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Preface 

The idea behind this book came during a group meeting in one of the VeriDevOps 
European project meetings. We came to a realization that while there exist so 
many research articles that detail activities related to software security analysis, 
some more in-depth view in a DevOps cycle including security requirements 
formalization, verification, and continuous monitoring was needed to present the 
current state of the art and practice in the field based on the analysis of the literature. 

The book aims to provide a comprehensive and systematic overview of the 
current state of the art and practice in software security analysis, covering topics 
such as security requirements specification, verification, and continuous monitoring. 
The book also discusses the challenges and opportunities for future research and 
practice in this emerging field. 

In recent years, security vulnerability reports are omnipresent in many applica-
tion domains. Skybox Security shows that there were 20,175 new vulnerabilities 
published in 2021, up from 18,341 in 2020. That’s the most vulnerabilities ever 
reported in a single year, and it’s the biggest year-over-year increase since 2018. 
Vulnerabilities in operational technology jumped to 88%, from 690 in 2020 to 1,295 
in 2021. A record 26,448 software security flaws were reported in 2022, with the 
number of critical vulnerabilities up 59% on 2021 to 4,135 according to analysis 
by The Stack of Common Vulnerabilities and Exposures (CVEs) data. For instance, 
in a series of experiments, Tencent’s Keen Security Lab exposed critical security 
vulnerabilities on several car models in their software which could allow a potential 
attacker to gain access to the car and, for instance, lock the brakes or reprogram 
some ECUs. Similarly, researchers at CheckPoint Research uncovered a number 
of security vulnerabilities in the TikTok mobile application allowing attackers to 
take control of and manipulate accounts and content, including getting access to 
personal information. In another report, the InfoSec Institute published details about 
security vulnerabilities related to railway infrastructure components which again 
will allow hackers to take control of the trains and of the traffic management 
systems. This alarming trend indicates that the current security practices and tools 
are not sufficient to cope with the increasing complexity and diversity of software 
systems. Security vulnerabilities can have severe consequences for the users and
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organizations that rely on these systems, such as data breaches, identity theft, 
ransomware attacks, or denial-of-service incidents. Therefore, it is imperative to 
develop new methods and techniques to identify, prevent, and mitigate security 
vulnerabilities in software systems. 

Elaborated security mechanisms must be properly implemented prior to deploy-
ment in order to provide an effective level of protection against intrusion. The 
number of security scenarios to be ensured explodes. For example, in the embedded 
software domain, the number of system interactions with the environment that are 
subject to security attacks is increasing and may result in security vulnerabilities 
that can cause losses for end users including a drastic increase in the production and 
maintenance costs, especially if iterations in the development process are long and 
feedback comes late. In such cases, traditional security verification approaches do 
not support continuous feedback loops. 

Security is not a one-time task but a continuous process that requires constant 
monitoring and updating. The complexity and diversity of security threats increase 
with the number and variety of scenarios that need to be covered by the security 
mechanisms. Therefore, it is important to conduct a thorough analysis of the security 
requirements and design appropriate solutions that can address them effectively. 

As numerous examples show, security is an aspect that has to be addressed 
holistically from the early phases of the development process and ensured across all 
phases of the DevOps. Moreover, security quality attributes are often treated after 
delivery on the code or at the infrastructure level with specific patches, while it is 
generally agreed that those attributes must be addressed at the design level. DevOps 
enables fast and frequent software deliveries, which means that artifacts need to 
be verified quickly and efficiently to keep up with the process. DevOps integrates 
development and operations to shorten the lead time between a change request and 
deployment in production. Automation is a crucial technique in modern software 
development relying on DevOps practices and continuous delivery pipelines. It 
helps reduce the time between development and normal operations while ensuring 
high-quality deliverables. 

This book is an overview of the latest techniques and tools that can help engineers 
and developers verify the security requirements of large-scale industrial systems. In 
addition, it presents novel methods that enable a faster feedback loop for verifying 
security-related activities. These methods rely on techniques such as automated 
testing, model checking, static analysis, runtime monitoring, and formal methods. 
The book aims to provide readers with a practical and theoretical understanding of 
how to apply these methods in real-world scenarios. 

This book covers several advanced topics related to security verification, such 
as optimizing security verification activities, automatically creating verifiable spec-
ifications from security requirements and vulnerabilities, and using these security 
specifications to verify security properties against design specifications and generate 
artifacts such as tests or monitors that can be used later in the DevOps process. 
Security verification is a set of independent procedures that are used to verify that a 
product, service, or system meets the requirements and specifications and fulfills its
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intended purpose. This book presents the principles, methods, and tools of security 
auditing, as well as concrete examples and case studies. 

The book is dedicated to a general audience of computer engineers and does not 
require specific knowledge. It presents the recent updates on the current state of 
the art and practice in the field based on the analysis of the literature up to date. It 
is intended for architects, developers, testers, security professionals, tool providers, 
and consumers who want to define, build, test, and verify secure applications, web 
services, and industrial systems. 

This book consists of three parts, each covering a different aspect of security 
engineering in the DevOps context. The first part, “Security Requirements,” deals 
with how to specify and analyze security issues in a formal way. The second part, 
“Prevention at Development Time,” offers a practical and industrial perspective on 
how to design, develop, and verify secure applications. The third part, “Protection 
at Operations,” introduces tools for continuous monitoring of security events and 
incidents. 

Part I: Security Requirements Engineering 

Security requirements engineering is a vital discipline that ensures the devel-
opment of secure and resilient systems. It involves identifying, analyzing, and 
specifying security requirements to protect critical assets from potential threats and 
vulnerabilities. 

This part of the book explores the recent state-of-the-art updates in taxonomies, 
NLP methods applied to security requirements engineering. We delve into the latest 
advancements and their practical implications in managing security requirements. 
Moreover, illustrative examples are provided to demonstrate how the methods can be 
effectively integrated to streamline the security requirements engineering process: 

1. “A Taxonomy of Vulnerabilities, Attacks, and Security Solutions in Industrial 
PLCs.” With the ultimate goal of enhancing the security of industrial control 
systems, this chapter presents a comprehensive taxonomy and mapping study 
of security vulnerabilities in PLC software. By extracting information from 
existing studies, the chapter identifies and classifies these vulnerabilities, the 
corresponding attacks, and the proposed security solutions. This chapter provides 
invaluable insights for researchers and practitioners involved in mitigating 
security risks in industrial control systems. 

2. “Natural Language Processing with Machine Learning for Security Require-
ments Analysis – Practical Approaches.” This chapter explores NLP’s role in 
analyzing security requirements. Despite their scattered and generic nature, 
experts extract and detail these requirements using best practices from standards 
like OWASP ASVS, STIG, or IEC62443. NLP has been applied in requirements 
engineering (RE) for analysis tasks, although its effectiveness has been uncertain. 
The chapter outlines the state-of-the-art NLP methods in RE, focusing on
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security requirements analysis. Additionally, practical examples illustrate the 
application of modern transfer learning architectures to important RE tasks. 

3. “Security Requirements Formalization with RQCODE.” This chapter presents 
an approach for formalizing the requirements by applying the seamless object-
oriented requirements methods and the application of the approach to security 
requirements. The formalization offers benefits such as improved reuse, a solid 
premise for verification and validation of security requirements, and reinforce-
ment of system security. The chapter discusses the state-of-the-art requirements 
formalization and provides illustrative examples. 

Part II: Prevention at Development Time 

This part focuses on preventing vulnerabilities during the software development 
process, by providing first a survey of existing methods for vulnerability detection 
and response, followed by two novel approaches for security test generation and 
vulnerability identification in the source code, suitable for industrial systems. The 
three chapters included in this part are briefly summarized in the following: 

1. “Vulnerability Detection and Response: Current Status and New Approaches” 
presents a taxonomy and mapping study focusing on security vulnerabilities 
in industrial PLC software. The findings extracted from these studies shed 
light on the vulnerabilities, corresponding attacks, and proposed solutions. By 
providing a taxonomy that identifies and classifies these security issues, this 
chapter offers valuable insights for researchers and practitioners working on 
mitigating vulnerabilities and attacks in industrial PLC software. 

2. “Metamorphic Testing for Verification and Fault Localization in Industrial Con-
trol Systems” presents an integrated approach that combines test generation and 
fault localization using metamorphic testing. Metamorphic relations extracted 
from system specifications are utilized as derived test oracles to distinguish 
passed and failed tests for spectrum-based fault localization. The proposed 
method involves two phases, test generation using metamorphic testing and fault 
localization for root cause analysis and failure diagnosis, and it has been applied 
to an industrial PLC system. 

3. “Interactive Application Security Testing with Hybrid Fuzzing and Statistical 
Estimators” introduces an approach that automates the assessment of static 
analysis results using fuzzing to enable the analysis of large-scale projects. The 
approach allows one to explore code sections that are typically difficult for 
traditional fuzzers to reach.
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Part III: Protection at Operations 

Protection at operation involves implementing various techniques to enhance 
security and mitigate risks in real-time environments. Intrusion detection and 
anomaly detection are crucial components of protection at operations, aimed at 
identifying unauthorized or abnormal activities that may indicate security threats. 
These detection mechanisms utilize techniques such as complex event processing, 
which involves analyzing and correlating events in real time to identify patterns and 
detect potential threats. Additionally, the concept of explainability plays a vital role 
in protection at operation by providing insights into the decision-making process 
of detection algorithms, helping security professionals understand and interpret the 
results. The combination of intrusion detection, anomaly detection, complex event 
processing, and explainability contributes to a comprehensive approach to ensure 
robust protection in operational environments: 

1. “CTAM: A Tool for Continuous Threat Analysis and Management.” This chapter 
presents an automated threat analysis toolchain integrated into GitLab DevOps. 
It enables continuous assessments to threats, monitors progress, and allows 
advanced analyses. The approach is evaluated on a real-world application to 
assess threat analysis over time. The chapter concludes with a detailed discussion 
on using threat modeling in continuous integration. 

2. “EARLY – A Tool for Real-Time Security Attack Detection.” This chapter 
introduces an enhanced IDS that detects network attacks early, preventing further 
harm and downtime. It utilizes deep neural networks trained to extract relevant 
features from raw network traffic data. The tool is evaluated on two datasets from 
different domains, showing excellent performance and high overall balanced 
accuracy. 

3. “A Stream-Based Approach to Intrusion Detection.” This chapter explores intru-
sion detection through complex event processing, formalizing pattern matching 
and runtime monitoring. It introduces a technique to automatically extract rele-
vant elements explaining intrusions, reducing the volume of evidence for manual 
examination. The approach is evaluated on a proof-of-concept implementation. 

4. “Toward Anomaly Detection Using Explainable AI.” This chapter presents 
MMT, a monitoring framework for anomaly detection. It is extended with 
explainable AI (XAI) capabilities for better understanding AI/ML-based clas-
sifications. The chapter includes experimental results using SHAP, LIME, and 
SHAPASH technologies. 
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Chapter 1 
A Taxonomy of Vulnerabilities, Attacks, 
and Security Solutions in Industrial PLCs 

Eduard Paul Enoiu, Kejsi Biçoku, Cristina Seceleanu, and Michael Felderer 

Abstract In recent years, industrial control systems have been extensively utilized 
across critical industries, encompassing manufacturing, automation, and power 
plants. The widespread implementation of these systems within vital infrastructures 
has escalated the imperative of ensuring their security. This chapter aims to provide a 
valuable contribution in the form of a taxonomy and a mapping study that addresses 
security vulnerabilities present in industrial PLC software. The research contains an 
in-depth analysis of security vulnerabilities, the corresponding exploitative attacks, 
and the proposed solutions. The primary objective of this chapter is to establish 
a comprehensive taxonomy that effectively identifies and classifies vulnerabilities, 
attacks, and solutions pertinent to security in industrial PLCs. Notably, the proposed 
taxonomy is further demonstrated within the entire DevOps continuum, spanning 
from the initial design phase to the operational aspect of PLC systems. The 
outcomes of this research endeavor hold substantial potential in assisting both 
researchers and practitioners involved in mitigating security vulnerabilities and 
combatting attacks targeting industrial PLCs. 
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4 E. P. Enoiu et al.

1.1 Introduction 

Industrial control systems (ICSs) refer to systems used to monitor, control, auto-
mate, and manage essential industrial infrastructures such as oil and natural gas, 
water, electricity, transportation, and more. These systems play a crucial role in 
maintaining the stability and efficiency of various critical industries. While control 
systems offer significant benefits, they also pose several challenges, including 
critical security vulnerabilities that can have severe consequences [1]. Ensuring the 
security of industrial control systems (ICSs) is crucial because attacks on these 
systems can have a direct impact on physical entities under their control, unlike 
information systems where an attack would only affect the system itself [2]. ICSs 
consist of multiple components, including programmable logic controllers (PLCs), 
remote terminal units (RTUs), human-machine interfaces (HMIs), control servers, 
and more. Each of these components is susceptible to various types of attacks, 
highlighting the need for a comprehensive and structured approach to identify and 
mitigate potential vulnerabilities. 

While many studies have examined vulnerabilities, attacks, and solutions for 
industrial PLC software [2–4], none of them has provided a comprehensive 
overview. This study focuses on classifying security vulnerabilities in industrial 
PLCs, which are among the most crucial components of ICSs. Additionally, we 
propose an extensive taxonomy of vulnerabilities, attacks, and solutions related to 
programmable logic controllers (PLCs). 

The security of programmable logic controllers (PLCs) is a critical concern, 
primarily due to the integration of industrial control systems (ICSs) with external 
networks and the lack of defensive mechanisms in communication protocols. 
Unauthorized access by malicious actors could have severe consequences, including 
loss of life. These aspects are particularly crucial when considering the integration 
of design and runtime assurance in PLC systems. The DevOps approach aims to 
bridge the gap between the design and operational phases of PLC systems, reducing 
costs without compromising security or safety. This is especially relevant for PLC 
systems, where secure and reliable operation is essential. 

We provide a taxonomy of security vulnerabilities, attacks, and solutions in 
industrial PLC software. By conducting this mapping study and taxonomy devel-
opment, we aim to achieve the following goals: 

1. Address the research gap by focusing on identifying and analyzing security 
vulnerabilities in industrial PLC systems. 

2. Develop a comprehensive classification of the most prevalent security vulnera-
bilities, attacks, solutions, and preventive measures for industrial PLC software. 

3. Create a taxonomy that links these security vulnerabilities, attacks, solutions, 
and preventive measures for industrial PLC software, providing a structured and 
systematic approach for identifying and mitigating potential security risks.
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1.2 Background: Industrial Control Systems 

Industrial control systems (ICS) refer to a collection of control systems, networks, 
controllers, and devices that facilitate the automation of industrial processes across 
various domains, such as automotive, power plants, water and wastewater, natural 
gas, and manufacturing [5]. The two most widely used control systems are 
supervisory control and data acquisition (SCADA) systems and distributed control 
systems (DCS). 

As shown in Fig. 1.1 [6], the components of an ICS include the human machine 
interface (HMI), remote diagnostics and maintenance utilities, and the control loop, 
which consists of sensors, actuators, controllers (e.g., PLC), and the controlled 
process. The sensors deliver variables to the controller, which generates variables for 
the actuators. The output of the system is considered a process, which can be fully 
automatic or partially intervened by a human [7]. The HMI enables the configuration 
of various parameters and provides necessary information in a display. The remote 
diagnostics and maintenance utilities allow for remote modification and diagnosis 
of parameters. 

Communication between different elements of an ICS relies on communication 
protocols such as Profibus, Modbus, DNP3, and CIP [8], among others. 

Fig. 1.1 Industrial control system operation [6]
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1.3 Related Work 

Pan et al. [9] provide an overview of industrial control systems (ICS) and specif-
ically focus on various aspects of PLC security issues and vulnerabilities, such 
as code, firmware, and network security, Modbus protocol security, and virus 
vulnerability. The authors analyze these aspects based on previous research and 
provide available security protection methods. 

Sandaruwan et al. [2] emphasize the importance of investigating vulnerabilities 
in ICSs, with a particular focus on PLCs, which are the most critical components of 
ICSs. Through various attack vectors, the authors attempt to reveal vulnerabilities 
that can affect the entire infrastructure. They also provide specific solutions to 
mitigate the risks associated with these vulnerabilities. 

Together, these studies underscore the significance of PLC security in ICSs and 
highlight the need for identifying and addressing potential vulnerabilities through 
systematic analysis and effective mitigation strategies. 

In their research, Wu et al. [10] highlight a shift in attackers’ focus from 
individual users to industrial control systems (ICSs) and emphasize the significant 
impact of PLCs’ safety on ICSs. They classify security research conducted for 
PLCs based on function and structure and investigate various aspects such as 
firmware security, operation, and program security. The authors analyze security 
measures that focus on defense detention of the PLC program, verification of the 
PLC firmware’s integrity, security encryption of the PLC communication protocol, 
and formal verification of the PLC code. 

On the other hand, Valentine [3] discusses the importance of correct PLC 
applications and identifies security threats while introducing potential solutions. The 
research contributions include a taxonomy regarding attacks in ladder logic, ladder 
logic vulnerabilities, and secure design patterns. However, this taxonomy has a more 
narrow scope than ours. 

Among the studies mentioned, only Valentine’s research [3] provides a taxon-
omy, while others focus on specific aspects of PLC security. Nevertheless, these 
studies collectively highlight the need for comprehensive security measures for 
PLCs and the importance of developing taxonomies to identify and address potential 
vulnerabilities. 

While our study systematically derives a taxonomy of security vulnerabilities in 
industrial PLC software, there are other taxonomies of vulnerabilities, attacks, and 
security solutions in related domains. For example, Pekaric et al. [11] developed 
a taxonomy of attack mechanisms in the automotive domain using a similar 
systematic approach. This highlights the importance of developing structured 
taxonomies in various domains to enable a better understanding of potential threats 
and vulnerabilities and to inform the development of effective mitigation strategies.



1 A Taxonomy of Vulnerabilities, Attacks, and Security Solutions 7

1.4 Method 

Our study aims to make a contribution by developing a taxonomy that models and 
conceptualizes security vulnerabilities in industrial PLC software. A taxonomy is 
a classification system that defines specific entities based on their characteristic 
features [12]. By creating a taxonomy, we can systematically identify and classify 
different types of security vulnerabilities in industrial PLC software, which can 
inform the development of effective mitigation strategies to address and prevent 
such vulnerabilities. A mapping study is a crucial component of the taxonomy 
development process. In this section, we will discuss the design details of both 
the taxonomy and the mapping study. Section 1.4.1 outlines the taxonomy design, 
while Sect. 1.4.2 describes the design of the mapping study in detail. By conducting 
a systematic protocol, we can effectively map the existing literature to identify gaps 
and overlaps in the field, which helps inform the development of a comprehensive 
and accurate taxonomy. 

1.4.1 Taxonomy Protocol 

A taxonomy is a categorization system that aids in differentiating between various 
research categories for a specific topic. Its primary advantages include providing 
a systematic overview of the research domain and predicting future research 
endeavors. The establishment of a taxonomy is supported by conducting a mapping 
study, which follows the guidelines presented by Usman et al. [13]. The steps 
involved in executing a mapping study are as follows: 

1.4.1.1 Planning 

During this phase, we established the taxonomy design in accordance with the 
following steps: 

• Define software engineering knowledge area: In [14], the software engineering 
body of knowledge is categorized into 15 distinct areas. Our study, however, is 
orthogonal to these areas since it concentrates on software and hardware security. 

• Objective of the taxonomy: The aim of this taxonomy is to establish relation-
ships between methods for mitigating identified PLC vulnerabilities and the 
corresponding attacks and solutions. This taxonomy can prove useful to both 
academics and practitioners, as it enables them to document their research on 
industrial PLC software in accordance with the established categories. 

• Subject matter: The subject matter is a more specific definition of the knowledge 
domain. In this study, the subject matter or units of classification pertain to 
security vulnerabilities, attacks, and solutions in industrial PLC software.
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• Classification structure type: When constructing a taxonomy, there are four 
potential structures that can be employed for the categorization process: 
paradigm, faceted analysis, tree, and hierarchy. For this study, we have opted 
to use the faceted analysis structure, which includes multiple facets (e.g., 
vulnerabilities, attacks, solutions), each with their own attributes. 

• Classification procedure type: The classification procedures can be classified 
into two types: qualitative and quantitative. In this particular research, qualitative 
classification procedures are more appropriate since they rely on nominal scales. 
These nominal scales are utilized to allocate the subject matter types to the 
respective dimensions. 

• Identify information sources: The mapping study described in Sect. 1.4.2 outlines 
the sources of information from which the data is extracted. Additionally, the 
study presents the findings obtained from analyzing this information. 

1.4.1.2 Identification and Extraction 

Once the design of the taxonomy has been planned, the subsequent step involves 
identifying and extracting the appropriate data. These two phases are carried out 
through the execution of a mapping study. The following is a general description of 
each step: 

• Extract terms: The terminology used for constructing this taxonomy is derived 
from the data extraction process of the mapping study. Relevant terms and 
concepts pertaining to vulnerabilities, attacks, and solutions in industrial PLC 
software are included in a data extraction form. 

• Terminology control: To prevent any inconsistencies, we ensured terminology 
control during the data extraction and analysis process. 

1.4.1.3 Design 

After extracting all relevant data, we must proceed to identify the dimensions, 
categories, and relationships using the following steps: 

• Identify dimensions: For this taxonomy, we selected the faceted analysis classi-
fication structure, which entails identifying multiple dimensions. The taxonomy 
comprises the following dimensions: vulnerabilities, attacks, and solutions. 

• Identify categories: To identify the categories within each dimension, we must 
utilize either a top-down or bottom-up approach. In this study, we have employed 
a bottom-up approach, whereby the categories are identified during the data 
extraction process of the mapping study. 

• Identify relationships: The dimensions of the taxonomy are interconnected 
through their association with the security of PLC software. Vulnerabilities 
and attacks are also linked since attacks exploit vulnerabilities, and similarly, 
there exists a relationship between attacks and solutions, as solutions aid in
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mitigating attacks. A more comprehensive understanding of this interdependence 
is presented in Sect. 1.6.4. 

1.4.2 Mapping Study Protocol 

A mapping study is utilized to organize data obtained on a specific subject, identify 
research trends and gaps, and present findings. To conduct our mapping study, we 
adhere to the guidelines proposed by Petersen et al. [15] for mapping studies in 
software engineering. Conducting a mapping study comprises various stages. Our 
initial step involves defining the overall objective. We then proceed to formulate the 
search string, select appropriate digital libraries, establish selection criteria, execute 
the query search, eliminate duplicates, screen papers based on their title and abstract 
using the selection criteria, screen the full text of papers using the selection criteria, 
conduct backward snowballing, define the classification framework, extract data 
from the studies, analyze the extracted data, and present the final results. Figure 1.2 
depicts this process. 

1.4.2.1 Research Goal 

The objective of this research is to establish a classification of the most prominent 
security vulnerabilities in industrial PLC software, the most prevalent attacks that 
exploit these vulnerabilities, and potential solutions to enhance the security of 
industrial PLC software. The findings of this study will serve as a foundation for 
understanding security vulnerabilities and their underlying causes in industrial PLC 
software. Thus, our overarching research objective is to establish a taxonomy for 
categorizing security vulnerabilities, associated attacks, and preventive measures 
concerning industrial PLC software. 

1.4.2.2 Research Questions 

This study has formulated the following four research questions that will aid in 
achieving the defined goal: 

• Which categories of security vulnerabilities have been recognized for industrial 
PLC software? 

• Which attacks are the most prevalent in exploiting these security vulnerabilities 
in industrial PLC software? 

• What are the primary solutions or preventive measures for addressing security 
vulnerabilities in PLC software?
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Fig. 1.2 Research method used for the SMS 

Table 1.1 PICO criteria 

Population Industrial PLC software 

Intervention Security vulnerabilities 

Comparison Not applicable 

Outcomes Classification of studies based on the vulnerabilities they mention in the context 
of PLCs 

1.4.2.3 Keywords and Search String 

The main focus of this study is on security vulnerabilities in industrial PLC software. 
First, we used the Population, Intervention, Comparison and Outcomes (PICO) 
criteria to create the search string. The PICO criteria is defined in Table 1.1. 
Next, we defined the keywords and their corresponding synonyms and acronyms 
shown in Table 1.2.
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Table 1.2 Keywords, 
synonyms and acronyms 

Keywords Synonyms and acronyms 

Programmable logic controller PLC 

Security Security 

Vulnerability Risk, threat 

We used these keywords, wildcards (i.e., *), and Boolean operators (i.e., AND, 
OR) and we created the following search string: 

(“PLC*” OR “Programmable Logic Controller*”) AND (security) AND (“vul-
nerabilit*” OR “risk*” OR “threat*”) 

1.4.2.4 Digital Libraries 

To obtain results for this study, we opted to search two primary digital libraries that 
are commonly utilized in PLC engineering: IEEE Xplore1 and Scopus.2 

1.4.2.5 Selection Criteria 

To establish the relevance of studies obtained from our search, we have developed a 
set of selection criteria, which are classified as either inclusion or exclusion criteria. 
A study is deemed eligible if it meets all the inclusion criteria and none of the 
exclusion criteria. Conversely, a study is excluded if it meets at least one exclusion 
criterion or fails to meet all the inclusion criteria. The selection process is conducted 
in two stages. In the first stage, papers are assessed based on their title, abstract, and 
keywords, and in the second stage, the full text of the papers is examined. Inclusion 
criteria are listed as follows: 

• I1. Papers that identify one or more security vulnerabilities in industrial PLC 
software. 

• I2. Papers that are published in conferences or journals. 

Exclusion criteria are listed as follows: 

• E1. Papers which are duplicative or outdated versions of prior papers. 
• E2. Papers which are not peer-reviewed. 
• E3. Papers which are secondary or tertiary studies. 
• E4. Papers which are not accessible in English. 
• E5. Papers which are not accessible in full text.

1 https://ieeexplore.ieee.org 
2 https://www.scopus.com/ 

https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
https://www.scopus.com/
https://www.scopus.com/
https://www.scopus.com/
https://www.scopus.com/
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• E6. Papers which address security concerns in ICS but not explicitly in relation 
to PLCs. 

1.4.2.6 Query Search 

After the search string and digital libraries are defined, the search string is used in 
those digital libraries to get the results from the automatic search. The following 
search strings are the specific ones for each library: 

IEEE Xplore: (“PLC*” OR“Programmable Logic Controller*”) AND (security) 
AND (“vulnerabilit*” OR “risk*” OR “threat*”) 

Scopus: (“PLC*”OR“Programmable Logic Controller*”) AND (security) AND 
(“vulnerabilit* ” OR “risk*”OR“threat*”) AND (LIMIT-TO (OA , “all”)) AND 
(LIMIT-TO(DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE , “cp”)) AND (LIMIT-
TO(SUBJAREA ,“COMP”) OR LIMIT-TO (SUBJAREA , “ENGI”)) AND (LIMIT-
TO(LANGUAGE , “English”)) AND (LIMIT-TO(PUBSTAGE ,“final”)) AND 
(LIMIT-TO(SRCTYPE , “j”) OR LIMIT-TO (SRCTYPE , “p”)) 

All the studies obtained through automated searches of the libraries have been 
exported and subsequently examined in two distinct spreadsheets. 

1.4.2.7 Selection Criteria Application 

Following the elimination of duplicates, it becomes imperative to assess the 
pertinence of the remaining papers. Their relevancy is determined based on the 
selection criteria outlined in Sect. 1.4.2.5. The process of selecting studies involves 
two steps: first, applying the selection criteria to the title, abstract, and keywords, 
and, second, applying the selection criteria to the full text. 

1.4.2.8 Classification, Extraction, and Analysis 

Our inclusion of domain-specific information pertains specifically to topics about 
industrial PLC software. The classification framework comprises a vulnerabilities 
category, which is populated by extracting information on security vulnerabilities in 
industrial PLC software from the papers. Additionally, the framework encompasses 
both attacks and solutions categories. 

During the analysis phase of data collection, the data extracted from the primary 
studies is utilized to construct the taxonomy. Initially, the data for each category 
of the classification scheme is scrutinized, and the quantity of studies in a particular 
category is determined. Nevertheless, this data is solely applicable to each individual 
category, and it is crucial to examine how the categories are interlinked.
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1.5 Search Results 

In this section, we present the number of papers that remain for each stage of 
the study, starting from the digital library search to the final set of papers, after 
outlining all the required steps and components. Figure 1.3 provides a summary of 

Fig. 1.3 Search and selection results
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Table 1.3 Search Result Digital library Search results 

IEEE XPlore 122 

SCOPUS 432 

Total 554 

this process, and a thorough explanation of the process is provided subsequently. 
As outlined in Sect. 1.4.2.6, the automatic search process involved the execution of 
the search string in two distinct digital libraries. Table 1.3 displays the results of 
our search, indicating the number of papers retrieved from both IEEE Xplore and 
SCOPUS. Our search criteria matched 122 papers in IEEE Xplore and 432 papers 
in SCOPUS. By combining the results from both sources, we obtained a total of 554 
papers. 

We executed the removal of duplicates, which led to the elimination of 84 
papers. Initially, we applied the selection criteria to the papers’ titles, abstracts, and 
keywords, resulting in the exclusion of 400 papers. Most of the excluded studies 
either did not meet I1 or met E6. In the subsequent stage, we applied the selection 
criteria to the full text, excluded 34 studies, and retained 36 studies. The majority of 
the papers excluded in this stage either met E5 or E6. Backward snowballing was 
conducted to add more papers to the final set to extract more relevant results. From 
the 36 papers, we collected 578 studies. From these 578 studies, 493 were excluded 
based on the title and keywords, and 67 were excluded based on the abstract. From 
applying the selection criteria to the full text, 15 studies were excluded. In total, 
from the backward snowballing process, we obtained three additional papers. Since 
the snowballing process was the last process before the classification framework 
definition, our final set of papers contains 39 studies that can be used to build this 
taxonomy. 

1.6 Taxonomy Results 

In this section, we present a summary of the findings from our data analysis. We 
not only identify the different categories of PLC vulnerabilities but also explore 
the interconnections among them, as well as between vulnerabilities, attacks, and 
solutions. 

1.6.1 Security Vulnerabilities 

During the data extraction process, ten primary categories of vulnerabilities were 
identified. While some of these categories are interconnected (e.g., lack of encryp-
tion or authentication may stem from protocols’ lack of security when used on the
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Fig. 1.4 Vulnerabilities in PLC systems 

Internet), we classified them separately as authentication, encryption, and network 
to avoid any potential bias. Additionally, this categorization allows us to see how 
many studies address networks generally versus specific areas. Figure 1.4 provides 
a visual summary of the results. 

The category with the highest number of publications is related to authentication, 
with 19 studies dedicated to this topic. This category primarily discusses the vulner-
abilities associated with hard-coded passwords, lack of two-factor authentication 
mechanisms, and absence of passwords altogether. 

The categories that receive the most attention in terms of publications are 
authentication and encryption. This is mainly because communication protocols 
used in ICS lack security features. Studies such as S4, S8, and S9 focus on this 
issue. For instance, the Modbus communication protocol, which is one of the oldest 
and most commonly used protocols in ICS, does not offer any authentication or 
encryption. As a result, an attacker can easily obtain the necessary information for a 
Modbus session to be valid (e.g., function code and address) from a network sniffer 
like Wireshark and launch an attack. Moreover, Modbus messages are not encrypted 
and are transmitted in plain text. This issue is not limited to Modbus, as other widely 
used protocols such as Profibus, Profinet, EtherCAT, and more also lack encryption. 

The absence of anomaly detection mechanisms is highlighted as a vulnerability 
in five studies, as they emphasize that the inability to detect unusual behavior of 
PLCs in real time can result in disastrous consequences. This vulnerability is not 
only perilous because of the critical systems that are governed by PLCs but also 
because it is challenging to identify the root cause of the attack while it spreads 
throughout the system [16]. 

Operating system security is identified as a vulnerability in four studies that 
focus on industrial PLC software. Similar to other operating systems, the operating 
systems used in these PLCs also have vulnerabilities that can be exploited by 
attackers. For instance, some of the vulnerabilities mentioned in these studies
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include the Microsoft Windows server service vulnerability (MS-08-067), the 
print spooler vulnerability (MS10-061), and the Microsoft Windows.LNK/.PIF 
vulnerability (MS10-046), as noted in S33. 

Four studies mention the buffer overflow vulnerability, which is associated with 
memory corruption. When this vulnerability is exploited, the attacker can modify 
program execution [17]. Additionally, this vulnerability is closely connected to 
another vulnerability discussed in three studies, namely, the lack of input validation. 
By validating input, the program will only accept values within an acceptable range, 
such as input character length, and prevent buffer overflow [17, 18]. 

The three studies that discuss the lack of information about hardware and 
firmware present a conflicting situation. On the one hand, PLC vendors require 
security research and measures to be taken against possible attacks. However, since 
the hardware and firmware they use are proprietary and not publicly available, 
conducting research to obtain reliable results on how to mitigate the possibility of 
attacks is nearly impossible [17, 19]. Therefore, this vulnerability is primarily due 
to the vendors’ choices rather than the system itself. 

Human issues are mentioned as a vulnerability in three studies (S34-S36). This 
category encompasses inexperienced developers, naive users who might uninten-
tionally make the system vulnerable to attacks, or personnel who may intentionally 
try to attack the system. Access control, on the other hand, is the least frequently 
mentioned vulnerability category, with only two papers discussing it. S1 and S43 
focus on the importance of providing users with information based on their needs 
and granting privileged access only to authorized users. Refer to Table 1.4 for the 
papers in each category. 

Table 1.4 Vulnerabilities and studies 

Vulnerabilities Studies 

Encryption S1, S4, S7, S12, S20, S23, S24, S30, S34 

Authentication S1–S4, S6–S9, S11, S13, S21–S23, S27, 
S30–S32, S34, S37 

No anomaly detection S12, S17, S19–S21 

Access control S1, S27 

Human issues S34–S36 

Operating System S15, S19, S33, S34, S37–S39 

Buffer Overflow S7, S19, S25–S27 

Input validation S11, S14, S27 

Lack of information about hardware and firmware S18, S24, S27 

Network S5, S10, S15, S16, S27–S29
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The primary outcomes from the gathered data on security vulnerabilities in indus-
trial PLC software are as follows: 

The research on security vulnerabilities in industrial PLC software has a 
significant focus on issues related to authentication, encryption, networks, and 
operating systems. 

1.6.2 Attacks 

The graphical representation of the number and type of attacks in industrial PLC 
software can be seen in Fig. 1.5. 

The most commonly mentioned attack that takes advantage of the security 
weaknesses in industrial PLC software is denial of service (DoS), discussed in 11 
studies. A system is designed to handle a certain amount of traffic, and if more 
traffic is directed to a particular address with the intention of rendering the system 
unavailable to users, it is considered a DoS attack [20]. In PLC industrial settings, 
availability is a critical attribute, making the impact of this attack significant. 

Stuxnet is a worm that gained notoriety for infecting PLCs and taking control of 
the gas centrifuges in Iran, causing them to spin at high speeds until they burned 
out. The worm searched for an industrial automated software called SIMATIC Step 
7 used by PLCs on infected PCs. Once it found this software, it would also find a 
PLC and inject malicious code into it. The worm was designed to send false data to 
cover its tracks and avoid detection by controllers, making it difficult to detect the 
attack [21, 22]. 

Fig. 1.5 Attacks
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The man-in-the-middle attack (MITM), which is mentioned in six studies, is 
another well-known attack. In this type of attack, the attacker positions themselves 
in between an HMI and a PLC and intercepts all the information that the HMI is 
attempting to send to the PLC. This allows the attacker to modify the data they 
receive from the HMI and send it to the PLC, without the PLC being aware that the 
data has been tampered with. Additionally, the attacker can also observe or attempt 
to block the traffic [20]. 

A similar attack is the replay attack mentioned in four studies (i.e., S4, S16, 
S27, S30). In this attack, the attacker also gets a copy of the information exchanged 
between the two hosts and can later use it by sending duplicate information. 

The false data injection attack is mentioned in four studies (i.e., S3, S6, S11, 
S17). The PLC receives information from sensors, and during the false data injection 
attack, this information is manipulated. When this happens, the PLC will output 
commands according to the false data injected and not according to the real 
measurements from the sensor. That could lead to damaging incidents. 

Two studies (S8 and S30) mention the brute force attack, which involves an 
algorithm that attempts all possible combinations for a specific password until the 
correct password is identified and the necessary credentials are obtained to access 
the system. As a result, it is recommended to use passwords with a minimum number 
of characters, as well as a combination of lowercase and uppercase letters, numbers, 
and special characters in most applications. A larger alphabet results in a larger 
number of possible combinations that must be tried to discover the correct password. 
S8 describes a similar attack called the dictionary attack, in which the attacker uses a 
list of previously used or common passwords instead of trying all possible character 
combinations. 

The authentication bypass attack is mentioned in two studies and takes advantage 
of the lack of security in the protocol. An attacker can obtain an authentication 
packet from a validated user in the system and use it to authenticate themselves 
[23]. All other attacks are only mentioned once in the reviewed studies. Table 1.5 
presents the papers for each attack category. 

The prevalent types of attacks that exploit security vulnerabilities in industrial 
PLC software include denial of service, Stuxnet, man-in-the-middle, replay 
attacks, and false data injection attacks. 

1.6.3 Security Solutions 

Figure 1.6 provides a visual depiction of the proposed solutions for mitigating 
vulnerabilities and attacks in industrial PLC software. Of the 39 studies examined, 
only 19 (or approximately half) discuss potential solutions for mitigating attacks or
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Table 1.5 Attacks and studies 

Attacks Studies 

Denial of service S1, S5, S11, S12, S17, S21, S22, S14, S25, S28, S36 

Stuxnet S11, S24, S28, S29, S31, S33, S36, S39 

Man-in-the-middle S12, S13, S16, S22, S24, S30 

Replay attack S4, S16, S27, S30 

False data injection S3, S6, S11, S17 

Brute force S8, S30 

Authentication bypass attacks S5, S30, S34 

Start stop attack S20, S34 

Dictionary attack S8 

Phishing S8 

PLC-PC worm S10 

SQL injection S11 

Data execution attack S13 

Control logic attack S13 

Stealth command modification attack S16 

Interception attack S17 

Maroochi attack S24 

Duqu S29 

Havex S24 

Firmware modification attack S38, S39 

Fig. 1.6 Solutions for vulnerabilities 

securing vulnerable system components. In total, we identified 13 distinct solutions, 
with nine mentioned only once. 

The solutions most frequently cited in the PLC literature involve detection 
mechanisms. These mechanisms are designed to identify patterns or events that
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diverge from typical system behavior. By monitoring system behavior, changes that 
indicate a potential attack can be detected and reported to a control center [24, 25]. 
Intrusion detection is mentioned in four of the nine papers (S2, S13, S17, S30), while 
anomaly detection is mentioned in three of the nine papers (S7, S26, S29). Data 
tampering detection is mentioned in one paper (S6), as is attack model detection 
(S15). While these mechanisms are all forms of detection, we have grouped them 
together. It is important to note that these detection mechanisms only serve to 
identify attacks and do not provide a means of mitigating them. 

One potential approach is encryption. Many commonly used communication 
protocols transmit messages in plain text, leaving them vulnerable to exploitation 
by attackers. To address this issue, five papers recommend encrypting the content 
of messages to ensure confidentiality. Users can encrypt their messages, which 
can then be decrypted by the intended recipients with the proper decryption 
key [21]. The underlying concept is to incorporate encryption mechanisms into 
communication protocols or replace existing protocols with ones that support 
encryption. 

Another potential solution is the implementation of demilitarized zones. As a 
significant portion of cyber vulnerabilities and attacks stem from Internet connec-
tions, the goal of demilitarized zones is to isolate the primary network from the 
Internet, which is generally deemed insecure. In the event of an attack, this setup 
prevents the attacker from accessing the primary network, limiting their access to 
only the untrusted segment [2, 26]. This approach also allows for partitioning of the 
network into multiple zones, each with its own protective layer. If one zone becomes 
infected, it is unable to spread the infection to other zones. 

As the remaining solutions are mentioned only once, we do not offer a detailed 
explanation of them. However, for interested readers, we have included the papers 
that discuss these solutions in our data extraction form for further reference. The 
relevant papers for each category are listed in Table 1.6. 

Table 1.6 Solutions and studies 

Solutions Studies 

Detection mechanisms S3, S6, S7, S13, S15, S17, S26, S29, S30 

Encryption S16, S17, S24, S30, S31 

Monitoring S20, S32 

Demilitarized zones S30, S32 

Challenge-response mechanism S8 

Prediction model S10 

User authentication S13 

Deep packet inspection S13 

Open PLC S18 

SEABASS S22 

Firewall S32 

VPN S32 

Firmware verification tool S38
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Various techniques have been utilized in research to provide solutions for 
security vulnerabilities in PLC software, including the implementation of 
detection mechanisms and encryption. 

1.6.4 A Taxonomy for PLC-Based Vulnerabilities, Attacks, 
and Security Solutions 

The data collected in the study was utilized to develop a taxonomy for organizing 
the vulnerabilities, attacks, and solutions in PLCs. Figure 1.7 displays a faceted 
taxonomy that encompasses all of these elements. The root of the taxonomy 
is the PLC, while the taxonomy’s dimensions consist of vulnerabilities, attacks, 
and solutions. Each dimension includes multiple categories, with ten categories 
identified for vulnerabilities, 20 for attacks, and 13 for solutions. 

Since we are connecting the vulnerabilities, attacks, and solutions for industrial 
PLC software into a single taxonomy, in Fig. 1.8 we describe the relationship 
between these three dimensions. As mentioned throughout this study, vulnerabilities 
are weaknesses of the PLC system. They pose a risk to the PLC system as they lead 
to a different attack that exploits these vulnerabilities. These attacks are resolved by 
different solution mechanisms that mitigate the corresponding vulnerabilities. 

Table 1.7 presents a mapping of the security vulnerabilities found in the previous 
study to their corresponding attacks and solutions. It can be observed that each 
vulnerability can result in multiple attacks and each attack can have multiple 
solutions. The majority of the reported attacks were related to PLC network security, 
indicating that more research is needed in this area to develop effective PLC security 
mechanisms. This tabular taxonomy provides a comprehensive framework that 
includes the dimensions of vulnerabilities, attacks, and solutions. The vulnerabilities 
dimension is divided into 10 categories, the attacks dimension into 20 categories, 
and the solutions dimension into 13 categories. 

Figure 1.9 illustrates the relationship between vulnerabilities, attacks, and solu-
tions, focusing only on attacks that exploit a vulnerability and have a possible 
solution. Attacks serve as the connecting point between vulnerabilities and solu-
tions. For instance, with respect to FDIA, authentication is the most commonly 
identified vulnerability, whereas detection mechanisms and encryption are the 
most frequently employed solutions. Regarding the MITM attack, the lack of 
encryption is the predominant vulnerability, while encryption mechanisms are the 
most common solutions. Similarly, for the replay attack, the primary vulnerabilities 
are the lack of authentication, encryption, and network issues, while encryption 
mechanisms are the main solutions. 

The taxonomy developed in this study provides several contributions. Firstly, the 
process used to create this taxonomy can serve as a model for other researchers
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Fig. 1.8 Generic vulnerabilities, attacks, and solutions cycle 

to create taxonomies in similar contexts. Additionally, the taxonomy can aid in 
examining the security of PLSs from multiple perspectives. Secondly, academics 
can benefit from this taxonomy by identifying security trends and patterns in PLCs 
and using them to organize their research outcomes. Industry professionals can also 
use the taxonomy to target frequent PLC vulnerabilities, analyze existing solutions, 
and improve security measures. The taxonomy can also serve as a checklist to 
ensure a system is free of vulnerabilities mentioned in the taxonomy, indicating 
improved security. While this taxonomy already classifies vulnerabilities, attacks, 
and solutions in industrial PLC software, its significance will increase as researchers 
expand it to include other unknown categories. 

In our taxonomy, the relation most frequently mentioned is the one between 
authentication vulnerabilities and the exploitation of these vulnerabilities by denial 
of service (DoS) attacks. A correct authentication mechanism is necessary for 
identifying legitimate users in the system. Without it, attackers can intrude into the 
PLC system and launch a DoS attack, where more traffic is sent to the system than 
it can handle. 

The DoS attack also uses encryption vulnerabilities and a lack of anomaly 
detection. Encryption vulnerabilities are exploited because sensitive information, 
such as passwords, is sent in clear text instead of encrypted format, enabling 
the attacker to enter the PLC system. The lack of a detection mechanism allows 
attackers to use a DoS attack, and the system is unaware of it because it does not 
implement detection mechanisms to identify abnormal traffic and restrict it.
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Fig. 1.9 Relational display of vulnerabilities, attacks, and solutions 
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The man-in-the-middle and replay attacks also exploit encryption vulnerabilities. 
The attacks are executed by intercepting the communication between two devices 
and either listening or modifying the information being sent. Without encryption, 
attackers can easily read the data, although they cannot necessarily compromise the 
system. However, if the communication is encrypted, the data in the packet would 
require decryption by the user, making it much more difficult for attackers to access 
the PLC system. 

The absence of an authentication mechanism makes it possible for false data 
injection attacks to exploit the authentication vulnerability. This is because it is 
difficult to determine if the exchanged messages are authentic or false without such 
a mechanism in place. Implementing cryptographic signatures can help authen-
ticate messages, ensuring the data is valid. In addition to exploiting encryption 
vulnerabilities, the man-in-the-middle and replay attacks also exploit authentica-
tion vulnerabilities. Although challenge-response authentication mechanisms can 
mitigate encryption vulnerabilities, they are currently lacking. Attackers exploit 
this vulnerability to launch successful attacks. Another type of attack that exploits 
authentication vulnerabilities is the brute force attack. Since single-factor authen-
tication is typically used, a brute-force attack can be successful by simply finding 
the password. The lack of a two-factor authentication mechanism can make such 
attacks successful. 

The prevalent vulnerabilities identified in the context of FDIA are authentication 
and lack of anomaly detection. Correspondingly, detection mechanisms and encryp-
tion are the commonly suggested solutions. In contrast, the primary vulnerability in 
the case of MITM attack is the absence of encryption, and most solutions revolve 
around encryption mechanisms. The replay attack is vulnerable to several issues, 
including lack of authentication, lack of encryption, and network problems. The 
most popular countermeasures focus on encryption mechanisms. 

1.7 Validity Threats 

In this section, we discuss the potential validity threats that may arise in our 
study and the measures we have taken to mitigate them. According to Wohlin’s 
categorization [27], validity threats are broadly classified into four types: construct 
validity, internal validity, external validity, and conclusion validity. We discuss each 
of these threats and the steps we have taken to minimize their impact on our study. 

Construct validity Construct validity refers to the relationship between the data 
collected and the research questions. In our study, we mitigated this threat by 
defining a search string using the PICO criteria to ensure that the extracted 
data would answer our research questions. Additionally, we included all relevant 
keywords related to our study in the search string. The two libraries we selected 
are reputable sources in the field of PLC engineering, further increasing the 
construct validity of our study. 
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Internal validity To address internal validity, we established protocols for both 
the mapping study and the taxonomy, following established guidelines as a 
blueprint for conducting the study. This helps to control for external variables 
that may affect the outcomes of the study. 

External validity To ensure external validity, we aimed to collect a comprehen-
sive set of papers relevant to our study by using both automatic search and 
snowballing methods. This approach allowed us to include a wide range of 
publications that covered different aspects of PLC security, thus increasing the 
generalizability of our findings to other studies. 

Conclusion validity To address the threat of conclusion validity, we took several 
measures. Firstly, we documented our study’s process systematically and trans-
parently, allowing others to repeat it and obtain the same results. Additionally, 
we aimed to minimize the potential impact of any new information that might 
be added during the time gap between our searches. Moreover, we defined a 
comprehensive data extraction form and classification framework to ensure that 
the study’s results could be replicated. 

1.8 Conclusions and Relation to DevOps 

To get an overview of the existing research on security vulnerabilities, attacks, 
and security solutions in industrial PLC software, we performed a mapping study 
and developed a taxonomy for PLC-based security vulnerabilities, attacks, and 
solutions. The main goal of this work was to bring to the forefront the main 
vulnerabilities that malicious actors could exploit to gain access and attack the PLC 
system. This study can benefit academics and researchers who work with PLCs and 
focus on security. The taxonomy can help with an initial categorization of the most 
common vulnerabilities, attacks, and solutions. 

Our results can be used by engineers working with security in DevOps. Using 
specific solutions and monitors identified using our taxonomy, one can use these 
prior to deployment in the design phase as predictors or oracles. For example, one 
can use specific detection mechanisms to perform test assessment and verification 
during development and to ensure security during the operational phase. This 
happens in DevOps when missing and vague security requirements identified by 
the monitors are added to the security requirements. The main advantage of the 
DevOps approach using our taxonomy is that it can be used further for tighter 
integration between design verification activities on executable PLC systems and 
runtime monitoring of such industrial systems. 
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1.9 Annex: Primary Studies 

[S1] Jeong, E., Park, J., Oh, I., Kim, M., and Yim, K. (2020, July). Analysis on 
Account Hijacking and Remote Dos Vulnerability in the CODESYS-Based 
PLC Runtime. In International Conference on Innovative Mobile and Internet 
Services in Ubiquitous Computing (pp. 457–467). Springer, Cham. 

[S2] Sarkar, E., Benkraouda, H., and Maniatakos, M. (2020, October). I came, 
I saw, I hacked: Automated Generation of Process-independent Attacks 
for Industrial Control Systems. In Proceedings of the 15th ACM Asia 
Conference on Computer and Communications Security (pp. 744–758). 

[S3] Gönen, S., Sayan, H. H., Yılmaz, E. N., Üstünsoy, F., and Karacayılmaz, G. 
(2020). False data injection attacks and the insider threat in smart systems. 
Computers and Security, 97, 101955. 

[S4] Lee, J. C., Choi, H. P., Kim, J. H., Kim, J. W., Jung, D. U., Shin, J. H., 
and Seo, J. T. (2020). Identifying and Verifying Vulnerabilities through PLC 
Network Protocol and Memory Structure Analysis. 

[S5] Khadpe, M., Binnar, P., and Kazi, F. (2020, July). Malware Injection in 
Operational Technology Networks. In 2020 11th International Conference on 
Computing, Communication and Networking Technologies (ICCCNT) (pp. 
1–6). IEEE. 

[S6] Negi, R., Dutta, A., Handa, A., Ayyangar, U., and Shukla, S. K. (2020, June). 
Intrusion Detection and Prevention in Programmable Logic Controllers: A 
Model-driven Approach. In 2020 IEEE Conference on Industrial Cyberphys-
ical Systems (ICPS) (Vol. 1, pp. 215–222). IEEE. 

[S7] Bytes, A., and Zhou, J. (2020, October). Post-exploitation and Persistence 
Techniques Against Programmable Logic Controller. In International Con-
ference on Applied Cryptography and Network Security (pp. 255–273). 
Springer, Cham. 

[S8] Son, J., Noh, S., Choi, J., and Yoon, H. (2019). A practical challenge-
response authentication mechanism for a Programmable Logic Controller 
control system with one-time password in nuclear power plants. Nuclear 
Engineering and Technology, 51(7), 1791–1798. 

[S9] Lee, T., Kim, S., and Kim, K. (2019, October). A Research on the Vulner-
abilities of PLC using Search Engine. In 2019 International Conference on 
Information and Communication Technology Convergence (ICTC) (pp. 184– 
188). IEEE. 

[S10] Yao, Y., Sheng, C., Fu, Q., Liu, H., and Wang, D. (2019). A propagation 
model with defensive measures for PLC-PC worms in industrial networks. 
Applied Mathematical Modelling, 69, 696–713. 

[S11] Gonzalez, D., Alhenaki, F., and Mirakhorli, M. (2019, March). Architectural 
security weaknesses in industrial control systems (ICS) an empirical study 
based on disclosed software vulnerabilities. In 2019 IEEE International 
Conference on Software Architecture (ICSA) (pp. 31–40). IEEE. 
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[S12] Yılmaz, E. N., Sayan, H. H., Üstünsoy, F., Gönen, S., and Karacayılmaz, G. 
(2019). Cyber security analysis of DoS and MitM attacks against PLCs used 
in smart grids. 

[S13] Yoo, H., and Ahmed, I. (2019, June). Control logic injection attacks on 
industrial control systems. In IFIP International Conference on ICT Systems 
Security and Privacy Protection (pp. 33–48). Springer, Cham. 

[S14] Pavesi, J., Villegas, T., Perepechko, A., Aguirre, E., and Galeazzi, L. (2019, 
November). Validation of ICS Vulnerability Related to TCP/IP Protocol 
Implementation in Allen-Bradley Compact Logix PLC Controller. In Inter-
national Congress of Telematics and Computing (pp. 355–364). Springer, 
Cham. 

[S15] Zhang, W., Jiao, Y., Wu, D., Srinivasa, S., De, A., Ghosh, S., and Liu, P. 
(2019). Armor PLC: A Platform for Cyber Security Threats Assessments for 
PLCs. Procedia Manufacturing, 39, 270–278. 

[S16] Ghaleb, A., Zhioua, S., and Almulhem, A. (2018). On PLC network security. 
International Journal of Critical Infrastructure Protection, 22, 62–69. 

[S17] Alves, T., Das, R., andMorris, T. (2018). Embedding encryption and machine 
learning intrusion prevention systems on programmable logic controllers. 
IEEE Embedded Systems Letters, 10(3), 99–102. 

[S18] Alves, T., and Morris, T. (2018). OpenPLC: An IEC 61,131–3 compliant 
open source industrial controller for cyber security research. Computers and 
Security, 78, 364–379. 

[S19] Lee, M., Choi, G., Park, J., and Cho, S. J. (2018, July). Study of Analyzing 
and Mitigating Vulnerabilities in uC/OS Real-Time Operating System. In 
2018 Tenth International Conference on Ubiquitous and Future Networks 
(ICUFN) (pp. 834–836). IEEE. 

[S20] Yılmaz, E. N., and Gönen, S. (2018). Attack detection/prevention system 
against cyber attack in industrial control systems. Computers and Security, 
77, 94–105. 

[S21] Ylmaz, E. N., Ciylan, B., Gönen, S., Sindiren, E., and Karacayılmaz, G. 
(2018, April). Cyber security in industrial control systems: Analysis of DoS 
attacks against PLCs and the insider effect. In 2018 6th International Istanbul 
Smart Grids and Cities Congress and Fair (ICSG) (pp. 81–85). IEEE. 

[S22] Ng, J., Keoh, S. L., Tang, Z., and Ko, H. (2018, February). SEABASS: 
Symmetric-keychain encryption and authentication for building automation 
systems. In 2018 IEEE 4th World Forum on Internet of Things (WF-IoT) (pp. 
219–224). IEEE. 

[S23] Davidson, C. C., Andel, T., Yampolskiy, M., McDonald, J. T., Glisson, B., 
and Thomas, T. (2018). On SCADA PLC and Fieldbus Cyber-Security. In 
13th International Conference on Cyber Warfare and Security (pp. 140–149). 

[S24] Alves, T., Morris, T., and Yoo, S. M. (2017, December). Securing scada 
applications using openplc with end-to-end encryption. In Proceedings of 
the 3rd Annual Industrial Control System Security Workshop (pp. 1–6). 
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Isutest. In 2017 22nd IEEE International Conference on Emerging Technolo-
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control: a security analysis. In 2016 World Congress on Industrial Control 
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Chapter 2 
Natural Language Processing with 
Machine Learning for Security 
Requirements Analysis: Practical 
Approaches 

Andrey Sadovykh, Kirill Yakovlev, Alexandr Naumchev, and Vladimir Ivanov 

Abstract Analyzing security requirements is a tedious task. Quite often they are 
spread around requirements specifications or specified in a very generic form. The 
experts have to make sure to extract all the security requirements and properly 
detail by applying the best practices from appropriate standards such as OWASP 
ASVS, STIG, or IEC62443. The requirements are specified in various forms, most 
commonly as statements in natural language. Natural language processing (NLP) 
has been applied for many years in requirements engineering (RE) for many analysis 
tasks. However, until recently, the performance on NLP methods on the RE tasks has 
been questionable. In this chapter, we outline the state of the art in the NLP methods 
in RE and in particular analysis of security requirements as well as provide practical 
recipes application of modern transfer learning architectures to several important 
RE tasks illustrated with an example. 

Keywords Security requirements · Requirements engineering · Natural language 
processing · Machine learning · Dataset · Classification · Semantic search · 
VeriDevOps 

2.1 Introduction 

Requirements engineering (RE) is a crucial element in the software development to 
meet customers’ expectations for a software product that should be delivered on time 
and within a budget. Practically, RE enables to capture users’ needs for the system to 
be developed by transferring these needs into precise and clear statements that will 
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be the basis for design, development, and validation [2]. Requirements engineering 
helps to define the right scope of a project and address all nonfunctional properties 
such as security starting from early stages of the design and implementation. This 
is often reported as an important approach to improve productivity, speed up the 
delivery time, and decrease the costs of software development. In the case of 
cybersecurity, building-in the right security mechanisms, addressing the potential 
vulnerabilities, and following the standardized guidelines is the most common way 
to protect the critical assets by the company, its customers, and system users. 
Nowadays, when the security threats are discovered on a daily basis, analyzing 
and ensuring implementation of security requirements have become of ultimate 
importance. It is reported that the security mechanisms have to be built into 
the system starting from the architecture stages, since retrofitting these important 
aspects into the system is extremely expensive. 

The requirements engineering includes many activities. One of them is a require-
ments analysis involving the requirements categorization among other activities. 
Identifying and placing a requirement to the right category, for example, security, 
may help to address important concerns by the right specialists as early as possible 
in the project life cycle. The current approach for automating quality control in 
a continuous manner with the Continuous Integration and Continuous Delivery 
(CICD) pipelines with DevOps practices has brought many benefits with respect 
to security properties verification. However, the challenge of “left-shifting” the 
security verification to early stages of development and even to the requirements 
analysis still remains due to the lack of automation. 

One of the challenges in creating the automation for requirements analysis and 
verification is that the prevailing method to specify requirements is natural language. 
Although the formalization approaches exist and help in validating the requirements, 
in practice, the requirements statements styles and lexical structures vary a lot. 
Natural language processing (NLP) proposes a number of methods to deal with texts 
and receive the information, analyze semantic similarity, etc. NPL has been applied 
for many years to requirements engineering offering many practical benefits though 
the performance of those legacy solutions is questionable. With the appearance of 
deep neural networks and transformer architectures in 2018, NLP made a huge leap 
forward in terms of performance. Many researchers have started to apply those 
methods to requirements engineering and obtained interesting results. 

In this chapter, we outline the legacy and novel NLP methods as applied to 
requirements engineering. We illustrate the application of transformers architecture 
with our own experiments and prototypes for several RE tasks. Finally, discuss the 
applicability of these methods and potential usage in the continuous cybersecurity 
assessment in the DevSecOps context.
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2.2 Security Requirements Engineering 

An important part of developing any system is ensuring a required level of security. 
Security needs are usually associated with some resources or assets involved in a 
system that stakeholders naturally want to protect from any harm. In particular, 
assets are considered as all the information resources that are stored or accessed 
by the system or physical resources such as computers. In some cases, assets 
may consist of other assets, e.g., system backups are a good example. Despite 
that empirical evidence is not fully convincing, it appears that appropriate security 
requirements would have as positive an impact on system security as sufficient 
general requirements would have on system development success. 

In order to integrate security within requirement engineering, we usually have to 
consider separately security requirements [3]. Special research showed that early 
analysis of security requirements can be beneficial in the context of software 
development as this may enable cost reductions in the area of 12–21% [4]. 
Usually security requirements are processed as functional requirements that can 
considerably influence system architecture. In practice, this requires a specific 
security expertise. Essentially, security requirements have to be specially processed 
independently from other requirements. However, the whole process of manual 
identification or extraction of security-related requirements from an entire require-
ment specification is very complex and error-prone, causing the need for automatic 
analysis. This is associated with several practical challenges. Firstly, there is no 
exact definition for security requirements, since different people may interpret 
security requirements in various ways. In practice, different industry subjects – 
organizations – define security requirements based on their own conventions and 
templates. Secondly, the intrinsic ambiguity of natural language makes it even more 
complicated to identify security requirements. Primarily, various people may use 
different syntax and terms to define or describe security requirements [5, 6]. 

The main point is that security cannot be considered as just a quality requirement, 
as it is difficult to answer whether a problem is security-related or not. Usually 
stakeholders do not tolerate any kind of risks. The main task of security require-
ment engineering is to identify and document requirements for developing secure 
software systems. The identification of security requirements heavily depends 
upon the context of system and analyst’s assumptions. These assumptions can be 
explicit or implicit and relate to expectations over system or environment behavior 
with a significant impact on the security of a system. Considering the framework 
of security, its goals, and assumptions, one can define security requirements as 
constraints on the functions of the system, where these constraints operationalize 
one or more security goals. In other words, security requirements engage security 
goals by constraining the system’s functional requirements. Security requirements, 
like functional requirements, are prescriptive, providing a specification to achieve 
the desired effect [3]. 

Based on these goals, we conclude that we want to prevent any threat or 
potential attack aimed at our assets. We consider assets as something that is
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Fig. 2.1 A conceptual model for security requirements [5] 

valuable to an organization (e.g., resources, data) and typically is a main concern 
of security requirements. Practically, a security property determines a security 
characteristic (e.g., confidentiality, availability) that indicates a security objective 
that a requirement intends to achieve. A threat is an undesired event that a 
swindler may potentially exploit to attack the system, harms assets or its respective 
security properties. In this context, a countermeasure is considered as a protective 
measure prescribed to meet the security requirements. The  countermeasure may be 
represented by a security mechanism as well as a set of security constraints. Each of 
the above concepts (Fig. 2.1) contributes with a specific perspective of the security 
requirement definition [5]. 

In order to follow this structure and achieve initial goals, we must somehow 
determine whether those requirements have been satisfied. This is difficult for 
quality requirements in general, while security requirements present additional 
challenges [3]. An important element of the requirements engineering is associated 
with the role of natural language (NL). Despite that there is no proof that natural 
language is the best option, multiple evidences show that it is the most common way 
of expressing requirements in the industry practice. The dominance in describing
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and specifying software and system requirements in natural language was also 
confirmed by the recent research [7]. Therefore, based on the past and current 
empirical evidence, we can safely assume that NL will continue to serve as the 
common way of expression for requirements in the future as well [8]. Conceptually 
that implies that solutions should deal with problems like lexical, syntactic, and 
pragmatic problems that natural language poses for requirements engineering. It is 
stated that the biggest problem is ambiguous semantics, which remains a common 
challenge for practitioners arguing that the source of trouble is the information 
from which the requirements must be formulated [9]. Consequently, computer-aided 
software engineering for processing natural language looks promising in the context 
of requirements analysis [8]. 

2.3 Natural Language Processing for Requirements 
Engineering (NLP4RE) 

Applying NLP techniques, which are very well suited for comprehensive linguistic 
analysis, seems natural in the context of the engineering approach that suggests 
using linguistic tools to narrate descriptions of user requirements. NLP is a field 
that addresses various approaches in which computers can deal with natural, that is 
human, language. Usually, NLP deals with techniques for analyzing, representing 
naturally occurring texts for the purpose of achieving human-like language process-
ing for range of tasks or applications [10, 11]. This has led to the emergence of a 
separate field, i.e., NLP4RE of applying NLP to support requirements engineering 
process as well as various tasks at different RE phases [12]. Dealing with the inputs 
to the RE process is a complicated task, as it requires to analyze a wide variety 
of documents. Such documents might include different artifacts like interview 
transcripts, codes of practice, standards, legislation, etc. In practice, the methods 
for RE automation greatly differ depending on the stage of RE they are applied 
at. To illustrate, at later stages, such as requirements validation, the methods deal 
mainly with documents that are products of the RE process, whereas at early stages 
the methods typically process raw information [9]. By applying those methods, 
the engineers intend to solve different kinds of tasks like detecting language 
issues, identifying key domain concepts and establishing traceability links among 
requirements, etc. However, when we split the developed NLP solutions by problem 
that they solve, they are mainly focused on detection, classification, clustering, 
patterns extraction, and modeling [12]. Those instruments are intended to increase 
analysts’ productivity when working with requirements. 

Let us outline the key method categories. Detection typically deals with ambigu-
ities in requirements to make them clearer and unequivocal. The range of problems 
may include detection of different lexical issues from the debatable usage of 
grammatical rules, to the occurrence of vague phrases (e.g., after some time), weak 
verbs (e.g., may, might), and the appearance of syntactic ambiguities. In addition,
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some specific tasks such as following to predefined templates and recognizing 
equivalent requirements can also be included in this task, as the main goal is 
still to maintain a correctness to requirements texts. Classification task in ML is 
usually associated with predicting a categorical class [13]. As for the context of 
RE, this task aims at classifying different categories of requirements. For example, 
we can classify requirements based on their functional category or based on their 
quality category, to identify nonfunctional requirements that may be hidden within 
functional ones. Another example is applying classification to users’ feedback in 
order to identify new requirements referring to specific features of interest possibly 
including a sentiment analysis. Extraction generally tries to retrieve some specific 
single or multi-word terms from requirement texts for domain or project glossaries, 
as requirements usually contain complex terms that are not commonly used. Those 
extracted glossaries may be further applied for other problems including consistency 
checking, classification, modeling, or product comparison. Clustering or cluster 
analysis, as its name suggests, is focused on organizing data, in our case, documents 
or a set of textual requirements into some cohesive subsets or clusters. This method 
focuses on organizing the data into meaningful and useful information. Modeling 
relates to the extraction task but with some additional usage of extracted data like 
generation of unified modeling language (UML) models to support analysis, design, 
feature synthesis in product-line engineering, generation of models for early require-
ments and generation of software tests to maintain a necessary security level [12]. 

In addition to the abovementioned generic problems that NLP solves in require-
ments engineering, one can outline several approaches that are entirely focused 
on the security context. Despite the lack of studies in this area, we can highlight 
an initial progress in developing and implementing such systems. Security risks 
can be analyzed through different perspectives that will define a practical context 
of the problem. Vulnerability detection is focused on identifying vulnerable 
code sequences by analyzing software code prior to deployment. The approach 
concentrates on applying NLP techniques to code to prevent or identify various 
vulnerabilities in the code. Vulnerability repair tries to transform a vulnerable code 
into a non-vulnerable code by learning from a set of source examples. Millions of 
lines of legacy code are analyzed to identify the ways to improve security. When 
a new class of vulnerability is found, the training dataset for patches and fixes is 
quickly updated. This is intended for creating an automated system that can clean 
code with certain types of vulnerabilities that would allow to treat efficiently large 
software repositories. Finally, specification analysis assumes that we can deal with 
security risks in product before the code is even written. Recent advances in NLP 
have provided experts methods to automatically process vulnerability descriptions 
or product specifications to assess security risks. Instead of code we can apply 
methods to documents and text vulnerabilities in this paradigm to ensure a required 
security level for the developed software [14]. Our main interest is associated with 
this security perspective. 

The subsections below outline specific NLP approaches for classification, extrac-
tion, as well as advanced machine learning architectures, e.g., transfer learning as 
applied to RE tasks and security requirements analysis.
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2.3.1 Statistical and Classical Machine Learning Methods 

NLP addresses several practical problems in the area of requirements engineering. 
To start, let us consider the problem of distinguishing functional requirements 
from nonfunctional ones. Abad et al. [15] propose text preprocessing as the main 
tool of dealing with that task. To address the generalization problem for the 
input requirements texts, they proposed to preprocess the texts and replaced all 
context-based names related to products and users with general keywords, such 
as “PRODUCT” and “USER,” respectively. Then they apply the Part-Of-Speech 
(POS) tagger of the Stanford Parser [16] to assign parts of speech to each word 
in each requirement. In the next step, they extract some trivial features including 
number of adjectives, number of adverbs and number of cardinals, as well as 
specific metrics, such as number of degree adjectives to adverbs. In addition, for 
each feature they define its rank based on the probability of its occurrence in the 
requirements. The final feature list for the processed dataset consists of the following 
nine features: number of cardinals, adverbs, adjectives, modal words, determiners, 
verbs, prepositions, singular nouns, and plural nouns. In [15] the authors compare 
results of six different algorithms and use a simple decision classifier to achieve 
an extra 4.5% accuracy of classifying functional and nonfunctional requirements. 
This effect becomes even more visible for classifying groups of requirements. Abad 
et al. insist that Binarized Naive Bayes works best for classifying nonfunctional 
requirements. 

Another example of NLP application to requirements engineering is identifying 
critical features in specifications. Boutkova et al.[17] propose a lexical analysis 
based technique that could help automate the identification of features in specifi-
cations. They propose to extract features in a semi-supervised fashion by applying 
certain Part-of-Speech (POS) tagging approaches. The whole process is divided 
into several steps. At the first step, the user chooses the specification in which 
the features must be found. At the second step, requirements from the chosen 
specification get decomposed into individual words, and only nouns are left; this 
step requires lemmatization of each word. At the final step, the user should evaluate 
candidates list and choose features for the feature model. The main problem is that 
the experiments were conducted for German – a morphologically complex language. 
This approach generates a lot of false positives that need further analysis. 

It is possible to improve the performance by combining different NLP devel-
opments from different disciplines. Malhotra et al.[18] proposed an approach 
combining NLP, ML, and graph analysis. This approach identifies appropriate 
narrative structures that may underlie the security requirements of industry stan-
dards and publicly available software documents. First, the authors of [18] apply 
text processing that includes tokenization, sentence splitting, POS tagging, mor-
phological analysis, and noun phrase chunking. Then they create an ontology to 
define connections between words, phrases, and concepts. They construct features 
from key narrative structures – phrases, such as “user must register,” “user must 
contain a password,” “password must have complexity” using a special tool called
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Protégé [19]. Subsequently, each of these processing structures is used to determine 
the relationships among features such as “encryption” or “authentication.” After, 
it is checked whether the requirement sentence is found among gold standard 
requirements. That way it is determined whether an organization follows those 
standards. 

The idea of checking whether security requirements conform to specific stan-
dards was also presented in Hayrapetian et al. [20]. This study might be considered 
as an advancement of the previous study, focusing on empirically evaluating confor-
mance of security requirements to specific standards such as ISO and OWASP. The 
main goal was to assess completeness and ambiguity by creating a bridge between 
the requirement documents and its compliance to standards. For this purpose, 
they proposed a unique two-stage architecture. Initially every statement within a 
standard is evaluated against every statement within a test document. To maintain 
robustness of an entailment assessment, they proposed nine different configurations 
and digested each pair through those components. Each configuration consisted 
of the Linguistic Analysis Pipeline and Entailment Decision Algorithms from 
Excitement Open Platform [21]. The entailment decision and confidence results 
from each transaction were collected along with other data about the transaction, 
such as the statements involved, entailment configuration used, processing type 
(e.g., parallel), and the time duration of the comparison. These annotations were 
used as features during the neural network model training phase to design a classifier 
to further determine whether the entailment results for a statement pair indicate 
a “complete,” “ambiguous,” or “none” match, with respect to the corresponding 
semantic meaning. This approach allowed to achieve 0.79 in terms of F1-score. 

One of the main challenges on the way of making all-purpose NLP methods is 
a problem of generalization of a model to be applied to several domains. Li et al. 
[5] presents the idea of creating a model that could generalize security requirements 
extraction for all domains. They stated that the main source of good detection lays 
in a good theoretical basis and tried to construct ontology specifically for security 
requirements. They defined a set of linguistic rules and security keywords that are 
normally used to describe security requirements and used them to train classifiers 
applying classical ML algorithms. They proposed a specific approach that involves 
a two-level preprocessing with a conceptual layer and linguistic layer. The process 
of matching the linguistic features consists of three steps: generate parse trees, 
keyword matching, and linguistic rule matching. Each step is explained in detail 
as a part of text processing to a feature vector. They decided to compare different 
algorithms like decision tree (DT), Naive Bayes classifier (NBC) and logistic 
regression (LR) using six different datasets. Results showed that precision/recall 
differs among datasets. Only DT and LR showed promising characteristics. In 
particular, the average F1-score of all classifiers trained with DT was approximately 
0.77. For the case of classifying security requirements from different domains, when 
training data was used from one document set and the test data from the other, this 
approach showed 0.75 in precision and 0.58 in recall. The authors argued that their 
approach behaves significantly better than the existing approach and potentially can 
give promising results. They also argued that the main challenge was that different
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people, including security experts, can have various diverse definitions of security 
requirements. 

Another example of dealing with the generalization problem is the work by 
Wang et al. [22]. They address aspects of generalization from a different perspec-
tive such as creating all-domain classifiers. The authors developed methods for 
extracting security requirements for open-source projects (OSS). They stated that 
previously proposed approaches were unsuitable for this kind of projects due to their 
specifics. Notably, requirement specifications in OSS projects are usually organized 
by functionality, with nonfunctional (NFR) requirements scattered widely across 
multiple documents. Hereby there is no exact boundary to distinguish between 
FRs and NFRs. Moreover, the requirements stored in issue tracking systems 
are unstructured and seldom obey grammar and punctuation rules. The authors 
proposed to rely not on the text but on different external resources. To define 
features, they applied a stack of several sources that then were used as an input 
for a linear classifier based on linear discriminant analysis (LDA). Initially each 
requirement is processed by information processing component (IPC) to obtain so-
called metrics. Metrics are information about a requirement extracted by IPC, which 
includes complexity and external resources. Complexity is extracted from comments 
of the project assuming that higher intensity of discussion might be associated with 
vulnerabilities. In its turn, external resources are the links and other references 
provided by stakeholders where they discuss rationale for refinements and explain 
their solutions. Subsequently, this information is digested directly by four regression 
models: Comment Complexity Regression Model (CRM), Stakeholder Complexity 
Regression Model (SRM), Security URLs Regression Model (URM), and Security 
Commits Regression Model (CiRM). In addition, the authors apply NFR classifier 
(NFR-C) and CVE ID Detector (CID). Each regression model generates a weight 
between 0 and 1 for each requirement that signify the likelihood whether this 
requirement is a security requirement. In order to summarize weights from NFR-
C, CID, and all RMs, the authors applied a linear discriminant function in a binary 
setting that indicate whether a requirement is security one or not. They were able to 
achieve F1-scores of 0.83, 0.88, and 0.81 for Axis2, Drools, and GeoServer projects, 
respectively, which looks promising given the relative simplicity of the proposed 
approach. 

In 2017, RE Data Challenge event was conducted in relation to the problem of 
requirements extraction and classification. This event produced a set of NLP4RE 
studies. Kurtanovic et al. [23] used the dataset from the challenge [24] to solve  
the problem of binary classification for functional (FR) and nonfunctional (NFR) 
requirements. Simply, they transformed a multiclass dataset into a binary case. 
Unlike previous papers, authors did make a research of an effect from applying 
only word features and automatically chosen features form binary and multiclass 
classification. The whole approach is based in the support vector machines. As a 
result, they achieved an F1-score of 0.92 for binary case classifying FR and NFR. 
As for classifying security requirements in a binary case, the effect was a bit worse. 
If applying only words features, F1-score was about 0.88 and 0.74 with applying 
all kinds of features. They found that POS tags are among the most informative
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features, with cardinal number being the best single feature. As an additional 
aspect, authors argued that only word features provide higher recall for classifying 
NFRs than employing additional syntax and meta-data features but lower precision 
accordingly. 

Pérez-Verdejo et al. [25] explored applicability of several machine learning algo-
rithms for classification of software requirements and issue reports. The classifier 
that reached the highest weighted geometric mean was TPOT (Tree-Based Pipeline 
Optimization Tool), with 0.8363, followed by the RandomForestClassifier classifier 
with 0.82. Pérez-Verdejo et al. report, however, that these models showed significant 
difficulties in classifying issue reports (often expressed in the form of informal text), 
as compared to human experts. It was difficult for automated classifiers to obtain 
results greater than 0.3 on classifying requirements-related issues. 

Mir Khatian et al. [26] focus on the prediction of the requirements classification 
of NFRs (nonfunctional requirements) by using supervised machine learning (ML) 
algorithms followed by comparative analysis on five different ML algorithms: 
decision tree, k-nearest neighbor (KNN), random forest classifier (RFC), and Naïve 
Bayes and logistic regression (LR). The exhaustive results of the comparative 
analysis conducted by Mir Khatian et al. demonstrate that the performance of the LR 
algorithm is the best of all algorithms with high prediction rates and 75% accuracy. 
The Naïve Bayes resulted in 66% accuracy, the decision tree provided 60% accuracy, 
the RFC provided 53% accuracy, and KNN – 50% accuracy. According to the study 
of Mir Khatian et al., the LR algorithm should be preferred for the prediction of the 
classification of NFRs. 

2.3.2 Deep Learning 

Deep learning and transfer learning are the most recent areas in NLP. Deep learning 
is assumed as a sub area of neural networks in ML and is popular for vision-based 
classification and NLP tasks. Deep learning is based on the representation-learning 
methods obtained by applying nonlinear modules that transform a representation at 
one level into a higher, more abstract level [27]. Zhang and Wallace [28] proposed 
convolutional neural network [29] for the purpose of sentence classification. They 
provided a simple method that is based on Word2Vec representations [30] of each 
word with applying set of consecutive convolution filters. Specifically, the process 
starts with tokenized sentence which is converted to a sentence matrix, the rows 
of which are word representations. By this approach authors achieved significant 
accuracy improvements comparing with a baseline on all datasets. Similar approach 
was applied to the context of requirements classification. Winkler et al. [31] applied 
the same principle to the DOORS requirements database. Specifically, they applied 
it for the binary classification task to differentiate requirement from information 
sentences. This approach was able to classify requirements with a precision of 0.73 
and a recall of 0.89 and information with a precision of 0.90 and a recall of 0.75 
accordingly. The authors argued that performance could be improved by increasing
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the amount of training data as well as by improving the quality of requirement 
specifications. A similar approach was applied to the previously mentioned NFR 
dataset. Dekhtyar et al. [32] presented an idea of combining two methods that 
are very popular at the moment, Word2Vec, and convolutional neural networks 
(CNN). They used two datasets, SecReq dataset [6] and the quality attributes 
(NFR) dataset [24], to compare results of applying Word2Vec with CNN with a 
baseline approach. The goal was to observe the performance of CNNs on these 
datasets compared to the baselines and measure the impact of pretrained Word2Vec 
embeddings on the model. As a baseline method, they considered already mentioned 
approach based on Naive Bayes classifier [6] with TF-IDF and word counts as 
feature vectors. For SecReq dataset applying Word2Vec provided an overall boost in 
scores. By applying 30 filters with 100 training epochs, they scored an F1-score of 
91.34%. This configuration allowed to achieve an overall improvement up to 13.5% 
compared to the baseline. For NFR dataset Word2Vec again contributed comparable 
improvement with 50 filters and 100 epochs accordingly. The authors stated that 
CNN classifiers can be successfully applied on relatively small collections of 
requirement documents to identify various requirements properties. 

2.3.3 Transfer Learning 

Recently the transfer learning method was applied as a new promising approach 
to deal with generalization problem. Hey et al. [33] stated that the performance 
of existing automatic classification methods decreases when applied to unseen 
projects, because requirements usually vary in formulation and style. This means 
that such systems are impractical to use, as they are either overfit for a specific 
dataset, which is heavily relying on wording and sentence structure or require a 
processing step (usually manual) for new text samples. Moreover, usually, authors 
do not report whether their approaches are able to generalize or do not generalize 
sufficiently to be practically applicable. One reason is the lack of available training 
data in the requirements engineering community. The authors stated that possible 
solution can be found in a transfer learning. Nowadays transfer learning approaches 
are heavily used in NLP. They are trained on huge datasets to capture underlying 
concepts and meanings of natural language texts. Afterward they can be adapted 
and fine-tuned to a specific task. Authors stated that this helps to overcome the 
problem of generalization, as these approaches promise both better performance 
and generalizability with less training data. That is achieved by fine-tuning of 
Bidirectional Encoder Representations from Transformers (BERT) [34], a language 
model based on deep learning. BERT, which is pretrained on a large text corpus, 
can be fine-tuned for specific tasks by providing only a small amount of input 
data such as requirements classification in our case. For experiments NFR dataset 
[24] was chosen as a gold standard coming from RE Data Challenge’17. This 
whole process is common for BERT-based studies. Specifically, BERT model is 
applied with a single layer of NN for classification purposes. The resulting model is
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called NoRBERT. The authors provided a detailed information about experiments, 
which would help to replicate their results in future. For binary tasks, NoRBERT 
achieved comparable results with an F1-score of 90% for functional and 93% for 
nonfunctional requirements. As it was expected, BERT-based method outperformed 
all existing approaches at the moment. Specifically, NoRBERT outperforms all 
approaches that do not preprocess the data, and, at the same time, the problem 
with unweighted data does not significantly impact performance. Thus, the transfer 
learning approach clearly increases the performance for classifying requirements. 
As for security requirements, NoRBERT was able to achieve about 0.91 in F1-score 
given multilabel classification, which might look promising for a further application. 

As Ajagbe et al. [35] point out, BERT underperforms on domain-specific tasks. 
They introduce BERT4RE, a BERT-based model retrained on requirements texts, 
aiming to support a wide range of requirements engineering (RE) tasks, includ-
ing classifying requirements, detecting language issues, identifying key domain 
concepts, and establishing requirements traceability links. Ajagbe et al. also fine-
tune BERT4RE for the task of identifying key domain concepts and conclude that 
BERT4RE achieves better results than the BERT base model for the same task. 
Ameri et al. [36] and Ranade et al. [37] take further steps in BERT fine-tuning. 
Ameri et al. fine-tune BERT using a corpus of labeled sequences from industrial 
control systems device documentation collected across a range of vendors and 
devices. They claim improvement in classification accuracy from 76% to 94.4% 
accuracy as compared with the original BERT architecture. Ranade et al. [37] 
fine-tune BERT on a cybersecurity corpus from open-source unstructured and semi-
unstructured cyber threat intelligence (CTI) data, using masked language modeling 
(MLM) to recognize specialized cybersecurity entities. They evaluate the resulting 
model using downstream tasks that can benefit security operations centers (SOCs). 
Ranade et al. claim the fine-tuned model outperforms the base BERT model in the 
domain-specific MLM evaluation. 

Li et al. [38] apply BERT to treat the problem of poor generalization of other 
requirements classification models. They use apply graph attention network (GAT) 
to mine the syntactical structure of requirements and take it into account in their 
model. Li et al. evaluate the resulting approach, DBGAT, on the PROMISE datasets. 
They report up to 91% F1-score for the classification task on already seen projects, 
and up to 88% F1-score – for unseen-before projects. 

2.4 Practical Examples of NLP4RE 

As part of demonstration, we have created several prototypes with different 
functionality focused on solving various NLP tasks in requirements engineering 
for analysis of security requirements. This section follows the path NLP process for 
security requirements analysis starting from an unstructured document to extraction 
of requirements, identification of security requirements and finally semantic search 
of relevant security countermeasures.



2 NLP and ML for Security Requirements Analysis 47

2.4.1 ReqExp: Requirements Extraction from a Text 

In this section we discuss the first NLP task to address the extraction problem. 
We analyzed a well-known requirements dataset, PURE [39], manually extracted 
requirements and non-requirements sentences, and trained a prototype, ReqExp, 
based on the [34] architecture. We discuss the overall approach and our results in 
the following part. 

The requirements extraction problem may be addressed by the NLP classification 
methods. One can notice that text classification is applied in many NLP applications, 
such as spam filtering, email categorization, information retrieval, web search, 
document classification, etc. Usually, it means assigning predefined categories to 
a textual sequence [40]. It has to be noted that requirements are commonly specified 
in the form of a sentence rather than in a form of unstructured phrases. We can 
thus translate the extraction problem into the classification of a given sentence 
into the class of possible “requirements” sentences. In the context of classification 
of requirements statements, it is needed to consider the whole sentence since the 
context of the requirement is critical for analysis. Despite the existence of several 
standardized lexical forms for requirements specification, requirement sentences 
oftentimes do not follow these standards formally. This imposes a necessity to have 
a system that could extract requirements in any lexical structure form. 

For requirement engineering, it is important to process entire documents and 
extract the requirements sentences with a high precision. In NLP terms it relates 
to two subsequent steps: (1) extracting all sentences from a document and cleaning 
them and (2) classifying sentences to the “requirements” and “non-requirements” 
classes. The classification task approach and experimental results are addressed 
in our previous research [41]. The classification is based on the state-of-art 
model architectures, i.e., Bidirectional Encoder Representations from Transformer 
(BERT). However, from the perspective of requirements engineering, the require-
ments extraction from documents has several peculiarities that we outline below. 

As it usually stands, any classification or extraction process starts with a prepro-
cessing stage where the system processes an input text and produces a set of objects 
ready for an NLP analytical task, i.e., sentence classification in our case. It usually 
involves removing stop words, typographical symbols, punctuation marks or even 
correcting lexical mistakes, etc. This preprocessing may be manually conducted 
before experiments, e.g., dataset preparation. In a production environment, in an 
application, this preprocessing is automated each time before applying models. 
Technically, this automation is defined by analyzing the manual preprocessing 
experiments. For example, the stopwords and punctuation are removed during 
experiment and training of the model, but also this is done automatically inside 
the final application in the production environment. 

Nowadays, research teams usually deal with pretrained models (like BERT) that 
completely shift their focus from a model architecture design to a thorough and 
well-justified fine-tuning of a chosen model. Practically, we adapt model parameters 
to a certain domain as well as to a task itself, i.e., the classification in our case.
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However, this does not imply significant change in the model architecture. The 
transformers approaches such as BERT allow shifting the NLP research more to 
the steps of theoretical justification of the method choice and dataset preparation. 
The first step, a method justification, is usually based on domain expertise, previous 
experiments as related to the task that we want to solve. We chose transformers 
model architectures and BERT as they outperform the other approaches on the 
complex NLP tasks. 

The dataset preparation is the most time-consuming, sophisticated, but at the 
same time the most important stage, especially considering the complexity of the 
RE area. The dataset preparation is executed by running several activities problems 
simultaneously: 

1. Collecting an appropriate set of samples (e.g., sentences) that most accurately 
describe our domain. 

2. Defining domain classes with clear lexical and semantic differences. 
3. Selecting samples in each class that contain all the necessary features for each 

class. 

From the first sight, it appears as an overwhelming task, but it can be decomposed 
in a set of smaller steps. The process itself starts with researching potential sources 
to construct the required dataset. Unfortunately, the RE sphere has not been 
popular among NLP researchers so far that resulted in some shortage of nicely 
designed datasets for classification or extraction tasks. In our case we focused on 
designing a dataset, which contains sentences that can be clearly binary classified 
in requirement/non-requirement classes. We observed several critical issues related 
the following questions: 

● How to exactly identify what a requirement class should look like knowing that 
writing styles and lexical structures in different areas greatly differ? 

● What should a non-requirement class contain? Should that be just random 
sentences or something else? 

We have analyzed a significant set of research papers that outlines earlier in this 
chapter and in [41] to define what sources are suitable for a dataset construction. 
Ferrari et al. [39] (Table 2.1) proposed a comprehensive corpus of documents 
that contains publicly available documents from different projects and software 
engineering areas. Overall, it contains 79 documents with a focus on applying for 
designing NLP systems. 

Authors argue that this dataset fairly fits for various tasks such as requirements 
categorization, ambiguity detection, equivalent requirements identification, etc. 
Moreover, this corpus includes documents with different peculiarities as well as 
a lexicon with the widespread writing style of requirements. However, the corpus 
needs to be analyzed and processed specifically in order to create a dataset suitable 
for requirements sentence classification. 

We applied PURE corpus as our main source of both requirements and non-
requirements sentences for designing our dataset. Initially documents were pre-
sented in the form of raw text in different formats, structures, and writing styles. We
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Table 2.1 Comparing PURE corpus with Brown corpus [39] 

Indicator PURE Brown 

Number of tokens 865,551 1,034,378 

Number of lexical words 522,444 542,924 

Vocabulary size (lexical words) 21,791 46,018 

Vocabulary size (stems) 16,011 29,846 

Number of sentences 34,268 57,340 

Average sentence length (tokens) 25 18 

Average sentence length (lexical words) 15 10 

Lexical diversity 0.031 0.054 

extracted 7745 requirement/non-requirement sentences, where 4145 were require-
ments and 3600 were non-requirements from 30 documents. Requirement sentences 
were extracted from the appropriate sections of the documents. Usually, each 
document provides some structural elements like table of contents and requirement-
focused sections with appropriate titles or contextual footnotes. The structural 
elements are usually numbered by unique ids, sometimes explained by the authors. 
In other cases, it could be useful to rely on lexical elements that are usually 
inherent for requirements such as modal verbs, e.g., “must,” “should,” “could,” etc. 
In essence, we applied a process of identifying requirements and non-requirements 
that had been described in a previous study by Abualhaija [42]. 

Making experiments with models usually starts with dividing the datasets in 
subsets in order to train, test, and validate a model. For this purpose, we separated 
the obtained sentences into train, test, and validation sets by following 70%, 20%, 
and 10% proportions accordingly. To bring the experiment closer to the application 
domain and preserve consistency, it was decided to select an entire group of 
sentences from every document only to one specific subset. Thus, some of the 
documents were applied for the model training and different ones for validation. 
Additionally, we conducted a specific analysis to identify a set of documents that 
could fulfill abovementioned proportion constraints (70%, 20%, 10%). 

Training process, which is the fine-tuning in our case, usually happens in a 
straight way. As we already mentioned, our focus was not training a new model 
rather adapting parameters to our domain. In the case of classification, we do not 
touch the middle layers that were trained initially by model architecture’s authors. 
However, we still needed to adapt this pretrained model to our classification task, 
since transformers do not directly provide classification but are designed to generate 
numerical representation of digested sentences and words only. For that purpose we 
augmented our architecture with additional neural network layers of an appropriate 
size. 

Figure 2.2 depicts a conceptual design for the requirements extraction from a 
document by applying a transformers model architecture to requirements sentences 
classification. Usually text samples, e.g., words, sentences, or blocks of text, 
exist in the form of a string, which is preprocessed by a group of methods for
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Table 2.2 ReqExp 
experiment results 

Model F1 Precision Recall 

Fasttext 0.81 0.72 0.93 

ELMO 0.83 0.78 0.88 

BERT 0.86 0.92 0.80 

cleaning. Afterward this sentence is digested by an architecture-specific tokenizer 
that encodes our string into a model input, specifically transforming a text into some 
smaller pieces like words or tokens. These tokens are sequentially evaluated on each 
layer of the model architecture. The result is a probability for a sentence to belong to 
the requirements class. One should decide on an appropriate threshold to assign the 
input of the requirements sentence to the “requirement” or “non-requirement” class, 
for example, a 0.5 or any other optimal value by the AUC-ROC analysis (Table 2.2). 

The experiment results have to be assessed using appropriate metrics. We select 
three major classification metrics: precision, recall, and F1-score. Those metrics 
are perceived as the golden standard in many research areas of statistical and 
mathematical methods including machine learning and deep learning. Let us explain 
what those metrics do specifically mean in the requirements engineering domain: 

1. Precision indicates the confidence in detecting requirements, since it compares 
the number of requirements rightly guessed (TP) with the number of require-
ments wrongly guessed (FP), i.e., Precision = TP / (TP + FP). The better the 
precision is, the greater is the confidence in the requirements guessed rightly. 

2. Recall is a proxy to assess the number of undetected requirements, since 
it compares the number of detected requirements (TP) with the number of 
undetected requirements (false negatives or FN), i.e., Recall = TP / (TP + FN). 

3. Finally, a combination of the precision and recall, F1-score, is calculated as 
follows F1 = 2*Precision*Recall / (Precision + Recall). In other words, F1-score 
conveys the balance between the precision and the recall and may serve as a good 
measure of overall performance of a specific model. 

In our research we collected all those metrics to have a full picture of what 
each model is capable of as well as to provide a broad conclusion which model is
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better specifically in the context of requirements engineering. Initially, we expected 
that transformers would be leaders; however, it was important to explore the 
difference compared to the baseline models such classic Fasttext and ELMO. Our 
experiments showed that transformers have the highest potential for dealing with 
such uncommon contexts as software requirements. Specifically, the more advanced 
BERT model showed better results in almost all aspects, especially in terms of F1-
score. The BERT model showed high precision 0.92 but lower recall 0.8. Still 
precision and recall metrics behaved differently for Fasttext and ELMO models. 
Fasttext classifier showed impressive recall 0.93 compared with other candidates. 
Presumably such property might be useful in cases when it is more important to 
extract most of the required sentences regardless of the larger number of false 
positives [41]. 

We recommend BERT-based architectures as a basis for classification (or extrac-
tion) tasks even without retraining the whole architecture and staying with a basic 
fine-tuning. However, BERT-based solutions are relatively resource demanding 
[43]. This must be considered carefully for real-world applications in the industry 
context. Our study showed that traditional less-demanding models may demonstrate 
acceptable results in the more constrained environments. 

2.4.2 SeqReq: Security Requirements Classification 

In the context of the VeriDevOps project [1], our team participated in a study 
to design a system that could correctly identify security requirements in various 
texts or software specification documents. We manually classified a large dataset 
of security and non-security-related requirements and trained a specific prototype, 
SecReq, based on the DestilBERT [44] architecture. We present the overall approach 
and our results in the section below. 

This task is again mainly a classification task, but the context is more specific 
since the classifier can only be applied within the restricted set of sentences, e.g., 
identifying security-related context in the set of requirements. Compared to the 
binary classification approach that we discussed earlier, the scope of the task is very 
narrow and requires a specific solution. Initially our goal was to design a system 
based only on machine learning methods to assess its capabilities for solving this 
task in an industrial context. Thereby, we focused only on solutions based on ML 
architectures like deep neural networks. 

Several solutions exist for this NLP task; the selection has to be justified based 
on the analysis of the domain with regards to lexical and semantic properties as 
well as datasets. We conducted a preliminary analysis resulting in the following 
conclusions: 

● There exist several definitions of security requirements, which however are not 
specific enough with respect to the lexical properties. Moreover, the statement 
styles vary a lot from company to company, industry to industry, author to author.
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● A specific dataset is needed for classifying security requirements. In our cases 
this dataset had to be constructed from several sources. 

● As with general requirements, there is a clear shortage of well-designed datasets 
presumably due to its narrow perspective. 

Our analysis showed that this task can again be reduced to the binary clas-
sification task as in the previous case for extracting the requirements sentences. 
However, a specific dataset needed to be constructed that would contain security-
related requirements. 

We analyzed the available datasets and security text corpora. As a result, we 
collected several datasets and other security-related text sources from different 
business domains: 

1. The first one is the PROMISE dataset, which is considered as a benchmark 
dataset widely used in literature. This dataset originated from the RE’17 Data 
Challenge. It contains 625 sentences among which 375 are nonfunctional 
requirements of 12 classes (like availability, reliability, scalability, security, etc.) 
and 255 are functional requirements [45]. 

2. Additionally, we found requirements in official documentation. CCHIT [46] 
published criteria for several products developed in 2006 and 2007. These criteria 
consist of 283 requirements, including security-related statements, which are 
also useful for our task (Certification Commission for Healthcare Information 
Technology Work Groups, 2007). 

3. SRS Concordia corpus was constructed as a reconsideration of the PROMISE 
dataset. Authors indicated several problems of the PROMISE dataset with respect 
to artifact types and sentences, which may have multiple or no labels. They 
proposed their own corpus, which contains 6 documents that can be transformed 
into 3064 manually labeled sentences [47]. 

4. OWASP Application Security Verification Standard [48] provides a collection of 
security requirements for web applications. The number of security requirements 
differs from one version of the standard to another. In order to gather most of the 
statements present in the standard, we created a dataset as a union of OWASP 
ASVS v3.0.1 and v4.0. This dataset contains 496 security-relevant sentences. 

Nevertheless, it was unclear how well each dataset covered the “security-related” 
class of requirements. We decided to consolidate all the extracted samples and 
aggregate them in a separate dataset. That way, we obtained 2328 text samples, 
where 804 sentences represented security requirements, while the other 1518 
sentences were non-security requirements. Additionally, we augmented this dataset 
with 651 security requirement sentences that we collected by manually labeling 
previously mentioned PURE-based dataset. As a validation step, we checked both 
datasets for possible intersections and removed them to avoid any possible bias in a 
further assessment. 

Specifically for the stage of experiments, we applied the PURE set as our train 
dataset, whereas the combined set was used for testing. We conducted experiments 
with various model architectures to find the most efficient one. Initially, we focused
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on already well-established transformer architectures like BERT [34], MPNET 
[49], and their variations. Both transformer architectures, BERT and MPNET, are 
pretrained on a huge corpus of English-language texts, and this facilitates building 
higher-capacity models for a wide variety of tasks. 

Nowadays, one can notice that the industry has made a leap forward by privi-
leging libraries of pretrained deep learning models as, for example, HuggingFace 
[50] that includes SBERT [51]. These libraries propose a multitude of solutions 
for almost any well-known task in NLP, including classification, text generation, 
text similarity, etc. SBERT is dedicated to the analysis of complete sentences. In 
addition, those libraries provide many pretrained and ready-to-use architectures 
by vendors from different application areas, for example, healthcare, finance, and 
information technologies. These models may represent a complete solution for a 
variety of NLP tasks or be considered as a starting point for creating a specific 
adaptation. To design a solution for the security requirements extraction task, we 
considered pretrained architectures that address NLP tasks like in our context. After 
several experiments we identified that among other architectures the most promising 
model for our goal was a special version of DistilBERT [44] that was fine-tuned 
on a special Stanford Sentiment Treebank [52] dataset designed for a sentiment 
classification task. 

To address the narrow context of the security requirement extraction problem, 
we decided to apply a combination of models that are executed sequentially in the 
following pipeline (Fig. 2.3): 

● Stage 1 “ReqExp”: Fine-tuned BERT for identifying requirements in the text as 
described in the previous section. 

● Stage 2 “SecReq”: DistilBERT for identifying security requirements in a set of 
requirements that was specifically tuned for this task. 

The overall structure of the pipeline is shown in the diagram below. Figure 2.3 
depicts all the main stages with datasets used for fine-tuning, as well as inputs and 
outputs for each stage. Stage 1 “ReqExp” starts with uploading a document where 
some preprocessing steps happen to extract all the possible text from a document 
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and transform it to a text with specific lexical elements that are sentences in our 
case. Afterward, one-by-one every sentence is digested to the first stage to make 
a filtering and extracting requirements statements from the input text samples. At 
the second stage, the obtained list of requirements is processed by the fine-tuned 
DistilBERT to distinguish security requirements from other types of requirements. 
During the process of fine-tuning of the SecReq stage, we were able to achieve an 
F1-score of 0.86 using this version of the model. 

Let us consider an illustrative example by NIST from [53]. While examining 
this source document, one may notice that the authors specified the single security 
requirement in the related section: The software system defined in this SRS must 
follow industry recommended practices for secure software development. At a 
minimum, the software development must practice the principle of least privilege 
for defining access-level requirements of the software system and its associated 
services. The production-release version of the software system must pass an 
automated dynamic application security testing tool (e.g., HP WEBINSPECT). In 
contrast, our prototype [54] extracted the following security-related requirements 
sentences: 

1. The system must have at least a super-user role and a user role defined for 
accessing and interacting with the system. 

2. Distributing manufacturing data across an enterprise requires the curation and 
management of the data within a repository and end-user services to access the 
data. 

3. The UI for administrative tasks must include the ability to manage users, 
manage groups, manage permissions, manage data templates, manage group 
assignments, and manage query templates. 

4. SuperUserRole/001 maintains all VDS and QDR back-end system configura-
tions, SuperUserRole/002 maintains all VDS and QDR schemas and templates, 
SuperUserRole/003 maintains all user groups and user accounts, and Supe-
rUserRole/004 Maintains all QDR predefined queries 

5. The user must be presented with a login page when accessing any page, or expect 
a landing or front page, as an anonymous user. 

We consider this result as relevant and important, since the prototype indicated 
several security sensitive functional requirements that have to be analyzed by dedi-
cated specialists mastering the security approaches for development and validation. 

2.4.3 STIGSearch: Semantic Search for Security Technology 
Implementation Guides 

In the example in the previous section, one may also notice that the original 
requirements are extremely generic. At most, this specification suggests to follow 
“best practices.” The document leaves a great flexibility to developers to select 
a standard architecture and apply related recommendations. This approach, quite
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common in industrial practice, represents a great vulnerability since it can easily 
lead to omission of numerous concrete guidelines that were created by analyzing the 
vulnerabilities. One of the approaches is to de-generalize the security requirements 
and map them to right practical recommendations. For this purpose, we created a 
specific prototype, STIGSearch, based on the SBERT [51] architecture for semantic 
search of relevant countermeasures in the Security Technology Implementation 
Guides (STIGs) [55] database. We present the overall approach and our results in 
the section below. 

Often the security requirements are expressed as a need to comply with a 
specific standard, such as Security Technology Implementation Guides (STIGs) 
[55], Web Application Security Project (OWASP) recommendations (OWASP 
Application Security Verification Standard, n.d.) or standards with an extremely 
narrow perspective like ISAIEC 62443 [56]. One of the analysis goals is to locate 
the relevant standard requirements, guidelines, or recommendations that relate to 
the security requirements that are specified by an engineer specifically for a project. 
This may help to relate the project requirements and corresponding implemented 
features with security standards. In the NLP context, the semantic search task is 
dedicated to identifying semantic proximity among lexical entities. This approach 
may be beneficial as a solution for the requirements-to-standard mapping problem. 

Traditionally, search techniques are designed based on word computation models 
and, in some cases, enhanced by the link analysis. In contrast, the semantic search 
technique extends the information retrieval with entity and knowledge retrieval, 
instead of looking into the keyword matching frequency only. In other words the 
semantic search addresses the search task from a different perspective by assessing 
the meaning of words that are formalized and represented in machine processable 
format [57]. 

Practically semantic search is focused on improving the search experience by 
understanding the content of the search query. For example, in contrast to traditional 
search engines which only find content based on lexical matches, semantic search 
can also find synonyms. The idea behind semantic search is to transform all entries 
in a corpus, whether they be sentences, paragraphs, or documents, into a vector 
space. In our case we deal with high-dimensional representations – tokens or 
embeddings that we discussed in the previous sections. At the search time, a query 
is embedded into the same vector space in order to find the closest embeddings 
from the source corpus. The core idea is that these closest entries should have a high 
semantic similarity with the query (Fig. 2.4) [58]. 

In order to compare the vector representation of a query with all the elements in 
the source corpus, one shall use a special metric, which is called a cosine similarity. 
Cosine similarity measures the proximity between two vectors of an inner product 
space. It is measured by the cosine of the angle between two vectors and determines 
to which degree two vectors are pointing in the same direction [59]. This property 
is quite useful in various tasks when comparing text pairs, e.g., sentence with 
sentence, word with word, etc. Figure 2.5 illustrates the cosine similarity with a 
two-dimensional example.
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In our approach, we proposed to design a search solution for a combined database 
that included security requirements from STIGs and IEC 62443 standards. 

The core challenge in the designing process was mainly to identify what 
representations could be most adequate to make the search method locate the most 
relevant set of standard requirements, given a complex context that we are dealing 
with in this case. 

We have analyzed various options that include such advanced models as MPNet 
and DistilROBERTA that were pretrained specifically for semantic search [61]. As 
it was already mentioned, for this NLP task, these are the vector representations that 
really matter. Therefore, searching process technically becomes straight following 
(Fig. 2.6): 

1. Transform the source corpus (e.g., STIGs) using the chosen model architecture 
and save it in an optimal format, e.g., CSV file. 

2. Transform the query using the same model as the model chosen to represent the 
source corpus.
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3. Apply cosine similarity to the query vector representation and each element in 
the vector space representing the source corpus. 

4. Finally, sort all the obtained metrics and extract indexes of most similar elements 
in the source corpus. 

In order to evaluate the search method performance and applicability in the 
industry context, we designed a separate prototype including several pretrained 
models, which implement equivalent functionality – semantic search in security 
standards dataset. The principle remains the same regardless of the model archi-
tecture; however, the query results will differ, and their quality has to be assessed 
manually by the users. 

Let us consider again the illustrative example that we provided in the pre-
vious section, the requirements specification by NIST [53] states: the software 
development must practice the principle of least privilege for defining access-level 
requirements of the software system and its associated services. This requirement 
statement is quite generic and that may lead to a misinterpretation. If we apply the 
semantic search in IEC 62443 database [56], we obtain, e.g., the following: 

1. Components shall provide an authorization enforcement mechanism for all users 
based on their assigned responsibilities and least privilege. 

2. Components shall provide, or integrate into a system that provides, the capability 
to enforce password minimum and maximum lifetime restrictions for all users. 

3. Components shall provide an authorization enforcement mechanism for all 
identified and authenticated users based on their assigned responsibilities. 

4. Components shall provide the capability to limit the use of resources by security 
functions to protect against resource exhaustion. 

5. Components shall provide the capability to perform or support integrity checks 
on software, configuration, and other information as well as the recording and 
reporting of the results of these checks or be integrated into a system that can 
perform or support integrity checks.
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This shows that the original requirement by NIST can be semantically mapped 
to several standard requirements. Furthermore, if we apply the semantic search in 
the STIG database for Microsoft Windows platform, we may locate a number of 
recommendations, e.g.: 

1. User rights assignments must meet minimum requirements. 
2. The operating system must employ a deny-all, permit-by-exception policy to 

allow the execution of authorized software programs. 
3. Permissions for program file directories must conform to minimum requirements. 
4. The roles and features required by the system must be documented. 
5. Unauthorized users are granted right to Act as part of the operating system. 
6. Security configuration tools or equivalent processes must be used to configure 

and maintain platforms for security compliance. 
7. Users with administrative privilege must be documented and have separate 

accounts for administrative duties and normal operational tasks. 

Each guideline provides concrete steps to check and fix a number of related 
issues on the operating system level. Thus, the software developer and the DevOps 
specialists may obtain the instructions for security the deployment of the system and 
notice a number of design patterns to be implemented in the software. 

2.5 Discussion 

In this paper we have presented several solutions for classical tasks in NLP4RE 
like requirements extraction and semantic search. Our focus was to design systems 
based on pretrained state-of-art model architectures. 

The first problem was to design an extraction tool for requirements from docu-
mentation or text corpora related to the software specifications. This problem can 
be translated into a NLP classification task with an additional preprocessing step. 
Usually requirements exist in the form of sentences in a specification document. 
That meant that we needed to first extract and clean the sentences from a document, 
which was an additional tedious task by itself. Moreover, for classification with 
the NLP methods, it is required to have a clear definition of characteristics of 
“requirement” sentences that we need to extract. As it was stated earlier, the 
requirement statements vary a lot in form. This imposes a potential bias in a further 
assessment by the NLP models. 

Classifiers based on BERT architecture played a central role in our solution. 
There exist different variants and enhancements for this architecture. For our 
experiments we applied several basic models. For the requirements extraction 
problem, we compared the BERT-based solution with other advanced methods like 
Fasttext and ELMO. Nevertheless, BERT clearly overperformed all those methods. 
To train this model, we prepared a special binary dataset that was based on PURE 
corpus and constructed by manually extracting sentence by sentence and then 
labeling it in accordance with its class. Although one can recognize a requirement
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sentence with a certain degree of confidence, the NLP approach also required non-
requirements class sentences, which cannot be defined that easily. It should be 
noted that this separation on requirement and non-requirement classes can vary 
depending upon the theoretical basis authors take and hypothesis authors are relying 
on. Potential changes in hypothesis and in model architecture may significantly 
influence final results. 

As an advancement of a classification problem, we also designed a classifier 
for identifying security requirements in software specification related texts. In this 
case we applied a pipeline consisting of two models – our previously trained 
model for requirements classification and the model for recognizing security-related 
requirements. The first model serves to extract a set of requirements statements. 
The second model filters out the security-related requirements with an additional 
binary classification step. For this case we created a combined dataset that is 
specifically labeled to distinguish security-related requirements from non-related 
ones. Relabeling PURE corpus-based dataset specifically for security context was 
not enough since the obtained dataset was rather limited. That required us to find 
more additional sources of security-based text samples for training our system. 
The goal was to achieve completeness and impartiality in our experiments. Due 
to inability to assess the class coverage, it might be seen as a biased approach. Still 
as with the previous problem, there is still no consistent and well-established guide 
to follow for labeling the security-related requirements. 

Finally, in this paper we presented our solution for a searching engine to 
query requirements databases of the security guidelines and standards. Our method 
hypothesis was based on the semantic search theory, which today prevails in tasks 
of finding similar text elements, e.g., documents, sentences, etc. In this case, we 
followed a path by relying on high-dimensional representations of requirements 
sentences. We also applied model architectures adapted to a semantic search. The 
essence of the method is to apply a pretrained model and create a set of embeddings 
for the source dataset, i.e., STIG guidelines, IEC62443 requirements. The query 
sentence is vectorized for the same model architecture. The query embeddings 
and dataset vector space are compared using the cosine similarity method. The 
query/standard sentence pair with the highest cosine ranking is selected as the most 
relevant and similar text. We designed several prototypes with different pretrained 
model architectures in order to conduct a thorough evaluation in our future research. 

We have identified several ways with the intent to improve our prototypes. As 
the baseline, the work on cleaning, augmenting, and validating the datasets has to 
continue. There is a need for an improved guide for labeling “requirements” state-
ments and distinguishing “security-related” requirements. In addition, the labeling 
work by human specialists has to be cross validated, so that there is a high degree 
of coherence. In addition, the “security” class of requirements has to be further 
augmented so that it could be possible to filter individual categories of security 
requirements such as data integrity or authentication. Our preliminary studies of 
the current security requirements datasets have shown that many categories are 
underrepresented. Further on, the baseline ML model architecture can be retrained 
on the corpus of security-related text as it was illustrated in [36]. This may
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potentially improve the classification results on several NLP tasks. There is a 
difficulty in evaluating performance of the semantic search methods, since there 
is a lack of an objective quality metric – the semantic relevance is subjective. 
In this context, there is a need to integrate users’ feedback to the evaluation and 
improvement of our methods. 

2.6 Conclusions 

In this chapter we have outlined the current state-of-the-art in NLP for requirements 
engineering and have given several practical examples of application of model 
transfer learning architectures for several security requirements analysis tasks. This 
area is important and is considered an entry point in the VeriDevOps project 
[1]. Indeed, the VeriDevOps methodology starts from automatically assessing 
the newcoming security requirements, e.g., vulnerability reports, users’ requests, 
attacks, and anomalies detected. These requirements have to be properly categorized 
and mapped to the corresponding practices for specific design patterns or counter-
measures implementation. Our work contributes to analysis of security requirements 
specified in natural language. First, we propose to evaluate an incoming request, e.g., 
document or a textual statement as related to security. Second, we offer a semantic 
search mechanism with the goal to map security requirements to an appropriate 
practice. 

In this chapter we have applied the BERT architecture for requirements extraction 
and security requirements filtering as well as MPNet architecture with SBERT for 
semantic search over the cosine similarity metrics. The resulting prototypes Req-
Exp, SecReq, and STIGSearch integrated into the ARQAN tool set[54] demonstrate 
promising results though further evaluation and improvement may be required. 

For providing better support on mapping requirements to recommendations and 
countermeasures, we explore possibilities to link user requirements with STIG 
recommendations and concrete implementations for the security tests. In particular, 
our research on the requirements verification automation with RQCODE [62] is  
an enabler that links the security requirements statements in natural language and 
security verification mechanisms such as tests. 

In the requirements engineering domain, we experiment with the integration of 
our prototypes with various requirements modeling and management tools such as 
Modelio [63] and GitHub/GitLab issue trackers. In addition, the integration with the 
CI/CD tools over the specific pipeline mechanism helps to address the requirements 
analysis automation challenge that has been identified for the DevSecOps area [64]. 
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Chapter 3 
Security Requirements Formalization 
with RQCODE 

Andrey Sadovykh, Nan Messe, Ildar Nigmatullin, Sophie Ebersold, 
Maria Naumcheva, and Jean-Michel Bruel 

Abstract Security requirements vary in nature and form. These requirements may 
come from compliance checklists, implementation guidelines, corporate standards, 
and reports from organizations such as NIST, MITRE, and OWASP. Stakeholders 
may express additional requirements, depending on the context, to address threats 
and vulnerabilities as quickly as possible. Requirements are usually expressed in 
natural language, sometimes accompanied by tests, fixes, or descriptions of attack 
vectors. Analyzing, managing, verifying, validating, and tracing the requirements 
are therefore challenging as it relies heavily on human activity. Formalizing 
requirements for automated analysis and reuse can help to reduce human error-prone 
activities. Seamless Object-Oriented Requirement (SOOR) promotes a paradigm of 
multi-requirement views. In this paradigm, requirements are classes described in an 
object-oriented programming (OOP) language that combines representations in nat-
ural language with those in formal languages, such as LTL or Eiffel. The embedded 
formal language representations can provide means for validating requirements. In 
addition, the major advantage is that OOP supports seamless reuse of requirements 
classes and extensions through inheritance or associations. RQCODE is a novel 
approach based firstly on the implementation of SOOR in Java, and secondly on 
the applicability of SOOR to security requirements. This is done while providing a 
lightweight formalization through the associated tests that validate and strengthen 
system security according to the Security Technical Implementation Guide (STIG). 
We argue that this approach, also known as RQCODE, offers several advantages for 
formalizing, reusing, analyzing, and validating security requirements by automated 
means. In this chapter, we discuss the challenges of requirements specification in 
the cybersecurity domain and present our RQCODE approach. 
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learning · Dataset · Classification · Semantic search · VeriDevOps 

3.1 Introduction 

3.1.1 Context 

Requirements engineering plays a crucial role in software development because it 
specifies the main goals of software applications, as well as the constraints of the 
environment. For example, the functionality a web browser provides to its users 
and the constraints on that functionality are both requirements. Requirements drive 
system development and deployment. They are the first step on the way from 
the customer’s problem to a technical solution [1]. That is, requirements serve as 
a translation of user and business needs into an implementable and operational 
solution. Requirements engineering (RE) aims to define, document, and manage 
requirements to ensure a seamless transition from a problem space to a solution 
space at different stages of development. RE also supports traceability during the 
verification process to demonstrate that requirements are effectively implemented. 
Besides, RE includes various activities, such as requirements elicitation and anal-
ysis, specification, verification, and validation. Requirements elicitation defines the 
process of analysis and review of a set of system requirements through seeking, 
uncovering, acquiring, and elaborating [2]. The requirements specification is most 
often a structured document that gathers the sets of functional and nonfunctional 
requirements that must be imposed on the design and verification of the system [3]. 
The purpose of verification is to guarantee that a system conforms to its requirement 
specification. Validation should ensure that requirements define the system that the 
customer really wants. 

RE addresses the full lifecycle of requirements, which is a significant effort. 
For example, it has been shown that approximately 15% of a project’s effort is 
spent on RE activities. RE is considered to be the most important area of software 
engineering, since errors produced at this stage, if not detected until a later stage 
of software development, can be very costly [4]. Eliciting and specifying adequate 
requirements is therefore essential for a successful software development process. 

Engineering requirements for business, system, or software applications involves 
much more than just functional requirements engineering. One also needs to 
engineer their quality requirements, especially security requirements. Security 
requirements are particularly critical today, when systems must adapt to a hostile 
digital environment [5]. 

Security requirements are of different nature and come in many different 
forms. These requirements can come from compliance checklists, implementation 
guidelines, corporate standards, and reports from organizations such as NIST, 
MITRE, and OWASP. Standardized security requirements and recommendations 
play an important role in the development of secure and trustworthy systems.
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For example, the NIST Computer Security Handbook [6] considers requirements 
as technical features (e.g., access controls), assurances (e.g., background checks 
for system developers), or operational practices, defining security requirements in 
terms of features and functions. In this way, we know which objects containing the 
features need to be protected. It also highlights the underlying core reasons why 
these objects should be protected. In addition, it provides guidance on how to match 
and protect the functionality of the system to the security needs. Other standards 
also address various domains and systems layers. For example: IEC 62443 standard 
[7] deals with the Industrial Internet of Things (IoT) domain; Security Technical 
Implementation Guide (STIG) [8] provides security recommendations for a huge 
list of platforms at operating system and application level; Open Web Application 
Security Project (OWASP) [9] provides best practices and guidelines, mainly for 
web and mobile applications. 

Stakeholders may express additional security requirements depending on the 
context, addressing specific and emergent threats and vulnerabilities in a timely 
manner. 

There are several security concepts to consider when eliciting security require-
ments. The aim of security requirements is to protect assets, which can be anything 
of value to an organization or an individual user. For example, information stored in 
a database server is an asset. Assets may present vulnerabilities that can be exploited 
by attacks. This represents a potential threat to the asset. For example, if a database 
server does not sanitize user input, this constitutes a vulnerability. This vulnerability 
can be exploited by an SQL injection attack that compromises the functionality 
of the database server. As a result, threats can damage assets – the information 
stored in the server. Security requirements provide the verification methods and 
countermeasures to eliminate threats and protect assets. These requirements protect 
security properties such as confidentiality, integrity, and availability. For example, 
“ensure that any user input is validated by a sanitiser” is a security requirement that 
includes the countermeasure “user input validation,” and this security requirement 
helps to safeguard data integrity. Countermeasures, or security controls, can take the 
form of either security mechanisms or security constraints. 

3.1.2 Motivation 

Most companies rely on natural language (NL) to document their requirements, 
either in the form of “requirements documents” or “user stories,” These require-
ments are extracted directly from customer documents, such as a request for 
proposal. They can also be the result of interviews with customers. In both cases, 
the requirements are specified in the domain language specific to the company and 
business area. This is one of the reasons why there are often communication gaps 
between different organizational units, especially when a requirement is specified 
in a very general form [10]. The abovementioned situation is a typical situation 
for security requirements, as a requirement specification may rely entirely on a
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standard such as OWASP or IEC62443, which provide very general guidelines 
that are difficult to verify. In addition, different stakeholders, even within the 
same organization, may use different vocabularies, which makes understanding 
requirements in NL problematic [11]. Providing well-formulated and unambiguous 
requirements in natural language is extremely difficult. It is necessary to increase 
their precision to ensure that the requirements are well understood, implemented, 
verified, validated, and traceable. 

Redundancy of requirements is also a problem. For example, the same require-
ment may be represented several times by different stakeholders and in different 
forms. These redundant requirements may be contradictory or even mutually 
exclusive, i.e. they cannot exist simultaneously in the system [11]. Therefore, 
there is a need for an adequate way to manage customer requirements, avoiding 
redundancy and duplication. 

In addition, stakeholders are often responsible for a specific concern or business 
area and do not necessarily have full technical expertise and understanding of 
the other problem-specific domains. This is typically the case for requirements 
engineers, who sometimes lack knowledge of implementation and testing, while 
testers lack knowledge of the requirements specification [10], making requirements 
verification a challenging and complicated activity. Quality assurance is a costly 
activity that may represent up to 80% of project costs. It is often suggested to left-
shift the quality assurance and verify the system at the early development stages – as 
early as possible. This also concerns the requirements verification and especially for 
quality requirement verification [10]. This results in higher quality of the product, 
as well as reduced cost and time spent on removal of defects at earlier development 
phases. 

Requirements engineering approaches need to manage the verification and 
also the traceability of requirements in large projects. If the mapping between 
requirements and test cases is not clear, it is difficult to ensure traceability. For 
example, if a requirement is removed, a lack of traceability makes it difficult to 
keep track of the tests that also need to be removed. 

Security requirements are usually represented in a natural language form, 
sometimes accompanied by tests, fixes, or attack vector descriptions. Analyzing, 
managing, verifying, validating, and tracing security requirements are thus chal-
lenged since these activities heavily rely on humans being [12]. Formalizing the 
requirements, e.g., requirements documenting and describing in notations such 
as BPMN 2.0, UML, IDEF0, Event-B, etc. for their automated analysis and 
reuse are thus necessary to rigorously validate and verify candidate designs and 
implementations of these requirements and can help reduce human error-prone 
activities, but specific competencies in formalization are required. 

Most formal approaches focus on requirements per se, not directly connected to 
design and implementation [1], which makes it difficult to align requirement engi-
neering with other software engineering tasks. Requirement engineering involves 
upfront and detailed analysis, which can be at odds with agile software development 
[13] and DevOps. Continuous management of requirements is thus a nontrivial 
task, since not all of them are fixed at the beginning, and they may change over
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the course of the project [14, 15]. Besides, it is a challenge to not lose sight of the 
big picture during the implementation of complex requirements [14]. Nonfunctional 
requirements, e.g., security requirements, are often neglected in agile practice [15]. 
For example, user stories usually satisfy only system/product features. 

It therefore appears necessary to unify the software process by allowing require-
ments to benefit from concepts, notations, and tools that are also applicable to other 
development tasks. 

3.2 Related Work 

3.2.1 Requirements Formalization Methods 

To make requirements precise, researchers have for years advocated the use of 
mathematics-based notations and methods, known as “formal.” Many requirement 
formalization approaches exist, differing in their style, scope, and applicability. 

Bruel et al. in [1] have identified five categories of approaches to specify 
requirements: natural language, semiformal, automata/graphs, mathematical, and 
seamless (programming-language-based) that are defined as follows: 

1. Natural language approaches express requirements in English or another human 
language. Natural language has a significant role during requirements formaliza-
tion that has proved to be crucial in the development of computerized systems. 
The required comprehension of system domain knowledge is ensured either via 
documents and text analysis or by means of stakeholder interviews. Similarly, 
validation of the technical specification is conducted by oral discussions and 
interpretation with stakeholders [16]. 

2. Semiformal approaches are based on notations that are partially formalized, 
e.g., SysML. They represent requirements as artifacts (such as SysML.Blocks) 
and connects them to other artifacts to demonstrate semantic relations such 
as dependency, refinement, or derivation [1]. The analysis still remains mostly 
manual by constructing and considering various viewpoints. 

3. Automata/graphs methods are based on automata or graph theory. They deal 
with the concepts of automata, formal languages, grammar, algorithms, com-
putability, decidability, and complexity. Most commonly the requirements are 
formalized as finite automata. A finite automaton is a simply idealized machine 
used to recognize patterns within input taken from some character set [17]. 

4. Mathematical methods are based on fundamental mathematical and algebra 
formalisms such as Event-B [18], alloy [19], form-L [20], VDM [21], and tabular 
relations [22]. 

5. Seamless methods are programming language-based methods [23], applying 
constraint logic and programming by contract. We provide additional details in 
the sections below.
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One of the most important properties of a requirement is verifiability – the ability 
to assess a requirement’s fulfilment. This property directly impacts many other 
properties such as understandability or clearness, correctness, absence of ambiguity, 
and traceability. One may go to the extreme by stating that the requirement is 
properly formalized when a proper verification method is assigned to it. Therefore, 
the formalization may be considered as an activity to define proper verification 
means. In the same direction, formalization of security requirements is necessary 
to rigorously verify and validate candidate designs and implementations against 
these requirements. The sections below analyze the state of the art in reusable 
formalization of security requirements with the focus on security verification. 

3.2.1.1 Formalization Through Verification 

Verifiability is one of the most important properties defining quality of a 
requirement. Verifiability directly impacts understandability and traceability. In 
our approach, a correctly specified requirement has to be verifiable. Verification 
always assumes the presence of some specification against which the verification 
is performed. We thus just say “security verification patterns” when we actually 
mean both specification and verification. Security verification patterns are expected 
to contain reusable specification mechanisms for applying them to arbitrary 
software systems. They are also expected to contain mechanisms for their own 
verification against candidate designs and implementations of the specified system. 
By “verification” we mean both static and dynamic methods. In general, approaches 
to software security assurance can be categorized into two categories: (1) static 
approaches, which work at the implementation level, without running the system 
under analysis, and (2) dynamic approaches, which focus on generating and 
running security tests with properly generated test inputs and an appropriate oracle 
for assessing the test execution results. Static approaches include the following 
categories: 

• Model checking-based approaches, which take as input a formal model of 
the system and model-check the desired properties against that model. These 
approaches require an architectural or a behavioral model of the system as input 
and do not require that the development phase has already started. 

• Code analysis-based approaches, which work with candidate program implemen-
tations of the system. Such approaches require that the development phase has 
already started. 

Dynamic approaches include the following categories: 

• Model-based testing focuses on generating tests and their inputs based on 
architectural and behavioral models of the system. These approaches may 
facilitate test-driven development of the system if the development phase has 
not started yet.
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• Vulnerability testing performs attacks on running applications. Vulnerability 
testing includes the following subcategories: (a) directly attacking the application 
trying to break it using known attack patterns and (b) risk-based testing, which 
attacks the application based on identified security risks that are specific to the 
given problem domain and behavioral description. 

3.2.2 Static Verification and Security Patterns 

Konrad [24], Wassermann [25], Siveroni [26, 27], Zisman [28], Dong [29], and 
Ouchani [30–32] share common research interest, in the sense that they conduct 
model checking of UML models in one or another way. The work by Ouchani et 
al. [33], however, has brought to our attention since it describes an approach to 
formalize the requirements based on CAPEC – Common Attack Pattern Enumera-
tion and Classification. The Common Attack Pattern Enumeration and Classification 
(CAPEC) effort provides a publicly available catalogue of common attack patterns 
that helps users understand how adversaries exploit weaknesses in applications 
and other cyber-enabled capabilities. Attack patterns define the challenges that 
an adversary may face and propose countermeasures; they are descriptions of 
the common attributes and approaches employed to exploit known weaknesses 
in cyber-enabled capabilities. They derive from the concept of design patterns 
[34] applied in a destructive rather than constructive context and are generated 
from in-depth analysis of specific real-world exploit examples. Each attack pattern 
captures knowledge about how specific parts of an attack are designed and executed 
and gives guidance on ways to mitigate the attack’s impact. Attack patterns help 
those developing applications or administrating cyber-enabled capabilities to better 
understand the specific elements of an attack and how to stop them from succeeding. 

In [32], Ouchani and Debbabi defined approaches to specification, verification, 
and quantification of security in model-based systems. The authors model both the 
target systems and the CAPEC patterns as SysML activity diagrams. They then 
compute the probabilities of a given system being vulnerable to each CAPEC pattern 
by submitting the resulting activity diagrams to the PRISM [35] probabilistic model 
checker. 

Kaiya et al. [36] proposed a method for a requirements analyst to automatically 
acquire attack candidates against a functional requirement. This method is the first 
CAPEC-based method to work with requirements as inputs. One can notice that the 
security requirements may only be concretized after functional requirements. This 
is because the functional requirements specify the scope of the system. At the same 
time, the bias is that very often a requirements specification deals with functional 
requirements only, while the security aspects are specified in an extremely generic 
way, mostly as a need to comply with “best practices.” This leads to the problem 
that security is addressed at the later stages of the software process. 

Williams et al. [37, 38] propose an ontology-based collaborative recommender 
system for security requirements elicitation. The proposed approach takes use cases
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on input and identifies relevant CAPEC patterns. It then connects the identified 
CAPEC patterns with the system-specific vocabulary to construct abuse cases [39] 
for the system in question. 

The work of Jurjens [40] proposes encoding security properties in UMLsec, 
an extension of UML. The resulting UMLsec specification is then submitted to 
AutoFocus – a CASE tool that is capable of generating test sequences. These test 
sequences need to be instantiated in the context of a candidate system to actually 
test the said system. 

3.2.3 Dynamic Verification and Security Patterns 

Sudhodanan et al. [41] proposed a methodology in which security experts can create 
attack patterns from known attacks. Then they describe a security testing framework 
that leverages attack patterns to automatically generate test cases for security testing 
of multiparty web applications. This approach relies on proxy-based web security 
scanners to record client-server interactions and automatically detect applicability 
of attack patterns to the recorded interactions. Sudhodanan et al. implemented their 
approach on top of OWASP ZAP proxy-based web security scanner and uncovered 
21 previously unknown vulnerabilities in well-known multiparty web applications. 

Smith and Williams [42] developed six black box security test patterns – for 
(1) input validation vulnerability tests, (2) force exposure tests, (3) malicious file 
tests, (4) malicious use of security functions tests, (5) dangerous URL tests, and 
(6) audit tests. They also developed a tool called Security Test Pattern Instantiator 
(STPI) to help software testers instantiate security test patterns based on functional 
requirements. Finally, Smith and Williams conducted a user case study in which 21 
graduate and 26 undergraduate students used the STPI tool to develop a black box 
security test plan. The study revealed that the novices’ decisions were very close to 
the “golden standard” developed by a committee of experts. 

A comprehensive review of security testing techniques by Felderer et al. [43] 
let us identify another conceptual cluster of pattern-based approaches – risk-based 
approaches. The risk-based approaches use numerical evaluations of risks’ severity 
to define the required level of test coverage when generating test cases for the 
associated risks. That is to say, the higher the risk’s severity is, the more coverage 
will be required from the test cases generated from that risk. 

The DIAMONDS project (ITEA 2) has developed many relevant contributions. 
Schieferdecker et al. provide a general overview of the model-based testing field and 
map the abovementioned project on it [44]. The project is said to focus on risk-based 
security testing and model-based fuzzing. Grosmann et al. [45] described a tool-
based iterative approach that combines the CORAS [46] approach to model-driven 
risk analysis with automated security testing based on patterns such as CAPEC. In 
every iteration of the approach, the risk analysis results are fed into the process 
of identifying relevant security test patterns and then instantiating these patterns 
into actual test cases. The testing results are then fed back into the risk analysis
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process and so forth. Botella et al. [47] proposed an approach that starts with 
risk analysis, relies on an approach similar to CORAS [46], and concludes with 
automated security testing of the target system. The test generation process relies 
on CertifyIt [48], an existing model-based testing (MBT) software. CertifyIt takes 
on input behavioral models of the system expressed as UML statecharts and risk-
based test purposes – formalizations of vulnerability test patterns. Lebeau et al. [49] 
describe the fundamental principles behind model-based security testing. 

3.3 The RQCODE Approach 

3.3.1 Seamless Object-Oriented Requirements (SOOR) 

In the SOOR approach [23], requirements are documented as software classes 
which makes them verifiable and reusable. The key notions of the approach are 
specification drivers and semantic assertions (contracts expressed by pre- and post-
conditions). 

Specification drivers are contracted routines, expressed only in terms of their 
formal arguments, that serve specification purposes. Specification drivers take 
objects to be specified as arguments and express the effect of operations on those 
objects with pre- and post-conditions. The example of a specification driver for the 
requirement “(REQ1) A clock tick increments current second if it is smaller than 
59.”, adapted from [23] is presented in Listing 3.1. 

The Eiffel code in the snippet (Listing 3.1) specifies the clock tick increment 
requirement by defining pre- and post-conditions that can be seen under require and 
ensure statements. 

Seamless Object-Oriented Requirements (SOOR) are concrete classes capturing 
requirements as specification drivers. Specification drivers express formal semantics 
of requirements. Each specification driver is supported with a comment that captures 
a natural language version of the same requirement. 

1 req_1 (clock: CLOCK; current_second: INTEGER) 

2 -- A clock tick increments current second if it is smaller than 59. 

3 require 

4 clock.second <59 

5 clock.second =current_second 

6 do 

7 clock.tick 

8 ensure 

9 clock.second =current_second + 1 

10 end 

Listing 3.1 REQ1 in Eiffel language
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Seamless Object-Oriented Requirements serve as: 

• Proof obligations, since each specification driver captures formal semantics of a 
requirement 

• Parameterized unit tests 

Seamless Object-Oriented Requirement Templates (SOORT) are requirements 
patterns captured in generic and deferred classes. Libraries of requirements tem-
plates for software components and control software temporal properties, imple-
mented in Eiffel, are publicly available [50]. To specify SOOR according to SOORT, 
one needs to inherit from SOORT and replace the generic parameters with specified 
types. 

3.3.2 Requirements as Code (RQCODE) 

RQCODE [51] is a novel approach to apply the Seamless Object-Oriented Require-
ments (SOOR) paradigm to be implemented in Java language. The RQCODE 
approach stands for the representation of requirements as classes that contain var-
ious representations including the textual one: requirements description in natural 
language as well as methods for verifying these requirements, such as an acceptance 
test. In this way, the traceability between a requirement and its implementation is 
direct and can be checked at any time through the execution of the included test. 
Moreover, object-oriented implementation supports easy reuse of requirements and 
tests by the standard means, such as inheritance, provided by the language, e.g., 
Java. One requirement can be an extension or a specialization of another one. Each 
requirement can be considered as a template for requirements of a similar kind, e.g., 
by initializing a requirement class with different parameters. 

It should be noted that we assume that a properly specified requirement should be 
verifiable. RQCODE concepts (Fig. 3.1) include the Requirement abstract class that 
has a mandatory statement attribute for a textual representation of the requirement 
and redefines the check() method from the Checkable interface for the built-in 
verification of the requirement. There are three possible verification results, which 
are PASS, FAIL, and INCOMPLETE. PASS indicates successful result of verification 
execution; FAIL result has to be returned when the verification outputs are incorrect; 
INCOMPLETE relates to the situations when a verification could not be performed. 
There is also the enforceable interface for the cases where a requirement can 
propose a guideline to modify the environment for requirement satisfiability. The 
enforce() method returns the status in the similar form of SUCCESS, FAILURE, or  
INCOMPLETE. This enforcement mechanism is quite useful in the case of security 
requirements, e.g., to initiate countermeasures.
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Fig. 3.1 RQCODE concept classes (UML class diagram) 

1 public class TickIncrementRequirement extends Requirement { 

2 public TickIncrementRequirement() { 

3 super("A clock tick increments current second if it is smaller than 59"); 

4 } 

5 @Override 

6 public CheckStatus check() { 

7 if (Clock.seconds < 59) 

8 return ((Clock.seconds + 1) == Clock.tick()) ? 

9 CheckStatus.PASS : CheckStatus.FAIL; 

10 return CheckStatus.INCOMPLETE; 

11 } 

12 } 

Listing 3.2 REQ1 in Java language 

Considering the requirement from the previous section: “(REQ1) A clock tick 
increments current second if it is smaller than 59.”; the RQCODE class would be as 
follows in Listing 3.2.1 

1 More details of the example are in https://github.com/VeriDevOps/RQCODE/tree/master/src/ 
main/java/rqcode/example

https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
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https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/example
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The TickIncrementRequirement is initialized with the statement parameter that is 
a textual representation of the requirement. The Clock is an external class that shall 
increment its seconds attribute when the tick operation is called. The check() method 
verifies the satisfiability of the requirement with a test. This representation of the 
requirement is arguably easy to read by anyone familiar with Java. This specification 
is verifiable by simple execution of the check() method. One may notice that REQ1 
doesn’t specify what happen if the current second is more than 59. Therefore, in the 
example above, the default output is CheckStatus.INCOMPLETE. 

It is possible to reuse a requirement in this form by using Java mechanisms. In 
the example above, one may notice that REQ1 does not set boundaries on the value 
of seconds. This means that the check() will PASS in case the seconds are negative, 
e.g. Clock.seconds is equal to -1. We can use several ways to set up “(REQ2) Clock 
seconds value must be between 0 and 59” and combine it with REQ1. The first reuse 
possibility is that TickIncrementRequirement class can be used as a parent class to 
the REQ2 requirement that would extend its functionality (Listing 3.3). 

This inheritance mechanism provides a direct traceability link between REQ1 
and REQ2. One may clearly conclude that REQ2 is derived from the REQ1 and 
enhances it. In the meantime, inheritance in Java and OOP has its limitations. In 
Java, only one parent class is allowed. Misusing inheritance links may lead to an 
artificially deep inheritance tree which is commonly recognized as bad practice. 
This practice can lead to difficulties in understanding and maintaining the set of 
classes. The second possibility for reuse is that one can simply combine instances 
of requirement classes to combine REQ1 and REQ2 classes with the association 
mechanism. Imagine that REQ2 is now implemented as a separate Requirement 
class – BoundaryRequirement. The combination of REQ1 and REQ2 may look as 
follows in Listing 3.4. 

Listing 3.3 Derived REQ2 in Java language
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Listing 3.4 Combining REQ1 and REQ2 in Java language 

The advantage of this method is that multiple requirements may be reused to 
form a combined one. The references to these requirements can be easily identified 
and navigated. 

Since requirements specifications in RQCODE are Java classes, this approach 
inherently supports several validation mechanisms. The simplest one is a Java 
semantic check that is provided by the compilers, but there are also a number 
of static analysis methods that are integrated in Java IDEs. Moreover, object-
oriented programming (OOP) analysis can be applied to the collections of security 
requirements. The methods presented in, e.g., [52, 52, 53], may be used to detect 
duplicates, circular dependencies, coupling properties, or depth of inheritance. They 
are relevant for analyzing if the requirements specifications are clear, atomic, non-
contradicting, and verifiable. RQCODE can be applied to security requirements, and 
we present this possibility in the following section. 

3.3.3 RQCODE and Temporal Requirements Patterns 

By analyzing a large number of requirements specifications for temporal properties, 
Dwayer [50, 54] identified that most of those temporal requirements may be mapped 
to very few patterns. Based on this work, we have implemented several temporal 
requirements patterns with the goal to cover the majority of temporal requirements 
kinds. The implemented patterns are listed below: 

• Eventually: P always eventually holds. 
• Globally, Universally: Globally, it is always the case that P holds. 
• After Q Until R Universally P: After Q, it is always the case that P holds until 

R holds. 
• Globally, Universally, Response: Globally, it is always the case that if P holds 

then, unless R holds, Q will eventually hold
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• Timed Globally, Universally: Globally, it is always the case that if P held for T 
time units, then S holds. 

• Globally, Real-Time Response: Globally, it is always the case that if P holds, 
the S eventually holds within T time units. 

Figure 3.2 depicts the structure of the RQCODE temporal patterns package. In 
order to verify eventuality, universality, or precedence with the testing approach, 
we choose to implement a monitoring service in class MonitoringLoop. This  
class periodically checks temporal properties. The other classes implement the 
verification of pre-, post-, and exit conditions as required by the patterns that we 
listed above. 

RQCODE approach supports applying those patterns to requirement specifica-
tions. For example, one may apply the Global Universality pattern to the Tick 
Increment requirement (REQ1).2 

The above RQCODE example (Listing 3.5) can be translated as the following: Glob-
ally, (REQ1) Tick increment requirement must be held for 10 seconds. The REQ1 
will be periodically checked according to the temporal logic of the pattern. We 
believe that this approach can reduce the uncertainty about temporal requirements 
with a practical solution based on testing. 

RQCODE and temporal patterns can be applied to the security requirements that 
we demonstrate in the following section. 

3.3.4 RQCODE and Security Technical Implementation Guide 
(STIG) 

Security Technical Implementation Guides (STIGs) [8] are a collection of guidelines 
for securing IT systems and products for use by the US Department of Defense 
(DoD) and other agencies. These guidelines provide detailed instructions on how 
to configure and secure various types of IT systems, including network devices, 
software, databases, and operating systems. The goal of the STIGs is to reduce the 
risk of cybersecurity threats, breaches, and intrusions by ensuring that IT systems 
are configured in a secure manner. These guidelines also cover: 

• Database management systems 
• Firewalls 
• Virtualization 
• Network storage 
• Industrial control systems 
• Email servers 
• Identity and access management systems

2 More temporal patterns in Java on Github https://github.com/VeriDevOps/RQCODE/tree/master/ 
src/main/java/rqcode/temporal_patterns 

https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
https://github.com/VeriDevOps/RQCODE/tree/master/src/main/java/rqcode/temporal_patterns
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1 TickIncrementRequirement tr = new TickIncrementRequirement(); 

2 ttr = new GlobalUniversalityTimed(tr, 10); 

3 setStatement(ttr.toString()); 

Listing 3.5 Applying a temporal pattern to REQ1 in Java language 

• Web servers 
• Security information and event management systems 

STIGs provide detailed guidance on how to configure and secure these types 
of systems, including specific settings and configurations that should be used to 
minimize the risk of cybersecurity threats. The guidelines are regularly updated to 
reflect the latest industry best practices and to address newly discovered vulnerabil-
ities. The STIG collection consists of findings which have a specific structure. The 
description of each finding includes general information such as version, severity, 
ID, and a brief description, as well as details including two sections, Check Text and 
Fix Text. The Check Text section describes the conditions that the system should 
meet to prevent a security problem, for example, the correct configuration of an 
operating system. The Fix Text helps to resolve specific security issues, for example, 
through OS configuration. 

We applied the SOOR paradigm to implement STIG guidelines as RQCODE 
requirements (Fig. 3.3) that incorporate specific check and enforced methods to 
verify that the guidelines are enabled or to fix the security issue. The CheckText 
translates into test routines for the check() method, while the FixText translates into 
the enforce() method. Let us consider a STIG that provides specific recommenda-
tions for configuring and securing systems running on Ubuntu Linux. For example, 
STIG recommendation V_2191573 states: The Ubuntu operating system must not 
have the Network Information Service (NIS) package installed., since Removing the 
Network Information Service (NIS) package decreases the risk of the accidental (or 
intentional) activation of NIS or NIS+ services. It recommends disabling certain 
packages or services that are not needed for the system’s intended purpose, as they 
could potentially introduce security vulnerabilities. In RQCODE this requirement 
may look as on Listing 3.6. 

In the example above, one may notice the application of the “reuse by inheri-
tance” that we introduced earlier. The UbuntuPackagePattern (Fig. 3.4) is a specific 
type of requirement that we call a pattern. 

This class implements all required functionality to check the presence of a 
specific Ubuntu package as well as to enable or disable this package as a security 
enforcement measure. In addition, the UbuntuPackagePattern parameterizes the 
requirement statement text to provide the details of the STIG requirement in natural 
language. The STIG V_2191584 states that The Ubuntu operating system must not 
have the rsh-server package installed. By reusing the UbuntuPackagePattern the 
RQCODE expression of this requirement may look like in Listing 3.7:

3 https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219157 
4 https://www.stigviewer.com/stig/canonical_ubuntu_18.04_lts/2021-06-16/finding/V-219158 
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1 public class V_219157 extends UbuntuPackagePattern { 

2 public V_219157() { 

3 super("nis", false); 

4 } 

5 } 

Listing 3.6 STIG V_219157 in RQCODE by applying UbuntuPackagePattern 

Fig. 3.4 UbuntuPackagePattern class in RQCODE (UML class diagram) 

1 public class V_219158 extends UbuntuPackagePattern { 

2 public V_219158() { 

3 super("rsh-server", false); 

4 } 

5 } 

Listing 3.7 STIG V_219158 in RQCODE by applying UbuntuPackagePattern 

There are many package-related STIGs in the repository. Applying RQCODE 
with UbuntuPackagePattern supports redundancy avoidance, duplication and easy 
maintenance of these sets of requirements, since the fixes in this class will be 
propagated to all children requirements. In addition, one can notice that the rule 
for disabling the NIS package can be applied to many operation environments such 
as different versions of Ubuntu (18, 20, etc.) or even different distributions such 
as CentOS. To reuse the security implementation guidelines, one can generalize 
the UbuntuPackagePattern class for the CentOS as well by simply switching the 
package management routines from apt to rpm.



3 Security Requirements Formalization with RQCODE 83

Fig. 3.5 RQCODE framework structure (UML class diagram) 

3.3.5 RQCODE Framework 

The structure of the RQCODE framework [55] is presented in Fig. 3.5. 
The framework includes specific packages for the baseline concepts and temporal 

patterns since they represent the foundation. For the experimentation purposes, we 
prototyped examples for Windows 10 and Ubuntu 18 related STIGS. STIGS-related 
classes are separated in a specific package including specifics for the Windows 10 
and Ubuntu 18.4 platforms. In addition, each of these platform packages includes 
the patterns sub-package. These pattern sub-packages contain the extracted platform 
specific patterns – generalized classes, such as UbuntuPackagePattern, that simplify 
the reuse of STIG requirements and guidelines. 

The current framework is under evaluation by our industry partners and is subject 
to further refactoring, improvements, and enhancements. In particular, we are 
implementing a mechanism for users to indicate the need to implement additional 
STIGs. There is also ongoing research on integrating the RQCODE framework into 
DevSecOps practices. 

3.4 Discussion 

3.4.1 Approach for Evaluation 

RQCODE framework is currently under evaluation in the VeriDevOps Project. In 
this subsection we would like to discuss our approach for assessing the RQCODE 
performance. When designing RQCODE we intended to contribute with improve-
ments in several RE areas:
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1. Better specification – RQCODE is more formal than requirements statements in 
natural language, since each requirement class incorporates a verification means 
that can be executed on the design model or on the target system. 

2. Simplified formalization – compared to several other methods based on formal 
logic. 

3. Better traceability – since a requirement in RQCODE incorporates a verification 
method – generally a test case. Thus, it is completely transparent that if a 
verification verdict is satisfactory the requirement is fulfilled and vice versa. 

4. Better reuse – since RQCODE embrace OOP, requirement is a class that can 
be instantiated or extended. New requirements can be created as extensions of 
requirements that were previously specified. All that is in accordance with OOP 
rules. 

5. Support for analysis automation – one can assume several ways to automate 
the requirements analysis with RQCODE. First, the verification means can be 
executed to assess the requirement fulfilment for each requirement. Second, 
OOP analysis tools can be applied to assess the quality of requirements classes 
themselves. For example, by applying the depth of inheritance (DI) metrics for 
maintainability index metrics, one can draw an analysis for a given requirement 
class or a set of requirements classes. 

6. Better integration with development environments and CI/CD platforms – a 
requirement in RQCODE is a piece of code. The industry has created a multitude 
of IDEs, repositories, analysis and management tools that can be directly applied. 
These tools are very well-known and adopted by the developers and may 
facilitate adoption of the RQCODE approach. Moreover, RQCODE has a natural 
capacity to integrate with the modern CI/CD platforms. The usage of those 
platforms is mainstream in quality management nowadays. The platforms help to 
accelerate delivery in the high pace development environment with quick releases 
to address the changing demand and incoming requests. This is of particular 
interest since new security requirements may come at any moment and have to 
be addressed as quickly as possible in development and in operations. 

While conducting preliminary evaluation and interviews with potential users we 
discovered several challenges to RQCODE approach: 

1. Java code is not necessarily a simple replacement for the requirements in textual 
form. While it may be simpler for developers who are acquainted with Java and 
OOP, in general, Java requires some substantial background knowledge. 

2. Verifying a requirement presumes setting up a test environment. This may not 
necessarily be available at any moment, for example, when specifying a property 
of a “system to be.” 

3. Specifying a comprehensive way to verify a security requirement may be quite 
tedious or even impossible in a general case. Simpler testing approaches may 
result in useful but extremely partial analysis. 

4. There is a need for a proper methodology and tool support that would help users 
to apply the RQCODE concepts and automate the analysis.
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The above challenges require more analysis. At the time of writing this chapter, we 
concentrate on setting up a method for evaluating the potential benefits. For that we 
designed a multistep approach: 

1. We developed a tutorial with the goal to demonstrate the benefits of the approach 
such as specification, traceability, and reuse. 

2. Potential users are invited to complete exercises to obtain hands-on experience 
with RQCODE. 

3. The users are invented to respond to a survey. 

For the survey design, we choose the following major categories: 

• Ability of RQCODE to correctly represent security requirements 
• Ability of RQCODE to correctly verify the security requirement fulfilment 
• Easiness to trace a requirement specified in RQCODE 
• Easiness to reuse a requirement specified in RQCODE 
• Easiness to analyze a requirement specified in RQCODE 
• Easiness to maintain a requirement specified in RQCODE 

The evaluation approach that we presented above is planned to be run with our 
industry partners to collect the feedback on RQCODE applicability to security 
requirement specification and verification. 

3.4.2 Comparison to Other Requirements Formalization 
Methods 

In this section we compare RQCODE with approaches mentioned in Sect. 3.2.1) 
with a goal to highlight its advantages and limitations. The results used below for 
all methods except RQCODE are extracted from the abovementioned survey [1]. 

The assessed capabilities of the surveyed approaches are: 

• Formalization of functional requirements: assess the method capability to 
represent system’s functional requirements in a formal notation. 

• Formalization of nonfunctional requirements: assess the method possibility 
of specifying nonfunctional requirements in a formal notation. 

• Validation/verification: assess how the approach evaluates the system’s 
response to different inputs. Validation stands for checking systems behavior 
against user’s or customers’ needs. Verification represents a capability to assess 
the system’s compliance to the specification. 

• Traceability: the ability to establish and control the links among requirements, 
specifications, design, code, and other artifacts. 

• Reuse: the capability to create a new requirement specification as a copy or an 
extension of an existing one.
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• Maintenance: over time requirements change or get refined, the trace links 
created, deleted, or updated. The maintenance capability indicates the facility 
of a method to handle the updates in the existing requirement specification. 

• Tool support: the tool support is often cited as a barrier to adoption of a method. 
This property indicates to which extent a method is covered by specific tools, 
e.g., requirements elicitation, verification, validation, and management. 

• Learning barrier: addresses the expected level of maturity and technical 
expertise of the users. 

• Analysis: is the ability of a method to support requirements analysis activities 
such as determining whether a set of requirements is clear, complete, undupli-
cated, concise, valid, consistent and unambiguous, and resolving any apparent 
conflicts. 

• Developer friendliness: the developers are the major stakeholders in the system 
implementation process; they have to clearly understand the requirements and the 
ways these requirements are verified and validated. The developer friendliness 
indicates the ability of a method to simplify handling of a requirement by a 
developer. 

The ability of a method to support the abovementioned capabilities is evaluated 
based on the following scale: 

• “.+ + +” – Full matching (90–100%) 
• “. ++” – Matches with minor deviation (70–90%) 
• “. +” – Matches partially (50–69%) 
• “.+/−” – Has few matches (0–49%) 
• “. −” – Negative match 

We provide below a discussion of the approaches and their properties as 
compared to RQCODE (Table 3.1): 

Natural language is the most used method to specify the requirements on all the 
levels of system specification – from business goals to inputs and outputs of specific 
functions. The greatest advantage of the natural language is flexibility and the 
highest expressive power to specify the requirements in the most natural way. There 
exist several formalization enforcement approaches using specific lexical structure 
(MoSCoW rules [56]), ontologies and templates, and guidelines for seminatural 
language specification (Given-When-Then [57], (T) EARS) [58, 59]. Unfortunately, 
as has been pointed out in many papers, the formalization power of natural language 
is low, leading to errors of omission and commission due to misunderstanding and 
misinterpretation of requirements. Natural language requirements can be handled 
using many tools such as DOORS, REUSE, and ticketing systems such as JIRA. 
These tools also provide the ability to manually specify relationships between 
requirements, e.g., using hyperlinks. However, support for automating analysis, 
verification, and validation is rather poor. 

Semiformal approaches such as SysML[60] and EAST ADL [61] or ArchiMate 
[62] provide notation with defined semantics with the goal to specify various 
aspects of a system. SysML and EAST ADL provide means to define the high-
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level components of the system and to specify operational rules and constraints. The 
architectural element can be linked to the requirement objects. The requirements 
are expressed in natural language, but the relationships between requirements can 
have specific meanings such as “refinement” or positive and negative “influence.” 
The constraints can be specified in a mathematical language as a function of 
parameters specified in the model. There are several methods for analyzing these 
models, for example, by mapping them to frameworks such as MATLAB. However, 
several challenges remain: (1) the model and the traceability links have to be 
maintained manually, (2) there are certain concerns about the maintainability of 
large-scale models, and (3) the approaches are aimed at system architects and are 
less developer-friendly. 

Mathematical approaches, e.g., Isabelle [63], B [64], Event-B [18], etc., are 
capable of formalizing functional requirements since they rely on mathematical 
formalisms. For example, Event-B is a formal modelling and verification approach 
that can model the static and dynamic parts of a system using contexts and 
machines based on refinements. Requirements represented in Event-B can be 
verified using the proof obligations associated with a model and its refinements, 
each of which includes contexts and machines. The expression in each level of 
refinement must be proven to be consistent with its higher level. Therefore, this 
category of approaches is capable of verifying and validating requirements. As 
Even-B is based on refinement, high-level models can be reused in lower levels, 
and Even-B models can also be reused by other relevant projects. It is also tool-
supported. Requirement engineers can use the Rodin environment in which they can 
define Event-b models, refine models, and verify with proof obligations. However, 
users are expected to have some knowledge of how to use Rodin and define 
models. Current mathematical approaches are efficient in formalizing, verifying, 
and validating functional requirements, which define specific behavior or functions 
but are less efficient in dealing with nonfunctional requirements, which specify 
criteria by which the operation of a system can be judged. 

Automata/graph-based approaches (e.g., LTL [65], problem frames [66] (Jack-
son 2005) and FSP/LTSA [67]), support the formalization of functional require-
ments. These approaches are based on the mathematical theories of graphs and 
automata and are supported by effective graphical representations. Thus, despite 
their mathematical foundations, they are easy to use (they are particularly popular 
with students). These approaches are mainly dedicated to dynamic representations 
and can be complemented with formal notations that allow them to be validated and 
verified, but if this is true for LTSA, for example, (safety), this is not the case for 
problem frames that do not provide any verification way. 

RQCODE, compared to the other methods, has several advantages. In particular, 
it is considered to be developer friendly as it is implemented as a Java framework. 
So developers who are familiar with unit testing – presumably any Java developer – 
will be able to use RQCODE. Requirements in RQCODE are source files, which are 
handled naturally in version control repositories such as GitHub, and test automation 
is applied using continuous integration pipelines. Reuse methods are common in 
Java development and are therefore natural in RQCODE. There are a number of
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automated tools for static and dynamic analysis of Java code. These tools can be 
applied to RQCODE classes representing requirements to provide an analysis of 
the RQCODE specification in terms of, for example, maintainability. Expressing 
requirements in Java also has its limitations. Java is a programming language that 
has its rules and requires quite concrete instructions to obtain compilable code. 
Compared to natural language, the expressiveness and flexibility of RQCODE is 
lower, while there is a need to learn and use a general purpose programming 
language. However, compared to more formal methods, the learning barrier should 
be lower, while the number of tools for editing, handling, and managing RQCODE 
classes should facilitate the adoption of this approach. 

3.5 Conclusions 

In this paper we have outlined the current approaches for requirement engineering 
that provide formalized means for verification. We claim that these methods are 
not necessarily developer-friendly as they require expert knowledge and lack tool 
support. To cope with these limitations, we propose the RQCODE method which 
suggests using the Java programming language to express requirements within 
classes that incorporate verification means, e.g., tests. We argue that this method 
enhances reusability and traceability for requirements specifications. We illustrate 
how RQCODE can be applied to the security domain and in particular with the set 
of requirements from the Security Technical Implementation Guide. We illustrate 
the reuse mechanisms with several examples. The work on RQCODE is currently 
ongoing, and we prepare the evaluation stage where we plan to gather feedback 
from industry partners. In particular we plan to run a dedicated tutorial that targets 
to demonstrate the presumed benefits of the RQCODE approach. At the end of the 
tutorial, we plan to gather the feedback in a form of a survey that analyses industry 
perceptions. The source code of the RQCODE framework and the STIG examples 
is publicly available [55]. We plan to further refactor, maintain, and enhance this 
project. We are interested in comparing this approach with test-driven development 
and analyze the RQCODE usage within the continuous integration and delivery 
paradigm. Another area of research is the DevSecOps practices, where RQCODE 
requirements related to security may be located, imported, or reused with the goal 
to automate security requirements analysis and verification. 
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Part II 
Prevention at Development Time



Chapter 4 
Vulnerability Detection and Response: 
Current Status and New Approaches 

Ángel Longueira-Romero, Rosa Iglesias, Jose Luis Flores, and Iñaki Garitano 

Abstract The rapid evolution of industrial components, the paradigm of Industry 
4.0, and the new connectivity features introduced by 5G technology all increase 
the likelihood of cybersecurity incidents. These incidents have to be managed to 
limit or mitigate their impact, and in most cases, they are a consequence of existing 
vulnerabilities. This scenario raises the need for a tool that enables a faster (tracking 
the vulnerability state over time) and more precise (detect root cause) response. 
The defined Extended Dependency Graph (EDG) model is capable to respond to 
this need, being able to analyze known vulnerabilities for a given device over 
time. The EDG model can be applied throughout the entire lifespan of a device 
to track vulnerabilities, identify new requirements, root causes, and test cases. It 
also helps prioritize patching activities. This chapter defines the key terms used in 
vulnerability analysis, as well as the current state of the art of vulnerability analysis 
in both scientific literature and standards. The EDG model is described in more 
depth together with its fundamental elements: (1) the directed graph representation 
of the internal structure of the device, (2) the set of quantitative metrics based on the 
Common Vulnerability Scoring System (CVSS), and (3) the algorithm to build the 
EDG for a given device. 
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4.1 Introduction 

Embedded systems (ES) are the driving force of almost every industrial field, such 
as automotive, energy production, and transportation [12, 21, 22, 29, 68]. These 
types of components are rapidly evolving [55, 63] and increasing in number [70]. 
This increasing is related to several factors: (1) The reuse of open-source hardware 
and software (2) New connectivity features (3) More complex systems 

Open-source hardware and software, and commercial off-the-shelf (COTS) 
components are being integrated to speed up their development [25, 65, 66]. COTS 
are easy to use, but they can introduce vulnerabilities, creating potential entry points 
for attackers [46, 77]. 

Industrial components are providing more advanced connectivity features, 
enabling new automation applications, services, and data exchange. This new 
connectivity, boost by the fifth generation (5G) of wireless technology for cellular 
networks, will further open the window of exposure to any threat [13, 22, 44, 70]. 

The complexity of industrial systems is also increasing with the integration of 
new trends, such as the Internet of Things (IoT) [8, 13, 18, 23], cloud computing, 
artificial intelligence (AI) [18, 75], and big data. The extensive use of these 
technologies further opens the windows for attackers [9, 15, 37, 45, 71, 73]. 
Complexity is a critical aspect of industrial components design, because it is closely 
related to the number of vulnerabilities [1, 47]. 

This scenario point security is a key aspect of ESs. Moreover, numerous attacks 
have been reported targeting industrial enterprises across the globe since 2010 [36]. 
An exponential rise in such attacks is predicted for future years [20, 64]. 

In summary, the rapid evolution of ESs, their connectivity, and the integration 
of more and more features increase their attack surface. This makes it essential 
to protect their use in environments such as critical infrastructures [60, 69]. The 
sophistication of attacks, a larger attack surface, and the ease of attacks thanks to 
exploits and tools that decrease the necessary knowledge of the attackers highlight 
the need to invest more in cybersecurity. The numerous attacks targeting industrial 
enterprises across the globe since 2010 reinforce this fact [36], and an exponential 
rise in such attacks is predicted for the upcoming years [20, 64]. As a consequence, 
security is turning into a critical issue for ESs [19]. However, security by itself is not 
enough, and the degree of coverage of the implemented countermeasures also has 
to be evaluated to know whether they are sufficient. Tracking the security status of 
an ES [5, 35] and considering both software and hardware in the evaluation would 
also be desirable [6, 29, 42, 74]. 

4.2 Background 

In this section, the basic concepts related to embedded systems, cybersecurity, and 
vulnerability analysis are presented.
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• Embedded Device: Special purpose device designed to directly monitor or con-
trol an industrial process (e.g., PLCs, and wireless field sensor devices) [30, 32]. 
Typical attributes of these devices are limited storage, limited number of exposed 
services, programmed through an external interface, embedded operating systems 
(OSs), or firmware equivalent, real-time scheduler, may have an attached control 
panel, and may have a communications interface. 

• System Under Test (SUT): Any system or component that is the objective of any 
kind of evaluation [11]. 

• Vulnerability analysis: Systematic examination of an information system or 
product to determine the adequacy of security measures, identify security defi-
ciencies, provide data from which to predict the effectiveness of proposed security 
measures, and confirm the adequacy of such measures after implementation, 
including the identification and characterization of potential security vulnerabili-
ties [31, 59]. 

• Weakness: Weaknesses are flaws, faults, bugs, and other errors in software and 
hardware design, architecture, code, or implementation that, if left unaddressed, 
could result in systems, networks, and hardware being vulnerable to attacks [53] 
(e.g., buffer overflow). 

• Vulnerability: Flaw in a software, firmware, hardware, or service component 
resulting from a weakness that can be exploited, causing a negative impact to 
the confidentiality, integrity, or availability of an impacted component or com-
ponents [51]. Vulnerabilities can be classified as both known and unknown [7]. 
In some cases, unknown vulnerabilities might be known for a group of attackers 
that do not want to disclose their knowledge to take malicious advantages of it 
(zero-day vulnerabilities) [24]. 

• Attack Pattern: An attack pattern is a description of the common attributes 
and approaches employed by adversaries to exploit known weaknesses in cyber-
enabled capabilities [49]. Attack patterns define the challenges that an adversary 
may face and how they go about solving it. 

• Common Platform Enumeration (CPE) Scheme: Naming scheme1 for describ-
ing and identifying applications, operating systems, software, and hardware, 
including industrial control systems, such as supervisory control and data acqui-
sition (SCADA) [43, 57]. CPE is operated by the NIST [61]. The latest version at 
the time this chapter was written is version 2.3. 

• Common Weakness Enumeration (CWE): Community-developed list of com-
mon software and hardware weakness types, each one associated with some CVEs 
(explained in the next subsection) [53, 54]. CWE is operated by the MITRE 
Corporation [48]. The latest version at the time this chapter was written is version 
4.3. 

• Common Vulnerabilities and Exposures (CVE): List of common identifiers for 
publicly known cybersecurity vulnerabilities [52, 53, 58] operated by the MITRE

1 Version 8.0.6001 of Internet Explorer for its beta update can be represented using version 2.3 of 
the CPE as cpe:2.3:a:microsoft:internet_explorer:8.0.6001:beta:*:*:*:*:*:* 
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Fig. 4.1 Relationship between the security standards defined by MITRE and NIST. (Taken 
from [16]) 

Corporation [48]. Each CVE includes its severity [16]. The latest CVE version is 
always available in its official site.2 

• Common Vulnerability Scoring System (CVSS): Public framework that pro-
vides a standardized method for assigning quantitative values (scores) to security 
vulnerabilities (CVE) [58] according to their severity [17]. A CVSS score is a 
decimal number in the range [0.0, 10.0]. The latest version at the time this chapter 
was written is version 3.1. 

• Common Attack Pattern Enumeration and Classification (CAPEC): Com-
prehensive dictionary that provides a publicly available classification taxonomy 
of known attack patterns (security threats) [50]. CAPEC utilizes a qualitative 
approach, rating both likelihood and impact in a five-step value scale ranging 
from very low to very high. Finally, each CAPEC records the weaknesses (CWEs) 
that the attack pattern can exploit. The latest version at the time this chapter was 
written is version 3.4. 

Figure 4.1 shows the relationship between the different standards [16]. 

4.3 State of the Art of Vulnerability Analysis in ESs 

This section presents the current status of vulnerability analysis, both in the 
literature and current standards.

2 https://cve.mitre.org/ 

https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://cve.mitre.org/
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4.3.1 Vulnerability Analysis in Security Standards 

This review is focused on how standards conduct vulnerability analysis, the use of 
metrics, their management of the life cycle of the device, the techniques that they 
propose, and the security evaluation of both software and hardware. 

4.3.1.1 ISA/IEC 62443 

The ISA/IEC 62443-4-1 technical document [31] specifies that vulnerabilities in 
a product should be identified and characterized, including known and unknown 
vulnerabilities [7, 24]. Two requirements in the standard are related to vulnerability 
analysis [31]: 

• Requirement SVV-3. Vulnerability Testing Perform tests that focus on identify-
ing and characterizing potential and known security vulnerabilities in the product 
(i.e., fuzz testing, or black box known vulnerability scanning). 

• Requirement SVV-4. Penetration Testing Identify and characterize security-
related issues, focusing on discovering and exploiting security vulnerabilities in 
the product (i.e., penetration testing). 

4.3.1.2 Common Criteria 

The CC defines five tasks in the Vulnerability Assessment class [14]: 

1. Vulnerability survey 
2. Vulnerability analysis 
3. Focused vulnerability analysis 
4. Methodical vulnerability analysis 
5. Advanced methodical vulnerability analysis 

Every task checks for the presence of publicly known vulnerabilities. Penetration 
testing is also performed. The main difference among the five levels of vulnerability 
analysis described here is the deepness of the analysis of known vulnerabilities and 
the penetration testing. 

4.3.2 Vulnerability Analysis in the Literature 

In this subsection, the most relevant works related to vulnerability analysis are 
reviewed. 

Vulnerability analysis efforts are mainly focused on computer networks. For this 
reason, most of the current research is based on directed graphs.
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Homer et al. [26] presented a quantitative model for computer networks that 
objectively measures the likelihood of a vulnerability. Attack graphs and individual 
vulnerability metrics, such as CVSS, and probabilistic reasoning are applied to 
produce a sound risk measurement. 

Zhang et al. [27, 76] developed a quantitative model that can be used to aggregate 
vulnerability metrics in an enterprise network based on attack graphs. 

George et al. [20] propose a graph-based model to address the security issues 
in Industrial IoT (IIoT) networks. It represents the relationships among entities and 
their vulnerabilities, serving as a security framework for the risk assessment of the 
network. Risk mitigation strategies are also proposed. 

Poolsappasit et al. [67] propose a risk management framework using Bayesian 
networks that enables a system administrator to quantify the chances of network 
compromise at various levels. 

Muñoz-González et al. [56] propose the use of efficient algorithms to make 
an exact inference in Bayesian attack graphs, which enables static and dynamic 
network risk assessments. This model is able to compute the likelihood of a 
vulnerability and can be extended to include zero-day vulnerabilities, attacker’s 
capabilities, or dependencies between vulnerability types. 

Hu et al. [28] Hu et al. propose a network security risk assessment method that 
is based on the improved hidden Markov model (I-HMM). 

Longueira-Romero et al. [38] proposed an Extended Dependency Graph (EDG) 
model that performs continuous vulnerability assessment to determine the source 
and nature of vulnerabilities and enhance security throughout the entire life cycle of 
industrial components. The proposal is built on a directed graph-based structure and 
a set of metrics based on globally accepted security standards. 

4.4 Vulnerability Analysis Approaches: Analyzing Extended 
Dependency Graphs (EDG) 

In this section, we review in more detail the Extended Dependency Graphs (EDGs) 
approach for vulnerability analysis in ESs. EDGs are intended to: 

• Identify the root causes and nature of vulnerabilities, which will enable the 
extraction of new requirements and test cases. 

• Extract new requirements and test cases. 
• Support the prioritization of patching. 
• Track vulnerabilities during the whole lifespan of industrial components. 
• Support the development and maintenance of industrial components. 

To accomplish this task, the EDG model comprises two basic elements: (1) the 
model itself, which is capable of representing the internal structure of the system 
under test, and (2) a set of metrics, which allow conclusions to be drawn about 
the origin, distribution, and severity of vulnerabilities. Both the model and metrics
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are very flexible and exhibit some properties that make them suitable for industrial 
components and can also be applied to enhance the ISA/IEC 62443 standard. 

The content in this section is distributed into three subsections, namely: 

1. Model: The EDG model is explained, together with the systems in which it can 
be applied and the algorithms that are used to build it. 

2. Metrics: Metrics are a great tool to measure the state of the system and to track 
its evolution. The proposed metrics and their usage are described in this section. 

3. Properties: The main features of the EDG model and metrics (e.g., granularity 
of the analysis, analysis over time, and patching policy prioritization support) are 
described in detail. 

4.4.1 Description of the Model 

The EDG model is based on directed graphs. It requires knowledge of the internal 
structure of the device to be evaluated (i.e., the assets, both hardware and software, 
that comprise it and the relationships between them). This section defines the most 
basic elements that make up the model, the algorithms to build it for any give system, 
and its graphical representation. 

Definition 4.1 A system under test (SUT) is now represented by an Extended 
Dependency Graph (EDG) model .G = (<A,V >, E) that is based on directed graphs, 
where A and V represent the nodes of the graphs, and E represents its edges or 
dependencies: 

• .A = {a1, . . . , an} represents the set of assets in which the SUT can be decom-
posed, where n is the total number of obtained assets. An asset a is any component 
of the SUT that supports information-related activities and includes both hardware 
and software [4, 34, 41]. Each asset is characterized by its corresponding Common 
Platform Enumeration (CPE) [10, 43, 57] identifier, while its weaknesses are 
characterized by the corresponding CWE identifier. In the EDG model, the assets 
are represented by three types of nodes in the directed graphs (i.e., root nodes, 
asset nodes, and cluster). 

• .V = {v1, . . . , vq} represents the set of known vulnerabilities that are present 
in each asset of A, where q is the total number of vulnerabilities. They are 
characterized by the corresponding CVE and CVSS values. In the EDG model, 
vulnerabilities are represented using two types of nodes in the directed graphs 
(i.e., known vulnerability nodes and clusters). 

• .E = {eij |∀i, j ∈ {1, . . . , n + q} such that i /= j} represents the set of edges 
or dependencies among the assets and between assets and vulnerabilities. . eij

indicates that a dependency relation is established from asset . ai to asset . aj . 
Dependencies are represented using two different types of edges in the EDG (i.e., 
normal dependency and deprecated asset/updated vulnerability edges).
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In other words, the EDG model can represent a system, from its assets to its 
vulnerabilities, and dependencies as a directed graph. Assets and vulnerabilities are 
represented as nodes, whose dependencies are represented as arcs in the graph. The 
information in the EDG is further enhanced by introducing metrics. 

The EDG model of a given SUT will include four types of node and two types of 
dependencies. The graphical representation for each element is shown in Table 4.1. 
Figure 4.2 shows an example of a simple EDG and its basic elements. All of the 
elements that make up an EDG will be explained in more detail below. 

Table 4.1 Overview of the information that is necessary to define each of the EDG elements 

Symbol Notation Meaning Values 

.□ .A(t) root Node/ Device 
node 

. CPEcurrent

.○ .a(t) Asset node . CPEprevious , CPEcurrent , CWEai
(t)

. .a(t) Cluster . {CPEprevious , CPEcurrent , CWEai
(t)},

. {CV Eai
(t), CV SSvi

(t), CAPECwi
(t)},

. {Dependencies}
.▼ .v(t) Known vulnerability . CV Eai

(t), CV SSvi
(t), CAPECwi

(t)

.−→ .e(t) Dependency relation – 

.--→ .e(t) Updated asset/patched 
vulnerability 

– 

a4 

At 

a1 

a5a2 a3 

Normal 

dependency 

Deprecated 

asset 

Deprecated 

vulnerability 

Root 
node 

Asset 
nodes 

Vulnerability 
nodes 

Fig. 4.2 Basic elements of an EDG. Note that clusters are not displayed in this figure. For clusters, 
see Fig. 4.4. For metrics definition, see Sect. 4.5
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4.4.2 Types of Node 

The EDG model uses four types of node: 

• Root nodes represent the SUT. 
• Asset nodes represent each one of the assets of the SUT. 
• Known vulnerability nodes represent the vulnerabilities in the SUT. 
• Clusters summarize the information in a subgraph. 

Root nodes (collectively, set . GR) are a special type of node that represent the 
whole SUT. Any EDG starts in a root node and each EDG will only have one single 
root node, with an associated timestamp . (t) that indicates when the last check for 
changes was done. This timestamp is formatted following the structure defined in 
the ISO 8601 standard for date and time [33]. 

Asset nodes (collectively, set . GA) represent the assets that comprise the SUT. 
The EDG model does not impose any restrictions on the minimum number of assets 
that the graph must have. However, the SUT can be better monitored over time when 
there are a higher number of assets. Moreover, the results and conclusions obtained 
will be much more accurate. Nevertheless, each EDG will have as many asset nodes 
as necessary, and the decomposition of assets can go as far and to as low level as 
needed. 

Each asset node will be characterized by the following set of values: 

• .CPEcurrent : Current value for the CPE. This points to the current version of the 
asset it refers to. 

• .CPEprevious : Value of the CPE that identifies the previous version of this asset. 
This will be used by the model to trace back all the versions of the same asset 
over time, from the current version to the very first version. 

• .CWEai
(t): Set of all the weaknesses that are related to the vulnerabilities present 

in the asset. The content of this list can vary depending on the version of the asset. 

Figure 4.3 illustrates how the tracking of the versions of an asset using CPE 
works. On the one hand, version . ai is the current version of asset a. It contains its 
current CPE value and the CPE of its previous version. On the other hand, . a2 and 
. a1 are previous versions of asset a. The last value of . a1 points to a null value. This 
indicates that it is the last value in the chain and therefore the very first version of 
the asset a. 

Fig. 4.3 Tracking 
dependencies between the 
previous and current CPE 
values for asset a 

a2 

At 

ai a1 

CPEi-1)(CPEi, CPE1)(CPEc2, )(CPE1, 

...
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Known vulnerability nodes (collectively, set . GV ) represent a known vulnera-
bility present in the asset that it relates to. Each asset will have a known vulnerability 
node for each known vulnerability belonging to that asset. Assets alone cannot tell 
how severe or dangerous the vulnerabilities might be, so unique characterization of 
vulnerabilities is crucial [20]. 

To identify each known vulnerability node, each will be characterized by the 
following set of features (formally defined in Sect. 4.5: 

• .CV Eai
(t): This serves as the identifier of a vulnerability of asset . ai . 

• .CV SSvi
(t): This metric assigns a numeric value to the severity of vulnerability 

. vi . Each CVE has a corresponding CVSS value. 
• .CAPECwi

(t): Each vulnerability (CVE) is a materialization of a weakness 
(CWE) . wi that can be exploited using a concrete attack pattern. In many 
cases, each CWE has more than one Common Attack Pattern Enumeration and 
Classification (CAPEC) [49, 50] associated. Consequently, this field is a set that 
contains all the possible attack patterns that can exploit the vulnerability that is 
being analyzed. 

Clusters (collectively, set . GS) are a special type of node that summarizes and 
simplifies the information contained in a subgraph in an EDG. Figure 4.4 shows 
how the clusters work. 

To identify each cluster and to be able to recover the information that they 
summarize, each is characterized by the data that define each of the elements 
that they contain: .{CPEprevious, CPEcurrent , CWEai

(t)}, . (CV Eai
(t), CV SSvi

(t),

.{CAPECwi
(t)}), and their dependencies. 

Two types of criteria can be used to create clusters and to simplify the obtained 
graph (Fig. 4.4): 

1. Absence of vulnerabilities: Using this criterion, clusters will group all nodes 
that contain no associated vulnerabilities. 

2. CVSS score below a certain threshold: With this criterion, a threshold for the 
CVSS scores will be chosen. Nodes whose CVSS score is less than the defined 
threshold will be grouped into a cluster. 

It is worth noticing that applying the second set of criteria (establishing a CVSS 
threshold) will always return a graph that is at least as simple or as complex as the 
one that would be obtained using the absence of vulnerability criterion. In the best 
case, the graph will be simpler. This is because both criteria treat assets with no 
vulnerabilities in the same way, so those will always be simplified. On the other 
hand, establishing a CVSS threshold allows the model for further simplifications.
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4.4.3 Types of Edge 

In the EDG model, edges play a key role representing dependencies. Two types of 
edge can be identified: 

• Normal dependencies relate two assets, or an asset and a vulnerability. They rep-
resent that the destination element depends on the source element. Collectively, 
they are known as set . GD . 

• Deprecated asset or patched vulnerability dependencies indicate when an 
asset or a vulnerability is updated or patched. They represent that the destination 
element used to depend on the source element. Collectively, they are known as set 
. GU . 

The possibility of representing old dependencies brings the opportunity to reflect 
the evolution of the SUT over time. When a new version of an asset is released, or a 
vulnerability is patched, the model will be updated. Their dependencies will change 
then from a normal dependency to a deprecated asset or vulnerability dependency 
to reflect that change. 

4.4.4 Steps to Build the Model 

This section explains the process and algorithms that were used to build the 
corresponding EDG of a given SUT. The main scenarios that can be found are also 
described. 

Before extracting useful information about the SUT, the directed graph associ-
ated with the SUT has to be built. This comprises several steps, which are described 
in the following paragraphs (see the flowchart in Fig. 4.5a, b): 

Step 1 – Decompose the SUT into assets For the model to work properly, it relies 
on the SUT being able to be decomposed into assets. With this in mind, the first step 
involves obtaining the assets of the SUT, either software or hardware. In the CC, 
this process is called modular decomposition of the SUT [11]. Ideally, every asset 
should be represented in the decomposition process, but this is not compulsory for 
the model to work properly. Each one of the assets obtained in this step will be 
represented as an asset node. In this step, the dependencies among the obtained 
assets are also added as normal dependencies. 

Step 2 – Assign a CPE to each asset Once the assets and their dependencies have 
been identified, the next task is to assign the corresponding CPE identifier to each 
asset. If there is no publicly available information of a certain asset and, therefore, 
it does not have a CPE identifier, then it is always possible to generate one using the 
fields described in the CPE naming specification documents [10] for internal use in 
the model.
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Fig. 4.5 Three simple graphs. (a) Algorithm to generate the initial EDG of a given SUT. (b) 
Example of the process of building the EDG model of a given SUT A
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Step 3 – Add known vulnerabilities to the assets In this step, the vulnerabilities 
(.CV Eai

(t)) of each asset are set. This is done by consulting public databases of 
known vulnerabilities [52, 62] looking for existing vulnerabilities for each asset. 
When a vulnerability is found, it is added to the model of the SUT, including its 
dependencies. If there were no known vulnerabilities in an asset, then the asset 
would become the last leaf of its branch. In this step, the corresponding value of 
the CVSS of each vulnerability is also added to the model. 

Step 4 – Assign to each asset its weaknesses and possible CAPECs After the 
vulnerabilities, the corresponding weaknesses to each vulnerability (.CWEai

(t)) 
are added, along with the corresponding attack patterns (.CAPECwi

(t)) for each 
weakness. If there is no known vulnerability in an asset, then there will be no 
weaknesses. Meanwhile, it would be possible to have a known vulnerability in an 
asset, but no known weakness or attack pattern for that vulnerability. Finally, more 
than one CAPEC can be assigned to the same weakness. Consequently, it would 
be common to have a set of possible CAPECs that can be used to exploit the same 
weakness. It is worth noting that not all of them could be applied in every scenario. 

Step 5 – Computing metrics and tracking the SUT At this point, the EDG of 
the SUT is completed with all the public information that can be gathered. This 
last step is to calculate the metrics defined (for further information, see Sect. 4.5.), 
generating the corresponding reports,and tracking the state of the SUT for possible 
updates in the information of the model. This step is always triggered when the SUT 
is updated. This can imply that a new asset can appear, an old asset can disappear, 
an old vulnerability can be patched, or a new one can appear in the SUT. All of these 
scenarios will be reflected in the model as they arise during its life cycle. 

4.5 Security Metrics 

The EDG model that was reviewed in the previous sections is by itself capable 
of representing the internal structure of the SUT, and it can display it graphically 
for the user. This representation not only includes the internal assets of the SUT 
but it also captures their relationships, existing vulnerabilities, and weaknesses. 
Moreover, assets, vulnerabilities, and weaknesses are easily identified using their 
corresponding CPE, CVE, and CWE values, respectively. All together, this consti-
tutes a plethora of information that the model can use to improve the development 
and maintenance steps of the SUT, enhance its security, and track its status during its 
whole life cycle. Metrics are a great tool to integrate these features into the model. 

Metrics can serve as a tool to manage security, make decisions, and compare 
results over time. They can also be used to systematically improve the security level 
of an industrial component or to predict its security level in a future point in time. 

In this section, the basic definitions that serve as the foundation of the metrics 
are described. Then, the corresponding metrics are introduced to complement the 
functionality of the EDG model. The main feature of these metrics is that they all
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depend on time as a variable, so it is possible to capture the actual state of the SUT, 
track its evolution over time, and compare the results. 

4.5.1 Basic Definitions 

In this section, the basic concepts on which the definitions of the metrics will be 
based are formalized. 

Definition 4.2 The set of all possible weaknesses at a time t is represented as 
.CWE(t), where 

.CWE(t) = {cwe1, . . . , cwem} (4.1) 

and m is the total number of weaknesses at time t. This set contains the whole CWE 
database defined by MITRE [54]. 

Definition 4.3 The set of all of the possible vulnerabilities at a time t is represented 
as .CV E(t) where 

.CV E(t) = {cve1, . . . , cvep} (4.2) 

and p is the total number of vulnerabilities. This set contains the whole CVE 
database defined by MITRE [52]. 

Definition 4.4 The set of all possible attack patterns at a time t is represented as 
.CAPEC(t), where 

.CAPEC(t) = {capec1, . . . , capecq} (4.3) 

and q is the total number of attack patterns at time t. This set contains the whole 
CAPEC database defined by MITRE [50]. 

Definition 4.5 The set of weaknesses of an asset . ai at a time t is defined as 

.

CWEai
(t) = {cwej |cwej is in the asset ai at time t ∧ cwej ∈ CWE(t)

∧∀k /= j, cwej /= cwek}
(4.4) 

From this expression, the set of all the weaknesses of a particular asset throughout 
its life cycle is defined as 

.CWEai
=

T⋃

t=1

CWEai
(t) (4.5)
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where .|CWEai
| is the total number of non-repeated weaknesses in its entire life 

cycle. 

Definition 4.6 The set of vulnerabilities of an asset . ai at a time t is defined as 

.CV Eai
(t) = {cvej |cvej is in the asset ai at time t ∧ cvej ∈ CV E(t)} (4.6) 

From this expression, the set of vulnerabilities of an asset throughout its entire life 
cycle is defined as 

.CV Eai
=

T⋃

t=1

CV Eai
(t) (4.7) 

where .|CV Eai
| is the total number of vulnerabilities in its entire life cycle. 

Definition 4.7 The set of weaknesses of a SUT A with n assets at a time t is defined 
as 

.CWEA(t) =
n⋃

i=1

CWEai
(t) (4.8) 

Definition 4.8 The set of vulnerabilities of a SUT A with n assets at a time t is 
defined as 

.CV EA(t) =
n⋃

i=1

CV Eai
(t) (4.9) 

Definition 4.9 The set of vulnerabilities associated to the weakness .cwej and to 
the asset . ai at a time t is defined as 

. CV Eai |cwej
(t)={cvek|cvek associated to weakness cwej and to asset ai at time t}

(4.10) 

It is worth noting that CWE is used as a classification mechanism that differ-
entiates CVEs by the type of vulnerability that they represent. A vulnerability will 
usually have only one associated weakness, and weaknesses can have one or more 
associated vulnerabilities [16]. 

Definition 4.10 The partition j of an asset . ai at time t conditioned by a weakness 
.cwek is defined as 

.CV Eai |cwek
(t) = {cwel |cwel = cwek ∧ cwel ∈ CV Eai

(t)} (4.11)
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Definition 4.11 The partition j of the SUT A at time t conditioned by a weakness 
.cwek is defined as 

.CV EA|cwek
(t) = {cwel |cwel = cwek ∧ cwel ∈ CV EA(t)} (4.12) 

Definition 4.12 The set of attack patterns associated to a weakness . wi at a time t 
is defined as 

.

CAPECwi
(t) = {capecj |capecj can exploit weakness wi at time

t ∧ capecj ∈ CAPEC(t)} (4.13) 

. 

Definition 4.13 The set of metrics that are defined in this research work based on 
the EDG model is defined as 

.M = {m1, . . . , mr } (4.14) 

where r is the total number of metrics. This set can be extended, defining more 
metrics according to the nature of the SUT. 

4.5.2 Metrics 

This section will describe the metrics that were defined based on the EDG model and 
the previous definitions. Although it might seem trivial, the most interesting feature 
of these metrics is that they all depend on time. Using time as an input variable 
for the computation of the metrics opens the opportunity to track results over time, 
compare them, and analyze the evolution of the status of the SUT. Furthermore, 
some metrics take advantage of time to generate an accumulated value, giving 
information about the life cycle of the SUT. Table 4.2 shows all of the defined 
metrics, their definition, and their reference values. 

In addition to the metrics in Table 4.2, the model allows the definition of other 
types of metrics according to the analysis to be performed, and the nature of the 
SUT (e.g., the vulnerability evolution function for SUT A up to time t for all 
vulnerabilities could be defined as the linear regression of the total number of 
vulnerabilities in each time t for SUT A, or using any other statistical model). 

4.5.3 Properties 

Together, the EDG model and the defined metrics exhibit a series of characteristics 
that make them suitable for vulnerability assessment.
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Table 4.2 Defined metrics for the EDG model 

Metric Definition Reference value 

V
ul
ne
ra
bi
lit
ie
s 

M0(A) = |CV EA(t)| 
n(t) 

Arithmetic mean of 
vulnerabilities in the SUT 
A, where  n(t) is the number 
of assets in a SUT at a time 
t . M0 shows how many 
vulnerabilities would be 
present in each asset if they 
were evenly distributed 
among the assets of the 
SUT. The result of M0 can 
serve as a preliminary 
analysis of the SUT, related 
to the criticality of its state. 
From Eq. 4.8 

M0 < 1: The number of 
vulnerabilities is lower than 
the number of assets. 
M0 ≥ 1: Every asset has at 
least one vulnerability 

M1(A, t) = |CV EA(t)| Number of vulnerabilities in 
a SUT  A at time t . From  
Eq. 4.8 

Ideally, the values of M1 
should be zero (no 
vulnerability in A), but the 
lower the value of M1, the  
better 

M2(A) =∑T 
t=1 |CV EA(t)| =

∑T 
t=1 M1(A, t) 

Number of vulnerabilities in 
a SUT  A throughout its 
entire life cycle T . This  
metric computes the 
accumulated value of the 
number of vulnerabilities of 
a SUT throughout its entire 
life cycle. From Eq. 4.8 

The lower  the value  of  M2, 
the better. 

M3(ai , t)  = |CV Eai (t)| Number of vulnerabilities in 
an asset ak at time t The 
values of M3 can be useful 
during a vulnerability 
analysis, or when 
performing a penetration 
test, to identify the asset 
with more vulnerabilities. 
From Eq. 4.6 

Ideally, the value of M3 
should be zero 

(continued)
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Table 4.2 (continued) 

Metric Definition Reference value 

M4(ak, t)  = |CV Eak (t)|∑n 
i=1 |CV Eai (t)| 

Relative frequency of 
vulnerabilities of the asset 
ak at a time t . From Eq. 4.6 

Ideally, the value of M4 
should be zero, or at least 
M4 ≤ 1 

n(t)
, being  n(t) the 

number of assets in the SUT. 
This value can also be 
expressed as the percentage 
of vulnerabilities of asset ai 
respect to the total number 
of vulnerabilities in the 
SUT, M4 (ak, t)  =

|CV Eak (t)|∑n 
i=1 |CV Eai (t)|

·100 
M5(ai , cwej , t)  = 
|CV Eai |cwej (t)| 

Multiplicity of weakness 
cwej of the asset ai at a 
time t . This metric  
represents the number of 
times a weakness is present 
among the vulnerabilities of 
the asset ai . This is possible 
because a vulnerability can 
have associated the same 
weakness as other 
vulnerabilities. From Eq. 4.9 

Ideally, the value of M5 
should be zero, or at least, 

M5 ≤ 
|CV EA|cwej (t)| 

n(t)
, being  

n(t) the number of assets in 
the SUT. The value of the 
metric could be further 
narrowed by assuming that 
cwej will be present in all 
but one asset, so M5 

≤ 
|CV EA|cwej (t)| 

n(t)−1 to be in 
acceptable values 

M6(A, cwej , t)  = 
|CV EA|cwej (t)| 

Multiplicity of weakness 
cwej of the SUT A at a time 
t . This metric represents the 
number of times a weakness 
is present among the 
vulnerabilities of the SUT 
A. From Eq. 4.11 

Ideally, the value of M6 
should be zero 

W
E
A
K
N
E
SS

E
S 

M7(A, t) = |CWEA(t)| Number of weaknesses in a 
SUT A at time t . From  
Eq. 4.7 

Ideally, the value of M7 
should be zero (no weakness 
in A), but the lower the 
value of M7, the better 

M8(A) =∑T 
t=1 |CWEA(t)| =

∑T 
t=1 M7(A, t) 

Number of weaknesses in a 
SUT A throughout its entire 
life cycle T . This metric  
computes the accumulated 
value of weaknesses of a  
SUT throughout its entire 
life cycle. From Eq. 4.7 

The lower  the value  of  M8, 
the better 
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4.5.3.1 Automatic Inference of Root Causes 

Each CWE natively contains information that is directly related to the root cause 
of a vulnerability. From this information, new requirements and test cases can be 
proposed. 

4.5.3.2 Spatial and Temporal Distribution of Vulnerabilities 

The key feature of the EDG model is the addition of the temporal dimension in 
the analysis of vulnerabilities. This makes it possible to analyze the location of the 
vulnerabilities both in space (in which asset) and time (their recurrence), which 
allows us to track the state of the device throughout the whole life cycle. This 
approach also enables a further analysis of the SUT, by updating data in the model, 
such as new vulnerabilities that are found or new patches that are released. 

Each time that a new vulnerability is found, or an asset is patched (i.e., via an 
update), the initial EDG is updated to reflect those changes. An example of this 
process can be seen in Fig. 4.6. 

At time . t0, the initial graph of the SUT A is depicted in Fig. 4.6. Because there is 
no vulnerability at that time, this graph can be simplified using the cluster notation, 
with just a cluster containing all assets. At time . t1, a new vulnerability that affects 
the asset . a2 is discovered. At time . t2, the asset . a2 is updated. This action creates 
a new  version of asset  . a2, asset . a3. Because the vulnerability was not corrected in 
the new update, both versions contain the vulnerability that was initially presented 
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Asset a2 is updated by a3, but V1 is 
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Asset a3 is updated by a4 and V1 is 
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Fig. 4.6 Representation of the temporal behavior in the graphical model using the two kinds of 
dependencies of the model. It is worth mentioning that these graphs could be further simplified by 
taking advantage of the cluster notation, as shown at the bottom of this figure
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in asset . a2. Finally, at time . t3, the asset . a3 is updated to its new version . a4, and the 
vulnerability is corrected. 

This approach enables a further analysis of the SUT, including updated data, 
according to new vulnerabilities that are found or new patches that are released. 

4.5.3.3 Patching Policies Prioritization Support 

The EDG model provides a relative importance sorting of vulnerabilities by CVSS. 
Relying on the resulting value, it is possible to assist in the vulnerability patching 
prioritization process. Furthermore, the presence of an existing exploit for a known 
vulnerability can be also be taken into account, when deciding which vulnerabilities 
need to be patched first. A high CVSS value combined with an available exploit for 
a given vulnerability is a priority when patching. 

4.6 Use Case 

In this section, the EDG model and its metrics will be applied to perform a 
vulnerability assessment of the OpenPLC project, which will be the SUT. 

OpenPLC is the first functional standardized open-source Programmable Logic 
Controller (PLC), both in software and hardware [72]. It was mainly created for 
research purposes in the areas of industrial and home automation, Internet of Things 
(IoT), and SCADA. Given that it is the only controller that provides its entire source 
code, it represents an engaging low-cost industrial solution – not only for academic 
research but also for real-world automation [2, 3]. 

4.6.1 Structure of OpenPLC 

The OpenPLC project consists of three parts: 

1. Runtime: It is the software that plays the same role as the firmware in a 
traditional PLC. It executes the control program. 

2. Editor: Application that is used to write and compile the control programs that 
will be later executed by the runtime. 

3. HMI Builder: This software creates web-based animations that will reflect the 
state of the process, in the same manner as a traditional HMI. 

When installed, the OpenPLC runtime executes a built-in webserver that allows 
OpenPLC to be configured and new programs for it to run to be uploaded.
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Fig. 4.7 EDG for OpenPLC V1. Notice that, for simplicity, CWE and CAPEC values are omitted, 
and only the CPE identifier of the SUT is shown 

4.6.2 Building the EDG 

For this use case, the setup consisted of OpenPLC installed on 14.04 LTS Ubuntu 
Linux in a virtual machine. All configuration options were by default. 

Using the generated EDG for OpenPLC V1 shown in Fig. 4.7, we extracted 
the information about security updates (discarding updates that introduced more 
functionalities), for both libssl and nodejs. Table 4.3 shows the security 
updates and their date of availability for both libssl [39] and nodejs [40] 
for Ubuntu 14.04 LTS. There were two security updates available for the amd64 
architecture for each asset. 

From this data, we can extract that: 

• Updates for nodejs were released before the updates for libssl. 
• libssl shows more vulnerabilities than nodejs. 
• The highest CVSS score in the period of this analysis is 5.
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Table 4.3 Update information of both libssl and nodejs 

Solved Solved 
Asset .1st Update vulnerabilities (CVSS) .2nd Update vulnerabilities (CVSS) 

libssl 2014/04/07 CVE-2014-0076 (1.9) 2018/12/06 CVE-2018-5407 (1.9) 
CVE-2014-0160 (5.0) CVE-2018-0734 (4.3) 

nodejs 2014/03/27 – 2018/08/10 CVE-2016-5325 (4.3) 

Then, the EDG for these two assets and their updates were built. Figure 4.8 shows 
the updates over time of the EDG, whereas Fig. 4.9 shows the final EDG with all the 
information included. 

4.6.3 Analysis of the EDG 

Using Fig. 4.9, and Table 4.4, we can analyze the obtained EDG: 

1. Analysis of the induced EDG model: The structure, assets, and dependencies 
are the focus of this first step. 
We can observe that libssl is used by nodejs, and they are not at the same 
level of the hierarchy. So vulnerabilities could propagate upward and downward 
through the EDG. 

2. Vulnerability analysis: Vulnerability number, distribution, and severity are 
analyzed in this step. A proposal for vulnerability prioritization is also gen-
erated. 
We can highlight that nodejs had one vulnerability discovered after its first 
update, whereas libssl had vulnerabilities in both periods of time. We could 
argue that, as nodejs is the most accessible asset from the exterior, its 
vulnerabilities should be first addressed, even though the associated CVSS is 
not the highest one. 

3. Weaknesses analysis: Finally, the root cause of each vulnerability is found. 
In this step, new requirements, test cases, and training activities are proposed 
based on the results of the analysis. 
Table 4.4 shows the root cause for each vulnerability. Using this data, new 
requirements (Table 4.5), test cases (Table 4.6) and training activities (Table 4.7) 
were proposed. 

It is worth noticing that this use case is focused on reflecting the temporal 
evolution of the EDG. For this reason, metrics cannot be computed here, because of 
the low number of vulnerabilities available.
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Fig. 4.9 Final EDG for libssl and nodejs integrating all the updates for Ubuntu Linux 14.04 for 
amd64 architecture 

Table 4.4 Relationship between vulnerabilities and weaknesses for both libssl and nodejs 

CVE CVSS CWE Description 

CVE-2014-0076 1.9 CWE-310 Cryptographic Issues 

CVE-2014-0160 7.5 CWE-119 Improper restriction of operations within the Bounds of a 
Memory Buffer 

CVE-2016-5325 6.1 CWE-113 Improper neutralization of CRLF Sequences in HTTP 
Headers (‘’HTTP Response Splitting”) 

CVE-2018-0734 5.9 CWE-327 Use of a Broken or Risky Cryptographic algorithm 

CVE-2018-5407 4.7 CWE-203 Observable discrepancy 

CWE-200 Exposure of sensitive information to an unauthorized 
actor 

Table 4.5 An example of generated requirements for OpenPLC V1 

CWE ID Requirements 

CWE-119 Use languages that perform their own memory management. 

CWE-113 Use an input validation framework. 

CWE-113 Assume all input is malicious. 

CWE-119 Replace unbounded copy functions with analogous functions that support length 
arguments. Create these if they are not available. 

4.7 Conclusions 

The rapid evolution of industrial components, the paradigm of Industry 4.0, and the 
new connectivity features introduced by 5G technology increase the likelihood of 
cybersecurity incidents. These incidents have to be managed to limit or mitigate
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Table 4.6 Example of generated test cases for OpenPLC V1 

CAPEC ID Test cases 

CAPEC-119 Check for buffer overflows through manipulation of environment variables 

CAPEC-119 Feed overly long input strings to the program to cause a buffer overflow, so the 
filter does not fail securely 

CAPEC-119 Create or manipulate a symbolic link file such that its contents result in out of 
bounds data. It could potentially overflow internal buffers with insufficient 
bounds checking 

CAPEC-119 Static analysis of the code: secure functions and buffer overflow 

Table 4.7 Example of proposed training for OpenPLC V1 

CWE ID Training 

CWE-113, CWE-119 Input validation strategies. 

CWE-113, CWE-119 Character encoding compatibility. 

CWE-200 Secure functions. 

CWE-190 Secure programming: memory management. 

CWE-113, CWE-119 System compartmentalization. 

CWE-310 Secure up-to-date cryptographic algorithms. 

their impact, and in most cases, they are a consequence of existing vulnerabilities. 
This scenario raises the need for a tool that enables a faster (tracking the vulnerabil-
ity state over time) and more precise (detect root cause) response. 

Vulnerability analysis is a critical task which ensures the security of industrial 
components. The EDG model that we reviewed performs continuous vulnerability 
assessment throughout the entire life cycle of industrial components. The model 
is built on (1) the directed graph representation of the internal structure of the 
device, (2) the set of quantitative metrics based on the Common Vulnerability 
Scoring System (CVSS), and (3) the algorithm to build the EDG for a given device. 
Metrics can be used by the model to improve the development process of the SUT, 
enhance its security, and track its status. The key feature of the EDG model is the 
addition of the temporal dimension in the analysis of vulnerabilities. The location 
of vulnerabilities can be analyzed in both space (in which asset) and time (their 
recurrence), which allows the state of the device to be tracked throughout the whole 
life cycle. The EDG model can be applied throughout the entire lifespan of a device 
to track vulnerabilities, identify new requirements, root causes, and test cases. It 
also helps prioritize patching activities. 
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Chapter 5 
Metamorphic Testing for Verification 
and Fault Localization in Industrial 
Control Systems 

Gaadha Sudheerbabu, Tanwir Ahmad, Dragos Truscan, and Jüri Vain 

Abstract Security verification of software systems is vital to ensure they are 
resilient against targeted attacks. Any vulnerability in the software should be 
discovered, classified, and resolved promptly to ensure the operational correctness 
and functional safety of the system. However, testing and program debugging of 
complex industrial control systems are often challenging due to the test oracle 
problem. In this work, we discuss an integrated method for test generation and fault 
localization using metamorphic testing. Our method extracts metamorphic relation 
from the system specification and uses it as the derived test oracle to distinguish 
the successful and failed tests for spectrum-based fault localization. The proposed 
approach consists of two phases: a test generation phase using metamorphic testing 
and a fault localization phase to assist with the root cause analysis and failure 
diagnosis. The method is exemplified on a load position system without explicit 
specifications of the test oracle, and the results show that it is effective in discovering 
vulnerabilities in the application and significantly assists the developers with root 
cause analysis of identified faults that reduces the overall failure diagnosis effort. 

Keywords Metamorphic testing · Spectrum-based fault localization · Safety and 
Security testing 

5.1 Introduction 

Industrial control systems (ICSs) operating in safety and security-critical applica-
tions are at serious risk of cyberattacks due to the expansion of attack surface 
when increasing automation levels are implemented for operational efficiency. A 
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software system’s vulnerabilities can be identified in its configuration, implemented 
code, or overall design. If exploited, vulnerabilities in such software systems can 
compromise their confidentiality, integrity, and availability or result in software 
failures leading to substantial financial losses. To ensure software systems are 
resilient against targeted attacks, any vulnerabilities in the software should be 
discovered, classified, and resolved promptly as early as possible in the stages of 
the software development life cycle to mitigate the risk of passing them to possible 
exploitation materializing in real loss. 

Programmable logic controllers (PLC) are employed in complex industrial 
control systems, such as heavy machinery equipment control, nuclear power plants, 
energy distribution networks, rail automation, etc. There have been incidents 
reported about cyberattacks on nuclear power plants (NPP), such as the emergency 
shutdown of the Brown Ferry NPP in 2006, Hatch NPP in 2008, and the Stuxnet 
worm attack on the Natanz nuclear facility in 2010, which emphasizes the impor-
tance of security testing of industrial control systems. 

Typically, the safety and security aspects of ICSs are addressed differently, and 
several definitions and distinctions of the two concepts have been attempted in 
literature. Maybe the most notable is [1], which distinguishes between the two as 
follows: “Security is concerned with the risks originating from the environment 
and potentially impacting the system, whereas safety deals with the risks arising 
from the system and potentially impacting the environment.” and “Security typically 
addresses malicious risks while safety addresses purely accidental risks.” However, 
the border between the two is rather fuzzy since, in many cases, existing safety 
issues can be triggered via security attacks [2]. 

For instance, an investigative study by Lim, Bernard, et al. [3] demonstrated 
the impacts of a cyberattack on a Tricon PLC system of a nuclear power plant. 
Their research revealed possible ways to trigger an attack and exploit the Tricon 
PLC vulnerabilities that use a Triple Modular Redundant (TMR) architecture. The 
findings from the study show that using the types of attack: (i) latent failure attack 
and (ii) immediate failure attack, the control logic of the Tricon system can be 
altered, resulting in a common-mode failure. In a different study [4], the authors 
also pinpoint that the security of the PLC system can be affected by control logic 
modification, either via program code modification or program input manipulation. 
Such code-level vulnerabilities can be introduced by different weaknesses, for 
instance, race conditions, uninitialized, hard-coded, or unused variables, improper 
input validation, etc. [4, 5] and, in the end, can affect security goals such as 
confidentiality, integrity, and availability. 

These examples make evident that in order to prevent future cyberattacks on PLC 
systems, developing strategies for verifying and validating their functional safety 
assurance depending on security aspects must be seamlessly integrated into their 
development and maintenance processes. In fact, the ISA/IEC62443-4 standard for 
security for industrial automation and control systems [6] explicitly specifies that 
in order to ensure system integrity, each component should validate its input that 
directly impacts the action of that component. Also, the safety standard IEC 61508 
[7] includes requirements to address cyber security in safety instrumented systems
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(SIS) to be examined during the process hazards and risk assessment. Any hazardous 
events that have significant consequences on plant operation disruption or damage, 
personnel injury, or fatality are considered safety and security issues. 

In many cases, security weaknesses are root caused in the code-level faults, 
especially caused by bad programming practices or code issues [8]. Once a 
vulnerability is identified, it is of utmost importance to localize its root cause and 
fix it. To this extent, fault localization is known to be a time-consuming and tedious 
process [9], and several approaches have been proposed to address this issue [10]; 
however, only a few in the area of ICSs based on PLCs. 

In order to address the above aspects, we extend our previous approach of using 
metamorphic testing for ICSs [11] with a fault localization approach to allow us to 
pinpoint the root cause of the failing tests. The overall contributions of the approach 
consist in using metamorphic testing for PLC-based systems without an explicit 
oracle, combining metamorphic testing and fault localization techniques for PLC-
code, and tool support for the approach. Although in this chapter we will exemplify 
our approach to a PLC system, the approach in itself is generic, and it can be 
extended and applied to a wide spectrum of software systems. 

The chapter will briefly introduce metamorphic testing and fault localization 
techniques in Sect. 5.2, and then it will present our approach in Sect. 5.3. We  
exemplify and evaluate our approach in Sect. 5.4 on an industrial system that 
determines the position of a hanging load attached to the hoisting frame of a crane. 
We discuss the threats to validity in Sect. 5.5 and related work in Sect. 5.6, and we 
draw conclusions in Sect. 5.7. 

5.2 Prerequisites 

This section describes the metamorphic testing technique and the approaches of 
spectrum-based fault localization (SBFL) and program slicing. 

5.2.1 Metamorphic Testing 

Metamorphic testing (MT) was introduced by Chen et al. [12] as a solution to 
test systems without explicit specification of the test oracle. In MT, the behavioral 
or functional properties of the system are defined by posing a hypothesis about 
using generic relations known as metamorphic relations (MRs) between different 
sets of inputs and their expected outputs. An MR is composed of two parts: an 
input relation and output relation [13]. An input relation represents the relation 
between the inputs of the source and follow-up test cases, whereas an output relation 
represents the relation between the expected outputs of the source and follow-up 
test cases. A source test case is the first set of tests performed using seed inputs. 
The seed inputs are transformed into morphed inputs. The  follow-up test cases



130 G. Sudheerbabu et al.

are performed using these morphed inputs. In addition, an implication between the 
outputs of source and follow-up test cases is needed to specify the impact of input 
transformations on their corresponding outputs. 

A relatively recent study [14] shows that metamorphic testing becomes a sound 
alternative for testing systems without explicit oracles and that it has been applied 
successfully to many application domains, including embedded systems, web 
applications, computer graphics, and simulation and modeling. 

5.2.2 Fault Localization 

Fault localization is the process of identifying the potential fault-triggering program 
elements, and it can assist the developer by reducing the effort in the root cause 
analysis and program repair. Different fault localization techniques have been 
presented in a relatively recent survey [10]. Of those, in this work, we are going 
to use spectrum-based fault localization and program slicing, as discussed below. 

5.2.2.1 Spectrum-Based Fault Localization 

(SBFL) [15] is a popular fault localization technique that examines the execution 
of the program under test by collecting run-time measurements and uses them 
for program debugging and repair. The method relies on comparing the difference 
between the execution path of the program between successful and failed tests and 
examining the path taken by failed tests to identify potential faulty locations in the 
program. This information collected during program execution, known as program 
spectrum [16], is then used to calculate a suspiciousness metric that pinpoints 
the suspicious fault-triggering parts of the program under test. Different types of 
program spectra information used for SBFL are described in [17] and summarized 
in Table 5.1. 

Recent surveys [18, 19], on SBFL discuss several suspiciousness metrics such 
as Tarantula, Ample, D*2, GP, OP1, OP2, SBI, Jaccard, Ochiai, and Wong 1–3 are 
regarded as the most effective in pinpointing fault locations. 

5.2.2.2 Program Slicing 

Program slicing [20, 21] is a fault localization technique that focuses on analyzing 
the relevant part of the program referred to as a slice that may contain a fault. 
The four primary categories of slicing techniques are static, dynamic, execution, 
and conditioned slicing [22–24]. Dynamic slicing and execution slicing have been 
widely applied for program debugging. Xie, Xiaoyuan, et al. [25] proposed the con-
cept of a metamorphic slice by integrating metamorphic testing with dynamic and
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Table 5.1 Types of program spectra 

Mnemonic Name Description 

BHS Branch hit spectra Conditional branches that were executed 

BCS Branch count spectra Number of times each conditional branches 
was executed 

CPS Complete path spectra Complete path that was executed 

PHS Path hit spectra Number of times each intraprocedural, 
loop-free path was executed 

PCS Path count spectra Number of times each intraprocedural, 
loop-free path was executed 

DHS Data-dependence hit spectra Definition-use pairs that were executed 

DCS Data-dependence count spectra Number of times each definition-use, pair was 
executed 

ETS Execution trace spectra Execution trace that were produced 

OPS Output spectra Output that were produced 

execution slicing in combination with SBFL. They defined dynamic metamorphic 
slice, d_mslice and execution metamorphic slice, e_mslice as follows: 

• Given a variable v, the  dynamic mslice, .d_mslice(v,MR, T S) is the union of all 
.d_slice(v, t), where .d_slice is the set of statements of a program which affect 
the value of the variable v, t is a test case of the metamorphic test group, . T S =
{tS1 , tS2 , ..., tSks} and .T F = {tF1 , tF2 , ..., tFkf } are the set of source test cases and 
follow-up test cases for its metamorphic relation MR. 

. d_mslice(v,MR, T S) =
( ks⋃

i=1

d_slice(v, tSi )

)
∪

( kf⋃
i=1

d_slice(v, tFi )

)

• The execution mslice, .e_mslice(MR, T S), is the union of all .e_slice(t), where 
t is a test case of the metamorphic test group: 

. e_mslice(MR, T S) =
( ks⋃

i=1

e_slice(tSi )

)
∪

( kf⋃
i=1

e_slice(tFi )

)

Metamorphic testing using a defined MR ensures that a violation or non-violation 
of MR is available as a test verdict for each d_mslice or e_mslice in a metamorphic 
test suite.
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5.3 Overview of the Approach 

We propose an approach for the verification of ICSs by using metamorphic tests 
and vulnerability localization by integrating spectrum-based fault location with 
metamorphic slicing that can be integrated into the development and operations 
phase of ICSs. The integration of the proposed approach in the DevOps life cycle is 
presented in Fig. 5.1. 

Our combined approach consists of two phases: a metamorphic testing phase 
and a fault localization phase. The metamorphic testing phase comprises a test 
generator that can use seed inputs either designed manually or extracted from logs at 
the monitoring stage of the operations cycle in order to generate metamorphic test 
inputs. It also extracts the metamorphic relations from the software requirements 
specification (SRS) to determine the verdict of the metamorphic tests. In the fault 
localization phase, a set of passed and failed tests from the first phase and the 
source code of the system under test are given as input to a fault localizer to identify 
the location of the fault(s). The findings from the localizer assist the developers in 
debugging and feedback-based program repair. The first phase follows a black box 
approach, whereas the second follows a white box approach. 
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5.3.1 Metamorphic Testing Phase 

As the first contribution of this work, we extend the definition of metamorphic 
relation by Chen et al. [26]. We define a metamorphic relation R as being composed 
of two relations, .Rin and .Rout , on the inputs and, respectively, the outputs of the 
system under test. The satisfiability of MR output relation .Rout by outputs . Yi

and . Yj also presumes that their corresponding seed . Xi and morphed inputs . Xj

satisfy respectively MR input relation . Rin. That is, given . ∀(xi, xj ), f (xi) = yi

and .f (xj ) = yj , then .Rin(xi, xj ) ⇒ Rout (yi, yj ), where f denotes the function 
that creates outputs .(yi, yj ) in response to inputs .(xi, xj ) and .Rin is input MR and 
.Rout is output MR. 

Concretely, given two sets of inputs .XC
s ,XC

m ∈ Xn that satisfy a given constraint 
C on the input space and which are satisfying an input relation .Rin(X

C
s ,XC

m), an  
output relation .Rout should hold for any corresponding output of the system, that is, 
.Rout (Y

C
s , YC

m ), where .YC
s = f (XC

s ) and .YC
m = f (XC

m). Furthermore, we consider 
.Rout to be of any of the types defined in [27]: equivalence, equality, subset, disjoint, 
complete, and difference. 

As a running example, we use a multiply(x,y,z) program, which calculates 
the product of three integer numbers passed as the input parameters. We extract 
the metamorphic relation from the associative and commutative properties of 
multiplication, meaning that any permutation of the input parameters should yield 
the same result as the original combination. Therefore, by applying the previous 
definitions, the input relation can be formulated as 

.Rin = {(X1, X2)|Permute(X1) = X2} whereas the metamorphic relation is as 
follows: 

.R = {(X1, X2, Y1, Y2)|Permute(X1) = X2 ⇒ Y1 = Y2}, where the output 
relation .Rout is equality. 

As a second contribution, we define our MT approach to consist of two steps, 
as shown in Fig. 5.2. In the  exploration step, seed and, respectively, morphed 
inputs .XC

s ,XC
m are created from X satisfying constraints .Cs, Cm respectively, which 

specify .Rin and are specific to the system under test (SUT). Then .XC
s ,XC

m are 
executed against the SUT and the corresponding seed output . YC

s and respectively 
morphed output . YC

m are collected, and the satisfiability of .Rout (Y
C
s , YC

m ) is checked, 
where .YC

s = f (XC
s ) and .YC

m = f (XC
m). 

For instance, in the case of the multiply program, if we consider (1,2,3) as 
seed input, we create (1,3,2) (2,1,3), (2,3,1), (3,1,2) and (3,2,1) as morphed input. 
Table 5.2 shows a few samples of seed-input, morphed-input, and the test inputs 
that failed or satisfied the MR for a seed input consisting of two tests: (2,3,4) and 
(. −2,3,. −2). 

From those pairs of seed and morphed inputs .(XC
si
, XC

mi
) which fail the initial 

MR, we manually extract, in the exploitation step, fault-inducing inputs of the 
input space. Based on them, we define .C′

m as a more restrictive constraint that 
encodes the refinement of .Rin to be satisfied by morphed inputs .XC′

m which we use 
to verify the output metamorphic relation .Rout (Y

C′
s , YC′

m ), where .YC′
s = f (XC′

s )
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Table 5.2 Test results of 
program multiply(x, y, z) with 
metamorphic test inputs 

Seed input Morphed input MR status 

(2, 3, 4) (2, 4, 3) Pass 

(3, 2, 4) Pass 

(3, 4, 2) Pass 

(4, 2, 3) Pass 

(4, 3, 2) Pass 

(. −2, 3, 2) (2, 3, . −2) Fail 
(2, . −2, 3) Fail 
(3, 2, . −2) Fail 
(3, . −2, 2) Fail 
(. −2, 2, 3) Pass 

and .YC′
m = f (XC′

m ). For  the  multiply program, we notice that tests with a negative 
value in the second or third input parameter violate the metamorphic relation during 
the exploration phase. Therefore, we generate more morphed test inputs in the 
exploitation phase to check the satisfiability of this constraint. 

To recap, the novelty of this phase stands in the fact that . C′
m allows us to define a 

refined morphed input that tests the system with more precision and effectiveness by 
focusing the testing on the parts of the input with a higher probability of discovering 
faults as will be demonstrated in Sect. 5.4. 

5.3.2 Fault Localization Phase 

The fault localization phase in our work is a white box approach, which takes as 
input the source code of the component under test and two test suites extracted 
from the metamorphic testing phase: a test suite with passed tests and a test suite 
with failed tests. These test suites are executed against an instrumented version of 
the program and are used to build program spectra information based on which the 
suspiciousness score is calculated. The suspiciousness scores allow one to identify 
which parts of the code are more frequently executed by failed tests. The code 
statements with the highest suspiciousness score are extracted and used for data-
flow analysis, and a fault report is generated. The main steps in the fault localization 
phase are depicted in Fig. 5.3 and explained as follows. 

5.3.2.1 Test Selection 

In this step, a portion of refined morphed inputs from the set of tests in the 
metamorphic testing phase is used. These tests are classified as passed and failed 
based on the violation or non-violation of MR, defined as the test oracle. In the 
current approach, we select an equal number of passed and failed tests from the two
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Instrumenting source code 
Instrumented 
source code 

Test Execution 

Source codePassed tests 

Failed tests 

Program spectra 

Suspiciousness score 
calculation 

Suspiciousness scores 

Data flow analysis 

Fault report 

Call graph and Control 
flow graph generation 

Suspicious statements/ 
variablesSuspiciousness elements 

extraction 

Test Selection 

Fig. 5.3 Overview of the fault localization phase 

test sets since, based on previous empirical results, it will make the fault analysis 
more clear and give equal fairness to each test set. 

To exemplify, we choose from Table 5.2 four passed tests (2, 3, 4), (2, 4, 3), (3, 
2, 4), and (3, 4, 2) and four failed tests (3, . −2, 2), (3, 2, . −2), (2, . −2, 3), and (2, 3, 
. −2). 

5.3.2.2 Instrumenting Source Code 

The source code of the component under test, including all its function blocks and 
functions, is instrumented by adding counter variables to each control statement in 
the code (as shown in Fig. 5.4). 

The flag Boolean variable is used to control the update of the counters between 
successive inputs values globally and to avoid the increment of the counters during 
PLC update cycles. Whenever these variables are executed during the test execution, 
they will be incremented. The counter variable added in each program is an array 
of length equal to the number of branches in the program. The element index 
of the counter array is referred to as Block ID. A  Block ID represents the basic 
block of statements associated with the corresponding counter element and branch
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Fig. 5.4 Instrumentation of the structured text code for program multiply(x, y, z) 

condition. The application declares the counter variables at the program level as 
global variables. This approach provides a run-time measurement of the number 
of times a basic block is executed during a test session for a specific metamorphic 
group of test inputs.
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5.3.2.3 Test Execution 

These test suites are then executed separately against the SUT. The counter values 
obtained from each test session are used to identify the difference between execution 
paths and to calculate the suspiciousness scores. 

5.3.2.4 Suspiciousness Scores Calculation 

Value of the counters collected during the test execution is used to calculate the 
program spectra and the suspiciousness score at the basic block level, such as branch 
hit spectra (BHS) and branch count spectra (BCS). The rationale behind this is that 
if the execution of a program element tends to be more frequent in failed tests, the 
more likely it is to be faulty and, consequently, higher the suspiciousness score. 

In this work, we define a new suspiciousness metric, . savg , with a value between 
0 and 1, defined as the arithmetic mean of the three maximal metrics Tarantula, 
Ochiai, and Jaccard metrics: 

.savg = (sOchiai + sJaccard + sT arantula)/3 (5.1) 

These three metrics are most well-known for their fault localization effectiveness 
and are widely used in empirical studies [25, 28]. The formulas for the suspicious-
ness metrics used are listed in Table 5.3. 

The suspiciousness metric formula is based on four variables [18] that are defined 
as follows: 

• ef: the number of times a statement is executed (e) in failed tests 
• ep: the number of times a statement is executed (e) in passed tests 
• nf: the number of times a statement is not executed (n) in failed tests 
• np: the number of times a statement is not executed (n) in passed tests 

5.3.2.5 Suspicious Elements Extraction 

In this step, the suspicious basic blocks in each program are assigned a score 
based on the suspiciousness metric formula used. Following this, the execution 
mslice and dynamic mslice at the program level are extracted for further analysis. 

Table 5.3 Suspiciousness 
metric and their formulas 

Suspiciousness metric Formula 

Ochiai . ef√
(ef +nf )·(ef +ep)

Jaccard . ef
(ef +ep+nf )

Tarantula 
.

ef
(ef +nf )

ef
(ef +nf )

+ ep
(ep+np)
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For the multiply program (Fig. 5.4), the execution mslice (refer Sect. 5.2.2.2) and 
dynamic mslice (refer Sect. 5.2.2.2) are extracted from the instrumented source code 
as follows: an execution mslice is set of union of statements in source and follow-
up test execution, that is, .{s1, s2, s3, s4, s6, s8, s13, s14, s16, s18, s21, s23, s24}, where 
. si is a statement of the program in (Fig. 5.4). Considering the execution mslice of 
multiply program, the statement . s21 is the one associated with the highest suspicious 
score, and variable rxyz propagates the error to the output. A dynamic mslice of 
the variable rxyz from a test case t belonging to failed tests group is the set of 
statements that affected it, that is, .{s21, s24}. 

5.3.2.6 Call Graph and Control-Flow Graph Generation 

From the test execution, we collect both the number of times each function block 
and function is called (as shown in Fig. 5.5) and calculate the suspiciousness 
score for each function block and function. The suspiciousness score of a function 
block/function is calculated as the highest suspiciousness score of all the basic 
blocks in it. A call graph of the component under test and an annotated control-
flow graph (CFG) enable the developers to perform static and dynamic analysis in 
program debugging. The graphs are combined with the suspiciousness scores and 
provided to the domain expert for further analysis. 

The call graph indicates which programs are executed by the PLC main program, 
their call order, and the call location from which the inter-procedural calls are 

Instrumented ST code CFG 

c[1]: (10,10) 0.62 

4 

14 
6 

13 

x >= 0 

1-3 

23 

11 

x < 0 

8 

c[6]: (0,4) 0.74 

c[3]: (0,0) 0 

(4,4) 

1: x := in_var1; 
2: y := in_var2; 
3: z := in_var3; 
4: FOR i:=1 TO ABS(x) DO 
5: IF (flag)  THEN c[1] := c[1] + 1; END_IF 
6: IF x >= 0 THEN 
7:  IF (flag)  THEN c[2] := c[2] + 1; END_IF 
8: rxy := rxy + y; 
9:  ELSE 
10: IF (flag)  THEN c[3] := c[3] + 1; END_IF 
11: rxy := -(rxy + y); 
12:  END_IF 
13:  END_FOR 
14:  FOR j:=1 TO ABS(z) DO 
15: IF (flag)  THEN c[4] := c[4] + 1; END_IF 
16: IF z >= 0 THEN; 
17: IF (flag)  THEN c[5] := c[5] + 1; END_IF 
18:  rxyz := rxyz + rxy; 
19: ELSE 
20:  IF (flag)  THEN c[6] := c[6] + 1; END_IF 
21:  rxyz := rxyz + rxy; 
22: END_IF 
23:  END_FOR 
24: out_product := rxyz; 
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c[4]: (13,9) 0.57 c[2]: (10,10) 0.62 

z >= 0 z <0 

(4,4) 
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(13,5) (0,4) 

(0,0) 

Fig. 5.5 CFG of the instrumented source code of program multiply (x, y, z)
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made, along with the call parameters and highest assigned suspiciousness score. 
This information helps with program analysis and makes debugging faster. 

To highlight and visualize the differences in the execution paths taken by the 
passed and failed tests, the CFG is annotated with instrumentation counter values 
captured as run-time measurements. The edges corresponding to execution paths 
taken by failed tests are highlighted with solid lines (red), passed tests with dotted 
lines (green), and the edges taken by both passed and failed tests with dashed lines 
(blue). For each program, the spectra information is then used by a suspiciousness 
metric to calculate and assign a suspiciousness score to the program elements. 

Additionally, a thicker arrow with a line width proportional to the assigned score 
is employed to draw attention to the suspicious parts as per the weight. If a branching 
condition was executed more frequently by the failed test cases than the passed ones, 
the edge taken from that branching condition to the basic block is rendered with 
thicker edge width. This alerts the viewer that a significant number of failed test 
cases likely followed the path, necessitating further investigation. 

For example, a control-flow graph built from the instrumented structured text 
code of the multiply program containing a statement block with the highest average 
suspiciousness score is shown in Fig. 5.5. As one can notice, in this case, we do 
not have any edges visited only by the passed tests. Based on this graph, we can 
conclude that the branching condition at node 16 plays an essential role in the 
execution of the failed tests, and it will be the starting point of the fault localization 
investigation. 

The programs we instrumented with counter variables consist of loop-free and 
loop paths. To accommodate this, we normalize the number of executions of a 
statement inside a loop to the range of the number of tests during a test session: 

. normalised_value = (value − min_value)/(max_value − min_value)

∗ total_number_of _tests_per_session (5.2) 

In the above equation, (min_value, max_value) correspond to the range of the 
number of loop iterations. In essence, we use the normalized values of the counter 
variables in the range (0, total number of tests per session) to calculate the 
suspiciousness scores per the metrics used. 

5.3.2.7 Data-Flow Analysis for Suspicious Variables 

In order to improve the localization of the fault, we perform the data-flow analysis 
of the variables involved in the most suspicious statements. All the variables used 
in the statements of each basic block receive the same suspiciousness score as the 
basic block. We analyze the suspicious variables in order to trace back the root 
cause of the failure. For any given variable v in a program P, data-flow analysis 
[29] determines the dynamic interactions between updates of v and subsequent 
usages of v during the course of execution of P. A definition (def) of v in the code
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denotes a statement that changes the value of v, and a use denotes the statement 
that uses the variable v in conditions, predicate use (p-use), or as an argument of 
an assignment statement, computational use (c-use). In the data-flow analysis step, 
suspicious variables are extracted from the statements in the detected suspicious 
blocks and ranked according to the frequency of def-use in those blocks. The def-
use information of the suspicious variables and a heat map of the data variables 
mapping them to the block IDs are generated. In order to reduce the effort of the 
fault localization process, data analysis is only performed on the statements and 
variables that have a suspiciousness score. With respect to the CFG in Fig. 5.5, we  
will start investigating the blue and red regions, and discard the rest, as they were not 
visited by failed tests. Consequently, we start the investigation from the basic block 
on line 21, where statement rxyz := rxyz + rxy; is present. Both variables 
involved rxyz and rxy will receive a suspiciousness score of 0.74 in this block and 
will be solved into input parameters of the program by unfolding the loop. At the 
moment, this step is performed manually, but we are currently investigating ways to 
automate it. 

5.3.2.8 Fault Report 

The fault report contains a synthesis of all the information generated at the previous 
steps, such as call and control-flow graphs, suspicious statements per program, 
suspicious variables, the def-use information of the suspicious variables, and a heat 
map of the suspiciousness score associated with potential faulty elements to help 
the developers in fault diagnosis and program debugging. 

To summarize, the main contributions of this phase are as follows: we apply 
metamorphic slicing and program spectra analysis to structured text code, we use 
an average suspiciousness score normalized for loops for calculating suspiciousness, 
we generate annotated CFGs to facilitate analysis, and we perform data-flow 
analysis on the suspicious variables. 

5.4 Evaluation 

We have applied our approach on a load position system (LPS) which determines the 
position of a hanging load using attached markers on the hoisting frame. The LPS 
regularly receives up to 26 markers as [x,y] pixel coordinates from a camera module. 
The input may contain three markers on the hoisting frame attached to the load, as 
well as different light reflections in the environment (water, rain, snow, dust, etc.), 
which the camera filter could not remove. These reflections captured by the camera 
module correspond to light reflections in the water while loading containers from 
the vessel using a ship-to-shore (STS) crane. Only the markers corresponding to the 
three markers placed on the hoisting frame carrying the load are the true markers 
that determine the position of the load (see Fig. 5.6). The two markers placed on the
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Fig. 5.6 Positional markers in load position system 

sides of the hoisting frame are referred to as side markers. The  top marker is used 
to detect the tilt of load and to increase the probability for the algorithm to identify 
the true markers. 

For each set of markers, the LPS tries to identify the true markers and discard 
the markers corresponding to reflections. The LPS produces two outputs: a Boolean 
value found indicating whether true markers are identified and a vector of three 
integers [.Itm1 , Itm2 , Itm3], indicating the index in the input marker array of the 
positional markers identified as true markers. Whenever the LPS is not able to 
identify the true markers consistently, the entire system can potentially move to 
an unsafe state and requires human intervention.
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5.4.1 Metamorphic Testing Phase 

In the above context, we map the concepts of the metamorphic testing on the LPS 
as follows: 

5.4.1.1 The Output of the LPS 

f ({m1,m2, . . . , mn}) is a pair (f ound, [Itm1 , Itm2 , Itm3 ]), where mi and tmi[1,3] 
are all and true positional markers respectively with two coordinates xi and yi , 
where {tm1, tm2, tm3} ⊆  {m1,m2, . . . , mn}, f ound  = T RUE|FALSE  and 
[Itm1 , Itm2 , andItm3 ] are the vector of indexes of true markers provided that 
f ound  = T RUE. 

5.4.1.2 Metamorphic Relation 

We extract the MR from the requirements of the SUT. For instance, the following 
requirement “Assuming that the system is able to classify correctly a set of markers 
detected by camera module in the absence of reflections (noise), the system should 
be able to classify correctly the same inputs in the presence of reflections” can be 
formulated as the following metamorphic relation: .f (Xs) ≡ f (Xs ∪ Xn) where . Xs

and . Xn denote the series of seed input and noise markers respectively. 

5.4.1.3 Creating the Seed Input 

In our approach, we choose the seed input as a series .Xs = {s1, s2, . . . , sk} of 
true marker triplets, where each element .si = {tmi

1, tm
i
2, tm

i
3} has three markers 

which is the minimum number of markers needed for correct classification. For 
accuracy reasons and in order to avoid unrealistic seed input values, we extract the 
seed input from previous executions of the LPS by selecting those log entries that 
only contain three positional markers. When the seed input data set is extracted 
from the execution trace, we run an initial test session against the SUT to confirm 
that all the input marker positions are classified correctly. In case execution logs are 
unavailable, the seed input data can be collected from the simulation environment of 
the LPS that is validated against a real crane for the set of inputs the seed is extracted 
from. 

5.4.1.4 The Morphed Input 

In our case, the morphing transformation takes each sample in the seed input . Xs

and adds markers corresponding to reflections, which we denote as noise: a series of
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noise markers corresponding to environment reflections .Xn = {n1, n2, n3, . . . , nj }, 
where .ni ∈ X. 

In the exploration step, we use randomly generated noise to perform an initial 
exploration of the SUT in order to collect observations and identify fault patterns. To 
this extent, we create random noise coordinate pairs of marker vectors of different 
lengths ranging from 1 to 23. These noise vectors are appended to the seed input 
one at a time. The algorithm for generating morphed input generates random (x, 
y) coordinates as noise with a value in the range [0, 131072], which is the size 
of the camera frame. Therefore, the morphed input for this step can be defined 
as a series .Xm .= {m1,m2, . . . , mk} of sampling the markers, where each sample 
.mi = {tmi

1, tm
i
2, tm

i
3, n

i
1, n

i
2, n

i
3, . . . , n

i
j } , .j ≤ 23, is the combination of seed 

input markers . Xs and noise markers . Xn. 
In the exploitation step, we analyze noise patterns in the morphed input that 

caused the system to make incorrect classifications. This led to the following 
observations: the samples containing noise markers having the same geometric 
pattern of true markers can trigger faulty behavior of the system. Therefore, 
we refine the morphed input to a more constrained version of the input space 
to exploit the above-mentioned fault patterns. Therefore, the refined morphed 
input is denoted as a series of marker samples .X′

m = {m1,m2, . . . , mk}, where 
each sample .mi = {tmi

1, tm
i
2, tm

i
3, n

i
1, n

i
2} in the first follow-up test and . mi =

{tmi
1, tm

i
2, tm

i
3, n

i
1, n

i
2, n

i
3} in the second follow-up test and .C′

m is the restrictive 
constraint used to refine the added noise to two and three noise markers. Then, the 
series . X′

m is the combination of seed input markers . Xs and a restricted set of noise 
markers . X′

n satisfying the constraint . C′
m. 

In order to automate the creation of the noise markers, we create replicas of 
the true markers, thus obtaining a similar geometrical pattern in the noise. For 
each sample of true markers in the seed input, we distribute the noise markers in a 
rectangular grid pattern in the camera frame in order to obtain a uniform distribution 
of samples over the input space. 

In addition, each replica of the true marker placed on the grid is rotated by 
angles . 45◦, . 90◦, and .135◦ to evenly distribute the noise markers in a star-like pattern 
(see Fig. 5.7). Depending on the number of test inputs that we want to obtain, we 
can increase or decrease the number of rotations of each sample. We note that 
the approach is completely automated and it allows us to change the number of 
generated tests by changing the density of the grid and the number of rotations of 
the noise markers. 

In our work, two sets of experiments have been conducted for each phase in the 
approach. For the metamorphic testing phase, we use a seed input with 625 samples, 
each containing a sequence of three true markers extracted from execution logs. 

In the exploration step, the test generation algorithm produced . 625 × 10 × 23 =
143,750 follow-up tests. From the total of 143,750 executed tests, 143,615 satisfy 
the metamorphic relationship, while 135 do not. From the failed tests, 39 selected 
the wrong combination of inputs as true markers (false positives), whereas 96 could 
not find true markers among the inputs, although they were present there (false



5 Metamorphic Testing for Verification and Fault Localization in ICSs 145

Fig. 5.7 Test data distribution for the guided star approach 

negatives). The geometric distribution of the incorrectly classified data points is 
shown in Fig. 5.8. 

The geometric distribution of incorrectly classified data points is shown in 
Fig. 5.8. Further analysis of the failed tests provides us with the following obser-
vations. FP results occurred when the input set contained either a set of two noise 
markers resembling the pattern of true side markers or a set of three noise markers 
resembling the geometrical pattern of the true marker triplet. FN results occurred 
when the input set contained either a number of markers greater than or equal to 6 
or a set of two noise markers resembling the pattern of the true side markers. 

In the exploitation step, we ran two separate testing sessions in which the refined 
morphed input contained two and three noise markers, respectively, besides the 
true markers. In both cases, the test generation algorithm produced 2400 refined 
morphed test inputs. These refined morphed inputs were created by replicating and 
rotating the seed input markers. It resulted in .625 × 4 = 2500 noise markers and 
discarding the samples that do not fit in the .131072× 131072 frame after the rotate 
morphing action. The results of the test execution are shown in Table 5.4. For  
the test session with five input markers, 7 incorrect and 74 missed classifications 
have been identified, whereas, for the subsequent test with six input markers, no 
incorrect/missed classification occurred. 

For the test session with 5 input markers, 7 FP and 74 FN classifications are 
identified, whereas, for the subsequent test with 6 input markers, no FN and 92 FP 
classifications are identified. The test execution results of the guided method, where 
the number of markers is five, contain more FNs indicating that the system is not 
identifying the true markers when a replica of two side markers is added as noise. 
The distribution of the noise markers in the input space for failed tests (FNs) in the 
exploitation phase is shown in Fig. 5.9.
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(a) 

(b) 

Fig. 5.8 Morphed input corresponding to incorrect classifications in the exploration phase. (a) 
Morphed input w.r.t FP output. (b) Morphed input w.r.t FN output 

However, the FP results of the follow-up test where the number of markers is 
six reveal that a replica of three true markers can trigger an incorrect identification 
and compromise the functional safety of the system. The distribution of the noise 
markers in the input space for failed tests (FPs) in the exploitation phase is shown 
in Fig. 5.10. It is also observed that a replica of two side markers has a low chance 
of causing FPs compared to the noise created with a replica of three true markers. 
Moreover, only the noise markers corresponding to the exact replica of true markers
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Table 5.4 Test execution results 

No. of No. of 

Method markers tests TPs FPs FNs FDR 

Exploration 4–26 143750 143615 39 96 0.0009 

Exploitation 5 2400 2319 7 74 0.03 

6 2400 2308 92 – 0.04 

FNs for markers=5 

Fig. 5.9 Input distribution for failed tests (FN) in the exploitation phase 

triggered the incorrect identification of true markers. In addition, we can observe 
that the noise markers rotated by angles .450, 900, 1350 resulted in TP test cases, 
where the system correctly identified the true markers despite the noise. 

Table 5.4 also shows the corresponding fault detection ratio (FDR) [14] for each 
phase as the number of tests that found a fault in the entire tests suite. As expected, 
the exploration phase has a very low FDR due to the random test generation, 
whereas in the exploitation phase, FDR has increased around 33 to 44 fold. 

The correct classification of true markers, in the morphed output, satisfies the MR 
and counts as tests that do not fail. The failed tests include incorrect identification 
or missed identification of true markers placed in the first three positions in the 
morphed input. 

5.4.2 Fault Localization Phase 

As previously discussed, the goal of the fault localization phase is to identify the 
code statements or variables which are the root cause of the failed tests observed in 
the metamorphic testing phase. To this extent, we have to compare the execution 
traces of the passed tests against the execution traces of the failed tests. In the 
previous phase, we observed two types of incorrect classifications: false positives
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(a) 

(b) 

Fig. 5.10 Input distribution for failed tests (FP) in the exploitation phase. (a) FPs for markers = 5. 
(b) FPs for markers = 6 

and false negatives. In order to make the localization more precise, we compare 
the execution traces of the tests of one type of failure against the execution traces 
of passed tests. The same process can be applied to the other types of failures in 
different localization sessions. 

In our case, we have randomly selected a number of tests from the false positive 
ones and the same number from the passed ones. For instance, a test suite is 
generated using the noise marker coordinates from the passed tests in the exploration 
phase and another using the fault-inducing noise markers identified from failed tests
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in the exploitation phase. We keep the number of markers in each test and the 
number of tests in each test suite to be the same as discussed in Sect. 5.3.2.1. It  
ensures a fair comparison between the test suites w.r.t to the suspiciousness score 
calculated for the execution paths. 

For instrumentation purposes, we extract the structured text code of the LPS. The 
LPS is written in the PLC programming language function block diagram (FBD) and 
structured text (ST). It comprises of inter-procedural calls between function blocks 
and functions written in ST, similar to the structure depicted in Fig. 5.5. 

We instrumented the code with counters in each program and executed the tests. 
In total, we have added six counter arrays, each of length corresponding to the 
number of branches in the program. We have selected different sizes of the passed 
and failed test suites, namely, 10, 20, and 50 tests, to run the fault localization. Each 
test session was run five times for statistical purposes. The scores calculated using 
the three formulas slightly varied since different test suites had slightly different 
traces in the program, but they still pointed to the same fault, as discussed in the 
following. Additionally, the spectra information collected from the test execution 
sessions and the calculated suspiciousness score are annotated on the control-flow 
graph generated per program in the fault report, similar to the generic examples in 
Figs. 5.11 and 5.5. The suspiciousness score annotated in the graph at the program 
level is the maximum of the scores assigned at the basic block level for each 
program. 

For experimentation purposes, we have used the following three suspiciousness 
metrics Ochiai, Jaccard, and Tarantula, as well as the average suspiciousness score 
defined in the previous section. Table 5.5 summarizes the suspicious variables that 
appear most often in the basic blocks and branching conditions identified by the 
suspiciousness metrics used when using test suites of size 10. For confidentiality 
purposes, the names of variables have been anonymized, and as such, Table 5.5 

Fig. 5.11 The call graph of the LPS
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Table 5.5 Suspiciousness score for variables/blocks in programs under test for test suites of 
size 10 

Suspicious variable Block ID Program name 
Scores 

Ochiai Jaccard Tarantula Average score 

var_in_ss1 8 a 0.71 0.5 0.5 0.57 

10 a 0.71 0.5 0.5 0.57 

var_out_a_ss1 10 a 0.71 0.5 0.5 0.57 

14 a 0.71 0.5 0.5 0.57 

17 a 0.71 0.5 0.5 0.57 

var_out_a_ss2 10 a 0.71 0.5 0.5 0.57 

14 a 0.71 0.5 0.5 0.57 

19 a 0.71 0.5 0.5 0.57 

var_out_a_sub_ss 1 a_sub 0.71 0.5 0.5 0.57 

3 a_sub 0.71 0.5 0.5 0.57 

7 a_sub 0.71 0.5 0.5 0.57 

2 b 0.71 0.5 0.5 0.57 

4 b 0.71 0.5 0.5 0.57 

var_out_b_ss1 2 b 0.71 0.5 0.5 0.57 

3 b 0.70 0.54 0.70 0.65 

6 b 0.71 0.5 0.5 0.57 

9 b 0.71 0.5 0.5 0.57 

var_out_b_ss2 4 b 0.71 0.5 0.5 0.57 

5 b 0.34 0.2 0.29 0.27 

6 b 0.71 0.5 0.5 0.57 

11 b 0.71 0.5 0.5 0.57 

var_out_b_sub_ss 1 b_sub 0.71 0.5 0.5 0.57 

3 b_sub 0.71 0.5 0.5 0.57 

7 b_sub 0.71 0.5 0.5 0.57 

9 b_sub 0.71 0.5 0.5 0.57 

11 b_sub 0.71 0.5 0.5 0.57 

15 b_sub 0.71 0.5 0.5 0.57 

19 b_sub 0.57 0.36 0.8 0.57 

21 b_sub 0.32 0.1 1 0.47 

var_in_a_ss1 7 c 0.67 0.47 0.5 0.54 

var_in_a_ss2 11 c 0.89 0.8 1 0.89 
var_in_b_ss1 15 c 0.67 0.47 0.5 0.54 

var_in_b_ss2 19 c 0.89 0.8 1 0.89 
var_out_c_ss 52 c 0.67 0.47 0.5 0.54 

shows the masked names of the variables which correspond to the suspicious 
variables in the programs under test. In the next step, these variables whose values 
are defined and used repeatedly in suspicious blocks and their def-use chains in 
the control flow and inter-procedural flow are subjected to data-flow analysis. As
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one can notice, the average score indicates the same ranking as the other three 
suspiciousness metrics. 

To that extent, all suspicious variables extracted from the basic blocks are 
subjected to a data-flow analysis to improve the precision of the fault localization. A 
heat map for the suspicious variables extracted from suspicious blocks in Table 5.5 
based on their def-use chain is created as shown in Fig. 5.12. Data-flow analysis of 
these variables based on their dynamic_mslice and def-use chain reveals the variable 
which propagates the error triggering the fault. 
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Fig. 5.12 Heat maps revealing def-use chain of suspicious variables on the call graph of the LPS 
in Fig. 5.11
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In this case, variables var_in_a_ss2 and var_in_b_ss2 in program c appeared in 
the basic blocks with maximum suspiciousness score indicated by all the metrics 
used in this experiment. The data-flow related to these variables was analyzed 
further to determine their def-use chain in the inter-procedural call structure. 
The dynamic mslice extracted for these variables revealed that the value of these 
variables was defined in program a and program b, respectively, based on the calls 
to subprograms a_sub and b_sub. According to the data-flow analysis stated above 
and tracking the definition and usage of variables associated with the identified 
suspicious blocks, we reach the variable var_in_ss1, an input variable in program 
a and program b. This variable var_in_ss1 was used in the branching condition 
that impacts the definition of the variables var_out_a_ss2 and var_out_b_ss2 whose 
value was propagated in the program flow and appear in program c as the most 
suspicious variables var_in_a_ss2 and var_in_b_ss2. Based on these findings, 
var_in_ss1 was suspected of significantly impacting the program flow in terms of 
influencing the def-use chain of the suspicious variables listed in Table 5.5. This  
study revealed how the definition and usage of suspicious variables were propagated 
in the program flow to induce the fault and result in the incorrect final state. 

Upon inspection of the data flow of the var_in_ss1 variable, we discovered that it 
was using a hard-coded value instead of using the value assigned as an input while 
calling program a and program b. Such a fault has direct implications on the safety 
of the system, which, if properly implemented, will move to a safe state when the 
input classification is not successful. However, this fault may also be considered 
a security vulnerability according to Common Weakness Enumeration database, 
CWE-547: use of hard-coded, security-relevant constant.1 

In addition, in the presence of this vulnerability, the LPS is not able to filter out 
incorrect (noisy) input which is consistent with another type of security vulnera-
bility, namely, CWE-20: improper input validation.2 Since the LPS is connected to 
other components via a network, an attacker can inject “noise” into the input of the 
LPS, which can affect the classification of the markers, either sending the system to 
an unsafe state or providing false information about the position of the load. 

Upon updating the assignment of this variable and re-executing the failed test 
suite, all the previous metamorphic tests passed. And the test results also proved 
that the system no longer exhibits faulty behavior in the follow-up tests. 

Table 5.6 shows how the proposed method of metamorphic program slicing 
and data slicing based on def-use chain analysis reduces the scope of data-flow 
analysis to 35% of the entire input space. Based on these results, the integrated 
method proposed in this work considerably reduced the complexity and effort in 
fault diagnosis and program debugging. Therefore, it shows the applicability and 
effectiveness of the technique in the chosen case study. 

To evaluate the benefits and effectiveness of the proposed approach, we have 
also conducted a controlled experiment involving 20 software professionals as

1 https://cwe.mitre.org/data/definitions/547.html 
2 https://cwe.mitre.org/data/definitions/20.html 
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Table 5.6 Reduction in 
scope of search using the 
metamorphic fault 
localization approach 

Phase Reduction in scope of search 

Code analysis 233/701 LoC 

Code analysis 65/133 basic blocks 

Data-flow analysis 60/170 variables 

subjects. They were divided into two balanced groups with an equal distribution 
of programming expertise and experience level. The first group received the source 
code of a program for triangle classification having 27 lines of code. The code 
had an inserted fault in it and was accompanied by a set of passed and failed 
metamorphic tests. The second group received the same source code, the passed and 
failed tests, and the annotated CFGs that highlighted the suspicious parts in the code. 
The second group also received preliminary training on how the annotated CFGs 
should be interpreted. Each group had 15 minutes to find the inserted fault using 
the available material. The second group was able to identify faster the fault in the 
code in an average of 8 minutes, while for the first group, only one person localized 
the fault before the end of the experiment. After the experiment, the first group also 
received the same training on how to use the annotated control-flow graph. The 
participants in both groups overwhelmingly agreed that having the annotated CFGs 
greatly facilitates the fault localization process. 

5.4.3 Tool Support 

Most steps of the approach are fully automated. For instance, in the metamorphic 
testing phase, the test generation for the exploitation and exploration phases is fully 
automated. Only the formalization of the metamorphic relation and the extraction 
of the fault-revealing patterns require human intervention. In the fault localization 
phase, program extraction, instrumentation, test execution, score calculation, and 
graph generation are also fully automated. Currently, only the data-flow analysis 
requires manual effort. We plan to automate the inter-procedural data-flow analysis 
by extracting and resolving the dependencies of suspicious variables in different 
subprograms. 

To implement automation, we have used Python and the Python testing frame-
work Pytest, which interacts with the SUT to perform automated test execution 
of the metamorphic and fault localization phases. The application program runs 
on CODESYS SoftPLC V3.5 with an in-built OPC UA server that enables the 
communication between the CODESYS OPC UA server [30] and the Python OPC 
UA client [31] via the OPC UA [32] data exchange protocol as shown in Fig. 5.13. 
The run-time measurements, such as code coverage and executable lines of code for 
the programs under test, were measured using the CODESYS Profiler.
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Meta Tester OPC UA Client OPC UA Server PLC_PRG 

Localizer 

Passed/Failed 
Tests 

Metamorphic 
relations 

Execution 
logs 

Fault Report 

v 3.5 

PLC_PRG 

Fig. 5.13 Tool chain for metamorphic test generation and fault localization 

5.5 Threats to Validity 

In this section, we discuss the possible threats to the validity of the results of our 
study. 

5.5.1 Construct Validity 

The current work has not been validated against time-critical systems. Our experi-
ments are applied to a PLC application written in FBDs and structured text with no 
timer functions. It is possible that the approach may collect less accurate execution 
information in the presence of timer-dependent variables. However, the system in 
our study is a real-world ICS in PLC programming language for which the proposed 
method using OPC UA as a communication protocol is standardized under Industry 
4.0 for its technical interoperability [33]. 

5.5.2 External Validity 

The fault detection and localization effectiveness reported in the study are based on 
the chosen metamorphic relation for the system under test. The results reported from 
the experiments are based on the input variables defined in the input MR and output 
behavior, and the test verdict relies on those. Like any other testing method, the 
MT is not exhaustive, even if the MR has been identified. For ICSs with large input
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space, different MRs can be identified. The choice of MRs that uses a different set 
of input variables may influence the outcome of both the metamorphic testing and 
fault localization phase. Therefore, the approach’s effectiveness for any industrial 
software system with a test oracle problem may vary depending on the metamorphic 
relations that can be defined for it. 

5.5.3 Conclusion Validity 

Based on current experimental evaluations, we noticed that the average score of the 
suspiciousness metrics Ochiai, Jaccard, and Tarantula we proposed gives a good 
perspective on the spectrum-based fault localization. However, more investigations 
are needed to evaluate the risk of imprecision while using the proposed score in 
pinpointing the fault location for other industrial software systems. 

5.6 Related Work 

The metamorphic testing technique has been successfully applied in several appli-
cation domains for testing software systems with an oracle problem. Among the 
most popular ones are Web services and applications [34–36], embedded systems 
[37–39], simulation and modeling [40–42], computer graphics [43, 44], and various 
other domains. 

In a study by Wang et al. [45], a metamorphic testing system called METAOD 
designed for deep learning-based object detectors (ODs) is used for identifying 
objects in an image using neural networks. The METAOD system is used for object 
extraction, selection, and insertion, to test the image classification accuracy of the 
object detectors. The object extraction module of METAOD takes a set of images as 
input and extracts object instances using segmentation techniques. Such synthetic 
images with inserted objects are used to test the ODs to evaluate their prediction 
accuracy. The synthetic images that triggered erroneous predictions were used to 
retrain the model and improve its accuracy. Even though the techniques are different, 
the test data generation by noise insertion, also used in our study, is similar to 
the synthetic image generation method in METAOD. However, our work focuses on 
systematically generating morphed input from failure-inducing patterns discovered 
in source and follow-up test executions. 

Xie, Xiaoyuan, et al. [25] introduced the concept of metamorphic slicing by 
integrating metamorphic testing and program slicing in combination with SBFL. 
They conducted an experimental study on nine programs of varying sizes using 
three MRs for each. They used three risk evaluation formulas, Jaccard, Ochiai, and 
Tarantula, to show the effectiveness of the approach in fault localization and the 
practical applicability of the technique in applying SBFL for application programs 
with an oracle problem. Their study also identified two faults in the chosen programs
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and proved that the approach of using violation or non-violation of a metamorphic 
test group as a test oracle for SBFL achieved a performance level quite similar to 
conventional SBFL techniques while testing systems with test oracle. Similarly, we 
combine metamorphic testing with SBFL and program slicing techniques. 

In his study on program debugging, Zeller, A [46] discussed program slicing 
based on the control-flow and data-flow dependencies to form the program-
dependence graph. Their approach of slicing programs based on dependencies could 
detect code smells such as unreachable code, uninitialized variables, and unused 
values, thereby assisting in failure diagnosis by reducing the scope of analysis to 
deduce the cause of program failure. However, our work has the additional step 
of integrating data-flow analysis with a definition-use chain associated with inter-
procedural calls for fault localization. 

A recent survey about challenges and opportunities in metamorphic testing [26] 
discusses the possibility of extending the integration of MT and SBFL to wider 
application domains that face the oracle problem. Owing to the complexity of 
such systems that might include inter-procedural program structure, they are also 
categorized as hard to debug and verify for any underlying code vulnerabilities. In 
our work, we focus on the applicability and effectiveness of this integrated method 
capitalizing on usability features for industry scale control software testing facing 
an oracle problem and hence being commonly considered non-testable. We also 
provide several improvements, such as using normalized values of the counters for 
evaluating loops, analyzing data-flow information, and using several metrics for 
suspiciousness score calculation. 

5.7 Conclusions and Future work 

We proposed a metamorphic testing approach for PLC-based ICSs integrated with 
a fault localization technique. The main contributions of our approach were the 
following: 

1. A two-phase metamorphic testing approach comprises an exploration phase in 
which we learn about fault patterns of the system under test and an exploitation 
phase where the observed fault patterns are used for targeted testing. 

2. Fault localization is based on the results of the metamorphic tests. It combines the 
spectrum-based fault localization and program slicing technique integrated with 
inter-procedural control-flow analysis and data-flow analysis for PLC programs. 

3. Tool support for metamorphic test generation, execution, and fault localization 
in PLC programs. 

The presented approach is generic and applicable to systems for which the source 
code is available and written in an imperative programming language and for which 
metamorphic relations can be identified. For validation purposes, we conducted 
our experiment on a PLC program unit comprising four function blocks and two 
functions written in structured text. The fault analysis focuses only on the fault
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type discovered using the MR defined in the metamorphic testing phase. Hence the 
empirical analysis and conclusions made are proven effective on this experimental 
setup, programs, and the size of the test suite chosen for this study. It is also to 
be noted that the fault localization performance reported in this study is based on 
only one MR defined in the metamorphic testing phase. A different set of MRs with 
varying test inputs may result in different results in the fault localization phase. 
Future work will also investigate applying heuristic methods for the selection of 
fault-inducing inputs for defining MRs. 

The main advantages of this approach, in addition to alleviating the oracle 
problem, are providing a tool-based approach for fault localization and program 
debugging to assist the developers with root cause analysis and future regression 
testing of ICS. The study presented in this paper proves that metamorphic testing 
combined with SBFL can considerably reduce the effort in program debugging and 
program repair of real-time ICS. The identification of a metamorphic relation is 
done manually based on the specification of the system. A known challenge in 
the identification of MRs is the need for domain expertise to assess the expected 
input and output behavior of the system. Therefore, it is of interest to conduct 
a comparative study on the findings of fault localization and its effectiveness in 
terms of fault localization performance based on the choice of MRs and different 
types of metamorphic groups of inputs. As a future work, we plan to automate the 
identification of MR for an ICS from its specification and explore the applicability 
of metamorphic and mutation-based approaches for testing ICS and apply heuristic 
techniques for minimization of test suites. We also plan to improve the automation 
of the fault localization phase using machine-learning methods and thus reduce the 
need for manual analysis. 
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Chapter 6 
Interactive Application Security Testing 
with Hybrid Fuzzing and Statistical 
Estimators 

Ramon Barakat, Jasper von Blanckenburg, Roman Kraus, Fabian Jezuita, 
Steffen Lüdtke, and Martin A. Schneider 

Abstract Both static analysis and dynamic analysis are methods to identify 
vulnerabilities in programs. Whereas sound static analysis is strong in identifying 
all vulnerabilities of a certain type by analyzing all program paths, it suffers from 
high numbers of false positives which can make this approach infeasible for large 
amounts of code. In contrast, dynamic analysis, in particular fuzzing, has a low 
number of false positives but suffers from the inability to prove the absence of 
bugs since it covers only specific execution paths. Therefore, many bug-triggering 
paths may not be executed. This can then lead to potentially high numbers of false 
negatives, i.e., missing observations of bugs which are actually present in the code. 
Since both methods have complementary strengths and weaknesses, interactive 
application security testing (IAST) aims at obtaining the best from both methods 
by a smart and interactive combination to mutually eliminate the weaknesses of 
each method. For instance, fuzzing techniques can be used to discriminate the true 
positives and the false positives from the static analysis, and static analysis can 
benefit from concrete values observed during test execution to make the analysis 
more precise. However, interactive application security testing comes with its own 
challenges that need to be solved using a set of methods and techniques. In 
this chapter, we present an approach to both automatically assess static analysis 
results using fuzzing to make static analysis feasible for large-scale projects and to 
improve fuzzing with results from static analysis, e.g., by using results from constant 
propagation, such as magic bytes, to cover code fragments that are hard to reach for 
traditional fuzzers. 
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solving · Static analysis · Statistical methods 
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6.1 Introduction 

Cybersecurity attacks on software systems are part of our daily lives. Nearly every 
day, new incidents with dramatic consequences are reported, leading to security 
breaches up to the unavailability of the IT infrastructure of entire organizations. 
Many of such attacks are possible due to the popularity of programming languages 
that do not provide inherent memory safety features, such as C [1]. Even though 
such vulnerabilities are known for more than two decades, they still persist in today’s 
software products and pose a significant security problem, comprising nearly 15 % 
of all vulnerabilities in 2021 [2]. One of the most famous vulnerabilities was the 1 

that is located in the widely used OpenSSL library and enables an adversary to read 
confidential data from the memory, including cryptographic keys and passwords. 
Despite its severity2 and simplicity, it remained undiscovered for more than 2 years. 

Due to its popularity, much research has been spent on techniques to identify 
such vulnerabilities. An established Dynamic Application Security Testing (DAST) 
technique to identify them is fuzzing. In fuzzing, the System Under Test (SUT) 
is stimulated with random inputs. Despite its simplicity, this technique is 
very effective. On the contrary side, static analysis techniques, belonging to 
Static Application Security Testing (SAST), analyze the source code of a program 
for patterns that hint at a vulnerability. Both techniques SAST and DAST have their 
strengths and drawbacks. However, applying these techniques separately did not 
allow to completely overcome memory-related vulnerabilities as proven in the past. 

Even though research on combining static and dynamic analysis, known as 
Interactive Application Security Testing (IAST), started several years ago, there is 
still no methodology in which both approaches interact in both directions, i.e., in 
which DAST is benefiting from SAST and, at the same time, SAST benefiting from 
DAST, to reliably identify memory-related vulnerabilities with nearly no manual 
interventions. 

In this chapter, a novel approach of hybrid fuzzing is presented, where static 
and dynamic analyses are used to uncover vulnerabilities in a targeted manner 
and augmented with statistical means, aiming at identifying not only true but also 
false positives. We develop as part of a research project a novel approach from the 
perspective of the dynamic analysis by using the results from the static analysis. 
The remainder of this chapter describes our methodology for hybrid fuzzing as an 
example of an IAST approach and discusses the following research questions that 
have been identified along the research that led to the proposed methodology:

1 https://heartbleed.com/ 
2 It has a CVSS score of 7.5 out of 10, cf. Common Vulnerability Scoring System, https://nvd.nist. 
gov/vuln-metrics/cvss 
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RQ1 Which information can static analysis provide to DAST that facilitates its 
analysis? 
This research question is related to the kind of interaction of SAST and DAST. 
Our hypothesis is that static analysis can guide the dynamic analysis where in 
the code to search for vulnerabilities, and can provide information that enables 
targeted testing for these vulnerabilities. 

RQ2 Is IAST more efficient than DAST on its own? Under which conditions is IAST 
more efficient than DAST? 
In other words, is IAST worth the additional effort to stand alone DAST, i.e., 
is it worth putting more effort in generating crafted test cases, or is brute-
force testing as done by black box and gray box fuzzers more efficient? Our 
hypothesis here is that IAST plays its advantage when the SUT is well tested 
and contains only a few, deeply hidden bugs, where complex path constraints 
constitute a natural barrier for traditional DAST. 

RQ3 To which extent can false and true positives from static analysis be automati-
cally discriminated by dynamic analysis? 
This is related to the challenge of identifying false positives from the static 
analysis through dynamic analysis that cannot prove the absence of bugs [32]. 
Hence, we hypothesize that we can verify true positives quite well, but doing 
this for false positives is much harder, since we cannot solely rely on the tests 
itself and need in addition to rely on statistical methods. 

RQ4 How well do methods used in DAST to quantify the uncertainty to discover 
new bugs work in the context of IAST, in particular when we aim at verifying 
SAST results using DAST? 
This research question deals in particular with the false positives and, thus, 
is closely related to RQ3. Statistical estimators such as the Good-Turing 
estimator have already been proposed in traditional gray box fuzzing to 
quantify uncertainty. We hypothesize that it is also suitable in the context 
of IAST. 

6.2 Related Work 

Dynamic application security testing (DAST) aims to analyze and identify bugs in 
an SUT by executing it. DAST includes various techniques, the most prominent of 
which is fuzzing [3, 4]. In fuzzing, the SUT is stimulated with invalid or unexpected 
inputs to, for instance, crash it and, thus, identify potential security issues. The 
underlying assumption of fuzzing is that if input validation mechanisms in the 
interface of an SUT are faulty or even missing, invalid and unexpected inputs might 
bypass them and, thus, may alter the application logic and bypass security controls. 
This may result in memory corruption that may allow an attacker to crash a system 
or to inject malicious code. Complementary to this approach is behavioral fuzzing, 
which can detect errors in the processing of calls, implemented state machines, and 
call sequences [5, 6].
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In general, fuzzing approaches can be distinguished by their aim to maximize 
code coverage, to target a specific subset of the code, or to identify specific 
vulnerabilities. Some of these approaches employ static analysis to cover code 
fragments that are hard to reach, e.g., because they are deeply nested or hidden 
behind complex path conditions. 

While early approaches simply generate data randomly, model-based fuzzers 
were considered more powerful due to their ability to generate semi-valid input 
data, i.e., input data that deviates slightly from valid input data and, thus, challenges 
the input validation. With the success of American Fuzzy Lop (AFL) [7] and 
LibFuzzer [8], fuzzing with random mutation of input data has returned, which 
could be easily deployed since it does not require any protocol knowledge. However, 
even though input data is generated randomly, the power of these tools arises from 
employing search-based methods, especially genetic and evolutionary algorithms, 
which use mutation, recombination, and selection to mimic natural evolution and, 
thus, to find those inputs that would execute new parts of the SUT’s code while 
aiming at maximizing the code coverage. 

Even though many different vulnerabilities have been uncovered using AFL,3 its 
random-based mutation is not very efficient. Nested branches, multi-byte markers, 
and unbounded loops are difficult to access for fuzzers with random-based muta-
tions [9–12]. Therefore, recent approaches aim to obtain additional information 
about the SUT and use it for the test generation. Cha et al. use static analysis to 
optimize the mutation rate based on the dependencies between multiple bytes [13]. 
While Cha et al. employ static analysis to identify dependencies on a single 
execution path, our approach considers all execution paths. Moreover, they are 
optimizing the mutation rate to target a certain program path, whereas we are 
employing constraint solving to target one execution path and, thus, are able to 
specifically execute only this program paths and no one else. Using Driller, a hybrid 
vulnerability discovery tool, Stephens et al. combine fuzzing and the so-called 
“concolic execution,” a combination of “concrete” and “symbolic execution,” to 
identify magic bytes that cannot be found efficiently with random mutation due 
to the large input space [11]. We rely on static analysis that, in addition to the 
magic bytes, also provides us with information on suspected vulnerabilities which 
we target in our subsequent fuzzing campaign. Corina et al. use static analysis 
to identify data structures of kernel drivers [14]. This involves creating valid data 
structures whose fields are filled with randomly generated data. This data may pass 
the input data validation and, thus, reach deeper code. While we are also using static 
analysis to identify relevant data structures, we do not fill them with random data 
but employ constraint solving as described above. Rawat et al. have also addressed 
this problem with their tool VUzzer that uses static and dynamic analysis to extract 
properties of an application’s data and control flow [9]. It uses this information 
to prioritize promising paths during test execution without having to use elaborate 
symbolic execution such as Driller, thus realizing directed fuzzing. In particular, it

3 A collection of vulnerabilities discovered by the AFL fuzzer can be found under https://github. 
com/mrash/afl-cve 
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aims to avoid error-handling code, considering it to contain only a few bugs [9, 15]. 
In contrast to Rawat et al., we do not target those paths that were executed rarely 
but those who are considered to contain a suspected vulnerability identified by 
the static analysis. Böhme et al. pursue a similar approach with AFLGo and use 
simulated annealing to prioritize between fuzzing as done by AFL and targeting 
specific code fragments [16]. They identify potential uses as regression testing of 
patches; reproduction of crashes that occur in the field and are otherwise difficult 
to reproduce due to missing data, for identifying potentially dangerous dataflows; 
and verification of static analysis results. In their paper, Böhme et al. also discuss 
the challenges that symbolic execution faces in the context of patch testing on the 
example of the Heartbleed Bug. The authors claim that directed fuzzing is superior 
to symbolic execution since it is too expensive to analyze all possible paths to cover 
the entire code. This is an actual drawback of symbolic execution when dynamic 
analysis tries to cover all the code from a patch and, thus, is, for instance, not able to 
detect the Heartbleed Bug within 24 hours [16]. Even though this may be a problem 
when applying symbolic execution only, we apply constraint solving only on those 
program paths that have been previously identified by the static analysis and, thus, 
overcome this drawback. Furthermore, if the constraint solving fails to state if 
a constraint problem for a certain program path is satisfiable, we are employing 
directed fuzzing with the tool AFLGo to target the code in question. Pham et al. 
apply an approach with AFLSmart that does not only optimize the lines of code to 
be covered but likewise draws on information about the input data format using a 
parser to apply mutation operators at the data structure level rather than at the bit 
level (as AFL does) to leverage knowledge about the application [17]. AFLSmart 
does not take into account information from static analysis as we do in our approach. 

Further, fuzzing approaches combine fuzzing and symbolic execution. One 
approach uses this combination together with bounded model checking to identify 
vulnerabilities in C programs [18]. To do so, security properties are verified using 
model checking to identify if a specific execution path of a C program might 
violate them. However, as the authors describe, their approach has limitations 
if large amounts of complex data need to be initialized at the beginning of the 
program. Complex data is, for instance, required to trigger vulnerabilities such 
as the Heartbleed Bug. As we demonstrate in the subsequent sections, this is 
particular where our approach is successful. Another combination of fuzzing and 
concolic execution has been investigated by Borzacchiello et al. [19]. They derived 
symbolic queries from a binary using virtualization and applied fuzzing techniques 
to solve these symbolic queries. However, Borzacchiello et al. do not apply fuzzing 
techniques to the SUT itself while aiming at better code coverage and performance. 

Ognawala et al. use fuzzing together with targeted symbolic execution in a two-
step approach [20]: First, they aim at identifying bugs in the SUT by fuzzing isolated 
functions. Next, their framework analyzes for each vulnerability if it is reachable 
when considering the call graph through the function call chain until the main 
function of the SUT is reached. Thus, vulnerabilities that are unreachable by an 
attacker are identified, since their inputs are sanitized by other functions in the call 
graph. The main difference between the approach by Ognawala et al. and ours is that 
we are applying static analysis to identify suspected vulnerabilities and to improve



166 R. Barakat et al.

fuzzing to reach parts of the code that is hard to execute by gray box fuzzing such 
as AFL. 

One major issue when applying dynamic analysis is that proving the absence of 
bugs is not possible. One approach to cope with this issue are statistical methods that 
can be applied to estimate the residual risk that a bug is not yet discovered but might 
exist. These methods have been established in gray box fuzzing, and one established 
statistical method is the Good-Turing-Estimator (GTE) [21]. The basic idea of the 
GTE is to estimate the likelihood to discover an unseen species based on how often 
new species have been discovered in the past. This approach has been applied to 
gray box fuzzing by considering discovered execution paths as species and, thus, 
mapping the problem of species discovery to software testing [22]. The approach 
has been improved by Böhme et al. by including an adaptive bias that aims at taking 
the increasing likelihood to discover bugs into account while the fuzzing campaign 
advances and code coverage increases [23]. In our approach, we apply this approach 
to discovering a particular execution path. 

6.2.1 Interactive Application Security Testing 

While there is a plethora of publications on the techniques that are employed for 
IAST, e.g., static analysis, constraint solving, and fuzzing, this is not the case 
for IAST itself. Earlier literature focuses on how to improve automated test case 
generation using static analysis or automatically generate test cases to verify static 
analysis findings. For example, Bozga et al. propose to reduce the state space 
explosion in test case generation for conformance testing through slicing and, thus, 
simplifying the specification in the form of extended state machines by identifying 
those parts that are relevant for conformance testing, using a set of given seeds, 
in contrast to our approach that focuses specifically on vulnerabilities than on 
conformance testing [24]. Chebaro et al. employ in addition program slicing to 
reduce the overhead of test execution by removing irrelevant instructions from the 
code with respect to a static analysis finding identified using value analysis [25]. 
Their approach results in three states for each finding, i.e., alarm when a finding is 
a true positive when at least one test case identified a bug at runtime, safe when it is 
a false positive because all execution paths have been executed and none triggered 
the bug, and unknown when no test cases triggered a bug but not all paths could be 
covered. Hence, the approach does not provide any statistical guarantees for false 
positives for real-world programs, as our approach does. Wang et al. propose a static 
method to identify Integer errors in the source code using constraint solving based 
on the source and, thus, enables the identification of vulnerabilities resulting from 
them [26]. In a similar way, Liang et al. employ symbolic execution and constraint 
solving to identify vulnerabilities in the source code that result from division by 
zero error, pointer overflows, and dead code [27]. However, they are suffering from 
false positives. In contrast, our approach allows the identification of false positives 
through dynamic analysis and compared to Wang et al. without user intervention.
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Williams et al. aim at maximizing path coverage by instrumenting the code of an 
SUT to collect constraints when executing a single test case and iteratively change 
their evaluation and use constraint solving to generate a test case that covers a new 
path in each iteration, thus maximizing the code coverage [28]. We do in addition 
employ static analysis results to obtain the location of a vulnerability in the code 
and execute specifically this code (more precisely, the corresponding program path) 
to discover vulnerabilities. Hybrid fuzzing approaches, such as white box fuzzing, 
work similarly. Godefroid et al. derive fuzz test data from the source code by 
collecting all the constraints that were involved when processing a certain valid 
input [29, 30]. The collected constraints are then negated or otherwise violated, and 
subsequently, these mutated constraints are used to generate test data. Thus, they 
achieve a high code coverage but do not employ static analysis to identify suspected 
vulnerabilities and cannot provide information on the absence of vulnerabilities as 
our approach aims to do. 

6.3 Methodology 

This section is intended to illustrate the principle methodology to combine static and 
dynamic analysis. After a brief overview of the information that can be obtained 
from each analysis method and the variations in IAST approaches, the rest of 
this section discusses how SAST and DAST can support and improve each other. 
Both static and dynamic analyses consider the SUT on different stages. While 
static analysis examines the source code, dynamic analysis investigates the runtime 
behavior. Each analysis technique can obtain quite different types of information 
about the SUT. 

Static analysis identifies potentially vulnerable program code by searching for 
dangerous patterns such as the unsafe usage of user input. To do so, all program 
paths are analyzed. By identifying such patterns, static analysis can provide 
concrete information about the potential vulnerability, e.g., its type and its location. 
In addition, it can be analyzed under which conditions the vulnerable code is 
reachable by collecting the conditions of the related program path. However, due 
to the “exponential explosion” of potential program state configurations and the 
large input space, a complete analysis of all feasible configurations and inputs is 
usually not possible.Therefore, abstractions are necessary to be able to perform the 
analysis which leads to the fact that it also identifies a large number of potential 
vulnerabilities that may not occur during execution because the conditions that lead 
to the vulnerability cannot be satisfied, called false positives. 

In contrast, dynamic analysis observes the system at runtime to determine 
properties that hold for one or more execution [31] and can thus gain information 
about the system that cannot be determined statically. The explicit execution of 
the SUT ensures that false positives are rarely generated since vulnerabilities 
are only reported only if they are observed during execution. However, through 
dynamic analysis, it is often not possible to make a precise statement about the
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Table 6.1 Strengths and weaknesses of static analysis and dynamic analysis 

Static analysis Dynamic analysis 

Strengths - High path coverage - Few false positives

- Good presentation of results - Provides input triggering a vulnerability 

Weaknesses - High number of false positives - Random path coverage

- Poor result presentation

- Less code inferences 

location of the vulnerability in the source code. In contrast, dynamic analysis can 
provide the input which caused the vulnerability to be executed and, thus, support 
reproducing and investigating the vulnerability during debugging. When performing 
dynamic analysis for security testing, a common goal is to maximize the code 
coverage and, thereby, execute as much potentially vulnerable code as possible. 
Without knowledge about the implementation, this can be a tedious task as some 
parts of the code may only be reached under complex conditions that are rarely 
satisfied. Therefore, with purely no knowledge about the implementation, only 
random path coverage can be achieved. Here, static analysis can provide the missing 
knowledge to increase the code coverage much faster. In summary, both methods 
have complementary strength and weaknesses, which are summarized in Table 6.1. 

6.3.1 Interactive Application Security Testing: Combining 
Static Analysis and Security Testing 

When both analysis methods are used separately, they are limited to the information 
they can obtain. Therefore, interactive application security testing (IAST) combines 
static and dynamic analysis to benefit from both methods. Forwarding information 
from static to dynamic analysis (cf. Sect. 6.3.2.3) and vice versa (cf. Sect. 6.3.2.2) 
can significantly improve the effectiveness of both methods. Moreover, they can 
compensate for each other’s weaknesses, resulting in significant gains in efficiency 
and accuracy compared to their independent application, in terms of vulnerability 
discovery with respect to true and false positives and negatives, efficiency, and 
manual effort. However, the term “interactive” in IAST does not specify when 
both approaches interact. The exchange of information is furthermore not limited 
to a single exchange. New analysis results and information can be continuously 
exchanged, such that both analysis methods can repeatedly receive new information 
and improve their analysis, which in turn can lead to further information for the 
respective other analysis approach. Different interaction approaches are possible, 
and which suits best depends on the specific goals. Basically, we identified three
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Fig. 6.1 Sequential and parallel IAST approach 

Fig. 6.2 Iterative IAST approaches 

different interaction models (see Figs. 6.1 and 6.2), which can be applied in different 
variations: 

In the sequential IAST approach, depicted in Fig. 6.1a, static and dynamic 
analyses run one after the other. As soon as one analysis, e.g., static analysis, has 
finished, its information is passed on to the other, which in turn uses this information 
to perform and improve its own analysis. This approach is useful if the results from 
the static analysis should be verified through dynamic analysis. When both analyses 
have been run, the execution is finished. It runs first the static analysis with a single 
run that provides intermediate results (from the IAST point of view) to the dynamic 
analysis, which in turn uses this information to perform its own analysis. It finishes 
with the provision of the final analysis results, i.e., the identified vulnerabilities. We 
expect the dynamic analysis usually to provide final results since it is used to verify 
the findings from the static analysis (cf. Sect. 6.3.2). 

The parallel IAST approach illustrated in Fig. 6.1b is similar to the iterative 
approach. However, it exploits the fact that both analyses can run on their own, i.e.,
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dynamic analysis starts at the same time as the static analysis. Since both analyses 
can run independently, vulnerabilities can be earlier identified, and information 
valuable for the respective other analysis can be obtained earlier than in the 
sequential approach. Thus, both analyses can benefit from each other. When they 
receive results from the other analysis, they can take them into account to improve 
their analysis. Both static and dynamic analyses start independently from each 
other. Here, the dynamic analysis would provide intermediate results to the static 
analysis, e.g., values of local variables. The static analysis can use this information 
to perform a more accurate static analysis. When it has calculated first results, the 
dynamic analysis can use the information from the static analysis, e.g., magic bytes, 
to increase code coverage more efficiently, for example. Both analyses can exchange 
information until they have completed their run. 

The iterative IAST approach extends the sequential or parallel approach to a cycle 
in which both are executed repeatedly (see Fig. 6.2). The iterative approach enables 
to propagate results in both directions such that static and dynamic analyses benefit 
from each other where new analyses could be run based on further information. 
Moreover, the analysis can run as long as new results can be identified or previous 
results could be refined. For example, the static analysis could be more precise 
because of concrete values it receives from the dynamic analysis, such as addresses 
of pointers. Figure 6.2 depicts the sequential (a) and parallel iterative approach (b). 
In the sequential iterative approach, static analysis propagates its results to dynamic 
analysis. As in the sequential approach, the dynamic analysis uses these results 
for its own analysis. In contrast to this, the iterative approach continues when the 
dynamic analysis has been finished, allowing the static analysis to benefit from the 
dynamic analysis, similar to the parallel approach. The parallel iterative approach 
combines the benefits of both the sequential and the parallel approaches, allowing 
them to start independently and propagate results as soon as they are available. In 
addition, it allows to repeat and refine the analyses when completed to improve its 
accuracy, reducing false positives and execute further program paths. 

6.3.2 Our Approach to IAST 

For our approach of IAST, we identified three main goals which are: 

1. Verify SAST findings using DAST. 
2. Improve DAST with SAST results. 
3. Improve SAST with DAST results. 

It seems obvious that for the first goal, static analysis should start before the 
dynamic analysis and after static analysis has identified candidates for vulnerabili-
ties, dynamic analysis is run to discriminate the true and false positives, a tedious 
task that is expensive if done manually. Toward this goal, we can use a sequential 
IAST approach since the dynamic analysis requires the results from the static 
analysis to start. Hence, dynamic analysis can run as soon as the static analysis
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provides its first finding. In addition to pure static analysis, dynamic analysis can 
handle situations in which the static analysis would fail, e.g., if the constraint 
solving does not terminate (cf. Sect. 6.3.2.1) and provides a test case that triggers 
the vulnerability and, thereby, supports the patch development. 

The second goal is to improve dynamic analysis with static analysis results. 
We could achieve this by exploiting magic bytes to increase code coverage more 
efficiently. Toward this goal, dynamic analysis needs to wait for such information. 
However, magic bytes, for instance, are not needed from the beginning of the 
dynamic analysis but can help to improve code coverage at a later point in time. 
Hence, it is useful to run static and dynamic analysis in parallel. 

Toward the third goal, static analysis may benefit from dynamic analysis results 
by obtaining information it has to abstract from. Such information can help to make 
the static analysis more precise by augmenting it with information it cannot calculate 
on its own and, thereby, addressing one of its drawbacks partially. For this purpose, 
the dynamic analysis needs to run first before the static analysis can retrieve such 
information. This is similar to the second task with reversed roles of static and 
dynamic analysis. Both models can be integrated where both static and dynamic 
analyses run in parallel and forward the information to the respective other analysis. 
In the current stage, we are applying the parallel IAST approach. However, all 
the experiments described in Sect. 6.5 can be conducted using the sequential IAST 
approach. 

6.3.2.1 Dynamic Verification of Static Analysis Findings 

To verify the findings of the static analysis dynamically means to determine whether 
a finding is a true or false positive. For this purpose, specific test cases are generated, 
which are intended to verify the analysis findings, i.e., execute the suspected 
vulnerabilities. If the suspected vulnerability can be observed, a finding is confirmed 
to be a true positive. Since “testing can be used to show the presence of bugs, but 
never to show their absence” [32], as long as the vulnerability cannot be observed, 
in general, no reliable statement can be made whether a finding is a false positive 
or not (even though, in certain cases, false positives can be identified, cf. Fig. 6.3). 
Therefore, a test suite is needed that provides some evidence that the finding can 
be considered as a false positive with some certainty. Here, statistical methods can 
be used to calculate a residual risk, which is a measure of the probability that an 
analysis finding could be a true positive despite the fact that it is not triggered by the 
test campaign that has been executed so far. In the following, the proposed process 
for the generation of test cases, the identification of true and false positives, and the 
calculation of the residual risk will be discussed in more details. 

To be able to test a SUT for a certain vulnerability (reported by the static 
analysis), three artifacts are relevant that constitute a test case: abstract test case, 
test data, and a suitable test oracle.



172 R. Barakat et al.

Fig. 6.3 Verifying static analysis findings using constraint solving 

Abstract Test Case The abstract test case specifies the entry point and the 
sequence of test steps without concrete test data. It describes if a single function 
of the SUT (e.g., a library), a combination thereof, or a certain interface is tested. 

Test Data Test data are the concrete inputs used by a test case and affect the 
execution of the SUT. Through suitable test data, it can be controlled which 
part of the function invoked by the abstract test case is executed. In addition, 
vulnerabilities are often only triggered with suitable test data, e.g., buffer 
overflows. Hence, covering the statement containing the vulnerability is not 
always sufficient. 

Test Oracle Just as important as the use of suitable test data, the choice of the right 
test oracle is crucial to be able to observe a vulnerability appropriately, because 
not every bug or security issue can be observed through a crash of the SUT. 

It is important that the static analysis provides precise information on the location 
of a suspected vulnerability, i.e., in which function and line of code it is located. 
The location of the vulnerability is relevant for two reasons. On the one hand, 
the location information specifies which target region of the code the test case 
shall exercise. The test data must therefore be generated such that it executes a 
program path that leads to the execution of the provided target region. On the other 
hand, the vulnerabilities observed during test execution need be compared with the 
vulnerability provided by the static analysis in terms of its location and its type to 
verify if a vulnerability provided by the static analysis has been confirmed or if an 
additional has been discovered. 

Once the static analysis provides the location of a potential vulnerability, test 
cases can be generated that aim to execute the given part of code. In addition to 
the information on the location, the identified call chain that leads to the suspected 
vulnerable line of code may be useful. In some cases, it can be sufficient to use 
only the function enclosing the vulnerable code in the abstract test case. However,
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in some cases, the previous call of other functions of the call chain is required 
since they lead to a state of the system that causes the vulnerability to be triggered. 
Therefore, it is reasonable to create not only a test case that executes the possibly 
vulnerable line of code but to create a number of test cases to increase the probability 
of discovering the vulnerability. 

Furthermore, the information on the type of the vulnerability that the static 
analysis provides is crucial in addition to the location information. The type of the 
vulnerability is relevant to select and conFig. the test oracle appropriately. Only 
if the type of the vulnerability is known a suitable test oracle can be selected to 
observe the vulnerability during test execution. In addition, it should be considered 
that not only the suspected vulnerability may occur but also additional ones that 
are located on the very same execution path. Thereby, it is a great benefit if the 
test oracle is also able to provide information about the responsible source code 
(location information) when a vulnerability is detected. This information is needed 
for comparison with the prediction of the static analysis. If the information matches, 
a finding can be classified as a true positive; otherwise, an additional vulnerability 
has been found. 

To reach a certain target region with a test case, the test data must be selected 
such that the desired program path is executed, which means that branches and 
jumps are selected accordingly. However, for some types of vulnerabilities, such as 
the double-free vulnerability, it is not enough to execute only the corresponding 
line of code; instead, certain instructions have to be executed beforehand. This 
information can also be provided by the static analysis. Accordingly, the target 
region can be considered as a set of code instructions that must be executed during 
runtime. To suffice the aforementioned requirements, test data can be determined by 
using constraint solving. In the case of constraint solving, the program statements 
of the respective program path will be translated into formal logic expressions and 
collected in a so-called constraint system. Note that we need to consider only that 
part of the program path from the beginning of the function to the vulnerable line of 
code and can ignore the remainder of this path. 

To solve a constraint system, a so-called constraint solver is employed. By 
solving the constraint system, the input values for the abstract test case are obtained, 
which would cover the desired target region during test execution. In addition to 
the translated program statements, vulnerability constraints can be added to the 
constraint system. The vulnerability constraints specify the conditions that must 
be satisfied to trigger the vulnerability. For instance, in the case of an overflow 
vulnerability, this could be a constraint that a value should be larger than the given 
buffer. When trying to solve the constraint systems, the following three situations 
can occur: 

1. The constraint system is satisfiable. 
2. The constraint system is not satisfiable. 
3. The constraint solver is not able to solve the constraint system.
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In the case that the constraints system is satisfiable, the constraint solver can 
provide one or more solutions for the constraint system. Each solution can be used 
to generate test data that, together with the abstract test case, form a test case that 
aims to trigger the vulnerability. The generated test case is then executed against the 
SUT. If the suspected vulnerability can be observed by the test oracle, a true positive 
is clearly identified. If not, no clear statement can be made about the existence of the 
vulnerability in question. In that case further test cases need to be executed. If the 
constraint system is not satisfiable, the corresponding program path is unfeasible, 
that is, its instructions cannot be executed while at the same time satisfy all its 
constraints and from the vulnerability type. If this applies to all possible program 
paths of a suspected vulnerability to be checked, it can be stated that this finding 
from the static analysis is a false positive since there is no test data that can lead to 
the suspected vulnerable line of code. The described process is illustrated in Fig. 6.3. 
The individual steps are fully automated. Only the configurations required for test 
execution, such as the compiler to be used or header files to be included, must be 
configured manually beforehand. 

In some cases, it may happen that the constraint solver does not terminate or 
cancels the process without providing an appropriate answer whether the constraint 
system is satisfiable or not. In such a case, we cannot rely on constraint solving 
for the test data generation. If none of the other program paths of the resulting 
constraints system already lead to executable test cases that might trigger the 
suspected vulnerability, a fallback solution is required. Here, directed fuzzing can be 
applied to verify the static analysis finding. Directed fuzzing is a gray box fuzzing 
technique which aims at covering a certain target region of the SUT’s code instead 
of covering its entire code. In directed fuzzing, the SUT is instrumented to give 
feedback on how close an execution has come to the target region. Based on that 
feedback, certain test inputs are selected and further modified in an attempt to get 
closer and closer to the desired target region. 

Residual Risk Estimation 

To estimate the residual risk that a vulnerability that has not been detected so 
far nevertheless exists, estimation heuristics can be used. One of such estimation 
heuristics that has been applied in the context of fuzzing is the GTE [21]. The GTE 
can be used to estimate how likely it is that the next sample of an observation is a 
previously unseen element. Applied to fuzzing, the GTE can estimate that the next 
test case executes a previously unobserved execution path. The estimator has been 
used in the context of gray box fuzzing by Böhme et al. [22]. Their experiments 
have shown that the estimator provides a reasonable upper bound for the success 
of a fuzzing campaign. The necessary calculation is relatively lightweight and the 
required amount of data relatively small. Stated by Good and Turing [21], the 
probability . P0 that the next execution path is a path that has not been observed 
before is approximated by the number of test cases that thereby produced a unique
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execution path divided by the total number of test cases that have been executed so 
far: 

.P0 ≈ # unique execution path

# test executions
(6.1) 

In contrast to Böhme et al. [22] who used the GTE to estimate whether further 
bugs can be detected when continuing a fuzzing campaign, we use the GTE to 
estimate the residual risk for a specific vulnerability to assess whether it is a false 
positive. The GTE can be calibrated such that the test campaign is stopped when 
the calculated estimation falls below a certain threshold. Here, looking at a single, 
absolute GTE value is not sufficient, and taking into account how the value has 
evolved over the course of the previous test executions is required. When the test 
execution is stopped, the residual risk that the suspected vulnerability is not a false 
positive even though it has not been observed during test execution can be reported. 

6.3.2.2 Improving DAST with SAST Results 

One major advantage of IAST is that both analyses can exchange information to 
augment the respective other analysis with information it cannot obtain itself but 
would make the respective analysis more accurate or faster. As mentioned above, 
most DAST tools suffer from the lack of knowledge of the internals of the SUT 
and can therefore only perform a more or less random-based dynamic analysis. 
Using information supplied by the static analysis, more targeted test cases can 
be generated and executed to reach the desired code more quickly, e.g., increase 
the code coverage or reach deeply nested program paths. Here, static analysis can 
provide information on the requirements an input must meet to execute a certain 
part of the code. Therefore, the static analysis can provide information on the related 
path conditions, for instance, that an integer must be set to a specific constant value 
or that a string must contain a specific character. We call these conditions “magic 
bytes.” Magic bytes can be used to support fuzzing because they can tell us which 
inputs need to be fixed to what values so that we reach a certain location, e.g., 
“.x == 10.” A random-based approach is not able to take this information into 
account. We can then focus on producing random values only for the unconstrained 
inputs while keeping the constrained ones fixed. Additionally, this would arguably 
allow for a more low-cost exploration of a target region than input generation via 
constraint solving.
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Table 6.2 Information exchange between SAST and DAST 

SAST . −→ DAST DAST . −→SAST

- Vulnerability type - Runtime information,

- Vulnerability location such as memory references

- Identified pattern - Values of local variables

- Path constraints - Results of external functions

- Magic bytes - Appearing side effects 

However, static analysis cannot only contribute to faster code coverage. It can 
also provide information about certain insights it gathered, e.g., third-party libraries 
and the used programming languages. Such information can be used to generate 
more targeted test cases. For instance, if it is known that certain inputs are used for 
database queries, these inputs can be specifically tested for injection vulnerabilities. 

6.3.2.3 Improving SAST with DAST Results 

On the other hand, static analysis can benefit from dynamic as well. By its 
nature, static analysis cannot precisely identify information such as references 
and assignments that are performed dynamically or the resource consumption at 
runtime. This is where dynamic analysis comes into play. The dynamic analysis 
observes the SUT at runtime to determine properties that hold for one or more 
executions [31] and can thus gain information about the system that cannot be 
determined statically, e.g., the function a function pointer is referring to at a certain 
stage. For this purpose, the SUT is usually executed through test cases aiming 
to execute the related code of the SUT. Table 6.2 provides an overview on the 
information one analysis can pass over to the other. 

6.4 Implementation 

In the course of this section, we present mainly the realization of the presented 
methodology for generating test cases that are used to verify the static analysis 
findings. The Heartbleed Bug serves as a running example for demonstrating the 
implementation details. The Heartbleed Bug4 is a buffer overread vulnerability 
in the heartbeat protocol implementation of the OpenSSL library, which was 
introduced in 2012 to enable a low-cost, keep-alive mechanism between client and 
server. In the heartbeat protocol, the client could pass a payload and its length to the 
server and receive the same payload back from the server in response.

4 CVE-2014-0160 
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1 #define TLS1_HB_REQUEST 1 
2 ... 

3 int tls1_process_heartbeat(SSL *s) { 
4 unsigned char *p = &s->s3->rrec.data[0], *pl; 
5 unsigned short hbtype; 
6 unsigned int payload, padding = 16; 
7 

8 /* Read type and payload length first */ 

9 hbtype = *p++; 

10 n2s(p, payload); 

11 pl = p;  

12 ... 

13 if (hbtype == TLS1_HB_REQUEST) {  

14 unsigned char *buffer, *bp; 
15 ... 

16 buffer = OPENSSL_malloc(1 + 2 + payload + padding); 

17 bp = buffer; 

18 

19 /* Enter response type, length and copy payload */ 

20 *bp++ = TLS1_HB_RESPONSE; 

21 s2n(payload, bp); 

22 /* vulnerable line */ memcpy(bp, pl, payload); 

23 ... 

24 } 

25 ... 

26 } 

Listing 6.1 Heartbleed Bug code snippet 

However, in the code it was not checked if the passed payload length matches 
the payload. Therefore, it was possible to specify the payload length to be much 
larger than the payload itself. This had the consequence that the server read out and 
returned more data from the memory than it was supposed to. Listing 6.1 shows a 
snippet of the corresponding source code of the tls1_process_heartbeat function,5 

which contains the described vulnerability in line 22. 

6.4.1 Static Analysis 

For the static analysis, the open-source framework PhASAR [33] has been used. 
PhASAR6 is an LLVM7 -based static analysis framework that offers the possibility to 
specify arbitrary dataflow problems which are then solved in a fully automated way 
by a so-called dataflow solver. PhASAR provides, among others, several algorithms 
for analyzing the dataflow. The PhASAR-based static analysis provides several

5 The snippet is taken from the official OpenSSL GitHub repository https://github.com/openssl/ 
openssl/blob/OpenSSL_1_0_1f/ssl/t1_lib.c. 
6 https://github.com/secure-software-engineering/phasar 
7 https://llvm.org/
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pieces of information about a presumed vulnerability. First, its location (specified 
by the file name, the function name, as well as the line and column number) 
as well as the type of the vulnerability. In addition, information about the value 
assignments (magic bytes) that must be met and program statements to cover to 
trigger the potential vulnerability will be provided. In the case of the Heartbleed 
Bug, the static analysis will report a potential buffer overread vulnerability in line 
22 and additionally provide the information that are printed in green and underlined 
in Listing 6.1. For the interaction between the static and the dynamic analysis, a 
parallel approach is used. As soon as a vulnerability is suspected, the information 
is made available to start the dynamic verification whereby the static analysis 
continues in parallel. 

6.4.2 Test Case Generation 

For each reported vulnerability, the function in which the vulnerability is located 
(provided by the static analysis) is extracted and called by the generated (abstract) 
test cases.8 

To determine the possible execution paths that meet the requirements described 
above, a State Machine (SM) representation of the source code is generated. Each 
basic block of the source code is translated to an action, and branch conditions 
are used as guards of the transitions between its states. The states have no 
actions associated with them. The information provided by the static analysis 
about the program statements to be executed (including the line with the potential 
vulnerability) are mapped to the corresponding transitions of the SM that need 
to be covered. For the test case generation, all possible paths starting from the 
initial state to the presumed vulnerable line of code (reflected by the corresponding 
transitions of the SM) are determined, taking into account the transitions that need 
to be covered. Here, the execution paths are only considered symbolically, which 
means that only the abstract paths are considered but no concrete values are used 
such that the guards of the corresponding transitions can be ignored at this point. 
Figure 6.4 shows the SM representation of the function tls1_process_heartbeat from 
Listing 6.1. The transition marked in red includes the vulnerable line of code (line 
22 in Listing 6.1) that needs to be executed by the test case. Consequently, all 
paths containing the red marked transition need to be considered for the test case 
generation.

8 Currently, only the specified function is tested. In the later course of the project, the calling 
functions will also be taken into account to decide whether a vulnerability can be exploited or not. 
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Fig. 6.4 State machine representation of function tls1_process_heartbeat 

6.4.3 Test Data Generation 

For the test data generation using constraint solving, the transformation of the 
source code into the SM translates the individual program statements into constraint 
expressions (actions and guards from the transitions) that can be directly used by the 
constraint solver. The particular constraints of each transition on a path are collected 
along the path. To create the constraint system, the targeted path is traversed, and 
for each transition, the constraint expressions are added to the constraint system. 

We have chosen the Z3 Satisfiability Modulo Theories (SMT) solver [34] as  
our constraint solver. Therefore, each program instruction is translated into a 
Z3 constraint expression. These expressions are grouped by the transition they 
belong to. In addition, at each branch transition (i.e., each transition originating 
from a state with more than one successor), we can generate guard expressions: 
Boolean expressions which must evaluate to true or false if one of their associated 
transitions should be taken. Z3 already offers a large number of functions to translate 
basic expressions and operations (like arithmetic operations) into Z3 constraints.9 

Primitive data types are represented as bit vectors. For complex data types as well 
as for arrays, Z3 offers to create the so-called data types and array expressions. 

To use data types and array expressions, however, the data types and array 
lengths must be known, which is not necessarily the case when pointers are used 
by the SUT’s code. Pointers are a heavily used feature in programming languages 
like C. However, there is no obvious method of representing pointers in Z3. 
Pointer handling is thus by far the most complex part of constraint generation. 
Pointers are modeled as a data-type expression that consists of a buffer ID and 
the indices used by getelementptr (which identifies an element of the buffer). 
A PointerManager keeps track of the buffers corresponding to the IDs and 
updates them on store instructions. The buffer elements are typed according to 
their types in the LLVM IR, allowing us to use Z3’s rich-type system (Sort in Z3 
terminology). This is only possible because of LLVM’s typed pointers. However, 
LLVM is in the process of eliminating pointer types and transitioning to opaque

9 We use here the Z3 Java bindings provided by Z3 itself. 
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pointers.10 To add the vulnerability constraints, as described in Sect. 6.3, we first  
identify the program statement by which this presumption was made and which 
variables have an influence on the triggering of the vulnerability. For example, in 
the case of a suspected buffer overread vulnerability which is associated with a 
memcpy function call,11 a constraint would be added to the constraint system that 
the number of characters that should be copied (third function argument) must be 
larger than the length of the given buffer (second function argument). 

In the case the constraint solver (here Z3) can provide a solution, this solution 
will be transferred into concrete test data by the test data generator (see Fig. 6.3) that 
translates the provided solution into the test case language (e.g., C). This means not 
only the assignment of variable values but also the creation of data structures and 
pointers are expected as function arguments for the function under test. If there is 
no solution – meaning the constraint system is not satisfiable – the execution path 
is marked as “not satisfiable,” and the remaining paths are checked. If all possible 
paths are marked as “not satisfiable,” the suspected vulnerability is declared as a 
false positive. 

In case that the Z3 constraint solver is not able to provide a solution (for at 
least one path), we choose AFLGo [35] to perform the directed fuzzing. AFLGo 
is an extension of the open-source fuzzing tool American Fuzzy Lop (AFL). Unlike 
pure AFL, it is designed to target specific code locations in the SUT, making it 
especially useful for the verification of static analysis reports. AFLGo extends AFL’s 
instrumentation that merely utilizes branch coverage to also include path distance 
information. Path distance information is calculated during the compilation of the 
SUT so that there is no performance loss at runtime. Path distance information is 
then used during the fuzzing campaign to choose those seeds that specifically lead 
to targeted regions in the SUT, while other seeds that, even if revealing new paths, 
lead further away from these regions are willingly omitted. The fuzzing algorithm 
of AFLGo is basically the same as that of its ancestor AFL. It starts by feeding user-
supplied test cases into the instrumented SUT, repeatably mutating them slightly, 
utilizing a variety of traditional fuzzing strategies, to produce inputs that trigger 
new state transitions. If such a new transition is recorded, the responsible input is 
added to a queue of seeds that then undergoes the same procedure. To feed the test 
data to the SUT, there has to be an interface between AFLGo and the SUT. Here, a 
test adapter is needed that takes the test data generated by the fuzzer and wraps it in 
a way that the SUT can handle it (e.g., fill some complex data types).

10 In LLVM-14, typed pointers have been deprecated, and they will be removed in LLVM-15 
https://llvm.org/docs/OpaquePointers.html. 
11 C library function voids that copies n characters from one memory area to another. 
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6.4.4 Test Oracle 

The test oracle employed is selected based on the suspected type of vulnerability. 
Currently, the implementation is focused on buffer overread and double-free 
vulnerabilities. Both can be observed with the AddressSanitizer (ASAN). “The 
AddressSanitizer is a fast memory error detector that consists of a compiler instru-
mentation module and a runtime library”.12 It can be used by simply compiling and 
linking an application with a certain flag. If there is a buffer overread13 or double-
free vulnerability observed at runtime (triggered by the test case), this is reported by 
ASAN. In addition to ASAN, there are other sanitizers like MemorySanitizer14 that 
will also be included in the future. 

The report of the test oracle (here ASAN) is then compared with the information 
about the vulnerability provided by the static analysis. Does the provided informa-
tion match with what has been determined at runtime, the suspected vulnerability is 
a true positive. If not, it can be declared neither true nor false positive, even if the 
ASAN has reported a vulnerability (then probably an additional vulnerability has 
been discovered). 

Since it cannot be stated that there is no vulnerability in the case that the 
vulnerability in question was not detected, new test data must be generated for 
further test cases obtained from the constraint solver, which applies to the directed 
fuzzing approach as well. To estimate the residual risk for each test execution, the 
executed program paths must be extracted. This specific coverage information is 
then processed and used by the Good-Turing estimator (GTE) (see Sect. 6.3.2.1) to  
assess the progress of the test campaign. 

6.5 Evaluation 

To answer the research questions as well as to verify the established hypotheses, 
different experiments were carried out which should provide the corresponding 
insights. For the evaluation, the OpenSSL library in version 1.0.1f has been selected 
as the SUT, which contains the Heartbleed Bug described in Sect. 6.4. To provide 
a baseline approach for the evaluation, the experiments with the OpenSSL library 
using the presented approach will be compared to an undirected gray box fuzzing 
approach using AFL15 and its directed fuzzing counterpart AFLGo.16 

12 https://clang.llvm.org/docs/AddressSanitizer.html 
13 More general out-of-bound access 
14 https://clang.llvm.org/docs/MemorySanitizer.html 
15 https://github.com/google/AFL 
16 https://github.com/aflgo/aflgo
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6.5.1 Experimental Plan 

The goal of the experiments was to compare the performance of the different 
approaches, i.e., undirected fuzzing, directed fuzzing, and our IAST approach, by 
means of their implementations, in terms of runtime and required test cases to 
detect the Heartbleed Bug. For all three approaches, the runtime from the start 
of the fuzzing campaign until the detection of the Heartbleed Bug, the time to 
exposure (TTE), has been measured. This includes the test case generation, the 
test case execution, and the test evaluation. The time needed for the compilation 
of the tools, instrumenting the SUT and, in case of directed fuzzing, for calculating 
the distances to the target region have not been considered. Also, the runtime of 
the static analysis tool has not been included since directed fuzzing and our IAST 
approach are independent from a specific tool, and hence, every static analysis tool 
could be employed. 

In addition to evaluating the runtime and the number of test cases required to 
trigger and detect the Heartbleed Bug, the aimwas to investigate howmeaningful the 
used GTE is for estimating the residual risk that a vulnerability will be discovered 
in future test executions. To do so, the GTE values (see Eq. 6.1, Sect. 6.3.2.1) have  
been calculated during the abovementioned experiments. After the execution of each 
test case, the number of newly discovered, unique execution paths is calculated and 
divided by the number of total test executions. All the experiments for the evaluation 
have been conducted on a machine running Ubuntu 20.04.4 LTS on an Intel Xeon 
E5-2680 v4 processor with 8 cores running at 2.4 GHz, 32 GB RAM, and 72 GB 
HDD memory. The respective tools, namely, the static analysis, AFL, ALGo, as 
well as our IAST approach presented in Sect. 6.4, were running in separated Docker 
containers on this machine. 

6.5.2 RQ1: Information Exchange 

Which information can static analysis provide to DAST that facilitates its analysis? 

Static analysis can provide information about the code region where potential 
vulnerabilities may be located to guide the dynamic analysis to this code region. 
Even though this may reduce the effort on the dynamic analysis, the experimental 
results in Table 6.3 clearly show that knowledge of a potential vulnerable region 
alone is not sufficient for this purpose. In our hypothesis related to RQ1, we assume 
that static analysis can guide the dynamic analysis where in the code to search for 
vulnerabilities and can even provide further information that enables targeted testing 
for the vulnerabilities. 

The results from the experiments that have been conducted for this research 
question are presented in Table 6.3. To avoid that a single run would result in an 
exceptionally short or long test campaign due to the inherent randomness of the 
fuzzing approach, each experiment has been repeated 30 times as recommended by



6 Interactive Application Security Testing with Hybrid Fuzzing and Statistical. . . 183

Table 6.3 Mean (μ) and standard deviation (σ ) of time to exposure (TTE), test cases (TC), and 
test cases to exposure in the target region (TCTE) for AFL, AFLGo, and Our IAST approach to 
trigger the Heartbleed Bug 

TTE (sec) #TC #TCTE 

Approach/tool μ σ μ σ μ σ 
Gray box fuzzing/AFL 854 1,132 35,221 48, 495 21 46 

Directed fuzzing/AFLGo 5,536 2,787 14,916 7,573 4 8 

Our IAST approach 23 3 1 0 1 0 

[36]. Table 6.3 shows the average TTE and the average number of test cases executed 
by all the approaches as well as the standard deviation. Additionally, Table 6.3 
shows the number of test cases that covers the vulnerable line of code (line 22 
in Listing 6.1). The gray box fuzzing approach from AFL serves as our baseline 
approach and requires about 35,221 test cases that are generated and executed in 
about 14 minutes to detect the Heartbleed Bug. On average, of the 35,221 test cases, 
21 test cases reached the target line, but only 1 triggered the Heartbleed Bug.17 

The directed fuzzing approach, knowing from the static analysis the code region 
that contains the vulnerability, requires for the same task around 14,916 test cases 
and 92 minutes. Hence, the information provided by the static analysis does not 
necessarily lead to a more efficient dynamic analysis. Our IAST approach using 
the similar information as the directed fuzzing approach generates two test cases of 
which one is executed in about half a minute to trigger the vulnerability. Note that 
the time needed for the static analysis is neither included in the directed fuzzing 
approach nor in our approach. 

The reason that AFL and AFLGo perform worse is that gray box approaches 
craft their test cases in small steps. The evolutionary algorithm performs in each 
generation small mutations on the test cases from the previous generation and only 
indirectly exploits the information on the code itself, i.e., through the discovery 
of new execution paths. This leads to a large number of similar test cases that 
differ only slightly from each other, requiring many generations until the desired 
execution path that executes the Heartbleed Bug has been reached. In our IAST 
approach, we employ in addition to the code region that contains the vulnerability 
also the path conditions that need to be satisfied to execute the vulnerability. By 
providing this information, test cases can be generated that target specifically the 
execution path of the vulnerability in question, and thus, the number of test cases 
to trigger it is significantly lower. Addressing vulnerabilities within each function 
independently is especially important for libraries. Their functions must also be 
considered independently of each other, as they can be used in isolation and in 
different contexts. In summary, we can conclude that static analysis facilitates the 
work of DAST not only by providing where a vulnerability might be located but 
also through which program path it may be executed, including the corresponding 
path conditions, which together significantly improve its performance.

17 Since the measurement was stopped when the bug was triggered 
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6.5.3 RQ2: Is IAST Worth the Effort? 

Is IAST more efficient than DAST on its own? Under which conditions is IAST more 
efficient than DAST? 

Our hypothesis here is that IAST plays its advantage when the SUT is well 
tested and contains only a few, deeply hidden bugs, where complex path constraints 
constitute a natural barrier for traditional DAST. We use the results from the 
previous experiments presented in Table 6.3 to discuss this research question and 
assess our hypothesis. 

As can be clearly seen, the creation of targeted test cases, as our IAST approach 
does, can uncover the Heartbleed Bug in less test cases than DAST approaches. In 
case of the Heartbleed Bug, our IAST approach generates two test cases. Listing 6.2 
depicts one of these two test cases. The reason why two test cases are generated is 
related to the structure of the function that processes the heartbeat information. The 
hidden program statements in line 12 of Listing 6.1 contain a conditional functional 
call, which results in two program paths that both lead to the vulnerable line of code. 
Hence, two test cases are generated where each one represents one of the program 
paths: both the test case that covers the conditional function call and the one that 
does not trigger the Heartbleed Bug. Therefore, practically, only one test case needs 
to be executed to confirm the bug. 

1 void testcase_0(){ 
2 

3 struct ssl_st *ptr0 = ... /* malloc */ 
4 struct ssl3_state_st *ptr1 = ... /* malloc */ 
5 

6 char *ptr2 = ... /* malloc */ 
7 ptr2[0] = ((char) 1); //hbtype 
8 ptr2[1] = ((char) 0); //payload length 
9 ptr2[2] = ((char) 4); //payload 

10 ptr2 += 0; 

11 

12 struct ssl3_record_st v3 = {...,ptr2,...}; 
13 struct ssl3_state_st v4 = {...,v3,...}; 
14 ptr1[0] = v4; 

15 ptr1 += 0; 

16 

17 struct ssl_st v6 = {...,ptr1,...}; 
18 ptr0[0] = v6; 

19 ptr0 += 0; 

20 

21 tls1_process_heartbeat(ptr0); 

22 } 

Listing 6.2 Generated test case triggering the Heartbleed Bug
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To address the second part of the research question, we take a closer look at 
the information our IAST approach uses from the static analysis. As said in the 
context of the discussion of RQ1, we use the information from the static analysis 
where the vulnerability is located as well as the conditions of those program paths 
that would execute the vulnerability. Although the generation of test cases using 
constraint solving seems to be more complex, the experiments show that the targeted 
test case generation as used in our IAST approach that takes into account the 
additional information about the SUT from the static analysis significantly decreases 
the number of test cases needed to confirm the bug – which results in a much 
shorter test execution time – than our baseline approaches that employ evolutionary 
algorithms used by common DAST approaches like AFL and AFLGo. Both AFL 
and AFLGo require a large number of test cases to detect the Heartbleed Bug. 
However, the extent of this advantage depends on the number and the complexity 
of the path conditions. The more complex these are, the more difficult it is for gray 
box fuzzing to cover new branches and, thus, increase code coverage of the SUT. A 
second advantage is related to the number of vulnerabilities in the SUT. Since gray 
box fuzzing approaches perform a kind of breadth-first search for vulnerabilities due 
to their aim to maximize the code coverage, they are particularly useful if security 
testing has not yet been performed and when vulnerabilities may be scattered in 
large amounts of the code throughout the SUT. In contrast, our IAST approach 
performs a kind of depth-first search where single program paths are assessed for 
their feasibility and then executed. Thus, they execute only small pieces of the code 
which justifies their usage in scenarios where only small parts of the code shall be 
analyzed or when only a few vulnerabilities are expected in the code, and these 
maybe located in a certain code region. 

In summary, we can conclude that IAST is per se not the best approach in 
all cases. The advantage of the IAST approach we presented is however relevant 
when only few vulnerabilities are expected, but it is not known which part of the 
code accounts for them. Another advantage of IAST can be significant in scenarios 
where small changes are frequently made to the code, such as in agile development 
approaches. These can benefit from IAST in comparison to gray box fuzzing since 
they often add amounts of code and shorter development cycles do not provide much 
time for comprehensive gray box fuzzing. 

6.5.4 RQ3 and RQ4: Identifying True and False Positives 
and Uncertainty 

RQ3: To which extent can false and true positives from static analysis be automati-
cally discriminated by dynamic analysis? 

RQ4: How well do methods used in DAST to quantify the uncertainty to discover 
new bugs work in the context of IAST, in particular when we aim at verifying 
SAST results using DAST?
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Both research questions are closely related, which is why we discuss them 
together. Related to these research questions is the hypothesis that we can verify 
true positives from SAST well, but this is much harder for the false positives. This 
seems obvious since we cannot show the absence of bugs with pure testing, as stated 
by Dijkstra [32]. However, we aim to extend this a bit toward the identification of 
false positives using dynamic analysis in combination with a statistical measure to 
draw better conclusions on the absence of bugs. Statistical estimators such as the 
Good-Turing estimator have already been proposed for gray box fuzzing to quantify 
uncertainty (see [22]). We hypothesize that the GTE also works in the context of 
IAST to quantify the uncertainty related to findings that cannot yet be identified as 
true or false positives. 

Thanks to the targeted generation of test cases (as discussed in Sects. 6.5.2 
and 6.5.3) and the information about the type of a vulnerability that allows to employ 
vulnerability-specific test oracles, true positives can be specifically triggered and 
observed during test execution. Hence, true positives from the static analysis can 
be verified very well as discussed in the context of RQ1 and RQ2 in the previous 
sections. 

Approaches such as directed fuzzing can also identify true positives quite well. 
However, the benefit of our IAST approach over directed fuzzing is that we can 
assure at least for some findings from the static analyses that they are indeed false 
positives. Since we employ constraint solving to assess if a path that would execute 
a vulnerability is feasible, i.e., its path conditions are satisfiable, we can conclude 
that the potential vulnerability identified by the static analysis is a false positive if 
no path related to a specific vulnerability is feasible. 

Even though it may not be possible to clearly group all findings into true and 
false positives, we can achieve a certain preliminary filtering which allows to focus 
on the remaining findings. For those, we would like to estimate how certain it is that 
they are false positives even in the case a certain number of test cases did not expose 
them. Our hypothesis is that the GTE applied on the context of gray box fuzzing 
is helpful also in this context and allows us to draw conclusions on the status if a 
reported vulnerability is a false positive. 

The GTE values recorded during the experiments are intended to provide 
information on how well the GTE is suitable to draw such conclusions. If we could 
do this, the GTE can serve as a stop condition that would provide us the information 
when it is unlikely we will identify the vulnerability in question and, thus, allows us 
to stop the dynamic analysis. 

Figure 6.5 shows the plots of the GTE values during the general fuzzing 
campaign performed by AFL/AFLGo. Both plots show that after the first bunch of 
test cases, the value drops to near or equal to zero.18 The following peaks indicate 
that new execution paths have been found. The GTE progression for AFLGo clearly 
shows that after 3,000 test cases the GTE value gradually decreases and is close 
to zero for a short point in time before it increases again. Shortly before the end

18 Zero means there is currently no execution path that has been observed only once. 
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Fig. 6.5 GTE plot for gray box/directed fuzzing Heartbleed Bug 

of the recording, several jumps can be observed that indicate that new paths were 
executed that finally lead to the Heartbleed Bug. However, for the directed fuzzing 
using AFLGo, the value decreases very slowly after 13,000 test cases until the end 
of the recording without major changes. This long strictly monotonously decreasing 
course of the GTE value is here the advantage we seek for. Due to its stability in 
contrast to general fuzzing, the assumption would be gained that we achieved a stop 
criterion since the course of the values does not have any further spikes. However, 
this raises the question of whether the GTE is at all suitable as a stop criterion. 
The experiments performed seem to question this; however, this needs to be more 
thoroughly investigated in further experiments. 

In summary, we can conclude that we can well identify true positives from the 
static analysis. Moreover, we can identify some of the false positives with certainty 
what is an advantage over gray box fuzzing and directed fuzzing. However, even 
in the case where we apply directed fuzzing to analyze a potential vulnerability 
and we are not able to trigger it, the GTE provides us with a means to quantify 
the uncertainty related to the discovery probability, and thus, it may serve as a stop 
condition. 

6.5.5 Threats to Validity 

To account for the randomness of fuzzing, we have repeated every experiment 30 
times and then analyzed the average results. Furthermore, we have chosen a real-
world vulnerability in a heavily used SUT to analyze the potential of our approach. 
This should provide a more realistic demonstration compared to one which is based
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on automatically constructed bugs such as LAVA-M [37]. The metrics that we have 
analyzed were specifically chosen to compare the efficiency of the bug discovery, 
i.e., number of required test cases and time to exposure. Broader metrics, e.g., 
overall coverage, would not provide much insight into this question. To investigate 
the differences in branch discovery over time, we have analyzed the GTE. This 
might be a more difficult metric, as it is only a statistical estimator. However, it 
still can be useful as it provides a scientific approach to estimate probabilities that 
otherwise could be difficult to obtain. 

Nevertheless, there are some downsides to our approach. First, our evaluation is 
limited to only one SUT and one vulnerability. This reduces the degree to which 
one can generalize the results to other contexts. Furthermore, our tools are currently 
in a prototypical stage which requires some manual updates to work on OpenSSL. 
Our implementation might thus be particularly fitted for the requirements of the 
Heartbleed Bug. Finally, we have also not performed a statistical test to estimate 
whether our observations would generalize to the overall population. 

6.6 Conclusion, Limitations, and Outlook 

Combining static and dynamic analysis within IAST can improve both analysis 
methods by exchanging information which cannot be determined by the respective 
analyses themselves. It could be shown that IAST approaches can be more 
efficient in finding vulnerabilities than using static and dynamic analysis separately. 
Moreover, we proposed to use a statistical means, i.e., the Good-Turing estimator, 
to enable the dynamic analysis of potential false positives from the static analysis. 
Together with constraint solving, we are able to confirm false positives partially, 
what dynamic analysis is not able to do on its own. For the remaining findings from 
the static analysis, the Good-Turing estimator serves as a means to decide when 
to stop the dynamic analysis of a potential vulnerability and consider it as a false 
positive. Even if a number of tests have to be performed in the case of suspected 
false positives, this should not be considered as having a negative impact on IAST 
performance. The targeted testing of the static analysis results and the reporting of 
the residual risk are clear advantages of the IAST approach over manual verification. 

All experiments have been performed along the well-known Heartbleed Bug. 
The authors are aware that the evaluation along a single vulnerability does not 
allow to generalize the conclusions. Furthermore, it could not be analyzed how well 
the approach scales. This applies in particular to the verification of static analysis 
findings. If the number of false positives is high, IAST may lose its advantage 
since it would spend much effort on the identification of false positives than on 
discovering actual vulnerabilities. 

Our future work will focus on the analysis of the efficiency of IAST compared to 
DAST to identify more accurately the conditions when gray box fuzzing approaches 
are sufficient and when IAST is of advantage. Furthermore, we plan to identify 
more sophisticated approaches on the application of statistical means related to false
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positives. At the time of writing, our prototypical implementation can handle magic 
bytes for integers and generate values for them. Our next plans are to extend the 
magic bytes to other data types (e.g., structs) and to experiment with supporting 
fuzzing campaigns by directing them with magic bytes. We will spend further effort 
on the exploitation of additional information from the static analysis to improve 
the dynamic analysis beyond the verification of findings from the static analysis 
and vice versa, i.e., providing further runtime information to the static analysis. 
Furthermore, our aim is to switch from the parallel IAST approach to the parallel 
iterative IAST approach to analyze how the iterative analysis improves both SAST 
and DAST mutually and incrementally. In this context, an open question might be 
when to stop iterative IAST and what is the overall benefit over the non-iterative 
IAST approaches. We will additionally investigate the effectiveness and efficiency 
of our approach on further systems and vulnerabilities. 
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Chapter 7 
CTAM: A Tool for Continuous Threat 
Analysis and Management 

Laurens Sion, Dimitri Van Landuyt, Koen Yskout, Stef Verreydt, 
and Wouter Joosen 

Abstract Security and privacy threat modeling approaches are commonly applied 
to identify and address design-level security and privacy concerns in the early stages 
of software development. Identifying and mitigating these threats should remain 
a continuous concern during the development lifecycle, as single-shot analyses 
become quickly outdated with contemporary agile development practices. Despite 
expert recommendations, the support for continuously applying these types of 
approaches throughout the development lifecycle is limited. In this article, we 
present an integrated threat analysis toolchain for automated, continuous threat 
elicitation, assessment, and mitigation as part of continuous integration pipelines 
in the GitLab DevOps platform. Automating the threat analysis enables continuous 
attention to security and privacy threats during the development and supports 
monitoring and managing the progress in mitigating security and privacy threats 
over time. Additionally, the integration of threat analysis in a continuous integration 
pipeline enables more advanced and fine-grained analyses such as assessing the 
impact of proposed changes in feature branches and the analysis of merge/pull 
requests for their impact on the threat model. We evaluate the approach and its 
prototype on a concrete real-world application to assess the threat analysis of 
multiple application versions over time as changes are made and new features 
introduced. We conclude with an in-depth discussion on the use of threat modeling 
in continuous integration contexts. 
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Keywords Threat modeling · Threat analysis · DFD · Security by design · 
Privacy by design · Threat management 

7.1 Introduction 

Security and privacy require continuous attention throughout the software devel-
opment lifecycle (SDLC). It is well-known, though, that absolute security cannot 
be achieved and compromises must be made. In practice, security efforts should 
therefore be directed toward conscious management of risk and security debt [36], 
a form of technical debt. Without sufficient attention to security, the security 
debt and risk may increase beyond acceptable levels, increasing the likelihood of 
security incidents and associated losses and making it hard to recover without major 
investments and delays. 

Security and privacy threat modeling techniques [13, 39, 40, 58] are typically 
applied in the early phases (requirements and design) of the SDLC. The importance 
of addressing design security is further emphasized by the recent inclusion of 
insecure design in the 2021 OWASP top 10 [31]. These threat modeling approaches 
reason at an abstract level about the system, often in the form of a data flow diagram 
(DFD), to elicit many potential security threats. In a next step, mitigations for the 
most important of these threats (in terms of risk) are selected, which can then be 
incorporated during the software development. 

Current threat modeling approaches are not well-aligned with contemporary 
development practices. Modern software development happens at a fast pace with 
frequent changes to the code base to introduce new functionality, fix bugs, and 
refactor the design. Continuous integration (CI) is one of the enablers of this fast 
pace. Threat modeling, on the other hand, is often a manual, time-consuming, one-
off (or infrequently repeated) activity conducted in workshops involving experts 
and numerous stakeholders [54, 60]. Reliance on extensive manual labor prohibits 
frequent re-evaluation as the software design evolves. This in turn is considered 
problematic, because the goal of threat modeling is precisely to identify threats that 
carry a significant risk, and (because they are linked to the design) that may be hard 
to mitigate afterward. 

An additional problem associated with infrequently revisiting a threat model is 
that it hampers adequate management of the risk and security debt as part of project 
management. Indeed, effective decision-making relies on having a clear view on the 
current status and progress, the impact of the possible choices, and the effectiveness 
of past decisions and efforts. Infrequent threat modeling only yields a coarse-grained 
view on the progress that is being made, though, precluding swift reactions to 
emerging risks. 

Recently, a number of threat modeling tools and approaches have emerged 
that provide a degree of automation and increase the repeatability of the threat 
assessment [50] even as the system evolves. These tools however are often still 
standalone, in the sense that they lack integration with widely used development
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and project management platforms typically used in the context of continuous 
integration. 

This chapter introduces CTAM (continuous threat analysis and management), 
a novel approach and corresponding toolchain that addresses these problems by 
technically integrating an automated threat analysis and assessment activity in 
a continuous integration pipeline. This enables stakeholders to monitor threat 
modeling results and track and manage the evolution of risk based on information 
that evolves together with the implementation. CTAM leverages the possibilities 
offered by automated threat modeling tools to achieve traceable, systematic, and 
frequent reassessments. The input for an existing threat modeling tool, which 
consists mainly of a model-based representation of the system (e.g., a DFD), is 
placed and maintained alongside the source code in a version control system. The 
automated threat modeling tool is then used as a standalone analysis engine in 
a continuous integration job. By combining the automated analysis results with 
the existing version information from the repository, the current state and historic 
evolution of the threat model, as well as the impact of suggested modifications in 
different branches, can be assessed and presented on a dashboard. This information 
can subsequently be used by developers and security experts to aid decision-making, 
the instantiation of appropriate countermeasures, and tracking the effectiveness of 
these countermeasures over time. 

This chapter introduces the following contributions: (i) it presents the CTAM 

approach and toolchain, leveraging existing threat modeling automation enablers in 
support of systematic, automated, and continuous threat analysis and management; 
(ii) it presents a prototype implementation and validates the prototype on a 
research and a real-world application case (the backend system of a contact tracing 
application), demonstrating its capability to recognize a number of different risk 
evolution patterns; and (iii) it provides an in-depth discussion on automated threat 
modeling as part of a continuous integration pipeline. 

In addition to being a practical tool to continuously monitor and manage threat-
centric risk during development, the CTAM toolchain is a technological enabler 
for continued research toward more advanced analysis techniques, for example, to 
retroactively study the emergence and management of risk in real-world code bases. 

This chapter is an extension of earlier work [46]. More specifically, the following 
extensions are provided: (i) extending the description of CTAM and the inputs for 
the analysis, (ii) adding an in-depth evaluation on 12 versions of a real-world 
application, (iii) providing a more extensive discussion on version granularity, 
model granularity, and model scope, and (iv) adding a roadmap on (automating) 
model reconstruction, runtime monitoring, and longitudinal project management. 

The chapter is structured as follows: Section 7.2 describes the related work 
on threat modeling and continuous quality assessment. Next, Sect. 7.3 presents 
CTAM and the implementation aimed at demonstrating its feasibility. Then, Sect. 7.4 
applies CTAM on an application case of software-as-a-service (SaaS) document 
generation and delivery platform and illustrates the type of analysis that it enables. 
Section 7.5 applies CTAM on 12 versions of a real-world application that provides 
backend for a contact tracing application. Afterward, Sect. 7.6 provides a discussion
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on the use of CTAM, including the possibility of using other threat elicitation 
engines, the importance of the consistency of the model with the source code, and 
additional analysis types that become available with CTAM. Subsequently, Sect. 7.7 
provides a roadmap on future work on model reconstruction, runtime monitoring, 
and longitudinal project management. Finally, Sect. 7.8 concludes the chapter. 

7.2 Related Work 

Continuous integration refers to software development practices that are centered 
heavily around a central version control system and code repository. These systems 
implement a pipeline of automated activities that are typically aimed at quality 
control (e.g., code style checking), automated testing (e.g., regression testing, inte-
gration testing, acceptance testing), and automated building and build management. 
Automating these activities allows for frequent execution at the level of individual 
code commits, providing the developer with rapid feedback and shortening the time 
to address issues. These key principles enable ensuring a certain degree of quality 
assurance. 

This section outlines the related work on threat modeling in this context. First, 
the current state of the threat modeling support during development is discussed. 
Next, the state of the art in continuous integration and security analysis activities in 
this context is outlined. 

7.2.1 Threat Modeling Support During Development 

Several threat modeling tools and approaches, such as IriusRisk [19] and Autodesk 
CTM [1], promote the integration of threat modeling during development specifically 
by linking threats to issues in an issue tracker. While this enables tracking the 
progress regarding the identified security and privacy threats, the threat mitigation 
progress is monitored in the issue tracker, rather than in the system model. 
Furthermore, while such approaches may support versioning of the system model, 
they do not support analysis of a threat model over time. 

More closely aligned with the source code is ThreatSpec [53]. It provides a set 
of code annotations that can assist in constructing and maintaining a DFD model 
by inserting comments at the relevant locations in the source code. ThreatSpec 
does not perform any threat elicitation by itself, so the extracted model will have 
to be analyzed manually or with another tool to obtain a list of threats to further 
analyze and aggregate. It does allow documenting threats and mitigations through 
code annotations so that the results of the threat elicitation activity can be captured 
as well. 

Pytm [51] generates diagrams (DFDs and sequence diagrams) and threats based 
on a system model expressed in Python code. Such a representation enables
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versioning the system model together with the source code. It does not, however, 
provide risk estimates for threats, so monitoring progress in terms of risk reduction 
requires additional analysis. 

SPARTA [49] is an eclipse-based threat modeling tool that automatically elicits 
security and privacy threats based on XMI files of solution-enriched DFDs and threat 
catalogs (e.g., the STRIDE [40] and LINDDUN [47] threat types are supported). 
SPARTA automates the risk analysis of individual threats and supports calculating 
the aggregate values for the system, which is required for monitoring the threat 
mitigation progress. SPARTA does not support any historical analysis of the threat 
mitigation progress. While SPARTA provides both a graphical DFD model editor and 
the engine for eliciting security and privacy threats, its elicitation engine can also be 
run standalone on the DFD model files. This motivates the adoption of the SPARTA 

engine in the context of CTAM. 
Threagile [38] generates threat model reports based on YAML files of the 

architecture and its assets and provides pipeline integration to do so in a continuous 
fashion. However, such analyses are only focused on a single version of the system; 
it does not analyze how those threat models evolve over multiple versions of the 
system. A very similar and recently released tool is TicTaaC [37], which also relies 
on one (or more) YAML files describing the data flow model. TicTaaC generates a 
report from this with the findings. Analogous to Threagile, it is intended to run as 
part of a CI  pipeline, but its analysis is also focused on single version of the system. 

OWASP’s Threat Dragon [32] is an open-source threat modeling platform for 
system modeling and threat elicitation. Its documentation mentions that future 
versions should provide an API for pipeline integration, but this is not supported 
at the time of writing. 

7.2.2 Quality Assessment in Continuous Integration Pipelines 

Several approaches exist that conduct frequent code analysis for measuring the 
impact on qualities such as performance, maintainability, security, etc. For example, 
the PerfCI tool [20] integrates automated performance benchmarks to identify 
potential performance regressions over time. Vassallo et al. [56] in turn presented 
an approach that automates and integrates the identification of bad practices, anti-
patterns, or common misconfigurations in a CI  pipeline. 

The automation of these activities is a key enabler for extensive data analytics at 
the level of the code base: the evolution of a code base in terms of software quality 
can be monitored and evaluated [22] over longer periods of time. 

Static code checkers (SAST) allow for the identification of vulnerabilities as 
a result of code-centric analysis [12, 41]. As discussed by Rangnau et al. [35], 
integrating dynamic security testing (DAST) is more challenging as these more 
advanced analysis techniques incur a more significant performance cost, to the 
extent that the total cost of their integration in a CI  pipeline might become 
prohibitive.
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To our knowledge, model-based analysis activities that identify threat scenarios 
at the level of an abstraction model of the system (i.e., threat modeling and threat-
based risk assessment) have not yet been integrated in a practical CI  pipeline, with 
the exception of Threagile [38] which does not consider the analysis over time. Yet, 
threat modeling experts and advocates strongly encourage frequent re-evaluation of 
the outcome of a threat modeling and analysis exercise [3, 40, 43, 55] throughout 
the development of a system. In this article, we present the practical implementation 
of such an activity in the GitLab DevOps platform [18]. 

7.3 Continuous Threat Analysis and Management 

The main goal of CTAM is to automate continuous threat analysis, management, 
and progress monitoring by integrating it in continuous integration pipelines. This 
is achieved by (1) storing the model together with the source code in version control 
(this model contains the DFD, the applied security and privacy solutions, and inputs 
for the risk analysis); (2) for every push to the repository, running a continuous 
integration analysis job to elicit security or privacy threats and perform a risk 
analysis on them; (3) collecting and aggregating these results in the CTAM server; 
and (4) making these results available as feedback to the developers. Figure 7.1 
provides a graphical overview of the approach. The next subsections will elaborate 

Fig. 7.1 Overview of the approach. On the left-hand side, changes to the codebase and model are 
committed and pushed to a repository on GitLab. This triggers the CI  jobs that will run the threat 
analysis engine (bottom center), of which the results will be submitted to the server. Finally, the 
developers can consult the impact of their changes on a dashboard presenting the analysis results 
(right-hand side)
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on the necessary inputs (1), the threat analysis (2), the types of analysis activities 
offered by CTAM (3), and the implementation of the CTAM server (4). 

7.3.1 Threat Analysis Inputs 

The required inputs vary based on the chosen analysis engine. For the individual 
threat analysis, CTAM currently leverages the SPARTA [45] threat modeling engine 
(Sect. 7.3.2). All the relevant data (i.e., the DFD model, solutions, attacker profiles, 
and threat-type catalogs) for SPARTA’s analysis are contained in one (or more) model 
files that will be read by the analysis engine. The required inputs for the SPARTA 

engine are discussed shortly here. 

7.3.1.1 DFD Model 

The main input is the DFD model of the application under consideration. This 
model contains the processes, data stores, external entities, data flows between 
these elements, and trust boundaries. To support the risk-driven prioritization of 
the elicited security and privacy threats, elements of the DFD model can be extended 
with asset values to specify the loss magnitude or damage that would arise when 
threats would manifest themselves at these elements. The SPARTA engine will 
leverage these to calculate the impact of a threat [48]. 

7.3.1.2 Security and Privacy Solutions 

As applicable, the model can be extended with security and privacy solutions that 
are applied to particular elements of the system to mitigate threats at these locations. 
These solutions specify the involved elements, the protected elements, and which 
threats they mitigate. For example, a logging solution could specify a data store 
which holds the logs and a process which logs incoming requests to that data store, 
so that repudiation threats to that process are mitigated. Furthermore, a solution also 
includes information on its strength, which the SPARTA engine will compare against 
the attacker profile (explained below) to calculate the likelihood of a threat. 

7.3.1.3 Attacker Profiles 

For the analyses, one (or more) attacker profiles can be used. These profiles express 
the capabilities of different types of adversaries, how frequently these adversaries 
come into contact with the system, and to which elements of the system (if any) they 
have insider access. These profiles are taken into account during the risk assessment 
of the elicited threats. For example, different attacker profiles could be defined for
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script kiddies and more advanced adversaries. The capabilities of these different 
types of adversaries are compared against the strength of the countermeasures to 
determine whether an attacker is able to defeat a certain countermeasure or if it is 
sufficiently strong against the considered types of attackers. 

7.3.1.4 Threat-Type Catalog 

Finally, the particular threat-type catalog to use is specified in the model. Such a 
threat-type catalog contains the list of threat types that need to be elicited and the 
criteria to use to determine whether a threat of that particular type is applicable. 
These threat-type catalog resources can also be extended and customized as desired. 

7.3.2 Threat Analysis Engine 

SPARTA enables (i) the automated generation of threats at the basis of a (customiz-
able) threat catalog; (ii) per threat, a risk estimation step [48] that takes into account 
many factors documented in the input model (e.g., the application of security 
solutions [49], a description of the affected data subjects in case of privacy [44]); 
and, finally, (iii) the aggregation and disclosure of these outcomes. 

Threats are elicited by performing model queries on the supplied model. The 
threat-type catalogs contained in the model specify the criteria for the threats to be 
applicable and can be used to encode, for example, element- or interaction-based 
STRIDE threats as well as more complex threat patterns. As the main input of the 
analysis is the model of the system under development, the scope of the analysis 
is necessarily limited to the design of this system. During the analysis, SPARTA 

generates relevant threats linked to the elements in the DFD model (e.g., spoofing 
external entity A in the data flow to Process B). 

For the risk analysis and prioritization, SPARTA processes the information in 
the model (i.e., asset value, strength of security solutions, etc.) to determine how 
effective the countermeasures are to protect against the elicited threats. The resulting 
value is the expected loss (impact . × likelihood), expressed in the same unit as 
the asset value. It is up to the developers or business stakeholders to provide this 
information in a unit that is convenient to them. 

We created a dockerized version of the SPARTA threat elicitation and assessment 
engine, which reads a configuration file (specifying the model file and the submis-
sion server), analyzes the model (i.e., elicits security or privacy threats and performs 
a risk assessment of these threats), and submits the threat elicitation results to the 
submission server. The bottom of Fig. 7.1 depicts these steps graphically. The threat 
analysis engine in the center runs on the last commit, analyzes the model contained 
therein, and submits the results.
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The docker container enables the use of SPARTA in GitLab CI  jobs [18].1 The 
only additional information required in the repository is the DFD model file and the 
aforementioned configuration file. Because individual commits are analyzed, that 
model file will need to accurately reflect any changes that are made to the codebase. 
Section 7.6 further discusses the need for an accurate model of the system under 
analysis. 

The actual integration of the threat elicitation and analysis in the CI  pipeline 
is straightforward, as it only requires a build step that runs a docker container in 
the checked out repository. The following code fragment illustrates the additional 
analysis build job that needs to be added to the CI  pipeline configuration: 

threat_analysis_job: 
image: sparta-docker:latest 
stage: build 
script:

- sparta 

Finally, it is possible to use other threat modeling tools for the elicitation, as long 
as they yield appropriately formatted threats and their corresponding risk estimates 
for submission to the CTAM server (see Sect. 7.6.1 for a discussion on the use of 
alternative threat elicitation engines). 

7.3.3 Analysis Activities 

CTAM enables several types of analysis activities through its systematic collection 
of threat analysis information as the software system evolves over time. It currently 
leverages SPARTA for the threat analysis results and hence also relies on the residual 
and inherent risk values that SPARTA provides. Inherent risk represents the risk not 
accounting for any security or privacy solutions (i.e., the risk of a threat if there were 
no countermeasures at all). As such, this is the degree of risk inherent to the nature 
of the system under design. Residual risk represents the risk taking into account 
security and privacy solutions (i.e., the inherent risk minus the effect of security 
and privacy solutions). However, it is also possible to use different risk scores, as 
long as they incorporate the effect of partially or completely mitigating threats in 
the system. 

By collecting the inherent and the residual risk for every committed version of 
the system under consideration, the overall progress in securing the system can be 
assessed. Table 7.1 presents an overview of the different risk evolution patterns 
that may emerge through the combination of a decrease, stable, or increase of the

1 While we leverage GitLab  CI, adapting the approach to run in the context of GitHub actions is 
straightforward. 
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Table 7.1 Risk evolution patterns. Plots for the different risk evolution patterns due to decreasing, 
stable, or increasing inherent and residual risk values. The area plots are not stacked (i.e., the 
inherent risk consists of the entire area under the line including the residual risk). Combinations of 
these patterns are possible to express to different slopes of the inherent and residual risk plot lines. 
For example, combining VII  and IV results in a more slowly decreasing residual risk, combining 
III  and VI  in a more slowly increasing residual risk, etc. 

ksiRtnerehnIksiRlaudiseR (top line) 

(bottom line) Decrease Stable Increase 

Increase 

Remove security solutions* Remove security solutions Add insecure functionality 

Stable 

Remove secure functionality No security-relevant changes Add secure functionality 

Decrease 

Remove insecure functionality Add security solutions Add security solutions* 

* Solutions that introduce additional risk with regard to, for example, cryptographic key material 

inherent and residual risk values.2 These patterns allow developers to gain insight 
into the progress that is being made over time. For example, these patterns will 
show which commits focus on security (reducing the residual risk) or on expanding 
functionality without considering security (increased residual risk). It will also show 
how these types of changes manifest themselves over time (e.g., whether security is 
always considered after new functionality has been introduced or at the same time). 

Alternatively, rather than merely tracking the overall security progress, CTAM 

can also be leveraged proactively in multiple ways: First, the security impact of one 
or more changes (i.e., pull or merge requests) can be analyzed and compared to 
the main branch before they are merged. Second, multiple variants of a proposed 
change can be analyzed and compared when deciding which one would be best in 
terms of security. Third, the analysis results can be used to automatically reject pull 
requests if the increase in risk surpasses a certain threshold. This is not yet explicitly

2 While Table 7.1 shows those patterns as nine distinct possibilities, there is actually a continuum 
as one sort of risk may, for instance, decrease more rapidly than the other one. For example, if both 
secure and insecure functionality (cells VII  and IV in Table 7.1) are removed from the system in a 
single commit, both the residual and the inherent risk plot lines will decrease, but the residual risk 
line will have a shallower slope than the inherent risk line. 
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visualized in the prototype, but all the necessary analysis information is available to 
CTAM to show this. 

7.3.4 Server 

The server component is a Spring boot application. Registering a new project 
requires a deployment token and the repository URL. This is used by the server 
to retrieve the commit history from GitLab. When analysis results are submitted 
by the threat analysis engine, these results are associated with the corresponding 
git commits to enable the construction of an overview dashboard (depicted in the 
right-hand side of Fig. 7.1). 

When a developer consults the CTAM dashboard, the server constructs a historical 
overview of the evolution of the aggregated risk by combining the analysis results 
for the commit ancestors on the main branch of the repository. This comprises the 
following calculations per commit: (i) the threat count, (ii) the total inherent risk 
(by aggregating the inherent risk of the individual threats), (iii) the total residual 
risk (also by aggregating), (iv) the risk reduction (as the mitigated risk over the 
inherent risk), and (v) the classification into categories (by binning the threats in 
equal intervals based on the largest inherent risk encountered in the analysis of the 
commit). This initial set of measurements can be expanded with additional ones 
that can be calculated from the submitted threat results such as the most frequently 
occurring threat types, the system elements with the largest residual risk, etc. 

Figure 7.2 shows the CTAM dashboard containing information on the evolution 
of threats, the estimated risk, and the progress in reducing that risk for a specific 
project. In addition to a project-wide overview, the developer can also select any 
analyzed commit from the overview to obtain the detailed analysis results for that 
specific version of the system, including the full list of elicited threats. 

7.4 Functional Validation 

This section presents the functional validation of CTAM on an illustrative appli-
cation case to demonstrate how the effect of changes can be perceived in the 
aggregated risk analysis. First, the application itself is described. Next, a number 
of deliberate change scenarios are introduced to assess the effect of different types 
of changes (e.g., new functionality, securing existing functionality). After each 
of these changes, the resulting model is analyzed, and the analysis results are 
collected. Finally, the results for each change scenario are discussed, highlighting 
the usefulness of CTAM in measuring and monitoring the security impact during 
software development.
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Fig. 7.2 CTAM dashboard. The dashboard presents the main metrics of the last commit (top row), 
the evolution of the number of threats and the residual and inherent risk (middle row), and the 
progress in reducing the risk and the overview of the prioritized threats in the last analysis results 
(bottom row) 

7.4.1 Description of the Case 

We apply our prototype on a SaaS application for generating and delivering PDF 

documents (e.g., invoices, pay slips), via different delivery channels (e.g., email, 
print) to end users. One of those channels is a hosted personal document store (PDS) 
on which users can login to retrieve documents sent to them. Figure 7.3 shows the 
DFD of this system. The center part of the figure contains the core of the system’s 
delivery services. The left-hand side contains the integration with third parties for 
delivery via print, email, etc. The right-hand side models the hosted PDS from which 
users can directly access their documents. The next section will refer to this diagram 
when explaining the different changes that will be made to this system to validate 
the CTAM prototype.
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Fig. 7.3 Data flow diagram (DFD) of the document processing and delivery service. This diagram 
shows the delivery components of this system together with the storage in the center of the diagram. 
The left-hand side shows various third-party delivery services, while the right-hand side shows the 
hosted personal document store (PDS) from which users can retrieve the documents sent to them. To 
improve the readability, multiple flows in the same direction are combined together (e.g., DF17, 
DF18). Figure 7.3a shows the initial version of C0 and the change of C1 in gray (C2’s security 
solutions are not visualized). Figure 7.3b shows the added functionality of C3, and the elements 
that are removed in C5 in gray (C4’s security solutions are not visualized) 

7.4.2 Change Scenarios 

We validate our approach with five specific change scenarios (affecting both 
functionality and security solutions). Each of these changes is applied to the DFD 

model of the document processing system in separate commits to enable the analysis 
of their impact. The security solutions mentioned below include encryption, authen-
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tication, and access control to protect against information disclosure, tampering, and 
spoofing: 

C0 The initial version of the system does not contain the PDS functionality (i.e., no 
E4, DS2, DS3, P3, nor any of the data flows to or from them), nor the banking 
integration (i.e., no E2 or any of its data flows), nor any security solutions to 
protect the communication with E3. 

C1 The first commit introduces secure functionality by adding the banking integra-
tion (E2) together with some security solutions to protect the communication 
with E2. These solutions provide encryption (to prevent information disclosure 
and tampering of the data flows) and mutual authentication. 

C2 This commit exclusively affects security, by introducing a security solution to 
protect the communication with the email provider (E3). The solution provides 
encryption (to prevent information disclosure and tampering of the data flows) 
and authentication of the email provider. 

C3 This commit adds the PDS functionality (i.e., E4, DS2, DS3, P3, and the data 
flows) but does not introduce any security solutions to secure this functionality. 

C4 This commit adds security solutions to protect the communication between the 
PDS users (E4) and the PDS by encrypting the traffic (protection against infor-
mation disclosure and tampering), authenticating the PDS for user registration, 
and mutual authentication for retrieving documents. This does not secure all the 
functionality introduced by C3. 

C5 Finally, this commit removes all data stores and the scheduler (i.e., remove P1, 
DS1–3, and their data flows).3 

Each of these changes is introduced in separate commits and pushed to a GitLab 
instance to trigger the continuous integration jobs which analyze the modified DFD 

model and submit the analysis results to the CTAM server. 

7.4.3 Results 

Figure 7.4 shows the analysis results as reported by the CTAM server after receiving 
the results from SPARTA for each of the introduced changes. This section revisits 
each of these changes to explain the risk evolution pattern encountered in the results 
and refers to the corresponding cells in Table 7.1. 

C1 As shown in Fig. 7.4, the residual risk line is not perfectly stable: the change 
actually did result in an increase of the residual risk due to the fact that the 
solutions do not fully mitigate the total risk introduced by the new functionality. 
Hence, the change corresponds with cells VI  and III  in Table 7.1.

3 While this is an unrealistic modification, it demonstrates the impact of removing insecure 
functionality from the system. 
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Fig. 7.4 Overview of the analysis results for the different changes. This plot shows the resulting 
inherent and residual risk values in the example application for each of the changes 

C2 With the exception of some small variance in the risk estimation, the inherent 
risk remains stable, while the residual risk is reduced. This corresponds with 
cell VIII  in Table 7.1. 

C3 This change scenario involves a substantial modification, as also visible from 
the analysis results. As this change scenario does not consider security, it results 
in both an increase of the inherent risk and the residual risk. As such, this is an 
example of the pattern in cell III  in Table 7.1. 

C4 As this change scenario only secures the interaction between the end user and 
the PDS, it does not mitigate all the newly introduced risk from the previous 
change scenario. As it only introduces security solutions, it again corresponds 
with cell VIII  in Table 7.1. 

C5 The final change removes insecure functionality from the model (all internal 
storage and the scheduling process). This results in a substantial reduction 
of both the inherent and the residual risk. This corresponds with cell VII  in 
Table 7.1. 

7.5 Evaluation 

In addition to the functional validation, we also evaluate our approach on a concrete 
version history of an existing real-world implementation of a contact tracing 
application. 

The Corona-Warn-App has been developed for Germany as privacy-friendly 
contact tracing app as part of the government’s response against COVID-19. The 
app and its backend services are all open source [7–11], extensively documented (in 
English) [6], and use the Spring framework. This makes them a suitable candidate 
for creating models for different historical versions of the application and its 
corresponding backend services.
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Following below is a brief description of the repositories that are taken into 
account for creating the models:4 

cwa-server This repository [7] contains the server for processing upload requests 
from clients, the distribution configuration parameters to the mobile applications, 
and the aggregation and distribution (via a content delivery network (CDN)) of 
diagnosis keys. 

cwa-testresult-server This repository [8] contains the test result server which is 
responsible for making available test results to the verification server. 

cwa-verification-iam This repository [9] contains the identity and access manage-
ment service to enable interaction with the verification server. 

cwa-verification-portal This repository [10] contains the verification portal ser-
vice to enable hotline employees to create proof certificates for users with a 
positive test. 

cwa-verification-server This repository [11] contains the verification service that 
provides proof of positive tests to other components in the system. 

7.5.1 Modeling Approach 

We manually constructed a new DFD model of the entire application whenever one 
of these repositories introduces a new major or minor version. Figure 7.5 shows 
an overview of the different combinations of versions of the repositories that are 
used to construct 12 DFD models, representing the application as it is developed and 
extended. 

To create the concrete DFD models, we based ourselves on a heuristic mapping 
from Spring annotations to DFD model element types: 

@Repository A repository in the source code is translated to a data store in the 
DFD. 

@Controller A controller is translated to a process. 
@Service A service is translated to a process. 

The data flows between these elements are added by inspecting the source code to 
determine whether there is communication between these elements. As the source 
code does not contain representations of end users or third-party integrations, these 
are manually added to the DFD based on the supporting documentation. 

Finally, to support the risk analysis and illustrate the effect of countermeasures 
on the residual risk over time, a number of security solutions (e.g., access control, 
encrypted channels) are modeled as well. For the risk estimation process, we also 
need to assign value estimates to elements of the DFD. Because we do not have

4 Understanding the inner workings of how these different components interact is not necessary 
for the evaluation in the next section. We refer the interested reader to the separate documentation 
repository [6] of the Corona-Warn project for more details. 
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12: 2020-10-28 s v1.6.0, ts v1.1.1, vi v1.1.0, vp v1.3.1, vs v1.3.2 
11: 2020-09-22 s v1.4.0, ts v1.1.0, vi v1.1.0, vp v1.3.1, vs v1.3.2 
10: 2020-08-19 s v1.3.0, ts v1.1.0, vi v1.1.0, vp v1.3.0, vs v1.3.1 
9: 2020-07-16 s v1.1.0, ts v1.1.0, vi v1.1.0, vp v1.1.0, vs v1.1.0 
8: 2020-06-12 s v1.0.1, ts v1.0.0, vi v1.0.0, vp v1.0.0, vs v1.0.0 
7: 2020-06-08 s v1.0.1, ts v0.6.0, vi v0.6.0, vp v0.6.0, vs v0.6.0 
6: 2020-06-05 s v0.5.10, ts v0.5.0, vi v0.5.0, vp v0.3.2, vs v0.5.3 
5: 2020-05-31 s v0.5.2, ts v0.3.2, vi v0.3-alpha, vp v0.3.1-alpha, vs v0.5.2 
4: 2020-05-28 s v0.5.1, ts v0.3.1, vi v0.3-alpha, vp v0.3-alpha, vs v0.3.1-alpha 
3: 2020-05-27 s v0.5.0, vi v0.3-alpha, vp v0.3-alpha, vs v0.3.1-alpha 
2: 2020-05-22 s v0.4.0, vs v0.3.1-alpha 
1: 2020-05-14 s v0.3 

Fig. 7.5 Overview of Corona-Warn versions. This figure shows the overview of the relevant 
versions of the Corona-Warn repositories that are included in the model. Legend: s, cwa-server; 
ts, cwa-testresult-server; vi, cwa-verification-iam; vp, cwa-verification-portal; vs, cwa-verification-
server. All versions that have changed are marked in bold 

the domain knowledge of the actual application’s stakeholders to provide realistic 
estimates for all elements, we make an approximation based on the solutions that 
were identified. Concretely, we assume that these solutions were introduced to 
protect the most important elements in the system and hence assign those elements a 
higher asset value than the other elements. This enables us to demonstrate the use of 
CTAM to assess risk evolution, yet with the caveat that our analysis does not provide 
an accurate estimate of the real-world risk associated with the application. 

7.5.2 Results 

The discussion on the results is split into two parts: The first part discusses the 
evolution of the model itself over time. The second part discusses the threat analysis 
results. 

7.5.2.1 Evolution of the Model 

The analyzed application demonstrates a fast-paced evolution over a time of about 
5 months, as new functionality is introduced and it is further integrated with 
other services for processing test results and authentication. This increase in size 
and complexity is visible when plotting the counts of the different DFD model
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Fig. 7.6 Overview of the model size evolution. This plot shows how the counts of different model 
element types change with each new version as the application increases in size and complexity 

element types over time. Figure 7.6 shows the increasing DFD model size as more 
functionalities are included in later versions of the modeled application. 

The graph also shows that the model itself does not converge during that time 
(especially in terms of processes and data flows). Even intermediate versions are 
not very representative as the final version contains more than double the amount 
of data flows. This observation further stresses the need of continually revisiting the 
DFD model as an application is further developed. 

Finally, there is another type of change not visible in diagrams such as Fig. 7.6. 
These involve changes where elements are replaced or when some elements are 
deleted at the same time as other elements are added. These changes do not impact 
the model sizes but do result in different models with different threats. 

7.5.2.2 Threat Analysis Results 

Next, the results of the threat elicitation and risk analysis are discussed. Figures 7.7 
and 7.8 visualize the evolution of, respectively, the number of threats and the 
(inherent and residual) risk. The evolution of the number of threats (Fig. 7.7) again  
confirms the importance of frequently revisiting the threat model: many new threats 
are introduced over time as the system is extended with new functionality. This 
graph also shows that even minor version changes (e.g., v10) can introduce a 
significant number of new threats. 

The graph of the inherent and residual risk (Fig. 7.8) shows a similar increasing 
trend over time. But the risk also incorporates the effects of (partially) mitigated 
threats as these reduce the residual risk. On this graph, similar patterns of evolution 
of the inherent and residual risk can be discerned as for the artificial changes used
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Fig. 7.7 Overview of the threat evolution. This plot shows how the number of threats evolves with 
each new version as the system is extended and modified 
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Fig. 7.8 Overview of the analysis results for the different changes. This plot shows the resulting 
inherent and residual risk values over time and the corresponding patterns from Table 7.1 

in Sect. 7.5. On Fig. 7.8, each part of the graph between two commits is annotated 
with the corresponding pattern from Table 7.1. These evolution patterns are often 
combinations of two patterns (e.g., 1–2 and 5–6 are obvious combinations and 
marked in Fig. 7.8), as the changes to a project over multiple versions rarely consist 
exclusively of either functionality- or security-related modifications. Some are more 
subtle, as many of the pattern III  instances will not have perfectly parallel lines. 
Finally, note that evolution pattern III  (“add insecure functionality”) is the most 
frequent pattern in Fig. 7.8. This is not due to the application being insecure, but 
because our models only include a subset of the solutions that are used in the actual 
application. Hence, the occurrence of this pattern may also serve as an indicator for 
discrepancies between the model (or, more specifically, the modeled solutions) and 
the actual application (see Sect. 7.6.5).
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7.6 Discussion 

This section discusses several considerations and limitations of using CTAM in 
practice. Ideas for further improvements are not discussed here but are deferred 
to Sect. 7.7. 

7.6.1 Using Another Threat Elicitation Engine 

As discussed in Sect. 7.3.2, the presented prototype is built around the threat 
elicitation engine of SPARTA [45] because of its powerful enablers. Any alternative 
threat modeling tool could in theory be adopted, provided that it generates a list of 
threats, with, for every threat, (i) the threat type, (ii) the affected DFD model element, 
(iii) the data flow, and (iv) the estimates of the inherent risk (i.e., the risk when 
ignoring all countermeasures) and the residual risk (i.e., taking into account security 
and privacy solutions) For example, CTAM could be integrated with Pytm [51] to  
elicit threats, provided that Pytm is extended with (i) a risk estimation approach, 
such as FAIR [15], or (more pragmatically) a translation of its current severity 
categories to numerical values and (ii) the possibility to elicit threats that have been 
mitigated by a solution to ensure that these can be taken into account when tracking 
the progress that is being made. 

7.6.2 Scope of the Model 

Another attention point is the scope of the DFD model and the resulting threat model. 
When the DFD model is included in a repository that also contains source code 
artifacts, it should at least represent that application. However, this application will, 
in practice, be deployed and interact with other entities (such as other applications, 
end users, or third-party services) that do not necessarily have a representation in 
the source code. This raises the issue on which entities should be encoded in the 
DFD model. 

The most straightforward approach entails the analysis of a single application 
and its internal security properties. Yet the usage of threat analysis as part of a 
CI  pipeline does not prevent the use of a broader scope of the analysis. Indeed, 
the use of infrastructure as code [34] makes operational information available as 
source code artifacts that can also be used as inputs for the models. Furthermore, 
submodules can be used to combine multiple related repositories (i.e., components 
of a larger application), where the DFD model resides in the root repository and 
refers to the application as a whole. This approach was taken for the contact tracing 
application in Sect. 7.5, where multiple (microservice) repositories are combined as 
submodules in a single repository that contains the overall threat model.
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7.6.3 Model Granularity 

Compared to source code, a DFD depicts a more abstract view of a software system. 
There is, however, a degree freedom in the abstraction level of a DFD: its elements 
could denote running processes, classes, methods, and so forth. Choosing and 
managing the abstraction level of the DFD, and thus the abstraction gap between the 
DFD and the source code, require careful consideration when applying automated 
threat modeling. 

If the abstraction gap is small and the DFD closely resembles the source code, 
threat analysis results will include detailed information, and elicited threats can be 
more easily linked back to the source code. However, code changes are more likely 
to warrant model updates, so more effort is required to keep the model up to date 
with the source code (as will be discussed in Sect. 7.6.5). Moreover, the DFDs may  
become large and lead to many elicited threats. 

This is not the case if the DFD depicts a higher-level overview of the system and 
is less closely linked to the source code. In this case, however, analysis results will 
also be high level, thus requiring more efforts to link threats back to source code 
and mitigate them. 

For our evaluation of the contact tracing application, we chose a level of 
granularity that was primarily driven by the annotations of the Spring framework, 
as discussed in Sect. 7.5. 

7.6.4 Triggering the Analysis Process 

CTAM analyzes the DFD models from the repository on every individual git 
commit. However, individual git commits may not be the appropriate level of input 
granularity for threat analysis and monitoring over time. We briefly discuss the 
trade-off between analyzing individual commits and using alternative triggers (such 
as pull or merge requests). 

The analysis of the threat model at the granularity of individual commits 
introduces additional overhead of maintaining and updating the DFD model for 
every commit that introduces relevant changes. This approach makes it trivial to link 
newly discovered security or privacy threats to the relevant source code portions that 
introduced the threat, because the relevant source code and threat model changes 
belong to the same commit. A variation on this approach is reanalyzing the model 
on every commit in which the model changed. When the source code and model are 
not updated as part of the same commit but assuming that the model is eventually 
made consistent with the source code, then the code that introduced a threat can 
be found between the commits of the model that first generated that threat and the 
previous model. 

An alternative approach is to rely on different triggers for re-evaluating the 
threat model. Alternative triggers could be specific milestones (or git tags) or when
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merge or pull requests are submitted to the repository. Such an approach could be 
used to enforce practices such as requiring an assessment of the impact on the 
threat modeling before merging new feature branches. The potential downside of 
these more coarse-grained approaches is that there is no longer a direct connection 
between the model and the relevant source code changes. This disconnect makes 
it more difficult to identify the relevant source code portions requiring review 
to mitigate newly introduced security or privacy threats or remove the insecure 
functionality altogether. 

7.6.5 Avoiding Model Drift 

CTAM currently relies on the inclusion of a DFD model in the code base that is 
kept up to date throughout the development. In case this model deviates (e.g., as a 
consequence of architectural drift [52]) from reality, the usefulness of the presented 
approach decreases drastically, as not all the generated threats will be relevant 
(false positives) or not all the relevant threats will be identified (false negatives). 
Additionally, the modifications in a single commit may not always necessitate 
changes to the model itself, as this depends on the granularity of the commits. There 
are opportunities, however, to systematically revisit the accuracy of the model as 
part of, for example, merge requests that introduce more considerable changes. 

While the above argument applies to any threat modeling approach, the inte-
gration of threat analysis activities into the code versioning system presents two 
opportunities for improvements in this regard: First, techniques for architectural 
reconstruction and conformance checking can be used to validate the accuracy of the 
input model vis-a-vis the committed code. Second, the use of code annotations for 
the construction of the input model can remove the need for a separate centralized 
input model altogether. These options are further discussed in more detail in 
Sect. 7.7. 

7.6.6 Using Detailed Threat Analysis Information 

As demonstrated in Sect. 7.5, CTAM provides immediate feedback on the progress 
being made in creating a secure- and privacy-preserving design in terms of the 
inherent risk and the residual risk which are both aggregated (by addition). These 
values are calculated and reported for each commit. 

This degree of integration with version control systems allows for a number 
of additional interesting analyses on the evolution of a code base. For example, 
proposed changes in other branches or merge/pull requests could be analyzed and 
compared with the main branch to evaluate the security and privacy impact the 
merge would have on the main branch.



7 CTAM: A Tool for Continuous Threat Analysis and Management 217

Because SPARTA performs a fine-grained risk assessment, more detailed interme-
diary risk analysis results can be used (e.g., the effectiveness of specific solutions 
or the impact on specific data subject types) instead of the aggregated risk estimates 
per threat. This would allow the developer to perform more targeted assessments, 
e.g., the analysis of privacy risk from the perspective of a specific data subject type 
and its evolution over time, or focused on specific assets (e.g., credit card numbers 
or user data), or filtering on specific model elements. 

7.6.7 Security Metrics 

The systematic analysis and measurement of a software product necessarily bring us 
to the domain of software security metrics: a difficult, if not infeasible [2], endeavor. 
Despite the inherent difficulties, many proposals have been made in the literature 
to measure different security-relevant properties, such as dependency graphs [30], 
attack surfaces [25], and software metrics [23, 26, 27]. While the risk assessments 
of the elicited threats may not be suitable as a metric to compare the security of 
different software products in absolute terms, it does allow monitoring the progress 
that is being made in securing one specific system throughout its development. For 
example, the difference between the inherent and residual risk, and the evolution 
thereof, can already serve as a crude indicator for the degree of security of the 
application’s design. Furthermore, our prototype lays the groundwork and provides 
a generic framework for future evaluation of, and experimentation with, calculating 
and comparing different security or privacy metrics over time. 

7.7 Future Work 

This section outlines our roadmap of future work grouped in terms of (i) how 
to acquire or maintain DFD model inputs for the analysis, (ii) alignment with 
operational analysis and monitoring, and (iii) the meta-analysis over multiple 
historical versions of a software development project. 

7.7.1 DFD Model Inputs 

In the current prototype, CTAM relies upon the presence and maintenance of up-to-
date DFD models that are encoded as textual files (e.g., in CTAM, these are .sparta 
DFD files) and thus can be checked in along with regular code commits, in branches, 
etc. The main idea is that the developer manually updates and coevolves these 
models alongside his regular code update, whenever these warrant a change to the 
DFD itself.
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This is however suboptimal, as (i) it requires continuous attention from the 
developer, (ii) and as such, it easily becomes an oversight, and (iii) there are no 
guarantees the DFD model is and remains consistent with the actual code base as it 
stands per code revision. 

In this area, model-centric techniques such as automated architecture extrac-
tion [4, 57] or reconstruction [16, 42, 59], software reflexion models [5, 29], static 
model compliance checking [24, 33], and model coevolution [17, 28] are particularly 
promising. Their further implementation and integration are therefore considered 
future work. 

An interesting subproblem and trade-off are related to the possible diver-
gence that may occur when such a model is coevolved gradually and incremen-
tally with each revision, on the one hand, and the cost and limited scalability 
of approaches that reconstruct a system model from scratch for each revision, 
on the other hand. Here, the ability to construct DFD models from individual 
model fragments (e.g., through process nesting as it is currently supported in 
SPARTA or through composition of DFDs corresponding to individual sub-projects 
or modules) may present an additional opportunity for improvement and optimiza-
tion. 

In each of these approaches, automation of such extraction methods is a key 
requirement to align with the vision of automated and integrated threat analysis 
presented in this article. Methods that require manual interventions by the developer 
or threat modeler are considered suboptimal in this context. 

Nevertheless, due to the challenge of automatically deriving a useful DFD from 
the source code, it is worthwhile to explore code-oriented threat modeling tools, 
such as ThreatSpec [53]. These rely on code annotations (manually added by the 
developer) for the construction of the input model and can remove the need for a 
separate centralized input model altogether. 

7.7.2 Monitoring and Aligning the Operational System 

The DFD models used by CTAM predominantly maintain an architecture- and 
development-centric perspective on the system. In addition to the challenges 
inherent to aligning these models with development artifacts discussed in the 
previous section, additional relevant inputs may be considered that come from the 
operational context, which is also a valid and accessible source of information in a 
DevOps continuous integration pipeline. 

For example, run-time inspection and monitoring techniques may be used to 
check deviation between the run-time system and the system model encoded in 
the DFD, an activity that is called conformance checking [14] or the extraction of 
architectural models at the basis of run-time interactions [4, 21, 57]. Operational 
security technologies could inform and update the threat model about detected 
attacks, anomalies, or changes to the expected workload, which may indicate
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deviations between the system design and the DFD or inform the security solutions 
modeled within the DFD in terms of strength or coverage of risk. 

In addition, run-time security adaptive mechanisms such as run-time application 
self-protection (RASP) are capable of changing the fundamental structure of a 
system in response to a security issue, and these changes must also be reflected in 
the DFD to allow the CTAM risk analysis to take into account such risk mitigations 
enacted dynamically. 

The challenges and benefits to the holistic ingestion of these diverse 
sources of information coming from a modern DevOps environment have been 
discussed in earlier work [55]. Additional work to further explore and validate 
these promising integrations of different sources of operational information is 
ongoing. 

7.7.3 Project-Centric Risk Analysis and Management Use 
Cases 

The use of CTAM promotes the creation and coevolution of threat models for each 
intermediate version and at each snapshot of the development of a system. Next to 
the system models (DFDs), the outcome of threat analysis – lists of threat scenarios, 
ranked in accordance with their priority/risk – constitutes a knowledge repository 
that can be monitored and mined for valuable insights about the evolution and 
management of risk in a project over time. 

A number of promising novel use cases can be discussed in this regard. For 
example, this approach would allow (i) monitoring the recurrence or re-emergence 
of threats over time which indicates possible regressions, (ii) observing an evolution 
in the types of threats raised which may be indicative of the overall project 
evolution (e.g., the project evolves to rely more extensively on personal data and 
thus privacy threats will be raised more), (iii) alternative risk aggregation functions 
for monitoring, (iv) the overall increase of inherent risk with the introduction of new 
features, (v) the ability of existing solutions or countermeasures to reduce or manage 
some of the newly emerging risks (i.e., the effectiveness of countermeasures, the 
stability of the security architecture over time, etc.), and (vi) security solutions or 
mitigations that can be suggested for specific threats and risk sources in the system, 
and they can be evaluated at the basis of their risk reduction outcomes. In these use 
cases, the security architect, project manager, software developer, and operator can 
be provided with more direct feedback and actionable insights that may allow them 
to further optimize the development process. 

Performing these types of analysis activities and validating the different analysis 
scenarios discussed above in a real-world case are considered part of our future 
work.
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7.8 Conclusion 

Threat analysis is commonly performed in a single-shot operation in the early 
stages of software development. Because of this, progress in threat mitigation is not 
actively revisited and monitored throughout later development stages such as the 
implementation and as the system evolves over time. Furthermore, as changes are 
made to the system, the originally anticipated threats may become obsolete while 
novel threats remain undiscovered. 

In this chapter, we have introduced CTAM, a continuous threat analysis and 
management prototype that supports continuous threat modeling and elicitation and 
integrates this activity into a continuous integration pipeline in GitLab. By revisiting 
threat analysis as new changes are pushed to the source code repository, threat 
management becomes a continuous activity, and the progress in mitigating threats 
(both in applying appropriate security and privacy solutions as in making changes 
to existing functionality) can be more accurately monitored. 

Integrating threat analysis activities in a continuous integration pipeline provides 
the following benefits: First, threat management becomes a continuous concern, 
rather than a single-shot analysis on an outdated version of the system. Second, it 
provides guidance toward mitigating threats and keeps track of the progress. Third, 
it creates the need to maintain the architectural abstraction model of the system and 
forces developers to reflect on the broader architectural impact of their changes in 
terms of security and privacy. 
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Chapter 8 
EARLY: A Tool for Real-Time Security 
Attack Detection 

Tanwir Ahmad, Dragos Truscan, and Jüri Vain 

Abstract The Internet has become a prime subject of security attacks and intru-
sions by attackers. These attacks can lead to system malfunction, network break-
down, data corruption, theft, etc. A network intrusion detection system (IDS) is a 
tool used for identifying unauthorized and malicious behavior by observing network 
traffic. State-of-the-art IDSs are designed to detect an attack by inspecting the 
complete information about the attack. This means that an IDS would only be able to 
detect an attack after it has been executed on the system under attack and might have 
caused damage to the system. In this paper, we extend our early IDS proposed in 
our previous work. The tool can detect network attacks before they could cause any 
more damage to the system under attack while preventing unforeseen downtime and 
interruption. In this work, we employ different deep neural network architectures 
for attack identification and compare their performances. The deep neural networks 
are trained in a supervised manner to extract relevant features from raw network 
traffic data instead of relying on a manual feature selection process used in most 
related approaches. Further, we empirically evaluate our tool on two datasets from 
different domains: CICIDS2017 from the web application domain and MQTT-IDS-
2020 dataset from the IoT domain. The results show that our approach performed 
well and attained a high overall balanced accuracy. 

Keywords Convolutional neural network · Gated recurrent unit · Intrusion 
detection system · Early detection 
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8.1 Introduction 

Modern society is significantly dependent on a wide range of interconnected soft-
ware systems for finance, energy distribution, communication, and transportation. 
The era of controlled communication in closed networks for restricted purposes is 
over. Due to the adoption of Internet technologies, almost all financial, government, 
and social sectors started to rely heavily on networked information systems to 
process and store confidential information. As a result, these systems have become 
primary subjects to security attacks and intrusions by attackers. These attacks 
can lead to system malfunction, network breakdown, data corruption, theft, etc. 
Therefore, it is essential to ensure network security by monitoring and detecting 
network attacks in real time as early as possible. 

A network IDS is a tool used for identifying unauthorized and malicious 
behavior by observing the network traffic and helping network administrators take 
appropriate reactive measures to secure the network infrastructure and the associated 
nodes [29]. The majority of the IDSs can be divided into two groups: anomaly-based 
and signature-based detection systems [4]. In the former group, a detection system 
learns the profile of normal network traffic and would classify the given network 
traffic data as intrusive or anomalous if it deviates from the normal traffic profile 
by more than a predefined anomaly threshold. This allows these systems to detect 
undiscovered and novel attacks. However, the value of the anomaly threshold has a 
significant impact on the accuracy of the systems. Finding the optimal value of the 
anomaly threshold is a complicated task and, in many cases, requires manual tuning. 

A signature-based IDS identifies intrusive network traffic by comparing the 
given network traffic data against the signatures (e.g., sequence of string and regular 
expressions) of known attacks. This category of network IDS is most commonly 
used in daily practice [38]. Since most of these systems rely on the knowledge 
bases (i.e., predefined sets of attack models and patterns) extracted from known 
attacks and system vulnerabilities, they are also known as knowledge-based or 
misuse IDS [22]. In most cases, the domain experts construct the knowledge bases 
manually, which can be a tedious and error-prone task [21]. Unlike anomaly-based 
IDSs, this group of IDSs can only detect those attacks that are defined in the 
knowledge bases. However, these methods demonstrate a high degree of accuracy 
and a low false alarm rate compared to the anomaly-based IDSs [4, 12]. One of the 
main challenges in developing these systems is extracting or defining a signature 
of a known attack that can represent different variations of the attack. Furthermore, 
managing a large signature knowledge base and matching signatures against the 
traffic are time- and resource-intensive tasks [4]. 

The spread of high-speed networks and fast-propagating threats poses additional 
challenges to current IDSs, which detect an attack by inspecting the entire network 
traffic data related to the attack. This means that an IDS would only be able to 
detect an attack after it has been executed on the system under attack and might 
have already caused damage to the system. Therefore, early attack (or intrusion) 
detection is desirable in the cybersecurity domain to prevent network attacks before
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they could cause any more damage to the system. Based on the early classification 
results of the traffic, the network administrator can decide whether to stop the traffic 
and raise an alarm message or deploy countermeasures. 

In order to address the above challenges, in our previous work [3], we proposed 
an end-to-end signature-based early IDS to detect network attacks as early as 
possible with a high degree of accuracy. To that extent, we employed a one-
dimensional convolutional neural network (1D CNN) [20] (i.e., a type of deep 
neural network (DNN) [7]) to extract relevant features from raw network traffic 
data that were used for early classification of ongoing attacks. Deep learning is a 
type of machine learning where we utilize DNNs [7] or multi-layer neural networks 
to approximate complex functions by learning different levels of representations of 
the given training data. In order to evaluate the performance of our tool, we have 
also defined a new metric, earliness, which measures the ratio of information of an 
attack needed to classify it as a given attack type. 

In this work, we extend our previous work by employing and comparing 
different types of neural networks for early detection of network attacks. Further, 
we rigorously evaluate the applicability of our approach by benchmarking its 
performance on two datasets from different domains: CICIDS2017 dataset [33] 
from the web application domain and MQTT-IDS-2020 [16] dataset from the IoT 
domain. 

In summary, the contributions of this work are as follows: 

1. We present a tool-supported network IDS focused on optimizing the accuracy 
of attack detection with minimum feasible delay (or, in other words, maximum 
earliness). 

2. The tool has two main components: one for creating attack detection models for 
different application domains and one for monitoring the network traffic with 
respect to the type of attack model chosen. 

3. The attack model creation component automatically extracts the relevant fea-
tures from raw network traffic data in an end-to-end manner instead of relying 
on the manual feature engineering process. Therefore, our approach is domain-
independent and does not require domain-specific data preprocessing steps. 

4. The monitoring component works at the network packet level, and thus it is 
agnostic to the type of protocol being monitored. In addition, it allows one to 
select which type of attacks is being monitored based on the type of the selected 
attack model. 

5. Two neural network architecture types can be selected, RNN and CNN, 
depending upon the need for real-time detection time delay, precision, or 
training time. 

6. We introduce a new metric, called earliness, to evaluate how early our tool can 
detect attacks. 

7. We empirically evaluate the detection capability and earliness of the tool using 
several datasets in two application domains.
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8.2 Overview of the Early Tool 

The main goal of the EARLY tool is to monitor the network traffic in real 
time against known security attacks for different application domains and deploy 
countermeasures before the attacks are completed. The main feature of this tool is 
to detect ongoing attacks with high accuracy. 

The EARLY tool can be integrated with DevOps environments allowing an 
organization to continuously monitor its systems and identify potential security 
threats before they escalate into larger-scale incidents. The tool has three main 
components: a training module, a library of trained models, and a monitoring 
module (see Fig. 8.1). The training module is used during the Develop and Release 
phases to train neural network models using various datasets for different applica-
tion domains based on decisions taken in the Plan phase. The resulting model is 
saved in the library of attack models and used later on by the monitoring module 
to monitor the corresponding type of network traffic during the Monitor phase. 
Whenever attacks are detected, automatic countermeasures can be deployed based 
on predefined triggers. 

The tool works at the network packet level, by analyzing network flows. 
A network flow is a bidirectional sequence of packets exchanged between two 
endpoints (e.g., a web server and a client) during a certain time interval with some 
common flow properties [9] such as source and destination IP addresses, source and 
destination port numbers, and the protocol type. In our work, we define a network 
flow as a sequence of T ordered packets, where T represents the length of a complete 
flow. A flow is denoted as: 

.FT = {P1, P2, . . . , PT }, ∀ Pi ∈ Rd ∧ 1 ≤ i ≤ T (8.1) 

EARLY tool 

Deploy 

Network 
traffic 

dataset 

Library of 
models 

Operate Monitor 

Attack 
monitoring 

network 
traffic 

alerts for 
countermeasures 

ReleaseDevelopPlan 

Require-
ments 

security requirements 

training traffic 

Training 

Fig. 8.1 Overview of EARLY tool architecture in the DevOps context
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where d is the dimension (or length) of a packet. 
In order to extract flows from the network traffic, both the training module and 

the monitoring module use a sub-module, called flow processing. 

8.2.1 Flow Processing 

The flow processing module consists of three components: packet filtering, flow 
identification, and packet preprocessing module, as shown in Fig. 8.2. 

8.2.1.1 Packet Filtering 

The packet filtering component captures the network packets and forwards them to 
the subsequent components if they satisfy the given criteria. For example, if we are 
protecting the web server running at port 80, we can configure the component to 
forward only those packets whose destination or source port is 80. We monitor the 
raw network traffic between the system under attack and the untrusted network. We 
select only those network packets which are related to the type of attacks we would 
like to detect. For example, if we are interested in detecting only web attacks [17], 
we will capture only HTTP packets. 

The next two modules transform the packets and group them into network flows. 
Whenever a network flow is updated with a new packet, we use the early flow 
classifier to update the prediction corresponding to the flow. 

Fig. 8.2 Flow processing module
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8.2.1.2 Flow Identification 

Upon receiving a new packet, we inspect the packet properties such as source and 
destination IP addresses to identify a suitable active flow for it. An active flow 
represents an ongoing communication session between a pair of network endpoints. 
On the other hand, if we cannot find an active flow that matches the characteristics 
of a packet, we create a new flow. A network flow is considered to be terminated or 
inactive upon connection teardown (e.g., by FIN packet) or when the flow has not 
received a new packet within a certain flow time-out (e.g., 120 seconds). The flow 
time-out value can be adjusted according to the protocol type of the network traffic 
we are capturing for detecting attacks. 

8.2.1.3 Packet Preprocessing 

Once we have identified the appropriate flow for the new packets, each packet 
goes through the following preprocessing steps to truncate unwanted information 
and transform it to a uniform-size vector of bytes (truncation and transformation 
operations). The main purpose of the steps is to ensure that the classifier should 
rely on relevant features for flow classification. For exemplification purposes, 
in the following, we discuss the steps in relation to HTTP and TCP protocol; 
however, these steps can be applied to other types of network packets with minor 
modifications. 

Truncation removes irrelevant headers and fields so that the classifier focuses 
only on useful features for flow classification and does not over-fit unrelated features 
such as MAC and IP addresses. 

For instance, the raw captured packets contain the Ethernet header. The header 
has information concerning the physical link, such as the media access control 
(MAC) address used for transferring the frames between different nodes in the 
network. However, this information is valueless for attack identification because 
it can be spoofed easily. Thus, this header is removed from the packet. 

Similarly, the Internet Protocol (IP) header in the packets includes information 
such as the total length of the packet, protocol version, and source and destination 
IP addresses. This information is necessary for routing packets in the network. 
However, we consider this information irrelevant and counterproductive for our 
classifier since there is a chance that the classifier will start relying on the IP 
information (e.g., IP addresses) for detecting attack flows. Therefore, we remove it 
from the packets. This approach allows the classifier to function steadily even if the 
addresses of the nodes in the network have changed and generalize the knowledge 
learned from one network environment to another. 

Transformation A fixed-size input is required when using a neural network for 
classification. To make the length of the header of the transport layer and the payload 
of the packets uniform, we crop or pad them with zeros to a fixed length. We would 
like to point out that even though we restrict the length of the packets (i.e., d in



8 EARLY: A Tool for Real-Time Security Attack Detection 231

Eq. 8.1) in a flow, we do not restrict the length of a flow (i.e., number of packets 
T) unlike other proposed approaches (e.g., [44]) though it is implicitly bounded by 
time-out. 

8.2.2 Training 

We train the classifier offline before using it for online early IDS. The training 
process is depicted in Fig. 8.3. We require a labeled flow dataset for supervised 
training that contains normal and attack flows. In addition to the labeled flows, the 
dataset should also have network packets corresponding to the flows. 

The majority of the publicly available datasets used for training and evaluating 
the IDSs have the class imbalance problem [4], that is, the number of examples 
among the different classes is not similar in the dataset. A classifier trained on 
an imbalanced dataset typically exhibits poor performance in terms of overall 
prediction accuracy. 

Therefore, in this work, in order to rectify the effect of class imbalance, we 
use a cost-sensitive learning method [15]. In this method, we train the neural 
network model with sample weighting, which acts as a coefficient for the loss value 
computed for each sample (i.e., flow) during the training process. The weight of 
each sample is based on its class. It is calculated inversely proportional to the class 
frequencies in the training data. The objective is that the classifier should pay more 
attention to those samples that belong to an underrepresented class. 

Previous work [27, 36] has shown that the cost-sensitive learning method 
performs better than the sampling-based method (such as random oversampling 
and undersampling) when an imbalanced dataset is used for training a classifier. 
Consequently, cost-sensitive learning in DNNs [15, 18] has recently become more 
popular and a competitive option to the data resampling method when dealing with 
imbalanced data learning. 

Fig. 8.3 Training process
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Splitting dataset We split the dataset in two subsets: one for training and one for 
evaluation. We prepare the training dataset by processing every packet in the flows 
using the procedure described in Sect. 8.2.1.3. We denote a flow dataset as . D =
{(F (j)

T , yj )} for .1 ≤ j ≤ N , where N represents the total number of flows . FT and 
their corresponding labels y. 

Augmenting data Since our objective is to train the classifier capable of reliably 
detecting the attack flow after observing the first few packets out of a given flow, 
we extend the dataset by cumulatively creating short segments of a flow at different 
lengths. 

The process of extending the training dataset by generating more data (e.g., 
network flows) from existing data is called data augmentation [34]. According to 
a predefined segmentation rate . sr , we create the shortest segment of a given flow 
containing only the first few packets of the flow; subsequently, we create more 
segments based on the flow by cumulatively adding more packets. Segmentation 
rate . sr is a hyper-parameter such that .0 < sr < 1. It is used to calculate the segment 
size .sz = �sr ∗ T � for a given flow, where T is the length (i.e., total number of 
packets) of a flow. This parameter value controls the number of segments generated 
per flow, for instance, more segments per flow will be generated as the value of 
. sr gets smaller. Suppose we have a flow .F (j)

T = {P1, P2, . . . , PT }, then the set of 
segments of this flow is as follows: 

. {F (j)
t=k∗sz

|k = 1, 2, . . . , 	T − 1

sz

}

where all the segments have the same label . yj as the original flow does. 
We would like to point out that setting the segment size . sz to a fixed value 

for every flow in the training dataset would be suboptimal because we will end 
up with more segments for longer flows and fewer for shorter ones in the dataset. 
Since the length of flows can vary over a wide range in a dataset, this can worsen 
the class imbalance problem in the dataset. Therefore, in this work, we employ 
the segmentation rate . sr that is used to calculate the segment size . sz for a given 
flow based on its length T. This allows us to generate roughly the same number of 
segments of flows with different lengths. This method is adapted from [11] and can 
be used to generate segments based on different cumulative factors, such as 2 or 3. 

For example, consider three flows with different lengths: .F (1)
6 , .F (2)

15 , and .F
(3)
70 . We  

set the segmentation rate . sr to 0.25. The segment sizes . sz for .F (1)
6 , .F (2)

15 , and . F (3)
70

are 2, 4, and 18, respectively. Table 8.1 lists the segments of the flows generated by 
the data augmentation process. 

Data augmentation is only applied to the flows in the training dataset. The dataset 
is extended by including the generated flow segments. 

Training We train our early classifier to learn a mapping function .H : F
(j)
t → yj , 

where .t ≤ T . In other words, the classifier should be able to predict the class label
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Table 8.1 Flow segments 
with respect to the 
segmentation rate . sr = 0.25

No. Flows Flow segments 

1 
. F

(1)
6 = {P1, P2, . . . , P6} . {P1, P2}

2 . {P1, P2, P3, P4}
3 

. F
(2)
15 = {P1, P2, . . . , P15}

. {P1, P2, P3, P4}
4 . {P1, P2, . . . , P8}
5 . {P1, P2, . . . , P12}
6 

. F
(3)
70 = {P1, P2, . . . , P70}

. {P1, P2, . . . , P18}
7 . {P1, P2, . . . , P36}
8 . {P1, P2, . . . , P54}

. yj of a given flow .F (j)
t by examining only the first t packets. We have used the 

categorical cross-entropy loss function and Adam [19] optimizer for training our 
classifier. The model/classifier resulting from training is stored in the Model library, 
accompanied by a description of that model architecture, types of attacks supported, 
and accuracy. 

The EARLY tool can use two different types of neural networks to detect network 
attacks, as discussed in the following: 

Convolutional neural networks (1D CNNs) [20] are used to extract a good 
internal representation of network flows and provide it as an input to a fully 
connected or dense layer. We use a softmax layer [13] as the final layer of our 
network to calculate a probability distribution for target classes. The CNNs are 
used to extract relevant features from grid-shaped input data such as images and 
sequences. They are capable of modeling the spatial and temporal dependencies in 
the data by learning relevant convolution filters (i.e., a set of grid-shaped weights 
or trainable parameters). A convolution layer is composed of several convolution 
filters, and each filter is used to extract a certain feature from the input data. Thus, 
the output of a convolution layer is called a feature map. 

The input data for 1D CNNs has two dimensions: The first dimension specifies 
the sequence of events (i.e., packets in a network flow), whereas the second 
dimension correlates to the individual features of an event (i.e., bytes of a packet). 
We have used rectified linear unit (ReLU) [30] as a nonlinear activation function 
for every neuron in the convolutional layer. Typically, each convolutional layer is 
followed by a pooling layer [13] to achieve translation invariance of the output 
returned by the convolutional layer. This layer reduces the temporal size of the 
output by replacing each fixed-size partition of it with a summary statistic (e.g., 
maximum or average) of the adjacent elements. The CNNs have a smaller number 
of trainable parameters than other types of artificial neural networks such as fully 
connected networks [20]. Therefore, they are less likely to overfit the training data 
than the fully connected networks which result in a better generalization. 

After convolution and pooling operations, a given variable-length network flow 
is represented by a variable-length series of feature maps. We use a global pooling 
layer [23] to transform the series into a fixed-length vector, which is then provided as 
an input to fully connected layers to get the feature vector. Lastly, we apply a softmax
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layer to the feature vector in order to obtain a probability distribution for each class. 
Based on the probability distribution and the classification threshold, we make the 
final predictions. We denote this neural network architecture by .EARLYCNN . 

Recurrent neural networks (RNNs) [13] are used for processing time series data 
such as a network flow .FT = {P1, P2, . . . , PT }. In RNNs, each neural network node 
has a memory unit (i.e., also known as the hidden state) that represents the previous 
state of the network. The current hidden state . ht is a function of the previous hidden 
state .ht−1 and the current input (i.e., a packet in our case) . Pt : .ht = f (ht−1, Pt ), 
where t represents the current time step. Subsequently, the current hidden state . ht

is used to compute the final output of the node. In summary, an RNN layer uses the 
information learned from the previous time steps and the current input to produce 
the output. 

In this work, we use gated recurrent unit (GRU), a variant of RNN, which 
performs better than classic RNN and LSTM (i.e., another RNN variant). Further, 
it can learn long-term sequential dependencies efficiently because it does not suffer 
from the vanishing gradient issue [8]. We replace the convolution layer with a GRU 
layer to extract the relevant features from the raw network traffic in the . EARLYCNN

architecture while keeping the rest of the architecture unchanged. We denote the new 
neural network architecture by .EARLYRNN . 

8.2.3 Monitoring 

The packet sniffer component in our approach is responsible for network traffic 
monitoring in real time. It captures and forwards every inbound and outbound 
network packet to the flow processing component, as shown in Fig. 8.4. This  
component is implemented using the libpcap1 library that provides a programming 
interface to capture packets passing through the network interfaces. 

Ideally, we should capture and process every network packet for inspection 
to detect attack attempts. But such an approach would be resource-intensive and 
possibly impractical, particularly when dealing with high-speed network traffic. In 
order to sustain a high packet rate, in our approach, we capture and process only 
those network packets which are related to the type of attacks we would like to 
detect using the libpcap filters. For example, we can configure the library filters 
to capture only those packets whose destination port is 80. These filters, which are 
usually supported by the operating system kernel, improve performance by reducing 
the packet processing overhead. 

A list of active flows is maintained along with the predictions corresponding to 
those flows made by our early flow classifier (see Fig. 8.5). Whenever a network 
flow is updated with a new packet, the early flow classifier makes a prediction (i.e., 
a probability distribution for output classes) using the neural network model. The

1 https://github.com/the-tcpdump-group/libpcap 

https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
https://github.com/the-tcpdump-group/libpcap
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Fig. 8.4 Monitoring 

Fig. 8.5 Early classification of flows 

final class of a flow is a class that has a higher probability than other classes and 
the classification threshold .∈ [0, 1). If none of the class probabilities is higher 
than a given threshold, our approach will return Unknown as the final class. As 
we increase the classification threshold, the number of false positives (i.e., a result 
that indicates a given flow is an attack when it is not) decreases, which improves 
the classification accuracy but degrades the earliness of the approach. The threshold 
is provided by a person such as a network administrator who observes the network 
traffic and is responsible for taking countermeasures against the attacks based on 
the classification results. 

Alerts can be defined to notify external systems to automatically deploy coun-
termeasures when the attack detection probability (or confidence) goes over a 
predefined threshold: 

.detection probability ≥ threshold → alert
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Fig. 8.6 User interface of the EARLY monitor 

The EARLY monitor is available as open source at [2]. At the moment, pretrained 
models for Web attacks and MQTT attacks are available. A screenshot of the 
EARLY monitor interface is shown in Fig. 8.6, in which three out of four network 
flows are classified as malicious since the probability of prediction was higher than 
the specified threshold. 

8.3 Evaluation 

In this section, we evaluate how the two types of neural network architectures affect 
the performance of our approach by answering the following research questions: 

• RQ1. How do the different neural network architectures affect the classification 
performance of our approach in terms of classifying the complete flows (i.e., 
flows with all the packets)? 

• RQ2. Which neural network architecture is more effective in identifying the 
class of a given flow in real time by inspecting only the first few packets of the 
flow? 

RQ1 investigates the classification performance, whereas RQ2 evaluates the 
performance of our approach when deployed in a real-time environment with respect 
to the neural network architectures. For evaluation, we use two datasets, one for 
web-based attacks (CICIDS2017) and one for MQTT-based attacks (MQTT-IDS-
2020). We evaluate the performance of our approach using different neural network 
architectures against each dataset. 

We use scikit-learn [31] library for data preprocessing and TensorFlow [1] library 
to train the neural network models.
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8.3.1 Datasets 

8.3.1.1 Web-Based Network Attack Detection 

We use CICIDS2017 [33] dataset to evaluate the effectiveness of our approach. The 
dataset is composed of normal and seven types of attack flow (e.g., Heartbleed, 
botnet, web) along with the network packets corresponding to the flows. We use a 
specific part of the dataset that was captured on Thursday, July 6, 2017, and contains 
29,309 network flows and 4,074,194 packets related to the following web attacks: 
(1) SQL injection, an attacker provides a string of SQL commands to be injected 
into the database; (2) cross-site scripting (XSS), an attacker injects a script into the 
web application code; and (3) brute force, an attacker tries a list of passwords to find 
the administrator’s password. Table 8.2 lists the number of flows, the average flow 
length (i.e., number of packets), and the standard deviation (SD) of flow length per 
attack type in the dataset. 

As one can notice, there is a large imbalance in the distribution of the flow 
classes; for example, there are roughly 1291.86 times more flows belonging to the 
normal class than the SQL injection class. We have used stratified sampling [10] 
to split the original dataset into training and test datasets using the 0.7:0.3 ratio 
(see Table 8.3). Unlike random sampling, stratified sampling creates the splits by 
maintaining the same percentage for each class as in the complete dataset. 

We have augmented the training dataset using the segmentation rate .sr = 0.1. 
Table 8.4 lists the number of flows we obtained by applying the data augmentation 
technique described in Sect. 8.2.2. 

We have observed that the header and payload length of 99% of packets in the 
dataset are less or equal to 40 and 356 bytes, respectively. To handle the packets 
with different header and payload lengths, we crop or pad them with zeros at the 
end to 48 and 400 bytes, respectively, as per the transformation step in Sect. 8.2.1.3. 
We scale all the packet bytes between 0 and 1 by dividing them by 255. In practice, 
scaling the input data helps machine learning algorithms converge faster [35]. 

Table 8.2 Web-based flow dataset 

Class No. of flows Average flow length SD of flow length 

Normal 27,129 124.39 6,508.44 

Brute force 1, 507 18.43 64.20 

XSS 652 11.48 46.75 

SQL injection 21 5.71 3.25 

Table 8.3 Training and test 
datasets 

Class Training Test 

Normal 18,990 8,139 

Brute force 1,055 452 

XSS 456 196 

SQL injection 15 6
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Table 8.4 Number of flows 
after augmenting the training 
dataset with . sr = 0.1

Class Original Augmented 

Normal 18,990 92,468 

Brute force 1,055 4,625 

XSS 456 1,866 

SQL injection 15 82 

8.3.1.2 MQTT-Based Attack Detection 

EARLY was also evaluated in the context of MQTT using the MQTT-IDS-2020 [16] 
dataset in which the model was trained with both normal traffic and the following 
types of attacks: aggressive scan, user datagram protocol (UDP) scan, Sparta SSH 
brute force, and brute force, using a part of the dataset. Table 8.5 lists the number of 
flows, the average flow length (i.e., number of packets), and the SD of flow length 
per attack type in the dataset. 

The total number of flows and packets related to those flows in the dataset is 
3,397,121 and 32,177,882, respectively. Due to the limited amount of computing 
resources and time, it was not feasible for us to use the entire dataset for training 
and evaluation. Therefore, to speed up the training and evaluation processes, we 
uniformly sample 20,000 flows from each class. After random sampling, we split 
the dataset into two subsets using the ratio 0.7:0.3: training and test set. We have 
augmented the training dataset using the segmentation rate .sr = 0.1. 

The header and payload length of 99% of packets in the dataset is less or equal 
to 40 and 34 bytes, respectively. To handle the packets with different header and 
payload lengths, we crop or pad them with zeros at the end to 40 and 50 bytes, 
respectively, as per the transformation step in Sect. 8.2.1.3. We scale all the packet 
bytes between 0 and 1 by dividing them by 255. 

8.3.2 Model Architectures 

In this section, we discuss the neural network architectures used for detecting 
network attacks. We set the batch size to 32, which is the number of flows included 

Table 8.5 MQTT-based flow dataset 

Class No. of flows Average flow length SD of flow length 

Normal 363,495 5.81 25.57 

MQTT brute force 2,000,211 4.99 3.00 

Aggressive scan 20,025 2.03 0.89 

UDP scan 10 1.10 0.31 

Sparta SSH brute force 1,013,380 19.45 4.41
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in a mini-batch during neural network training. The total number of training epochs 
is set to 50. 

8.3.2.1 EARLYCNN 

This neural network model is made of a convolution block. The block contains the 
following layers in the specified order: 1D CNN layer with kernel size 1, valid 
padding, ReLU activation, and bias, layer normalization, and average pooling layer 
of size 2 with the same padding. We perform global average pooling to flatten the 
series of feature maps to a fixed-length vector, which is then provided as input to 
a fully connected layer to get the feature vector. Finally, we use a softmax layer to 
obtain a probability distribution for each class. We make the final predictions based 
on the probability distribution and the classification threshold. 

Figure 8.7 portrays the architectures of the .EARLYCNN model for the 
CICIDS2017 and MQTT-IDS-2020 datasets. The total number of trainable 
parameters of the models for the CICIDS2017 and MQTT-IDS-2020 datasets is 
16,804 and 14,917, respectively. The label on the arrow from the Input to Conv1D 
layer in the figure specifies the dimensions of the input provided to the model. 
The input has three dimensions: the number of flows in a mini-batch, the number 
of packets in a flow, and the number of bytes or features representing a packet in 
a flow. Since we do not fix the number of packets required in a flow to make a 
prediction, the second dimension in the label (e.g., 32x?x448 in Fig. 8.7a) is left 
open. 

8.3.2.2 EARLYRNN 

This neural network model has a GRU layer with Tanh activation. The return 
sequence is set to true for the layer, which means that the layer will return the hidden 
state output for each time step (or packet). We perform global average pooling to 
flatten the series of hidden states to a fixed-length vector. Finally, we use a softmax 
layer to obtain a probability distribution for each class. Based on the probability 
distribution and the classification threshold, we make the final predictions. 

Figure 8.8 portrays the architectures of the .EARLYRNN model for the 
CICIDS2017 and MQTT-IDS-2020 datasets. The total number of trainable 
parameters of the models for CICIDS2017 and MQTT-IDS-2020 is 46,404 and 
12,069, respectively. 

8.3.3 Evaluation Metrics 

Evaluating the classification performance of a machine learning-based approach on 
an imbalanced dataset is a challenging task [45]. The majority of the existing IDSs
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using machine learning have reported the performance of their approaches using 
traditional metrics such as accuracy and F1-score [4]. These metrics are designed 
to evaluate the performance of a classifier on balanced datasets. They do not work 
well when there is a large imbalance in the distribution of the classes in the dataset 
[45]. Therefore, we evaluate our tool, in the context of a web-based application and 
an MQTT Broker application, using the following metrics: 

• Precision calculates the percentage of instances identified as positive that were 
correctly classified. 

• Recall (i.e., also known as detection rate) computes the percentage of actual 
positive instances that were correctly classified. 

• False positive rate (FPR) (i.e., also known as false alarm rate) estimates the 
proportion of negative observations wrongly predicted as positive over the total 
number of negative observations. 

• Balanced accuracy (BA) is the arithmetic mean of recall obtained on each class. 
• Bookmaker informedness (BM) is defined as the probability that the classifier 
will make a correct decision as opposed to random guessing. 

• Prediction time indicates the average time needed by the tool to detect a security 
attack. 

• Earliness specifies how early the correct class of a flow can be predicted ahead 
of the end of the flow. We define the earliness as: 

.Earliness =
⎧
⎨

⎩

T − t

T − 1
if T > 1

1 if T = 1
(8.2) 

where t is the minimum number of packets required to correctly predict the 
class of a given flow and T is the total number of packets in the flow. Since this 
metric aims to evaluate the earliness of the prediction instead of its quality, this 
metric is only applied to those flows that are correctly classified and .t ≤ T . 

All the metrics mentioned above can have values between 0 and 1. Higher 
values of precision, recall, BA, and BM and lower values of FPR indicate better 
classification performance of a classifier. The earliness value lies between 0 and 1, 
with extreme values 1 and 0 reached in case a classifier can accurately classify 
a given flow by analyzing only the first packet and all the packets of the flow, 
respectively. 

8.3.4 RQ1: Classification Performance 

In order to answer this research question, we have trained and evaluated the 
architectures against the independent test set discussed in Sect. 8.3.1. We used  
tenfold cross-validation on the training dataset to fine-tune the hyper-parameter 
values and model selection for both neural network architectures. For statistical
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reasons, the evaluation procedure is repeated 30 times, and every time, we randomly 
shuffle the datasets to remove any ordering bias before splitting it into training and 
test set. We set the classification threshold to 0, which means that the final class of 
a flow is a class that has a higher probability than other classes. 

A perfect IDS has a 1.0 recall at 0.0 FPR for every class, which means that it 
can identify all flows correctly without any miss-detection. Nevertheless, in reality, 
such flawless IDSs are empirically not feasible or very difficult to attain in a real-
time environment because of the complexity and large volume of network traffic. 

Table 8.6 lists the training time of the neural networks per dataset. One can notice 
that the training times of the .EARLYRNN model are higher than the . EARLYCNN

for both datasets. Table 8.7 shows the achieved performance of our tool on both 
datasets using the .EARLYCNN architecture. For the CICIDS2017 dataset, our tool 
gives the highest detection rate or recall of 0.911 at an FPR of 0.008 for the XSS 
attack type among all the other attack types. In other words, our tool correctly 
identifies 91.1% of the XSS attack flows in the test dataset and wrongly identifies 
less than 1% of other types of flows as XSS attack flows. 

The tool has performed well also for the other types of attacks, even though 
the number of training flows for the attack types is low. For example, the number of 
training flows for Brute force and XSS attack types is only 5.1% and 2.2% of the total 
number of original training flows. One can notice that the approach has performed 
poorly for the SQL injection attack type. The main reason is that the number of 
samples of the attack type is significantly small (i.e., 0.07% of the total number of 
training samples). Thus, the model has a limited capacity to learn the attack type. 

For the MQTT-IDS-2020 dataset, our tool gives the highest detection rate of 
0.997 at an FPR of 0.008 for the MQTT brute force attack type among all the other 
attack types. As expected, the tool did not perform well for the UDP scan attack 
type because the number of training samples of the attack type was just 7. 

Table 8.8 shows the achieved performance of our tool on both datasets using 
the .EARLYRNN architecture. For the CICIDS2017 dataset, our tool gives the 
highest detection rate of 0.916 at an FPR of 0.003 for the Brute force attack type 
among all other attack types. For the MQTT-IDS-2020 dataset, our tool gives the 
highest detection rate of 0.999 at a FPR of 0.002 for the MQTT brute-force attack 
type among all the other attack types. The tool has performed poorly for the SQL 
injection and UDP scan attack types for the CICIDS2017 and MQTT-IDS-2020 
datasets, respectively, due to the inadequate number of training samples. Table 8.9 
lists the balanced accuracy scores attained by both neural network architectures. 
For both datasets, .EARLYRNN has achieved higher balanced accuracy scores 

Table 8.6 Training times Dataset Architecture Training time (mins) 

CICIDS2017 .EARLYCNN 17.06 

.EARLYRNN 29.96 

MQTT-IDS-2020 .EARLYCNN 40.93 

.EARLYRNN 54.05
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Table 8.7 Classification performance of . EARLYCNN

Dataset Class Precision Recall FPR BM 

CICIDS2017 Normal 0.996 0.944 0.054 0.891 

Brute force 0.720 0.828 0.051 0.778 

XSS 0.754 0.911 0.008 0.904 

SQL injection 0.343 0.528 0.003 0.525 

MQTT-IDS-2020 Normal 0.707 0.584 0.095 0.488 

MQTT brute force 0.979 0.997 0.008 0.989 

Aggressive scan 0.812 0.815 0.055 0.760 

UDP scan 0.004 0.422 0.038 0.384 

Sparta SSH brute force 0.809 0.778 0.066 0.712 

Table 8.8 Classification performance of . EARLYRNN

Dataset Class Precision Recall FPR BM 

CICIDS2017 Normal 0.996 0.995 0.052 0.944 

Brute force 0.905 0.916 0.003 0.913 

XSS 0.823 0.916 0.004 0.912 

SQL injection 0.403 0.733 0.001 0.732 

MQTT-IDS-2020 Normal 0.827 0.758 0.053 0.705 

MQTT brute force 0.995 0.999 0.002 0.997 

Aggressive scan 0.938 0.987 0.022 0.965 

UDP scan 0.092 0.211 0.000 0.211 

Sparta SSH brute force 0.833 0.853 0.058 0.795 

Table 8.9 Balanced 
accuracy of both neural 
network architectures 

Dataset Architecture Balanced accuracy 

CICIDS2017 .EARLYCNN 0.803 

.EARLYRNN 0.890 

MQTTIDS .EARLYCNN 0.719 

.EARLYRNN 0.762 

than .EARLYCNN . In conclusion, the answer to research question RQ1 is that the 
.EARLYRNN architecture has performed better in terms of classification accuracy 
than .EARLYCNN for both datasets. 

8.3.5 RQ2: Earliness Performance 

This research question aims to study the performance of our tool in detecting attacks 
as early as possible in a real-time environment. In our opinion, a real-time IDS 
should satisfy the following two requirements: First, the IDS should be able to 
process the data (i.e., network packets) as fast as it is being produced under real-
life circumstances. Second, the minimum number of packets (MNP) required to
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accurately predict the class of a given flow should be less than the total number of 
packets in the flow. 

To answer this question, we ran two replay sessions per dataset where we 
reproduced the network traffic captured and not previously used for training in the 
dataset against the .EARLYCNN and .EARLYRNN architectures. During the replay 
session, we monitored packet inter-arrival times (IAT), processing times required by 
our tool to make predictions when using the different neural network architecture, 
and the MNP. Our tool and the software that replayed the traffic ran on different 
machines. Each machine featured an Intel Core i9-10900X CPU, 64 GB of memory, 
RTX 3090 graphics card, and Ubuntu 20.04 Operating System. The machines were 
connected via a 1Gb Ethernet connection in an isolated environment to reduce 
network latency. 

Table 8.10 shows the duration of the replay sessions, the number of packets 
retransmitted, the average packet IAT, and the prediction time per packet for each 
neural network architecture. In the case of CICIDS17, on average, the tool with the 
.EARLYCNN architecture was able to make a prediction in 0.04 milliseconds per 
packet, for example, if a flow has four packets, the tool would take 0.24 milliseconds 
to predict its class that is seven times faster than .EARLYRNN . 

Tables 8.11 and 8.12 show the earliness, the MNP, and the average flow length 
per class for .EARLYCNN and .EARLYRNN , respectively. The results show that 
our tool can detect the class of a given flow by inspecting roughly only one to 
three packets in most of the cases. Further, one can notice that .EARLYRNN has 

Table 8.10 Replay sessions 

Dataset 
Duration 
(sec) 

Packets 
retransmitted 

Packet IAT 
(ms) Architecture 

Prediction 
time (ms) 

CICIDS2017 29,004 4,074,195 7.11 .EARLYCNN 0.06 

.EARLYRNN 0.42 

MQTT-IDS-2020 16,614 32,144,887 0.51 .EARLYCNN 4.18 

.EARLYRNN 4.30 

Table 8.11 Earliness metric and the average minimum number of packets required (MNP) to 
predict the flow class for . EARLYCNN

Dataset Class Earliness MNP Average flow length 

CICIDS2017 Normal 0.991 2.11 124.39 

Brute force 0.936 2.11 18.43 

XSS 0.917 1.86 11.48 

SQL injection 0.509 3.31 5.71 

MQTT-IDS-2020 Normal 0.708 2.40 5.81 

MQTT brute force 0.991 1.03 4.99 

Aggressive scan 0.848 1.15 2.03 

UDP scan 0.525 1.04 1.10 

Sparta SSH brute force 0.689 6.73 19.45
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Table 8.12 Earliness metric and the average minimum number of packets required (MNP) to 
predict the flow class for . EARLYRNN

Dataset Class Earliness MNP Average flow length 

CICIDS2017 Normal 0.994 1.74 124.39 

Brute force 0.931 2.20 18.43 

XSS 0.886 2.19 11.48 

SQL injection 0.712 2.31 5.71 

MQTT-IDS-2020 Normal 0.922 1.03 5.81 

MQTT brute force 0.999 1.00 4.99 

Aggressive scan 0.974 1.02 2.03 

UDP scan 0.467 1.05 1.10 

Sparta SSH brute force 0.778 5.09 19.45 

higher earliness than .EARLYCNN and it requires fewer packets than . EARLYCNN

to correctly predict the class of a given flow. 
In summary, .EARLYRNN has outperformed .EARLYCNN in terms of classifi-

cation performance, earliness, and MNP; however, .EARLYCNN takes less time to 
make to predict the class of a given flow. 

8.4 Related Work 

Recently, a number of deep learning-based IDS approaches have been proposed. 
Most of these approaches (e.g., [6, 14, 25, 26, 32, 37, 39]) rely on flow-based 
statistical features extracted by analyzing all the packets in a given flow such as 
total bytes, packet count, IP addresses, and port numbers. In contrast, the proposed 
approach aims to extract relevant features from raw network traffic data that can 
be used to reliably detect attack flows by analyzing the partial information already 
available of the flows during the early phase of attacks. In this section, we focus 
on some of the most important and recent related works on IDS that use machine 
learning to classify network attacks by extracting the relevant features from raw 
network traffic data. 

Zhang et al. [43] proposed an IDS based on a convolutional neural network, 
named parallel cross-convolutional neural network (PCCN). They use the network 
traffic data to extract features, but they restrict the number of packets in a flow 
to 5. The authors mention that the PCCN network structure meets the real-time 
requirements of network IDS; however, they neither further discuss nor evaluate 
this aspect of the approach. 

Zhu et al. [46] presented a hierarchical network IDS based on unsupervised 
clustering using deep auto-encoder and Gaussian mixture model. The proposed 
model comprises two sub-models: the first sub-model detects abnormal traffic in real 
time, and the second identifies the attack categories of abnormal traffic detected by 
the first one. They employ the feature processing method from PCCN approach [43]
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to obtain features for their IDS. The authors state that essential features are extracted 
based on the first few packets, which guarantee real-time network IDS. However, 
they neither discuss how the approach achieves real-time IDS nor evaluate this 
aspect of the approach. Further, they report the performance of their approach in 
terms of accuracy, F1-scores, and AUC averaged over all the classes, which could 
be misleading when the class distribution is imbalanced [45]. 

Zhang et al. [44] proposed a network IDS that integrates CNN and LSTM neural 
network structures to learn the spatial and temporal features of flows. Similar to our 
approach, they use network traffic data to extract features. However, they restrict the 
number of packets in a flow to 10, whereas we do not limit the number of packets in a 
flow and, in addition, analyze all the packets available in order to make an informed 
prediction. Further, they also report the performance of their approach with respect 
to the accuracy, F1-scores, and AUC averaged over all the classes, which could be 
misleading when the class distribution is imbalanced [45]. 

Yin et al. [41] proposed an IDS using RNNs. They evaluated the approach using 
the NSL-KDD dataset. They utilized 38 numeric and 3 non-numeric statistical 
features in the dataset. Similarly, Xu et al. [40] employed a GRU-based model to 
detect network attacks. The model is trained on statistical features and tested using 
KDD 99 and NSL-KDD datasets These datasets are considered outdated, and they 
lack raw network traffic data [4, 33]. Therefore, we utilize CICIDS2017 for training 
and evaluation of our tool. Further, our tool extracts the relevant features from raw 
network traffic data in an end-to-end manner instead of relying on manual or flow-
based statistical features in order to detect network attacks as early as possible. 

Alsyaibani et al. [5] built an IDS using a GRU-based model. They utilized the 
CICIDS 2017 dataset for training and evaluation of the model. All the labels in the 
dataset were converted into 0 and 1 to represent attacks and benign traffic. Their 
model is trained on the flow-based statistical features; on the other hand, we let our 
model extract the relevant features from raw network traffic data. 

Zhang et al. [42] proposed a multiple-layer representation learning model for 
network IDS by combining CNN with gcForest. They propose a new data encoding 
scheme based on P-Zigzag to encode a network packet into a two-dimensional gray-
scale image for classification. In contrast to our approach, this approach classifies 
packets instead of flows. 

López-Vizcaíno et al. [24] defined the early intrusion detection problem by 
grouping network packets into data flows, where each flow is labeled as an attack 
or normal traffic depending on the intent of its packets. The ideas and concepts 
in this work are very relevant to our work. The authors propose a new time-
aware metric, named ERDE, where accurate predictions are penalized if they are 
made after a certain measuring point o that is defined manually. This metric was 
initially proposed to measure the early detection of depressed individuals based on 
their posts on a social network. In contrast, our nonparametric earliness metric is 
designed specifically for network flows. The metric value ranges from 0 to 1, with 
extreme values 0 and 1 reached if a classifier can accurately classify a given flow by 
analyzing only the first packet and all the flow packets, respectively. In comparison 
to ERDE, we consider our metric to be more informative, comparable, and intuitive.
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For evaluation, the authors above divide every flow into ten chunks containing 10% 
of the packets for each flow. A set of classifiers (i.e., Random Forest, J48, JRip, 
and PART) analyzes each chunk of flows sequentially, and it can produce three 
outputs: attack, normal, or delay. The objective is to detect an attack using as few 
chunks as possible. They utilize the feature extraction method from [28] that extracts 
traffic statistics, such as source port, IP, and MAC addresses, from every new packet 
transmitted over a network channel. Although the authors define the early intrusion 
detection problem in terms of network flows, they do not explain how they utilize 
the features extracted using a method (that does not consider network flows and 
processes each packet independently) in order to predict the class of a given flow. 
In contrast, we describe packet preprocessing steps and the features used for early 
classification in Sects. 8.2.1 and 8.2.2, respectively, in detail. The authors conclude 
that machine learning models do not perform well when they are used for early 
intrusion detection; however, our results show that our approach can identify attacks 
with a high degree of accuracy by analyzing the first few packets of a given flow. 

In summary, to the best of our knowledge, the existing IDSs can detect a certain 
attack by inspecting the complete information related to the attack. This means that 
a system would only be able to detect an attack after it has been executed on the 
system under target and might have caused damage to the system. In contrast, our 
end-to-end early IDS can reliably detect attacks by analyzing the partial information 
already available in the early phase of attacks. 

8.5 Conclusion 

In this paper, we have presented an end-to-end early IDS that can predict and prevent 
network attacks in real time before they could cause any more damage to the system 
under attack. 

The tool supports two types of classifier architectures, CNN-based and RNN-
based. Regardless of the selected architecture, attack detection models are trained 
in a supervised manner to extract relevant features from raw network traffic data, 
instead of relying on a manual feature selection process used in most related 
approaches. We have evaluated the tool and its classifier architectures on two 
different datasets. For the evaluation, we have used a new metric, earliness, to 
quantify the earliness of the predictions made by the tool. 

The results show that EARLY identifies attacks with a high degree of accuracy 
by analyzing roughly only one to three packets. Our approach has achieved 
overall 0.803 and 0.719, respectively, balanced accuracy. In terms of classification 
performance, earliness, andMNP, an RNN-based model outperformed a CNN-based 
model. However, the RNN-based model is approximately ten times slower than the 
CNN-based in predicting the class of a given flow. Further, the CNN-based model 
trains faster than the RNN-based one. In the future, we aim to evaluate our tool with 
other datasets containing encrypted traffic.
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The main threat to external validity is that the evaluation might seem subjective 
because we have not compared our approach with other IDS approaches from the 
literature. However, as discussed in Sect. 8.4, we could not find any approach similar 
to ours that extracts the relevant features from raw network traffic data in an end-
to-end manner instead of relying on manual or flow-based statistical features and 
detects network attacks as early as possible. Another threat to validity is that we 
have not evaluated the scalability of the tool to detect a large number of simultaneous 
attacks. This evaluation will be subject to future work. 
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Chapter 9 
A Stream-Based Approach to Intrusion 
Detection 

Sylvain Hallé 

Abstract Integrating security in the development and operation of information 
systems is the cornerstone of SecDevOps. From an operational perspective, one of 
the key activities for achieving such an integration is the detection of incidents (such 
as intrusions), especially in an automated manner. However, one of the stumbling 
blocks of an automated approach to intrusion detection is the management of the 
large volume of information typically produced by this type of solution. Existing 
works on the topic have concentrated on the reduction of volume by increasing the 
precision of the detection approach, thus lowering the rate of false alarms. However, 
another less explored possibility is to reduce the volume of evidence gathered for 
each alarm raised. This chapter explores the concept of intrusion detection from 
the angle of complex event processing. It provides a formalization of the notion 
of pattern matching in a sequence of events produced by an arbitrary system, by 
framing the task as a runtime monitoring problem. It then focuses on the topic 
of incident reporting and proposes a technique to automatically extract relevant 
elements of a stream that explain the occurrence of an intrusion. These relevant 
elements generally amount to a small fraction of all the data ingested for an alarm to 
be triggered and thus help reduce the volume of evidence that needs to be examined 
by manual means. The approach is experimentally evaluated on a proof-of-concept 
implementation of these principles. 
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9.1 Introduction 

Information systems can produce logs of various kinds. For instance, workflow 
management systems, CRM systems, and ERP platforms produce event logs in 
some common format based on XML. Financial transaction systems also keep a 
log of their operations in some standardized and documented format, as is the case 
for web servers such as Apache and Microsoft IIS. Network monitors also receive 
streams of packets whose various headers and fields can be analyzed. It has long 
been recognized that these logs can be used as a valuable source of data for the real-
time monitoring of a system and the timely detection of misbehavior, incorrect, or 
malicious activities one can loosely call attacks. 

Prior work in this area mostly focuses on the efficient detection of specific 
patterns in a stream of data elements; when such a pattern is found, an alarm is 
triggered, and any defensive or corrective action is taken over by a possibly distinct 
part of the infrastructure. However, merely reporting that a given pattern match 
has occurred, without further details, is seldom sufficient: the appropriate corrective 
actions to be executed, if any, most probably depend on information based on the 
specific instance of the match. As a simple example, if a port scanning attack is 
detected on some machine in an organization, not much can be done to thwart this 
attack without knowledge of the address of that machine. Thus, one must not only 
accurately report matches of attack patterns but also extract additional information 
on each match. 

Alas, we shall see in Sect. 9.2 that selecting what to extract when a pattern match 
is found has been the subject of much less work than simply detecting the pattern 
in the first place. In many systems, the information to extract must be provided 
manually along with the description of the pattern and is hence hard-coded for each 
specific pattern. In addition, attack patterns are often assumed to be represented as 
finite-state automata [22] or variants thereof. 

In this chapter, we formally describe an intrusion detection framework based on 
the notion of event streams and stream processors. This framework presents the first 
advantage of being generic. In Sect. 9.3, attack patterns are expressed on abstract 
events and are defined by an arbitrary “black box” function, called a monitor, that is 
only assumed to return a Boolean verdict when a match is found on the underlying 
stream of events. This model encompasses existing definitions of patterns based on 
finite-state automata but can also be used on signatures expressed in other notations 
as well, such as temporal logic, or even completely custom user-defined functions. 

In addition, our proposed framework introduces the concept of progressing 
subsequence, defined in Sect. 9.4. When a pattern match is detected over a stream of 
events, a progressing subsequence identifies a subset of this stream corresponding 
only to the events that are genuinely relevant to the match. Such a subsequence is 
based on a formal definition that is independent of the actual notation in which the 
pattern is expressed. Therefore, it can be computed automatically for any pattern 
that can be represented by a monitor.
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Finally, the proposed framework also accounts for the fact that a pattern may 
be expressed as a composition of stream processing units called processors, where 
the output stream produced by a processor can be set as the input stream of 
the next one. Thus, complex patterns can be obtained by chaining sequences of 
elementary processors. In Sect. 9.5, the chapter describes a technique to keep track 
of the relationship between input events that are consumed and output events that 
are produced, which makes it possible to relate specific output events to a set of 
input events all the way up the chain of composed processors, thus providing a 
rudimentary form of lineage tracking. 

Taken together, these notions make the building blocks of a generic intrusion 
detection mechanism where patterns can be expressed as compositions of monitors 
being fed with an arbitrary data source (a system log, a packet capture, etc.) and 
where the relevant pieces of information from this source can automatically be 
extracted when a pattern match is detected. In addition to be grounded in precise 
theoretical definitions, the resulting framework has also been implemented as a 
proof-of-concept system leveraging an existing event stream processing engine 
called BeepBeep [30], which is described and tested in Sect. 9.6. 

9.2 Related Work 

The field of attack and intrusion detection is extremely broad and has been the focus 
of a large number of scientific works spanning multiple decades. There already exist 
numerous recent surveys on the topic of intrusion detection [15, 19, 31, 34, 38, 40, 
44, 52, 63], and it is not in the scope of this paper to repeat the synthesis that the 
reader can find in these references. In particular, Tidjon et al. propose a detailed 
taxonomy of existing approaches in the field [54], which classifies detection systems 
into three broad categories: 

1. Anomaly-based approaches, which correspond to a host of recent works 
attempting to discover trend deviations, outliers, or otherwise “uncommon” 
events or actions. The techniques involved include machine learning [39, 49], 
neural networks [6, 51], clustering [46, 47, 50], decision trees [4, 13], and 
regression [60, 61]. 

2. Multi-agent-based approaches where cooperating computation units both 
observe and interact with the environment in order to detect and prevent attacks 
[21, 35–37]. 

3. Knowledge-based approaches where a system is given a priori information 
about the expected behavior of the system, either in the form of rules [41], 
cases [18], or ontologies [59]. 

This chapter focuses on the latter category and in particular on the detection of 
attacks, intrusions, or other security-related incidents based on the definition of 
behavioral patterns. In its broadest sense, the operation of an information system 
periodically produces observable data elements we shall call events. An event
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can be the insertion of a message into a log, the reception or transmission of a 
network packet observed by a probe, or the execution of a particular system process. 
An incident is defined as any undesirable circumstance whose occurrence can be 
deduced from the observation of events produced by its operation. The condition 
that determines whether the incident occurs or not, based on the observed events, is 
called a pattern. 

Note that in this context the “pattern” is a very generic concept; it can represent 
an arbitrary (computable) condition, and is not tied to the necessity of expressing it 
in the notation or language of some existing detection tool. In particular, although 
a linear sequence of events to be observed (e.g., A followed by B, followed by C, 
etc.) obviously counts as a possible pattern, it is far from being the only or the most 
complex type of condition one may wish to evaluate on a set of events produced by 
an information system. One must also keep in mind that a pattern can be positive or 
negative: it may either represent the behavior of an attack (raising an alarm when 
the pattern is detected) or a security rule that can be violated by an attack (raising 
an alarm when a deviation from the expected pattern is observed). In logical terms, 
this depends on whether the undesirable situation is expressed by a condition . ϕ or 
by its negation . ¬ϕ. 

From a network security standpoint, a number of detection approaches follow this 
generic definition. Industrial-grade network intrusion detection tools, such as Snort 
[1] and Zeek [2], provide languages for expressing rules which, when triggered, 
indicate the presence of an attack. However, lesser known to security practitioners 
is the existence of a series of works grounded in formal methods and software 
verification, in a field called runtime verification (RV) [9]. 

In RV, a special process called a monitor is given a formal specification of 
some desirable property that a trace should fulfill. The monitor is then fed events, 
either directly from the execution of some instrumented system or by reading a 
prerecorded file, and is responsible for providing a verdict as to whether the trace 
satisfies or violates the property. Although a few works have applied RV in the 
particular context of detecting attacks on software vulnerabilities [22, 32, 33, 45, 57], 
as a rule, the use of monitors for the detection of incidents has been overlooked. 

A first notable contender in this area is Orchids [22, 45]. It extracts data and 
events from multiple distributed sources, such as system calls, firewall actions, and 
logs from various server processes. Detection rules on these events are represented 
as nondeterministic finite automata. Since the automata are not deterministic, 
several optimization strategies must be implemented in order for the system to 
discard any paths in the automaton that are subsumed by other paths, such that the 
shortest run in the automaton be detected. 

Other approaches have been proposed which use temporal logic as their under-
lying formal basis. For instance, R2U2 specializes in the detection of incorrect 
behavior in unmanned aerial systems [42]. Implemented on an FPGA for better 
performance, it monitors the execution of various inputs, including a GPS unit 
installed in the system, other sensor readings, and communications from the ground 
control station. Among the patterns monitored by the system and which represent 
“unusual” situations, R2U2 can observe illegal commands, temporary variations in
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the GPS signal strength, repeated navigation commands, and commands sent in a 
context where they make little sense (such as resetting the system while the device 
is in midair). Other monitoring systems based on temporal logic include Monid [43], 
TeStID [5], and the attack signature description language (ASDL) [62]. 

Other notations take their roots in formal modeling languages such as abstract 
state machines [14], the B [3], and Z [53] notation. For example, algebraic state-
transition diagrams [55] have been used to represent attack patterns over streams 
of events and illustrated in Fig. 9.1. Similar to UML statecharts, ASTDs allow 
the definition of state-transition diagrams, where edges linking two states can be 
completed with guards (conditions that must hold for the transition to take place) 
and side effects (such as modifications to values of internal variables associated 
with each diagram). 

Closer to the contribution of this chapter is LOLA, a stream-based specification 
language [20]. A LOLA specification is a set of equations over typed stream 
variables. Figure 9.2 shows an example of such a specification, taken from the 
original paper and summarizing most of the language’s features. It defines ten 
streams, based on three independent variables . t1, . t2, and . t3. A stream expression 
may involve the value of a previously defined stream. The values of the streams 
corresponding to . s1 to . s6 are obtained by evaluating their defining expressions place-
wise at each position. The language provides the expression .ite(b; s1; s2), which 
represents an if-then-else construct: the value returned depends on whether the 
predicate of the first operand evaluates to true. It also allows a stream to be defined 
by referring to the value of an event in another stream k positions behind, using the 
construct .s[−k, x]. If . −k corresponds to an offset beyond the start of the trace, value 
x is used instead. It was shown in earlier work that the formal model introduced in 
this chapter, based on computing units called processors, is more general than LOLA 

[26]; in other words, LOLA equations can be turned into equivalent pipelines made 
of the elementary processors presented in Sect. 9.3.1. 

1 43 
e2(?u : int) 
/ z := !z+u; x := !x+z 

e1(?y : int) [y > x] 

/ x := !x+y 

2 
B, aut, V={(z,int,0)}, x:=!x*3 

A, aut, V={(z,int,0)}, x:=!x+2 

Fig. 9.1 An example of an ASTD, from [55] 

s1 = t1 ∨ (t3 ≤ 1) 
s2 = ((t3)2 + 7) mod 15 
s3 = ite(s3; s4; s4 + 1) 

s4 = ite(t1; t3 ≤ s4;¬s3) 
s5 = t1[+1; false] 
s6 = s9[−1; 0] + (t3 mod 2) 

Fig. 9.2 An example of a LOLA specification showing various features of the language
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All runtime monitoring approaches enumerated above have in common two 
features that make their direct use in attack detection problematic: First, a monitor 
can detect a single violation of a property in a sequence of events (typically 
the first occurrence of the violation). Consider, for instance, the simple property 
“an occurrence of a must be immediately followed by b” on the input sequence 
cacdaac. A monitor will typically return a failing verdict (. ⊥) after ingesting the 
first three events, as, by this point, an a not followed by a  b has been observed. 
However, one can see that there are actually two instances of this violation inside 
the trace, as the second occurrence of a is also not followed by b. Yet, the monitor, 
after returning . ⊥ on some prefix of a sequence, returns . ⊥ forever. This makes it 
useless to detect any other subsequence of the input that could also be a violation of 
the pattern. As one can see, in a context of intrusion detection where a monitor is 
expected to be a nonterminating process, reporting a single violation is not desirable. 

The second issue is that a monitor only reports a Boolean verdict. It reads a 
stream of events and eventually stops and emits the verdict “false” when a violation 
of the specification is observed. It does not identify element of the sequence that 
actually matters in the occurrence of the violation – all one can say is that they 
all lie in the interval from the beginning of the stream up to the point where the 
violation is reported and that potentially all of them may be relevant. Yet, we can 
see that not all events in the input are necessary to “explain” the violation; in the 
previous example, event c at the start of the trace has no impact on the occurrence 
of any of the two violations; the same can be said of event d occurring at position 
4, which has no bearing on the occurrence of the second violation. This is not an 
issue if the goal is merely to detect a violation and act immediately upon it (e.g., 
by shutting the system down); however, if one is to report the violation and provide 
evidence of its occurrence (for a posteriori analysis or even for immediate handling 
by another layer of protection), the best a monitor can do is returning the complete 
sequence up to the point where the alarm was triggered, which is very likely to be 
unmanageable and of limited practical value. 

9.3 Formalizing Intrusion Detection 

To address the issues mentioned above, this chapter aims at providing the formal 
grounds for a generic and automated mechanism that can both express complex 
patterns or rules over sequences of events produced by an information system of 
some kind and calculate the subset of the whole input that is actually relevant for 
the occurrence of a match or a violation when it is detected. 

We start in this section by introducing the formal definitions leading to the notion 
of monitor, which is an abstract entity able to recognize an arbitrary condition over 
a sequence of data elements called events. We then provide a first, basic algorithm 
for monitor-based pattern detection, which we shall extend and optimize in later 
sections.
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9.3.1 Formal Preliminaries 

Let . E be a set of abstract elements called events. We denote by . E∗ the set of all finite 
sequences that can be created from elements of . E. For two sequences .σ , σ , ∈ E∗, 
we denote by .σ [i] the i-th event of . σ (with indices starting at 1) and by . σ = σ ,
the fact that . σ is a prefix of . σ ,. The notation .σ [i..j ] will denote the sequence of 
successive events of . σ between its i-th and j -th positions (inclusive). We shall abuse 
notation and define .σ [i..] to denote the suffix of . σ starting at position i and likewise 
.σ [..i] to denote the prefix of . σ ending at position i (inclusive). 

Given a sequence of events .σ ∈ E∗ of length n, a sequence . σ , is said to be a 
subsequence of . σ if there exists an order-preserving injection between the events 
of . σ , and those of . σ ; we note this as .σ C σ ,. In other words, a subsequence is 
obtained by deleting any number of events from another sequence, but not changing 
the ordering of the remaining events. Thus, ade and bcde are subsequences of 
abcdef , but adb and cabc are not. An .(i, j)-loop in a sequence . σ is a subsequence 
of successive events .σ [i..j ] such that .σ [i] = σ [j ]. The removal of loop .(i, j) in . σ is 
the subsequence defined as .σ [1..i] · σ [j + 1..]. For example, the sequence abcdbe 
has a .(2, 5)-loop, and its removal produces the sequence abe; the loop bcdb has 
been contracted into the single event b. 

If .E1, . . . , En are event alphabets, a stream vector .σ = <σ 1, . . . , σ n> is an 
element of .(E1 × · · · × Em)∗; note that this imposes that each stream within 
the vector is of the same length. The n-uple of events at identical indices in 
each stream is called a front. A stream vector .<σ 1, . . . , σ n> is a prefix of another 
vector .<σ ,

1, . . . , σ
,
n> if each . σ i is a prefix of . σ ,

i . Given a n-stream vector . σ =
<σ 1, . . . , σ n> and an n-uple .(σ1, . . . , σn), the concatenation .σ · (σ1, . . . , σn) is 
the n-uple .<σ 1 · σ1, . . . , σ n · σn>; this notion can then easily be extended to the 
concatenation of n-stream vectors. The length of a stream vector . σ , noted . ||σ ||, is  
defined as the number of events contained in any stream of the vector. 

In the following, we are concerned with functions that take as input a stream 
vector and produces as output another stream vector. Such functions have been 
called processors by Bédard and Hallé [10]. Formally, a processor is a function 
.π : (E1 × · · · × Em)∗ → (E,

1 × · · · × E,
n)

∗, with the condition that .σ = σ , implies 
.π(σ ) = π(σ ,). This condition makes it possible for a processor to operate in a 
streaming fashion: input event fronts can be ingested one at a time, and any number 
of output event fronts resulting from this input can be appended at the end of the 
current output vector. Note that as per this condition, event fronts that have already 
been output cannot be taken back; only new event fronts can be appended. The 
values of m and n are, respectively, called the input and output arity of the processor. 
When the input and output arity of a processor have no impact on a definition, we 
shall simplify notation and denote a processor as a 1:1 function .π : E∗ → E,∗. We  
will denote by . || the set of processors. 

As an example, consider a processor . π given an input sequence . σ and producing 
the corresponding output sequence .π(σ) as illustrated in Fig. 9.3. This notation 
indicates that .π(a) = A, .π(ab) = AB, .π(abc) = AB, and so on. As one can



260 S. Hallé

= a b  c  d  e f  g  h  
( ) =  A B C  D  E F  

Fig. 9.3 The relationship between input and output events for sequence . σ and a processor . π

see, in some cases, the processor does not append a new output event after ingesting 
an input event; hence, .π(ab) = π(abc) = π(abcd) = AB. In some other cases, 
the processor may append several events to the output after ingesting a single input 
event: adding e to the trace abcd causes three new events (.CDE) to be output at 
once. A processor that always outputs k events (for some .k > 0) for each ingested 
event is called k-uniform. 

9.3.2 Monitors 

Processors are very generic units of computation for event streams. One particular 
use of processors is to detect the presence of a specific sequential pattern in a 
stream vector; this corresponds to the definition of a monitor already discussed in 
Sect. 9.2. More precisely, a monitor can be seen as a particular type of processor 
that receives a stream of input events and produces an output made of events in 
the set .B3 = {T, ?,⊥}. We say that a sequence .σ ∈ E∗ is a match for . π if 
.π(σ) = T; a match is said to be suffix-minimal if none of its prefixes is also 
a match. Conversely, . σ is a non-match if . T is replaced by . ⊥ in the condition 
above. 

Matches and non-matches are expected to be definitive: if a particular pattern is 
found after reaching some position in an input stream, then this pattern is obviously 
still present after appending further events to this stream. However, the converse is 
also true: if a monitor declares a non-match after reading a prefix of an input stream, 
it actually indicates that this pattern will never be found, regardless of the events that 
may come after. In other words, the output of a monitor is expected to be monotonic; 
if .π(σ) ends with the symbol . ⊥ (resp. . T) for a sequence . σ , then .π(σ ·σ ,) ends with 
. ⊥ (resp. . T) for any .σ , ∈ E∗. Hence, a monitor that returns a conclusive verdict (. T
or . ⊥) keeps this verdict forever. 

This characteristic explains the presence of a third possible verdict, represented 
by the symbol “. ?.” A monitor that produces this symbol for some input stream 
. σ means that the presence or absence of the pattern cannot be decided with the 
input events ingested so far. In such a case, . σ is said to be a potential match. 
It follows that the output stream of a monitor is always of the form .?m · Tn or 
.?m · ⊥n for .m, n ≥ 0. Since we are typically interested only in the latest event 
produced by the monitor, we define the verdict function .νπ : E∗ → B3 as 
.νπ (σ ) A π(σ)[|σ |].
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As a simple example, consider the monitor .π1 : {a, b, c}∗ → B
∗
3 defined as 

follows: 

. π1(σ ) A

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

? if |σ | = 1 and σ = a

⊥ if |σ | = 1 and σ /= a

? · T|σ |−1 if σ [1..2] = ab

? · ⊥|σ |−1 otherwise

One can observe that this monitor is defined to identify the pattern ab occurring at 
the start of a stream. Note how, for streams made of a single event, a non-match can 
already be declared if that symbol is not the expected a. 

As a second example, consider a variation on the previous monitor, defined as 
follows: 

. π2(σ · σ) A

⎧
⎪⎪⎨

⎪⎪⎩

π2(σ ) · T if π2(σ )[|σ |] = T,

or σ [|σ |] = a and σ = b

π2(σ ) · ? otherwise

Note how this time the monitor is defined recursively by specifying what output 
symbol to append to the existing output stream based on the event currently being 
ingested. One can observe that this monitor declares a match as soon as it sees event 
a immediately followed by b in the input, regardless of the position of that pattern. 
Since an input stream that does not contain the sequence ab can always contain it 
later if further events are appended, this monitor can declare matches but can never 
conclude to a non-match, as all stream prefixes that do not have ab are potential 
matches. 

These two examples are very simple, as monitors are by far not restricted 
to finding straightforward patterns of consecutive events, and can be arbitrarily 
defined functions. As a last (and arguably convoluted) example, let us first define 
.f : {a, b, c} → N as .f (σ) = |σ |a + 2|σ |b, where the notation .|σ |x designates the 
number of events labeled x in . σ . Then, consider the monitor defined as: 

. π3(σ · σ) A

⎧
⎪⎪⎨

⎪⎪⎩

π3(σ ) · T if f (σ ,) = 5 for some σ , C σ · σ

π3(σ ) · ? if f (σ · σ · σ ,) = 5 for some σ , ∈ {a, b, c}∗
π3(σ ) · ⊥ otherwise

This monitor declares a match when one of its prefixes has the number of a and b in 
the stream following a specific arithmetic relation defined by function f . However, 
it must also declare a non-match as soon as no extension of the current input 
stream can ever make the input satisfy the condition. It turns out that . f (x) = 5
is nothing but the linear Diophantine equation .x + 2y = 5 [7], which admits only 
three positive integer solutions: .(1, 2), .(3, 1), and .(5, 0). Hence, .π(abb) = ??T,
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since the input stream at this point contains one a and two b and thus satisfies the 
condition. However, .π(aabb) = ???⊥, as it is impossible to add any further symbols 
to this input that will make the number of a and b land on one of the three possible 
solutions. 

This example is meant to illustrate the fact that the definition of a monitor gives 
complete leeway in how matches can be defined and may even require one to reason 
about the existence of possible extensions of the current input satisfying an arbitrary 
condition. Also note that monitors are considered as abstract monotonic functions 
and thus are not bound to any particular notation. A monitor can be defined using 
any of the formalisms already in use in the field of runtime verification, such as 
finite-state automata, regular expressions, and linear temporal logic, but can just as 
well be defined as functions like what was done in the examples above. 

9.3.3 Pattern Detection as Monitoring 

Monitors can be used as tools to detect the presence of an arbitrarily complex pattern 
inside an input stream. However, as was argued earlier, they are limited to the 
detection of a single occurrence of the said pattern, which spans the interval from 
the start of the stream up to the first input event that triggers the production of the 
output . T. In a context of attack or intrusion detection, such a restriction is severely 
limiting. Intrusion detection is a long-running process, which must be performed 
continuously as a system operates and where multiple patterns are expected to be 
found throughout the lifetime of that system. 

A single monitor cannot detect all such occurrences; however, one can evaluate 
this monitor separately on multiple subsequences of the input stream in order to find 
all matches. For a sequence . σ , the set of suffix-minimal matching subsequences of 
some monitor . π is defined as: 

. Mπ (σ ) A {σ [i..j ] : 1 ≤ i ≤ j ≤ |σ | and σ [i..j ] is a suffix-minimal match of π}

The set is made of all subsequences of successive events in . σ that are suffix-minimal 
matches of . π . By the definition of a (suffix-minimal) match, for a given .i ∈ [1, |σ |], 
there exists at most one .j ≥ i such that .σ [i..j ] is a minimal match for . π ; that is, 
any event of a given input stream is either not the start of a matching subsequence or 
the start of exactly one minimal match. It shall be noted, however, that matches can 
still overlap and need not be detected by a greedy procedure. Consider, for instance, 
the monitor . π that returns . T on a sequence if it contains a b that is immediately 
followed by a c. This monitor declares a match for the sequence abaabca; however, 
observe that the b that is followed by a c is the second one occurring in the sequence. 

This construction induces a straightforward procedure to evaluate .Mπ (σ ), 
detailed in Algorithm 1, and which takes as input a monitor . π and a stream of 
events . σ . The algorithm iterates over all ranges of successive events .[i, j ] (lines 2– 
3), evaluates the monitor . π on that range and collects its last verdict (line 4), and
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adds the range .[i, j ] to a set . M if the verdict indicates a match (line 6). The break 
instruction at line 7 prevents suffixes of a match to be examined, thus limiting the 
output to suffix-minimal matches. As a matter of fact, one can easily observe that at 
line 11, .M = Mπ (σ ). 

Algorithm 1 Finding all suffix-minimal matches in . σ for a monitor . π
1: . M ← ∅
2: for .i ∈ [1, |σ |] do 
3: for .j ∈ [i, |σ |] do 
4: . v ← νπ (σ [i..j ])
5: if .v = T then 
6: . M ← M ∪ {[i, j ]}
7: break 
8: end if 
9: end for 

10: end for 
11: return . M

This mechanism presents the advantage of being both simple and very generic. It 
can detect all occurrences of any pattern, provided that it can be expressed as the set 
of sequences which produce a match for some monitor . π . Consider, for example, 
the monitor . π4 defined as .π4(σ · σ) = π4(σ ) · T if .σ [1] = a and there exists 
.2 ≤ j ≤ |σ · σ | such that .(σ · σ)[i] = b; the monitor returns .⊥|σ ·σ | if . σ [1] /= a

and .?|σ ·σ | otherwise. In other words, this monitor identifies as a match any stream 
that starts with an a and contains at some point later at least one occurrence of b. 
Running Algorithm 1 using . π4 as the monitor and .σ = bacbacacba as the input 
trace produces the output set .{[2, 4], [5, 9], [7, 9]}. Indeed, one can observe that, for 
this monitor, those three ranges correspond to the three suffix-minimal matching 
subsequences of . σ . 

However, even though simple and generic, this procedure suffers from two 
important drawbacks. First of all, it is wasteful in resources: upon receiving the n-th 
input event, n instances of . π must be evaluated on suffixes of length ranging from 
1 to  n. The process repeats on each input event, resulting in a cumulative total of 
.O(n3) events being ingested by some monitor instance at the n-th step. This further 
assumes that the processing of each event by a monitor is constant in the length of 
the input, which may not be the case. A first observation allows us to spare a few 
evaluations of . π under some circumstances. Note that by the definition of a monitor, 
if . σ is a non-match, then so will be all its extensions. It is therefore useless to keep 
evaluating . π on extensions of a sequence that is already known to be a non-match. 

A second drawback comes from the fact that the procedure only identifies for 
each match a range of events. Yet, it may often be the case that not all events inside 
that range are actually relevant for the match in question. Consider, for instance, the 
match corresponding to the range .[5, 9] in the previous example. This corresponds 
to the subsequence acacb: it does start with an a and ends with a b, but the events 
that occur in between have no impact on the fact that this subsequence is match.
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For this simple example, it is easy to understand that only the start and end of the 
range are relevant, but making the same kind of judgment for patterns of arbitrary 
complexity is far from trivial. 

9.4 State-Based Simplifications 

The previous section framed the problem of pattern detection on event streams as 
a monitoring problem and provided an arguably naïve procedure for identifying 
all instances of suffix-minimal matches of an arbitrary pattern expressed by some 
monitor. Yet, to make the problem actually tractable in real-world situations, 
additional refinements to this basic procedure need to be devised. In addition, it 
would be desirable to devise ways to single out the events of a range that somehow 
“explain” the occurrence of the match and doing so in an automated fashion. To 
address these issues, this section introduces the notion of processor state and shows 
how this concept can be used both to optimize the pattern detection procedure and 
also identify relevant events of a match. 

9.4.1 Processor State 

Formally, for a processor .π : E∗ → E,∗, a function .ιπ : E∗ → S is said to be a 
state function for some arbitrary set S if for every .σ 1, σ 2 ∈ E∗, . ιπ (σ 1) = ιπ (σ 2)

implies .π(σ 1 · σ ,) = π(σ 2 · σ ,) for every .σ , ∈ E∗. The intuition behind this 
definition is that an element .s ∈ S represents the current “internal state” of . π after 
reading a prefix of a sequence of events. In addition, if two prefixes are such that . π
ends in the same state after reading them, extending each of these two prefixes in 
the same way results in the same output. In other words, the output depends on no 
other external parameter. 

It should be observed that the definition of state does not impose that two 
processors reaching the same state remain in matching states for any extension 
of their respective input stream. That is, if .ιπ (σ 1) = ιπ (σ 2), we allow states 
.s1 = ιπ (σ 1 · σ ,) and .s2 = ιπ (σ 2 · σ ,) to be different. However, by virtue of the 
condition stated above, . s1 and . s2 must be indistinguishable as far as the processor’s 
output is concerned and can therefore be considered as duplicates. 

Note that any processor . π admits a trivial state function . ιπ by setting .S = E∗ and 
defining .ιπ (σ ) = σ for all .σ ∈ E∗. We say that a state function .ι,π : E∗ → S, is a 
contraction of . ιπ if there exists a mapping .μ : S → S, such that . ι,π (σ ) = μ(ιπ (σ ))

for every .σ ∈ E∗. The contraction is strict if . μ is not injective. In such a case, . ι,π
defines a “tighter” set of states than . ιπ . A state function is optimal for a processor . π

if it cannot be further contracted. A processor is called finite-state when its optimal
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state function .ιπ : E∗ → S is such that S is finite and stateless if .|S| = 1.1 The 
state s such that .s = ιπ (e) is called the initial state of . π . 

As a simple example, consider the monitor . π1 defined in Sect. 9.3.2. Let . S =
{0, 1, 2} and . ιπ1 be defined as follows: 

. ιπ1(σ ) A

⎧
⎪⎪⎨

⎪⎪⎩

0 if σ = e or σ = a

1 if σ [1..2] = ab

2 otherwise

One can observe that .ιπ1 fulfills the conditions of a state function for . π1. The  
symbols used for each state are arbitrary; however, intuition shows that, in this 
particular case, state 0 corresponds to the situation of either an empty stream or 
the single a event, state 1 corresponds to the state of the monitor after having seen 
ab as the first two events of a stream, and state 2 corresponds to a non-match. 

Although the states in this example match the three possible verdicts produced by 
the monitor, this is not always the case. Consider as a second example monitor . π4. 
One can let .S = N×N×B3 and define a state function .ιπ4(σ ) A (|σ |a, |σ |b, π4(σ )). 
This time, the state of the monitor after ingesting a stream . σ is made of the number 
of symbols a and b present in . σ , as well as a flag indicating if a match or non-
match has already been declared. On can indeed observe that knowledge of these 
three values suffices to determine the output of . π4 for any extension of that stream.2 

Note however that this definition does not result in an optimal state function: for 
instance, any pair of states .(x, y,⊥) and .(x,, y,,⊥) result in the same output for 
any extension (namely, the verdict . ⊥) despite being distinct states. 

The interest of this definition of state function is that, despite its name, it does not 
imply that its corresponding processor . π be expressed as a form of state machine. 
As a matter of fact,  S can even be infinite. Of course, when such a notation is used, 
what constitutes a possible state function is obvious; however, a state function can 
also be constructed for arbitrary processors, as the previous example has shown. 

Given a state function . ιπ , we shall designate the fact that a processor . π is 
currently in state s by the notation . πs . This processor differs from . π as it handles 
events from its current state, which may not be the initial state. Formally, this means 
that for every .σ ∈ E∗: 

.πs(σ ) = π(σ , · σ)[|π(σ)|..]

1 The term “stateless” may seem odd since . ιπ actually has one state; however, this means that the 
output of . π does not depend on its internal state, precisely since it is always in the same state. 
2 As a matter of fact, neither of these three elements could be taken out without violating the 
condition for a state function. In particular, knowledge of .|σ |a and .|σ |b is not sufficient to 
determine the monitor’s verdict, as the order in which the symbols occur may or may not result in 
a prefix of . σ satisfying the condition. 
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for any .σ , ∈ E∗ such that .ιπ (σ ,) = s. The definition of a state function ensures us 
that the choice of . σ , is arbitrary. In other words, evaluating . πs on an input stream 
. σ is equivalent to finding a stream . σ that takes . π from its initial state to state s, 
evaluating .π(σ , ·σ), and then trimming whatever events are produced by evaluating 
. π on the prefix . σ . 

Algorithm 2 State-based search for suffix-minimal matches in . σ for a monitor . π
1: .M ← ∅, .π ← e, . A ← ∅
2: for .j ∈ [1, |σ |] do 
3: . π ← π · πιπ (e)

4: for .i ∈ [1, |π |] do 
5: if .i ∈ A then skip 
6: . S ← ∅
7: . πs ← π [i]
8: . v ← νπs (σ [j ])
9: . s, ← ιπs (σ [j ])

10: if .s = s, = ιπ (e) or .s, ∈ S then 
11: . A ← A ∪ {j}
12: skip 
13: end if 
14: . S ← S ∪ {s,}
15: if .v = T then 
16: . M ← M ∪ {[i, j ]}
17: . A ← A ∪ {j}
18: end if 
19: if .v = ⊥ then 
20: . A ← A ∪ {j}
21: end if 
22: . π[j ] ← πs,

23: end for 
24: end for 
25: return . M

This notion of state can help us further trim the set of relevant matches (and 
corresponding monitor evaluations) that need to be handled. Consider, for example, 
the pattern stipulating that a match is a sequence where some b is immediately 
followed by a c. The sequence .σ = aaabc is a match and even a minimal match 
of . π . However, remark that the first three a events do not really matter; they can be 
seen as some “filler” that are not material witnesses that the sequence satisfies the 
condition. As a matter of fact, aabc, abc, and bc, which are all suffixes of . σ , also  
are matches. 

This behavior can be tied to a property of the monitor’s state when ingesting the 
input sequence. Based on the definition of . π in this example, we can easily see that 
for every trace . σ , .π(σ) = π(a · σ). In other words, if . σ is a match, prepending an 
a at the beginning of . σ is also a match (and the same for non-matches and potential 
matches). Setting .σ = e, we conclude that .ιπ (e) = ιπ (a): thus, for any number of 
a at the beginning of a sequence, . π remains in the same internal state – its initial
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state. This explains why intuition tells us that these first events are useless to assess 
whether the sequence matches the condition: the monitor itself acts as if they were 
absent from the trace. 

9.4.2 A State-Aware Detection Algorithm 

Additional reductions on the number of potential matches can be obtained by 
generalizing this principle one step further and considering as duplicates any 
matches placing their respective monitor into the same state for a given position 
in the stream. Consider, for example, the monitor . π5 defined as follows: 

. π5(σ · σ) =

⎧
⎪⎪⎨

⎪⎪⎩

π5(σ ) · T if ∃ 1 ≤ i < j < k ≤ |σ | such that

(σ · σ)[i] = a, (σ · σ)[j ] = b and (σ · σ)[k] = c

π5(σ ) · ? otherwise

This monitor declares a match whenever the stream contains the succession of 
events a, followed some time later by b, followed some time later by c. A state  
function .ιπ5 can be devised with four states .{0, 1, 2, 3}, where .ιπ5(σ ) = 0 for 
all streams containing neither a nor b nor c, .ιπ5(σ ) = 1 for streams where no 
occurrence of a is followed by b, .ιπ5(σ ) = 2 for streams where no occurrence of a 
followed by b is followed by c, and .ιπ5(σ ) = 3 for streams containing the desired 
pattern. 

Let .σ = ababacbc be the stream on which this pattern is to be detected. 
Applying Algorithm 1 to it results in the set of matches .{[1, 6], [3, 6], [5, 8]}. 
However, remark that a monitor reading the first four events (i.e., .σ [1..4]) ends 
up in the same state as the monitor reading only the third and fourth (i.e., .σ [3..4]), 
as, in both cases, an a followed by a  b has been observed, thus resulting in state 2. 
From that point on, any suffix causing a match for the first monitor will also cause a 
match for the second. One could thus consider that these two matches are redundant 
and only report one of them instead of both. 

These various observations yield an improved technique for detecting matches, 
which is described in Algorithm 2. On the first line, the algorithm initializes and 
later maintains three data structures: the set of found matches . M, a list of monitor 
instances . π , and a set . A that will contain the indices of . π corresponding to monitor 
instances that no longer need to be considered. The algorithm iterates over each 
event of the input stream . σ ; line 3 appends at the end of . π a new fresh instance of 
the monitor . π in its initial state. Then, on lines 4–23, the same process is repeated 
for each monitor instance contained in the list . π . First, the monitor and its current 
state . πs are retrieved from the list (line 7); this monitor is then fed the current event 
from the stream, and its verdict and new state are obtained (lines 8–9). At the end 
of the iteration, the monitor in its new state overwrites the original monitor at the 
corresponding position in . π (line 22).
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As a result, at the end of the j -th iteration of the loop in line 2, . π contains j 
distinct instances of the monitor . π , and the i-th element of this list is a monitor . πs

such that .s = ιπ (σ [i..j ]). That is, the first monitor instance reads the input stream 
from the first event, the second reads it from the second event, and so on. Each of 
these monitors is fed one more event from the stream for each iteration of the inner 
loop. Any monitor instance whose index ends up in the set . A is considered “done” 
and is not handled anymore, as is represented by the skip condition of line 5. On 
each iteration of the inner loop, a set of states S is initialized, and the state of each 
monitor instance after ingesting the current event is stored in this set (line 14). 

Lines 15–21 take care of the various situations that can occur depending on a 
monitor’s verdict. Lines 15–18 handle the case where the monitor declares a match; 
in such a case, the range of events of the input stream consumed by this monitor 
instance is added to the set of matches . M, and its position in . π is added to the set 
. A of indices to discard. Lines 19–21 perform a similar task for the case of a non-
match. Finally, lines 10–13 implement the simplifications discussed earlier based 
on the monitor’s state. If a monitor in its initial state remains in its initial state after 
ingesting the current event or if its new state is identical to the state of another 
monitor processed in the same iteration, its position in . π is also added to the set . A
of indices to discard. 

One can observe that the set of . M produced by Algorithm 2 is the subset of . Mπ

containing only suffix-minimal matches that take the monitor out of its initial state 
on ingesting the first event and that are such that no two matches result in monitors 
having the same state at the same position in the stream. 

9.4.3 Progressing Subsequences 

Algorithm 2 presents several improvements over the naïve procedure introduced 
in Algorithm 1: First, it reduces the total number of events ingested by monitor 
instances: every time a new input event is to be processed, existing instances are 
only fed this new event from their existing state, instead of re-evaluating the sub-
trace from the start. This, in itself, reduces its complexity to .O(n2). In addition, 
it implements mechanisms to reduce the number of “live” monitor instances that 
need to be handled at any point in time and consequently reduces the number of 
(essentially redundant) matches produced by Algorithm 1. It does so at the price of 
memory, as in the worst case, consuming n input events may necessitate to keep n 
distinct monitor instances along with their internal state.3 

However, these optimizations still do not address the second concern that was 
expressed for Algorithm 1, namely, that only ranges of events for each match 
are provided, regardless of whether these events are all actually relevant to the

3 This worst case is arguably contrived, as it would require each successive event of the stream to 
place the corresponding new monitor instance in a different state as that of all previous monitors. 
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identification of the pattern. To this end, the state function associated with a 
processor can be put to another use, which we describe in the following: 

Let . π be a processor with associated state function . ιπ and .σ ∈ E∗ be a sequence 
of events. The state sequence of . σ is the sequence . s such that .s[0] = ιπ (e) and 
.s[i + 1] = ιπ (σ [1..i]) for every .i ≥ 0. Thus, the state sequence starts with the 
initial state of . π , which is followed by the states reached by . π after ingesting each 
successive event of . σ . Let . σ , be a subsequence of . σ ; we likewise define . s, as the 
state sequence of . σ ,. We say that . σ , is the progressing subsequence of . σ if . s, is the 
result of removing all loops from . s. 

Equipped with this definition, we can return to the example of monitor . π5. 
Assuming without loss of generality that . π starts in state . s0 and moves to state . s1
when reading b and to . s2 when reading c afterward, the state sequence for the input 
aaabc is .s0s0s0s0s1s2. The sequence bc, on its side, results in the state sequence 
.s0s1s2, which is exactly the result of removing all loops from the state sequence 
of the original input. Thus, the intuition that the first a events are irrelevant to . π
becomes a consequence of the definition of progressive subsequence. 

For processors expressed as a finite-state machine, this definition is relatively 
easy to illustrate. Consider the Moore machine . π . shown in Fig. 9.4, which 
associates with each state a verdict in . B3. The sequence aabcbcda ends in the state 
4, labeled with . T; hence, it is a match according to . π . Its corresponding progressing 
subsequence is abd. One can observe, and it can easily be shown, that state . s1 is 
visited before . s2 in the original sequence if and only if it is also visited before in the 
progressing subsequence. 

The definition allows portions of the original sequence to be deleted, but not just 
anyhow: only loops are removed, but the remainder of the path remains untouched. 
In particular, a progressing subsequence is not in general the shortest subsequence 
ending in the final state. Thus, in the example above, the sequence abcd leads to 
state 5, and ad is its progressing subsequence. However, d is a subsequence of abcd 
that would directly lead to state 5, but it is not a progressing subsequence. 

? ?a ? ⊤d 
b 

c 

⊥ 

* *  
* 

1 2 3 4 

5 

a 

* 

Fig. 9.4 A simple Moore machine defining valid sequences of atomic events
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The notion of progressive subsequence is a generalization of one of the sim-
plification strategies that were already considered in the procedure proposed in 
Sect. 9.4.1. Given an existing sequence . σ of length .n ≥ 0 and upon receiving a 
new event . σ , if .π(σ) = π(e), then . σ may be the start of a match but, as per the 
definition above, is not the start of a progressive subsequence of a potential match. 
Thus, Algorithm 2 can be further improved by altering line 16: instead of giving the 
complete range .[i, j ] as the witness of the match for a monitor, one can instead only 
provide the subset of this interval corresponding to the progressing subsequence as 
defined above. 

9.4.4 Combining Reduction Strategies 

Figure 9.5 shows by a simple example the difference in the operation of each 
detection strategy described above. The pattern to be detected is an event A, 
eventually followed by a B, eventually followed by a C, with arbitrary interleaving 
events between each of them. The approach called “Direct” is the one we described 
first; it consists of starting a new monitor instance on each new input event and 
reporting as occurrences of the pattern the complete sequence of events ingested by 
each monitor that declares a match. In the simple trace given as an example, this 
results in the detection of eight occurrences of the pattern, with the events contained 
in each pattern instance being marked by a . × symbol. 

The “first step” detection strategy prunes from these matches any monitor 
instance that does not change its state upon ingesting its first event. As per the 

a c  A  b  B  a  b A  a  B  c  C  b  a  
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Fig. 9.5 A comparison of the four monitor-based detection strategies on a simple trace where the 
pattern .A → B → C is to be detected
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definitions above, in the present case, the first state change occurs only in the 
presence of an A. Thus, only two of the eight pattern instances remain. Note however 
that the events included in each of these patterns still contain the complete sequence 
processed by each monitor instance up until a match is found. 

The “unique state” strategy prunes from the active monitors any instance that 
reaches the same state as another monitor on a given input position. This is the 
case here upon the ingestion of event B at position 10. At this point, two monitor 
instances end up in the state corresponding to having read an A, followed by a  B: 
the first instance was started at position 3 and the second at position 8. According 
to the unique state strategy, one of these monitor instances can be discarded; thus, 
a single of the two pattern matches will be reported. As discussed earlier, various 
criteria can be applied to decide which, among the multiple monitor instances, is to 
be kept. 

Finally, the last reduction strategy, “progressing,” applies further reductions on 
the portions of the input trace that are part of a match. Note this time that the number 
of matches itself is left unchanged. However, in each instance, only the events that 
are part of the progressing subsequence are retained. These results are arguably 
closer to intuition, as, in each instance, only the respective positions of the A, B, and 
C events are kept. Also note that each pattern match contains only one of each event; 
for instance, even though the first pattern instance spans the events from position 3 
to 12, event A at position 8 is not included. 

The cumulative application of these reduction strategies results in a sharp 
decrease in both the number of reported matches and the number of events involved 
as witnesses of each match. As one can see, the direct approach results in 8 mostly 
redundant matches, including all but 2 of the 14 events of the input. In contrast, the 
progressing strategy reports a single match containing only three events of the input. 
This potential for reduction will be examined further in Sect. 9.6. 

9.5 A Compositional Approach to Pattern Detection 

Although monitors represent a powerful method for expressing and detecting 
patterns in a stream of events, defining each such pattern using a custom-made 
monitor is not feasible in practice. It is hard to imagine a setup where each new 
monitor would need to be defined from scratch as a function, which would probably 
be much more complex than the simple examples used so far in this chapter. What 
is more, for any of the optimizations introduced in Sect. 9.4 to be applicable, one 
must also devise an appropriate notion of processor state for each monitor created 
in such a way. 

However, elaborate relationships between events in an input sequence can be 
captured by composing processors together; in such a setting, the output of a 
processor is given as the input of another one, forming potentially complex graphs 
where events of the original stream are progressively transformed into the required 
.T/?/⊥ verdict. This is the approach proposed in this section. Instead of requiring
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monitors to be defined directly as big, monolithic functions, we suggest a number of 
elementary “building blocks,” which can then be composed to represent the desired 
patterns to be detected. 

The main advantage of such an approach is that the definition of a state function 
and the extraction of progressing subsequences for these pipelines essentially come 
“for free.” As we shall see, if each elementary processor has its own state function 
and can identify its progressing subsequences, calculating the subsequence of the 
end-to-end chain can be done by “composing” these individual subsequences, thus 
sparing a user from calculating these manually. 

9.5.1 Building Blocks for Pattern Detection 

We start the section by introducing and formally defining a number of generic 
and elementary processors that can be used to detect various types of pattern. The 
presentation is divided into a set of processors performing generic manipulations 
on event streams (not necessarily tied to monitoring), followed by a set of monitors 
specific to the detection of patterns in event streams. 

Since compositions of processors are best represented graphically, we shall 
associate with each of them a pictogram representing its function. The convention 
we use is to represent processors as square boxes, with input and output “pipes” 
designating each of the streams that are consumed or produced by the processor. 
The use of colors for pipes helps distinguish the type of events in the corresponding 
stream; in the following, pink represents atomic events from an arbitrary alphabet 
. E, dark green indicates numbers, blue indicates Boolean values, while purple 
corresponds to ternary Boolean values (. B3). A white pipe represents an arbitrary 
type. 

9.5.1.1 Generic Processors 

For the set of core processors, we hitchhike on past works on the topic and reuse 
those introduced by Bédard and Hallé [10]; for this reason, we shall only briefly 
present and define each of these core processors, whose graphical representation is 
shown in Fig. 9.6. 

First, the Fork processor is merely a structural construct allowing a single stream 
to be duplicated and sent as the input of multiple processors: .π(σ ) A <σ , . . . , σ >. 
The ApplyFunction processor lifts any function . f : E1 × · · · × Em → E,

1 ×
· · · × E,

n into a processor .π : (E1 × · · · × Em)∗ → (E,
1 × · · · × E,

n)
∗ defined as 

.π(σ · (σ1, . . . , σm)) A π(σ ) · f (σ1, . . . , σm).4 CountDecimate is a .1:1 processor

4 Note that the function produces exactly one output front for each input front; thus, it cannot insert 
or delete events like some other processors. 
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Fig. 9.6 Pictorial representation of generic processors for stream manipulation 

that keeps one event every k and is defined as .π(σ ) A <σ [0], σ [k], σ [2k], . . . >. 
Trim removes the first k events of the stream and is defined as . π(σ ) A <σ [k], σ [k +
1], σ [k+2], . . . >. Filter is a processor .π : (E×{T,⊥})∗ → E∗ that discards events 
based on a stream of Boolean values. The event at position n in the first stream is 
sent to the output if and only if the event at the same position in the second stream 
is the Boolean value true; formally, .π(σ · (σ, b)) A π(σ ) · σ if .b = T and . π(σ )

otherwise. 
As its name implies, the Cumulate processor is designed to “accumulate” the 

successive values of a binary function. Given a function .f : E2 → E and an 
implicit initial value .σ0 ∈ E, the processor is defined recursively as . π(<σ >) A
<f (σ0, σ )> and .π(<σ ·σ >) = π(<σ >)·<f (π(<σ >)[−1], σ )>, where .π(<σ >)[−1] stands 
for the last event produced by . π on the input stream . σ . This generic construction 
can represent various types of computations depending on the function used. For 
example, if f is addition and .σ0 = 0 is used as the start value, . π produces an output 
stream where the i-th event is the sum of all input events up to the i-th. If f is 
Boolean conjunction and .σ0 = T, . π produces an output stream where the i-the 
event is the conjunction of all input events up to the i-th. 

9.5.1.2 Elementary Monitors 

We continue by introducing a handful of new elementary monitors that complement 
the core processors and which are especially suitable for the task of pattern detection 
in event streams. Their graphical representation is shown in Fig. 9.7. To distinguish 
these monitors from more generic processors, they are represented as boxes with 
wedged corners. 

A first monitor is called Sequence, which is defined as follows: 

. π,((σ0, σ
,
0), . . . , (σk, σ

,
k)) A

⎧
⎪⎪⎨

⎪⎪⎩

π,((σ0, σ
,
0), . . . , (σk−1, σ

,
k−1)) · T

if ∃ 1 ≤ i < j ≤ k s. t. σi = T and σj = T
π,((σ0, σ

,
0), . . . , (σk−1, σ

,
k−1)) · ? otherwise

Note that this monitor receives as input two streams of ternary Boolean values; 
it produces the verdict . T whenever the first stream contains the value . T and the
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Fig. 9.7 A basic set of monitors for pattern detection 

second stream contains the value . T at a subsequent position. If each input stream 
corresponds to the evaluation of a condition on some other stream, this monitor 
declares a match when it sees the first condition evaluates to true, followed by the 
second condition some time later. 

The Eventual disjunction monitor also receives as input two streams of ternary 
Boolean values; it produces the verdict . T as soon as any of the two input streams 
contains the value . T; this is formally defined as: 

. πV((σ0, σ
,
0), . . . , (σk, σ

,
k)) A

⎧
⎪⎪⎨

⎪⎪⎩

πV((σ0, σ
,
0), . . . , (σk−1, σ

,
k−1)) · T

if ∃ 1 ≤ i ≤ k s. t. σi = T or σ ,
i = T

πV((σ0, σ
,
0), . . . , (σk−1, σ

,
k−1)) · ? otherwise

Again, if each input stream given to this monitor corresponds to the evaluation of 
a condition on some other stream, this monitor declares a match when either of 
these conditions evaluates to true. The progressing subsequence of a match for this 
monitor corresponds to the location of the first occurrence of . T in any of the two 
input streams. The Eventual conjunction monitor works dually and declares a match 
once both its input streams contain the value . T (which need not occur at the same 
position). In such a case, the progressing subsequence of a match for this monitor 
corresponds to the location of the first occurrence of . T in both input streams. 

The Eventual occurrence monitor takes as input a single event stream and also 
requires as a parameter another monitor . π . It spawns one new instance of . π at each
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input event and keeps feeding input events to each of these monitor instances until 
one of them produces the verdict . T. This is formally defined as follows: 

. πE(σ) A
{

πE(σ) · T if ∃ 1 ≤ i ≤ k s. t. ν(π(σ [i..k])) = T
πE(σ) · ? otherwise

Thus, if . π is a monitor representing an arbitrary pattern, Eventual occurrence 
declares a match whenever . π declares a match for a given suffix of the input, 
thus representing the fact that the pattern eventually occurs at some point down 
the stream. The progressing subsequence of a match for this monitor corresponds 
to the progressing subsequence of the instance of . π that declares a match, offset by 
the starting position in the stream of this monitor instance. 

Existential window operates in a similar manner, except that each instance of . π
is evaluated on a window of fixed width n, instead of the complete suffix of the input 
stream: 

. πW(σ) A
{

πW(σ) · T if ∃ 1 ≤ i ≤ k s. t. ν(π(σ [i..k − n])) = T
πW(σ) · ? otherwise

It declares a match if there exists an interval of k successive events in the input 
stream for which . π declares a match. The progressing subsequence is defined in the 
same way as for Eventual occurrence. 

Finally, Existential slice is a monitor that separates an input stream into multiple 
sub-streams called slices. The monitor takes as arguments another monitor . π and a 
function .f : E → C, producing values in some arbitrary set C. For a stream . σ , we  
note as .[σ ]fc the subsequence of . σ containing only events . σ such that .f (σ) = c, 
which is the “slice” corresponding to c. The monitor runs one instance of . π for 
each value in C; on each input event . σ , the value .f (σ) = c is evaluated; the event 
is then fed to the processor instance associated with c. This processor declares a 
match whenever one the instances of . π declares a match. This can be formalized as 
follows: 

. πS(σ ) A
{

πS(σ ) · T if ∃ c ∈ C s. t. ν(π([σ ]fc )) = T
πS(σ ) · ? otherwise

The progressing subsequence of a match for this monitor corresponds to the 
progressing subsequence of the underlying monitor instance declaring a match, by 
taking care of replacing the events of this slice to their actual position in the input 
stream.
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9.5.2 Progressive Subsequences for Processor Pipelines 

Each of these processors in itself performs a very simple task. As discussed at the 
start of this section, complex patterns are not expected to be expressed directly 
through a single instance of one of these processors but rather as a composition 
of elementary processors and monitors. 

9.5.2.1 Pipeline Definition 

A processor pipeline is defined as a tuple .P = <P ,E>, where .P ∈ ||∗ is a list of 
processors and .E ⊆ N

4 is a list of edges. An element .(p, n, p,, n,) of E stipulates 
that the n-th output stream of processor . P [p] is set to be the .n,-th input of processor 
.P [p,]. One can see a pipeline as a graph where vertices are processors with upstream 
and downstream “pipes” (input and output streams) and edges connect downstream 
pipes to upstream pipes. 

Figure 9.8 shows a graphical representation of a simple processor pipeline, 
making use of some of the processors introduced earlier. A line between two pipes 
represents a (directed) connection. For processors with more than one input or 
output, pipes are ordered from top to bottom by convention and a symbol or a 
number by be affixed to them to avoid confusion. This computational model is 
reminiscent of the “data flows” presented by Woodruff et al. [58]. However, whereas 
data flows are tuple-oriented, our proposed computational model is more generic 
and accommodates arbitrary processors and data types. 

AbABbC 

AbABbC 
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Fig. 9.8 A monitor identifying a simple linear pattern formed of a sequence of A, B, and  C, 
interleaved with an arbitrary number of other events. The match is declared only if these events 
are observed at odd indices in the stream. Next to each pipe are the contents of each stream for a 
possible input
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The operation of this pipeline can be analyzed to understand the pattern that this 
monitor can catch. At the left of the pipeline, the stream of input events is first 
decimated (box #1), so that every other event from the input stream is discarded. 
This entails that the remainder of the processing is done on a stream composed only 
of the events from the input that appear at odd positions (1, 3, 5, etc.). This stream 
is forked into three copies (box #2); on each copy, the eventual occurrence of a 
different condition is evaluated. Box #3 declares a match when it encounters the 
first A symbol; box #4 does the same for the symbol B, and box #5 looks for an 
occurrence of symbol C. 

The output of monitors #3 and #4 is sent into an instance of the Sequence monitor 
(#6): as per the definition introduced earlier, this entails that it declares a match 
when a symbol B is seen after a symbol A. The output of this monitor is plugged 
into another instance of Sequence, along with the output of monitor #5: therefore, it 
declares a match when a symbol C is seen after an instance of the pattern observed 
by box #6. The end result of this pipeline is a monitor that looks for a sequence of A, 
B, and C, interleaved with an arbitrary number of other events; however, because of 
the presence of the CountDecimate processor at the beginning, the match is declared 
only if these events are observed at odd indices in the stream. 

This abstract example shows how a combination of elementary processors and 
monitors in a pipeline can be used to express complex relationships between events 
forming a potential pattern. However, it remains to show how, from a match 
identified by this monitor, one can extract the relevant events of the input stream 
that are witnesses of the presence of this match. 

9.5.2.2 Input-Output Associations 

For each processor .π : (E1 × · · · × Em)∗ → (E,
1 × · · · × E,

n)
∗, we introduce a 

function .ρπ : (E1 × · · · × Em)∗ × N × N → 2N×N that associates output events 
with input events given to a processor. More precisely, given an input stream vector 
.σ ∈ (E1 × · · · × Em)∗, the index of an output stream .i ∈ [1, n], and the position 
.x ∈ [1, ||π(σ )||] of an event inside that stream, .ρπ(σ , i, x) produces a set of the 
form .{(j1, y1), . . . , (jk, yk)}. A tuple .(j, y) of this set is such that .j ∈ [1,m] and 
.y ∈ [1, ||σ ||. It indicates that the event at position y in the j -th input stream given 
to . π is part of the evidence explaining the production of the event at position x in 
the i-th output stream. We shall also extend the notation and define . ρπ for a set of 
output event positions .I = {(i1, x1) . . . , (ik, xk)} as: 

. ρπ(σ , I ) A
U

(i,x)∈I

ρπ (σ , i, x)

Thus, if one designates multiple output events, . ρ simply returns the union of all 
input events associated with any of these output events.
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There exist multiple ways of deciding what input events should be associated 
with a given output event; however, the definition of . ρ we propose in this work is 
nothing but the progressing subsequence induced by the input stream and resulting 
in the given output event being produced. For example, given the monitor displayed 
on Fig. 9.4 and the input stream .σ = aabcbcda, one obtains as output the stream 
.??????TT. The events associated with the event at position 7 of the first (and only) 
output stream of this processor can be obtained by evaluating .ρπ(σ , 1, 7), which, in 
this case, produces the set of tuples .{(1, 1), (1, 5), (1, 7)}. This links the output event 
to the first, fifth, and seventh input events of the first (and only) input stream, which, 
as one can observe, corresponds to the progressing subsequence abd we discussed 
earlier. 

Equipped with this function, it becomes straightforward to retrace the relation-
ship between any output event of a chain of composed processors .π1 ◦ · · · ◦ πk and 
the positions of events passed to the input of the chain. One simply starts from a 
given event position j in the output of the last processor . πk and uses .ρπk

to obtain 
the set of input events I consumed to produce it. It is then possible to move the 
next-to-last processor of the chain, .πk−1, and repeat the process by evaluating . ρπk−1

on the interval I . The end result, when reaching the first processor of the chain . π1, 
is the set of positions of all events in the original input sequence that are linked to 
the discovery of a match at position j all the way down the chain. 

We can now revisit the example presented above and apply this reasoning on 
the pipeline of Fig. 9.8. Consider the input sequence .σ = AabcAaBabbCa. The  
illustration shows how this original input stream is transformed into other streams 
as the events pass through each processor, which eventually leads to the monitor 
in box #7 producing for its output the sequence .?????T: as expected, it declares a 
match when event C at position 12 is observed.5 The input given to this processor . π

is the stream vector .σ = ((???TTT), (?????T)); calculating .ρπ(σ , 1, 6) amounts 
to asking what are the events of the progressing subsequence of . π explaining 
the production of the verdict . T at the sixth position of its output. According to 
the definitions introduced earlier, this output event is associated with the event 
at position 4 in the first input stream and the event at position 6 in the second, 
thus producing the set .{(1, 4), (2, 6)}. These events are highlighted in Fig. 9.8. We  
can observe that these tuples correspond to the first occurrence of . T in either 
stream, consistent with the definition of a progressive subsequence of the Sequence 
processor. 

The process can then be repeated by successively pointing at each of these 
events and calculating the input events that the upstream processor associates 
with them; these events are highlighted throughout Fig. 9.8. The operation ends 
at the leftmost processor, which keeps track of the location of output events with 
respect to their original position in the global input stream. The end result, in this 
particular example, precisely matches the intuition: the global pipeline looks for a

5 We remind that because of the presence of box #1, the pipeline only produces one output event 
for each two input events. 
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succession of A, B, and C at odd indices, and the highlighted events are precisely 
the first occurrence of A, B, and C that fulfill this condition in the stream. In 
other words, this shows how the composition of elementary processors and the 
iterative calculation of individual progressing subsequences do indeed fall back on 
the appropriate subset of the input explaining the occurrence of a pattern when it is 
found. 

We remind the reader that this process is systematic and automated; given an 
arbitrary pipeline where each processor present can properly calculate associations 
between input and output events, the identification of the appropriate subset of the 
input stream explaining the occurrence of a match requires no manual intervention 
whatsoever. 

9.6 Experimental Evaluation 

In this last section, we revisit the notions of monitor, state, and progressive 
subsequence and measure experimentally their impact in terms of computation load 
and potential for reduction in the number of matches and events in each match. 
We first describe a concrete implementation of these concepts as an extension of 
an existing event stream processing library and then report on experimental results 
obtained by running various monitor pipelines on generated event streams. 

9.6.1 Implementation 

As the basis of our implementation, we use an actual open-source event stream 
processing engine, called BeepBeep [30]. BeepBeep offers a collection of simple 
computation units called Processors, which correspond exactly to the definition 
we gave of this concept in Sect. 9.3.1. Processors can then be connected to form 
pipelines, as was defined in Sect. 9.5.2. Over the years, BeepBeep has been involved 
in multiple case studies including the detection of bugs in video games [56], the 
runtime monitoring of security policies in Java programs [12, 33], the tracking of 
packages in the Physical Internet [11], and the identification of electrical appliances 
in a smart home [25]. BeepBeep’s set of processors has also been shown to be 
expressive enough to encompass other stream languages [26], including LOLA [17], 
Quantified Event Automata (QEA) [8], and a first-order extension of linear temporal 
logic [29]. 

For the purpose of this work, each Processor instance provided by the core 
library has been retrofitted with an additional interface called Stateful. This  
interface defines a single method called getState, which returns an arbitrary Java 
Object. The only requirement is that this object must be properly comparable 
using Java’s equals method, in order to reliably determine when a processor 
actually changes its internal state upon ingesting an input event. As we have seen,
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this condition is essential to optimize the pattern detection procedure we introduced 
in this chapter and in particular to restrict its output only to the progressive 
subsequences of pattern match instances. 

Although not studied in this work, a “cheap” way of obtaining a function 
returning the internal state of a processor could simply amount to serializing the 
object and pass the resulting data structure (such as an XML or JSON string) into a 
hash function. By construction, the resulting value satisfies the conditions of a state 
function expressed in Sect. 9.4.3, although it may not guarantee optimality. Since, 
in many cases, the relevant internal state of a processor (for the purpose of pattern 
recognition) is a subset of the whole internal state of the Java object, we elected 
for a simpler methodology where a well-chosen object or data structure has been 
purposefully coded for each processor instance. 

In addition to these modifications to the core library, an extension of the system (a 
plug-in which is called a palette in BeepBeep’s terminology) providing additional 
processors has been developed, specifically for the task of detecting patterns in a 
stream of events. This palette provides a processor called DetectPattern, which 
is a faithful transcription of Algorithm 2. What is more, all the monitors discussed in 
Sect. 9.5.1 and illustrated in Fig. 9.7 are also defined, along with their corresponding 
state function. 

In order to calculate the progressing subsequences of each processor, the palette 
takes advantage of an existing mechanism built within BeepBeep and called the 
event tracker. As described in earlier work [24], the task of this object is to record in 
memory the associations between input events and output events that any processor 
may want to register during its execution, thereby mirroring the purpose of function 
. ρπ formally defined in Sect. 9.5.2. For these “lineage” capabilities to be active, each 
processor instance must be associated with an instance of the EventTracker 
class. Since each processor instance in BeepBeep is given a numerical identifier that 
is unique across a given program, the associations for each processor of a chain can 
be recorded and distinguished. 

Figure 9.9 shows a concrete example of Java code building a BeepBeep pipeline 
using the processors described in this chapter. Lines 1–7 create the processor 

1 CountDecimate d = new CountDecimate(2); 

2 Fork f = new Fork(3); 

3 SomeEventually a = new SomeEventually(new ApplyFunction(new Equals("a"))); 

4 SomeEventually b = new SomeEventually(new ApplyFunction(new Equals("b"))); 

5 SomeEventually c = new SomeEventually(new ApplyFunction(new Equals("c"))); 

6 Sequence s1 = new Sequence(); 

7 Sequence s2 = new Sequence(); 

8 EventTracker t = new IndexEventTracker(); 

9 Connector con = new Connector(t); 

10 con.connect(d, 0, f, 0).connect(f, 0, a, 0).connect(f, 1, b, 0) 

11 .connect(f, 2, c, 0).connect(a, 0, s1, 0).connect(b, 0, s1, 1) 

12 .connect(s1, 0, s2, 0).connect(c, 0, s2, 1); 

Fig. 9.9 A Java code snippet creating the pipeline of Fig. 9.8



9 A Stream-Based Approach to Intrusion Detection 281

1 FindPattern fp = new FindPattern(g); 

2 Connector.connect(fp, new Print()); 

3 for (char e :  "AabcAaBabbCa".toCharArray()) { 

4 fp.getPushableInput().push(e); 

5 } 

Fig. 9.10 A Java code snippet finding instances of the pattern detected by the pipeline of 
Figure 9.9 on the input trace AabcAaBabbCa 

instances, respectively, corresponding to boxes 1–7 in Fig. 9.8. Then, line 8 creates 
an instance of event tracker, and line 9 creates an instance of the Connector object 
used to link input and output pipes. Finally, method connect of this object is 
repeatedly called to create the appropriate connections between the processors of 
the pipeline. The connector takes care of both associating each processor with the 
event tracker and also of registering the connection between these processors into 
the event tracker itself. 

Once this pipeline has been created, it can be encapsulated into a Group-
Processor g and then be passed as a monitor to the FindPattern processor, 
as is shown in Fig. 9.10. For the purpose of this example, the processor is connected 
to an instance of Print, which, as its name implies, prints to the standard output all 
the events that are fed to it. Lines 3–5 simply iterate over all characters of the input 
trace (turning them into individual events) and push them into the FindPattern 
processor. The expected output of this piece of code is: 

{(1,1), (1,7), (1,11)} 

which corresponds precisely to the positions in the input stream highlighted in 
Fig. 9.8 and which constitute the progressing subsequence of the match detected 
by the pipeline. 

As one can see, the software implementation very closely follows the theoretical 
definitions introduced in this chapter. The definition of the pipeline, the detection 
of the patterns, and the extraction of a progressive subsequence for a given match 
exactly mirror the expected results from the formalization. 

9.6.2 Empirical Analysis 

Equipped with this implementation, it is now possible to evaluate the potential for 
reduction in the size of the witnesses by running the FindPattern processor on 
a set of monitors and input streams. The patterns we consider are abstract, but each 
has a global shape that corresponds to a type of real-world type of attack. 

The first pattern is called Linear sequence: it looks for a sequence of successive 
symbols in an input stream, with each symbol separated from the next by an 
arbitrary number of events. This is a generalization of the pattern detected by the 
monitor of Fig. 9.8, where the number of symbols in the sequence is configurable
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Fig. 9.11 A monitor identifying the occurrence of three linear patterns (.A → B, .C → D, . E →
F ), which can be arbitrarily interleaved 

by a parameter n. This pattern can be used to for any attack that can be detected 
by looking for a succession of fixed actions, each marking a progression in the 
unfolding of the attack. An example is the ptrace exploit described by Olivain 
and Goubault-Larrecq [45]. 

The second pattern is called Combined : it is parameterized by n other patterns 
.π1, . . . , πn. It declares a match as soon as all these patterns have been detected in 
the stream, irrespective of the order in which they occur or the possible interleaving 
of their relevant events. An illustration of a possible monitor for this pattern is 
shown in Fig. 9.11. This particular case is parameterized with three instances of the 
linear sequence pattern introduced above: the first instance detects an A followed 
by a B, while the other two, respectively, detect the sequences .C → D and 
.E → F . A possible input stream matching this pattern would be aCbABbEaAFD. 
As its name implies, this pattern is appropriate for attacks that require multiple 
independent conditions to be present for it to succeed, with each condition itself 
being detectable by its own pattern in the stream of events; an example is the attack 
pattern of the GandCrab ransomware [55], which consists of multiple steps, each of 
them requiring the parallel fulfillment of two or more sequences.
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The third pattern is called Incomplete. It is parameterized by a sequential pattern 
that can unfold concurrently on multiple slices of a given stream. A pattern for 
a given slice is said to be “incomplete” if the first event that defines it has been 
observed, but the last event concluding the occurrence of the pattern has not yet 
been received. An alarm is raised when the number of incomplete instances of the 
pattern at a given moment exceeds some threshold number k. A possible incident 
following this pattern is the classical SYN flooding attack [16]; in this case, an 
attacker opens a large number of TCP connections by issuing the SYN segment, but 
does not confirm the start of the connection by issuing the expected ACK segment 
later on. A large number of incomplete instances of the pattern SYN. →ACK may 
thus indicate that such an attack is ongoing. 

Figure 9.12 shows an example of a monitor for this pattern. It first slices an 
incoming stream of tuples according to the value of some attribute A (box #1); on 
each of these sub-streams, it looks for the presence of a pattern where attribute B of 
the tuple first contains the value A, eventually followed by the value B (part #2 of 
the pipeline). The output of this part of the pipeline thus produces . ? if the pattern is 
incomplete and . T if the pattern has been completed. The second part of the pipeline 
(box #3) then turns these two values into the numbers 1 and 0, respectively. The 
Slice processor then calculates the sum of the output value for each slice, which 
corresponds to the number of incomplete pattern instances at a given moment. It 
then compares it to the threshold value k (box #4); the monitor of box #5 outputs . T
(and thus declares a match) as soon as this value exceeds k at some moment in the 
trace 

Fig. 9.12 A monitor triggering an alarm when the number of slices containing an event A not 
followed by a B exceeds from threshold k
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Fig. 9.13 A monitor identifying a pattern in a sequence of tuples, where a slice determined by the 
value of attribute A contains at least k distinct values of attribute B 

The fourth and last pattern is called Threshold ; in this pattern, values extracted 
from events in a stream are accumulated into a set; a match is declared when 
the number of unique values in the set exceeds a parameterizable quantity k. An  
example of an attack following this global pattern is a remote access Trojan [23], 
which includes a port scanning phase in which multiple TCP connections are 
initiated by the same peer on various port numbers. In such a case, the port numbers 
do not necessarily occur following a regular sequence; the pattern matches when 
enough distinct port numbers are observed, regardless of their order of occurrence. 

Figure 9.13 shows an example of a monitor for this pattern. This time, events are 
assumed to be key-value tuples instead of atomic symbols. The pattern is detected 
by an Existential slice monitor, illustrated in box #1. This monitor splits the input 
stream of events into sub-streams based on the value of attribute A in each tuple. 
For example, this attribute could be the source address of an incoming IP packet. 
For each slice, the processing of the succession of processors 2–5 is applied. First, 
the value of another attribute B in each tuple is extracted and placed into a set (box 
#2); this attribute could be the TCP port at which a connection is attempted. These 
values are then aggregated into a set using an instance of the Cumulate processor 
(box #3); the cardinality of this set is repeatedly compared against the threshold 
quantity k (box #4), producing a stream of Boolean values. These values are then 
aggregated using the disjunction operator (box #5); the end result is that the pipeline 
returns . T and keeps returning . T from that point on, when the number of distinct 
values of attribute B for that slice is higher than k. Overall, this pipeline declares 
a match whenever the number of distinct connection attempts from any individual 
source IP address becomes too large. 

For each of these scenarios, a synthetic event source containing a configurable 
number of instances of the pattern has been created, using the Synthia data 
structure generator [48]. A BeepBeep Source processor has been implemented, 
using Synthia’s Knit object, which can interleave sequences of events generated 
from multiple instances of the Picker interface. Each time a new event it to be 
generated, Knit throws a biased dice to determine which picker instance is chosen 
to produce the next event. In the present case, two picker instances are configured: 
the first generates randomly selected events that are not present in the pattern 
to be discovered, while the second generates one possible next event that makes
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Table 9.1 Number of pattern matches for each simplification strategy, with . α = 0.9

Pattern First step Direct Distinct states Progressing 

Threshold 52 190 45 45 

Linear sequence 22 247 22 22 

Combined patterns 7 125 3 3 

Incomplete 223 223 33 33 

the pattern’s monitor move to a new state. A configurable parameter, . α ∈ [0, 1]
determines the probability that the “regular” picker is chosen over the “pattern” 
picker. A low value of . α means that events from the pattern are chosen more often, 
resulting in denser matches, while a high value of . α causes pattern instances to be 
spread across a larger interval of events in the input stream. 

The experiments were implemented using the LabPal testing framework [27], 
which makes it possible to bundle all the necessary code, libraries, and input data 
within a single self-contained executable file, such that anyone can download and 
independently reproduce the experiments. A downloadable lab instance containing 
all the experiments of this paper can be obtained online from GitHub.6 All the 
experiments were run on an Intel CORE i5-7200U 2.5 GHz running Ubuntu 18.04, 
inside a Java 11 virtual machine with the default settings allocating 1746 MB of 
memory. 

Sequences of 500 events have been generated according to each pattern, and 
for each of them, the number of matches, number of witness events, and running 
time have been calculated. Table 9.1 shows the impact on the number of matches. 
As expected, the Direct approach generates the most matches, while the First step 
strategy already reduces the number of such matches. The Distinct states approach 
further reduces the number of matches, while the Progressing strategy has no impact 
on the reduction of the number of pattern matches. These results faithfully mirror 
the abstract example shown in Fig. 9.5. 

Table 9.2 shows the fraction of the input stream that is included in the events 
identified for each match, for all four reduction strategies. Again, one can observe a 
sharp reduction by moving from the direct, first step, distinct states and progressing 
subsequence reductions. While the Direct approach includes almost all the input 
stream for two of the scenarios, at the other end of the spectrum, the Progressing 
strategy incurs a reduction down to 20% or less of the input stream – thereby 
confirming its potential for identifying the relevant events of a pattern. A notable 
exception is the Incomplete pattern, where the reduction is much smaller than for 
the remaining patterns. This is explained by the fact that in order to explain the 
fact that the sequence .A → B is incomplete, one must show not only that an A 
has occurred but also that all the subsequent are not Bs. Therefore, a large amount 
of the input stream ends up being part of the progressive subsequence. This is a

6 https://github.com/liflab/pattern-detection-lab 

https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
https://github.com/liflab/pattern-detection-lab
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Table 9.2 Fraction of input stream included in witnesses, with . α = 0.9

Pattern First step Direct Distinct states Progressing 

Threshold 0.96015936 0.96414346 0.96015936 0.20717132 

Linear sequence 0.42231077 0.9920319 0.42231077 0.17529881 

Combined patterns 0.70119524 0.72908366 0.6294821 0.17928287 

Incomplete 0.936255 0.936255 0.84462154 0.84462154 

Table 9.3 Total running time for the pattern detection algorithm for each reduction strategy, with 
. α = 0.9

Pattern Progressing Direct Distinct states First step 

Threshold 1275 ms 76 ms 1012 ms 1092 ms 

Linear sequence 10 ms 19 ms 8 ms 7 ms  

Incomplete 37 ms 475 ms 120 ms 766 ms 

Combined patterns 209 ms 1307 ms 95 ms 210 ms 

common trait shared by patterns that are negative in essence (i.e. that raise an alarm 
depending on the absence of an event or sequence of events). 

Finally, Table 9.3 shows the total running time for the pattern detection algorithm 
for each reduction strategy. One can observe that running time involves a form 
of cost-benefit equilibrium. The Direct approach incurs an increased number of 
monitor instances and thus additional computational load resulting in longer running 
times for the combined pattern scenario. In counterpart, simplification strategies 
require the evaluation of each monitors’ state at each input event, which may end up 
incurring a non-negligible cost; yet, one can see that this additional effort is offset by 
the fact that monitor instances are regularly discarded, resulting in an overall quicker 
running time than the direct approach. Finally, the calculation of the progressing 
subsequence involves additional effort, which explains why the running time for 
this last layer of simplification results in longer running times than the Distinct 
states strategy. 

Overall, these results are consistent with the expected behavior predicted by 
theoretical reasoning over the description of Algorithm 2. They show that the 
use of the progressing subsequence reduction strategy, even though it produces 
fewer matches and fewer witness events extracted from the input stream, incurs 
a reasonable overhead due to the fact that superfluous monitor instances are not 
uselessly updated upon each new event. 

9.7 Discussion and Conclusion 

In this chapter, we have shown how the task of detecting misbehavior or malicious 
actions over an information system can be reduced to the specification of abstract 
monitors whose simple task is to determine, given a stream of events produced
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by the observation of the system, whether a given pattern occurs or not. These 
monitors are simply special cases of a more general function called a processor, 
which consumes input streams in order to produce output streams. The definition of 
a monitor has been purposefully left as generic as possible, and in particular does 
not impose any particular notation or formalism to express the patterns of interest. 

From these monitors, an algorithm to detect all matches of a given pattern has 
been proposed. Then, the notion of processor state was introduced, which, again, 
is defined only based on the relationship between possible inputs and possible 
outputs, without the need to refer to any particular inner implementation detail of 
the processor. Thus, a state function can be inferred for any processor given its 
definition, and is not restricted to such processors that are defined as an explicit 
state machine. 

This notion of state has then been leveraged to implement several simplification 
and optimization layers on the basic monitor-based pattern detection algorithm. 
More importantly, processor state can be used not only to reduce the number of 
(mostly superfluous) matches discovered by monitor instances but also to reduce 
the number of events that are singled out in each match as material “witnesses” 
of the occurrence of this match – a concept called the progressing subsequence. 
Experimental evaluation on sample patterns inspired from examples of real-world 
attacks confirm the intuition that these simplification strategies indeed reduce the 
amount of data extracted from a log required to provide evidence of the occurrence 
of a particular pattern. 

The ideas introduced in this chapter can be extended in several ways: First, 
the definition of progressive subsequence shares similarities with the definition 
of progressing subsequence of a processor, as described in Sect. 9.4.3. It presents 
the interesting property that for processors expressed as Moore (i.e., finite-state) 
machines, the progressing subsequence of an input trace of events exactly coincides 
with the definition of what is called an explanation in [24]. However, while an 
explanation is an ad hoc definition that was only valid for Moore machines, it is here 
generalized to arbitrary processors. This links back to a theoretical notion called 
explainability, which was defined by Hallé and Tremblay [28] and which can be 
paraphrased as follows: 

Let .f : X → Y be a function, .x ∈ X be an input of f , . px be a part of x, and .pf (x) be a 
part of . f (x). Part . px is said to “explain” the output of f if there exists an input .x, ∈ X that 
differs only on . px and such that .f (x,) differs on .pf (x). 

In addition, the notion of processor state could be used to generate “early 
warnings” of the occurrence of a pattern. Instead of alerting a user when a monitor 
declares the occurrence of a complete attack pattern, one could create a derived 
version of this monitor that declares a match whenever the pattern is almost fulfilled 
– for example, when there exists an extension of the current input stream by a single 
event that would cause the original monitor to declare a match.
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Chapter 10 
Toward Anomaly Detection Using 
Explainable AI 
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Abstract Anomaly detection in networks is an important aspect of network 
security, enabling organizations to identify and respond to unusual patterns of 
activity that may indicate a security threat or performance issue. By identifying 
and addressing anomalies in real time, organizations can reduce the risk of data 
breaches and other security incidents and ensure the optimal performance and 
reliability of their network infrastructure. However, implementing effective anomaly 
detection in networks with good quality is a significant challenge, requiring careful 
consideration of several key factors. One of the main challenges of anomaly 
detection in networks is the sheer volume of data that must be processed and 
analyzed. Networks generate vast amounts of traffic data, making it difficult to 
identify patterns and anomalies in real time. To address this challenge, anomaly 
detection systems must be able to handle large amounts of data and operate at high 
speeds while also minimizing false positives and false negatives. In this chapter, we 
present MMT a monitoring framework developed by the Montimage research team 
to perform anomaly detection. This framework is being extended with explainable 
AI (XAI) capabilities to better understand the classification done by AI-/ML-based 
algorithms. The first experimentations are presented in this book chapter using 
SHAP, LIME, and SHAPASH technologies. 
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10.1 Introduction 

Anomaly detection (AD) techniques can be used to identify a wide range of 
network anomalies, including network intrusions, malware infections, denial-of-
service (DoS) attacks, and other forms of malicious activities [1, 2]. There are 
several different approaches to anomaly detection in networks, including rule-
based methods, statistical methods, and machine learning methods. Rule-based 
methods involve defining a set of rules that describe normal network activity and 
then flagging any activity that deviates from these rules as anomalous. Statistical 
methods involve using probability distributions and statistical models to iden-
tify deviations from normal network activity. Machine learning methods involve 
training algorithms on large datasets of network activity to identify patterns and 
anomalies. 

One of the key challenges of anomaly detection in networks is minimizing false 
positives, which occur when normal network activities are incorrectly classified as 
anomalous, and false negatives, obtained when anomalous activities are not detected 
[3]. To address this challenge, many anomaly detection systems use a combination 
of multiple techniques, as well as feedback loops and manual review by security 
analysts. 

Other challenges are the need of network activity continuous monitoring and 
the quality of detecting anomalies. In fact, anomaly detection systems have not 
only to be able to identify anomalies but also to accurately detect true ones and 
quickly respond to them, in order to minimize the risk of security incidents or 
performance issues. The first challenge can be faced through the combination of 
automated detection methods and human oversight, as well as ongoing analysis 
and refinement of the detection algorithms. Moreover, AD systems must avoid 
misclassifications, e.g., normal network activities detected as anomalous. This 
requires a deep understanding of network behavior and the ability to adapt to 
changing patterns of activity over time [4]. 

One approach to anomaly detection is to use explainable artificial intelligence 
(XAI) techniques [5], which are designed to provide transparency and interpretabil-
ity into the decisions made by the algorithm. This can help network administrators 
understand why certain network activity is classified as anomalous and can provide 
insights into potential security threats or performance issues. For example, an XAI-
based anomaly detection system might identify a sudden surge in network traffic 
from a particular IP address as anomalous. By providing explanations of how the 
algorithm came to that decision, the system can help the network administrator 
understand that the IP address is engaged in potentially malicious activity, such as a 
distributed denial-of-service (DDoS) attack. 

In this chapter, we rely on Montimage Monitoring Tool (MMT) [6], i.e., a set of 
modules to perform real-time analysis or post-analysis of captured traffic, combined
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with AI/machine learning (ML) algorithms to classify sessions and detection 
deviations from learned behaviors. Through this tool, we will perform network 
monitoring and anomaly detection, also introducing the possibility of using XAI 
for network traffic classification. The preliminary outcomes of our experimentation 
will help to extend the AI-based MMT monitoring framework with transparency 
and interpretability. 

The chapter is organized as follows: Section 10.2 will present the MMT archi-
tecture and its usage for anomaly detection and network classification. Section 10.3 
will propose the usage of XAI for the classification of network traffic. Several 
algorithms like SHAP and LIME are presented and included in MMT as plugins 
to existing deep learning (DL) algorithms. Section 10.4 will present the first results 
demonstrating the interest of using XAI in network traffic classification in general 
and in anomaly detection in particular. 

10.2 Network Monitoring Approaches: MMT Monitoring 
Framework Example 

Network monitoring is the process of observing and analyzing the performance and 
security of a computer network [7]. It involves collecting and analyzing data on 
network activity, such as the amount of data being transmitted, the types of data 
being transmitted, and the sources and destinations of the data. 

Classification is an important aspect of network monitoring. It involves identi-
fying network traffic and categorizing it into different types, such as email, web 
browsing, or file sharing. This can be done through the use of machine learning 
algorithms, which analyze patterns in the network traffic to identify different types 
of activity. By classifying network traffic, network administrators can identify 
potential security threats, such as suspicious or unauthorized activity, and take 
appropriate action to mitigate the risk. They can also gain insight into network 
usage, identifying trends and patterns that can help optimize network performance 
and improve user experience. 

Overall, network monitoring and classification are critical components of main-
taining a secure and efficient computer network. Through the use of advanced 
algorithms and analysis techniques, network administrators can gain a deeper 
understanding of their network and take proactive steps to ensure its continued 
success. 

In the remainder of this section, we present (i) classification techniques, i.e., 
rule-based classification and AI-based classification, in Sect. 10.2.1 and (ii) the 
global architecture of Montimage Monitoring Tool and its application for anomaly 
detection, respectively, in Sects. 10.2.2 and 10.2.3.
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10.2.1 Classification Techniques 

10.2.1.1 Rule-Based Network Classification 

It is a method of categorizing network traffic based on a set of predefined rules, 
which are typically based on attributes such as the used protocol, source and 
destination IP addresses, and port numbers. The process of rule-based classification 
involves (i) examination of data packets as they move through the network and (ii) 
comparison of their attributes to a set of predefined rules. When a packet matches 
a rule, it is classified accordingly. For example, a packet that is identified as HTTP 
traffic (based on the used protocol) with a destination port of 80 (which is typically 
used for web traffic) might be classified as “web browsing.” 

Rule-based classification can be effective in identifying certain types of network 
traffic, such as web browsing, email, or file sharing. However, it can also be limited 
by its inflexibility, since it relies on predefined rules that may not capture all types 
of network traffic. In addition, rule-based classification can be vulnerable to evasion 
techniques used by attackers to disguise their activities, e.g., using nonstandard ports 
or encryption. 

Despite these limitations, rule-based classification is still a widely used method 
of network traffic analysis, especially in situations where the network environment 
is well understood and the types of traffic are relatively stable. It can be an efficient 
way to identify and filter out unwanted or malicious traffic and provide insights into 
network usage and performance. 

10.2.1.2 AI-Based Network Classification 

It involves the use of AI and ML algorithms to identify and categorize network 
traffic. These algorithms are trained on large datasets of network traffic and use 
statistical models to classify new data based on their patterns and their features. 
AI-based network classification can be more flexible and accurate than rule-based 
classification, since it can learn from data and adapt to new and evolving types of 
network traffic. For example, an AI-based classification system might be able to 
identify previously unknown types of traffic, such as a new type of malware or an 
emerging application protocol. 

There are several different types of AI-based classification techniques, including 
supervised learning, unsupervised learning, and deep learning. Supervised learning 
involves training the algorithm on a labeled dataset, where the correct category 
of each data point is known. Unsupervised learning involves discovering patterns 
and relationships in unlabeled data, which can be useful for identifying new 
and previously unknown types of traffic. Deep learning involves training neural 
networks with multiple layers to learn complex data representations. 

AI-based network classification has several advantages over traditional classi-
fication methods. It can provide greater accuracy and speed, allowing network
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administrators to quickly identify and respond to potential security threats. It can 
also be more scalable, since it can learn from large datasets and adapt to new types 
of traffic over time. 

However, AI-based classification also requires significant computational 
resources and expertise to develop and maintain. It also raises concerns around 
privacy and security, since large amounts of sensitive network traffic data are 
required to train the algorithms. Therefore, it is important to carefully consider the 
risks and benefits of AI-based network classification before implementing it in a 
network environment. 

10.2.2 Global MMT Monitoring Architecture 

The MMT monitoring framework is an open-source monitoring solution developed 
by Montimage and freely available for the research community on GitHub [6]. 
Its workflow is presented in Fig. 10.1, and hereinafter, we analyze each MMT 
component. 

10.2.2.1 Feature Extraction 

It is the functionality of the module “MMT-Extract” that allows to parse the 
network traffic, identify sessions, and compute packet and session attributes called 
features. This module is implemented as a C library that analyzes network traffic 

Fig. 10.1 Monitoring components of MMT



298 M.-D. Nguyen et al.

to extract network- and application-based events. Extraction is powered by a plugin 
architecture that allows adding new protocols or application message formats to 
parse. In the current development, more than 600 plugins for classical protocols and 
applications are already implemented. 

10.2.2.2 Rule-Based Analysis 

“MMT-Security” is a signature-based monitoring solution that allows analyzing 
network traffic according to a set of properties. These properties contain signatures 
that formally specify security goals or malicious behaviors related to the monitored 
system. The MMT-Security property model is inspired by linear temporal logic 
(LTL) and can be referred to the following two types of properties: 

1. Properties that describe the normal, legitimate behavior of the application or 
protocol under analysis. Consequently, the non-respect of the property indicates 
a potential violation of a safety or security requirement; e.g., all the ports 
in a computer must be closed unless they are being used by an authorized 
application. 

2. Attacks that describe malicious behavior corresponding to an attack model, a 
vulnerability or misbehavior. In this case, the respect of the property indicates 
the detection of a potential incident; e.g., a big number of requests in a short 
period of time could be a DoS attack. 

The chosen language of “MMT-Security” properties is XML format, due to its 
simplicity and straightforward structure verification. A property is a general ordered 
tree as shown in Fig. 10.2, where the leaf nodes are the atomic events captured in the 
traces. Each property is composed of a context, in the left branch, and a trigger, in 
the right branch. Then, a property is valid when the trigger is valid, and the trigger 
is inspected only if the context is valid. 

10.2.2.3 Machine Learning-Based Anomaly Detection 

“MMT-AI” allows to perform AI-based analysis of the collected features applying 
one or several AI/ML algorithms. It is responsible for building a model (which 
depends on the data and the chosen ML algorithm), as well as utilizing existing 
ones. We can therefore distinguish its two modes of operating, i.e., training and 
prediction. 

● Training: It is designed to create and parameterize the model based on already 
cleaned and transformed data. This means that it executes the algorithm selected 
by user and a model is built by using the training data in order to find its weights 
and biases that would lead to the best results. Loss function, with penalized 
bad prediction, is used as a metrics of result during training. Depending on 
the selected algorithm, this step also includes the experimentation of algorithm
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Fig. 10.2 Security property structure in MMT [6] 

parameter different values, such as learning rate, activation functions, batch 
size, and so on. In the proposed system, it is assumed that this step is either 
done by a user a bit familiar with hyper-tuning or done by utilization of the 
values directly suggested by the system: 

. • Model evaluation. In order to evaluate the sufficient amount of parameters 
and the model training, the training needs to be done using a separate 
dataset from the testing dataset; thus, the model will be tested on the 
completely new samples. In this case, the evaluation checks whether the 
model is generalized enough. To investigate the results, the correctness 
of classification is verified using the following terms: (i) true positive 
(TP) and true negative (TN) are samples that are correctly assigned to the 
normal and anomaly classes, respectively, and (ii) false positive (FP) and 
false negative (FN) are samples that are incorrectly assigned to positive or 
negative classes. 

● Prediction: It is the activity done after the model is trained (that is to say 
the algorithm is executed in training mode) and the satisfactory results are 
obtained. It involves utilizing the model directly on new, unseen data (in a real-
life case scenario, these are just production data) and obtaining the results, such 
as probabilities, classifications, etc. Importantly, the accuracy of the prediction 
results can also be used in order to further hyper-tune the model.
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As the system aims to simplify the prototyping and utilization of AI/ML 
algorithms for practical applications, it is assumed that the user may want to create 
multiple different models. Therefore, instead of selecting one model’s predictions 
from one particular model, it can be beneficial to combine the results of different 
models together. Thus, this final (and optional) step of the ML module consists of 
the ensemble part that is capable of joining the results together. 

10.2.2.4 Root Cause Analysis 

“MMT-RCA” relies on machine learning algorithms to identify the most probable 
cause(s) of detected anomalies based on the knowledge of similar observed ones. 
It enables the systematization of the experience in dealing with incidents to build 
a historical database and verify whether a newly detected incident is similar 
enough to an observed one with known causes. Thanks to MMT-RCA’s suggestions, 
remediation actions could be timely and wisely taken to prevent or mitigate the 
damage of the recurrence of problems. 

10.2.3 Application of MMT for Anomaly Detection 

MMT-AI has been used in several projects, e.g., for differentiating bots and human 
activities in the net [8], for anomaly detection in industrial systems (e.g., load 
position system of ABB) [9]. In the following, we present a classical usage of 
MMT-AI on an open-source database CSE-CIC-IDS2018 provided by the Canadian 
Institute for Cybersecurity [10]. 

10.2.3.1 Settings 

Stacked autoencoders (SAE) [11] and convolutional neural network (CNN) [12] 
are used to train and classify the network traffic with the Canadian dataset. More 
in detail, SAE are multiple encoders stacked on top of one another. The number 
of neurons in each decoder and encoder is the same. They aim at dimensionality 
reduction, i.e., filtering the essential features from the data. Then, CNNs are used, 
and they are a specialized type of artificial neural networks that use, in at least 
one of their layers, a mathematical operation called convolution in place of general 
matrix multiplication. It consists of an input layer; hidden layers, which perform 
convolutions; and an output layer. The general implemented architecture can be 
seen in Fig. 10.3. The advantage of this architecture is its flexibility, as both modules 
can be easily added to the structure of the global system and integrated in the final 
solution.
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Fig. 10.3 The AI-based anomaly detection architecture 

Feature Extraction The feature extractor module is used in both generating the 
training/testing datasets and on the input file for prediction. 

Scaling Data scaling is the treatment data process in order to obtain standard format 
data; thus, the training is improved, accurate, and faster. Indeed, a model with large 
weight values is often unstable, which means that it may give poor performance 
during learning and have a high sensitivity to the input values, which leads to a 
higher generalization error. Column normalization involves bringing the column 
values to a common scale, which is usually done for columns with varying ranges. 

MinMaxScaler from scikit-learn library [13] transforms features by scaling each 
feature to a given range. This estimator individually scales and translates each 
feature; in this way, values are limited to a given range in the training set, e.g., 
between zero and one. The transformation is given by the following equations: 

.Xstd = X − Xmin

Xmax − Xmin

(10.1) 

.Xscaled = Xstd × (Xmax − Xmin) + Xmin (10.2) 

where .(Xmin, .Xmax) represents the desired range of scaled data, e.g., .(0, 1). 

Training In the learning phase, the model is fed with the so-called training dataset, 
and the model is tested in order to obtain the best performance and highest accuracy 
of the final classification. The input files pass through the feature extractor module 
which runs the MMT-Extract. Then, it creates a training and testing .csv files with 
balanced 0/1 classes. More in detail, the dataset is divided in this way: 70% for 
training and 30% for testing. 

At this level, there is the possibility that we must do multiple experiments with 
the use of different parameters of the models, e.g., CNN or SAE. Thus, additional 
model adaptation toward specific conditions or changes is recommended in order 
to obtain higher performance and accuracy of the model that will be saved for 
prediction purpose later. The model’s structure is hybrid, composed of two auto-
encoders and one-dimensional CNN as shown in Fig. 10.4. 

Evaluation We applied the learned model to the 30% of remaining datasets. The 
classification is done and the results are presented in the next subsection.
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Fig. 10.4 Overview of the deep learning modules 

10.2.3.2 Results and Interpretation 

Using the default parameters, the training on these datasets gives the following 
results, as shown in Tables 10.1 and 10.2. 

The obtained results are quite impressive and are more than 99% for the 
precision, recall, and F1-score, as shown in Tables 10.3 and 10.4. However, better 
results are still possible by refining parameters. 

The same methodology has been applied to real traffic data collected in the 
Montimage internal network (private network). The train and test datasets present 
15000 samples together, and as already said, the dataset has been split into 70% for 
training and 30% for testing. The data are shuffled in order to give different patterns 
of the presence of 0/1 (normal/malicious) samples in the files. After the training 
process on these data, we obtained the following results, as shown in Tables 10.5 
and 10.6.
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Table 10.1 Confusion 
matrix 1 

0 1 

0 6779 14 

1 3 6790 

Table 10.2 Metrics of model using default parameters 

Precision Recall F1-score Support 

0 (Normal traffic) 0.999558 0.997939 0.998748 6793 

1 (Malware traffic) 0.997942 0.999558 0.998750 6793 

Accuracy 0.998749 0.998749 0.998749 0.998749 

Macro average 0.998750 0.998749 0.998749 13586 

Weighted average 0.998750 0.998749 0.998749 13586 

Table 10.3 Confusion 
matrix 2 

0 1 

0 6778 5 

1 3 6790 

Table 10.4 Metrics of model using advanced parameters 

Precision Recall F1-score Support 

0 (Normal traffic) 0.999558 0.999264 0.999411 6793 

1 (Malware traffic) 0.999264 0.999558 0.999411 6793 

Accuracy 0.999411 0.999411 0.999411 0.999411 

Macro average 0.999411 0.999411 0.999411 13586 

Weighted average 0.999411 0.999411 0.999411 13586 

Table 10.5 Confusion 
matrix 3 

0 1 

0 7500 0 

1 87 7413 

Table 10.6 Metrics of model using real network traffic 

Precision Recall F1-score Support 

0 (normal traffic) 0.999558 0.999264 0.999411 6793 

1 (malware traffic) 0.999264 0.999558 0.999411 6793 

Accuracy 0.999411 0.999411 0.999411 0.999411 

Macro average 0.999411 0.999411 0.999411 13586 

Weighted average 0.999411 0.999411 0.999411 13586 

The results were good enough to affirm that the obtained model is efficient. Thus, 
we further investigated the classification phase in order to check the accuracy of 
the prediction of the model. We used a portion of the raw normal traffic data that 
we used for training. In this way, we know that the model is correctly functioning 
when we see zeros in the predicted malware value. However, the results were not 
compatible with the expected values, and the predictions are thus not correct. The
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model predicts that there were attacks in the known normal traffic. Therefore, further 
investigation and testing need to be done. 

Discussion The manual investigation shows that the classification using AI-based 
anomaly detection provides in some cases false positives (e.g., 0.1% for malware 
prediction using default parameters) which are difficult to interpret mainly with 
theoretical metrics that are more than 99% (precision, recall, F1-score, etc.). The 
need to have more transparency is needed in such context to better interpret the 
results and understand why we have such decisions. That’s why we will use XAI 
to have a better insight on network traffic classification using explainable AI. These 
results are still preliminary. 

10.3 Interpreting ML Models for User Network Activity 
Classification 

10.3.1 Motivation 

10.3.1.1 Context 

Network traffic classification becomes more and more challenging due to the growth 
in network traffic. As there are new applications with different characteristics and 
network requirements, it is crucial to identify the requirements to provide the 
appropriate resource to each application. In the literature, several approaches have 
been proposed for network traffic classification based on the well-known ports 
(e.g., TCP or UDP port numbers) and on deep packet inspection (DPI) technique 
[14]. However, port-based classification technique is ineffective because mapping 
between ports and applications using dynamic ports is not well defined. Moreover, 
the growing popularity of encrypted traffic HTTPS and virtual private networks 
(VPN) increases user security and privacy but also becomes a big challenge 
for traditional traffic analysis, making DPI-based service classification unfeasible. 
Therefore, it raises the need for advanced analysis techniques based on other criteria, 
such as behavior analysis. With the introduction of network encryption techniques, 
such as the TLS protocol, the accuracy and efficiency of conventional Network 
Intrusion Detection Systems (NIDS) that were using rule- and signature-based 
monitoring detection methods are greatly reduced. Consequently, in the last decade, 
research efforts have moved toward new analysis methods based on AI techniques 
for network traffic classification. Indeed, various AI algorithms have been used in 
the literature, such as supervised [14, 15], unsupervised [16], and hybrid machine 
learning approaches [17–19]. 

Nowadays, apart from accuracy and performance, new requirements concerning 
trustworthy, transparency, unbiasedness, privacy, and robustness also need to be 
taken into account in the development of AI-based systems. Nonetheless, existing 
AI methods, especially complex ones like deep neural networks, are seen as black
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boxes and thus have a common limitation of lacking explainability. Indeed, the 
classification results of existing work do not provide the users with any information 
of how the dataset, input features, or selected models contribute to the predicted 
classification. In this context, user network activity classifiers, as well as other 
traffic analysis applications, must be improved and optimized not only in terms 
of performance but also for other properties listed above. Recently, explainable 
artificial intelligence (XAI) has become a hot research topic in the AI community 
[20]. It provides a rationale that allows users to understand why an AI-based system 
has produced a given output and increases trust of end users. Different approaches 
[21, 22] are proposed to providing and improving the understanding, in the global 
and local manner, of what the models have learned and how the models make 
individual predictions. 

10.3.1.2 Proposal 

Our work aims at characterizing and classifying user network activities using 
machine learning techniques. We use popular supervised techniques, such as 
random forest, neural networks, XGBoost,1 and LightGBM,2 and unsupervised 
techniques, such as K-means, for classification. Furthermore, we want not only to 
understand why our application produces promising results but also why it makes 
some wrong predictions in some cases to further improve the performance. To 
achieve this goal, we add an extra explainability layer on top of our AI-based 
classification system by applying different popular XAI methods, such as SHAP 
and LIME. The full dataset and the code of the AI-based system will be published 
along with this paper at [23]. 

10.3.2 Classification of User Network Activities 

10.3.2.1 Overview 

Our classification system takes as input network traffic data with IP and TCP/UDP 
header fields. Figure 10.5 illustrates an overview of the workflow of our AI-based 
classification consisting of four main phases: dataset generation, dataset prepro-
cessing, feature extraction, and classification. The dataset generation process is 
indeed important for training and testing our application. The dataset preprocessing 
phase is required to describe and transform the input network traffic data into a set 
of features suitable for the classification task. Then, different classification models 
are executed using the feature selection output to predict the user activity in one of

1 https://xgboost.readthedocs.io 
2 https://lightgbm.readthedocs.io 

https://xgboost.readthedocs.io
https://xgboost.readthedocs.io
https://xgboost.readthedocs.io
https://xgboost.readthedocs.io
https://lightgbm.readthedocs.io
https://lightgbm.readthedocs.io
https://lightgbm.readthedocs.io
https://lightgbm.readthedocs.io
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Fig. 10.5 Overview of AI-based classification for user activities 

the three groups: Web, interactive, and video. Below, we describe the four phases in 
more details: 

10.3.2.2 Types of Activities 

We choose the most common user activities on the Internet covering behaviors 
exhibited by the network traffic from different applications. The set of three classes 
are as follows: 

1. Web browsing activity includes the network traffic generated when users search 
or view different web pages, including downloading of multimedia content such 
as text, images, or advertising video. This activity can also include traffic of 
applications that transfer big volume data over the network. 

2. Interactive activity contains network traffic of applications that execute real-
time interactions, for example, chatting application like Discord and Messenger 
or remotely editing files on Google Docs. 

3. Video activity contains network traffic of applications consuming video in 
streaming mode, for example, watching online movies or YouTube videos. 

10.3.2.3 Dataset Generation 

Figure 10.6 depicts the overview of our methodology used to capture network traffic 
to generate the dataset for training and evaluating the classification system. First, 
we capture the traffic using Wireshark [24] to produce pcap files whose size is 
.2.15 Gb when a user performs some normal activities on a single host. Concretely, 
for each class, we perform the following activities: Web (web browsing in blogs, 
social networks, and shopping sites), interactive (chatting applications like Discord 
and Messenger), and video (watching YouTube and movies). Therefore, the main 
dataset is composed of several network traffic traces, each belonging to a specific 
user activity. Then, we filter those pcap files so that there is one source IP and one 
destination IP for each pcap file. Also, all packets with an empty payload and non-
TCP or non-UDP packets should be filtered out. 

We use our open-source Montimage security monitoring framework (MMT) [6], 
in particular “MMT-Probe” module [25] to convert pcap files into csv reports. We 
can also visualize pcap files with “MMT-Operator” [26]. The .csv files characterize
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Fig. 10.6 Traffic dataset generation 

the network traffic using the following features: the timestamp, the protocols, the 
source and destination IP addresses, the payload size in bytes, the number of 
packets, etc. The full dataset in both pcap and csv formats is being published along 
with this paper at [23]. 

10.3.2.4 Dataset Preprocessing 

Some activities may produce multiple traces, for instance, MMT-Probe converts a 
single pcap file capturing a video activity into multiple csv files. Therefore, first of 
call, we need to merge those csv files belonging to a single activity into a single csv 
file for further analysis. Next, we only select interesting data concerning the network 
traffic in the merged csv reports and also compute additional statistics values, like 
data aggregation. We come up with 21 features that will be described later, as shown 
in Table 10.7. Finally, the full dataset consists of 382 labeled traces for three traffic 
classes. The number of traces in Web, interactive, and video activities is 304, 34, 
and 44, respectively. The final set of processed csv files will be used through the 
analysis and evaluation of our AI-based classification system. 

10.3.2.5 Feature Extraction 

Table 10.7 shows 21 features of five main categories. In the group Duration, 
the feature .session_t ime shows the total time wherein a user interacts with 
applications when performing an activity. In the group Protocol, there are two 
features corresponding to the percentage of TCP or UDP traffic. Normally, the 
two feature values always add up to 100%. In groups Uplink and Downlink, we  
use some common features of uplink and downlink communication, such as data
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Table 10.7 Feature selection 

Category Feature Id Feature description 

1 Duration session_time Total time wherein a user interacts with apps 

2 Protocol %tcp_protocol Percentage of TCP traffic 

3 %udp_protocol Percentage of UDP traffic 

4 Uplink ul_data_volume Uplink data volume in bytes 

5 max_ul_volume Maximum of uplink data volume 

6 min_ul_volume Minimum of uplink data volume 

7 avg_ul_volume Average of uplink data volume 

8 std_ul_volume Standard deviation of uplink data volume 

9 %ul_volume Percentage of uplink data volume 

10 nb_uplink_packet Number of uplink packets 

11 ul_packet Percentage of uplink packets 

12 Downlink dl_data_volume Downlink data volume in bytes 

13 max_dl_volume Maximum of downlink data volume 

14 min_dl_volume Maximum of downlink data volume 

15 avg_dl_volume Average of downlink data volume 

16 std_dl_volume Standard deviation of downlink data volume 

17 %dl_volume Percentage of downlink data volume 

18 nb_downlink_packet Number of downlink packets 

19 dl_packet Percentage of downlink packets 

20 Speed kB/s Number of kB per second 

21 nb_packet/s Number of packets per second 

volume in bytes, number of packets, and percentage of packets to the total packets. 
In addition, we also compute other useful values, such as the maximum, minimum, 
mean, and standard deviation. Finally, in the group Speed, we add two more features 
concerning the network speed. This set of features is optimal and suitable to describe 
network traffic in our scenario. 

10.3.2.6 Classification 

We implemented the classification application in Python version 3.10 using the 
open-source popular ML libraries, such as scikit-learn,3 Keras,4 and TensorFlow 2.5 

Data preprocessing and postprocessing have been performed using the numpy and 
pandas libraries. The graphical plots have been obtained using popular libraries, like 
matplotlib and seaborn. For the deep learning model, we used a sequential model as 
our network consists of a linear stack of layers from the Keras library. Concretely,

3 https://scikit-learn.org 
4 https://keras.io 
5 https://www.tensorflow.org 

https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org
https://keras.io
https://keras.io
https://keras.io
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org
https://www.tensorflow.org


10 Toward Anomaly Detection Using Explainable AI 309

a fully connected network structure has three layers: in the first two layers, we used 
the most widely used activation function, i.e., rectified linear unit (ReLU), while in 
the output layer we used the Sigmoid activation function. In addition, we used the 
default models of XGBoost, LightGBM, and random forest for classification. 

The full dataset and the code to perform the evaluation of the experiments can be 
found at [23]. For the evaluation, we randomly split the main dataset, including 382 
traces, into the training and testing datasets with a probability of 70% to perform 
cross validation. Concretely, we used 267 traces to build and train the models and 
evaluate them against the testing dataset of 115 traces. 

10.3.3 Evaluation 

10.3.3.1 Metrics 

We measure the performance of classification models using some popular metrics 
[27], such as the accuracy, precision, recall (or sensitivity), and F1-score metrics. 
Those metrics are defined in the following equations, (3), (4), (5), and (6), and 
are applied to any classification models. More specifically, TP, FP, and FN are 
the number of true positive instances (correctly classified), the number of false 
positive instances (incorrectly classified as a class), and the number of false negative 
instances (incorrectly classified as another class), respectively. The F1-score metric 
takes both precision and recall into account. All those metrics values are in the range 
from 0 to 1: 

.Accuracy = T P + T N

T P + T N + FP + FN
(10.3) 

.Precision = T P

T P + FP
(10.4) 

.Recall = T P

T P + FN
(10.5) 

.F1 = 2 × Precision × Recall

P recision + Recall
= 2 × T P

2 × T P + FP + FN
(10.6) 

10.3.3.2 Supervised Classification Models 

Table 10.8 contains the metric values of the classification results from the testing 
dataset for each user activity. Moreover, Fig. 10.7 provides confusion matrices of 
three classification models to better visualize the relationships between different 
user activities. While the rows of the confusion matrix illustrate the predicted
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Fig. 10.7 Random forest classifier model. (a) Keras model. (b) XGBoost model. (c) LightGBM 
model. (d) Random forest classifier model 

classification distribution for each user activity, the columns represent the true 
activity distribution for each predicted class. In addition, the recall for each class 
is shown in the main diagonal of the confusion matrix. 

As shown in Table 10.8 and Fig. 10.7, the accuracy values of four classification 
models, including the Keras model, the XGBoost model, the LightGBM model, 
and the random forest classifier model, are outstanding with 95% (5 wrong 
predictions), 96% (5 wrong predictions), 98% (2 wrong predictions), and 98% (2 
wrong predictions), respectively. Other metrics like the precision, recall, and F1-
scores are mostly over 95% for all except video activities. Among four classification 
models, the LightGBM model and the random forest classifier model have the best 
performance against the testing dataset as they predict correctly all instances of 
Web and video activities, while the other two models Keras and XGBoost have 
the same four wrong predictions. Interestingly, for interactive activity classification, 
the overall best classification model LightGBM performs worst with two wrong
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predictions, while others have only one. The results suggest that AI classification 
models are complements to each other and combining those supervised models 
could give us better results. 

One possible explanation of the worst results of those models in classifying Web 
and video activities is that users may perform unintentionally those activities at the 
same time, e.g., user browser web pages that access the content in video activities 
or some advertising videos pop up on web pages. Furthermore, Web activities have 
variable behaviors in different forms and share its feature space with other types of 
user activities. 

10.3.4 Explainable AI (XAI) 

10.3.4.1 State-of-the-Art of XAI Method 

Explainable AI (XAI) [20] is a promising set of technologies that increases the 
AI black box models’ transparency to explain why certain decisions were made. 
While AI plays a critical role in different domains, XAI is crucial to enhance 
trust and transparency for people to use future AI-based applications. For instance, 
in the previous subsections, we employed different AI models for user activity 
classification and achieve very good results but still incorrectly classify some 
instances. However, those models are complex with multiple input features and 
not readily interpretable by design, thus hindering users or even developers to 
understand and debug them to improve the performance of the AI-based system. 
Therefore, we need to build an explainability layer on top of the AI models to 
provide post hoc explainability and enhance their interpretability. As depicted in 
Fig. 10.8, some popular post hoc explainability methods are visual explanations, 
local explanations, explanations by example, and feature relevance explanations: 

● Local explanations aim at approximating explanations to less complex solution 
subspaces for model predictions by only considering a subset of data. Local 
Interpretable Model-Agnostic Explanations (LIME) [22] is a widely popular 
technique used in interpreting outputs of black box models in several fields and 
applications. 

● Feature relevance explanations compute relevance scores of the model features 
to quantify the contribution or sensitivity of each feature to the model’s output. 
SHapley Additive exPlanations (SHAP) [21] is a popular XAI technique that 
identifies the importance of each feature value in a certain prediction using 
popular cooperative game theory technique. Permutation feature importance is 
a global XAI method that measures the increase in the prediction error of the 
model after we permute the feature’s tabular values. To assess how important a 
specific feature is, we compare the initial model with the new model on which 
the feature’s values are randomly shuffled. 

● Explanations by example consider the extraction of representative data exam-
ples that relate to the result generated by a certain model, allowing to get a
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Fig. 10.8 Conceptual diagram showing different existing post hoc explainability methods for ML 
models [20] 

better understanding of the model. Some XAI methods of this category are 
counterfactual explanations [28] and adversarial examples. 

Each of those techniques covers a way in which humans explain an object and 
the combination of all methods provides us the whole explanations about the AI 
models. However, as many methods may be suitable for different types of the 
AI models or datasets, we need to consider the best appropriate methods for the 
concrete problem being solved. Next, we apply some popular XAI methods, such 
as SHAP and LIME, to provide both global and local explanations of the AI models 
that we used previously for user network activity classification. Since both SHAP 
and LIME are model-agnostic XAI methods, which imply that they can be applied 
to any ML models, we will discuss in details the explanations for the Keras model. 
The full results can be found at [23]. 

10.3.4.2 SHAP 

Lundberg et al. proposed the SHapley Additive exPlanations (SHAP) method which 
offers a high level of interpretability for a model [21]. The SHAP values, which are
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based on the concepts of game theory, provide both global and local explainability 
of any ML models. For global explainability, the SHAP values show how much 
each input feature contributes, either positively or negatively, to the model’s global 
output. For local explainability, as each prediction has its own set of SHAP values, 
we can explain why the model makes a specific prediction and input feature 
importance. Our implementation uses the KernelExplainer method of the SHAP 
library [35] to calculate SHAP values and build summary and dependence plots. 
Specifically, the KernelExplainer builds a weighted linear regression to compute 
the variable importance values using the dataset, the labeled outputs, and the model 
predictions. In addition, we apply also the dedicated method DeepExplainer that 
performs calculations of the SHAP values for the Keras model faster than the 
previous one KernelExplainer. 

SHAP Summary Plots They show the positive and negative relationships of the AI 
models with its outcome. Figure 10.9 shows SHAP summary plots for Web, interac-
tive, video, and all activity classification using the Keras model. The summary plot 
consists of many dots representing instances of the dataset. Vertical location shows 
the input features that are ranked in descending order in terms of feature importance. 
The horizontal location shows whether the effect of a single feature is associated 
with a higher or lower model prediction. Color illustrates whether that feature has 
a high (in red) or low (in blue) impact on that prediction. As depicted in Fig. 10.9a, 
the feature .%tcp_protocol has a positive and high impact on predicting an instance 
as a Web activity because of a large number of red dots on the x-axis. Similarly, we 
can say the feature .%udp_protocol is negatively correlated with Web activities 
but highly contributed to predict interactive and video activities, as shown in 
Fig. 10.9b, c. Furthermore, from Fig. 10.9d, we observe that the most five important 
features contributing globally to our AI-based classification are .%tcp_protocol, 
.%udp_protocol, .nb_downlink_packet , .dl_packet , and .ul_data_volume. 

SHAP Dependence Plots They show the effect of a single input feature across the 
whole dataset. Figure 10.10 shows some interesting SHAP dependence plots for 
Web activity classification using the Keras model. Each dot in the plot represents a 
single prediction from the dataset. The x-axis and y-axis show the values of an input 
feature from the dataset and its SHAP values underlying how much this feature 
has contributed to the prediction, respectively. Similar to SHAP summary plots, 
the color of SHAP dependence plots corresponds to an interaction effect, like high 
in red and low in blue, between the input feature we are plotting and the second 
feature. For instance, the SHAP dependence plot of the feature . session_t ime

shows that this feature interacts mostly with the feature .nb_downlink_packet , 
as depicted in Fig. 10.10a. In addition, Fig. 10.10b shows that there is an approx-
imately linear and negative trend between the feature .nb_uplink_packet and the 
second feature .%udp_protocol that interacts with .nb_uplink_packet frequently. 
Interestingly, from Fig. 10.10c, d, the most two important features . %tcp_protocol

and .%udp_protocol interact most with other features of the Downlink category, 
such as .%dl_volume and .dl_data_volume. This also explains why the Downlink
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Fig. 10.9 SHAP summary plots for the feature importance of the Keras model. (a) Web activity. 
(b) Interactive activity. (c) Video activity. (d) All three activities 

features have great impact on the final prediction of the Keras model for user activity 
classification, as discussed above. 

10.3.4.3 LIME 

Ribeiro et al. proposed Local Interpretable Model-Agnostic Explanations (LIME) 
method that aims to explain individual predictions of black box AI models. While
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Fig. 10.10 SHAP dependence plots for Web activity classification using the Keras model 

the SHAP values of a feature represent their contribution to one or several sets of 
features, LIME aims to provide local explainability that are locally faithful within 
the surroundings or vicinity of the sample data being explained. The LIME method 
is compatible with many different classifiers and can be used with image, tabular, 
and text data. Similar to the SHAP method, LIME does not take the model into 
account and thus can be applied to any models. Our implementation uses the 
LimeTabularExplainer method of the LIME library [34] to calculate values and 
build plots. 

Figure 10.11 shows the explanation for a single instance from the testing dataset. 
The leftmost values are the prediction probabilities of our classifier, that in this case 
is the Keras model. Concretely, the Keras model predicts correctly this particular 
instance as Web activity with 100% of confidence. The numbers on the right reflect 
the average influence of that particular feature value in the final prediction, for 
example, as a Web/interactive/video activity or not. This set of values encapsulates 
the behavior of the LIME’s linear model in the neighborhood of the sample data that 
we try to explain. 

Given the training dataset, having .ul_packet > 0.84, .min_dl_volume <= 0.12, 
and .%tcp_protocol > 0.47  would increase on average the prediction probability 
of that instance being a Web activity by .0.13, .0.13, and .0.10, respectively. Note 
that the concrete features’ values are in the table in the bottom left. Moreover,
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Fig. 10.11 Illustration of the LIME method results for the prediction using the Keras model 
(details of not interactive and interactive are omitted) 

having .nb_downlink_packet > .−1.06 would decrease on average the prediction 
probability by .0.10. We have the similar observation by looking at the positive 
impact of the input feature .nb_downlink_packet with the value .−1.02 on the 
column Video. This is because .nb_downlink_packet is the second most important 
feature in classifying an instance as a video activity, as discussed earlier in Fig. 10.9c 
showing the SHAP summary plot for video activities. Overall, by only looking at 
the two columns NOT Web and Web, we observe that there are more input features 
with a bigger positive contribution to the prediction probability of this instance 
being a Web activity. This is why the Keras model gives us a prediction of being 
a Web activity for this particular instance. We can also conclude that two XAI 
methods SHAP and LIME are complement to each other and provide us the similar 
explanations of our AI-based application for user activity classification. 

10.3.4.4 Shapash 

Shapash [29] is an open-source Python library to visualize AI models to make 
them reliable, transparent, and understandable for everyone. It is compatible with 
many models, including scikit-learn, XGBoost, and LightGBM models for both 
classification and regression tasks. Moreover, Shapash allows users to easily 
understand their AI models via a nice and user-friendly Web dashboard to navigate
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between the feature importance and global and local explainability with popular 
XAI methods like SHAP, Active Coalition of Variables6 (ACV), and LIME as 
backend. As depicted in Fig. 10.12, on the Shapash’s dashboard of the random 
forest classifier model, we can easily visualize and interact with the dataset and 
observe how each feature contributes to model predictions and local explanation of 
an individual instance. 

Different XAI methods may give us different results or different explanations. 
To increase the degree of confidence of applying different XAI methods, we need to 
define some metrics to assess the quality of their explanations. Shapash can measure 
some interesting metrics [30] to assess the degree of confidence on different XAI 
methods as follows: 

● The consistency metric compares different XAI methods and evaluates them to 
see how close the explanations are to each other, for example, by calculating an 
average distance between the explainability methods. If different XAI methods 
lead to similar results, this would mean a higher degree of confidence can 
be placed in using them. If not, we would need to carefully interpret the 
explanations of each method to identify which one is the best. 

● The stability metric evaluates the similarity between different instances under 
two criteria: those instances must be close in the feature space and have similar 
outputs. If instances are similar, we would expect the respective model output 
for these instances to be similar as well. Therefore, this metric allows for 
building trust in a specific explanation. 

● The compacity metric seeks to reduce complexity and overexplaining by 
measuring the explainability of a decision in relation to only the most important 
features. For each instance, after identifying feature importance using XAI 
methods, we select a subset of features with the highest contributions and 
observe how well they approximate the model. 

However, Shapash has still some limitations: First, users may need to develop 
new or less popular XAI methods that have not been supported by Shapash. 
Second, multi-class classification, like our user activity classification problem, is 
not supported yet to compute some metrics discussed above. Therefore, we simplify 
our problem for classifying an instance as a web activity or not. Herein, we can 
employ the Shapash library to calculate some confidence metrics of the random 
forest classifier model. 

The consistency plots in Fig. 10.13 show the average distances between different 
XAI methods and different types of the SHAP method. Clearly, SHAP and 
LIME are more similar than ACV as the average distance between SHAP and 
LIME is smallest. In addition, Kernel SHAP and sampling SHAP produce more 
similar explanations across all the features. Also, this metric extracts five real 
comparisons from the dataset with distances similar to those in the average distance 
plot.

6 https://github.com/salimamoukou/acv00 

https://github.com/salimamoukou/acv00
https://github.com/salimamoukou/acv00
https://github.com/salimamoukou/acv00
https://github.com/salimamoukou/acv00
https://github.com/salimamoukou/acv00


10 Toward Anomaly Detection Using Explainable AI 319

F
ig
. 1

0.
12
 
Sh

ap
as
h’
s 
da
sh
bo
ar
d 
fo
r 
vi
su
al
iz
in
g 
th
e 
ra
nd
om

 f
or
es
t c
la
ss
ifi
er
 m

od
el



320 M.-D. Nguyen et al.

Fig. 10.13 Consistency of explanations provided by different XAI methods 

The compacity plots in Fig. 10.14 show the link between the level of approxima-
tion, the number of required features to reach it, and the proportion of the dataset 
on which it works. In the left graph, top nine most important features explain at 
least 90% of the model for 100% of the instances. In this case, considering a small 
subset of features could provide a reliable explanation for almost all instances. In 
the right graph, top five features reach at least 80% of the reference model for 100% 
of the instances. Therefore, if we want more precise explanations, we would need 
to consider more than top five features in the explanations. 

Figure 10.15 is the stability plot showing the neighborhood in terms of features 
and model’s output around each particular instance. The x-axis and y-axis show 
the average variability of the feature across the instances’ neighborhood and the 
average importance of the feature across the dataset, respectively. Consequently, 
left features are much more stable in the neighborhood than right ones, and 
top features are more important than bottom ones. As shown in Fig. 10.15, 
.%tcp_protocol, .std_dl_volume, .max_dl_volume, and .%udp_protocol are 
important features and have strong and relatively stable contributions to the 
model’s output. On the other hand, some features that belong to the Uplink 
category, such as .%ul_volume, .nb_uplink_packet , and .ul_data_volume, are  
unstable; thus, we should be careful to interpret explanations around these 
features.
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Fig. 10.14 Compacity of explanations 

Fig. 10.15 Importance and local stability of explanations 

10.4 Discussion 

XAI (explainable artificial intelligence) has recently gained a lot of attention as it 
provides insights into the black box nature of many machine learning models. In the 
context of network classification, XAI can be used to provide explanations for the 
predictions made by the network. This can help users understand why a particular 
prediction was made, which can be useful for debugging the network or improving 
its accuracy. 

XAI-based anomaly detection helps address concerns around false positives and 
false negatives, since the algorithm can provide insights into why certain activity 
is classified as anomalous, and can be refined over time to improve its accuracy.
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However, XAI-based anomaly detection also requires significant expertise and 
resources to develop and maintain. It involves working with large datasets and 
complex statistical models and requires a deep understanding of both network 
security and machine learning. Therefore, it is important to carefully evaluate the 
costs and benefits of XAI-based anomaly detection before implementing it in a 
network environment. More work on this cost assessment is planned by the authors 
of this chapter. 

10.4.1 Conclusion and Future Work 

In this chapter, we present our AI-based application for anomaly detection and 
activity classification based on network traffic. We employ and evaluate different 
supervised learning classification models, such as random forest, Keras, XGBoost, 
and LightGBM against our full dataset. The best model is LightGBM with up to 
98% global accuracy. Furthermore, we provide both global and local explanations 
of our evaluated models using popular XAI methods, like SHAP and LIME, to have 
deeper insights into the dataset and the models’ predictions in our scenario. 

As an extension of this work, we will try to improve our classification system 
by considering more complex (hybrid) ML models, adding more input features and 
taking advantage of the complementarity of different XAI methods to extend the 
existing interpretability analysis. The extra explainability layer could be useful for 
different AI-based applications, such as root cause analysis [31] or our advanced 
encrypted traffic analysis [8]. We also aim to produce larger datasets with more 
types of activities, such as data transfer, idle behavior, or simultaneous activities. 
Some other future work can approach different security scenarios in which we may 
need to identify specific security applications rather than general network traffic, 
for example, intrusion detection, malware detection, and different types of malware 
classification. In addition, we could use our 4G/5G testbeds [32] to generate real 
datasets for mobile user activity classification similar to [33]. 
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