.3

CVE-2013-
4353
CVSS: 4.3

CVE-2013-
0169
CVSS: 2.6

CVE-2013-
0166
CVSS: 5.0

CVE-2012-
2686
CVSS: 5.0

CVE-2012-2333
CVSS: 6.8

CVE-2010-5298
CVSS: 4.0

Fig. 4.7 EDG for OpenPLC V1. Notice that, for simplicity, CWE and CAPEC values are omitted,
and only the CPE identifier of the SUT is shown

4.6.2 Building the EDG

For this use case, the setup consisted of OpenPLC installed on 14.04 LTS Ubuntu
Linux in a virtual machine. All configuration options were by default.

Using the generated EDG for OpenPLC V1 shown in Fig. 4.7, we extracted
the information about security updates (discarding updates that introduced more
functionalities), for both libssl and nodejs. Table 4.3 shows the security
updates and their date of availability for both libssl [39] and nodejs [40]
for Ubuntu 14.04 LTS. There were two security updates available for the amd64
architecture for each asset.

From this data, we can extract that:

• Updates for nodejs were released before the updates for libssl.
• libssl shows more vulnerabilities than nodejs.
• The highest CVSS score in the period of this analysis is 5.

4 Vulnerability Detection and Response 117

Table 4.3 Update information of both libssl and nodejs

Solved Solved
Asset .1st Update vulnerabilities (CVSS) .2nd Update vulnerabilities (CVSS)

libssl 2014/04/07 CVE-2014-0076 (1.9) 2018/12/06 CVE-2018-5407 (1.9)
CVE-2014-0160 (5.0) CVE-2018-0734 (4.3)

nodejs 2014/03/27 – 2018/08/10 CVE-2016-5325 (4.3)

Then, the EDG for these two assets and their updates were built. Figure 4.8 shows
the updates over time of the EDG, whereas Fig. 4.9 shows the final EDG with all the
information included.

4.6.3 Analysis of the EDG

Using Fig. 4.9, and Table 4.4, we can analyze the obtained EDG:

1. Analysis of the induced EDG model: The structure, assets, and dependencies
are the focus of this first step.
We can observe that libssl is used by nodejs, and they are not at the same
level of the hierarchy. So vulnerabilities could propagate upward and downward
through the EDG.

2. Vulnerability analysis: Vulnerability number, distribution, and severity are
analyzed in this step. A proposal for vulnerability prioritization is also gen-
erated.
We can highlight that nodejs had one vulnerability discovered after its first
update, whereas libssl had vulnerabilities in both periods of time. We could
argue that, as nodejs is the most accessible asset from the exterior, its
vulnerabilities should be first addressed, even though the associated CVSS is
not the highest one.

3. Weaknesses analysis: Finally, the root cause of each vulnerability is found.
In this step, new requirements, test cases, and training activities are proposed
based on the results of the analysis.
Table 4.4 shows the root cause for each vulnerability. Using this data, new
requirements (Table 4.5), test cases (Table 4.6) and training activities (Table 4.7)
were proposed.

It is worth noticing that this use case is focused on reflecting the temporal
evolution of the EDG. For this reason, metrics cannot be computed here, because of
the low number of vulnerabilities available.

118 A. Longueira-Romero et al.

O
pe

nP
L

C

se
rv

er
.js

no
de

js

lib
ss

l

O
pe

nP
L

C

se
rv

er
.js

no
de

js

lib
ss

l

C
V

E
-2

0
1
4
-0

0
7
6

C
V

S
S

:
1
.9

C

V
E

-2
0
1
4
-0

1
6
0

C
V

S
S

:
5
.0

O
pe

nP
L

C

se
rv

er
.js

 no
de

js

lib
ss

l

C
V

E
-2

0
1
4
-0

0
7
6

C
V

S
S

:
1
.9

C
V

E
-2

0
1
4
-0

1
6
0

C
V

S
S

:
5
.0

no
de

js

O
pe

nP
L

C

se
rv

er
.js

 no
de

js

lib
ss

l

no
de

js

lib
ss

l

O
pe

nP
L

C

se
rv

er
.js

 no
de

js

lib
ss

l C
V

E
-2

0
1
4
-0

0
7
6

C
V

S
S

:
1
.9

C
V

E
-2

0
1
4
-0

1
6
0

C
V

S
S

:
5
.0

C
V

E
-2

0
1
6
-5

3
2
5

C
V

S
S

:
4
.3

no
de

js

lib
ss

l

C
V

E
-2

0
1
8
-5

4
0
7

C
V

S
S

:
1
.9

C
V

E
-2

0
1
8
-0

7
3
4

C
V

S
S

:
4
.3

C
V

E
-2

0
1
4
-0

1
6
0

C
V

S
S

:
5
.0

C
V

E
-2

0
1
4
-0

0
7
6

C
V

S
S

:
1
.9

0
.1

0
.2

5
-1

0
.1

0
.2

5
-1

.2

1
.0

.0
-2

1
.0

.0
-2

.2
7

0
.1

0
.2

5
-1

0
.1

0
.2

5
-1

0
.1

0
.2

5
-1

0
.1

0
.2

5
-1

0
.1

0
.2

5
-1

.2
0
.1

0
.2

5
-1

.2

1
.0

.0
-2

1
.0

.0
-2

1
.0

.0
-2

1
.0

.0
-2

1
.0

.0
-2

.2
7

F
ig

. 4
.8

Te
m
po
ra
l e
vo
lu
tio

n
of
 th

e
E
D
G
 f
or
 O
pe
nP

L
C
 V
1
fo
r
bo
th
 li
bs
s
an
d
no
de
js

4 Vulnerability Detection and Response 119

OpenPLC

server.js

nodejs

libssl

CVE-2014-0076

CVSS: 1.9

CVE-2014-0160

CVSS: 5.0

CVE-2016-5325

CVSS: 4.3

nodejs

libssl

CVE-2018-5407

CVSS: 1.9

CVE-2018-0734

CVSS: 4.3

cpe:2.3:a:nodejs:nodejs:0.10.25:1.2:*:*:*:*:*:*

cpe:2.3:a:openssl:openssl:1.0.0f:2.27:*:*:*:*:*:*

cpe:2.3:o:openplcproject:openplc_firmware:1:*:*:*:*:*:*:*

cpe:2.3:a:nodejs:nodejs:0.10.25:1:*:*:*:*:*:*

cpe:2.3:a:openssl:openssl:1.0.0f:2:*:*:*:*:*:*

Fig. 4.9 Final EDG for libssl and nodejs integrating all the updates for Ubuntu Linux 14.04 for
amd64 architecture

Table 4.4 Relationship between vulnerabilities and weaknesses for both libssl and nodejs

CVE CVSS CWE Description

CVE-2014-0076 1.9 CWE-310 Cryptographic Issues

CVE-2014-0160 7.5 CWE-119 Improper restriction of operations within the Bounds of a
Memory Buffer

CVE-2016-5325 6.1 CWE-113 Improper neutralization of CRLF Sequences in HTTP
Headers (‘’HTTP Response Splitting”)

CVE-2018-0734 5.9 CWE-327 Use of a Broken or Risky Cryptographic algorithm

CVE-2018-5407 4.7 CWE-203 Observable discrepancy

CWE-200 Exposure of sensitive information to an unauthorized
actor

Table 4.5 An example of generated requirements for OpenPLC V1

CWE ID Requirements

CWE-119 Use languages that perform their own memory management.

CWE-113 Use an input validation framework.

CWE-113 Assume all input is malicious.

CWE-119 Replace unbounded copy functions with analogous functions that support length
arguments. Create these if they are not available.

4.7 Conclusions

The rapid evolution of industrial components, the paradigm of Industry 4.0, and the
new connectivity features introduced by 5G technology increase the likelihood of
cybersecurity incidents. These incidents have to be managed to limit or mitigate

120 A. Longueira-Romero et al.

Table 4.6 Example of generated test cases for OpenPLC V1

CAPEC ID Test cases

CAPEC-119 Check for buffer overflows through manipulation of environment variables

CAPEC-119 Feed overly long input strings to the program to cause a buffer overflow, so the
filter does not fail securely

CAPEC-119 Create or manipulate a symbolic link file such that its contents result in out of
bounds data. It could potentially overflow internal buffers with insufficient
bounds checking

CAPEC-119 Static analysis of the code: secure functions and buffer overflow

Table 4.7 Example of proposed training for OpenPLC V1

CWE ID Training

CWE-113, CWE-119 Input validation strategies.

CWE-113, CWE-119 Character encoding compatibility.

CWE-200 Secure functions.

CWE-190 Secure programming: memory management.

CWE-113, CWE-119 System compartmentalization.

CWE-310 Secure up-to-date cryptographic algorithms.

their impact, and in most cases, they are a consequence of existing vulnerabilities.
This scenario raises the need for a tool that enables a faster (tracking the vulnerabil-
ity state over time) and more precise (detect root cause) response.

Vulnerability analysis is a critical task which ensures the security of industrial
components. The EDG model that we reviewed performs continuous vulnerability
assessment throughout the entire life cycle of industrial components. The model
is built on (1) the directed graph representation of the internal structure of the
device, (2) the set of quantitative metrics based on the Common Vulnerability
Scoring System (CVSS), and (3) the algorithm to build the EDG for a given device.
Metrics can be used by the model to improve the development process of the SUT,
enhance its security, and track its status. The key feature of the EDG model is the
addition of the temporal dimension in the analysis of vulnerabilities. The location
of vulnerabilities can be analyzed in both space (in which asset) and time (their
recurrence), which allows the state of the device to be tracked throughout the whole
life cycle. The EDG model can be applied throughout the entire lifespan of a device
to track vulnerabilities, identify new requirements, root causes, and test cases. It
also helps prioritize patching activities.

References

1. M. Alenezi, M. Zarour, On the relationship between software complexity and security. Int.
J. Softw. Eng. Appl. 11(1) (2020), https://aircconline.com/abstract/ijsea/v11n1/11120ijsea04.
html

https://aircconline.com/abstract/ijsea/v11n1/11120ijsea04.html
https://aircconline.com/abstract/ijsea/v11n1/11120ijsea04.html
https://aircconline.com/abstract/ijsea/v11n1/11120ijsea04.html
https://aircconline.com/abstract/ijsea/v11n1/11120ijsea04.html
https://aircconline.com/abstract/ijsea/v11n1/11120ijsea04.html
https://aircconline.com/abstract/ijsea/v11n1/11120ijsea04.html
https://aircconline.com/abstract/ijsea/v11n1/11120ijsea04.html
https://aircconline.com/abstract/ijsea/v11n1/11120ijsea04.html

4 Vulnerability Detection and Response 121

2. T. Alves, T. Morris, OpenPLC: an IEC 61,131–3 compliant open source industrial con-
troller for cyber security research. Comput. Secur. 78, 364–379 (2018). https://doi.org/
https://doi.org/10.1016/j.cose.2018.07.007, https://www.sciencedirect.com/science/article/pii/
S0167404818305388

3. T.R. Alves, M. Buratto, F.M. de Souza, T.V. Rodrigues, OpenPLC: an open source alter-
native to automation, in IEEE Global Humanitarian Technology Conference (GHTC 2014),
pp. 585–589 (2014). https://doi.org/10.1109/GHTC.2014.6970342, https://ieeexplore.ieee.org/
document/6970342

4. M.A. Amutio, J. Candau, J.A. Mañas, MAGERIT V3.0. Methodology for Information Systems
Risk Analysis and Management. Book I – The Method. National Standard, Ministry of Finance
and Public Administration, Madrid, Spain (2014)

5. O. Andreeva, S. Gordeychik, G. Gritsai, O. Kochetova, E. Potseluevskaya, S. Sidorov, A.
Timorin, Industrial control systems vulnerabilities statistics. Tech. rep., Kaspersky Lab (March
2016). https://doi.org/10.13140/RG.2.2.15858.66241

6. P. Arpaia, F. Bonavolontà, A. Cioffi, N. Moccaldi, Reproducibility enhancement by optimized
power analysis attacks in vulnerability assessment of IOT transducers. IEEE Trans. Instrum.
Meas. 70, 1–8 (2021). https://doi.org/10.1109/TIM.2021.3107610, https://ieeexplore.ieee.org/
document/9521880

7. A. Avizienis, J. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of dependable
and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004). https://
doi.org/10.1109/TDSC.2004.2, https://ieeexplore.ieee.org/document/1335465

8. M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, E.H.M. Aggoune, Internet-of-things
(IOT)-based smart agriculture: Toward making the fields talk. IEEE Access 7, 129551–129583
(2019). https://doi.org/10.1109/ACCESS.2019.2932609, https://ieeexplore.ieee.org/document/
8784034

9. N. Benias, A.P. Markopoulos, A review on the readiness level and cyber-security chal-
lenges in industry 4.0, in 2017 South Eastern European Design Automation, Computer
Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM) (2017),
pp. 1–5. https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234, https://ieeexplore.ieee.
org/document/8088234

10. B.A. Cheikes, D. Waltermire, K. Scarfone, NIST Interagency Report 7695 – Common Platform
Enumeration: naming Specification Version 2.3. Nist interagency report, National Institute
for Standards and Technology (NIST), Gaithersburg, Maryland (2011). https://tsapps.nist.gov/
publication/get_pdf.cfm?pub_id=909010

11. CC: The Common Criteria for Information Technology Security Evaluation – Introduction and
General Model. https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf

12. T.M. Chen, S. Abu-Nimeh, Lessons from Stuxnet. Computer 44(4), 91–93 (2011). https://doi.
org/10.1109/MC.2011.115, https://ieeexplore.ieee.org/document/5742014

13. K. Christidis, M. Devetsikiotis, Blockchains and smart contracts for the internet of things.
IEEE Access 4, 2292–2303 (2016). https://doi.org/10.1109/ACCESS.2016.2566339, https://
ieeexplore.ieee.org/document/7467408

14. Common Criteria (CC): Part 3: Security Assurance Components. https://commoncriteriaportal.
org/files/ccfiles/CCPART3V3.1R5.pdf

15. G. Culot, F. Fattori, M. Podrecca, M. Sartor, Addressing industry 4.0 cybersecurity challenges.
IEEE Eng. Manag. Rev. 47(3), 79–86 (2019). https://doi.org/10.1109/EMR.2019.2927559,
https://ieeexplore.ieee.org/document/8758411

16. A. Dimitriadis, J.L. Flores, B. Kulvatunyou, N. Ivezic, I. Mavridis, Ares: automated risk
estimation in smart sensor environments. Sensors 20(16) (2020). https://doi.org/10.3390/
s20164617, https://www.mdpi.com/1424-8220/20/16/4617

17. FIRST – global Forum of Incident Response and Security Teams: Common Vulnerability
Scoring System (CVSS). https://www.first.org/cvss/

18. A. Fuller, Z. Fan, C. Day, C. Barlow, Digital twin: Enabling technologies, challenges and
open research. IEEE Access 8, 108952–108971 (2020). https://doi.org/10.1109/ACCESS.
2020.2998358

https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://doi.org/https://doi.org/10.1016/j.cose.2018.07.007
https://www.sciencedirect.com/science/article/pii/S0167404818305388
https://www.sciencedirect.com/science/article/pii/S0167404818305388
https://www.sciencedirect.com/science/article/pii/S0167404818305388
https://www.sciencedirect.com/science/article/pii/S0167404818305388
https://www.sciencedirect.com/science/article/pii/S0167404818305388
https://www.sciencedirect.com/science/article/pii/S0167404818305388
https://www.sciencedirect.com/science/article/pii/S0167404818305388
https://www.sciencedirect.com/science/article/pii/S0167404818305388
https://doi.org/10.1109/GHTC.2014.6970342
https://doi.org/10.1109/GHTC.2014.6970342
https://doi.org/10.1109/GHTC.2014.6970342
https://doi.org/10.1109/GHTC.2014.6970342
https://doi.org/10.1109/GHTC.2014.6970342
https://doi.org/10.1109/GHTC.2014.6970342
https://doi.org/10.1109/GHTC.2014.6970342
https://doi.org/10.1109/GHTC.2014.6970342
https://ieeexplore.ieee.org/document/6970342
https://ieeexplore.ieee.org/document/6970342
https://ieeexplore.ieee.org/document/6970342
https://ieeexplore.ieee.org/document/6970342
https://ieeexplore.ieee.org/document/6970342
https://ieeexplore.ieee.org/document/6970342
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.13140/RG.2.2.15858.66241
https://doi.org/10.1109/TIM.2021.3107610
https://doi.org/10.1109/TIM.2021.3107610
https://doi.org/10.1109/TIM.2021.3107610
https://doi.org/10.1109/TIM.2021.3107610
https://doi.org/10.1109/TIM.2021.3107610
https://doi.org/10.1109/TIM.2021.3107610
https://doi.org/10.1109/TIM.2021.3107610
https://doi.org/10.1109/TIM.2021.3107610
https://ieeexplore.ieee.org/document/9521880
https://ieeexplore.ieee.org/document/9521880
https://ieeexplore.ieee.org/document/9521880
https://ieeexplore.ieee.org/document/9521880
https://ieeexplore.ieee.org/document/9521880
https://ieeexplore.ieee.org/document/9521880
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://ieeexplore.ieee.org/document/1335465
https://ieeexplore.ieee.org/document/1335465
https://ieeexplore.ieee.org/document/1335465
https://ieeexplore.ieee.org/document/1335465
https://ieeexplore.ieee.org/document/1335465
https://ieeexplore.ieee.org/document/1335465
https://doi.org/10.1109/ACCESS.2019.2932609
https://doi.org/10.1109/ACCESS.2019.2932609
https://doi.org/10.1109/ACCESS.2019.2932609
https://doi.org/10.1109/ACCESS.2019.2932609
https://doi.org/10.1109/ACCESS.2019.2932609
https://doi.org/10.1109/ACCESS.2019.2932609
https://doi.org/10.1109/ACCESS.2019.2932609
https://doi.org/10.1109/ACCESS.2019.2932609
https://ieeexplore.ieee.org/document/8784034
https://ieeexplore.ieee.org/document/8784034
https://ieeexplore.ieee.org/document/8784034
https://ieeexplore.ieee.org/document/8784034
https://ieeexplore.ieee.org/document/8784034
https://ieeexplore.ieee.org/document/8784034
https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234
https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234
https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234
https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234
https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234
https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234
https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234
https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234
https://doi.org/10.23919/SEEDA-CECNSM.2017.8088234
https://ieeexplore.ieee.org/document/8088234
https://ieeexplore.ieee.org/document/8088234
https://ieeexplore.ieee.org/document/8088234
https://ieeexplore.ieee.org/document/8088234
https://ieeexplore.ieee.org/document/8088234
https://ieeexplore.ieee.org/document/8088234
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909010
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/MC.2011.115
https://ieeexplore.ieee.org/document/5742014
https://ieeexplore.ieee.org/document/5742014
https://ieeexplore.ieee.org/document/5742014
https://ieeexplore.ieee.org/document/5742014
https://ieeexplore.ieee.org/document/5742014
https://ieeexplore.ieee.org/document/5742014
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://ieeexplore.ieee.org/document/7467408
https://ieeexplore.ieee.org/document/7467408
https://ieeexplore.ieee.org/document/7467408
https://ieeexplore.ieee.org/document/7467408
https://ieeexplore.ieee.org/document/7467408
https://ieeexplore.ieee.org/document/7467408
https://commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://doi.org/10.1109/EMR.2019.2927559
https://doi.org/10.1109/EMR.2019.2927559
https://doi.org/10.1109/EMR.2019.2927559
https://doi.org/10.1109/EMR.2019.2927559
https://doi.org/10.1109/EMR.2019.2927559
https://doi.org/10.1109/EMR.2019.2927559
https://doi.org/10.1109/EMR.2019.2927559
https://doi.org/10.1109/EMR.2019.2927559
https://ieeexplore.ieee.org/document/8758411
https://ieeexplore.ieee.org/document/8758411
https://ieeexplore.ieee.org/document/8758411
https://ieeexplore.ieee.org/document/8758411
https://ieeexplore.ieee.org/document/8758411
https://ieeexplore.ieee.org/document/8758411
https://doi.org/10.3390/s20164617
https://doi.org/10.3390/s20164617
https://doi.org/10.3390/s20164617
https://doi.org/10.3390/s20164617
https://doi.org/10.3390/s20164617
https://doi.org/10.3390/s20164617
https://www.mdpi.com/1424-8220/20/16/4617
https://www.mdpi.com/1424-8220/20/16/4617
https://www.mdpi.com/1424-8220/20/16/4617
https://www.mdpi.com/1424-8220/20/16/4617
https://www.mdpi.com/1424-8220/20/16/4617
https://www.mdpi.com/1424-8220/20/16/4617
https://www.mdpi.com/1424-8220/20/16/4617
https://www.mdpi.com/1424-8220/20/16/4617
https://www.mdpi.com/1424-8220/20/16/4617
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://www.first.org/cvss/
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/ACCESS.2020.2998358

122 A. Longueira-Romero et al.

19. I. Garitano, S. Fayyad, J. Noll, Multi-metrics approach for security, privacy and dependability
in embedded systems. Wirel. Pers. Commun. (2015). https://doi.org/10.1007/s11277-015-
2478-z, https://link.springer.com/article/10.1007%2Fs11277-015-2478-z

20. G. George, S.M. Thampi, A graph-based security framework for securing industrial IOT
networks from vulnerability exploitations. IEEE Access 6, 43586–43601 (2018). https://doi.
org/10.1109/ACCESS.2018.2863244, https://ieeexplore.ieee.org/document/8430731

21. L. Gressl, C. Steger, U. Neffe, Design space exploration for secure IOT devices and cyber-
physical systems. ACM Trans. Embed. Comput. Syst. 20(4) (2021). https://doi.org/10.1145/
3430372, https://doi.org/10.1145/3430372

22. M. Gupta, M. Abdelsalam, S. Khorsandroo, S. Mittal, Security and privacy in smart farming:
challenges and opportunities. IEEE Access 8, 34564–34584 (2020). https://doi.org/10.1109/
ACCESS.2020.2975142, https://ieeexplore.ieee.org/document/9003290

23. V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, B. Sikdar, A survey on IOT security:
application areas, security threats, and solution architectures. IEEE Access 7, 82721–82743
(2019). https://doi.org/10.1109/ACCESS.2019.2924045, https://ieeexplore.ieee.org/document/
8742551

24. W. He, H. Li, J. Li, Unknown vulnerability risk assessment based on directed graph models:
a survey. IEEE Access 7, 168201–168225 (2019). https://doi.org/10.1109/ACCESS.2019.
2954092, https://ieeexplore.ieee.org/abstract/document/8906081

25. J.I. Hejderup, A. Van Deursen, A. Mesbah, In Dependencies We Trust: How vulnerable are
dependencies in software modules? Ph.D. thesis, Department of Software Technology, TU
Delft (2015). http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e

26. J. Homer, X. Ou, D. Schmidt, A sound and practical approach to quantifying security risk in
enterprise networks. Tech. rep., Kansas State University (2009). https://www.cse.usf.edu/~xou/
publications/tr_homer_0809.pdf

27. J. Homer, S. Zhang, X. Ou, D. Schmidt, Y. Du, S.R. Rajagopalan, A. Singhal, Aggregating
vulnerability metrics in enterprise networks using attack graphs. J. Comput. Secur. 21(4), 561–
597 (2013). https://doi.org/10.3233/JCS-130475, https://content.iospress.com/articles/journal-
of-computer-security/jcs475

28. J. Hu, S. Guo, X. Kuang, F. Meng, D. Hu, Z. Shi, I-HMM-based multidimensional network
security risk assessment. IEEE Access 8, 1431–1442 (2020). https://doi.org/10.1109/ACCESS.
2019.2961997, https://ieeexplore.ieee.org/document/8941077

29. D. Hwang, P. Schaumont, K. Tiri, I. Verbauwhede, Securing embedded systems. IEEE
Secur. Priv. 4(2), 40–49 (2006). https://doi.org/10.1109/MSP.2006.51, https://ieeexplore.ieee.
org/document/1621059

30. International Electrotechnical Commission: IEC 62443: Industrial Communication Networks–
Network and System Security. Standard, IEC Central Office, Geneva, Switzerland (2010)

31. International Electrotechnical Commission: IEC 62443: Security for Industrial Automation and
Control Systems – Part 4–1: Secure Product Development Lifecycle Requirements. Standard,
International Electrotechnical Commission, Geneva, Switzerland (2018)

32. International Electrotechnical Commission: IEC 62443: Security for Industrial Automation
and Control Systems – Part 4–2: Technical Security Requirements for IACS Components.
Standard, International Electrotechnical Commission, Geneva, Switzerland (2019). https://
www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au

33. ISO: ISO 8601:2019. Data and time – Representation for information interchange – Part
1: Basic rules. International Organization for Standardization, Geneva, Switzerland (2019).
https://www.iso.org/standard/70907.html

34. ISO: ISO/IEC 13335-1:2004 – Information technology – Security techniques – Management
of information and communications technology security – Part 1: Concepts and models for
information and communications technology security management. International Organization
for Standardization, Geneva, Switzerland (2019). https://www.iso.org/standard/70907.html

35. D. Kleidermacher, M. Kleidermacher, Practical methods for safe and secure software and sys-
tems development, in Embedded Systems Security, ed. by D. Kleidermacher, M. Kleidermacher
(Newnes, Oxford, 2012). https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-
1, https://www.sciencedirect.com/science/article/pii/B9780123868862000011

https://doi.org/10.1007/s11277-015-2478-z
https://doi.org/10.1007/s11277-015-2478-z
https://doi.org/10.1007/s11277-015-2478-z
https://doi.org/10.1007/s11277-015-2478-z
https://doi.org/10.1007/s11277-015-2478-z
https://doi.org/10.1007/s11277-015-2478-z
https://doi.org/10.1007/s11277-015-2478-z
https://doi.org/10.1007/s11277-015-2478-z
https://doi.org/10.1007/s11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://link.springer.com/article/10.1007%2Fs11277-015-2478-z
https://doi.org/10.1109/ACCESS.2018.2863244
https://doi.org/10.1109/ACCESS.2018.2863244
https://doi.org/10.1109/ACCESS.2018.2863244
https://doi.org/10.1109/ACCESS.2018.2863244
https://doi.org/10.1109/ACCESS.2018.2863244
https://doi.org/10.1109/ACCESS.2018.2863244
https://doi.org/10.1109/ACCESS.2018.2863244
https://doi.org/10.1109/ACCESS.2018.2863244
https://ieeexplore.ieee.org/document/8430731
https://ieeexplore.ieee.org/document/8430731
https://ieeexplore.ieee.org/document/8430731
https://ieeexplore.ieee.org/document/8430731
https://ieeexplore.ieee.org/document/8430731
https://ieeexplore.ieee.org/document/8430731
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1145/3430372
https://doi.org/10.1109/ACCESS.2020.2975142
https://doi.org/10.1109/ACCESS.2020.2975142
https://doi.org/10.1109/ACCESS.2020.2975142
https://doi.org/10.1109/ACCESS.2020.2975142
https://doi.org/10.1109/ACCESS.2020.2975142
https://doi.org/10.1109/ACCESS.2020.2975142
https://doi.org/10.1109/ACCESS.2020.2975142
https://doi.org/10.1109/ACCESS.2020.2975142
https://ieeexplore.ieee.org/document/9003290
https://ieeexplore.ieee.org/document/9003290
https://ieeexplore.ieee.org/document/9003290
https://ieeexplore.ieee.org/document/9003290
https://ieeexplore.ieee.org/document/9003290
https://ieeexplore.ieee.org/document/9003290
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1109/ACCESS.2019.2924045
https://ieeexplore.ieee.org/document/8742551
https://ieeexplore.ieee.org/document/8742551
https://ieeexplore.ieee.org/document/8742551
https://ieeexplore.ieee.org/document/8742551
https://ieeexplore.ieee.org/document/8742551
https://ieeexplore.ieee.org/document/8742551
https://doi.org/10.1109/ACCESS.2019.2954092
https://doi.org/10.1109/ACCESS.2019.2954092
https://doi.org/10.1109/ACCESS.2019.2954092
https://doi.org/10.1109/ACCESS.2019.2954092
https://doi.org/10.1109/ACCESS.2019.2954092
https://doi.org/10.1109/ACCESS.2019.2954092
https://doi.org/10.1109/ACCESS.2019.2954092
https://doi.org/10.1109/ACCESS.2019.2954092
https://ieeexplore.ieee.org/abstract/document/8906081
https://ieeexplore.ieee.org/abstract/document/8906081
https://ieeexplore.ieee.org/abstract/document/8906081
https://ieeexplore.ieee.org/abstract/document/8906081
https://ieeexplore.ieee.org/abstract/document/8906081
https://ieeexplore.ieee.org/abstract/document/8906081
https://ieeexplore.ieee.org/abstract/document/8906081
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
http://resolver.tudelft.nl/uuid:3a15293b-16f6-4e9d-b6a2-f02cd52f1a9e
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://www.cse.usf.edu/~xou/publications/tr_homer_0809.pdf
https://doi.org/10.3233/JCS-130475
https://doi.org/10.3233/JCS-130475
https://doi.org/10.3233/JCS-130475
https://doi.org/10.3233/JCS-130475
https://doi.org/10.3233/JCS-130475
https://doi.org/10.3233/JCS-130475
https://doi.org/10.3233/JCS-130475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://content.iospress.com/articles/journal-of-computer-security/jcs475
https://doi.org/10.1109/ACCESS.2019.2961997
https://doi.org/10.1109/ACCESS.2019.2961997
https://doi.org/10.1109/ACCESS.2019.2961997
https://doi.org/10.1109/ACCESS.2019.2961997
https://doi.org/10.1109/ACCESS.2019.2961997
https://doi.org/10.1109/ACCESS.2019.2961997
https://doi.org/10.1109/ACCESS.2019.2961997
https://doi.org/10.1109/ACCESS.2019.2961997
https://ieeexplore.ieee.org/document/8941077
https://ieeexplore.ieee.org/document/8941077
https://ieeexplore.ieee.org/document/8941077
https://ieeexplore.ieee.org/document/8941077
https://ieeexplore.ieee.org/document/8941077
https://ieeexplore.ieee.org/document/8941077
https://doi.org/10.1109/MSP.2006.51
https://doi.org/10.1109/MSP.2006.51
https://doi.org/10.1109/MSP.2006.51
https://doi.org/10.1109/MSP.2006.51
https://doi.org/10.1109/MSP.2006.51
https://doi.org/10.1109/MSP.2006.51
https://doi.org/10.1109/MSP.2006.51
https://doi.org/10.1109/MSP.2006.51
https://ieeexplore.ieee.org/document/1621059
https://ieeexplore.ieee.org/document/1621059
https://ieeexplore.ieee.org/document/1621059
https://ieeexplore.ieee.org/document/1621059
https://ieeexplore.ieee.org/document/1621059
https://ieeexplore.ieee.org/document/1621059
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.isa.org/products/ansi-isa-62443-4-1-2018-security-for-industrial-au
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://doi.org/https://doi.org/10.1016/B978-0-12-386886-2.00001-1
https://www.sciencedirect.com/science/article/pii/B9780123868862000011
https://www.sciencedirect.com/science/article/pii/B9780123868862000011
https://www.sciencedirect.com/science/article/pii/B9780123868862000011
https://www.sciencedirect.com/science/article/pii/B9780123868862000011
https://www.sciencedirect.com/science/article/pii/B9780123868862000011
https://www.sciencedirect.com/science/article/pii/B9780123868862000011
https://www.sciencedirect.com/science/article/pii/B9780123868862000011
https://www.sciencedirect.com/science/article/pii/B9780123868862000011

4 Vulnerability Detection and Response 123

36. R. Langner, Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011).
https://doi.org/10.1109/MSP.2011.67

37. M. Lezzi, M. Lazoi, A. Corallo, Cybersecurity for industry 4.0 in the current literature:
a reference framework. Comput. Ind. 103, 97–110 (2018). https://doi.org/https://doi.
org/10.1016/j.compind.2018.09.004, https://www.sciencedirect.com/science/article/pii/
S0166361518303658

38. A. Longueira-Romero, R. Iglesias, J.L. Flores, I. Garitano, A novel model for vulnerability
analysis through enhanced directed graphs and quantitative metrics. Sensors 22(6) (2022).
https://doi.org/10.3390/s22062126, https://www.mdpi.com/1424-8220/22/6/2126

39. C. Ltd., libssl1.0.0: Trusty (14.04): Ubuntu. https://launchpad.net/ubuntu/trusty/+package/
libssl1.0.0/+index

40. C. Ltd., nodejs: Trusty (14.04): Ubuntu. https://launchpad.net/ubuntu/trusty/+package/
nodejs/+index

41. M. Dekker, C. Karsberg, Guideline on Threats and Assets: Technical guidance on
threats and assets in Article 13a. Tech. rep., European Union Agency For Network And
Information Security (2015). https://www.enisa.europa.eu/publications/technical-guideline-
on-threats-and-assets

42. P. Marwedel, Embedded systems foundations of cyber-physical systems, and the internet of
things, in Embedded System Design (Springer Nature, Switzerland, 2018). https://doi.org/
https://doi.org/10.1007/978-3-319-56045-8, https://link.springer.com/book/10.1007%2F978-
3-319-56045-8

43. M.C. Parmelee, H. Booth, D. Waltermire, K. Scarfone, NIST Interagency Report 7696 –
Common Platform Enumeration: Name Matching Specification Version 2.3. Nist interagency
report, National Institute for Standards and Technology (NIST), Gaithersburg, Maryland
(2011). https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008

44. A. Mathew, Network slicing in 5G and the security concerns, in 2020 Fourth International
Conference on Computing Methodologies and Communication (ICCMC), pp. 75–78 (2020).
https://ieeexplore.ieee.org/abstract/document/9076479

45. W. Matsuda, M. Fujimoto, T. Aoyama, T. Mitsunaga, Cyber security risk assessment on
industry 4.0 using ICS testbed with AI and cloud, in 2019 IEEE Conference on Applica-
tion, Information and Network Security (AINS) (2019), pp. 54–59. https://doi.org/10.1109/
AINS47559.2019.8968698, https://ieeexplore.ieee.org/document/8968698

46. S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A.R. Sadeghi, M. Maniatakos, R. Karri,
The cybersecurity landscape in industrial control systems. Proc. IEEE 104(5), 1039–1057
(2016). https://doi.org/10.1109/JPROC.2015.2512235, https://ieeexplore.ieee.org/document/
7434576?reload=true&arnumber=7434576

47. N. Medeiros, N. Ivaki, P. Costa, M. Vieira, Software metrics as indicators of security vul-
nerabilities, in 2017 IEEE 28th International Symposium on Software Reliability Engineering
(ISSRE) (2017), pp. 216–227. https://doi.org/10.1109/ISSRE.2017.11, https://ieeexplore.ieee.
org/document/8109088

48. MITRE Corporation, https://www.mitre.org/
49. MITRE Corporation: CAPEC – Common Attack Pattern Enumeration and Classification.

https://capec.mitre.org/about/glossary.html
50. MITRE Corporation: CAPEC – Common Attack Pattern Enumeration and Classification.

https://capec.mitre.org/
51. MITRE Corporation: CVE – Common Vulnerabilities and Exposures. https://cve.mitre.org/

about/terminology.html
52. MITRE Corporation: CVE – Common Vulnerability and Exposures. https://cve.mitre.org/

index.html
53. MITRE Corporation: CWE – Common Weakness Enumeration. https://cwe.mitre.org/about/

faq.html
54. MITRE Corporation: CWE – Common Weakness Enumeration. https://cwe.mitre.org/index.

html

https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1109/MSP.2011.67
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/https://doi.org/10.1016/j.compind.2018.09.004
https://www.sciencedirect.com/science/article/pii/S0166361518303658
https://www.sciencedirect.com/science/article/pii/S0166361518303658
https://www.sciencedirect.com/science/article/pii/S0166361518303658
https://www.sciencedirect.com/science/article/pii/S0166361518303658
https://www.sciencedirect.com/science/article/pii/S0166361518303658
https://www.sciencedirect.com/science/article/pii/S0166361518303658
https://www.sciencedirect.com/science/article/pii/S0166361518303658
https://www.sciencedirect.com/science/article/pii/S0166361518303658
https://doi.org/10.3390/s22062126
https://doi.org/10.3390/s22062126
https://doi.org/10.3390/s22062126
https://doi.org/10.3390/s22062126
https://doi.org/10.3390/s22062126
https://doi.org/10.3390/s22062126
https://www.mdpi.com/1424-8220/22/6/2126
https://www.mdpi.com/1424-8220/22/6/2126
https://www.mdpi.com/1424-8220/22/6/2126
https://www.mdpi.com/1424-8220/22/6/2126
https://www.mdpi.com/1424-8220/22/6/2126
https://www.mdpi.com/1424-8220/22/6/2126
https://www.mdpi.com/1424-8220/22/6/2126
https://www.mdpi.com/1424-8220/22/6/2126
https://www.mdpi.com/1424-8220/22/6/2126
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/libssl1.0.0/+index
https://launchpad.net/ubuntu/trusty/+package/nodejs/+index
https://launchpad.net/ubuntu/trusty/+package/nodejs/+index
https://launchpad.net/ubuntu/trusty/+package/nodejs/+index
https://launchpad.net/ubuntu/trusty/+package/nodejs/+index
https://launchpad.net/ubuntu/trusty/+package/nodejs/+index
https://launchpad.net/ubuntu/trusty/+package/nodejs/+index
https://launchpad.net/ubuntu/trusty/+package/nodejs/+index
https://launchpad.net/ubuntu/trusty/+package/nodejs/+index
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://www.enisa.europa.eu/publications/technical-guideline-on-threats-and-assets
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://doi.org/https://doi.org/10.1007/978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://link.springer.com/book/10.1007%2F978-3-319-56045-8
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909008
https://ieeexplore.ieee.org/abstract/document/9076479
https://ieeexplore.ieee.org/abstract/document/9076479
https://ieeexplore.ieee.org/abstract/document/9076479
https://ieeexplore.ieee.org/abstract/document/9076479
https://ieeexplore.ieee.org/abstract/document/9076479
https://ieeexplore.ieee.org/abstract/document/9076479
https://ieeexplore.ieee.org/abstract/document/9076479
https://doi.org/10.1109/AINS47559.2019.8968698
https://doi.org/10.1109/AINS47559.2019.8968698
https://doi.org/10.1109/AINS47559.2019.8968698
https://doi.org/10.1109/AINS47559.2019.8968698
https://doi.org/10.1109/AINS47559.2019.8968698
https://doi.org/10.1109/AINS47559.2019.8968698
https://doi.org/10.1109/AINS47559.2019.8968698
https://doi.org/10.1109/AINS47559.2019.8968698
https://ieeexplore.ieee.org/document/8968698
https://ieeexplore.ieee.org/document/8968698
https://ieeexplore.ieee.org/document/8968698
https://ieeexplore.ieee.org/document/8968698
https://ieeexplore.ieee.org/document/8968698
https://ieeexplore.ieee.org/document/8968698
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1109/JPROC.2015.2512235
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://ieeexplore.ieee.org/document/7434576?reload=true&arnumber=7434576
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://ieeexplore.ieee.org/document/8109088
https://ieeexplore.ieee.org/document/8109088
https://ieeexplore.ieee.org/document/8109088
https://ieeexplore.ieee.org/document/8109088
https://ieeexplore.ieee.org/document/8109088
https://ieeexplore.ieee.org/document/8109088
https://www.mitre.org/
https://www.mitre.org/
https://www.mitre.org/
https://www.mitre.org/
https://capec.mitre.org/about/glossary.html
https://capec.mitre.org/about/glossary.html
https://capec.mitre.org/about/glossary.html
https://capec.mitre.org/about/glossary.html
https://capec.mitre.org/about/glossary.html
https://capec.mitre.org/about/glossary.html
https://capec.mitre.org/about/glossary.html
https://capec.mitre.org/
https://capec.mitre.org/
https://capec.mitre.org/
https://capec.mitre.org/
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/index.html
https://cve.mitre.org/index.html
https://cve.mitre.org/index.html
https://cve.mitre.org/index.html
https://cve.mitre.org/index.html
https://cve.mitre.org/index.html
https://cwe.mitre.org/about/faq.html
https://cwe.mitre.org/about/faq.html
https://cwe.mitre.org/about/faq.html
https://cwe.mitre.org/about/faq.html
https://cwe.mitre.org/about/faq.html
https://cwe.mitre.org/about/faq.html
https://cwe.mitre.org/about/faq.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html

124 A. Longueira-Romero et al.

55. S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K.F. Tsang, J. Rodriguez, Massive internet
of things for industrial applications: addressing wireless IIOT connectivity challenges and
ecosystem fragmentation. IEEE Ind. Electron. Mag. 11(1), 28–33 (2017). https://doi.org/10.
1109/MIE.2016.2618724, https://ieeexplore.ieee.org/document/7883984

56. L. MuÑoz-González, D. Sgandurra, M. Barrère, E.C. Lupu, Exact inference techniques
for the analysis of bayesian attack graphs. IEEE Trans. Dependable Secure Comput.
16(2), 231–244 (2019). https://doi.org/10.1109/TDSC.2016.2627033, https://ieeexplore.ieee.
org/document/7885532

57. National Institute for Standards and Technology (NIST): CPE – Common Platform Enumera-
tion. https://nvd.nist.gov/products/cpe

58. National Institute for Standards and Technology (NIST): National Vulnerability Database NVD
– Vulnerabilities. https://nvd.nist.gov/vuln/full-listing

59. National Institute for Standards and Technology (NIST): vulnerability assessment – Glossary |
CSRC. https://csrc.nist.gov/glossary/term/vulnerability_assessment

60. B.B. Nielsen, M.T. Torp, A. Møller, Modular call graph construction for security scanning
of node.js applications, in Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis. ISSTA 2021 (Association for Computing Machinery, New
York, NY, USA, 2021), pp. 29–41. https://doi.org/10.1145/3460319.3464836, https://doi.org/
10.1145/3460319.3464836

61. National Institute for Standards and Technology (NIST). https://www.nist.gov/
62. NIST – National Institute of Standards and Technology: National Vulnerability database

(NVD). https://nvd.nist.gov/
63. M.O. Ojo, S. Giordano, G. Procissi, I.N. Seitanidis, A review of low-end, middle-end, and

high-end IOT devices. IEEE Access 6, 70528–70554 (2018). https://doi.org/10.1109/ACCESS.
2018.2879615, https://ieeexplore.ieee.org/document/8528362

64. D. Papp, Z. Ma, L. Buttyan, Embedded systems security: threats, vulnerabilities, and
attack taxonomy, in 2015 13th Annual Conference on Privacy, Security and Trust (PST)
(2015), pp. 145–152. https://doi.org/10.1109/PST.2015.7232966, https://ieeexplore.ieee.org/
document/7232966

65. I. Pashchenko, H. Plate, S.E. Ponta, A. Sabetta, F. Massacci, Vulnerable open source
dependencies: counting those that matter, in Proceedings of the 12th International Symposium
on Empirical Software Engineering and Measurement (ESEM) (2018), https://dl.acm.org/doi/
10.1145/3239235.3268920

66. S.E. Ponta, H. Plate, A. Sabetta, Detection, assessment and mitigation of vulnerabilities in
open source dependencies. Empir. Softw. Eng. 25(5), 3175–3215 (2020). https://doi.org/10.
1007/s10664-020-09830-x, https://doi.org/10.1007/s10664-020-09830-x

67. N. Poolsappasit, R. Dewri, I. Ray, Dynamic security risk management using bayesian attack
graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74 (2012). https://doi.org/10.1109/
TDSC.2011.34, https://ieeexplore.ieee.org/document/5936075

68. O. Qingyu, L. Fang, H. Kai, High-security system primitive for embedded systems, in 2009
International Conference on Multimedia Information Networking and Security, vol. 2 (2009),
pp. 319–321. https://doi.org/10.1109/MINES.2009.48, https://ieeexplore.ieee.org/document/
5368926

69. R.E. Sawilla, X. Ou, Identifying critical attack assets in dependency attack graphs, in Computer
Security – ESORICS 2008, ed. by S. Jajodia, J. Lopez (Springer, Berlin/Heidelberg, 2008), pp.
18–34. https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas

70. K. Shafique, B.A. Khawaja, F. Sabir, S. Qazi, M. Mustaqim, Internet of Things (IoT) for
next-generation smart systems: a review of current challenges, future trends and prospects
for emerging 5G-IoT scenarios. IEEE Access 8, 23022–23040 (2020). https://doi.org/10.1109/
ACCESS.2020.2970118, https://ieeexplore.ieee.org/document/9103025

71. L. Thames, D. Schaefer (eds.), Cybersecurity for Industry 4.0. Springer International Pub-
lishing (2017). https://doi.org/10.1007/978-3-319-50660-9, https://link.springer.com/book/10.
1007/978-3-319-50660-9

72. Thiago Alves: OpenPLC Project. https://www.openplcproject.com/

https://doi.org/10.1109/MIE.2016.2618724
https://doi.org/10.1109/MIE.2016.2618724
https://doi.org/10.1109/MIE.2016.2618724
https://doi.org/10.1109/MIE.2016.2618724
https://doi.org/10.1109/MIE.2016.2618724
https://doi.org/10.1109/MIE.2016.2618724
https://doi.org/10.1109/MIE.2016.2618724
https://doi.org/10.1109/MIE.2016.2618724
https://ieeexplore.ieee.org/document/7883984
https://ieeexplore.ieee.org/document/7883984
https://ieeexplore.ieee.org/document/7883984
https://ieeexplore.ieee.org/document/7883984
https://ieeexplore.ieee.org/document/7883984
https://ieeexplore.ieee.org/document/7883984
https://doi.org/10.1109/TDSC.2016.2627033
https://doi.org/10.1109/TDSC.2016.2627033
https://doi.org/10.1109/TDSC.2016.2627033
https://doi.org/10.1109/TDSC.2016.2627033
https://doi.org/10.1109/TDSC.2016.2627033
https://doi.org/10.1109/TDSC.2016.2627033
https://doi.org/10.1109/TDSC.2016.2627033
https://doi.org/10.1109/TDSC.2016.2627033
https://ieeexplore.ieee.org/document/7885532
https://ieeexplore.ieee.org/document/7885532
https://ieeexplore.ieee.org/document/7885532
https://ieeexplore.ieee.org/document/7885532
https://ieeexplore.ieee.org/document/7885532
https://ieeexplore.ieee.org/document/7885532
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/vuln/full-listing
https://nvd.nist.gov/vuln/full-listing
https://nvd.nist.gov/vuln/full-listing
https://nvd.nist.gov/vuln/full-listing
https://nvd.nist.gov/vuln/full-listing
https://nvd.nist.gov/vuln/full-listing
https://nvd.nist.gov/vuln/full-listing
https://csrc.nist.gov/glossary/term/vulnerability_assessment
https://csrc.nist.gov/glossary/term/vulnerability_assessment
https://csrc.nist.gov/glossary/term/vulnerability_assessment
https://csrc.nist.gov/glossary/term/vulnerability_assessment
https://csrc.nist.gov/glossary/term/vulnerability_assessment
https://csrc.nist.gov/glossary/term/vulnerability_assessment
https://csrc.nist.gov/glossary/term/vulnerability_assessment
https://csrc.nist.gov/glossary/term/vulnerability_assessment
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://www.nist.gov/
https://www.nist.gov/
https://www.nist.gov/
https://www.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/ACCESS.2018.2879615
https://doi.org/10.1109/ACCESS.2018.2879615
https://ieeexplore.ieee.org/document/8528362
https://ieeexplore.ieee.org/document/8528362
https://ieeexplore.ieee.org/document/8528362
https://ieeexplore.ieee.org/document/8528362
https://ieeexplore.ieee.org/document/8528362
https://ieeexplore.ieee.org/document/8528362
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://ieeexplore.ieee.org/document/7232966
https://ieeexplore.ieee.org/document/7232966
https://ieeexplore.ieee.org/document/7232966
https://ieeexplore.ieee.org/document/7232966
https://ieeexplore.ieee.org/document/7232966
https://ieeexplore.ieee.org/document/7232966
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/10.1145/3239235.3268920
https://dl.acm.org/doi/10.1145/3239235.3268920
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1109/TDSC.2011.34
https://doi.org/10.1109/TDSC.2011.34
https://ieeexplore.ieee.org/document/5936075
https://ieeexplore.ieee.org/document/5936075
https://ieeexplore.ieee.org/document/5936075
https://ieeexplore.ieee.org/document/5936075
https://ieeexplore.ieee.org/document/5936075
https://ieeexplore.ieee.org/document/5936075
https://doi.org/10.1109/MINES.2009.48
https://doi.org/10.1109/MINES.2009.48
https://doi.org/10.1109/MINES.2009.48
https://doi.org/10.1109/MINES.2009.48
https://doi.org/10.1109/MINES.2009.48
https://doi.org/10.1109/MINES.2009.48
https://doi.org/10.1109/MINES.2009.48
https://doi.org/10.1109/MINES.2009.48
https://ieeexplore.ieee.org/document/5368926
https://ieeexplore.ieee.org/document/5368926
https://ieeexplore.ieee.org/document/5368926
https://ieeexplore.ieee.org/document/5368926
https://ieeexplore.ieee.org/document/5368926
https://ieeexplore.ieee.org/document/5368926
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://link.springer.com/chapter/10.1007/978-3-540-88313-5_2#citeas
https://doi.org/10.1109/ACCESS.2020.2970118
https://doi.org/10.1109/ACCESS.2020.2970118
https://doi.org/10.1109/ACCESS.2020.2970118
https://doi.org/10.1109/ACCESS.2020.2970118
https://doi.org/10.1109/ACCESS.2020.2970118
https://doi.org/10.1109/ACCESS.2020.2970118
https://doi.org/10.1109/ACCESS.2020.2970118
https://doi.org/10.1109/ACCESS.2020.2970118
https://ieeexplore.ieee.org/document/9103025
https://ieeexplore.ieee.org/document/9103025
https://ieeexplore.ieee.org/document/9103025
https://ieeexplore.ieee.org/document/9103025
https://ieeexplore.ieee.org/document/9103025
https://ieeexplore.ieee.org/document/9103025
https://doi.org/10.1007/978-3-319-50660-9
https://doi.org/10.1007/978-3-319-50660-9
https://doi.org/10.1007/978-3-319-50660-9
https://doi.org/10.1007/978-3-319-50660-9
https://doi.org/10.1007/978-3-319-50660-9
https://doi.org/10.1007/978-3-319-50660-9
https://doi.org/10.1007/978-3-319-50660-9
https://doi.org/10.1007/978-3-319-50660-9
https://doi.org/10.1007/978-3-319-50660-9
https://doi.org/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://link.springer.com/book/10.1007/978-3-319-50660-9
https://www.openplcproject.com/
https://www.openplcproject.com/
https://www.openplcproject.com/
https://www.openplcproject.com/

4 Vulnerability Detection and Response 125

73. A. Ustundag, E. Cevikcan, Industry 4.0: Managing The Digital Transformation (Springer
International Publishing, 2018). https://doi.org/10.1007%2F978-3-319-57870-5

74. J. Viega, H. Thompson, The state of embedded-device security (spoiler alert: It’s bad). IEEE
Secur. Priv. 10(5), 68–70 (2012). https://doi.org/10.1109/MSP.2012.134, https://ieeexplore.
ieee.org/document/6322974?section=abstract

75. Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, C. Wang, Machine learning
and deep learning methods for cybersecurity. IEEE Access 6, 35365–35381 (2018). https://doi.
org/10.1109/ACCESS.2018.2836950, https://ieeexplore.ieee.org/document/8359287

76. S. Zhang, X. Ou, A. Singhal, J. Homer, An empirical study of a vulnerability metric aggregation
method. Tech. rep., Kansas State Univ Manhattan (2011). https://www.cse.usf.edu/~xou/
publications/stmacip11.pdf

77. I. Zografopoulos, J. Ospina, X. Liu, C. Konstantinou, Cyber-physical energy systems security:
threat modeling, risk assessment, resources, metrics, and case studies. IEEE Access 9,
29775–29818 (2021). https://doi.org/10.1109/ACCESS.2021.3058403, https://ieeexplore.ieee.
org/document/9351954

https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1007%2F978-3-319-57870-5
https://doi.org/10.1109/MSP.2012.134
https://doi.org/10.1109/MSP.2012.134
https://doi.org/10.1109/MSP.2012.134
https://doi.org/10.1109/MSP.2012.134
https://doi.org/10.1109/MSP.2012.134
https://doi.org/10.1109/MSP.2012.134
https://doi.org/10.1109/MSP.2012.134
https://doi.org/10.1109/MSP.2012.134
https://ieeexplore.ieee.org/document/6322974?section=abstract
https://ieeexplore.ieee.org/document/6322974?section=abstract
https://ieeexplore.ieee.org/document/6322974?section=abstract
https://ieeexplore.ieee.org/document/6322974?section=abstract
https://ieeexplore.ieee.org/document/6322974?section=abstract
https://ieeexplore.ieee.org/document/6322974?section=abstract
https://ieeexplore.ieee.org/document/6322974?section=abstract
https://ieeexplore.ieee.org/document/6322974?section=abstract
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2018.2836950
https://ieeexplore.ieee.org/document/8359287
https://ieeexplore.ieee.org/document/8359287
https://ieeexplore.ieee.org/document/8359287
https://ieeexplore.ieee.org/document/8359287
https://ieeexplore.ieee.org/document/8359287
https://ieeexplore.ieee.org/document/8359287
https://www.cse.usf.edu/~xou/publications/stmacip11.pdf
https://www.cse.usf.edu/~xou/publications/stmacip11.pdf
https://www.cse.usf.edu/~xou/publications/stmacip11.pdf
https://www.cse.usf.edu/~xou/publications/stmacip11.pdf
https://www.cse.usf.edu/~xou/publications/stmacip11.pdf
https://www.cse.usf.edu/~xou/publications/stmacip11.pdf
https://www.cse.usf.edu/~xou/publications/stmacip11.pdf
https://www.cse.usf.edu/~xou/publications/stmacip11.pdf
https://www.cse.usf.edu/~xou/publications/stmacip11.pdf
https://doi.org/10.1109/ACCESS.2021.3058403
https://doi.org/10.1109/ACCESS.2021.3058403
https://doi.org/10.1109/ACCESS.2021.3058403
https://doi.org/10.1109/ACCESS.2021.3058403
https://doi.org/10.1109/ACCESS.2021.3058403
https://doi.org/10.1109/ACCESS.2021.3058403
https://doi.org/10.1109/ACCESS.2021.3058403
https://doi.org/10.1109/ACCESS.2021.3058403
https://ieeexplore.ieee.org/document/9351954
https://ieeexplore.ieee.org/document/9351954
https://ieeexplore.ieee.org/document/9351954
https://ieeexplore.ieee.org/document/9351954
https://ieeexplore.ieee.org/document/9351954
https://ieeexplore.ieee.org/document/9351954

Chapter 5
Metamorphic Testing for Verification
and Fault Localization in Industrial
Control Systems

Gaadha Sudheerbabu, Tanwir Ahmad, Dragos Truscan, and Jüri Vain

Abstract Security verification of software systems is vital to ensure they are
resilient against targeted attacks. Any vulnerability in the software should be
discovered, classified, and resolved promptly to ensure the operational correctness
and functional safety of the system. However, testing and program debugging of
complex industrial control systems are often challenging due to the test oracle
problem. In this work, we discuss an integrated method for test generation and fault
localization using metamorphic testing. Our method extracts metamorphic relation
from the system specification and uses it as the derived test oracle to distinguish
the successful and failed tests for spectrum-based fault localization. The proposed
approach consists of two phases: a test generation phase using metamorphic testing
and a fault localization phase to assist with the root cause analysis and failure
diagnosis. The method is exemplified on a load position system without explicit
specifications of the test oracle, and the results show that it is effective in discovering
vulnerabilities in the application and significantly assists the developers with root
cause analysis of identified faults that reduces the overall failure diagnosis effort.

Keywords Metamorphic testing · Spectrum-based fault localization · Safety and
Security testing

5.1 Introduction

Industrial control systems (ICSs) operating in safety and security-critical applica-
tions are at serious risk of cyberattacks due to the expansion of attack surface
when increasing automation levels are implemented for operational efficiency. A

G. Sudheerbabu · T. Ahmad · D. Truscan (�)
Åbo Akademi University, Turku, Finland
e-mail: gaadha.sudheerbabu@abo.fi; tanwir.ahmad@abo.fi; dragos.truscan@abo.fi

J. Vain
Tallinn University of Technology, Tallinn, Estonia
e-mail: juri.vain@ttu.ee

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_5

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 5&domain=pdf

 885 52970
a 885 52970 a

mailto:gaadha.sudheerbabu@abo.fi
mailto:gaadha.sudheerbabu@abo.fi
mailto:gaadha.sudheerbabu@abo.fi

 11997 52970 a 11997
52970 a

mailto:tanwir.ahmad@abo.fi
mailto:tanwir.ahmad@abo.fi
mailto:tanwir.ahmad@abo.fi

 20574 52970 a 20574
52970 a

mailto:dragos.truscan@abo.fi
mailto:dragos.truscan@abo.fi
mailto:dragos.truscan@abo.fi

 885 56845 a 885 56845 a

mailto:juri.vain@ttu.ee
mailto:juri.vain@ttu.ee
mailto:juri.vain@ttu.ee
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5
https://doi.org/10.1007/978-3-031-42212-6_5

128 G. Sudheerbabu et al.

software system’s vulnerabilities can be identified in its configuration, implemented
code, or overall design. If exploited, vulnerabilities in such software systems can
compromise their confidentiality, integrity, and availability or result in software
failures leading to substantial financial losses. To ensure software systems are
resilient against targeted attacks, any vulnerabilities in the software should be
discovered, classified, and resolved promptly as early as possible in the stages of
the software development life cycle to mitigate the risk of passing them to possible
exploitation materializing in real loss.

Programmable logic controllers (PLC) are employed in complex industrial
control systems, such as heavy machinery equipment control, nuclear power plants,
energy distribution networks, rail automation, etc. There have been incidents
reported about cyberattacks on nuclear power plants (NPP), such as the emergency
shutdown of the Brown Ferry NPP in 2006, Hatch NPP in 2008, and the Stuxnet
worm attack on the Natanz nuclear facility in 2010, which emphasizes the impor-
tance of security testing of industrial control systems.

Typically, the safety and security aspects of ICSs are addressed differently, and
several definitions and distinctions of the two concepts have been attempted in
literature. Maybe the most notable is [1], which distinguishes between the two as
follows: “Security is concerned with the risks originating from the environment
and potentially impacting the system, whereas safety deals with the risks arising
from the system and potentially impacting the environment.” and “Security typically
addresses malicious risks while safety addresses purely accidental risks.” However,
the border between the two is rather fuzzy since, in many cases, existing safety
issues can be triggered via security attacks [2].

For instance, an investigative study by Lim, Bernard, et al. [3] demonstrated
the impacts of a cyberattack on a Tricon PLC system of a nuclear power plant.
Their research revealed possible ways to trigger an attack and exploit the Tricon
PLC vulnerabilities that use a Triple Modular Redundant (TMR) architecture. The
findings from the study show that using the types of attack: (i) latent failure attack
and (ii) immediate failure attack, the control logic of the Tricon system can be
altered, resulting in a common-mode failure. In a different study [4], the authors
also pinpoint that the security of the PLC system can be affected by control logic
modification, either via program code modification or program input manipulation.
Such code-level vulnerabilities can be introduced by different weaknesses, for
instance, race conditions, uninitialized, hard-coded, or unused variables, improper
input validation, etc. [4, 5] and, in the end, can affect security goals such as
confidentiality, integrity, and availability.

These examples make evident that in order to prevent future cyberattacks on PLC
systems, developing strategies for verifying and validating their functional safety
assurance depending on security aspects must be seamlessly integrated into their
development and maintenance processes. In fact, the ISA/IEC62443-4 standard for
security for industrial automation and control systems [6] explicitly specifies that
in order to ensure system integrity, each component should validate its input that
directly impacts the action of that component. Also, the safety standard IEC 61508
[7] includes requirements to address cyber security in safety instrumented systems

5 Metamorphic Testing for Verification and Fault Localization in ICSs 129

(SIS) to be examined during the process hazards and risk assessment. Any hazardous
events that have significant consequences on plant operation disruption or damage,
personnel injury, or fatality are considered safety and security issues.

In many cases, security weaknesses are root caused in the code-level faults,
especially caused by bad programming practices or code issues [8]. Once a
vulnerability is identified, it is of utmost importance to localize its root cause and
fix it. To this extent, fault localization is known to be a time-consuming and tedious
process [9], and several approaches have been proposed to address this issue [10];
however, only a few in the area of ICSs based on PLCs.

In order to address the above aspects, we extend our previous approach of using
metamorphic testing for ICSs [11] with a fault localization approach to allow us to
pinpoint the root cause of the failing tests. The overall contributions of the approach
consist in using metamorphic testing for PLC-based systems without an explicit
oracle, combining metamorphic testing and fault localization techniques for PLC-
code, and tool support for the approach. Although in this chapter we will exemplify
our approach to a PLC system, the approach in itself is generic, and it can be
extended and applied to a wide spectrum of software systems.

The chapter will briefly introduce metamorphic testing and fault localization
techniques in Sect. 5.2, and then it will present our approach in Sect. 5.3. We
exemplify and evaluate our approach in Sect. 5.4 on an industrial system that
determines the position of a hanging load attached to the hoisting frame of a crane.
We discuss the threats to validity in Sect. 5.5 and related work in Sect. 5.6, and we
draw conclusions in Sect. 5.7.

5.2 Prerequisites

This section describes the metamorphic testing technique and the approaches of
spectrum-based fault localization (SBFL) and program slicing.

5.2.1 Metamorphic Testing

Metamorphic testing (MT) was introduced by Chen et al. [12] as a solution to
test systems without explicit specification of the test oracle. In MT, the behavioral
or functional properties of the system are defined by posing a hypothesis about
using generic relations known as metamorphic relations (MRs) between different
sets of inputs and their expected outputs. An MR is composed of two parts: an
input relation and output relation [13]. An input relation represents the relation
between the inputs of the source and follow-up test cases, whereas an output relation
represents the relation between the expected outputs of the source and follow-up
test cases. A source test case is the first set of tests performed using seed inputs.
The seed inputs are transformed into morphed inputs. The follow-up test cases

130 G. Sudheerbabu et al.

are performed using these morphed inputs. In addition, an implication between the
outputs of source and follow-up test cases is needed to specify the impact of input
transformations on their corresponding outputs.

A relatively recent study [14] shows that metamorphic testing becomes a sound
alternative for testing systems without explicit oracles and that it has been applied
successfully to many application domains, including embedded systems, web
applications, computer graphics, and simulation and modeling.

5.2.2 Fault Localization

Fault localization is the process of identifying the potential fault-triggering program
elements, and it can assist the developer by reducing the effort in the root cause
analysis and program repair. Different fault localization techniques have been
presented in a relatively recent survey [10]. Of those, in this work, we are going
to use spectrum-based fault localization and program slicing, as discussed below.

5.2.2.1 Spectrum-Based Fault Localization

(SBFL) [15] is a popular fault localization technique that examines the execution
of the program under test by collecting run-time measurements and uses them
for program debugging and repair. The method relies on comparing the difference
between the execution path of the program between successful and failed tests and
examining the path taken by failed tests to identify potential faulty locations in the
program. This information collected during program execution, known as program
spectrum [16], is then used to calculate a suspiciousness metric that pinpoints
the suspicious fault-triggering parts of the program under test. Different types of
program spectra information used for SBFL are described in [17] and summarized
in Table 5.1.

Recent surveys [18, 19], on SBFL discuss several suspiciousness metrics such
as Tarantula, Ample, D*2, GP, OP1, OP2, SBI, Jaccard, Ochiai, and Wong 1–3 are
regarded as the most effective in pinpointing fault locations.

5.2.2.2 Program Slicing

Program slicing [20, 21] is a fault localization technique that focuses on analyzing
the relevant part of the program referred to as a slice that may contain a fault.
The four primary categories of slicing techniques are static, dynamic, execution,
and conditioned slicing [22–24]. Dynamic slicing and execution slicing have been
widely applied for program debugging. Xie, Xiaoyuan, et al. [25] proposed the con-
cept of a metamorphic slice by integrating metamorphic testing with dynamic and

5 Metamorphic Testing for Verification and Fault Localization in ICSs 131

Table 5.1 Types of program spectra

Mnemonic Name Description

BHS Branch hit spectra Conditional branches that were executed

BCS Branch count spectra Number of times each conditional branches
was executed

CPS Complete path spectra Complete path that was executed

PHS Path hit spectra Number of times each intraprocedural,
loop-free path was executed

PCS Path count spectra Number of times each intraprocedural,
loop-free path was executed

DHS Data-dependence hit spectra Definition-use pairs that were executed

DCS Data-dependence count spectra Number of times each definition-use, pair was
executed

ETS Execution trace spectra Execution trace that were produced

OPS Output spectra Output that were produced

execution slicing in combination with SBFL. They defined dynamic metamorphic
slice, d_mslice and execution metamorphic slice, e_mslice as follows:

• Given a variable v, the dynamic mslice, .d_mslice(v,MR, T S) is the union of all
.d_slice(v, t), where .d_slice is the set of statements of a program which affect
the value of the variable v, t is a test case of the metamorphic test group, . T S =
{tS1 , tS2 , ..., tSks} and .T F = {tF1 , tF2 , ..., tFkf } are the set of source test cases and
follow-up test cases for its metamorphic relation MR.

. d_mslice(v,MR, T S) =
(ks⋃

i=1

d_slice(v, tSi)

)
∪

(kf⋃
i=1

d_slice(v, tFi)

)

• The execution mslice, .e_mslice(MR, T S), is the union of all .e_slice(t), where
t is a test case of the metamorphic test group:

. e_mslice(MR, T S) =
(ks⋃

i=1

e_slice(tSi)

)
∪

(kf⋃
i=1

e_slice(tFi)

)

Metamorphic testing using a defined MR ensures that a violation or non-violation
of MR is available as a test verdict for each d_mslice or e_mslice in a metamorphic
test suite.

132 G. Sudheerbabu et al.

5.3 Overview of the Approach

We propose an approach for the verification of ICSs by using metamorphic tests
and vulnerability localization by integrating spectrum-based fault location with
metamorphic slicing that can be integrated into the development and operations
phase of ICSs. The integration of the proposed approach in the DevOps life cycle is
presented in Fig. 5.1.

Our combined approach consists of two phases: a metamorphic testing phase
and a fault localization phase. The metamorphic testing phase comprises a test
generator that can use seed inputs either designed manually or extracted from logs at
the monitoring stage of the operations cycle in order to generate metamorphic test
inputs. It also extracts the metamorphic relations from the software requirements
specification (SRS) to determine the verdict of the metamorphic tests. In the fault
localization phase, a set of passed and failed tests from the first phase and the
source code of the system under test are given as input to a fault localizer to identify
the location of the fault(s). The findings from the localizer assist the developers in
debugging and feedback-based program repair. The first phase follows a black box
approach, whereas the second follows a white box approach.

RE
LE

AS
E

PLAN

DEPLOY

O
PER

ATE

CODE

TEST MONITOR

BU
IL

D

METAMORPHIC
TESTING PHASE

FAULT
LOCALIZATION PHASE

LogsTests

Passed/Failed Tests

SRS

MRs

Program repair

Fig. 5.1 Verification and vulnerability localization in DevOps

5 Metamorphic Testing for Verification and Fault Localization in ICSs 133

5.3.1 Metamorphic Testing Phase

As the first contribution of this work, we extend the definition of metamorphic
relation by Chen et al. [26]. We define a metamorphic relation R as being composed
of two relations, .Rin and .Rout , on the inputs and, respectively, the outputs of the
system under test. The satisfiability of MR output relation .Rout by outputs . Yi

and . Yj also presumes that their corresponding seed . Xi and morphed inputs . Xj

satisfy respectively MR input relation . Rin. That is, given . ∀(xi, xj), f (xi) = yi

and .f (xj) = yj , then .Rin(xi, xj) ⇒ Rout (yi, yj), where f denotes the function
that creates outputs .(yi, yj) in response to inputs .(xi, xj) and .Rin is input MR and
.Rout is output MR.

Concretely, given two sets of inputs .XC
s ,XC

m ∈ Xn that satisfy a given constraint
C on the input space and which are satisfying an input relation .Rin(X

C
s ,XC

m), an
output relation .Rout should hold for any corresponding output of the system, that is,
.Rout (Y

C
s , YC

m), where .YC
s = f (XC

s) and .YC
m = f (XC

m). Furthermore, we consider
.Rout to be of any of the types defined in [27]: equivalence, equality, subset, disjoint,
complete, and difference.

As a running example, we use a multiply(x,y,z) program, which calculates
the product of three integer numbers passed as the input parameters. We extract
the metamorphic relation from the associative and commutative properties of
multiplication, meaning that any permutation of the input parameters should yield
the same result as the original combination. Therefore, by applying the previous
definitions, the input relation can be formulated as

.Rin = {(X1, X2)|Permute(X1) = X2} whereas the metamorphic relation is as
follows:

.R = {(X1, X2, Y1, Y2)|Permute(X1) = X2 ⇒ Y1 = Y2}, where the output
relation .Rout is equality.

As a second contribution, we define our MT approach to consist of two steps,
as shown in Fig. 5.2. In the exploration step, seed and, respectively, morphed
inputs .XC

s ,XC
m are created from X satisfying constraints .Cs, Cm respectively, which

specify .Rin and are specific to the system under test (SUT). Then .XC
s ,XC

m are
executed against the SUT and the corresponding seed output . YC

s and respectively
morphed output . YC

m are collected, and the satisfiability of .Rout (Y
C
s , YC

m) is checked,
where .YC

s = f (XC
s) and .YC

m = f (XC
m).

For instance, in the case of the multiply program, if we consider (1,2,3) as
seed input, we create (1,3,2) (2,1,3), (2,3,1), (3,1,2) and (3,2,1) as morphed input.
Table 5.2 shows a few samples of seed-input, morphed-input, and the test inputs
that failed or satisfied the MR for a seed input consisting of two tests: (2,3,4) and
(. −2,3,. −2).

From those pairs of seed and morphed inputs .(XC
si
, XC

mi
) which fail the initial

MR, we manually extract, in the exploitation step, fault-inducing inputs of the
input space. Based on them, we define .C′

m as a more restrictive constraint that
encodes the refinement of .Rin to be satisfied by morphed inputs .XC′

m which we use
to verify the output metamorphic relation .Rout (Y

C′
s , YC′

m), where .YC′
s = f (XC′

s)

134 G. Sudheerbabu et al.

SU
T

R
eq

ui
re

m
en

ts

C
on

st
ra

in
t (

C
s)

Se
ed

 in
pu

t (
X s

)
O

ut
pu

t (
Y s

)

M
or

ph
in

g
Tr

an
sf

or
m

at
io

n
C

on
st

ra
in

t (
C

m
)

M
or

ph
ed

 in
pu

t (
X m

)
O

ut
pu

t (
Y m

)

vi
ol

at
ed

sa
tis

fie
d

M
R

 c
he

ck

(R
ou

t)

M
or

ph
in

g
Tr

an
sf

or
m

at
io

n
C

on
st

ra
in

t (
C

' m
)

Se
ed

ex

tr
ac

tio
n

M
or

ph
ed

 in
pu

t(X
' m

)

In
pu

t s
pa

ce
 (X

)

Se
ed

 in
pu

t (
X s

)

R
in

R
ou

t
M

et
am

or
ph

ic

re
la

tio
ns

R
in

R
in

O
ut

pu
t (

Y'
m

)

Te
st

Ve

rd
ic

t:
FA

IL

Te
st

Ve

rd
ic

t:
PA

SS

Ex
pl

or
at

io
n

 p
ha

se

Fa
ul

t p
at

te
rn

s

Ex
pl

oi
ta

tio
n

 p
ha

se

F
ig
. 5

.2

O
ve
rv
ie
w
 o
f
th
e
m
et
am

or
ph
ic
 te
st
in
g
ph
as
e

5 Metamorphic Testing for Verification and Fault Localization in ICSs 135

Table 5.2 Test results of
program multiply(x, y, z) with
metamorphic test inputs

Seed input Morphed input MR status

(2, 3, 4) (2, 4, 3) Pass

(3, 2, 4) Pass

(3, 4, 2) Pass

(4, 2, 3) Pass

(4, 3, 2) Pass

(. −2, 3, 2) (2, 3, . −2) Fail
(2, . −2, 3) Fail
(3, 2, . −2) Fail
(3, . −2, 2) Fail
(. −2, 2, 3) Pass

and .YC′
m = f (XC′

m). For the multiply program, we notice that tests with a negative
value in the second or third input parameter violate the metamorphic relation during
the exploration phase. Therefore, we generate more morphed test inputs in the
exploitation phase to check the satisfiability of this constraint.

To recap, the novelty of this phase stands in the fact that . C′
m allows us to define a

refined morphed input that tests the system with more precision and effectiveness by
focusing the testing on the parts of the input with a higher probability of discovering
faults as will be demonstrated in Sect. 5.4.

5.3.2 Fault Localization Phase

The fault localization phase in our work is a white box approach, which takes as
input the source code of the component under test and two test suites extracted
from the metamorphic testing phase: a test suite with passed tests and a test suite
with failed tests. These test suites are executed against an instrumented version of
the program and are used to build program spectra information based on which the
suspiciousness score is calculated. The suspiciousness scores allow one to identify
which parts of the code are more frequently executed by failed tests. The code
statements with the highest suspiciousness score are extracted and used for data-
flow analysis, and a fault report is generated. The main steps in the fault localization
phase are depicted in Fig. 5.3 and explained as follows.

5.3.2.1 Test Selection

In this step, a portion of refined morphed inputs from the set of tests in the
metamorphic testing phase is used. These tests are classified as passed and failed
based on the violation or non-violation of MR, defined as the test oracle. In the
current approach, we select an equal number of passed and failed tests from the two

136 G. Sudheerbabu et al.

Instrumenting source code
Instrumented
source code

Test Execution

Source codePassed tests

Failed tests

Program spectra

Suspiciousness score
calculation

Suspiciousness scores

Data flow analysis

Fault report

Call graph and Control
flow graph generation

Suspicious statements/
variablesSuspiciousness elements

extraction

Test Selection

Fig. 5.3 Overview of the fault localization phase

test sets since, based on previous empirical results, it will make the fault analysis
more clear and give equal fairness to each test set.

To exemplify, we choose from Table 5.2 four passed tests (2, 3, 4), (2, 4, 3), (3,
2, 4), and (3, 4, 2) and four failed tests (3, . −2, 2), (3, 2, . −2), (2, . −2, 3), and (2, 3,
. −2).

5.3.2.2 Instrumenting Source Code

The source code of the component under test, including all its function blocks and
functions, is instrumented by adding counter variables to each control statement in
the code (as shown in Fig. 5.4).

The flag Boolean variable is used to control the update of the counters between
successive inputs values globally and to avoid the increment of the counters during
PLC update cycles. Whenever these variables are executed during the test execution,
they will be incremented. The counter variable added in each program is an array
of length equal to the number of branches in the program. The element index
of the counter array is referred to as Block ID. A Block ID represents the basic
block of statements associated with the corresponding counter element and branch

5 Metamorphic Testing for Verification and Fault Localization in ICSs 137

Fig. 5.4 Instrumentation of the structured text code for program multiply(x, y, z)

condition. The application declares the counter variables at the program level as
global variables. This approach provides a run-time measurement of the number
of times a basic block is executed during a test session for a specific metamorphic
group of test inputs.

138 G. Sudheerbabu et al.

5.3.2.3 Test Execution

These test suites are then executed separately against the SUT. The counter values
obtained from each test session are used to identify the difference between execution
paths and to calculate the suspiciousness scores.

5.3.2.4 Suspiciousness Scores Calculation

Value of the counters collected during the test execution is used to calculate the
program spectra and the suspiciousness score at the basic block level, such as branch
hit spectra (BHS) and branch count spectra (BCS). The rationale behind this is that
if the execution of a program element tends to be more frequent in failed tests, the
more likely it is to be faulty and, consequently, higher the suspiciousness score.

In this work, we define a new suspiciousness metric, . savg , with a value between
0 and 1, defined as the arithmetic mean of the three maximal metrics Tarantula,
Ochiai, and Jaccard metrics:

.savg = (sOchiai + sJaccard + sT arantula)/3 (5.1)

These three metrics are most well-known for their fault localization effectiveness
and are widely used in empirical studies [25, 28]. The formulas for the suspicious-
ness metrics used are listed in Table 5.3.

The suspiciousness metric formula is based on four variables [18] that are defined
as follows:

• ef: the number of times a statement is executed (e) in failed tests
• ep: the number of times a statement is executed (e) in passed tests
• nf: the number of times a statement is not executed (n) in failed tests
• np: the number of times a statement is not executed (n) in passed tests

5.3.2.5 Suspicious Elements Extraction

In this step, the suspicious basic blocks in each program are assigned a score
based on the suspiciousness metric formula used. Following this, the execution
mslice and dynamic mslice at the program level are extracted for further analysis.

Table 5.3 Suspiciousness
metric and their formulas

Suspiciousness metric Formula

Ochiai . ef√
(ef +nf)·(ef +ep)

Jaccard . ef
(ef +ep+nf)

Tarantula
.

ef
(ef +nf)

ef
(ef +nf)

+ ep
(ep+np)

5 Metamorphic Testing for Verification and Fault Localization in ICSs 139

For the multiply program (Fig. 5.4), the execution mslice (refer Sect. 5.2.2.2) and
dynamic mslice (refer Sect. 5.2.2.2) are extracted from the instrumented source code
as follows: an execution mslice is set of union of statements in source and follow-
up test execution, that is, .{s1, s2, s3, s4, s6, s8, s13, s14, s16, s18, s21, s23, s24}, where
. si is a statement of the program in (Fig. 5.4). Considering the execution mslice of
multiply program, the statement . s21 is the one associated with the highest suspicious
score, and variable rxyz propagates the error to the output. A dynamic mslice of
the variable rxyz from a test case t belonging to failed tests group is the set of
statements that affected it, that is, .{s21, s24}.

5.3.2.6 Call Graph and Control-Flow Graph Generation

From the test execution, we collect both the number of times each function block
and function is called (as shown in Fig. 5.5) and calculate the suspiciousness
score for each function block and function. The suspiciousness score of a function
block/function is calculated as the highest suspiciousness score of all the basic
blocks in it. A call graph of the component under test and an annotated control-
flow graph (CFG) enable the developers to perform static and dynamic analysis in
program debugging. The graphs are combined with the suspiciousness scores and
provided to the domain expert for further analysis.

The call graph indicates which programs are executed by the PLC main program,
their call order, and the call location from which the inter-procedural calls are

Instrumented ST code CFG

c[1]: (10,10) 0.62

4

14
6

13

x >= 0

1-3

23

11

x < 0

8

c[6]: (0,4) 0.74

c[3]: (0,0) 0

(4,4)

1: x := in_var1;
2: y := in_var2;
3: z := in_var3;
4: FOR i:=1 TO ABS(x) DO
5: IF (flag) THEN c[1] := c[1] + 1; END_IF
6: IF x >= 0 THEN
7: IF (flag) THEN c[2] := c[2] + 1; END_IF
8: rxy := rxy + y;
9: ELSE
10: IF (flag) THEN c[3] := c[3] + 1; END_IF
11: rxy := -(rxy + y);
12: END_IF
13: END_FOR
14: FOR j:=1 TO ABS(z) DO
15: IF (flag) THEN c[4] := c[4] + 1; END_IF
16: IF z >= 0 THEN;
17: IF (flag) THEN c[5] := c[5] + 1; END_IF
18: rxyz := rxyz + rxy;
19: ELSE
20: IF (flag) THEN c[6] := c[6] + 1; END_IF
21: rxyz := rxyz + rxy;
22: END_IF
23: END_FOR
24: out_product := rxyz;

16

2118

24

c[5]: (13,5) 0.39

c[4]: (13,9) 0.57 c[2]: (10,10) 0.62

z >= 0 z <0

(4,4)

(10,10)

(4,4)

(13,5) (0,4)

(0,0)

Fig. 5.5 CFG of the instrumented source code of program multiply (x, y, z)

140 G. Sudheerbabu et al.

made, along with the call parameters and highest assigned suspiciousness score.
This information helps with program analysis and makes debugging faster.

To highlight and visualize the differences in the execution paths taken by the
passed and failed tests, the CFG is annotated with instrumentation counter values
captured as run-time measurements. The edges corresponding to execution paths
taken by failed tests are highlighted with solid lines (red), passed tests with dotted
lines (green), and the edges taken by both passed and failed tests with dashed lines
(blue). For each program, the spectra information is then used by a suspiciousness
metric to calculate and assign a suspiciousness score to the program elements.

Additionally, a thicker arrow with a line width proportional to the assigned score
is employed to draw attention to the suspicious parts as per the weight. If a branching
condition was executed more frequently by the failed test cases than the passed ones,
the edge taken from that branching condition to the basic block is rendered with
thicker edge width. This alerts the viewer that a significant number of failed test
cases likely followed the path, necessitating further investigation.

For example, a control-flow graph built from the instrumented structured text
code of the multiply program containing a statement block with the highest average
suspiciousness score is shown in Fig. 5.5. As one can notice, in this case, we do
not have any edges visited only by the passed tests. Based on this graph, we can
conclude that the branching condition at node 16 plays an essential role in the
execution of the failed tests, and it will be the starting point of the fault localization
investigation.

The programs we instrumented with counter variables consist of loop-free and
loop paths. To accommodate this, we normalize the number of executions of a
statement inside a loop to the range of the number of tests during a test session:

. normalised_value = (value − min_value)/(max_value − min_value)

∗ total_number_of _tests_per_session (5.2)

In the above equation, (min_value, max_value) correspond to the range of the
number of loop iterations. In essence, we use the normalized values of the counter
variables in the range (0, total number of tests per session) to calculate the
suspiciousness scores per the metrics used.

5.3.2.7 Data-Flow Analysis for Suspicious Variables

In order to improve the localization of the fault, we perform the data-flow analysis
of the variables involved in the most suspicious statements. All the variables used
in the statements of each basic block receive the same suspiciousness score as the
basic block. We analyze the suspicious variables in order to trace back the root
cause of the failure. For any given variable v in a program P, data-flow analysis
[29] determines the dynamic interactions between updates of v and subsequent
usages of v during the course of execution of P. A definition (def) of v in the code

5 Metamorphic Testing for Verification and Fault Localization in ICSs 141

denotes a statement that changes the value of v, and a use denotes the statement
that uses the variable v in conditions, predicate use (p-use), or as an argument of
an assignment statement, computational use (c-use). In the data-flow analysis step,
suspicious variables are extracted from the statements in the detected suspicious
blocks and ranked according to the frequency of def-use in those blocks. The def-
use information of the suspicious variables and a heat map of the data variables
mapping them to the block IDs are generated. In order to reduce the effort of the
fault localization process, data analysis is only performed on the statements and
variables that have a suspiciousness score. With respect to the CFG in Fig. 5.5, we
will start investigating the blue and red regions, and discard the rest, as they were not
visited by failed tests. Consequently, we start the investigation from the basic block
on line 21, where statement rxyz := rxyz + rxy; is present. Both variables
involved rxyz and rxy will receive a suspiciousness score of 0.74 in this block and
will be solved into input parameters of the program by unfolding the loop. At the
moment, this step is performed manually, but we are currently investigating ways to
automate it.

5.3.2.8 Fault Report

The fault report contains a synthesis of all the information generated at the previous
steps, such as call and control-flow graphs, suspicious statements per program,
suspicious variables, the def-use information of the suspicious variables, and a heat
map of the suspiciousness score associated with potential faulty elements to help
the developers in fault diagnosis and program debugging.

To summarize, the main contributions of this phase are as follows: we apply
metamorphic slicing and program spectra analysis to structured text code, we use
an average suspiciousness score normalized for loops for calculating suspiciousness,
we generate annotated CFGs to facilitate analysis, and we perform data-flow
analysis on the suspicious variables.

5.4 Evaluation

We have applied our approach on a load position system (LPS) which determines the
position of a hanging load using attached markers on the hoisting frame. The LPS
regularly receives up to 26 markers as [x,y] pixel coordinates from a camera module.
The input may contain three markers on the hoisting frame attached to the load, as
well as different light reflections in the environment (water, rain, snow, dust, etc.),
which the camera filter could not remove. These reflections captured by the camera
module correspond to light reflections in the water while loading containers from
the vessel using a ship-to-shore (STS) crane. Only the markers corresponding to the
three markers placed on the hoisting frame carrying the load are the true markers
that determine the position of the load (see Fig. 5.6). The two markers placed on the

142 G. Sudheerbabu et al.

Fig. 5.6 Positional markers in load position system

sides of the hoisting frame are referred to as side markers. The top marker is used
to detect the tilt of load and to increase the probability for the algorithm to identify
the true markers.

For each set of markers, the LPS tries to identify the true markers and discard
the markers corresponding to reflections. The LPS produces two outputs: a Boolean
value found indicating whether true markers are identified and a vector of three
integers [.Itm1 , Itm2 , Itm3], indicating the index in the input marker array of the
positional markers identified as true markers. Whenever the LPS is not able to
identify the true markers consistently, the entire system can potentially move to
an unsafe state and requires human intervention.

5 Metamorphic Testing for Verification and Fault Localization in ICSs 143

5.4.1 Metamorphic Testing Phase

In the above context, we map the concepts of the metamorphic testing on the LPS
as follows:

5.4.1.1 The Output of the LPS

f ({m1,m2, . . . , mn}) is a pair (f ound, [Itm1 , Itm2 , Itm3]), where mi and tmi[1,3]
are all and true positional markers respectively with two coordinates xi and yi ,
where {tm1, tm2, tm3} ⊆ {m1,m2, . . . , mn}, f ound = T RUE|FALSE and
[Itm1 , Itm2 , andItm3] are the vector of indexes of true markers provided that
f ound = T RUE.

5.4.1.2 Metamorphic Relation

We extract the MR from the requirements of the SUT. For instance, the following
requirement “Assuming that the system is able to classify correctly a set of markers
detected by camera module in the absence of reflections (noise), the system should
be able to classify correctly the same inputs in the presence of reflections” can be
formulated as the following metamorphic relation: .f (Xs) ≡ f (Xs ∪ Xn) where . Xs

and . Xn denote the series of seed input and noise markers respectively.

5.4.1.3 Creating the Seed Input

In our approach, we choose the seed input as a series .Xs = {s1, s2, . . . , sk} of
true marker triplets, where each element .si = {tmi

1, tm
i
2, tm

i
3} has three markers

which is the minimum number of markers needed for correct classification. For
accuracy reasons and in order to avoid unrealistic seed input values, we extract the
seed input from previous executions of the LPS by selecting those log entries that
only contain three positional markers. When the seed input data set is extracted
from the execution trace, we run an initial test session against the SUT to confirm
that all the input marker positions are classified correctly. In case execution logs are
unavailable, the seed input data can be collected from the simulation environment of
the LPS that is validated against a real crane for the set of inputs the seed is extracted
from.

5.4.1.4 The Morphed Input

In our case, the morphing transformation takes each sample in the seed input . Xs

and adds markers corresponding to reflections, which we denote as noise: a series of

144 G. Sudheerbabu et al.

noise markers corresponding to environment reflections .Xn = {n1, n2, n3, . . . , nj },
where .ni ∈ X.

In the exploration step, we use randomly generated noise to perform an initial
exploration of the SUT in order to collect observations and identify fault patterns. To
this extent, we create random noise coordinate pairs of marker vectors of different
lengths ranging from 1 to 23. These noise vectors are appended to the seed input
one at a time. The algorithm for generating morphed input generates random (x,
y) coordinates as noise with a value in the range [0, 131072], which is the size
of the camera frame. Therefore, the morphed input for this step can be defined
as a series .Xm .= {m1,m2, . . . , mk} of sampling the markers, where each sample
.mi = {tmi

1, tm
i
2, tm

i
3, n

i
1, n

i
2, n

i
3, . . . , n

i
j } , .j ≤ 23, is the combination of seed

input markers . Xs and noise markers . Xn.
In the exploitation step, we analyze noise patterns in the morphed input that

caused the system to make incorrect classifications. This led to the following
observations: the samples containing noise markers having the same geometric
pattern of true markers can trigger faulty behavior of the system. Therefore,
we refine the morphed input to a more constrained version of the input space
to exploit the above-mentioned fault patterns. Therefore, the refined morphed
input is denoted as a series of marker samples .X′

m = {m1,m2, . . . , mk}, where
each sample .mi = {tmi

1, tm
i
2, tm

i
3, n

i
1, n

i
2} in the first follow-up test and . mi =

{tmi
1, tm

i
2, tm

i
3, n

i
1, n

i
2, n

i
3} in the second follow-up test and .C′

m is the restrictive
constraint used to refine the added noise to two and three noise markers. Then, the
series . X′

m is the combination of seed input markers . Xs and a restricted set of noise
markers . X′

n satisfying the constraint . C′
m.

In order to automate the creation of the noise markers, we create replicas of
the true markers, thus obtaining a similar geometrical pattern in the noise. For
each sample of true markers in the seed input, we distribute the noise markers in a
rectangular grid pattern in the camera frame in order to obtain a uniform distribution
of samples over the input space.

In addition, each replica of the true marker placed on the grid is rotated by
angles . 45◦, . 90◦, and .135◦ to evenly distribute the noise markers in a star-like pattern
(see Fig. 5.7). Depending on the number of test inputs that we want to obtain, we
can increase or decrease the number of rotations of each sample. We note that
the approach is completely automated and it allows us to change the number of
generated tests by changing the density of the grid and the number of rotations of
the noise markers.

In our work, two sets of experiments have been conducted for each phase in the
approach. For the metamorphic testing phase, we use a seed input with 625 samples,
each containing a sequence of three true markers extracted from execution logs.

In the exploration step, the test generation algorithm produced . 625 × 10 × 23 =
143,750 follow-up tests. From the total of 143,750 executed tests, 143,615 satisfy
the metamorphic relationship, while 135 do not. From the failed tests, 39 selected
the wrong combination of inputs as true markers (false positives), whereas 96 could
not find true markers among the inputs, although they were present there (false

5 Metamorphic Testing for Verification and Fault Localization in ICSs 145

Fig. 5.7 Test data distribution for the guided star approach

negatives). The geometric distribution of the incorrectly classified data points is
shown in Fig. 5.8.

The geometric distribution of incorrectly classified data points is shown in
Fig. 5.8. Further analysis of the failed tests provides us with the following obser-
vations. FP results occurred when the input set contained either a set of two noise
markers resembling the pattern of true side markers or a set of three noise markers
resembling the geometrical pattern of the true marker triplet. FN results occurred
when the input set contained either a number of markers greater than or equal to 6
or a set of two noise markers resembling the pattern of the true side markers.

In the exploitation step, we ran two separate testing sessions in which the refined
morphed input contained two and three noise markers, respectively, besides the
true markers. In both cases, the test generation algorithm produced 2400 refined
morphed test inputs. These refined morphed inputs were created by replicating and
rotating the seed input markers. It resulted in .625 × 4 = 2500 noise markers and
discarding the samples that do not fit in the .131072× 131072 frame after the rotate
morphing action. The results of the test execution are shown in Table 5.4. For
the test session with five input markers, 7 incorrect and 74 missed classifications
have been identified, whereas, for the subsequent test with six input markers, no
incorrect/missed classification occurred.

For the test session with 5 input markers, 7 FP and 74 FN classifications are
identified, whereas, for the subsequent test with 6 input markers, no FN and 92 FP
classifications are identified. The test execution results of the guided method, where
the number of markers is five, contain more FNs indicating that the system is not
identifying the true markers when a replica of two side markers is added as noise.
The distribution of the noise markers in the input space for failed tests (FNs) in the
exploitation phase is shown in Fig. 5.9.

146 G. Sudheerbabu et al.

(a)

(b)

Fig. 5.8 Morphed input corresponding to incorrect classifications in the exploration phase. (a)
Morphed input w.r.t FP output. (b) Morphed input w.r.t FN output

However, the FP results of the follow-up test where the number of markers is
six reveal that a replica of three true markers can trigger an incorrect identification
and compromise the functional safety of the system. The distribution of the noise
markers in the input space for failed tests (FPs) in the exploitation phase is shown
in Fig. 5.10. It is also observed that a replica of two side markers has a low chance
of causing FPs compared to the noise created with a replica of three true markers.
Moreover, only the noise markers corresponding to the exact replica of true markers

5 Metamorphic Testing for Verification and Fault Localization in ICSs 147

Table 5.4 Test execution results

No. of No. of

Method markers tests TPs FPs FNs FDR

Exploration 4–26 143750 143615 39 96 0.0009

Exploitation 5 2400 2319 7 74 0.03

6 2400 2308 92 – 0.04

FNs for markers=5

Fig. 5.9 Input distribution for failed tests (FN) in the exploitation phase

triggered the incorrect identification of true markers. In addition, we can observe
that the noise markers rotated by angles .450, 900, 1350 resulted in TP test cases,
where the system correctly identified the true markers despite the noise.

Table 5.4 also shows the corresponding fault detection ratio (FDR) [14] for each
phase as the number of tests that found a fault in the entire tests suite. As expected,
the exploration phase has a very low FDR due to the random test generation,
whereas in the exploitation phase, FDR has increased around 33 to 44 fold.

The correct classification of true markers, in the morphed output, satisfies the MR
and counts as tests that do not fail. The failed tests include incorrect identification
or missed identification of true markers placed in the first three positions in the
morphed input.

5.4.2 Fault Localization Phase

As previously discussed, the goal of the fault localization phase is to identify the
code statements or variables which are the root cause of the failed tests observed in
the metamorphic testing phase. To this extent, we have to compare the execution
traces of the passed tests against the execution traces of the failed tests. In the
previous phase, we observed two types of incorrect classifications: false positives

148 G. Sudheerbabu et al.

(a)

(b)

Fig. 5.10 Input distribution for failed tests (FP) in the exploitation phase. (a) FPs for markers = 5.
(b) FPs for markers = 6

and false negatives. In order to make the localization more precise, we compare
the execution traces of the tests of one type of failure against the execution traces
of passed tests. The same process can be applied to the other types of failures in
different localization sessions.

In our case, we have randomly selected a number of tests from the false positive
ones and the same number from the passed ones. For instance, a test suite is
generated using the noise marker coordinates from the passed tests in the exploration
phase and another using the fault-inducing noise markers identified from failed tests

5 Metamorphic Testing for Verification and Fault Localization in ICSs 149

in the exploitation phase. We keep the number of markers in each test and the
number of tests in each test suite to be the same as discussed in Sect. 5.3.2.1. It
ensures a fair comparison between the test suites w.r.t to the suspiciousness score
calculated for the execution paths.

For instrumentation purposes, we extract the structured text code of the LPS. The
LPS is written in the PLC programming language function block diagram (FBD) and
structured text (ST). It comprises of inter-procedural calls between function blocks
and functions written in ST, similar to the structure depicted in Fig. 5.5.

We instrumented the code with counters in each program and executed the tests.
In total, we have added six counter arrays, each of length corresponding to the
number of branches in the program. We have selected different sizes of the passed
and failed test suites, namely, 10, 20, and 50 tests, to run the fault localization. Each
test session was run five times for statistical purposes. The scores calculated using
the three formulas slightly varied since different test suites had slightly different
traces in the program, but they still pointed to the same fault, as discussed in the
following. Additionally, the spectra information collected from the test execution
sessions and the calculated suspiciousness score are annotated on the control-flow
graph generated per program in the fault report, similar to the generic examples in
Figs. 5.11 and 5.5. The suspiciousness score annotated in the graph at the program
level is the maximum of the scores assigned at the basic block level for each
program.

For experimentation purposes, we have used the following three suspiciousness
metrics Ochiai, Jaccard, and Tarantula, as well as the average suspiciousness score
defined in the previous section. Table 5.5 summarizes the suspicious variables that
appear most often in the basic blocks and branching conditions identified by the
suspiciousness metrics used when using test suites of size 10. For confidentiality
purposes, the names of variables have been anonymized, and as such, Table 5.5

Fig. 5.11 The call graph of the LPS

150 G. Sudheerbabu et al.

Table 5.5 Suspiciousness score for variables/blocks in programs under test for test suites of
size 10

Suspicious variable Block ID Program name
Scores

Ochiai Jaccard Tarantula Average score

var_in_ss1 8 a 0.71 0.5 0.5 0.57

10 a 0.71 0.5 0.5 0.57

var_out_a_ss1 10 a 0.71 0.5 0.5 0.57

14 a 0.71 0.5 0.5 0.57

17 a 0.71 0.5 0.5 0.57

var_out_a_ss2 10 a 0.71 0.5 0.5 0.57

14 a 0.71 0.5 0.5 0.57

19 a 0.71 0.5 0.5 0.57

var_out_a_sub_ss 1 a_sub 0.71 0.5 0.5 0.57

3 a_sub 0.71 0.5 0.5 0.57

7 a_sub 0.71 0.5 0.5 0.57

2 b 0.71 0.5 0.5 0.57

4 b 0.71 0.5 0.5 0.57

var_out_b_ss1 2 b 0.71 0.5 0.5 0.57

3 b 0.70 0.54 0.70 0.65

6 b 0.71 0.5 0.5 0.57

9 b 0.71 0.5 0.5 0.57

var_out_b_ss2 4 b 0.71 0.5 0.5 0.57

5 b 0.34 0.2 0.29 0.27

6 b 0.71 0.5 0.5 0.57

11 b 0.71 0.5 0.5 0.57

var_out_b_sub_ss 1 b_sub 0.71 0.5 0.5 0.57

3 b_sub 0.71 0.5 0.5 0.57

7 b_sub 0.71 0.5 0.5 0.57

9 b_sub 0.71 0.5 0.5 0.57

11 b_sub 0.71 0.5 0.5 0.57

15 b_sub 0.71 0.5 0.5 0.57

19 b_sub 0.57 0.36 0.8 0.57

21 b_sub 0.32 0.1 1 0.47

var_in_a_ss1 7 c 0.67 0.47 0.5 0.54

var_in_a_ss2 11 c 0.89 0.8 1 0.89
var_in_b_ss1 15 c 0.67 0.47 0.5 0.54

var_in_b_ss2 19 c 0.89 0.8 1 0.89
var_out_c_ss 52 c 0.67 0.47 0.5 0.54

shows the masked names of the variables which correspond to the suspicious
variables in the programs under test. In the next step, these variables whose values
are defined and used repeatedly in suspicious blocks and their def-use chains in
the control flow and inter-procedural flow are subjected to data-flow analysis. As

5 Metamorphic Testing for Verification and Fault Localization in ICSs 151

one can notice, the average score indicates the same ranking as the other three
suspiciousness metrics.

To that extent, all suspicious variables extracted from the basic blocks are
subjected to a data-flow analysis to improve the precision of the fault localization. A
heat map for the suspicious variables extracted from suspicious blocks in Table 5.5
based on their def-use chain is created as shown in Fig. 5.12. Data-flow analysis of
these variables based on their dynamic_mslice and def-use chain reveals the variable
which propagates the error triggering the fault.

17

14

10

11

7

10

8

B
lo

ck
_I

D
 w

.r.
t

va
r_

in
_a

_(
ss

1/
ss

2)

0.89

0.54

0.89

0.54

0.890.89

0.540.54

0.89

0.54

0.89

0.54

B
lo

ck
_I

D
 w

.r.
t

va
r_

in
_s

s1

0.57

0.57

7

3

1

B
lo

ck
_I

D
 w

.r.
t

va
r_

ou
t_

a_
su

b_
ss

19

14

10

B
lo

ck
_I

D
 w

.r.
t

va
r_

ou
t_

a_
ss

2

4

2

B
lo

ck
_I

D
 w

.r.
t

va
r_

in
_s

s1

9

6

3

2

B
lo

ck
_I

D
 w

.r.
t

va
r_

ou
t_

b_
ss

1

11

6

5

4

B
lo

ck
_I

D
 w

.r.
t

va
r_

ou
t_

b_
ss

2

21

19

15

11

9

7

3

1

B
lo

ck
_I

D
 w

.r.
t

va
r_

ou
t_

b_
su

b_
ss

21

B
lo

ck
_I

D
 w

.r.
t

va
r_

ou
t_

c_
ss

19

15

B
lo

ck
_I

D
 w

.r.
t

va
r_

in
_b

_(
ss

1/
ss

2)

Program a

Program c

Program a_sub

Program b

Program b_sub

Average_score

Average_score

Average_score

Average_score

Average_score

Average_score

Average_score

Average_score

Average_score

0.57

0.57

0.57

Average_score

0.57

0.57

0.57

Average_score

0.57

0.57

0.57

0.57

0.65

0.57

0.57

0.57

0.57

0.57

0.57

0.57

0.57

0.57

0.47

0.57

0.27

0.57

0.47

0.54

Suspiciousness
score

1

0.8

0.6

0.4

0.2

0

B
lo

ck
_I

D
 w

.r.
t

va
r_

ou
t_

a_
ss

1

0.57

0.57

Fig. 5.12 Heat maps revealing def-use chain of suspicious variables on the call graph of the LPS
in Fig. 5.11

152 G. Sudheerbabu et al.

In this case, variables var_in_a_ss2 and var_in_b_ss2 in program c appeared in
the basic blocks with maximum suspiciousness score indicated by all the metrics
used in this experiment. The data-flow related to these variables was analyzed
further to determine their def-use chain in the inter-procedural call structure.
The dynamic mslice extracted for these variables revealed that the value of these
variables was defined in program a and program b, respectively, based on the calls
to subprograms a_sub and b_sub. According to the data-flow analysis stated above
and tracking the definition and usage of variables associated with the identified
suspicious blocks, we reach the variable var_in_ss1, an input variable in program
a and program b. This variable var_in_ss1 was used in the branching condition
that impacts the definition of the variables var_out_a_ss2 and var_out_b_ss2 whose
value was propagated in the program flow and appear in program c as the most
suspicious variables var_in_a_ss2 and var_in_b_ss2. Based on these findings,
var_in_ss1 was suspected of significantly impacting the program flow in terms of
influencing the def-use chain of the suspicious variables listed in Table 5.5. This
study revealed how the definition and usage of suspicious variables were propagated
in the program flow to induce the fault and result in the incorrect final state.

Upon inspection of the data flow of the var_in_ss1 variable, we discovered that it
was using a hard-coded value instead of using the value assigned as an input while
calling program a and program b. Such a fault has direct implications on the safety
of the system, which, if properly implemented, will move to a safe state when the
input classification is not successful. However, this fault may also be considered
a security vulnerability according to Common Weakness Enumeration database,
CWE-547: use of hard-coded, security-relevant constant.1

In addition, in the presence of this vulnerability, the LPS is not able to filter out
incorrect (noisy) input which is consistent with another type of security vulnera-
bility, namely, CWE-20: improper input validation.2 Since the LPS is connected to
other components via a network, an attacker can inject “noise” into the input of the
LPS, which can affect the classification of the markers, either sending the system to
an unsafe state or providing false information about the position of the load.

Upon updating the assignment of this variable and re-executing the failed test
suite, all the previous metamorphic tests passed. And the test results also proved
that the system no longer exhibits faulty behavior in the follow-up tests.

Table 5.6 shows how the proposed method of metamorphic program slicing
and data slicing based on def-use chain analysis reduces the scope of data-flow
analysis to 35% of the entire input space. Based on these results, the integrated
method proposed in this work considerably reduced the complexity and effort in
fault diagnosis and program debugging. Therefore, it shows the applicability and
effectiveness of the technique in the chosen case study.

To evaluate the benefits and effectiveness of the proposed approach, we have
also conducted a controlled experiment involving 20 software professionals as

1 https://cwe.mitre.org/data/definitions/547.html
2 https://cwe.mitre.org/data/definitions/20.html

https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/547.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html

5 Metamorphic Testing for Verification and Fault Localization in ICSs 153

Table 5.6 Reduction in
scope of search using the
metamorphic fault
localization approach

Phase Reduction in scope of search

Code analysis 233/701 LoC

Code analysis 65/133 basic blocks

Data-flow analysis 60/170 variables

subjects. They were divided into two balanced groups with an equal distribution
of programming expertise and experience level. The first group received the source
code of a program for triangle classification having 27 lines of code. The code
had an inserted fault in it and was accompanied by a set of passed and failed
metamorphic tests. The second group received the same source code, the passed and
failed tests, and the annotated CFGs that highlighted the suspicious parts in the code.
The second group also received preliminary training on how the annotated CFGs
should be interpreted. Each group had 15 minutes to find the inserted fault using
the available material. The second group was able to identify faster the fault in the
code in an average of 8 minutes, while for the first group, only one person localized
the fault before the end of the experiment. After the experiment, the first group also
received the same training on how to use the annotated control-flow graph. The
participants in both groups overwhelmingly agreed that having the annotated CFGs
greatly facilitates the fault localization process.

5.4.3 Tool Support

Most steps of the approach are fully automated. For instance, in the metamorphic
testing phase, the test generation for the exploitation and exploration phases is fully
automated. Only the formalization of the metamorphic relation and the extraction
of the fault-revealing patterns require human intervention. In the fault localization
phase, program extraction, instrumentation, test execution, score calculation, and
graph generation are also fully automated. Currently, only the data-flow analysis
requires manual effort. We plan to automate the inter-procedural data-flow analysis
by extracting and resolving the dependencies of suspicious variables in different
subprograms.

To implement automation, we have used Python and the Python testing frame-
work Pytest, which interacts with the SUT to perform automated test execution
of the metamorphic and fault localization phases. The application program runs
on CODESYS SoftPLC V3.5 with an in-built OPC UA server that enables the
communication between the CODESYS OPC UA server [30] and the Python OPC
UA client [31] via the OPC UA [32] data exchange protocol as shown in Fig. 5.13.
The run-time measurements, such as code coverage and executable lines of code for
the programs under test, were measured using the CODESYS Profiler.

154 G. Sudheerbabu et al.

Meta Tester OPC UA Client OPC UA Server PLC_PRG

Localizer

Passed/Failed
Tests

Metamorphic
relations

Execution
logs

Fault Report

v 3.5

PLC_PRG

Fig. 5.13 Tool chain for metamorphic test generation and fault localization

5.5 Threats to Validity

In this section, we discuss the possible threats to the validity of the results of our
study.

5.5.1 Construct Validity

The current work has not been validated against time-critical systems. Our experi-
ments are applied to a PLC application written in FBDs and structured text with no
timer functions. It is possible that the approach may collect less accurate execution
information in the presence of timer-dependent variables. However, the system in
our study is a real-world ICS in PLC programming language for which the proposed
method using OPC UA as a communication protocol is standardized under Industry
4.0 for its technical interoperability [33].

5.5.2 External Validity

The fault detection and localization effectiveness reported in the study are based on
the chosen metamorphic relation for the system under test. The results reported from
the experiments are based on the input variables defined in the input MR and output
behavior, and the test verdict relies on those. Like any other testing method, the
MT is not exhaustive, even if the MR has been identified. For ICSs with large input

5 Metamorphic Testing for Verification and Fault Localization in ICSs 155

space, different MRs can be identified. The choice of MRs that uses a different set
of input variables may influence the outcome of both the metamorphic testing and
fault localization phase. Therefore, the approach’s effectiveness for any industrial
software system with a test oracle problem may vary depending on the metamorphic
relations that can be defined for it.

5.5.3 Conclusion Validity

Based on current experimental evaluations, we noticed that the average score of the
suspiciousness metrics Ochiai, Jaccard, and Tarantula we proposed gives a good
perspective on the spectrum-based fault localization. However, more investigations
are needed to evaluate the risk of imprecision while using the proposed score in
pinpointing the fault location for other industrial software systems.

5.6 Related Work

The metamorphic testing technique has been successfully applied in several appli-
cation domains for testing software systems with an oracle problem. Among the
most popular ones are Web services and applications [34–36], embedded systems
[37–39], simulation and modeling [40–42], computer graphics [43, 44], and various
other domains.

In a study by Wang et al. [45], a metamorphic testing system called METAOD
designed for deep learning-based object detectors (ODs) is used for identifying
objects in an image using neural networks. The METAOD system is used for object
extraction, selection, and insertion, to test the image classification accuracy of the
object detectors. The object extraction module of METAOD takes a set of images as
input and extracts object instances using segmentation techniques. Such synthetic
images with inserted objects are used to test the ODs to evaluate their prediction
accuracy. The synthetic images that triggered erroneous predictions were used to
retrain the model and improve its accuracy. Even though the techniques are different,
the test data generation by noise insertion, also used in our study, is similar to
the synthetic image generation method in METAOD. However, our work focuses on
systematically generating morphed input from failure-inducing patterns discovered
in source and follow-up test executions.

Xie, Xiaoyuan, et al. [25] introduced the concept of metamorphic slicing by
integrating metamorphic testing and program slicing in combination with SBFL.
They conducted an experimental study on nine programs of varying sizes using
three MRs for each. They used three risk evaluation formulas, Jaccard, Ochiai, and
Tarantula, to show the effectiveness of the approach in fault localization and the
practical applicability of the technique in applying SBFL for application programs
with an oracle problem. Their study also identified two faults in the chosen programs

156 G. Sudheerbabu et al.

and proved that the approach of using violation or non-violation of a metamorphic
test group as a test oracle for SBFL achieved a performance level quite similar to
conventional SBFL techniques while testing systems with test oracle. Similarly, we
combine metamorphic testing with SBFL and program slicing techniques.

In his study on program debugging, Zeller, A [46] discussed program slicing
based on the control-flow and data-flow dependencies to form the program-
dependence graph. Their approach of slicing programs based on dependencies could
detect code smells such as unreachable code, uninitialized variables, and unused
values, thereby assisting in failure diagnosis by reducing the scope of analysis to
deduce the cause of program failure. However, our work has the additional step
of integrating data-flow analysis with a definition-use chain associated with inter-
procedural calls for fault localization.

A recent survey about challenges and opportunities in metamorphic testing [26]
discusses the possibility of extending the integration of MT and SBFL to wider
application domains that face the oracle problem. Owing to the complexity of
such systems that might include inter-procedural program structure, they are also
categorized as hard to debug and verify for any underlying code vulnerabilities. In
our work, we focus on the applicability and effectiveness of this integrated method
capitalizing on usability features for industry scale control software testing facing
an oracle problem and hence being commonly considered non-testable. We also
provide several improvements, such as using normalized values of the counters for
evaluating loops, analyzing data-flow information, and using several metrics for
suspiciousness score calculation.

5.7 Conclusions and Future work

We proposed a metamorphic testing approach for PLC-based ICSs integrated with
a fault localization technique. The main contributions of our approach were the
following:

1. A two-phase metamorphic testing approach comprises an exploration phase in
which we learn about fault patterns of the system under test and an exploitation
phase where the observed fault patterns are used for targeted testing.

2. Fault localization is based on the results of the metamorphic tests. It combines the
spectrum-based fault localization and program slicing technique integrated with
inter-procedural control-flow analysis and data-flow analysis for PLC programs.

3. Tool support for metamorphic test generation, execution, and fault localization
in PLC programs.

The presented approach is generic and applicable to systems for which the source
code is available and written in an imperative programming language and for which
metamorphic relations can be identified. For validation purposes, we conducted
our experiment on a PLC program unit comprising four function blocks and two
functions written in structured text. The fault analysis focuses only on the fault

5 Metamorphic Testing for Verification and Fault Localization in ICSs 157

type discovered using the MR defined in the metamorphic testing phase. Hence the
empirical analysis and conclusions made are proven effective on this experimental
setup, programs, and the size of the test suite chosen for this study. It is also to
be noted that the fault localization performance reported in this study is based on
only one MR defined in the metamorphic testing phase. A different set of MRs with
varying test inputs may result in different results in the fault localization phase.
Future work will also investigate applying heuristic methods for the selection of
fault-inducing inputs for defining MRs.

The main advantages of this approach, in addition to alleviating the oracle
problem, are providing a tool-based approach for fault localization and program
debugging to assist the developers with root cause analysis and future regression
testing of ICS. The study presented in this paper proves that metamorphic testing
combined with SBFL can considerably reduce the effort in program debugging and
program repair of real-time ICS. The identification of a metamorphic relation is
done manually based on the specification of the system. A known challenge in
the identification of MRs is the need for domain expertise to assess the expected
input and output behavior of the system. Therefore, it is of interest to conduct
a comparative study on the findings of fault localization and its effectiveness in
terms of fault localization performance based on the choice of MRs and different
types of metamorphic groups of inputs. As a future work, we plan to automate the
identification of MR for an ICS from its specification and explore the applicability
of metamorphic and mutation-based approaches for testing ICS and apply heuristic
techniques for minimization of test suites. We also plan to improve the automation
of the fault localization phase using machine-learning methods and thus reduce the
need for manual analysis.

Acknowledgments This work has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No. 957212 (VeriDevOps).

References

1. L. Piètre-Cambacédès, C. Chaudet, Int. J. Crit. Infrastruct. Prot. 3(2), 55 (2010).
https://doi.org/10.1016/j.ijcip.2010.06.003. https://www.sciencedirect.com/science/article/pii/
S1874548210000247

2. G. Kavallieratos, S. Katsikas, V. Gkioulos, Future Internet 12(4), 65 (2020)
3. B. Lim, D. Chen, Y. An, Z. Kalbarczyk, R. Iyer, in 2017 IEEE 22nd Pacific Rim International

Symposium on Dependable Computing (PRDC) (IEEE, 2017), pp. 205–210
4. R. Sun, A. Mera, L. Lu, D. Choffnes, in 2021 IEEE European Symposium on Secu-

rity and Privacy (IEEE Computer Society, Los Alamitos, CA, USA, 2021), pp. 385–
402. https://doi.org/10.1109/EuroSP51992.2021.00034. https://doi.ieeecomputersociety.org/
10.1109/EuroSP51992.2021.00034

5. A. Serhane, M. Raad, R. Raad, W. Susilo, in 2018 International Conference on Computer and
Applications (ICCA) (2018), pp. 348–352. https://doi.org/10.1109/COMAPP.2018.8460287

6. IEC, IEC 62443 Security for Industrial Automation and Control Systems (IACS) part 4–
2: Technical Requirements for IACS components. Standard, International Electrotechnical
Commission (IEC), Geneva, CH (2019)

https://doi.org/10.1016/j.ijcip.2010.06.003
https://doi.org/10.1016/j.ijcip.2010.06.003
https://doi.org/10.1016/j.ijcip.2010.06.003
https://doi.org/10.1016/j.ijcip.2010.06.003
https://doi.org/10.1016/j.ijcip.2010.06.003
https://doi.org/10.1016/j.ijcip.2010.06.003
https://doi.org/10.1016/j.ijcip.2010.06.003
https://doi.org/10.1016/j.ijcip.2010.06.003
https://doi.org/10.1016/j.ijcip.2010.06.003
https://doi.org/10.1016/j.ijcip.2010.06.003
https://www.sciencedirect.com/science/article/pii/S1874548210000247
https://www.sciencedirect.com/science/article/pii/S1874548210000247
https://www.sciencedirect.com/science/article/pii/S1874548210000247
https://www.sciencedirect.com/science/article/pii/S1874548210000247
https://www.sciencedirect.com/science/article/pii/S1874548210000247
https://www.sciencedirect.com/science/article/pii/S1874548210000247
https://www.sciencedirect.com/science/article/pii/S1874548210000247
https://www.sciencedirect.com/science/article/pii/S1874548210000247
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.ieeecomputersociety.org/10.1109/EuroSP51992.2021.00034
https://doi.ieeecomputersociety.org/10.1109/EuroSP51992.2021.00034
https://doi.ieeecomputersociety.org/10.1109/EuroSP51992.2021.00034
https://doi.ieeecomputersociety.org/10.1109/EuroSP51992.2021.00034
https://doi.ieeecomputersociety.org/10.1109/EuroSP51992.2021.00034
https://doi.ieeecomputersociety.org/10.1109/EuroSP51992.2021.00034
https://doi.ieeecomputersociety.org/10.1109/EuroSP51992.2021.00034
https://doi.ieeecomputersociety.org/10.1109/EuroSP51992.2021.00034
https://doi.ieeecomputersociety.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1109/COMAPP.2018.8460287
https://doi.org/10.1109/COMAPP.2018.8460287
https://doi.org/10.1109/COMAPP.2018.8460287
https://doi.org/10.1109/COMAPP.2018.8460287
https://doi.org/10.1109/COMAPP.2018.8460287
https://doi.org/10.1109/COMAPP.2018.8460287
https://doi.org/10.1109/COMAPP.2018.8460287
https://doi.org/10.1109/COMAPP.2018.8460287

158 G. Sudheerbabu et al.

7. V&V IEC-61508-3:2010 (2021). https://assets.vector.com/cms/content/products/VectorCAST/
Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-
61508_v2.0.pdf

8. S.E. Valentine, PLC code vulnerabilities through SCADA systems. Ph.D. thesis, University of
South Carolina, USA (2013). AAI3561883

9. A. Zeller, Computer 34(11), 26 (2001)
10. W.E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, IEEE Trans. Softw. Eng. 42(8), 707 (2016).

https://doi.org/10.1109/TSE.2016.2521368
11. G. Sudheerbabu, T. Ahmad, F. Sebek, D. Truscan, J. Vain, I. Porres, in 2022 IEEE 27th

International Conference on Emerging Technologies and Factory Automation (ETFA) (2022),
pp. 1–4. https://doi.org/10.1109/ETFA52439.2022.9921439

12. T.Y. Chen et al., arXiv preprint arXiv:2002.12543 (2020)
13. H. Liu et al., in 12th International Conference on Quality Software (IEEE, 2012), pp. 59–68
14. S. Segura et al., IEEE Trans. Softw. Eng. 42(9), 805 (2016)
15. R. Abreu, P. Zoeteweij, R. Golsteijn, A.J. Van Gemund, J. Syst. Softw. 82(11), 1780 (2009)
16. T. Reps, T. Ball, M. Das, J. Larus, in Software Engineering—Esec/Fse’97 (Springer, 1997), pp.

432–449
17. M.J. Harrold, G. Rothermel, K. Sayre, R. Wu, L. Yi, Softw. Test. Verif. Reliab. 10(3), 171

(2000)
18. Q.I. Sarhan, Á. Beszédes, IEEE Access 10, 10618 (2022)
19. T. Wu, Y. Dong, M.F. Lau, S. Ng, T.Y. Chen, M. Jiang, Appl. Sci. 10(1), 398 (2020)
20. M. Weiser, Commun. ACM 25(7), 446 (1982)
21. M. Weiser, IEEE Trans. Softw. Eng. 8(4), 352 (1984)
22. H. Agrawal, J.R. Horgan, S. London, W.E. Wong, in Proceedings of Sixth International

Symposium on Software Reliability Engineering. ISSRE’95 (IEEE, 1995), pp. 143–151
23. M. Harman, R. Hierons, Softw. Focus 2(3), 85 (2001)
24. B. Xu, J. Qian, X. Zhang, Z. Wu, L. Chen, ACM SIGSOFT Softw. Eng. Notes 30(2), 1 (2005)
25. X. Xie, W.E. Wong, T.Y. Chen, B. Xu, Inf. Softw. Technol. 55(5), 866 (2013)
26. T.Y. Chen, F.C. Kuo, H. Liu, P.L. Poon, D. Towey, T. Tse, Z.Q. Zhou, ACM Comput, Surv.

51(1), 1 (2018)
27. S. Segura et al., IEEE Trans. Softw. Eng. 44(11), 1083 (2017)
28. Y. Wang, Z. Huang, B. Fang, Y. Li, IEEE Access 6, 8925 (2018)
29. M.S. Hecht, Flow Analysis of Computer Programs (Elsevier Science Inc., 1977)
30. CODESYS OPC UA (2020). https://www.codesys.com/products/codesys-runtime/opc-ua.

html
31. O. Roulet-Dubonnet, Python OPC-UA Documentation (2021). https://python-opcua.

readthedocs.io/en/latest/index.html
32. S.H. Leitner, W. Mahnke, ABB Corporate Research Center 48(61–66), 22 (2006)
33. M. Schleipen, S.S. Gilani, T. Bischoff, J. Pfrommer, Procedia Cirp 57, 315 (2016)
34. W.K. Chan et al., Int. J. Web Serv. Res. 4(2), 61 (2007)
35. C.A. Sun et al., in 2011 IEEE International Conference on Web Services (IEEE, 2011), pp.

283–290
36. Z.Q. Zhou et al., IEEE Trans. Softw. Eng. 42(3), 264 (2015)
37. F.C. Kuo et al., in 2011 IEEE 36th Conference on Local Computer Networks (IEEE, 2011), pp.

291–294
38. T.Y. Chen et al., J. Syst. Softw. 116, 177 (2016)
39. U. Kanewala et al., Softw. Test. Verif. Reliab. 26(3), 245 (2016)
40. J. Ding et al., in Proceedings of the 6th International Workshop on Automation of Software Test

(2011), pp. 1–7
41. A. Núñez et al., J. Grid Comput. 10(1), 185 (2012)
42. P.C. Cañizares et al., Procedia Comput. Sci. 51, 2804 (2015)
43. W.K. Chan et al., Softw. Test. Verif. Reliab. 20(2), 89 (2010)

https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://assets.vector.com/cms/content/products/VectorCAST/Docs/Whitepapers/English/Understanding_Verification_Validation_of_Software_Under_IEC-61508_v2.0.pdf
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/ETFA52439.2022.9921439
https://doi.org/10.1109/ETFA52439.2022.9921439
https://doi.org/10.1109/ETFA52439.2022.9921439
https://doi.org/10.1109/ETFA52439.2022.9921439
https://doi.org/10.1109/ETFA52439.2022.9921439
https://doi.org/10.1109/ETFA52439.2022.9921439
https://doi.org/10.1109/ETFA52439.2022.9921439
https://doi.org/10.1109/ETFA52439.2022.9921439
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://www.codesys.com/products/codesys-runtime/opc-ua.html
https://python-opcua.readthedocs.io/en/latest/index.html
https://python-opcua.readthedocs.io/en/latest/index.html
https://python-opcua.readthedocs.io/en/latest/index.html
https://python-opcua.readthedocs.io/en/latest/index.html
https://python-opcua.readthedocs.io/en/latest/index.html
https://python-opcua.readthedocs.io/en/latest/index.html
https://python-opcua.readthedocs.io/en/latest/index.html
https://python-opcua.readthedocs.io/en/latest/index.html
https://python-opcua.readthedocs.io/en/latest/index.html

5 Metamorphic Testing for Verification and Fault Localization in ICSs 159

44. T. Jameel et al., in 2015 IEEE/ACIS 16th International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (IEEE, 2015),
pp. 1–6

45. S. Wang, Z. Su, in 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE) (IEEE, 2020), pp. 1053–1065

46. A. Zeller, Why Programs Fail: A Guide to Systematic Debugging (Elsevier, 2009)

Chapter 6
Interactive Application Security Testing
with Hybrid Fuzzing and Statistical
Estimators

Ramon Barakat, Jasper von Blanckenburg, Roman Kraus, Fabian Jezuita,
Steffen Lüdtke, and Martin A. Schneider

Abstract Both static analysis and dynamic analysis are methods to identify
vulnerabilities in programs. Whereas sound static analysis is strong in identifying
all vulnerabilities of a certain type by analyzing all program paths, it suffers from
high numbers of false positives which can make this approach infeasible for large
amounts of code. In contrast, dynamic analysis, in particular fuzzing, has a low
number of false positives but suffers from the inability to prove the absence of
bugs since it covers only specific execution paths. Therefore, many bug-triggering
paths may not be executed. This can then lead to potentially high numbers of false
negatives, i.e., missing observations of bugs which are actually present in the code.
Since both methods have complementary strengths and weaknesses, interactive
application security testing (IAST) aims at obtaining the best from both methods
by a smart and interactive combination to mutually eliminate the weaknesses of
each method. For instance, fuzzing techniques can be used to discriminate the true
positives and the false positives from the static analysis, and static analysis can
benefit from concrete values observed during test execution to make the analysis
more precise. However, interactive application security testing comes with its own
challenges that need to be solved using a set of methods and techniques. In
this chapter, we present an approach to both automatically assess static analysis
results using fuzzing to make static analysis feasible for large-scale projects and to
improve fuzzing with results from static analysis, e.g., by using results from constant
propagation, such as magic bytes, to cover code fragments that are hard to reach for
traditional fuzzers.

Keywords Interactive application security testing · Hybrid fuzzing · Constraint
solving · Static analysis · Statistical methods

R. Barakat · J. von Blanckenburg · R. Kraus · F. Jezuita · S. Lüdtke, · M. A. Schneider (�)
Fraunhofer Institute for Open Communication Systems (FOKUS), Berlin, Germany
e-mail: Ramon.Barakat@fokus.fraunhofer.de; Jaspervon.Blanckenburg@fokus.fraunhofer.de;
Roman.Kraus@fokus.fraunhofer.de; Fabian.Jezuita@fokus.fraunhofer.de;
Steffen.Ludtke@fokus.fraunhofer.de; Martin.Schneider@fokus.fraunhofer.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_6

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 6&domain=pdf

 885 54631 a 885 54631
a

mailto:Ramon.Barakat@fokus.fraunhofer.de
mailto:Ramon.Barakat@fokus.fraunhofer.de
mailto:Ramon.Barakat@fokus.fraunhofer.de
mailto:Ramon.Barakat@fokus.fraunhofer.de

 15497 54631 a 15497 54631 a

mailto:Jaspervon.Blanckenburg@fokus.fraunhofer.de
mailto:Jaspervon.Blanckenburg@fokus.fraunhofer.de
mailto:Jaspervon.Blanckenburg@fokus.fraunhofer.de
mailto:Jaspervon.Blanckenburg@fokus.fraunhofer.de

 -2016 55738 a -2016
55738 a

mailto:Roman.Kraus@fokus.fraunhofer.de
mailto:Roman.Kraus@fokus.fraunhofer.de
mailto:Roman.Kraus@fokus.fraunhofer.de
mailto:Roman.Kraus@fokus.fraunhofer.de

 11916 55738 a 11916 55738 a

mailto:Fabian.Jezuita@fokus.fraunhofer.de
mailto:Fabian.Jezuita@fokus.fraunhofer.de
mailto:Fabian.Jezuita@fokus.fraunhofer.de
mailto:Fabian.Jezuita@fokus.fraunhofer.de

 -2016 56845 a -2016 56845 a

mailto:Steffen.Ludtke@fokus.fraunhofer.de
mailto:Steffen.Ludtke@fokus.fraunhofer.de
mailto:Steffen.Ludtke@fokus.fraunhofer.de
mailto:Steffen.Ludtke@fokus.fraunhofer.de

 12301 56845 a 12301 56845 a

mailto:Martin.Schneider@fokus.fraunhofer.de
mailto:Martin.Schneider@fokus.fraunhofer.de
mailto:Martin.Schneider@fokus.fraunhofer.de
mailto:Martin.Schneider@fokus.fraunhofer.de
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6
https://doi.org/10.1007/978-3-031-42212-6_6

162 R. Barakat et al.

6.1 Introduction

Cybersecurity attacks on software systems are part of our daily lives. Nearly every
day, new incidents with dramatic consequences are reported, leading to security
breaches up to the unavailability of the IT infrastructure of entire organizations.
Many of such attacks are possible due to the popularity of programming languages
that do not provide inherent memory safety features, such as C [1]. Even though
such vulnerabilities are known for more than two decades, they still persist in today’s
software products and pose a significant security problem, comprising nearly 15 %
of all vulnerabilities in 2021 [2]. One of the most famous vulnerabilities was the 1

that is located in the widely used OpenSSL library and enables an adversary to read
confidential data from the memory, including cryptographic keys and passwords.
Despite its severity2 and simplicity, it remained undiscovered for more than 2 years.

Due to its popularity, much research has been spent on techniques to identify
such vulnerabilities. An established Dynamic Application Security Testing (DAST)
technique to identify them is fuzzing. In fuzzing, the System Under Test (SUT)
is stimulated with random inputs. Despite its simplicity, this technique is
very effective. On the contrary side, static analysis techniques, belonging to
Static Application Security Testing (SAST), analyze the source code of a program
for patterns that hint at a vulnerability. Both techniques SAST and DAST have their
strengths and drawbacks. However, applying these techniques separately did not
allow to completely overcome memory-related vulnerabilities as proven in the past.

Even though research on combining static and dynamic analysis, known as
Interactive Application Security Testing (IAST), started several years ago, there is
still no methodology in which both approaches interact in both directions, i.e., in
which DAST is benefiting from SAST and, at the same time, SAST benefiting from
DAST, to reliably identify memory-related vulnerabilities with nearly no manual
interventions.

In this chapter, a novel approach of hybrid fuzzing is presented, where static
and dynamic analyses are used to uncover vulnerabilities in a targeted manner
and augmented with statistical means, aiming at identifying not only true but also
false positives. We develop as part of a research project a novel approach from the
perspective of the dynamic analysis by using the results from the static analysis.
The remainder of this chapter describes our methodology for hybrid fuzzing as an
example of an IAST approach and discusses the following research questions that
have been identified along the research that led to the proposed methodology:

1 https://heartbleed.com/
2 It has a CVSS score of 7.5 out of 10, cf. Common Vulnerability Scoring System, https://nvd.nist.
gov/vuln-metrics/cvss

https://heartbleed.com/
https://heartbleed.com/
https://heartbleed.com/
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 163

RQ1 Which information can static analysis provide to DAST that facilitates its
analysis?
This research question is related to the kind of interaction of SAST and DAST.
Our hypothesis is that static analysis can guide the dynamic analysis where in
the code to search for vulnerabilities, and can provide information that enables
targeted testing for these vulnerabilities.

RQ2 Is IAST more efficient than DAST on its own? Under which conditions is IAST
more efficient than DAST?
In other words, is IAST worth the additional effort to stand alone DAST, i.e.,
is it worth putting more effort in generating crafted test cases, or is brute-
force testing as done by black box and gray box fuzzers more efficient? Our
hypothesis here is that IAST plays its advantage when the SUT is well tested
and contains only a few, deeply hidden bugs, where complex path constraints
constitute a natural barrier for traditional DAST.

RQ3 To which extent can false and true positives from static analysis be automati-
cally discriminated by dynamic analysis?
This is related to the challenge of identifying false positives from the static
analysis through dynamic analysis that cannot prove the absence of bugs [32].
Hence, we hypothesize that we can verify true positives quite well, but doing
this for false positives is much harder, since we cannot solely rely on the tests
itself and need in addition to rely on statistical methods.

RQ4 How well do methods used in DAST to quantify the uncertainty to discover
new bugs work in the context of IAST, in particular when we aim at verifying
SAST results using DAST?
This research question deals in particular with the false positives and, thus,
is closely related to RQ3. Statistical estimators such as the Good-Turing
estimator have already been proposed in traditional gray box fuzzing to
quantify uncertainty. We hypothesize that it is also suitable in the context
of IAST.

6.2 Related Work

Dynamic application security testing (DAST) aims to analyze and identify bugs in
an SUT by executing it. DAST includes various techniques, the most prominent of
which is fuzzing [3, 4]. In fuzzing, the SUT is stimulated with invalid or unexpected
inputs to, for instance, crash it and, thus, identify potential security issues. The
underlying assumption of fuzzing is that if input validation mechanisms in the
interface of an SUT are faulty or even missing, invalid and unexpected inputs might
bypass them and, thus, may alter the application logic and bypass security controls.
This may result in memory corruption that may allow an attacker to crash a system
or to inject malicious code. Complementary to this approach is behavioral fuzzing,
which can detect errors in the processing of calls, implemented state machines, and
call sequences [5, 6].

164 R. Barakat et al.

In general, fuzzing approaches can be distinguished by their aim to maximize
code coverage, to target a specific subset of the code, or to identify specific
vulnerabilities. Some of these approaches employ static analysis to cover code
fragments that are hard to reach, e.g., because they are deeply nested or hidden
behind complex path conditions.

While early approaches simply generate data randomly, model-based fuzzers
were considered more powerful due to their ability to generate semi-valid input
data, i.e., input data that deviates slightly from valid input data and, thus, challenges
the input validation. With the success of American Fuzzy Lop (AFL) [7] and
LibFuzzer [8], fuzzing with random mutation of input data has returned, which
could be easily deployed since it does not require any protocol knowledge. However,
even though input data is generated randomly, the power of these tools arises from
employing search-based methods, especially genetic and evolutionary algorithms,
which use mutation, recombination, and selection to mimic natural evolution and,
thus, to find those inputs that would execute new parts of the SUT’s code while
aiming at maximizing the code coverage.

Even though many different vulnerabilities have been uncovered using AFL,3 its
random-based mutation is not very efficient. Nested branches, multi-byte markers,
and unbounded loops are difficult to access for fuzzers with random-based muta-
tions [9–12]. Therefore, recent approaches aim to obtain additional information
about the SUT and use it for the test generation. Cha et al. use static analysis to
optimize the mutation rate based on the dependencies between multiple bytes [13].
While Cha et al. employ static analysis to identify dependencies on a single
execution path, our approach considers all execution paths. Moreover, they are
optimizing the mutation rate to target a certain program path, whereas we are
employing constraint solving to target one execution path and, thus, are able to
specifically execute only this program paths and no one else. Using Driller, a hybrid
vulnerability discovery tool, Stephens et al. combine fuzzing and the so-called
“concolic execution,” a combination of “concrete” and “symbolic execution,” to
identify magic bytes that cannot be found efficiently with random mutation due
to the large input space [11]. We rely on static analysis that, in addition to the
magic bytes, also provides us with information on suspected vulnerabilities which
we target in our subsequent fuzzing campaign. Corina et al. use static analysis
to identify data structures of kernel drivers [14]. This involves creating valid data
structures whose fields are filled with randomly generated data. This data may pass
the input data validation and, thus, reach deeper code. While we are also using static
analysis to identify relevant data structures, we do not fill them with random data
but employ constraint solving as described above. Rawat et al. have also addressed
this problem with their tool VUzzer that uses static and dynamic analysis to extract
properties of an application’s data and control flow [9]. It uses this information
to prioritize promising paths during test execution without having to use elaborate
symbolic execution such as Driller, thus realizing directed fuzzing. In particular, it

3 A collection of vulnerabilities discovered by the AFL fuzzer can be found under https://github.
com/mrash/afl-cve

https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 165

aims to avoid error-handling code, considering it to contain only a few bugs [9, 15].
In contrast to Rawat et al., we do not target those paths that were executed rarely
but those who are considered to contain a suspected vulnerability identified by
the static analysis. Böhme et al. pursue a similar approach with AFLGo and use
simulated annealing to prioritize between fuzzing as done by AFL and targeting
specific code fragments [16]. They identify potential uses as regression testing of
patches; reproduction of crashes that occur in the field and are otherwise difficult
to reproduce due to missing data, for identifying potentially dangerous dataflows;
and verification of static analysis results. In their paper, Böhme et al. also discuss
the challenges that symbolic execution faces in the context of patch testing on the
example of the Heartbleed Bug. The authors claim that directed fuzzing is superior
to symbolic execution since it is too expensive to analyze all possible paths to cover
the entire code. This is an actual drawback of symbolic execution when dynamic
analysis tries to cover all the code from a patch and, thus, is, for instance, not able to
detect the Heartbleed Bug within 24 hours [16]. Even though this may be a problem
when applying symbolic execution only, we apply constraint solving only on those
program paths that have been previously identified by the static analysis and, thus,
overcome this drawback. Furthermore, if the constraint solving fails to state if
a constraint problem for a certain program path is satisfiable, we are employing
directed fuzzing with the tool AFLGo to target the code in question. Pham et al.
apply an approach with AFLSmart that does not only optimize the lines of code to
be covered but likewise draws on information about the input data format using a
parser to apply mutation operators at the data structure level rather than at the bit
level (as AFL does) to leverage knowledge about the application [17]. AFLSmart
does not take into account information from static analysis as we do in our approach.

Further, fuzzing approaches combine fuzzing and symbolic execution. One
approach uses this combination together with bounded model checking to identify
vulnerabilities in C programs [18]. To do so, security properties are verified using
model checking to identify if a specific execution path of a C program might
violate them. However, as the authors describe, their approach has limitations
if large amounts of complex data need to be initialized at the beginning of the
program. Complex data is, for instance, required to trigger vulnerabilities such
as the Heartbleed Bug. As we demonstrate in the subsequent sections, this is
particular where our approach is successful. Another combination of fuzzing and
concolic execution has been investigated by Borzacchiello et al. [19]. They derived
symbolic queries from a binary using virtualization and applied fuzzing techniques
to solve these symbolic queries. However, Borzacchiello et al. do not apply fuzzing
techniques to the SUT itself while aiming at better code coverage and performance.

Ognawala et al. use fuzzing together with targeted symbolic execution in a two-
step approach [20]: First, they aim at identifying bugs in the SUT by fuzzing isolated
functions. Next, their framework analyzes for each vulnerability if it is reachable
when considering the call graph through the function call chain until the main
function of the SUT is reached. Thus, vulnerabilities that are unreachable by an
attacker are identified, since their inputs are sanitized by other functions in the call
graph. The main difference between the approach by Ognawala et al. and ours is that
we are applying static analysis to identify suspected vulnerabilities and to improve

166 R. Barakat et al.

fuzzing to reach parts of the code that is hard to execute by gray box fuzzing such
as AFL.

One major issue when applying dynamic analysis is that proving the absence of
bugs is not possible. One approach to cope with this issue are statistical methods that
can be applied to estimate the residual risk that a bug is not yet discovered but might
exist. These methods have been established in gray box fuzzing, and one established
statistical method is the Good-Turing-Estimator (GTE) [21]. The basic idea of the
GTE is to estimate the likelihood to discover an unseen species based on how often
new species have been discovered in the past. This approach has been applied to
gray box fuzzing by considering discovered execution paths as species and, thus,
mapping the problem of species discovery to software testing [22]. The approach
has been improved by Böhme et al. by including an adaptive bias that aims at taking
the increasing likelihood to discover bugs into account while the fuzzing campaign
advances and code coverage increases [23]. In our approach, we apply this approach
to discovering a particular execution path.

6.2.1 Interactive Application Security Testing

While there is a plethora of publications on the techniques that are employed for
IAST, e.g., static analysis, constraint solving, and fuzzing, this is not the case
for IAST itself. Earlier literature focuses on how to improve automated test case
generation using static analysis or automatically generate test cases to verify static
analysis findings. For example, Bozga et al. propose to reduce the state space
explosion in test case generation for conformance testing through slicing and, thus,
simplifying the specification in the form of extended state machines by identifying
those parts that are relevant for conformance testing, using a set of given seeds,
in contrast to our approach that focuses specifically on vulnerabilities than on
conformance testing [24]. Chebaro et al. employ in addition program slicing to
reduce the overhead of test execution by removing irrelevant instructions from the
code with respect to a static analysis finding identified using value analysis [25].
Their approach results in three states for each finding, i.e., alarm when a finding is
a true positive when at least one test case identified a bug at runtime, safe when it is
a false positive because all execution paths have been executed and none triggered
the bug, and unknown when no test cases triggered a bug but not all paths could be
covered. Hence, the approach does not provide any statistical guarantees for false
positives for real-world programs, as our approach does. Wang et al. propose a static
method to identify Integer errors in the source code using constraint solving based
on the source and, thus, enables the identification of vulnerabilities resulting from
them [26]. In a similar way, Liang et al. employ symbolic execution and constraint
solving to identify vulnerabilities in the source code that result from division by
zero error, pointer overflows, and dead code [27]. However, they are suffering from
false positives. In contrast, our approach allows the identification of false positives
through dynamic analysis and compared to Wang et al. without user intervention.

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 167

Williams et al. aim at maximizing path coverage by instrumenting the code of an
SUT to collect constraints when executing a single test case and iteratively change
their evaluation and use constraint solving to generate a test case that covers a new
path in each iteration, thus maximizing the code coverage [28]. We do in addition
employ static analysis results to obtain the location of a vulnerability in the code
and execute specifically this code (more precisely, the corresponding program path)
to discover vulnerabilities. Hybrid fuzzing approaches, such as white box fuzzing,
work similarly. Godefroid et al. derive fuzz test data from the source code by
collecting all the constraints that were involved when processing a certain valid
input [29, 30]. The collected constraints are then negated or otherwise violated, and
subsequently, these mutated constraints are used to generate test data. Thus, they
achieve a high code coverage but do not employ static analysis to identify suspected
vulnerabilities and cannot provide information on the absence of vulnerabilities as
our approach aims to do.

6.3 Methodology

This section is intended to illustrate the principle methodology to combine static and
dynamic analysis. After a brief overview of the information that can be obtained
from each analysis method and the variations in IAST approaches, the rest of
this section discusses how SAST and DAST can support and improve each other.
Both static and dynamic analyses consider the SUT on different stages. While
static analysis examines the source code, dynamic analysis investigates the runtime
behavior. Each analysis technique can obtain quite different types of information
about the SUT.

Static analysis identifies potentially vulnerable program code by searching for
dangerous patterns such as the unsafe usage of user input. To do so, all program
paths are analyzed. By identifying such patterns, static analysis can provide
concrete information about the potential vulnerability, e.g., its type and its location.
In addition, it can be analyzed under which conditions the vulnerable code is
reachable by collecting the conditions of the related program path. However, due
to the “exponential explosion” of potential program state configurations and the
large input space, a complete analysis of all feasible configurations and inputs is
usually not possible.Therefore, abstractions are necessary to be able to perform the
analysis which leads to the fact that it also identifies a large number of potential
vulnerabilities that may not occur during execution because the conditions that lead
to the vulnerability cannot be satisfied, called false positives.

In contrast, dynamic analysis observes the system at runtime to determine
properties that hold for one or more execution [31] and can thus gain information
about the system that cannot be determined statically. The explicit execution of
the SUT ensures that false positives are rarely generated since vulnerabilities
are only reported only if they are observed during execution. However, through
dynamic analysis, it is often not possible to make a precise statement about the

168 R. Barakat et al.

Table 6.1 Strengths and weaknesses of static analysis and dynamic analysis

Static analysis Dynamic analysis

Strengths - High path coverage - Few false positives

- Good presentation of results - Provides input triggering a vulnerability

Weaknesses - High number of false positives - Random path coverage

- Poor result presentation

- Less code inferences

location of the vulnerability in the source code. In contrast, dynamic analysis can
provide the input which caused the vulnerability to be executed and, thus, support
reproducing and investigating the vulnerability during debugging. When performing
dynamic analysis for security testing, a common goal is to maximize the code
coverage and, thereby, execute as much potentially vulnerable code as possible.
Without knowledge about the implementation, this can be a tedious task as some
parts of the code may only be reached under complex conditions that are rarely
satisfied. Therefore, with purely no knowledge about the implementation, only
random path coverage can be achieved. Here, static analysis can provide the missing
knowledge to increase the code coverage much faster. In summary, both methods
have complementary strength and weaknesses, which are summarized in Table 6.1.

6.3.1 Interactive Application Security Testing: Combining
Static Analysis and Security Testing

When both analysis methods are used separately, they are limited to the information
they can obtain. Therefore, interactive application security testing (IAST) combines
static and dynamic analysis to benefit from both methods. Forwarding information
from static to dynamic analysis (cf. Sect. 6.3.2.3) and vice versa (cf. Sect. 6.3.2.2)
can significantly improve the effectiveness of both methods. Moreover, they can
compensate for each other’s weaknesses, resulting in significant gains in efficiency
and accuracy compared to their independent application, in terms of vulnerability
discovery with respect to true and false positives and negatives, efficiency, and
manual effort. However, the term “interactive” in IAST does not specify when
both approaches interact. The exchange of information is furthermore not limited
to a single exchange. New analysis results and information can be continuously
exchanged, such that both analysis methods can repeatedly receive new information
and improve their analysis, which in turn can lead to further information for the
respective other analysis approach. Different interaction approaches are possible,
and which suits best depends on the specific goals. Basically, we identified three

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 169

Fig. 6.1 Sequential and parallel IAST approach

Fig. 6.2 Iterative IAST approaches

different interaction models (see Figs. 6.1 and 6.2), which can be applied in different
variations:

In the sequential IAST approach, depicted in Fig. 6.1a, static and dynamic
analyses run one after the other. As soon as one analysis, e.g., static analysis, has
finished, its information is passed on to the other, which in turn uses this information
to perform and improve its own analysis. This approach is useful if the results from
the static analysis should be verified through dynamic analysis. When both analyses
have been run, the execution is finished. It runs first the static analysis with a single
run that provides intermediate results (from the IAST point of view) to the dynamic
analysis, which in turn uses this information to perform its own analysis. It finishes
with the provision of the final analysis results, i.e., the identified vulnerabilities. We
expect the dynamic analysis usually to provide final results since it is used to verify
the findings from the static analysis (cf. Sect. 6.3.2).

The parallel IAST approach illustrated in Fig. 6.1b is similar to the iterative
approach. However, it exploits the fact that both analyses can run on their own, i.e.,

170 R. Barakat et al.

dynamic analysis starts at the same time as the static analysis. Since both analyses
can run independently, vulnerabilities can be earlier identified, and information
valuable for the respective other analysis can be obtained earlier than in the
sequential approach. Thus, both analyses can benefit from each other. When they
receive results from the other analysis, they can take them into account to improve
their analysis. Both static and dynamic analyses start independently from each
other. Here, the dynamic analysis would provide intermediate results to the static
analysis, e.g., values of local variables. The static analysis can use this information
to perform a more accurate static analysis. When it has calculated first results, the
dynamic analysis can use the information from the static analysis, e.g., magic bytes,
to increase code coverage more efficiently, for example. Both analyses can exchange
information until they have completed their run.

The iterative IAST approach extends the sequential or parallel approach to a cycle
in which both are executed repeatedly (see Fig. 6.2). The iterative approach enables
to propagate results in both directions such that static and dynamic analyses benefit
from each other where new analyses could be run based on further information.
Moreover, the analysis can run as long as new results can be identified or previous
results could be refined. For example, the static analysis could be more precise
because of concrete values it receives from the dynamic analysis, such as addresses
of pointers. Figure 6.2 depicts the sequential (a) and parallel iterative approach (b).
In the sequential iterative approach, static analysis propagates its results to dynamic
analysis. As in the sequential approach, the dynamic analysis uses these results
for its own analysis. In contrast to this, the iterative approach continues when the
dynamic analysis has been finished, allowing the static analysis to benefit from the
dynamic analysis, similar to the parallel approach. The parallel iterative approach
combines the benefits of both the sequential and the parallel approaches, allowing
them to start independently and propagate results as soon as they are available. In
addition, it allows to repeat and refine the analyses when completed to improve its
accuracy, reducing false positives and execute further program paths.

6.3.2 Our Approach to IAST

For our approach of IAST, we identified three main goals which are:

1. Verify SAST findings using DAST.
2. Improve DAST with SAST results.
3. Improve SAST with DAST results.

It seems obvious that for the first goal, static analysis should start before the
dynamic analysis and after static analysis has identified candidates for vulnerabili-
ties, dynamic analysis is run to discriminate the true and false positives, a tedious
task that is expensive if done manually. Toward this goal, we can use a sequential
IAST approach since the dynamic analysis requires the results from the static
analysis to start. Hence, dynamic analysis can run as soon as the static analysis

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 171

provides its first finding. In addition to pure static analysis, dynamic analysis can
handle situations in which the static analysis would fail, e.g., if the constraint
solving does not terminate (cf. Sect. 6.3.2.1) and provides a test case that triggers
the vulnerability and, thereby, supports the patch development.

The second goal is to improve dynamic analysis with static analysis results.
We could achieve this by exploiting magic bytes to increase code coverage more
efficiently. Toward this goal, dynamic analysis needs to wait for such information.
However, magic bytes, for instance, are not needed from the beginning of the
dynamic analysis but can help to improve code coverage at a later point in time.
Hence, it is useful to run static and dynamic analysis in parallel.

Toward the third goal, static analysis may benefit from dynamic analysis results
by obtaining information it has to abstract from. Such information can help to make
the static analysis more precise by augmenting it with information it cannot calculate
on its own and, thereby, addressing one of its drawbacks partially. For this purpose,
the dynamic analysis needs to run first before the static analysis can retrieve such
information. This is similar to the second task with reversed roles of static and
dynamic analysis. Both models can be integrated where both static and dynamic
analyses run in parallel and forward the information to the respective other analysis.
In the current stage, we are applying the parallel IAST approach. However, all
the experiments described in Sect. 6.5 can be conducted using the sequential IAST
approach.

6.3.2.1 Dynamic Verification of Static Analysis Findings

To verify the findings of the static analysis dynamically means to determine whether
a finding is a true or false positive. For this purpose, specific test cases are generated,
which are intended to verify the analysis findings, i.e., execute the suspected
vulnerabilities. If the suspected vulnerability can be observed, a finding is confirmed
to be a true positive. Since “testing can be used to show the presence of bugs, but
never to show their absence” [32], as long as the vulnerability cannot be observed,
in general, no reliable statement can be made whether a finding is a false positive
or not (even though, in certain cases, false positives can be identified, cf. Fig. 6.3).
Therefore, a test suite is needed that provides some evidence that the finding can
be considered as a false positive with some certainty. Here, statistical methods can
be used to calculate a residual risk, which is a measure of the probability that an
analysis finding could be a true positive despite the fact that it is not triggered by the
test campaign that has been executed so far. In the following, the proposed process
for the generation of test cases, the identification of true and false positives, and the
calculation of the residual risk will be discussed in more details.

To be able to test a SUT for a certain vulnerability (reported by the static
analysis), three artifacts are relevant that constitute a test case: abstract test case,
test data, and a suitable test oracle.

172 R. Barakat et al.

Fig. 6.3 Verifying static analysis findings using constraint solving

Abstract Test Case The abstract test case specifies the entry point and the
sequence of test steps without concrete test data. It describes if a single function
of the SUT (e.g., a library), a combination thereof, or a certain interface is tested.

Test Data Test data are the concrete inputs used by a test case and affect the
execution of the SUT. Through suitable test data, it can be controlled which
part of the function invoked by the abstract test case is executed. In addition,
vulnerabilities are often only triggered with suitable test data, e.g., buffer
overflows. Hence, covering the statement containing the vulnerability is not
always sufficient.

Test Oracle Just as important as the use of suitable test data, the choice of the right
test oracle is crucial to be able to observe a vulnerability appropriately, because
not every bug or security issue can be observed through a crash of the SUT.

It is important that the static analysis provides precise information on the location
of a suspected vulnerability, i.e., in which function and line of code it is located.
The location of the vulnerability is relevant for two reasons. On the one hand,
the location information specifies which target region of the code the test case
shall exercise. The test data must therefore be generated such that it executes a
program path that leads to the execution of the provided target region. On the other
hand, the vulnerabilities observed during test execution need be compared with the
vulnerability provided by the static analysis in terms of its location and its type to
verify if a vulnerability provided by the static analysis has been confirmed or if an
additional has been discovered.

Once the static analysis provides the location of a potential vulnerability, test
cases can be generated that aim to execute the given part of code. In addition to
the information on the location, the identified call chain that leads to the suspected
vulnerable line of code may be useful. In some cases, it can be sufficient to use
only the function enclosing the vulnerable code in the abstract test case. However,

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 173

in some cases, the previous call of other functions of the call chain is required
since they lead to a state of the system that causes the vulnerability to be triggered.
Therefore, it is reasonable to create not only a test case that executes the possibly
vulnerable line of code but to create a number of test cases to increase the probability
of discovering the vulnerability.

Furthermore, the information on the type of the vulnerability that the static
analysis provides is crucial in addition to the location information. The type of the
vulnerability is relevant to select and conFig. the test oracle appropriately. Only
if the type of the vulnerability is known a suitable test oracle can be selected to
observe the vulnerability during test execution. In addition, it should be considered
that not only the suspected vulnerability may occur but also additional ones that
are located on the very same execution path. Thereby, it is a great benefit if the
test oracle is also able to provide information about the responsible source code
(location information) when a vulnerability is detected. This information is needed
for comparison with the prediction of the static analysis. If the information matches,
a finding can be classified as a true positive; otherwise, an additional vulnerability
has been found.

To reach a certain target region with a test case, the test data must be selected
such that the desired program path is executed, which means that branches and
jumps are selected accordingly. However, for some types of vulnerabilities, such as
the double-free vulnerability, it is not enough to execute only the corresponding
line of code; instead, certain instructions have to be executed beforehand. This
information can also be provided by the static analysis. Accordingly, the target
region can be considered as a set of code instructions that must be executed during
runtime. To suffice the aforementioned requirements, test data can be determined by
using constraint solving. In the case of constraint solving, the program statements
of the respective program path will be translated into formal logic expressions and
collected in a so-called constraint system. Note that we need to consider only that
part of the program path from the beginning of the function to the vulnerable line of
code and can ignore the remainder of this path.

To solve a constraint system, a so-called constraint solver is employed. By
solving the constraint system, the input values for the abstract test case are obtained,
which would cover the desired target region during test execution. In addition to
the translated program statements, vulnerability constraints can be added to the
constraint system. The vulnerability constraints specify the conditions that must
be satisfied to trigger the vulnerability. For instance, in the case of an overflow
vulnerability, this could be a constraint that a value should be larger than the given
buffer. When trying to solve the constraint systems, the following three situations
can occur:

1. The constraint system is satisfiable.
2. The constraint system is not satisfiable.
3. The constraint solver is not able to solve the constraint system.

174 R. Barakat et al.

In the case that the constraints system is satisfiable, the constraint solver can
provide one or more solutions for the constraint system. Each solution can be used
to generate test data that, together with the abstract test case, form a test case that
aims to trigger the vulnerability. The generated test case is then executed against the
SUT. If the suspected vulnerability can be observed by the test oracle, a true positive
is clearly identified. If not, no clear statement can be made about the existence of the
vulnerability in question. In that case further test cases need to be executed. If the
constraint system is not satisfiable, the corresponding program path is unfeasible,
that is, its instructions cannot be executed while at the same time satisfy all its
constraints and from the vulnerability type. If this applies to all possible program
paths of a suspected vulnerability to be checked, it can be stated that this finding
from the static analysis is a false positive since there is no test data that can lead to
the suspected vulnerable line of code. The described process is illustrated in Fig. 6.3.
The individual steps are fully automated. Only the configurations required for test
execution, such as the compiler to be used or header files to be included, must be
configured manually beforehand.

In some cases, it may happen that the constraint solver does not terminate or
cancels the process without providing an appropriate answer whether the constraint
system is satisfiable or not. In such a case, we cannot rely on constraint solving
for the test data generation. If none of the other program paths of the resulting
constraints system already lead to executable test cases that might trigger the
suspected vulnerability, a fallback solution is required. Here, directed fuzzing can be
applied to verify the static analysis finding. Directed fuzzing is a gray box fuzzing
technique which aims at covering a certain target region of the SUT’s code instead
of covering its entire code. In directed fuzzing, the SUT is instrumented to give
feedback on how close an execution has come to the target region. Based on that
feedback, certain test inputs are selected and further modified in an attempt to get
closer and closer to the desired target region.

Residual Risk Estimation

To estimate the residual risk that a vulnerability that has not been detected so
far nevertheless exists, estimation heuristics can be used. One of such estimation
heuristics that has been applied in the context of fuzzing is the GTE [21]. The GTE
can be used to estimate how likely it is that the next sample of an observation is a
previously unseen element. Applied to fuzzing, the GTE can estimate that the next
test case executes a previously unobserved execution path. The estimator has been
used in the context of gray box fuzzing by Böhme et al. [22]. Their experiments
have shown that the estimator provides a reasonable upper bound for the success
of a fuzzing campaign. The necessary calculation is relatively lightweight and the
required amount of data relatively small. Stated by Good and Turing [21], the
probability . P0 that the next execution path is a path that has not been observed
before is approximated by the number of test cases that thereby produced a unique

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 175

execution path divided by the total number of test cases that have been executed so
far:

.P0 ≈ # unique execution path

test executions
(6.1)

In contrast to Böhme et al. [22] who used the GTE to estimate whether further
bugs can be detected when continuing a fuzzing campaign, we use the GTE to
estimate the residual risk for a specific vulnerability to assess whether it is a false
positive. The GTE can be calibrated such that the test campaign is stopped when
the calculated estimation falls below a certain threshold. Here, looking at a single,
absolute GTE value is not sufficient, and taking into account how the value has
evolved over the course of the previous test executions is required. When the test
execution is stopped, the residual risk that the suspected vulnerability is not a false
positive even though it has not been observed during test execution can be reported.

6.3.2.2 Improving DAST with SAST Results

One major advantage of IAST is that both analyses can exchange information to
augment the respective other analysis with information it cannot obtain itself but
would make the respective analysis more accurate or faster. As mentioned above,
most DAST tools suffer from the lack of knowledge of the internals of the SUT
and can therefore only perform a more or less random-based dynamic analysis.
Using information supplied by the static analysis, more targeted test cases can
be generated and executed to reach the desired code more quickly, e.g., increase
the code coverage or reach deeply nested program paths. Here, static analysis can
provide information on the requirements an input must meet to execute a certain
part of the code. Therefore, the static analysis can provide information on the related
path conditions, for instance, that an integer must be set to a specific constant value
or that a string must contain a specific character. We call these conditions “magic
bytes.” Magic bytes can be used to support fuzzing because they can tell us which
inputs need to be fixed to what values so that we reach a certain location, e.g.,
“.x == 10.” A random-based approach is not able to take this information into
account. We can then focus on producing random values only for the unconstrained
inputs while keeping the constrained ones fixed. Additionally, this would arguably
allow for a more low-cost exploration of a target region than input generation via
constraint solving.

176 R. Barakat et al.

Table 6.2 Information exchange between SAST and DAST

SAST . −→ DAST DAST . −→SAST

- Vulnerability type - Runtime information,

- Vulnerability location such as memory references

- Identified pattern - Values of local variables

- Path constraints - Results of external functions

- Magic bytes - Appearing side effects

However, static analysis cannot only contribute to faster code coverage. It can
also provide information about certain insights it gathered, e.g., third-party libraries
and the used programming languages. Such information can be used to generate
more targeted test cases. For instance, if it is known that certain inputs are used for
database queries, these inputs can be specifically tested for injection vulnerabilities.

6.3.2.3 Improving SAST with DAST Results

On the other hand, static analysis can benefit from dynamic as well. By its
nature, static analysis cannot precisely identify information such as references
and assignments that are performed dynamically or the resource consumption at
runtime. This is where dynamic analysis comes into play. The dynamic analysis
observes the SUT at runtime to determine properties that hold for one or more
executions [31] and can thus gain information about the system that cannot be
determined statically, e.g., the function a function pointer is referring to at a certain
stage. For this purpose, the SUT is usually executed through test cases aiming
to execute the related code of the SUT. Table 6.2 provides an overview on the
information one analysis can pass over to the other.

6.4 Implementation

In the course of this section, we present mainly the realization of the presented
methodology for generating test cases that are used to verify the static analysis
findings. The Heartbleed Bug serves as a running example for demonstrating the
implementation details. The Heartbleed Bug4 is a buffer overread vulnerability
in the heartbeat protocol implementation of the OpenSSL library, which was
introduced in 2012 to enable a low-cost, keep-alive mechanism between client and
server. In the heartbeat protocol, the client could pass a payload and its length to the
server and receive the same payload back from the server in response.

4 CVE-2014-0160

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 177

1 #define TLS1_HB_REQUEST 1
2 ...

3 int tls1_process_heartbeat(SSL *s) {
4 unsigned char *p = &s->s3->rrec.data[0], *pl;
5 unsigned short hbtype;
6 unsigned int payload, padding = 16;
7

8 /* Read type and payload length first */

9 hbtype = *p++;

10 n2s(p, payload);

11 pl = p;

12 ...

13 if (hbtype == TLS1_HB_REQUEST) {

14 unsigned char *buffer, *bp;
15 ...

16 buffer = OPENSSL_malloc(1 + 2 + payload + padding);

17 bp = buffer;

18

19 /* Enter response type, length and copy payload */

20 *bp++ = TLS1_HB_RESPONSE;

21 s2n(payload, bp);

22 /* vulnerable line */ memcpy(bp, pl, payload);

23 ...

24 }

25 ...

26 }

Listing 6.1 Heartbleed Bug code snippet

However, in the code it was not checked if the passed payload length matches
the payload. Therefore, it was possible to specify the payload length to be much
larger than the payload itself. This had the consequence that the server read out and
returned more data from the memory than it was supposed to. Listing 6.1 shows a
snippet of the corresponding source code of the tls1_process_heartbeat function,5

which contains the described vulnerability in line 22.

6.4.1 Static Analysis

For the static analysis, the open-source framework PhASAR [33] has been used.
PhASAR6 is an LLVM7 -based static analysis framework that offers the possibility to
specify arbitrary dataflow problems which are then solved in a fully automated way
by a so-called dataflow solver. PhASAR provides, among others, several algorithms
for analyzing the dataflow. The PhASAR-based static analysis provides several

5 The snippet is taken from the official OpenSSL GitHub repository https://github.com/openssl/
openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c.
6 https://github.com/secure-software-engineering/phasar
7 https://llvm.org/

https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/openssl/openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c
https://github.com/secure-software-engineering/phasar
https://github.com/secure-software-engineering/phasar
https://github.com/secure-software-engineering/phasar
https://github.com/secure-software-engineering/phasar
https://github.com/secure-software-engineering/phasar
https://github.com/secure-software-engineering/phasar
https://github.com/secure-software-engineering/phasar
https://llvm.org/
https://llvm.org/
https://llvm.org/

178 R. Barakat et al.

pieces of information about a presumed vulnerability. First, its location (specified
by the file name, the function name, as well as the line and column number)
as well as the type of the vulnerability. In addition, information about the value
assignments (magic bytes) that must be met and program statements to cover to
trigger the potential vulnerability will be provided. In the case of the Heartbleed
Bug, the static analysis will report a potential buffer overread vulnerability in line
22 and additionally provide the information that are printed in green and underlined
in Listing 6.1. For the interaction between the static and the dynamic analysis, a
parallel approach is used. As soon as a vulnerability is suspected, the information
is made available to start the dynamic verification whereby the static analysis
continues in parallel.

6.4.2 Test Case Generation

For each reported vulnerability, the function in which the vulnerability is located
(provided by the static analysis) is extracted and called by the generated (abstract)
test cases.8

To determine the possible execution paths that meet the requirements described
above, a State Machine (SM) representation of the source code is generated. Each
basic block of the source code is translated to an action, and branch conditions
are used as guards of the transitions between its states. The states have no
actions associated with them. The information provided by the static analysis
about the program statements to be executed (including the line with the potential
vulnerability) are mapped to the corresponding transitions of the SM that need
to be covered. For the test case generation, all possible paths starting from the
initial state to the presumed vulnerable line of code (reflected by the corresponding
transitions of the SM) are determined, taking into account the transitions that need
to be covered. Here, the execution paths are only considered symbolically, which
means that only the abstract paths are considered but no concrete values are used
such that the guards of the corresponding transitions can be ignored at this point.
Figure 6.4 shows the SM representation of the function tls1_process_heartbeat from
Listing 6.1. The transition marked in red includes the vulnerable line of code (line
22 in Listing 6.1) that needs to be executed by the test case. Consequently, all
paths containing the red marked transition need to be considered for the test case
generation.

8 Currently, only the specified function is tested. In the later course of the project, the calling
functions will also be taken into account to decide whether a vulnerability can be exploited or not.

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 179

State
1

State
6

State
3

State
2 State

4

{} /
lines 4-11 {} /

lines 25ff

{} / {}
hbtype == TLS_HB_REQUEST /

lines 14-22

not (hbtype == TLS_HB_REQUEST) /
{}

{} / {}

Fig. 6.4 State machine representation of function tls1_process_heartbeat

6.4.3 Test Data Generation

For the test data generation using constraint solving, the transformation of the
source code into the SM translates the individual program statements into constraint
expressions (actions and guards from the transitions) that can be directly used by the
constraint solver. The particular constraints of each transition on a path are collected
along the path. To create the constraint system, the targeted path is traversed, and
for each transition, the constraint expressions are added to the constraint system.

We have chosen the Z3 Satisfiability Modulo Theories (SMT) solver [34] as
our constraint solver. Therefore, each program instruction is translated into a
Z3 constraint expression. These expressions are grouped by the transition they
belong to. In addition, at each branch transition (i.e., each transition originating
from a state with more than one successor), we can generate guard expressions:
Boolean expressions which must evaluate to true or false if one of their associated
transitions should be taken. Z3 already offers a large number of functions to translate
basic expressions and operations (like arithmetic operations) into Z3 constraints.9

Primitive data types are represented as bit vectors. For complex data types as well
as for arrays, Z3 offers to create the so-called data types and array expressions.

To use data types and array expressions, however, the data types and array
lengths must be known, which is not necessarily the case when pointers are used
by the SUT’s code. Pointers are a heavily used feature in programming languages
like C. However, there is no obvious method of representing pointers in Z3.
Pointer handling is thus by far the most complex part of constraint generation.
Pointers are modeled as a data-type expression that consists of a buffer ID and
the indices used by getelementptr (which identifies an element of the buffer).
A PointerManager keeps track of the buffers corresponding to the IDs and
updates them on store instructions. The buffer elements are typed according to
their types in the LLVM IR, allowing us to use Z3’s rich-type system (Sort in Z3
terminology). This is only possible because of LLVM’s typed pointers. However,
LLVM is in the process of eliminating pointer types and transitioning to opaque

9 We use here the Z3 Java bindings provided by Z3 itself.

180 R. Barakat et al.

pointers.10 To add the vulnerability constraints, as described in Sect. 6.3, we first
identify the program statement by which this presumption was made and which
variables have an influence on the triggering of the vulnerability. For example, in
the case of a suspected buffer overread vulnerability which is associated with a
memcpy function call,11 a constraint would be added to the constraint system that
the number of characters that should be copied (third function argument) must be
larger than the length of the given buffer (second function argument).

In the case the constraint solver (here Z3) can provide a solution, this solution
will be transferred into concrete test data by the test data generator (see Fig. 6.3) that
translates the provided solution into the test case language (e.g., C). This means not
only the assignment of variable values but also the creation of data structures and
pointers are expected as function arguments for the function under test. If there is
no solution – meaning the constraint system is not satisfiable – the execution path
is marked as “not satisfiable,” and the remaining paths are checked. If all possible
paths are marked as “not satisfiable,” the suspected vulnerability is declared as a
false positive.

In case that the Z3 constraint solver is not able to provide a solution (for at
least one path), we choose AFLGo [35] to perform the directed fuzzing. AFLGo
is an extension of the open-source fuzzing tool American Fuzzy Lop (AFL). Unlike
pure AFL, it is designed to target specific code locations in the SUT, making it
especially useful for the verification of static analysis reports. AFLGo extends AFL’s
instrumentation that merely utilizes branch coverage to also include path distance
information. Path distance information is calculated during the compilation of the
SUT so that there is no performance loss at runtime. Path distance information is
then used during the fuzzing campaign to choose those seeds that specifically lead
to targeted regions in the SUT, while other seeds that, even if revealing new paths,
lead further away from these regions are willingly omitted. The fuzzing algorithm
of AFLGo is basically the same as that of its ancestor AFL. It starts by feeding user-
supplied test cases into the instrumented SUT, repeatably mutating them slightly,
utilizing a variety of traditional fuzzing strategies, to produce inputs that trigger
new state transitions. If such a new transition is recorded, the responsible input is
added to a queue of seeds that then undergoes the same procedure. To feed the test
data to the SUT, there has to be an interface between AFLGo and the SUT. Here, a
test adapter is needed that takes the test data generated by the fuzzer and wraps it in
a way that the SUT can handle it (e.g., fill some complex data types).

10 In LLVM-14, typed pointers have been deprecated, and they will be removed in LLVM-15
https://llvm.org/docs/OpaquePointers.html.
11 C library function voids that copies n characters from one memory area to another.

https://llvm.org/docs/OpaquePointers.html
https://llvm.org/docs/OpaquePointers.html
https://llvm.org/docs/OpaquePointers.html
https://llvm.org/docs/OpaquePointers.html
https://llvm.org/docs/OpaquePointers.html
https://llvm.org/docs/OpaquePointers.html

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 181

6.4.4 Test Oracle

The test oracle employed is selected based on the suspected type of vulnerability.
Currently, the implementation is focused on buffer overread and double-free
vulnerabilities. Both can be observed with the AddressSanitizer (ASAN). “The
AddressSanitizer is a fast memory error detector that consists of a compiler instru-
mentation module and a runtime library”.12 It can be used by simply compiling and
linking an application with a certain flag. If there is a buffer overread13 or double-
free vulnerability observed at runtime (triggered by the test case), this is reported by
ASAN. In addition to ASAN, there are other sanitizers like MemorySanitizer14 that
will also be included in the future.

The report of the test oracle (here ASAN) is then compared with the information
about the vulnerability provided by the static analysis. Does the provided informa-
tion match with what has been determined at runtime, the suspected vulnerability is
a true positive. If not, it can be declared neither true nor false positive, even if the
ASAN has reported a vulnerability (then probably an additional vulnerability has
been discovered).

Since it cannot be stated that there is no vulnerability in the case that the
vulnerability in question was not detected, new test data must be generated for
further test cases obtained from the constraint solver, which applies to the directed
fuzzing approach as well. To estimate the residual risk for each test execution, the
executed program paths must be extracted. This specific coverage information is
then processed and used by the Good-Turing estimator (GTE) (see Sect. 6.3.2.1) to
assess the progress of the test campaign.

6.5 Evaluation

To answer the research questions as well as to verify the established hypotheses,
different experiments were carried out which should provide the corresponding
insights. For the evaluation, the OpenSSL library in version 1.0.1f has been selected
as the SUT, which contains the Heartbleed Bug described in Sect. 6.4. To provide
a baseline approach for the evaluation, the experiments with the OpenSSL library
using the presented approach will be compared to an undirected gray box fuzzing
approach using AFL15 and its directed fuzzing counterpart AFLGo.16

12 https://clang.llvm.org/docs/AddressSanitizer.html
13 More general out-of-bound access
14 https://clang.llvm.org/docs/MemorySanitizer.html
15 https://github.com/google/AFL
16 https://github.com/aflgo/aflgo

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/AFL
https://github.com/google/AFL
https://github.com/google/AFL
https://github.com/google/AFL
https://github.com/google/AFL
https://github.com/aflgo/aflgo
https://github.com/aflgo/aflgo
https://github.com/aflgo/aflgo
https://github.com/aflgo/aflgo
https://github.com/aflgo/aflgo

182 R. Barakat et al.

6.5.1 Experimental Plan

The goal of the experiments was to compare the performance of the different
approaches, i.e., undirected fuzzing, directed fuzzing, and our IAST approach, by
means of their implementations, in terms of runtime and required test cases to
detect the Heartbleed Bug. For all three approaches, the runtime from the start
of the fuzzing campaign until the detection of the Heartbleed Bug, the time to
exposure (TTE), has been measured. This includes the test case generation, the
test case execution, and the test evaluation. The time needed for the compilation
of the tools, instrumenting the SUT and, in case of directed fuzzing, for calculating
the distances to the target region have not been considered. Also, the runtime of
the static analysis tool has not been included since directed fuzzing and our IAST
approach are independent from a specific tool, and hence, every static analysis tool
could be employed.

In addition to evaluating the runtime and the number of test cases required to
trigger and detect the Heartbleed Bug, the aimwas to investigate howmeaningful the
used GTE is for estimating the residual risk that a vulnerability will be discovered
in future test executions. To do so, the GTE values (see Eq. 6.1, Sect. 6.3.2.1) have
been calculated during the abovementioned experiments. After the execution of each
test case, the number of newly discovered, unique execution paths is calculated and
divided by the number of total test executions. All the experiments for the evaluation
have been conducted on a machine running Ubuntu 20.04.4 LTS on an Intel Xeon
E5-2680 v4 processor with 8 cores running at 2.4 GHz, 32 GB RAM, and 72 GB
HDD memory. The respective tools, namely, the static analysis, AFL, ALGo, as
well as our IAST approach presented in Sect. 6.4, were running in separated Docker
containers on this machine.

6.5.2 RQ1: Information Exchange

Which information can static analysis provide to DAST that facilitates its analysis?

Static analysis can provide information about the code region where potential
vulnerabilities may be located to guide the dynamic analysis to this code region.
Even though this may reduce the effort on the dynamic analysis, the experimental
results in Table 6.3 clearly show that knowledge of a potential vulnerable region
alone is not sufficient for this purpose. In our hypothesis related to RQ1, we assume
that static analysis can guide the dynamic analysis where in the code to search for
vulnerabilities and can even provide further information that enables targeted testing
for the vulnerabilities.

The results from the experiments that have been conducted for this research
question are presented in Table 6.3. To avoid that a single run would result in an
exceptionally short or long test campaign due to the inherent randomness of the
fuzzing approach, each experiment has been repeated 30 times as recommended by

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 183

Table 6.3 Mean (μ) and standard deviation (σ) of time to exposure (TTE), test cases (TC), and
test cases to exposure in the target region (TCTE) for AFL, AFLGo, and Our IAST approach to
trigger the Heartbleed Bug

TTE (sec) #TC #TCTE

Approach/tool μ σ μ σ μ σ
Gray box fuzzing/AFL 854 1,132 35,221 48, 495 21 46

Directed fuzzing/AFLGo 5,536 2,787 14,916 7,573 4 8

Our IAST approach 23 3 1 0 1 0

[36]. Table 6.3 shows the average TTE and the average number of test cases executed
by all the approaches as well as the standard deviation. Additionally, Table 6.3
shows the number of test cases that covers the vulnerable line of code (line 22
in Listing 6.1). The gray box fuzzing approach from AFL serves as our baseline
approach and requires about 35,221 test cases that are generated and executed in
about 14 minutes to detect the Heartbleed Bug. On average, of the 35,221 test cases,
21 test cases reached the target line, but only 1 triggered the Heartbleed Bug.17

The directed fuzzing approach, knowing from the static analysis the code region
that contains the vulnerability, requires for the same task around 14,916 test cases
and 92 minutes. Hence, the information provided by the static analysis does not
necessarily lead to a more efficient dynamic analysis. Our IAST approach using
the similar information as the directed fuzzing approach generates two test cases of
which one is executed in about half a minute to trigger the vulnerability. Note that
the time needed for the static analysis is neither included in the directed fuzzing
approach nor in our approach.

The reason that AFL and AFLGo perform worse is that gray box approaches
craft their test cases in small steps. The evolutionary algorithm performs in each
generation small mutations on the test cases from the previous generation and only
indirectly exploits the information on the code itself, i.e., through the discovery
of new execution paths. This leads to a large number of similar test cases that
differ only slightly from each other, requiring many generations until the desired
execution path that executes the Heartbleed Bug has been reached. In our IAST
approach, we employ in addition to the code region that contains the vulnerability
also the path conditions that need to be satisfied to execute the vulnerability. By
providing this information, test cases can be generated that target specifically the
execution path of the vulnerability in question, and thus, the number of test cases
to trigger it is significantly lower. Addressing vulnerabilities within each function
independently is especially important for libraries. Their functions must also be
considered independently of each other, as they can be used in isolation and in
different contexts. In summary, we can conclude that static analysis facilitates the
work of DAST not only by providing where a vulnerability might be located but
also through which program path it may be executed, including the corresponding
path conditions, which together significantly improve its performance.

17 Since the measurement was stopped when the bug was triggered

184 R. Barakat et al.

6.5.3 RQ2: Is IAST Worth the Effort?

Is IAST more efficient than DAST on its own? Under which conditions is IAST more
efficient than DAST?

Our hypothesis here is that IAST plays its advantage when the SUT is well
tested and contains only a few, deeply hidden bugs, where complex path constraints
constitute a natural barrier for traditional DAST. We use the results from the
previous experiments presented in Table 6.3 to discuss this research question and
assess our hypothesis.

As can be clearly seen, the creation of targeted test cases, as our IAST approach
does, can uncover the Heartbleed Bug in less test cases than DAST approaches. In
case of the Heartbleed Bug, our IAST approach generates two test cases. Listing 6.2
depicts one of these two test cases. The reason why two test cases are generated is
related to the structure of the function that processes the heartbeat information. The
hidden program statements in line 12 of Listing 6.1 contain a conditional functional
call, which results in two program paths that both lead to the vulnerable line of code.
Hence, two test cases are generated where each one represents one of the program
paths: both the test case that covers the conditional function call and the one that
does not trigger the Heartbleed Bug. Therefore, practically, only one test case needs
to be executed to confirm the bug.

1 void testcase_0(){
2

3 struct ssl_st *ptr0 = ... /* malloc */
4 struct ssl3_state_st *ptr1 = ... /* malloc */
5

6 char *ptr2 = ... /* malloc */
7 ptr2[0] = ((char) 1); //hbtype
8 ptr2[1] = ((char) 0); //payload length
9 ptr2[2] = ((char) 4); //payload

10 ptr2 += 0;

11

12 struct ssl3_record_st v3 = {...,ptr2,...};
13 struct ssl3_state_st v4 = {...,v3,...};
14 ptr1[0] = v4;

15 ptr1 += 0;

16

17 struct ssl_st v6 = {...,ptr1,...};
18 ptr0[0] = v6;

19 ptr0 += 0;

20

21 tls1_process_heartbeat(ptr0);

22 }

Listing 6.2 Generated test case triggering the Heartbleed Bug

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 185

To address the second part of the research question, we take a closer look at
the information our IAST approach uses from the static analysis. As said in the
context of the discussion of RQ1, we use the information from the static analysis
where the vulnerability is located as well as the conditions of those program paths
that would execute the vulnerability. Although the generation of test cases using
constraint solving seems to be more complex, the experiments show that the targeted
test case generation as used in our IAST approach that takes into account the
additional information about the SUT from the static analysis significantly decreases
the number of test cases needed to confirm the bug – which results in a much
shorter test execution time – than our baseline approaches that employ evolutionary
algorithms used by common DAST approaches like AFL and AFLGo. Both AFL
and AFLGo require a large number of test cases to detect the Heartbleed Bug.
However, the extent of this advantage depends on the number and the complexity
of the path conditions. The more complex these are, the more difficult it is for gray
box fuzzing to cover new branches and, thus, increase code coverage of the SUT. A
second advantage is related to the number of vulnerabilities in the SUT. Since gray
box fuzzing approaches perform a kind of breadth-first search for vulnerabilities due
to their aim to maximize the code coverage, they are particularly useful if security
testing has not yet been performed and when vulnerabilities may be scattered in
large amounts of the code throughout the SUT. In contrast, our IAST approach
performs a kind of depth-first search where single program paths are assessed for
their feasibility and then executed. Thus, they execute only small pieces of the code
which justifies their usage in scenarios where only small parts of the code shall be
analyzed or when only a few vulnerabilities are expected in the code, and these
maybe located in a certain code region.

In summary, we can conclude that IAST is per se not the best approach in
all cases. The advantage of the IAST approach we presented is however relevant
when only few vulnerabilities are expected, but it is not known which part of the
code accounts for them. Another advantage of IAST can be significant in scenarios
where small changes are frequently made to the code, such as in agile development
approaches. These can benefit from IAST in comparison to gray box fuzzing since
they often add amounts of code and shorter development cycles do not provide much
time for comprehensive gray box fuzzing.

6.5.4 RQ3 and RQ4: Identifying True and False Positives
and Uncertainty

RQ3: To which extent can false and true positives from static analysis be automati-
cally discriminated by dynamic analysis?

RQ4: How well do methods used in DAST to quantify the uncertainty to discover
new bugs work in the context of IAST, in particular when we aim at verifying
SAST results using DAST?

186 R. Barakat et al.

Both research questions are closely related, which is why we discuss them
together. Related to these research questions is the hypothesis that we can verify
true positives from SAST well, but this is much harder for the false positives. This
seems obvious since we cannot show the absence of bugs with pure testing, as stated
by Dijkstra [32]. However, we aim to extend this a bit toward the identification of
false positives using dynamic analysis in combination with a statistical measure to
draw better conclusions on the absence of bugs. Statistical estimators such as the
Good-Turing estimator have already been proposed for gray box fuzzing to quantify
uncertainty (see [22]). We hypothesize that the GTE also works in the context of
IAST to quantify the uncertainty related to findings that cannot yet be identified as
true or false positives.

Thanks to the targeted generation of test cases (as discussed in Sects. 6.5.2
and 6.5.3) and the information about the type of a vulnerability that allows to employ
vulnerability-specific test oracles, true positives can be specifically triggered and
observed during test execution. Hence, true positives from the static analysis can
be verified very well as discussed in the context of RQ1 and RQ2 in the previous
sections.

Approaches such as directed fuzzing can also identify true positives quite well.
However, the benefit of our IAST approach over directed fuzzing is that we can
assure at least for some findings from the static analyses that they are indeed false
positives. Since we employ constraint solving to assess if a path that would execute
a vulnerability is feasible, i.e., its path conditions are satisfiable, we can conclude
that the potential vulnerability identified by the static analysis is a false positive if
no path related to a specific vulnerability is feasible.

Even though it may not be possible to clearly group all findings into true and
false positives, we can achieve a certain preliminary filtering which allows to focus
on the remaining findings. For those, we would like to estimate how certain it is that
they are false positives even in the case a certain number of test cases did not expose
them. Our hypothesis is that the GTE applied on the context of gray box fuzzing
is helpful also in this context and allows us to draw conclusions on the status if a
reported vulnerability is a false positive.

The GTE values recorded during the experiments are intended to provide
information on how well the GTE is suitable to draw such conclusions. If we could
do this, the GTE can serve as a stop condition that would provide us the information
when it is unlikely we will identify the vulnerability in question and, thus, allows us
to stop the dynamic analysis.

Figure 6.5 shows the plots of the GTE values during the general fuzzing
campaign performed by AFL/AFLGo. Both plots show that after the first bunch of
test cases, the value drops to near or equal to zero.18 The following peaks indicate
that new execution paths have been found. The GTE progression for AFLGo clearly
shows that after 3,000 test cases the GTE value gradually decreases and is close
to zero for a short point in time before it increases again. Shortly before the end

18 Zero means there is currently no execution path that has been observed only once.

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 187

Fig. 6.5 GTE plot for gray box/directed fuzzing Heartbleed Bug

of the recording, several jumps can be observed that indicate that new paths were
executed that finally lead to the Heartbleed Bug. However, for the directed fuzzing
using AFLGo, the value decreases very slowly after 13,000 test cases until the end
of the recording without major changes. This long strictly monotonously decreasing
course of the GTE value is here the advantage we seek for. Due to its stability in
contrast to general fuzzing, the assumption would be gained that we achieved a stop
criterion since the course of the values does not have any further spikes. However,
this raises the question of whether the GTE is at all suitable as a stop criterion.
The experiments performed seem to question this; however, this needs to be more
thoroughly investigated in further experiments.

In summary, we can conclude that we can well identify true positives from the
static analysis. Moreover, we can identify some of the false positives with certainty
what is an advantage over gray box fuzzing and directed fuzzing. However, even
in the case where we apply directed fuzzing to analyze a potential vulnerability
and we are not able to trigger it, the GTE provides us with a means to quantify
the uncertainty related to the discovery probability, and thus, it may serve as a stop
condition.

6.5.5 Threats to Validity

To account for the randomness of fuzzing, we have repeated every experiment 30
times and then analyzed the average results. Furthermore, we have chosen a real-
world vulnerability in a heavily used SUT to analyze the potential of our approach.
This should provide a more realistic demonstration compared to one which is based

188 R. Barakat et al.

on automatically constructed bugs such as LAVA-M [37]. The metrics that we have
analyzed were specifically chosen to compare the efficiency of the bug discovery,
i.e., number of required test cases and time to exposure. Broader metrics, e.g.,
overall coverage, would not provide much insight into this question. To investigate
the differences in branch discovery over time, we have analyzed the GTE. This
might be a more difficult metric, as it is only a statistical estimator. However, it
still can be useful as it provides a scientific approach to estimate probabilities that
otherwise could be difficult to obtain.

Nevertheless, there are some downsides to our approach. First, our evaluation is
limited to only one SUT and one vulnerability. This reduces the degree to which
one can generalize the results to other contexts. Furthermore, our tools are currently
in a prototypical stage which requires some manual updates to work on OpenSSL.
Our implementation might thus be particularly fitted for the requirements of the
Heartbleed Bug. Finally, we have also not performed a statistical test to estimate
whether our observations would generalize to the overall population.

6.6 Conclusion, Limitations, and Outlook

Combining static and dynamic analysis within IAST can improve both analysis
methods by exchanging information which cannot be determined by the respective
analyses themselves. It could be shown that IAST approaches can be more
efficient in finding vulnerabilities than using static and dynamic analysis separately.
Moreover, we proposed to use a statistical means, i.e., the Good-Turing estimator,
to enable the dynamic analysis of potential false positives from the static analysis.
Together with constraint solving, we are able to confirm false positives partially,
what dynamic analysis is not able to do on its own. For the remaining findings from
the static analysis, the Good-Turing estimator serves as a means to decide when
to stop the dynamic analysis of a potential vulnerability and consider it as a false
positive. Even if a number of tests have to be performed in the case of suspected
false positives, this should not be considered as having a negative impact on IAST
performance. The targeted testing of the static analysis results and the reporting of
the residual risk are clear advantages of the IAST approach over manual verification.

All experiments have been performed along the well-known Heartbleed Bug.
The authors are aware that the evaluation along a single vulnerability does not
allow to generalize the conclusions. Furthermore, it could not be analyzed how well
the approach scales. This applies in particular to the verification of static analysis
findings. If the number of false positives is high, IAST may lose its advantage
since it would spend much effort on the identification of false positives than on
discovering actual vulnerabilities.

Our future work will focus on the analysis of the efficiency of IAST compared to
DAST to identify more accurately the conditions when gray box fuzzing approaches
are sufficient and when IAST is of advantage. Furthermore, we plan to identify
more sophisticated approaches on the application of statistical means related to false

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 189

positives. At the time of writing, our prototypical implementation can handle magic
bytes for integers and generate values for them. Our next plans are to extend the
magic bytes to other data types (e.g., structs) and to experiment with supporting
fuzzing campaigns by directing them with magic bytes. We will spend further effort
on the exploitation of additional information from the static analysis to improve
the dynamic analysis beyond the verification of findings from the static analysis
and vice versa, i.e., providing further runtime information to the static analysis.
Furthermore, our aim is to switch from the parallel IAST approach to the parallel
iterative IAST approach to analyze how the iterative analysis improves both SAST
and DAST mutually and incrementally. In this context, an open question might be
when to stop iterative IAST and what is the overall benefit over the non-iterative
IAST approaches. We will additionally investigate the effectiveness and efficiency
of our approach on further systems and vulnerabilities.

Acknowledgments This work was supported by the Fraunhofer Internal Programs under Grant
No. PREPARE 840 231.

References

1. TIOBE, TIOBE Index (2022). https://www.tiobe.com/tiobe-index/. [Online; Accessed 03 Aug
2022]

2. N. I. of Standards and T. (NIST), CWE Over Time (2022). https://nvd.nist.gov/general/
visualizations/vulnerability-visualizations/cwe-over-time. [Online; Accessed 03 Aug 2022]

3. B.P. Miller, L. Fredriksen, B. So, An empirical study of the reliability of unix utilities.
Commun. ACM 33(12), 32–44 (1990)

4. A. Takanen, J.D. Demott, C. Miller, A. Kettunen, Fuzzing for Software Security Testing and
Quality Assurance (Artech House, 2018)

5. M. Schneider, J. Großmann, N. Tcholtchev, I. Schieferdecker, A. Pietschker, Behavioral
fuzzing operators for UML sequence diagrams, in International Workshop on System Analysis
and Modeling (Springer, 2012), pp. 88–104

6. M. Schneider, J. Großmann, I. Schieferdecker, A. Pietschker, Online model-based behavioral
fuzzing, in 2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation Workshops (IEEE, 2013), pp. 469–475

7. M. Zalewski, American fuzzy lop (2019). http://lcamtuf.coredump.cx/afl
8. L.D. Group, Libfuzzer – a library for coverage-guided fuzz testing (2019). https://llvm.org/

docs/LibFuzzer.html
9. S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, H. Bos, Vuzzer: application-aware

evolutionary fuzzing, in NDSS, vol. 17 (2017), pp. 1–14
10. Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, A. Tiu, Steelix: program-state based

binary fuzzing, in Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (ACM, 2017), pp. 627–637

11. N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, G. Vigna, Driller: augmenting fuzzing through selective symbolic execution, in
NDSS, vol. 16 (2016), pp. 1–16

12. A.B. Chowdhury, R.K. Medicherla, R. Venkatesh, Verifuzz: program aware fuzzing, in
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (Springer, 2019), pp. 244–249

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cwe-over-time
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

190 R. Barakat et al.

13. S.K. Cha, M. Woo, D. Brumley, Program-adaptive mutational fuzzing, in 2015 IEEE Sympo-
sium on Security and Privacy (IEEE, 2015), pp. 725–741

14. J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel, G. Vigna, Difuze: inter-
face aware fuzzing for kernel drivers, in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (ACM, 2017), pp. 2123–2138

15. V.-T. Pham, M. Böhme, A. Roychoudhury, Model-based whitebox fuzzing for program bina-
ries, in 2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE) (IEEE, 2016), pp. 543–553

16. M. Böhme, V. Pham, M. Nguyen, A. Roychoudhury, Directed greybox fuzzing, in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30–November 03, 2017, ed. by B.M. Thuraisingham, D. Evans,
T. Malkin, D. Xu (ACM, 2017), pp. 2329–2344

17. V.-T. Pham, M. Böhme, A.E. Santosa, A.R. Căciulescu, A. Roychoudhury, Smart greybox
fuzzing, arXiv preprint arXiv:1811.09447 (2018)

18. K.M. Alshmrany, M. Aldughaim, A. Bhayat, L.C. Cordeiro, Fusebmc v4: Smart seed genera-
tion for hybrid fuzzing – (competition contribution), in Fundamental Approaches to Software
Engineering – 25th International Conference, FASE 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, (ETAPS) 2022, Munich, Germany, 2–7 Apr
2022, Proceedings, ed. by E.B. Johnsen, M. Wimmer. Lecture Notes in Computer Science,
vol. 13241 (Springer, 2022), pp. 336–340

19. L. Borzacchiello, E. Coppa, C. Demetrescu, FUZZOLIC: mixing fuzzing and concolic
execution. Comput. Secur. 108, 102368 (2021)

20. S. Ognawala, F. Kilger, A. Pretschner, Compositional fuzzing aided by targeted symbolic
execution. CoRR, abs/1903.02981 (2019)

21. I.J. Good, The population frequencies of species and the estimation of population parameters.
Biometrika 40(3–4), 237–264 (1953)

22. M. Böhme, STADS: software testing as species discovery, vol. 27 (2018), pp. 7:1–7:52
23. M. Böhme, D. Liyanage, V. Wüstholz, Estimating residual risk in greybox fuzzing, in

ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Athens, Greece, 23–28 Aug 2021, ed. by
D. Spinellis, G. Gousios, M. Chechik, M.D. Penta (ACM, 2021), pp. 230–241

24. M. Bozga, J. Fernandez, L. Ghirvu, Using static analysis to improve automatic test gener-
ation, in Tools and Algorithms for Construction and Analysis of Systems, 6th International
Conference, TACAS 2000, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS 2000, Berlin, Germany, March 25–April 2, 2000, Proceedings,
ed. by S. Graf, M.I. Schwartzbach. Lecture Notes in Computer Science, vol. 1785 (Springer,
2000), pp. 235–250

25. O. Chebaro, N. Kosmatov, A. Giorgetti, J. Julliand, Program slicing enhances a verification
technique combining static and dynamic analysis, in Proceedings of the ACM Symposium on
Applied Computing, SAC 2012, Riva, Trento, Italy, 26–30 March 2012, ed. by S. Ossowski,
P. Lecca (ACM, 2012), pp. 1284–1291

26. X. Wang, H. Chen, Z. Jia, N. Zeldovich, M.F. Kaashoek, Improving integer security for systems
with KINT, in 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, 8–10 Oct 2012, ed. by C. Thekkath, A. Vahdat (USENIX
Association, 2012), pp. 163–177

27. H. Liang, L. Wang, D. Wu, J. Xu, MLSA: a static bugs analysis tool based on LLVM IR,
in 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, SNPD 2016, Shanghai, China, May 30–June
1 2016, ed. by Y. Chen (IEEE Computer Society, 2016), pp. 407–412

28. N. Williams, B. Marre, P. Mouy, M. Roger, Pathcrawler: automatic generation of path tests by
combining static and dynamic analysis, in Dependable Computing – EDCC-5, 5th European
Dependable Computing Conference, Budapest, Hungary, 20–22 Apr 2005, Proceedings, ed. by
M.D. Cin, M. Kaâniche, A. Pataricza. Lecture Notes in Computer Science, vol. 3463 (Springer,
2005), pp. 281–292

6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 191

29. P. Godefroid, M.Y. Levin, D.A. Molnar, Automated whitebox fuzz testing, in Proceedings of
the Network and Distributed System Security Symposium, NDSS 2008, San Diego, California,
USA, 10–13 Feb 2008 (The Internet Society, 2008)

30. P. Godefroid, M.Y. Levin, D.A. Molnar, SAGE: whitebox fuzzing for security testing. ACM
Queue 10(1), 20 (2012)

31. T. Ball, The concept of dynamic analysis, in Software Engineering – ESEC/FSE’99, 7th Euro-
pean Software Engineering Conference, Held Jointly with the 7th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Toulouse, France, Sept 1999, Proceedings, ed. by
O. Nierstrasz, M. Lemoine. Lecture Notes in Computer Science, vol. 1687 (Springer, 1999),
pp. 216–234

32. E.W. Dijkstra et al., Notes on Structured Programming (1970)
33. P.D. Schubert, B. Hermann, E. Bodden, Phasar: an inter-procedural static analysis framework

for c/c++, in International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (Springer, 2019), pp. 393–410

34. L.D. Moura, N. Bjørner, Z3: An efficient SMT solver, in International conference on Tools and
Algorithms for the Construction and Analysis of Systems (Springer, 2008), pp. 337–340

35. M. Böhme, V.-T. Pham, M.-D. Nguyen, A. Roychoudhury, Directed greybox fuzzing, in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(ACM, 2017), pp. 2329–2344

36. A. Arcuri, L. Briand, A hitchhiker’s guide to statistical tests for assessing randomized
algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250 (2014)

37. B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W.K. Robertson, F. Ulrich,
R. Whelan, LAVA: large-scale automated vulnerability addition, in IEEE Symposium on
Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May 2016 (IEEE Computer Society,
2016), pp. 110–121

Part III
Protection at Operations

Chapter 7
CTAM: A Tool for Continuous Threat
Analysis and Management

Laurens Sion, Dimitri Van Landuyt, Koen Yskout, Stef Verreydt,
and Wouter Joosen

Abstract Security and privacy threat modeling approaches are commonly applied
to identify and address design-level security and privacy concerns in the early stages
of software development. Identifying and mitigating these threats should remain
a continuous concern during the development lifecycle, as single-shot analyses
become quickly outdated with contemporary agile development practices. Despite
expert recommendations, the support for continuously applying these types of
approaches throughout the development lifecycle is limited. In this article, we
present an integrated threat analysis toolchain for automated, continuous threat
elicitation, assessment, and mitigation as part of continuous integration pipelines
in the GitLab DevOps platform. Automating the threat analysis enables continuous
attention to security and privacy threats during the development and supports
monitoring and managing the progress in mitigating security and privacy threats
over time. Additionally, the integration of threat analysis in a continuous integration
pipeline enables more advanced and fine-grained analyses such as assessing the
impact of proposed changes in feature branches and the analysis of merge/pull
requests for their impact on the threat model. We evaluate the approach and its
prototype on a concrete real-world application to assess the threat analysis of
multiple application versions over time as changes are made and new features
introduced. We conclude with an in-depth discussion on the use of threat modeling
in continuous integration contexts.

This is an extended version of an earlier published conference paper: Laurens Sion, Dimitri
Van Landuyt, Koen Yskout, Stef Verreydt, Wouter Joosen, Automated Threat Analysis and
Management in a Continuous Integration Pipeline, 2021 IEEE Secure Development Conference
(SecDev 2021), Online, October 18–20, 2021 [46].

L. Sion (�) · D. Van Landuyt · K. Yskout · S. Verreydt · W. Joosen
imec-DistriNet, KU Leuven, Leuven, Belgium
e-mail: Laurens.Sion@cs.kuleuven.be; Dimitri.VanLanduyt@cs.kuleuven.be;
Koen.Yskout@cs.kuleuven.be; Stef.Verreydt@cs.kuleuven.be; Wouter.Joosen@cs.kuleuven.be

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_7

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 7&domain=pdf

 885 55738
a 885 55738 a

mailto:Laurens.Sion@cs.kuleuven.be
mailto:Laurens.Sion@cs.kuleuven.be
mailto:Laurens.Sion@cs.kuleuven.be
mailto:Laurens.Sion@cs.kuleuven.be

 12818 55738 a 12818 55738 a

mailto:Dimitri.VanLanduyt@cs.kuleuven.be
mailto:Dimitri.VanLanduyt@cs.kuleuven.be
mailto:Dimitri.VanLanduyt@cs.kuleuven.be
mailto:Dimitri.VanLanduyt@cs.kuleuven.be

 -2016 56845 a -2016 56845 a

mailto:Koen.Yskout@cs.kuleuven.be
mailto:Koen.Yskout@cs.kuleuven.be
mailto:Koen.Yskout@cs.kuleuven.be
mailto:Koen.Yskout@cs.kuleuven.be

 9875 56845 a 9875 56845
a

mailto:Stef.Verreydt@cs.kuleuven.be
mailto:Stef.Verreydt@cs.kuleuven.be
mailto:Stef.Verreydt@cs.kuleuven.be
mailto:Stef.Verreydt@cs.kuleuven.be

 21792 56845 a 21792 56845 a

mailto:Wouter.Joosen@cs.kuleuven.be
mailto:Wouter.Joosen@cs.kuleuven.be
mailto:Wouter.Joosen@cs.kuleuven.be
mailto:Wouter.Joosen@cs.kuleuven.be
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7
https://doi.org/10.1007/978-3-031-42212-6_7

196 L. Sion et al.

Keywords Threat modeling · Threat analysis · DFD · Security by design ·
Privacy by design · Threat management

7.1 Introduction

Security and privacy require continuous attention throughout the software devel-
opment lifecycle (SDLC). It is well-known, though, that absolute security cannot
be achieved and compromises must be made. In practice, security efforts should
therefore be directed toward conscious management of risk and security debt [36],
a form of technical debt. Without sufficient attention to security, the security
debt and risk may increase beyond acceptable levels, increasing the likelihood of
security incidents and associated losses and making it hard to recover without major
investments and delays.

Security and privacy threat modeling techniques [13, 39, 40, 58] are typically
applied in the early phases (requirements and design) of the SDLC. The importance
of addressing design security is further emphasized by the recent inclusion of
insecure design in the 2021 OWASP top 10 [31]. These threat modeling approaches
reason at an abstract level about the system, often in the form of a data flow diagram
(DFD), to elicit many potential security threats. In a next step, mitigations for the
most important of these threats (in terms of risk) are selected, which can then be
incorporated during the software development.

Current threat modeling approaches are not well-aligned with contemporary
development practices. Modern software development happens at a fast pace with
frequent changes to the code base to introduce new functionality, fix bugs, and
refactor the design. Continuous integration (CI) is one of the enablers of this fast
pace. Threat modeling, on the other hand, is often a manual, time-consuming, one-
off (or infrequently repeated) activity conducted in workshops involving experts
and numerous stakeholders [54, 60]. Reliance on extensive manual labor prohibits
frequent re-evaluation as the software design evolves. This in turn is considered
problematic, because the goal of threat modeling is precisely to identify threats that
carry a significant risk, and (because they are linked to the design) that may be hard
to mitigate afterward.

An additional problem associated with infrequently revisiting a threat model is
that it hampers adequate management of the risk and security debt as part of project
management. Indeed, effective decision-making relies on having a clear view on the
current status and progress, the impact of the possible choices, and the effectiveness
of past decisions and efforts. Infrequent threat modeling only yields a coarse-grained
view on the progress that is being made, though, precluding swift reactions to
emerging risks.

Recently, a number of threat modeling tools and approaches have emerged
that provide a degree of automation and increase the repeatability of the threat
assessment [50] even as the system evolves. These tools however are often still
standalone, in the sense that they lack integration with widely used development

7 CTAM: A Tool for Continuous Threat Analysis and Management 197

and project management platforms typically used in the context of continuous
integration.

This chapter introduces CTAM (continuous threat analysis and management),
a novel approach and corresponding toolchain that addresses these problems by
technically integrating an automated threat analysis and assessment activity in
a continuous integration pipeline. This enables stakeholders to monitor threat
modeling results and track and manage the evolution of risk based on information
that evolves together with the implementation. CTAM leverages the possibilities
offered by automated threat modeling tools to achieve traceable, systematic, and
frequent reassessments. The input for an existing threat modeling tool, which
consists mainly of a model-based representation of the system (e.g., a DFD), is
placed and maintained alongside the source code in a version control system. The
automated threat modeling tool is then used as a standalone analysis engine in
a continuous integration job. By combining the automated analysis results with
the existing version information from the repository, the current state and historic
evolution of the threat model, as well as the impact of suggested modifications in
different branches, can be assessed and presented on a dashboard. This information
can subsequently be used by developers and security experts to aid decision-making,
the instantiation of appropriate countermeasures, and tracking the effectiveness of
these countermeasures over time.

This chapter introduces the following contributions: (i) it presents the CTAM

approach and toolchain, leveraging existing threat modeling automation enablers in
support of systematic, automated, and continuous threat analysis and management;
(ii) it presents a prototype implementation and validates the prototype on a
research and a real-world application case (the backend system of a contact tracing
application), demonstrating its capability to recognize a number of different risk
evolution patterns; and (iii) it provides an in-depth discussion on automated threat
modeling as part of a continuous integration pipeline.

In addition to being a practical tool to continuously monitor and manage threat-
centric risk during development, the CTAM toolchain is a technological enabler
for continued research toward more advanced analysis techniques, for example, to
retroactively study the emergence and management of risk in real-world code bases.

This chapter is an extension of earlier work [46]. More specifically, the following
extensions are provided: (i) extending the description of CTAM and the inputs for
the analysis, (ii) adding an in-depth evaluation on 12 versions of a real-world
application, (iii) providing a more extensive discussion on version granularity,
model granularity, and model scope, and (iv) adding a roadmap on (automating)
model reconstruction, runtime monitoring, and longitudinal project management.

The chapter is structured as follows: Section 7.2 describes the related work
on threat modeling and continuous quality assessment. Next, Sect. 7.3 presents
CTAM and the implementation aimed at demonstrating its feasibility. Then, Sect. 7.4
applies CTAM on an application case of software-as-a-service (SaaS) document
generation and delivery platform and illustrates the type of analysis that it enables.
Section 7.5 applies CTAM on 12 versions of a real-world application that provides
backend for a contact tracing application. Afterward, Sect. 7.6 provides a discussion

198 L. Sion et al.

on the use of CTAM, including the possibility of using other threat elicitation
engines, the importance of the consistency of the model with the source code, and
additional analysis types that become available with CTAM. Subsequently, Sect. 7.7
provides a roadmap on future work on model reconstruction, runtime monitoring,
and longitudinal project management. Finally, Sect. 7.8 concludes the chapter.

7.2 Related Work

Continuous integration refers to software development practices that are centered
heavily around a central version control system and code repository. These systems
implement a pipeline of automated activities that are typically aimed at quality
control (e.g., code style checking), automated testing (e.g., regression testing, inte-
gration testing, acceptance testing), and automated building and build management.
Automating these activities allows for frequent execution at the level of individual
code commits, providing the developer with rapid feedback and shortening the time
to address issues. These key principles enable ensuring a certain degree of quality
assurance.

This section outlines the related work on threat modeling in this context. First,
the current state of the threat modeling support during development is discussed.
Next, the state of the art in continuous integration and security analysis activities in
this context is outlined.

7.2.1 Threat Modeling Support During Development

Several threat modeling tools and approaches, such as IriusRisk [19] and Autodesk
CTM [1], promote the integration of threat modeling during development specifically
by linking threats to issues in an issue tracker. While this enables tracking the
progress regarding the identified security and privacy threats, the threat mitigation
progress is monitored in the issue tracker, rather than in the system model.
Furthermore, while such approaches may support versioning of the system model,
they do not support analysis of a threat model over time.

More closely aligned with the source code is ThreatSpec [53]. It provides a set
of code annotations that can assist in constructing and maintaining a DFD model
by inserting comments at the relevant locations in the source code. ThreatSpec
does not perform any threat elicitation by itself, so the extracted model will have
to be analyzed manually or with another tool to obtain a list of threats to further
analyze and aggregate. It does allow documenting threats and mitigations through
code annotations so that the results of the threat elicitation activity can be captured
as well.

Pytm [51] generates diagrams (DFDs and sequence diagrams) and threats based
on a system model expressed in Python code. Such a representation enables

7 CTAM: A Tool for Continuous Threat Analysis and Management 199

versioning the system model together with the source code. It does not, however,
provide risk estimates for threats, so monitoring progress in terms of risk reduction
requires additional analysis.

SPARTA [49] is an eclipse-based threat modeling tool that automatically elicits
security and privacy threats based on XMI files of solution-enriched DFDs and threat
catalogs (e.g., the STRIDE [40] and LINDDUN [47] threat types are supported).
SPARTA automates the risk analysis of individual threats and supports calculating
the aggregate values for the system, which is required for monitoring the threat
mitigation progress. SPARTA does not support any historical analysis of the threat
mitigation progress. While SPARTA provides both a graphical DFD model editor and
the engine for eliciting security and privacy threats, its elicitation engine can also be
run standalone on the DFD model files. This motivates the adoption of the SPARTA

engine in the context of CTAM.
Threagile [38] generates threat model reports based on YAML files of the

architecture and its assets and provides pipeline integration to do so in a continuous
fashion. However, such analyses are only focused on a single version of the system;
it does not analyze how those threat models evolve over multiple versions of the
system. A very similar and recently released tool is TicTaaC [37], which also relies
on one (or more) YAML files describing the data flow model. TicTaaC generates a
report from this with the findings. Analogous to Threagile, it is intended to run as
part of a CI pipeline, but its analysis is also focused on single version of the system.

OWASP’s Threat Dragon [32] is an open-source threat modeling platform for
system modeling and threat elicitation. Its documentation mentions that future
versions should provide an API for pipeline integration, but this is not supported
at the time of writing.

7.2.2 Quality Assessment in Continuous Integration Pipelines

Several approaches exist that conduct frequent code analysis for measuring the
impact on qualities such as performance, maintainability, security, etc. For example,
the PerfCI tool [20] integrates automated performance benchmarks to identify
potential performance regressions over time. Vassallo et al. [56] in turn presented
an approach that automates and integrates the identification of bad practices, anti-
patterns, or common misconfigurations in a CI pipeline.

The automation of these activities is a key enabler for extensive data analytics at
the level of the code base: the evolution of a code base in terms of software quality
can be monitored and evaluated [22] over longer periods of time.

Static code checkers (SAST) allow for the identification of vulnerabilities as
a result of code-centric analysis [12, 41]. As discussed by Rangnau et al. [35],
integrating dynamic security testing (DAST) is more challenging as these more
advanced analysis techniques incur a more significant performance cost, to the
extent that the total cost of their integration in a CI pipeline might become
prohibitive.

200 L. Sion et al.

To our knowledge, model-based analysis activities that identify threat scenarios
at the level of an abstraction model of the system (i.e., threat modeling and threat-
based risk assessment) have not yet been integrated in a practical CI pipeline, with
the exception of Threagile [38] which does not consider the analysis over time. Yet,
threat modeling experts and advocates strongly encourage frequent re-evaluation of
the outcome of a threat modeling and analysis exercise [3, 40, 43, 55] throughout
the development of a system. In this article, we present the practical implementation
of such an activity in the GitLab DevOps platform [18].

7.3 Continuous Threat Analysis and Management

The main goal of CTAM is to automate continuous threat analysis, management,
and progress monitoring by integrating it in continuous integration pipelines. This
is achieved by (1) storing the model together with the source code in version control
(this model contains the DFD, the applied security and privacy solutions, and inputs
for the risk analysis); (2) for every push to the repository, running a continuous
integration analysis job to elicit security or privacy threats and perform a risk
analysis on them; (3) collecting and aggregating these results in the CTAM server;
and (4) making these results available as feedback to the developers. Figure 7.1
provides a graphical overview of the approach. The next subsections will elaborate

Fig. 7.1 Overview of the approach. On the left-hand side, changes to the codebase and model are
committed and pushed to a repository on GitLab. This triggers the CI jobs that will run the threat
analysis engine (bottom center), of which the results will be submitted to the server. Finally, the
developers can consult the impact of their changes on a dashboard presenting the analysis results
(right-hand side)

7 CTAM: A Tool for Continuous Threat Analysis and Management 201

on the necessary inputs (1), the threat analysis (2), the types of analysis activities
offered by CTAM (3), and the implementation of the CTAM server (4).

7.3.1 Threat Analysis Inputs

The required inputs vary based on the chosen analysis engine. For the individual
threat analysis, CTAM currently leverages the SPARTA [45] threat modeling engine
(Sect. 7.3.2). All the relevant data (i.e., the DFD model, solutions, attacker profiles,
and threat-type catalogs) for SPARTA’s analysis are contained in one (or more) model
files that will be read by the analysis engine. The required inputs for the SPARTA

engine are discussed shortly here.

7.3.1.1 DFD Model

The main input is the DFD model of the application under consideration. This
model contains the processes, data stores, external entities, data flows between
these elements, and trust boundaries. To support the risk-driven prioritization of
the elicited security and privacy threats, elements of the DFD model can be extended
with asset values to specify the loss magnitude or damage that would arise when
threats would manifest themselves at these elements. The SPARTA engine will
leverage these to calculate the impact of a threat [48].

7.3.1.2 Security and Privacy Solutions

As applicable, the model can be extended with security and privacy solutions that
are applied to particular elements of the system to mitigate threats at these locations.
These solutions specify the involved elements, the protected elements, and which
threats they mitigate. For example, a logging solution could specify a data store
which holds the logs and a process which logs incoming requests to that data store,
so that repudiation threats to that process are mitigated. Furthermore, a solution also
includes information on its strength, which the SPARTA engine will compare against
the attacker profile (explained below) to calculate the likelihood of a threat.

7.3.1.3 Attacker Profiles

For the analyses, one (or more) attacker profiles can be used. These profiles express
the capabilities of different types of adversaries, how frequently these adversaries
come into contact with the system, and to which elements of the system (if any) they
have insider access. These profiles are taken into account during the risk assessment
of the elicited threats. For example, different attacker profiles could be defined for

202 L. Sion et al.

script kiddies and more advanced adversaries. The capabilities of these different
types of adversaries are compared against the strength of the countermeasures to
determine whether an attacker is able to defeat a certain countermeasure or if it is
sufficiently strong against the considered types of attackers.

7.3.1.4 Threat-Type Catalog

Finally, the particular threat-type catalog to use is specified in the model. Such a
threat-type catalog contains the list of threat types that need to be elicited and the
criteria to use to determine whether a threat of that particular type is applicable.
These threat-type catalog resources can also be extended and customized as desired.

7.3.2 Threat Analysis Engine

SPARTA enables (i) the automated generation of threats at the basis of a (customiz-
able) threat catalog; (ii) per threat, a risk estimation step [48] that takes into account
many factors documented in the input model (e.g., the application of security
solutions [49], a description of the affected data subjects in case of privacy [44]);
and, finally, (iii) the aggregation and disclosure of these outcomes.

Threats are elicited by performing model queries on the supplied model. The
threat-type catalogs contained in the model specify the criteria for the threats to be
applicable and can be used to encode, for example, element- or interaction-based
STRIDE threats as well as more complex threat patterns. As the main input of the
analysis is the model of the system under development, the scope of the analysis
is necessarily limited to the design of this system. During the analysis, SPARTA

generates relevant threats linked to the elements in the DFD model (e.g., spoofing
external entity A in the data flow to Process B).

For the risk analysis and prioritization, SPARTA processes the information in
the model (i.e., asset value, strength of security solutions, etc.) to determine how
effective the countermeasures are to protect against the elicited threats. The resulting
value is the expected loss (impact . × likelihood), expressed in the same unit as
the asset value. It is up to the developers or business stakeholders to provide this
information in a unit that is convenient to them.

We created a dockerized version of the SPARTA threat elicitation and assessment
engine, which reads a configuration file (specifying the model file and the submis-
sion server), analyzes the model (i.e., elicits security or privacy threats and performs
a risk assessment of these threats), and submits the threat elicitation results to the
submission server. The bottom of Fig. 7.1 depicts these steps graphically. The threat
analysis engine in the center runs on the last commit, analyzes the model contained
therein, and submits the results.

7 CTAM: A Tool for Continuous Threat Analysis and Management 203

The docker container enables the use of SPARTA in GitLab CI jobs [18].1 The
only additional information required in the repository is the DFD model file and the
aforementioned configuration file. Because individual commits are analyzed, that
model file will need to accurately reflect any changes that are made to the codebase.
Section 7.6 further discusses the need for an accurate model of the system under
analysis.

The actual integration of the threat elicitation and analysis in the CI pipeline
is straightforward, as it only requires a build step that runs a docker container in
the checked out repository. The following code fragment illustrates the additional
analysis build job that needs to be added to the CI pipeline configuration:

threat_analysis_job:
image: sparta-docker:latest
stage: build
script:

- sparta

Finally, it is possible to use other threat modeling tools for the elicitation, as long
as they yield appropriately formatted threats and their corresponding risk estimates
for submission to the CTAM server (see Sect. 7.6.1 for a discussion on the use of
alternative threat elicitation engines).

7.3.3 Analysis Activities

CTAM enables several types of analysis activities through its systematic collection
of threat analysis information as the software system evolves over time. It currently
leverages SPARTA for the threat analysis results and hence also relies on the residual
and inherent risk values that SPARTA provides. Inherent risk represents the risk not
accounting for any security or privacy solutions (i.e., the risk of a threat if there were
no countermeasures at all). As such, this is the degree of risk inherent to the nature
of the system under design. Residual risk represents the risk taking into account
security and privacy solutions (i.e., the inherent risk minus the effect of security
and privacy solutions). However, it is also possible to use different risk scores, as
long as they incorporate the effect of partially or completely mitigating threats in
the system.

By collecting the inherent and the residual risk for every committed version of
the system under consideration, the overall progress in securing the system can be
assessed. Table 7.1 presents an overview of the different risk evolution patterns
that may emerge through the combination of a decrease, stable, or increase of the

1 While we leverage GitLab CI, adapting the approach to run in the context of GitHub actions is
straightforward.

204 L. Sion et al.

Table 7.1 Risk evolution patterns. Plots for the different risk evolution patterns due to decreasing,
stable, or increasing inherent and residual risk values. The area plots are not stacked (i.e., the
inherent risk consists of the entire area under the line including the residual risk). Combinations of
these patterns are possible to express to different slopes of the inherent and residual risk plot lines.
For example, combining VII and IV results in a more slowly decreasing residual risk, combining
III and VI in a more slowly increasing residual risk, etc.

ksiRtnerehnIksiRlaudiseR (top line)

(bottom line) Decrease Stable Increase

Increase

Remove security solutions* Remove security solutions Add insecure functionality

Stable

Remove secure functionality No security-relevant changes Add secure functionality

Decrease

Remove insecure functionality Add security solutions Add security solutions*

* Solutions that introduce additional risk with regard to, for example, cryptographic key material

inherent and residual risk values.2 These patterns allow developers to gain insight
into the progress that is being made over time. For example, these patterns will
show which commits focus on security (reducing the residual risk) or on expanding
functionality without considering security (increased residual risk). It will also show
how these types of changes manifest themselves over time (e.g., whether security is
always considered after new functionality has been introduced or at the same time).

Alternatively, rather than merely tracking the overall security progress, CTAM

can also be leveraged proactively in multiple ways: First, the security impact of one
or more changes (i.e., pull or merge requests) can be analyzed and compared to
the main branch before they are merged. Second, multiple variants of a proposed
change can be analyzed and compared when deciding which one would be best in
terms of security. Third, the analysis results can be used to automatically reject pull
requests if the increase in risk surpasses a certain threshold. This is not yet explicitly

2 While Table 7.1 shows those patterns as nine distinct possibilities, there is actually a continuum
as one sort of risk may, for instance, decrease more rapidly than the other one. For example, if both
secure and insecure functionality (cells VII and IV in Table 7.1) are removed from the system in a
single commit, both the residual and the inherent risk plot lines will decrease, but the residual risk
line will have a shallower slope than the inherent risk line.

7 CTAM: A Tool for Continuous Threat Analysis and Management 205

visualized in the prototype, but all the necessary analysis information is available to
CTAM to show this.

7.3.4 Server

The server component is a Spring boot application. Registering a new project
requires a deployment token and the repository URL. This is used by the server
to retrieve the commit history from GitLab. When analysis results are submitted
by the threat analysis engine, these results are associated with the corresponding
git commits to enable the construction of an overview dashboard (depicted in the
right-hand side of Fig. 7.1).

When a developer consults the CTAM dashboard, the server constructs a historical
overview of the evolution of the aggregated risk by combining the analysis results
for the commit ancestors on the main branch of the repository. This comprises the
following calculations per commit: (i) the threat count, (ii) the total inherent risk
(by aggregating the inherent risk of the individual threats), (iii) the total residual
risk (also by aggregating), (iv) the risk reduction (as the mitigated risk over the
inherent risk), and (v) the classification into categories (by binning the threats in
equal intervals based on the largest inherent risk encountered in the analysis of the
commit). This initial set of measurements can be expanded with additional ones
that can be calculated from the submitted threat results such as the most frequently
occurring threat types, the system elements with the largest residual risk, etc.

Figure 7.2 shows the CTAM dashboard containing information on the evolution
of threats, the estimated risk, and the progress in reducing that risk for a specific
project. In addition to a project-wide overview, the developer can also select any
analyzed commit from the overview to obtain the detailed analysis results for that
specific version of the system, including the full list of elicited threats.

7.4 Functional Validation

This section presents the functional validation of CTAM on an illustrative appli-
cation case to demonstrate how the effect of changes can be perceived in the
aggregated risk analysis. First, the application itself is described. Next, a number
of deliberate change scenarios are introduced to assess the effect of different types
of changes (e.g., new functionality, securing existing functionality). After each
of these changes, the resulting model is analyzed, and the analysis results are
collected. Finally, the results for each change scenario are discussed, highlighting
the usefulness of CTAM in measuring and monitoring the security impact during
software development.

206 L. Sion et al.

Fig. 7.2 CTAM dashboard. The dashboard presents the main metrics of the last commit (top row),
the evolution of the number of threats and the residual and inherent risk (middle row), and the
progress in reducing the risk and the overview of the prioritized threats in the last analysis results
(bottom row)

7.4.1 Description of the Case

We apply our prototype on a SaaS application for generating and delivering PDF

documents (e.g., invoices, pay slips), via different delivery channels (e.g., email,
print) to end users. One of those channels is a hosted personal document store (PDS)
on which users can login to retrieve documents sent to them. Figure 7.3 shows the
DFD of this system. The center part of the figure contains the core of the system’s
delivery services. The left-hand side contains the integration with third parties for
delivery via print, email, etc. The right-hand side models the hosted PDS from which
users can directly access their documents. The next section will refer to this diagram
when explaining the different changes that will be made to this system to validate
the CTAM prototype.

7 CTAM: A Tool for Continuous Threat Analysis and Management 207

Document Processing and Delivery Service

E1 Print

service

P1

Scheduler
DS1 archive

E2 Banking

E3 Email

Provider

P2

Delivery

DF11

DF12

DF13

DF14

DF1

DF2
DF3

DF4

DF5

(a) DFD for versions C0–C2

Document Processing and Delivery Service

E1 Print

service

P1

Scheduler
DS1 archive DS2 PDS Docs

E2 Banking E4 PDS User

E3 Email

Provider

P2

Delivery
P3

PDS

DS3 User

data

DF11

DF12

DF13

DF14

DF1

DF2
DF3

DF4

DF5

DF15,DF16

DF17,DF18

DF21,

DF22DF23

DF19, DF24,

DF25
DF20

DF9,DF10

DF6,DF7,DF8

(b) DFD for versions C3–C5

Fig. 7.3 Data flow diagram (DFD) of the document processing and delivery service. This diagram
shows the delivery components of this system together with the storage in the center of the diagram.
The left-hand side shows various third-party delivery services, while the right-hand side shows the
hosted personal document store (PDS) from which users can retrieve the documents sent to them. To
improve the readability, multiple flows in the same direction are combined together (e.g., DF17,
DF18). Figure 7.3a shows the initial version of C0 and the change of C1 in gray (C2’s security
solutions are not visualized). Figure 7.3b shows the added functionality of C3, and the elements
that are removed in C5 in gray (C4’s security solutions are not visualized)

7.4.2 Change Scenarios

We validate our approach with five specific change scenarios (affecting both
functionality and security solutions). Each of these changes is applied to the DFD

model of the document processing system in separate commits to enable the analysis
of their impact. The security solutions mentioned below include encryption, authen-

208 L. Sion et al.

tication, and access control to protect against information disclosure, tampering, and
spoofing:

C0 The initial version of the system does not contain the PDS functionality (i.e., no
E4, DS2, DS3, P3, nor any of the data flows to or from them), nor the banking
integration (i.e., no E2 or any of its data flows), nor any security solutions to
protect the communication with E3.

C1 The first commit introduces secure functionality by adding the banking integra-
tion (E2) together with some security solutions to protect the communication
with E2. These solutions provide encryption (to prevent information disclosure
and tampering of the data flows) and mutual authentication.

C2 This commit exclusively affects security, by introducing a security solution to
protect the communication with the email provider (E3). The solution provides
encryption (to prevent information disclosure and tampering of the data flows)
and authentication of the email provider.

C3 This commit adds the PDS functionality (i.e., E4, DS2, DS3, P3, and the data
flows) but does not introduce any security solutions to secure this functionality.

C4 This commit adds security solutions to protect the communication between the
PDS users (E4) and the PDS by encrypting the traffic (protection against infor-
mation disclosure and tampering), authenticating the PDS for user registration,
and mutual authentication for retrieving documents. This does not secure all the
functionality introduced by C3.

C5 Finally, this commit removes all data stores and the scheduler (i.e., remove P1,
DS1–3, and their data flows).3

Each of these changes is introduced in separate commits and pushed to a GitLab
instance to trigger the continuous integration jobs which analyze the modified DFD

model and submit the analysis results to the CTAM server.

7.4.3 Results

Figure 7.4 shows the analysis results as reported by the CTAM server after receiving
the results from SPARTA for each of the introduced changes. This section revisits
each of these changes to explain the risk evolution pattern encountered in the results
and refers to the corresponding cells in Table 7.1.

C1 As shown in Fig. 7.4, the residual risk line is not perfectly stable: the change
actually did result in an increase of the residual risk due to the fact that the
solutions do not fully mitigate the total risk introduced by the new functionality.
Hence, the change corresponds with cells VI and III in Table 7.1.

3 While this is an unrealistic modification, it demonstrates the impact of removing insecure
functionality from the system.

7 CTAM: A Tool for Continuous Threat Analysis and Management 209

–

C0 C1 C2 C3 C4 C5
0

10

20

30

40

50

60 inherent risk
residual risk

Fig. 7.4 Overview of the analysis results for the different changes. This plot shows the resulting
inherent and residual risk values in the example application for each of the changes

C2 With the exception of some small variance in the risk estimation, the inherent
risk remains stable, while the residual risk is reduced. This corresponds with
cell VIII in Table 7.1.

C3 This change scenario involves a substantial modification, as also visible from
the analysis results. As this change scenario does not consider security, it results
in both an increase of the inherent risk and the residual risk. As such, this is an
example of the pattern in cell III in Table 7.1.

C4 As this change scenario only secures the interaction between the end user and
the PDS, it does not mitigate all the newly introduced risk from the previous
change scenario. As it only introduces security solutions, it again corresponds
with cell VIII in Table 7.1.

C5 The final change removes insecure functionality from the model (all internal
storage and the scheduling process). This results in a substantial reduction
of both the inherent and the residual risk. This corresponds with cell VII in
Table 7.1.

7.5 Evaluation

In addition to the functional validation, we also evaluate our approach on a concrete
version history of an existing real-world implementation of a contact tracing
application.

The Corona-Warn-App has been developed for Germany as privacy-friendly
contact tracing app as part of the government’s response against COVID-19. The
app and its backend services are all open source [7–11], extensively documented (in
English) [6], and use the Spring framework. This makes them a suitable candidate
for creating models for different historical versions of the application and its
corresponding backend services.

210 L. Sion et al.

Following below is a brief description of the repositories that are taken into
account for creating the models:4

cwa-server This repository [7] contains the server for processing upload requests
from clients, the distribution configuration parameters to the mobile applications,
and the aggregation and distribution (via a content delivery network (CDN)) of
diagnosis keys.

cwa-testresult-server This repository [8] contains the test result server which is
responsible for making available test results to the verification server.

cwa-verification-iam This repository [9] contains the identity and access manage-
ment service to enable interaction with the verification server.

cwa-verification-portal This repository [10] contains the verification portal ser-
vice to enable hotline employees to create proof certificates for users with a
positive test.

cwa-verification-server This repository [11] contains the verification service that
provides proof of positive tests to other components in the system.

7.5.1 Modeling Approach

We manually constructed a new DFD model of the entire application whenever one
of these repositories introduces a new major or minor version. Figure 7.5 shows
an overview of the different combinations of versions of the repositories that are
used to construct 12 DFD models, representing the application as it is developed and
extended.

To create the concrete DFD models, we based ourselves on a heuristic mapping
from Spring annotations to DFD model element types:

@Repository A repository in the source code is translated to a data store in the
DFD.

@Controller A controller is translated to a process.
@Service A service is translated to a process.

The data flows between these elements are added by inspecting the source code to
determine whether there is communication between these elements. As the source
code does not contain representations of end users or third-party integrations, these
are manually added to the DFD based on the supporting documentation.

Finally, to support the risk analysis and illustrate the effect of countermeasures
on the residual risk over time, a number of security solutions (e.g., access control,
encrypted channels) are modeled as well. For the risk estimation process, we also
need to assign value estimates to elements of the DFD. Because we do not have

4 Understanding the inner workings of how these different components interact is not necessary
for the evaluation in the next section. We refer the interested reader to the separate documentation
repository [6] of the Corona-Warn project for more details.

7 CTAM: A Tool for Continuous Threat Analysis and Management 211

12: 2020-10-28 s v1.6.0, ts v1.1.1, vi v1.1.0, vp v1.3.1, vs v1.3.2
11: 2020-09-22 s v1.4.0, ts v1.1.0, vi v1.1.0, vp v1.3.1, vs v1.3.2
10: 2020-08-19 s v1.3.0, ts v1.1.0, vi v1.1.0, vp v1.3.0, vs v1.3.1
9: 2020-07-16 s v1.1.0, ts v1.1.0, vi v1.1.0, vp v1.1.0, vs v1.1.0
8: 2020-06-12 s v1.0.1, ts v1.0.0, vi v1.0.0, vp v1.0.0, vs v1.0.0
7: 2020-06-08 s v1.0.1, ts v0.6.0, vi v0.6.0, vp v0.6.0, vs v0.6.0
6: 2020-06-05 s v0.5.10, ts v0.5.0, vi v0.5.0, vp v0.3.2, vs v0.5.3
5: 2020-05-31 s v0.5.2, ts v0.3.2, vi v0.3-alpha, vp v0.3.1-alpha, vs v0.5.2
4: 2020-05-28 s v0.5.1, ts v0.3.1, vi v0.3-alpha, vp v0.3-alpha, vs v0.3.1-alpha
3: 2020-05-27 s v0.5.0, vi v0.3-alpha, vp v0.3-alpha, vs v0.3.1-alpha
2: 2020-05-22 s v0.4.0, vs v0.3.1-alpha
1: 2020-05-14 s v0.3

Fig. 7.5 Overview of Corona-Warn versions. This figure shows the overview of the relevant
versions of the Corona-Warn repositories that are included in the model. Legend: s, cwa-server;
ts, cwa-testresult-server; vi, cwa-verification-iam; vp, cwa-verification-portal; vs, cwa-verification-
server. All versions that have changed are marked in bold

the domain knowledge of the actual application’s stakeholders to provide realistic
estimates for all elements, we make an approximation based on the solutions that
were identified. Concretely, we assume that these solutions were introduced to
protect the most important elements in the system and hence assign those elements a
higher asset value than the other elements. This enables us to demonstrate the use of
CTAM to assess risk evolution, yet with the caveat that our analysis does not provide
an accurate estimate of the real-world risk associated with the application.

7.5.2 Results

The discussion on the results is split into two parts: The first part discusses the
evolution of the model itself over time. The second part discusses the threat analysis
results.

7.5.2.1 Evolution of the Model

The analyzed application demonstrates a fast-paced evolution over a time of about
5 months, as new functionality is introduced and it is further integrated with
other services for processing test results and authentication. This increase in size
and complexity is visible when plotting the counts of the different DFD model

212 L. Sion et al.

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

processes
data stores
data flows

external entities
trustboundaries

Fig. 7.6 Overview of the model size evolution. This plot shows how the counts of different model
element types change with each new version as the application increases in size and complexity

element types over time. Figure 7.6 shows the increasing DFD model size as more
functionalities are included in later versions of the modeled application.

The graph also shows that the model itself does not converge during that time
(especially in terms of processes and data flows). Even intermediate versions are
not very representative as the final version contains more than double the amount
of data flows. This observation further stresses the need of continually revisiting the
DFD model as an application is further developed.

Finally, there is another type of change not visible in diagrams such as Fig. 7.6.
These involve changes where elements are replaced or when some elements are
deleted at the same time as other elements are added. These changes do not impact
the model sizes but do result in different models with different threats.

7.5.2.2 Threat Analysis Results

Next, the results of the threat elicitation and risk analysis are discussed. Figures 7.7
and 7.8 visualize the evolution of, respectively, the number of threats and the
(inherent and residual) risk. The evolution of the number of threats (Fig. 7.7) again
confirms the importance of frequently revisiting the threat model: many new threats
are introduced over time as the system is extended with new functionality. This
graph also shows that even minor version changes (e.g., v10) can introduce a
significant number of new threats.

The graph of the inherent and residual risk (Fig. 7.8) shows a similar increasing
trend over time. But the risk also incorporates the effects of (partially) mitigated
threats as these reduce the residual risk. On this graph, similar patterns of evolution
of the inherent and residual risk can be discerned as for the artificial changes used

7 CTAM: A Tool for Continuous Threat Analysis and Management 213

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

600

700
threats

Fig. 7.7 Overview of the threat evolution. This plot shows how the number of threats evolves with
each new version as the system is extended and modified

– –

1 2 3 4 5 6 7 8 9 10 11 12
0

200

400

600

800

1,000

1,200

1,400 inherent risk
residual risk

Fig. 7.8 Overview of the analysis results for the different changes. This plot shows the resulting
inherent and residual risk values over time and the corresponding patterns from Table 7.1

in Sect. 7.5. On Fig. 7.8, each part of the graph between two commits is annotated
with the corresponding pattern from Table 7.1. These evolution patterns are often
combinations of two patterns (e.g., 1–2 and 5–6 are obvious combinations and
marked in Fig. 7.8), as the changes to a project over multiple versions rarely consist
exclusively of either functionality- or security-related modifications. Some are more
subtle, as many of the pattern III instances will not have perfectly parallel lines.
Finally, note that evolution pattern III (“add insecure functionality”) is the most
frequent pattern in Fig. 7.8. This is not due to the application being insecure, but
because our models only include a subset of the solutions that are used in the actual
application. Hence, the occurrence of this pattern may also serve as an indicator for
discrepancies between the model (or, more specifically, the modeled solutions) and
the actual application (see Sect. 7.6.5).

214 L. Sion et al.

7.6 Discussion

This section discusses several considerations and limitations of using CTAM in
practice. Ideas for further improvements are not discussed here but are deferred
to Sect. 7.7.

7.6.1 Using Another Threat Elicitation Engine

As discussed in Sect. 7.3.2, the presented prototype is built around the threat
elicitation engine of SPARTA [45] because of its powerful enablers. Any alternative
threat modeling tool could in theory be adopted, provided that it generates a list of
threats, with, for every threat, (i) the threat type, (ii) the affected DFD model element,
(iii) the data flow, and (iv) the estimates of the inherent risk (i.e., the risk when
ignoring all countermeasures) and the residual risk (i.e., taking into account security
and privacy solutions) For example, CTAM could be integrated with Pytm [51] to
elicit threats, provided that Pytm is extended with (i) a risk estimation approach,
such as FAIR [15], or (more pragmatically) a translation of its current severity
categories to numerical values and (ii) the possibility to elicit threats that have been
mitigated by a solution to ensure that these can be taken into account when tracking
the progress that is being made.

7.6.2 Scope of the Model

Another attention point is the scope of the DFD model and the resulting threat model.
When the DFD model is included in a repository that also contains source code
artifacts, it should at least represent that application. However, this application will,
in practice, be deployed and interact with other entities (such as other applications,
end users, or third-party services) that do not necessarily have a representation in
the source code. This raises the issue on which entities should be encoded in the
DFD model.

The most straightforward approach entails the analysis of a single application
and its internal security properties. Yet the usage of threat analysis as part of a
CI pipeline does not prevent the use of a broader scope of the analysis. Indeed,
the use of infrastructure as code [34] makes operational information available as
source code artifacts that can also be used as inputs for the models. Furthermore,
submodules can be used to combine multiple related repositories (i.e., components
of a larger application), where the DFD model resides in the root repository and
refers to the application as a whole. This approach was taken for the contact tracing
application in Sect. 7.5, where multiple (microservice) repositories are combined as
submodules in a single repository that contains the overall threat model.

7 CTAM: A Tool for Continuous Threat Analysis and Management 215

7.6.3 Model Granularity

Compared to source code, a DFD depicts a more abstract view of a software system.
There is, however, a degree freedom in the abstraction level of a DFD: its elements
could denote running processes, classes, methods, and so forth. Choosing and
managing the abstraction level of the DFD, and thus the abstraction gap between the
DFD and the source code, require careful consideration when applying automated
threat modeling.

If the abstraction gap is small and the DFD closely resembles the source code,
threat analysis results will include detailed information, and elicited threats can be
more easily linked back to the source code. However, code changes are more likely
to warrant model updates, so more effort is required to keep the model up to date
with the source code (as will be discussed in Sect. 7.6.5). Moreover, the DFDs may
become large and lead to many elicited threats.

This is not the case if the DFD depicts a higher-level overview of the system and
is less closely linked to the source code. In this case, however, analysis results will
also be high level, thus requiring more efforts to link threats back to source code
and mitigate them.

For our evaluation of the contact tracing application, we chose a level of
granularity that was primarily driven by the annotations of the Spring framework,
as discussed in Sect. 7.5.

7.6.4 Triggering the Analysis Process

CTAM analyzes the DFD models from the repository on every individual git
commit. However, individual git commits may not be the appropriate level of input
granularity for threat analysis and monitoring over time. We briefly discuss the
trade-off between analyzing individual commits and using alternative triggers (such
as pull or merge requests).

The analysis of the threat model at the granularity of individual commits
introduces additional overhead of maintaining and updating the DFD model for
every commit that introduces relevant changes. This approach makes it trivial to link
newly discovered security or privacy threats to the relevant source code portions that
introduced the threat, because the relevant source code and threat model changes
belong to the same commit. A variation on this approach is reanalyzing the model
on every commit in which the model changed. When the source code and model are
not updated as part of the same commit but assuming that the model is eventually
made consistent with the source code, then the code that introduced a threat can
be found between the commits of the model that first generated that threat and the
previous model.

An alternative approach is to rely on different triggers for re-evaluating the
threat model. Alternative triggers could be specific milestones (or git tags) or when

216 L. Sion et al.

merge or pull requests are submitted to the repository. Such an approach could be
used to enforce practices such as requiring an assessment of the impact on the
threat modeling before merging new feature branches. The potential downside of
these more coarse-grained approaches is that there is no longer a direct connection
between the model and the relevant source code changes. This disconnect makes
it more difficult to identify the relevant source code portions requiring review
to mitigate newly introduced security or privacy threats or remove the insecure
functionality altogether.

7.6.5 Avoiding Model Drift

CTAM currently relies on the inclusion of a DFD model in the code base that is
kept up to date throughout the development. In case this model deviates (e.g., as a
consequence of architectural drift [52]) from reality, the usefulness of the presented
approach decreases drastically, as not all the generated threats will be relevant
(false positives) or not all the relevant threats will be identified (false negatives).
Additionally, the modifications in a single commit may not always necessitate
changes to the model itself, as this depends on the granularity of the commits. There
are opportunities, however, to systematically revisit the accuracy of the model as
part of, for example, merge requests that introduce more considerable changes.

While the above argument applies to any threat modeling approach, the inte-
gration of threat analysis activities into the code versioning system presents two
opportunities for improvements in this regard: First, techniques for architectural
reconstruction and conformance checking can be used to validate the accuracy of the
input model vis-a-vis the committed code. Second, the use of code annotations for
the construction of the input model can remove the need for a separate centralized
input model altogether. These options are further discussed in more detail in
Sect. 7.7.

7.6.6 Using Detailed Threat Analysis Information

As demonstrated in Sect. 7.5, CTAM provides immediate feedback on the progress
being made in creating a secure- and privacy-preserving design in terms of the
inherent risk and the residual risk which are both aggregated (by addition). These
values are calculated and reported for each commit.

This degree of integration with version control systems allows for a number
of additional interesting analyses on the evolution of a code base. For example,
proposed changes in other branches or merge/pull requests could be analyzed and
compared with the main branch to evaluate the security and privacy impact the
merge would have on the main branch.

7 CTAM: A Tool for Continuous Threat Analysis and Management 217

Because SPARTA performs a fine-grained risk assessment, more detailed interme-
diary risk analysis results can be used (e.g., the effectiveness of specific solutions
or the impact on specific data subject types) instead of the aggregated risk estimates
per threat. This would allow the developer to perform more targeted assessments,
e.g., the analysis of privacy risk from the perspective of a specific data subject type
and its evolution over time, or focused on specific assets (e.g., credit card numbers
or user data), or filtering on specific model elements.

7.6.7 Security Metrics

The systematic analysis and measurement of a software product necessarily bring us
to the domain of software security metrics: a difficult, if not infeasible [2], endeavor.
Despite the inherent difficulties, many proposals have been made in the literature
to measure different security-relevant properties, such as dependency graphs [30],
attack surfaces [25], and software metrics [23, 26, 27]. While the risk assessments
of the elicited threats may not be suitable as a metric to compare the security of
different software products in absolute terms, it does allow monitoring the progress
that is being made in securing one specific system throughout its development. For
example, the difference between the inherent and residual risk, and the evolution
thereof, can already serve as a crude indicator for the degree of security of the
application’s design. Furthermore, our prototype lays the groundwork and provides
a generic framework for future evaluation of, and experimentation with, calculating
and comparing different security or privacy metrics over time.

7.7 Future Work

This section outlines our roadmap of future work grouped in terms of (i) how
to acquire or maintain DFD model inputs for the analysis, (ii) alignment with
operational analysis and monitoring, and (iii) the meta-analysis over multiple
historical versions of a software development project.

7.7.1 DFD Model Inputs

In the current prototype, CTAM relies upon the presence and maintenance of up-to-
date DFD models that are encoded as textual files (e.g., in CTAM, these are .sparta
DFD files) and thus can be checked in along with regular code commits, in branches,
etc. The main idea is that the developer manually updates and coevolves these
models alongside his regular code update, whenever these warrant a change to the
DFD itself.

218 L. Sion et al.

This is however suboptimal, as (i) it requires continuous attention from the
developer, (ii) and as such, it easily becomes an oversight, and (iii) there are no
guarantees the DFD model is and remains consistent with the actual code base as it
stands per code revision.

In this area, model-centric techniques such as automated architecture extrac-
tion [4, 57] or reconstruction [16, 42, 59], software reflexion models [5, 29], static
model compliance checking [24, 33], and model coevolution [17, 28] are particularly
promising. Their further implementation and integration are therefore considered
future work.

An interesting subproblem and trade-off are related to the possible diver-
gence that may occur when such a model is coevolved gradually and incremen-
tally with each revision, on the one hand, and the cost and limited scalability
of approaches that reconstruct a system model from scratch for each revision,
on the other hand. Here, the ability to construct DFD models from individual
model fragments (e.g., through process nesting as it is currently supported in
SPARTA or through composition of DFDs corresponding to individual sub-projects
or modules) may present an additional opportunity for improvement and optimiza-
tion.

In each of these approaches, automation of such extraction methods is a key
requirement to align with the vision of automated and integrated threat analysis
presented in this article. Methods that require manual interventions by the developer
or threat modeler are considered suboptimal in this context.

Nevertheless, due to the challenge of automatically deriving a useful DFD from
the source code, it is worthwhile to explore code-oriented threat modeling tools,
such as ThreatSpec [53]. These rely on code annotations (manually added by the
developer) for the construction of the input model and can remove the need for a
separate centralized input model altogether.

7.7.2 Monitoring and Aligning the Operational System

The DFD models used by CTAM predominantly maintain an architecture- and
development-centric perspective on the system. In addition to the challenges
inherent to aligning these models with development artifacts discussed in the
previous section, additional relevant inputs may be considered that come from the
operational context, which is also a valid and accessible source of information in a
DevOps continuous integration pipeline.

For example, run-time inspection and monitoring techniques may be used to
check deviation between the run-time system and the system model encoded in
the DFD, an activity that is called conformance checking [14] or the extraction of
architectural models at the basis of run-time interactions [4, 21, 57]. Operational
security technologies could inform and update the threat model about detected
attacks, anomalies, or changes to the expected workload, which may indicate

7 CTAM: A Tool for Continuous Threat Analysis and Management 219

deviations between the system design and the DFD or inform the security solutions
modeled within the DFD in terms of strength or coverage of risk.

In addition, run-time security adaptive mechanisms such as run-time application
self-protection (RASP) are capable of changing the fundamental structure of a
system in response to a security issue, and these changes must also be reflected in
the DFD to allow the CTAM risk analysis to take into account such risk mitigations
enacted dynamically.

The challenges and benefits to the holistic ingestion of these diverse
sources of information coming from a modern DevOps environment have been
discussed in earlier work [55]. Additional work to further explore and validate
these promising integrations of different sources of operational information is
ongoing.

7.7.3 Project-Centric Risk Analysis and Management Use
Cases

The use of CTAM promotes the creation and coevolution of threat models for each
intermediate version and at each snapshot of the development of a system. Next to
the system models (DFDs), the outcome of threat analysis – lists of threat scenarios,
ranked in accordance with their priority/risk – constitutes a knowledge repository
that can be monitored and mined for valuable insights about the evolution and
management of risk in a project over time.

A number of promising novel use cases can be discussed in this regard. For
example, this approach would allow (i) monitoring the recurrence or re-emergence
of threats over time which indicates possible regressions, (ii) observing an evolution
in the types of threats raised which may be indicative of the overall project
evolution (e.g., the project evolves to rely more extensively on personal data and
thus privacy threats will be raised more), (iii) alternative risk aggregation functions
for monitoring, (iv) the overall increase of inherent risk with the introduction of new
features, (v) the ability of existing solutions or countermeasures to reduce or manage
some of the newly emerging risks (i.e., the effectiveness of countermeasures, the
stability of the security architecture over time, etc.), and (vi) security solutions or
mitigations that can be suggested for specific threats and risk sources in the system,
and they can be evaluated at the basis of their risk reduction outcomes. In these use
cases, the security architect, project manager, software developer, and operator can
be provided with more direct feedback and actionable insights that may allow them
to further optimize the development process.

Performing these types of analysis activities and validating the different analysis
scenarios discussed above in a real-world case are considered part of our future
work.

220 L. Sion et al.

7.8 Conclusion

Threat analysis is commonly performed in a single-shot operation in the early
stages of software development. Because of this, progress in threat mitigation is not
actively revisited and monitored throughout later development stages such as the
implementation and as the system evolves over time. Furthermore, as changes are
made to the system, the originally anticipated threats may become obsolete while
novel threats remain undiscovered.

In this chapter, we have introduced CTAM, a continuous threat analysis and
management prototype that supports continuous threat modeling and elicitation and
integrates this activity into a continuous integration pipeline in GitLab. By revisiting
threat analysis as new changes are pushed to the source code repository, threat
management becomes a continuous activity, and the progress in mitigating threats
(both in applying appropriate security and privacy solutions as in making changes
to existing functionality) can be more accurately monitored.

Integrating threat analysis activities in a continuous integration pipeline provides
the following benefits: First, threat management becomes a continuous concern,
rather than a single-shot analysis on an outdated version of the system. Second, it
provides guidance toward mitigating threats and keeps track of the progress. Third,
it creates the need to maintain the architectural abstraction model of the system and
forces developers to reflect on the broader architectural impact of their changes in
terms of security and privacy.

Acknowledgments We thank Robin Vanhove for his contributions in the creation of the DFD

models as part of his master’s thesis. This research is partially funded by the Cybersecurity
Initiative Flanders and the KU Leuven research fund.

References

1. Audodesk: Autodesk Continuous Threat Modeling (2021). https://github.com/Autodesk/
continuous-threat-modeling/

2. S. Bellovin, On the brittleness of software and the infeasibility of security metrics. IEEE Secur.
Priv. 4(4), 96–96 (2006). https://doi.org/10.1109/MSP.2006.101

3. Z. Braiterman, A. Shostack, J. Marcil, S. de de Vries, I. Michlin, K. Wuyts, R. Hurlbut, B.S.
Schoenfield, F. Scott, M. Coles, C. Romeo, A. Miller, I. Tarandach, A. Douglen, M. French,
Threat Modeling Manifesto (2020). https://www.threatmodelingmanifesto.org/

4. F. Brosig, N. Huber, S. Kounev, Automated extraction of architecture-level performance
models of distributed component-based systems, in 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011) (IEEE, 2011), pp. 183–192

5. J. Buckley, S. Mooney, J. Rosik, N. Ali, JITTAC: a just-in-time tool for architectural
consistency, in 2013 35th International Conference on Software Engineering (ICSE) (2013),
pp. 1291–1294. https://doi.org/10.1109/ICSE.2013.6606700

6. Corona-Warn-App: Corona-Warn-App: Documentation (2022). https://github.com/corona-
warn-app/cwa-documentation

https://github.com/Autodesk/continuous-threat-modeling/
https://github.com/Autodesk/continuous-threat-modeling/
https://github.com/Autodesk/continuous-threat-modeling/
https://github.com/Autodesk/continuous-threat-modeling/
https://github.com/Autodesk/continuous-threat-modeling/
https://github.com/Autodesk/continuous-threat-modeling/
https://github.com/Autodesk/continuous-threat-modeling/
https://doi.org/10.1109/MSP.2006.101
https://doi.org/10.1109/MSP.2006.101
https://doi.org/10.1109/MSP.2006.101
https://doi.org/10.1109/MSP.2006.101
https://doi.org/10.1109/MSP.2006.101
https://doi.org/10.1109/MSP.2006.101
https://doi.org/10.1109/MSP.2006.101
https://doi.org/10.1109/MSP.2006.101
https://www.threatmodelingmanifesto.org/
https://www.threatmodelingmanifesto.org/
https://www.threatmodelingmanifesto.org/
https://www.threatmodelingmanifesto.org/
https://doi.org/10.1109/ICSE.2013.6606700
https://doi.org/10.1109/ICSE.2013.6606700
https://doi.org/10.1109/ICSE.2013.6606700
https://doi.org/10.1109/ICSE.2013.6606700
https://doi.org/10.1109/ICSE.2013.6606700
https://doi.org/10.1109/ICSE.2013.6606700
https://doi.org/10.1109/ICSE.2013.6606700
https://doi.org/10.1109/ICSE.2013.6606700
https://github.com/corona-warn-app/cwa-documentation
https://github.com/corona-warn-app/cwa-documentation
https://github.com/corona-warn-app/cwa-documentation
https://github.com/corona-warn-app/cwa-documentation
https://github.com/corona-warn-app/cwa-documentation
https://github.com/corona-warn-app/cwa-documentation
https://github.com/corona-warn-app/cwa-documentation
https://github.com/corona-warn-app/cwa-documentation

7 CTAM: A Tool for Continuous Threat Analysis and Management 221

7. Corona-Warn-App: Corona-Warn-App server (2022). https://github.com/corona-warn-app/
cwa-server

8. Corona-Warn-App: Corona-Warn-App testresult server (2022). https://github.com/corona-
warn-app/cwa-testresult-server

9. Corona-Warn-App: Corona-Warn-App verification iam (2022). https://github.com/corona-
warn-app/cwa-verification-iam

10. Corona-Warn-App: Corona-Warn-App verification portal (2022). https://github.com/corona-
warn-app/cwa-verification-portal

11. Corona-Warn-App: Corona-Warn-App verification server (2022). https://github.com/corona-
warn-app/cwa-verification-server

12. S.T. Datko, Static code analysis with GitLab-CI. Tech. rep. (2016)
13. M. Deng, K. Wuyts, R. Scandariato, B. Preneel, W. Joosen, A privacy threat analysis

framework: supporting the elicitation and fulfillment of privacy requirements. Requir. Eng.
16(1), 3–32 (2011)

14. S. Dunzer, M. Stierle, M. Matzner, S. Baier, Conformance checking: a state-of-the-art literature
review, in Proceedings of the 11th International Conference on Subject-Oriented Business
Process Management, 2019, pp. 1–10

15. J. Freund, J. Jones, Measuring and Managing Information Risk: A FAIR Approach
(Butterworth-Heinemann, 2014)

16. J. Garcia, I. Ivkovic, N. Medvidovic, A comparative analysis of software architecture recovery
techniques, in 2013 28th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE) (IEEE, 2013), pp. 486–496

17. S. Getir, A. Van Hoorn, L. Grunske, M. Tichy, Co-evolution of software architecture and fault
tree models: an explorative case study on a pick and place factory automation system. NiM-
ALP@ MoDELS 13, 32–40 (2013)

18. GitLab: GitLab CI/CD (2021). https://docs.gitlab.com/ee/ci/
19. IriusRisk: IriusRisk (2021). https://www.iriusrisk.com/
20. O. Javed, J.H. Dawes, M. Han, G. Franzoni, A. Pfeiffer, G. Reger, W. Binder, PerfCI: a

toolchain for automated performance testing during continuous integration of Python projects,
in 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)
(IEEE, 2020), pp. 1344–1348

21. M. Kleehaus, Ö. Uludağ, P. Schäfer, F. Matthes, Microlyze: a framework for recovering the
software architecture in microservice-based environments, in International Conference on
Advanced Information Systems Engineering (Springer, 2018), pp. 148–162

22. R. Kozik, M. Choraś, D. Puchalski, R. Renk, Platform for software quality and dependability
data analysis, in International Conference on Dependability and Complex Systems (Springer,
2018), pp. 306–315

23. M. Lanza, S. Ducasse, Understanding software evolution using a combination of software
visualization and software metrics, in Proceedings of LMO 2002 (Langages et Modèles à
Objets (Lavoisier, 2002), pp. 135–149

24. F. Leymann, V. Yussupov, U. Zdun, Monitoring behavioral compliance with architectural
patterns based on complex event processing, in Service-Oriented and Cloud Computing: 8th
IFIP WG 2.14 European Conference, ESOCC 2020, Heraklion, Crete, Greece, 28–30 Sept
2020, Proceedings, vol. 12054 (Springer Nature, 2020), p. 125

25. P.K. Manadhata, J.M. Wing, An attack surface metric. IEEE Trans. Softw. Eng. 37(3), 371–386
(2011). https://doi.org/10.1109/TSE.2010.60

26. N. Medeiros, N. Ivaki, P. Costa, M. Vieira, Software metrics as indicators of security vul-
nerabilities, in 2017 IEEE 28th International Symposium on Software Reliability Engineering
(ISSRE), Oct 2017, pp. 216–227. https://doi.org/10.1109/ISSRE.2017.11

27. T. Mens, S. Demeyer, Future trends in software evolution metrics, in Proceedings of the
4th International Workshop on Principles of Software Evolution. IWPSE ’01 (Association
for Computing Machinery, New York, NY, USA, 2001), pp. 83–86. https://doi.org/10.1145/
602461.602476

https://github.com/corona-warn-app/cwa-server
https://github.com/corona-warn-app/cwa-server
https://github.com/corona-warn-app/cwa-server
https://github.com/corona-warn-app/cwa-server
https://github.com/corona-warn-app/cwa-server
https://github.com/corona-warn-app/cwa-server
https://github.com/corona-warn-app/cwa-server
https://github.com/corona-warn-app/cwa-server
https://github.com/corona-warn-app/cwa-testresult-server
https://github.com/corona-warn-app/cwa-testresult-server
https://github.com/corona-warn-app/cwa-testresult-server
https://github.com/corona-warn-app/cwa-testresult-server
https://github.com/corona-warn-app/cwa-testresult-server
https://github.com/corona-warn-app/cwa-testresult-server
https://github.com/corona-warn-app/cwa-testresult-server
https://github.com/corona-warn-app/cwa-testresult-server
https://github.com/corona-warn-app/cwa-testresult-server
https://github.com/corona-warn-app/cwa-verification-iam
https://github.com/corona-warn-app/cwa-verification-iam
https://github.com/corona-warn-app/cwa-verification-iam
https://github.com/corona-warn-app/cwa-verification-iam
https://github.com/corona-warn-app/cwa-verification-iam
https://github.com/corona-warn-app/cwa-verification-iam
https://github.com/corona-warn-app/cwa-verification-iam
https://github.com/corona-warn-app/cwa-verification-iam
https://github.com/corona-warn-app/cwa-verification-iam
https://github.com/corona-warn-app/cwa-verification-portal
https://github.com/corona-warn-app/cwa-verification-portal
https://github.com/corona-warn-app/cwa-verification-portal
https://github.com/corona-warn-app/cwa-verification-portal
https://github.com/corona-warn-app/cwa-verification-portal
https://github.com/corona-warn-app/cwa-verification-portal
https://github.com/corona-warn-app/cwa-verification-portal
https://github.com/corona-warn-app/cwa-verification-portal
https://github.com/corona-warn-app/cwa-verification-portal
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/corona-warn-app/cwa-verification-server
https://github.com/corona-warn-app/cwa-verification-server
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://www.iriusrisk.com/
https://www.iriusrisk.com/
https://www.iriusrisk.com/
https://www.iriusrisk.com/
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1109/ISSRE.2017.11
https://doi.org/10.1145/602461.602476
https://doi.org/10.1145/602461.602476
https://doi.org/10.1145/602461.602476
https://doi.org/10.1145/602461.602476
https://doi.org/10.1145/602461.602476
https://doi.org/10.1145/602461.602476
https://doi.org/10.1145/602461.602476

222 L. Sion et al.

28. R. Morrison, D. Balasubramaniam, F. Oquendo, B. Warboys, R.M. Greenwood, An active
architecture approach to dynamic systems co-evolution, in European Conference on Software
Architecture (Springer, 2007), pp. 2–10

29. G. Murphy, D. Notkin, K. Sullivan, Software Reflexion models: bridging the gap between
design and implementation. IEEE Trans. Softw. Eng. 27, 364–380 (05 2001). https://doi.org/
10.1109/32.917525

30. V.H. Nguyen, L.M.S. Tran, Predicting vulnerable software components with dependency
graphs, in Proceedings of the 6th International Workshop on Security Measurements and
Metrics. MetriSec ’10 (Association for Computing Machinery, New York, NY, USA, 2010).
https://doi.org/10.1145/1853919.1853923

31. OWASP: OWASP top 10 – 2021 (2021). https://owasp.org/Top10/
32. OWASP: Threat Dragon (2021). https://owasp.org/www-project-threat-dragon/
33. S. Peldszus, K. Tuma, D. Strüber, J. Jürjens, R. Scandariato, Secure data-flow compliance

checks between models and code based on automated mappings, in 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems (MODELS)
(2019), pp. 23–33. https://doi.org/10.1109/MODELS.2019.00-18

34. A. Rahman, R. Mahdavi-Hezaveh, L. Williams, A systematic mapping study of
infrastructure as code research. Inf. Softw. Technol. 108, 65–77 (2019). https://
doi.org/https://doi.org/10.1016/j.infsof.2018.12.004, https://www.sciencedirect.com/science/
article/pii/S0950584918302507

35. T. Rangnau, R.V. Buijtenen, F. Fransen, F. Turkmen, Continuous security testing: a case
study on integrating dynamic security testing tools in ci/cd pipelines, in: 2020 IEEE 24th
International Enterprise Distributed Object Computing Conference (EDOC) (2020), pp. 145–
154. https://doi.org/10.1109/EDOC49727.2020.00026

36. K. Rindell, K. Bernsmed, M.G. Jaatun, Managing security in software – or: how i learned to
stop worrying and manage the security technical debt, in Proceedings of the 14th International
Conference on Availability, Reliability and Security (ARES’19) (ACM, 2019), pp. 1–8. https://
doi.org/10.1145/3339252.3340338

37. M. Rusakovich, TicTaaC (2021). https://github.com/rusakovichma/TicTaaC
38. C. Schneider, Threagile (2021). https://threagile.io/
39. A. Shostack, Experiences threat modeling at Microsoft, in Modeling Security Workshop (Dept.

of Computing, Lancaster University, UK, 2008)
40. A. Shostack, Threat Modeling: Designing for Security (John Wiley & Sons, Indianapolis,

Indiana, 2014)
41. G.B. Simpson, CI/CD Software Security Automation. Tech. rep., Sandia National Lab.(SNL-

NM), Albuquerque, NM (United States) (2018)
42. Z.T. Sinkala, M. Blom, S. Herold, A mapping study of software architecture recovery

for software product lines, in Proceedings of the 12th European Conference on Software
Architecture: Companion Proceedings (2018), pp. 1–7

43. L. Sion, D. Van Landuyt, W. Joosen, The never-ending story: On the need for continuous
privacy impact assessment, in 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW) (IEEE, 2020), pp. 314–317

44. L. Sion, D. Van Landuyt, K. Wuyts, W. Joosen, Privacy risk assessment for data subject-aware
threat modeling, in 2019 IEEE Security and Privacy Workshops (SPW) (IEEE, 2019)

45. L. Sion, D. Van Landuyt, K. Yskout, W. Joosen, SPARTA: Security & privacy architecture
through risk-driven threat assessment, in IEEE 2018 International Conference on Software
Architecture (ICSA 2018) (IEEE, 2018). [freely]

46. L. Sion, D. Van Landuyt, K. Yskout, S. Verreydt, W. Joosen, Automated threat analysis
and management in a continuous integration pipeline, in 2021 IEEE Secure Development
Conference (SecDev) (IEEE, 2021), pp. 30–37

47. L. Sion, K. Wuyts, K. Yskout, D. Van Landuyt, W. Joosen, Interaction-based Privacy threat
elicitation, in Proceedings of the 4th International Workshop on Privacy Engineering – IWPE
2018 (IEEE, 2018)

https://doi.org/10.1109/32.917525
https://doi.org/10.1109/32.917525
https://doi.org/10.1109/32.917525
https://doi.org/10.1109/32.917525
https://doi.org/10.1109/32.917525
https://doi.org/10.1109/32.917525
https://doi.org/10.1109/32.917525
https://doi.org/10.1145/1853919.1853923
https://doi.org/10.1145/1853919.1853923
https://doi.org/10.1145/1853919.1853923
https://doi.org/10.1145/1853919.1853923
https://doi.org/10.1145/1853919.1853923
https://doi.org/10.1145/1853919.1853923
https://doi.org/10.1145/1853919.1853923
https://owasp.org/Top10/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-threat-dragon/
https://owasp.org/www-project-threat-dragon/
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/10.1109/MODELS.2019.00-18
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/https://doi.org/10.1016/j.infsof.2018.12.004
https://www.sciencedirect.com/science/article/pii/S0950584918302507
https://www.sciencedirect.com/science/article/pii/S0950584918302507
https://www.sciencedirect.com/science/article/pii/S0950584918302507
https://www.sciencedirect.com/science/article/pii/S0950584918302507
https://www.sciencedirect.com/science/article/pii/S0950584918302507
https://www.sciencedirect.com/science/article/pii/S0950584918302507
https://www.sciencedirect.com/science/article/pii/S0950584918302507
https://www.sciencedirect.com/science/article/pii/S0950584918302507
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1145/3339252.3340338
https://doi.org/10.1145/3339252.3340338
https://doi.org/10.1145/3339252.3340338
https://doi.org/10.1145/3339252.3340338
https://doi.org/10.1145/3339252.3340338
https://doi.org/10.1145/3339252.3340338
https://doi.org/10.1145/3339252.3340338
https://github.com/rusakovichma/TicTaaC
https://github.com/rusakovichma/TicTaaC
https://github.com/rusakovichma/TicTaaC
https://github.com/rusakovichma/TicTaaC
https://github.com/rusakovichma/TicTaaC
https://threagile.io/
https://threagile.io/
https://threagile.io/

7 CTAM: A Tool for Continuous Threat Analysis and Management 223

48. L. Sion, K. Yskout, D. Van Landuyt, W. Joosen, Risk-based Design security analysis, in
Proceedings – 2018 IEEE/ACM First International Workshop on Security Awareness from
Design to Deployment, SEAD 2018, Gothenburg, Sweden (2018)

49. L. Sion, K. Yskout, D. Van Landuyt, W. Joosen, Solution-aware data flow diagrams for
security threat modelling, in Proceedings of The 6th Track on Software Architecture: Theory,
Technology, and Applications (2018)

50. K. Tan, V. Garg, An analysis of open-source automated threat modeling tools and their
extensibility from security into privacy. Usenix; login: online publication (2022). https://www.
usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-
and-their

51. I. Tarandach, Pytm (2021). https://github.com/izar/pytm
52. B. Tekinerdogan, Architectural drift analysis using architecture reflexion viewpoint and design

structure reflexion matrices, in Software Quality Assurance (Elsevier, 2016), pp. 221–236
53. ThreatSpec: ThreatSpec (2021). https://threatspec.org/
54. K. Tuma, C. Sandberg, U. Thorsson, M. Widman, T. Herpel, R. Scandariato, Finding security

threats that matter: two industrial case studies. J. Syst. Softw. 111003 (2021). https://doi.org/
10.1016/j.jss.2021.111003

55. D. Van Landuyt, L. Pasquale, L. Sion, W. Joosen, Threat models at run time: the case for
reflective and adaptive threat management (nier track) (2021)

56. C. Vassallo, S. Proksch, A. Jancso, H.C. Gall, M. Di Penta, Configuration smells in continuous
delivery pipelines: a linter and a six-month study on GitLab, in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (2020), pp. 327–337

57. M. Walter, R. Heinrich, R. Reussner, Architectural attack propagation analysis for identifying
confidentiality issues, in 2022 IEEE 19th International Conference on Software Architecture
(ICSA) (IEEE, 2022), pp. 1–12

58. K. Wuyts, Privacy Threats in Software Architectures. PhD Thesis, KU Leuven (2015)
59. T. Yang, Z. Jiang, Y. Shang, M. Norouzi, Systematic review on next-generation web-based

software architecture clustering models. Comput. Commun. 167, 63–74 (2021)
60. K. Yskout, T. Heyman, D. Van Landuyt, L. Sion, K. Wuyts, W. Joosen, Threat modeling:

from infancy to maturity, in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: New Ideas and Emerging Results (ACM, 2020), pp. 9–12. https://doi.
org/10.1145/3377816.3381741

https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://www.usenix.org/publications/loginonline/analysis-open-source-automated-threat-modeling-tools-and-their
https://github.com/izar/pytm
https://github.com/izar/pytm
https://github.com/izar/pytm
https://github.com/izar/pytm
https://github.com/izar/pytm
https://threatspec.org/
https://threatspec.org/
https://threatspec.org/
https://doi.org/10.1016/j.jss.2021.111003
https://doi.org/10.1016/j.jss.2021.111003
https://doi.org/10.1016/j.jss.2021.111003
https://doi.org/10.1016/j.jss.2021.111003
https://doi.org/10.1016/j.jss.2021.111003
https://doi.org/10.1016/j.jss.2021.111003
https://doi.org/10.1016/j.jss.2021.111003
https://doi.org/10.1016/j.jss.2021.111003
https://doi.org/10.1016/j.jss.2021.111003
https://doi.org/10.1145/3377816.3381741
https://doi.org/10.1145/3377816.3381741
https://doi.org/10.1145/3377816.3381741
https://doi.org/10.1145/3377816.3381741
https://doi.org/10.1145/3377816.3381741
https://doi.org/10.1145/3377816.3381741
https://doi.org/10.1145/3377816.3381741

Chapter 8
EARLY: A Tool for Real-Time Security
Attack Detection

Tanwir Ahmad, Dragos Truscan, and Jüri Vain

Abstract The Internet has become a prime subject of security attacks and intru-
sions by attackers. These attacks can lead to system malfunction, network break-
down, data corruption, theft, etc. A network intrusion detection system (IDS) is a
tool used for identifying unauthorized and malicious behavior by observing network
traffic. State-of-the-art IDSs are designed to detect an attack by inspecting the
complete information about the attack. This means that an IDS would only be able to
detect an attack after it has been executed on the system under attack and might have
caused damage to the system. In this paper, we extend our early IDS proposed in
our previous work. The tool can detect network attacks before they could cause any
more damage to the system under attack while preventing unforeseen downtime and
interruption. In this work, we employ different deep neural network architectures
for attack identification and compare their performances. The deep neural networks
are trained in a supervised manner to extract relevant features from raw network
traffic data instead of relying on a manual feature selection process used in most
related approaches. Further, we empirically evaluate our tool on two datasets from
different domains: CICIDS2017 from the web application domain and MQTT-IDS-
2020 dataset from the IoT domain. The results show that our approach performed
well and attained a high overall balanced accuracy.

Keywords Convolutional neural network · Gated recurrent unit · Intrusion
detection system · Early detection

T. Ahmad · D. Truscan (�)
Department of Information Technology, Åbo Akademi University, Turku, Finland
e-mail: tanwir.ahmad@abo.fi; dragos.truscan@abo.fi

J. Vain
High-Assurance Software Laboratory, Tallinn University of Technology, Tallinn, Estonia
e-mail: juri.vain@ttu.ee

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_8

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 8&domain=pdf

 885 52970
a 885 52970 a

mailto:tanwir.ahmad@abo.fi
mailto:tanwir.ahmad@abo.fi
mailto:tanwir.ahmad@abo.fi

 9462 52970 a 9462 52970 a

mailto:dragos.truscan@abo.fi
mailto:dragos.truscan@abo.fi
mailto:dragos.truscan@abo.fi

 885 56845 a 885 56845 a

mailto:juri.vain@ttu.ee
mailto:juri.vain@ttu.ee
mailto:juri.vain@ttu.ee
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8
https://doi.org/10.1007/978-3-031-42212-6_8

226 T. Ahmad et al.

8.1 Introduction

Modern society is significantly dependent on a wide range of interconnected soft-
ware systems for finance, energy distribution, communication, and transportation.
The era of controlled communication in closed networks for restricted purposes is
over. Due to the adoption of Internet technologies, almost all financial, government,
and social sectors started to rely heavily on networked information systems to
process and store confidential information. As a result, these systems have become
primary subjects to security attacks and intrusions by attackers. These attacks
can lead to system malfunction, network breakdown, data corruption, theft, etc.
Therefore, it is essential to ensure network security by monitoring and detecting
network attacks in real time as early as possible.

A network IDS is a tool used for identifying unauthorized and malicious
behavior by observing the network traffic and helping network administrators take
appropriate reactive measures to secure the network infrastructure and the associated
nodes [29]. The majority of the IDSs can be divided into two groups: anomaly-based
and signature-based detection systems [4]. In the former group, a detection system
learns the profile of normal network traffic and would classify the given network
traffic data as intrusive or anomalous if it deviates from the normal traffic profile
by more than a predefined anomaly threshold. This allows these systems to detect
undiscovered and novel attacks. However, the value of the anomaly threshold has a
significant impact on the accuracy of the systems. Finding the optimal value of the
anomaly threshold is a complicated task and, in many cases, requires manual tuning.

A signature-based IDS identifies intrusive network traffic by comparing the
given network traffic data against the signatures (e.g., sequence of string and regular
expressions) of known attacks. This category of network IDS is most commonly
used in daily practice [38]. Since most of these systems rely on the knowledge
bases (i.e., predefined sets of attack models and patterns) extracted from known
attacks and system vulnerabilities, they are also known as knowledge-based or
misuse IDS [22]. In most cases, the domain experts construct the knowledge bases
manually, which can be a tedious and error-prone task [21]. Unlike anomaly-based
IDSs, this group of IDSs can only detect those attacks that are defined in the
knowledge bases. However, these methods demonstrate a high degree of accuracy
and a low false alarm rate compared to the anomaly-based IDSs [4, 12]. One of the
main challenges in developing these systems is extracting or defining a signature
of a known attack that can represent different variations of the attack. Furthermore,
managing a large signature knowledge base and matching signatures against the
traffic are time- and resource-intensive tasks [4].

The spread of high-speed networks and fast-propagating threats poses additional
challenges to current IDSs, which detect an attack by inspecting the entire network
traffic data related to the attack. This means that an IDS would only be able to
detect an attack after it has been executed on the system under attack and might
have already caused damage to the system. Therefore, early attack (or intrusion)
detection is desirable in the cybersecurity domain to prevent network attacks before

8 EARLY: A Tool for Real-Time Security Attack Detection 227

they could cause any more damage to the system. Based on the early classification
results of the traffic, the network administrator can decide whether to stop the traffic
and raise an alarm message or deploy countermeasures.

In order to address the above challenges, in our previous work [3], we proposed
an end-to-end signature-based early IDS to detect network attacks as early as
possible with a high degree of accuracy. To that extent, we employed a one-
dimensional convolutional neural network (1D CNN) [20] (i.e., a type of deep
neural network (DNN) [7]) to extract relevant features from raw network traffic
data that were used for early classification of ongoing attacks. Deep learning is a
type of machine learning where we utilize DNNs [7] or multi-layer neural networks
to approximate complex functions by learning different levels of representations of
the given training data. In order to evaluate the performance of our tool, we have
also defined a new metric, earliness, which measures the ratio of information of an
attack needed to classify it as a given attack type.

In this work, we extend our previous work by employing and comparing
different types of neural networks for early detection of network attacks. Further,
we rigorously evaluate the applicability of our approach by benchmarking its
performance on two datasets from different domains: CICIDS2017 dataset [33]
from the web application domain and MQTT-IDS-2020 [16] dataset from the IoT
domain.

In summary, the contributions of this work are as follows:

1. We present a tool-supported network IDS focused on optimizing the accuracy
of attack detection with minimum feasible delay (or, in other words, maximum
earliness).

2. The tool has two main components: one for creating attack detection models for
different application domains and one for monitoring the network traffic with
respect to the type of attack model chosen.

3. The attack model creation component automatically extracts the relevant fea-
tures from raw network traffic data in an end-to-end manner instead of relying
on the manual feature engineering process. Therefore, our approach is domain-
independent and does not require domain-specific data preprocessing steps.

4. The monitoring component works at the network packet level, and thus it is
agnostic to the type of protocol being monitored. In addition, it allows one to
select which type of attacks is being monitored based on the type of the selected
attack model.

5. Two neural network architecture types can be selected, RNN and CNN,
depending upon the need for real-time detection time delay, precision, or
training time.

6. We introduce a new metric, called earliness, to evaluate how early our tool can
detect attacks.

7. We empirically evaluate the detection capability and earliness of the tool using
several datasets in two application domains.

228 T. Ahmad et al.

8.2 Overview of the Early Tool

The main goal of the EARLY tool is to monitor the network traffic in real
time against known security attacks for different application domains and deploy
countermeasures before the attacks are completed. The main feature of this tool is
to detect ongoing attacks with high accuracy.

The EARLY tool can be integrated with DevOps environments allowing an
organization to continuously monitor its systems and identify potential security
threats before they escalate into larger-scale incidents. The tool has three main
components: a training module, a library of trained models, and a monitoring
module (see Fig. 8.1). The training module is used during the Develop and Release
phases to train neural network models using various datasets for different applica-
tion domains based on decisions taken in the Plan phase. The resulting model is
saved in the library of attack models and used later on by the monitoring module
to monitor the corresponding type of network traffic during the Monitor phase.
Whenever attacks are detected, automatic countermeasures can be deployed based
on predefined triggers.

The tool works at the network packet level, by analyzing network flows.
A network flow is a bidirectional sequence of packets exchanged between two
endpoints (e.g., a web server and a client) during a certain time interval with some
common flow properties [9] such as source and destination IP addresses, source and
destination port numbers, and the protocol type. In our work, we define a network
flow as a sequence of T ordered packets, where T represents the length of a complete
flow. A flow is denoted as:

.FT = {P1, P2, . . . , PT }, ∀ Pi ∈ Rd ∧ 1 ≤ i ≤ T (8.1)

EARLY tool

Deploy

Network
traffic

dataset

Library of
models

Operate Monitor

Attack
monitoring

network
traffic

alerts for
countermeasures

ReleaseDevelopPlan

Require-
ments

security requirements

training traffic

Training

Fig. 8.1 Overview of EARLY tool architecture in the DevOps context

8 EARLY: A Tool for Real-Time Security Attack Detection 229

where d is the dimension (or length) of a packet.
In order to extract flows from the network traffic, both the training module and

the monitoring module use a sub-module, called flow processing.

8.2.1 Flow Processing

The flow processing module consists of three components: packet filtering, flow
identification, and packet preprocessing module, as shown in Fig. 8.2.

8.2.1.1 Packet Filtering

The packet filtering component captures the network packets and forwards them to
the subsequent components if they satisfy the given criteria. For example, if we are
protecting the web server running at port 80, we can configure the component to
forward only those packets whose destination or source port is 80. We monitor the
raw network traffic between the system under attack and the untrusted network. We
select only those network packets which are related to the type of attacks we would
like to detect. For example, if we are interested in detecting only web attacks [17],
we will capture only HTTP packets.

The next two modules transform the packets and group them into network flows.
Whenever a network flow is updated with a new packet, we use the early flow
classifier to update the prediction corresponding to the flow.

Fig. 8.2 Flow processing module

230 T. Ahmad et al.

8.2.1.2 Flow Identification

Upon receiving a new packet, we inspect the packet properties such as source and
destination IP addresses to identify a suitable active flow for it. An active flow
represents an ongoing communication session between a pair of network endpoints.
On the other hand, if we cannot find an active flow that matches the characteristics
of a packet, we create a new flow. A network flow is considered to be terminated or
inactive upon connection teardown (e.g., by FIN packet) or when the flow has not
received a new packet within a certain flow time-out (e.g., 120 seconds). The flow
time-out value can be adjusted according to the protocol type of the network traffic
we are capturing for detecting attacks.

8.2.1.3 Packet Preprocessing

Once we have identified the appropriate flow for the new packets, each packet
goes through the following preprocessing steps to truncate unwanted information
and transform it to a uniform-size vector of bytes (truncation and transformation
operations). The main purpose of the steps is to ensure that the classifier should
rely on relevant features for flow classification. For exemplification purposes,
in the following, we discuss the steps in relation to HTTP and TCP protocol;
however, these steps can be applied to other types of network packets with minor
modifications.

Truncation removes irrelevant headers and fields so that the classifier focuses
only on useful features for flow classification and does not over-fit unrelated features
such as MAC and IP addresses.

For instance, the raw captured packets contain the Ethernet header. The header
has information concerning the physical link, such as the media access control
(MAC) address used for transferring the frames between different nodes in the
network. However, this information is valueless for attack identification because
it can be spoofed easily. Thus, this header is removed from the packet.

Similarly, the Internet Protocol (IP) header in the packets includes information
such as the total length of the packet, protocol version, and source and destination
IP addresses. This information is necessary for routing packets in the network.
However, we consider this information irrelevant and counterproductive for our
classifier since there is a chance that the classifier will start relying on the IP
information (e.g., IP addresses) for detecting attack flows. Therefore, we remove it
from the packets. This approach allows the classifier to function steadily even if the
addresses of the nodes in the network have changed and generalize the knowledge
learned from one network environment to another.

Transformation A fixed-size input is required when using a neural network for
classification. To make the length of the header of the transport layer and the payload
of the packets uniform, we crop or pad them with zeros to a fixed length. We would
like to point out that even though we restrict the length of the packets (i.e., d in

8 EARLY: A Tool for Real-Time Security Attack Detection 231

Eq. 8.1) in a flow, we do not restrict the length of a flow (i.e., number of packets
T) unlike other proposed approaches (e.g., [44]) though it is implicitly bounded by
time-out.

8.2.2 Training

We train the classifier offline before using it for online early IDS. The training
process is depicted in Fig. 8.3. We require a labeled flow dataset for supervised
training that contains normal and attack flows. In addition to the labeled flows, the
dataset should also have network packets corresponding to the flows.

The majority of the publicly available datasets used for training and evaluating
the IDSs have the class imbalance problem [4], that is, the number of examples
among the different classes is not similar in the dataset. A classifier trained on
an imbalanced dataset typically exhibits poor performance in terms of overall
prediction accuracy.

Therefore, in this work, in order to rectify the effect of class imbalance, we
use a cost-sensitive learning method [15]. In this method, we train the neural
network model with sample weighting, which acts as a coefficient for the loss value
computed for each sample (i.e., flow) during the training process. The weight of
each sample is based on its class. It is calculated inversely proportional to the class
frequencies in the training data. The objective is that the classifier should pay more
attention to those samples that belong to an underrepresented class.

Previous work [27, 36] has shown that the cost-sensitive learning method
performs better than the sampling-based method (such as random oversampling
and undersampling) when an imbalanced dataset is used for training a classifier.
Consequently, cost-sensitive learning in DNNs [15, 18] has recently become more
popular and a competitive option to the data resampling method when dealing with
imbalanced data learning.

Fig. 8.3 Training process

232 T. Ahmad et al.

Splitting dataset We split the dataset in two subsets: one for training and one for
evaluation. We prepare the training dataset by processing every packet in the flows
using the procedure described in Sect. 8.2.1.3. We denote a flow dataset as . D =
{(F (j)

T , yj)} for .1 ≤ j ≤ N , where N represents the total number of flows . FT and
their corresponding labels y.

Augmenting data Since our objective is to train the classifier capable of reliably
detecting the attack flow after observing the first few packets out of a given flow,
we extend the dataset by cumulatively creating short segments of a flow at different
lengths.

The process of extending the training dataset by generating more data (e.g.,
network flows) from existing data is called data augmentation [34]. According to
a predefined segmentation rate . sr , we create the shortest segment of a given flow
containing only the first few packets of the flow; subsequently, we create more
segments based on the flow by cumulatively adding more packets. Segmentation
rate . sr is a hyper-parameter such that .0 < sr < 1. It is used to calculate the segment
size .sz = �sr ∗ T � for a given flow, where T is the length (i.e., total number of
packets) of a flow. This parameter value controls the number of segments generated
per flow, for instance, more segments per flow will be generated as the value of
. sr gets smaller. Suppose we have a flow .F (j)

T = {P1, P2, . . . , PT }, then the set of
segments of this flow is as follows:

. {F (j)
t=k∗sz

|k = 1, 2, . . . , 	T − 1

sz

}

where all the segments have the same label . yj as the original flow does.
We would like to point out that setting the segment size . sz to a fixed value

for every flow in the training dataset would be suboptimal because we will end
up with more segments for longer flows and fewer for shorter ones in the dataset.
Since the length of flows can vary over a wide range in a dataset, this can worsen
the class imbalance problem in the dataset. Therefore, in this work, we employ
the segmentation rate . sr that is used to calculate the segment size . sz for a given
flow based on its length T. This allows us to generate roughly the same number of
segments of flows with different lengths. This method is adapted from [11] and can
be used to generate segments based on different cumulative factors, such as 2 or 3.

For example, consider three flows with different lengths: .F (1)
6 , .F (2)

15 , and .F
(3)
70 . We

set the segmentation rate . sr to 0.25. The segment sizes . sz for .F (1)
6 , .F (2)

15 , and . F (3)
70

are 2, 4, and 18, respectively. Table 8.1 lists the segments of the flows generated by
the data augmentation process.

Data augmentation is only applied to the flows in the training dataset. The dataset
is extended by including the generated flow segments.

Training We train our early classifier to learn a mapping function .H : F
(j)
t → yj ,

where .t ≤ T . In other words, the classifier should be able to predict the class label

8 EARLY: A Tool for Real-Time Security Attack Detection 233

Table 8.1 Flow segments
with respect to the
segmentation rate . sr = 0.25

No. Flows Flow segments

1
. F

(1)
6 = {P1, P2, . . . , P6} . {P1, P2}

2 . {P1, P2, P3, P4}
3

. F
(2)
15 = {P1, P2, . . . , P15}

. {P1, P2, P3, P4}
4 . {P1, P2, . . . , P8}
5 . {P1, P2, . . . , P12}
6

. F
(3)
70 = {P1, P2, . . . , P70}

. {P1, P2, . . . , P18}
7 . {P1, P2, . . . , P36}
8 . {P1, P2, . . . , P54}

. yj of a given flow .F (j)
t by examining only the first t packets. We have used the

categorical cross-entropy loss function and Adam [19] optimizer for training our
classifier. The model/classifier resulting from training is stored in the Model library,
accompanied by a description of that model architecture, types of attacks supported,
and accuracy.

The EARLY tool can use two different types of neural networks to detect network
attacks, as discussed in the following:

Convolutional neural networks (1D CNNs) [20] are used to extract a good
internal representation of network flows and provide it as an input to a fully
connected or dense layer. We use a softmax layer [13] as the final layer of our
network to calculate a probability distribution for target classes. The CNNs are
used to extract relevant features from grid-shaped input data such as images and
sequences. They are capable of modeling the spatial and temporal dependencies in
the data by learning relevant convolution filters (i.e., a set of grid-shaped weights
or trainable parameters). A convolution layer is composed of several convolution
filters, and each filter is used to extract a certain feature from the input data. Thus,
the output of a convolution layer is called a feature map.

The input data for 1D CNNs has two dimensions: The first dimension specifies
the sequence of events (i.e., packets in a network flow), whereas the second
dimension correlates to the individual features of an event (i.e., bytes of a packet).
We have used rectified linear unit (ReLU) [30] as a nonlinear activation function
for every neuron in the convolutional layer. Typically, each convolutional layer is
followed by a pooling layer [13] to achieve translation invariance of the output
returned by the convolutional layer. This layer reduces the temporal size of the
output by replacing each fixed-size partition of it with a summary statistic (e.g.,
maximum or average) of the adjacent elements. The CNNs have a smaller number
of trainable parameters than other types of artificial neural networks such as fully
connected networks [20]. Therefore, they are less likely to overfit the training data
than the fully connected networks which result in a better generalization.

After convolution and pooling operations, a given variable-length network flow
is represented by a variable-length series of feature maps. We use a global pooling
layer [23] to transform the series into a fixed-length vector, which is then provided as
an input to fully connected layers to get the feature vector. Lastly, we apply a softmax

234 T. Ahmad et al.

layer to the feature vector in order to obtain a probability distribution for each class.
Based on the probability distribution and the classification threshold, we make the
final predictions. We denote this neural network architecture by .EARLYCNN .

Recurrent neural networks (RNNs) [13] are used for processing time series data
such as a network flow .FT = {P1, P2, . . . , PT }. In RNNs, each neural network node
has a memory unit (i.e., also known as the hidden state) that represents the previous
state of the network. The current hidden state . ht is a function of the previous hidden
state .ht−1 and the current input (i.e., a packet in our case) . Pt : .ht = f (ht−1, Pt),
where t represents the current time step. Subsequently, the current hidden state . ht

is used to compute the final output of the node. In summary, an RNN layer uses the
information learned from the previous time steps and the current input to produce
the output.

In this work, we use gated recurrent unit (GRU), a variant of RNN, which
performs better than classic RNN and LSTM (i.e., another RNN variant). Further,
it can learn long-term sequential dependencies efficiently because it does not suffer
from the vanishing gradient issue [8]. We replace the convolution layer with a GRU
layer to extract the relevant features from the raw network traffic in the . EARLYCNN

architecture while keeping the rest of the architecture unchanged. We denote the new
neural network architecture by .EARLYRNN .

8.2.3 Monitoring

The packet sniffer component in our approach is responsible for network traffic
monitoring in real time. It captures and forwards every inbound and outbound
network packet to the flow processing component, as shown in Fig. 8.4. This
component is implemented using the libpcap1 library that provides a programming
interface to capture packets passing through the network interfaces.

Ideally, we should capture and process every network packet for inspection
to detect attack attempts. But such an approach would be resource-intensive and
possibly impractical, particularly when dealing with high-speed network traffic. In
order to sustain a high packet rate, in our approach, we capture and process only
those network packets which are related to the type of attacks we would like to
detect using the libpcap filters. For example, we can configure the library filters
to capture only those packets whose destination port is 80. These filters, which are
usually supported by the operating system kernel, improve performance by reducing
the packet processing overhead.

A list of active flows is maintained along with the predictions corresponding to
those flows made by our early flow classifier (see Fig. 8.5). Whenever a network
flow is updated with a new packet, the early flow classifier makes a prediction (i.e.,
a probability distribution for output classes) using the neural network model. The

1 https://github.com/the-tcpdump-group/libpcap

https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap

8 EARLY: A Tool for Real-Time Security Attack Detection 235

Fig. 8.4 Monitoring

Fig. 8.5 Early classification of flows

final class of a flow is a class that has a higher probability than other classes and
the classification threshold .∈ [0, 1). If none of the class probabilities is higher
than a given threshold, our approach will return Unknown as the final class. As
we increase the classification threshold, the number of false positives (i.e., a result
that indicates a given flow is an attack when it is not) decreases, which improves
the classification accuracy but degrades the earliness of the approach. The threshold
is provided by a person such as a network administrator who observes the network
traffic and is responsible for taking countermeasures against the attacks based on
the classification results.

Alerts can be defined to notify external systems to automatically deploy coun-
termeasures when the attack detection probability (or confidence) goes over a
predefined threshold:

.detection probability ≥ threshold → alert

236 T. Ahmad et al.

Fig. 8.6 User interface of the EARLY monitor

The EARLY monitor is available as open source at [2]. At the moment, pretrained
models for Web attacks and MQTT attacks are available. A screenshot of the
EARLY monitor interface is shown in Fig. 8.6, in which three out of four network
flows are classified as malicious since the probability of prediction was higher than
the specified threshold.

8.3 Evaluation

In this section, we evaluate how the two types of neural network architectures affect
the performance of our approach by answering the following research questions:

• RQ1. How do the different neural network architectures affect the classification
performance of our approach in terms of classifying the complete flows (i.e.,
flows with all the packets)?

• RQ2. Which neural network architecture is more effective in identifying the
class of a given flow in real time by inspecting only the first few packets of the
flow?

RQ1 investigates the classification performance, whereas RQ2 evaluates the
performance of our approach when deployed in a real-time environment with respect
to the neural network architectures. For evaluation, we use two datasets, one for
web-based attacks (CICIDS2017) and one for MQTT-based attacks (MQTT-IDS-
2020). We evaluate the performance of our approach using different neural network
architectures against each dataset.

We use scikit-learn [31] library for data preprocessing and TensorFlow [1] library
to train the neural network models.

8 EARLY: A Tool for Real-Time Security Attack Detection 237

8.3.1 Datasets

8.3.1.1 Web-Based Network Attack Detection

We use CICIDS2017 [33] dataset to evaluate the effectiveness of our approach. The
dataset is composed of normal and seven types of attack flow (e.g., Heartbleed,
botnet, web) along with the network packets corresponding to the flows. We use a
specific part of the dataset that was captured on Thursday, July 6, 2017, and contains
29,309 network flows and 4,074,194 packets related to the following web attacks:
(1) SQL injection, an attacker provides a string of SQL commands to be injected
into the database; (2) cross-site scripting (XSS), an attacker injects a script into the
web application code; and (3) brute force, an attacker tries a list of passwords to find
the administrator’s password. Table 8.2 lists the number of flows, the average flow
length (i.e., number of packets), and the standard deviation (SD) of flow length per
attack type in the dataset.

As one can notice, there is a large imbalance in the distribution of the flow
classes; for example, there are roughly 1291.86 times more flows belonging to the
normal class than the SQL injection class. We have used stratified sampling [10]
to split the original dataset into training and test datasets using the 0.7:0.3 ratio
(see Table 8.3). Unlike random sampling, stratified sampling creates the splits by
maintaining the same percentage for each class as in the complete dataset.

We have augmented the training dataset using the segmentation rate .sr = 0.1.
Table 8.4 lists the number of flows we obtained by applying the data augmentation
technique described in Sect. 8.2.2.

We have observed that the header and payload length of 99% of packets in the
dataset are less or equal to 40 and 356 bytes, respectively. To handle the packets
with different header and payload lengths, we crop or pad them with zeros at the
end to 48 and 400 bytes, respectively, as per the transformation step in Sect. 8.2.1.3.
We scale all the packet bytes between 0 and 1 by dividing them by 255. In practice,
scaling the input data helps machine learning algorithms converge faster [35].

Table 8.2 Web-based flow dataset

Class No. of flows Average flow length SD of flow length

Normal 27,129 124.39 6,508.44

Brute force 1, 507 18.43 64.20

XSS 652 11.48 46.75

SQL injection 21 5.71 3.25

Table 8.3 Training and test
datasets

Class Training Test

Normal 18,990 8,139

Brute force 1,055 452

XSS 456 196

SQL injection 15 6

238 T. Ahmad et al.

Table 8.4 Number of flows
after augmenting the training
dataset with . sr = 0.1

Class Original Augmented

Normal 18,990 92,468

Brute force 1,055 4,625

XSS 456 1,866

SQL injection 15 82

8.3.1.2 MQTT-Based Attack Detection

EARLY was also evaluated in the context of MQTT using the MQTT-IDS-2020 [16]
dataset in which the model was trained with both normal traffic and the following
types of attacks: aggressive scan, user datagram protocol (UDP) scan, Sparta SSH
brute force, and brute force, using a part of the dataset. Table 8.5 lists the number of
flows, the average flow length (i.e., number of packets), and the SD of flow length
per attack type in the dataset.

The total number of flows and packets related to those flows in the dataset is
3,397,121 and 32,177,882, respectively. Due to the limited amount of computing
resources and time, it was not feasible for us to use the entire dataset for training
and evaluation. Therefore, to speed up the training and evaluation processes, we
uniformly sample 20,000 flows from each class. After random sampling, we split
the dataset into two subsets using the ratio 0.7:0.3: training and test set. We have
augmented the training dataset using the segmentation rate .sr = 0.1.

The header and payload length of 99% of packets in the dataset is less or equal
to 40 and 34 bytes, respectively. To handle the packets with different header and
payload lengths, we crop or pad them with zeros at the end to 40 and 50 bytes,
respectively, as per the transformation step in Sect. 8.2.1.3. We scale all the packet
bytes between 0 and 1 by dividing them by 255.

8.3.2 Model Architectures

In this section, we discuss the neural network architectures used for detecting
network attacks. We set the batch size to 32, which is the number of flows included

Table 8.5 MQTT-based flow dataset

Class No. of flows Average flow length SD of flow length

Normal 363,495 5.81 25.57

MQTT brute force 2,000,211 4.99 3.00

Aggressive scan 20,025 2.03 0.89

UDP scan 10 1.10 0.31

Sparta SSH brute force 1,013,380 19.45 4.41

8 EARLY: A Tool for Real-Time Security Attack Detection 239

in a mini-batch during neural network training. The total number of training epochs
is set to 50.

8.3.2.1 EARLYCNN

This neural network model is made of a convolution block. The block contains the
following layers in the specified order: 1D CNN layer with kernel size 1, valid
padding, ReLU activation, and bias, layer normalization, and average pooling layer
of size 2 with the same padding. We perform global average pooling to flatten the
series of feature maps to a fixed-length vector, which is then provided as input to
a fully connected layer to get the feature vector. Finally, we use a softmax layer to
obtain a probability distribution for each class. We make the final predictions based
on the probability distribution and the classification threshold.

Figure 8.7 portrays the architectures of the .EARLYCNN model for the
CICIDS2017 and MQTT-IDS-2020 datasets. The total number of trainable
parameters of the models for the CICIDS2017 and MQTT-IDS-2020 datasets is
16,804 and 14,917, respectively. The label on the arrow from the Input to Conv1D
layer in the figure specifies the dimensions of the input provided to the model.
The input has three dimensions: the number of flows in a mini-batch, the number
of packets in a flow, and the number of bytes or features representing a packet in
a flow. Since we do not fix the number of packets required in a flow to make a
prediction, the second dimension in the label (e.g., 32x?x448 in Fig. 8.7a) is left
open.

8.3.2.2 EARLYRNN

This neural network model has a GRU layer with Tanh activation. The return
sequence is set to true for the layer, which means that the layer will return the hidden
state output for each time step (or packet). We perform global average pooling to
flatten the series of hidden states to a fixed-length vector. Finally, we use a softmax
layer to obtain a probability distribution for each class. Based on the probability
distribution and the classification threshold, we make the final predictions.

Figure 8.8 portrays the architectures of the .EARLYRNN model for the
CICIDS2017 and MQTT-IDS-2020 datasets. The total number of trainable
parameters of the models for CICIDS2017 and MQTT-IDS-2020 is 46,404 and
12,069, respectively.

8.3.3 Evaluation Metrics

Evaluating the classification performance of a machine learning-based approach on
an imbalanced dataset is a challenging task [45]. The majority of the existing IDSs

240 T. Ahmad et al.

F
ig

. 8
.7

.E

A
R

L
Y

C
N

N
ne
ur
al
 n
et
w
or
k
ar
ch
ite
ct
ur
es
. (

a)
 N
eu
ra
l n

et
w
or
k
ar
ch
ite
ct
ur
e
fo
r
C
IC
ID

S2
01
7.
 (

b)
 N
eu
ra
l n

et
w
or
k
ar
ch
ite
ct
ur
e
fo
r
M
Q
T
T-
ID

S-
20
20

8 EARLY: A Tool for Real-Time Security Attack Detection 241

F
ig

. 8
.8

.E

A
R

L
Y

R
N

N
ne
ur
al
 n
et
w
or
k
ar
ch
ite
ct
ur
es
. (

a)
 N
eu
ra
l n

et
w
or
k
ar
ch
ite
ct
ur
e
fo
r
C
IC
ID

S2
01
7.
 (

b)
 N
eu
ra
l n

et
w
or
k
ar
ch
ite
ct
ur
e
fo
r
M
Q
T
T-
ID

S-
20
20

242 T. Ahmad et al.

using machine learning have reported the performance of their approaches using
traditional metrics such as accuracy and F1-score [4]. These metrics are designed
to evaluate the performance of a classifier on balanced datasets. They do not work
well when there is a large imbalance in the distribution of the classes in the dataset
[45]. Therefore, we evaluate our tool, in the context of a web-based application and
an MQTT Broker application, using the following metrics:

• Precision calculates the percentage of instances identified as positive that were
correctly classified.

• Recall (i.e., also known as detection rate) computes the percentage of actual
positive instances that were correctly classified.

• False positive rate (FPR) (i.e., also known as false alarm rate) estimates the
proportion of negative observations wrongly predicted as positive over the total
number of negative observations.

• Balanced accuracy (BA) is the arithmetic mean of recall obtained on each class.
• Bookmaker informedness (BM) is defined as the probability that the classifier
will make a correct decision as opposed to random guessing.

• Prediction time indicates the average time needed by the tool to detect a security
attack.

• Earliness specifies how early the correct class of a flow can be predicted ahead
of the end of the flow. We define the earliness as:

.Earliness =
⎧
⎨

⎩

T − t

T − 1
if T > 1

1 if T = 1
(8.2)

where t is the minimum number of packets required to correctly predict the
class of a given flow and T is the total number of packets in the flow. Since this
metric aims to evaluate the earliness of the prediction instead of its quality, this
metric is only applied to those flows that are correctly classified and .t ≤ T .

All the metrics mentioned above can have values between 0 and 1. Higher
values of precision, recall, BA, and BM and lower values of FPR indicate better
classification performance of a classifier. The earliness value lies between 0 and 1,
with extreme values 1 and 0 reached in case a classifier can accurately classify
a given flow by analyzing only the first packet and all the packets of the flow,
respectively.

8.3.4 RQ1: Classification Performance

In order to answer this research question, we have trained and evaluated the
architectures against the independent test set discussed in Sect. 8.3.1. We used
tenfold cross-validation on the training dataset to fine-tune the hyper-parameter
values and model selection for both neural network architectures. For statistical

8 EARLY: A Tool for Real-Time Security Attack Detection 243

reasons, the evaluation procedure is repeated 30 times, and every time, we randomly
shuffle the datasets to remove any ordering bias before splitting it into training and
test set. We set the classification threshold to 0, which means that the final class of
a flow is a class that has a higher probability than other classes.

A perfect IDS has a 1.0 recall at 0.0 FPR for every class, which means that it
can identify all flows correctly without any miss-detection. Nevertheless, in reality,
such flawless IDSs are empirically not feasible or very difficult to attain in a real-
time environment because of the complexity and large volume of network traffic.

Table 8.6 lists the training time of the neural networks per dataset. One can notice
that the training times of the .EARLYRNN model are higher than the . EARLYCNN

for both datasets. Table 8.7 shows the achieved performance of our tool on both
datasets using the .EARLYCNN architecture. For the CICIDS2017 dataset, our tool
gives the highest detection rate or recall of 0.911 at an FPR of 0.008 for the XSS
attack type among all the other attack types. In other words, our tool correctly
identifies 91.1% of the XSS attack flows in the test dataset and wrongly identifies
less than 1% of other types of flows as XSS attack flows.

The tool has performed well also for the other types of attacks, even though
the number of training flows for the attack types is low. For example, the number of
training flows for Brute force and XSS attack types is only 5.1% and 2.2% of the total
number of original training flows. One can notice that the approach has performed
poorly for the SQL injection attack type. The main reason is that the number of
samples of the attack type is significantly small (i.e., 0.07% of the total number of
training samples). Thus, the model has a limited capacity to learn the attack type.

For the MQTT-IDS-2020 dataset, our tool gives the highest detection rate of
0.997 at an FPR of 0.008 for the MQTT brute force attack type among all the other
attack types. As expected, the tool did not perform well for the UDP scan attack
type because the number of training samples of the attack type was just 7.

Table 8.8 shows the achieved performance of our tool on both datasets using
the .EARLYRNN architecture. For the CICIDS2017 dataset, our tool gives the
highest detection rate of 0.916 at an FPR of 0.003 for the Brute force attack type
among all other attack types. For the MQTT-IDS-2020 dataset, our tool gives the
highest detection rate of 0.999 at a FPR of 0.002 for the MQTT brute-force attack
type among all the other attack types. The tool has performed poorly for the SQL
injection and UDP scan attack types for the CICIDS2017 and MQTT-IDS-2020
datasets, respectively, due to the inadequate number of training samples. Table 8.9
lists the balanced accuracy scores attained by both neural network architectures.
For both datasets, .EARLYRNN has achieved higher balanced accuracy scores

Table 8.6 Training times Dataset Architecture Training time (mins)

CICIDS2017 .EARLYCNN 17.06

.EARLYRNN 29.96

MQTT-IDS-2020 .EARLYCNN 40.93

.EARLYRNN 54.05

244 T. Ahmad et al.

Table 8.7 Classification performance of . EARLYCNN

Dataset Class Precision Recall FPR BM

CICIDS2017 Normal 0.996 0.944 0.054 0.891

Brute force 0.720 0.828 0.051 0.778

XSS 0.754 0.911 0.008 0.904

SQL injection 0.343 0.528 0.003 0.525

MQTT-IDS-2020 Normal 0.707 0.584 0.095 0.488

MQTT brute force 0.979 0.997 0.008 0.989

Aggressive scan 0.812 0.815 0.055 0.760

UDP scan 0.004 0.422 0.038 0.384

Sparta SSH brute force 0.809 0.778 0.066 0.712

Table 8.8 Classification performance of . EARLYRNN

Dataset Class Precision Recall FPR BM

CICIDS2017 Normal 0.996 0.995 0.052 0.944

Brute force 0.905 0.916 0.003 0.913

XSS 0.823 0.916 0.004 0.912

SQL injection 0.403 0.733 0.001 0.732

MQTT-IDS-2020 Normal 0.827 0.758 0.053 0.705

MQTT brute force 0.995 0.999 0.002 0.997

Aggressive scan 0.938 0.987 0.022 0.965

UDP scan 0.092 0.211 0.000 0.211

Sparta SSH brute force 0.833 0.853 0.058 0.795

Table 8.9 Balanced
accuracy of both neural
network architectures

Dataset Architecture Balanced accuracy

CICIDS2017 .EARLYCNN 0.803

.EARLYRNN 0.890

MQTTIDS .EARLYCNN 0.719

.EARLYRNN 0.762

than .EARLYCNN . In conclusion, the answer to research question RQ1 is that the
.EARLYRNN architecture has performed better in terms of classification accuracy
than .EARLYCNN for both datasets.

8.3.5 RQ2: Earliness Performance

This research question aims to study the performance of our tool in detecting attacks
as early as possible in a real-time environment. In our opinion, a real-time IDS
should satisfy the following two requirements: First, the IDS should be able to
process the data (i.e., network packets) as fast as it is being produced under real-
life circumstances. Second, the minimum number of packets (MNP) required to

8 EARLY: A Tool for Real-Time Security Attack Detection 245

accurately predict the class of a given flow should be less than the total number of
packets in the flow.

To answer this question, we ran two replay sessions per dataset where we
reproduced the network traffic captured and not previously used for training in the
dataset against the .EARLYCNN and .EARLYRNN architectures. During the replay
session, we monitored packet inter-arrival times (IAT), processing times required by
our tool to make predictions when using the different neural network architecture,
and the MNP. Our tool and the software that replayed the traffic ran on different
machines. Each machine featured an Intel Core i9-10900X CPU, 64 GB of memory,
RTX 3090 graphics card, and Ubuntu 20.04 Operating System. The machines were
connected via a 1Gb Ethernet connection in an isolated environment to reduce
network latency.

Table 8.10 shows the duration of the replay sessions, the number of packets
retransmitted, the average packet IAT, and the prediction time per packet for each
neural network architecture. In the case of CICIDS17, on average, the tool with the
.EARLYCNN architecture was able to make a prediction in 0.04 milliseconds per
packet, for example, if a flow has four packets, the tool would take 0.24 milliseconds
to predict its class that is seven times faster than .EARLYRNN .

Tables 8.11 and 8.12 show the earliness, the MNP, and the average flow length
per class for .EARLYCNN and .EARLYRNN , respectively. The results show that
our tool can detect the class of a given flow by inspecting roughly only one to
three packets in most of the cases. Further, one can notice that .EARLYRNN has

Table 8.10 Replay sessions

Dataset
Duration
(sec)

Packets
retransmitted

Packet IAT
(ms) Architecture

Prediction
time (ms)

CICIDS2017 29,004 4,074,195 7.11 .EARLYCNN 0.06

.EARLYRNN 0.42

MQTT-IDS-2020 16,614 32,144,887 0.51 .EARLYCNN 4.18

.EARLYRNN 4.30

Table 8.11 Earliness metric and the average minimum number of packets required (MNP) to
predict the flow class for . EARLYCNN

Dataset Class Earliness MNP Average flow length

CICIDS2017 Normal 0.991 2.11 124.39

Brute force 0.936 2.11 18.43

XSS 0.917 1.86 11.48

SQL injection 0.509 3.31 5.71

MQTT-IDS-2020 Normal 0.708 2.40 5.81

MQTT brute force 0.991 1.03 4.99

Aggressive scan 0.848 1.15 2.03

UDP scan 0.525 1.04 1.10

Sparta SSH brute force 0.689 6.73 19.45

246 T. Ahmad et al.

Table 8.12 Earliness metric and the average minimum number of packets required (MNP) to
predict the flow class for . EARLYRNN

Dataset Class Earliness MNP Average flow length

CICIDS2017 Normal 0.994 1.74 124.39

Brute force 0.931 2.20 18.43

XSS 0.886 2.19 11.48

SQL injection 0.712 2.31 5.71

MQTT-IDS-2020 Normal 0.922 1.03 5.81

MQTT brute force 0.999 1.00 4.99

Aggressive scan 0.974 1.02 2.03

UDP scan 0.467 1.05 1.10

Sparta SSH brute force 0.778 5.09 19.45

higher earliness than .EARLYCNN and it requires fewer packets than . EARLYCNN

to correctly predict the class of a given flow.
In summary, .EARLYRNN has outperformed .EARLYCNN in terms of classifi-

cation performance, earliness, and MNP; however, .EARLYCNN takes less time to
make to predict the class of a given flow.

8.4 Related Work

Recently, a number of deep learning-based IDS approaches have been proposed.
Most of these approaches (e.g., [6, 14, 25, 26, 32, 37, 39]) rely on flow-based
statistical features extracted by analyzing all the packets in a given flow such as
total bytes, packet count, IP addresses, and port numbers. In contrast, the proposed
approach aims to extract relevant features from raw network traffic data that can
be used to reliably detect attack flows by analyzing the partial information already
available of the flows during the early phase of attacks. In this section, we focus
on some of the most important and recent related works on IDS that use machine
learning to classify network attacks by extracting the relevant features from raw
network traffic data.

Zhang et al. [43] proposed an IDS based on a convolutional neural network,
named parallel cross-convolutional neural network (PCCN). They use the network
traffic data to extract features, but they restrict the number of packets in a flow
to 5. The authors mention that the PCCN network structure meets the real-time
requirements of network IDS; however, they neither further discuss nor evaluate
this aspect of the approach.

Zhu et al. [46] presented a hierarchical network IDS based on unsupervised
clustering using deep auto-encoder and Gaussian mixture model. The proposed
model comprises two sub-models: the first sub-model detects abnormal traffic in real
time, and the second identifies the attack categories of abnormal traffic detected by
the first one. They employ the feature processing method from PCCN approach [43]

8 EARLY: A Tool for Real-Time Security Attack Detection 247

to obtain features for their IDS. The authors state that essential features are extracted
based on the first few packets, which guarantee real-time network IDS. However,
they neither discuss how the approach achieves real-time IDS nor evaluate this
aspect of the approach. Further, they report the performance of their approach in
terms of accuracy, F1-scores, and AUC averaged over all the classes, which could
be misleading when the class distribution is imbalanced [45].

Zhang et al. [44] proposed a network IDS that integrates CNN and LSTM neural
network structures to learn the spatial and temporal features of flows. Similar to our
approach, they use network traffic data to extract features. However, they restrict the
number of packets in a flow to 10, whereas we do not limit the number of packets in a
flow and, in addition, analyze all the packets available in order to make an informed
prediction. Further, they also report the performance of their approach with respect
to the accuracy, F1-scores, and AUC averaged over all the classes, which could be
misleading when the class distribution is imbalanced [45].

Yin et al. [41] proposed an IDS using RNNs. They evaluated the approach using
the NSL-KDD dataset. They utilized 38 numeric and 3 non-numeric statistical
features in the dataset. Similarly, Xu et al. [40] employed a GRU-based model to
detect network attacks. The model is trained on statistical features and tested using
KDD 99 and NSL-KDD datasets These datasets are considered outdated, and they
lack raw network traffic data [4, 33]. Therefore, we utilize CICIDS2017 for training
and evaluation of our tool. Further, our tool extracts the relevant features from raw
network traffic data in an end-to-end manner instead of relying on manual or flow-
based statistical features in order to detect network attacks as early as possible.

Alsyaibani et al. [5] built an IDS using a GRU-based model. They utilized the
CICIDS 2017 dataset for training and evaluation of the model. All the labels in the
dataset were converted into 0 and 1 to represent attacks and benign traffic. Their
model is trained on the flow-based statistical features; on the other hand, we let our
model extract the relevant features from raw network traffic data.

Zhang et al. [42] proposed a multiple-layer representation learning model for
network IDS by combining CNN with gcForest. They propose a new data encoding
scheme based on P-Zigzag to encode a network packet into a two-dimensional gray-
scale image for classification. In contrast to our approach, this approach classifies
packets instead of flows.

López-Vizcaíno et al. [24] defined the early intrusion detection problem by
grouping network packets into data flows, where each flow is labeled as an attack
or normal traffic depending on the intent of its packets. The ideas and concepts
in this work are very relevant to our work. The authors propose a new time-
aware metric, named ERDE, where accurate predictions are penalized if they are
made after a certain measuring point o that is defined manually. This metric was
initially proposed to measure the early detection of depressed individuals based on
their posts on a social network. In contrast, our nonparametric earliness metric is
designed specifically for network flows. The metric value ranges from 0 to 1, with
extreme values 0 and 1 reached if a classifier can accurately classify a given flow by
analyzing only the first packet and all the flow packets, respectively. In comparison
to ERDE, we consider our metric to be more informative, comparable, and intuitive.

248 T. Ahmad et al.

For evaluation, the authors above divide every flow into ten chunks containing 10%
of the packets for each flow. A set of classifiers (i.e., Random Forest, J48, JRip,
and PART) analyzes each chunk of flows sequentially, and it can produce three
outputs: attack, normal, or delay. The objective is to detect an attack using as few
chunks as possible. They utilize the feature extraction method from [28] that extracts
traffic statistics, such as source port, IP, and MAC addresses, from every new packet
transmitted over a network channel. Although the authors define the early intrusion
detection problem in terms of network flows, they do not explain how they utilize
the features extracted using a method (that does not consider network flows and
processes each packet independently) in order to predict the class of a given flow.
In contrast, we describe packet preprocessing steps and the features used for early
classification in Sects. 8.2.1 and 8.2.2, respectively, in detail. The authors conclude
that machine learning models do not perform well when they are used for early
intrusion detection; however, our results show that our approach can identify attacks
with a high degree of accuracy by analyzing the first few packets of a given flow.

In summary, to the best of our knowledge, the existing IDSs can detect a certain
attack by inspecting the complete information related to the attack. This means that
a system would only be able to detect an attack after it has been executed on the
system under target and might have caused damage to the system. In contrast, our
end-to-end early IDS can reliably detect attacks by analyzing the partial information
already available in the early phase of attacks.

8.5 Conclusion

In this paper, we have presented an end-to-end early IDS that can predict and prevent
network attacks in real time before they could cause any more damage to the system
under attack.

The tool supports two types of classifier architectures, CNN-based and RNN-
based. Regardless of the selected architecture, attack detection models are trained
in a supervised manner to extract relevant features from raw network traffic data,
instead of relying on a manual feature selection process used in most related
approaches. We have evaluated the tool and its classifier architectures on two
different datasets. For the evaluation, we have used a new metric, earliness, to
quantify the earliness of the predictions made by the tool.

The results show that EARLY identifies attacks with a high degree of accuracy
by analyzing roughly only one to three packets. Our approach has achieved
overall 0.803 and 0.719, respectively, balanced accuracy. In terms of classification
performance, earliness, andMNP, an RNN-based model outperformed a CNN-based
model. However, the RNN-based model is approximately ten times slower than the
CNN-based in predicting the class of a given flow. Further, the CNN-based model
trains faster than the RNN-based one. In the future, we aim to evaluate our tool with
other datasets containing encrypted traffic.

8 EARLY: A Tool for Real-Time Security Attack Detection 249

The main threat to external validity is that the evaluation might seem subjective
because we have not compared our approach with other IDS approaches from the
literature. However, as discussed in Sect. 8.4, we could not find any approach similar
to ours that extracts the relevant features from raw network traffic data in an end-
to-end manner instead of relying on manual or flow-based statistical features and
detects network attacks as early as possible. Another threat to validity is that we
have not evaluated the scalability of the tool to detect a large number of simultaneous
attacks. This evaluation will be subject to future work.

Acknowledgments This work was made possible with funding from the European Union’s Hori-
zon 2020 research and innovation program, under Grant Agreement No. 957212 (VeriDevOps).
The opinions expressed and arguments employed herein do not necessarily reflect the official views
of the funding body.

References

1. M. Abadi, A. Agarwal, P. Barham et al., TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems (2015). https://www.tensorflow.org/, software available from tensor-
flow.org

2. T. Ahmad, D. Truscan, Early tool (2022). https://github.com/VeriDevOps/Earlytool
3. T. Ahmad, D. Truscan, J. Vain, I. Porres, Early detection of network attacks using deep learn-

ing, in 15th IEEE International Conference on Software Testing, Verification and Validation
Workshops ICST Workshops 2022, Valencia, Spain, 4–13 Apr 2022. IEEE (2022), pp. 30–39.
https://doi.org/10.1109/ICSTW55395.2022.00020

4. Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, F. Ahmad, Network intrusion
detection system: a systematic study of machine learning and deep learning approaches. Trans.
Emerg. Telecommun. Technol. 32(1), e4150 (2021). https://doi.org/10.1002/ett.4150

5. O.M.A. Alsyaibani, E. Utami, A.D. Hartanto, Intrusion detection system model based on gated
recurrent unit to detect anomaly traffic (2021). https://doi.org/10.1109/ICOIACT53268.2021.
9564003

6. G. Andresini, A. Appice, N.D. Mauro, C. Loglisci, D. Malerba, Multi-channel deep feature
learning for intrusion detection. IEEE Access 8, 53346–53359 (2020). https://doi.org/10.1109/
ACCESS.2020.2980937

7. Y. Bengio, Deep learning of representations for unsupervised and transfer learning, in
Proceedings of ICML Workshop on Unsupervised and Transfer Learning. Proceedings of
Machine Learning Research, PMLR, Bellevue,Washington, USA, 02 Jul 2012, ed. by I. Guyon,
G. Dror, V. Lemaire, G. Taylor, D. Silver, vol. 27, pp. 17–36. http://proceedings.mlr.press/v27/
bengio12a.html

8. J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural
networks on sequence modeling. CoRR abs/1412.3555 (2014). http://arxiv.org/abs/1412.3555

9. B. Claise, B. Trammell, P. Aitken, Specification of the IP Flow Information Export (IPFIX)
protocol for the exchange of flow information. RFC 7011, 1–76 (2013)

10. W.G. Cochran, Sampling Techniques, 3rd edn. (John Wiley, 1977)
11. Z. Cui, W. Chen, Y. Chen, Multi-scale convolutional neural networks for time series classifica-

tion. arXiv (2016)
12. P. Garcia-Teodoro, J.E.D. Verdejo, G. Maciá-Fernández, E. Vázquez, Anomaly-based network

intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28
(2009). https://doi.org/10.1016/j.cose.2008.08.003

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/VeriDevOps/Earlytool
https://github.com/VeriDevOps/Earlytool
https://github.com/VeriDevOps/Earlytool
https://github.com/VeriDevOps/Earlytool
https://github.com/VeriDevOps/Earlytool
https://doi.org/10.1109/ICSTW55395.2022.00020
https://doi.org/10.1109/ICSTW55395.2022.00020
https://doi.org/10.1109/ICSTW55395.2022.00020
https://doi.org/10.1109/ICSTW55395.2022.00020
https://doi.org/10.1109/ICSTW55395.2022.00020
https://doi.org/10.1109/ICSTW55395.2022.00020
https://doi.org/10.1109/ICSTW55395.2022.00020
https://doi.org/10.1109/ICSTW55395.2022.00020
https://doi.org/10.1002/ett.4150
https://doi.org/10.1002/ett.4150
https://doi.org/10.1002/ett.4150
https://doi.org/10.1002/ett.4150
https://doi.org/10.1002/ett.4150
https://doi.org/10.1002/ett.4150
https://doi.org/10.1002/ett.4150
https://doi.org/10.1109/ICOIACT53268.2021.9564003
https://doi.org/10.1109/ICOIACT53268.2021.9564003
https://doi.org/10.1109/ICOIACT53268.2021.9564003
https://doi.org/10.1109/ICOIACT53268.2021.9564003
https://doi.org/10.1109/ICOIACT53268.2021.9564003
https://doi.org/10.1109/ICOIACT53268.2021.9564003
https://doi.org/10.1109/ICOIACT53268.2021.9564003
https://doi.org/10.1109/ICOIACT53268.2021.9564003
https://doi.org/10.1109/ACCESS.2020.2980937
https://doi.org/10.1109/ACCESS.2020.2980937
https://doi.org/10.1109/ACCESS.2020.2980937
https://doi.org/10.1109/ACCESS.2020.2980937
https://doi.org/10.1109/ACCESS.2020.2980937
https://doi.org/10.1109/ACCESS.2020.2980937
https://doi.org/10.1109/ACCESS.2020.2980937
https://doi.org/10.1109/ACCESS.2020.2980937
http://proceedings.mlr.press/v27/bengio12a.html
http://proceedings.mlr.press/v27/bengio12a.html
http://proceedings.mlr.press/v27/bengio12a.html
http://proceedings.mlr.press/v27/bengio12a.html
http://proceedings.mlr.press/v27/bengio12a.html
http://proceedings.mlr.press/v27/bengio12a.html
http://proceedings.mlr.press/v27/bengio12a.html
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003

250 T. Ahmad et al.

13. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, 2016). http://www.
deeplearningbook.org

14. J. Gu, S. Lu, An effective intrusion detection approach using SVM with naïve bayes feature
embedding. Comput. Secur. 103, 102–158 (2021). https://doi.org/10.1016/j.cose.2020.102158

15. H. He, E.A. Garcia, Learning from imbalanced data 21, 1263–1284 (2009). https://doi.org/10.
1109/tkde.2008.239

16. H. Hindy, C. Tachtatzis, R. Atkinson, E. Bayne, X. Bellekens, MQTT-IOT-IDS2020: MQTT
internet of things intrusion detection dataset (2020). https://doi.org/10.21227/bhxy-ep04

17. A.D. Khairkar, D.D. Kshirsagar, S. Kumar, Ontology for detection of web attacks, in 2013
International Conference on Communication Systems and Network Technologies, pp. 612–615
(2013). https://doi.org/10.1109/CSNT.2013.131

18. S.H. Khan, M. Hayat, M. Bennamoun, F.A. Sohel, R. Togneri, Cost-sensitive learning of deep
feature representations from imbalanced data. IEEE Trans. Neural Networks Learn. Syst. 29(8),
3573–3587 (2018). https://doi.org/10.1109/TNNLS.2017.2732482

19. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. arXiv e-prints
arXiv:1412.6980 (2014)

20. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document
recognition. Proc. IEEE 86, 2278–2324 (1998). https://doi.org/10.1109/5.726791

21. J. Li, Y. Qu, F. Chao, H.P.H. Shum, E.S.L. Ho, L. Yang, Machine Learning Algorithms for
Network Intrusion Detection (Springer International Publishing, Cham, 2019), pp. 151–179.
https://doi.org/10.1007/978-3-319-98842-9_6

22. H. Liao, C.R. Lin, Y. Lin, K. Tung, Intrusion detection system: a comprehensive review. J.
Netw. Comput. Appl. 36(1), 16–24 (2013). https://doi.org/10.1016/j.jnca.2012.09.004

23. M. Lin, Q. Chen, S. Yan, Network in network. arXiv (2014)
24. M.F. López-Vizcaíno, F.J. Nóvoa, D. Fernández, V. Carneiro, F. Cacheda, Early intrusion

detection for OS scan attacks, in 18th IEEE International Symposium on Network Computing
and Applications, NCA 2019, Cambridge, MA, USA, 26–28 Sept 2019, ed. by A. Gkoulalas-
Divanis, M. Marchetti, D.R. Avresky (IEEE, 2019), pp. 1–5. https://doi.org/10.1109/NCA.
2019.8935067

25. R.K. Malaiya, D. Kwon, S.C. Suh, H. Kim, I. Kim, J. Kim, An empirical evaluation of deep
learning for network anomaly detection. IEEE Access 7, 140806–140817 (2019). https://doi.
org/10.1109/ACCESS.2019.2943249

26. N. Marir, H. Wang, G. Feng, B. Li, M. Jia, Distributed abnormal behavior detection approach
based on deep belief network and ensemble SVM using spark. IEEE Access 6, 59657–59671
(2018). https://doi.org/10.1109/ACCESS.2018.2875045

27. K. McCarthy, B. Zabar, G. Weiss, Does cost-sensitive learning beat sampling for classifying
rare classes? (2005). https://doi.org/10.1145/1089827.1089836

28. Y. Mirsky, T. Doitshman, Y. Elovici, A. Shabtai, Kitsune: an ensemble of autoencoders for
online network intrusion detection. CoRR abs/1802.09089 (2018). http://arxiv.org/abs/1802.
09089

29. B. Mukherjee, L. Heberlein, K. Levitt, Network intrusion detection. IEEE Netw. 8(3), 26–41
(1994). https://doi.org/10.1109/65.283931

30. V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in
Proceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24
June 2010, Haifa, Israel, ed. by J. Fürnkranz, T. Joachims (Omnipress, 2010), pp. 807–814.
https://icml.cc/Conferences/2010/papers/432.pdf

31. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830 (2011)

32. S. Rajagopal, P.P. Kundapur, K.S. Hareesha, Towards effective network intrusion detection:
from concept to creation on azure cloud. IEEE Access 9, 19723–19742 (2021). https://doi.org/
10.1109/ACCESS.2021.3054688

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.1109/CSNT.2013.131
https://doi.org/10.1109/CSNT.2013.131
https://doi.org/10.1109/CSNT.2013.131
https://doi.org/10.1109/CSNT.2013.131
https://doi.org/10.1109/CSNT.2013.131
https://doi.org/10.1109/CSNT.2013.131
https://doi.org/10.1109/CSNT.2013.131
https://doi.org/10.1109/CSNT.2013.131
https://doi.org/10.1109/TNNLS.2017.2732482
https://doi.org/10.1109/TNNLS.2017.2732482
https://doi.org/10.1109/TNNLS.2017.2732482
https://doi.org/10.1109/TNNLS.2017.2732482
https://doi.org/10.1109/TNNLS.2017.2732482
https://doi.org/10.1109/TNNLS.2017.2732482
https://doi.org/10.1109/TNNLS.2017.2732482
https://doi.org/10.1109/TNNLS.2017.2732482
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1007/978-3-319-98842-9_6
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1109/NCA.2019.8935067
https://doi.org/10.1109/NCA.2019.8935067
https://doi.org/10.1109/NCA.2019.8935067
https://doi.org/10.1109/NCA.2019.8935067
https://doi.org/10.1109/NCA.2019.8935067
https://doi.org/10.1109/NCA.2019.8935067
https://doi.org/10.1109/NCA.2019.8935067
https://doi.org/10.1109/NCA.2019.8935067
https://doi.org/10.1109/ACCESS.2019.2943249
https://doi.org/10.1109/ACCESS.2019.2943249
https://doi.org/10.1109/ACCESS.2019.2943249
https://doi.org/10.1109/ACCESS.2019.2943249
https://doi.org/10.1109/ACCESS.2019.2943249
https://doi.org/10.1109/ACCESS.2019.2943249
https://doi.org/10.1109/ACCESS.2019.2943249
https://doi.org/10.1109/ACCESS.2019.2943249
https://doi.org/10.1109/ACCESS.2018.2875045
https://doi.org/10.1109/ACCESS.2018.2875045
https://doi.org/10.1109/ACCESS.2018.2875045
https://doi.org/10.1109/ACCESS.2018.2875045
https://doi.org/10.1109/ACCESS.2018.2875045
https://doi.org/10.1109/ACCESS.2018.2875045
https://doi.org/10.1109/ACCESS.2018.2875045
https://doi.org/10.1109/ACCESS.2018.2875045
https://doi.org/10.1145/1089827.1089836
https://doi.org/10.1145/1089827.1089836
https://doi.org/10.1145/1089827.1089836
https://doi.org/10.1145/1089827.1089836
https://doi.org/10.1145/1089827.1089836
https://doi.org/10.1145/1089827.1089836
https://doi.org/10.1145/1089827.1089836
http://arxiv.org/abs/1802.09089
http://arxiv.org/abs/1802.09089
http://arxiv.org/abs/1802.09089
http://arxiv.org/abs/1802.09089
http://arxiv.org/abs/1802.09089
http://arxiv.org/abs/1802.09089
https://doi.org/10.1109/65.283931
https://doi.org/10.1109/65.283931
https://doi.org/10.1109/65.283931
https://doi.org/10.1109/65.283931
https://doi.org/10.1109/65.283931
https://doi.org/10.1109/65.283931
https://doi.org/10.1109/65.283931
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.1109/ACCESS.2021.3054688
https://doi.org/10.1109/ACCESS.2021.3054688
https://doi.org/10.1109/ACCESS.2021.3054688
https://doi.org/10.1109/ACCESS.2021.3054688
https://doi.org/10.1109/ACCESS.2021.3054688
https://doi.org/10.1109/ACCESS.2021.3054688
https://doi.org/10.1109/ACCESS.2021.3054688
https://doi.org/10.1109/ACCESS.2021.3054688

8 EARLY: A Tool for Real-Time Security Attack Detection 251

33. I. Sharafaldin, A.H. Lashkari, A.A. Ghorbani, Toward generating a new intrusion detection
dataset and intrusion traffic characterization, in Proceedings of the 4th International Confer-
ence on Information Systems Security and Privacy, ICISSP 2018, Funchal, Madeira – Portugal,
22–24 Jan 2018, ed. by P. Mori, S. Furnell, O. Camp (SciTePress, 2018), pp. 108–116. https://
doi.org/10.5220/0006639801080116

34. C. Shorten, T.M. Khoshgoftaar, A survey on image data augmentation for deep learning. J. Big
Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

35. J. Sola, J. Sevilla, Importance of input data normalization for the application of neural networks
to complex industrial problems. 44, 1464–1468 (1997). https://doi.org/10.1109/23.589532

36. N. Thai-Nghe, Z. Gantner, L. Schmidt-Thieme, Cost-sensitive learning methods for imbal-
anced data (2010). https://doi.org/10.1109/ijcnn.2010.5596486

37. M.F. Umer, M. Sher, Y. Bi, Flow-based intrusion detection: techniques and challenges.
Comput. Secur. 70, 238–254 (2017). https://doi.org/10.1016/j.cose.2017.05.009

38. G. Vigna, W.K. Robertson, D. Balzarotti, Testing network-based intrusion detection signatures
using mutant exploits, in Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS 2004, Washington, DC, USA, 25–29 Oct 2004 (ACM, 2004),
pp. 21–30. https://doi.org/10.1145/1030083.1030088

39. R. Vinayakumar, M. Alazab, K.P. Soman, P. Poornachandran, A. Al-Nemrat, S. Venkatraman,
Deep learning approach for intelligent intrusion detection system. IEEE Access 7, 41525–
41550 (2019). https://doi.org/10.1109/ACCESS.2019.2895334

40. C. Xu, J. Shen, X. Du, F. Zhang, An intrusion detection system using a deep neural network
with gated recurrent units. IEEE Access 6, 48697–48707 (2018). https://doi.org/10.1109/
ACCESS.2018.2867564

41. C. Yin, Y. Zhu, J. Fei, X. He, A deep learning approach for intrusion detection using recurrent
neural networks. IEEE Access 5, 21954–21961 (2017). https://doi.org/10.1109/ACCESS.2017.
2762418

42. X. Zhang, J. Chen, Y. Zhou, L. Han, J. Lin, A multiple-layer representation learning model for
network-based attack detection. IEEE Access 7, 91992–92008 (2019). https://doi.org/10.1109/
ACCESS.2019.2927465

43. Y. Zhang, X. Chen, D. Guo, M. Song, Y. Teng, X. Wang, PCCN: parallel cross convolutional
neural network for abnormal network traffic flows detection in multi-class imbalanced network
traffic flows. IEEE Access 7, 119904–119916 (2019). https://doi.org/10.1109/ACCESS.2019.
2933165

44. Y. Zhang, X. Chen, L. Jin, X. Wang, D. Guo, Network intrusion detection: based on deep
hierarchical network and original flow data. IEEE Access 7, 37004–37016 (2019). https://doi.
org/10.1109/ACCESS.2019.2905041

45. Q. Zhu, On the performance of Matthews correlation coefficient (MCC) for imbalanced dataset.
Pattern Recognit. Lett. 136, 71–80 (2020). https://doi.org/10.1016/j.patrec.2020.03.030

46. Y. Zhu, D. Han, X. Yin, A hierarchical network intrusion detection model based on unsu-
pervised clustering, in MEDES ’21: Proceedings of the 13th International Conference on
Management of Digital EcoSystems, Virtual Event, Tunisia, 1–3 Nov 2021, ed. by R. Chbeir,
Y. Manolopoulos, L. Bellatreche, D. Benslimane, M. Ivanovic, Z. Maamar (ACM, 2021), pp.
22–29. https://doi.org/10.1145/3444757.3485098

https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/23.589532
https://doi.org/10.1109/23.589532
https://doi.org/10.1109/23.589532
https://doi.org/10.1109/23.589532
https://doi.org/10.1109/23.589532
https://doi.org/10.1109/23.589532
https://doi.org/10.1109/23.589532
https://doi.org/10.1109/ijcnn.2010.5596486
https://doi.org/10.1109/ijcnn.2010.5596486
https://doi.org/10.1109/ijcnn.2010.5596486
https://doi.org/10.1109/ijcnn.2010.5596486
https://doi.org/10.1109/ijcnn.2010.5596486
https://doi.org/10.1109/ijcnn.2010.5596486
https://doi.org/10.1109/ijcnn.2010.5596486
https://doi.org/10.1109/ijcnn.2010.5596486
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1016/j.cose.2017.05.009
https://doi.org/10.1145/1030083.1030088
https://doi.org/10.1145/1030083.1030088
https://doi.org/10.1145/1030083.1030088
https://doi.org/10.1145/1030083.1030088
https://doi.org/10.1145/1030083.1030088
https://doi.org/10.1145/1030083.1030088
https://doi.org/10.1145/1030083.1030088
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2018.2867564
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/ACCESS.2019.2927465
https://doi.org/10.1109/ACCESS.2019.2927465
https://doi.org/10.1109/ACCESS.2019.2927465
https://doi.org/10.1109/ACCESS.2019.2927465
https://doi.org/10.1109/ACCESS.2019.2927465
https://doi.org/10.1109/ACCESS.2019.2927465
https://doi.org/10.1109/ACCESS.2019.2927465
https://doi.org/10.1109/ACCESS.2019.2927465
https://doi.org/10.1109/ACCESS.2019.2933165
https://doi.org/10.1109/ACCESS.2019.2933165
https://doi.org/10.1109/ACCESS.2019.2933165
https://doi.org/10.1109/ACCESS.2019.2933165
https://doi.org/10.1109/ACCESS.2019.2933165
https://doi.org/10.1109/ACCESS.2019.2933165
https://doi.org/10.1109/ACCESS.2019.2933165
https://doi.org/10.1109/ACCESS.2019.2933165
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1109/ACCESS.2019.2905041
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1145/3444757.3485098
https://doi.org/10.1145/3444757.3485098
https://doi.org/10.1145/3444757.3485098
https://doi.org/10.1145/3444757.3485098
https://doi.org/10.1145/3444757.3485098
https://doi.org/10.1145/3444757.3485098
https://doi.org/10.1145/3444757.3485098

Chapter 9
A Stream-Based Approach to Intrusion
Detection

Sylvain Hallé

Abstract Integrating security in the development and operation of information
systems is the cornerstone of SecDevOps. From an operational perspective, one of
the key activities for achieving such an integration is the detection of incidents (such
as intrusions), especially in an automated manner. However, one of the stumbling
blocks of an automated approach to intrusion detection is the management of the
large volume of information typically produced by this type of solution. Existing
works on the topic have concentrated on the reduction of volume by increasing the
precision of the detection approach, thus lowering the rate of false alarms. However,
another less explored possibility is to reduce the volume of evidence gathered for
each alarm raised. This chapter explores the concept of intrusion detection from
the angle of complex event processing. It provides a formalization of the notion
of pattern matching in a sequence of events produced by an arbitrary system, by
framing the task as a runtime monitoring problem. It then focuses on the topic
of incident reporting and proposes a technique to automatically extract relevant
elements of a stream that explain the occurrence of an intrusion. These relevant
elements generally amount to a small fraction of all the data ingested for an alarm to
be triggered and thus help reduce the volume of evidence that needs to be examined
by manual means. The approach is experimentally evaluated on a proof-of-concept
implementation of these principles.

Keywords Event stream processing · Explainability · Intrusion detection ·
Pattern matching

S. Hallé (O)
Laboratoire d’informatique formelle, Université du Québec à Chicoutimi, Chicoutimi, QC,
Canada
e-mail: shalle@acm.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_9

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 9&domain=pdf

 885 56845 a 885 56845
a

mailto:shalle@acm.org
mailto:shalle@acm.org
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9
https://doi.org/10.1007/978-3-031-42212-6_9

254 S. Hallé

9.1 Introduction

Information systems can produce logs of various kinds. For instance, workflow
management systems, CRM systems, and ERP platforms produce event logs in
some common format based on XML. Financial transaction systems also keep a
log of their operations in some standardized and documented format, as is the case
for web servers such as Apache and Microsoft IIS. Network monitors also receive
streams of packets whose various headers and fields can be analyzed. It has long
been recognized that these logs can be used as a valuable source of data for the real-
time monitoring of a system and the timely detection of misbehavior, incorrect, or
malicious activities one can loosely call attacks.

Prior work in this area mostly focuses on the efficient detection of specific
patterns in a stream of data elements; when such a pattern is found, an alarm is
triggered, and any defensive or corrective action is taken over by a possibly distinct
part of the infrastructure. However, merely reporting that a given pattern match
has occurred, without further details, is seldom sufficient: the appropriate corrective
actions to be executed, if any, most probably depend on information based on the
specific instance of the match. As a simple example, if a port scanning attack is
detected on some machine in an organization, not much can be done to thwart this
attack without knowledge of the address of that machine. Thus, one must not only
accurately report matches of attack patterns but also extract additional information
on each match.

Alas, we shall see in Sect. 9.2 that selecting what to extract when a pattern match
is found has been the subject of much less work than simply detecting the pattern
in the first place. In many systems, the information to extract must be provided
manually along with the description of the pattern and is hence hard-coded for each
specific pattern. In addition, attack patterns are often assumed to be represented as
finite-state automata [22] or variants thereof.

In this chapter, we formally describe an intrusion detection framework based on
the notion of event streams and stream processors. This framework presents the first
advantage of being generic. In Sect. 9.3, attack patterns are expressed on abstract
events and are defined by an arbitrary “black box” function, called a monitor, that is
only assumed to return a Boolean verdict when a match is found on the underlying
stream of events. This model encompasses existing definitions of patterns based on
finite-state automata but can also be used on signatures expressed in other notations
as well, such as temporal logic, or even completely custom user-defined functions.

In addition, our proposed framework introduces the concept of progressing
subsequence, defined in Sect. 9.4. When a pattern match is detected over a stream of
events, a progressing subsequence identifies a subset of this stream corresponding
only to the events that are genuinely relevant to the match. Such a subsequence is
based on a formal definition that is independent of the actual notation in which the
pattern is expressed. Therefore, it can be computed automatically for any pattern
that can be represented by a monitor.

9 A Stream-Based Approach to Intrusion Detection 255

Finally, the proposed framework also accounts for the fact that a pattern may
be expressed as a composition of stream processing units called processors, where
the output stream produced by a processor can be set as the input stream of
the next one. Thus, complex patterns can be obtained by chaining sequences of
elementary processors. In Sect. 9.5, the chapter describes a technique to keep track
of the relationship between input events that are consumed and output events that
are produced, which makes it possible to relate specific output events to a set of
input events all the way up the chain of composed processors, thus providing a
rudimentary form of lineage tracking.

Taken together, these notions make the building blocks of a generic intrusion
detection mechanism where patterns can be expressed as compositions of monitors
being fed with an arbitrary data source (a system log, a packet capture, etc.) and
where the relevant pieces of information from this source can automatically be
extracted when a pattern match is detected. In addition to be grounded in precise
theoretical definitions, the resulting framework has also been implemented as a
proof-of-concept system leveraging an existing event stream processing engine
called BeepBeep [30], which is described and tested in Sect. 9.6.

9.2 Related Work

The field of attack and intrusion detection is extremely broad and has been the focus
of a large number of scientific works spanning multiple decades. There already exist
numerous recent surveys on the topic of intrusion detection [15, 19, 31, 34, 38, 40,
44, 52, 63], and it is not in the scope of this paper to repeat the synthesis that the
reader can find in these references. In particular, Tidjon et al. propose a detailed
taxonomy of existing approaches in the field [54], which classifies detection systems
into three broad categories:

1. Anomaly-based approaches, which correspond to a host of recent works
attempting to discover trend deviations, outliers, or otherwise “uncommon”
events or actions. The techniques involved include machine learning [39, 49],
neural networks [6, 51], clustering [46, 47, 50], decision trees [4, 13], and
regression [60, 61].

2. Multi-agent-based approaches where cooperating computation units both
observe and interact with the environment in order to detect and prevent attacks
[21, 35–37].

3. Knowledge-based approaches where a system is given a priori information
about the expected behavior of the system, either in the form of rules [41],
cases [18], or ontologies [59].

This chapter focuses on the latter category and in particular on the detection of
attacks, intrusions, or other security-related incidents based on the definition of
behavioral patterns. In its broadest sense, the operation of an information system
periodically produces observable data elements we shall call events. An event

256 S. Hallé

can be the insertion of a message into a log, the reception or transmission of a
network packet observed by a probe, or the execution of a particular system process.
An incident is defined as any undesirable circumstance whose occurrence can be
deduced from the observation of events produced by its operation. The condition
that determines whether the incident occurs or not, based on the observed events, is
called a pattern.

Note that in this context the “pattern” is a very generic concept; it can represent
an arbitrary (computable) condition, and is not tied to the necessity of expressing it
in the notation or language of some existing detection tool. In particular, although
a linear sequence of events to be observed (e.g., A followed by B, followed by C,
etc.) obviously counts as a possible pattern, it is far from being the only or the most
complex type of condition one may wish to evaluate on a set of events produced by
an information system. One must also keep in mind that a pattern can be positive or
negative: it may either represent the behavior of an attack (raising an alarm when
the pattern is detected) or a security rule that can be violated by an attack (raising
an alarm when a deviation from the expected pattern is observed). In logical terms,
this depends on whether the undesirable situation is expressed by a condition . ϕ or
by its negation . ¬ϕ.

From a network security standpoint, a number of detection approaches follow this
generic definition. Industrial-grade network intrusion detection tools, such as Snort
[1] and Zeek [2], provide languages for expressing rules which, when triggered,
indicate the presence of an attack. However, lesser known to security practitioners
is the existence of a series of works grounded in formal methods and software
verification, in a field called runtime verification (RV) [9].

In RV, a special process called a monitor is given a formal specification of
some desirable property that a trace should fulfill. The monitor is then fed events,
either directly from the execution of some instrumented system or by reading a
prerecorded file, and is responsible for providing a verdict as to whether the trace
satisfies or violates the property. Although a few works have applied RV in the
particular context of detecting attacks on software vulnerabilities [22, 32, 33, 45, 57],
as a rule, the use of monitors for the detection of incidents has been overlooked.

A first notable contender in this area is Orchids [22, 45]. It extracts data and
events from multiple distributed sources, such as system calls, firewall actions, and
logs from various server processes. Detection rules on these events are represented
as nondeterministic finite automata. Since the automata are not deterministic,
several optimization strategies must be implemented in order for the system to
discard any paths in the automaton that are subsumed by other paths, such that the
shortest run in the automaton be detected.

Other approaches have been proposed which use temporal logic as their under-
lying formal basis. For instance, R2U2 specializes in the detection of incorrect
behavior in unmanned aerial systems [42]. Implemented on an FPGA for better
performance, it monitors the execution of various inputs, including a GPS unit
installed in the system, other sensor readings, and communications from the ground
control station. Among the patterns monitored by the system and which represent
“unusual” situations, R2U2 can observe illegal commands, temporary variations in

9 A Stream-Based Approach to Intrusion Detection 257

the GPS signal strength, repeated navigation commands, and commands sent in a
context where they make little sense (such as resetting the system while the device
is in midair). Other monitoring systems based on temporal logic include Monid [43],
TeStID [5], and the attack signature description language (ASDL) [62].

Other notations take their roots in formal modeling languages such as abstract
state machines [14], the B [3], and Z [53] notation. For example, algebraic state-
transition diagrams [55] have been used to represent attack patterns over streams
of events and illustrated in Fig. 9.1. Similar to UML statecharts, ASTDs allow
the definition of state-transition diagrams, where edges linking two states can be
completed with guards (conditions that must hold for the transition to take place)
and side effects (such as modifications to values of internal variables associated
with each diagram).

Closer to the contribution of this chapter is LOLA, a stream-based specification
language [20]. A LOLA specification is a set of equations over typed stream
variables. Figure 9.2 shows an example of such a specification, taken from the
original paper and summarizing most of the language’s features. It defines ten
streams, based on three independent variables . t1, . t2, and . t3. A stream expression
may involve the value of a previously defined stream. The values of the streams
corresponding to . s1 to . s6 are obtained by evaluating their defining expressions place-
wise at each position. The language provides the expression .ite(b; s1; s2), which
represents an if-then-else construct: the value returned depends on whether the
predicate of the first operand evaluates to true. It also allows a stream to be defined
by referring to the value of an event in another stream k positions behind, using the
construct .s[−k, x]. If . −k corresponds to an offset beyond the start of the trace, value
x is used instead. It was shown in earlier work that the formal model introduced in
this chapter, based on computing units called processors, is more general than LOLA

[26]; in other words, LOLA equations can be turned into equivalent pipelines made
of the elementary processors presented in Sect. 9.3.1.

1 43
e2(?u : int)
/ z := !z+u; x := !x+z

e1(?y : int) [y > x]

/ x := !x+y

2
B, aut, V={(z,int,0)}, x:=!x*3

A, aut, V={(z,int,0)}, x:=!x+2

Fig. 9.1 An example of an ASTD, from [55]

s1 = t1 ∨ (t3 ≤ 1)
s2 = ((t3)2 + 7) mod 15
s3 = ite(s3; s4; s4 + 1)

s4 = ite(t1; t3 ≤ s4;¬s3)
s5 = t1[+1; false]
s6 = s9[−1; 0] + (t3 mod 2)

Fig. 9.2 An example of a LOLA specification showing various features of the language

258 S. Hallé

All runtime monitoring approaches enumerated above have in common two
features that make their direct use in attack detection problematic: First, a monitor
can detect a single violation of a property in a sequence of events (typically
the first occurrence of the violation). Consider, for instance, the simple property
“an occurrence of a must be immediately followed by b” on the input sequence
cacdaac. A monitor will typically return a failing verdict (. ⊥) after ingesting the
first three events, as, by this point, an a not followed by a b has been observed.
However, one can see that there are actually two instances of this violation inside
the trace, as the second occurrence of a is also not followed by b. Yet, the monitor,
after returning . ⊥ on some prefix of a sequence, returns . ⊥ forever. This makes it
useless to detect any other subsequence of the input that could also be a violation of
the pattern. As one can see, in a context of intrusion detection where a monitor is
expected to be a nonterminating process, reporting a single violation is not desirable.

The second issue is that a monitor only reports a Boolean verdict. It reads a
stream of events and eventually stops and emits the verdict “false” when a violation
of the specification is observed. It does not identify element of the sequence that
actually matters in the occurrence of the violation – all one can say is that they
all lie in the interval from the beginning of the stream up to the point where the
violation is reported and that potentially all of them may be relevant. Yet, we can
see that not all events in the input are necessary to “explain” the violation; in the
previous example, event c at the start of the trace has no impact on the occurrence
of any of the two violations; the same can be said of event d occurring at position
4, which has no bearing on the occurrence of the second violation. This is not an
issue if the goal is merely to detect a violation and act immediately upon it (e.g.,
by shutting the system down); however, if one is to report the violation and provide
evidence of its occurrence (for a posteriori analysis or even for immediate handling
by another layer of protection), the best a monitor can do is returning the complete
sequence up to the point where the alarm was triggered, which is very likely to be
unmanageable and of limited practical value.

9.3 Formalizing Intrusion Detection

To address the issues mentioned above, this chapter aims at providing the formal
grounds for a generic and automated mechanism that can both express complex
patterns or rules over sequences of events produced by an information system of
some kind and calculate the subset of the whole input that is actually relevant for
the occurrence of a match or a violation when it is detected.

We start in this section by introducing the formal definitions leading to the notion
of monitor, which is an abstract entity able to recognize an arbitrary condition over
a sequence of data elements called events. We then provide a first, basic algorithm
for monitor-based pattern detection, which we shall extend and optimize in later
sections.

9 A Stream-Based Approach to Intrusion Detection 259

9.3.1 Formal Preliminaries

Let . E be a set of abstract elements called events. We denote by . E∗ the set of all finite
sequences that can be created from elements of . E. For two sequences .σ , σ , ∈ E∗,
we denote by .σ [i] the i-th event of . σ (with indices starting at 1) and by . σ = σ ,
the fact that . σ is a prefix of . σ ,. The notation .σ [i..j] will denote the sequence of
successive events of . σ between its i-th and j -th positions (inclusive). We shall abuse
notation and define .σ [i..] to denote the suffix of . σ starting at position i and likewise
.σ [..i] to denote the prefix of . σ ending at position i (inclusive).

Given a sequence of events .σ ∈ E∗ of length n, a sequence . σ , is said to be a
subsequence of . σ if there exists an order-preserving injection between the events
of . σ , and those of . σ ; we note this as .σ C σ ,. In other words, a subsequence is
obtained by deleting any number of events from another sequence, but not changing
the ordering of the remaining events. Thus, ade and bcde are subsequences of
abcdef , but adb and cabc are not. An .(i, j)-loop in a sequence . σ is a subsequence
of successive events .σ [i..j] such that .σ [i] = σ [j]. The removal of loop .(i, j) in . σ is
the subsequence defined as .σ [1..i] · σ [j + 1..]. For example, the sequence abcdbe
has a .(2, 5)-loop, and its removal produces the sequence abe; the loop bcdb has
been contracted into the single event b.

If .E1, . . . , En are event alphabets, a stream vector .σ = <σ 1, . . . , σ n> is an
element of .(E1 × · · · × Em)∗; note that this imposes that each stream within
the vector is of the same length. The n-uple of events at identical indices in
each stream is called a front. A stream vector .<σ 1, . . . , σ n> is a prefix of another
vector .<σ ,

1, . . . , σ
,
n> if each . σ i is a prefix of . σ ,

i . Given a n-stream vector . σ =
<σ 1, . . . , σ n> and an n-uple .(σ1, . . . , σn), the concatenation .σ · (σ1, . . . , σn) is
the n-uple .<σ 1 · σ1, . . . , σ n · σn>; this notion can then easily be extended to the
concatenation of n-stream vectors. The length of a stream vector . σ , noted . ||σ ||, is
defined as the number of events contained in any stream of the vector.

In the following, we are concerned with functions that take as input a stream
vector and produces as output another stream vector. Such functions have been
called processors by Bédard and Hallé [10]. Formally, a processor is a function
.π : (E1 × · · · × Em)∗ → (E,

1 × · · · × E,
n)

∗, with the condition that .σ = σ , implies
.π(σ) = π(σ ,). This condition makes it possible for a processor to operate in a
streaming fashion: input event fronts can be ingested one at a time, and any number
of output event fronts resulting from this input can be appended at the end of the
current output vector. Note that as per this condition, event fronts that have already
been output cannot be taken back; only new event fronts can be appended. The
values of m and n are, respectively, called the input and output arity of the processor.
When the input and output arity of a processor have no impact on a definition, we
shall simplify notation and denote a processor as a 1:1 function .π : E∗ → E,∗. We
will denote by . || the set of processors.

As an example, consider a processor . π given an input sequence . σ and producing
the corresponding output sequence .π(σ) as illustrated in Fig. 9.3. This notation
indicates that .π(a) = A, .π(ab) = AB, .π(abc) = AB, and so on. As one can

260 S. Hallé

= a b c d e f g h
() = A B C D E F

Fig. 9.3 The relationship between input and output events for sequence . σ and a processor . π

see, in some cases, the processor does not append a new output event after ingesting
an input event; hence, .π(ab) = π(abc) = π(abcd) = AB. In some other cases,
the processor may append several events to the output after ingesting a single input
event: adding e to the trace abcd causes three new events (.CDE) to be output at
once. A processor that always outputs k events (for some .k > 0) for each ingested
event is called k-uniform.

9.3.2 Monitors

Processors are very generic units of computation for event streams. One particular
use of processors is to detect the presence of a specific sequential pattern in a
stream vector; this corresponds to the definition of a monitor already discussed in
Sect. 9.2. More precisely, a monitor can be seen as a particular type of processor
that receives a stream of input events and produces an output made of events in
the set .B3 = {T, ?,⊥}. We say that a sequence .σ ∈ E∗ is a match for . π if
.π(σ) = T; a match is said to be suffix-minimal if none of its prefixes is also
a match. Conversely, . σ is a non-match if . T is replaced by . ⊥ in the condition
above.

Matches and non-matches are expected to be definitive: if a particular pattern is
found after reaching some position in an input stream, then this pattern is obviously
still present after appending further events to this stream. However, the converse is
also true: if a monitor declares a non-match after reading a prefix of an input stream,
it actually indicates that this pattern will never be found, regardless of the events that
may come after. In other words, the output of a monitor is expected to be monotonic;
if .π(σ) ends with the symbol . ⊥ (resp. . T) for a sequence . σ , then .π(σ ·σ ,) ends with
. ⊥ (resp. . T) for any .σ , ∈ E∗. Hence, a monitor that returns a conclusive verdict (. T
or . ⊥) keeps this verdict forever.

This characteristic explains the presence of a third possible verdict, represented
by the symbol “. ?.” A monitor that produces this symbol for some input stream
. σ means that the presence or absence of the pattern cannot be decided with the
input events ingested so far. In such a case, . σ is said to be a potential match.
It follows that the output stream of a monitor is always of the form .?m · Tn or
.?m · ⊥n for .m, n ≥ 0. Since we are typically interested only in the latest event
produced by the monitor, we define the verdict function .νπ : E∗ → B3 as
.νπ (σ) A π(σ)[|σ |].

9 A Stream-Based Approach to Intrusion Detection 261

As a simple example, consider the monitor .π1 : {a, b, c}∗ → B
∗
3 defined as

follows:

. π1(σ) A

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

? if |σ | = 1 and σ = a

⊥ if |σ | = 1 and σ /= a

? · T|σ |−1 if σ [1..2] = ab

? · ⊥|σ |−1 otherwise

One can observe that this monitor is defined to identify the pattern ab occurring at
the start of a stream. Note how, for streams made of a single event, a non-match can
already be declared if that symbol is not the expected a.

As a second example, consider a variation on the previous monitor, defined as
follows:

. π2(σ · σ) A

⎧
⎪⎪⎨

⎪⎪⎩

π2(σ) · T if π2(σ)[|σ |] = T,

or σ [|σ |] = a and σ = b

π2(σ) · ? otherwise

Note how this time the monitor is defined recursively by specifying what output
symbol to append to the existing output stream based on the event currently being
ingested. One can observe that this monitor declares a match as soon as it sees event
a immediately followed by b in the input, regardless of the position of that pattern.
Since an input stream that does not contain the sequence ab can always contain it
later if further events are appended, this monitor can declare matches but can never
conclude to a non-match, as all stream prefixes that do not have ab are potential
matches.

These two examples are very simple, as monitors are by far not restricted
to finding straightforward patterns of consecutive events, and can be arbitrarily
defined functions. As a last (and arguably convoluted) example, let us first define
.f : {a, b, c} → N as .f (σ) = |σ |a + 2|σ |b, where the notation .|σ |x designates the
number of events labeled x in . σ . Then, consider the monitor defined as:

. π3(σ · σ) A

⎧
⎪⎪⎨

⎪⎪⎩

π3(σ) · T if f (σ ,) = 5 for some σ , C σ · σ

π3(σ) · ? if f (σ · σ · σ ,) = 5 for some σ , ∈ {a, b, c}∗
π3(σ) · ⊥ otherwise

This monitor declares a match when one of its prefixes has the number of a and b in
the stream following a specific arithmetic relation defined by function f . However,
it must also declare a non-match as soon as no extension of the current input
stream can ever make the input satisfy the condition. It turns out that . f (x) = 5
is nothing but the linear Diophantine equation .x + 2y = 5 [7], which admits only
three positive integer solutions: .(1, 2), .(3, 1), and .(5, 0). Hence, .π(abb) = ??T,

262 S. Hallé

since the input stream at this point contains one a and two b and thus satisfies the
condition. However, .π(aabb) = ???⊥, as it is impossible to add any further symbols
to this input that will make the number of a and b land on one of the three possible
solutions.

This example is meant to illustrate the fact that the definition of a monitor gives
complete leeway in how matches can be defined and may even require one to reason
about the existence of possible extensions of the current input satisfying an arbitrary
condition. Also note that monitors are considered as abstract monotonic functions
and thus are not bound to any particular notation. A monitor can be defined using
any of the formalisms already in use in the field of runtime verification, such as
finite-state automata, regular expressions, and linear temporal logic, but can just as
well be defined as functions like what was done in the examples above.

9.3.3 Pattern Detection as Monitoring

Monitors can be used as tools to detect the presence of an arbitrarily complex pattern
inside an input stream. However, as was argued earlier, they are limited to the
detection of a single occurrence of the said pattern, which spans the interval from
the start of the stream up to the first input event that triggers the production of the
output . T. In a context of attack or intrusion detection, such a restriction is severely
limiting. Intrusion detection is a long-running process, which must be performed
continuously as a system operates and where multiple patterns are expected to be
found throughout the lifetime of that system.

A single monitor cannot detect all such occurrences; however, one can evaluate
this monitor separately on multiple subsequences of the input stream in order to find
all matches. For a sequence . σ , the set of suffix-minimal matching subsequences of
some monitor . π is defined as:

. Mπ (σ) A {σ [i..j] : 1 ≤ i ≤ j ≤ |σ | and σ [i..j] is a suffix-minimal match of π}

The set is made of all subsequences of successive events in . σ that are suffix-minimal
matches of . π . By the definition of a (suffix-minimal) match, for a given .i ∈ [1, |σ |],
there exists at most one .j ≥ i such that .σ [i..j] is a minimal match for . π ; that is,
any event of a given input stream is either not the start of a matching subsequence or
the start of exactly one minimal match. It shall be noted, however, that matches can
still overlap and need not be detected by a greedy procedure. Consider, for instance,
the monitor . π that returns . T on a sequence if it contains a b that is immediately
followed by a c. This monitor declares a match for the sequence abaabca; however,
observe that the b that is followed by a c is the second one occurring in the sequence.

This construction induces a straightforward procedure to evaluate .Mπ (σ),
detailed in Algorithm 1, and which takes as input a monitor . π and a stream of
events . σ . The algorithm iterates over all ranges of successive events .[i, j] (lines 2–
3), evaluates the monitor . π on that range and collects its last verdict (line 4), and

9 A Stream-Based Approach to Intrusion Detection 263

adds the range .[i, j] to a set . M if the verdict indicates a match (line 6). The break
instruction at line 7 prevents suffixes of a match to be examined, thus limiting the
output to suffix-minimal matches. As a matter of fact, one can easily observe that at
line 11, .M = Mπ (σ).

Algorithm 1 Finding all suffix-minimal matches in . σ for a monitor . π
1: . M ← ∅
2: for .i ∈ [1, |σ |] do
3: for .j ∈ [i, |σ |] do
4: . v ← νπ (σ [i..j])
5: if .v = T then
6: . M ← M ∪ {[i, j]}
7: break
8: end if
9: end for

10: end for
11: return . M

This mechanism presents the advantage of being both simple and very generic. It
can detect all occurrences of any pattern, provided that it can be expressed as the set
of sequences which produce a match for some monitor . π . Consider, for example,
the monitor . π4 defined as .π4(σ · σ) = π4(σ) · T if .σ [1] = a and there exists
.2 ≤ j ≤ |σ · σ | such that .(σ · σ)[i] = b; the monitor returns .⊥|σ ·σ | if . σ [1] /= a

and .?|σ ·σ | otherwise. In other words, this monitor identifies as a match any stream
that starts with an a and contains at some point later at least one occurrence of b.
Running Algorithm 1 using . π4 as the monitor and .σ = bacbacacba as the input
trace produces the output set .{[2, 4], [5, 9], [7, 9]}. Indeed, one can observe that, for
this monitor, those three ranges correspond to the three suffix-minimal matching
subsequences of . σ .

However, even though simple and generic, this procedure suffers from two
important drawbacks. First of all, it is wasteful in resources: upon receiving the n-th
input event, n instances of . π must be evaluated on suffixes of length ranging from
1 to n. The process repeats on each input event, resulting in a cumulative total of
.O(n3) events being ingested by some monitor instance at the n-th step. This further
assumes that the processing of each event by a monitor is constant in the length of
the input, which may not be the case. A first observation allows us to spare a few
evaluations of . π under some circumstances. Note that by the definition of a monitor,
if . σ is a non-match, then so will be all its extensions. It is therefore useless to keep
evaluating . π on extensions of a sequence that is already known to be a non-match.

A second drawback comes from the fact that the procedure only identifies for
each match a range of events. Yet, it may often be the case that not all events inside
that range are actually relevant for the match in question. Consider, for instance, the
match corresponding to the range .[5, 9] in the previous example. This corresponds
to the subsequence acacb: it does start with an a and ends with a b, but the events
that occur in between have no impact on the fact that this subsequence is match.

264 S. Hallé

For this simple example, it is easy to understand that only the start and end of the
range are relevant, but making the same kind of judgment for patterns of arbitrary
complexity is far from trivial.

9.4 State-Based Simplifications

The previous section framed the problem of pattern detection on event streams as
a monitoring problem and provided an arguably naïve procedure for identifying
all instances of suffix-minimal matches of an arbitrary pattern expressed by some
monitor. Yet, to make the problem actually tractable in real-world situations,
additional refinements to this basic procedure need to be devised. In addition, it
would be desirable to devise ways to single out the events of a range that somehow
“explain” the occurrence of the match and doing so in an automated fashion. To
address these issues, this section introduces the notion of processor state and shows
how this concept can be used both to optimize the pattern detection procedure and
also identify relevant events of a match.

9.4.1 Processor State

Formally, for a processor .π : E∗ → E,∗, a function .ιπ : E∗ → S is said to be a
state function for some arbitrary set S if for every .σ 1, σ 2 ∈ E∗, . ιπ (σ 1) = ιπ (σ 2)

implies .π(σ 1 · σ ,) = π(σ 2 · σ ,) for every .σ , ∈ E∗. The intuition behind this
definition is that an element .s ∈ S represents the current “internal state” of . π after
reading a prefix of a sequence of events. In addition, if two prefixes are such that . π
ends in the same state after reading them, extending each of these two prefixes in
the same way results in the same output. In other words, the output depends on no
other external parameter.

It should be observed that the definition of state does not impose that two
processors reaching the same state remain in matching states for any extension
of their respective input stream. That is, if .ιπ (σ 1) = ιπ (σ 2), we allow states
.s1 = ιπ (σ 1 · σ ,) and .s2 = ιπ (σ 2 · σ ,) to be different. However, by virtue of the
condition stated above, . s1 and . s2 must be indistinguishable as far as the processor’s
output is concerned and can therefore be considered as duplicates.

Note that any processor . π admits a trivial state function . ιπ by setting .S = E∗ and
defining .ιπ (σ) = σ for all .σ ∈ E∗. We say that a state function .ι,π : E∗ → S, is a
contraction of . ιπ if there exists a mapping .μ : S → S, such that . ι,π (σ) = μ(ιπ (σ))

for every .σ ∈ E∗. The contraction is strict if . μ is not injective. In such a case, . ι,π
defines a “tighter” set of states than . ιπ . A state function is optimal for a processor . π

if it cannot be further contracted. A processor is called finite-state when its optimal

9 A Stream-Based Approach to Intrusion Detection 265

state function .ιπ : E∗ → S is such that S is finite and stateless if .|S| = 1.1 The
state s such that .s = ιπ (e) is called the initial state of . π .

As a simple example, consider the monitor . π1 defined in Sect. 9.3.2. Let . S =
{0, 1, 2} and . ιπ1 be defined as follows:

. ιπ1(σ) A

⎧
⎪⎪⎨

⎪⎪⎩

0 if σ = e or σ = a

1 if σ [1..2] = ab

2 otherwise

One can observe that .ιπ1 fulfills the conditions of a state function for . π1. The
symbols used for each state are arbitrary; however, intuition shows that, in this
particular case, state 0 corresponds to the situation of either an empty stream or
the single a event, state 1 corresponds to the state of the monitor after having seen
ab as the first two events of a stream, and state 2 corresponds to a non-match.

Although the states in this example match the three possible verdicts produced by
the monitor, this is not always the case. Consider as a second example monitor . π4.
One can let .S = N×N×B3 and define a state function .ιπ4(σ) A (|σ |a, |σ |b, π4(σ)).
This time, the state of the monitor after ingesting a stream . σ is made of the number
of symbols a and b present in . σ , as well as a flag indicating if a match or non-
match has already been declared. On can indeed observe that knowledge of these
three values suffices to determine the output of . π4 for any extension of that stream.2

Note however that this definition does not result in an optimal state function: for
instance, any pair of states .(x, y,⊥) and .(x,, y,,⊥) result in the same output for
any extension (namely, the verdict . ⊥) despite being distinct states.

The interest of this definition of state function is that, despite its name, it does not
imply that its corresponding processor . π be expressed as a form of state machine.
As a matter of fact, S can even be infinite. Of course, when such a notation is used,
what constitutes a possible state function is obvious; however, a state function can
also be constructed for arbitrary processors, as the previous example has shown.

Given a state function . ιπ , we shall designate the fact that a processor . π is
currently in state s by the notation . πs . This processor differs from . π as it handles
events from its current state, which may not be the initial state. Formally, this means
that for every .σ ∈ E∗:

.πs(σ) = π(σ , · σ)[|π(σ)|..]

1 The term “stateless” may seem odd since . ιπ actually has one state; however, this means that the
output of . π does not depend on its internal state, precisely since it is always in the same state.
2 As a matter of fact, neither of these three elements could be taken out without violating the
condition for a state function. In particular, knowledge of .|σ |a and .|σ |b is not sufficient to
determine the monitor’s verdict, as the order in which the symbols occur may or may not result in
a prefix of . σ satisfying the condition.

266 S. Hallé

for any .σ , ∈ E∗ such that .ιπ (σ ,) = s. The definition of a state function ensures us
that the choice of . σ , is arbitrary. In other words, evaluating . πs on an input stream
. σ is equivalent to finding a stream . σ that takes . π from its initial state to state s,
evaluating .π(σ , ·σ), and then trimming whatever events are produced by evaluating
. π on the prefix . σ .

Algorithm 2 State-based search for suffix-minimal matches in . σ for a monitor . π
1: .M ← ∅, .π ← e, . A ← ∅
2: for .j ∈ [1, |σ |] do
3: . π ← π · πιπ (e)

4: for .i ∈ [1, |π |] do
5: if .i ∈ A then skip
6: . S ← ∅
7: . πs ← π [i]
8: . v ← νπs (σ [j])
9: . s, ← ιπs (σ [j])

10: if .s = s, = ιπ (e) or .s, ∈ S then
11: . A ← A ∪ {j}
12: skip
13: end if
14: . S ← S ∪ {s,}
15: if .v = T then
16: . M ← M ∪ {[i, j]}
17: . A ← A ∪ {j}
18: end if
19: if .v = ⊥ then
20: . A ← A ∪ {j}
21: end if
22: . π[j] ← πs,

23: end for
24: end for
25: return . M

This notion of state can help us further trim the set of relevant matches (and
corresponding monitor evaluations) that need to be handled. Consider, for example,
the pattern stipulating that a match is a sequence where some b is immediately
followed by a c. The sequence .σ = aaabc is a match and even a minimal match
of . π . However, remark that the first three a events do not really matter; they can be
seen as some “filler” that are not material witnesses that the sequence satisfies the
condition. As a matter of fact, aabc, abc, and bc, which are all suffixes of . σ , also
are matches.

This behavior can be tied to a property of the monitor’s state when ingesting the
input sequence. Based on the definition of . π in this example, we can easily see that
for every trace . σ , .π(σ) = π(a · σ). In other words, if . σ is a match, prepending an
a at the beginning of . σ is also a match (and the same for non-matches and potential
matches). Setting .σ = e, we conclude that .ιπ (e) = ιπ (a): thus, for any number of
a at the beginning of a sequence, . π remains in the same internal state – its initial

9 A Stream-Based Approach to Intrusion Detection 267

state. This explains why intuition tells us that these first events are useless to assess
whether the sequence matches the condition: the monitor itself acts as if they were
absent from the trace.

9.4.2 A State-Aware Detection Algorithm

Additional reductions on the number of potential matches can be obtained by
generalizing this principle one step further and considering as duplicates any
matches placing their respective monitor into the same state for a given position
in the stream. Consider, for example, the monitor . π5 defined as follows:

. π5(σ · σ) =

⎧
⎪⎪⎨

⎪⎪⎩

π5(σ) · T if ∃ 1 ≤ i < j < k ≤ |σ | such that

(σ · σ)[i] = a, (σ · σ)[j] = b and (σ · σ)[k] = c

π5(σ) · ? otherwise

This monitor declares a match whenever the stream contains the succession of
events a, followed some time later by b, followed some time later by c. A state
function .ιπ5 can be devised with four states .{0, 1, 2, 3}, where .ιπ5(σ) = 0 for
all streams containing neither a nor b nor c, .ιπ5(σ) = 1 for streams where no
occurrence of a is followed by b, .ιπ5(σ) = 2 for streams where no occurrence of a
followed by b is followed by c, and .ιπ5(σ) = 3 for streams containing the desired
pattern.

Let .σ = ababacbc be the stream on which this pattern is to be detected.
Applying Algorithm 1 to it results in the set of matches .{[1, 6], [3, 6], [5, 8]}.
However, remark that a monitor reading the first four events (i.e., .σ [1..4]) ends
up in the same state as the monitor reading only the third and fourth (i.e., .σ [3..4]),
as, in both cases, an a followed by a b has been observed, thus resulting in state 2.
From that point on, any suffix causing a match for the first monitor will also cause a
match for the second. One could thus consider that these two matches are redundant
and only report one of them instead of both.

These various observations yield an improved technique for detecting matches,
which is described in Algorithm 2. On the first line, the algorithm initializes and
later maintains three data structures: the set of found matches . M, a list of monitor
instances . π , and a set . A that will contain the indices of . π corresponding to monitor
instances that no longer need to be considered. The algorithm iterates over each
event of the input stream . σ ; line 3 appends at the end of . π a new fresh instance of
the monitor . π in its initial state. Then, on lines 4–23, the same process is repeated
for each monitor instance contained in the list . π . First, the monitor and its current
state . πs are retrieved from the list (line 7); this monitor is then fed the current event
from the stream, and its verdict and new state are obtained (lines 8–9). At the end
of the iteration, the monitor in its new state overwrites the original monitor at the
corresponding position in . π (line 22).

268 S. Hallé

As a result, at the end of the j -th iteration of the loop in line 2, . π contains j
distinct instances of the monitor . π , and the i-th element of this list is a monitor . πs

such that .s = ιπ (σ [i..j]). That is, the first monitor instance reads the input stream
from the first event, the second reads it from the second event, and so on. Each of
these monitors is fed one more event from the stream for each iteration of the inner
loop. Any monitor instance whose index ends up in the set . A is considered “done”
and is not handled anymore, as is represented by the skip condition of line 5. On
each iteration of the inner loop, a set of states S is initialized, and the state of each
monitor instance after ingesting the current event is stored in this set (line 14).

Lines 15–21 take care of the various situations that can occur depending on a
monitor’s verdict. Lines 15–18 handle the case where the monitor declares a match;
in such a case, the range of events of the input stream consumed by this monitor
instance is added to the set of matches . M, and its position in . π is added to the set
. A of indices to discard. Lines 19–21 perform a similar task for the case of a non-
match. Finally, lines 10–13 implement the simplifications discussed earlier based
on the monitor’s state. If a monitor in its initial state remains in its initial state after
ingesting the current event or if its new state is identical to the state of another
monitor processed in the same iteration, its position in . π is also added to the set . A
of indices to discard.

One can observe that the set of . M produced by Algorithm 2 is the subset of . Mπ

containing only suffix-minimal matches that take the monitor out of its initial state
on ingesting the first event and that are such that no two matches result in monitors
having the same state at the same position in the stream.

9.4.3 Progressing Subsequences

Algorithm 2 presents several improvements over the naïve procedure introduced
in Algorithm 1: First, it reduces the total number of events ingested by monitor
instances: every time a new input event is to be processed, existing instances are
only fed this new event from their existing state, instead of re-evaluating the sub-
trace from the start. This, in itself, reduces its complexity to .O(n2). In addition,
it implements mechanisms to reduce the number of “live” monitor instances that
need to be handled at any point in time and consequently reduces the number of
(essentially redundant) matches produced by Algorithm 1. It does so at the price of
memory, as in the worst case, consuming n input events may necessitate to keep n
distinct monitor instances along with their internal state.3

However, these optimizations still do not address the second concern that was
expressed for Algorithm 1, namely, that only ranges of events for each match
are provided, regardless of whether these events are all actually relevant to the

3 This worst case is arguably contrived, as it would require each successive event of the stream to
place the corresponding new monitor instance in a different state as that of all previous monitors.

9 A Stream-Based Approach to Intrusion Detection 269

identification of the pattern. To this end, the state function associated with a
processor can be put to another use, which we describe in the following:

Let . π be a processor with associated state function . ιπ and .σ ∈ E∗ be a sequence
of events. The state sequence of . σ is the sequence . s such that .s[0] = ιπ (e) and
.s[i + 1] = ιπ (σ [1..i]) for every .i ≥ 0. Thus, the state sequence starts with the
initial state of . π , which is followed by the states reached by . π after ingesting each
successive event of . σ . Let . σ , be a subsequence of . σ ; we likewise define . s, as the
state sequence of . σ ,. We say that . σ , is the progressing subsequence of . σ if . s, is the
result of removing all loops from . s.

Equipped with this definition, we can return to the example of monitor . π5.
Assuming without loss of generality that . π starts in state . s0 and moves to state . s1
when reading b and to . s2 when reading c afterward, the state sequence for the input
aaabc is .s0s0s0s0s1s2. The sequence bc, on its side, results in the state sequence
.s0s1s2, which is exactly the result of removing all loops from the state sequence
of the original input. Thus, the intuition that the first a events are irrelevant to . π
becomes a consequence of the definition of progressive subsequence.

For processors expressed as a finite-state machine, this definition is relatively
easy to illustrate. Consider the Moore machine . π . shown in Fig. 9.4, which
associates with each state a verdict in . B3. The sequence aabcbcda ends in the state
4, labeled with . T; hence, it is a match according to . π . Its corresponding progressing
subsequence is abd. One can observe, and it can easily be shown, that state . s1 is
visited before . s2 in the original sequence if and only if it is also visited before in the
progressing subsequence.

The definition allows portions of the original sequence to be deleted, but not just
anyhow: only loops are removed, but the remainder of the path remains untouched.
In particular, a progressing subsequence is not in general the shortest subsequence
ending in the final state. Thus, in the example above, the sequence abcd leads to
state 5, and ad is its progressing subsequence. However, d is a subsequence of abcd
that would directly lead to state 5, but it is not a progressing subsequence.

? ?a ? ⊤d
b

c

⊥

* *
*

1 2 3 4

5

a

*

Fig. 9.4 A simple Moore machine defining valid sequences of atomic events

270 S. Hallé

The notion of progressive subsequence is a generalization of one of the sim-
plification strategies that were already considered in the procedure proposed in
Sect. 9.4.1. Given an existing sequence . σ of length .n ≥ 0 and upon receiving a
new event . σ , if .π(σ) = π(e), then . σ may be the start of a match but, as per the
definition above, is not the start of a progressive subsequence of a potential match.
Thus, Algorithm 2 can be further improved by altering line 16: instead of giving the
complete range .[i, j] as the witness of the match for a monitor, one can instead only
provide the subset of this interval corresponding to the progressing subsequence as
defined above.

9.4.4 Combining Reduction Strategies

Figure 9.5 shows by a simple example the difference in the operation of each
detection strategy described above. The pattern to be detected is an event A,
eventually followed by a B, eventually followed by a C, with arbitrary interleaving
events between each of them. The approach called “Direct” is the one we described
first; it consists of starting a new monitor instance on each new input event and
reporting as occurrences of the pattern the complete sequence of events ingested by
each monitor that declares a match. In the simple trace given as an example, this
results in the detection of eight occurrences of the pattern, with the events contained
in each pattern instance being marked by a . × symbol.

The “first step” detection strategy prunes from these matches any monitor
instance that does not change its state upon ingesting its first event. As per the

a c A b B a b A a B c C b a

Progressing

Direct

First step

Unique state

1 2 3 4 5 6 7 8 9 10 11 12 13 14

+
+ + + + + + + +

+ + + + + + + + +
+ + + + + + +

+ + + + +
+ + + + + +

+ + + + +
+ + + + + + + + + +

+ + + + + + OR}
OR}+ + + + +

+ + + + + + + + + +

Fig. 9.5 A comparison of the four monitor-based detection strategies on a simple trace where the
pattern .A → B → C is to be detected

9 A Stream-Based Approach to Intrusion Detection 271

definitions above, in the present case, the first state change occurs only in the
presence of an A. Thus, only two of the eight pattern instances remain. Note however
that the events included in each of these patterns still contain the complete sequence
processed by each monitor instance up until a match is found.

The “unique state” strategy prunes from the active monitors any instance that
reaches the same state as another monitor on a given input position. This is the
case here upon the ingestion of event B at position 10. At this point, two monitor
instances end up in the state corresponding to having read an A, followed by a B:
the first instance was started at position 3 and the second at position 8. According
to the unique state strategy, one of these monitor instances can be discarded; thus,
a single of the two pattern matches will be reported. As discussed earlier, various
criteria can be applied to decide which, among the multiple monitor instances, is to
be kept.

Finally, the last reduction strategy, “progressing,” applies further reductions on
the portions of the input trace that are part of a match. Note this time that the number
of matches itself is left unchanged. However, in each instance, only the events that
are part of the progressing subsequence are retained. These results are arguably
closer to intuition, as, in each instance, only the respective positions of the A, B, and
C events are kept. Also note that each pattern match contains only one of each event;
for instance, even though the first pattern instance spans the events from position 3
to 12, event A at position 8 is not included.

The cumulative application of these reduction strategies results in a sharp
decrease in both the number of reported matches and the number of events involved
as witnesses of each match. As one can see, the direct approach results in 8 mostly
redundant matches, including all but 2 of the 14 events of the input. In contrast, the
progressing strategy reports a single match containing only three events of the input.
This potential for reduction will be examined further in Sect. 9.6.

9.5 A Compositional Approach to Pattern Detection

Although monitors represent a powerful method for expressing and detecting
patterns in a stream of events, defining each such pattern using a custom-made
monitor is not feasible in practice. It is hard to imagine a setup where each new
monitor would need to be defined from scratch as a function, which would probably
be much more complex than the simple examples used so far in this chapter. What
is more, for any of the optimizations introduced in Sect. 9.4 to be applicable, one
must also devise an appropriate notion of processor state for each monitor created
in such a way.

However, elaborate relationships between events in an input sequence can be
captured by composing processors together; in such a setting, the output of a
processor is given as the input of another one, forming potentially complex graphs
where events of the original stream are progressively transformed into the required
.T/?/⊥ verdict. This is the approach proposed in this section. Instead of requiring

272 S. Hallé

monitors to be defined directly as big, monolithic functions, we suggest a number of
elementary “building blocks,” which can then be composed to represent the desired
patterns to be detected.

The main advantage of such an approach is that the definition of a state function
and the extraction of progressing subsequences for these pipelines essentially come
“for free.” As we shall see, if each elementary processor has its own state function
and can identify its progressing subsequences, calculating the subsequence of the
end-to-end chain can be done by “composing” these individual subsequences, thus
sparing a user from calculating these manually.

9.5.1 Building Blocks for Pattern Detection

We start the section by introducing and formally defining a number of generic
and elementary processors that can be used to detect various types of pattern. The
presentation is divided into a set of processors performing generic manipulations
on event streams (not necessarily tied to monitoring), followed by a set of monitors
specific to the detection of patterns in event streams.

Since compositions of processors are best represented graphically, we shall
associate with each of them a pictogram representing its function. The convention
we use is to represent processors as square boxes, with input and output “pipes”
designating each of the streams that are consumed or produced by the processor.
The use of colors for pipes helps distinguish the type of events in the corresponding
stream; in the following, pink represents atomic events from an arbitrary alphabet
. E, dark green indicates numbers, blue indicates Boolean values, while purple
corresponds to ternary Boolean values (. B3). A white pipe represents an arbitrary
type.

9.5.1.1 Generic Processors

For the set of core processors, we hitchhike on past works on the topic and reuse
those introduced by Bédard and Hallé [10]; for this reason, we shall only briefly
present and define each of these core processors, whose graphical representation is
shown in Fig. 9.6.

First, the Fork processor is merely a structural construct allowing a single stream
to be duplicated and sent as the input of multiple processors: .π(σ) A <σ , . . . , σ >.
The ApplyFunction processor lifts any function . f : E1 × · · · × Em → E,

1 ×
· · · × E,

n into a processor .π : (E1 × · · · × Em)∗ → (E,
1 × · · · × E,

n)
∗ defined as

.π(σ · (σ1, . . . , σm)) A π(σ) · f (σ1, . . . , σm).4 CountDecimate is a .1:1 processor

4 Note that the function produces exactly one output front for each input front; thus, it cannot insert
or delete events like some other processors.

9 A Stream-Based Approach to Intrusion Detection 273

Fig. 9.6 Pictorial representation of generic processors for stream manipulation

that keeps one event every k and is defined as .π(σ) A <σ [0], σ [k], σ [2k], . . . >.
Trim removes the first k events of the stream and is defined as . π(σ) A <σ [k], σ [k +
1], σ [k+2], . . . >. Filter is a processor .π : (E×{T,⊥})∗ → E∗ that discards events
based on a stream of Boolean values. The event at position n in the first stream is
sent to the output if and only if the event at the same position in the second stream
is the Boolean value true; formally, .π(σ · (σ, b)) A π(σ) · σ if .b = T and . π(σ)

otherwise.
As its name implies, the Cumulate processor is designed to “accumulate” the

successive values of a binary function. Given a function .f : E2 → E and an
implicit initial value .σ0 ∈ E, the processor is defined recursively as . π(<σ >) A
<f (σ0, σ)> and .π(<σ ·σ >) = π(<σ >)·<f (π(<σ >)[−1], σ)>, where .π(<σ >)[−1] stands
for the last event produced by . π on the input stream . σ . This generic construction
can represent various types of computations depending on the function used. For
example, if f is addition and .σ0 = 0 is used as the start value, . π produces an output
stream where the i-th event is the sum of all input events up to the i-th. If f is
Boolean conjunction and .σ0 = T, . π produces an output stream where the i-the
event is the conjunction of all input events up to the i-th.

9.5.1.2 Elementary Monitors

We continue by introducing a handful of new elementary monitors that complement
the core processors and which are especially suitable for the task of pattern detection
in event streams. Their graphical representation is shown in Fig. 9.7. To distinguish
these monitors from more generic processors, they are represented as boxes with
wedged corners.

A first monitor is called Sequence, which is defined as follows:

. π,((σ0, σ
,
0), . . . , (σk, σ

,
k)) A

⎧
⎪⎪⎨

⎪⎪⎩

π,((σ0, σ
,
0), . . . , (σk−1, σ

,
k−1)) · T

if ∃ 1 ≤ i < j ≤ k s. t. σi = T and σj = T
π,((σ0, σ

,
0), . . . , (σk−1, σ

,
k−1)) · ? otherwise

Note that this monitor receives as input two streams of ternary Boolean values;
it produces the verdict . T whenever the first stream contains the value . T and the

274 S. Hallé

f

π

n

{
ππ

Sequence Eventual
disjunction

Eventual
conjunction

Eventual
occurrence

Existential
window

Existential
slice

Fig. 9.7 A basic set of monitors for pattern detection

second stream contains the value . T at a subsequent position. If each input stream
corresponds to the evaluation of a condition on some other stream, this monitor
declares a match when it sees the first condition evaluates to true, followed by the
second condition some time later.

The Eventual disjunction monitor also receives as input two streams of ternary
Boolean values; it produces the verdict . T as soon as any of the two input streams
contains the value . T; this is formally defined as:

. πV((σ0, σ
,
0), . . . , (σk, σ

,
k)) A

⎧
⎪⎪⎨

⎪⎪⎩

πV((σ0, σ
,
0), . . . , (σk−1, σ

,
k−1)) · T

if ∃ 1 ≤ i ≤ k s. t. σi = T or σ ,
i = T

πV((σ0, σ
,
0), . . . , (σk−1, σ

,
k−1)) · ? otherwise

Again, if each input stream given to this monitor corresponds to the evaluation of
a condition on some other stream, this monitor declares a match when either of
these conditions evaluates to true. The progressing subsequence of a match for this
monitor corresponds to the location of the first occurrence of . T in any of the two
input streams. The Eventual conjunction monitor works dually and declares a match
once both its input streams contain the value . T (which need not occur at the same
position). In such a case, the progressing subsequence of a match for this monitor
corresponds to the location of the first occurrence of . T in both input streams.

The Eventual occurrence monitor takes as input a single event stream and also
requires as a parameter another monitor . π . It spawns one new instance of . π at each

9 A Stream-Based Approach to Intrusion Detection 275

input event and keeps feeding input events to each of these monitor instances until
one of them produces the verdict . T. This is formally defined as follows:

. πE(σ) A
{

πE(σ) · T if ∃ 1 ≤ i ≤ k s. t. ν(π(σ [i..k])) = T
πE(σ) · ? otherwise

Thus, if . π is a monitor representing an arbitrary pattern, Eventual occurrence
declares a match whenever . π declares a match for a given suffix of the input,
thus representing the fact that the pattern eventually occurs at some point down
the stream. The progressing subsequence of a match for this monitor corresponds
to the progressing subsequence of the instance of . π that declares a match, offset by
the starting position in the stream of this monitor instance.

Existential window operates in a similar manner, except that each instance of . π
is evaluated on a window of fixed width n, instead of the complete suffix of the input
stream:

. πW(σ) A
{

πW(σ) · T if ∃ 1 ≤ i ≤ k s. t. ν(π(σ [i..k − n])) = T
πW(σ) · ? otherwise

It declares a match if there exists an interval of k successive events in the input
stream for which . π declares a match. The progressing subsequence is defined in the
same way as for Eventual occurrence.

Finally, Existential slice is a monitor that separates an input stream into multiple
sub-streams called slices. The monitor takes as arguments another monitor . π and a
function .f : E → C, producing values in some arbitrary set C. For a stream . σ , we
note as .[σ]fc the subsequence of . σ containing only events . σ such that .f (σ) = c,
which is the “slice” corresponding to c. The monitor runs one instance of . π for
each value in C; on each input event . σ , the value .f (σ) = c is evaluated; the event
is then fed to the processor instance associated with c. This processor declares a
match whenever one the instances of . π declares a match. This can be formalized as
follows:

. πS(σ) A
{

πS(σ) · T if ∃ c ∈ C s. t. ν(π([σ]fc)) = T
πS(σ) · ? otherwise

The progressing subsequence of a match for this monitor corresponds to the
progressing subsequence of the underlying monitor instance declaring a match, by
taking care of replacing the events of this slice to their actual position in the input
stream.

276 S. Hallé

9.5.2 Progressive Subsequences for Processor Pipelines

Each of these processors in itself performs a very simple task. As discussed at the
start of this section, complex patterns are not expected to be expressed directly
through a single instance of one of these processors but rather as a composition
of elementary processors and monitors.

9.5.2.1 Pipeline Definition

A processor pipeline is defined as a tuple .P = <P ,E>, where .P ∈ ||∗ is a list of
processors and .E ⊆ N

4 is a list of edges. An element .(p, n, p,, n,) of E stipulates
that the n-th output stream of processor . P [p] is set to be the .n,-th input of processor
.P [p,]. One can see a pipeline as a graph where vertices are processors with upstream
and downstream “pipes” (input and output streams) and edges connect downstream
pipes to upstream pipes.

Figure 9.8 shows a graphical representation of a simple processor pipeline,
making use of some of the processors introduced earlier. A line between two pipes
represents a (directed) connection. For processors with more than one input or
output, pipes are ordered from top to bottom by convention and a symbol or a
number by be affixed to them to avoid confusion. This computational model is
reminiscent of the “data flows” presented by Woodruff et al. [58]. However, whereas
data flows are tuple-oriented, our proposed computational model is more generic
and accommodates arbitrary processors and data types.

AbABbC

AbABbC

AbABbC

AbABbC

⊤⊤⊤⊤⊤⊤

???⊤⊤⊤

?????⊤

???⊤⊤⊤

AabcAaBabbCa

?????⊤,φ
ψ

,φ
ψ

f
B1 =?

f
C1 =?

f
A1 =?

2

1

2

3

4

6

7

5

Fig. 9.8 A monitor identifying a simple linear pattern formed of a sequence of A, B, and C,
interleaved with an arbitrary number of other events. The match is declared only if these events
are observed at odd indices in the stream. Next to each pipe are the contents of each stream for a
possible input

9 A Stream-Based Approach to Intrusion Detection 277

The operation of this pipeline can be analyzed to understand the pattern that this
monitor can catch. At the left of the pipeline, the stream of input events is first
decimated (box #1), so that every other event from the input stream is discarded.
This entails that the remainder of the processing is done on a stream composed only
of the events from the input that appear at odd positions (1, 3, 5, etc.). This stream
is forked into three copies (box #2); on each copy, the eventual occurrence of a
different condition is evaluated. Box #3 declares a match when it encounters the
first A symbol; box #4 does the same for the symbol B, and box #5 looks for an
occurrence of symbol C.

The output of monitors #3 and #4 is sent into an instance of the Sequence monitor
(#6): as per the definition introduced earlier, this entails that it declares a match
when a symbol B is seen after a symbol A. The output of this monitor is plugged
into another instance of Sequence, along with the output of monitor #5: therefore, it
declares a match when a symbol C is seen after an instance of the pattern observed
by box #6. The end result of this pipeline is a monitor that looks for a sequence of A,
B, and C, interleaved with an arbitrary number of other events; however, because of
the presence of the CountDecimate processor at the beginning, the match is declared
only if these events are observed at odd indices in the stream.

This abstract example shows how a combination of elementary processors and
monitors in a pipeline can be used to express complex relationships between events
forming a potential pattern. However, it remains to show how, from a match
identified by this monitor, one can extract the relevant events of the input stream
that are witnesses of the presence of this match.

9.5.2.2 Input-Output Associations

For each processor .π : (E1 × · · · × Em)∗ → (E,
1 × · · · × E,

n)
∗, we introduce a

function .ρπ : (E1 × · · · × Em)∗ × N × N → 2N×N that associates output events
with input events given to a processor. More precisely, given an input stream vector
.σ ∈ (E1 × · · · × Em)∗, the index of an output stream .i ∈ [1, n], and the position
.x ∈ [1, ||π(σ)||] of an event inside that stream, .ρπ(σ , i, x) produces a set of the
form .{(j1, y1), . . . , (jk, yk)}. A tuple .(j, y) of this set is such that .j ∈ [1,m] and
.y ∈ [1, ||σ ||. It indicates that the event at position y in the j -th input stream given
to . π is part of the evidence explaining the production of the event at position x in
the i-th output stream. We shall also extend the notation and define . ρπ for a set of
output event positions .I = {(i1, x1) . . . , (ik, xk)} as:

. ρπ(σ , I) A
U

(i,x)∈I

ρπ (σ , i, x)

Thus, if one designates multiple output events, . ρ simply returns the union of all
input events associated with any of these output events.

278 S. Hallé

There exist multiple ways of deciding what input events should be associated
with a given output event; however, the definition of . ρ we propose in this work is
nothing but the progressing subsequence induced by the input stream and resulting
in the given output event being produced. For example, given the monitor displayed
on Fig. 9.4 and the input stream .σ = aabcbcda, one obtains as output the stream
.??????TT. The events associated with the event at position 7 of the first (and only)
output stream of this processor can be obtained by evaluating .ρπ(σ , 1, 7), which, in
this case, produces the set of tuples .{(1, 1), (1, 5), (1, 7)}. This links the output event
to the first, fifth, and seventh input events of the first (and only) input stream, which,
as one can observe, corresponds to the progressing subsequence abd we discussed
earlier.

Equipped with this function, it becomes straightforward to retrace the relation-
ship between any output event of a chain of composed processors .π1 ◦ · · · ◦ πk and
the positions of events passed to the input of the chain. One simply starts from a
given event position j in the output of the last processor . πk and uses .ρπk

to obtain
the set of input events I consumed to produce it. It is then possible to move the
next-to-last processor of the chain, .πk−1, and repeat the process by evaluating . ρπk−1

on the interval I . The end result, when reaching the first processor of the chain . π1,
is the set of positions of all events in the original input sequence that are linked to
the discovery of a match at position j all the way down the chain.

We can now revisit the example presented above and apply this reasoning on
the pipeline of Fig. 9.8. Consider the input sequence .σ = AabcAaBabbCa. The
illustration shows how this original input stream is transformed into other streams
as the events pass through each processor, which eventually leads to the monitor
in box #7 producing for its output the sequence .?????T: as expected, it declares a
match when event C at position 12 is observed.5 The input given to this processor . π

is the stream vector .σ = ((???TTT), (?????T)); calculating .ρπ(σ , 1, 6) amounts
to asking what are the events of the progressing subsequence of . π explaining
the production of the verdict . T at the sixth position of its output. According to
the definitions introduced earlier, this output event is associated with the event
at position 4 in the first input stream and the event at position 6 in the second,
thus producing the set .{(1, 4), (2, 6)}. These events are highlighted in Fig. 9.8. We
can observe that these tuples correspond to the first occurrence of . T in either
stream, consistent with the definition of a progressive subsequence of the Sequence
processor.

The process can then be repeated by successively pointing at each of these
events and calculating the input events that the upstream processor associates
with them; these events are highlighted throughout Fig. 9.8. The operation ends
at the leftmost processor, which keeps track of the location of output events with
respect to their original position in the global input stream. The end result, in this
particular example, precisely matches the intuition: the global pipeline looks for a

5 We remind that because of the presence of box #1, the pipeline only produces one output event
for each two input events.

9 A Stream-Based Approach to Intrusion Detection 279

succession of A, B, and C at odd indices, and the highlighted events are precisely
the first occurrence of A, B, and C that fulfill this condition in the stream. In
other words, this shows how the composition of elementary processors and the
iterative calculation of individual progressing subsequences do indeed fall back on
the appropriate subset of the input explaining the occurrence of a pattern when it is
found.

We remind the reader that this process is systematic and automated; given an
arbitrary pipeline where each processor present can properly calculate associations
between input and output events, the identification of the appropriate subset of the
input stream explaining the occurrence of a match requires no manual intervention
whatsoever.

9.6 Experimental Evaluation

In this last section, we revisit the notions of monitor, state, and progressive
subsequence and measure experimentally their impact in terms of computation load
and potential for reduction in the number of matches and events in each match.
We first describe a concrete implementation of these concepts as an extension of
an existing event stream processing library and then report on experimental results
obtained by running various monitor pipelines on generated event streams.

9.6.1 Implementation

As the basis of our implementation, we use an actual open-source event stream
processing engine, called BeepBeep [30]. BeepBeep offers a collection of simple
computation units called Processors, which correspond exactly to the definition
we gave of this concept in Sect. 9.3.1. Processors can then be connected to form
pipelines, as was defined in Sect. 9.5.2. Over the years, BeepBeep has been involved
in multiple case studies including the detection of bugs in video games [56], the
runtime monitoring of security policies in Java programs [12, 33], the tracking of
packages in the Physical Internet [11], and the identification of electrical appliances
in a smart home [25]. BeepBeep’s set of processors has also been shown to be
expressive enough to encompass other stream languages [26], including LOLA [17],
Quantified Event Automata (QEA) [8], and a first-order extension of linear temporal
logic [29].

For the purpose of this work, each Processor instance provided by the core
library has been retrofitted with an additional interface called Stateful. This
interface defines a single method called getState, which returns an arbitrary Java
Object. The only requirement is that this object must be properly comparable
using Java’s equals method, in order to reliably determine when a processor
actually changes its internal state upon ingesting an input event. As we have seen,

280 S. Hallé

this condition is essential to optimize the pattern detection procedure we introduced
in this chapter and in particular to restrict its output only to the progressive
subsequences of pattern match instances.

Although not studied in this work, a “cheap” way of obtaining a function
returning the internal state of a processor could simply amount to serializing the
object and pass the resulting data structure (such as an XML or JSON string) into a
hash function. By construction, the resulting value satisfies the conditions of a state
function expressed in Sect. 9.4.3, although it may not guarantee optimality. Since,
in many cases, the relevant internal state of a processor (for the purpose of pattern
recognition) is a subset of the whole internal state of the Java object, we elected
for a simpler methodology where a well-chosen object or data structure has been
purposefully coded for each processor instance.

In addition to these modifications to the core library, an extension of the system (a
plug-in which is called a palette in BeepBeep’s terminology) providing additional
processors has been developed, specifically for the task of detecting patterns in a
stream of events. This palette provides a processor called DetectPattern, which
is a faithful transcription of Algorithm 2. What is more, all the monitors discussed in
Sect. 9.5.1 and illustrated in Fig. 9.7 are also defined, along with their corresponding
state function.

In order to calculate the progressing subsequences of each processor, the palette
takes advantage of an existing mechanism built within BeepBeep and called the
event tracker. As described in earlier work [24], the task of this object is to record in
memory the associations between input events and output events that any processor
may want to register during its execution, thereby mirroring the purpose of function
. ρπ formally defined in Sect. 9.5.2. For these “lineage” capabilities to be active, each
processor instance must be associated with an instance of the EventTracker
class. Since each processor instance in BeepBeep is given a numerical identifier that
is unique across a given program, the associations for each processor of a chain can
be recorded and distinguished.

Figure 9.9 shows a concrete example of Java code building a BeepBeep pipeline
using the processors described in this chapter. Lines 1–7 create the processor

1 CountDecimate d = new CountDecimate(2);

2 Fork f = new Fork(3);

3 SomeEventually a = new SomeEventually(new ApplyFunction(new Equals("a")));

4 SomeEventually b = new SomeEventually(new ApplyFunction(new Equals("b")));

5 SomeEventually c = new SomeEventually(new ApplyFunction(new Equals("c")));

6 Sequence s1 = new Sequence();

7 Sequence s2 = new Sequence();

8 EventTracker t = new IndexEventTracker();

9 Connector con = new Connector(t);

10 con.connect(d, 0, f, 0).connect(f, 0, a, 0).connect(f, 1, b, 0)

11 .connect(f, 2, c, 0).connect(a, 0, s1, 0).connect(b, 0, s1, 1)

12 .connect(s1, 0, s2, 0).connect(c, 0, s2, 1);

Fig. 9.9 A Java code snippet creating the pipeline of Fig. 9.8

9 A Stream-Based Approach to Intrusion Detection 281

1 FindPattern fp = new FindPattern(g);

2 Connector.connect(fp, new Print());

3 for (char e : "AabcAaBabbCa".toCharArray()) {

4 fp.getPushableInput().push(e);

5 }

Fig. 9.10 A Java code snippet finding instances of the pattern detected by the pipeline of
Figure 9.9 on the input trace AabcAaBabbCa

instances, respectively, corresponding to boxes 1–7 in Fig. 9.8. Then, line 8 creates
an instance of event tracker, and line 9 creates an instance of the Connector object
used to link input and output pipes. Finally, method connect of this object is
repeatedly called to create the appropriate connections between the processors of
the pipeline. The connector takes care of both associating each processor with the
event tracker and also of registering the connection between these processors into
the event tracker itself.

Once this pipeline has been created, it can be encapsulated into a Group-
Processor g and then be passed as a monitor to the FindPattern processor,
as is shown in Fig. 9.10. For the purpose of this example, the processor is connected
to an instance of Print, which, as its name implies, prints to the standard output all
the events that are fed to it. Lines 3–5 simply iterate over all characters of the input
trace (turning them into individual events) and push them into the FindPattern
processor. The expected output of this piece of code is:

{(1,1), (1,7), (1,11)}

which corresponds precisely to the positions in the input stream highlighted in
Fig. 9.8 and which constitute the progressing subsequence of the match detected
by the pipeline.

As one can see, the software implementation very closely follows the theoretical
definitions introduced in this chapter. The definition of the pipeline, the detection
of the patterns, and the extraction of a progressive subsequence for a given match
exactly mirror the expected results from the formalization.

9.6.2 Empirical Analysis

Equipped with this implementation, it is now possible to evaluate the potential for
reduction in the size of the witnesses by running the FindPattern processor on
a set of monitors and input streams. The patterns we consider are abstract, but each
has a global shape that corresponds to a type of real-world type of attack.

The first pattern is called Linear sequence: it looks for a sequence of successive
symbols in an input stream, with each symbol separated from the next by an
arbitrary number of events. This is a generalization of the pattern detected by the
monitor of Fig. 9.8, where the number of symbols in the sequence is configurable

282 S. Hallé

f
B1 =?

f
A1 =?

,φ
ψ

f
D1 =?

f
C1 =?

,φ
ψ

f
F1 =?

f
E1 =?

,φ
ψ

Fig. 9.11 A monitor identifying the occurrence of three linear patterns (.A → B, .C → D, . E →
F), which can be arbitrarily interleaved

by a parameter n. This pattern can be used to for any attack that can be detected
by looking for a succession of fixed actions, each marking a progression in the
unfolding of the attack. An example is the ptrace exploit described by Olivain
and Goubault-Larrecq [45].

The second pattern is called Combined : it is parameterized by n other patterns
.π1, . . . , πn. It declares a match as soon as all these patterns have been detected in
the stream, irrespective of the order in which they occur or the possible interleaving
of their relevant events. An illustration of a possible monitor for this pattern is
shown in Fig. 9.11. This particular case is parameterized with three instances of the
linear sequence pattern introduced above: the first instance detects an A followed
by a B, while the other two, respectively, detect the sequences .C → D and
.E → F . A possible input stream matching this pattern would be aCbABbEaAFD.
As its name implies, this pattern is appropriate for attacks that require multiple
independent conditions to be present for it to succeed, with each condition itself
being detectable by its own pattern in the stream of events; an example is the attack
pattern of the GandCrab ransomware [55], which consists of multiple steps, each of
them requiring the parallel fulfillment of two or more sequences.

9 A Stream-Based Approach to Intrusion Detection 283

The third pattern is called Incomplete. It is parameterized by a sequential pattern
that can unfold concurrently on multiple slices of a given stream. A pattern for
a given slice is said to be “incomplete” if the first event that defines it has been
observed, but the last event concluding the occurrence of the pattern has not yet
been received. An alarm is raised when the number of incomplete instances of the
pattern at a given moment exceeds some threshold number k. A possible incident
following this pattern is the classical SYN flooding attack [16]; in this case, an
attacker opens a large number of TCP connections by issuing the SYN segment, but
does not confirm the start of the connection by issuing the expected ACK segment
later on. A large number of incomplete instances of the pattern SYN. →ACK may
thus indicate that such an attack is ongoing.

Figure 9.12 shows an example of a monitor for this pattern. It first slices an
incoming stream of tuples according to the value of some attribute A (box #1); on
each of these sub-streams, it looks for the presence of a pattern where attribute B of
the tuple first contains the value A, eventually followed by the value B (part #2 of
the pipeline). The output of this part of the pipeline thus produces . ? if the pattern is
incomplete and . T if the pattern has been completed. The second part of the pipeline
(box #3) then turns these two values into the numbers 1 and 0, respectively. The
Slice processor then calculates the sum of the output value for each slice, which
corresponds to the number of incomplete pattern instances at a given moment. It
then compares it to the threshold value k (box #4); the monitor of box #5 outputs . T
(and thus declares a match) as soon as this value exceeds k at some moment in the
trace

Fig. 9.12 A monitor triggering an alarm when the number of slices containing an event A not
followed by a B exceeds from threshold k

284 S. Hallé

A

f f

>
1

k

Σ
B

{ } ∪

1

2 3 4 5

∨
Σ

Fig. 9.13 A monitor identifying a pattern in a sequence of tuples, where a slice determined by the
value of attribute A contains at least k distinct values of attribute B

The fourth and last pattern is called Threshold ; in this pattern, values extracted
from events in a stream are accumulated into a set; a match is declared when
the number of unique values in the set exceeds a parameterizable quantity k. An
example of an attack following this global pattern is a remote access Trojan [23],
which includes a port scanning phase in which multiple TCP connections are
initiated by the same peer on various port numbers. In such a case, the port numbers
do not necessarily occur following a regular sequence; the pattern matches when
enough distinct port numbers are observed, regardless of their order of occurrence.

Figure 9.13 shows an example of a monitor for this pattern. This time, events are
assumed to be key-value tuples instead of atomic symbols. The pattern is detected
by an Existential slice monitor, illustrated in box #1. This monitor splits the input
stream of events into sub-streams based on the value of attribute A in each tuple.
For example, this attribute could be the source address of an incoming IP packet.
For each slice, the processing of the succession of processors 2–5 is applied. First,
the value of another attribute B in each tuple is extracted and placed into a set (box
#2); this attribute could be the TCP port at which a connection is attempted. These
values are then aggregated into a set using an instance of the Cumulate processor
(box #3); the cardinality of this set is repeatedly compared against the threshold
quantity k (box #4), producing a stream of Boolean values. These values are then
aggregated using the disjunction operator (box #5); the end result is that the pipeline
returns . T and keeps returning . T from that point on, when the number of distinct
values of attribute B for that slice is higher than k. Overall, this pipeline declares
a match whenever the number of distinct connection attempts from any individual
source IP address becomes too large.

For each of these scenarios, a synthetic event source containing a configurable
number of instances of the pattern has been created, using the Synthia data
structure generator [48]. A BeepBeep Source processor has been implemented,
using Synthia’s Knit object, which can interleave sequences of events generated
from multiple instances of the Picker interface. Each time a new event it to be
generated, Knit throws a biased dice to determine which picker instance is chosen
to produce the next event. In the present case, two picker instances are configured:
the first generates randomly selected events that are not present in the pattern
to be discovered, while the second generates one possible next event that makes

9 A Stream-Based Approach to Intrusion Detection 285

Table 9.1 Number of pattern matches for each simplification strategy, with . α = 0.9

Pattern First step Direct Distinct states Progressing

Threshold 52 190 45 45

Linear sequence 22 247 22 22

Combined patterns 7 125 3 3

Incomplete 223 223 33 33

the pattern’s monitor move to a new state. A configurable parameter, . α ∈ [0, 1]
determines the probability that the “regular” picker is chosen over the “pattern”
picker. A low value of . α means that events from the pattern are chosen more often,
resulting in denser matches, while a high value of . α causes pattern instances to be
spread across a larger interval of events in the input stream.

The experiments were implemented using the LabPal testing framework [27],
which makes it possible to bundle all the necessary code, libraries, and input data
within a single self-contained executable file, such that anyone can download and
independently reproduce the experiments. A downloadable lab instance containing
all the experiments of this paper can be obtained online from GitHub.6 All the
experiments were run on an Intel CORE i5-7200U 2.5 GHz running Ubuntu 18.04,
inside a Java 11 virtual machine with the default settings allocating 1746 MB of
memory.

Sequences of 500 events have been generated according to each pattern, and
for each of them, the number of matches, number of witness events, and running
time have been calculated. Table 9.1 shows the impact on the number of matches.
As expected, the Direct approach generates the most matches, while the First step
strategy already reduces the number of such matches. The Distinct states approach
further reduces the number of matches, while the Progressing strategy has no impact
on the reduction of the number of pattern matches. These results faithfully mirror
the abstract example shown in Fig. 9.5.

Table 9.2 shows the fraction of the input stream that is included in the events
identified for each match, for all four reduction strategies. Again, one can observe a
sharp reduction by moving from the direct, first step, distinct states and progressing
subsequence reductions. While the Direct approach includes almost all the input
stream for two of the scenarios, at the other end of the spectrum, the Progressing
strategy incurs a reduction down to 20% or less of the input stream – thereby
confirming its potential for identifying the relevant events of a pattern. A notable
exception is the Incomplete pattern, where the reduction is much smaller than for
the remaining patterns. This is explained by the fact that in order to explain the
fact that the sequence .A → B is incomplete, one must show not only that an A
has occurred but also that all the subsequent are not Bs. Therefore, a large amount
of the input stream ends up being part of the progressive subsequence. This is a

6 https://github.com/liflab/pattern-detection-lab

https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab

286 S. Hallé

Table 9.2 Fraction of input stream included in witnesses, with . α = 0.9

Pattern First step Direct Distinct states Progressing

Threshold 0.96015936 0.96414346 0.96015936 0.20717132

Linear sequence 0.42231077 0.9920319 0.42231077 0.17529881

Combined patterns 0.70119524 0.72908366 0.6294821 0.17928287

Incomplete 0.936255 0.936255 0.84462154 0.84462154

Table 9.3 Total running time for the pattern detection algorithm for each reduction strategy, with
. α = 0.9

Pattern Progressing Direct Distinct states First step

Threshold 1275 ms 76 ms 1012 ms 1092 ms

Linear sequence 10 ms 19 ms 8 ms 7 ms

Incomplete 37 ms 475 ms 120 ms 766 ms

Combined patterns 209 ms 1307 ms 95 ms 210 ms

common trait shared by patterns that are negative in essence (i.e. that raise an alarm
depending on the absence of an event or sequence of events).

Finally, Table 9.3 shows the total running time for the pattern detection algorithm
for each reduction strategy. One can observe that running time involves a form
of cost-benefit equilibrium. The Direct approach incurs an increased number of
monitor instances and thus additional computational load resulting in longer running
times for the combined pattern scenario. In counterpart, simplification strategies
require the evaluation of each monitors’ state at each input event, which may end up
incurring a non-negligible cost; yet, one can see that this additional effort is offset by
the fact that monitor instances are regularly discarded, resulting in an overall quicker
running time than the direct approach. Finally, the calculation of the progressing
subsequence involves additional effort, which explains why the running time for
this last layer of simplification results in longer running times than the Distinct
states strategy.

Overall, these results are consistent with the expected behavior predicted by
theoretical reasoning over the description of Algorithm 2. They show that the
use of the progressing subsequence reduction strategy, even though it produces
fewer matches and fewer witness events extracted from the input stream, incurs
a reasonable overhead due to the fact that superfluous monitor instances are not
uselessly updated upon each new event.

9.7 Discussion and Conclusion

In this chapter, we have shown how the task of detecting misbehavior or malicious
actions over an information system can be reduced to the specification of abstract
monitors whose simple task is to determine, given a stream of events produced

9 A Stream-Based Approach to Intrusion Detection 287

by the observation of the system, whether a given pattern occurs or not. These
monitors are simply special cases of a more general function called a processor,
which consumes input streams in order to produce output streams. The definition of
a monitor has been purposefully left as generic as possible, and in particular does
not impose any particular notation or formalism to express the patterns of interest.

From these monitors, an algorithm to detect all matches of a given pattern has
been proposed. Then, the notion of processor state was introduced, which, again,
is defined only based on the relationship between possible inputs and possible
outputs, without the need to refer to any particular inner implementation detail of
the processor. Thus, a state function can be inferred for any processor given its
definition, and is not restricted to such processors that are defined as an explicit
state machine.

This notion of state has then been leveraged to implement several simplification
and optimization layers on the basic monitor-based pattern detection algorithm.
More importantly, processor state can be used not only to reduce the number of
(mostly superfluous) matches discovered by monitor instances but also to reduce
the number of events that are singled out in each match as material “witnesses”
of the occurrence of this match – a concept called the progressing subsequence.
Experimental evaluation on sample patterns inspired from examples of real-world
attacks confirm the intuition that these simplification strategies indeed reduce the
amount of data extracted from a log required to provide evidence of the occurrence
of a particular pattern.

The ideas introduced in this chapter can be extended in several ways: First,
the definition of progressive subsequence shares similarities with the definition
of progressing subsequence of a processor, as described in Sect. 9.4.3. It presents
the interesting property that for processors expressed as Moore (i.e., finite-state)
machines, the progressing subsequence of an input trace of events exactly coincides
with the definition of what is called an explanation in [24]. However, while an
explanation is an ad hoc definition that was only valid for Moore machines, it is here
generalized to arbitrary processors. This links back to a theoretical notion called
explainability, which was defined by Hallé and Tremblay [28] and which can be
paraphrased as follows:

Let .f : X → Y be a function, .x ∈ X be an input of f , . px be a part of x, and .pf (x) be a
part of . f (x). Part . px is said to “explain” the output of f if there exists an input .x, ∈ X that
differs only on . px and such that .f (x,) differs on .pf (x).

In addition, the notion of processor state could be used to generate “early
warnings” of the occurrence of a pattern. Instead of alerting a user when a monitor
declares the occurrence of a complete attack pattern, one could create a derived
version of this monitor that declares a match whenever the pattern is almost fulfilled
– for example, when there exists an extension of the current input stream by a single
event that would cause the original monitor to declare a match.

288 S. Hallé

References

1. Snort: Network intrusion detection and prevention. https://www.snort.org. Accessed 28 Sept
2022

2. The Zeek network security monitor. https://zeek.org. Accessed 28 Sept 2022
3. J.R. Abrial, The B-Book: Assigning Programs to Meanings (Cambridge University Press, 2005)
4. U. Adhikari, T.H. Morris, S. Pan, Applying non-nested generalized exemplars classification for

cyber-power event and intrusion detection. IEEE Trans. Smart Grid 9(5), 3928–3941 (2018).
https://doi.org/10.1109/TSG.2016.2642787

5. A. Ahmed, A. Lisitsa, C. Dixon, A misuse-based network intrusion detection system using
temporal logic and stream processing, in 5th International Conference on Network and System
Security, NSS 2011, Milan, Italy, 6–8 Sept 2011, ed. by P. Samarati, S. Foresti, J. Hu, G. Livraga
(IEEE, 2011), pp. 1–8. https://doi.org/10.1109/ICNSS.2011.6059953

6. M.A. Albahar, Recurrent neural network model based on a new regularization
technique for real-time intrusion detection in SDN environments. Secur. Commun.
Netw. (2019). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.
1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01.

7. G.E. Andrews, Number Theory (Dover, 1994)
8. H. Barringer, Y. Falcone, K. Havelund, G. Reger, D.E. Rydeheard, Quantified event automata:

towards expressive and efficient runtime monitors, in FM, ed. by D. Giannakopoulou, D. Méry.
Lecture Notes in Computer Science, vol. 7436 (Springer, 2012), pp. 68–84

9. E. Bartocci, Y. Falcone, A. Francalanza, G. Reger, Introduction to runtime verification, in
Lectures on Runtime Verification – Introductory and Advanced Topics, ed. by E. Bartocci, Y.
Falcone. Lecture Notes in Computer Science, vol. 10457 (Springer, 2018), pp. 1–33. https://
doi.org/10.1007/978-3-319-75632-5_1

10. A. Bédard, S. Hallé, Model checking of stream processing pipelines, in 28th International
Symposium on Temporal Representation and Reasoning, TIME 2021, 27–29 Sept 2021,
Klagenfurt, Austria, ed. by C. Combi, J. Eder, M. Reynolds. LIPIcs, vol. 206, pp. 5:1–5:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.
TIME.2021.5

11. Q. Betti, R. Khoury, S. Hallé, B. Montreuil, Improving hyperconnected logistics with
blockchains and smart contracts. IT Prof. 21(4), 25–32 (2019)

12. M.R. Boussaha, R. Khoury, S. Hallé, Monitoring of security properties using BeepBeep, in
FPS, ed. by A. Imine, J.M. Fernandez, J. Marion, L. Logrippo, J. García-Alfaro. Lecture Notes
in Computer Science, vol. 10723 (Springer, 2017), pp. 160–169

13. K. Bu, M. Xu, X. Liu, J. Luo, S. Zhang, M. Weng, Deterministic detection of cloning attacks
for anonymous RFID systems. IEEE Trans. Ind. Inf. 11(6), 1255–1266 (2015). https://doi.org/
10.1109/TII.2015.2482921

14. E. Börger, Abstract State Machines: A Method for High-Level System Design and Analysis
(Springer, 2003)

15. H. Chen, Y. Fu, Z. Yan, Survey on big data analysis algorithms for network security
measurement, in Network and System Security – 11th International Conference, NSS 2017,
Helsinki, Finland, 21–23 Aug 2017, Proceedings, ed. by Z. Yan, R. Molva, W. Mazurczyk,
R. Kantola. Lecture Notes in Computer Science, vol. 10394 (Springer, 2017), pp. 128–142.
https://doi.org/10.1007/978-3-319-64701-2_10

16. Computer Emergency Response Team: TCP SYN flooding and IP spoofing attacks. Tech. Rep.
CERT Advisory CA-1996-21, Cybersecurity & Infrastructure Security Agency (1996)

17. B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H.B. Sipma, S.
Mehrotra, Z. Manna, LOLA: runtime monitoring of synchronous systems, in 12th International
Symposium on Temporal Representation and Reasoning (TIME 2005), 23–25 June 2005,
Burlington, Vermont, USA (IEEE Computer Society, 2005), pp. 166–174

https://www.snort.org
https://www.snort.org
https://www.snort.org
https://www.snort.org
https://zeek.org
https://zeek.org
https://zeek.org
https://doi.org/10.1109/TSG.2016.2642787
https://doi.org/10.1109/TSG.2016.2642787
https://doi.org/10.1109/TSG.2016.2642787
https://doi.org/10.1109/TSG.2016.2642787
https://doi.org/10.1109/TSG.2016.2642787
https://doi.org/10.1109/TSG.2016.2642787
https://doi.org/10.1109/TSG.2016.2642787
https://doi.org/10.1109/TSG.2016.2642787
https://doi.org/10.1109/ICNSS.2011.6059953
https://doi.org/10.1109/ICNSS.2011.6059953
https://doi.org/10.1109/ICNSS.2011.6059953
https://doi.org/10.1109/ICNSS.2011.6059953
https://doi.org/10.1109/ICNSS.2011.6059953
https://doi.org/10.1109/ICNSS.2011.6059953
https://doi.org/10.1109/ICNSS.2011.6059953
https://doi.org/10.1109/ICNSS.2011.6059953
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076009173&doi=10.1155%2f2019%2f8939041&partnerID=40&md5=7a20449e6b871b80dedcded928a20e01
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.1109/TII.2015.2482921
https://doi.org/10.1109/TII.2015.2482921
https://doi.org/10.1109/TII.2015.2482921
https://doi.org/10.1109/TII.2015.2482921
https://doi.org/10.1109/TII.2015.2482921
https://doi.org/10.1109/TII.2015.2482921
https://doi.org/10.1109/TII.2015.2482921
https://doi.org/10.1109/TII.2015.2482921
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10
https://doi.org/10.1007/978-3-319-64701-2_10

9 A Stream-Based Approach to Intrusion Detection 289

18. M. Devarajan, L. Ravi, S. Vairavasundaram, V. Varadharajan, A.K. Sangaiah, Hybrid
reasoning-based privacy-aware disease prediction support system. Comput. Electr. Eng. 73,
114–127 (2019). https://doi.org/10.1016/j.compeleceng.2018.11.009

19. V.L. Do, L. Fillatre, I. Nikiforov, P. Willett, Feature article: security of SCADA systems against
cyber-physical attacks. IEEE Aerosp. Electron. Syst. Mag. 32(5), 28–45 (2017)

20. P. Faymonville, B. Finkbeiner, S. Schirmer, H. Torfah, A stream-based specification language
for network monitoring, in Runtime Verification – 16th International Conference, RV 2016,
Madrid, Spain, 23–30 Sept 2016, Proceedings, Y. Falcone, C. Sánchez. Lecture Notes in
Computer Science, vol. 10012 (Springer, 2016), pp. 152–168. https://doi.org/10.1007/978-3-
319-46982-9_10

21. C.J. Fung, Q. Zhu, FACID: a trust-based collaborative decision framework for intrusion
detection networks. Ad Hoc Netw. 53, 17–31 (2016). https://doi.org/10.1016/j.adhoc.2016.08.
014

22. J. Goubault-Larrecq, J. Olivain, A smell of Orchids, in Runtime Verification, 8th International
Workshop, RV 2008, Budapest, Hungary, 30 March 2008. Selected Papers, ed. by M. Leucker.
Lecture Notes in Computer Science, vol. 5289 (Springer, 2008), pp. 1–20. https://doi.org/10.
1007/978-3-540-89247-2_1

23. R.A. Grimes, Danger: Remote access Trojans. Security Administrator (2002). https://technet.
microsoft.com/en-us/library/dd632947.aspx. Accessed 29 Sept 2022

24. S. Hallé, Explainable queries over event logs, in 24th IEEE International Enterprise Dis-
tributed Object Computing Conference, EDOC 2020, Eindhoven, The Netherlands, 5–8 Oct
2020 (IEEE, 2020), pp. 171–180. https://doi.org/10.1109/EDOC49727.2020.00029

25. S. Hallé, S. Gaboury, B. Bouchard, Activity recognition through complex event processing:
first findings, in Artificial Intelligence Applied to Assistive Technologies and Smart Environ-
ments, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, 12 Feb 2016, ed. by B.
Bouchard, S. Giroux, A. Bouzouane, S. Gaboury. AAAI Workshops, vol. WS-16-01 (AAAI
Press, 2016)

26. S. Hallé, R. Khoury, Writing domain-specific languages for BeepBeep. In: C. Colombo,
Leucker, M. (eds.) RV. Lecture Notes in Computer Science, vol. 11237, pp. 447–457. Springer
(2018)

27. S. Hallé, R. Khoury, M. Awesso, Streamlining the inclusion of computer experiments in a
research paper. Computer 51(11), 78–89 (2018)

28. S. Hallé, H. Tremblay, Foundations of fine-grained explainability, in Computer Aided Verifica-
tion – 33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings,
Part II, ed. by A. Silva, K.R.M. Leino. Lecture Notes in Computer Science, vol. 12760
(Springer, 2021), pp. 500–523. https://doi.org/10.1007/978-3-030-81688-9_24

29. S. Hallé, R. Villemaire, Runtime enforcement of web service message contracts with data.
IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

30. S. Hallé, Event Stream Processing with BeepBeep 3: Log Crunching and Analysis Made Easy.
Presses de l’Université du Québec (2018)

31. S. Iqbal, M.L.M. Kiah, B. Dhaghighi, M. Hussain, S. Khan, M.K. Khan, K.R. Choo, On cloud
security attacks: a taxonomy and intrusion detection and prevention as a service. J. Netw.
Comput. Appl. 74, 98–120 (2016). https://doi.org/10.1016/j.jnca.2016.08.016

32. A. Kassem, Y. Falcone, Detecting fault injection attacks with runtime verification, in Pro-
ceedings of the 3rd ACM Workshop on Software Protection, SPRO@CCS 2019, ed. by P.
Falcarin, M. Zunke, London, Uk, 15 Nov 2019 (ACM, 2019), pp. 65–76. https://doi.org/10.
1145/3338503.3357724

33. R. Khoury, S. Hallé, O. Waldmann, Execution trace analysis using LTL-FOˆ+, in Leveraging
Applications of Formal Methods, Verification and Validation: Discussion, Dissemination,
Applications – 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, 10–14 Oct
2016, Proceedings, Part II, ed. by T. Margaria, B. Steffen. Lecture Notes in Computer Science,
vol. 9953 (2016), pp. 356–362. https://doi.org/10.1007/978-3-319-47169-3_26

https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1016/j.compeleceng.2018.11.009
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1016/j.adhoc.2016.08.014
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1
https://technet.microsoft.com/en-us/library/dd632947.aspx
https://technet.microsoft.com/en-us/library/dd632947.aspx
https://technet.microsoft.com/en-us/library/dd632947.aspx
https://technet.microsoft.com/en-us/library/dd632947.aspx
https://technet.microsoft.com/en-us/library/dd632947.aspx
https://technet.microsoft.com/en-us/library/dd632947.aspx
https://technet.microsoft.com/en-us/library/dd632947.aspx
https://technet.microsoft.com/en-us/library/dd632947.aspx
https://technet.microsoft.com/en-us/library/dd632947.aspx
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.1109/EDOC49727.2020.00029
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1007/978-3-030-81688-9_24
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1016/j.jnca.2016.08.016
https://doi.org/10.1145/3338503.3357724
https://doi.org/10.1145/3338503.3357724
https://doi.org/10.1145/3338503.3357724
https://doi.org/10.1145/3338503.3357724
https://doi.org/10.1145/3338503.3357724
https://doi.org/10.1145/3338503.3357724
https://doi.org/10.1145/3338503.3357724
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26
https://doi.org/10.1007/978-3-319-47169-3_26

290 S. Hallé

34. C. Kolias, G. Kambourakis, A. Stavrou, S. Gritzalis, Intrusion detection in 802.11 networks:
empirical evaluation of threats and a public dataset. IEEE Commun. Surv. Tutorials 18(1),
184–208 (2016). https://doi.org/10.1109/COMST.2015.2402161

35. T.R.B. Kushal, K. Lai, M.S. Illindala, Risk-based mitigation of load curtailment cyber attack
using intelligent agents in a shipboard power system. IEEE Trans. Smart Grid 10(5), 4741–
4750 (2019). https://doi.org/10.1109/TSG.2018.2867809

36. D. Kwon, H. Kim, D. An, H. Ju, DDoS attack volume forecasting using a statistical approach,
in 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon,
Portugal, 8–12 May 2017 (IEEE, 2017), pp. 1083–1086. https://doi.org/10.23919/INM.2017.
7987432

37. W. Li, W. Meng, L. Kwok, H.H. Ip, Enhancing collaborative intrusion detection networks
against insider attacks using supervised intrusion sensitivity-based trust management model. J.
Netw. Comput. Appl. 77, 135–145 (2017). https://doi.org/10.1016/j.jnca.2016.09.014

38. G. Liang, J. Zhao, F. Luo, S.R. Weller, Z.Y. Dong, A review of false data injection attacks
against modern power systems. IEEE Trans. Smart Grid 8(4), 1630–1638 (2017). https://doi.
org/10.1109/TSG.2015.2495133

39. G. Logeswari, S. Bose, T. Anitha, An intrusion detection system for SDN using machine
learning. Intell. Autom. Soft Comput. 35(1), 867–880 (2023). https://www.scopus.com/inward/
record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&
md5=e0907be624a0048eda2192a876e4808e. Cited by: 0; All Open Access, Hybrid Gold
Open Access

40. P. Mishra, E.S. Pilli, V. Varadharajan, U.K. Tupakula, Intrusion detection techniques in cloud
environment: a survey. J. Netw. Comput. Appl. 77, 18–47 (2017). https://doi.org/10.1016/j.
jnca.2016.10.015

41. R. Mitchell, I. Chen, Behavior rule specification-based intrusion detection for safety critical
medical cyber physical systems. IEEE Trans. Dependable Secur. Comput. 12(1), 16–30 (2015),
https://doi.org/10.1109/TDSC.2014.2312327

42. P. Moosbrugger, K.Y. Rozier, J. Schumann, R2U2: monitoring and diagnosis of security threats
for unmanned aerial systems. Formal Methods Syst. Des. 51(1), 31–61 (2017). https://doi.org/
10.1007/s10703-017-0275-x

43. P. Naldurg, K. Sen, P. Thati, A temporal logic based framework for intrusion detection, in
Formal Techniques for Networked and Distributed Systems – FORTE 2004, 24th IFIP WG 6.1
International Conference, Madrid, Spain, 27–30 Sept 2004, Proceedings, ed. by D. de Frutos-
Escrig, M. Núñez. Lecture Notes in Computer Science, vol. 3235 (Springer, 2004), pp. 359–
376. https://doi.org/10.1007/978-3-540-30232-2_23

44. L. Nishani, M. Biba, Machine learning for intrusion detection in MANET: a state-of-the-art
survey. J. Intell. Inf. Syst. 46(2), 391–407 (2016). https://doi.org/10.1007/s10844-015-0387-y

45. J. Olivain, J. Goubault-Larrecq, The Orchids intrusion detection tool, in Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, 6–10 July
2005, Proceedings, ed. by K. Etessami, S.K. Rajamani. Lecture Notes in Computer Science,
vol. 3576 (Springer, 2005), pp. 286–290. https://doi.org/10.1007/11513988_28

46. M.S. Parwez, D.B. Rawat, M. Garuba, Big data analytics for user-activity analysis and user-
anomaly detection in mobile wireless network. IEEE Trans. Ind. Inf. 13(4), 2058–2065 (2017).
https://doi.org/10.1109/TII.2017.2650206

47. K. Peng, V.C.M. Leung, Q. Huang, Clustering approach based on mini batch Kmeans for
intrusion detection system over big data. IEEE Access 6, 11897–11906 (2018). https://doi.
org/10.1109/ACCESS.2018.2810267

48. M. Plourde, S. Hallé, Synthia: a generic and flexible data structure generator, in 44th 2022
IEEE/ACM International Conference on Software Engineering: Companion Proceedings,
ICSE Companion 2022, Pittsburgh, PA, USA, 22–24 May 2022 (IEEE, 2022), pp. 207–211.
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796

49. J. Ren, J. Guo, W. Qian, H. Yuan, X. Hao, H. Jingjing, Building an effective intrusion
detection system by using hybrid data optimization based on machine learning
algorithms. Secur. Commun. Netw. (2019). https://www.scopus.com/inward/record.

https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1109/TSG.2018.2867809
https://doi.org/10.1109/TSG.2018.2867809
https://doi.org/10.1109/TSG.2018.2867809
https://doi.org/10.1109/TSG.2018.2867809
https://doi.org/10.1109/TSG.2018.2867809
https://doi.org/10.1109/TSG.2018.2867809
https://doi.org/10.1109/TSG.2018.2867809
https://doi.org/10.1109/TSG.2018.2867809
https://doi.org/10.23919/INM.2017.7987432
https://doi.org/10.23919/INM.2017.7987432
https://doi.org/10.23919/INM.2017.7987432
https://doi.org/10.23919/INM.2017.7987432
https://doi.org/10.23919/INM.2017.7987432
https://doi.org/10.23919/INM.2017.7987432
https://doi.org/10.23919/INM.2017.7987432
https://doi.org/10.23919/INM.2017.7987432
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1016/j.jnca.2016.09.014
https://doi.org/10.1109/TSG.2015.2495133
https://doi.org/10.1109/TSG.2015.2495133
https://doi.org/10.1109/TSG.2015.2495133
https://doi.org/10.1109/TSG.2015.2495133
https://doi.org/10.1109/TSG.2015.2495133
https://doi.org/10.1109/TSG.2015.2495133
https://doi.org/10.1109/TSG.2015.2495133
https://doi.org/10.1109/TSG.2015.2495133
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132133653&doi=10.32604%2fiasc.2023.026769&partnerID=40&md5=e0907be624a0048eda2192a876e4808e
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1016/j.jnca.2016.10.015
https://doi.org/10.1109/TDSC.2014.2312327
https://doi.org/10.1109/TDSC.2014.2312327
https://doi.org/10.1109/TDSC.2014.2312327
https://doi.org/10.1109/TDSC.2014.2312327
https://doi.org/10.1109/TDSC.2014.2312327
https://doi.org/10.1109/TDSC.2014.2312327
https://doi.org/10.1109/TDSC.2014.2312327
https://doi.org/10.1109/TDSC.2014.2312327
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/978-3-540-30232-2_23
https://doi.org/10.1007/s10844-015-0387-y
https://doi.org/10.1007/s10844-015-0387-y
https://doi.org/10.1007/s10844-015-0387-y
https://doi.org/10.1007/s10844-015-0387-y
https://doi.org/10.1007/s10844-015-0387-y
https://doi.org/10.1007/s10844-015-0387-y
https://doi.org/10.1007/s10844-015-0387-y
https://doi.org/10.1007/s10844-015-0387-y
https://doi.org/10.1007/s10844-015-0387-y
https://doi.org/10.1007/11513988_28
https://doi.org/10.1007/11513988_28
https://doi.org/10.1007/11513988_28
https://doi.org/10.1007/11513988_28
https://doi.org/10.1007/11513988_28
https://doi.org/10.1007/11513988_28
https://doi.org/10.1007/11513988_28
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.1109/TII.2017.2650206
https://doi.org/10.1109/ACCESS.2018.2810267
https://doi.org/10.1109/ACCESS.2018.2810267
https://doi.org/10.1109/ACCESS.2018.2810267
https://doi.org/10.1109/ACCESS.2018.2810267
https://doi.org/10.1109/ACCESS.2018.2810267
https://doi.org/10.1109/ACCESS.2018.2810267
https://doi.org/10.1109/ACCESS.2018.2810267
https://doi.org/10.1109/ACCESS.2018.2810267
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796
https://doi.org/10.1109/ICSE-Companion55297.2022.9793796
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7

9 A Stream-Based Approach to Intrusion Detection 291

uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=
f611d318049034805c5f1c83aefaeba7. Cited by: 48; All Open Access, Gold Open Access,
Green Open Access

50. K. Rina, S. Nath, N. Marchang, A. Taggu, Can clustering be used to detect intrusion during
spectrum sensing in cognitive radio networks? IEEE Syst. J. 12(1), 938–947 (2018). https://
doi.org/10.1109/JSYST.2016.2584098

51. A.S. Sadiq, B.Y. Alkazemi, S. Mirjalili, N. Ahmed, S. Khan, I. Ali, A.K. Pathan, K.Z. Ghafoor,
An efficient IDS using hybrid magnetic swarm optimization in wanets. IEEE Access 6, 29041–
29053 (2018). https://doi.org/10.1109/ACCESS.2018.2835166

52. F. Sakiz, S. Sen, A survey of attacks and detection mechanisms on intelligent transportation
systems: VANETs and IoV. Ad Hoc Netw. 61, 33–50 (2017). https://doi.org/10.1016/j.adhoc.
2017.03.006

53. J.M. Spivey, The Z Notation: A Reference Manual (Prentice Hall, 1989)
54. L.N. Tidjon, M. Frappier, A. Mammar, Intrusion detection systems: a cross-domain overview.

IEEE Commun. Surv. Tutorials 21(4), 3639–3681 (2019). https://doi.org/10.1109/COMST.
2019.2922584

55. L.N. Tidjon, M. Frappier, A. Mammar, Intrusion detection using ASTDs, in Advanced
Information Networking and Applications – Proceedings of the 34th International Conference
on Advanced Information Networking and Applications, AINA-2020, Caserta, Italy, 15–17
April, ed. by L. Barolli, F. Amato, F. Moscato, T. Enokido, M. Takizawa. Advances in
Intelligent Systems and Computing, vol. 1151 (Springer, 2020), pp. 1397–1411. https://doi.
org/10.1007/978-3-030-44041-1_118

56. S. Varvaressos, K. Lavoie, S. Gaboury, S. Hallé, Automated bug finding in video games: a case
study for runtime monitoring. Comput. Entertain. 15(1), 1:1–1:28 (2017)

57. B. Wehbi, E.M. de Oca, M. Bourdellès, Events-based security monitoring using MMT tool,
in Fifth IEEE International Conference on Software Testing, Verification and Validation, ICST
2012, Montreal, QC, Canada, 17–21 April 2012, ed. by G. Antoniol, A. Bertolino, Y. Labiche
(IEEE Computer Society, 2012), pp. 860–863. https://doi.org/10.1109/ICST.2012.188

58. A. Woodruff, M. Stonebraker, Supporting fine-grained data lineage in a database visualization
environment, in Proc. ICDE, 1997, pp. 91–102. https://doi.org/10.1109/ICDE.1997.581742

59. G. Xu, Y. Cao, Y. Ren, X. Li, Z. Feng, Network security situation awareness based on semantic
ontology and user-defined rules for internet of things. IEEE Access 5, 21046–21056 (2017).
https://doi.org/10.1109/ACCESS.2017.2734681

60. S.C. Yip, K. Wong, W.P. Hew, M.T. Gan, R.C.W. Phan, et S.-W. Tan, Detection of energy theft
and defective smart meters in smart grids using linear regression. Int. J. Electr. Power Energy
Syst. 91, 230–240 (2017)

61. J. Zhang, Z. Chu, L. Sankar, O. Kosut, Can attackers with limited information exploit historical
data to mount successful false data injection attacks on power systems? IEEE Trans. Power
Syst. 33(5), 4775–4786 (2018)

62. W. Zhu, M. Deng, Q. Zhou, An intrusion detection algorithm for wireless networks based on
ASDL. IEEE CAA J. Autom. Sinica 5(1), 92–107 (2018). https://doi.org/10.1109/JAS.2017.
7510754

63. R. Zuech, T.M. Khoshgoftaar, R. Wald, Intrusion detection and big heterogeneous data: a
survey. J. Big Data 2, 3 (2015), https://doi.org/10.1186/s40537-015-0013-4

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068853458&doi=10.1155%2f2019%2f7130868&partnerID=40&md5=f611d318049034805c5f1c83aefaeba7
https://doi.org/10.1109/JSYST.2016.2584098
https://doi.org/10.1109/JSYST.2016.2584098
https://doi.org/10.1109/JSYST.2016.2584098
https://doi.org/10.1109/JSYST.2016.2584098
https://doi.org/10.1109/JSYST.2016.2584098
https://doi.org/10.1109/JSYST.2016.2584098
https://doi.org/10.1109/JSYST.2016.2584098
https://doi.org/10.1109/JSYST.2016.2584098
https://doi.org/10.1109/ACCESS.2018.2835166
https://doi.org/10.1109/ACCESS.2018.2835166
https://doi.org/10.1109/ACCESS.2018.2835166
https://doi.org/10.1109/ACCESS.2018.2835166
https://doi.org/10.1109/ACCESS.2018.2835166
https://doi.org/10.1109/ACCESS.2018.2835166
https://doi.org/10.1109/ACCESS.2018.2835166
https://doi.org/10.1109/ACCESS.2018.2835166
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1109/COMST.2019.2922584
https://doi.org/10.1109/COMST.2019.2922584
https://doi.org/10.1109/COMST.2019.2922584
https://doi.org/10.1109/COMST.2019.2922584
https://doi.org/10.1109/COMST.2019.2922584
https://doi.org/10.1109/COMST.2019.2922584
https://doi.org/10.1109/COMST.2019.2922584
https://doi.org/10.1109/COMST.2019.2922584
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1109/ICST.2012.188
https://doi.org/10.1109/ICST.2012.188
https://doi.org/10.1109/ICST.2012.188
https://doi.org/10.1109/ICST.2012.188
https://doi.org/10.1109/ICST.2012.188
https://doi.org/10.1109/ICST.2012.188
https://doi.org/10.1109/ICST.2012.188
https://doi.org/10.1109/ICST.2012.188
https://doi.org/10.1109/ICDE.1997.581742
https://doi.org/10.1109/ICDE.1997.581742
https://doi.org/10.1109/ICDE.1997.581742
https://doi.org/10.1109/ICDE.1997.581742
https://doi.org/10.1109/ICDE.1997.581742
https://doi.org/10.1109/ICDE.1997.581742
https://doi.org/10.1109/ICDE.1997.581742
https://doi.org/10.1109/ICDE.1997.581742
https://doi.org/10.1109/ACCESS.2017.2734681
https://doi.org/10.1109/ACCESS.2017.2734681
https://doi.org/10.1109/ACCESS.2017.2734681
https://doi.org/10.1109/ACCESS.2017.2734681
https://doi.org/10.1109/ACCESS.2017.2734681
https://doi.org/10.1109/ACCESS.2017.2734681
https://doi.org/10.1109/ACCESS.2017.2734681
https://doi.org/10.1109/ACCESS.2017.2734681
https://doi.org/10.1109/JAS.2017.7510754
https://doi.org/10.1109/JAS.2017.7510754
https://doi.org/10.1109/JAS.2017.7510754
https://doi.org/10.1109/JAS.2017.7510754
https://doi.org/10.1109/JAS.2017.7510754
https://doi.org/10.1109/JAS.2017.7510754
https://doi.org/10.1109/JAS.2017.7510754
https://doi.org/10.1109/JAS.2017.7510754
https://doi.org/10.1186/s40537-015-0013-4
https://doi.org/10.1186/s40537-015-0013-4
https://doi.org/10.1186/s40537-015-0013-4
https://doi.org/10.1186/s40537-015-0013-4
https://doi.org/10.1186/s40537-015-0013-4
https://doi.org/10.1186/s40537-015-0013-4
https://doi.org/10.1186/s40537-015-0013-4
https://doi.org/10.1186/s40537-015-0013-4
https://doi.org/10.1186/s40537-015-0013-4

Chapter 10
Toward Anomaly Detection Using
Explainable AI

Manh-Dung Nguyen, Vinh-Hoa La, Wissam Mallouli, Ana Rosa Cavalli,
and Edgardo Montes de Oca

Abstract Anomaly detection in networks is an important aspect of network
security, enabling organizations to identify and respond to unusual patterns of
activity that may indicate a security threat or performance issue. By identifying
and addressing anomalies in real time, organizations can reduce the risk of data
breaches and other security incidents and ensure the optimal performance and
reliability of their network infrastructure. However, implementing effective anomaly
detection in networks with good quality is a significant challenge, requiring careful
consideration of several key factors. One of the main challenges of anomaly
detection in networks is the sheer volume of data that must be processed and
analyzed. Networks generate vast amounts of traffic data, making it difficult to
identify patterns and anomalies in real time. To address this challenge, anomaly
detection systems must be able to handle large amounts of data and operate at high
speeds while also minimizing false positives and false negatives. In this chapter, we
present MMT a monitoring framework developed by the Montimage research team
to perform anomaly detection. This framework is being extended with explainable
AI (XAI) capabilities to better understand the classification done by AI-/ML-based
algorithms. The first experimentations are presented in this book chapter using
SHAP, LIME, and SHAPASH technologies.

Keywords Network monitoring · Anomaly detection · Explainable AI

M.-D. Nguyen (O) · V.-H. La · W. Mallouli · A. R. Cavalli · E. M. de Oca
Montimage EURL, Paris, France
e-mail: Manh-Dung.Nguyen@montimage.com; Vinh-Hoa.La@montimage.com;
Wissam.Mallouli@montimage.com; ana.cavalli@montimage.com;
edgardo.montesdeoca@montimage.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Sadovykh et al. (eds.), CyberSecurity in a DevOps Environment,
https://doi.org/10.1007/978-3-031-42212-6_10

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42212-6protect T1	extunderscore 10&domain=pdf

 885
54631 a 885 54631 a

mailto:Manh-Dung.Nguyen@montimage.com
mailto:Manh-Dung.Nguyen@montimage.com
mailto:Manh-Dung.Nguyen@montimage.com
mailto:Manh-Dung.Nguyen@montimage.com

 16207 54631 a 16207 54631
a

mailto:Vinh-Hoa.La@montimage.com
mailto:Vinh-Hoa.La@montimage.com
mailto:Vinh-Hoa.La@montimage.com
mailto:Vinh-Hoa.La@montimage.com

 -2016 55738 a -2016 55738 a

mailto:Wissam.Mallouli@montimage.com
mailto:Wissam.Mallouli@montimage.com
mailto:Wissam.Mallouli@montimage.com

 11908 55738 a 11908 55738 a

mailto:ana.cavalli@montimage.com
mailto:ana.cavalli@montimage.com
mailto:ana.cavalli@montimage.com

 -2016 56845 a -2016 56845
a

mailto:edgardo.montesdeoca@montimage.com
mailto:edgardo.montesdeoca@montimage.com
mailto:edgardo.montesdeoca@montimage.com
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10
https://doi.org/10.1007/978-3-031-42212-6_10

294 M.-D. Nguyen et al.

10.1 Introduction

Anomaly detection (AD) techniques can be used to identify a wide range of
network anomalies, including network intrusions, malware infections, denial-of-
service (DoS) attacks, and other forms of malicious activities [1, 2]. There are
several different approaches to anomaly detection in networks, including rule-
based methods, statistical methods, and machine learning methods. Rule-based
methods involve defining a set of rules that describe normal network activity and
then flagging any activity that deviates from these rules as anomalous. Statistical
methods involve using probability distributions and statistical models to iden-
tify deviations from normal network activity. Machine learning methods involve
training algorithms on large datasets of network activity to identify patterns and
anomalies.

One of the key challenges of anomaly detection in networks is minimizing false
positives, which occur when normal network activities are incorrectly classified as
anomalous, and false negatives, obtained when anomalous activities are not detected
[3]. To address this challenge, many anomaly detection systems use a combination
of multiple techniques, as well as feedback loops and manual review by security
analysts.

Other challenges are the need of network activity continuous monitoring and
the quality of detecting anomalies. In fact, anomaly detection systems have not
only to be able to identify anomalies but also to accurately detect true ones and
quickly respond to them, in order to minimize the risk of security incidents or
performance issues. The first challenge can be faced through the combination of
automated detection methods and human oversight, as well as ongoing analysis
and refinement of the detection algorithms. Moreover, AD systems must avoid
misclassifications, e.g., normal network activities detected as anomalous. This
requires a deep understanding of network behavior and the ability to adapt to
changing patterns of activity over time [4].

One approach to anomaly detection is to use explainable artificial intelligence
(XAI) techniques [5], which are designed to provide transparency and interpretabil-
ity into the decisions made by the algorithm. This can help network administrators
understand why certain network activity is classified as anomalous and can provide
insights into potential security threats or performance issues. For example, an XAI-
based anomaly detection system might identify a sudden surge in network traffic
from a particular IP address as anomalous. By providing explanations of how the
algorithm came to that decision, the system can help the network administrator
understand that the IP address is engaged in potentially malicious activity, such as a
distributed denial-of-service (DDoS) attack.

In this chapter, we rely on Montimage Monitoring Tool (MMT) [6], i.e., a set of
modules to perform real-time analysis or post-analysis of captured traffic, combined

10 Toward Anomaly Detection Using Explainable AI 295

with AI/machine learning (ML) algorithms to classify sessions and detection
deviations from learned behaviors. Through this tool, we will perform network
monitoring and anomaly detection, also introducing the possibility of using XAI
for network traffic classification. The preliminary outcomes of our experimentation
will help to extend the AI-based MMT monitoring framework with transparency
and interpretability.

The chapter is organized as follows: Section 10.2 will present the MMT archi-
tecture and its usage for anomaly detection and network classification. Section 10.3
will propose the usage of XAI for the classification of network traffic. Several
algorithms like SHAP and LIME are presented and included in MMT as plugins
to existing deep learning (DL) algorithms. Section 10.4 will present the first results
demonstrating the interest of using XAI in network traffic classification in general
and in anomaly detection in particular.

10.2 Network Monitoring Approaches: MMT Monitoring
Framework Example

Network monitoring is the process of observing and analyzing the performance and
security of a computer network [7]. It involves collecting and analyzing data on
network activity, such as the amount of data being transmitted, the types of data
being transmitted, and the sources and destinations of the data.

Classification is an important aspect of network monitoring. It involves identi-
fying network traffic and categorizing it into different types, such as email, web
browsing, or file sharing. This can be done through the use of machine learning
algorithms, which analyze patterns in the network traffic to identify different types
of activity. By classifying network traffic, network administrators can identify
potential security threats, such as suspicious or unauthorized activity, and take
appropriate action to mitigate the risk. They can also gain insight into network
usage, identifying trends and patterns that can help optimize network performance
and improve user experience.

Overall, network monitoring and classification are critical components of main-
taining a secure and efficient computer network. Through the use of advanced
algorithms and analysis techniques, network administrators can gain a deeper
understanding of their network and take proactive steps to ensure its continued
success.

In the remainder of this section, we present (i) classification techniques, i.e.,
rule-based classification and AI-based classification, in Sect. 10.2.1 and (ii) the
global architecture of Montimage Monitoring Tool and its application for anomaly
detection, respectively, in Sects. 10.2.2 and 10.2.3.

296 M.-D. Nguyen et al.

10.2.1 Classification Techniques

10.2.1.1 Rule-Based Network Classification

It is a method of categorizing network traffic based on a set of predefined rules,
which are typically based on attributes such as the used protocol, source and
destination IP addresses, and port numbers. The process of rule-based classification
involves (i) examination of data packets as they move through the network and (ii)
comparison of their attributes to a set of predefined rules. When a packet matches
a rule, it is classified accordingly. For example, a packet that is identified as HTTP
traffic (based on the used protocol) with a destination port of 80 (which is typically
used for web traffic) might be classified as “web browsing.”

Rule-based classification can be effective in identifying certain types of network
traffic, such as web browsing, email, or file sharing. However, it can also be limited
by its inflexibility, since it relies on predefined rules that may not capture all types
of network traffic. In addition, rule-based classification can be vulnerable to evasion
techniques used by attackers to disguise their activities, e.g., using nonstandard ports
or encryption.

Despite these limitations, rule-based classification is still a widely used method
of network traffic analysis, especially in situations where the network environment
is well understood and the types of traffic are relatively stable. It can be an efficient
way to identify and filter out unwanted or malicious traffic and provide insights into
network usage and performance.

10.2.1.2 AI-Based Network Classification

It involves the use of AI and ML algorithms to identify and categorize network
traffic. These algorithms are trained on large datasets of network traffic and use
statistical models to classify new data based on their patterns and their features.
AI-based network classification can be more flexible and accurate than rule-based
classification, since it can learn from data and adapt to new and evolving types of
network traffic. For example, an AI-based classification system might be able to
identify previously unknown types of traffic, such as a new type of malware or an
emerging application protocol.

There are several different types of AI-based classification techniques, including
supervised learning, unsupervised learning, and deep learning. Supervised learning
involves training the algorithm on a labeled dataset, where the correct category
of each data point is known. Unsupervised learning involves discovering patterns
and relationships in unlabeled data, which can be useful for identifying new
and previously unknown types of traffic. Deep learning involves training neural
networks with multiple layers to learn complex data representations.

AI-based network classification has several advantages over traditional classi-
fication methods. It can provide greater accuracy and speed, allowing network

10 Toward Anomaly Detection Using Explainable AI 297

administrators to quickly identify and respond to potential security threats. It can
also be more scalable, since it can learn from large datasets and adapt to new types
of traffic over time.

However, AI-based classification also requires significant computational
resources and expertise to develop and maintain. It also raises concerns around
privacy and security, since large amounts of sensitive network traffic data are
required to train the algorithms. Therefore, it is important to carefully consider the
risks and benefits of AI-based network classification before implementing it in a
network environment.

10.2.2 Global MMT Monitoring Architecture

The MMT monitoring framework is an open-source monitoring solution developed
by Montimage and freely available for the research community on GitHub [6].
Its workflow is presented in Fig. 10.1, and hereinafter, we analyze each MMT
component.

10.2.2.1 Feature Extraction

It is the functionality of the module “MMT-Extract” that allows to parse the
network traffic, identify sessions, and compute packet and session attributes called
features. This module is implemented as a C library that analyzes network traffic

Fig. 10.1 Monitoring components of MMT

298 M.-D. Nguyen et al.

to extract network- and application-based events. Extraction is powered by a plugin
architecture that allows adding new protocols or application message formats to
parse. In the current development, more than 600 plugins for classical protocols and
applications are already implemented.

10.2.2.2 Rule-Based Analysis

“MMT-Security” is a signature-based monitoring solution that allows analyzing
network traffic according to a set of properties. These properties contain signatures
that formally specify security goals or malicious behaviors related to the monitored
system. The MMT-Security property model is inspired by linear temporal logic
(LTL) and can be referred to the following two types of properties:

1. Properties that describe the normal, legitimate behavior of the application or
protocol under analysis. Consequently, the non-respect of the property indicates
a potential violation of a safety or security requirement; e.g., all the ports
in a computer must be closed unless they are being used by an authorized
application.

2. Attacks that describe malicious behavior corresponding to an attack model, a
vulnerability or misbehavior. In this case, the respect of the property indicates
the detection of a potential incident; e.g., a big number of requests in a short
period of time could be a DoS attack.

The chosen language of “MMT-Security” properties is XML format, due to its
simplicity and straightforward structure verification. A property is a general ordered
tree as shown in Fig. 10.2, where the leaf nodes are the atomic events captured in the
traces. Each property is composed of a context, in the left branch, and a trigger, in
the right branch. Then, a property is valid when the trigger is valid, and the trigger
is inspected only if the context is valid.

10.2.2.3 Machine Learning-Based Anomaly Detection

“MMT-AI” allows to perform AI-based analysis of the collected features applying
one or several AI/ML algorithms. It is responsible for building a model (which
depends on the data and the chosen ML algorithm), as well as utilizing existing
ones. We can therefore distinguish its two modes of operating, i.e., training and
prediction.

● Training: It is designed to create and parameterize the model based on already
cleaned and transformed data. This means that it executes the algorithm selected
by user and a model is built by using the training data in order to find its weights
and biases that would lead to the best results. Loss function, with penalized
bad prediction, is used as a metrics of result during training. Depending on
the selected algorithm, this step also includes the experimentation of algorithm

10 Toward Anomaly Detection Using Explainable AI 299

Fig. 10.2 Security property structure in MMT [6]

parameter different values, such as learning rate, activation functions, batch
size, and so on. In the proposed system, it is assumed that this step is either
done by a user a bit familiar with hyper-tuning or done by utilization of the
values directly suggested by the system:

. • Model evaluation. In order to evaluate the sufficient amount of parameters
and the model training, the training needs to be done using a separate
dataset from the testing dataset; thus, the model will be tested on the
completely new samples. In this case, the evaluation checks whether the
model is generalized enough. To investigate the results, the correctness
of classification is verified using the following terms: (i) true positive
(TP) and true negative (TN) are samples that are correctly assigned to the
normal and anomaly classes, respectively, and (ii) false positive (FP) and
false negative (FN) are samples that are incorrectly assigned to positive or
negative classes.

● Prediction: It is the activity done after the model is trained (that is to say
the algorithm is executed in training mode) and the satisfactory results are
obtained. It involves utilizing the model directly on new, unseen data (in a real-
life case scenario, these are just production data) and obtaining the results, such
as probabilities, classifications, etc. Importantly, the accuracy of the prediction
results can also be used in order to further hyper-tune the model.

300 M.-D. Nguyen et al.

As the system aims to simplify the prototyping and utilization of AI/ML
algorithms for practical applications, it is assumed that the user may want to create
multiple different models. Therefore, instead of selecting one model’s predictions
from one particular model, it can be beneficial to combine the results of different
models together. Thus, this final (and optional) step of the ML module consists of
the ensemble part that is capable of joining the results together.

10.2.2.4 Root Cause Analysis

“MMT-RCA” relies on machine learning algorithms to identify the most probable
cause(s) of detected anomalies based on the knowledge of similar observed ones.
It enables the systematization of the experience in dealing with incidents to build
a historical database and verify whether a newly detected incident is similar
enough to an observed one with known causes. Thanks to MMT-RCA’s suggestions,
remediation actions could be timely and wisely taken to prevent or mitigate the
damage of the recurrence of problems.

10.2.3 Application of MMT for Anomaly Detection

MMT-AI has been used in several projects, e.g., for differentiating bots and human
activities in the net [8], for anomaly detection in industrial systems (e.g., load
position system of ABB) [9]. In the following, we present a classical usage of
MMT-AI on an open-source database CSE-CIC-IDS2018 provided by the Canadian
Institute for Cybersecurity [10].

10.2.3.1 Settings

Stacked autoencoders (SAE) [11] and convolutional neural network (CNN) [12]
are used to train and classify the network traffic with the Canadian dataset. More
in detail, SAE are multiple encoders stacked on top of one another. The number
of neurons in each decoder and encoder is the same. They aim at dimensionality
reduction, i.e., filtering the essential features from the data. Then, CNNs are used,
and they are a specialized type of artificial neural networks that use, in at least
one of their layers, a mathematical operation called convolution in place of general
matrix multiplication. It consists of an input layer; hidden layers, which perform
convolutions; and an output layer. The general implemented architecture can be
seen in Fig. 10.3. The advantage of this architecture is its flexibility, as both modules
can be easily added to the structure of the global system and integrated in the final
solution.

10 Toward Anomaly Detection Using Explainable AI 301

Fig. 10.3 The AI-based anomaly detection architecture

Feature Extraction The feature extractor module is used in both generating the
training/testing datasets and on the input file for prediction.

Scaling Data scaling is the treatment data process in order to obtain standard format
data; thus, the training is improved, accurate, and faster. Indeed, a model with large
weight values is often unstable, which means that it may give poor performance
during learning and have a high sensitivity to the input values, which leads to a
higher generalization error. Column normalization involves bringing the column
values to a common scale, which is usually done for columns with varying ranges.

MinMaxScaler from scikit-learn library [13] transforms features by scaling each
feature to a given range. This estimator individually scales and translates each
feature; in this way, values are limited to a given range in the training set, e.g.,
between zero and one. The transformation is given by the following equations:

.Xstd = X − Xmin

Xmax − Xmin

(10.1)

.Xscaled = Xstd × (Xmax − Xmin) + Xmin (10.2)

where .(Xmin, .Xmax) represents the desired range of scaled data, e.g., .(0, 1).

Training In the learning phase, the model is fed with the so-called training dataset,
and the model is tested in order to obtain the best performance and highest accuracy
of the final classification. The input files pass through the feature extractor module
which runs the MMT-Extract. Then, it creates a training and testing .csv files with
balanced 0/1 classes. More in detail, the dataset is divided in this way: 70% for
training and 30% for testing.

At this level, there is the possibility that we must do multiple experiments with
the use of different parameters of the models, e.g., CNN or SAE. Thus, additional
model adaptation toward specific conditions or changes is recommended in order
to obtain higher performance and accuracy of the model that will be saved for
prediction purpose later. The model’s structure is hybrid, composed of two auto-
encoders and one-dimensional CNN as shown in Fig. 10.4.

Evaluation We applied the learned model to the 30% of remaining datasets. The
classification is done and the results are presented in the next subsection.

302 M.-D. Nguyen et al.

Fig. 10.4 Overview of the deep learning modules

10.2.3.2 Results and Interpretation

Using the default parameters, the training on these datasets gives the following
results, as shown in Tables 10.1 and 10.2.

The obtained results are quite impressive and are more than 99% for the
precision, recall, and F1-score, as shown in Tables 10.3 and 10.4. However, better
results are still possible by refining parameters.

The same methodology has been applied to real traffic data collected in the
Montimage internal network (private network). The train and test datasets present
15000 samples together, and as already said, the dataset has been split into 70% for
training and 30% for testing. The data are shuffled in order to give different patterns
of the presence of 0/1 (normal/malicious) samples in the files. After the training
process on these data, we obtained the following results, as shown in Tables 10.5
and 10.6.

10 Toward Anomaly Detection Using Explainable AI 303

Table 10.1 Confusion
matrix 1

0 1

0 6779 14

1 3 6790

Table 10.2 Metrics of model using default parameters

Precision Recall F1-score Support

0 (Normal traffic) 0.999558 0.997939 0.998748 6793

1 (Malware traffic) 0.997942 0.999558 0.998750 6793

Accuracy 0.998749 0.998749 0.998749 0.998749

Macro average 0.998750 0.998749 0.998749 13586

Weighted average 0.998750 0.998749 0.998749 13586

Table 10.3 Confusion
matrix 2

0 1

0 6778 5

1 3 6790

Table 10.4 Metrics of model using advanced parameters

Precision Recall F1-score Support

0 (Normal traffic) 0.999558 0.999264 0.999411 6793

1 (Malware traffic) 0.999264 0.999558 0.999411 6793

Accuracy 0.999411 0.999411 0.999411 0.999411

Macro average 0.999411 0.999411 0.999411 13586

Weighted average 0.999411 0.999411 0.999411 13586

Table 10.5 Confusion
matrix 3

0 1

0 7500 0

1 87 7413

Table 10.6 Metrics of model using real network traffic

Precision Recall F1-score Support

0 (normal traffic) 0.999558 0.999264 0.999411 6793

1 (malware traffic) 0.999264 0.999558 0.999411 6793

Accuracy 0.999411 0.999411 0.999411 0.999411

Macro average 0.999411 0.999411 0.999411 13586

Weighted average 0.999411 0.999411 0.999411 13586

The results were good enough to affirm that the obtained model is efficient. Thus,
we further investigated the classification phase in order to check the accuracy of
the prediction of the model. We used a portion of the raw normal traffic data that
we used for training. In this way, we know that the model is correctly functioning
when we see zeros in the predicted malware value. However, the results were not
compatible with the expected values, and the predictions are thus not correct. The

304 M.-D. Nguyen et al.

model predicts that there were attacks in the known normal traffic. Therefore, further
investigation and testing need to be done.

Discussion The manual investigation shows that the classification using AI-based
anomaly detection provides in some cases false positives (e.g., 0.1% for malware
prediction using default parameters) which are difficult to interpret mainly with
theoretical metrics that are more than 99% (precision, recall, F1-score, etc.). The
need to have more transparency is needed in such context to better interpret the
results and understand why we have such decisions. That’s why we will use XAI
to have a better insight on network traffic classification using explainable AI. These
results are still preliminary.

10.3 Interpreting ML Models for User Network Activity
Classification

10.3.1 Motivation

10.3.1.1 Context

Network traffic classification becomes more and more challenging due to the growth
in network traffic. As there are new applications with different characteristics and
network requirements, it is crucial to identify the requirements to provide the
appropriate resource to each application. In the literature, several approaches have
been proposed for network traffic classification based on the well-known ports
(e.g., TCP or UDP port numbers) and on deep packet inspection (DPI) technique
[14]. However, port-based classification technique is ineffective because mapping
between ports and applications using dynamic ports is not well defined. Moreover,
the growing popularity of encrypted traffic HTTPS and virtual private networks
(VPN) increases user security and privacy but also becomes a big challenge
for traditional traffic analysis, making DPI-based service classification unfeasible.
Therefore, it raises the need for advanced analysis techniques based on other criteria,
such as behavior analysis. With the introduction of network encryption techniques,
such as the TLS protocol, the accuracy and efficiency of conventional Network
Intrusion Detection Systems (NIDS) that were using rule- and signature-based
monitoring detection methods are greatly reduced. Consequently, in the last decade,
research efforts have moved toward new analysis methods based on AI techniques
for network traffic classification. Indeed, various AI algorithms have been used in
the literature, such as supervised [14, 15], unsupervised [16], and hybrid machine
learning approaches [17–19].

Nowadays, apart from accuracy and performance, new requirements concerning
trustworthy, transparency, unbiasedness, privacy, and robustness also need to be
taken into account in the development of AI-based systems. Nonetheless, existing
AI methods, especially complex ones like deep neural networks, are seen as black

10 Toward Anomaly Detection Using Explainable AI 305

boxes and thus have a common limitation of lacking explainability. Indeed, the
classification results of existing work do not provide the users with any information
of how the dataset, input features, or selected models contribute to the predicted
classification. In this context, user network activity classifiers, as well as other
traffic analysis applications, must be improved and optimized not only in terms
of performance but also for other properties listed above. Recently, explainable
artificial intelligence (XAI) has become a hot research topic in the AI community
[20]. It provides a rationale that allows users to understand why an AI-based system
has produced a given output and increases trust of end users. Different approaches
[21, 22] are proposed to providing and improving the understanding, in the global
and local manner, of what the models have learned and how the models make
individual predictions.

10.3.1.2 Proposal

Our work aims at characterizing and classifying user network activities using
machine learning techniques. We use popular supervised techniques, such as
random forest, neural networks, XGBoost,1 and LightGBM,2 and unsupervised
techniques, such as K-means, for classification. Furthermore, we want not only to
understand why our application produces promising results but also why it makes
some wrong predictions in some cases to further improve the performance. To
achieve this goal, we add an extra explainability layer on top of our AI-based
classification system by applying different popular XAI methods, such as SHAP
and LIME. The full dataset and the code of the AI-based system will be published
along with this paper at [23].

10.3.2 Classification of User Network Activities

10.3.2.1 Overview

Our classification system takes as input network traffic data with IP and TCP/UDP
header fields. Figure 10.5 illustrates an overview of the workflow of our AI-based
classification consisting of four main phases: dataset generation, dataset prepro-
cessing, feature extraction, and classification. The dataset generation process is
indeed important for training and testing our application. The dataset preprocessing
phase is required to describe and transform the input network traffic data into a set
of features suitable for the classification task. Then, different classification models
are executed using the feature selection output to predict the user activity in one of

1 https://xgboost.readthedocs.io
2 https://lightgbm.readthedocs.io

https://xgboost.readthedocs.io
https://xgboost.readthedocs.io
https://xgboost.readthedocs.io
https://xgboost.readthedocs.io
https://lightgbm.readthedocs.io
https://lightgbm.readthedocs.io
https://lightgbm.readthedocs.io
https://lightgbm.readthedocs.io

306 M.-D. Nguyen et al.

Fig. 10.5 Overview of AI-based classification for user activities

the three groups: Web, interactive, and video. Below, we describe the four phases in
more details:

10.3.2.2 Types of Activities

We choose the most common user activities on the Internet covering behaviors
exhibited by the network traffic from different applications. The set of three classes
are as follows:

1. Web browsing activity includes the network traffic generated when users search
or view different web pages, including downloading of multimedia content such
as text, images, or advertising video. This activity can also include traffic of
applications that transfer big volume data over the network.

2. Interactive activity contains network traffic of applications that execute real-
time interactions, for example, chatting application like Discord and Messenger
or remotely editing files on Google Docs.

3. Video activity contains network traffic of applications consuming video in
streaming mode, for example, watching online movies or YouTube videos.

10.3.2.3 Dataset Generation

Figure 10.6 depicts the overview of our methodology used to capture network traffic
to generate the dataset for training and evaluating the classification system. First,
we capture the traffic using Wireshark [24] to produce pcap files whose size is
.2.15 Gb when a user performs some normal activities on a single host. Concretely,
for each class, we perform the following activities: Web (web browsing in blogs,
social networks, and shopping sites), interactive (chatting applications like Discord
and Messenger), and video (watching YouTube and movies). Therefore, the main
dataset is composed of several network traffic traces, each belonging to a specific
user activity. Then, we filter those pcap files so that there is one source IP and one
destination IP for each pcap file. Also, all packets with an empty payload and non-
TCP or non-UDP packets should be filtered out.

We use our open-source Montimage security monitoring framework (MMT) [6],
in particular “MMT-Probe” module [25] to convert pcap files into csv reports. We
can also visualize pcap files with “MMT-Operator” [26]. The .csv files characterize

10 Toward Anomaly Detection Using Explainable AI 307

Fig. 10.6 Traffic dataset generation

the network traffic using the following features: the timestamp, the protocols, the
source and destination IP addresses, the payload size in bytes, the number of
packets, etc. The full dataset in both pcap and csv formats is being published along
with this paper at [23].

10.3.2.4 Dataset Preprocessing

Some activities may produce multiple traces, for instance, MMT-Probe converts a
single pcap file capturing a video activity into multiple csv files. Therefore, first of
call, we need to merge those csv files belonging to a single activity into a single csv
file for further analysis. Next, we only select interesting data concerning the network
traffic in the merged csv reports and also compute additional statistics values, like
data aggregation. We come up with 21 features that will be described later, as shown
in Table 10.7. Finally, the full dataset consists of 382 labeled traces for three traffic
classes. The number of traces in Web, interactive, and video activities is 304, 34,
and 44, respectively. The final set of processed csv files will be used through the
analysis and evaluation of our AI-based classification system.

10.3.2.5 Feature Extraction

Table 10.7 shows 21 features of five main categories. In the group Duration,
the feature .session_t ime shows the total time wherein a user interacts with
applications when performing an activity. In the group Protocol, there are two
features corresponding to the percentage of TCP or UDP traffic. Normally, the
two feature values always add up to 100%. In groups Uplink and Downlink, we
use some common features of uplink and downlink communication, such as data

308 M.-D. Nguyen et al.

Table 10.7 Feature selection

Category Feature Id Feature description

1 Duration session_time Total time wherein a user interacts with apps

2 Protocol %tcp_protocol Percentage of TCP traffic

3 %udp_protocol Percentage of UDP traffic

4 Uplink ul_data_volume Uplink data volume in bytes

5 max_ul_volume Maximum of uplink data volume

6 min_ul_volume Minimum of uplink data volume

7 avg_ul_volume Average of uplink data volume

8 std_ul_volume Standard deviation of uplink data volume

9 %ul_volume Percentage of uplink data volume

10 nb_uplink_packet Number of uplink packets

11 ul_packet Percentage of uplink packets

12 Downlink dl_data_volume Downlink data volume in bytes

13 max_dl_volume Maximum of downlink data volume

14 min_dl_volume Maximum of downlink data volume

15 avg_dl_volume Average of downlink data volume

16 std_dl_volume Standard deviation of downlink data volume

17 %dl_volume Percentage of downlink data volume

18 nb_downlink_packet Number of downlink packets

19 dl_packet Percentage of downlink packets

20 Speed kB/s Number of kB per second

21 nb_packet/s Number of packets per second

volume in bytes, number of packets, and percentage of packets to the total packets.
In addition, we also compute other useful values, such as the maximum, minimum,
mean, and standard deviation. Finally, in the group Speed, we add two more features
concerning the network speed. This set of features is optimal and suitable to describe
network traffic in our scenario.

10.3.2.6 Classification

We implemented the classification application in Python version 3.10 using the
open-source popular ML libraries, such as scikit-learn,3 Keras,4 and TensorFlow 2.5

Data preprocessing and postprocessing have been performed using the numpy and
pandas libraries. The graphical plots have been obtained using popular libraries, like
matplotlib and seaborn. For the deep learning model, we used a sequential model as
our network consists of a linear stack of layers from the Keras library. Concretely,

3 https://scikit-learn.org
4 https://keras.io
5 https://www.tensorflow.org

https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org
https://keras.io
https://keras.io
https://keras.io
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org

10 Toward Anomaly Detection Using Explainable AI 309

a fully connected network structure has three layers: in the first two layers, we used
the most widely used activation function, i.e., rectified linear unit (ReLU), while in
the output layer we used the Sigmoid activation function. In addition, we used the
default models of XGBoost, LightGBM, and random forest for classification.

The full dataset and the code to perform the evaluation of the experiments can be
found at [23]. For the evaluation, we randomly split the main dataset, including 382
traces, into the training and testing datasets with a probability of 70% to perform
cross validation. Concretely, we used 267 traces to build and train the models and
evaluate them against the testing dataset of 115 traces.

10.3.3 Evaluation

10.3.3.1 Metrics

We measure the performance of classification models using some popular metrics
[27], such as the accuracy, precision, recall (or sensitivity), and F1-score metrics.
Those metrics are defined in the following equations, (3), (4), (5), and (6), and
are applied to any classification models. More specifically, TP, FP, and FN are
the number of true positive instances (correctly classified), the number of false
positive instances (incorrectly classified as a class), and the number of false negative
instances (incorrectly classified as another class), respectively. The F1-score metric
takes both precision and recall into account. All those metrics values are in the range
from 0 to 1:

.Accuracy = T P + T N

T P + T N + FP + FN
(10.3)

.Precision = T P

T P + FP
(10.4)

.Recall = T P

T P + FN
(10.5)

.F1 = 2 × Precision × Recall

P recision + Recall
= 2 × T P

2 × T P + FP + FN
(10.6)

10.3.3.2 Supervised Classification Models

Table 10.8 contains the metric values of the classification results from the testing
dataset for each user activity. Moreover, Fig. 10.7 provides confusion matrices of
three classification models to better visualize the relationships between different
user activities. While the rows of the confusion matrix illustrate the predicted

310 M.-D. Nguyen et al.

Ta
bl
e
10
.8

E
xp

er
im

en
ta
l r
es
ul
ts
 o
f
ac
tiv

ity
 c
la
ss
ifi
ca
tio

n
fo
r
th
e
te
st
in
g
da
ta
se
t

K
er
as

X
G
B
oo
st

L
ig
ht
G
B
M

R
an
do
m
 f
or
es
t c
la
ss
ifi
er

A
ct
iv
ity

Pr
ec
is
io
n

R
ec
al
l

F1
-s
co
re

Pr
ec
is
io
n

R
ec
al
l

F1
Pr
ec
is
io
n

R
ec
al
l

F1
Pr
ec
is
io
n

R
ec
al
l

F1

W
eb

0.
98

0.
99

0.
98

0.
99

0.
99

0.
99

0.
99

0.
99

1.
00

0.
99

0.
99

0.
99

In
te
ra
ct
iv
e

1.
00

0.
91

0.
95

1.
00

0.
95

0.
91

1.
00

0.
90

0.
82

1.
00

0.
91

0.
95

V
id
eo

0.
78

0.
70

0.
74

0.
88

0.
78

0.
70

0.
91

0.
95

1.
00

0.
91

1.
00

0.
95

A
cc
ur
ac
y:
 0
.9
5

A
cc
ur
ac
y:
 0
.9
6

A
cc
ur
ac
y:
 0
.9
8

A
cc
ur
ac
y:
 0
.9
8

10 Toward Anomaly Detection Using Explainable AI 311

Fig. 10.7 Random forest classifier model. (a) Keras model. (b) XGBoost model. (c) LightGBM
model. (d) Random forest classifier model

classification distribution for each user activity, the columns represent the true
activity distribution for each predicted class. In addition, the recall for each class
is shown in the main diagonal of the confusion matrix.

As shown in Table 10.8 and Fig. 10.7, the accuracy values of four classification
models, including the Keras model, the XGBoost model, the LightGBM model,
and the random forest classifier model, are outstanding with 95% (5 wrong
predictions), 96% (5 wrong predictions), 98% (2 wrong predictions), and 98% (2
wrong predictions), respectively. Other metrics like the precision, recall, and F1-
scores are mostly over 95% for all except video activities. Among four classification
models, the LightGBM model and the random forest classifier model have the best
performance against the testing dataset as they predict correctly all instances of
Web and video activities, while the other two models Keras and XGBoost have
the same four wrong predictions. Interestingly, for interactive activity classification,
the overall best classification model LightGBM performs worst with two wrong

312 M.-D. Nguyen et al.

predictions, while others have only one. The results suggest that AI classification
models are complements to each other and combining those supervised models
could give us better results.

One possible explanation of the worst results of those models in classifying Web
and video activities is that users may perform unintentionally those activities at the
same time, e.g., user browser web pages that access the content in video activities
or some advertising videos pop up on web pages. Furthermore, Web activities have
variable behaviors in different forms and share its feature space with other types of
user activities.

10.3.4 Explainable AI (XAI)

10.3.4.1 State-of-the-Art of XAI Method

Explainable AI (XAI) [20] is a promising set of technologies that increases the
AI black box models’ transparency to explain why certain decisions were made.
While AI plays a critical role in different domains, XAI is crucial to enhance
trust and transparency for people to use future AI-based applications. For instance,
in the previous subsections, we employed different AI models for user activity
classification and achieve very good results but still incorrectly classify some
instances. However, those models are complex with multiple input features and
not readily interpretable by design, thus hindering users or even developers to
understand and debug them to improve the performance of the AI-based system.
Therefore, we need to build an explainability layer on top of the AI models to
provide post hoc explainability and enhance their interpretability. As depicted in
Fig. 10.8, some popular post hoc explainability methods are visual explanations,
local explanations, explanations by example, and feature relevance explanations:

● Local explanations aim at approximating explanations to less complex solution
subspaces for model predictions by only considering a subset of data. Local
Interpretable Model-Agnostic Explanations (LIME) [22] is a widely popular
technique used in interpreting outputs of black box models in several fields and
applications.

● Feature relevance explanations compute relevance scores of the model features
to quantify the contribution or sensitivity of each feature to the model’s output.
SHapley Additive exPlanations (SHAP) [21] is a popular XAI technique that
identifies the importance of each feature value in a certain prediction using
popular cooperative game theory technique. Permutation feature importance is
a global XAI method that measures the increase in the prediction error of the
model after we permute the feature’s tabular values. To assess how important a
specific feature is, we compare the initial model with the new model on which
the feature’s values are randomly shuffled.

● Explanations by example consider the extraction of representative data exam-
ples that relate to the result generated by a certain model, allowing to get a

10 Toward Anomaly Detection Using Explainable AI 313

Fig. 10.8 Conceptual diagram showing different existing post hoc explainability methods for ML
models [20]

better understanding of the model. Some XAI methods of this category are
counterfactual explanations [28] and adversarial examples.

Each of those techniques covers a way in which humans explain an object and
the combination of all methods provides us the whole explanations about the AI
models. However, as many methods may be suitable for different types of the
AI models or datasets, we need to consider the best appropriate methods for the
concrete problem being solved. Next, we apply some popular XAI methods, such
as SHAP and LIME, to provide both global and local explanations of the AI models
that we used previously for user network activity classification. Since both SHAP
and LIME are model-agnostic XAI methods, which imply that they can be applied
to any ML models, we will discuss in details the explanations for the Keras model.
The full results can be found at [23].

10.3.4.2 SHAP

Lundberg et al. proposed the SHapley Additive exPlanations (SHAP) method which
offers a high level of interpretability for a model [21]. The SHAP values, which are

314 M.-D. Nguyen et al.

based on the concepts of game theory, provide both global and local explainability
of any ML models. For global explainability, the SHAP values show how much
each input feature contributes, either positively or negatively, to the model’s global
output. For local explainability, as each prediction has its own set of SHAP values,
we can explain why the model makes a specific prediction and input feature
importance. Our implementation uses the KernelExplainer method of the SHAP
library [35] to calculate SHAP values and build summary and dependence plots.
Specifically, the KernelExplainer builds a weighted linear regression to compute
the variable importance values using the dataset, the labeled outputs, and the model
predictions. In addition, we apply also the dedicated method DeepExplainer that
performs calculations of the SHAP values for the Keras model faster than the
previous one KernelExplainer.

SHAP Summary Plots They show the positive and negative relationships of the AI
models with its outcome. Figure 10.9 shows SHAP summary plots for Web, interac-
tive, video, and all activity classification using the Keras model. The summary plot
consists of many dots representing instances of the dataset. Vertical location shows
the input features that are ranked in descending order in terms of feature importance.
The horizontal location shows whether the effect of a single feature is associated
with a higher or lower model prediction. Color illustrates whether that feature has
a high (in red) or low (in blue) impact on that prediction. As depicted in Fig. 10.9a,
the feature .%tcp_protocol has a positive and high impact on predicting an instance
as a Web activity because of a large number of red dots on the x-axis. Similarly, we
can say the feature .%udp_protocol is negatively correlated with Web activities
but highly contributed to predict interactive and video activities, as shown in
Fig. 10.9b, c. Furthermore, from Fig. 10.9d, we observe that the most five important
features contributing globally to our AI-based classification are .%tcp_protocol,
.%udp_protocol, .nb_downlink_packet , .dl_packet , and .ul_data_volume.

SHAP Dependence Plots They show the effect of a single input feature across the
whole dataset. Figure 10.10 shows some interesting SHAP dependence plots for
Web activity classification using the Keras model. Each dot in the plot represents a
single prediction from the dataset. The x-axis and y-axis show the values of an input
feature from the dataset and its SHAP values underlying how much this feature
has contributed to the prediction, respectively. Similar to SHAP summary plots,
the color of SHAP dependence plots corresponds to an interaction effect, like high
in red and low in blue, between the input feature we are plotting and the second
feature. For instance, the SHAP dependence plot of the feature . session_t ime

shows that this feature interacts mostly with the feature .nb_downlink_packet ,
as depicted in Fig. 10.10a. In addition, Fig. 10.10b shows that there is an approx-
imately linear and negative trend between the feature .nb_uplink_packet and the
second feature .%udp_protocol that interacts with .nb_uplink_packet frequently.
Interestingly, from Fig. 10.10c, d, the most two important features . %tcp_protocol

and .%udp_protocol interact most with other features of the Downlink category,
such as .%dl_volume and .dl_data_volume. This also explains why the Downlink

10 Toward Anomaly Detection Using Explainable AI 315

Fig. 10.9 SHAP summary plots for the feature importance of the Keras model. (a) Web activity.
(b) Interactive activity. (c) Video activity. (d) All three activities

features have great impact on the final prediction of the Keras model for user activity
classification, as discussed above.

10.3.4.3 LIME

Ribeiro et al. proposed Local Interpretable Model-Agnostic Explanations (LIME)
method that aims to explain individual predictions of black box AI models. While

316 M.-D. Nguyen et al.

Fig. 10.10 SHAP dependence plots for Web activity classification using the Keras model

the SHAP values of a feature represent their contribution to one or several sets of
features, LIME aims to provide local explainability that are locally faithful within
the surroundings or vicinity of the sample data being explained. The LIME method
is compatible with many different classifiers and can be used with image, tabular,
and text data. Similar to the SHAP method, LIME does not take the model into
account and thus can be applied to any models. Our implementation uses the
LimeTabularExplainer method of the LIME library [34] to calculate values and
build plots.

Figure 10.11 shows the explanation for a single instance from the testing dataset.
The leftmost values are the prediction probabilities of our classifier, that in this case
is the Keras model. Concretely, the Keras model predicts correctly this particular
instance as Web activity with 100% of confidence. The numbers on the right reflect
the average influence of that particular feature value in the final prediction, for
example, as a Web/interactive/video activity or not. This set of values encapsulates
the behavior of the LIME’s linear model in the neighborhood of the sample data that
we try to explain.

Given the training dataset, having .ul_packet > 0.84, .min_dl_volume <= 0.12,
and .%tcp_protocol > 0.47 would increase on average the prediction probability
of that instance being a Web activity by .0.13, .0.13, and .0.10, respectively. Note
that the concrete features’ values are in the table in the bottom left. Moreover,

10 Toward Anomaly Detection Using Explainable AI 317

Fig. 10.11 Illustration of the LIME method results for the prediction using the Keras model
(details of not interactive and interactive are omitted)

having .nb_downlink_packet > .−1.06 would decrease on average the prediction
probability by .0.10. We have the similar observation by looking at the positive
impact of the input feature .nb_downlink_packet with the value .−1.02 on the
column Video. This is because .nb_downlink_packet is the second most important
feature in classifying an instance as a video activity, as discussed earlier in Fig. 10.9c
showing the SHAP summary plot for video activities. Overall, by only looking at
the two columns NOT Web and Web, we observe that there are more input features
with a bigger positive contribution to the prediction probability of this instance
being a Web activity. This is why the Keras model gives us a prediction of being
a Web activity for this particular instance. We can also conclude that two XAI
methods SHAP and LIME are complement to each other and provide us the similar
explanations of our AI-based application for user activity classification.

10.3.4.4 Shapash

Shapash [29] is an open-source Python library to visualize AI models to make
them reliable, transparent, and understandable for everyone. It is compatible with
many models, including scikit-learn, XGBoost, and LightGBM models for both
classification and regression tasks. Moreover, Shapash allows users to easily
understand their AI models via a nice and user-friendly Web dashboard to navigate

318 M.-D. Nguyen et al.

between the feature importance and global and local explainability with popular
XAI methods like SHAP, Active Coalition of Variables6 (ACV), and LIME as
backend. As depicted in Fig. 10.12, on the Shapash’s dashboard of the random
forest classifier model, we can easily visualize and interact with the dataset and
observe how each feature contributes to model predictions and local explanation of
an individual instance.

Different XAI methods may give us different results or different explanations.
To increase the degree of confidence of applying different XAI methods, we need to
define some metrics to assess the quality of their explanations. Shapash can measure
some interesting metrics [30] to assess the degree of confidence on different XAI
methods as follows:

● The consistency metric compares different XAI methods and evaluates them to
see how close the explanations are to each other, for example, by calculating an
average distance between the explainability methods. If different XAI methods
lead to similar results, this would mean a higher degree of confidence can
be placed in using them. If not, we would need to carefully interpret the
explanations of each method to identify which one is the best.

● The stability metric evaluates the similarity between different instances under
two criteria: those instances must be close in the feature space and have similar
outputs. If instances are similar, we would expect the respective model output
for these instances to be similar as well. Therefore, this metric allows for
building trust in a specific explanation.

● The compacity metric seeks to reduce complexity and overexplaining by
measuring the explainability of a decision in relation to only the most important
features. For each instance, after identifying feature importance using XAI
methods, we select a subset of features with the highest contributions and
observe how well they approximate the model.

However, Shapash has still some limitations: First, users may need to develop
new or less popular XAI methods that have not been supported by Shapash.
Second, multi-class classification, like our user activity classification problem, is
not supported yet to compute some metrics discussed above. Therefore, we simplify
our problem for classifying an instance as a web activity or not. Herein, we can
employ the Shapash library to calculate some confidence metrics of the random
forest classifier model.

The consistency plots in Fig. 10.13 show the average distances between different
XAI methods and different types of the SHAP method. Clearly, SHAP and
LIME are more similar than ACV as the average distance between SHAP and
LIME is smallest. In addition, Kernel SHAP and sampling SHAP produce more
similar explanations across all the features. Also, this metric extracts five real
comparisons from the dataset with distances similar to those in the average distance
plot.

6 https://github.com/salimamoukou/acv00

https://github.com/salimamoukou/acv00
https://github.com/salimamoukou/acv00
https://github.com/salimamoukou/acv00
https://github.com/salimamoukou/acv00
https://github.com/salimamoukou/acv00

10 Toward Anomaly Detection Using Explainable AI 319

F
ig
. 1

0.
12

Sh

ap
as
h’
s
da
sh
bo
ar
d
fo
r
vi
su
al
iz
in
g
th
e
ra
nd
om

 f
or
es
t c
la
ss
ifi
er
 m

od
el

320 M.-D. Nguyen et al.

Fig. 10.13 Consistency of explanations provided by different XAI methods

The compacity plots in Fig. 10.14 show the link between the level of approxima-
tion, the number of required features to reach it, and the proportion of the dataset
on which it works. In the left graph, top nine most important features explain at
least 90% of the model for 100% of the instances. In this case, considering a small
subset of features could provide a reliable explanation for almost all instances. In
the right graph, top five features reach at least 80% of the reference model for 100%
of the instances. Therefore, if we want more precise explanations, we would need
to consider more than top five features in the explanations.

Figure 10.15 is the stability plot showing the neighborhood in terms of features
and model’s output around each particular instance. The x-axis and y-axis show
the average variability of the feature across the instances’ neighborhood and the
average importance of the feature across the dataset, respectively. Consequently,
left features are much more stable in the neighborhood than right ones, and
top features are more important than bottom ones. As shown in Fig. 10.15,
.%tcp_protocol, .std_dl_volume, .max_dl_volume, and .%udp_protocol are
important features and have strong and relatively stable contributions to the
model’s output. On the other hand, some features that belong to the Uplink
category, such as .%ul_volume, .nb_uplink_packet , and .ul_data_volume, are
unstable; thus, we should be careful to interpret explanations around these
features.

10 Toward Anomaly Detection Using Explainable AI 321

Fig. 10.14 Compacity of explanations

Fig. 10.15 Importance and local stability of explanations

10.4 Discussion

XAI (explainable artificial intelligence) has recently gained a lot of attention as it
provides insights into the black box nature of many machine learning models. In the
context of network classification, XAI can be used to provide explanations for the
predictions made by the network. This can help users understand why a particular
prediction was made, which can be useful for debugging the network or improving
its accuracy.

XAI-based anomaly detection helps address concerns around false positives and
false negatives, since the algorithm can provide insights into why certain activity
is classified as anomalous, and can be refined over time to improve its accuracy.

322 M.-D. Nguyen et al.

However, XAI-based anomaly detection also requires significant expertise and
resources to develop and maintain. It involves working with large datasets and
complex statistical models and requires a deep understanding of both network
security and machine learning. Therefore, it is important to carefully evaluate the
costs and benefits of XAI-based anomaly detection before implementing it in a
network environment. More work on this cost assessment is planned by the authors
of this chapter.

10.4.1 Conclusion and Future Work

In this chapter, we present our AI-based application for anomaly detection and
activity classification based on network traffic. We employ and evaluate different
supervised learning classification models, such as random forest, Keras, XGBoost,
and LightGBM against our full dataset. The best model is LightGBM with up to
98% global accuracy. Furthermore, we provide both global and local explanations
of our evaluated models using popular XAI methods, like SHAP and LIME, to have
deeper insights into the dataset and the models’ predictions in our scenario.

As an extension of this work, we will try to improve our classification system
by considering more complex (hybrid) ML models, adding more input features and
taking advantage of the complementarity of different XAI methods to extend the
existing interpretability analysis. The extra explainability layer could be useful for
different AI-based applications, such as root cause analysis [31] or our advanced
encrypted traffic analysis [8]. We also aim to produce larger datasets with more
types of activities, such as data transfer, idle behavior, or simultaneous activities.
Some other future work can approach different security scenarios in which we may
need to identify specific security applications rather than general network traffic,
for example, intrusion detection, malware detection, and different types of malware
classification. In addition, we could use our 4G/5G testbeds [32] to generate real
datasets for mobile user activity classification similar to [33].

Acknowledgments We thank Viet Pham and Hadil Saadaoui for help with experimental setup.
This work has received funding from the European Union’s H2020 Programme under Grant
Agreement No. 957212 for the VeriDevOps project as well as Grant Agreement No. 101021808
for the SPATIAL project.

References

1. S. Eltanbouly, M. Bashendy, N. AlNaimi, Z. Chkirbene, A. Erbad, Machine learning techniques
for network anomaly detection: a survey, in The IEEE International Conference on Informatics,
IoT, and Enabling Technologies, ICIoT 2020, Doha, Qatar, 2–5 Feb 2020 (IEEE, 2020), pp.
156–162. https://doi.org/10.1109/ICIoT48696.2020.9089465

https://doi.org/10.1109/ICIoT48696.2020.9089465
https://doi.org/10.1109/ICIoT48696.2020.9089465
https://doi.org/10.1109/ICIoT48696.2020.9089465
https://doi.org/10.1109/ICIoT48696.2020.9089465
https://doi.org/10.1109/ICIoT48696.2020.9089465
https://doi.org/10.1109/ICIoT48696.2020.9089465
https://doi.org/10.1109/ICIoT48696.2020.9089465
https://doi.org/10.1109/ICIoT48696.2020.9089465

10 Toward Anomaly Detection Using Explainable AI 323

2. S. Wang, J.F. Balarezo, S. Kandeepan, A. Al-Hourani, K.G. Chavez, B. Rubin-stein, Machine
learning in network anomaly detection: a survey. IEEE Access 9, 152379–152396 (2021).
https://doi.org/10.1109/ACCESS.2021.3126834

3. G. Apruzzese, P. Laskov, E.M. de Oca, W. Mallouli, L.B. Rapa, A.V. Grammatopoulos, F.D.
Franco, The Role of Machine Learning in Cybersecurity. CoRR abs/2206.09707 (2022). https://
doi.org/10.48550/arXiv.2206.09707

4. M. Bahri, F. Salutari, A. Putina, M. Sozio, AutoML: state of the art with a focus on anomaly
detection, challenges, and research directions. Int. J. Data Sci. Anal. 14(2), 113–126 (2022).
https://doi.org/10.1007/s41060-022-00309-0

5. R. Dwivedi, D. Dave, H. Naik, S. Singhal, O.F. Rana, P. Patel, B. Qian, Z. Wen, T. Shah,
G. Morgan, R. Ranjan, Explainable AI (XAI): core ideas, techniques, and solutions. ACM
Comput. Surv. 55(9), 194:1–194:33 (2023). https://doi.org/10.1145/3561048

6. Montimage tools. https://github.com/Montimage
7. I. Ghafir, V. Prenosil, J. Svoboda, M. Hammoudeh, A survey on network security monitoring

systems, in 4th IEEE International Conference on Future Internet of Things and Cloud
Workshops, FiCloud Workshops 2016, Vienna, Austria, 22–24 Aug 2016, ed. by M. Younas,
I. Awan, J.E. Haddad (IEEE Computer Society, 2016), pp. 77–82. https://doi.org/10.1109/W-
FiCloud.2016.30

8. Montimage advanced encrypted traffic analysis tool. https://github.com/Montimage/acas
9. Z. Salazar, A.R. Cavalli, W. Mallouli, F. Sebek, F. Zaïdi, M.E. Rakoczy, Monitoring approaches

for security and safety analysis: application to a load position system, in The 15th IEEE
International Conference on Software Testing, Verification and Validation Workshops ICST
Workshops 2022, Valencia, Spain, 4–13 Apr 2022 (IEEE, 2022), pp. 40–48. https://doi.org/10.
1109/ICSTW55395.2022.00021

10. CSE-CIC-IDS2018 dataset on AWS. A collaborative project between the Communications
Security Establishment (CSE) & the Canadian Institute for Cybersecurity (CIC). https://www.
unb.ca/cic/datasets/ids-2018.html

11. T. Silhan, S. Oehmcke, O. Kramer, Evolution of stacked autoencoders, in The IEEE Congress
on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10–13 June 2019 (IEEE,
2019), pp. 823–830. https://doi.org/10.1109/CEC.2019.8790182

12. K. O’Shea, R. Nash, An Introduction to Convolutional Neural Networks. CoRR
abs/1511.08458 (2015)

13. Simple and efficient tools for predictive data analysis. https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.MinMaxScaler.html

14. L. Ding et al., A classification algorithm for network traffic based on improved support vector
machine. J. Comput. 8(4), 1090–1096 (2013)

15. M. Lotfollahi et al., Deep packet: a novel approach for encrypted traffic classification using
deep learning. Soft Comput. 24(3), 1999–2012 (2020)

16. Y. Liu, W. Li, Y. Li, Network traffic classification using K-means clustering, in Second
International Multi-symposiums on Computer and Computational Sciences (IMSCCS 2007)
(IEEE, 2007)

17. R. Bar-Yanai et al., Realtime classification for encrypted traffic, in International Symposium
on Experimental Algorithms (Springer, Berlin/Heidelberg, 2010)

18. B. Saltaformaggio et al., Eavesdropping on fine-grained user activities within smartphone apps
over encrypted network traffic, in 10th USENIX Workshop on Offensive Technologies (WOOT
16), 2016

19. V. Labayen et al., Online classification of user activities using machine learning on network
traffic. Comput. Netw. 181, 107557 (2020)

20. A.B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García et al.,
Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges
toward responsible AI. Inf. Fusion 58, 82–115 (2020)

21. S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions. Adv. Neural
Inf. Proces. Syst. 30, 4768–4777 (2017)

https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.48550/arXiv.2206.09707
https://doi.org/10.48550/arXiv.2206.09707
https://doi.org/10.48550/arXiv.2206.09707
https://doi.org/10.48550/arXiv.2206.09707
https://doi.org/10.48550/arXiv.2206.09707
https://doi.org/10.48550/arXiv.2206.09707
https://doi.org/10.48550/arXiv.2206.09707
https://doi.org/10.48550/arXiv.2206.09707
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1007/s41060-022-00309-0
https://doi.org/10.1145/3561048
https://doi.org/10.1145/3561048
https://doi.org/10.1145/3561048
https://doi.org/10.1145/3561048
https://doi.org/10.1145/3561048
https://doi.org/10.1145/3561048
https://github.com/Montimage
https://github.com/Montimage
https://github.com/Montimage
https://github.com/Montimage
https://doi.org/10.1109/W-FiCloud.2016.30
https://doi.org/10.1109/W-FiCloud.2016.30
https://doi.org/10.1109/W-FiCloud.2016.30
https://doi.org/10.1109/W-FiCloud.2016.30
https://doi.org/10.1109/W-FiCloud.2016.30
https://doi.org/10.1109/W-FiCloud.2016.30
https://doi.org/10.1109/W-FiCloud.2016.30
https://doi.org/10.1109/W-FiCloud.2016.30
https://doi.org/10.1109/W-FiCloud.2016.30
https://github.com/Montimage/acas
https://github.com/Montimage/acas
https://github.com/Montimage/acas
https://github.com/Montimage/acas
https://github.com/Montimage/acas
https://doi.org/10.1109/ICSTW55395.2022.00021
https://doi.org/10.1109/ICSTW55395.2022.00021
https://doi.org/10.1109/ICSTW55395.2022.00021
https://doi.org/10.1109/ICSTW55395.2022.00021
https://doi.org/10.1109/ICSTW55395.2022.00021
https://doi.org/10.1109/ICSTW55395.2022.00021
https://doi.org/10.1109/ICSTW55395.2022.00021
https://doi.org/10.1109/ICSTW55395.2022.00021
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://doi.org/10.1109/CEC.2019.8790182
https://doi.org/10.1109/CEC.2019.8790182
https://doi.org/10.1109/CEC.2019.8790182
https://doi.org/10.1109/CEC.2019.8790182
https://doi.org/10.1109/CEC.2019.8790182
https://doi.org/10.1109/CEC.2019.8790182
https://doi.org/10.1109/CEC.2019.8790182
https://doi.org/10.1109/CEC.2019.8790182
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

324 M.-D. Nguyen et al.

22. M.T. Ribeiro, S. Singh, C. Guestrin, “Why should i trust you?” Explaining the predictions
of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016

23. Montimage, Full dataset and code of explaining ML models for user network activities
classification. https://github.com/Montimage/activity-classification

24. Wireshark. https://www.wireshark.org/
25. MMT-Probe: a high-performance network monitoring tool. https://github.com/Montimage/

mmt-probe
26. MMT-Operator. https://github.com/Montimage/mmt-operator
27. Scikit-learn metrics and scoring: quantifying the quality of predictions. https://scikit-learn.org/

stable/modules/model_evaluation.html
28. S. Wachter, B. Mittelstadt, C. Russell, Counterfactual explanations without opening the black

box: automated decisions and the GDPR. Harv. JL Tech. 31, 841 (2017)
29. Shapash makes Machine Learning models transparent and understandable by everyone. https://

github.com/MAIF/shapash.
30. Shapash tutorial: Building confidence on explainability methods. https://shapash.readthedocs.

io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.
html

31. L. Nguyen, V.H. La, W. Mallouli, E. Montes de Oca, Validation, verification and root-cause
analysis, in Devops for Trustworthy Smart IOT Systems, vol. 173, 2021

32. M.-D. Nguyen, V.H. La, R. Cavalli, E.M. de Oca, Towards improving explainability, resilience
and performance of cybersecurity analysis of 5G/IoT networks (work-in-progress paper),
in 2022 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), 2022, pp. 7–10. https://doi.org/10.1109/ICSTW55395.2022.00016

33. A. Nascita et al., XAI meets mobile traffic classification: understanding and improving
multimodal deep learning architectures. IEEE Trans. Netw. Serv. Manag. 18(4), 4225–4246
(2021)

34. Lime: Explaining the predictions of any machine learning classifier. https://github.com/
marcotcr/lime

35. SHAP: A game theoretic approach to explain the output of any machine learning model. https://
github.com/slundberg/shap

https://github.com/Montimage/activity-classification
https://github.com/Montimage/activity-classification
https://github.com/Montimage/activity-classification
https://github.com/Montimage/activity-classification
https://github.com/Montimage/activity-classification
https://github.com/Montimage/activity-classification
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://github.com/Montimage/mmt-probe
https://github.com/Montimage/mmt-probe
https://github.com/Montimage/mmt-probe
https://github.com/Montimage/mmt-probe
https://github.com/Montimage/mmt-probe
https://github.com/Montimage/mmt-probe
https://github.com/Montimage/mmt-operator
https://github.com/Montimage/mmt-operator
https://github.com/Montimage/mmt-operator
https://github.com/Montimage/mmt-operator
https://github.com/Montimage/mmt-operator
https://github.com/Montimage/mmt-operator
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://github.com/MAIF/shapash
https://github.com/MAIF/shapash
https://github.com/MAIF/shapash
https://github.com/MAIF/shapash
https://github.com/MAIF/shapash
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://shapash.readthedocs.io/en/latest/tutorials/explainability_quality/tuto-quality01-Builing-confidence-explainability.html
https://doi.org/10.1109/ICSTW55395.2022.00016
https://doi.org/10.1109/ICSTW55395.2022.00016
https://doi.org/10.1109/ICSTW55395.2022.00016
https://doi.org/10.1109/ICSTW55395.2022.00016
https://doi.org/10.1109/ICSTW55395.2022.00016
https://doi.org/10.1109/ICSTW55395.2022.00016
https://doi.org/10.1109/ICSTW55395.2022.00016
https://doi.org/10.1109/ICSTW55395.2022.00016
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://github.com/slundberg/shap

	Preface
	Part I: Security Requirements Engineering
	Part II: Prevention at Development Time
	Part III: Protection at Operations

	Contents
	Part I Security Requirements Engineering
	1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions in Industrial PLCs
	1.1 Introduction
	1.2 Background: Industrial Control Systems
	1.3 Related Work
	1.4 Method
	1.4.1 Taxonomy Protocol
	1.4.1.1 Planning
	1.4.1.2 Identification and Extraction
	1.4.1.3 Design

	1.4.2 Mapping Study Protocol
	1.4.2.1 Research Goal
	1.4.2.2 Research Questions
	1.4.2.3 Keywords and Search String
	1.4.2.4 Digital Libraries
	1.4.2.5 Selection Criteria
	1.4.2.6 Query Search
	1.4.2.7 Selection Criteria Application
	1.4.2.8 Classification, Extraction, and Analysis

	1.5 Search Results
	1.6 Taxonomy Results
	1.6.1 Security Vulnerabilities
	1.6.2 Attacks
	1.6.3 Security Solutions
	1.6.4 A Taxonomy for PLC-Based Vulnerabilities, Attacks, and Security Solutions

	1.7 Validity Threats
	1.8 Conclusions and Relation to DevOps
	1.9 Annex: Primary Studies
	References

	2 Natural Language Processing with Machine Learning for Security Requirements Analysis: Practical Approaches
	2.1 Introduction
	2.2 Security Requirements Engineering
	2.3 Natural Language Processing for Requirements Engineering (NLP4RE)
	2.3.1 Statistical and Classical Machine Learning Methods
	2.3.2 Deep Learning
	2.3.3 Transfer Learning

	2.4 Practical Examples of NLP4RE
	2.4.1 ReqExp: Requirements Extraction from a Text
	2.4.2 SeqReq: Security Requirements Classification
	2.4.3 STIGSearch: Semantic Search for Security Technology Implementation Guides

	2.5 Discussion
	2.6 Conclusions
	References

	3 Security Requirements Formalization with RQCODE
	3.1 Introduction
	3.1.1 Context
	3.1.2 Motivation

	3.2 Related Work
	3.2.1 Requirements Formalization Methods
	3.2.1.1 Formalization Through Verification

	3.2.2 Static Verification and Security Patterns
	3.2.3 Dynamic Verification and Security Patterns

	3.3 The RQCODE Approach
	3.3.1 Seamless Object-Oriented Requirements (SOOR)
	3.3.2 Requirements as Code (RQCODE)
	3.3.3 RQCODE and Temporal Requirements Patterns
	3.3.4 RQCODE and Security Technical Implementation Guide (STIG)
	3.3.5 RQCODE Framework

	3.4 Discussion
	3.4.1 Approach for Evaluation
	3.4.2 Comparison to Other Requirements Formalization Methods

	3.5 Conclusions
	References

	Part II Prevention at Development Time
	4 Vulnerability Detection and Response: Current Status and New Approaches
	4.1 Introduction
	4.2 Background
	4.3 State of the Art of Vulnerability Analysis in ESs
	4.3.1 Vulnerability Analysis in Security Standards
	4.3.1.1 ISA/IEC 62443
	4.3.1.2 Common Criteria

	4.3.2 Vulnerability Analysis in the Literature

	4.4 Vulnerability Analysis Approaches: Analyzing Extended Dependency Graphs (EDG)
	4.4.1 Description of the Model
	4.4.2 Types of Node
	4.4.3 Types of Edge
	4.4.4 Steps to Build the Model

	4.5 Security Metrics
	4.5.1 Basic Definitions
	4.5.2 Metrics
	4.5.3 Properties
	4.5.3.1 Automatic Inference of Root Causes
	4.5.3.2 Spatial and Temporal Distribution of Vulnerabilities
	4.5.3.3 Patching Policies Prioritization Support

	4.6 Use Case
	4.6.1 Structure of OpenPLC
	4.6.2 Building the EDG
	4.6.3 Analysis of the EDG

	4.7 Conclusions
	References

	5 Metamorphic Testing for Verification and Fault Localization in Industrial Control Systems
	5.1 Introduction
	5.2 Prerequisites
	5.2.1 Metamorphic Testing
	5.2.2 Fault Localization
	5.2.2.1 Spectrum-Based Fault Localization
	5.2.2.2 Program Slicing

	5.3 Overview of the Approach
	5.3.1 Metamorphic Testing Phase
	5.3.2 Fault Localization Phase
	5.3.2.1 Test Selection
	5.3.2.2 Instrumenting Source Code
	5.3.2.3 Test Execution
	5.3.2.4 Suspiciousness Scores Calculation
	5.3.2.5 Suspicious Elements Extraction
	5.3.2.6 Call Graph and Control-Flow Graph Generation
	5.3.2.7 Data-Flow Analysis for Suspicious Variables
	5.3.2.8 Fault Report

	5.4 Evaluation
	5.4.1 Metamorphic Testing Phase
	5.4.1.1 The Output of the LPS
	5.4.1.2 Metamorphic Relation
	5.4.1.3 Creating the Seed Input
	5.4.1.4 The Morphed Input

	5.4.2 Fault Localization Phase
	5.4.3 Tool Support

	5.5 Threats to Validity
	5.5.1 Construct Validity
	5.5.2 External Validity
	5.5.3 Conclusion Validity

	5.6 Related Work
	5.7 Conclusions and Future work
	References

	6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical Estimators
	6.1 Introduction
	6.2 Related Work
	6.2.1 Interactive Application Security Testing

	6.3 Methodology
	6.3.1 Interactive Application Security Testing: Combining Static Analysis and Security Testing
	6.3.2 Our Approach to IAST
	6.3.2.1 Dynamic Verification of Static Analysis Findings
	6.3.2.2 Improving DAST with SAST Results
	6.3.2.3 Improving SAST with DAST Results

	6.4 Implementation
	6.4.1 Static Analysis
	6.4.2 Test Case Generation
	6.4.3 Test Data Generation
	6.4.4 Test Oracle

	6.5 Evaluation
	6.5.1 Experimental Plan
	6.5.2 RQ1: Information Exchange
	6.5.3 RQ2: Is IAST Worth the Effort?
	6.5.4 RQ3 and RQ4: Identifying True and False Positives and Uncertainty
	6.5.5 Threats to Validity

	6.6 Conclusion, Limitations, and Outlook
	References

	Part III Protection at Operations
	7 Ctam: A Tool for Continuous Threat Analysis and Management
	7.1 Introduction
	7.2 Related Work
	7.2.1 Threat Modeling Support During Development
	7.2.2 Quality Assessment in Continuous IntegrationPipelines

	7.3 Continuous Threat Analysis and Management
	7.3.1 Threat Analysis Inputs
	7.3.1.1 DFD Model
	7.3.1.2 Security and Privacy Solutions
	7.3.1.3 Attacker Profiles
	7.3.1.4 Threat-Type Catalog

	7.3.2 Threat Analysis Engine
	7.3.3 Analysis Activities
	7.3.4 Server

	7.4 Functional Validation
	7.4.1 Description of the Case
	7.4.2 Change Scenarios
	7.4.3 Results

	7.5 Evaluation
	7.5.1 Modeling Approach
	7.5.2 Results
	7.5.2.1 Evolution of the Model
	7.5.2.2 Threat Analysis Results

	7.6 Discussion
	7.6.1 Using Another Threat Elicitation Engine
	7.6.2 Scope of the Model
	7.6.3 Model Granularity
	7.6.4 Triggering the Analysis Process
	7.6.5 Avoiding Model Drift
	7.6.6 Using Detailed Threat Analysis Information
	7.6.7 Security Metrics

	7.7 Future Work
	7.7.1 DFD Model Inputs
	7.7.2 Monitoring and Aligning the Operational System
	7.7.3 Project-Centric Risk Analysis and Management Use Cases

	7.8 Conclusion
	References

	8 EARLY: A Tool for Real-Time Security Attack Detection
	8.1 Introduction
	8.2 Overview of the Early Tool
	8.2.1 Flow Processing
	8.2.1.1 Packet Filtering
	8.2.1.2 Flow Identification
	8.2.1.3 Packet Preprocessing

	8.2.2 Training
	8.2.3 Monitoring

	8.3 Evaluation
	8.3.1 Datasets
	8.3.1.1 Web-Based Network Attack Detection
	8.3.1.2 MQTT-Based Attack Detection

	8.3.2 Model Architectures
	8.3.2.1 EARLYCNN
	8.3.2.2 EARLYRNN

	8.3.3 Evaluation Metrics
	8.3.4 RQ1: Classification Performance
	8.3.5 RQ2: Earliness Performance

	8.4 Related Work
	8.5 Conclusion
	References

	9 A Stream-Based Approach to Intrusion Detection
	9.1 Introduction
	9.2 Related Work
	9.3 Formalizing Intrusion Detection
	9.3.1 Formal Preliminaries
	9.3.2 Monitors
	9.3.3 Pattern Detection as Monitoring

	9.4 State-Based Simplifications
	9.4.1 Processor State
	9.4.2 A State-Aware Detection Algorithm
	9.4.3 Progressing Subsequences
	9.4.4 Combining Reduction Strategies

	9.5 A Compositional Approach to Pattern Detection
	9.5.1 Building Blocks for Pattern Detection
	9.5.1.1 Generic Processors
	9.5.1.2 Elementary Monitors

	9.5.2 Progressive Subsequences for Processor Pipelines
	9.5.2.1 Pipeline Definition
	9.5.2.2 Input-Output Associations

	9.6 Experimental Evaluation
	9.6.1 Implementation
	9.6.2 Empirical Analysis

	9.7 Discussion and Conclusion
	References

	10 Toward Anomaly Detection Using Explainable AI
	10.1 Introduction
	10.2 Network Monitoring Approaches: MMT Monitoring Framework Example
	10.2.1 Classification Techniques
	10.2.1.1 Rule-Based Network Classification
	10.2.1.2 AI-Based Network Classification

	10.2.2 Global MMT Monitoring Architecture
	10.2.2.1 Feature Extraction
	10.2.2.2 Rule-Based Analysis
	10.2.2.3 Machine Learning-Based Anomaly Detection
	10.2.2.4 Root Cause Analysis

	10.2.3 Application of MMT for Anomaly Detection
	10.2.3.1 Settings
	10.2.3.2 Results and Interpretation

	10.3 Interpreting ML Models for User Network ActivityClassification
	10.3.1 Motivation
	10.3.1.1 Context
	10.3.1.2 Proposal

	10.3.2 Classification of User Network Activities
	10.3.2.1 Overview
	10.3.2.2 Types of Activities
	10.3.2.3 Dataset Generation
	10.3.2.4 Dataset Preprocessing
	10.3.2.5 Feature Extraction
	10.3.2.6 Classification

	10.3.3 Evaluation
	10.3.3.1 Metrics
	10.3.3.2 Supervised Classification Models

	10.3.4 Explainable AI (XAI)
	10.3.4.1 State-of-the-Art of XAI Method
	10.3.4.2 SHAP
	10.3.4.3 LIME
	10.3.4.4 Shapash

	10.4 Discussion
	10.4.1 Conclusion and Future Work

	References

