

Become a ninja with Angular
Ninja Squad

Table of Contents
1. Introduction. 1

2. A gentle introduction to ECMAScript 2015+. 4

2.1. Transpilers . 4

2.2. let . 5

2.3. Constants. 6

2.4. Shorthands in object creation . 7

2.5. Destructuring assignment . 7

2.6. Default parameters and values . 9

2.7. Rest operator . 11

2.8. Classes . 12

2.9. Promises . 14

2.10. Arrow functions . 17

2.11. Async/await . 20

2.12. Sets and Maps . 21

2.13. Template literals . 21

2.14. Modules. 22

2.15. Conclusion . 24

3. Going further than ES2015+ . 25

3.1. Dynamic, static and optional types . 25

3.2. Enters TypeScript . 26

3.3. A practical example with DI. 26

4. Diving into TypeScript . 29

4.1. Types as in TypeScript. 29

4.2. Enums . 30

4.3. Return types. 31

4.4. Interfaces . 31

4.5. Optional arguments . 32

4.6. Functions as property . 33

4.7. Classes . 33

4.8. Working with other libraries . 35

4.9. Decorators . 36

5. Advanced TypeScript. 39

5.1. readonly . 39

5.2. keyof . 39

5.3. Mapped type . 40

5.4. Union types and type guards . 42

6. The wonderful land of Web Components. 45

6.1. A brave new world. 45

6.2. Custom elements. 46

6.3. Shadow DOM . 47

6.4. Template . 47

6.5. Frameworks on top of Web Components . 48

7. Grasping Angular’s philosophy. 50

8. From zero to something . 54

8.1. Node.js and NPM. 54

8.2. Angular CLI . 54

8.3. Application structure. 55

8.4. Our first standalone component. 57

8.5. Bootstrapping the app . 59

9. Signals: the building blocks of the application state . 61

9.1. What is a signal? . 61

9.2. Creating, reading and writing signals . 62

10. The templating syntax . 64

10.1. Interpolation . 64

10.2. Using other components in our templates . 67

10.3. Property binding . 69

10.4. Events . 71

10.5. Expressions vs statements . 73

10.6. Local variables . 74

10.7. If, For and Switch with the control flow syntax . 75

10.8. Template variables with @let . 79

10.9. Structural directives . 80

10.10. Template directives . 87

10.11. Summary . 88

11. Building components and directives. 92

11.1. Introduction. 92

11.2. Directives . 92

11.3. Selectors . 92

11.4. Inputs with input() . 94

11.5. The @Input decorator . 95

11.6. Outputs with output() . 96

11.7. The @Output decorator . 98

11.8. Lifecycle . 99

11.9. Component-specific metadata. 101

11.10. Template / Template URL . 101

11.11. Styles / Style URL . 101

12. Reacting to signal changes. 103

12.1. Computed signals . 103

12.2. Effects . 105

13. Styling components and encapsulation . 107

13.1. Shadow DOM strategy. 108

13.2. Emulated strategy . 108

13.3. None strategy . 109

13.4. Styling the host . 109

14. Pipes . 110

14.1. Pied piper . 110

14.2. json. 110

14.3. slice . 111

14.4. keyvalue . 112

14.5. uppercase . 114

14.6. lowercase . 114

14.7. titlecase. 114

14.8. number . 114

14.9. percent . 116

14.10. currency . 116

14.11. date . 117

14.12. async . 117

14.13. A pipe in your code . 118

14.14. Creating your own pipes . 119

15. Dependency injection . 121

15.1. DI yourself . 121

15.2. Easy to develop . 121

15.3. Easy to configure . 124

15.4. Other types of provider . 127

15.5. Hierarchical injectors . 128

15.6. DI without types . 130

15.7. Services provided by the framework . 132

16. Reactive Programming . 134

16.1. Call me maybe. 134

16.2. RxJS . 135

16.3. Signals and RxJS interoperability. 137

17. Testing your app. 141

17.1. The problem with troubleshooting is that trouble shoots back . 141

17.2. Unit tests. 141

17.3. Fake dependencies. 146

17.4. Testing components. 148

17.5. Testing with fake templates, providers… . 152

17.6. Simpler, cleaner unit tests with ngx-speculoos . 153

17.7. End-to-end tests (e2e) . 155

18. Send and receive data through HTTP . 159

18.1. Getting data (provideHttpClient) . 159

18.2. Transforming data . 162

18.3. Advanced options. 162

18.4. Interceptors . 163

18.5. Context . 164

18.6. Tests . 165

19. Router . 167

19.1. En route (provideRouter) . 167

19.2. Navigation . 170

19.3. Redirects. 172

19.4. Matching strategy. 172

19.5. Hierarchical and empty-path routes . 173

19.6. Guards. 175

19.7. Resolvers . 177

19.8. Router events . 179

19.9. Parameters and data . 179

19.10. Bind parameters and data to component inputs . 181

19.11. Lazy loading . 181

20. Forms . 184

20.1. Forms, dear forms . 184

20.2. Template-driven . 186

20.3. Code-driven . 191

20.4. Adding some validation . 194

20.5. Errors and submission . 196

20.6. Add some style . 199

20.7. Creating a custom validator. 200

20.8. Grouping fields . 203

20.9. Reacting to changes . 205

20.10. Updating on blur or on submit only . 207

20.11. FormArray and FormRecord . 208

20.12. Strictly typed forms . 210

20.13. Super simple validation error messages with ngx-valdemort . 212

20.14. Going further: define custom form inputs with ControlValueAccessor 213

20.15. Summary . 216

21. Zones and the Angular magic . 217

21.1. ZoneJS . 217

21.2. Change detection . 218

22. Angular compilation: Just in Time vs Ahead of Time . 220

22.1. Code generation . 220

22.2. Ahead of Time compilation . 222

23. Advanced observables . 224

23.1. Some Like It Hot . 224

23.2. Unsubscriptions . 224

23.3. Automatic unsubscriptions . 226

23.4. Leveraging operators . 227

23.5. Using Subjects as triggers. 231

23.6. Building your own Observable . 231

23.7. Managing state with stores (NgRx, NGXS, Elf and friends) . 233

23.8. Conclusion . 233

24. Advanced components and directives . 234

24.1. Input transforms . 234

24.2. View queries: viewChild . 235

24.3. Content: ng-content . 238

24.4. Content queries: contentChild . 240

24.5. Conditional and contextual content projection: ng-template and ngTemplateOutlet 242

24.6. Host listener . 245

24.7. Host binding . 247

24.8. DOM manipulation with afterEveryRender or afterNextRender. 249

25. Angular modules . 251

25.1. A compilation unit . 251

25.2. Module composition . 252

25.3. Functional, routed modules. 253

26. Internationalization . 254

26.1. The locale . 254

26.2. Default currency. 256

26.3. Translating text. 257

26.4. Process and tooling . 257

26.5. Translating messages in the code. 263

26.6. Pluralization . 264

26.7. Runtime i18n with Transloco . 266

26.8. Best practices. 267

27. Performances . 269

27.1. First load (bundling, compression, lazy-loading, server side rendering). 269

27.2. Reload (caching, service worker) . 272

27.3. Profiling . 273

27.4. Runtime performances . 274

27.5. Production mode . 274

27.6. track in for loops . 274

27.7. Change detection strategies . 276

27.8. Get out of the zone . 282

27.9. Zoneless change detection . 283

27.10. Pure pipes . 283

27.11. Conclusion . 286

28. Signals: advanced topics . 287

28.1. Value equality . 287

28.2. untracked. 287

28.3. Root and component effects . 288

28.4. afterRenderEffect . 289

28.5. Effect cleanup . 289

28.6. Two-way binding with model inputs . 289

28.7. Linked signals with linkedSignal . 291

28.8. Async resources with resource and rxResource. 293

28.9. HTTP calls with httpResource . 297

29. Deferrable Views with @defer . 300

29.1. @placeholder, @loading, and @error . 302

29.2. Conditions . 303

29.3. Prefetching. 305

29.4. How to test deferred loading?. 305

30. Going to production . 307

30.1. Environments and configurations . 307

30.2. strictTemplates . 309

30.3. Package your application . 310

30.4. Server configuration . 310

30.5. Conclusion . 311

31. This is the end. 312

Appendix A: Changelog. 315

A.1. v20.0.0 - 2025-05-28 . 315

A.2. v19.2.0 - 2025-02-26 . 315

A.3. v19.1.0 - 2025-01-16 . 315

A.4. v19.0.0 - 2024-11-19 . 316

A.5. v18.2.0 - 2024-08-15 . 316

A.6. v18.1.0 - 2024-07-10 . 316

A.7. v18.0.0 - 2024-05-22 . 317

A.8. v17.3.0 - 2024-03-14 . 317

A.9. v17.2.0 - 2024-02-15 . 317

A.10. v17.1.0 - 2024-01-18 . 318

A.11. v17.0.0 - 2023-11-08 . 318

A.12. v16.2.0 - 2023-08-10 . 318

A.13. v16.1.0 - 2023-06-14 . 318

A.14. v16.0.0 - 2023-05-17 . 318

A.15. v15.2.0 - 2023-02-23 . 319

A.16. v15.1.0 - 2023-01-11 . 319

A.17. v15.0.0 - 2022-11-16 . 319

A.18. v14.2.0 - 2022-08-26 . 320

A.19. v14.1.0 - 2022-07-21 . 320

A.20. v14.0.0 - 2022-06-03 . 320

A.21. v13.3.0 - 2022-03-16 . 320

A.22. v13.2.0 - 2022-01-27 . 320

A.23. v13.1.0 - 2021-12-10 . 321

A.24. v13.0.0 - 2021-11-04 . 321

A.25. v12.2.0 - 2021-08-05 . 321

A.26. v12.1.0 - 2021-06-25 . 321

A.27. v12.0.0 - 2021-05-13 . 321

A.28. v11.2.0 - 2021-02-12 . 322

A.29. v11.1.0 - 2021-01-21 . 322

A.30. v11.0.0 - 2020-11-12 . 322

A.31. v10.2.0 - 2020-10-22 . 322

A.32. v10.1.0 - 2020-09-03 . 322

A.33. v10.0.0 - 2020-06-25 . 322

A.34. v9.1.0 - 2020-03-26 . 323

A.35. v9.0.0 - 2020-02-07 . 323

A.36. v8.2.0 - 2019-08-01 . 324

A.37. v8.1.0 - 2019-07-02 . 324

A.38. v8.0.0 - 2019-05-29 . 324

A.39. v7.2.0 - 2019-01-09 . 325

A.40. v7.1.0 - 2018-11-27 . 325

A.41. v7.0.0 - 2018-10-25 . 326

A.42. v6.1.0 - 2018-07-26 . 326

A.43. v6.0.0 - 2018-05-04 . 327

A.44. v5.2.0 - 2018-01-10 . 328

A.45. v5.0.0 - 2017-11-02 . 329

A.46. v4.3.0 - 2017-07-16 . 329

A.47. v4.2.0 - 2017-06-09 . 330

A.48. v4.0.0 - 2017-03-24 . 330

A.49. v2.4.4 - 2017-01-25 . 332

A.50. v2.2.0 - 2016-11-18 . 332

A.51. v2.0.0 - 2016-09-15 . 333

A.52. v2.0.0-rc.5 - 2016-08-25 . 333

A.53. v2.0.0-rc.0 - 2016-05-06 . 334

A.54. v2.0.0-alpha.47 - 2016-01-15 . 336

Chapter 1. Introduction
So you want to be a ninja, huh? Well, you’re in good hands!

But we have a long road, you and me, with lots of things to learn :).

We’re living exciting times in Web development. There is a new Angular. A complete rewrite of the
good old AngularJS. Why a complete rewrite? Was AngularJS 1.x not enough?

I like the old AngularJS very much. In our small company, we have built several projects with it,
contributed code to the core framework, trained hundreds of developers (yes, really), and even
written a book about it (in French, but that still counts).

AngularJS is incredibly productive once you have mastered it. Despite all of this, it doesn’t prevent
us from seeing its weaknesses. AngularJS is not perfect, with some very difficult concepts to grasp,
and traps hard to avoid.

Most of all, the Web has changed since AngularJS was conceived. JavaScript has changed. New
frameworks have emerged, with great ideas, or better implementation. We are not the kind of
developers to tell you that you should use this tool instead of that one. We just happen to know
some tools very well, and know what fits the project. AngularJS was one of those tools, allowing us
to build well-tested web applications, and to build them fast. We also tried to bend it where it didn’t
fit. Don’t blame us, it happens to the best of us.

Angular has a lot of interesting points, and a vision that few other frameworks have. It has been
designed for the Web of tomorrow, with ECMAScript 6, Web Components and Mobile in mind.
When it was first announced, I was, like many, sad at first that the 2.0 version would not be a
simple update (I’m sorry if you’re just learning about it).

But I was also eager to see what solution the talented Google team would come up with.

So I started to write this ebook, pretty much after the first commits, reading the design docs,
watching the conference videos, reviewing every commit since the beginning. When I wrote my
first ebook, about AngularJS 1.x, it was already a stable and known beast. This one is very different.
It started when Angular was not even clear in the minds of its designers. Because I knew I would
learn a lot, not only about Angular but also about the concepts that would shape the future of Web
development, some of which have nothing to do with Angular. And I did. I had to dig deep about
some of these concepts, and I hope that you will enjoy the journey of learning about them, and how
they relate to Angular, as much as I did.

The ambition of this ebook is to evolve with Angular. If it turns out that Angular is the great
framework we hope, you will receive updates with the best practices and some new features as
they emerge (and with fewer typos, because, despite our countless reviews, there are probably
some left…). And I would love to hear back from you - if some chapters aren’t clear enough, if you
spot a mistake or if you have a better way for some parts.

I’m fairly confident about the code samples, though, as they are all in a real project, with several
hundred unit tests. It was the only way to write an ebook with a newborn framework, and to be
able to catch all the problems that inevitably arose with each release.

1

Even if you are not convinced by Angular in the end, I’m pretty sure you will have learnt a thing or
two along your read.

If you have bought the "Pro package" (thank you!), you’ll build a small application piece by piece
along the book. This application is called PonyRacer, and it is a website where you can bet on pony
races. You can even test the application here! Go on, I’ll wait for you.

Fun, isn’t it?

But it’s not just a fun application, it’s a complete one. You’ll have to write components, forms, tests,
use the router, call an HTTP API (that we have already built) and even do Web Sockets. It has all the
pieces you’ll need for writing a real app. Each exercise will come with a skeleton, a set of
instructions and a few tests. Once you have all the tests in success, you have completed the
exercise!

The first 6 exercises of the Pro Pack are free. The other ones are only accessible if you buy our
online training. At the end of every chapter, we will link to the exercises of the Pro Pack that are
related to the features explained in the chapter, mark the free ones with the following label: ,
and mark the other ones with the following label: .

If you did not buy the "Pro package" (but really you should), don’t worry: you’ll learn everything
that’s needed. But you will not build this awesome application with beautiful ponies in pixel art.
Your loss :)!

You will quickly see that, beyond Angular itself, we have tried to explain the core concepts the
framework uses. The first chapters don’t even talk about Angular: they are what I call the "Concept
Chapters", here to help you level up with the new and exciting things happening in our field.

Then we will slowly build our knowledge of the framework, with components, templates, pipes,
forms, http, routing, tests…

And finally we will learn about the advanced topics. But that’s another story.

Enough with the introduction, let’s start with one of the things that will definitely change the way
we code: ECMAScript 6.

 The ebook is using Angular version 20.0.1 for the examples.



Angular and versioning

This book used to be named "Become a Ninja with Angular 2". Because, originally,
Google named its framework Angular 2. But in October 2016, they reviewed their
versioning and release policy.

We now have a major release every six months. And the framework should be
called just “Angular”.

Don’t worry, these releases are not a complete rewrite with no backward
compatibility like Angular 2 was to AngularJS 1.x.

As this ebook is updated (for free) with all the future major releases, it is now

2

https://ng-ponyracer.ninja-squad.com

named "Become a Ninja with Angular" (without any number).

3

Chapter 2. A gentle introduction to
ECMAScript 2015+
If you’re reading this, we can be pretty sure you have heard of JavaScript. What we call JS is one
implementation of a standard specification, called ECMAScript. The spec version you know the
most about is version 5, that has been used these last years.

But, in 2015, a new version of the spec was released, called ECMAScript 2015, ES2015, or sometimes
ES6, as it was the sixth version of the specification. And since then, we have had a yearly release of
the specification (ES2016, ES2017, etc.), with a few new features every year. From now on, I’ll
mainly say ES2015, as it is the most popular way to reference it, or ES2015+ to reference ES2015,
ES2016, ES2017, etc. It adds A LOT of things to JavaScript, like classes, constants, arrow functions,
generators… It has so much stuff that we can’t go through all of it, as it would take the whole book.
But Angular has been designed to take advantage of the brand new version of JavaScript. And, even
if you can still use your old JavaScript, things will be more awesome if you use ES2015+. So we’re
going to spend some time in this chapter to get a grip on what ES2015+ is, and what will be useful to
us when building an Angular app.

That means we’re going to leave a lot of stuff aside, and we won’t be exhaustive on the rest, but it
will be a great starting point. If you already know ES2015+, you can skip these pages. And if you
don’t, you will learn some pretty amazing things that will be useful to you even if you end up not
using Angular in the future!

2.1. Transpilers
The sixth version of the specification reached its final state in 2015. So it’s now supported by
modern browsers, but there are still browsers in the wild that don’t support it yet, or only support
it partially. And of course, now that we have a new specification every year (ES2016, ES2017, etc.),
some browsers will always be late. You might be thinking: what’s the point of all this, if I need to be
careful on what I can use? And you’d be right, because there aren’t that many apps that can afford
to ignore older browsers. But, since virtually every JS developer who has tried ES2015+ wants to
write ES2015+ apps, the community has found a solution: a transpiler.

A transpiler takes ES2015+ source code and generates ES5 code that can run in every browser. It
even generates the source map files, which allows you to debug directly the ES2015+ source code
from the browser. Back in 2015, there were two main alternatives to transpile ES2015+ code:

• Traceur, a Google project, historically the first one but now unmaintained.

• Babeljs, a project started by a young developer, Sebastian McKenzie (17 years old at the time,
yeah, that hurts me too), with a lot of diverse contributions.

The source code of Angular itself was at first transpiled with Traceur, before switching to
TypeScript. TypeScript is an open source language developed by Microsoft. It’s a typed superset of
JavaScript that compiles to plain JavaScript, but we’ll dive into it very soon.

Let’s be honest: Babel has waaaay more steam than Traceur nowadays, so I would advise you to use
it. It is now the de-facto standard in this area.

4

https://github.com/google/traceur-compiler
https://babeljs.io/

So if you want to play with ES2015+, or set it up in one of your projects, take a look at these
transpilers, and add a build step to your process. It will take your ES2015+ source files and generate
the equivalent ES5 code. It works very well but, of course, some of the new features are quite hard
or impossible to transform in ES5, as they just did not exist. However, the current state is largely
good enough for us to use without worrying, so let’s have a look at all these shiny new things we
can do in JavaScript!

2.2. let
If you have been writing JS for some time, you know that the var declaration is tricky. In pretty
much any other language, a variable is declared where the declaration is done. But in JS, there is a
concept, called "hoisting", which actually declares a variable at the top of the function, even if you
declared it later.

So declaring a variable like name in the if block:

function getPonyFullName(pony) {
 if (pony.isChampion) {
 var name = 'Champion ' + pony.name;
 return name;
 }
 return pony.name;
}

is equivalent to declaring it at the top of the function:

function getPonyFullName(pony) {
 var name;
 if (pony.isChampion) {
 name = 'Champion ' + pony.name;
 return name;
 }
 // name is still accessible here
 return pony.name;
}

ES2015 introduces a new keyword for variable declaration, let, behaving much more like what you
would expect:

function getPonyFullName(pony) {
 if (pony.isChampion) {
 let name = 'Champion ' + pony.name;
 return name;
 }
 // name is not accessible here
 return pony.name;

5

}

The variable name is now restricted to its block. let has been introduced to replace var in the long
run, so you can pretty much drop the good old var keyword and start using let instead. The cool
thing is, it should be painless to use let, and if you can’t, you have probably spotted something
wrong with your code!

2.3. Constants
Since we are on the topic of new keywords and variables, there is another one that can be of
interest. ES2015 introduces const to declare… constants! When you declare a variable with const, it
has to be initialized and you can’t assign another value later.

const poniesInRace = 6;

poniesInRace = 7; // SyntaxError

As for variables declared with let, constants are not hoisted and are only declared at the block
level.

One small thing might surprise you: you can initialize a constant with an object and later modify
the object content.

const PONY = {};
PONY.color = 'blue'; // works

But you can’t assign another object:

const PONY = {};

PONY = {color: 'blue'}; // SyntaxError

Same thing with arrays:

const PONIES = [];
PONIES.push({ color: 'blue' }); // works

PONIES = []; // SyntaxError

6

2.4. Shorthands in object creation
Not a new keyword, but it can also catch your attention when reading ES2015 code. There is now a
shortcut for creating objects, when the object property you want to create has the same name as the
variable used as the value.

Example:

function createPony() {
 const name = 'Rainbow Dash';
 const color = 'blue';
 return { name: name, color: color };
}

can be simplified to:

function createPony() {
 const name = 'Rainbow Dash';
 const color = 'blue';
 return { name, color };
}

Similarly, when you want to define a method in the object:

function createPony() {
 return {
 run: () => {
 console.log('Run!');
 }
 };
}

you can simplify it to:

function createPony() {
 return {
 run() {
 console.log('Run!');
 }
 };
}

2.5. Destructuring assignment
This new feature can also catch your attention when reading ES2015 code. There is now a shortcut

7

for assigning variables from objects or arrays.

In ES5:

var httpOptions = { timeout: 2000, isCache: true };
// later
var httpTimeout = httpOptions.timeout;
var httpCache = httpOptions.isCache;

Now, in ES2015, you can do:

const httpOptions = { timeout: 2000, isCache: true };
// later
const { timeout: httpTimeout, isCache: httpCache } = httpOptions;

And you will have the same result. It can be a little disturbing, as the key is the property to look for
in the object and the value is the variable to assign. But it works great! Even better: if the variable
you want to assign has the same name as the property, you can simply write:

const httpOptions = { timeout: 2000, isCache: true };
// later
const { timeout, isCache } = httpOptions;
// you now have a variable named 'timeout'
// and one named 'isCache' with correct values

The cool thing is that it also works with nested objects:

const httpOptions = { timeout: 2000, cache: { age: 2 } };
// later
const {
 cache: { age }
} = httpOptions;
// you now have a variable named 'age' with value 2

And the same is possible with arrays:

const timeouts = [1000, 2000, 3000];
// later
const [shortTimeout, mediumTimeout] = timeouts;
// you now have a variable named 'shortTimeout' with value 1000
// and a variable named 'mediumTimeout' with value 2000

Of course it also works for arrays in arrays, or arrays in objects, etc.

One interesting use of this can be for multiple return values. Imagine a function randomPonyInRace

8

that returns a pony and its position in a race.

function randomPonyInRace() {
 const pony = { name: 'Rainbow Dash' };
 const position = 2;
 // ...
 return { pony, position };
}

const { position, pony } = randomPonyInRace();

The new destructuring feature assigns the position returned by the method to the position variable,
and the pony to the pony variable! And if you don’t care about the position, you can write:

function randomPonyInRace() {
 const pony = { name: 'Rainbow Dash' };
 const position = 2;
 // ...
 return { pony, position };
}

const { pony } = randomPonyInRace();

And you will only have the pony!

2.6. Default parameters and values
One of the characteristics of JavaScript is that it allows developers to call a function with any
number of arguments:

• if you pass more arguments than the number of the parameters, the extra arguments are
ignored (well, you can still use them with the special arguments variable, to be accurate).

• if you pass fewer arguments than the number of the parameters, the missing parameter will be
set to undefined.

The last case is the one that is the most relevant to us. Usually, we pass fewer arguments when the
parameters are optional, like in the following example:

function getPonies(size, page) {
 size = size || 10;
 page = page || 1;
 // ...
 server.get(size, page);
}

The optional parameters usually have a default value. The OR operator will return the right

9

operand if the left one is undefined, as will be the case if the parameter was not provided (to be
completely accurate, if it is falsy, i.e 0, false, "", etc.). Using this trick, the function getPonies can
then be called:

getPonies(20, 2);
getPonies(); // same as getPonies(10, 1);
getPonies(15); // same as getPonies(15, 1);

This worked alright, but it was not really obvious that the parameters were optional ones with
default values, without reading the function body. ES2015 introduces a more precise way to have
default parameters, directly in the function definition:

function getPonies(size = 10, page = 1) {
 // ...
 server.get(size, page);
}

Now it is perfectly clear that the size parameter will be 10 and the page parameter will be 1 if not
provided.


There is a small difference though, as now 0 or "" are valid values and will not be
replaced by the default one, as size = size || 10 would have done. It will be more
like size = size === undefined ? 10: size;.

The default value can also be a function call:

function getPonies(size = defaultSize(), page = 1) {
 // the defaultSize method will be called if size is not provided
 // ...
 server.get(size, page);
}

or even other variables, either global variables, or other parameters of the function:

function getPonies(size = defaultSize(), page = size - 1) {
 // if page is not provided, it will be set to the value
 // of the size parameter minus one.
 // ...
 server.get(size, page);
}

This mechanism for parameters can also be applied to values, for example when using a
destructuring assignment:

const { timeout = 1000 } = httpOptions;

10

// you now have a variable named 'timeout',
// with the value of 'httpOptions.timeout' if it exists
// or 1000 if not

2.7. Rest operator
ES2015 introduces a new syntax to define variable parameters in functions. As said in the previous
part, you could always pass extra arguments to a function and get them with the special arguments
variable. So you could have done something like this:

function addPonies(ponies) {
 for (var i = 0; i < arguments.length; i++) {
 poniesInRace.push(arguments[i]);
 }
}

addPonies('Rainbow Dash', 'Pinkie Pie');

But I think we can agree that it’s neither pretty nor obvious: since the ponies parameter is never
used, how do we know that we can pass several ponies?

ES2015 gives us a way better syntax, using the rest operator …:

function addPonies(...ponies) {
 for (let pony of ponies) {
 poniesInRace.push(pony);
 }
}

ponies is now a true array on which we can iterate. The for … of loop used for iteration is also a
new feature in ES2015. It makes sure that you iterate over the collection values, and not also over
its properties as for … in would do. Don’t you think our code is prettier and more obvious now?

The rest operator can also work when destructuring data:

const [winner, ...losers] = poniesInRace;
// assuming 'poniesInRace' is an array containing several ponies
// 'winner' will have the first pony,
// and 'losers' will be an array of the other ones

The rest operator is not to be confused with the spread operator which, I’ll give you that, looks
awfully similar! But the spread operator is the opposite: it takes an array and spreads it in variable
arguments. The only examples I have in mind are functions like min or max, that receive variable
arguments, and that you might want to call on an array:

11

const ponyPrices = [12, 3, 4];
const minPrice = Math.min(...ponyPrices);

2.8. Classes
One of the most emblematic new features, and one that we will vastly use when writing an Angular
app: ES2015 introduces classes to JavaScript! You can now easily use classes and inheritance in
JavaScript. You always could, using prototypal inheritance, but that was not an easy task, especially
for beginners.

Now it’s very easy, take a look:

class Pony {
 constructor(color) {
 this.color = color;
 }

 toString() {
 return `${this.color} pony`;
 // see that? It is another cool feature of ES2015, called template literals
 // we'll talk about these quickly!
 }
}

const bluePony = new Pony('blue');
console.log(bluePony.toString()); // blue pony

Class declarations, unlike function declarations, are not hoisted, so you need to declare a class
before using it. You may have noticed the special function constructor. It is the function being
called when we create a new pony, with the new operator. Here it needs a color, and we create a
new Pony instance with the color set to "blue". A class can also have methods, callable on an
instance, as the method toString() here.

It can also have static attributes and methods:

class Pony {
 static defaultSpeed() {
 return 10;
 }
}

Static methods can be called only on the class directly:

const speed = Pony.defaultSpeed();

12

A class can have getters and setters, if you want to hook onto these operations:

class Pony {
 get color() {
 console.log('get color');
 return this._color;
 }

 set color(newColor) {
 console.log(`set color ${newColor}`);
 this._color = newColor;
 }
}
const pony = new Pony();
pony.color = 'red';
// 'set color red'
console.log(pony.color);
// 'get color'
// 'red'

And, of course, if you have classes, you also have inheritance out of the box in ES2015.

class Animal {
 speed() {
 return 10;
 }
}
class Pony extends Animal {}
const pony = new Pony();
console.log(pony.speed()); // 10, as Pony inherits the parent method

Animal is called the base class, and Pony the derived class. As you can see, the derived class has the
methods of the base class. It can also override them:

class Animal {
 speed() {
 return 10;
 }
}
class Pony extends Animal {
 speed() {
 return super.speed() + 10;
 }
}
const pony = new Pony();
console.log(pony.speed()); // 20, as Pony overrides the parent method

13

As you can see, the keyword super allows calling the method of the base class, with super.speed()
for example.

The super keyword can also be used in constructors, to call the base class constructor:

class Animal {
 constructor(speed) {
 this.speed = speed;
 }
}

class Pony extends Animal {
 constructor(speed, color) {
 super(speed);
 this.color = color;
 }
}

const pony = new Pony(20, 'blue');
console.log(pony.speed); // 20

2.9. Promises
Promises are not so new, and you might know them or use them already, as they were a big part of
AngularJS 1.x. But since you will use them a lot in Angular, and even if you’re just using JS, I think
it’s important to make a stop.

Promises aim to simplify asynchronous programming. Our JS code is full of async stuff, like AJAX
requests, and usually we use callbacks to handle the result and the error. But it can get messy, with
callbacks inside callbacks, and it makes the code hard to read and to maintain. Promises are much
nicer than callbacks, as they flatten the code, and thus make it easier to understand. Let’s consider
a simple use case, where we need to fetch a user, then their rights, then update a menu when we
have these.

With callbacks:

getUser(login, function (user) {
 getRights(user, function (rights) {
 updateMenu(rights);
 });
});

Now, let’s compare it with promises:

getUser(login)
 .then(function (user) {
 return getRights(user);

14

 })
 .then(function (rights) {
 updateMenu(rights);
 })

I like this version, because it executes as you read it: I want to fetch a user, then get their rights,
then update the menu.

As you can see, a promise is a 'thenable' object, which simply means it has a then method. This
method takes two arguments: one success callback and one reject callback. The promise has three
states:

• pending: while the promise is not done, for example, our server call is not completed yet.

• fulfilled: when the promise is completed with success, for example, the server call returns an
OK HTTP status.

• rejected: when the promise has failed, for example, the server returns a 404 status.

When the promise is fulfilled, then the success callback is called, with the result as an argument. If
the promise is rejected, then the reject callback is called, with a rejected value or an error as the
argument.

So, how do you create a promise? Pretty simple, there is a new class called Promise, whose
constructor expects a function with two parameters, resolve and reject.

const getUser = function (login) {
 return new Promise(function (resolve, reject) {
 // async stuff, like fetching users from server, returning a response
 if (response.status === 200) {
 resolve(response.data);
 } else {
 reject('No user');
 }
 });
};

Once you have created the promise, you can register callbacks, using the then method. This method
can receive two parameters, the two callbacks you want to call in case of success or in case of
failure. Here we only pass a success callback, ignoring the potential error:

getUser(login)
 .then(function (user) {
 console.log(user);
 })

Once the promise is resolved, the success callback (here simply logging the user on the console) will
be called.

15

The cool part is that it flattens the code. For example, if your resolve callback is also returning a
promise, you can write:

getUser(login)
 .then(function (user) {
 return getRights(user) // getRights is returning a promise
 .then(function (rights) {
 return updateMenu(rights);
 });
 })

but more beautifully:

getUser(login)
 .then(function (user) {
 return getRights(user); // getRights is returning a promise
 })
 .then(function (rights) {
 return updateMenu(rights);
 })

Another interesting thing is the error handling, as you can use one handler per promise, or one for
all the chain.

One per promise:

getUser(login)
 .then(
 function (user) {
 return getRights(user);
 },
 function (error) {
 console.log(error); // will be called if getUser fails
 return Promise.reject(error);
 }
)
 .then(
 function (rights) {
 return updateMenu(rights);
 },
 function (error) {
 console.log(error); // will be called if getRights fails
 return Promise.reject(error);
 }
)

One for the chain:

16

getUser(login)
 .then(function (user) {
 return getRights(user);
 })
 .then(function (rights) {
 return updateMenu(rights);
 })
 .catch(function (error) {
 console.log(error); // will be called if getUser or getRights fails
 })

You should seriously look into Promises, because they are going to be the new way to write APIs,
and every library will use them. Even the standard ones: the new Fetch API does for example.

2.10. Arrow functions
One thing I like a lot in ES2015 is the new arrow function syntax, using the 'fat arrow' operator (⇒).
It is SO useful for callbacks and anonymous functions!

Let’s take our previous example with promises:

getUser(login)
 .then(function (user) {
 return getRights(user); // getRights is returning a promise
 })
 .then(function (rights) {
 return updateMenu(rights);
 })

can be written with arrow functions like this:

getUser(login)
 .then(user => getRights(user))
 .then(rights => updateMenu(rights))

How cool is it? THAT cool!

Note that the return is also implicit if there is no block: no need to write user ⇒ return
getRights(user). But if we did have a block, we would need the explicit return:

getUser(login)
 .then(user => {
 console.log(user);
 return getRights(user);
 })

17

https://fetch.spec.whatwg.org/

 .then(rights => updateMenu(rights))

And it has a special trick, a great power over normal functions: the this stays lexically bounded,
which means that these functions don’t have a new this as other functions do. Let’s take an
example, where you are iterating over an array with the map function to find the max.

In ES5:

var maxFinder = {
 max: 0,
 find: function (numbers) {
 // let's iterate
 numbers.forEach(function (element) {
 // if the element is greater, set it as the max
 if (element > this.max) {
 this.max = element;
 }
 });
 }
};

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

You would expect this to work, but it doesn’t. If you have a good eye, you may have noticed that the
forEach in the find function uses this, but the this is not bound to an object. So this.max is not the
max of the maxFinder object… Of course you can fix it easily, using an alias:

var maxFinder = {
 max: 0,
 find: function (numbers) {
 var self = this;
 numbers.forEach(function (element) {
 if (element > self.max) {
 self.max = element;
 }
 });
 }
};

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

or binding the this:

18

var maxFinder = {
 max: 0,
 find: function (numbers) {
 numbers.forEach(
 function (element) {
 if (element > this.max) {
 this.max = element;
 }
 }.bind(this)
);
 }
};

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

or even passing it as a second parameter of the forEach function (as it was designed for):

var maxFinder = {
 max: 0,
 find: function (numbers) {
 numbers.forEach(function (element) {
 if (element > this.max) {
 this.max = element;
 }
 }, this);
 }
};

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

But there is now an even more elegant solution with the arrow function syntax:

const maxFinder = {
 max: 0,
 find: function (numbers) {
 numbers.forEach(element => {
 if (element > this.max) {
 this.max = element;
 }
 });
 }
};

maxFinder.find([2, 3, 4]);

19

// log the result
console.log(maxFinder.max);

That makes the arrow functions the perfect candidates for anonymous functions in callbacks!

2.11. Async/await
We were talking about promises earlier, and it’s worth knowing that another keyword was
introduced to handle them more synchronously: await.

This is not a feature introduced in ECMAScript 2015 but in ECMAScript 2017, and to use await, your
function must be marked as async. When you use the await keyword in front of a Promise, you
pause the execution of your async function, wait for the Promise to resolve, and then resume the
execution of the async function. The returned value will be the resolved value.

So we can write our previous example using async/await like this:

async function getUserRightsAndUpdateMenu() {
 // getUser is a promise
 const user = await getUser(login);
 // getRights is a promise
 const rights = await getRights(user);
 updateMenu(rights);
}
await getUserRightsAndUpdateMenu();

And your code now looks like it is synchronous! Another cool feature of async/await is that you can
use a simple try/catch to handle errors:

async function getUserRightsAndUpdateMenu() {
 try {
 // getUser is a promise
 const user = await getUser(login);
 // getRights is a promise
 const rights = await getRights(user);
 updateMenu(rights);
 } catch (e) {
 // will be called if getUser, getRights or updateMenu fails
 console.log(e);
 }
}
await getUserRightsAndUpdateMenu();

Note that async/await is still asynchronous, although it looks like synchronous. The function
execution is paused and resumed, but just like with callbacks, this doesn’t block the thread: other
JavaScript events can be handled while the execution is paused.

20

2.12. Sets and Maps
This is a short one: you now have proper collections in ES2015. Yay \o/! We used to have dictionaries
filling the role of a map, but we can now use the class Map:

const cedric = { id: 1, name: 'Cedric' };
const users = new Map();
users.set(cedric.id, cedric); // adds a user
console.log(users.has(cedric.id)); // true
console.log(users.size); // 1
users.delete(cedric.id); // removes the user

We also have a class Set:

const cedric = { id: 1, name: 'Cedric' };
const users = new Set();
users.add(cedric); // adds a user
console.log(users.has(cedric)); // true
console.log(users.size); // 1
users.delete(cedric); // removes the user

You can iterate over a collection, with the new syntax for … of:

for (let user of users) {
 console.log(user.name);
}

You’ll see that the for … of syntax is the one the Angular team chose in order to iterate over a
collection in a template.

2.13. Template literals
Composing strings has always been painful in JavaScript, as we usually have to use concatenation:

const fullname = 'Miss ' + firstname + ' ' + lastname;

Template literals are a new small feature, where you have to use backticks (`) instead of quotes or
simple quotes, and you have a basic templating system, with multiline support:

const fullname = `Miss ${firstname} ${lastname}`;

The multiline support is especially great when your are writing HTML strings, as we will do for our
Angular components:

21

const template = `<div>
 <h1>Hello</h1>
</div>`;

One last feature is the ability to tag them. You can define a function, and apply it to a template
string. Here askQuestion adds an interrogation point at the end of the string:

const askQuestion = strings => strings + '?';
const template = askQuestion`Hello there`;

So what’s the difference with a simple function? The tag function in fact receives several
arguments:

• an array of the static parts of the string

• the values resulting from the evaluation of the expressions

For example if we have a template string containing expressions:

const person1 = 'Cedric';
const person2 = 'Agnes';
const template = `Hello ${person1}! Where is ${person2}?`;

then the tag function will receive the various static and dynamic parts. Here we have a tag function
to uppercase the names of the protagonists:

const uppercaseNames = (strings, ...values) => {
 // `strings` is an array with the static parts ['Hello ', '! Where is ', '?']
 // `values` is an array with the evaluated expressions ['Cedric', 'Agnes']
 const names = values.map(name => name.toUpperCase());
 // `names` now has ['CEDRIC', 'AGNES']
 // let's merge the `strings` and `names` arrays
 return strings.map((string, i) => `${string}${names[i] ? names[i] : ''}`).join('');
};
const result = uppercaseNames`Hello ${person1}! Where is ${person2}?`;
// returns 'Hello CEDRIC! Where is AGNES?'

Let’s now talk about one of the big changes introduced: modules.

2.14. Modules
A standard way to organize functions in namespaces and to dynamically load code in JS has always
been lacking. Node.js has been one of the leaders in this, with a thriving ecosystem of modules
using the CommonJS convention. On the browser side, there is also the AMD (Asynchronous Module
Definition) API, used by RequireJS. But none of these were a real standard, thus leading to endless
discussions on what’s best.

22

http://requirejs.org/

ES2015 aims to create a syntax using the best from both worlds, without caring about the actual
implementation. The Ecma TC39 committee (which is responsible for evolving ES2015 and
authoring the specification of the language) wanted to have a nice and easy syntax (that’s arguably
CommonJS’s strong suit), but to support asynchronous loading (like AMD), and a few goodies like
the possibility to statically analyze the code by tools and support cyclic dependencies nicely. The
new syntax handles how you export and import things to and from modules.

This module thing is really important in Angular, as pretty much everything is defined in modules,
which you have to import when you want to use them. Let’s say I want to expose a function to bet
on a specific pony in a race and a function to start the race.

In races-service.js:

export function bet(race, pony) {
 // ...
}
export function start(race) {
 // ...
}

As you can see, this is fairly easy: the new keyword export does a straightforward job and exports
the two functions.

Now, let’s say one of our application components needs to call these functions.

In another file:

import { bet, start } from './races-service';

// later
bet(race, pony1);
start(race);

That’s what is called a named export. Here we are importing the two functions, and we have to
specify the filename containing these functions - here 'races-service'. Of course, you can import
only one method if you need, and you can even give it an alias:

import { start as startRace } from './races-service';

// later
startRace(race);

And if you want to use all the exported symbols (functions, constants, classes etc.) from the module,
you can use a wildcard '*'.

23

As you would do with other languages, use the wildcard with care, only when you really want all
the functions, or most of them. As this will be analyzed by our IDEs, we will see auto-import soon
and that will free us from the bother of importing the right things.

With a wildcard, you have to use an alias, and I kind of like it, because it makes the rest of the code
clearer:

import * as racesService from './races-service';

// later
racesService.bet(race, pony1);
racesService.start(race);

If your module exposes only one function or value or class, you don’t have to use named export,
and you can leverage the default keyword. It works great for classes for example:

// pony.js
export default class Pony {}
// races-service.js
import Pony from './pony';

Notice the lack of curly braces to import a default. You can import it with the alias you want, but to
be consistent, it’s better to call the import with the module name (except if you have multiple
modules with the same name of course, then you can choose an alias that allows you to distinguish
them). And of course, you can mix default export with named ones, but obviously with only one
default per module.

In Angular, you’re going to use a lot of these imports in your app. Each component and service will
be a class, generally isolated in their own file and exported, and then imported when needed in
other components.

2.15. Conclusion
That ends our gentle introduction to ES2015+. We skipped some other parts, but if you’re
comfortable with this chapter, you will have no problem writing your apps in ES2015+. If you want
to have a deeper understanding of this, I highly recommend Exploring JS by Axel Rauschmayer or
Understanding ES6 from Nicholas C. Zakas… Both ebooks can be read online for free, but don’t
forget to buy it to support their authors. They have done great work! Actually I’ve re-read Speaking
JS, Axel’s previous book, and I again learned a few things, so if you want to refresh your JS skills, I
definitely recommend it!

24

https://exploringjs.com/
https://leanpub.com/understandinges6
http://speakingjs.com
http://speakingjs.com

Chapter 3. Going further than ES2015+

3.1. Dynamic, static and optional types
You may have heard that Angular apps can be written in TypeScript. And you may be wondering
what TypeScript is, or what it brings to the table.

JavaScript is dynamically typed. That means you can do things like:

let pony = 'Rainbow Dash';
pony = 2;

And it works. That’s great for all sort of things, as you can pass pretty much any object to a function
and it works, as long as the object has the properties the function needs:

const pony = { name: 'Rainbow Dash', color: 'blue' };
const horse = { speed: 40, color: 'black' };
const printColor = animal => console.log(animal.color);
// works as long as the object has a `color` property

This dynamic nature allows wonderful things but it is also a pain for a few other reasons compared
to more statically-typed languages. The most obvious might be when you call an unknown function
in JS from another API, you pretty much have to read the doc (or, worse, the function code) to know
what the parameter should look like. Take a look at our previous example: the method printColor
needs a parameter with a color property. That can be hard to guess, and of course it is much worse
in day-to-day work, where we use various libraries and services developed by fellow developers.
One of Ninja Squad’s co-founders is often complaining about the lack of types in JS, and finds it
regrettable he can’t be as productive and write as good code as he would in a more statically-typed
environment. And he is not entirely wrong, even if he is sometimes ranting for the sake of it too!
Without type information, IDEs have no real clue if you’re doing something wrong, and tools can’t
help you find bugs in your code. Of course, we have tests in our apps, and Angular has always been
keen on making testing easy, but it’s nearly impossible to have a perfect test coverage.

That leads to the maintainability topic. JS code can become hard to maintain, despite tests and
documentation. Refactoring a huge JS app is no easy task, compared to what could be done in other
statically-typed languages. Maintainability is a very important topic, and types help humans and
tools to avoid mistakes when writing and maintaining code. Google has always been keen to push
new solutions in that direction: it’s easy to understand as they have some of the biggest web apps of
the world, with GMail, Google apps, Maps… So they have tried several approaches to front-end
maintainability: GWT, Google Closure, Dart… All trying to help writing big webapps.

For Angular, the Google team wanted to help us to write better JS, by adding some type information
to our code. It’s not a very new concept in JS. It was even the subject of the ECMAScript 4
specification, which was later abandoned. At first they announced AtScript, as a superset of
ES2015+ with annotations (types annotations and another kind I’ll discuss later). They also
announced the support of TypeScript, the Microsoft language, with additional type annotations.

25

And then, a few months later, the TypeScript team announced that they had worked closely with
the Google team, and the new version of the language (1.5) would have all the shiny new things
AtScript had. And the Google team announced that AtScript was officially dropped, and that
TypeScript was the new top-notch way to write Angular apps!

3.2. Enters TypeScript
I think this was a smart move for several reasons. For one, no one really wants to learn another
language extension. And TypeScript was already there, with an active community and ecosystem. I
never really used it before Angular, but I heard good things about it, from various people.
TypeScript is a Microsoft project. But it’s not the Microsoft you have in mind, from the Ballmer and
Gates years. It’s the Microsoft of the Nadella era, the one opening up to its community, and, well,
open-source. Google knows this, and it’s far better for them to contribute to an existing project,
rather than to have to bear the burden of maintaining their own. And the TypeScript framework
will gain a huge popularity boost: win-win, as your manager would say.

But the main reason to bet on TypeScript is the type system it offers. It’s an optional type system
that helps without getting in the way. In fact, after coding some time with it, you’ll probably want to
code every application with it. I do like what they have done, and we will have a look at what
TypeScript offers in the next section. At the end, you’ll have enough understanding to read any
Angular code, and you’ll be able to choose whether you want to use it or not, in your apps.

You may be wondering: why use typed code in Angular apps? Let’s take an example. Angular 1 and
2 have been built around a powerful concept named "dependency injection". You might already be
familiar with it, as it is a common design pattern used in several frameworks for different
languages and, as I said, already used in AngularJS 1.x.

3.3. A practical example with DI
To sum up what dependency injection is, think about a component of the app, let’s say RaceList,
needing to access the races list that the service RaceService can give. You would write RaceList like
this:

class RaceList {
 constructor() {
 this.raceService = new RaceService();
 // let's say that list() returns a promise
 this.raceService
 .list()
 // we store the races returned into a member of `RaceList`
 .then(races => (this.races = races));
 // arrow functions, FTW!
 }
}

But it has several flaws. One of them is the testability: it is now very hard to replace the raceService
by a fake (mock) one, to test our component.

26

If we use the Dependency Injection (DI) pattern, we delegate the creation of the RaceService to the
framework, and we simply ask for an instance. The framework is now in charge of the creation of
the dependency, and, well, injects it:

class RaceList {
 constructor(raceService) {
 this.raceService = raceService;
 this.raceService.list().then(races => (this.races = races));
 }
}

Now, when we test this class, we can easily pass a fake service to the constructor:

// in a test
const fakeService = {
 list: () => {
 // returns a fake promise
 }
};
const raceList = new RaceList(fakeService);
// now we are sure that the race list
// is the one we want for the test

But how does the framework know what to inject in the constructor? Good question! AngularJS 1.x
relied on the parameter’s names, but it had a severe limitation, because minification of your code
would have changed the param name… You could use the array syntax to fix this, or add a
metadata to the class:

RaceList.$inject = ['RaceService'];

We had to add some metadata for the framework to understand what classes needed to be injected
with. And that’s exactly what type annotations give: a metadata giving the framework a hint it
needs to do the right injection. In Angular, using TypeScript, we can write our RaceList component
like:

class RaceList {
 raceService: RaceService;
 races: Array<string> = [];

 constructor(raceService: RaceService) {
 // the interesting part is `: RaceService`
 this.raceService = raceService;
 this.raceService.list().then(races => (this.races = races));
 }
}

27

Now the injection can be done!

That’s why we’re going to spend some time learning TypeScript (TS). Angular is clearly built to
leverage this language, so we will have the easiest time writing our apps using it. And the Angular
team really hopes to submit the type system to the standard committee, so maybe one day we’ll
have types in JS, and all this will be usual.

Let’s dive in!

28

Chapter 4. Diving into TypeScript
TypeScript has been around since 2012. It’s a superset of JavaScript, adding a few things to ES5. The
most important one is the type system, giving TypeScript its name. From version 1.5, released in
2015, the library is trying to be a superset of ES2015+, including all the shiny features we saw in the
previous chapter, and a few new things as well, like decorators. Writing TypeScript feels very much
like writing JavaScript. By convention, TypeScript files are named with a .ts extension, and they
will need to be compiled to standard JavaScript, usually at build time, using the TypeScript
compiler. The generated code is very readable.

npm install -g typescript
tsc test.ts

But let’s start with the beginning.

4.1. Types as in TypeScript
The general syntax to add type info in TypeScript is rather straightforward:

let variable: type;

The types are easy to remember:

const ponyNumber: number = 0;
const ponyName: string = 'Rainbow Dash';

In such cases, the types are optional because the TS compiler can guess them (it’s called "type
inference") from the values.

The type can also come from your app, as with the following class Pony:

const pony: Pony = new Pony();

29

TypeScript also supports what some languages call "generics", for example for an array:

const ponies: Array<Pony> = [new Pony()];

The array can only contain ponies, and the generic notation, using <>, indicates this. You may be
wondering what the point of doing this is. Adding types information will help the compiler catch
possible mistakes:

ponies.push('hello'); // error TS2345
// Argument of type 'string' is not assignable to parameter of type 'Pony'.

So, if you need a variable to have multiple types, does it mean you’re screwed? No, because TS has a
special type, called any.

let changing: any = 2;
changing = true; // no problem

It’s really useful when you don’t know the type of a value, either because it’s from a dynamic
content or from a library you’re using.

If your variable can only be of type number or boolean, you can use a union type:

let changing: number | boolean = 2;
changing = true; // no problem

4.2. Enums
TypeScript also offers enum. For example, a race in our app can be either ready, started or done.

enum RaceStatus {
 Ready,
 Started,
 Done
}

const race = new Race();
race.status = RaceStatus.Ready;

The enum is in fact a numeric value, starting at 0. You can set the value you want, though:

enum Medal {
 Gold = 1,

30

 Silver,
 Bronze
}

Since TypeScript 2.4, you can even specify a string value:

enum Position {
 First = 'First',
 Second = 'Second',
 Other = 'Other'
}

To be honest though, we don’t use enums a lot in our projects: we use union types. They are simpler
and cover roughly the same use-cases:

let color: 'blue' | 'red' | 'green';
// we can only give one of these values to `color`
color = 'blue';

TypeScript even allows you to create your own types, so you could do something like:

type Color = 'blue' | 'red' | 'green';
const ponyColor: Color = 'blue';

4.3. Return types
You can also set the return type of a function:

function startRace(race: Race): Race {
 race.status = RaceStatus.Started;
 return race;
}

If the function returns nothing, you can show it using void:

function startRace(race: Race): void {
 race.status = RaceStatus.Started;
}

4.4. Interfaces
That’s a good first step. But as I said earlier, JavaScript is great for its dynamic nature. A function
will work if it receives an object with the correct property:

31

function addPointsToScore(player, points) {
 player.score += points;
}

This function can be applied to any object with a score property. How do you translate this in
TypeScript? It’s easy: you define an interface, which is like the "shape" of the object.

function addPointsToScore(player: { score: number }, points: number): void {
 player.score += points;
}

It means that the parameter must have a property called score of the type number. You can name
these interfaces, of course:

interface HasScore {
 score: number;
}

function addPointsToScore(player: HasScore, points: number): void {
 player.score += points;
}

You’ll see that we often use interfaces throughout the book to represent our entities. We use
interfaces for our models in our other projects as well. We usually append a Model suffix to make it
clear. It’s then very easy to create a new entity:

interface PonyModel {
 name: string;
 speed: number;
}
const pony: PonyModel = { name: 'Light Shoe', speed: 56 };

4.5. Optional arguments
Another treat of JavaScript is that arguments are optional. You can omit them, and they will become
undefined. But if you define a function with typed parameter in TypeScript, the compiler will shout
at you if you forget them:

addPointsToScore(player); // error TS2346
// Supplied parameters do not match any signature of call target.

To show that a parameter is optional in a function (or a property in an interface), you can add ?

32

after the parameter. Here, the points parameter could be optional:

function addPointsToScore(player: HasScore, points?: number): void {
 points = points || 0;
 player.score += points;
}

4.6. Functions as property
You may also be interested in describing a parameter that must have a specific function instead of a
property. The interface definition will be:

interface CanRun {
 run(meters: number): void;
}

function startRunning(pony: CanRun): void {
 pony.run(10);
}

const ponyOne = {
 run: (meters: number) => logger.log(`pony runs ${meters}m`)
};
startRunning(ponyOne);

4.7. Classes
A class can implement an interface. For us, the Pony class should be able to run, so we can write:

class Pony implements CanRun {
 run(meters: number): void {
 logger.log(`pony runs ${meters}m`);
 }
}

The compiler will force us to implement a run method in the class. If we implement it badly, by
expecting a string instead of a number for example, the compiler will yell:

class IllegalPony implements CanRun {
 run(meters: string) {
 console.log(`pony runs ${meters}m`);
 }
}
// error TS2420: Class 'IllegalPony' incorrectly implements interface 'CanRun'.

33

// Types of property 'run' are incompatible.

You can also implement several interfaces if you want:

class HungryPony implements CanRun, CanEat {
 run(meters: number): void {
 logger.log(`pony runs ${meters}m`);
 }

 eat(): void {
 logger.log(`pony eats`);
 }
}

And an interface can extend one or several others:

interface Animal extends CanRun, CanEat {}

class Pony implements Animal {
 // ...
}

When you’re defining a class in TypeScript, you can have properties and methods in your class. You
may realize that properties in classes are not a standard ES2015+ feature. It is only possible in
TypeScript.

class SpeedyPony {
 speed = 10;

 run(): void {
 logger.log(`pony runs at ${this.speed}m/s`);
 }
}

Everything is public by default, but you can use the private keyword to hide a property or a
method. If you add private or public to a constructor parameter, it is a shortcut to create and
initialize a private or public member:

class NamedPony {
 constructor(
 public name: string,
 private speed: number
) {}

 run(): void {
 logger.log(`pony runs at ${this.speed}m/s`);

34

 }
}

const pony = new NamedPony('Rainbow Dash', 10);
// defines a public property name with 'Rainbow Dash'
// and a private one speed with 10

Which is the same as the more verbose:

class NamedPonyWithoutShortcut {
 public name: string;
 private speed: number;

 constructor(name: string, speed: number) {
 this.name = name;
 this.speed = speed;
 }

 run(): void {
 logger.log(`pony runs at ${this.speed}m/s`);
 }
}

These shortcuts are really useful and we’ll rely on them a lot in Angular!

4.8. Working with other libraries
When working with external libraries written in JS, you may think we are doomed because we
don’t know what types of parameter the function in that library will expect. That’s one of the cool
things with the TypeScript community: its members have defined interfaces for the types and
functions exposed by the popular JavaScript libraries!

The files containing these interfaces have a special .d.ts extension. They contain a list of the
library’s public functions. A good place to look for these files is DefinitelyTyped. For example, if you
want to use TS in your AngularJS 1.x apps, you can download the proper file from the repo directly
with NPM:

npm install --save-dev @types/angular

or download it manually. Then include the file at the top of your code, and enjoy the compilation
checks:

/// <reference path="angular.d.ts" />
angular.module(10, []); // the module name should be a string
// so when I compile, I get:

35

https://github.com/DefinitelyTyped/DefinitelyTyped

// Argument of type 'number' is not assignable to parameter of type 'string'.

/// <reference path="angular.d.ts" /> is a special comment recognized by TS, telling the compiler
to look for the interface angular.d.ts. Now, if you misuse an AngularJS method, the compiler will
complain, and you can fix it on the spot, without having to manually run your app!

Even cooler, since TypeScript 1.6, the compiler will auto-discover the type definitions of an NPM
library if they are packaged with the library itself. More and more projects are adopting this
approach, and so is Angular. So you don’t even have to worry about including the interfaces in your
Angular project: the TS compiler will figure it out by itself if you are using NPM to manage your
dependencies!

4.9. Decorators
This feature was added in TypeScript 1.5, notably to help support Angular. Indeed, as we will
shortly see, Angular components can be described using decorators. You may not have heard about
decorators, as not every language has them. A decorator is a way to do some meta-programming.
They are fairly similar to annotations which are mainly used in Java, C# and Python, and maybe
other languages I don’t know. Depending on the language, you add an annotation to a method, an
attribute, or a class. Generally, annotations are not really used by the language itself, but mainly by
frameworks and libraries.

Decorators are really powerful: they can modify their target (method, classes, etc.), and for example
alter the parameters of the call, tamper with the result, call other methods when the target is called
or add metadata for a framework (which is what Angular decorators do). Until now, it was not
something that was possible in JavaScript. But the language is evolving and there is now an official
proposal for decorators, which may be standardized one day in the future. Note that the TypeScript
implementation goes slightly further than the proposed standard.

In Angular, we will use the decorators provided by the framework. Their role is fairly basic: they
add some metadata to our classes, attributes or parameters to say things like "this class is a
component", "this is an optional dependency", "this is a custom property", etc. You are not required
to use them, as you can add the metadata manually (if you want to stick to ES5 for example), but the
code will definitely be more elegant using decorators, as provided by TypeScript.

In TypeScript, decorators start with an @, and can be applied to a class, a class property, a function
or a function parameter. They can’t be applied to a constructor, but can be applied to its
parameters.

To have a better grasp on this, let’s try to build a simple decorator, @Log(), that will log something
every time a method is called.

It will be used like this:

class RaceService {
 @Log()
 getRaces() {
 // call API

36

 }

 @Log()
 getRace(_raceId: number) {
 // call API
 }
}

To define it, we have to write a method returning a function like this:

const Log = () => {
 return (_target: any, name: string, descriptor: any) => {
 logger.log(`call to ${name}`);
 return descriptor;
 };
};

Depending on what you want to apply your decorator to, the function will not have exactly the
same arguments. Here we have a method decorator that takes 3 parameters:

• target: the prototype of the class targeted by our decorator

• name: the name of the targeted method

• descriptor: a descriptor of the targeted method (is the method enumerable, writable, etc.)

Here we simply log the method name, but you could do pretty much whatever you want: interfere
with the parameters, the result, calling another function, etc.

So, in our simple example, every time the getRace() or getRaces() methods are called, we’ll see a
trace in the browser logs:

raceService.getRaces();
// logs: call to getRaces
raceService.getRace(1);
// logs: call to getRace

As a user, let’s look at what a decorator in Angular looks like:

@Component({ selector: 'ns-home', template: 'home' })
class Home {
 constructor() {
 logger.log('Home');
 }
}

The @Component decorator is added to the class Home. When Angular loads our app, it will find the
class Home and will understand that it is a component, based on the metadata the decorator will add.

37

Cool, huh? As you can see, a decorator can also receive parameters, here a configuration object.

I just wanted to introduce the raw concept of decorators; we’ll look into every decorator available
in Angular throughout the book.

So my advice would be to give TypeScript a try! All my examples from here will be in TypeScript, as
Angular and all the tooling around are really designed for it.

38

Chapter 5. Advanced TypeScript
If you’re just starting to learn TypeScript, you can safely skip this chapter for now and come back
later. This chapter is here to showcase some more advanced usages of TypeScript. They’ll only
make sense if you already have some familiarity with the language

5.1. readonly
You can use the readonly keyword to mark the property of a class or interface as… read only! That
way, the compiler will refuse to compile any code trying to assign a new value to the property:

interface Config {
 readonly timeout: number;
}

const config: Config = { timeout: 2000 };
// `config.timeout` is now readonly and can't be reassigned

5.2. keyof
The keyof keyword can be used to get a type representing the union of the names of the properties
of another type. For example, you have a PonyModel interface:

interface PonyModel {
 name: string;
 color: string;
 speed: number;
}

You want to build a function that returns the value of a property. You could implement a naive
version:

function getProperty(obj: any, key: string): any {
 return obj[key];
}

const pony: PonyModel = {
 name: 'Rainbow Dash',
 color: 'blue',
 speed: 45
};
const nameValue = getProperty(pony, 'name');

Two problems here:

39

• you can give any value to the key parameter, even keys that don’t exist on PonyModel.

• the return type being any, you are losing a lot of type information.

This is where keyof can shine. keyof allows you to list all the keys of a type:

type PonyModelKey = keyof PonyModel;
// this is the same as `'name'|'speed'|'color'`
let property: PonyModelKey = 'name'; // works
property = 'speed'; // works
// key = 'other' would not compile

So we can use this type to make getProperty safer, by declaring that:

• the first parameter is of type T

• the second parameter is of type K, which is a key of T

function getProperty<T, K extends keyof T>(obj: T, key: K): T[K] {
 return obj[key];
}

const pony: PonyModel = {
 name: 'Rainbow Dash',
 color: 'blue',
 speed: 45
};
// TypeScript infers that `nameValue` is of type `string`!
const nameValue = getProperty(pony, 'name');

We killed two birds with one stone here:

• key can now only be an existing property of PonyModel

• the return value will be inferred by TypeScript (which is pretty awesome!)

Now let’s see how we can leverage keyof to do even more.

5.3. Mapped type
Let’s say you want to create a type that has exactly the same properties as PonyModel, but you want
every property to be optional. You can of course define it manually:

interface PartialPonyModel {
 name?: string;
 color?: string;
 speed?: number;
}

40

const pony: PartialPonyModel = {
 name: 'Rainbow Dash'
};

But you can do something more generic with a mapped type:

type Partial<T> = {
 [P in keyof T]?: T[P];
};

const pony: Partial<PonyModel> = {
 name: 'Rainbow Dash'
};

The Partial type is a transformation that applies the ? modifier to every property of a type! In fact,
you don’t have to define the type Partial yourself, because since version 2.1, it’s part of the
language itself, and it’s declared exactly like in the above example.

TypeScript offers other mapped types out of the box.

5.3.1. Readonly

Readonly makes all the properties of an object readonly:

const pony: Readonly<PonyModel> = {
 name: 'Rainbow Dash',
 color: 'blue',
 speed: 45
};
// all properties are `readonly`

5.3.2. Pick

Pick helps you build a type with only some of the original properties:

const pony: Pick<PonyModel, 'name' | 'color'> = {
 name: 'Rainbow Dash',
 color: 'blue'
};
// `pony` can't have a `speed` property

5.3.3. Record

Record helps you build a type with the same properties as another type, but with a different type:

interface FormValue {

41

 value: string;
 valid: boolean;
}

const pony: Record<keyof PonyModel, FormValue> = {
 name: { value: 'Rainbow Dash', valid: true },
 color: { value: 'blue', valid: true },
 speed: { value: '45', valid: true }
};

There are even more than that, but these are the most useful.

5.4. Union types and type guards
Union types are really handy. Let’s say your application has authenticated users and anonymous
users, and sometimes you need to do a different action depending on that. You can model this as:

interface User {
 type: 'authenticated' | 'anonymous';
 name: string;
 // other fields
}

interface AuthenticatedUser extends User {
 type: 'authenticated';
 loggedSince: number;
}

interface AnonymousUser extends User {
 type: 'anonymous';
 visitingSince: number;
}

function onWebsiteSince(user: User): number {
 if (user.type === 'authenticated') {
 // this is a LoggedUser
 return (user as AuthenticatedUser).loggedSince;
 } else if (user.type === 'anonymous') {
 // this is an AnonymousUser
 return (user as AnonymousUser).visitingSince;
 }
 // TS doesn't know every possibility was covered
 // so we have to return something here
 return 0;
}

I don’t know about you, but I don’t like these as … explicit casts. Maybe we can do better?

One possibility is to use a type guard, a special function whose sole purpose is to help the

42

https://www.typescriptlang.org/docs/handbook/utility-types.html

TypeScript compiler.

function isAuthenticated(user: User): user is AuthenticatedUser {
 return user.type === 'authenticated';
}

function isAnonymous(user: User): user is AnonymousUser {
 return user.type === 'anonymous';
}

function onWebsiteSince(user: User): number {
 if (isAuthenticated(user)) {
 // this is inferred as a LoggedUser
 return user.loggedSince;
 } else if (isAnonymous(user)) {
 // this is inferred as an AnonymousUser
 return user.visitingSince;
 }
 // TS still doesn't know every possibility was covered
 // so we have to return something here
 return 0;
}

This is better! But we still need to return a default value, even if we covered all the possibilities.

We can slightly improve the situation if we drop the type guards and use a union type instead.

interface BaseUser {
 name: string;
 // other fields
}

interface AuthenticatedUser extends BaseUser {
 type: 'authenticated';
 loggedSince: number;
}

interface AnonymousUser extends BaseUser {
 type: 'anonymous';
 visitingSince: number;
}

type User = AuthenticatedUser | AnonymousUser;

function onWebsiteSince(user: User): number {
 if (user.type === 'authenticated') {
 // this is inferred as a LoggedUser
 return user.loggedSince;
 } else {

43

 // this is narrowed as an AnonymousUser
 // without even testing the type!
 return user.visitingSince;
 }
 // no need to return a default value
 // as TS knows that we covered every possibility!
}

This is even better, as TypeScript automatically narrows the type in the else branch.

Sometimes you know that the model will grow in the future, and that more cases will need to be
handled. For example if you introduce an AdminUser. In that case, you can use a switch. A switch
statement will break if one of the cases is not handled. So introducing our AdminUser, or another
type of user later, would automatically add compilation errors in every place you need to handle it!

interface AdminUser extends BaseUser {
 type: 'admin';
 adminSince: number;
}

type User = AuthenticatedUser | AnonymousUser | AdminUser;

function onWebsiteSince(user: User): number {
 switch (user.type) {
 case 'authenticated':
 return user.loggedSince;
 case 'anonymous':
 return user.visitingSince;
 case 'admin':
 // without this case, we could not even compile the code
 // as TS would complain that all possible paths are not returning a value
 return user.adminSince;
 }
}

I hope these patterns will help you. Now let’s focus on Web Components.

44

Chapter 6. The wonderful land of Web
Components
Before going further, I’d like to make a brief stop to talk about Web Components. You don’t have to
know about Web Components to write Angular code. But I think it’s a good thing to have an
overview of what they are, because some choices in Angular have been made to facilitate the
integration with Web Components, or to make the components we will build similar to Web
Components. Feel free to skip this part if you have no interest in this topic; however, I do believe
you’ll learn a thing or two that will be useful for the rest of the road.

6.1. A brave new world
Components are an old fantasy in development. Something you can grab off the shelves and drop
into your app, something that would work right away and bring a needed functionality to your
users.

My friends, this time has come.

Well, maybe. At least, there is the start of something.

That’s not completely new. We have had components in web development for quite some time, but
they usually require some kind of dependency, like jQuery, Dojo, Prototype, AngularJS, etc. Not
necessarily libraries you wanted to add to your app.

Web Components attempt to solve this problem: let’s have reusable and encapsulated components.

They rely on a set of emerging standards that browsers don’t perfectly support yet. But, still, it’s an
interesting topic, even if there’s a chance we’ll have to wait a few years to use them fully, or even if
the concept never takes off.

This emerging standard is defined in 3 specifications:

• Custom elements

• Shadow DOM

• Template

Note that the samples are most likely to work in a recent Chrome or Firefox browser.

45

6.2. Custom elements
Custom elements are a new standard allowing developers to create their own DOM elements,
making something like <ns-pony></ns-pony> a perfectly valid HTML element. The specification
defines how to declare such elements, how to make them extend existing elements, how to define
your API, etc.

Declaring a custom element is done using customElements.define:

class Pony extends HTMLElement {
 constructor() {
 super();
 console.log("I'm a pony!");
 }

}

customElements.define('ns-pony', Pony);

And you can then use it:

<ns-pony></ns-pony>

Note that the name must contain a dash, so that the browser knows it is a custom element. Of
course, your custom element can have properties and methods, and it also has lifecycle callbacks, to
be able to execute code when the component is inserted or removed, or when one of its attributes
changes. It can also have a template of its own. Maybe the ns-pony displays an image of the pony or
just its name:

class Pony extends HTMLElement {
 constructor() {
 super();
 console.log("I'm a pony!");
 }

 /**
 * This is called when the component is inserted
 */
 connectedCallback() {
 this.innerHTML = '<h1>General Soda</h1>';
 }

}

If you try to look at the DOM, you’ll see <ns-pony><h1>General Soda</h1></ns-pony>. But that means

46

the CSS and JavaScript logic of your app can have undesired effects on your component. So, usually,
the template is hidden and encapsulated in something called Shadow DOM, and you’ll only see <ns-
pony></ns-pony> if you inspect the DOM, despite the fact that the browser displays the pony’s name.

6.3. Shadow DOM
With a mysterious name like this, you expect something with great powers. And surely it is. The
Shadow DOM is a way to encapsulate the DOM of our component. This encapsulation means that
the stylesheet and JavaScript logic of your app will not apply on the component and ruin it
inadvertently. It gives us the perfect tool to hide the internals of a component, and be sure nothing
leaks from the component to the app, or vice-versa.

Going back to our previous example:

class Pony extends HTMLElement {
 constructor() {
 super();
 const shadow = this.attachShadow({ mode: 'open' });
 const title = document.createElement('h1');
 title.textContent = 'General Soda';
 shadow.appendChild(title);
 }
}

If you try to inspect it now you should see:

<ns-pony>
 #shadow-root (open)
 <h1>General Soda</h1>
</ns-pony>

Now, even if you try to add some style to the h1 elements, the visual aspect of the component won’t
change at all: that’s because the Shadow DOM acts like a barrier.

Until now, we just used a string as a template of our web component. But that’s usually not the way
you do that. Instead, the best practice is to use the <template> element.

6.4. Template
A template specified in a <template> element is not displayed in your browser. Its main goal is to be
cloned in an element at some point. What you declare inside will be inert: scripts don’t run, images
don’t load, etc. Its content can’t be queried by the rest of the page using usual methods like
getElementById() and it can be safely placed anywhere in your page.

To use a template, it needs to be cloned:

47

<template id="pony-template">
 <style>
 h1 {
 color: orange;
 }
 </style>
 <h1>General Soda</h1>
</template>

class Pony extends HTMLElement {
 constructor() {
 super();
 const template = document.querySelector('#pony-template');
 const clonedTemplate = document.importNode(template.content, true);
 const shadow = this.attachShadow({ mode: 'open' });
 shadow.appendChild(clonedTemplate);
 }
}

6.5. Frameworks on top of Web Components
All these things put together make the Web Components. I’m far from being an expert on this topic,
and there are all sorts of twisted traps on this road.

As Web Components are not fully supported by every browser, there is a polyfill you can include in
your app to make sure it will work. The polyfill is called web-component.js, and it’s worth noting
that it is a joint effort from Google, Mozilla and Microsoft among others.

On top of this polyfill, a few libraries have seen the light. All aim to facilitate working with Web
Components, and often come with some ready-to-use Web Components.

Among the most notable initiatives, you find:

• Polymer, the first attempt from Google

• LitElement, a more recent project from the Polymer team ;

• X-tag from Mozilla and Microsoft

• Stencil.

I won’t go into the details, but you can easily use an already existing component. Let’s say you want
a Google Map in your app:

<!-- Polyfill Web Components support for older browsers -->
<script src="webcomponents.js"></script>

<!-- Import element -->
<script src="google-map.js"></script>

48

https://github.com/WebComponents/webcomponentsjs
https://www.polymer-project.org/
https://lit-element.polymer-project.org/
http://x-tag.github.io/
https://stenciljs.com/

<!-- Use element -->
<body>
 <google-map latitude="45.780" longitude="4.842"></google-map>
</body>

There are a LOT of components out there. You can have an overview on
https://www.webcomponents.org/.

You can do a lot of cool things with LitElement and other similar frameworks, like two-way data
binding, default values for attributes, emit custom events, react to attribute changes, repeat
elements if we give a collection to a component, etc.

That’s obviously far too short a chapter to tell you everything there is to say on Web Components,
but you’ll see that some of the concepts are going to pop out along your read. And you’ll definitely
see that the Google team designed Angular to make it easy to use Web Components with our
Angular components. It is even possible to export our own Angular components as Web
Components, with the help of Angular Elements.

49

https://www.webcomponents.org/
https://angular.dev/guide/elements

Chapter 7. Grasping Angular’s philosophy
To write an Angular application, you have to grasp a few things on the framework’s philosophy.

First and foremost, Angular is component-oriented. You will write tiny components and, together,
they will constitute a whole application. A component is a group of HTML elements in a template,
dedicated to a particular task. For this, you will usually also need to have some logic linked to that
template, to populate data, and react to events for example.

This component orientation is something that is becoming widely shared across front-end
frameworks: React, the cool kid from Facebook, has been doing it that way from the beginning;
Ember has its own way of doing something similar; and others like Svelte or Vue.js are betting on
building small components too.

50

https://reactjs.org/
https://emberjs.com/
https://svelte.dev/
https://vuejs.org/

Angular is not alone in this, but it is among the first (it might actually be the first?) to really care
about the integration of Web Components (the standard ones). But let’s forget about this for now, as
it is a more advanced topic.

Your components will be arranged in a hierarchical way, like the DOM is. A root component will
have child components, each of them will also have children, etc. If you want to display a pony race
(who wouldn’t?), you’ll have something like an app (Ponyracer), displaying a menu (Menu) with the
logged in user (User) and a child view (Race), displaying, of course, the ponies (Pony) in the races:

51

Ponyracer

Menu Race

User Pony Pony Pony

Writing components will be your everyday work, so let’s see what it looks like. The Angular team
wanted to harness another goodness of today’s web development: ES2015+. So you can write your
components in ES5 (but that’s not very cool) or in ES2015+ (way cooler!). But that was not enough
for them. They wanted to use a feature that is not a standard (yet): decorators. So they worked
closely with the transpiler teams (Traceur and Babel) and the TypeScript team at Microsoft, to
enable us to use decorators in our Angular apps. A few decorators are available, allowing us to
easily declare a component for example. I hope you already know all of that, as I just spent two
chapters on these things!

For example, if we simplify, the Race component could look like this:

import { Component, inject, Signal, signal } from '@angular/core';
import { RaceModel, RaceService } from './services';
import { Pony } from './components';

@Component({
 selector: 'ns-race',
 templateUrl: './race.html',
 imports: [Pony]
})
export class Race {
 private readonly raceService = inject(RaceService);
 protected readonly race = signal(this.raceService.get());
}

And the template looks like this:

<div>

52

 <h2>{{ race().name }}</h2>
 <div>{{ race().status }}</div>
 @for (pony of race().ponies; track pony.id) {
 <div>
 <ns-pony [ponyModel]="pony" />
 </div>
 }
</div>

The template shouldn’t be too hard to understand. It’s HTML with expressions in curly braces {{ }},
which will be evaluated and replaced by the corresponding value. I don’t want to go too deep for
now, merely just give you a feel of what the code looks like.

A component is a very isolated piece of your app. Your app is a component like the others.

You will group components in one or several coherent entities, called modules (Angular Modules,
not ES2015 Modules), or learn how to avoid them by making your components standalone.

You can also take available libraries of components from the community and just use them in your
app, and be able to enjoy their features.

Such libraries can offer UI components, or drag and drop capability, or validation for your forms, or
whatever you can think of.

In the next chapters, we are going to explore how to get started, how to build a small component,
your first application and the templating syntax.

There is another concept that is at the core, and that is Dependency injection (often called by its
little name, DI). It is a very powerful pattern, and you will quickly get used to it after reading the
dedicated chapter. It is especially useful to test your application, and I love doing tests, watching the
progress bar go all green in my IDE. It makes me feel I’m doing a good job. So there will be an entire
chapter on testing everything: your components, your services, your UI…

Angular still has the magic feeling it had in v1, where changes were automatically detected by the
framework and applied to the model and the views. But it is done in a very different way than it
was then: the change detection now uses a concept called zones. We will look into this, of course.

Angular is also a complete framework which provides a lot of help for performing common tasks in
web development. Writing forms, calling a HTTP backend, routing, interacting with other libraries,
animations, you name it: you’re covered.

Well, that’s a lot of things to learn! We should start with the beginning: bootstrap an app and write
our first component.

53

Chapter 8. From zero to something
Let’s start by creating our first Angular app and our first component, with a minimum of tooling.

8.1. Node.js and NPM
Pretty much all the modern JavaScript tools are built for Node.js and NPM these days. You’ll have to
install Node.js and NPM on your system. The best way to do that depends on your operating system
- you can find more information on the official website. Make sure you have a recent enough
version of Node.js (by executing node --version).

8.2. Angular CLI
You could setup everything by yourself, starting with a TypeScript project, then install every
dependency needed, etc.

But in a real project, you’ll probably have to set up several other things too, like:

• some tests to check if we’re not breaking things

• maybe a linter to check your code

• maybe a CSS preprocessor

• a build tool, to orchestrate the various tasks (compile, test, package, etc.)

But it’s a bit cumbersome to setup everything yourself, especially when there are sooooo many
tools to learn first.

These past few years, a lot of small project generators have seen the light, pretty much all using the
great Yeoman. It used to be the case for AngularJS 1.x, and there were a few attempts for Angular
from the community.

But this time, the Google team has been working on this issue, and they have come up with
something: Angular CLI.

Angular CLI is a command line utility to easily quick start a project, already configured with
Webpack as a build tool (the popular kid these years), tests, packaging, etc.

The idea is not new, and is in fact borrowed from another popular framework: EmberJS and its

54

https://nodejs.org/
http://yeoman.io/
https://github.com/angular/angular-cli

popularly acclaimed ember-cli.

The tool is under continuous development, with a dedicated Google team working on it and making
it better and better. It is now the recommended and de facto standard way of creating and building
Angular apps. So let’s give it a try, and discover the ton of cool stuff packed into it!



If you want, you can follow our online exercise Getting Started ! It’s free and
part of our Pro Pack, where you’ll learn how to build a complete application step
by step. The first exercise is about getting everything up and running with Angular
CLI, and goes further than what we see in the chapter.

First let’s install Angular CLI, and generate a new application with the ng new command. If you want
to use exactly the same CLI version than we are (20.0.1), you can use npm install -g
@angular/cli@20.0.1 instead.

npm install -g @angular/cli

ng new ponyracer --defaults --no-routing --prefix ns

This will create a project skeleton in a new directory called ponyracer. From this directory, you can
start your app with:

ng serve

This will start a small HTTP server locally, with a hot reload configuration. It means that every time
you modify and save a file, the server will rebuild the app, and the browser will reload it
immediately.

Tada! You have your first application up and running! Ἰ�



In Angular 15, the framework introduced a new feature called standalone
components, which is now the default since Angular v17. Until then, components
had to be declared in Angular modules, which are quite a complex concept to
grasp and use correctly, especially when starting with Angular. Using standalone
components allows us to avoid having to create Angular modules and makes many
things simpler, especially for beginners. Standalone components are the way of the
future, so we chose to use that option. We will explain Angular modules in a later
chapter though, because you will still have to understand their purpose and use
existing modules in your day-to-day work, but for now, you don’t need to worry
too much about them.

8.3. Application structure
Let’s dive for a few seconds into the generated code.

55

https://cli.emberjs.com/release/
https://angular-exercises.ninja-squad.com/exercises/0/getting-started

Open the project in your preferred IDE. You can use pretty much anything you want, but you
should activate the TypeScript support for maximum comfort. Pick your favorite: Webstorm, Visual
Studio Code… All of them have great support for TypeScript.



If your IDE supports it, code completion should work as the Angular dependencies
have their own d.ts files in the node_modules directory, and TypeScript is able to
detect them. You can even navigate to the type definitions if you want to.
TypeScript will bring its type-checking to the table, so you’ll see what mistakes you
make as you type. As we are using source maps, you can see the TS code directly
from your browser, and even debug your app by setting breakpoints in the
TypeScript code.

You should see a bunch of configuration files in the root directory: welcome to Modern JavaScript!

The first one you may recognize is the package.json file: that’s where the dependencies of the
application are defined. You can have a look inside, it should now contain the following
dependencies:

• the different @angular packages.

• rxjs, a really cool library for reactive programming. We have a dedicated chapter on this topic
and about RxJS in particular.

• zone.js, doing the heavy lifting for detecting the changes (we’ll dive into this later also).

• some dependencies for developing the application, like the CLI, TypeScript, some test librairies,
some typings…

TypeScript itself has a configuration file tsconfig.json (and another one called tsconfig.app.json),
which stores the compilation options. As we saw in the previous chapters, we are using TypeScript
with decorators (hence the two options about decorators). The sourceMap option allows you to
generate source maps, i.e. files that contain a mapping between the generated JavaScript code and
the original TypeScript code. Those source maps are used by the browser to let you debug the
JavaScript code it executes by stepping through the original TypeScript code that you have written.

TypeScript projects often also use ESLint (that we need to add to a project, as we show in the
exercise Getting Started of our online course), a linter used to check your code against the best
practices. ESLint has its own options, stored in .eslintrc.json, where you add/remove some of its
rules.

Angular CLI itself has a configuration file angular.json if you want to override some of its defaults.



This ebook is using Angular version 20.0.1 for the examples. Angular CLI will
probably install the most recent version, which might not be exactly the same. If
you want to use the same version as we are, replace the version in the
package.json by 20.0.1 for each Angular package. That might save you a few
headaches! Or, even better, follow our free online exercise Getting Started !
which is always up-to-date and battle-tested!

Now that we have been over the configuration, let’s see the application code.

56

https://github.com/ReactiveX/RxJS
https://angular-exercises.ninja-squad.com/exercises/0/getting-started

8.4. Our first standalone component
As we saw in the previous section, a component is a combination of a view (the template) and some
logic (our TS class). The CLI has already created one for us: src/app/app.ts. Let’s check it out:

app.ts

import { Component } from '@angular/core';

@Component({
 selector: 'ns-root',
 templateUrl: './app.html',
 styleUrl: './app.css'
})
export class App {
 protected title = 'ponyracer';
}

Our application itself is a simple component. To tell Angular that it is a component, we use the
@Component decorator. And to be able to use this decorator, we have to import it as you can see at the
top of the file.

When you write new components, don’t forget to import the Component decorator. You may forget to
do so at the beginning, but it won’t last, as the compiler will yell at you! ;)

You’ll see that most of the things we need are in the @angular/core module, but that’s not always the
case. For example, when dealing with HTTP, we’ll use imports from @angular/common/http; or, if we
use the router, we’ll import from @angular/router, etc.

app.ts

import { Component } from '@angular/core';

@Component({
})
export class App {
 protected title = 'ponyracer';
}

The @Component decorator is expecting a configuration object. We’ll see later in detail what you can
configure here, but for now let’s start with the selector property. It will tell Angular what to look
for in our HTML pages. Every time Angular finds an element in our HTML which matches the
selector of the component, it will create an instance of the component, and replace the content of
the element by the template of the component.

app.ts

import { Component } from '@angular/core';

57

@Component({
 selector: 'ns-root',
})
export class App {
 protected title = 'ponyracer';
}

So, here, every time our HTML contains an element like <ns-root />, Angular will instantiate a new
instance of our App class.



There is a clear naming convention established, and applied by Angular CLI.
Angular recommends using a prefix in component selectors, to avoid name clashes
with external components. For example, since our company is named Ninja Squad,
we chose to use the prefix ns. Our pony component selector is thus named ns-pony.
You can configure Angular CLI so that it prepends this prefix to every generated
component. If you remember, when we created the project with ng new, we passed
the option --prefix ns. That’s what this option does: it configures the project to
have components generated with the ns prefix.

A component must also have a template. We can have an inline template or externalize it in
another file, like the CLI does:

app.ts

import { Component } from '@angular/core';

@Component({
 selector: 'ns-root',
 templateUrl: './app.html',
 styleUrl: './app.css'
})
export class App {
 protected title = 'ponyracer';
}

The corresponding HTML is defined in app.html, with a bunch of static elements, except the first h1:

app.html

<h1>Hello, {{ title }}</h1>
<p>Congratulations! Your app is running. Ἰ�</p>

Finally, you can see that the component has an additional option: imports.

app.ts

import { Component } from '@angular/core';

58

@Component({
 selector: 'ns-root',
 imports: [],
 templateUrl: './app.html',
 styleUrl: './app.css'
})
export class App {
 protected title = 'ponyracer';
}

Our component is standalone (the standalone: true property is by default since Angular v19). This
means that the component doesn’t need to be declared in an Angular module in order to be usable.

The property imports: [] is not always strictly required. Its goal is to tell Angular which other
components, pipes and directives can be used inside the template of our component. Most of the
components that we create use pipes and directives provided by Angular. These very commonly
used pipes and directives are declared in an Angular module named CommonModule. Using imports:
[CommonModule] in the configuration of our component thus makes it possible to use them all in its
template, or you can explicitly import only the ones you need.

We were talking about ES2015+ and TS modules in the first chapters, which define imports and
exports. The TypeScript compiler, when it sees an interface such as Race being used in the
TypeScript source code, must know where to find the definition of this interface Race. That’s why
you need to import it.

The imports property of the @Component decorator serves a similar purpose: if Angular were to find
an element <ns-race> in the template of App, it would need to know where and how the
corresponding Race is defined. To let it know where it can find its definition, you would need to add
the Race to the imports of the App decorator.

8.5. Bootstrapping the app
Finally, we need to start our app, using the bootstrapApplication function. Angular CLI will by
default generate a separate file containing this bootstrap logic: main.ts:

main.ts

import { bootstrapApplication } from '@angular/platform-browser';
import { appConfig } from './app/app.config';
import { App } from './app/app';

bootstrapApplication(App, appConfig)
 .catch((err) => console.error(err));

As you can see, what it expects is the root component of the application: App.

Yay! But wait a second. We need an HTML file to serve to our users, right?

The CLI created an index.html file for us, which is the single page of our application. You might

59

wonder how it could possibly work, since it doesn’t contain any script element.

When you run ng serve, the CLI calls the TypeScript compiler. The compiler outputs JavaScript files.
The CLI then bundles them and adds the necessary script elements to the index.html file (using Vite
behind the scenes).

Hopefully, you now have a better understanding of the various parts of this first Angular
application. It’s not really a dynamic app yet, and we could have done the same in one second in a
static HTML page, I’ll give you that. So let’s jump to the next sections, and learn all about signals
and templating.

60

https://vite.dev/

Chapter 9. Signals: the building blocks of the
application state
Traditional web applications use JavaScript to modify what the HTML page displays by modifying
the DOM.

An Angular application does the same thing, but the framework is designed so that you almost
never have to query or modify the DOM in your code. Instead, you write HTML templates which
display data contained in the component properties. The magic of Angular is that modifying the
data in the components is sufficient to update the DOM. Angular detects the changes and applies
the modifications to the DOM for you.

This mechanism is called Change Detection. We’ll explore it in more detail later in the book.

Angular has always allowed developers to use plain old JavaScript objects and arrays to store the
data that the templates display. Angular is able to detect the modifications or replacements done to
these plain old JavaScript objects. This mechanism, however, is quite brute-force, has a non-
negligible cost in terms of performance, and comes with many drawbacks.

Since Angular 16, a revolution has started. While still supporting this mechanism, Angular now
promotes a new way of handling the state. This new way eliminates the drawbacks of the brute-
force approach. It makes things more efficient. But it requires the developers to use a special type
of objects to store the data of their application: signals.

9.1. What is a signal?
A signal is a box which always contains a value. You can get the value inside the box by reading the
signal. And when the signal is writable, you can put another value inside the box by setting or
updating the signal. The value inside the box can be anything: a number, a string, an object, an
array, or even null or undefined.

Those boxes come with super-powers. When a component template reads a signal to display its
value, Angular knows that the template depends on that signal. And thus, every time you update
that signal with a new value, Angular knows that it must update the DOM generated by this
template.

This is the principle of the new change detection mechanism used by Angular. If all components use
signals to store the data displayed by their template, then the brute-force mechanism is not
necessary anymore.

This revolution that started in Angular 16 has not ended yet. But all the signal-related features that
were introduced since then are now stable enough. We can use them in our applications.

This book will thus describe how to use Angular in the new, modern way, based on signals. We will
mention how it was done before though, because there’s a good chance that you’ll find code in your
applications that still uses the legacy way of writing components. Both ways can coexist in the same
application, but we advise you to start adopting the newest best practices.

61

9.2. Creating, reading and writing signals
Let’s now start by showing how you can create a writable signal, read its value, and update it. We’ll
talk about the other kinds of signals and about their other capabilities in later chapters of the book,
when we will need them.

To create a writable signal, call the signal() function (from @angular/core) with the value that it
must contain initially. All the following examples create instances of WritableSignal which, as you
can see, is a generic type specifying the type of the value contained in the signal.

// this signal can contain a number, and initially contains 42
const count = signal(42);

// this signal can contain a PonyModel, and initially contains Rainbow Dash
const rainbowDash = signal<PonyModel>({
 name: 'Rainbow Dash',
 color: 'blue'
});

// this signal can contain a PonyModel, and initially contains Pinkie Pie
const pinkiePie: WritableSignal<PonyModel> = signal({
 name: 'Pinkie Pie',
 color: 'red'
});

// this signal can contain a PonyModel or undefined, and initially contains undefined
const unknownPony = signal<PonyModel | undefined>(undefined);

A signal is both an object and a function. To get the value contained in the signal, you call the signal.

// let's read the value of the rainbowDash signal
const value: PonyModel = rainbowDash();
// and print it in the console as JSON
console.log(JSON.stringify(value));

To change the value of the signal (and thus notify Angular that this signal has a new value), you call
its set() method:

rainbowDash.set({
 name: 'Rainbow Dash',
 color: 'yellow'
});

Now let’s say you only want to change the color of Rainbow Dash. You might be tempted to read the
value of the signal and then mutate it. Or even to mutate it and then set it back into the signal again.
That’s something you should never do :

62

// ❌ Don't do this!
rainbowDash().color = 'yellow';
// ❌ Don't do this!
const pony = rainbowDash();
pony.color = 'yellow';
rainbowDash.set(pony);

If you mutate the object contained in a signal, or if you set a signal with the same object it already
contains, then Angular will consider that the value has not changed, which will lead to bugs.

Instead, treat the value as immutable, and replace the old value with a new one. The update()
method, along with the destructuring operator, can be used to create a new value from the existing
one:

// ✅ Do this!
rainbowDash.update(pony => ({ ...pony, color: 'yellow' }));

But it’s just a different way of doing:

rainbowDash.set({ ...rainbowDash(), color: 'yellow' });

Let’s now see how we can display the state of our components in a template!



Angular is not the first framework to use signals. Knockout.js, for example, already
used signals a long time ago. More recently, Solid.js, Vue and Svelte also adopted
signals as the building blocks of their state management. Signals are getting so
popular, that the teams of these frameworks are even trying to standardize them
into the JavaScript language itself!

63

https://github.com/tc39/proposal-signals

Chapter 10. The templating syntax
We’ve seen that a component needs to have a view. To define a view, you can define a template
inline or in a separate file. You’re probably familiar with a templating syntax, maybe even the one
from AngularJS 1.x. To simplify things, a template helps us to render HTML with some dynamic
parts depending on our data.

Angular has its own templating syntax that we need to learn before going further.

Let’s take a simple example, by modifying our first component:

import { Component } from '@angular/core';

@Component({
 selector: 'ns-root',
 template: '<h1>PonyRacer</h1>'
})
export class App {}

Now we want to display some dynamic data on this first page, maybe the number of users
registered into our app. Later we’ll see how to get data from a server, but for now we’ll say that this
number of users is directly hard-coded in our class:

@Component({
 selector: 'ns-root',
 template: '<h1>PonyRacer</h1>'
})
export class App {
 protected readonly numberOfUsers = 146;
}

Now, how do we change our template to display this variable? The answer is interpolation.

10.1. Interpolation
Interpolation is a big word for a simple concept.

64

Quick example:

@Component({
 selector: 'ns-root',
 template: `
 <h1>PonyRacer</h1>
 <h2>{{ numberOfUsers }} users</h2>
 `
})
export class App {
 protected readonly numberOfUsers = 146;
}

We have an App component that will be activated every time Angular finds a <ns-root> tag. The App
class has a property, numberOfUsers. And the template has been augmented with an <h2> tag, using
the famous double curly braces (a.k.a. "mustaches") to indicate that an expression has to be
evaluated. This kind of templating is called interpolation.

We should now see in the browser:

<ns-root>
 <h1>PonyRacer</h1>
 <h2>146 users</h2>
</ns-root>

as {{ numberOfUsers }} will be replaced by its value. When Angular detects a <ns-root> element in
the page, it creates an instance of the App class, and this instance is the evaluation context of the
template’s expressions. Here the App instance sets the numberOfUsers property to '146', so we have
'146' displayed on screen.

The magic is that, whenever the value of numberOfUsers changes in our object, the page will be
automatically updated! Or rather, that’s how it works now, with the "brute-force" change detection
mechanism that Angular currently uses. But we’ve seen in the previous chapter that Angular now
promotes using signals to help it detect changes in a more clinical way. If we wanted the number of
users to change over time, we should thus store it in a signal, and call the signal in the template:

@Component({
 selector: 'ns-root',
 template: `
 <h1>PonyRacer</h1>
 <h2>{{ numberOfUsers() }} users</h2>
 `
})
export class App {
 protected readonly numberOfUsers = signal(146);
}

65

One important fact to remember: if we try to display a variable that is not initialized, then, instead
of displaying undefined, Angular is going to display an empty string. The same will happen for a null
value.

Let’s say that, instead of a simple value, our first component has a more complex user object,
reflecting the current user.

@Component({
 selector: 'ns-root',
 template: `
 <h1>PonyRacer</h1>
 <h2>Welcome {{ user().name }}</h2>
 `
})
export class App {
 protected readonly user = signal({ name: 'Cédric' });
}

As you can see, we can interpolate more complex expressions, like accessing the property of an
object.

<ns-root>
 <h1>PonyRacer</h1>
 <h2>Welcome Cédric</h2>
</ns-root>

What happens if we have a typo in our template, with a property that does not exist in the class?

@Component({
 selector: 'ns-root',
 // typo: users is not user!
 template: `
 <h1>PonyRacer</h1>
 <h2>Welcome {{ users().name }}</h2>
 `
})
export class App {
 protected readonly user = signal({ name: 'Cédric' });
}

When compiling the app, you will have an error, telling you that this property does not exist:

error TS2339: Property 'users' does not exist on type 'App'

That’s great, because now you are quite sure that your templates are correct.

66

One last little but handy feature. What happens if my user object is in fact fetched from the server,
and thus initialized to undefined before being valued with the result of the server call? Is there a
way to avoid the errors when the template is compiled?

Yes, there is: instead of writing user().name, you write user()?.name:

@Component({
 selector: 'ns-root',
 // the value of the user signal is undefined
 // but the ?. will avoid the error
 template: `
 <h1>PonyRacer</h1>
 <h2>Welcome {{ user()?.name }}</h2>
 `
})
export class App {
 protected readonly user = signal<{ name: string } | undefined>(undefined);
}

And you don’t have errors anymore! The ?. is called the "optional chaining operator". It was usable
in Angular expressions even before being introduced in standard JavaScript and TypeScript.

Let’s go back to our example. We are now displaying a greeting message. Maybe we can go a step
further and display the upcoming pony races.

That should lead us to write our second component. For now, we’ll just make it simple:

// in another file, races.ts
import { Component } from '@angular/core';

@Component({
 selector: 'ns-races',
 template: `<h2>Races</h2>`
})
export class Races {}

Nothing fancy: a simple class, decorated with @Component to give it a selector to match and an inline
template.

Now we want to include this component in our App template. What do we need to do?

10.2. Using other components in our templates
We have our app component, App, where we want to display the pony races component, Races.

// in app.ts
import { Component } from '@angular/core';

67

@Component({
 selector: 'ns-root',
 // added the Races component
 template: `
 <h1>PonyRacer</h1>
 <ns-races />
 `
})
export class App {}

As you can see, we added the Races component in the template, by including a tag whose name
matches the selector we defined for the component.

Buuuuuut, that will not work: your browser will not display the races component.

Why is that? Angular doesn’t know about this Races yet.

The fix is simple: you need to add Races to the imports of the App decorator. That way, when Angular
compiles the template of App, it will look for a component with the ns-races selector in the list of
imported components, and will thus know that it must instantiate and display the Races.

import { Component } from '@angular/core';
// do not forget to import the component
import { Races } from './races';

@Component({
 selector: 'ns-root',
 template: `
 <h1>PonyRacer</h1>
 <ns-races />
 `,
 // add Races to the imports of App
 imports: [Races]
})
export class App {}

Note that you will pass the class directly, so you’ll have to import it. And in order to be able import
it, you need to export the class Races in its source file races.ts (read the section about ES2015
modules again if that’s not clear for you). So Races will look like:

// in another file, races.ts
import { Component } from '@angular/core';

@Component({
 selector: 'ns-races',
 template: `<h2>Races</h2>`
})

68

export class Races {}

Now, our races component will proudly be displayed in our browser:

<ns-root>
 <h1>PonyRacer</h1>
 <ns-races>
 <h2>Races</h2>
 </ns-races>
</ns-root>

10.3. Property binding
Interpolation is only one of the ways to have dynamic parts in your template.

In fact, the interpolation we just saw is just an easy way to use what is the core of Angular
templating system: property binding.

In Angular, every DOM property can be written to via special attributes on HTML elements
surrounded with square brackets []. It looks weird at first, but in fact it is valid HTML (it surprised
me too). An HTML attribute can start with pretty much anything you want except a few characters
like quotes, apostrophes, slashes, equals, spaces…

I’m talking about DOM properties, but maybe this is not clear for you. We usually write to HTML
attributes, right? Right, usually we do. Let’s take this simple HTML:

<input type="text" value="hello">

The input tag above has two attributes: a type attribute and a value attribute. When the browser
parses this tag, it creates a corresponding DOM node (an HTMLInputElement if we want to be
accurate), which has the matching properties type and value. Each standard HTML attribute has a
corresponding property in the DOM node. But the DOM node also has additional properties, which
don’t have a corresponding attribute. For example: childElementCount, innerHTML or textContent.

The interpolation we had above to display the user’s name:

<p>{{ user().name }}</p>

is just sugar syntax for the following:

<p [textContent]="user().name"></p>

The square bracket syntax allows you to modify the DOM property textContent, and we give it the
value user.name which will be evaluated in the context of the current component instance, as it was
for the interpolation.

69

Note that the parser is case-sensitive, so you have to write the property name with the correct case:
textcontent or TEXTCONTENT will not work. It has to be textContent.

DOM properties have a great advantage over HTML attributes: they have up-to-date values. In my
input example, the value attribute will always contain 'hello', whereas the value property of the
DOM node is dynamically modified by the browser, and thus contains whatever the user has
entered in the text field.

Finally, properties can have boolean values, whereas some attributes can only reflect it by being
present or absent on the start tag. For example, you have the selected attribute on the <option> tag:
no matter what value you give it, it will select the option, as long as it is present.

<option selected>Rainbow Dash</option>
<option selected="false">Rainbow Dash</option> <!-- still selected -->

With properties access like Angular gives us, you can write:

<option [selected]="isPonySelected()" value="Rainbow Dash">Rainbow Dash</option>

And the pony will be selected if isPonySelected returns true, and will not be selected if it returns
false. And whenever the value of isPonySelected changes, the selected property will be updated.

You can also access nested properties like the color attribute of the style property.

<p [style.color]="foreground()">Friendship is Magic</p>

If the foreground signal is changing to 'green', then the text will update its color to 'green' too!

So Angular is using properties. Which values can we pass? We already saw the interpolation
property="{{ expression }}":

<ns-pony name="{{ pony().name }}" />

is the same as [property]="expression" (which you will usually prefer):

<ns-pony [name]="pony().name" />

If you want to write 'Pony' followed by the pony’s name, you have two options:

<ns-pony name="Pony {{ pony().name }}" />
<ns-pony [name]="'Pony ' + pony().name" />

If your value is not a dynamic one, you can simply write property="value":

70

<ns-pony name="Rainbow Dash" />

All of these are equivalent. You need to remember that if an HTML attribute is not surrounded by
square brackets (name="…"), then the value is a string. Whereas if it’s surrounded by square
brackets ([name]="…"), then the value is an expression, evaluated by Angular.

10.4. Events
If you’re developing a webapp, you know that displaying things is just one part of the job: you also
have to deal with user interactions. To allow this, the browser fires events, which you can listen to:
click, keyup, mousemove, etc.

Going back to our Races, we now want to have a button that will display the races when clicked.

Reacting to an event can be done as follows:

<button (click)="onButtonClick()">Click me!</button>

A click on the button of the example above will trigger a call to the component method
onButtonClick().

Let’s add this to our component:

@Component({
 selector: 'ns-races',
 template: `
 <h2>Races</h2>
 <button (click)="refreshRaces()">Refresh the races list</button>
 <p>{{ races().length }} races</p>
 `
})
export class Races {
 protected readonly races = signal<Array<RaceModel>>([]);

 protected refreshRaces(): void {
 this.races.set([{ name: 'London' }, { name: 'Lyon' }]);
 }
}

If you try this in your browser, you should initially see "0 races". And after your click, "0 races"
should become "2 races". Yay \o/

The statement can be a function call, but it can be any executable statement, or even a sequence of
executable statements, like:

<button (click)="firstName.set('Cédric'); lastName.set('Exbrayat')">

71

 Click to change name to Cédric Exbrayat
</button>

However I would not advise you to do this. Using methods is a better way of encapsulating the
behavior: it makes your code easier to maintain and test, and it makes the view simpler.

The cool thing is that it works with standard DOM events, but also with custom events that might
fire from your Angular components or from web components. We’ll see later how to fire custom
events.

For the moment, let’s say the Races component emits a custom event to notify the app that a new
race is available.

Our template in the App component would then look like:

@Component({
 selector: 'ns-root',
 template: `
 <h1>PonyRacer</h1>
 <ns-races (newRaceAvailable)="onNewRace()" />
 `,
 imports: [Races]
})
export class App {
 protected onNewRace(): void {
 // add a flashy message for the user.
 }
}

We can easily figure out that the <ns-races> component has a custom event newRaceAvailable and
that, when this event is fired, the method onNewRace() of our App is called.

Angular will listen for the event on the element and on its children, so it will react to events that
bubble. Consider the template:

<div (click)="onButtonClick()">
 <button>Click me!</button>
</div>

Even though the user clicks on the button embedded inside the div, the onButtonClick() method will
be called, because the event bubbles up.

Oh, and you can access the event in the method called! You just have to pass $event to your method:

<div (click)="onButtonClick($event)">
 <button>Click me!</button>
</div>

72

Then you can handle the event in your component class:

onButtonClick(event: Event) {
 console.log(event);
}

By default, the event will continue to bubble up, eventually triggering other event listeners up in
the hierarchy.

You can use the event to prevent the default behavior and/or cancel propagation if you want:

onButtonClick(event: Event) {
 event.preventDefault();
 event.stopPropagation();
}

One cool feature is that you can also easily handle keyboard events with:

<textarea (keydown.space)="onSpacePress()">Press space!</textarea>

Every time you will press the space key, the onSpacePress() method will be called. And you can do a
crazy combo, like (keydown.alt.space), etc.

To conclude this part, I want to point out that there is a big difference between something like:

<component [property]="doSomething()"></component>

and

<component (event)="doSomething()"></component>

In the first case, with property binding, the doSomething() value is called an expression, and will be
evaluated at each change detection cycle to see if the property needs to be updated.

In the second case, however, with event binding, the doSomething() value is called a statement, and
will be evaluated only when the event is triggered.

By definition they have completely different goals and, as you might suspect, they have different
restrictions.

10.5. Expressions vs statements
Expressions and statements differ in several ways.

An expression will be executed many times, as part of the change detection. It should thus be as fast

73

as possible. Basically, an Angular expression is a simplified version of an expression you could
write in JavaScript.

If you are using user.name as an expression, user should be defined, otherwise Angular will throw
an error.

An expression must be single: you can’t chain several ones separated with a semi-colon.

An expression should not have any side effect. That means it can’t be an assignment, for example.

<!-- forbidden, as the expression is an assignment -->
<!-- this will throw an error -->
<component [property]="user = 'Cédric'"></component>

It cannot contain keywords, like if, var, etc.

A statement, on the other hand, is triggered on the matching event. If you try to use a statement like
race.show() where race is undefined, you will have an error. You can chain several statements,
separated with a semicolon. A statement can, and generally should, have side effects. That’s the
point of reacting to an event: to make something happen. A statement can be a variable assignment,
and can contain keywords.

10.6. Local variables
When I say that Angular will look in the component instance to find a variable, it is not technically
correct. In fact, it will check the component instance and the local variables. Local variables are
variables that you can dynamically declare in your template using the # syntax.

Let’s say you want to display the value of an input:

<input type="text" #name>
{{ name.value }}

Using the # syntax, we are creating a local variable name referencing the DOM object
HTMLInputElement. This local variable can be used anywhere in the template. As it has a value
property, we can display this property in an interpolated expression. I’ll come back to this example
later.

Another useful usage of local variables is when you want to execute some kind of action on another
element.

For example, you may want to give the focus on an element when you click on a button. This was a
bit cumbersome in AngularJS 1.x, as you had to create a custom directive and so on.

The focus() method is a standard part of the DOM API, and we can leverage this. Using a local
variable, it’s a no-brainer in Angular:

74

<input type="text" #name>
<button (click)="name.focus()">Focus the input</button>

It can also be used with a custom component - one we created in our app, imported from another
project, or even with a real Web Component:

<google-youtube #player></google-youtube>

<button (click)="player.play()">Play!</button>

Here, the button can start playing the video of the <google-youtube> component. This is actually a
real Web Component written with Polymer! This component has a play() method that Angular will
call when you click on the button, which is pretty cool!

Local variables have a few use cases, and we will gradually see them.

10.7. If, For and Switch with the control flow syntax
Now, our Races is still not displaying the races :) The "proper way" in Angular would mean creating
another component Race to display each race. We are going to do something slightly simpler, and
just write a simple list.

Property and event binding is great, but it does not let us change the DOM structure, like iterating
over a collection and adding an element per item. To do so, we can use special instructions in the
template, that have been introduced in Angular v18, under the name Built-in control flow.

Previously, we needed to use special directives, that are called structural directives, like ngIf, ngFor,
ngSwitch to handle these cases. A directive in Angular is really close to a component, but does not
have a template. It is used to add behavior to an element. Structural directives are a subset of
directives that can change the structure of the DOM. They still exist, so you can still use ngIf, ngFor,
ngSwitch, etc. in your templates, but they are deprecated and the recommended way is to use the
new control flow syntax. If you’re interested in the old way, you can read the chapter about
structural directives later in this book.

Let’s see how we can use the control flow syntax.

10.7.1. @if

Let’s say we want to display a title in the template only if races has no element. We can use the @if
instruction:

<div>
 @if (races().length === 0) {
 <h2>No races to come</h2>
 }
</div>

75

http://googlewebcomponents.github.io/google-youtube/components/google-youtube/
https://www.polymer-project.org/1.0/

If we want to display something else if there are some races, we can use @else:

<div>
 @if (races().length === 0) {
 <h2>No races to come</h2>
 } @else {
 <h2>Some races to come</h2>
 }
</div>

It is also possible to use @else if:

<div>
 @if (races().length === 0) {
 <h2>No races to come</h2>
 } @else if (races().length === 1) {
 <h2>Only one race to come</h2>
 } @else {
 <h2>Some races to come</h2>
 }
</div>

You can also alias the result of the condition in a local variable, which can be useful if you want to
use it several times.

@if (races().length; as raceCount) {
 <h2>{{ raceCount }} races to come</h2>
 <!-- displays "2 races to come" -->
}

Tip for signals with nullable values

Signals can sometimes contain a null or undefined value. This is usually the case when they are
used to store an entity fetched from the backend. For example, this component has a race signal
that contains a race or undefined:

protected readonly race = signal<RaceModel | undefined>(undefined);

In the template, if we use race().name, we get a TypeScript error indicating that race() can be
undefined.

Usually, with a property that is not a signal, we can use a @if to display the name only the property
is not undefined, which makes sense. But here it won’t be enough to solve the error.

As a signal is a function, TypeScript has no way to know that the returned value is still not null
inside the if.

76

In this case, it can be handy to use an alias to store the value of the signal.

@if (race(); as raceValue) {
 <h1>{{ raceValue.name }}</h1>
}

You can also use @let to solve this problem. We’ll talk bout this in a few seconds.

10.7.2. @for

Working with real data will inevitably lead you to display a list of something. That’s when @for
proves very useful: it allows displaying a template for each item of a collection. Our Races
component contains a field races which, as you can probably guess, is an array of races to display.

import { Component, signal } from '@angular/core';
import { RaceModel } from './race.model';

@Component({
 selector: 'ns-races',
 templateUrl: './for.html'
})
export class Races {
 protected readonly races = signal<Array<RaceModel>>([
 { id: 1, name: 'London' },
 { id: 2, name: 'Lyon' }
]);
}

The template uses @for to repeat the li tag for each item in the races array, and we chose to name
the current item race:

<div>
 <h2>Races</h2>

 @for (race of races(); track race.id) {
 {{ race.name }}
 }

</div>

And now we have a beautiful list, with one li tag per item in our collection!

 London
 Lyon

77

You’ll note that @for requires to provide a track parameter. This is mainly for performance reasons,
as it helps Angular to track the items in the collection and to update the DOM only when needed
(we’ll dive into this in a later chapter). You’ll usually use a unique identifier for each item, like track
race.id, but it can be the item itself (track race) if you don’t have a better choice.

@for can be used with @empty to display something when the collection is empty (or null or
undefined):

<div>
 <h2>Races</h2>

 @for (race of races(); track race.id) {
 {{ race.name }}
 } @empty {
 No races
 }

</div>

@for also exposes some variables that can be useful:

• $index, the index of the current item, starting at zero

• $first, a boolean that is true if the element is the first of the collection

• $last, a boolean that is true if the element is the last of the collection

• $even, a boolean that is true if the element has an even index

• $odd, a boolean that is true if the element has an odd index

For example, you can use $even to add a "grey" CSS class to the even elements:

 @for (race of races(); track race.id) {
 <li [class.grey]="$even">{{ race.name }}
 }

You can alias these variables to a local variable if you need, which can be useful if you have nested
loops:

 @for (race of races(); track race.id; let isEven = $even) {
 <li [class.grey]="isEven">{{ race.name }}
 }

10.7.3. @switch

As you can guess from its name, this instruction allows to switch between different templates based

78

on the value of an expression.

Let’s take our @if/@else if/@else example and rewrite it using @switch:

<div>
 @switch (races().length) {
 @case (0) {
 <h2>No races to come</h2>
 }
 @case (1) {
 <h2>Only one race to come</h2>
 }
 @default {
 <h2>Some races to come</h2>
 }
 }
</div>

10.7.4. Migration from structural directives

If you have existing code using structural directives, you can migrate to the built-in control flow
syntax using an automated migration, by running:

ng g @angular/core:control-flow

10.8. Template variables with @let
Angular v18.1 added a new feature to the template syntax: template variables. It is now possible to
define a variable in the template, using the @let instruction, without having to declare it in the
component class.

The syntax is simple: @let variableName = expression;. Let’s say our component has a count field
defined in its class, then we can define a variable in the template like this:

@let countPlusTwo = count() + 2;
<p>{{ countPlusTwo }}</p>

This can be handy when you want to use a value in several places in your template, especially if it is
a complex expression. Sometimes you can create a dedicated field in the component class, but
sometimes you can’t, for example in a for loop:

@for (user of users(); track user.id) {
 <div class="name">{{ user.lastName }} {{ user.firstName }}</div>
 <div class="address">
 {{ user.shippingAddress.default.number }}
 {{ user.shippingAddress.default.street }}

79

 {{ user.shippingAddress.default.zipcode }}
 {{ user.shippingAddress.default.city }}
 </div>
}

This can be written more cleanly using @let:

@for (user of users(); track user.id) {
 <div class="name">{{ user.lastName }} {{ user.firstName }}</div>
 <div class="address">
 @let address = user.shippingAddress.default;
 {{ address.number }}
 {{ address.street }}
 {{ address.zipcode }}
 {{ address.city }}
 </div>
}

10.9. Structural directives


You can skip this section if you are using Angular v18 or later. It is still valid, but
they are deprecated and the new syntax is recommended. We picked similar
examples as the control flow syntax, so you can compare them.

The structural directives provided by Angular rely on using a ng-template element, inspired by the
template standard tag of the HTML specification.

<ng-template>
 <div>Races list</div>
</ng-template>

Here we have defined a template, displaying a simple div. Alone, it does not have much use, as the
browser will not display it. But if we add one 'template' element in a view, then Angular can use its
content. The structural directives have the ability to do simple actions with this content, like
displaying it or not, repeating it, etc.

Let’s see which directives are available!

10.9.1. NgIf

We might want this template instantiated only if a condition is matched. For this, we will use the
directive ngIf:

<ng-template [ngIf]="races().length > 0">
 <div><h2>Races</h2></div>

80

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/template

</ng-template>

The framework provides a few directives, like ngIf. They come from the module that we discussed
earlier: CommonModule. You can also define your own directives if needed: we’ll come back to custom
directives later.

Here, the template will be instantiated only if races has at least one element, that is to say if there
are races. As this syntax is a bit long, there is a shorter version:

<div *ngIf="races().length > 0"><h2>Races</h2></div>

And you will always use this shorter version.

The syntax uses * to show it is a structural directive. The ngIf will or will not display the div
whenever the value of races changes: if there are no more races, the div will disappear.

The directives provided by the framework have no special treatment: to be able to use them, a
standalone component must import them. The following example explicitly imports NgIf. You might
choose instead to import the whole CommonModule, which would make NgIf and other common
directives and pipes available to the template.

import { Component, signal } from '@angular/core';
import { NgIf } from '@angular/common';
import { RaceModel } from './race.model';

@Component({
 selector: 'ns-races',
 template: `<div *ngIf="races().length > 0"><h2>Races</h2></div>`,
 imports: [NgIf]
})
export class Races {
 protected readonly races = signal<Array<RaceModel>>([]);
}

It’s also possible to use an else syntax:

import { Component, signal } from '@angular/core';
import { NgIf } from '@angular/common';
import { RaceModel } from './race.model';

@Component({
 selector: 'ns-races',
 template: `
 <div *ngIf="races().length > 0; else empty"><h2>Races</h2></div>
 <ng-template #empty><h2>No races.</h2></ng-template>
 `,
 imports: [NgIf]

81

})
export class Races {
 protected readonly races = signal<Array<RaceModel>>([]);
}

10.9.2. NgFor

Working with real data will inevitably lead you to display a list of something. That’s when NgFor
proves very useful: it allows you to instantiate one template per item in a collection. Our Races
component contains a field races which, as you can probably guess, is an array of races to display.

import { Component, signal } from '@angular/core';
import { CommonModule } from '@angular/common';
import { RaceModel } from './race.model';

@Component({
 selector: 'ns-races',
 template: `
 <div *ngIf="races().length > 0">
 <h2>Races</h2>

 <li *ngFor="let race of races()">{{ race.name }}

 </div>
 `,
 imports: [CommonModule]
})
export class Races {
 protected readonly races = signal<Array<RaceModel>>([{ name: 'London' }, { name:
'Lyon' }]);
}

And now we have a beautiful list, with one li tag per item in our collection!

 London
 Lyon


in the above example, which uses both NgIf and NgFor, we chose to import the
whole CommonModule. If you prefer to be more explicit, you can instead have NgIf
and NgFor in the imports array. It’s mainly a matter of preferences.

NgFor is using a particular syntax, called a microsyntax.

82

 <li *ngFor="let race of races()">{{ race.name }}

It is possible to declare another local variable bound to the index of the current element:

 <li *ngFor="let race of races(); index as i">{{ i }} - {{ race.name }}

The local variable i will receive the index of the current element, starting at zero. index is an
exported variable. Some directives export variables that you can then assign to a local variable to
be able to use them in your template:

 0 - London
 1 - Lyon

There are also other exported variables that can be useful:

• even, a boolean that is true if the element has an even index

• odd, a boolean that is true if the element has an odd index

• first, a boolean that is true if the element is the first of the collection

• last, a boolean that is true if the element is the last of the collection

10.9.3. NgSwitch

As you can guess from its name, this directive allows to switch between different templates based
on a condition.

<div [ngSwitch]="messageCount()">
 <p *ngSwitchCase="0">You have no message</p>
 <p *ngSwitchCase="1">You have a message</p>
 <p *ngSwitchDefault>You have some messages</p>
</div>

As you can see, ngSwitch takes a condition and the *ngSwitchCase take the possible values. You can
also have *ngSwitchDefault that will be displayed if none of the values matched.

10.9.4. Understanding structural directives and their limitations


This content is really advanced, so you can skip it if you want: it is targeted at
people who want to understand why the new syntax was introduced, and who
have already a good understanding of Angular.

83

In Angular v18, the built-in control flow syntax (@if, @for, @switch) is promoted as a replacement for
the venerable structural directives.

To understand why this new syntax was introduced, let’s see how structural directives work in
Angular.

Structural directives under the hood

Structural directives are directives that change the structure of the DOM by adding, removing, or
manipulating elements. They are easy to recognize in Angular because they begin with an asterisk
*.

But how do they really work?

Let’s take a simple template with ngIf and ngFor directives as an example:

<h1>Ninja Squad</h1>
<ul *ngIf="condition()">
 <li *ngFor="let user of users()">{{ user.name }}

If you read our chapter about the Angular compiler, you know that the framework generates
JavaScript code from this template. And maybe you imagine that *ngIf gets converted to a
JavaScript if and *ngFor to a for loop like:

createElement('h1');
if (condition()) {
 createElement('ul');
 for (user of users()) {
 createElement('li');
 }
}

But Angular does not work exactly like that: the framework decomposes the component’s template
into "views". A view is a fragment of the template that has static HTML content. It can have
dynamic attributes and texts, but the HTML elements are stable.

So our example generates in fact three views, corresponding to three parts of the template:

<h1>Ninja Squad</h1>
<!-- special comment -->

 <!-- special comment -->

84

{{ user.name }}

This is because the * syntax is in fact syntactic sugar to apply an attribute directive on an ng-
template element. So our example is the same as:

<h1>Ninja Squad</h1>
<ng-template [ngIf]="condition()">

 <ng-template ngFor [ngForOf]="users()" let-user>
 {{ user.name }}
 </ng-template>

</ng-template>

Here ngIf and ngFor are plain directives. Each ng-template then generates a "view". Each view has a
static structure that never changes. But these views need to be dynamically inserted at some point.
And that’s where the <!-- special comment --> comes into play.

Angular has the concept of ViewContainer. A ViewContainer is like a box where you can
insert/remove child views. To mark the location of these containers, Angular uses a special HTML
comment in the created DOM.

That’s what ngIf actually does under the hood: it creates a ViewContainer, and then, when the
condition given as input changes, it inserts or removes the child view at the location of the special
comment.


This view concept is quite interesting as it will allow Angular to only update views
that consume a signal in the future, and not the whole template of a component!

You can create your own structural directives if you want to. Let’s say you want to write a
*customNgIf directive. You can create a directive that takes a condition as an input and injects a
ViewContainerRef (the service that allows to create the view) and a TemplateRef (the ng-template on
which the directive is applied).

import {
 Directive,
 DoCheck,
 EmbeddedViewRef,
 inject,
 input,
 signal,
 TemplateRef,
 ViewContainerRef
} from '@angular/core';

@Directive({
 // eslint-disable-next-line @angular-eslint/directive-selector

85

 selector: '[customNgIf]'
})
export class CustomNgIf implements DoCheck {
 /**
 * The container where the view will be inserted
 */
 private readonly vcr = inject(ViewContainerRef);

 /**
 * The template to render
 */
 private readonly tpl = inject<TemplateRef<unknown>>(TemplateRef);

 /**
 * The condition to check
 */
 readonly condition = input.required<boolean>({ alias: 'customNgIf' });

 /**
 * The view created by the directive
 */
 readonly conditionalView = signal<EmbeddedViewRef<unknown> | null>(null);

 /**
 * This method is called every time the change detection runs
 */
 ngDoCheck() {
 // if the condition is true and the view is not created yet
 const conditionalView = this.conditionalView();
 if (this.condition() && !conditionalView) {
 // create the view and insert it in the container
 this.conditionalView.set(this.vcr.createEmbeddedView(this.tpl));
 } else if (!this.condition() && conditionalView) {
 // if the condition is false and the view is created
 // destroy the view
 conditionalView.destroy();
 this.conditionalView.set(null);
 }
 }
}

This works great! And as you can see, it lets developers like us create powerful structural directives
if we want to: the built-in directives offered by Angular are not special in any way.

But this approach has some drawbacks: for example, it is a bit clunky to have an else alternative
with *ngIf:

<div *ngIf="condition(); else elseBlock">If</div>
<ng-template #elseBlock><div>Else</div></ng-template>

86

elseBlock is another input of the NgIf directive, of type TemplateRef, that the directive will display if
the condition is falsy. But this is not very intuitive to use, so we often see this instead:

<div *ngIf="condition()">If</div>
<div *ngIf="!condition()">Else</div>

The structural directives are also not perfect type-checking-wise. Even if Angular does some magic
(with some special fields called ngTemplateGuard in the directives to help the type-checker), some
cases are too tricky to handle. For example, the "else" alternative of *ngIf is not type-checked:

<div *ngIf="!adminUser; else userNotNullBlock">No user</div>
<ng-template #userNotNullBlock>
 <div>
 <!-- should compile as adminUser is not null here -->
 <!-- but it doesn't -->
 {{ adminUser.name }}
 </div>
</ng-template>

NgSwitch is even worse, as it consists of 3 separate directives NgSwitch, NgSwitchCase, and
NgSwitchDefault. The compiler has no idea if the NgSwitchCase is used in the right context.

<!-- user.type can be `'user' | 'anonymous'` -->
<ng-container [ngSwitch]="user().type">
 <div *ngSwitchCase="'user'">User</div>
 <!-- compiles even if user.type can't be 'admin' -->
 <div *ngSwitchCase="'admin'">Admin</div>
 <div *ngSwitchDefault>Unknown</div>
</ng-container>

It’s also worth noting that the * syntax is not very intuitive for beginners. So, to sum up, structural
directives are powerful but have some drawbacks. Fixing these drawbacks would require a lot of
work in the compiler and the framework.

That’s why the Angular team decided to introduce a new syntax to write control flow statements in
templates!

10.10. Template directives
Angular comes with plenty of other useful directives, but which are not structural. We’ll use several
of them when writing forms, for example. Two of them are commonly used to act on the CSS styles
of the elements.

10.10.1. NgStyle

The first one is ngStyle. We already saw that we can act on the style of an element using:

87

<p [style.color]="foreground()">Friendship is Magic</p>

If you need to set several styles at the same time, you can use the ngStyle directive:

<div [ngStyle]="{ fontWeight: fontWeight(), color: color() }">I've got style</div>

Note that the directive expects an object whose keys are the styles to set. The keys can either be in
camelCase (fontWeight) or in dash-case ('font-weight').

10.10.2. NgClass

In the same spirit, the ngClass directive allows you to add or remove classes dynamically on an
element.

As for the style, you can either set a class using property binding:

<div [class.awesome-div]="isAnAwesomeDiv()">I've got style</div>

or set several classes:

<div [class.awesome-div]="isAnAwesomeDiv()" [class.wonderful-div]="isAWonderfulDiv()"
>I've got style</div>

You can also use ngClass:

<div [ngClass]="{ 'awesome-div': isAnAwesomeDiv(), 'wonderful-div': isAWonderfulDiv()
}">I've got style</div>

10.11. Summary
The Angular templating system gives us a powerful syntax to express the dynamic part of our
HTML. It allows to express data and property binding, event binding and templating concerns, in a
clear way, each with their own symbols:

• {{}} for interpolation

• [] for property binding

• () for event binding

• # for variable declaration

• @if/@for/@switch for the control flow

It takes some time to be fluent in this syntax, but you will soon be up to speed, and then it’s easy to
read and write.

88

Let’s go through a complete example before moving on.

I want to write a Ponies component, displaying a list of ponies. Each pony should be represented by
a Pony component, but we haven’t seen yet how to pass parameters to a component. So, for now, we
are going to display a simple list. The list should be displayed only if it’s not empty, and I’d like to
have some color for the even lines of my list. Finally, I want to be able to refresh the list with a
button click.

Ready?

We start to write our component, in its own file:

import { Component } from '@angular/core';

@Component({
 selector: 'ns-ponies',
 template: ``,
 imports: []
})
export class Ponies {}

You can add it to the App component we wrote in the previous chapter to test it. You will have to
import it and insert the tag <ns-ponies /> in the template.

Our new component has a list of ponies wrapped in a signal:

import { Component, signal } from '@angular/core';
import { PonyModel } from '../pony.model';

@Component({
 selector: 'ns-ponies',
 template: ``,
 imports: []
})
export class Ponies {
 protected readonly ponies = signal<Array<PonyModel>>([
 { id: 1, name: 'Rainbow Dash' },
 { id: 2, name: 'Pinkie Pie' }
]);
}

We are going to display this list, using @for:

import { Component, signal } from '@angular/core';
import { PonyModel } from '../pony.model';

@Component({
 selector: 'ns-ponies',

89

 template: `

 @for (pony of ponies(); track pony.id) {
 {{ pony.name }}
 }

 `,
 imports: []
})
export class Ponies {
 protected readonly ponies = signal<Array<PonyModel>>([
 { id: 1, name: 'Rainbow Dash' },
 { id: 2, name: 'Pinkie Pie' }
]);
}

One thing is missing, the refresh button:

import { Component, signal } from '@angular/core';
import { PonyModel } from '../pony.model';

@Component({
 selector: 'ns-ponies',
 template: `
 <button (click)="refreshPonies()">Refresh</button>

 @for (pony of ponies(); track pony.id) {
 {{ pony.name }}
 }

 `,
 imports: []
})
export class Ponies {
 protected readonly ponies = signal<Array<PonyModel>>([
 { id: 1, name: 'Rainbow Dash' },
 { id: 2, name: 'Pinkie Pie' }
]);

 protected refreshPonies(): void {
 this.ponies.set([
 { id: 3, name: 'Fluttershy' },
 { id: 4, name: 'Rarity' }
]);
 }
}

And of course, a touch of color to finish, with the use of [style.color] and the $even variable:

90

import { Component, signal } from '@angular/core';
import { PonyModel } from '../pony.model';

@Component({
 selector: 'ns-ponies',
 template: `
 <button (click)="refreshPonies()">Refresh</button>

 @for (pony of ponies(); track pony.id) {
 <li [style.color]="$even ? 'green' : 'black'">
 {{ pony.name }}

 }

 `,
 imports: []
})
export class Ponies {
 protected readonly ponies = signal<Array<PonyModel>>([
 { id: 1, name: 'Rainbow Dash' },
 { id: 2, name: 'Pinkie Pie' }
]);

 protected refreshPonies(): void {
 this.ponies.set([
 { id: 3, name: 'Fluttershy' },
 { id: 4, name: 'Rarity' }
]);
 }
}

As you can see, we have used all the range of the templating syntax, and we have a perfectly
working component.



Try our quiz and the two exercises Templates and List of races ! They are
free and part of our Pro Pack, where you’ll learn how to build a complete
application step by step. The first one is all about building a small component, a
responsive menu, and play with its template. The second guides you in building
another component: the list of races.

91

https://angular-exercises.ninja-squad.com/exercises/1/quiz-templates
https://angular-exercises.ninja-squad.com/exercises/2/templates
https://angular-exercises.ninja-squad.com/exercises/3/races-list

Chapter 11. Building components and
directives

11.1. Introduction
So far, we have seen some small components. And of course, you can sense that, as they are the
backbone of our apps, they can be more complex than what we have seen. How do we pass data?
How do we manage the lifecycle of our component? What are the best practices to build these
things?

Directives: What do they do? Let’s find out!

11.2. Directives
A directive is very much like a component, except it does not have a template. The goal of a
component is to enrich HTML by using custom HTML elements like <ns-pony /> to display a pony.
Directives also enrich HTML by letting you attach a custom behavior to existing HTML elements.
For example, you could attach a drag directive to a <div>, or a <section>, or even a <ns-pony>
element to make it draggable.

We’ve already seen the ngClass directive: it allows adding or removing CSS classes to HTML
elements. You can attach several directives to the same element. For example, a <div> could need
CSS classes added to them by ngClass, and could also be made draggable by the drag directive.

The way we define directives is similar to the way we define components. We create a class. We
decorate this class with a @Directive decorator. And we pass metadata to this decorator as we did
for the @Component decorator. In fact, components are directives. All the metadata that we specify on
a directive, we can also pass them to a component. Their lifecycles are also pretty much identical.

Even though directives are a big part of what makes Angular extremely powerful, they’re more
commonly used in low-level, foundational parts of libraries, or of the framework itself. A typical
web application developer rarely creates directives, and more commonly creates components.

Let’s learn about the most common things we can define on components and directives. More
advanced stuff will be described later.

11.3. Selectors
The selector is what allows Angular to identify a component or directive inside HTML templates.

Selectors can be of various types:

• an element, as it’s usually the case for components: ns-pony.

• a class, not so frequent: .alert.

• an attribute, the most frequent for directives: [color].

92

• an attribute with a specific value: [color=red].

• a combination of the above: footer[color=red] matches an element named footer having an
attribute color whose value is red. [color], footer.alert matches any element having an
attribute color or (,) any element named footer with the CSS class alert. footer:not(.alert)
matches any element named footer that does not (:not()) have the CSS class alert.

For example, this is a very simple directive that does nothing but gets activated if the attribute
doNothing is on an element:

@Directive({
 selector: '[doNothing]'
})
export class DoNothing {
 constructor() {
 console.log('Do nothing directive');
 }
}

Such a directive will be activated in a component like this Test:

@Component({
 selector: 'ns-test',
 template: '<div doNothing>Click me</div>',
 imports: [DoNothing]
})
export class Test {}

A more complex selector could be:

@Directive({
 selector: 'div.loggable[logText]:not([notLoggable=true])'
})
export class ComplexSelector {
 constructor() {
 console.log('Complex selector directive');
 }
}

Here it will match all div elements with a loggable class and a logText attribute that don’t have an
attribute notLoggable with a true value.

So this template will trigger the directive:

<div class="loggable" logText="text">Hello</div>

But this one will not:

93

<div class="loggable" logText="text" notLoggable="true">Hello</div>

Let’s be honest, though: if you are writing something like this, there is something wrong! ὠ�


CSS selectors like descendants, siblings, ids, wildcards, and pseudos (other than
:not) are not supported.

11.4. Inputs with input()
Inputs are what allows a component or directive to receive information from its parent component.
You can see them as parameters of a function: the calling function uses parameters to pass data to
the called function.

To pass an input to a component or directive, we use the property binding syntax that we described
in the previous chapter. For example, if we wanted to pass a color to the pony component, we
would use:

<ns-pony color="blue" />

to pass the literal 'blue' string, or:

<ns-pony [color]="selectedColor()" />

to pass the value of the Angular expression selectedColor().

In order for a directive or component to accept information from its parent, it must define inputs.

Here’s how the pony component can receive a color from its parent component:

@Component({
 selector: 'ns-pony',
 template: 'My color is {{ color() }}'
})
export class Pony {
 protected readonly color = input<string>();
}

The color property is a special kind of signal: an InputSignal. Such a signal is not writable. The Pony
can’t change its color. The only way to change its value is to bind another value from the parent
component.

The input in the above example is optional. That means that the parent component is allowed to not
pass a color to the component <ns-pony />. But the input is typed, so if it passes a value, the value
must be a string. If the parent doesn’t pass any color, the color signal will contain undefined. The
type of color is InputSignal<string | undefined>.

94

The component could choose to use a default value for the color, in case the parent doesn’t pass
any. The type of color would then be InputSignal<string>: it always has a string value.

readonly color = input('red');

Or it could choose to force the parent to pass a value by making the input required. In this case, the
parent component template would fail to compile if it didn’t pass a value.

readonly color = input.required<string>();

If you wanted to use color as the property name, but prefer to use another name in the templates
for the input, you can choose to give it an alias.

For example, if the input is defined that way:

readonly color = input.required<string>({ alias: 'c' });

then the parent will use c to pass a color value:

<ns-pony [c]="selectedColor()" />

The above examples all define an input of type string. But anything can be passed as input. It’s very
common to pass complex objects as inputs, such as a PonyModel object that would contain a name, a
color, a birthdate, etc.

11.5. The @Input decorator
We’ve just seen how to define inputs as signals. That’s the modern way of doing it. If you work on
an existing code base, the inputs of your components are probably defined the old way, using the
@Input decorator.

Inputs defined this way are passed by the parent component using the exact same property binding
syntax. The difference is only in the component which defines the input. Such "legacy" inputs are
simple properties (not signals), decorated with @Input(). Here are the above examples rewritten in
the legacy way.

An optional input:

@Input() color: string | undefined;

An optional input with a default value:

@Input() readonly color = 'red';

95

A required input:

@Input({ required: true }) color!: string;

A required input with an alias:

@Input({ required: true, alias: 'c' }) color!: string;

OK, now what about passing data up? We can’t use properties to pass data from Pony to Ponies. But
we can use events!

11.6. Outputs with output()
Let’s go back to our latest example, and say we want to be able to select a pony by clicking on it and
inform the parent component. For this, we will use a custom event.

This is important. In Angular, data flows into a component via properties, and flows out of a
component via events.

Races

[race]

Race

[pony]

Pony

96

Races

Race

(selected)

Pony

Custom events are emitted using an OutputEmitterRef. You don’t really need to use this awful type
name. Such objects are created for you by the output() function.

You’re free to choose the type of the events that you emit. It could be undefined, to just signal that
something happened. Or it could be a PonyModel, to pass all the information about the pony that has
just been selected, for example.

Let’s say we want to emit an event called ponySelected. We have two things to do:

• define a property ponySelected initialized by calling output()

• call this.ponySelected.emit() to emit an event when the pony is being selected

@Component({
 selector: 'ns-pony',
 template: `
 <div>I'm the pony {{ ponyModel().name }}</div>
 <div><button (click)="selectMe()">Select me</button></div>
 `
})
export class Pony {
 readonly ponyModel = input.required<PonyModel>();

 // define the output
 readonly ponySelected = output<PonyModel>();
 // ☝️OutputEmitterRef<PonyModel>

 /**
 * Selects the pony when the "Select me" button is clicked.
 * Emits a custom event of type PonyModel
 */
 protected selectMe() {
 this.ponySelected.emit(this.ponyModel());

97

 }
}

To use it in the template of the parent component:

<ns-pony [ponyModel]="ponyModel()" (ponySelected)="betOnPony($event)" />

In the above example, every time the user clicks on the button in the pony component, it emits an
event ponySelected, with the pony as a value (the parameter of the emit() method). The parent
component is listening to this event, as you can see in the template, and will call its betOnPony
method with the value of the event $event. $event is the syntax you have to use to access the emitted
event. Here, it is the PonyModel object.

The parent component must then have a method betOnPony(), which will be called with the selected
pony:

protected betOnPony(event: PonyModel) {
 // do something with the received event
}

As for the inputs, if you wish, you can choose an alias for the output:

readonly ponySelected = output<PonyModel>({ alias: 'activated' });

The parent component will then have to use this alias to listen to the event:

<ns-pony [ponyModel]="ponyModel()" (activated)="betOnPony($event)" />

11.7. The @Output decorator
Even though outputs have nothing to do with signals, the output() function described above was
introduced at the same time as the input() function, to have a pleasant symmetry between inputs
and outputs.

Before that, outputs were defined using the @Output decorator. And they were also using a different
class: EventEmitter which was unnecessarily tied to the RxJS library (we’ll talk about this library in
a few chapters). In case your codebase still uses them, here’s how an output is defined in the legacy
way:

@Output() readonly ponySelected = new EventEmitter<PonyModel>();

and here’s how an alias can be specified for the input:

98

@Output('activated') ponySelected = new EventEmitter<PonyModel>();

11.8. Lifecycle
Components and directives have a lifecycle. When Angular must display a component, it starts by
constructing it and thus calls the component class constructor. Then it will pass the initial input
values to the component. If the expressions passed as inputs later have different values, then these
new values are written to the inputs again. And finally, if the user navigates away from this
component, for example, the component is destroyed. Hopefully, the component isn’t reachable
from anywhere anymore at this point, and the JavaScript virtual machine can garbage collect the
component object.

Angular allows you to react to those various phases (and other ones, more advanced, that we’ll
discover later). One thing is very important to understand: inputs are passed after the component
has been constructed. It’s thus forbidden to read inputs while the component is being constructed.

With the signal inputs, trying to do that will lead to an exception being thrown by the InputSignal.
With the legacy inputs, trying to do that will just give you the default value of the property, rather
than the one actually bound by the parent component.

That means that the following component will not work:

export class Pony {
 readonly color = input.required<string>();

 constructor() {
 // ❌ Don't do this
 console.log(`My initial color is ${this.color()}`);
 }
}

If you want to access the value of an input, to load additional data from the server, for example,
you can use a lifecycle hook. More powerful options are available for signal inputs, which we’ll
discover in the next chapter.

Several hooks are available:

• ngOnChanges is called when the value of one or several bound inputs change. It will receive a
changes map, containing the current and previous values of the inputs, wrapped in a
SimpleChange. It will not be called if there is no change.

• ngOnInit will be called only once, after the first change (whereas ngOnChanges is called on every
change). It’s guaranteed to be called even if there are no inputs. But if there are inputs, it’s
called after the first ngOnChanges call. It makes this phase perfect for initialization work that
depends on input values, as the name suggests.

• ngOnDestroy is called when the component is destroyed. Really useful to do some cleanup.

99

Other phases are available but are for more advanced use cases. We will describe them in the
Advanced components and directives chapter a bit further.

Our previous example will work better using ngOnInit. Angular invokes the method ngOnInit() if it’s
present, so you just have to implement it in your directive/component. But the best practice is to
implement the OnInit interface. That forces you to implement the method, and make sure you have
defined it correctly:

export class Pony implements OnInit {
 readonly color = input.required<string>();

 ngOnInit() {
 // ✅ Do this
 console.log(`My initial color is ${this.color()}`);
 }
}

Now we have access to our inputs!

If you want to do something every time an input changes, use ngOnChanges:

export class Pony implements OnChanges {
 readonly color = input.required<string>();

 ngOnChanges(changes: SimpleChanges): void {
 const ponyChange = changes['color'];
 console.log(`Color changed from ${ponyChange.previousValue}`);
 console.log(`to ${ponyChange.currentValue}`);
 console.log(`Is it the first change? ${ponyChange.isFirstChange()}`);

 // but you can also access the new value by reading the input
 console.log(`My new color is ${this.color()}`);
 }
}

The changes parameter is a record, with the input names as keys, and a SimpleChange object with two
attributes (the previous and the current value) as value, as well as a method isFirstChange() to
know if it is… the first change.

The ngOnDestroy phase is designed to clean the component – for example, to cancel background
tasks. Here, the Pony is logging "hello" every second when it is created. When the component is
removed from the page, you want to stop the setInterval to avoid a memory leak:

export class Pony implements OnDestroy {
 readonly color = input.required<string>();
 private readonly interval: number;

 constructor() {

100

 this.interval = window.setInterval(() => console.log(`My color is ${this.color()}
`), 1000);
 }

 ngOnDestroy(): void {
 window.clearInterval(this.interval);
 }
}

If you don’t do this, JavaScript will keep the instance of the component in memory, and it will log
every second forever.

11.9. Component-specific metadata
Inputs, outputs, and the hooks we’ve just described are common to directives and components.
Components, however, can define styles that will apply to their template, and must have an
associated template.

11.10. Template / Template URL
The main feature of a @Component is to have a template, whereas a directive does not have one. You
can either declare your template inline, using template or use a URL to put it in a separate file with
templateUrl (but you can’t do both at the same time).

As a rule of thumb, if your template is small (1-2 lines), it’s perfectly fine to keep it inline. When it
starts to grow, move it to its own file to avoid cluttering your component.

11.11. Styles / Style URL
You can also specify the styles of your component. It is particularly useful if you plan to have really
isolated components. You can specify this using styles or styleUrl (or styleUrls if you have several
files).

As you can see below, the styles attribute takes an array of CSS rules as a string. You can imagine it
grows pretty quickly, so using a separate file and styleUrl is a good idea. As the name of the latter
suggests, you can specify an array of URLs.

@Component({
 selector: 'ns-pony',
 template: '<div class="pony">My color is {{ color() }}</div>',
 styles: ['.pony { background-color: lightgray; }']
})
export class Pony {
 readonly color = input.required<string>();
}

 Try our exercise Race detail ! This exercise will guide you in building a more

101

https://angular-exercises.ninja-squad.com/exercises/4/race-detail

advanced component with inputs.

102

Chapter 12. Reacting to signal changes
We just discovered how to use ngOnChanges to react to changes in the value of inputs. This is very
helpful, but it’s a bit cumbersome when you need to only react to the changes of some inputs. And
of course it’s limited to inputs, and inputs only.

We’ve also learnt that signals have super-powers. Thanks to them, Angular knows that a view that
reads a signal must be refreshed when the signal changes. We can also use those super-powers
ourselves. Two functions allow us to do that: computed() and effect().

12.1. Computed signals
Have you ever used a spreadsheet with formulas? It’s great, isn’t it? You can sum all the amounts of
a sales column and store the result in a total cell. Then you can use another formula to apply the
VAT to that total and store the result in yet another cell. If you add a sale, or if you change an
amount, the total is automatically recomputed, and the VAT total as well. Computed signals allow
doing the same thing.

Let’s say our pony component receives a PonyModel as input, containing (among other properties) a
name and a color. And let’s say its template wants to display its identity as NAME (color) (for
example "RAINBOW DASH (blue)").

The first thing that comes to mind is to do it this way in the template:

pony.html

<div>{{ ponyModel().name.toUpperCase() }} ({{ ponyModel().color }})</div>

This is absolutely fine. But if the application uses the "brute-force" change detection, this
transformation will be done many times, even if the pony is the same as before. And if the template
must display the identity several times, copy and pasting this is not the best idea.

We might improve that by delegating to a method in the component:

pony.html

<div>{{ identity(ponyModel()) }}</div>

This avoids the duplication, but it still invokes the identity() method many times unnecessarily.

A better way would be to use ngOnChanges to compute the identity when the ponyModel changes, and
store the result in another property:

pony.ts

readonly ponyModel = input.required<PonyModel>();
protected readonly identity = signal<string>('');

103

ngOnChanges() {
 this.identity.set(`${this.ponyModel().name.toUpperCase()} (${this.ponyModel().color
})`);
}

That is nice. But if we later introduce another input, we’ll recompute the identity whenever this
unrelated input changes, unless we make our ngOnChanges method more complex. Also, note how
we’re forced to initialize the identity signal with a fake default value. There got to be an even better
way.

The better way is to use a computed signal. A computed signal is a read-only signal, whose value is
derived from another (or several other) signal(s):

readonly ponyModel = input.required<PonyModel>();
protected readonly identity = computed(() => `${this.ponyModel().name.toUpperCase()}
(${this.ponyModel().color})`);

The identity property is now a Signal<string>, whose value will always contain the identity of the
pony contained in the ponyModel signal. There is a dependency that is created and tracked by
Angular between the two signals. Whenever ponyModel changes, identity also changes.

Computed signals are memoized and lazy, which make them perfect for representing state that can
be read many times. This means that the identity of a pony is stored inside the computed signal.
And it’s not recomputed every time we write a new pony, but only the next time the identity signal
is read. You can try to execute the following example, and see what is being logged:

const count = signal(1);
const double = computed(() => {
 console.log(`computing double of ${count()}`);
 return count() * 2;
});

console.log(double());
count.set(2);
count.set(3);
count.set(4);
console.log(double());
console.log(double());
console.log(double());

The output will be:

'computing double of 1',
2,
'computing double of 4',
8,
8,

104

8

Computed signals are even greater when they depend on multiple signals. Let’s say you have a form
letting you enter a price and a quantity, and displaying a total, as well as a vat-included total.
Programming that imperatively requires you to think about computing the total and the vat-
included total whenever you change the price, and also whenever you change the quantity.
Dependencies are not so obvious, and it can quickly become spaghetti code. Including yet another
rule (like a discount percentage) could easily introduce a bug. Once the form input values are
available as signals, computed signals make the logic very easy to implement, and very efficient as
well:

const total = computed(() => price() * quantity());
const totalAfterDiscount = computed(() => total() * (1 - discountRate()));
const vatIncludedTotalAfterDiscount = computed(() => totalAfterDiscount() *
vatRate());

12.2. Effects
Effects are another way to react to signal changes. Instead of being used to compute a derived
value, they’re used to trigger a side effect (hence the name) when a signal changes. Examples of
such a side effect are storing a value of a signal in local storage when a signal changes, or updating
the DOM when a signal changes. It might be tempting to use an effect to update other signals when
a source signal changes. That’s possible, but it can lead to infinite loops, and computed signals are
more suited to such a task.

To illustrate how effects work, we will just use one that logs to the console.

pony.ts

readonly ponyModel = input.required<PonyModel>();

constructor() {
 effect(() => console.log(`${this.ponyModel().name} - ${this.ponyModel().color}`));
}

This example will log the name and color of the pony every time the parent passes a pony as input.

Unlike computed signals, effects are bound to the component (or directive, or service, or pipe) in
which they are constructed. An effect must be created while the component is being constructed.
It’s possible to do it elsewhere, but it’s more complex, and we will learn about that later. The
advantage of this restriction is that Angular takes care of destroying the effect when its owning
component is destroyed.

Another feature that must be understood is that effects are not executed synchronously, whenever
one of their source signals change. Instead, they’re called asynchronously, before the change
detection. This means that intermediate signal values won’t be noticed by effects.

105

Let’s illustrate this using the following component:

score.ts

protected readonly score = signal(0);

constructor() {
 effect(() => console.log(`The score is now ${this.score()}`));
}

protected plusOne() {
 this.score.update(s => s + 1);
}

protected plusTwo() {
 this.plusOne();
 this.plusOne();
}

Creating the component will log "The score is now 0", because the effect function is always executed
once initially to be able to know which signals the effect depends on.

Calling the plusTwo() method (as a reaction to a button click for example), will set the score signal to
1, then to 2. But only the final value of the score (i.e. the value that is stored in the signal after the
click event has been handled), will be logged by the effect. So the console will only log "The score is
now 2".

There are still more things to learn about signals, computed and effect (such as the untracked
function and the equality function, effect cleaning functions), but we will keep that for later.

You now know enough to start using signals. And hopefully, you understand why they are so great
in helping us to manage the state of our components in a simple, expressive and concise way.


Try our exercise Pony component ! This exercise will guide you in building a
more advanced component with inputs, outputs and computed signals.

106

https://angular-exercises.ninja-squad.com/exercises/5/pony-component

Chapter 13. Styling components and
encapsulation
Let’s stop to talk about styles and CSS for a minute. I know right? Why talk about freaking CSS?

Well because Angular is doing a lot of things for us behind the scenes.

As a Web developer, you often add CSS classes to elements. And the essence of CSS is that it will
cascade. That’s sometimes what you want (to change the font everywhere in your app for example),
or sometimes not. Imagine you want to add a style on a selected element in a list: you will usually
use a very narrow CSS selector in your CSS, like li.selected. Or an even narrower one, using
conventions like BEM, because you just want to style the selected element in a specific part of your
app.

That’s where Angular can be useful. The styles you define in a component (either with the styles
attribute, or in a dedicated CSS file for the component with styleUrl or styleUrls), are scoped by
Angular to this component and only this one. That’s called style encapsulation. How does it achieve
this?

It starts with you writing some styles. Then it depends on the strategy you select for the attribute
encapsulation of the component decorator. This attribute can have three different values:

• ViewEncapsulation.Emulated, which is the default one

• ViewEncapsulation.ShadowDom, which relies on Shadow DOM v1

• ViewEncapsulation.None, which means you don’t want encapsulation

Each value will induce a different behavior of course, so let’s have a look. We’ll take a component
you’re starting to know well, i.e. our Pony. This is a really simple version of the component, only
displaying the pony’s name in a div. For the purpose of the example, we add a CSS class red to this
div:

import { Component, signal, ViewEncapsulation } from '@angular/core';

@Component({
 selector: 'ns-pony',
 template: `<div class="red">{{ name() }}</div>`,
 styles: [
 `
 .red {
 color: red;
 }
 `
],
 // that's the same as the default mode
 encapsulation: ViewEncapsulation.Emulated
})
export class Pony {

107

https://en.bem.info/methodology/css/

 protected readonly name = signal('Rainbow Dash');
}

This class is then used in the styles of the component:

.red {
 color: red;
}

As you can see, we want to display the pony’s name in a red font.

13.1. Shadow DOM strategy
If you use the ShadowDom option, you’re telling Angular to use the Shadow DOM of your browser to
take care of the encapsulation. The Shadow DOM is a part of the Web Component specification. This
specification allows you to create elements in a special DOM, which is perfectly encapsulated. With
this strategy, if we look at the generated DOM with our browser’s inspector, we’ll see:

<ns-pony>
 #shadow-root (open)
 <style>.red {color: red}</style>
 <div class="red">Rainbow Dash</div>
</ns-pony>

You can spot the #shadow-root (open) that Chrome will display in the inspector: that’s because our
component has been included in a Shadow DOM element! And we can also see that the style was
added at the top of our component’s content.

With the ShadowDom strategy, you are sure that your component’s styles are not "bleeding" into your
child components if they are using the ShadowDom strategy as well. But they will bleed into the child
components if they don’t, which can be useful in some cases.

But remember, Shadow DOM is a rather new specification, so it’s not available in every browser.
You can check the availability on the awesome website caniuse.com. So be careful when you use it
in your apps!

As a side note: the component selector must be hyphenated otherwise the ShadowDOM strategy won’t
work.

13.2. Emulated strategy
As said earlier, this is the default strategy. And the reason is really simple: it emulates (hence the
name) the ShadowDom strategy, but without using the Shadow DOM. It’s safe to use everywhere and
styles won’t bleed into child components.

To achieve that, Angular will take the CSS defined for the component, and inline it inside the <head>

108

http://caniuse.com/#feat=shadowdomv1

element of the page (and not in each component as we saw for the ShadowDom strategy). But before
inlining it, it’s going to rewrite the CSS selector, to append a unique attribute identifier. This unique
attribute is then added to all the elements of our component’s template! That way the style will only
apply to our component. The same example, would now give:

<html>
 <head>
 <style>.red[_ngcontent-dvb-3] {color: red}</style>
 </head>
 <body>
 ...
 <ns-pony _ngcontent-dvb-2="" _nghost-dvb-3="">
 <div _ngcontent-dvb-3="" class="red">Rainbow Dash</div>
 </ns-pony>
 </body>
</html>

The red class selector has been rewritten to .red[_ngcontent-dvb-3], so it will only apply on
elements that have both the class red and the attribute _ngcontent-dvb-3. You can see that this
attribute has also been added to our div automatically, so that works perfectly. The <ns-pony>
element also has a few attributes: _ngcontent-dvb-2 which is the unique identifier generated for its
parent, and _nghost-dvb-3 which is a unique identifier for the host element itself. Yes, we can also
add styles that apply on the host element, as we’ll see shortly.

13.3. None strategy
This strategy is not doing any encapsulation. The styles will be inlined at the top of the page (as for
the Emulated strategy), but not rewritten. They then behave like "normal" styles, cascading into
children.

13.4. Styling the host
A special CSS selector exists to style only the host element. It is called :host, and it comes from the
Web Component specification:

:host {
 display: block;
}

It will be kept as is for the ShadowDom strategy and rewritten into [_nghost-xxx] if you use Emulated.

To conclude, you don’t have to do much to have perfectly encapsulated styles, because the Emulated
strategy takes care of this business for us. You can switch the strategy to use the ShadowDom one if you
target only specific browsers, or None if you don’t want to encapsulate styles. This strategy can be
tweaked per component, or globally for your whole app in the root module.

109

Chapter 14. Pipes

14.1. Pied piper
Sometimes the raw data is not what we want to display in the view. We often want to transform it,
format it, etc. AngularJS 1.x had a very handy feature to do this, very badly named 'filters'. Lessons
have been learned and now these data transformers have a meaningful name! Nah, I’m just
kidding, they are called 'pipes' :).

Similarly as components, pipes can be standalone or not. The pipes that are provided by Angular
and that we will discuss here are all standalone, and are all part of CommonModule. So, to use them in
your components, you’ll have to add them, or the whole CommonModule, to their imports.

Let’s take an example and see how we can use pipes.

14.2. json
A pipe that is not really useful in a production app, but very handy when you are debugging your
app, is JsonPipe. Basically, this pipe applies JSON.stringify() to your data. If you have some data in
your component, a signal containing an array of ponies called ponies, for example, and you want to
quickly see what’s inside, you may want to try something like:

<p>{{ ponies() }}</p>

Tough luck, it’s going to display [object Object]…

But JsonPipe is here to rescue us. You can use it in your HTML, in any expression:

<p>{{ ponies() | json }}</p>

And it will display the JSON representation of your object:

<p>[{ "name": "Rainbow Dash" }, { "name": "Pinkie Pie" }]</p>

You can see where the name 'pipe' is coming from. To use a pipe, you have to add a pipe (|)
character after your data, and then the name of the pipe you want to use. The expression is
evaluated and the result goes through the pipe. It’s possible to chain several pipes, one after
another, like:

<p>{{ ponies() | slice:0:2 | json }}</p>

We’ll come back to the slice pipe, but you can see that we are chaining the slice pipe and then the
json one.

110

You can use it in an interpolation expression or in a property expression, but not in an event
statement.

<p [textContent]="ponies() | json"></p>

14.3. slice
If you want to display just a part of a list, slice is your friend. It works like the slice method in
JavaScript, and takes two arguments: a start index and, optionally, an end index.

To pass an argument to a pipe, you have to add a colon :, then the first argument, then possibly,
another colon and the second argument etc.

<p>{{ ponies() | slice:0:2 | json }}</p>

This example will display the first two elements of my list of ponies.

slice works with arrays and strings, so you can also truncate a string:

<p>{{ 'Ninja Squad' | slice:0:5 }}</p>

and that will display only 'Ninja'.

You can give the slice pipe only one index n, and it will take the elements from n to the end.

<p>{{ 'Ninja Squad' | slice:3 }}</p>
<!-- will display 'ja Squad' -->

If you give it a negative integer, it will take the n last elements.

<p>{{ 'Ninja Squad' | slice:-5 }}</p>
<!-- will display 'Squad' -->

As we saw, you can also give the pipe an end index: it will take the elements until this index. If this
index is negative, it will take the elements until the index, but starting from the end.

<p>{{ 'Ninja Squad' | slice:2:-2 }}</p>
<!-- will display 'nja Squ' -->

As you can use slice in any expression, you can use it even with a @for:

import { Component, signal } from '@angular/core';
import { SlicePipe } from '@angular/common';

111

import { PonyModel } from '../templates/pony.model';

@Component({
 selector: 'ns-ponies',
 template: `@for (pony of ponies() | slice: 0 : 2; track pony.id) {
 <div>{{ pony.name }}</div>
 }`,
 imports: [SlicePipe]
})
export class Ponies {
 protected readonly ponies = signal<Array<PonyModel>>([
 { id: 1, name: 'Rainbow Dash' },
 { id: 2, name: 'Pinkie Pie' },
 { id: 3, name: 'Fluttershy' }
]);
}

The component will create only two div elements here, for the first two ponies, as we have applied
the slice pipe to the collection.

The pipe argument can of course be a dynamic value:

import { Component, signal } from '@angular/core';
import { SlicePipe } from '@angular/common';
import { PonyModel } from '../templates/pony.model';

@Component({
 selector: 'ns-ponies',
 template: `@for (pony of ponies() | slice: 0 : size(); track pony.id) {
 <div>{{ pony.name }}</div>
 }`,
 imports: [SlicePipe]
})
export class Ponies {
 protected readonly size = signal(2);
 protected readonly ponies = signal<Array<PonyModel>>([
 { id: 1, name: 'Rainbow Dash' },
 { id: 2, name: 'Pinkie Pie' },
 { id: 3, name: 'Fluttershy' }
]);
}

You can use this to create a dynamic display where your user chooses how many elements she/he
wants to see.

14.4. keyvalue
This pipe, introduced in Angular 6.1, allows you to iterate over a Map or an object, and to display

112

the keys/values in our templates.

Note that it orders the keys:

• first lexicographically if they are both strings

• then by their value if they are both numbers

• then by their boolean value if they are both booleans (false before true).

And if the keys have different types, they will be cast to strings and then compared.

@Component({
 selector: 'ns-ponies',
 template: `

 <!-- entry contains { key: number, value: PonyModel } -->
 @for (entry of ponies() | keyvalue; track entry) {
 {{ entry.key }} - {{ entry.value.name }}
 }

 `,
 imports: [KeyValuePipe]
})
export class Ponies {
 protected readonly ponies = signal(
 new Map<number, PonyModel>([
 [103, { name: 'Rainbow Dash' }],
 [56, { name: 'Pinkie Pie' }]
])
);
}

If you have null or undefined keys, they will be displayed at the end.

It’s also possible to define your own comparator function:

@Component({
 selector: 'ns-ponies',
 template: `

 <!-- entry contains { key: PonyModel, value: number } -->
 @for (entry of poniesWithScore() | keyvalue: ponyComparator; track entry) {
 {{ entry.key.name }} - {{ entry.value }}
 }

 `,
 imports: [KeyValuePipe]
})
export class Ponies {
 protected readonly poniesWithScore = signal(

113

 new Map<PonyModel, number>([
 [{ name: 'Rainbow Dash' }, 430],
 [{ name: 'Rainbow Dash' }, 680],
 [{ name: 'Pinkie Pie' }, 125]
])
);

 /*
 * Defines a custom comparator to order the elements by the name of the PonyModel
(the key)
 */
 ponyComparator(a: KeyValue<PonyModel, number>, b: KeyValue<PonyModel, number>): -1 |
0 | 1 {
 if (a.key.name === b.key.name) {
 return 0;
 }
 return a.key.name < b.key.name ? -1 : 1;
 }
}

14.5. uppercase
As its name makes it clear enough, this pipe transforms a string into its uppercase version:

<p>{{ 'Ninja Squad' | uppercase }}</p>
<!-- will display 'NINJA SQUAD' -->

14.6. lowercase
The counterpart of the previous one, this pipe transforms a string into its lowercase version:

<p>{{ 'Ninja Squad' | lowercase }}</p>
<!-- will display 'ninja squad' -->

14.7. titlecase
Angular 4 introduced a new titlecase pipe. It capitalizes the first letter of all words:

<p>{{ 'ninja squad' | titlecase }}</p>
<!-- will display 'Ninja Squad' -->

14.8. number

 The following pipes (number, percent, currency, date) can help with

114

internationalization. They have been completely overhauled in Angular 5.0, and
don’t use the Intl API of the browsers anymore (it caused numerous bugs). The
Angular team has now implemented the internationalization logic themselves. The
following examples use the new implementation of the pipes, which comes with
Angular 5, without diving into the internationalization details, as they are covered
in a chapter at the end of the book. The examples also use the default locale of
Angular, en-US.

This pipe lets you format a number.

It takes one parameter, a string, formatted as {integerDigits}.{minFractionDigits}-
{maxFractionDigits}, but every part is optional. Each part indicates:

• how many numbers you want in the integer part

• how many numbers you want at least in the decimal part

• how many numbers you want at most in the decimal part

A few examples, starting with what we have with no pipe:

<p>{{ 12345 }}</p>
<!-- will display '12345' -->

Using the number pipe will group the integer part, even with no digits required:

<p>{{ 12345 | number }}</p>
<!-- will display '12,345' -->

The integerDigits parameter will left-pad the integer part with zeros if needed:

<p>{{ 12345 | number:'6.' }}</p>
<!-- will display '012,345' -->

The minFractionDigits is the minimum size of the decimal part, so it will pad zeros on the right until
reached:

<p>{{ 12345 | number:'.2' }}</p>
<!-- will display '12,345.00' -->

The maxFractionDigits is the maximum size of the decimal part. You have to specify a
minFractionDigits, even at 0, if you want to use it. If the number has more decimals than that, then
it is rounded:

<p>{{ 12345.13 | number:'.1-1' }}</p>
<!-- will display '12,345.1' -->

115

<p>{{ 12345.16 | number:'.1-1' }}</p>
<!-- will display '12,345.2' -->

14.9. percent
Based on the same principle as number, percent lets you display… a percentage!

<p>{{ 0.8 | percent }}</p>
<!-- will display '80%' -->

<p>{{ 0.8 | percent:'.3' }}</p>
<!-- will display '80.000%' -->

14.10. currency
As you can imagine, this pipe lets you format an amount of money in the currency you want. You
have to give it at least one parameter:

• the ISO string representing the currency ('EUR', 'USD'…)

• optionally, an option to say if you want to use the symbol ('€', '$', CA$') with 'symbol' or the ISO
code with 'code', or even the narrow symbol with 'symbol-narrow'. The narrow symbol is for
example $, when the symbol is CA$ for Canadian dollars. The default value of this option is
'symbol'.

• optionally also, a string to format the amount, using the same syntax as number.

<p>{{ 10.6 | currency:'CAD' }}</p>
<!-- will display 'CA$10.60' -->

<p>{{ 10.6 | currency:'CAD':'symbol-narrow' }}</p>
<!-- will display '$10.60' -->

<p>{{ 10.6 | currency:'EUR':'code':'.3' }}</p>
<!-- will display 'EUR10.600' -->

If you don’t provide the ISO string representing the currency, then USD is used, unless you configure
it globally (since Angular 9). Check the Internationalization chapter if you want to learn how.

This pipe is way more powerful than what you might expect: it relies on the ISO 4217 specification
to determine the number of digits in the decimal part. For example, formatting an amount in
Chilean pesos results in an amount with no digits (as pesos don’t have cents), whereas formatting
an amount in Tunisian dinars results in an amount with 3 digits (as it has millimes).

116

14.11. date
The date pipe formats a date value to a string of the desired format. The date can be a Date object or
a number of milliseconds. The format specified can be either a pattern like 'dd/MM/yyyy', 'MM-yy' or
one of the predefined symbolic names available like 'short', 'longDate', etc.:

<p>{{ birthday() | date:'dd/MM/yyyy' }}</p>
<!-- will display '16/07/1986' -->

<p>{{ birthday() | date:'longDate' }}</p>
<!-- will display 'July 16, 1986' -->

Of course, you can also display the time portion of the date:

<p>{{ birthday() | date:'HH:mm' }}</p>
<!-- will display '15:30' -->

<p>{{ birthday() | date:'shortTime' }}</p>
<!-- will display '3:30 PM' -->


To learn more about internationalization in general, and, in particular, about the
way you can set the language used to format numbers and dates, you can refer to
the Internationalization chapter .

14.12. async
The async pipe allows data obtained asynchronously to be displayed. It can handle async data that
comes from a Promise or an Observable. I hope you now know what a Promise is (otherwise go
back to the ES2015+ chapter), and we’ll come back to Observables quickly.

The async pipe returns null until the data is finally available (i.e. until the promise is resolved, in
case of a promise). Once resolved, the resolved value is returned. More importantly, it triggers a
change detection check once the data is available.

The following example uses a Promise:

import { Component } from '@angular/core';
import { AsyncPipe } from '@angular/common';

@Component({
 selector: 'ns-greeting',
 template: `<div>{{ asyncGreeting | async }}</div>`,
 imports: [AsyncPipe]
})
export class Greeting {
 protected readonly asyncGreeting = new Promise(resolve => {

117

 // after 1 second, the promise will resolve
 window.setTimeout(() => resolve('hello'), 1000);
 });
}

You can see the async pipe is applied to the variable asyncGreeting. This one is a promise, resolved
after 1 second. Once the promise is resolved, our browser will display:

<div>hello</div>

Even more interesting, if the source is an Observable, then the pipe will do the unsubscribe part
itself when the pipe is destroyed (for example when the user navigates to another component, or
because it’s part of an ngIf that becomes false).

And to avoid multiple subscriptions to your Observable or calling your promise multiple times, you
can store the result of the call with as:

import { Component } from '@angular/core';
import { AsyncPipe } from '@angular/common';

@Component({
 selector: 'ns-user',
 template: `@if (asyncUser | async; as user) {
 <div>{{ user.name }}</div>
 }`,
 imports: [AsyncPipe]
})
export class User {
 protected readonly asyncUser = new Promise<UserModel>(resolve => {
 // after 1 second, the promise will resolve
 window.setTimeout(() => resolve({ name: 'Cédric' }), 1000);
 });
}

If you want to learn more about this pipe, check the Performances chapter near the end of this
ebook.

14.13. A pipe in your code
It is also possible to use the formatting functions offered by the framework directly. For example, to
format a number, we can use the formatNumber function:

import { Component, computed, signal } from '@angular/core';
// you need to import the function you want to use
import { formatNumber } from '@angular/common';

@Component({

118

 selector: 'ns-pony',
 template: `<p>{{ formattedSpeed() }}</p>`
})
export class Pony {
 protected readonly pony = signal({ name: 'Rainbow Dash', speed: 15 });
 protected readonly formattedSpeed = computed(
 // use the format function
 () => formatNumber(this.pony().speed, 'en-US', '.2')
);
}

14.14. Creating your own pipes
Of course, you can also create your own pipes. That’s sometimes very useful. In AngularJS 1.x, we
often used custom filters. For example, we built one to display how much time elapsed since an
action the user did (like 12 seconds ago or 3 days ago) in several of our apps. Let’s see how we
would do this in Angular!

First we need to create a new class. It should implement the PipeTransform interface, which forces
us to have a transform() method, the one doing the heavy lifting.

Does not sound too hard. Let’s give it a try!

import { Pipe, PipeTransform } from '@angular/core';

export class FromNowPipe implements PipeTransform {
 transform(value: string, ..._args: Array<unknown>): string {
 // do something here
 }
}

We are going to use the parseISO function from date-fns to parse the date, and the
formatDistanceToNow function to display how much time has elapsed since the date.

You can install date-fns using NPM if you want:

npm install date-fns

The types for date-fns are already included in the NPM dependency, so the TypeScript compiler
should be happy without us doing anything.

import { Pipe, PipeTransform } from '@angular/core';
import { formatDistanceToNowStrict, parseISO } from 'date-fns';

export class FromNowPipe implements PipeTransform {
 transform(value: string, ..._args: Array<unknown>): string {
 const date = parseISO(value);

119

https://date-fns.org

 return formatDistanceToNowStrict(date, { addSuffix: true });
 }
}

Now, we need to tell Angular that this class is a pipe. For this, there is a special decorator we can
use: @Pipe.

import { Pipe, PipeTransform } from '@angular/core';
import { formatDistanceToNowStrict, parseISO } from 'date-fns';

@Pipe({
 name: 'fromNow'
})
export class FromNowPipe implements PipeTransform {
 transform(value: string, ..._args: Array<unknown>): string {
 const date = parseISO(value);
 return formatDistanceToNowStrict(date, { addSuffix: true });
 }
}

The chosen name will be the one allowing to use the pipe in the template.

To use the pipe in a template, the last thing you need to do is to add the pipe to the imports of the
component using it.

@Component({
 selector: 'ns-race',
 template: 'The race started {{ race().startInstant | fromNow }}',
 imports: [FromNowPipe]
})
export class Race {
 protected readonly race = signal({
 startInstant: '2023-02-10T10:00:00.000Z'
 });
}



Try our exercise Pipes ! It’s free and part of our Pro Pack, where you’ll learn
how to build a complete application step by step. This exercise lets you use your
first pipe. Later, the Custom pipe with date-fns exercise will make you build an
awesome custom pipe!

120

https://angular-exercises.ninja-squad.com/exercises/6/pipes
https://angular-exercises.ninja-squad.com/exercises/7/custom-pipe

Chapter 15. Dependency injection

15.1. DI yourself
Dependency injection is a well-known design pattern. Let’s take a component of our application.
This component may need some features offered by other parts of our app (let’s say a service).
That’s what we call a dependency. Instead of letting the component create its dependencies, the
idea is to let the framework create them, and provide them to the component. That is known as
"inversion of control".

It has several interesting advantages:

• it allows easy development, by just saying what we want and where we want it;

• it allows easy testing, by replacing dependencies with mock ones;

• it allows easy configuration, by letting us replace an implementation of a service by another
one.

It’s a concept vastly used on the server side, but not so much on the frontend side, except in
Angular.

15.2. Easy to develop
To be able to use dependency injection, we need a few things:

• a way to register a dependency, to make it available for injection into components (or other
services, or pipes, or directives).

• a way to specify what dependencies must be injected in the current component or service.

The framework does the rest of the job. When we ask for a dependency in a component, it will look
into the registry if it can find it, will get the instance of the dependency or create one, and finally
inject it in our component.

A dependency can be a service provided by Angular, or a service we have written ourselves.

Let’s take an example with a LoggingService service. In development, we want to log to the
browser’s console. In production, we want to aggregate logs on a remote server. Let’s start by the

121

development version.

export class LoggingService {
 log(message: string): void {
 console.log(message);
 }
}

It’s easy to inject that dependency in a component or a service. We just have to use the type system
and the inject function of Angular.

Let’s say we want to write a RaceService that would use the LoggingService:

import { inject } from '@angular/core';
import { LoggingService } from './logging-service';

export class RaceService {
 private readonly loggingService = inject(LoggingService);
}

The ìnject function tells Angular to fetch the LoggingService service and returns it.



Be careful: this inject function can not be called anywhere we want. It needs to be
called in an injection context. Calling it to initialize a property (as we’re doing in
the above example) or as part of the constructor is fine. But calling it after the
object has been constructed will throw an exception.

In fact, inject is a relatively new way of injecting dependencies. Before it was introduced in
Angular 14, the only way to inject a dependency was to declare the dependency as an argument of
the constructor. So we could also write our RaceService this way:

import { LoggingService } from './logging-service';

export class RaceService {
 constructor(private loggingService: LoggingService) {}
}

Constructor injection is still very much supported, but inject is now generally seen as a preferred
option, and has opened the door to interesting API improvements.

Now, we can add a method list() to our service, which will call our backend and log a trace using
the LoggingService service:

import { inject } from '@angular/core';
import { RaceModel } from './race.model';
import { LoggingService } from './logging-service';

122

export class RaceService {
 private readonly loggingService = inject(LoggingService);

 list(): Array<RaceModel> {
 this.loggingService.log('race-service: get races');
 // ...
 }
}

In Angular, all services must be decorated with @Injectable():

import { inject, Injectable } from '@angular/core';
import { RaceModel } from './race.model';
import { LoggingService } from './logging-service';

@Injectable()
export class RaceService {
 private readonly loggingService = inject(LoggingService);

 list(): Array<RaceModel> {
 this.loggingService.log('race-service: get races');
 // ...
 }
}

As we are using the LoggingService, we need to "register" it, to make it available for injection.

The easiest (and recommended) way to do this is to add the @Injectable decorator on LoggingService
and use providedIn directly inside:

import { Injectable } from '@angular/core';

@Injectable({
 providedIn: 'root'
})
export class LoggingService {
 log(message: string): void {
 console.log(message);
 }
}

Another way to do this is to use the providers option of bootstrapApplication() function we saw
earlier:

bootstrapApplication(App, { providers: [LoggingService] }).catch(err => console.error
(err));

123

Now, if we want to make our RaceService available for injection in other services or components,
we have to register it too:

import { inject, Injectable } from '@angular/core';
import { RaceModel } from './race.model';
import { LoggingService } from './logging-service';

@Injectable({
 providedIn: 'root'
})
export class RaceService {
 private readonly loggingService = inject(LoggingService);

 list(): Array<RaceModel> {
 this.loggingService.log('race-service: get races');
 // ...
 }
}

And we’re done!

We can use our new service wherever we want. Let’s test it in the App component:

export class App {
 private readonly raceService = inject(RaceService);
 protected readonly races: Array<RaceModel> = this.raceService.list();
}

As we want to use an API to log our traces in production, we need to provide a different
implementation of the LoggingService service.

15.3. Easy to configure
I’ll come back to the testability advantages brought by dependency injection in a following chapter.
We can give an example of how DI makes the application easy to configure, though. We want to call
a logging API in production instead of simply logging to the console.

DI provides a nice way to do this.

We can represent the relations between component and services like this, where the arrows mean
depends on:

124

App

RaceService

LoggingService

In fact, what we wrote was the short form of:

bootstrapApplication(App, {
 providers: [{ provide: LoggingService, useClass: LoggingService }]
}).catch(err => console.error(err));

We are telling the Injector that we want to create a link between a token (the type LoggingService)
and the class LoggingService. The Injector is a service which keeps track of the injectable elements
by maintaining a registry and is actually injecting them when needed. For the moment, you can see
this registry as a map that associates keys, called tokens, with classes. A token can be anything. But
it is usually a class reference (as in the above example) or an instance of InjectionToken.

Since, in our example, the token and the class to inject are the same, you can write the same thing
in the shorter form:

bootstrapApplication(App, { providers: [LoggingService] }).catch(err => console.error
(err));

The token has to uniquely identify the dependency.

We can use the inject function to test how the injector works:

// in our bootstrapApplication function
providers: [
 { provide: LoggingService, useClass: LoggingService },
 // let's add another provider to the same class
 // with another token
 // A token can be declared like this:
 // const token = new InjectionToken<LoggingService>('LoggingServiceToken');
 { provide: token, useClass: LoggingService }

125

]

console.log(inject(LoggingService));
// logs "LoggingService"
console.log(inject(token));
// logs "LoggingService" again
console.log(inject(LoggingService) === inject(LoggingService));
// logs "true", as the same instance is returned every time for a token
console.log(inject(LoggingService) === inject(token));
// logs "false", as the providers are different,
// so there are two distinct instances

As you can see, we can ask the injector for a dependency with a token. I have provided the
LoggingService twice, with two different tokens. The injector will create an instance of
LoggingService the first time it is asked to for a specific token, and then return the same instance for
this token every time.

This whole example was just to point out a few things:

• a provider links a token to a service;

• the injector returns the same instance every time it is asked for the same token;

• the token used to identify a service does not have to be the class of the service.

The fact that the same service instance is used every time we ask for a service is also a well-known
design pattern: it’s called a singleton. This is really useful, because it allows a service to hold state
that you want to share between several components.

Now, back to our LoggingService. I can write a new class, doing the same job as LoggingService but
this time calling an API to aggregate the logs:

@Injectable()
export class LoggingAPIService {
 log(message: string): void {
 // ... calls the logging API
 }
}

We can use the provider declaration to replace LoggingService with our LoggingAPIService:

// in our bootstrapApplication function
providers: [
 // we provide a different implementation of the service
 { provide: LoggingService, useClass: LoggingAPIService }
]

Now we have a relation like this:

126

App

RaceService

LoggingApiService

That can be really useful to replace an implementation with another in certain environments and,
as we will see soon, when you are writing automated tests.

15.4. Other types of provider
In our example, we might want to use LoggingService when we are developing our app, and use the
real LoggingAPIService when we are in production. One way of doing that is to use another type of
provider: useFactory.

// we just have to change this constant when going to prod
const IS_PROD = false;

 // in our bootstrapApplication function
 providers: [
 RaceService,
 // we provide a factory
 {
 provide: LoggingService,
 useFactory: () => (IS_PROD ? new LoggingAPIService() : new LoggingService())
 }
]

In this example, we are using useFactory instead of useClass. A factory is a function with one job,
creating an instance. Our example tests a constant and returns the race service with the
development or production logging service.

Of course, this example is just to demonstrate the use of useFactory and its dependencies. You could,
and should, write:

// in our bootstrapApplication function
providers: [RaceService, { provide: LoggingService, useClass: IS_PROD ?

127

LoggingAPIService : LoggingService }]

Declaring a constant for IS_PROD is really bothering: maybe we can use dependency injection too?
I’m pushing things a bit as you can see :) You don’t necessarily need to force all things in DI, but this
is just to show you another provider type: useValue.

export const IS_PROD = new InjectionToken<boolean>('IsProd');

// in our bootstrapApplication function
providers: [
 { provide: IS_PROD, useValue: true },
 RaceService,
 {
 provide: LoggingService,
 useFactory: () => {
 const isProd = inject(IS_PROD);
 return isProd ? new LoggingAPIService() : new LoggingService();
 }
 }
]

15.5. Hierarchical injectors
One last crucial thing to understand in Angular: there are several injectors in your app. In fact,
there is one injector per component, and this injector inherits from the injector of its parent.

Let’s say we have an app looking like:

Application

App

Races

We have an application with a root component App, which has a child component Races.

128

When we bootstrap the app, we create the root injector for the application. Then, every component
will have its own injector, inheriting its parent one.

When you register a service using the recommended providedIn: 'root', you add these services to
the root injector.

root injector (LoggingService, RaceService)

App injector

Races injector

It means that when we inject a dependency in a component, Angular begins its search in the
current injector. If it finds the dependency, perfect, it returns it. If not, it will do the same in the
parent injector, and again, until it finds the dependency. If it doesn’t find the dependency
anywhere, it throws an exception.

From this, we can deduce two things:

• the dependencies declared in the root injector are available for every component or service in
the app. For example, LoggingService and RaceService can be used everywhere;

• we can declare dependencies at another level than the root injector. How do we do this?

The @Component decorator can take another configuration option, called providers. This providers
attribute expects an array of providers, similar the providers option of bootstrapApplication().

We can thus imagine a Races that would declare its own LoggingService provider:

@Component({
 selector: 'ns-races',
 providers: [{ provide: LoggingService, useClass: LoggingAPIService }],
 template: `Races`
})
export class Races {
 constructor() {
 inject(LoggingService).log('Races created');
 }
}

In this component, the provider with the token LoggingService will always give an instance of
LoggingAPIService, regardless of what was defined in the root injector. It’s really useful if you want

129

to have a different instance of a service for a given component.


If you declare a dependency at the root of your app and in the providers attribute
of your component, there will be two distinct instances of this dependency created
and used!

Here we have:

root injector (LoggingService, RaceService)

App injector

Races injector (LoggingService LoggingAPIService)

The injection will then be resolved as:

Application LoggingService

App

Races LoggingAPIService

If the service contains state that belongs to a specific component instance, then it should be
provided by that component. For stateless services, or services that contain global state, they should
be provided in root.

15.6. DI without types
We’ve seen above that we can define tokens to identify services. We’ve also seen that there are two
ways to get a dependency: calling the inject function, or declaring the dependency as an argument
of the constructor.

When a token is used to identify a service, we can pass this token as argument to the inject
function to get the associated service.

130

It’s also possible to get the service associated with the token when using constructor injection,
thanks to the @Inject() decorator.

import { Inject, Injectable } from '@angular/core';
import { BACKEND_URL } from './tokens';

@Injectable({
 providedIn: 'root'
})
export class RaceService {
 constructor(@Inject(BACKEND_URL) private url: string) {}
}

The above example uses a token BACKEND_URL which identifies a simple value stored in the injector.
This token is defined like this:

import { InjectionToken } from '@angular/core';

export const BACKEND_URL = new InjectionToken<string>('API URL');

We then use this token in the providers of the application to define its value:

{ provide: BACKEND_URL, useValue: 'http://localhost:8080' }

Or you can register it directly with providedIn:

export const BACKEND_URL_PROVIDED = new InjectionToken<string>('API URL', {
 providedIn: 'root',
 factory: () => 'http://localhost:8080'
});

Angular itself uses this token mechanism, and allows us to define the locale of the application for
example, by using the token LOCALE_ID:

bootstrapApplication(App, {
 providers: [
 { provide: LOCALE_ID, useValue: 'fr-FR' }
]
}).catch(err => console.error(err));

@Component({
 selector: 'ns-locale',
 template: `
 <p>The locale is {{ locale }}</p>
 <!-- will display 'fr-FR' -->

131

 <p>{{ 1234.56 | number }}</p>
 <!-- will display '1 234,56' -->
 `,
 imports: [DecimalPipe]
})
export class CustomLocale {
 protected readonly locale = inject(LOCALE_ID);
}

But we’ll talk about it later when we see how to internationalize your application!

15.7. Services provided by the framework
Angular comes with a few built-in services. Some of them will be discussed in dedicated chapters.
For now, let’s talk about two of them.

15.7.1. Title service

One question that pops up frequently is: how can I change the title of my page? Easy! There is a
Title service you can inject and it offers a getter and a setter method:

import { Component, inject } from '@angular/core';

@Component({
 selector: 'ns-root',
 template: `<h1>PonyRacer</h1>`
})
export class App {
 constructor() {
 inject(Title).setTitle('PonyRacer - Bet on ponies');
 }
}

The service will automatically create the title element in the head if needed and correctly set the
value for you!

15.7.2. Meta service

The other service we’ll talk about is somewhat similar: it allows you to get or update the "meta"
values of the page.

import { Component, inject } from '@angular/core';

@Component({
 selector: 'ns-root',
 template: `<h1>PonyRacer</h1>`

132

})
export class App {
 constructor() {
 inject(Meta).addTag({ name: 'author', content: 'Ninja Squad' });
 }
}

 Try our exercise Race service to build your first service.

133

https://angular-exercises.ninja-squad.com/exercises/8/race-service

Chapter 16. Reactive Programming

16.1. Call me maybe
The basic principle of reactive programming is to try to define the logic in a declarative way, by
defining events and telling how to react to those events, instead of doing it in an imperative way.
This sounds very abstract, and it is. So let’s try to illustrate this with a basic example.

Let’s say you have a circle, and you need to store its radius as well as its circumference. And you
want to be able to change the radius of the circle. Doing that should of course change its
circumference accordingly. One way (the imperative way) of doing this is to use two properties:

 private radius = 0;
 private circumference = 0;

 setRadius(r: number) {
 this.radius = r;
 this.circumference = 2 * Math.PI * r;
 }

Every time you change the radius, you need to remember that you also need to change the
circumference accordingly.

Another way of doing this is to rely on a reactive primitive, and to declaratively specify that the
circumference must be recomputed every time the radius changes. Changing the radius can thus be
seen as an event, and we can react to this event by changing the circumference. The reactive
primitive we could use here is a signal:

 private readonly radius = signal(0);
 private readonly circumference = computed(() => 2 * Math.PI * this.radius());

 setRadius(r: number) {
 this.radius.set(r);
 }

What if we had a component taking the ID of a race as input, and we wanted this component to
show the details of that race? Things get more complicated here, because getting the details of the
race is an asynchronous operation. We can’t just use a computed signal to "compute" a race based
on its ID. Besides, if the ID changes two times in a row, the fetching of the first race should be
cancelled before fetching the second one: we’re not interested anymore in the first one.

We might also have to send two different HTTP requests to get the full details of the race, and we
would then need to wait until we have both responses before displaying it.

Being able to declaratively express that every time an input changes, we have to make two
asynchronous calls, cancel the two previous ones if any, wait for the two calls to complete, and

134

finally display the result, would be great.

That’s the kind of stuff for which RxJS shines. It provides another reactive primitive: an Observable,
which represents a stream of synchronous or asynchronous events. It also comes with plenty of
functions and operators that allow transforming, filtering, combining these streams of events.

Angular, since its first version, has chosen to depend on RxJS, and uses observables to represent
events and things that change over time. For example, the result of a call to the HttpClient is an
Observable. The changes of parameters of a route are modeled as an Observable. The changes of the
value of a form are modeled as an Observable.

RxJS is not a free meal though. It’s quite complex to learn and master. Thinking in a reactive way
doesn’t come naturally to most developers. And Angular has signals now, which provide another
reactive primitive that sometimes overlaps with what RxJS provides. So the general direction that
Angular has decided to follow is to try not to depend on RxJS anymore, but to make the usage of
RxJS inside Angular applications as smooth as possible, by providing interoperability functions.

16.2. RxJS
An Observable is a stream of events, that has a well-defined, albeit flexible lifecycle.

When you subscribe to an observable, it starts emitting events. It can emit 0, 1, N or even an
infinity of events. The emission can be synchronous or asynchronous. The events can be anything
(an HTTP response, a form value, etc.): it depends on the type of the Observable.

An observable can signal its completion. After the completion, you know that it won’t emit any
event anymore. And you’re thus also unsubscribed: why would you keep listening to something
that won’t say anything anymore?

In case something goes wrong (for example, you subscribed to send an HTTP request and get an
HTTP response but the server is down), an observable can also signal an error. After an error, you
also have the guarantee that it won’t emit any event anymore (nor signal a completion). And you’re
thus also unsubscribed.

You can create various kinds of observables using RxJS functions. Many RxJS functions are used to
transform an observable into another one. Those functions are called operators.

For example:

• take(n) creates an observable that only emits the first n events of the source observable and
then completes;

• map(fn) creates an observable that transforms each event of the source observable (using the
function fn) and emits the result;

• filter(predicate) creates an observable that only emits the events of the source observable that
fulfill the predicate.

There are much more operators than these. We would need a whole book to go through all of them.
But hopefully you get an idea of what operators can do. If you want to have a good visual
representation of what the RxJS functions and operators do, go to rxmarbles.com, or consult the

135

https://rxjs.dev
http://rxmarbles.com/

official RxJS documentation.

So, if you have an observable of numbers and want to multiply each by 2, then filter those under 5,
and print them, you can do:

import { filter, from, map, Observable } from 'rxjs';

const numbers$: Observable<number> = from([1, 2, 3, 4, 5]).pipe(
 map(x => x * 2),
 filter(x => x > 5)
);
numbers$.subscribe(x => console.log(x));
// Logs 6, 8, 10


The $ suffix is a common convention that allows remembering that the variable is
an Observable.

The observable in the above example emits synchronously: as soon as we subscribe, the numbers
are emitted one by one. When the call to subscribe returns, all the numbers have already been
printed to the console.

But observables are usually asynchronous. They can for example represent DOM events that will
happen in the future:

import { fromEvent } from 'rxjs';

const input = document.querySelector('input')!;

fromEvent(input, 'keyup').subscribe(() => console.log('keyup!'));

input.trigger('keyup'); // Logs "keyup!"
input.trigger('keyup'); // Logs "keyup!"

When subscribing to such an observable, the function you pass will be executed later, every time
the user releases a key in the text field. If you’re not interested anymore in those events, you’ll have
to unsubscribe. The simplest way to do that is to call unsubscribe on the Subscription returned by
subscribe. There are other ways to unsubscribe, that will be discussed later.

const subscription = fromEvent(input, 'keyup').subscribe(() => console.log('keyup!'));
// later, when not interested anymore
subscription.unsubscribe();

You might also have to handle errors. The subscribe method accepts an object as an argument
instead of a simple callback function. This object can define a callback to handle events (named

136

https://rxjs.dev

next), and a callback to handle errors (named error).

Here the mapping function throws an exception, so the error callback will log it.

range(1, 5)
 .pipe(
 map(x => {
 if (x % 3 === 0) {
 throw new Error('something went wrong');
 } else {
 return x;
 }
 })
)
 .subscribe({
 next: x => console.log(x),
 error: error => console.log(error)
 });
// Logs 1, 2, something went wrong

Finally, if the observable completes, you can know about it too by providing a third handler. Here,
the range function creates an observable which emits events events from 1 to 5 and then signals its
completion:

range(1, 5)
 .pipe(
 map(x => x * 2),
 filter(x => x > 5)
)
 .subscribe({
 next: x => console.log(x),
 error: error => console.log(error),
 complete: () => console.log('done')
 });
// Logs 6, 8, 10, done

16.3. Signals and RxJS interoperability
Now, how can we use RxJS to declaratively display the details of a race whenever the race ID
changes? The race ID is an input, which is a signal. But to use RxJS, we would need to have an
Observable, not a signal. No issue. Angular provides a toObservable() function that transforms a
Signal<T> into an Observable<T>. Internally, it uses an effect to know when the signal changes, and
make the observable emit its new value.

So we can do:

import { Component, input } from '@angular/core';

137

import { toObservable } from '@angular/core/rxjs-interop';
import { Observable } from 'rxjs';

@Component({
 selector: 'ns-race',
 template: '...'
})
export class Race {
 readonly raceId = input.required<number>();
 private readonly raceId$: Observable<number> = toObservable(this.raceId);
}

We now need to fetch the details of the race whenever the observable emits, and cancel the
previous ongoing fetch if any. That’s a job for the switchMap operator. We’ll talk about it in more
details in a future chapter.

import { Component, inject, input } from '@angular/core';
import { toObservable } from '@angular/core/rxjs-interop';
import { Observable, of, switchMap } from 'rxjs';

@Component({
 selector: 'ns-race',
 template: '...'
})
export class Race {
 private raceService = inject(RaceService);
 readonly raceId = input.required<number>();
 private readonly race$: Observable<RaceModel> = toObservable(this.raceId).pipe(
 switchMap(raceId => this.raceService.get(raceId))
);
}

Now that’s fine, but how can we display the race? We’ll need to subscribe to the observable, and
store the emitted race in a signal so that the template can display it. We could do that:

import { Component, inject, input, signal } from '@angular/core';
import { toObservable } from '@angular/core/rxjs-interop';
import { Observable, of, switchMap } from 'rxjs';

@Component({
 selector: 'ns-race',
 template: '...'
})
export class Race {
 private raceService = inject(RaceService);
 readonly raceId = input.required<number>();
 private readonly race$: Observable<RaceModel> = toObservable(this.raceId).pipe(
 switchMap(raceId => this.raceService.get(raceId))

138

);

 // ❌ don't do this
 protected readonly race = signal<RaceModel | undefined>(undefined);
 constructor() {
 this.race$.subscribe(race => this.race.set(race));
 }
}

But then we should also unsubscribe when the component is destroyed. There’s a better way.
Angular also provides a function to transform an Observable<T> into a Signal<T | undefined>. You
guessed it, it’s named toSignal.

import { Component, inject, input, Signal } from '@angular/core';
import { toObservable, toSignal } from '@angular/core/rxjs-interop';
import { Observable, of, switchMap } from 'rxjs';

@Component({
 selector: 'ns-race',
 template: '...'
})
export class Race {
 private raceService = inject(RaceService);
 readonly raceId = input.required<number>();
 private readonly race$: Observable<RaceModel> = toObservable(this.raceId).pipe(
 switchMap(raceId => this.raceService.get(raceId))
);

 // ✅ Do this instead
 protected readonly race: Signal<RaceModel | undefined> = toSignal(this.race$);
}

Internally, toSignal subscribes to the observable. And it automatically unsubscribes when the
component is destroyed.

Are you wondering why it creates a Signal<RaceModel | undefined> and not a Signal<RaceModel>?
Well, the answer is logical. An observable is usually asynchronous. It’s the case here. So it only
emits its first race once it has received the response from the HTTP server. Meanwhile, there’s no
race that can be stored in the signal, so its value is undefined. You can pass an option to toSignal if
you prefer a having something else than undefined as the default value, or if you know that the
observable emits synchronously.



Beware: toObservable and toSignal need to be called in an injection context,
because they call inject. So, just as inject, you can only call them while the
component is being constructed. You can actually call them from anywhere, but
then you’ll have to pass an Injector as an option. The Injector can be obtained,
you guessed it, using dependency injection.



139

Try our quiz and the exercise Observables ! It’s free and part of our Pro Pack,
where you’ll learn how to build a complete application step by step. In this
exercise, you will transform the RaceService to make it reactive!

140

https://angular-exercises.ninja-squad.com/exercises/9/quiz-observables
https://angular-exercises.ninja-squad.com/exercises/10/observables

Chapter 17. Testing your app

17.1. The problem with troubleshooting is that trouble
shoots back
I love automated testing. My professional life revolves around the test progress bar going green in
my IDE, patting me in the back for doing my job properly. And I hope you do care about tests too, as
they are the only safety net we have when we write code. Nothing is more tedious than manually
testing code.

Angular does a great job to let us easily write tests. So did AngularJS 1.x, and that’s partly why I
loved using it. As in AngularJS 1.x, we can write two types of tests:

• unit tests

• end-to-end tests

The first ones are there to verify that a small unit of code (a component, a service, a pipe…) works
correctly in isolation, i.e. without considering its dependencies. Writing such a unit test requires
you to execute each of the component/service/pipe methods, and check that the outputs are what
we expected regarding the inputs we fed it. We can also check that the dependencies used by this
unit are correctly called: for example we can check that a service will do the correct HTTP request.

We can also write end-to-end tests. Their purpose is to emulate a real user interacting with your
app, by starting a real instance and then driving the browser to enter values in inputs, click on
buttons, etc. We’ll then check that the rendered page is in the state we expect, that the URL is
correct - whatever you can think of.

We’re going to cover all this, but let’s begin with the unit test part.

17.2. Unit tests
As we saw earlier, unit tests are there to check a small unit of code in isolation. These tests can only
verify a small part of your app works as intended, but they have several advantages:

• they are really fast - you can run several hundreds in a few seconds.

• they are a very efficient way to test (nearly) all your code, especially the tricky cases, which can
be hard to manually test in the real app.

One of the core concepts of unit testing is isolation: we don’t want our test to be biased by its
dependencies. So we usually use "mock" objects as dependencies. These are fake objects that we
create just for testing purposes.

To do this, we are going to rely on a few tools. First we need a library to write tests. One of the most
popular (if not the most popular) is Jasmine, so we are going to use it!

141

http://jasmine.github.io/

17.2.1. Jasmine and Karma

Jasmine gives us a few methods to declare our tests:

• describe() declares a test suite (a group of tests)

• it() declares a test

• expect() declares an assertion

A basic JavaScript test using Jasmine looks like:

class Pony {
 constructor(
 public name: string,
 public speed: number
) {}

 isFasterThan(speed: number): boolean {
 return this.speed > speed;
 }
}

describe('My first test suite', () => {
 it('should construct a Pony', () => {
 const pony = new Pony('Rainbow Dash', 10);
 expect(pony.name).toBe('Rainbow Dash');
 expect(pony.speed).not.toBe(1);
 expect(pony.isFasterThan(8)).toBe(true);
 });
});

The expect() call can be chained with a lot of methods like toBe(), toBeLessThan(), toBeUndefined(),
etc. Every method can be negated with the not attribute of the object returned by expect().

The test file is a separate file from the code you want to test, usually with an extension like .spec.ts.
The test for a Pony class written in a pony.ts file will likely be in a file named pony.spec.ts. You can
either put your test right next to the file you’re testing, or in a dedicated directory with all your
tests. I tend to put the code and test in the same directory, but both approaches are perfectly valid:
pick your team.



One cool trick is that if you use fdescribe() instead of describe() then only this test
suite will run (f stands for focus). Same thing if you want to run only one test: use
fit() instead of it(). If you want to exclude a test, use xit(), or xdescribe() for a
suite.

You can also use the beforeEach() method to set up a context before each test: the fixture. If I have
several tests on the same pony, it makes sense to use beforeEach() to initialize the pony, instead of
copy/pasting the same thing in every test.

142

describe('Pony', () => {
 let pony: Pony;

 beforeEach(() => {
 pony = new Pony('Rainbow Dash', 10);
 });

 it('should have a name', () => {
 expect(pony.name).toBe('Rainbow Dash');
 });

 it('should have a speed', () => {
 expect(pony.speed).not.toBe(1);
 expect(pony.speed).toBeGreaterThan(9);
 });
});

There is also an afterEach method, but I basically never use it…

One last trick: Jasmine lets us create fake objects (mocks or spies, as you want), or even spy on a
method of a real object. We can then do some assertions on these methods, like with
toHaveBeenCalled() that checks if the method has been called, or with toHaveBeenCalledWith() that
checks the exact parameters of the call to the spied method. You can also check how many times the
method has been called, or check if it has ever been called, etc.

For example, let’s say we have a Race class with a start() method, that calls run() on every pony in
the race, and filters the ponies that did not started running (run() returns a boolean):

Race.ts

class Race {
 constructor(private ponies: Array<Pony>) {}

 start(): Array<Pony> {
 return (
 this.ponies
 // start every pony
 // and only keeps the ones that started running
 .filter(pony => pony.run(10))
);
 }
}

We want to test the start() method, and see if it properly calls run(). So we spy on the run() method
of all the ponies in the race:

Race.spec.ts

describe('Race', () => {

143

 let rainbowDash: Pony;
 let pinkiePie: Pony;
 let race: Race;

 beforeEach(() => {
 rainbowDash = new Pony('Rainbow Dash');
 // first pony agrees to run
 spyOn(rainbowDash, 'run').and.returnValue(true);

 pinkiePie = new Pony('Pinkie Pie');
 // second pony refuses to run
 spyOn(pinkiePie, 'run').and.returnValue(false);

 // create a race with these two ponies
 race = new Race([rainbowDash, pinkiePie]);
 });

});

and test if the methods are called:

Race.spec.ts

it('should make the ponies run when it starts', () => {
 // start the race
 const runningPonies: Array<Pony> = race.start();
 // should have called `run()` on the ponies
 expect(pinkiePie.run).toHaveBeenCalled();
 // with a speed of 10
 expect(rainbowDash.run).toHaveBeenCalledWith(10);
 // as one pony refused to start, the result should be an array of one pony
 expect(runningPonies).toEqual([rainbowDash]);
});

When you write unit tests, keep in mind that they should be small and readable. And don’t forget to
make them fail at first, to be sure you’re testing the right thing.

The next step is to run our tests. For this, the Angular team has developed Karma, whose sole
purpose is to run the tests in one or several browsers. It can also watch your files to re-run the tests
on every save. As running the tests is really fast, it’s actually really nice to do this and have (almost)
instant feedback on your code.

144

http://karma-runner.github.io

I won’t dive into the details on how to setup Karma, but it’s a very interesting project with a lot of
plugins you can use, to make it work with your favorite tools, to have a coverage report, etc. If
you’re writing your code in TypeScript like me, the strategy you can adopt is to let the TypeScript
compiler watch your code and tests, produce the compiled files in a separate output directory, and
have Karma watch this directory.

So we now know how to write a unit test in JavaScript. Let’s add Angular to the mix.

17.2.2. Using dependency injection

Let’s say I have an Angular application with a simple service like RaceService, containing a method
returning a hard-coded races list.

@Injectable({
 providedIn: 'root'
})
export class RaceService {
 list(): Array<RaceModel> {
 const race1: RaceModel = { name: 'London' };
 const race2: RaceModel = { name: 'Lyon' };
 return [race1, race2];
 }
}

Let’s write a test for this.

describe('RaceService', () => {
 it('should return races when list() is called', () => {
 const raceService = new RaceService();
 expect(raceService.list().length).toBe(2);
 });
});

That works great. But we can also rely on the dependency injection offered by Angular to grab the
RaceService and inject it in our test. It’s especially useful if our RaceService has some dependencies
itself: instead of having to instantiate these dependencies ourselves, we could just rely on the
injector to do it for us by saying: "hey, we want the RaceService, go figure out what you need to

145

create it and give it to me".

To use the dependency injection system in our test, the framework has a utility method in TestBed
called inject.

This method allows you to get a specific dependency from the injector inside a test function.

Let’s go back to our example, using TestBed.inject this time:

import { TestBed } from '@angular/core/testing';

describe('RaceService', () => {
 it('should return races when list() is called', () => {
 const raceService = TestBed.inject(RaceService);
 expect(raceService.list().length).toBe(2);
 });
});

That works, because the service is declared with providedIn: 'root', which make it available in the
test. It will be instantiated and injected lazily when needed in the test.

As we did in the simple Jasmine example, we can maybe move the RaceService initialization into a
beforeEach method. We can also use TestBed.inject in a beforeEach, so let’s do it:

import { TestBed } from '@angular/core/testing';

describe('RaceService', () => {
 let service: RaceService;

 beforeEach(() => (service = TestBed.inject(RaceService)));

 it('should return races when list() is called', () => {
 expect(service.list().length).toBe(2);
 });
});

We moved the TestBed.inject logic in a beforeEach and now our test is pretty clean.

17.3. Fake dependencies
The TestBed class will help us to declare fake dependencies.

Even though Angular allows creating applications without defining Angular modules, its TestBed
utility is still designed around the concept of a testing module, that can be configured pretty much
the same way as an Angular module. Since we’re using standalone components, the main purpose
of that testing module will be to provide fake dependencies instead of the actual ones. The
TestBed.configureTestingModule method allows you to specify an array of providers, that will
supersede the actual dependencies injected in our component, pipe, directive or service under test.

146

For the sake of the example, let’s say that my RaceService uses the local storage to store the races,
with a key 'races'. Your colleagues have developed a service called LocalStorageService that deals
with the JSON serialization, etc. that our RaceService uses. The list() method looks like:

@Injectable({
 providedIn: 'root'
})
export class RaceService {
 private readonly localStorage = inject(LocalStorageService);

 list(): Array<RaceModel> {
 return this.localStorage.get('races');
 }
}

Now, we don’t really want to test the LocalStorageService service: we just want to test our
RaceService. That can easily be done by leveraging the dependency injection system to give a fake
LocalStorageService:

export class MockLocalStorage {
 get(_key: string): Array<RaceModel> {
 return [{ name: 'Lyon' }, { name: 'London' }];
 }
}

to RaceService in our test, using provide:

import { TestBed } from '@angular/core/testing';
describe('RaceService', () => {
 beforeEach(() =>
 TestBed.configureTestingModule({
 providers: [{ provide: LocalStorageService, useClass: MockLocalStorage }]
 })
);

 it('should return 2 races from localStorage', () => {
 const service = TestBed.inject(RaceService);
 const races = service.list();
 expect(races.length).toBe(2);
 });
});

Great! But I’m not completely satisfied with this test. Creating a fake service by hand is tedious, and
Jasmine can help us spy on the service and replace its implementation with a fake one. It also
allows you to verify that the get() method has been called with the proper key 'races'.

147

import { TestBed } from '@angular/core/testing';
describe('RaceService', () => {
 const localStorage = jasmine.createSpyObj<LocalStorageService>('LocalStorageService
', ['get']);

 beforeEach(() =>
 TestBed.configureTestingModule({
 providers: [{ provide: LocalStorageService, useValue: localStorage }]
 })
);

 it('should return 2 races from localStorage', () => {
 localStorage.get.and.returnValue([{ name: 'Lyon' }, { name: 'London' }]);

 const service = TestBed.inject(RaceService);
 const races = service.list();

 expect(races.length).toBe(2);
 expect(localStorage.get).toHaveBeenCalledWith('races');
 });
});

17.4. Testing components
The next step after testing a simple service is to test a component. A component test is slightly
different because we want to test not only the code inside the TypeScript class, but also the
template of the component.

Let’s start by writing a component to test. Why not our Pony component? It takes a pony as an input
and emits an event ponyClicked when the component is clicked.

@Component({
 selector: 'ns-pony',
 template: ` <img [src]="ponyImageUrl()" [alt]="ponyModel().name"
(click)="clickOnPony()" /> `
})
export class Pony {
 readonly ponyModel = input.required<PonyModel>();
 readonly running = input(false);
 protected readonly ponyImageUrl = computed(
 () => `/images/pony-${this.ponyModel().color.toLowerCase() + (this.running() ? '
-running' : '')}.png`
);
 readonly ponyClicked = output<PonyModel>();

 protected clickOnPony(): void {
 this.ponyClicked.emit(this.ponyModel());
 }

148

}

It comes with a fairly simple template: an image with a dynamic source depending on the pony
color, and a click handler.

To test such a component, you first need to create an instance. As our component has inputs, it is
fairly common to create a wrapper component in the test, and to create an instance of this test
component (so we can easily pass inputs ou test the outputs). To do this, we use the TestBed. This
class comes with a utility method, named createComponent, to create a component. The method
returns a ComponentFixture, a representation of our component.

import { TestBed } from '@angular/core/testing';
import { Component, signal } from '@angular/core';
import { Pony, PonyModel } from './pony';

@Component({
 imports: [Pony],
 template: `<ns-pony [ponyModel]="ponyModel()" (ponyClicked)="betOnPony($event)" />`
})
class PonyTest {
 readonly ponyModel = signal<PonyModel>({ id: 1, name: 'Rainbow Dash', color: 'BLUE'
});
 readonly betPony = signal<PonyModel | undefined>(undefined);

 betOnPony(event: PonyModel) {
 this.betPony.set(event);
 }
}

describe('Pony', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({});
 });

 it('should have an image', () => {
 // given a pony component
 const fixture = TestBed.createComponent(PonyTest);
 fixture.detectChanges();

 // when we get the image displayed
 const element = fixture.nativeElement as HTMLElement;
 const imageElement = element.querySelector('img')!;

 // then we should have an image with the correct source attribute
 // depending on the pony color
 expect(imageElement.getAttribute('src')).toContain('/images/pony-blue.png');
 expect(imageElement.getAttribute('alt')).toBe('Rainbow Dash');
 });

149

Here, we follow the "Given/When/Then" pattern to write the unit test. You’ll find a whole literature
on the subject, but it boils down to:

• a "Given" phase, where we set up the test context. We get the test component instance created
with a pony. It emulates an input that would come from a parent component in the real app. We
then manually trigger the change detection, using the detectChanges() method. In a test, the
change detection is our responsibility: it’s not automatic as it is in an app.

• a "When" phase, where we get the image element.

• and a "Then" phase, containing the expectations. We can get the native element and query the
DOM as you would do with the browser (using querySelector() for example). Here we test if the
image source is the correct one.

We can also test if the component really emits an event:

it('should emit an event on click', () => {
 // given a pony component
 const fixture = TestBed.createComponent(PonyTest);
 fixture.detectChanges();

 // when we click on the pony
 const element = fixture.nativeElement as HTMLElement;
 const image = element.querySelector('img')!;
 image.dispatchEvent(new Event('click'));

 // and we trigger the change detection
 fixture.detectChanges();

 // then the event emitter should have fired an event
 expect(fixture.componentInstance.betPony()).toBe(fixture.componentInstance.
ponyModel());
});

Let’s have a look at another component:

@Component({
 selector: 'ns-race',
 template: `
 <div>
 <h1>{{ raceModel().name }}</h1>
 @for (currentPony of raceModel().ponies; track currentPony) {
 <ns-pony [ponyModel]="currentPony" />
 }
 </div>
 `,
 imports: [Pony]
})
export class Race {
 protected readonly raceModel = input.required<RaceModel>();

150

}

and its test:

@Component({
 imports: [Race],
 template: `<ns-race [raceModel]="raceModel()" />`
})
class RaceTest {
 readonly raceModel = signal<RaceModel>({
 name: 'Paris',
 ponies: [{ id: 1, name: 'Rainbow Dash', color: 'BLUE' }]
 });
}
describe('Race', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({});
 });

 it('should have a name and a list of ponies', () => {
 const fixture = TestBed.createComponent(RaceTest);
 // given a component instance with a race input initialized
 fixture.componentInstance.raceModel.set({
 name: 'London',
 ponies: [{ id: 1, name: 'Rainbow Dash', color: 'BLUE' }]
 });

 // when we trigger the change detection
 fixture.detectChanges();

 // then we should have a title with the race name
 const element = fixture.nativeElement as HTMLElement;
 expect(element.querySelector('h1')!.textContent).toBe('London');

 // and a list of ponies
 const ponies = fixture.debugElement.queryAll(By.directive(Pony));
 expect(ponies.length).toBe(1);
 // we can check if the pony is correctly initialized
 const rainbowDash = ponies[0].componentInstance.ponyModel();
 expect(rainbowDash.name).toBe('Rainbow Dash');
 });
});

Here we query all the directives of type Pony and test if the first pony is correctly initialized.

You can get the components inside your component with children or query them with query() and
queryAll(). These methods take a predicate as argument that can be either By.css or By.directive.
That’s what we do to get the ponies displayed, as they are instances of Pony. Keep in mind that this is
different from a DOM query using querySelector(): it will only find the elements handled by

151

Angular, and will return a ComponentFixture, not a DOM element (so you’ll have access to the
componentInstance of the result, for example).

17.5. Testing with fake templates, providers…
When testing a component, we sometimes want to create a test host component that uses it. That
allows testing that the properties and outputs bindings work well. Let’s take our pony component
for example. In order to test that we can provide a running input, or that we can omit it to use its
default value, we should test it with a parent component passing the running input, and also test it
with a parent component not passing it.

Fortunately, the TestBed allows overriding the template of the test host component (or any other
component, by the way):

import { Component, signal } from '@angular/core';
import { ComponentFixture, TestBed } from '@angular/core/testing';
import { Pony, PonyModel } from './pony';

@Component({
 selector: 'ns-test-host',
 template: '',
 imports: []
})
class TestHost {
 protected readonly pony = signal<PonyModel>({
 id: 1,
 name: 'Rainbow Dash',
 color: 'BLUE'
 });
}

describe('Pony', () => {
 let fixture: ComponentFixture<TestHost>;

 beforeEach(() => {
 TestBed.configureTestingModule({});
 });

 it('should display a non-running pony by default', () => {
 // given a test host component where the running input is not passed
 TestBed.overrideTemplate(TestHost, '<ns-pony [ponyModel]="pony()" />');
 TestBed.overrideComponent(TestHost, {
 add: {
 imports: [Pony]
 }
 });
 fixture = TestBed.createComponent(TestHost);

 // when we trigger the change detection

152

 fixture.detectChanges();

 // then we should have a not running pony
 const element = fixture.nativeElement as HTMLElement;
 expect(element.querySelector('img')!.src).toContain('/images/pony-blue.png');
 });

 it('should display a running pony if the running input is set to true', () => {
 // given a test host component where the running input is not passed
 TestBed.overrideTemplate(TestHost, '<ns-pony [ponyModel]="pony()" [running]="true"
/>');
 TestBed.overrideComponent(TestHost, {
 add: {
 imports: [Pony]
 }
 });
 fixture = TestBed.createComponent(TestHost);

 // when we trigger the change detection
 fixture.detectChanges();

 // then we should have a not running pony
 const element = fixture.nativeElement as HTMLElement;
 expect(element.querySelector('img')!.src).toContain('/images/pony-blue-
running.png');
 });
});

We can go further than that. It’s also possible to call TestBed.overrideComponent() to set, add, or
remove any property of the decorator of a component (template, providers, imports, etc.). That is
sometimes useful, for example to test a parent component with a stub child component instead of
an actual child component, in order to make the test simpler. We could for example replace the Pony
in the imports of Race by a PonyStub which has the same selector, inputs and outputs, but which
does nothing.

Now you’re ready to test your app!

17.6. Simpler, cleaner unit tests with ngx-speculoos
Angular tests can quickly be very verbose. As we don’t really like that, we wrote a tiny open-source
library called ngx-speculoos.

Instead of writing a test looking like this:

let fixture: ComponentFixture<User>;

beforeEach(() => {
 fixture = TestBed.createComponent(User);
 fixture.detectChanges();

153

https://ngx-speculoos.ninja-squad.com/

});

it('should display French cities when selecting the country France', () => {
 const countrySelect = (fixture.nativeElement as HTMLElement).querySelector
<HTMLSelectElement>('#country')!; // countrySelect is of type any
 expect(countrySelect.selectedIndex).toBe(0);
 countrySelect.selectedIndex = 2; // what is at index 2?
 countrySelect.dispatchEvent(new Event('change')); // why do I need to do that?
 fixture.detectChanges();

 const city = (fixture.nativeElement as HTMLElement).querySelector<HTMLSelectElement
>('#city')!; // city is of type any
 expect(city).toBeTruthy();
 expect(city.options.length).toBe(3);
 expect(city.options[0].value).toBe('');
 expect(city.options[0].label).toBe('');
 expect(city.options[1].value).toBe('PARIS');
 expect(city.options[1].label).toBe('Paris');
 expect(city.options[2].value).toBe('LYON');
 expect(city.options[2].label).toBe('Lyon');
});

it('should hide cities when selecting the empty country option', () => {
 const countrySelect = (fixture.nativeElement as HTMLElement).querySelector
<HTMLSelectElement>('#country')!; // I did that previously. What about DRY?
 countrySelect.selectedIndex = 0;
 countrySelect.dispatchEvent(new Event('change')); // why do I need to do that?
 fixture.detectChanges(); // why do I need to do that?

 expect((fixture.nativeElement as HTMLElement).querySelector('#city')).toBeFalsy();
// I did that previously. What about DRY?
});

you can write a cleaner and simpler test with ngx-speculoos:

class UserComponentTester extends ComponentTester<User> {
 constructor() {
 super(User);
 }

 get country(): TestSelect {
 return this.select('#country')!; // returns a TestSelect object, not any. Similar
methods exist for inputs, buttons, etc.
 }

 get city(): TestSelect {
 return this.select('#city')!; // returns a TestSelect object, not any
 }
}

154

let tester: UserComponentTester;

beforeEach(() => {
 tester = new UserComponentTester();
 tester.detectChanges();
});

it('should display French cities when selecting the country France', async () => {
 await tester.country.selectLabel('France'); // no dispatchEvent, no detectChanges
needed

 expect(tester.city.optionValues).toEqual(['', 'PARIS', 'LYON']);
 expect(tester.city.optionLabels).toEqual(['', 'Paris', 'Lyon']);
});

it('should hide cities when selecting empty country option', async () => {
 await tester.country.selectIndex(0); // no repetition of the selector, no
dispatchEvent, no detectChanges needed

 expect(tester.city).toBeFalsy(); // no repetition of the selector
});

You can go one step further with the custom matcher for Jasmine we wrote:

beforeEach(() => jasmine.addMatchers(speculoosMatchers));

it('should contain a pre-populated form', () => {
 expect(tester.informationMessage).toContainText('Please check that everything is
correct');
 expect(tester.country).toHaveSelectedValue('');
 expect(tester.name).toHaveValue('Doe');
 expect(tester.newsletter).toBeChecked();
});

Give it a try!

17.7. End-to-end tests (e2e)
End-to-end tests are the other type of tests we can run. An end-to-end test consists in really
launching your app in a browser and emulating a user interacting with it (clicking on buttons,
filling forms, etc.). They have the advantage of really testing the application as a whole, but:

• they are slower (several seconds per test)

• it can be hard to test the edge cases.

As you may guess, you don’t have to choose between unit tests and e2e tests: you will combine both
to have great coverage, and some guarantees that your complete application runs as intended.

155

Angular CLI doesn’t have a default solution for E2E tests. After all, these tests don’t even need to
know that the application is built with Angular, so you can choose the tool you want. Some tools
can be integrated inside the CLI though, so that you can run ng e2e to serve the app and then run
the end-to-end tests.

The most popular tools are probably Cypress and Playwright. Nowadays, our preference goes to
Playwright, which is free, well maintained by Microsoft, and can run tests in parallel on the three
major browsers (Chrome, Firefox and Safari).

17.7.1. Playwright

Playwright is full of really nice features:

• easy to set up

• easy to mock HTTP responses

• easy to test different viewports (awesome️ for responsive applications)

• nice API

• UI mode or headless mode

• downloads and tests on the 3 major browsers

• tests run in parallel and in isolation

156

https://www.cypress.io/
https://playwright.dev/

• automatic retries

The time-travel debugging is the feature that won my heart: Playwright takes a snapshot at each
step of your tests, so you can debug very easily. Just by hovering the step of the failing test in the
Playwright UI, you see exactly the state of the application and can play with it.

Playwright tests provide a page object, with a few utility methods like goto(), to navigate to a URL.
Then you have locator() to select elements using various strategies: by CSS selector, by text
contained in the element, by associated label, by role, etc.

Once you have a locator for an element, you can interact with it: click(), check(), fill(), etc.

And of course you can also perform assertions: toBeVisible(), toBeEnabled(), toContainText(), etc.

Here is what a test for a login page could look like:

test('should display an alert if login fails', async ({ page }) => {
 // mock the http response to the login request (optional)
 await page.route('**/api/users/authentication', async route => {
 await route.fulfill({
 status: 401
 });
 });

 // navigate to the login page
 await page.goto('/login');

 // get the login input, the password input and the submit button
 const loginInput = page.locator('input').first();
 const passwordInput = page.locator('input[type=password]');
 const submitButton = page.locator('form > button');

 // fill in the form
 await loginInput.fill('ced');
 await passwordInput.fill('pa');

 // submit the form and await the response
 const response = page.waitForResponse('**/api/users/authentication');
 await submitButton.click();
 await response;

 // test the URL of the page and the presence of an alert message
 await expect(page).toHaveURL('/login');
 await expect(page.locator('.alert-danger')).toContainText('Nope, try again');
});

These tests can be quite long to write, but they are really useful, and cover a lots of things at once.

They can also be great for things that aren’t easily doable in unit tests, like taking a screenshot of a
chart or map and comparing it with a reference image, pixel by pixel:

157

test('should display the history of the user score in a chart ', async ({ page }) => {
 // navigate to the score page
 await page.goto('/score-history');

 // take a screenshot of the canvas and compare it with a reference screenshot
 await page.locator('canvas').toHaveScreenshot('user-score.png', { maxDiffPixelRatio:
0.005 });
});

You can also use the Axe plugin to perform all kinds of automated accessibility tests on the page
you’re visiting, such as checking that the contrast is sufficient, or that all form elements have a
proper label, etc.

With unit tests and e2e tests, you have the keys to build a robust and maintainable application!



All our Pro Pack exercises come with unit and e2e tests! If you want to learn more,
we strongly encourage you to take a look at them: we tested every possible part of
the application (100% code coverage)! In the end, you’ll have dozens of test
examples, which you can use in your own projects.

158

https://playwright.dev/docs/accessibility-testing

Chapter 18. Send and receive data through
HTTP
It won’t come as a surprise, but a big part of our job consists in asking a backend server to send
data to our webapp, and then sending data back.

Usually this is done over HTTP, even though you have other alternatives nowadays, like
WebSockets. Angular provides an http module, but doesn’t force you to use it. If you prefer, you can
use your favorite library to send HTTP requests.

One of the possibilities is the fetch API, which is a standard API provided by the browsers. You can
perfectly build your app using fetch or another library. In fact, that’s what I used before the Http
part was done in Angular. It works great, with no need of special calls to make the framework
aware that we have received data and that it needs to run the change detection (unlike in
AngularJS 1.x, where you would have to call $scope.apply() if you were using an external library:
that’s the magic of Angular and its zones!).

But most Angular developers will rather use a service coming with Angular: HttpClient.

If you want to use it, you have to use the classes and functions from the @angular/common/http
package.

Why prefer this service over, say, fetch? The answer is simple: testing. As we will show, the Http
client allows you to mock your backend server and return fake responses. That’s really, really
useful.

A last thing before we dive into the API: the Http client heavily uses the reactive programming
paradigm. So if you skipped the Reactive Programming chapter, now might be a good time to go
back and read it ;).

18.1. Getting data (provideHttpClient)
The @angular/common/http module offers a service called HttpClient that you can inject in any
constructor. This service isn’t available by default in an Angular application. You need to configure
the application to use it.

To do this, we need to configure a provider when bootstrapping the application.

159

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

import { bootstrapApplication } from '@angular/platform-browser';
import { provideHttpClient, withInterceptors } from '@angular/common/http';

bootstrapApplication(App, {
 providers: [provideHttpClient()]
}).catch(err => console.error(err));

Once this is done, you can inject the HttpClient service wherever you need it:

@Injectable({
 providedIn: 'root'
})
export class RaceService {
 private readonly http = inject(HttpClient);

By default, the HttpClient service will do AJAX requests using XMLHttpRequest.

It offers several methods, matching the most common HTTP verbs:

• get

• post

• put

• delete

• patch

• head

• jsonp

If you used the $http service in AngularJS 1.x, you might remember that it heavily relied on
Promises. In Angular, however, all these methods return an Observable object.

A few advantages come with the use of Observables for HttpClient like the ability to cancel
requests, to retry, to easily compose them, etc.

Let’s start by fetching the races available in PonyRacer. We’ll assume that a backend is already up
and running, providing a RESTful API. To fetch the races, we’ll send a GET request to a URL like
'http://backend.url/api/races'.

Usually, the base URL of your HTTP calls will be stored in a variable or a service, that you can easily
configure depending on your environment. Or, if the REST API is served by the same server as the
Angular application, you can simply use a relative URL: '/api/races'.

Using the HttpClient service, such a request is straightforward:

http
 .get<Array<RaceModel>>(`${baseUrl}/api/races`)

160

Note that you don’t need to deserialize the response body from a string to a JavaScript array or
object. That is done automatically by Angular. However, Angular won’t make any check to verify
that the JSON in the response indeed conforms to the generic type you specified. It’s up to you to
make sure that you’re using the correct generic type, and that the RaceModel interface indeed
matches with the JSON that the server sends back.

This returns an Observable, to which you can subscribe to receive the response.

The response body is the most interesting part, and it is directly emitted by the Observable:

http.get<Array<RaceModel>>(`${baseUrl}/api/races`).subscribe((response: Array
<RaceModel>) => {
 console.log(response);
 // logs the array of races
});

The most typical use case is to have a service with methods that return an observable:

@Injectable({
 providedIn: 'root'
})
export class RaceService {
 private readonly http = inject(HttpClient);

 list() {
 return this.http.get<Array<RaceModel>>(`${baseUrl}/api/races`);
 }

And then subscribe to this observable in a component using toSignal:

protected readonly races = toSignal(inject(RaceService).list());

Of course, you can also have access to the full HTTP response. The object returned is then an
HttpResponse object, with a few fields like the status code, headers, etc.

http
 .get<Array<RaceModel>>(`${baseUrl}/api/races`, { observe: 'response' })
 .subscribe((response: HttpResponse<Array<RaceModel>>) => {
 console.log(response.status); // logs 200
 console.log(response.headers.keys()); // logs []
 });

The observable will throw an error if the response status is different from 2xx or 3xx, and the error
is then of type HttpErrorResponse.

Sending data is fairly easy too. Just call the post() or put() method, with the URL and the object to

161

post:

http
 .post<RaceModel>(`${baseUrl}/api/races`, newRace)

Once again, no need to serialize the race object being sent to JSON. Angular does that for you. The
generic type RaceModel here is, just as with the get() method, the type of the response body. So this
example endpoint takes a RaceModel as input and returns the created RaceModel.

I won’t show you the other methods - I’m sure you get the idea.

18.2. Transforming data
This kind of work will usually be done in a dedicated service. I tend to create a service, like
RaceService, where all the job is done. Then, my component just needs to subscribe to my service
method, without knowing what’s going on under the hood.

@Injectable({
 providedIn: 'root'
})
export class RaceService {
 private readonly http = inject(HttpClient);

 list() {
 return this.http.get<Array<RaceModel>>(`${baseUrl}/api/races`);
 }

You can also leverage the power of RxJS to retry a failed request a few times, for example.

raceService
 .list()
 .pipe(
 // if the request fails, retry 3 times
 retry(3)
)

18.3. Advanced options
Of course, you can tune your requests more finely. Every method takes an options object as an
optional parameter, where you can configure your request. A few options are really useful and you
can override everything in the request.

params represents the URL search parameters (also known as the query string) to add to the URL.

const params = {

162

 sort: 'ascending',
 page: '1'
};

http
 .get<Array<RaceModel>>(`${baseUrl}/api/races`, { params })
 // will call the URL ${baseUrl}/api/races?sort=ascending&page=1
 .subscribe(response => {
 // will return the races sorted
 this.races = response;
 });

The headers option is often useful to add a few custom headers to your request. It happens to be
necessary for some authentication techniques like JSON Web Token for example:

const headers = { Authorization: `Bearer ${token}` };

http.get<Array<RaceModel>>(`${baseUrl}/api/races`, { headers }).subscribe(response =>
{
 // will return the races visible for the authenticated user
 this.races = response;
});

18.4. Interceptors
Interceptors are interesting when you want to… intercept requests or responses in your
application.

For example, if you want to intercept every request to add a specific header to some of them, you
can now write an interceptor like this one:

export const githubAPIInterceptor: HttpInterceptorFn = (
 req: HttpRequest<unknown>,
 next: HttpHandlerFn
): Observable<HttpEvent<unknown>> => {
 // if it is a Github API request
 if (req.url.includes('api.github.com')) {
 // we need to add an OAUTH token as a header to access the Github API
 const clone = req.clone({ setHeaders: { Authorization: `token ${OAUTH_TOKEN}` }
});
 return next(clone);
 }
 // if it's not a Github API request, we just hand it to the next handler
 return next(req);
};

Note that you have to clone the request to update it (requests are immutable).

163

Then configure the HTTP client provider so that it uses the interceptor:

providers: [
 provideHttpClient(withInterceptors([githubAPIInterceptor])),
]

Now every request will go through the interceptor, and receive the custom header if needed (here
the requests to the Github API).

You can also intercept the response, which can be handy to handle errors in a generic way:

export const errorHandlerInterceptor: HttpInterceptorFn = (
 req: HttpRequest<unknown>,
 next: HttpHandlerFn
): Observable<HttpEvent<unknown>> => {
 const router = inject(Router);
 const errorHandler = inject(ErrorHandler);
 return next(req).pipe(
 // we catch the error
 tap({
 error: (errorResponse: HttpErrorResponse) => {
 // if the status is 401 Unauthorized
 if (errorResponse.status === HttpStatusCode.Unauthorized) {
 // we redirect to login
 router.navigateByUrl('/login');
 } else {
 // else we notify the user
 errorHandler.handle(errorResponse);
 }
 }
 })
);
};

This is one of the cases where the inject() function needs to be used: since the interceptor is
defined as a function, there is no constructor allowing to inject the dependencies, but the inject()
function allows getting them.

18.5. Context
Sometimes you want to give some context to an interceptor. Since Angular v12, it is possible thanks
to HttpContext. The context uses a type safe token (HttpContextToken), so you can define something
like this in your interceptor:

export const SHOULD_NOT_HANDLE_ERROR = new HttpContextToken<boolean>(() => false);

164

And change the interceptor to:

export const errorHandlerInterceptor: HttpInterceptorFn = (
 req: HttpRequest<unknown>,
 next: HttpHandlerFn
): Observable<HttpEvent<unknown>> => {
 const router = inject(Router);
 const errorHandler = inject(ErrorHandler);
 // if there is a context specifically asking for not handling the error, we don't
handle it
 if (req.context.get(SHOULD_NOT_HANDLE_ERROR)) {
 return next(req);
 }
 return next(req).pipe(
 // ...

All HTTP methods accept a context option, which is a Map that you can build in a type-safe way by
using the token defined previously:

const context = new HttpContext().set(SHOULD_NOT_HANDLE_ERROR, true);
return http.get(`${baseUrl}/api/users`, { context });

18.6. Tests
We now have a service calling an HTTP endpoint to fetch the races. How do we test it?

@Injectable({
 providedIn: 'root'
})
export class RaceService {
 private readonly http = inject(HttpClient);

 list(): Observable<Array<RaceModel>> {
 return this.http.get<Array<RaceModel>>('/api/races');
 }
}

In a unit test, you don’t want to really call the HTTP server: that’s not what we are testing. We want
to "fake" the HTTP call to return fake data. To do this, we can replace the dependency to the
HttpClient service with a fake implementation by importing the HttpClientTestingModule. We can
then use a class provided by the framework called HttpTestingController to fake the HTTP
responses.

And you can also add a few assertions on the underlying HTTP request:

import { TestBed } from '@angular/core/testing';

165

import { HttpTestingController, provideHttpClientTesting } from
'@angular/common/http/testing';
import { HttpClient, provideHttpClient } from '@angular/common/http';

describe('RaceService', () => {
 let raceService: RaceService;
 let http: HttpTestingController;

 beforeEach(() =>
 TestBed.configureTestingModule({
 providers: [provideHttpClient(), provideHttpClientTesting()]
 })
);

 beforeEach(() => {
 raceService = TestBed.inject(RaceService);
 http = TestBed.inject(HttpTestingController);
 });

 afterEach(() => {
 http.verify();
 });

 it('should return an Observable of 2 races', () => {
 // fake response
 const hardcodedRaces = [{ name: 'London' }, { name: 'Lyon' }];

 // call the service
 let actualRaces: Array<RaceModel> = [];
 raceService.list().subscribe(races => (actualRaces = races));

 // check that the underlying HTTP request was correct
 http
 .expectOne('/api/races')
 // return the fake response when we receive a request
 .flush(hardcodedRaces);

 // check that the returned array is deserialized as expected
 expect(actualRaces.length).toBe(2);
 });
});

And we’re done!



Try our exercise HTTP and our quiz ! We prepared a full REST API, ready for
you to use. Let’s fetch some races using the HttpClient service. Later you’ll learn
how to call a secured API with an authentication mechanism and interceptors in
exercises HTTP with authentication and Bet on a pony . Slightly related, we’ll
also use WebSockets .

166

https://angular-exercises.ninja-squad.com/exercises/11/http
https://angular-exercises.ninja-squad.com/exercises/19/quiz-http
https://angular-exercises.ninja-squad.com/exercises/20/http-auth
https://angular-exercises.ninja-squad.com/exercises/21/bet
https://angular-exercises.ninja-squad.com/exercises/23/websockets

Chapter 19. Router
It is fairly common to want to map a URL to a state of the application. That makes sense: you want
your user to be able to bookmark a page and come back, and it provides a better experience
overall.

The piece in charge of doing this job is called a router, and every framework has its own (or several
ones).

The router in Angular has a simple goal: the creation of meaningful URLs reflecting the state of our
app, and each URL knowing what component should be initialized and inserted in the page. It will
execute all this without refreshing the page and without triggering a new request to our backend
server: this is the whole point of having a Single Page Application.

You probably know there was already a router in AngularJS 1.x, maintained by the core team, in a
module called ngRoute. You may also know that it was a very simplistic one: OK for simple
applications, but it was only allowing a single view per URL and no nesting was possible. It was a
bit limited when working on bigger apps, where you often have views inside views. There was a
very popular community module, called ui-router, that a lot of people were using and which was
doing a really great job.

The team behind Angular decided to bridge the gap and wrote a new module called RouterModule.
This module will hopefully fulfill all our needs!

Some new features are really interesting. So let’s go!

19.1. En route (provideRouter)
Let’s start using the router. It is an optional module, that is thus not included in the core
framework.

Similarly to the HTTP client, you have to provide the router in your application if you want to use it.
But for that, we need a configuration to define the mapping between URLs and components. We can
do this with a dedicated file, generally named like app.routes.ts, and containing an array
representing the configuration:

import { Routes } from '@angular/router';
import { Home } from './home/home';

167

import { Races } from './races/races';

export const routes: Routes = [
 { path: '', component: Home },
 { path: 'races', component: Races }
];

Then we need to provide the router in our application, initialized with the proper configuration:

import { bootstrapApplication } from '@angular/platform-browser';
import { provideRouter } from '@angular/router';
import { routes } from './app.routes';

bootstrapApplication(App, {
 providers: [provideRouter(routes)]
}).catch(err => console.error(err));

As you can see, the Routes is an array of objects, each one being a… route. A route configuration is
usually a pair of properties:

• path: what URL will trigger the navigation

• component: which component will be initialized and inserted

You may be wondering where the component will be inserted in the page, and that’s a good
question. For a component to be included in our app, like the Races in the example above, we must
use a special tag in the template of the primary component: <router-outlet>.

168

App

Header

RouterOutlet

where our component goes

Footer

This is, of course, an Angular directive, whose only job is to act as a placeholder for the template of
the component of the current route. Our app template would look like:

<header>
 <nav>...</nav>
</header>
<main>
 <router-outlet />
 <!-- the component's template will be inserted here-->
</main>
<footer>made with <3 by Ninja Squad</footer>

When we navigate, everything will stay (the header, main and footer here) and the component
matching the current route will be inserted just after the RouterOutlet directive.



All the directives of the router module, including RouterOutlet, are standalone
directives. In order to be able to use them in the template, the component must
have them in the imports of its decorator. Or you can add the whole RouterModule to
the imports to have all the router directives available in the component template.

169

19.2. Navigation
How can we navigate between the different components? Well, you can manually type the URL and
reload the page, but that’s not very convenient. And we don’t want to use "classic" links, with . Indeed, clicking on that link makes the browser load the page at that URL, and
restart the whole Angular application. But the goal of Angular is to avoid such page reloads: we
want to create a Single Page Application. Of course, there is a built-in solution.

In a template, you can insert a link with the directive RouterLink pointing to the path you want to go
to. The RouterLink directive can receive a constant representing the path you want to go to or an
array of strings, representing the path and its params. For example in our Races template, if we
want to navigate to the Home, we can imagine something like:

Home
<!-- same as -->
<a [routerLink]="['/']">Home

At runtime, the link href will be computed by the router and will point to /.



The leading slash in the path is necessary. If not included, RouterLink builds the
URL relatively to the current path (which can be useful with nested components,
as we’ll see later). Adding a slash indicates that the URL must be computed from
the application base URL.

The RouterLink directive can be used with the RouterLinkActive directive which can set a CSS class
automatically if the link points to the current route. This allows you, for example, to style a menu
item as selected when it points to the current page.

Home

We can even put a reference on this directive, to know if the route is active, and use it in the
template:

Home {{ route.isActive ?
'(here)' : '' }}

It’s also possible to navigate from the code, by using the Router service and its method navigate().
It’s often handy when you want to redirect your user after an action:

export class Races {
 private readonly router = inject(Router);

 protected saveAndMoveBackToHome(): void {
 // ... save logic ...
 this.router.navigate(['']);

170

 }
}

The method takes an array of parameters, with the path you want to navigate to as the first
element.

It is also possible to have parameters in the URL, and it’s really useful to define dynamic URLs. For
example, we want to display a detail page for a pony, with a meaningful URL for this page, like
ponies/id-of-the-pony-/name-of-the-pony.

To do so, let’s define a route in the configuration with one (or several) dynamic parameters.

export const routes: Routes = [
 { path: '', component: Home },
 { path: 'races', component: Races },
 { path: 'races/:raceId/ponies/:ponyId', component: Pony }
];

We can then define dynamic links with routerLink:

<a [routerLink]="['/races', raceModel().id, 'ponies', ponyModel().id]">See pony

Of course, the target component needs to access those parameters to be able to load and display the
pony with the given identifier. To get the value of the parameters, the router provides a service,
that you can of course inject in the component, named ActivatedRoute. This object has a handy
property: snapshot. This property has all the parameters of the URL in paramMap!

export class Pony {
 protected readonly ponyModel: Signal<PonyModel | undefined>;

 constructor() {
 const route = inject(ActivatedRoute);
 const id = route.snapshot.paramMap.get('ponyId')!;
 const ponyService = inject(PonyService);
 this.ponyModel = toSignal(ponyService.get(id));
 }
}

As you may have spotted, we are using snapshot. Is there a non snapshot version? Yes there is. And
it provides a way to subscribe to parameter changes, with, you guessed it, an observable. This
observable is called paramMap.



This is very important: the router will reuse your component if it can! Let’s say our
app has a "Next" button to see the next pony. The URL will change from /ponies/1
to /ponies/2 for example when the user clicks. The router will then reuse our
component instance: that means neither the constructor, nor ngOnInit will be

171

called again! If you want your component to update for this kind of navigation,
you have no other way than using the paramMap observable!

export class PonyReusable {
 protected readonly ponyModel: Signal<PonyModel | undefined>;

 constructor() {
 const route = inject(ActivatedRoute);
 const ponyService = inject(PonyService);
 this.ponyModel = toSignal(
 route.paramMap.pipe(
 map((params: ParamMap) => params.get('ponyId')!),
 switchMap(id => ponyService.get(id))
)
);
 }
}

Here we subscribe to the observable offered by ActivatedRoute. Now, every time the URL changes
from /ponies/1 to /ponies/2 for example, the paramMap observable will emit an event, and we’ll fetch
the correct pony to display on screen.


Try our exercise Router to learn how to configure the router, navigate between
components, and test all this.

What you have just learnt should cover your basic routing needs. But the router goes well beyond
this and offers many additional features. Covering them all in detail is quite a big task, and you can
feel overwhelmed when trying to learn them all.

This section will try to present most of the additional features as concisely as possible, by
explaining what they’re useful for.

19.3. Redirects
A common use-case is to have a URL simply redirect to another URL in the application. This can
happen because you want, for example, the root URL of your news app to redirect to the /breaking
news category, or an old URL to redirect to a new one after a refactoring. This is possible using

{ path: '', pathMatch: 'full', redirectTo: '/breaking' },

19.4. Matching strategy
In the above example illustrating a redirect, I applied a strategy for matching the route: 'full'. The
default strategy is 'prefix', which matches a route with a URL when the URL starts with the path of
the route. If we used this default strategy here, all URLs would redirect to /breaking, since all URLs
start with an empty string.

172

https://angular-exercises.ninja-squad.com/exercises/12/router

The matching strategy consists in finding the first route that matches the complete URL. So, for
example, if you define routes like

{ path: 'races/:id', component: Race },
{ path: 'races/new', component: RaceCreation }

and the URL is races/new, the component that the router will activate is in fact the Race. Indeed,
races/:id matches with races/new and comes first in the list of routes. To solve this problem, change
the order of the routes:

{ path: 'races/new', component: RaceCreation },
{ path: 'races/:id', component: Race }

19.5. Hierarchical and empty-path routes
Routes can have children. This can be useful for several reasons:

• applying guards to several routes at once (see later);

• applying resolvers to several routes at once (see later);

• sharing a common template between several routes.

As we have seen before, when the router activates a route, the component of the route is inserted in
the page at the location marked by the router-outlet directive.

This mechanism can in fact be used in nested components, too. Suppose you have a complex page
to display the profile of a pony. This page would display its name and portrait at the top, and would
have several tabs at the bottom: one to display its birth certificate, one to display its track record,
and one to display journalist reviews about this pony. You want to have a URL for each tab, in order
to be able to directly link to them. But you don’t want to reload the pony and repeat its name and
portrait on every on these three tab components.

The solution is to use a nested router-outlet in the template of the Pony, and to define a parent pony
route, this way:

{
 path: 'ponies/:ponyId',
 component: Pony,
 children: [
 { path: 'birth-certificate', component: BirthCertificate },
 { path: 'track-record', component: TrackRecord },
 { path: 'reviews', component: Reviews }
]
}

When going to the URL ponies/42/reviews, for example, the router will insert the Pony at the

173

location indicated by the main router-outlet, in the root component. The template of Pony, besides
the name and the portrait of the pony, contains a second router-outlet. This is where the child
Reviews will be inserted.

app.html

...

router outlet

pony.html

...

router outlet

reviews.html

...

When going to the URL ponies/42, the pony component will be displayed, but none of the three
children components will. You might want to display the birth certificate tab by default. That can be
achieved using an empty-path route, redirecting to the birth-certificate route:

{
 path: 'ponies/:ponyId',
 component: Pony,
 children: [
 { path: '', pathMatch: 'full', redirectTo: 'birth-certificate' },
 { path: 'birth-certificate', component: BirthCertificate },
 { path: 'track-record', component: TrackRecord },
 { path: 'reviews', component: Reviews }
]
}

Note that, in the above example, the redirect is relative to the ponies/:ponyId route, because it
doesn’t start with a /.

Instead of redirecting, you might want to display the birth certificate at the URL ponies/42. This can
also be achieved using a child empty-path route:

174

{
 path: 'ponies/:ponyId',
 component: Pony,
 children: [
 { path: '', component: BirthCertificate },
 { path: 'track-record', component: TrackRecord },
 { path: 'reviews', component: Reviews }
]
}

19.6. Guards
Some routes of the application should not be accessible to all users, depending on their
permissions. Of course, you should hide or disable links pointing to these routes if the user may not
access them. You should also make sure that the backend doesn’t allow accessing or modifying
resources that the user isn’t authorized to access or modify. But that still won’t prevent users from
accessing routes that they’re not allowed to access, who can simply enter their URL in the address
bar.

That’s where guards come into play. There are 4 kinds of guards:

• canActivate: when set on a route, the guard can disable the activation of this route. Note that the
guard can also return a URL to navigate elsewhere (to be more accurate, it can return an
Angular type called UrlTree - keep reading for an example). This can be useful for showing an
error page, or to navigate to the login page when an unauthenticated user tries accessing a
route that requires authentication;

• canActivateChild: when set on a route, the guard can disable the activation of children of that
route. This can be useful to disable access to many child routes at once, based on their URL;

• canDeactivate: this guard is different from the three other ones. It’s used to prevent navigation
from outside of the currently activated route. This can be useful for asking for confirmation
before leaving a route containing a large form, for example.

• canMatch: introduced in Angular v14.1, this guard indicates to the router if the route can be
matched or not. If the guards returns false, then the route is simply ignored, and the router
looks for another to match. A typical usage of CanMatch is to have several routes matching the
same path with different components, and use CanMatch to let the router know which one should
be displayed based on the user profile for example.

Here’s how you would add a CanActivate guard on a route. The three other guards are added in a
similar way:

{ path: 'races', component: Races, canActivate: [loggedInGuard] }

In the above example, loggedInGuard is a function.

 In earlier versions of Angular (before v15.2), guards were defined as services, but

175

this is now deprecated.

The function consists of deciding whether the route can be activated or not (by checking if the user
is logged in or not), and in returning a boolean, a Promise<boolean|UrlTree>, an
Observable<boolean|UrlTree> or a UrlTree.

The router will navigate to the route if the returned value is true, or if the returned promise is
resolved as true, or if the returned observable emits true. If the returned value is a UrlTree, it
cancels the current navigation and triggers a navigation to the returned UrlTree.

Here’s what the loggedInGuard function might look like:

export const loggedInGuard: CanActivateFn = (
 _route: ActivatedRouteSnapshot,
 _state: RouterStateSnapshot
): boolean | UrlTree => {
 const userService = inject(UserService);
 const router = inject(Router);
 // returns `true` if the user is logged in or redirects to the login page
 // note that you can also use `router.createUrlTree()` to build a `UrlTree` with
parameters
 return userService.isLoggedIn() || router.parseUrl('/login');
};

Hierarchical routes combined with empty-path routes can be very handy when you want to apply a
guard on several routes at once. For example, if you want both the races and the ponies routes to be
accessible only to logged in users, instead of

{ path: 'ponies/:ponyId', component: Pony, canActivate: [loggedInGuard] },
{ path: 'races', component: Races, canActivate: [loggedInGuard] }

you can introduce an empty-path, componentless route as a parent. This route won’t consume any
URL segment, and won’t activate any component, but its guards will be called when navigating to
any of its children:

{
 path: '',
 canActivate: [loggedInGuard],
 children: [
 { path: 'ponies/:ponyId', component: Pony },
 { path: 'races', component: Races }
]
}

176

19.7. Resolvers
In a good old multi-page application where the pages are generated server-side, when clicking on a
link, here’s what happens: a request is sent to the server, the browser typically shows a spinning
icon on the tab, and when the response finally comes back from the server, the URL in the address
bar changes and the content of the new page is displayed.

In an Angular single-page application, it doesn’t exactly work that way. The user clicks on a link to
display a pony race (for example). The router creates an instance of the Race, and the component
sends an AJAX request to load the race. The router immediately inserts the component template at
the router-outlet location and changes the URL in the address bar. At this time, immediately after
the click, the user sees the new page, but without any race. When the response to the AJAX request
comes back, the race is stored in the component and the DOM is updated.

This has advantages and drawbacks:

• the navigation to the new page feels faster;

• the user can be confused if loading the race is too long, because the page appears blank, which
looks like a bug;

• the template must be coded carefully, in order to work fine during the small period of time
when the race is null or undefined;

• the template can however provide an immediate feedback by displaying a message or a
spinning animation indicating that the race is being loaded;

• if loading the race fails (because the connectivity is lost, for example), then the navigation has
been made and the URL has changed, although the page can’t display any race, instead of
staying on the previous page.

A resolver allows making the application behave almost like a traditional multi-page application.
Instead of letting the race component load the race, you apply a resolver on the route, and the
resolver loads the race on behalf of the component.

Like a guard, a resolver can return data synchronously (by returning a race) or asynchronously (by
returning a promise or observable of a race). The router only navigates to the route once the
promise has been resolved, or once the observable has completed with at least an emitted race.
Here’s what a resolver for a race would look like:

export const raceResolver: ResolveFn<RaceModel> = (route: ActivatedRouteSnapshot):
Observable<RaceModel> => {
 const id = route.paramMap.get('raceId')!;
 const raceService = inject(RaceService);
 return raceService.get(id);
};

As you can see, it’s a simple function, which uses the activated route snapshot passed by the router
to get the value of the raceId parameter, and returns an Observable<RaceModel>.

Here’s how the resolver would be applied to the route:

177

{
 path: 'races/:raceId',
 component: Race,
 resolve: {
 race: raceResolver
 }
}

As you can see, the resolver is associated with an object key that I chose to name race. This is the
key that the router will use to store the loaded race into the data of the activated route snapshot. So
the race component can simply obtain the race the following way:

export class Race {
 protected readonly race = signal(inject(ActivatedRoute).snapshot.data['race']);
}

Note that, if you navigate from a route to the same route, but with different parameters (for
example, if you have a Next race link on the page), then the guards and the resolvers applied to the
route are called again. The component, in that case, will still be reused, and should still subscribe to
an observable to get the race (or just store the observable in the component and use the async pipe
in the template):

export class Race {
 private readonly route = inject(ActivatedRoute);
 protected readonly raceModel = toSignal(this.route.data.pipe(map(data => data['race
'])));
}

Resolvers have many advantages over loading data from the activated component:

• they make the navigation more traditional;

• they can be shared and reused by several routes;

• they make the code of the component and its template simpler: no need to load data, no need to
care about the temporary undefined or null model, no need to apply somewhat complex RxJS
operators to get the data from the parameters;

• if the navigation fails, the current page is preserved and the user can just click on the link again
to retry it.

The only drawback I can find is that, when you know that loading the data is slow (because it
requires substantial computations or external service calls by the server), then the application can
feel a bit unresponsive: you click on a link, and nothing happens until the data has been loaded.
This is where loading the data from the activated component and displaying a loading message or
animation can be more user-friendly. Another workaround would be to rely on router events to
display this loading message.

178

19.8. Router events
The router emits several events when navigating to a route. You can be notified of these events by
injecting the Router service and subscribing to its events observable. The emitted events have
several types that you can filter using event instanceof NavigationStart (for example). Here are the
various types of router events:

• NavigationStart: emitted when a navigation is requested (when clicking on a link, for example).
It can be used, for example, to start displaying a spinner;

• NavigationEnd: emitted when a navigation ends successfully. It can be used to stop displaying the
spinner. Another use-case is to send a hit to an analytics service (like Google Analytics for
example), which allows analyzing the browsing habits and popular pages in your application;

• NavigationError: emitted when a navigation fails due to an unexpected error (like a resolver
returning an empty or error observable). It can be used to stop displaying a spinner, or to try
sending an error log to the server;

• NavigationCancel: emitted when a navigation is cancelled, because a guard prevented the
navigation for example. If a spinner has been shown when the navigation started, it should be
hidden when this event is emitted.

There are other kinds of events for the route configuration loading (RouteConfigLoadStart,
RouteConfigLoadEnd, RoutesRecognized) and, since version 4.3, for the resolvers (ResolveStart,
ResolveEnd) and guards (GuardsCheckStart, GuardsCheckEnd). Version 5.0 added more fine-grained
navigation events (ChildActivationStart, ChildActivationEnd). Version 6.1 added a Scroll event,
along with the scrollPositionRestoration configuration option that allows you to restore the scroll
position when navigating back to a component.

19.9. Parameters and data
We’ve seen before that routes can have parameters. For example, the route races/:raceId has one
parameter named raceId, and the value of this parameter, when navigating to /races/42 is the
string '42'. But this route can actually have additional parameters named matrix parameters.


Matrix parameters are not an Angular-specific feature. Although rarely used and
thus lesser-known than query parameters, they’re a standard part of URIs, which
are supported by many server-side frameworks, too.

If you navigate to the URL

/races/42;foo=bar;baz=wiz

then the params and paramMap properties of the activated route will contain two additional
parameters 'foo' and 'baz' having the values 'bar' and 'wiz'.

Those matrix parameters are specific to the route. So, for example, if the URL is

179

/races/42;foo=bar;baz=wiz/ponies

then the component associated with the ponies segment won’t have foo nor bar in the parameters of
its activated route. Only the component associated with the races/42 segment will.

To navigate to such a URL, you would use the following code:

router.navigate(['/races', 42, { foo: 'bar', baz: 'wiz' }, 'ponies']);

or an equivalent router link:

<a [routerLink]="['/races', 42, { foo: 'bar', baz: 'wiz' }, 'ponies']">Link

Query parameters, on the other hand, are shared by all the route segments. They look like this in
the URL:

/races/42/ponies?foo=bar&baz=wiz

These query parameters are accessible from any route, using the queryParams or queryParamMap
property.

To navigate to such a URL, you would use the following code

router.navigate(['/races', 42, 'ponies'], { queryParams: { foo: 'bar', baz: 'wiz' }
});

or the equivalent router link:

<a [routerLink]="['/races', 42, 'ponies']" [queryParams]="{ foo: 'bar', baz: 'wiz' }"
>Link

Finally, we’ve seen that resolvers allowed adding properties to the data property of the activated
route, before the route is activated. It’s also possible to add additional data to a route directly from
its configuration. This can be useful when the same component can be used in two different
contexts for example:

{
 path: 'races',
 component: Races,
 data: {
 allowDeletion: false
 }

180

}

19.10. Bind parameters and data to component inputs
We saw that the parameters and data of the route are accessible from the component associated
with the route, via observables on the ActivatedRoute object.

Since Angular v16, it’s possible to automatically bind the route parameters and data to the
component inputs.

To do so, you need to configure the router with withComponentInputBinding:

app.config.ts

provideRouter(routes, withComponentInputBinding())

With this option, a component can declare an input with the same name as a route parameter or
data, and Angular will automatically bind the value of the parameter or data to this input.

race.ts

export class Race {
 readonly raceId = input.required<string>();

We can then use this input as a regular input, and react to its change with toObservable and
toSignal:

race.ts

private readonly raceService = inject(RaceService);
private readonly raceModel$ = toObservable(this.raceId).pipe(switchMap(id => this
.raceService.get(id)));
protected readonly raceModel = toSignal(this.raceModel$);

19.11. Lazy loading
This section will conclude this long chapter about the Angular router.

When the application grows in size and features, loading the whole application at once can become
a problem: the application bundle is too large and takes too much time to load and parse.
Moreover, some parts of the application are only used by some users of the application, or are used
rarely, and loading them eagerly is a waste of time and bandwidth. This is where lazy-loading is
useful.

181

Lazy loading consists in splitting the application into several JavaScript bundles, by loading child
routes lazily. The application routes array, instead of defining all the routes of the application, only
contains the main, eagerly-loaded routes, as well as parent routes with lazy-loaded children, which
are thus unknown initially.

When the user navigates to the path of an unknown child route, then the Angular router loads the
JavaScript bundle containing the child routes (and their associated components and services), and
adds the child routes, components and services to the application.

main.bundle.js 100KB

app.routes.ts 0.chunk.js 50KB

admin.routes.ts



it’s actually possible to load the lazy-loading bundles in the background, after the
main bundle has been loaded and the application has started, without waiting for
the user to navigate to the child routes, thanks to an alternative
preloadingStrategy.

To illustrate how we can configure lazy loading, we will assume that you want to define an admin
section in your application, that should be lazy loaded.

The first step is to define an admin component, and at least one route for this component in a file
named admin.routes.ts:

export const adminRoutes: Routes = [{ path: '', component: Admin }];

The final step (yes, that’s all it takes) is to add a parent route in the main app.routes.ts file, and tell
the router to lazy-load the admin routes when navigating to that route (or any child route it might
have):

{ path: 'admin', loadChildren: () => import('./admin/admin.routes').then(m => m

182

.adminRoutes) }

As you can see, this is achieved by using the loadChildren property of the route definition and the
dynamic import function from TypeScript.

When building this application, Angular CLI parses the route configurations and detects that the
admin child module is lazy-loaded. Without any more work on your part, it generates an additional
JavaScript bundle for the admin module (named 0.chunk.js), and generates the necessary
JavaScript to load this bundle when the router requires './admin/admin.routes'.

You can even simplify the import if you use a default export for the module:

const defaultAdminRoutes: Routes = [{ path: '', component: Admin }];
export default defaultAdminRoutes;

Then the router will automatically "unwrap" the import:

{ path: 'admin', loadChildren: () => import('./admin/admin.routes') }

Finally, if (as above) all you want to do is to lazy-load a single component for a given route, then it’s
even easier: you don’t even have to define an additional routes file. The component can be lazy-
loaded directly:

{ path: 'admin', loadComponent: () => import('./admin/admin').then(m => m.Admin) }


Try our quiz and the exercises Protected routes with guards , Nested routes
and redirections and Lazy loading to learn how to use the advanced
features of the router.

183

https://angular-exercises.ninja-squad.com/exercises/27/quiz-router
https://angular-exercises.ninja-squad.com/exercises/28/router-guards
https://angular-exercises.ninja-squad.com/exercises/29/router-advanced
https://angular-exercises.ninja-squad.com/exercises/29/router-advanced
https://angular-exercises.ninja-squad.com/exercises/30/lazy-loading

Chapter 20. Forms

20.1. Forms, dear forms
Forms have always been extra polished in Angular. That’s one of the features that was the most
demoed in 1.x, and, as pretty much every app has forms, it won the hearts of a lot of developers.

Forms are hard: you have to validate the inputs of your user, display errors, you can have fields
required or not, or depending on another field, you want to react to some field changes, etc. We also
need to test these forms, and that was impossible to achieve with a unit-test in AngularJS 1.x. It was
only feasible with an end-to-end test, which can be slow.

In Angular, the same care has been applied to forms, and the framework gives us a nice way to
write our forms. In fact, it gives us several ways!

You can either write your form using only directives in your template: that’s the "template-driven"
way. From our experience, it shines when you have a simple form, with not much validation.

The other way is the "code-driven" way, where you will write a description of the form in your
component, then use directives to bind this form to the inputs/textareas/selects in your template.
It’s more verbose, but also more powerful, especially if you want to do add custom validation, or to
generate dynamic forms.

Let’s go through the same use case twice, using each way, and see the differences.

We are going to write a simple form, to be able to register new users in our awesome PonyRacer
app. We need a base component for each use case, so let’s begin with this:

import { Component } from '@angular/core';

@Component({
 selector: 'ns-register',
 template: `
 <h2>Sign up</h2>
 <form></form>
 `
})

184

export class RegisterForm {}

Nothing fancy: a component with a simple template containing a form. In the next few minutes, we
will build a form allowing you to register a user with a username and a password.

For both methods, Angular will create a representation of our form.

In the "template-driven" way, it’s pretty much automatic: we just need to add the proper directives
in the template and the framework takes care of the form representation creation.

In the "code-driven" way, we create this form representation manually, and then bind the form
representation to the inputs using directives.

Behind the scenes, a form field, like an input or a select, is represented by a FormControl in Angular.
It is the smallest part of a form, and it encapsulates the state of the field and its value.

A FormControl has several attributes:

• valid: if the field is valid, regarding the requirements and validations applied on it.

• invalid: if the field is invalid, regarding the requirements and validations applied on it.

• errors: an object containing the field errors

• dirty: false until the user has modified its value.

• pristine: the opposite of dirty.

• touched: false until the user has entered it.

• untouched: the opposite of touched.

• value: the value of the field.

• valueChanges: an Observable emitting every time there the value of the control changes.

• statusChanges: an Observable emitting every time there the status of the control changes.

• events: an Observable emitting every time the state or value of the control changes. This has
been introduced in Angular v18 and allows to handle value, status, pristine, touched changes or
to know when the form has been reset or submitted.

It also offers some methods like hasError() to check if the control has a specific error.

So you can do something like this:

const password = new FormControl('');
console.log(password.dirty); // false until the user enters a value
console.log(password.value); // '' until the user enters a value
console.log(password.hasError('required')); // false
password.disable(); // disables the control
password.reset(); // resets the value

Note that you can pass an argument to the constructor, and that this argument will be the value.

185

const password = new FormControl('Cédric');
console.log(password.value); // logs "Cédric"

These controls can be grouped in a FormGroup to represent a part of the form and have dedicated
validation rules. The form itself is a group.

A FormGroup has the same properties as a FormControl, with a few differences:

• valid: if all fields are valid, then the group is valid.

• invalid: if one of the fields is invalid, then the group is invalid.

• errors: an object containing the group errors or null if the group is valid. Each error is a key,
whose value is an array containing every control affected by this error.

• dirty: false until one of the controls gets dirty.

• pristine: the opposite of dirty.

• touched: false until one of the controls gets touched.

• untouched: the opposite of touched.

• value: the value of the group. To be more accurate, it’s an object with key/values representing
the controls and their values.

• valueChanges: an Observable emitting every time there is a change on the group

It offers the same methods as FormControl like hasError(). It also has a method get() to retrieve a
control in the group.

You can create one like this:

const form = new FormGroup({
 username: new FormControl('Cédric'),
 password: new FormControl('')
});
console.log(form.dirty); // logs false until the user enters a value
console.log(form.value); // logs Object {username: "Cédric", password: ''}
console.log(form.controls.username); // logs the Control

Let’s begin with a "template-driven" form!

20.2. Template-driven
With this method, we are going to use a bunch of directives in our form, and let the framework
build the necessary FormControl and FormGroup instances. For example, the NgForm directive
transforms the form element into its powerful Angular version - think of it as the difference
between Bruce Wayne and Batman.

All the directives we need are included in the FormsModule module, so we need to import it in each
component using a template-driven form.

186


Unlike the directives from CommonModule and RouterModule, which are standalone,
the directives of the FormsModule are not. So you can’t import them one by one in
your components. The whole FormsModule must be imported.

import { Component } from '@angular/core';
import { FormsModule } from '@angular/forms';

@Component({
 selector: 'ns-register',
 template: `
 <h2>Sign up</h2>
 <form></form>
 `,
 imports: [FormsModule]
})
export class RegisterForm {}

FormsModule contains the directives for the "template-driven" way. We’ll see later that there exists
another module, ReactiveFormsModule, in the same package @angular/forms, which is needed for the
"code-driven" way.

Let’s add the submit button:

import { Component } from '@angular/core';
import { FormsModule } from '@angular/forms';

@Component({
 selector: 'ns-register',
 template: `
 <h2>Sign up</h2>
 <form (ngSubmit)="register()">
 <button type="submit">Register</button>
 </form>
 `,
 imports: [FormsModule]
})
export class RegisterForm {
 protected register(): void {
 // we will have to handle the submission
 }
}

I added a button, and defined an event handler for ngSubmit on the form tag. The ngSubmit event is
emitted by the NgForm directive when submit is triggered. It calls the register() method of our
controller, which will be implemented later.

You might wonder why there is an NgForm directive available on the form element, even though it
doesn’t have any specific attribute. It’s simply that the selector of the NgForm directive is form (it is

187

actually a bit more specific than that), which means that every standard HTML form element
actually triggers the creation of an NgForm directive, as long as the FormsModule has been imported.

Last thing: our template will quickly grow, so let’s extract it to a dedicated file, using templateUrl:

import { Component } from '@angular/core';
import { FormsModule } from '@angular/forms';

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [FormsModule]
})
export class RegisterForm {
 protected register(): void {
 // we will have to handle the submission
 }
}

In the "template-driven" way, you write your forms pretty much like in AngularJS 1.x, with a lot of
things in your template and not many in your component.

In its simplest form, you just add ngModel directives to your form template and that’s all. The NgModel
directive creates the FormControl for you, and the form automatically creates the FormGroup. Note
that you have to give a name to the input, which will be used by the framework to create the
FormGroup.

<h2>Sign up</h2>
<form (ngSubmit)="register()">
 <div>
 <label>Username</label><input name="username" ngModel>
 </div>
 <div>
 <label>Password</label><input type="password" name="password" ngModel>
 </div>
 <button type="submit">Register</button>
</form>

Now of course we need to do something for the submission, and to get hold of the user name and
password. To achieve that, we can define a local variable and assign it to the NgForm object created
by Angular for the form. Remember these from the Template chapter? Here, we are going to define
a variable, userForm, referencing the form. We can do that because the form directive exports the
NgForm directive instance, which has the same methods as the FormGroup class. We’ll see the
exporting part in more detail when we study how to build advanced directives.

<h2>Sign up</h2>
<!-- we use a local variable #userForm -->
<!-- and give its value to the register method -->

188

<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
 <div>
 <label>Username</label><input name="username" ngModel>
 </div>
 <div>
 <label>Password</label><input type="password" name="password" ngModel>
 </div>
 <button type="submit">Register</button>
</form>

Our register method is now called with the form value as the argument:

import { Component } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { UserModel } from './user.model';

@Component({
 selector: 'ns-register',
 templateUrl: '../code/register-form.html',
 imports: [FormsModule]
})
export class RegisterForm {
 protected register(user: UserModel): void {
 console.log(user);
 }
}

This is only one-way data-binding though. If you update the field, the model will be updated, but
updating the model will not update your field value. But ngModel is more powerful than you think!

20.2.1. Two-way data-binding

If you have been using AngularJS 1.x, or even just read an article about it, you must have seen the
famous example with an input and an expression displaying the input value, updated every time
the user modified the input, and the field automatically updated when the model changed. The
famous "Two-Way Data-Binding", something like:

<!-- AngularJS 1.x code example -->
<input type="text" ng-model="username">
<p>{{ username }}</p>

We can do a similar thing with Angular.

You start by defining a model of what will be filled in the form. We’ll do this in a UserModel
interface:

export interface UserModel {

189

 username: string;
 password: string;
}

Our RegisterForm should have a field user of type UserModel:

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [FormsModule]
})
export class RegisterForm {
 protected readonly user: UserModel = {
 username: '',
 password: ''
 };

 protected register(): void {
 console.log(this.user);
 }
}



We don’t use signals in these examples, as every property of the UserModel would
have to be signals, which is not super ergonomic (but doable). We can imagine the
situation will improve when forms will be re-worked in Angular to better handle
signal.

As you can see this time, the register() method is now directly logging the user object.

We are ready to add the inputs of our form. We need to bind our inputs to the model we have
defined. For this, we’ll use the ngModel directive:

<h2>Sign up</h2>
<form (ngSubmit)="register()">
 <div>
 <label>Username</label><input name="username" [(ngModel)]="user.username">
 </div>
 <div>
 <label>Password</label><input type="password" name="password"
[(ngModel)]="user.password">
 </div>
 <button type="submit">Register</button>
</form>

Wow! [(ngModel)]? What is this syntax? It’s a syntactic sugar that has been introduced to express
the same thing as:

190

<input name="username" [ngModel]="user.username" (ngModelChange)="user.username =
$event">

The NgModel directive updates the input value every time the related model user.username changes,
hence the [ngModel]="user.username" part. And it emits an event from an output named
ngModelChange every time the input is updated by the user, where the event is the new value, hence
the (ngModelChange)="user.username = $event" part, which will update the model user.username with
this new value.

Instead of writing the long form, we can use the new syntax [()]. If, like me, you have trouble
remembering if it is [()] or ([]), there is a cool mnemonic tip: it’s a banana-box! Yes, look: the [] is
a box, and, inside, there are two bananas facing each other ()!

Now, every time we type something in our input, the model is updated. And if the model is updated
in our component, our field will automatically display the correct value:

<h2>Sign up</h2>
<form (ngSubmit)="register()">
 <div>
 <label>Username</label><input name="username" [(ngModel)]="user.username">
 <small>{{ user.username }} is an awesome username!</small>
 </div>
 <div>
 <label>Password</label><input type="password" name="password"
[(ngModel)]="user.password">
 </div>
 <button type="submit">Register</button>
</form>

If you try the example above, you will see that the two-way data-binding works. And so does our
form: we can submit it, and the component will log our user object!

20.3. Code-driven
In AngularJS 1.x you had to build your forms mostly in your templates. Angular introduces an
imperative way, which allows you to construct the form programmatically rather than through a
template.

Now we can handle forms directly in our code. It’s more verbose but more powerful.

To build a form in our component code, we’ll use the abstractions we talked about: FormControl and
FormGroup.

With these basic elements we can build a form in our component. But instead of writing new
FormControl() or new FormGroup(), we will use a helper class, FormBuilder, that we can inject:

import { Component, inject } from '@angular/core';

191

import { FormBuilder, ReactiveFormsModule } from '@angular/forms';

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [ReactiveFormsModule]
})
export class RegisterForm {
 private readonly fb = inject(FormBuilder);
 // we will have to build the form

 protected register(): void {
 // we will have to handle the submission
 }
}

The FormBuilder is a helper class, with a handful of methods to create controls and groups. Let’s
start simple, and create a small form with two controls, a username and a password.

import { Component, inject } from '@angular/core';
import { FormBuilder, ReactiveFormsModule } from '@angular/forms';

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [ReactiveFormsModule]
})
export class RegisterForm {
 private readonly fb = inject(FormBuilder);
 protected readonly userForm = this.fb.group({
 username: '',
 password: ''
 });
 // `userForm` is of type `FormGroup<{
 // username: FormControl<string | null>;
 // password: FormControl<string | null>;
 // }>`

 protected register(): void {
 // we will have to handle the submission
 }
}

We created a form with two controls. You can see that each control is created with the value ''.
That’s the same as using the helper method control() of the FormBuilder with this string as
parameter, and the same as calling the new FormControl('') constructor: the string represents the
initial value you want to display in your form. Here it is empty, so the inputs will be empty. But you
can have a value here, of course, if you want to edit an existing entity for example. The helper
method can also have other specific attributes, as we will see later.

192

We need to implement the register method. As we saw, the FormGroup object has a value attribute, so
we can simply log its content with:

import { Component, inject } from '@angular/core';
import { FormBuilder, ReactiveFormsModule } from '@angular/forms';

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [ReactiveFormsModule]
})
export class RegisterForm {
 private readonly fb = inject(FormBuilder);
 protected readonly userForm = this.fb.group({
 username: '',
 password: ''
 });

 protected register(): void {
 console.log(this.userForm.value);
 }
}

We now need to do some work in the template. We are going to use other directives than those we
saw for the "template-driven" forms. These directives are in the ReactiveFormsModule, that you have
to import into your component. Their names begin with form instead of ng as was the case for the
"template-driven" forms.

The form needs to be bound to our userForm object, thanks to the formGroup directive. Each input
field is bound to a control, thanks to the formControlName directive:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
 <div>
 <label>Username</label><input formControlName="username">
 </div>
 <div>
 <label>Password</label><input type="password" formControlName="password">
 </div>
 <button type="submit">Register</button>
</form>

We want to bind our component’s attribute userForm object to formGroup, so we use the bracket
notation [formGroup]="userForm". Each input receives the formControlName directive with a string
literal representing the control it is bound to. If you specify a name that does not exist, you will
have an error. As we pass a value (and not an expression), we don’t put the [] around
formControlName.

193

And we’re done: clicking on the submit button will log an object containing the username and the
chosen password!

If you need to, you can update the value of a FormControl from your component, using setValue():

import { Component, inject } from '@angular/core';
import { FormBuilder, ReactiveFormsModule } from '@angular/forms';

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [ReactiveFormsModule]
})
export class RegisterForm {
 private readonly fb = inject(FormBuilder);
 protected readonly usernameCtrl = this.fb.control('');
 protected readonly passwordCtrl = this.fb.control('');
 protected readonly userForm = this.fb.group({
 username: this.usernameCtrl,
 password: this.passwordCtrl
 });

 protected setAnotherNinja(): void {
 this.usernameCtrl.setValue('JB');
 }

 protected register(): void {
 console.log(this.userForm.value);
 }
}

20.4. Adding some validation
Validation is usually a big part of form-building. Some fields are required, some depend on one
another, some should be in a specific format, some should not have a value greater or lower than X,
for example.

Let’s start by adding basic validation rules: all our fields are required.

20.4.1. In a code-driven form

To specify that every field is required, we will use a Validator. A validator returns a map of errors
or null if it detects no error.

A few validators are provided by the framework:

• Validators.required to ensure that a control is not empty

• Validators.minLength(n) to ensure that the value entered has at least n characters

194

• Validators.maxLength(n) to ensure that the value entered has at most n characters

• Validators.email() (available since version 4.0) to ensure that the value entered is a valid email
address (good luck finding the correct regular expression by yourself for this one…)

• Validators.min(n) (available since version 4.2) to ensure that the value entered is at least n

• Validators.max(n) (available since version 4.2) to ensure that the value entered is at most n

• Validators.pattern(p) to ensure that the value matches the regular expression p

You can apply several validators at once, by using an array, on a FormControl or on a FormGroup. Here
we want every field to be mandatory, so we can add the required validator to each control, and
make sure that the username is 3 characters at least.

import { Component, inject } from '@angular/core';
import { FormBuilder, ReactiveFormsModule, Validators } from '@angular/forms';

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [ReactiveFormsModule]
})
export class RegisterForm {
 private readonly fb = inject(FormBuilder);
 protected readonly userForm = this.fb.group({
 username: this.fb.control('', [Validators.required, Validators.minLength(3)]),
 password: this.fb.control('', Validators.required)
 });

 protected register(): void {
 console.log(this.userForm.value);
 }
}

20.4.2. In a template-driven form

Adding a required field in a template-driven form is also really straightforward: you just have to
add the required attribute to the inputs. required is a provided directive, and will automatically add
the validator to this field. Same thing with minlength, maxlength, and email (min and max are not yet
available as directives).

Starting from the two-way data-binding example:

<h2>Sign up</h2>
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
 <div>
 <label>Username</label><input name="username" ngModel required minlength="3">
 </div>
 <div>
 <label>Password</label><input type="password" name="password" ngModel required>

195

 </div>
 <button type="submit">Register</button>
</form>

Note that this can be done in a "code-driven" form too.

20.5. Errors and submission
Of course, our user should not be able to submit the form while there are still errors left, and these
errors should be perfectly displayed.

If you try the examples, you will see that even if the fields are required, we can still submit our
form. Maybe we can do something about that?

We know that we can easily disable a button using the disabled property, but we need to give it an
expression reflecting the state of the current form.

20.5.1. Errors and submission in a code-driven form

We added a field userForm, of type FormGroup, to our component. This field gives us a complete view
of the form and field states and errors.

For example, we can disable the form submission if the form is not valid:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
 <div>
 <label>Username</label><input formControlName="username">
 </div>
 <div>
 <label>Password</label><input type="password" formControlName="password">
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

As you can see on the last line, we just need to link disabled to the invalid property of userForm.

Now we can only submit when all controls are valid. To help our user understand why the form
can’t be submitted, we should display error messages.

Still using the userForm, we can do:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
 <div>
 <label>Username</label><input formControlName="username">
 @if (userForm.controls.username.hasError('required')) {
 <div>Username is required</div>

196

 }
 @if (userForm.controls.username.hasError('minlength')) {
 <div>Username should be 3 characters min</div>
 }
 </div>
 <div>
 <label>Password</label><input type="password" formControlName="password">
 @if (userForm.controls.password.hasError('required')) {
 <div>Password is required</div>
 }
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Cool! The errors are now displayed if the fields are empty, and they disappear when there is a
value. But they are displayed right away when the form is shown. Maybe we can hide them until
the user changes the value?

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
 <div>
 <label>Username</label><input formControlName="username">
 @if (userForm.controls.username.dirty &&
userForm.controls.username.hasError('required')) {
 <div>Username is required</div>
 }
 @if (userForm.controls.username.dirty &&
userForm.controls.username.hasError('minlength')) {
 <div>Username should be 3 characters min</div>
 }
 </div>
 <div>
 <label>Password</label><input type="password" formControlName="password">
 @if (userForm.controls.password.dirty &&
userForm.controls.password.hasError('required')) {
 <div>Password is required</div>
 }
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

It’s a bit verbose, so you can create a reference for each control in your component:

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [ReactiveFormsModule]
})

197

export class RegisterForm {
 private readonly fb = inject(FormBuilder);
 protected readonly usernameCtrl = this.fb.control('', Validators.required);
 protected readonly passwordCtrl = this.fb.control('', Validators.required);
 protected readonly userForm = this.fb.group({
 username: this.usernameCtrl,
 password: this.passwordCtrl
 });

 protected register(): void {
 console.log(this.userForm.value);
 }
}

And then use the references in your template:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
 <div>
 <label>Username</label><input formControlName="username">
 @if (usernameCtrl.dirty && usernameCtrl.hasError('required')) {
 <div>Username is required</div>
 }
 @if (usernameCtrl.dirty && usernameCtrl.hasError('minlength')) {
 <div>Username should be 3 characters min</div>
 }
 </div>
 <div>
 <label>Password</label><input type="password" formControlName="password">
 @if (passwordCtrl.dirty && passwordCtrl.hasError('required')) {
 <div>Password is required</div>
 }
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

20.5.2. Errors and submission in a template-driven form

In a template-driven form, we don’t have any field in our component referring to the FormGroup, but
we already declared a local variable in the template, referring to the NgForm object exported by the
form directive. Once again, this variable allows you to know the state of the form and accessing its
controls.

<h2>Sign up</h2>
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
 <div>
 <label>Username</label><input name="username" ngModel required>
 </div>

198

 <div>
 <label>Password</label><input type="password" name="password" ngModel required>
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Now we need to display the errors of each field.

Like the form directive, each control exports its FormControl object, so we can create a local variable
to access the errors:

<h2>Sign up</h2>
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
 <div>
 <label>Username</label><input name="username" ngModel required #username="ngModel
">
 @if (username.dirty && username.hasError('required')) {
 <div>Username is required</div>
 }
 </div>
 <div>
 <label>Password</label><input type="password" name="password" ngModel required
#password="ngModel">
 @if (password.dirty && password.hasError('required')) {
 <div>Password is required</div>
 }
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Yay!

20.6. Add some style
Whatever way you choose to create your forms, Angular does another awesome job for us: it
automatically adds and removes CSS classes on each field (and on the form) to allow us to add some
visual style.

For example, a field will have the class ng-invalid if one of its validators fails, or ng-valid if all the
validators succeed. That means you can easily add some style, like a nice red border around the
fields failing the validation:

<style>
 input.ng-invalid {
 border: 3px red solid;
 }
</style>
<h2>Sign up</h2>

199

<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
 <div>
 <label>Username</label><input name="username" ngModel required>
 </div>
 <div>
 <label>Password</label><input type="password" name="password" ngModel required>
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Another useful CSS class is ng-dirty which will be present if the user has changed the value. Its
opposite is ng-pristine, present if the user never changed the value. I usually display the red border
only when the user has changed the value at least once:

<style>
 input.ng-invalid.ng-dirty {
 border: 3px red solid;
 }
</style>
<h2>Sign up</h2>
<form (ngSubmit)="register(userForm.value)" #userForm="ngForm">
 <div>
 <label>Username</label><input name="username" ngModel required>
 </div>
 <div>
 <label>Password</label><input type="password" name="password" ngModel required>
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Finally, there is a last CSS class: ng-touched. It will be present if the user enters and leaves the field
at least once (even if she/he did not change the value). Its opposite is ng-untouched.

When you display a form for the first time, a field will usually have the CSS classes ng-pristine ng-
untouched ng-invalid. Then, when the user enters and leaves the field, it switches to ng-pristine ng-
touched ng-invalid. When the user changes the value, still for an invalid one, we’ll have ng-dirty
ng-touched ng-invalid. And finally, when the value is valid: ng-dirty ng-touched ng-valid.

20.7. Creating a custom validator
Pony races are an addictive game so you are only allowed to register if you are over 18. And we
want the user to enter the password twice, to be sure she/he hasn’t made a mistake.

How do we do this? We create a custom validator.

To do so, we just have to create a method that takes a FormControl, tests its value and returns an
object with the errors or null, if the validation passes.

200

const isOldEnough = (control: AbstractControl<Date | null>) => {
 // control is a date input, so we can build the Date from the value
 const birthDatePlus18 = new Date(control.value!);
 birthDatePlus18.setFullYear(birthDatePlus18.getFullYear() + 18);
 return birthDatePlus18 < new Date() ? null : { tooYoung: true };
};

Our validation method is pretty easy: we take the value of the control, we build the date, check if
the 18th birthday is before now and return an error with the key 'tooYoung' if not.

Now we need to include this validator.

20.7.1. Using a validator in a code-driven form

We need to add a new control in our form with this validator, using the FormBuilder:

import { Component, inject } from '@angular/core';
import { AbstractControl, FormBuilder, ReactiveFormsModule, ValidationErrors,
Validators } from '@angular/forms';

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [ReactiveFormsModule]
})
export class RegisterForm {
 private readonly fb = inject(FormBuilder);
 protected readonly usernameCtrl = this.fb.control('', Validators.required);
 protected readonly passwordCtrl = this.fb.control('', Validators.required);
 protected readonly birthdateCtrl = this.fb.control('', [Validators.required,
RegisterForm.isOldEnough]);
 protected readonly userForm = this.fb.group({
 username: this.usernameCtrl,
 password: this.passwordCtrl,
 birthdate: this.birthdateCtrl
 });

 private static isOldEnough(control: AbstractControl): ValidationErrors | null {
 // control is a date input, so we can build the Date from the value
 const birthDatePlus18 = new Date(control.value);
 birthDatePlus18.setFullYear(birthDatePlus18.getFullYear() + 18);
 return birthDatePlus18 < new Date() ? null : { tooYoung: true };
 }

 protected register(): void {
 console.log(this.userForm.value);
 }
}

201

As you can see, we have added a new control birthdate, with two validators composed. The first
validator is required and the other is a static method of our class isOldEnough. Of course this method
could be in another class if you wanted (required is a static method for example).

Don’t forget to add the field and display the errors in the form:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
 <div>
 <label>Username</label><input formControlName="username">
 @if (usernameCtrl.dirty && usernameCtrl.hasError('required')) {
 <div>Username is required</div>
 }
 </div>
 <div>
 <label>Password</label><input type="password" formControlName="password">
 @if (passwordCtrl.dirty && passwordCtrl.hasError('required')) {
 <div>Password is required</div>
 }
 </div>
 <div>
 <label>Birth date</label><input type="date" formControlName="birthdate">
 @if (birthdateCtrl.dirty) {
 @if (birthdateCtrl.hasError('required')) {
 <div>Birth date is required</div>
 } @else if (birthdateCtrl.hasError('tooYoung')) {
 <div>You're way too young to be betting on pony races</div>
 }
 }
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Pretty easy, no?

Note that it’s also possible to create and add asynchronous validators (for example to check with
the backend if a username is available).

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [ReactiveFormsModule]
})
export class RegisterForm {
 private readonly fb = inject(FormBuilder);
 protected readonly usernameCtrl = this.fb.control('', Validators.required, control
=>
 this.isUsernameAvailable(control)
);

202

 protected readonly userForm = this.fb.group({
 username: this.usernameCtrl
 });

 private readonly userService = inject(UserService);

 private isUsernameAvailable(control: AbstractControl): Observable<ValidationErrors |
null> {
 const username = control.value;
 return this.userService
 .isUsernameAvailable(username)
 .pipe(map(available => (available ? null : { alreadyUsed: true })));
 }

 protected register(): void {
 console.log(this.userForm.value);
 }
}

This asynchronous validator is not a static method this time because it needs to access the service.

The method from the service returns an Observable that emits either null if there is no error (the
username is available), or an object to represent the error (the key will be the error, as with
synchronous validators).

An interesting feature: the class ng-pending is dynamically added to the field while the
asynchronous validator is still completing its job. It allows you to display a spinner for example to
show that the validation is still ongoing.

20.7.2. Using a validator in a template-driven form

To add a custom validator in a template-driven form, we need to add it in… the template!

To do this, you need to build a custom directive that we will apply on the input, but honestly this is
way easier when using a "code-driven" form…

20.8. Grouping fields
Until now, we just had one group: the complete form. But we can declare groups inside a group.
That’s very useful if you want to validate a group of fields together like an address, or, like in our
example, if you want to check if the password and its confirmation match.

The solution is to use a code-driven form.

First, create a new group, passwordGroup with the two fields and add it in the group userForm with
the key passwordForm:

import { Component, inject } from '@angular/core';
import { AbstractControl, FormBuilder, ReactiveFormsModule, ValidationErrors,

203

Validators } from '@angular/forms';

@Component({
 selector: 'ns-register',
 templateUrl: './register-form.html',
 imports: [ReactiveFormsModule]
})
export class RegisterForm {
 private readonly fb = inject(FormBuilder);
 protected readonly usernameCtrl = this.fb.control('', Validators.required);
 protected readonly passwordCtrl = this.fb.control('', Validators.required);
 protected readonly confirmCtrl = this.fb.control('', Validators.required);
 protected readonly passwordGroup = this.fb.group(
 { password: this.passwordCtrl, confirm: this.confirmCtrl },
 { validators: RegisterForm.passwordMatch }
);

 protected readonly userForm = this.fb.group({ username: this.usernameCtrl,
passwordForm: this.passwordGroup });

 private static passwordMatch(group: AbstractControl): ValidationErrors | null {
 const password = group.value.password;
 const confirm = group.value.confirm;
 return password === confirm ? null : { matchingError: true };
 }

 protected register(): void {
 console.log(this.userForm.value);
 }
}

As you can see, we have added a validator on the group, passwordMatch, that will be called every
time one of the fields changes.

Let’s update the template to reflect the new form, using the formGroupName directive:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
 <div>
 <label>Username</label><input formControlName="username">
 @if (usernameCtrl.dirty && usernameCtrl.hasError('required')) {
 <div>Username is required</div>
 }
 </div>
 <div formGroupName="passwordForm">
 <div>
 <label>Password</label><input type="password" formControlName="password">
 @if (passwordCtrl.dirty && passwordCtrl.hasError('required')) {
 <div>Password is required</div>
 }

204

 </div>
 <div>
 <label>Confirm password</label><input type="password" formControlName="confirm">
 @if (confirmCtrl.dirty && confirmCtrl.hasError('required')) {
 <div>Confirm your password</div>
 }
 </div>
 @if (passwordGroup.dirty && passwordGroup.hasError('matchingError')) {
 <div>Your password does not match</div>
 }
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

Voilà!

20.9. Reacting to changes
A last cool feature when using a code-driven form: you can easily react to value changes, using the
observable valueChanges. Reactive programming FTW! For example, let’s say we want our password
field to display a strength indicator. We want to compute the strength at every change of the
password value:

private readonly fb = inject(FormBuilder);
protected readonly usernameCtrl = this.fb.control('', Validators.required);
protected readonly passwordCtrl = this.fb.control('', Validators.required);
protected readonly userForm = this.fb.group({
 username: this.usernameCtrl,
 password: this.passwordCtrl
});
protected readonly passwordStrength = signal(0);

constructor() {
 // we subscribe to every password change
 this.passwordCtrl.valueChanges
 .pipe(
 // only recompute when the user stops typing for 400ms
 debounceTime(400),
 // only recompute if the new value is different from the last
 distinctUntilChanged()
)
 .subscribe(newValue => this.passwordStrength.set(this.computePasswordStrength
(newValue)));
}

or with toSignal:

protected readonly passwordStrength = toSignal(

205

 this.passwordCtrl.valueChanges.pipe(
 // only recompute when the user stops typing for 400ms
 debounceTime(400),
 // only recompute if the new value is different from the last
 distinctUntilChanged(),
 // compute the length of the password
 map(newValue => this.computePasswordStrength(newValue))
),
 { initialValue: 0 }
);

Now we have a passwordStrength field in our component instance, that we can display to our user:

<h2>Sign up</h2>
<form (ngSubmit)="register()" [formGroup]="userForm">
 <div>
 <label>Username</label><input formControlName="username">
 @if (usernameCtrl.dirty && usernameCtrl.hasError('required')) {
 <div>Username is required</div>
 }
 </div>
 <div>
 <label>Password</label><input type="password" formControlName="password">
 <div>Strength: {{ passwordStrength() }}</div>
 @if (passwordCtrl.dirty && passwordCtrl.hasError('required')) {
 <div>Password is required</div>
 }
 </div>
 <button type="submit" [disabled]="userForm.invalid">Register</button>
</form>

We are leveraging RxJS operators to add a few cool features:

• debounceTime(400) will only emit values if the user stops typing for 400ms. That avoids
computing the password strength on every value the user enters. That’s really interesting if the
computing takes a long time, or launches an HTTP request.

• distinctUntilChanged() will only emit values if the new value entered is different than the last
one. Again that’s really interesting: imagine that the user enters 'password' then stops typing.
We compute the strength. Then she enters a new character and removes it quickly (before
400ms). The next event out of debounceTime will again be 'password'. It makes no sense to
recompute the password strength again! This operator will not even emit the value, and saves
us the recomputing.

RxJS can do tons of work for you: imagine coding yourself what we just did in two lines. It can also
easily combine with HTTP work, as the HttpClient service uses observables too.

206

20.10. Updating on blur or on submit only
Angular 5.0 introduced the possibility of waiting for the blur or the submit event to update the
field’s value and validity. To do so, the FormControl constructor accepts an options object as the
second parameter, to define the synchronous and asynchronous validators, and also the updateOn
option. Its value can be:

• change, it’s the default: the value and validity are updated on every change;

• blur, the value and validity are then updated only when the field loses the focus.

• submit, the value and validity are then updated only when the parent form is submitted.

protected readonly usernameCtrl = this.fb.control('', Validators.required);
protected readonly passwordCtrl = this.fb.control('', {
 validators: Validators.required,
 updateOn: 'blur'
});

It’s also possible to configure this option on a group of fields all at once:

protected readonly userForm = this.fb.group(
 {
 username: this.usernameCtrl,
 password: this.passwordCtrl
 },
 {
 updateOn: 'blur'
 }
);

The same feature is available in template-driven forms, with the ngModelOptions input of the NgModel
directive:

<label>Username</label>
<input name="username" #usernameCtrl="ngModel"
 [(ngModel)]="user.username" [ngModelOptions]="{ updateOn: 'blur' }" required>
@if (usernameCtrl.dirty && usernameCtrl.hasError('required')) {
 <div>Username is required</div>
}

or globally on a form with the NgFormOptions input (which appeared with Angular 5.0) of the
directive NgForm:

<form (ngSubmit)="register()" [ngFormOptions]="{ updateOn: 'blur' }">
 <div>
 <label>Username</label>

207

 <input name="username" #usernameCtrl="ngModel"
 [(ngModel)]="user.username" required>
 @if (usernameCtrl.dirty && usernameCtrl.hasError('required')) {
 <div>Username is required</div>
 }

20.11. FormArray and FormRecord
FormControl and FormGroup are not the only entities that we can use to build a form. If you want a
part of the form to be dynamic, you can use a FormArray or a FormRecord.

FormArray is an array of controls that contains the same types of value. A typical example is a form
where you want the users to be able to add/remove values, like for example tags when editing a
blog post:

export class EditBlogPost {
 private readonly fb = inject(FormBuilder);
 // one empty tag by default
 protected readonly tagsArray = this.fb.array(['']);
 protected readonly blogPostForm = this.fb.group({
 title: '',
 content: '',
 tags: this.tagsArray
 });

 protected addTag() {
 this.tagsArray.push(this.fb.control(''));
 }

 protected removeTag(index: number) {
 this.tagsArray.removeAt(index);
 }

Then you can iterate on the controls in the template, and have buttons to add/remove a tag:

<div formArrayName="tags">
 <p>Tags</p>
 <button id="add-tag" (click)="addTag()">Add tag</button>
 @for (tagControl of tagsArray.controls; track tagControl) {
 <div>
 <input class="tag" [formControlName]="$index" />
 <button class="remove-tag" (click)="removeTag($index)">Remove tag</button>
 </div>
 }
</div>

The value of the FormArray is an array of strings in this example. Of course, form arrays can contain

208

any kind of controls. For example, if you want to add lines to an invoice, the FormArray will contain
form groups with a label, quantity, price, etc.

FormRecord is another entity you can use to build forms. It has been introduced in Angular v14, and
allows building key-value maps.

Let’s say you want to build the packing list for a trip, with the possibility to add and remove items,
and to check/uncheck them. FormRecord can help in that case:

export class EditPackingList {
 private readonly fb = inject(NonNullableFormBuilder);
 protected readonly equipmentRecord = this.fb.record({
 // always bring your toothbrush
 toothbrush: true
 });
 protected readonly packingListForm = this.fb.group({
 equipments: this.equipmentRecord
 });

 protected addEquipment(equipment: string) {
 this.equipmentRecord.addControl(equipment, this.fb.control(true));
 }

 protected removeEquipment(equipment: string) {
 this.equipmentRecord.removeControl(equipment);
 }

Then you can iterate on the controls in the template, and have buttons to add/remove equipment:

<div formGroupName="equipments">
 <label for="equipment-to-add">Equipments</label>
 <input #equipment id="equipment-to-add" />
 <button id="add-equipment" (click)="addEquipment(equipment.value)">Add</button>
 @for (control of equipmentRecord.controls | keyvalue; track control) {
 <div>
 <label [for]="'eq-' + control.key">{{ control.key }}</label>
 <input [id]="'eq-' + control.key" type="checkbox" class="equipment"
[formControlName]="control.key" />
 <button class="remove-equipment" (click)="removeEquipment(control.key)">Remove
equipment</button>
 </div>
 }
</div>

The value of the FormRecord will then be an object, with the equipment name as the key and a
boolean as value. For example:

{

209

 toothbrush: false,
 jacket: true
}

20.12. Strictly typed forms
Until version 14 of Angular, forms were not typed. What does that mean?

Well, the value of a FormControl or a FormGroup was of type any, which is obviously far from being
ideal.

If you upgrade an application from version 13 to version 14, in order not to break your code, the
types FormControl, FormGroup and FormArray are replaced with UntypedFormControl, UntypedFormGroup
and UntypedFormArray.

The original types are now typed. But what are the concrete changes in Angular 14?

The form elements became generic. So, we now use FormControl<string> for example, to indicate
that the value of the control is a string. The FormGroups, on the other hand, take the type of the
controls that they contain. For example, a FormGroup used to register a user will have the type

FormGroup<{
 username: FormControl<string>;
 password: FormControl<string>;
}>;

It’s verbose, but don’t panic: these generic types are, most of the time, inferred by the compiler
when the variables are initialized.

20.12.1. Nullability

I have simplified things a little bit in the previous section. Indeed, the form elements typing must
consider two harsh realities:

1. form elements can be disabled

2. the behavior of the reset() method is to set the form control values to null.

When a control is disabled, its value doesn’t appear in the value of its parent FormGroup. So, if I
decide to disable the password control of my form, the FormGroup value will simply be

{
 username: 'cedric'
}

And that is slightly annoying, because it implies that the value of the FormGroup is not of type

210

{
 username: string;
 password: string;
}

as one might expect, but it is in fact of type

{
 username?: string;
 password?: string;
}

Indeed, Angular can’t possibly know whether you’re planning to disable the form controls or not.
It’s thus forced to make every of the properties of the FormGroup value optional. It’s your
responsibility, as a developer, to handle that. It’s typically done by using value.username! in order to
get a value of type string rather than a value of type string | undefined, if you know that this
control is not disabled. Another possibility is to use the raw value of the form group (returned by
getRawValue()). This raw value contains all the properties, whether or not their matching control is
disabled. And these properties are thus not marked as optional.

The second point causes the same kind of problem. Since Angular can’t know if you’re planning to
call the reset() method or not, the value of the FormGroup is actually of type

{
 username?: string | null;
 password?: string | null;
}

This second annoyance, unlike the first one, can be avoided. To avoid it, every element of the form
must be configured with the option nonNullable: true. This option changes the behavior of reset(),
which then resets the control to its initial value rather than null. Configuring this option on every
form element is quite verbose and tedious. It’s however the only way if you use the form elements
constructors to create them. It’s much easier if you choose to use the FormBuilder. All you need to do
is to inject, instead of FormBuilder, a NonNullableFormBuilder. It has the same API, but configures all
the elements it created with the nonNullable option.

export class RegisterForm {
 protected readonly userForm = inject(NonNullableFormBuilder).group({
 username: '',
 password: ''
 });
}

Note that the name NonNullableFormBuilder is misleading. Using it doesn’t prevent controls to have a
nullable value. Consider, for instance, an input of type number. There is no real good default value

211

other than null in this case. And even if you initialize the control with a non-null value, The user
can always clear the input value, thus setting the control value to null. In this case, you have to
explicitly type the control:

readonly birthYearCtrl = new FormControl<number | null>(null);

or, with the FormBuilder or the NonNullableFormBuilder:

protected readonly birthYearCtrl = inject(NonNullableFormBuilder).control<number |
null>(null);

or if the control is part of a FormGroup:

protected readonly formGroup = inject(NonNullableFormBuilder).group({
 // ...
 birthYear: null as number | null
});

All this additional complexity might look off-putting, but one should not overlook what we gained:
objects with properties of known names and types, which can be auto-completed by the IDE. In the
end, more maintainable and more robust code.

20.13. Super simple validation error messages with
ngx-valdemort
As you may have noticed, the templates can quickly become very verbose with all the error
messages that we have to repeat for each error type on each field, in every form. You are quickly
stuck with very long ngIf and copied/pasted boilerplate between components.

As we find it distasteful as well, we wrote a tiny open-source library to make it easier (heavily
inspired by ngMessages in AngularJS): ngx-valdemort.

Instead of

<input id="email" formControlName="email" class="form-control" type="email" />
@if (form.controls.email.invalid && (f.submitted || form.controls.email.touched)) {
 <div class="invalid-feedback">
 @if (form.controls.email.hasError('required')) {
 <div>The email is required</div>
 }
 @if (form.controls.email.hasError('email')) {
 <div>The email must be a valid email address</div>
 }
 </div>
}

212

https://ngx-valdemort.ninja-squad.com/

the library allows you to write:

<input id="email" formControlName="email" class="form-control" type="email" />
<val-errors controlName="email">
 <ng-template valError="required">The email is required</ng-template>
 <ng-template valError="email">The email must be a valid email address</ng-template>
</val-errors>

We can even do better by defining default messages once and for all:

<val-default-errors>
 <ng-template valError="required" let-label> {{ label || 'This field' }} is required
</ng-template>
 <ng-template valError="email" let-label> {{ label || 'This field' }} must be a valid
email address </ng-template>
 <ng-template valError="min" let-error="error" let-label>
 {{ label || 'This field' }} must be at least {{ error.min | number }}
 </ng-template>
 <!-- same for the other types of error -->
</val-default-errors>

And then simply use:

<input id="email" formControlName="email" class="form-control" type="email" />
<val-errors controlName="email" label="The email" />

We provide an integration with Bootstrap and Material, to have error messages with a coherent
style if you use one of these CSS frameworks. Give it a try, you won’t regret it!

20.14. Going further: define custom form inputs with
ControlValueAccessor
HTML defines a large set of input types: text, password, checkbox, etc. But sometimes these
standard types don’t fit the bill.

Angular allows defining custom components, and it’s actually possible to make them act as Angular
form controls, i.e. bind them to a form control by applying the NgModel directive or the
FormControlName directive, and thus integrating them in a form.

The glue to implement this binding is an interface provided by Angular: ControlValueAccessor.

Fulfilling its contract is relatively straightforward. You have to

• accept the value of the FormControl and display it in your component (writeValue);

• notify Angular that the user changed the value somehow, by calling a provided callback
function (registerOnChange);

213

• notify Angular when the control should be considered as touched, by calling a provided
callback function (registerOnTouched);

• honor the request from Angular to disable or enable the control (setDisabledState).

We will illustrate all of this using a custom rating component. This component allows rating a
movie, for example, by giving it a note between 0 and 5. But instead of using a number or range input,
we would like the user to do that by simply clicking one of 6 buttons (that would typically be
displayed as star icons, but we’ll leave that out in the following example).

Here’s the code of such a component.

export class Rating implements ControlValueAccessor {
 private onChange: (rating: number) => void = () => {
 // do nothing by default
 };

 onTouched: () => void = () => {
 // do nothing by default
 };

 protected readonly value = signal<number | null>(null);
 protected readonly disabled = signal(false);
 protected readonly pickableValues = [0, 1, 2, 3, 4, 5];

 registerOnChange(fn: (rating: number) => void): void {
 this.onChange = fn;
 }

 registerOnTouched(fn: () => void): void {
 this.onTouched = fn;
 }

 setDisabledState(isDisabled: boolean): void {
 this.disabled.set(isDisabled);
 }

 writeValue(v: number | null): void {
 this.value.set(v);
 }

 protected setValueAndPropagateChanges(value: number) {
 this.value.set(value);
 // tell Angular the value has changed
 this.onChange(value);
 }
}

and here is its template:

214

@let v = value();
@for (pickableValue of pickableValues; track pickableValue) {
 <button
 [class.selected]="v != null && pickableValue <= v"
 type="button"
 (click)="setValueAndPropagateChanges(pickableValue)"
 [disabled]="disabled()"
 (blur)="onTouched()"
 >
 {{ pickableValue }}
 </button>
}

The code to deal with the two callback functions and the disabled state is boilerplate code that is
almost identical in every CVA (ControlValueAccessor).

The interesting part is the handling of the value. Angular calls writeValue() to tell the component
what value to display. Here, we simply store the value, and use it in the template to display the first
buttons as yellow-filled buttons.

When a button is clicked, we change the value of the component of course, but we must also tell
Angular about this change. That’s what allows it to change the value of the form control, trigger the
validations, etc.

The disabled state is honored by disabling all the buttons.

And finally, we choose to make the form control touched as soon as one of the rating buttons loses
the focus. We do that by calling the provided onTouched callback function when a button fires a blur
event.

The last thing we have to do is to register this component as one of the control value accessors of
the application. We do that by adding a provider to the rating component’s decorator. Don’t bother
too much with the syntax: you can simply copy and paste this snippet every time you define a new
CVA.

providers: [
 {
 provide: NG_VALUE_ACCESSOR,
 useExisting: forwardRef(() => Rating),
 multi: true
 }
]

Voilà. We now have a shiny reusable rating component that can be used to rate something in any
form, by simply applying one of the standard Angular form directives to the component:

<ns-rating id="rating" formControlName="rating" />

215

20.15. Summary
Angular offers two ways to build a form:

• one by setting up everything in the template. But, as you have seen, it forces us to have custom
directives for the validation and is harder to test. This way of doing things is useful for simple
forms, with just one or a few fields for example, and it gives us two-way data-binding.

• one by setting up almost everything in the component. This way allows an easier setup for
validation and testing, with several levels of groups if you need them. It is your weapon of
choice for building complex forms. You can even react to changes on a group, or on a field.

This is maybe the most pragmatic approach: go with template-based and bidirectional binding if
you like it, and as soon as you need access to form groups or form controls, for example to add
custom validation or reactive behavior, then declare the ones you need in the component, and bind
the inputs and divs to them using the appropriate directives.



Try our quiz , and the exercises Login form , Register form and Control
Value Accessor . You’ll learn how to build forms using ReactiveFormsModule, how
to build custom form components, how to write custom validators, how to test
forms, and how to authenticate your users!

216

https://angular-exercises.ninja-squad.com/exercises/13/quiz-forms
https://angular-exercises.ninja-squad.com/exercises/14/login
https://angular-exercises.ninja-squad.com/exercises/15/register
https://angular-exercises.ninja-squad.com/exercises/16/control-value-accessor
https://angular-exercises.ninja-squad.com/exercises/16/control-value-accessor

Chapter 21. Zones and the Angular magic
Hopefully, you remember what we explained in the chapter introducing signals. Angular wants you
to store the state of your components in signals. Templates read the signals to display the
information they contain. Thanks to the signal super-powers, it can establish a dependency
between a template and the signals that it reads, be notified when signals change, and update the
DOM of the templates that depend on these signals.

If you experiment with the current version of Angular (or the older ones), you’ll see that you
actually don’t need to store the state in signals. Even if a simple property changes, Angular is able to
detect the change and update the DOM. You shouldn’t do that though: this works because Angular
still supports the "brute-force" change detection mechanism that doesn’t rely on signals.

In order to better understand how "legacy" applications work, and why it’s a better idea to switch to
signals, let’s explain this change detection magic.

21.1. ZoneJS
The "legacy" change detection mechanism is based on a dirty trick: ZoneJS. ZoneJS is a library that
has been written for the needs of Angular, but is actually not coupled to it. Its principle is pretty
simple, but ugly: it monkey-patches plenty of functions of the browser. Basically, all the functions of
the browser that receive a callback function, like setTimeout, setInterval, Element.addEventListener,
Promise.then, etc.

The goal of this monkey-patching, for Angular, is to act as a snitch. Every time one of these callback
functions is executed, ZoneJS notifies Angular that something has happened.

To illustrate it, let’s take setTimeout as an example. The principle of the monkey-patching is the
following one (this is not the actual code):

const originalSetTimeout = window.setTimeout;
window.setTimeout = (callback, timeout) => {
 const snitchingCallback = () => {
 callback();
 angular.notifyThatSomeCodeHasBeenExecuted();
 };
 originalSetTimeout(snitchingCallback, timeout);
};

Why does this help? Thanks to ZoneJS, the framework knows when some code has been executed. It
thus knows that some state might have changed. But it still doesn’t know if something actually
changed, and even less what has changed.

To have a DOM that is always up-to-date, Angular will thus launch a change detection every time
ZoneJS tells it that some code has been executed.

This first part already shows reasons why Angular tries to get rid of ZoneJS by introducing signals:

217

• every Angular application needs to download the ZoneJS code and wait until it has patched the
browser before starting the application, which of course has a performance cost;

• every call to one of the patched functions triggers change detections. Even the calls made by
libraries which don’t change any application state. So plenty of change detections are actually
useless;

• the stack traces of the errors that happen at runtime contain zone-related code that makes them
harder to read and understand.

21.2. Change detection
The second part of the problem is the change detection itself. It’s one thing to know when and how
it’s started, but it’s another to know how it works.

First of all, we have to remember that an Angular application is a tree of components. When the
change detection runs, it goes through all the components in the tree, from the root to the leaves. It
evaluates all the expressions used in the templates, and compares each result with the previous
one. If an evaluation result is not the same, then the DOM is updated. The expression that has a new
value could also be used as the input of a child component. In that case, Angular updates the input
of the child component and calls its ngOnChanges hook, which might change the state of the child
component. Then the child component is checked.

The tree traversal, fortunately for performance, is done only once per change detection. But this
comes with another disadvantage: you can introduce a bug if, during the changed detection of a
child component, you update its own state or the state of a parent. Since Angular does a single pass,
this change will go unnoticed until the next time ZoneJS triggers a new change detection.

Angular forbids you from doing that. During development, each change detection actually does two
traversals. If the second traversal detects a change, then Angular throws an error to warn you that
you broke the unidirectional data flow principle (the infamous
ExpressionChangedAfterItHasBeenCheckedError).

As you can see, change detection is quite brute-force. The expressions in your templates are
evaluated many many times. This is why you should make sure they don’t invoke complex, slow
functions.

21.2.1. Inline caching

Another parameter to take into account in the performance of Angular is the time spent by the
framework making these expression evaluations. The Angular team has employed all the
knowledge it has about computer science and virtual machines.

To improve performance, virtual machines like the ones executing dynamic JavaScript code, use a
strategy named inline caching. It’s a very old technique, invented for SmallTalk, 40 years ago (an
eternity in IT), relying on a relatively simple principle: if a program calls a function frequently, with
objects having the same shape, the VM should recall how it evaluates the properties of the object.
This technique thus uses a cache, hence the name inline caching. When receiving an object, it looks
in the cache to see if it recognizes the shape of the object. And if it does, it uses the cached
optimized way of accessing the properties of the object.

218

https://angular.dev/errors/NG0100

This kind of cache is really beneficial if the arguments of the function have the same shape. For
example, {name: 'Cédric'} and {name: 'Cyril'} have the same shape. But {name: 'JB', skills: []}
doesn’t have the same shape as the two other ones.

When the arguments always have the same shape, the cache is monomorphic, and thus produces
very fast results. If the cache only has a few entries, it is polymorphic. That means that the method
is called with some different kinds of objects which makes the code a bit slower. Finally, if there are
too many different object shapes, the VM drops the cache completely, because it is megamorphic.
That, of course, is the worst case in terms of performance.

In order to benefit from the inline caching optimizations of the VM, Angular has adopted a clever
strategy. Instead of using a single function able to evaluate expressions involving all kinds of
objects, the Angular team has decided to compile all the templates into JavaScript code, and to make
the compiler generates a set of change detection functions, specific to each component.

The VM can optimize this code because it’s monomorphic.

21.2.2. Tweaking the change detection

If really needed, it’s possible to go further than those automatic optimizations provided by the
framework: components can be configured with an alternative ChangeDetection strategy. But that’s
for another chapter.

The future goes beyond that. Thanks to signals, ZoneJS and this brute-force change detection
mechanism can be completely eliminated. It’s actually already doable if you accept to use
experimental features.

If you want to tweak the change detection or learn how to go zoneless, read the performances
chapter.

219

Chapter 22. Angular compilation: Just in
Time vs Ahead of Time

22.1. Code generation
In the previous chapter, we talked briefly about how the framework generates a change detection
function for each component.

This is a very interesting and particular point in Angular, which you don’t see in other frameworks:
Angular, at the start of your application, will compile your templates and generate dynamic code for
each component.

The HTML you write in your templates is never read by the browser directly. Instead, Angular
generates a component definition for each component that represents exactly what you wrote in
your template. This component definition is inlined in a static field of your component.

Let’s take an example, with our well-known Pony. The template is mainly an image with a bound
source property, and a figcaption element with an interpolation.

<figure>

 <figcaption>{{ ponyModel().name }}</figcaption>
</figure>

When Angular compiles this, it first starts by parsing the template to generate what is called an
Abstract Syntax Tree (AST). An AST is a tree representing the structure of the template, commonly
used by compilers to represent such things. It is the result of the syntax analysis step of the
compilation. This AST will then be used to generate the dynamic JavaScript code, a "component
definition" per component, inlined in a static field of our component class. A component definition
contains several things, and among them the template, represented by a function.

elementStart(0, 'figure');
{
 element(1, 'img');
}
{
 elementStart(2, 'figcaption');
 text(3);
 elementEnd();
}
elementEnd();


This chapter describes the code generated by the compiler/renderer introduced in
Angular 8.0 and called "Ivy". We wrote a detailed blog post about Ivy if you want to
learn more. This renderer is the third iteration, as the initial renderer has already

220

https://blog.ninja-squad.com/2019/05/07/what-is-angular-ivy/

been rewritten in Angular 4.0. These iterations have brought either better
performance or bundle size improvements or both, while keeping the same
template syntax, allowing a backward compatibility with existing code, and
allowing us developers to migrate very easily. Most people haven’t noticed that the
renderer changed in Angular 4.0 for example.

With this function, Angular is able to create the DOM corresponding to our Pony: it basically
appends the corresponding HTMLElement to the DOM, for every element.

But how does it handle the change detection? The template function is in fact a little bit longer:

template: (renderFlags: RenderFlags, component: Pony) => {
 if (renderFlags & RenderFlags.Create) {
 elementStart(0, 'figure');
 {
 element(1, 'img');
 }
 {
 elementStart(2, 'figcaption');
 text(3);
 elementEnd();
 }
 elementEnd();
 }
 if (renderFlags & RenderFlags.Update) {
 advance();
 property('src', component.ponyImageUrl());
 advance(2);
 textInterpolate(component.ponyModel().name);
 }
},

This template function has two parts:

• the creation of the component that we explained above

• the update of the component which does basically what you would write by hand (i.e. the image
has a source property that reflects the result of the method ponyImageUrl() of my component,
and the figcaption has a text that reflects the pony’s name).

It is called by the framework every time it needs to check if there is a change (see the previous
chapter). It basically gets the values of the dynamic bits (the src attribute and the interpolation),
and then calls a function of the framework with the index of the element to update, and another
one with its property and the new value. The framework then compares the previous value stored
for this element and if it changed, updates it, and replaces it with the new value.

This generated code is very fast and can be optimized by JS engines (see the part on
monomorphism and inline caching in the previous chapter). This code generation takes some time,
so it used to be done in the browser, on the application start. This mode was called the Just in Time
(JiT) compilation. The Ivy compiler is now fast enough to do this compilation directly when you run

221

ng serve or ng build. This mode is called Ahead of Time (AoT), and is detailed below.

To sum up, when you are using the JiT compilation: you write TypeScript code and HTML
templates, you compile your TypeScript to JavaScript and send the JS and HTML to your users. At
runtime, the HTML is then compiled to JS code too.

22.2. Ahead of Time compilation
We can generate this code before starting the application, using the compiler that the Angular team
wrote: the Ahead of Time (AoT) compiler. You can call it manually in your project (ngc), or, if you are
using the CLI (as you should), it is enabled by default when you run ng serve or ng build since
Angular CLI v8.1.

The build uses the Angular compiler to compile the templates to TypeScript files. To TypeScript?
Yes, because it then makes sure that we didn’t make a mistake in our templates! The generated
TypeScript code and our application code will then be compiled by TypeScript (ngc will call the
TypeScript compiler immediately), and if you made a mistake in a template, you’ll see an error:

<figure>
 <!-- wrong computed name -->

 <figcaption>{{ ponyModel.name }}</figcaption>
</figure>

The Angular compiler then generates this TypeScript code:

// ...
<!-- wrong computed name in the generated code -->
property('src', component.ponyImageUr());
advance(2);
textInterpolate(component.ponyModel().name);

which raises an error in the TypeScript compilation:

Property 'ponyImageUr' does not exist on type 'Pony'.

This is great, because it means you can check all your templates before even running the
application. Your future refactoring will be painless: if you rename a method or a property in a
component, you’ll know straight away that the template must be updated, too, because it breaks the
build.

It also means that this compilation may throw an error whereas your code can be fine in the Just in
Time mode.

For example, if you have a private input() in your component, it will be fine in JiT mode (because
JavaScript has no notion of private property), but will break in AoT mode (as the generated

222

TypeScript code of another component needs to access the property).

Compiling your application before shipping to your users will also greatly speed up the start of the
application, as the compilation will already be done!

To sum up, in AoT mode: you still write TypeScript and HTML, you compile the HTML to TypeScript
and then all TypeScript code to JavaScript, and send this JS code to your users.

The downside will be the size of the JavaScript bundle you will ship to your users: the generated
code is larger than the uncompiled templates. This is somewhat compensated by the fact that you
don’t need to ship the Angular compiler to your users, as the templates are already compiled. And
the compiler is a big piece of code, so this is a nice win. On a medium or large application, this
generally doesn’t compensate the increase in size from the generated code though. If you want to
have all the perks of the AoT compilation AND a small bundle, you’ll need to dig into the lazy-
loading feature we explained in the Router chapter.

223

Chapter 23. Advanced observables
When you start with Angular, RxJS looks like something hard to use. Newbies generally try to avoid
using it. After all, other frameworks don’t use observables. Besides, Angular has signals now. So
should you really learn RxJS?

Well, first of all, you don’t really have a choice for now. Angular still forces you to use it if you want
to use its HTTP client, its router or its reactive forms.

But even if it didn’t, RxJS really a great piece of software, that can make it much easier to make
asynchronous programming easier, more efficient and correct. Asynchronous code relying on
promises is often full of race conditions or inefficiencies. And RxJS isn’t tied to Angular, so learning
it can be beneficial even if you work with other frameworks, or without any framework at all.

23.1. Some Like It Hot
We learned in the chapter about Reactive Programming that an Observable represents a sequence of
events to which we can subscribe.

But there is a distinction to understand between two kinds of Observables: cold ones and hot ones.

Cold observables only emit events when they are subscribed to. You can think of it as watching a
Youtube video: the video will only stream when you hit the "Play" button. For example, the
observables returned by the HttpClient class are cold observables: they only send the request when
you subscribe. And each call to subscribe sends a new request and results in a new stream of events
(limited to one event in this specific case).

Hot observables are different: they emit events without caring if someone subscribed. You can
think of them as live television: you turn on the TV and you land in the middle of a show, that could
have started minutes or hours ago. The valueChanges observable of a FormControl is a hot
observable. You will not receive the values emitted before the moment you subscribed, only the
values from the moment you subscribe. And unlike with cold observable two different subscribers
will receive the same events.

23.2. Unsubscriptions
In our Ponyracer app, a live race can be represented by an observable, emitting the positions of the
ponies. When the race is over, the observable stops emitting events.

But maybe the user won’t stay around until the end of the race. What happens then? The
component will be destroyed. But, if we forgot to unsubscribe, then the next callback will continue
to do its job every time an event occurs. Even if the component is no longer displayed!

Not unsubscribing can lead to memory leaks and all sorts of trouble (unnecessary network traffic,
server overload, etc.). So the best practice in general is to make sure you unsubscribe before the
component is destroyed.

One way of doing that is to store the Subscription returned by subscribe in a property of the

224

component, and in the ngOnDestroy method, call unsubscribe on this subscription:

export class LiveRace implements OnDestroy {
 private readonly subscription: Subscription;

 constructor() {
 const raceService = inject(RaceService);
 this.subscription = raceService.live().subscribe(() => {
 // ...
 });
 }

 ngOnDestroy() {
 this.subscription.unsubscribe();
 }
}

As we explained before, you’re automatically unsubscribed when an observable completes. So
another way of avoiding troubles caused by never-ending subscriptions is to make sure that the
observable completes when the component is destroyed. Since Angular v16, you can do that easily
by using the takeUntilDestroyed operator provided by the framework in the @angular/core/rxjs-
interop package. This operator should be the last operator in the chain, just before the call to
subscribe. That way, it makes sure that you unsubscribe to all the observable chain when the
component is destroyed.

export class LiveRace {
 constructor() {
 const raceService = inject(RaceService);
 raceService
 .live()
 .pipe(takeUntilDestroyed())
 .subscribe(() => {
 // ...
 });
 }
}

Are there situations where it’s safe not to unsubscribe? If you’re in doubt, follow the best practice,
and unsubscribe. It’s interesting however to understand when it’s absolutely essential to
unsubscribe, and when it’s not a big deal not to do it.

Since you’re automatically unsubscribed when the observable completes or errors, it’s not a big
deal not to unsubscribe to HTTP observables for example: they complete or error after a short time,
usually before, or shortly after the component is destroyed.

Similarly, if the emitter is destroyed at the same time as the component which subscribes (for
example, the ActivatedRoute of a routed component, or the form created by a component), then not
unsubscribing is not a problem either.

225

23.3. Automatic unsubscriptions
A good way of making sure you never forget to unsubscribe is… to avoid subscribing in the first
place. Well, something has to subscribe, otherwise nothing will happen. But if you let the
framework subscribe for you, it will also unsubscribe for you.

That’s not always possible. To trigger side effects, explicitly subscribing is pretty much unavoidable.

But if the goal of the observable is to get things to display, then you can let the framework subscribe
and unsubscribe for you, using toSignal:

export class LiveRace {
 protected readonly liveRace: Signal<LiveRaceModel | undefined> = toSignal(inject
(RaceService).live());
}

That’s my preferred solution. Before signals were introduced though, another way was frequently
used (and might still be used in your projects): the async pipe.

The idea is to expose the observable itself as a property of the component, and to let the async pipe
subscribe and unsubscribe for you, directly from the template:

@Component({
 selector: 'ns-live-race',
 template: `{{ (liveRace$ | async)?.name }}`,
 imports: [AsyncPipe]
})
export class LiveRace {
 protected readonly liveRace$: Observable<LiveRaceModel> = inject(RaceService).
live();
}

Similarly to the toSignal function, the async pipe can’t return a race until the observable has
emitted. That’s why we use the ?. operator.

Now, what if we also want to display the start instant of the race. We could do this:

@Component({
 selector: 'ns-live-race',
 template: `❌ don't do this
 <div>{{ (liveRace$ | async)?.name }}</div>
 <div>{{ (liveRace$ | async)?.startInstant | date }}</div>`,
 imports: [AsyncPipe, DatePipe]
})
export class LiveRace {
 protected readonly liveRace$: Observable<LiveRaceModel> = inject(RaceService).
live();

226

}

Can you spot the problem? Two async pipes means two subscriptions. So if the observable is cold,
two different streams of events are generated (two different HTTP requests and responses for
example).

We could use the shareReplay operator to transform the cold observable into a hot one. But the
usual way to avoid the problem is to make sure to only use the async pipe once, using the following
pattern:

@Component({
 selector: 'ns-live-race',
 template: `✅ Do this instead
 @if (liveRace$ | async; as liveRace) {
 <div>{{ liveRace.name }}</div>
 <div>{{ liveRace.startInstant | date }}</div>
 } @else {
 Loading in progress...
 }`,
 imports: [AsyncPipe, DatePipe]
})
export class LiveRace {
 protected readonly liveRace$: Observable<LiveRaceModel> = inject(RaceService).
live();
}

23.4. Leveraging operators
We saw a few operators up until now, but I’d like to take a moment to describe a few others in a
step by step example. We are going to code a typeahead input. A typeahead allows your users to
enter a text in an input, and then the application displays a few suggestions based on this text (like
a Google search box).

A good typeahead has quite a few features:

• it displays the results matching the request (obviously)

• it allows you to only display results if the input text is at least a few characters long

• it won’t fetch the results for every keystroke from our user, but will wait for some time to make
sure the user is done typing

• it won’t trigger the same request twice if the user enters the same value

All this can be done by hand, but it’s far from being trivial. But we’re in luck - Angular and RxJS
combine nicely to solve this kind of problem!

First let’s see what such a component would look like:

227

import { Component, inject, Signal } from '@angular/core';
import { toSignal } from '@angular/core/rxjs-interop';
import { NonNullableFormBuilder, ReactiveFormsModule } from '@angular/forms';
import { PonyModel, PonyService } from './pony-service';

@Component({
 selector: 'ns-typeahead',
 template: `
 <div>
 <input [formControl]="input" />

 @for (pony of ponies(); track pony.id) {
 {{ pony.name }}
 }

 </div>
 `,
 imports: [ReactiveFormsModule]
})
export class PonyTypeAhead {
 protected readonly input = inject(NonNullableFormBuilder).control('');
 protected readonly ponies: Signal<Array<PonyModel>>;

 constructor() {
 const ponyService = inject(PonyService);
 // todo: do something with the input
 }
}

In the constructor, we can start by subscribing to the valueChanges observable exposed by the
FormControl (check the chapter on forms if you need to refresh your memory).

this.input.valueChanges.subscribe(value => console.log(value));

Next we want to use this value to fetch the ponies matching the given input. Our PonyService has a
method search that does exactly that! We can suppose that this method does a HTTP request behind
the scenes to fetch the results from the server, so it returns an Observable<Array<PonyModel>>, an
observable that emits an array of ponies.

Let’s subscribe to this method to update the ponies field of our component:

const ponies = signal<Array<PonyModel>>([]);
this.ponies = ponies;
this.input.valueChanges.subscribe(value => {
 this.ponyService.search(value).subscribe(results => ponies.set(results));
});

228

OK, that works. But it’s not ideal. We have many subscriptions that should be unsubscribed. And
there is actually a race condition: the second search result could be emitted before the first one.

We could transform the Observable<string> by applying the map operator. But since the search
method returns an Observable<Array<PonyModel>>, we would end up with an
Observable<Observable<Array<PonyModel>>>. What we want is an Observable<Array<PonyModel>>,
which emits the successive search results.

We should use one of the flattening operators that RxJS provides. Let’s try with mergeMap:

const ponies$ = this.input.valueChanges.pipe(mergeMap(value => this.ponyService.
search(value)));
this.ponies = toSignal(ponies$, { initialValue: [] });

Wow, much more elegant! Every time a new pony name is emitted by the source observable, it
creates a new observable of ponies, and it merges all the events of all these observables into a
single one. But this has the same race condition as the previous attempt: the second search result
could be emitted before the first one.

Let’s try with concatMap:

const ponies$ = this.input.valueChanges.pipe(concatMap(value => this.ponyService
.search(value)));
this.ponies = toSignal(ponies$, { initialValue: [] });

This time the search results are correctly ordered. But since the observables are concatenated, the
second search request is only sent once the response to the first one has arrived. So it’s much too
slow, and unnecessarily displays all the successive results.

The correct flattening operator to use here is the one we already talked about: switchMap.

const ponies$ = this.input.valueChanges.pipe(switchMap(value => this.ponyService
.search(value)));
this.ponies = toSignal(ponies$, { initialValue: [] });

When a new pony name is emitted, switchMap unsubscribes from the previous observable before
creating and subscribing to the next. So we get the results in order, and we don’t wait to get a result
before fetching the next one.

OK, now let’s discard the queries that are less than three characters. Easy: we just have to use a
filter operator!

const ponies$ = this.input.valueChanges.pipe(
 filter(query => query.length >= 3),
 switchMap(value => this.ponyService.search(value))
);

229

this.ponies = toSignal(ponies$, { initialValue: [] });

We also don’t want to search immediately after a keystroke: we’d like to search only after the user
stops typing for 400ms for example. Yep, you guessed it: there’s an operator for that, and it’s called
debounceTime:

const ponies$ = this.input.valueChanges.pipe(
 filter(query => query.length >= 3),
 debounceTime(400),
 switchMap(value => this.ponyService.search(value))
);
this.ponies = toSignal(ponies$, { initialValue: [] });

So now a user can enter a value, delete some character, add others and the query will only fire
when 400ms have passed since the last keystroke. But what if the user enters "Rainbow", waits for
400ms (which will thus send a request), then enters "Rainbow Dash" and immediately removed the
"Dash" to get back to "Rainbow"? That would send two subsequent requests for "Rainbow"! Maybe
we can only trigger a request if the query is different from the last one? Of course we can, with
distinctUntilChanged:

const ponies$ = this.input.valueChanges.pipe(
 filter(query => query.length >= 3),
 debounceTime(400),
 distinctUntilChanged(),
 switchMap(value => this.ponyService.search(value))
);
this.ponies = toSignal(ponies$, { initialValue: [] });

Last thing: we need to properly handle the errors. We know that the valueChanges will not signal
any error, but our ponyService.search() observable might throw: it is dependent on the network.
And the problem with observables is that an error will completely break the stream: so if one
request blows, the whole typeahead will be down… We don’t want that, so let’s catch potential
errors and replace the faulty observable by one that emits an empty result:

const ponies$ = this.input.valueChanges.pipe(
 filter(query => query.length >= 3),
 debounceTime(400),
 distinctUntilChanged(),
 switchMap(value => this.ponyService.search(value).pipe(catchError(() => of([]))))
);
this.ponies = toSignal(ponies$, { initialValue: [] });

Quite nice, don’t you think? We now only trigger a search when the user enters a text with more
than 3 characters and waits at least 400ms. We guarantee that we don’t trigger the same request
twice, and that the results are always in sync with the request! All that in 5 lines of code. Good luck
doing the same by hand without adding any issue…

230

This is of course a really good use-case for RxJS, but the point is that it provides a lot of operators,
with some gems hidden in it. It takes time to understand it, but it’s worth the trouble as it can be
tremendously useful in your application.

23.5. Using Subjects as triggers
Another common pattern in Angular is to use a Subject to trigger some action. For example, let’s say
we want to display a list of races:

• when the component first loads

• every time the user clicks on a refresh button

We can use a Subject for that. A Subject is a hot observable, which emits a new event when you call
its next method. In the code below, refreshTrigger is used to emit a new event every time the user
clicks on the refresh button. We use this subject as the source of the subscription to the
raceService.list method. As we also want to call the method when the component is first loaded,
we use the startWith operator to emit an event when the component is initialized.

races.ts

private readonly refreshTrigger = new Subject<void>();
protected readonly races: Signal<Array<RaceModel> | undefined>;

constructor() {
 const raceService = inject(RaceService);
 const races$ = this.refreshTrigger.pipe(
 startWith(undefined),
 switchMap(() => raceService.list())
);
 this.races = toSignal(races$);
}

protected refresh() {
 this.refreshTrigger.next();
}

23.6. Building your own Observable
Sometimes, sadly, you need to use libraries that produce events but not using an Observable. All
hope is not lost, because you can of course create your own Observables, using, new
Observable(observer ⇒ {}).

The function passed as a parameter to the constructor is called the subscribe function: it will be
responsible for emitting events and errors, and for completing when done.

For example, if you want to create an Observable which emits 1, then 2, then completes, you could
do:

231

const numbers = new Observable(observer => {
 observer.next(1);
 observer.next(2);
 observer.complete();
});

Now we could subscribe to such an observable:

numbers.subscribe({
 next: number => console.log(number),
 error: error => console.log(error),
 complete: () => console.log('Complete!')
});
// Will log:
// 1
// 2
// Complete!

Now, let’s say I want to emit 'hello' every 2 seconds, and never complete. We could easily do this
with some built-in operators, but we can try by hand, as a small example:

import { Observable } from 'rxjs';

export class HelloService {
 get(): Observable<string> {
 return new Observable(observer => {
 const interval = setInterval(() => observer.next('hello'), 2000);
 });
 }
}

The function passed to new Observable() can also return a function that will be called on the
unsubscription. That’s really useful if you have some cleanup to do. Like us with our HelloService,
because we’ll need to stop the setInterval when the observable will be unsubscribed.

import { Observable } from 'rxjs';

export class HelloService {
 get(): Observable<string> {
 return new Observable(observer => {
 const interval = setInterval(() => observer.next('hello'), 2000);
 return () => clearInterval(interval);
 });
 }
}

232

The interval will not be created until the subscription, so we just created a cold observable.

23.7. Managing state with stores (NgRx, NGXS, Elf and
friends)
The Angular ecosystem has many state management libraries, usually called stores: NgRx, NgRx
component store, NGXS, Elf, and probably others.

During our trainings, we often get the questions: "should we use one?" or "which one is the best?".
We can’t really answer that question. Every project has its own needs. Every developer team has its
own preferences and priorities.

We do have an opinion, though: they’re not a silver bullet, and they are not a solution to avoid
having to learn RxJS. They’re based on RxJS, and you’d better know RxJS pretty well before using a
store.

For our various projects, we’ve always thought that they were not worthy enough to compensate
for the additional complexity and boilerplate that they bring. But your mileage may vary. Make
some experiments and see by yourself.

Beware of this trap though: they look smart; you managing to use them makes you smart too; but
that doesn’t mean that they’re a good fit for your project and your team. We also get a lot of
feedbacks telling us that the lead developer chose to use a store, and all the other developers on the
team suffered from that choice.

23.8. Conclusion
I hope you enjoyed this small chapter on observables. They can also be used to sequence your HTTP
requests, or to communicate between components (more on this soon). But you have now a good
overview of what’s possible!



We have several exercises that leverage RxJS and let you discover a lot of
operators:

• Bet on a pony

• Live

• Observable tips and tricks

• Boost a pony

• Reactive user score

233

https://ngrx.io/
https://www.ngxs.io/
https://ngneat.github.io/elf/
https://angular-exercises.ninja-squad.com/exercises/21/bet
https://angular-exercises.ninja-squad.com/exercises/22/live
https://angular-exercises.ninja-squad.com/exercises/24/advanced-observables
https://angular-exercises.ninja-squad.com/exercises/25/boost-pony
https://angular-exercises.ninja-squad.com/exercises/26/reactive-score

Chapter 24. Advanced components and
directives

24.1. Input transforms
Since Angular v16.1, it is possible to transform an input with the transform option of the @Input
decorator. Of course, the input() function also supports this feature.

It allows transforming the value passed to the input before it is stored in the input signal. The
transform option requires a function that takes the value as input and returns the transformed
value. As the most common use cases are to transform a string to a number or a boolean, Angular
provides two built-in functions to do that: numberAttribute and booleanAttribute in @angular/core.

Here is an example of using booleanAttribute:

readonly disabled = input(false, { transform: booleanAttribute });

This will transform the value passed to the input to a boolean so that the following code will work:

<ns-button disabled />
<ns-button disabled="true" />
<!-- Before, only the following was properly working -->
<ns-button [disabled]="true" />

The numberAttribute function works the same way but transforms the value to a number.

readonly value = input(0, { transform: numberAttribute });

It also allows to define a fallback value, in case the input is not a proper number (default is NaN):

readonly value = input(0, { transform: (value: unknown) => numberAttribute(value, 42)
});

This can then be used like this:

<ns-value value="42" />
<ns-value value="not a number" />
<!-- Before, only the following was properly working -->
<ns-value [value]="42" />

234

24.2. View queries: viewChild
In the Template chapter, we talked about a nice feature called "local variables", allowing you to get
a reference to a DOM element in the template. For example, you can give the focus to an input with
a button easily:

<input #myInput />
<button (click)="myInput.focus()">Focus</button>

We also saw this same feature in the Forms chapter for example, when we wanted to grab a
reference to a specific directive:

<input name="login" [(ngModel)]="user.login" required #loginCtrl="ngModel" />
@if (loginCtrl.dirty && loginCtrl.hasError('required')) {
 <div>The login field is required</div>
}

What if we need to have these references in our component code, and not only in the template?
That is where "view queries" enter the scene and can save the day!

For example, you may want to focus an input as soon as your component is displayed. To do so, we
need to grab a reference to the input, using the viewChild function.

@Component({
 selector: 'ns-login',
 template: `<input #loginInput name="login" [(ngModel)]="credentials.login" required
/>`,
 imports: [FormsModule]
})
export class Login implements AfterViewInit {
 protected readonly credentials = { login: '' };

 readonly loginInput = viewChild.required<ElementRef<HTMLInputElement>>('loginInput
');

 ngAfterViewInit(): void {
 this.loginInput().nativeElement.focus();
 }
}


The viewChild and viewChild.required functions are the modern, signal-based
alternatives to the @ViewChild decorator, in the same way as input and
input.required are the modern, signal-based alternatives to the @Input decorator.

We declare a field called loginInput, and we initialize it with viewChild.required. This function
needs a selector as parameter: here we use the local variable declared in our template. The function

235

indicates to the framework that it needs to query the template to find an element with this local
variable name. The signal will be initialized with this element, of type ElementRef<T>. This type has
only one field, nativeElement of type T, which is a reference on the underlying DOM element.

The example also showcases a nice use of the lifecycle method ngAfterViewInit. This method is
called as soon as the view is created, so you are sure that the element you are waiting for is indeed
present. If you try to do the same in the constructor or in ngOnInit, it won’t work. There is also
another method called ngAfterViewChecked, which is called every time the view is checked (after
each change detection).

If you wanted to have this feature in a lot of different components, you could create a directive for
this, instead of duplicating the code in each component.

@Directive({
 selector: '[nsFocus]'
})
export class Focus implements AfterViewInit {
 ngAfterViewInit(): void {
 }
}

This directive does nothing yet, but it would be used like this in a template:

<input nsFocus />

The directive needs to access its host element to give it the focus. That’s where ElementRef is
interesting, as it can be injected into our directive:

@Directive({
 selector: '[nsFocus]'
})
export class Focus implements AfterViewInit {
 protected readonly element = inject<ElementRef<HTMLElement>>(ElementRef);

 ngAfterViewInit(): void {
 this.element.nativeElement.focus();
 }
}

And we’re done: using this directive will give the focus to its host element!

Let’s go back to our viewChild function: it can also accept a type as a selector.

For example, in the Forms chapter, we saw that to submit a form in the template-driven way, you
can use two-way binding, or you can grab a reference to the form and pass its value to the submit
method:

236

<form (ngSubmit)="authenticate(form.value)" #form="ngForm">
 <!-- ... -->
</form>

But we can also use a viewChild for this:

@Component({
 selector: 'ns-login',
 template: `
 <form (ngSubmit)="authenticate()">
 <!-- ... -->
 </form>
 `,
 imports: [FormsModule]
})
export class LoginForm {
 readonly credentialsForm = viewChild.required(NgForm);

 protected authenticate(): void {
 if (this.credentialsForm().valid) {
 console.log(this.credentialsForm().value);
 }
 }
}

The cool thing with viewChild is that it is a dynamic query: it will always be up to date with the
template. If the queried element is destroyed, the signal will be set to undefined.

This function also has a twin called viewChildren. Unlike viewChild which will get a reference to one
element matching the selector (the first if there are several ones), viewChildren will get a reference
to all the matching elements.

Let’s say we have a Race displaying a list of Pony - we can easily be notified every time a Pony is
added or removed:

@Component({
 selector: 'ns-race',
 templateUrl: './race.html',
 imports: [Pony]
})
export class Race {
 readonly raceModel = input.required<RaceModel>();
 readonly ponies = viewChildren(Pony);

 constructor() {
 effect(() => {
 console.log(this.ponies().length);
 });

237

 }
}

24.3. Content: ng-content
Another common thing that we usually need as developers is the ability to build UI components
whose content will be dynamic.

For example, let’s say you want to build a "card" component using the Bootstrap CSS framework.
The template of such a card looks like this:

<div class="card">
 <div class="card-body">
 <h4 class="card-title">Card title</h4>
 <p class="card-text">Some quick example text</p>
 </div>
</div>

You can of course duplicate this HTML every time you need it in your application. But at this point,
you are probably thinking about building a component. Two parts are dynamic in the card (the title
and the content), so this is probably what you will come up with:

@Component({
 selector: 'ns-card',
 template: `
 <div class="card">
 <div class="card-body">
 <h4 class="card-title">{{ title() }}</h4>
 <p class="card-text">{{ text() }}</p>
 </div>
 </div>
 `
})
export class Card {
 readonly title = input('');
 readonly text = input('');
}

And then use it like this:

<ns-card title="Card title" text="Some quick example text" />

This works perfectly. But looking more closely to your need, you realize that the content of the card
can also be complex HTML, and not just text, which is supported by Bootstrap!

Of course, Angular has your back, and it’s easy to "pass" HTML to a child component, thanks to <ng-

238

https://getbootstrap.com/docs/5.3/components/card/

content>.

ng-content is a special tag you can use in your templates to include HTML provided by the parent
component:

<div class="card">
 <div class="card-body">
 <h4 class="card-title">{{ title() }}</h4>
 <p class="card-text">
 <ng-content />
 </p>
 </div>
</div>

And you can now use the component like this:

<ns-card title="Card title"> Some quick example text </ns-card>

Later, you realize that the title can also be some complex HTML. Of course, there is a way to pass
multiple contents to the card component, using multiple ng-content with a selector.

<div class="card">
 <div class="card-body">
 <h4 class="card-title">
 <ng-content select="[title]"></ng-content>
 </h4>
 <p class="card-text">
 <ng-content select="[content]"></ng-content>
 </p>
 </div>
</div>

and use it like this:

<ns-card>
 Card title
 <p content>Some quick example text</p>
</ns-card>

This will produce the following result:

<div class="card">
 <div class="card-body">
 <h4 class="card-title">
 <p class="title">Card title</p>
 </h4>

239

 <p class="card-text">
 <p class="content">Some quick example text</p>
 </p>
 </div>
</div>

Since Angular v18, it is possible to define a fallback content, which will be used if no content is
provided by the parent:

<div class="card">
 <div class="card-body">
 <h4 class="card-title">
 <ng-content select="[title]">Default title</ng-content>
 </h4>
 <p class="card-text">
 <ng-content select="[content]"></ng-content>
 </p>
 </div>
</div>

24.4. Content queries: contentChild
When you are using these ng-content tags, the projected content will not be queried by viewChild or
viewChildren. For these contents, you have to use two other functions: contentChild and
contentChildren.

Let’s say you are building another UI component based on Bootstrap, this time a "tabs" component.
The HTML must look like this according to the docs:

<ul class="nav nav-tabs">
 <li class="nav-item">
 Races

 <li class="nav-item">
 About

But we would like to offer a nice component to our team, something like:

<ns-tabs>
 <ns-tab title="Races" />
 <ns-tab title="About" />
</ns-tabs>

We need an outer Tabs component, which must find out how many ns-tab directives are embedded

240

https://getbootstrap.com/docs/5.3/components/navs-tabs/

inside the component template, iterate through each of them and generate the appropriate markup.

To do so, let’s start by creating a directive Tab:

@Directive({
 selector: 'ns-tab'
})
export class Tab {
 readonly title = input('');
}

The directive doesn’t do much: it only has an input to get the tab title. Note that we are using an
element as the selector, ns-tab.

Now we need to build the Tabs:

@Component({
 selector: 'ns-tabs',
 template: `
 <ul class="nav nav-tabs">
 @for (tab of tabs(); track tab) {
 <li class="nav-item">
 {{ tab.title() }}

 }

 `,
 imports: []
})
export class Tabs {
 readonly tabs = contentChildren(Tab);
}

As you can see, the template iterates through an array of tabs to generate an li element for each of
them. But where does this tabs array come from? How can the component know about the two ns-
tab directives embedded inside the ns-tabs component? That’s what the contentChildren function
allows you to do.

To grab the list of the tabs, we need to use contentChildren, with Tab as parameter. This gives us an
array of tabs, that you can use in a for loop. As each element of this list is a Tab, we can then access
the public property title, and display the tab’s title!

Note that if, for whatever reason, you had a template like this one:

<ns-tabs>
 <div>
 <ns-tab title="Races" />
 </div>

241

 <ns-tabgroup>
 <ns-tab title="About" />
 </ns-tabgroup>
</ns-tabs>

Then the array in Tab will only contain the first Tab. contentChild and contentChildren are indeed
only looking for direct descendants, and will stop at the ns-tabgroup component.

If we want our component to still work with this, there is an option you can pass to contentChildren:

@Component({
 selector: 'ns-tabs',
 template: `
 <ul class="nav nav-tabs">
 @for (tab of tabs(); track tab) {
 <li class="nav-item">
 {{ tab.title() }}

 }

 `,
 imports: []
})
export class TabsWithDescendants {
 readonly tabs = contentChildren(Tab, { descendants: true });
}

Now it finds all the Tab again!

The tabs property is a signal, so you can also be notified of the changes, like we saw for
viewChildren. Once again, the signal value is not accessible in the component constructor or even in
ngOnInit. To be sure that the content can be queried, use the ngAfterContentInit lifecycle hook. You
can also use the ngAfterContentChecked hook, which is called every time the content is checked.


Try our exercise Advanced components ! You’ll build a component with ng-
content!

24.5. Conditional and contextual content projection:
ng-template and ngTemplateOutlet
ng-content falls short if you want to insert some dynamic HTML content inside your template
conditionally, or in a loop, or if you want to provide some context to this dynamic content.

Let’s illustrate such a case with a simple enough example. We would like to create a progress bar
component. This component accepts a min value, a max value, and a value, computes a percentage,
and displays it inside a progress bar.

242

https://angular-exercises.ninja-squad.com/exercises/31/advanced-components

Let’s start with the skeleton of our component:

export class Progress {
 readonly min = input(0);
 readonly max = input(100);
 readonly value = input.required<number>();
 protected readonly percentage = computed(() => (100 * (this.value() - this.min())) /
(this.max() - this.min()));
}

And its template:

<div class="progress">
 <div
 class="progress-bar"
 role="progressbar"
 [style.width.%]="percentage()"
 [attr.aria-valuenow]="value()"
 [attr.aria-valuemin]="min()"
 [attr.aria-valuemax]="max()"
 >
 </div>
</div>

Nothing new until now.

But we would also like to display the percentage value inside the component. And the user of the
component should also be able to customize the way the percentage is displayed.

So, inside the template, we want the following, where the formatter is something that the user of
the component can provide as input.

<div class="progress">
 <div
 class="progress-bar"
 role="progressbar"
 [style.width.%]="percentage()"
 [attr.aria-valuenow]="value()"
 [attr.aria-valuemin]="min()"
 [attr.aria-valuemax]="max()"
 >
 @if (formatter(); as f) {

 } @else {
 {{ percentage() | number }}%
 }

243

 </div>
</div>

This formatter is not a value. It’s not a function either, because the user must be able to format the
value using Angular-enriched HTML.

Such a piece of Angular-enriched HTML snippet that can be passed around and inserted anywhere
is modelled by Angular by an <ng-template>. Its TypeScript counterpart is an object of type
TemplateRef.

In this case, the formatter’s responsibility is to display a percentage. So it needs a rendering context
containing this percentage. This rendering context is the generic type of the TemplateRef that the
component will accept as input.

interface ProgressContext {
 percentage: number;
}

export class Progress {
 // ...
 readonly formatter = input<TemplateRef<ProgressContext>>();
 protected readonly formatterContext = computed<ProgressContext>(() => ({
 percentage: this.percentage()
 }));
}

Now, how can we insert this TemplateRef inside the component’s template and give it its context?
That’s the role of the structural directive *ngTemplateOutlet. Here’s how we use it:

@if (formatter(); as f) {

 <ng-container *ngTemplateOutlet="f; context: formatterContext()" />

} @else {
 {{ percentage() | number }}%
}

Finally, how can the user use this progress component and provide a formatter? Simply by defining
an element <ng-template>, assigning a variable to it, and pass this variable as the formatter input to
the progress component.

Inside the <ng-template>, we can of course access all the properties of the current component. But
we can also access the elements of the context, coming from the progress component, by using this
weird let-p="percentage" syntax. p is simply an alias to the context element named percentage (we
could choose any other alias name, like for example let-progress="percentage").

<!-- without formatter -->

244

<ns-progress [value]="75" />

<!-- with formatter -->
<ng-template #myFormatter let-p="percentage">Your progress: {{ p |
number }}%</ng-template>
<ns-progress [value]="75" [formatter]="myFormatter" />

If, inside the context interface, we choose to name a property $implicit (instead of percentage here
for example), then we can simply use let-p instead of let-p="percentage" to access this property.

In fact, structural directives work like that. All the directives that we use with a *, like ngIf or ngFor,
have an <ng-template> as host element. Angular defines a micro-syntax for structural directives,
which allows declaring a directive on a <ng-template> in a concise way. Let’s take ngFor as an
example (ngFor is the directive we used to use before @for was introduced). When we write a simple
ngFor as the following:

<div *ngFor="let pony of ponies; i as index">
 {{ i }} - {{ pony }}
</div>

Then it is the same as writing the following template:

<ng-template ngFor [ngForOf]="ponies" let-pony let-i="index">
 <div>{{ i }} - {{ pony }}</div>
</ng-template>

It’s less readable, of course. That’s why we always use *ngFor. But it shows that in fact, Angular itself
uses this pattern based on ng-template! ngFor is nothing more than a directive applied on ng-
template, with an input ngForOf that expects a collection, and a context containing an $implicit
property with the current element, and other properties like the index.

This pattern is quite powerful, and is of great help to design customizable components.

24.6. Host listener
When writing a directive, it can be fairly common to interact with the host element.

Let’s take a simple example: our customer wants to easily clear the content of some text inputs by
double-clicking on them. This is the kind of behavior that you can encapsulate in a custom
directive, let’s say InputClear. Its selector will be an attribute, let’s say nsInputClear. When this
attribute is added to an element, we want to listen for a double-click on this host element.


This example is simple, but not very realistic. More realistic (but also more
complex) applications of this feature would be, for example, to display a tooltip or
a popover when an element is being hovered or clicked.

245

Let’s create the directive:

@Directive({
 selector: '[nsInputClear]',
})
export class InputClear {
 private readonly element = inject<ElementRef<HTMLInputElement>>(ElementRef);
}

And use our directive like this:

<input nsInputClear />

We now need to react to a 'dblclick' event on our host element (here, the input) to clear the value.

That’s where we can use the host metadata in the @Component decorator. The syntax is almost
identical to the one we would use in a template:

host: {
 '(eventtype)': 'statement()'
}

In our case, we can write:

@Directive({
 selector: '[nsInputClear]',
 host: {
 '(dblclick)': 'clearContent()'
 }
})
export class InputClear {
 private readonly element = inject<ElementRef<HTMLInputElement>>(ElementRef);

 protected clearContent(): void {
 this.element.nativeElement.value = '';
 }
}

Now, every time a 'dblclick' event is triggered on the host element, the directive will clear the input
value.

Note that it is also possible to listen to global events, like window:resize for example:

@Directive({
 selector: '[nsWindowResize]',
 host: {

246

 '(window:resize)': 'resize($event)'
 }
})
export class WindowResize {
 protected resize(event: Event): void {
 const innerWidth = (event.target as Window).innerWidth;
 console.log(`The screen is being resized to ${innerWidth}`);
 }
}

Another way to achieve the same thing is to decorate a method of the directive with @HostListener.
This was the recommended way in previous versions of Angular, but the host metadata are now the
preferred way.

24.7. Host binding
We often need to automatically add a CSS class or style, or bind a specific DOM property on the host
element of a directive or component. The host metadata, as we just saw, allow to declare event
bindings on the host element. We can use the same host metadata to also declare property bindings.

Let’s say we want to add a specific CSS class (is-required) to an input if this input has a specific
validation error (required). Maybe this class adds a nice border around the input, or a small asterisk
- that’s not really important. This will not validate the field in any way - it will simply grab the result
of the built-in Angular form validation, and use this result to style the input.

This is, again, a task that perfectly fits a directive:

@Directive({
 selector: '[nsAddClassIfRequired]',
})
export class AddClassIfRequired {
}

We will use it in a code-driven Angular form:

<input formControlName="firstName" nsAddClassIfRequired />

or in a template driven one:

<input [(ngModel)]="user.name" required nsAddClassIfRequired>

We then need to grab a reference to the status of the input in our directive. Angular does
automatically validate the fields, and will add the required error if the field is required and not
filled. That’s where the powerful dependency injection system can help us! You can indeed ask
Angular to inject into a directive another directive applied to the same host, or to one of its
ancestors.

247

As we want our directive to work with FormControlName or NgModel, we could ask Angular to inject
these two. But it would break as only one of the two will be available (as you generally either use
one or the other on a given input), and Angular breaks if a dependency can’t be provided. There is a
trick that allows Angular to continue even if a dependency can’t be provided: the Optional
decorator.

So something like this could work:

private readonly formControl = inject(FormControlName, { optional: true });
private readonly ngModel = inject(NgModel, { optional: true });

But that’s not the best we can do. Indeed, both directives inherit the same base class: NgControl. So
instead of injecting one or the other, we can simply ask Angular to provide us with the common
NgControl!

@Directive({
 selector: '[nsAddClassIfRequired]',
})
export class AddClassIfRequired {
 private readonly control = inject(NgControl);
}

Now that we have a reference to the NgControl, it’s easy to know if the field has the required error,
by using its hasError() method. The last step requires us to add the class is-required to our host
element if that’s the case. That’s where the host property binding enters the scene! Once again, the
syntax is almost identical to the syntax we would use in a template:

host: {
 '[prop]': 'expression'
}

And that would automatically update the host’s property prop, every time the expression changes.

In our case, we don’t have a field to bind to. But we can define a getter that returns true or false,
depending on the control’s error.

@Directive({
 selector: '[nsAddClassIfRequired]',
 host: {
 '[class.is-required]': 'isRequired'
 }
})
export class AddClassIfRequired {
 private readonly control = inject(NgControl);

 protected get isRequired(): boolean {

248

 return this.control.hasError('required');
 }
}

These few lines of code are really powerful: every time the directive is used in a form, Angular will
automatically add or remove our custom class depending on the new value entered by the user!

It can be used to bind other kinds of properties, not just CSS classes. For example, some component
libraries use it to add accessibility attributes (aria.xxx) to a host element.

Note that the directive we built has a custom selector, but if you decide that you want to apply these
directives to every input, you can change their selector to input, and they will automatically be
applied on every input of your application.

Another way to achieve the same thing is to decorate a property with @HostBinding. This was the
recommended way in previous versions of Angular, but the host metadata are now the preferred
way.

24.8. DOM manipulation with afterEveryRender or
afterNextRender
In Angular 16.2, two new functions have been added to Angular: afterEveryRender and
afterNextRender. They’re not traditional hooks implemented as methods of a component. Instead,
those are functions that a component can call, whenever it needs to, in order to register a function
that must be executed every time (for afterEveryRender) or the next time (for afterNextRender)
Angular has updated the DOM of the whole application.

They’re thus useful for DOM manipulation. For example, if some event listener method modifies the
state of the application, which will in turn have impacts on the DOM, and if you want to apply some
transformation on this new DOM, calling afterNextRender inside the event listener method is a good
way of doing that.

Beware though: these functions, like inject, are contextual functions. If you call them of a
constructor, you’ll need to pass the component’s injector as an option.

Here’s an example of usage of afterNextRender: clicking a button allows displaying an input to enter
the name of a new pony. Once the input has appeared in the DOM, it must take the focus
immediately. Of course, simply setting the boolean to true doesn’t make the input appear
immediately. We must wait until Angular has rendered the DOM before accessing the input and
giving it the focus. Using afterNextRender is a perfect way of doing that. And since we’re not calling
it from the constructor, we must pass it the injector associated to the component, that has been
injected in the constructor.

@Component({
 selector: 'ns-new-pony',
 template: `
 <button (click)="showPonyForm()">New pony</button>
 @if (ponyFormDisplayed()) {

249

 <label for="pony-name">New pony name:</label>
 <input id="pony-name" #ponyName />
 }
 `
})
export class NewPony {
 protected readonly ponyFormDisplayed = signal(false);
 readonly ponyName = viewChild<ElementRef<HTMLInputElement>>('ponyName');

 private readonly injector = inject(Injector);

 protected showPonyForm() {
 // display the form
 this.ponyFormDisplayed.set(true);
 // and give the focus to the new input once the DOM is rendered
 afterNextRender(() => this.ponyName()!.nativeElement.focus(), { injector: this
.injector });
 }
}

Another feature of those functions is that the callback you give them is never executed on the
server, when you use Server-Side rendering (SSR). So if you need to only execute code on the client,
for example because it accesses the window or some other API that is not available on the server,
placing this code inside a function passed to afterNextRender() is a good way of doing it.



Try our exercise Advanced directives ! You’ll build several directives that
interact with each other and with ContentChild and HostBinding! Then you’ll learn
how libraries like ng-bootstrap use these pattern in the exercise Integrate with a UI
library and how to add charts to your application in the exercise Charts in your
app .

250

https://angular-exercises.ninja-squad.com/exercises/32/advanced-directives
https://ng-bootstrap.github.io/
https://angular-exercises.ninja-squad.com/exercises/33/ng-bootstrap
https://angular-exercises.ninja-squad.com/exercises/33/ng-bootstrap
https://angular-exercises.ninja-squad.com/exercises/34/chart
https://angular-exercises.ninja-squad.com/exercises/34/chart

Chapter 25. Angular modules
Until version 14 of Angular, applications were organized into Angular modules. Many existing
applications probably still are. But even in newer applications using standalone components, pipes
and directives, the concept of Angular module, or NgModule for short, is still present: you can, or
even must, import some of them (CommonModule, ReactiveFormsModule for example) in your
components.

Maybe you’re reading this book in order to embark on an existing project where Angular modules
are still in use. This chapter will explain their principles, rules, and usages. We encourage you to
use standalone components in your new applications though, and even to migrate your NgModule-
based applications to standalone. The Angular CLI provides commands to help you automate most
of it.

25.1. A compilation unit
In the simplest Angular application still using modules, you’ll find one Angular module, the root
module, conventionally named AppModule. This module typically looks like this:

@NgModule({
 declarations: [App, Home, About, Pony],
 imports: [BrowserModule, HttpClientModule, RouterModule.forRoot(APP_ROUTES)],
 providers: [],
 bootstrap: [App]
})
export class AppModule {}

What can we say about this module?

The declarations property declares the components, pipes and directives that are part of this
module. Those are not standalone. If they were standalone, then they would have to be listed in the
imports property instead.



the only difference between a standalone component (or pipe, or directive) and a
"normal", non-standalone component is that non-standalone components have
standalone: false in their decorator, and can’t have imports in their decorator. The
module that they belong to decides what they can use in their template.

An Angular module defines a compilation unit. Since they are part of the same module, all these
components can use each other. For example, both Home and About can use the Pony in their
template.

The imports property defines the list of other Angular modules, as well as standalone components,
pipes and directives, that are imported into this module. Since we import RouterModule, the
components can also use the directives of the router module, like routerLink. Since we don’t import
ReactiveFormsModule, they cannot use the directives from that module, like formGroup. Importing the
HttpClientModule (which is now deprecated) allows importing the provider for the HttpClient

251

https://blog.ninja-squad.com/2023/02/21/migrate-an-angular-application-to-standalone/
https://blog.ninja-squad.com/2023/02/21/migrate-an-angular-application-to-standalone/

service, which means it can be injected in any service of the application. Importing BrowserModule,
which transitively imports and exports CommonModule is what makes it possible to use the common
directives and pipes (*ngIf, ngClass, date etc.) in the components of this module.

The providers array defines providers, the same way as they are defined when calling the
bootstrapApplication() function in standalone applications. Since most services use providedIn:
'root', you won’t need to list them there. But it can still be necessary if a service needs to be
explicitly provided to configure the application.

Finally bootstrap contains the root component (or, much more rarely, the root components) of the
application, that must be bootstrapped, because they’re at the root of the tree of components.

25.2. Module composition
Bigger applications are composed of additional modules, that we can arrange in two categories:

1. Reusable modules, containing reusable components, directives, pipes and sometimes service
providers. Those are intended to be imported by other modules.

2. Functional modules, often lazy-loaded, corresponding to a set of routes of the application

Let’s start with reusable modules. Suppose the Pony must be used in Races which is declared in an
additional functional module RacesModule. As we’ve seen, in order to make it available to Races, we
should add Pony in the declarations of RacesModule. Angular, however, won’t let you do that: a
component may be declared in only one module of the application, and it’s already declared in
AppModule (which also needs it for its Home).

The solution is to extract Pony in yet another module, sometimes called a shared module:

@NgModule({
 declarations: [Pony],
 imports: [CommonModule],
 exports: [Pony]
})
export class PonyModule {}

This module declares the Pony that it contains. It imports CommonModule so that Pony can use the
common Angular directives. And most importantly, its exports property also contains Pony. This is
what allows other modules to use the Pony by importing the PonyModule. That’s what AppModule and
RacesModule will thus do in order to be able to use Pony:

@NgModule({
 declarations: [App, Home, About],
 imports: [BrowserModule, HttpClientModule, RouterModule.forRoot(APP_ROUTES),
PonyModule],
 providers: [],
 bootstrap: [App]
})

252

export class AppModule {}

The temptation is big to put all the reusable components in a single SharedModule. As the application
grows, however, this module will become huge. So a better option is to make tiny reusable modules,
so that other modules can import only what they actually need. Such tiny reusable modules,
exporting only one component, are known as SCAMs (Single Component Angular Modules). The
boilerplate that these modules represents is one of the reasons why Angular decided to introduce
standalone components: you can see them as a component and its own module.

25.3. Functional, routed modules
Functional modules are not much different from reusable modules. The components that they
declare, however, are not supposed to be used inside components of other modules. So they’re
declared, but not exported.

@NgModule({
 declarations: [Races],
 imports: [CommonModule, PonyModule, RouterModule.forChild(RACES_ROUTES)]
})
export class RacesModule {}

The root module can import the additional functional modules, but then they would be bundled as
part of the main bundle, and thus loaded eagerly, at startup. Most of the time, we want to lazily load
the functional modules. The way to do that is not very different from what we did to lazy load
routes using standalone components. Instead of lazy-loading routes, we will lazy-load the
functional module itself. For example, in the application routes:

{
 path: 'races',
 loadChildren: () => import('./races/races.module').then(m => m.RacesModule)
}

Hopefully now, you’re able to understand how an application is organized in Angular modules. The
rules are not that hard to grasp, but as you’ve seen, Angular modules don’t really provide any
functionality to the application, and make the dependencies of components a bit harder to find.
That’s why we’ve chosen, in this book, to promote the usage of standalone components.

253

Chapter 26. Internationalization
Alors comme ça, tu veux internationaliser ton application?

OK, don’t worry if you didn’t understand anything of this French introduction. Your role as a
developer, fortunately, is not to translate your application into French, Spanish, or whatever other
language. What you can do, though, is to allow this to happen. This chapter explains how to achieve
that.

26.1. The locale
We already mentioned internationalization before, in the chapter about pipes. Four of the built-in
Angular pipes deal with internationalization. Those are the number, percent, currency and date pipes.
Until Angular 5, they used to rely on the standard JavaScript Internationalization API, which is
supposed to be provided by the browser. But as that was not always the case, and there were
numerous bugs and inconsistencies between browsers, the pipes have been completely overhauled
in Angular 5.0.

What we don’t know yet is how these three pipes decide how to format the numbers and dates.
Should they use a dot or a comma as decimal separator? Should they use January or Janvier for the
first month of the year? You might think that this is decided based on the preferred language
configured in the browser, but actually, it’s not. This depends on an injectable value named
LOCALE_ID. And the default value of LOCALE_ID is 'en-US'.

Here is an example showing how to get the value of LOCALE_ID. As you can see, it’s a simple string
value. To inject it into your components or services, you can’t just rely on its type. You need to tell
Angular which token identifies the value, using @Inject(LOCALE_ID). This can be useful if your logic
needs to know which locale the application is using.

@Component({
 selector: 'ns-locale',
 template: `
 <p>The locale is {{ locale }}</p>
 <!-- will display 'en-US' -->

 <p>{{ 1234.56 | number }}</p>
 <!-- will display '1,234.56' -->

254

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

 `,
 imports: [DecimalPipe]
})
class DefaultLocale {
 protected readonly locale = inject(LOCALE_ID);
}

This is good. But how can we change the locale? Actually, you can’t. The locale is a constant, that
you can’t change once the application has started. But that doesn’t mean you can’t set it to another
value before the application starts. This is possible, simply by providing another value for the
LOCALE_ID token in the providers of the application. Beware though: this changes the locale, but
another step is required to bundle the locale-specific data (month translations, number formatting
rules, etc.) with your application. Angular only bundles the en-US data by default.

import '@angular/common/locales/global/fr';

Here’s an example showing its effect on our component:

bootstrapApplication(App, {
 providers: [
 { provide: LOCALE_ID, useValue: 'fr-FR' }
]
}).catch(err => console.error(err));

@Component({
 selector: 'ns-locale',
 template: `
 <p>The locale is {{ locale }}</p>
 <!-- will display 'fr-FR' -->

 <p>{{ 1234.56 | number }}</p>
 <!-- will display '1 234,56' -->
 `,
 imports: [DecimalPipe]
})
export class CustomLocale {
 protected readonly locale = inject(LOCALE_ID);
}

All the pipes that handle internationalization can also take a locale as their last parameter. You can
then change it dynamically if needed:

@Component({
 selector: 'ns-locale',
 template: `
 <p>The locale is {{ locale }}</p>
 <!-- will display 'en-US' -->

255

 <p>{{ 1234.56 | number: '1.0-3' : 'fr-FR' }}</p>
 <!-- will display '1 234,56' -->
 `,
 imports: [DecimalPipe]
})
class DefaultLocaleOverridden {
 protected readonly locale = inject(LOCALE_ID);
}

If you want to create an application that uses only one locale, but different from 'en-US', then
setting the locale as explained above is all you need to do. But often, this is not enough, and you
want to really internationalize your application.

26.2. Default currency
The currency pipe allows you to specify which currency you want to use by providing an ISO string
like USD, 'EUR'… If you don’t provide one, it uses USD by default. So it is a bit cumbersome to have to
specify the currency every time, if your application only uses EUR for example.

Angular 9 introduced the possibility of configuring the default currency globally using the token
DEFAULT_CURRENCY_CODE.

bootstrapApplication(App, {
 providers: [
 { provide: DEFAULT_CURRENCY_CODE, useValue: 'EUR' },
 { provide: LOCALE_ID, useValue: 'fr-FR' }
]
}).catch(err => console.error(err));

And you can then use currency without specifying EUR in a component. You can also get the currency
via dependency injection of course:

@Component({
 selector: 'ns-currency',
 template: `
 <p>The currency is {{ currency }}</p>
 <!-- will display 'EUR' -->

 <p>{{ 1234.56 | currency }}</p>
 <!-- will display '1 234,56 €' -->
 `,
 imports: [CurrencyPipe]
})
class DefaultCurrencyOverridden {
 protected readonly currency = inject(DEFAULT_CURRENCY_CODE);
}

256

26.3. Translating text
If you have used AngularJS 1.x before, and have internationalized your AngularJS application, you
probably know that there is nothing built-in to display translated text based on the preferred
language of the user.

One of the popular libraries to achieve that with AngularJS is angular-translate. The strategy it uses
is fairly common: you use a directive or a pipe to translate a key (for example 'home.welcome'). This
key identifies a message, and you provide the translations for all the languages you want to support
(for example: 'Welcome' and 'Bienvenue'). At runtime, the directive or pipe uses the preferred
language to get the appropriate translation, and updates the DOM with the translated message. You
can change the preferred language at runtime, and all the messages on the page are immediately
translated to the new language.

Internationalization is now provided by Angular directly, although it was hardly usable before
version 4.0, and was completely rewritten in version 9.0. No need for an external dependency
anymore. And it uses basically the same strategy based on keys, but with a big difference: it
happens at compile-time.

With the compilation time strategy, you prepare one version of your application per locale. When
you build your app, Angular parses all the HTML templates of your components, and transforms
them to JavaScript code that, basically, analyzes the changes in the model and modifies the DOM
accordingly. The translation happens at the end of this compilation phase. That has important
consequences:

• you can’t change the locale and the translated messages at runtime. The whole application
needs to be reloaded and restarted to do that;

• once started, the application is faster, since it doesn’t have to dynamically translate the keys
again and again;

• if you use the AOT compiler (and you should, at least in production), you must build and serve
as many applications as locales that you want to support.

Starting with version 9.0, the Angular team introduced a new @angular/localize package. If you use
the CLI, you can just run ng add @angular/localize and the CLI adds it for you in the proper place.

This new package introduces a $localize global function, that is used under the hood for the
localization, and that we’ll be able to use in the future to translate messages in your code.

26.4. Process and tooling
In the remaining parts of this chapter, we will assume that you use Angular CLI to build your
application. The tools are actually available and usable outside of Angular CLI. But since they’re
well integrated and simple to use in Angular CLI, and since it’s the recommended way to build your
applications anyway, we will use that.

That said, how do we proceed? You already know how to create components and write their
templates. Will you have to rewrite everything to internationalize them? Thankfully, no. The
process is the following one:

257

https://angular-translate.github.io/

1. you mark the parts of the templates that need to be translated using the i18n attribute;

2. You run a tool to extract all those marked parts into a file, for example messages.xlf. Two file
formats, both xml-based and industry-standard, are supported;

3. You ask a competent translator to create a translated version of this file, for example
messages.fr.xlf

4. You build your application by providing the locale ID ('fr' for example) and the file containing
the translations (messages.fr.xlf). The angular compiler and the CLI replace all the i18n-marked
parts of the templates with the translations found in the file, and configures your application to
use the provided locale ID.

Let’s examine each of those steps in more details.

26.4.1. Marking text with i18n and extracting

Let’s start with an example template:

<h1>Welcome to Ponyracer</h1>
<p>Welcome to Ponyracer {{ user.firstName }} {{ user.lastName }}!</p>

Let's start playing.

There are 5 text snippets that need to be translated in this template. Of course, you could imagine
translating everything at once, but in a more realistic example, that would expose a lot of HTML
boilerplate to the translators, and you don’t want them to translate everything again when the
HTML structure changes. So you should translate the 5 snippets separately.

One of them, the body of the h1 element, is purely static text. One of them is a text containing two
interpolated expressions. Two are attributes of an HTML element. The last one is static text that is
not embedded in any element.

Here’s how you would mark them. Let’s start with the first, simplest one:

<h1 i18n>Welcome to Ponyracer</h1>

Now let’s extract our very first messages file, using the extract-i18n command provided by Angular
CLI:

ng extract-i18n --output-path src/locale/

This will create the file messages.xlf in the src/locale directory. Here’s what it contains:

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en-US" datatype="plaintext" original="ng2.template">
 <body>

258

 <trans-unit id="7627914200888412251" datatype="html">
 <source>Welcome to Ponyracer</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.html</context>
 <context context-type="linenumber">2,3</context>
 </context-group>
 </trans-unit>
 </body>
 </file>
</xliff>

As you can see, it generates a trans-unit containing, as the source, our static text. The role of the
French translator will be to provide a messages.fr.xlf file looking like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file source-language="en" datatype="plaintext" original="ng2.template" target-
language="fr">
 <body>
 <trans-unit id="7627914200888412251" datatype="html">
 <source>Welcome to Ponyracer</source>
 <target>Bienvenue dans Ponyracer</target>
 </trans-unit>
 </body>
 </file>
</xliff>

This is easy enough, because the source message is easy to understand. You don’t need too much
context to know what it is about, and how to translate it. But this way of doing things has a big
disadvantage. If you change the source code of the template and introduce meaningless white
spaces for example, or a dot at the end of the title, here’s what happens when extracting the file
again:

<h1 i18n>
 Welcome to Ponyracer.
</h1>

 <trans-unit id="6888363845978110110" datatype="html">
 <source> Welcome to Ponyracer.
</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.html</context>
 <context context-type="linenumber">6,8</context>
 </context-group>
 </trans-unit>

259

Not only does the source change, which is expected, but the id also does. That really makes
maintaining the translated messages files more difficult than it should. Fortunately, there’s a better
way. You can provide a unique ID by yourself:

<h1 i18n="@@home.title">Welcome to Ponyracer</h1>

Which generates:

<trans-unit id="home.title" datatype="html">
 <source>Welcome to Ponyracer</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.html</context>
 <context context-type="linenumber">10,11</context>
 </context-group>
</trans-unit>

And in fact, in order to provide more context to your translators, you can provide a meaning and a
description in addition to the message ID:

<h1 i18n="welcome title|the title of the home page@@home.fullTitle">Welcome to
Ponyracer</h1>

<trans-unit id="home.fullTitle" datatype="html">
 <source>Welcome to Ponyracer</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.html</context>
 <context context-type="linenumber">13,15</context>
 </context-group>
 <note priority="1" from="description">the title of the home page</note>
 <note priority="1" from="meaning">welcome title</note>
</trans-unit>

Let’s move to the second snippet now:

<p i18n="@@home.welcome">Welcome to Ponyracer {{ user().firstName }} {{
user().lastName }}!</p>

Here is what it generates:

<trans-unit id="home.welcome" datatype="html">
 <source>Welcome to Ponyracer <x id="INTERPOLATION" equiv-text="{{ user().firstName
}}"/> <x id="INTERPOLATION_1" equiv-text="{{ user().lastName }}"/>!</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.html</context>

260

 <context context-type="linenumber">16,17</context>
 </context-group>
</trans-unit>

As you can see, this format has several interesting features:

• there is no way a translator could mess up the content of the angular expressions, since they are
clearly indicated in the message;

• it’s clear that these two interpolations are for the developers but it might also be a good idea to
explain that in the description of the message for the translators;

• if, in some language, the last name should come before the first name, the translator is free to
reorder the interpolations;

• if the developer chooses to rename the attributes of the component or of the user, nothing will
have to be re-translated.

Let’s proceed with the two attributes in the img element. The syntax to translate attributes is the
following:

<img
 src="/img/pony.gif"
 alt="running pony"
 i18n-alt="@@home.ponyImage.alt"
 title="Ponies are cool, aren't they?"
 i18n-title="@@home.ponyImage.title"
/>

That generates the following translation units:

<trans-unit id="home.ponyImage.alt" datatype="html">
 <source>running pony</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.html</context>
 <context context-type="linenumber">21,22</context>
 </context-group>
</trans-unit>
<trans-unit id="home.ponyImage.title" datatype="html">
 <source>Ponies are cool, aren't they?</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.html</context>
 <context context-type="linenumber">23,24</context>
 </context-group>
</trans-unit>

Finally, how to translate the last snippet? There is no element where we could place an i18n
attribute. There is a way to solve the problem: use an ng-container element, which won’t be
rendered in the DOM at runtime:

261

<ng-container i18n="@@home.startMessage">Let's start playing.</ng-container>

26.4.2. Translating, building and deploying the application

Now that you generated a complete messages.xlf file, someone needs to translate it.



A common mistake is to just replace the original source text (in English in our
case) with its translation. That won’t work. The translation must be written inside
the <target> element of each translation unit. The <source> element should be kept
untouched: it provides the original message that must be translated. For example:

<trans-unit id="home.welcome" datatype="html">
 <source>Welcome to Ponyracer <x id="INTERPOLATION" equiv-text="{{ user.firstName
}}"/> <x id="INTERPOLATION_1" equiv-text="{{ user.lastName }}"/>!</source>
 <target>Bienvenue dans Ponyracer <x id="INTERPOLATION" equiv-text="{{ user.firstName
}}"/> <x id="INTERPOLATION_1" equiv-text="{{ user.lastName }}"/> !</target>
</trans-unit>

To run or build the application in French, you need to specify the locale, and the location of the
messages file, to ng serve or ng build in angular.json by using the i18n property:

In versions before 9, to run or build the application in French, you had to pass various options to ng
serve and ng build.

Since version 9, you must specify the locales you want to support, and their associated messages
file, in the angular.json configuration file by using the i18n property:

"prefix": "ns",
"i18n": {
 "locales": {
 "fr": "src/locale/messages.fr.xlf"
 }
},

You can add as many locales as you want, each one linked to its translations.

You can then run:

ng build --localize

and the CLI builds the app, and generates as many versions as there are locales defined. In our case,
it generates one version for the default locale en-US, in the directory dist/i18n/en-US (if your project
is named i18n), and another one for the fr locale in the directory dist/i18n/fr.

If you want to run ng serve, you have to specify one locale, as you can only serve one version.

262

The easiest way to do so is to define a build configuration for this locale in angular.json, just like the
production configuration, but much simpler:

"fr": {
 "localize": ["fr"]
}

and add a serve configuration:

"fr": {
 "buildTarget": "i18n:build:fr"
}

you can then run:

ng serve --configuration=fr

or build for a specific locale with:

ng build --configuration=production,fr

The AOT compiler will locate all the i18n-marked snippets in the templates, find the corresponding
translations in the XLF file, and transform the snippets in the template using the translations. It will
then proceed as usual to generate JavaScript code from the templates and bundle your application.

If you want to support English, French and Spanish, for example, you’ll have to build only once, and
then the localization tool will generate 3 versions (once for each locale) of the application (this is
very fast). Then, you need to deploy the 3 built applications to your production web server. You will
also need to decide which application to serve to which user. This can be done at server-side, by
detecting the preferred locale from the request header and serving the appropriate index.html
page. Or by getting the preferred locale of the authenticated user from the database and serving the
appropriate index.html page. You could also do it at client-side, by serving your three applications
on three different URLs (ponyracer.com, ponyracer.fr and ponyracer.es, or ponyracer.com/en,
ponyracer.com/fr and ponyracer.com/es), and by redirecting from ponyracer.com to the correct URL
based on the browser locale.

26.5. Translating messages in the code
Sometimes, the text you need to translate is not in the templates, but is in the TypeScript code itself.
For example, the three states of a pony race PENDING, RUNNING and FINISHED should be
translated somehow. Since Angular 9.0, you can use $localize to do so. $localize is a tag function
that can be applied to a template string (check the ECMAScript 2015 chapter if you need a
refresher).

263

protected status = $localize`PENDING`;

Then, when you build your application with the CLI, the $localize calls are replaced with their
translations!

You can also define an ID with the syntax we have in templates, and have dynamic parts in the
string:

protected greetings = $localize`:@@home.greetings:Welcome ${this.user().firstName}!`;

ng extract-i18n supports the message extraction from $localize calls in the code since CLI v10.1,
and it generates:

<trans-unit id="home.greetings" datatype="html">
 <source>Welcome <x id="PH" equiv-text="this.user().firstName"/>!</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.ts</context>
 <context context-type="linenumber">17</context>
 </context-group>
</trans-unit>

It can then be translated as usual (with PH the placeholder for the dynamic part):

<trans-unit id="home.greetings" datatype="html">
 <source>Welcome <x id="PH" equiv-text="{{ this.user.firstName }}"/>!</source>
 <target>Bonjour <x id="PH" equiv-text="{{ this.user.firstName }}"/> !</target>
</trans-unit>

26.6. Pluralization
Sometimes, the message you want to display depends on the number of elements in a collection, or
on a count of elements.

For example, let’s say our home page displayed the number of planned races for the day. You could
simply show "Number of planned race(s): 4". But a friendlier message would be "No race is planned"
if there is none, or "Only one race is planned" if there is just one, or "N races are planned" in the
other cases.

Angular actually has a special template syntax to do that. It’s hard to read, except maybe for LISP
programmers, but it does the job and is fairly easy to understand with the following example.
Suppose our component has a property racesPlanned, containing the number of races that are
planned for today. You can display it as:

<p>

264

 Hello,
 {racesPlanned(), plural,
 =0 {no race is planned}
 =1 {only one race is planned}
 other {{{ racesPlanned() }} races are planned}

 }.
</p>

To internationalize this message, you would just use the i18n attribute as usual:

<p i18n="@@home.racesPlanned">
 Hello, {racesPlanned(), plural, =0 {no race is planned} =1 {only one race is
planned} other
 {{{ racesPlanned() }} races are planned}}.
</p>

Extracting this generates two translation units, one for the message itself, and one for the
expression bundled in the message:

 <trans-unit id="home.racesPlanned" datatype="html">
 <source> Hello, <x id="ICU" equiv-text="{racesPlanned(), plural, =0 {no race
is planned} =1 {only one race is planned} other
 {{{ racesPlanned() }} races are planned}}" xid="2482273160942454889"/>.
</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.html</context>
 <context context-type="linenumber">32,35</context>
 </context-group>
 </trans-unit>
 <trans-unit id="5232470321856793506" datatype="html">
 <source>{VAR_PLURAL, plural, =0 {no race is planned} =1 {only one race is
planned} other {<x id="INTERPOLATION"/> races are planned}}</source>
 <context-group purpose="location">
 <context context-type="sourcefile">src/app/app.html</context>
 <context context-type="linenumber">32,33</context>
 </context-group>
 </trans-unit>

Unfortunately, the second translation unit has an auto-generated ID, and the pluralization syntax
must be understood and respected by the translator. It’s possible to translate those two translation
units, though, and the translation works as expected:

 <trans-unit id="home.racesPlanned" datatype="html">
 <source>
 Hello, <x id="ICU" equiv-text="{racesPlanned, plural, =0 {...} =1 {...} other
{...}}"/>..

265

</source>
 <target>Bonjour, <x id="ICU" equiv-text="{racesPlanned, plural, =0 {...} =1
{...} other {...}}"/>.</target>
 </trans-unit>
 <trans-unit id="5232470321856793506" datatype="html">
 <source>{VAR_PLURAL, plural, =0 {no race is planned} =1 {only one race is
planned} other {<x id="INTERPOLATION" equiv-text="{{ racesPlanned }}"/> races are
planned} }</source>
 <target>{VAR_PLURAL, plural, =0 {aucune course n'est planifiée} =1 {seule une
course est planifiée} other {<x id="INTERPOLATION" equiv-text="{{ racesPlanned }}"/>
courses sont planifiées} }</target>
 </trans-unit>

26.7. Runtime i18n with Transloco
In our own experience as developers, and in our experience training hundreds of developers, we’ve
learnt that runtime internationalization is often preferred.

There are several libraries allowing to do that. The most popular seems to be ngx-translate, but it’s
probably because it was the first one. It works well, but it’s now in maintenance mode.

A more modern and complete alternative, which is also very popular, is Transloco.

The basic principles of both libraries are similar:

• configure the library with a set of supported languages, a default language and a loader, which
is in charge of dynamically loading translation keys stored in a JSON file;

• use a directive, a pipe or a service to get the translation associated with a given key, from the
template or from the TypeScript code.

Transloco is very well documented, so you should be able to learn everything there is to know
about it from its documentation. You can also learn from our I18n exercise in the Pro Pack.

But here’s the crux of it if you just want to see what it looks like.

First define a loader (here using HTTP, but there are other options):

@Injectable({ providedIn: 'root' })
export class TranslocoHttpLoader implements TranslocoLoader {
 private readonly http = inject(HttpClient);
 getTranslation(lang: string) {
 return this.http.get<Translation>(`./i18n/${lang}.json`);
 }
}

Then configure the library and add the required providers to the application:

export const appConfig: ApplicationConfig = {

266

https://github.com/ngx-translate/core
https://jsverse.github.io/transloco/

 providers: [
 provideHttpClient(),
 provideTransloco({
 config: {
 availableLangs: ['en', 'fr'],
 defaultLang: 'en',
 prodMode: !isDevMode()
 },
 loader: TranslocoHttpLoader
 })
]
};

And finally use it to translate text in the template:

<ng-container *transloco="let t">
 <h1>{{ t('home.title') }}</h1>
 <p>{{ t('home.welcome-message') }}</p>
</ng-container>

26.8. Best practices
These best practices, acquired in years of development of i18ned applications, are not necessarily
related to Angular, but to i18n in general.

Always specify an explicit unique ID for your messages. If you choose a meaningful ID, you often
don’t need to specify a meaning and a description for your message, because the ID is sufficient.
Prefixing the IDs with the name of the component where they are used (like I did in all the
examples with the home. prefix) allows you to know where they are used, and to find them in the
code easily. Relying on auto-generated IDs doesn’t allow you to have different translations for two
identical messages in your source language. It also makes it very hard to figure out what needs to
be changed between two releases of your application.

Even if the translators are not always developers, store your message files in your version control
system. This makes sure a branch can have its own additions, which can be merged to the main
branch when ready. It makes it easy to spot differences between branches and releases.

Duplication isn’t necessarily bad. You might think that two pages sharing a label "Save" or "OK"
should use the same key, but maybe you will want to label them "OK, I’ll do it" and "OK, I accept"
later. Or maybe they need to be differentiated in some foreign language. It’s even more important
to use two separate keys for words that are identical in English, but not in other languages, like
"free", which can mean "free as in beer" or "free as in speech". Other languages use different words
for these two concepts.

Don’t confuse languages with countries. Don’t use country flags to represent languages. Some
languages (like English) are spoken in several countries. And some countries use several languages
(like Belgium, which uses French, Dutch and German).

267

Avoid concatenation to translate text with parameters. For example, to translate "Hello, my name is
X and I’m Y years old", don’t use a first key for "Hello, my name is ", a second key for " and I’m " and
a third key for " years old". Use a single key, containing interpolated expressions.

You should now be ready to conquer the world with your shiny i18ned Angular application.


Try our exercise I18n to learn how to configure and use Transloco, the
LOCALE_ID, and date-fns to internationalize your applications.

268

https://angular-exercises.ninja-squad.com/exercises/37/i18n

Chapter 27. Performances


Be careful with premature optimization. Always measure before and after. Beware
of the benchmarks you find on the internets: it’s pretty easy to make them say
what the authors want.

Performances can mean a lot of things: speed, CPU usage (battery consumption), memory
pressure… Everything is not important for everybody: you have different needs if you are
programming for a mobile website, an e-commerce platform, or a classic CRUD application.

Performances can also be split into different categories, that, once more, won’t all matter to you:
first load, reload, and runtime performances.

First load is when you open an application for the first time. Reload is when you come back to that
application. Runtime performances is what happens when the application is running. Some of the
following recommendations are very generic, and could be applied to any framework. We wrote
them down because we think it’s worth knowing. And because when you talk about performances,
the framework is sometimes the bottleneck, but really (really) often not.

27.1. First load (bundling, compression, lazy-loading,
server side rendering)
When you load a modern Web application in your browser, a few things happen. First, the
index.html is loaded and parsed by the browser. Then the JS scripts and other assets referenced are
fetched. When one of the assets is received, the browser parses it, and executes it if it is a JS file.

27.1.1. Asset sizes

So the first tip is very obvious: be careful with your asset sizes!

The assets loading phase depends on how many assets you want to load. A lot will be slow. Big ones
will be slow. Especially if the network is not that good, which happens more often than you think:
you might test your application on an optical fiber connection, but some of your actual users might
be in the middle of nowhere, using slow 3G. Here is what you can do.

27.1.2. Bundle your application

When you write your Angular application, you have imports all over the place, and your code is
split across hundreds of files. But you don’t want your users to load hundreds of files! So before
shipping your application, you want to make a "bundle": group all the JavaScript files into one file.

esbuild's job is to take all your JavaScript files (and CSS, and template HTML files) and build
bundles. It’s not an easy tool to master, but the Angular CLI does a pretty good job at hiding its
complexity.

269

https://esbuild.github.io/

27.1.3. Tree-shaking

esbuild (and other bundlers like Webpack) starts from the entry point of your application (the
main.ts file that the CLI generated for you, and which you probably never touched), then resolves
all the imports graph, and outputs the bundle. This is cool because the bundle will only contain the
files from your codebase and your third party libraries that have been imported. The rest is not
embedded. So even if you have a dependency in your package.json that you don’t use anymore (so
you don’t import it anymore), it will not end up in the bundle.

It’s even a bit smarter than that. If you have a file models exporting two classes, let’s say PonyModel
and RaceModel, and then only import PonyModel into the rest of the application, but never RaceModel,
then the bundler only puts PonyModel in the final bundle, and drops RaceModel. This process is called
tree-shaking. And every framework and library in the JavaScript ecosystem is fighting hard to be
tree-shakable! In theory, it means that your final bundle contains only what is really needed! But in
practice, bundlers are a bit conservative, and can’t figure out some stuff. For example, if you have a
class Pony with two methods eat and run, but you only use run, the code of the eat method will be in
the final bundle. So it’s not perfect, but it does a good job.

To avoid bundles that are too large, be wary of the external components and libraries you use, and
of their transitive dependencies. What is their additional weight? Are they really useful? Isn’t there
a native way of doing the same thing, or isn’t it simple enough to do it by yourself?

27.1.4. Minification and dead code elimination

When your bundle has been built, the code is usually minified and dead code will be eliminated.
That means all variables, method names, class names… are renamed to use a one or two characters
name through the entire codebase. This is a bit scary and sounds like it could break things, but the
tools have been doing a great job.

27.1.5. Other assets

While the above sections were about JS specifically, your application also contains other assets, like
styles, images, fonts… You should have the same concerns about them, and do your best to keep
them at a reasonable size. Applying all kinds of crazy techniques to optimize your JS bundle sizes,
but loading several MBs of images, wouldn’t have a big impact on your page loading time and your
bandwidth! As this is not really the scope of this ebook, I won’t dig into this topic, but let me point
out a great online resource by Addy Osmani about image optimization: Essential Image
Optimization.

Angular has a directive NgOptimizedImage that enforces some of these best practices.

27.1.6. Compression

All the modern browsers accept a compressed version of an asset when they ask the server for it.
That means you can serve a compressed version to your users, and the browser will unzip it before
parsing it. This is a must-do because it will save you tons of bandwidth and loading time.

270

https://web.dev/learn/images/
https://web.dev/learn/images/

Every server on the market gives the option of activating the compression of assets or even
dynamic http responses. Generally the first user to request an asset will pay the cost of the
compression on the fly, and then the following ones will receive the compressed asset directly.

The most common compression algorithm used is GZIP, but some others like Brotli are also popular.

27.1.7. Lazy-loading

Sometimes, despite doing your best to keep your JS bundle small, you end up with a big file because
your app has grown to several dozens of components, using various third party libraries. And not
only will this big bundle increase the time needed to fetch the JavaScript, it will also increase the
time needed to parse it and execute it.

The solution to this problem is to use lazy-loading. It means that instead of having a big bundle of
JavaScript, you split your application into several parts and tell the bundler to split it in several
bundles.

The good news is that Angular (its router in particular) makes this task easy to achieve. You can
read our chapter about the router if you want to learn more. The templates can also use the @defer
instruction to lazy load components and their dependencies. Read the chapter about defer to learn
everything about it.

Lazy-loading can vastly improve the loading time, as you can make the first bundle really small,
with only what’s needed to display the home page, and let Angular load additional bundles on
demand, when your user navigates to another part. You can also use prefetching strategies to tell
Angular to start loading the other bundles when it’s idle.

27.1.8. Server side rendering

I’d like to start by saying that this technique is for 0.0001% of you. It’s mainly useful for public web
sites, but not so much for applications, especially intranet applications. Server side rendering (SSR)
is the technique that consists of pre-rendering the pages on the server before serving them to the
users. With this, when users ask for /dashboard, they will receive a pre-rendered version of the
dashboard, instead of receiving the almost empty index.html.

It can lead to vast improvements in perceived startup time. Angular CLI offers an option --ssr for
the ng new command which generates a project pre-configured for server side rendering. Angular
can then pre-render the pages on a NodeJS server and serve them to your users. The page will
display very fast and once Angular has started in the browser, it will do the "hydration" of the page
and then run as usual. The hydration consists in taking the control of the DOM: add the necessary
event listeners, start the change detection, and sometimes add some parts that can only be
rendered on the client-side.

SSR also a big win if you want your website to be crawlable by search engines or social networks
which don’t execute JavaScript, since you can serve them pre-rendered pages, instead of a blank
page.

The bad news is that it’s not as easy as adding an option when you create your project. Your
application needs to follow some best practices (no direct DOM manipulation for example, as the

271

https://github.com/google/brotli

server won’t have a real DOM to manipulate). Then you need to set up your server and think about
the strategy you want to adopt. Do you want to pre-render all pages or just a few? Do you want to
pre-render the whole page, with the data fetching and authorization check it will need, or just some
critical parts of the page? Do you want to pre-render them on build, or to pre-render them on
demand and cache them? Do you want to do this for all the possible profiles and languages or just
some? All these questions depend on the type of application you are building, and the effort can
vary greatly depending on your goal.

So, again, I would advise you to use server side rendering only if it is critical for your application,
and not based on the hype…

27.2. Reload (caching, service worker)
Once your user has opened the application once, it’s possible to speed up the subsequent visits.

27.2.1. Caching

You should always cache the assets of your application (images, styles, JS bundles…). This is done by
configuring your server and leveraging the Cache-Control and ETag headers. All the servers on the
market allow you to do so. You can also use a CDN for this purpose, which will additionally allow
the users to download the assets from a server close to their location. If you do so, the next time
your users open the application, the browser won’t have to send a request to fetch the assets
because it will have them already.

But a cache is always tricky: you need to have a way to tell the browser "hey, I deployed a new
version in production, please fetch the new assets!".

The easiest way to do this is to have a different name for the asset you updated. That means instead
of deploying an asset named main.js, you deploy main.xxxx.js where xxxx is a unique identifier.
This technique is called cache busting. And, again, the CLI is there for you: in production mode, it
will name all your assets with a unique hash, derived from the content of the file. It also
automatically updates the sources of the scripts in index.html to reflect the unique names, the
sources of the fonts, the sources of the stylesheets, etc.

If you use the CLI, you can safely deploy a new version and cache everything, except the index.html
(as this will contain the links to the fresh assets deployed)!

27.2.2. Service Worker

If you want to go a step further, you can use service workers.

Service Workers are an API that most modern browsers support, and to simplify, they act like a
proxy in the browser. You can register a service worker in your application and every GET request
will then go through it, allowing you to decide if you really want to fetch the requested resource, or
if you want to serve it from cache. You can then cache everything, even your index.html, which
guarantees the fastest startup time (no request to the server).

You may be wondering how a new version can be deployed if everything is cached, but you’re
covered: the service worker will serve from cache and then check if a new version is available. It

272

can then force the refresh, or ask the users if they want it immediately or later.

It even allows you to go offline, as everything is cached!

Angular offers a dedicated package called @angular/service-worker, which is relatively easy to
setup, and can help you transform your Angular application into a Progressive Web App (PWA).

27.3. Profiling
Now that we have talked about first load and reload, we can start talking about runtime
performances. But if you run into a performance issue, before trying any of the following tips, you
should start by measuring and profiling the application.

Browsers nowadays offer nice developer tools, especially Chrome, which allows you to record your
application, and analyze its behavior, the function call hierarchy, the time spent by each function,
etc. You can also simulate some conditions, like using a slower processor, or using a 3G network.

In addition to the native browser developer tools, You can install the official Angular DevTools
browser extension. It has profiling capabilities allowing for example to analyze its change
detection.

But Angular also offers a precious, little-known tool: ng.profiler. It allows you to measure how long
a change detection takes in the current page. Profiling the change detection is important when your
application relies on the brute-force change detection mechanism which consists in evaluating all
the expressions of all the components in the tree. Hopefully, when all your components rely on
signals to signal a change and ZoneJS isn’t used anymore, the time taken by change detection
shouldn’t be much of a concern anymore.

But before we get there, you can try to apply one of the tips which we’ll look at, and measure again
to see if there is any improvement.

In your main.ts file, replace the application bootstrapping code with the following:

bootstrapApplication(App, appConfig)
 .then(applicationRef => {
 const componentRef = applicationRef.components[0];
 // allows to run `ng.profiler.timeChangeDetection();`
 enableDebugTools(componentRef);
 })
 .catch(err => console.log(err));

Then go to the page you want to profile, open your browser console, and execute the following
instruction:

> ng.profiler.timeChangeDetection()
ran 489 change detection cycles
1.02 ms per check

273

The Angular team recommends having a time per check below 3ms, to leave enough time for the
application logic, the UI updates and the browser’s rendering pipeline to fit within a 16ms frame
(assuming a 60 FPS target frame rate).

When optimizing your code, using the techniques that we will explain in the following pages, it can
help to use these tools to measure before and after, and see if it was actually worth it.

Let’s discover these tips!

27.4. Runtime performances
Angular’s magic relies on its change detection mechanism: the framework automatically detects
changes in the state of the application and updates the DOM accordingly. So, as a general rule of
thumb, you’ll want to help Angular and limit the change detection triggering and the amount of
DOM to update/create/delete.


Read the chapter about ZoneJS if you want a recap on how the Angular change
detection works.

To be honest, most applications will be fine, even when displaying a lot of stuff.

But some of us will have to recode Excel in the browser for their enterprise, or will have a
component with a tree displaying 10,000 customers, or another unreasonable thing to do in a
browser. These things are tricky, whatever framework you use. They tend to update a lot of DOM,
and have to check a lot of components. A few of the following tricks can help.

27.5. Production mode
While you’re developing (using ng serve to serve your application), the CLI sets an internal variable
called ngDevMode that the framework uses to know if it needs to do some extra work or not.

In this mode, error messages are more detailed. The generated DOM contains additional attributes
useful for debugging. And more importantly, every change detection does two traversals of the
component tree instead on just one. The second traversal ensures that all the expressions return
the same thing as in the first traversal, and throws an error otherwise. This makes sure that you
respect the one-way data flow principle.

Make sure to detect and fix these errors, because the production build (that you obtain when
executing ng build) won’t do these additional traversals, which will thus make the application
faster. Such a problem will thus not cause any error being logged in the console.

27.6. track in for loops
If you use the control flow syntax, you know that track is mandatory in @for loops. To understand
why, let me explain how modern JS frameworks (at least all major ones) handle collections. When
you have a collection of 3 ponies and want to display them in a list, you’ll write something like:

274

 @for (pony of ponies(); track pony) {
 {{ pony.name }}
 }

When you add a new pony, Angular will add a DOM node in the proper position. If you update the
name of one of the ponies, Angular will change just the text content of the right li.

How does it do that? By keeping track of which DOM node references which object reference.
Angular will have an internal representation looking like:

node li 1 -> pony #e435 // { id: 3, color: blue }
node li 2 -> pony #8fa4 // { id: 4, color: red }

It works great, and if you change an object for another one, Angular will destroy the node and build
another one.

node li 1 (recreated) -> pony #c1ea // { id: 1, color: green }
node li 2 -> pony #8fa4 // { id: 4, color: red }

If the whole collection is updated with new objects, the complete DOM list will be destroyed and
recreated. Which is fine, except when you just refresh a list with almost the same content: in that
case, Angular destroys the complete node list and recreates it, even if there is no need to. For
example, when you fetch the same results from the server, you will have the same content, but
different references as your collection will have been recreated.

The solution for this use-case is to help Angular track the objects, not by their references, but by
something that you know will uniquely identify the object, typically an ID:

 @for (pony of ponies(); track pony.id) {
 {{ pony.name }}
 }

With this track expression, Angular will only recreate a DOM node if the ID of the pony changes. On
a very big list which doesn’t change much, it can save a ton of DOM deletions/creations. Since this
optimization technique is quite cheap to implement, Angular decided to force you to specify a track
expression in @for loops. It isn’t mandatory when the *ngFor directive is used, but a similar
optimization exists: trackBy.

track is also necessary if you want to use animations. If a DOM element’s style is supposed to be
animated (by transitioning smoothly from the previous value to the new one), and the list of ponies
is replaced by a new one when refreshed, then a correct track is a must: with a track by identity, the

275

animation will never happen, because the style of the element never changes. Instead, it’s the
element itself which is being replaced by Angular.

27.7. Change detection strategies
When we explained how Angular detects the changes in your application, we showed the tree of
components and said that Angular starts by checking the root component, then its children, then its
grand-children, until all components are checked. Then all the necessary DOM updates are applied
in one batch.

But you may be wondering if it is a very good idea to check every component on every change. And
you’re right, that’s often not really necessary.

Angular offers another change detection strategy: it’s called OnPush and it can be defined on any
component.

With this strategy, the template of the component will only be checked in 3 cases:

• one of the inputs of the component changed (to be more accurate, when the reference of one of
the inputs changes);

• an event handler of the component was triggered;

• the value of a signal read by the template of the component changed.

This can be very convenient when the template of a component only depends on its inputs, and can
give a serious boost to your application if you display a lot of components on screen! But once
again, be very cautious before applying this optimization: if the preconditions end up not being
respected, you will lose your hair wondering why the component (or any of its descendants) isn’t
always repainting itself after a change.

Let’s take a small example to demonstrate.

Imagine that we have 3 components. A very simple Image:

@Component({
 selector: 'ns-img',
 template: `
 <p>{{ check() }}</p>

 `
})
export class Image {
 readonly src = input.required<string>();

 protected check(): void {
 console.log('image component view checked');
 }
}

276

used in a Pony:

@Component({
 selector: 'ns-pony',
 template: `
 <p>{{ check() }}</p>
 <ns-img [src]="ponyImageUrl()" />
 `,
 imports: [Image]
})
export class Pony {
 readonly ponyModel = input.required<PonyModel>();
 protected readonly ponyImageUrl = computed(() => `images/pony-${this.ponyModel
().color}-running.gif`);
 protected check(): void {
 console.log('pony component view checked');
 }
}

used itself in a Race:

@Component({
 selector: 'ns-race',
 template: `
 <h2>Race</h2>
 <p>{{ check() }}</p>
 @for (pony of ponies(); track pony.id) {
 <div>
 <ns-pony [ponyModel]="pony" />
 </div>
 }
 <button (click)="changeColor()">Change color</button>
 `,
 imports: [Pony]
})
export class Race {
 protected readonly ponies = signal<Array<PonyModel>>([
 { id: 1, color: 'green' },
 { id: 2, color: 'orange' }
]);
 protected readonly colors: Array<string> = ['green', 'orange', 'blue'];

 protected check(): void {
 console.log('race component view checked');
 }

 protected changeColor(): void {
 const ponies = this.ponies();
 ponies[0].color = this.randomColor();

277

 this.ponies.set([...ponies]);
 }

}

The Race displays two ponies, and the user can change the color of the first one by clicking on the
Change color button.

With the current default change detection strategy, every time that we have a change in the
application, all 3 components are checked.

We added a check() method in each component, called in each template: it allows us to track if the
component is checked or not. And indeed in our example, we can see in our console:

pony component view checked
image component view checked
pony component view checked
image component view checked
race component view checked

(we can see that twice actually, because we are in development mode - see the section about the
production mode above).

27.7.1. OnPush

But in this case, it’s a waste of time: we know that if the pony doesn’t change, the template of the
Pony doesn’t need to be checked. Same thing for the Image: if the src input is the same, there is no
need to recompute the image URL. So let’s switch these components to OnPush, by adding a
changeDetection attribute in their @Component decorator:

@Component({
 selector: 'ns-img',
 template: `
 <p>{{ check() }}</p>

 `,
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class Image {
 readonly src = input.required<string>();

 protected check(): void {
 console.log('image component view checked');
 }
}

@Component({

278

 selector: 'ns-pony',
 template: `
 <p>{{ check() }}</p>
 <ns-img [src]="ponyImageUrl()" />
 `,
 imports: [Image],
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class Pony {
 readonly ponyModel = input.required<PonyModel>();
 protected readonly ponyImageUrl = computed(() => `images/pony-${this.ponyModel
().color}-running.gif`);

 protected check(): void {
 console.log('pony component view checked');
 }
}

When we click to change the color, we will only see in the console:

race component view checked

Which is awesome, because it means that we don’t check the components that we don’t need to
check \o/.

27.7.2. OnPush and the mutability trap

But… there is a slight problem: the pony’s color doesn’t change anymore!

I picked this example on purpose: even if OnPush is really powerful, it can be tricky. Optimizing
existing components is not only about adding a few OnPush here and there.

Why doesn’t it work in our case?

Take a closer look at our Race, and its changeColor method:

protected changeColor(): void {
 const ponies = this.ponies();
 ponies[0].color = this.randomColor();
 this.ponies.set([...ponies]);
}

This method mutates the pony in the ponies collection, and this pony is the input of our Pony. Now
that we shifted our component to be OnPush, Angular will only run the change detection if the
reference of the pony input changes. And when you mutate an object, it’s still the same object, so
the reference doesn’t change, and Angular thinks there is no need to run the change detection…

So, is this change detection strategy completely useless? Not really, but it does require you to be

279

more careful.

The simple way to fix our issue is to not mutate our pony in changeColor, but to create a new object:

protected changeColor(): void {
 const ponies = this.ponies();
 const pony = ponies[0];
 // create a new pony with the old attributes and the new color
 ponies[0] = { ...pony, color: this.randomColor() };
 this.ponies.set([...ponies]);
}

Once you’ve done that, the application is faster and correct. If the user clicks on the button, the
changeColor method creates a new pony object with the old attributes and the new color. As this is a
new object, Angular will run the change detection in the Pony (an input changed), and then the src
input of the Image will also change, and the image will display the correct color. And, of course, if
another event triggers the change detection in Race, the children component will not be checked (if
their inputs did not change).

As you can see, you can quickly fall into a trap when migrating a component to an OnPush strategy,
so be careful (unit tests are your friend).

There is a last topic we need to talk about: observables.

27.7.3. OnPush, Observables, signals, and the async pipe

Let’s say we now have only one component, our well-known Pony. It subscribes to an observable
from a ColorService that returns a new color every second. We obviously expect the image to
change every second. The developer of this component thought that an OnPush change detection
strategy couldn’t hurt. What do you think?

@Component({
 selector: 'ns-pony',
 template: `
 <p>New color every 1s</p>
 @if (color) {

 }
 `,
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class Pony {
 protected color: string | undefined;

 constructor() {
 inject(ColorService)
 .get()
 .pipe(takeUntilDestroyed())
 .subscribe(color => (this.color = color));

280

 }
}

Sadly, this doesn’t work. With the OnPush strategy, Angular only refreshes the template if one of the
inputs changed (here, there is no input), or if an event was triggered (there is none either), or if a
signal read by the template changed (no signal is used here). So the color field is updated every
second, but the template is never refreshed…

This can be fixed by turning the color property into a signal and setting the signal value when the
observable emits a new color. But there’s an even simpler solution: using toSignal to transform the
observable into a signal:

@Component({
 selector: 'ns-observable-on-push-with-signal',
 template: `@if (color(); as c) {

 }`,
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class Pony {
 protected readonly color: Signal<string | undefined> = toSignal(inject(
ColorService).get());
}

Before signals were introduced, the solution to this problem was to use the async pipe to let the
template subscribe (and unsubscribe) for you.

@Component({
 selector: 'ns-observable-on-push-with-async',
 template: `@if (color$ | async; as c) {

 }`,
 imports: [AsyncPipe],
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class Pony {
 protected color$: Observable<string> = inject(ColorService).get();
}

When a new value is received from the observable, the async pipe marks the component to be
checked during the next change detection.

Note that async can lead to several HTTP requests if used several times in a template, It also makes
it more difficult to access the color from inside the TypeScript code. So our preference goes to the
toSignal solution, which has all the advantages of async without its disadvantages. Beware that
toSignal() is still in developer preview though. But that won’t last very long.

Those two examples show how setting the change detection strategy to OnPush shouldn’t be done

281

lightly, especially with legacy components that don’t use signals. However, OnPush components
behave almost the same way now as all components will behave when ZoneJS won’t be used
anymore for change detection. So if you want to prepare for this zoneless future, you should
consider, at least for new components, to use signals for their state and to use the OnPush strategy.

27.8. Get out of the zone
There is another way to avoid useless change detections: you can completely run some code outside
of Zone.js. To do so, you can inject NgZone, and then use its runOutsideAngular method to execute
code outside its watch.

This can be really useful to wrap something that handles a lot of events, typically something coming
from a third-party library. For example, let’s imagine you have a chart in your application, built
with Chart.js. A user hovering over the chart will trigger hundreds of mouse events. The fact that
hundreds of events are fired isn’t really a problem. That also happens with any DOM element. What
is a problem is that the library calls addEventListener() to handle these events, for example to
display tooltips, and that’s what triggers hundreds of change detections!

readonly canvas = viewChild.required<ElementRef<HTMLCanvasElement>>('chart');

constructor() {
 effect(() => {
 const ctx = this.canvas().nativeElement;
 new Chart(ctx, {
 type: 'bar',
 data: {
 labels: ['Green', 'Red'],
 datasets: [{ label: 'Score', data: [12, 21] }]
 }
 });
 });
}

In that case, you can inject NgZone and use runOutsideAngular to ignore the events from Chart.js:

readonly canvas = viewChild.required<ElementRef<HTMLCanvasElement>>('chart');

constructor() {
 const ngZone = inject(NgZone);
 effect(() => {
 const ctx = this.canvas().nativeElement;
 ngZone.runOutsideAngular(() => {
 new Chart(ctx, {
 type: 'bar',
 data: {
 labels: ['Green', 'Red'],
 datasets: [{ label: 'Score', data: [12, 21] }]
 }

282

https://www.chartjs.org/

 });
 });
 });
}

This produces the same results, and the rest of the component would still be checked automatically
by Angular, but we no longer trigger change detection when using the chart.

Having to do this to avoid performance problems when using Angular is one of the big problems
caused by the usage of ZoneJS. It’s one of the reasons signals have been introduced and Angular
wants to move towards zoneless change detection.

27.9. Zoneless change detection
Since version 18, Angular uses a new ChangeDetectionScheduler to trigger change detections, or
synchronizations as the Angular team now calls this process. This new scheduler no longer relies
solely on ZoneJS to know when to synchronize the DOM with the application state. It’s also
triggered when a signal read by a template gets a new value, when a template or host listener is
called or when an async pipe receives a new value (and on some other occasions that we won’t
mention here).

Thanks to this new scheduler, we can choose to go zoneless, i.e. to completely remove ZoneJS from
our applications. This zoneless synchronization is experimental in v18 and v19, and is in developer
preview in v20. We strongly encourage you to adopt it if you start a new project, because that’s the
way of the future.

To go zoneless, you will need to add provideZonelessChangeDetection() to the application providers,
and to remove zone.js from the polyfills (inside the angular.json file).

There’s a big catch though: your code, and the code of all the Angular libraries that you use, need to
be ready for zoneless. This means that:

• all the components must properly use signals (or the async pipe) to manage their state;

• the code must not use some methods of NgZone like NgZone.onStable.

The good news is that most popular Angular component libraries have of course anticipated this
change and are now ready for zoneless. All the instructions and examples in this book are zoneless-
compatible too.

If all your components use OnPush and your application works fine, it’s a good sign that your code is
already ready for zoneless synchronization.

27.10. Pure pipes
As you know, you can build your own pipes to format and display your data. For example, to
display the full name of a user, you can either write a method in your component:

@Component({

283

 selector: 'ns-menu',
 template: `
 <p>{{ userName() }}</p>
 <p>...</p>
 <p>{{ userName() }}</p>
 `
})
export class Menu {
 protected readonly user = signal<UserModel>({
 id: 1001,
 firstName: 'Jane',
 lastName: 'Doe',
 title: 'Miss'
 });

 protected userName(): string {
 return `${this.user().title} ${this.user().firstName} ${this.user().lastName}`;
 }
}

or better, define a computed signal:

@Component({
 selector: 'ns-menu',
 template: `
 <p>{{ userName() }}</p>
 <p>...</p>
 <p>{{ userName() }}</p>
 `
})
export class Menu {
 protected readonly user = signal<UserModel>({
 id: 1001,
 firstName: 'Jane',
 lastName: 'Doe',
 title: 'Miss'
 });
 protected readonly userName = computed(() => `${this.user().title} ${this.user
().firstName} ${this.user().lastName}`);
}

The computed version is more efficient, because the computation is memoized instead of being
executed each time the expression is evaluated in the template.

This is fine when you have a signal containing a single user. But if you need have an array of
objects each having a user as a property, it can be tedious to transform all these users into user
names inside a computed.

A custom pipe is an easier solution to encapsulate this logic:

284

@Component({
 selector: 'ns-menu',
 template: `
 <p>{{ user | displayName }}</p>
 <p>...</p>
 <p>{{ user | displayName }}</p>
 `,
 imports: [DisplayNamePipe]
})
export class Menu {
 protected readonly user: UserModel = {
 id: 1001,
 firstName: 'Jane',
 lastName: 'Doe',
 title: 'Miss'
 };
}

@Pipe({
 name: 'displayName'
})
export class DisplayNamePipe implements PipeTransform {
 transform(user: UserModel): string {
 return `${user.title} ${user.firstName} ${user.lastName}`;
 }
}

This takes a little bit more work, but writing a pipe allows you to reuse it in any template.

What you may not know is that using a pipe also offers the same performance benefit as using a
computed signal. By default, a pipe is "pure". In computer science, we call "pure" a function that has
no side effect, and whose result only depends on its entries. A pure pipe is pretty much the same:
the result of its transform method only depends on arguments. Knowing that, Angular applies the
same optimization as for the computed signal: it memoizes the transformation. The transform
method is only called if the reference of the value it transforms changes or if one of the other
arguments changes (yes, a bit like the OnPush strategy for components).

By default, a custom pipe is pure, so that’s great! But sometimes it’s not a right fit.

In my example, if we mutate the user to set its firstName to a different value, the pipe never
refreshes… It’s pretty much the same issue that we had with the OnPush strategy: the reference of
the value doesn’t change, so the pipe does not run again.

Here you have two solutions:

• carefully use the pipe with immutable objects (do not mutate the user - create a new user with
the new firstName);

• mark the pipe as "impure", and Angular will run it every time. You lose a tiny bit in

285

performance, but you are sure that the displayed value is refreshed.

To mark a pipe as impure, just add pure: false in its decorator:

@Pipe({
 name: 'displayName',
 pure: false
})
export class DisplayNameImpurePipe implements PipeTransform {
 transform(user: UserModel): string {
 return `${user.title} ${user.firstName} ${user.lastName}`;
 }
}

To sum up:

• a pure pipe is not called as often as a method in a component

• but it doesn’t run again if the input value is mutated, so use it carefully.

27.11. Conclusion
This chapter hopefully taught you some techniques which can help solve performance problems.
But remember the golden rules of performance optimization:

• don’t

• don’t… yet

• profile before optimizing.

As a famous computer scientist said:

premature optimization is the root of all evil.

— Donald Knuth

So strive to make the code as simple and correct and readable as possible, and only start thinking
about profiling, then optimizing, if you have a proven performance problem.

For new components, relying on signals makes it easy to apply the OnPush strategy, and to be ready
for zoneless change detection.


Try our exercise Performance ! You will optimize our application and be able to
measure every step of progress! We also have an exercise to switch to Zoneless !

286

https://angular-exercises.ninja-squad.com/exercises/35/performance
https://angular-exercises.ninja-squad.com/exercises/36/zoneless

Chapter 28. Signals: advanced topics

28.1. Value equality
Signals are used to hold state, and you can react to their change. But how do they decide that they
have changed? Calling set or update on a signal doesn’t necessarily make it change: if you set a
value that is equal to the value it already has, then the signal will consider that it hasn’t changed.

This equality of two values, by default, is decided by calling Object.is. For objects, if the new value
is === to the current value, no change happens. But you can define a custom equality in case
referential equality is not what you want.

const status = signal(
 {
 dirty: false,
 touched: false
 },
 {
 equal: (previousStatus, newStatus) =>
 previousStatus.dirty === newStatus.dirty && previousStatus.touched ===
newStatus.touched
 }
);
// errorDisplayed will not re-evaluated if both values stay the same
const errorDisplayed = computed(() => status().dirty || status().touched);

28.2. untracked
computed and effect both take a function as argument. Angular calls this function at least once. This
allows computing the initial value of the computed signal, or triggering the initial side-effect. But
it’s also necessary for Angular to know which signals are read inside the function, in order to
update the dependency graph.

For example,

readonly price = signal(42);
readonly quantity = signal(2);

readonly total = computed(() => this.price() * this.quantity());

creates a dependency between total and the two other signals: when price or quantity change,
Angular knows that total must be recomputed.

The dependencies on the above example are obvious. But that’s not always the case, especially in
effects.

287

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/is

Let’s take the following example:

protected readonly visitedUrl = signal<string | undefined>(undefined);

constructor() {
 const analyticsService = inject(AnalyticsService);
 effect(() => {
 const url = this.visitedUrl();
 if (url) {
 analyticsService.sendHitForUrl(url).subscribe();
 }
 });
}

It sends a new hit, using HTTP, every time the visitedUrl signal changes. The dependency looks
obvious: this effect only depends on visitedUrl. But does it, really?

If an interceptor has been configured for the HTTP client, and if this interceptor reads a token signal
for example, then subscribing to the observable inside the effect indirectly reads the token signal.
The effect is thus also dependent on the token signal, and a new hit will thus also be sent when the
token changes.

To avoid such undesired dependencies, use untracked. A good rule of thumb to avoid surprises is to
start by reading the signals you really want to depend on, and then run the code inside an untracked
block:

protected readonly visitedUrl = signal<string | undefined>(undefined);

constructor() {
 const analyticsService = inject(AnalyticsService);
 effect(() => {
 const url = this.visitedUrl();
 untracked(() => {
 if (url) {
 analyticsService.sendHitForUrl(url).subscribe();
 }
 });
 });
}

28.3. Root and component effects
We learnt that effect needs an injection context. An effect can be created while constructing a
component, directive, or service. Otherwise, an Injector must be passed as option.

But all effects aren’t handled the same way. Angular distinguishes two kinds of effects:

• component effects, which are created using the injector of a component or directive;

288

• root effects, which are created in root services, or with the forceRoot option.

Component effects run just before the change detection of their owning component. They are
destroyed when their owning component is destroyed.

Root effects on the other hand are never destroyed (since their owning service is never destroyed).
They run as a micro task (i.e. at the same time a resolved promise would run). In unit tests, you
must call TestBed.tick() to make them run.


If you want an effect, whatever its type, to stop running at a certain point, you’re
always free to destroy it yourself, by calling the destroy method of the EffectRef
returned by effect.

28.4. afterRenderEffect
Since regular component effects run before the change detection, they’re not a good fit to read or
modify the DOM of the component: the DOM has not been rendered yet by Angular when the effect
is run. If you want to read or modify the DOM inside an effect, you can use a different kind of effect,
created by the function afterRenderEffect. Such an effect, as its name indicates, runs after the
rendering.

28.5. Effect cleanup
Effects can also receive a cleanup function. This function is run when the effect runs again. This can
be handy when you need to cancel a previous action before starting a new one. In the example
below, we start an interval that runs every count seconds, and we want to stop it and start a new
one when the count changes:

this.intervalEffect = effect(onCleanup => {
 const intervalId = setInterval(() => console.log(`count in intervalEffect ${this
.count()}`), this.count() * 1000);
 return onCleanup(() => clearInterval(intervalId));
});

28.6. Two-way binding with model inputs
Signals also allow a fresh take on existing patterns. As you probably know, Angular allows a
"banana in a box" syntax for two-way binding. This is mostly used with ngModel to bind a form
control to a component property:

login.html

<input name="login" [(ngModel)]="user.login" />

Under the hood, this is because the ngModel directive has a ngModel input and a ngModelChange output.

289

So the banana in a box syntax is just syntactic sugar for the following:

login.html

<input name="login" [ngModel]="user.login" (ngModelChange)="user.login = $event" />

The syntax is, in fact, general and can be used with any component or directive that has an input
named something and an output named somethingChange.

You can leverage this in your own components and directives, for example to build a pagination
component:

pagination.ts

readonly collectionSize = input.required<number>();
readonly pageSize = input.required<number>();
readonly page = input.required<number>();
readonly pageChange = output<number>();

protected readonly pages = computed(() => this.computePages());

protected goToPage(page: number) {
 this.pageChange.emit(page);
}

private computePages() {
 return Array.from({ length: Math.ceil(this.collectionSize() / this.pageSize()) }, (
_, i) => i + 1);
}

The component receives the collection, the page size, and the current page as inputs, and emits the
new page when the user clicks on a button.

Every time an input changes, the component recomputes the buttons to display. The template uses a
for loop to display the buttons:

pagination.html

@for (pageNumber of pages(); track pageNumber) {
 <button [class.active]="page() === pageNumber" (click)="goToPage(pageNumber)">
 {{ pageNumber }}
 </button>
}

The component can then be used like:

Usage

<ns-pagination [(page)]="page" [collectionSize]="collectionSize()"

290

[pageSize]="pageSize()" />

In the parent component, page can be a number, but it can also be a WritableSignal<number>. In the
latter case, the framework will automatically pass the value of the signal as input to the pagination
component, and will set the signal value to the new page when the pagination component emits
one.

The pagination component can be rewritten using the model() function:

pagination.ts

readonly collectionSize = input.required<number>();
readonly pageSize = input.required<number>();
protected readonly pages = computed(() => this.computePages());

readonly page = model.required<number>();
// ^? ModelSignal<number>;
protected goToPage(page: number) {
 this.page.set(page);
}

private computePages() {
 return Array.from({ length: Math.ceil(this.collectionSize() / this.pageSize()) }, (
_, i) => i + 1);
}

As you can see, model() is used to define the input/output pair, and the output emission is done
using the set() method of the signal (ModelSignal extends both WritableSignal and OutputRef).

A model can be required, or can have a default value, or can be aliased, as we saw for inputs. It can’t
be transformed though. If you use an alias, the output will be aliased as well.

28.7. Linked signals with linkedSignal
Angular v19 introduced a new (developer preview) concept called "linked signals". A linked signal
is a writable signal, but it is also a computed signal, as its content can be reset thanks to a
computation that depends on another signal (or several ones).

Imagine we have a component that displays a list of items received via an input, and we want our
users to select one of them. By default, let’s say we want to select the first item of the list. But every
time the list of items changes, the selected item may no longer be valid, so we want to reset the
selected item to the first one.

We can imagine a component like this:

export class ItemList {
 readonly items = input.required<Array<ItemModel>>();
 protected readonly selectedItem = signal<ItemModel | undefined>(undefined);

291

 protected pickItem(item: ItemModel) {
 this.selectedItem.set(item);
 }
}

Using an effect may come to mind to solve the selection problem:

constructor() {
 // ⚠️ This is not recommended
 effect(() => {
 this.selectedItem.set(this.items()[0]);
 });
}

Every time the list of items changes, the effect will be triggered and the first item will be selected.
This works, but using effects is generally not recommended, except for some specific cases, like
synchronizing something outside the application (like the local storage for example).

There is a nice trick that I can show you before we dive into the now-recommended solution: we
can use a computed value that returns… a signal!

export class ItemList {
 readonly items = input.required<Array<ItemModel>>();
 protected readonly selectedItem = computed<WritableSignal<ItemModel | undefined>>(()
=> signal(this.items()[0]));

 protected pickItem(item: ItemModel) {
 this.selectedItem().set(item);
 }
}

As you can see, the computed value returns a signal that represents the selected item (whereas they
usually return a value directly). Every time the list of items changes, the computed function is re-
evaluated, and returns a new signal that represents the selected item. The downside of this solution
is that we have to use selectedItem()() to read the value, or selectedItem().set() to update it,
which is a bit ugly.

This is where we can use a linkedSignal:

export class ItemList {
 readonly items = input.required<Array<ItemModel>>();
 // ✅ This is recommended
 protected readonly selectedItem: WritableSignal<ItemModel> = linkedSignal(() =>
this.items()[0]);

292

A linkedSignal is a WritableSignal, but its value can be reset thanks to a computation. If the items
change, then the computation will be re-executed and the value of the signal will be updated with
the result.

This is a powerful concept, as it allows us to define a signal that depends on another signal, like a
computed, but with the ability to write to it (a sort of "writable computed").

The computation can of course depend on several signals. Here selectedItem is reset when the items
input changes, but also when the enabled input changes.

export class ItemList {
 readonly items = input.required<Array<ItemModel>>();
 readonly enabled = input.required<boolean>();
 // recomputes if `enabled` or `items` change
 protected readonly selectedItem = linkedSignal(() => (this.enabled() ? this.items
()[0] : undefined));

Note that you can use the previous value of the source signal in the computation function if you
need to. For example, if you want to access the previous items value to compare it with the new one,
you can declare the linkedSignal with the source and computation options. In that case, the
computation function receives the current and previous values of the source as parameters.

export class ItemList {
 readonly items = input.required<Array<ItemModel>>();
 protected readonly selectedItem = linkedSignal</* source */ Array<ItemModel>, /*
value */ ItemModel>({
 source: this.items,
 computation: (items, previous) => {
 // pick the item the user selected if it's still in the new item list
 if (previous !== undefined) {
 const previousChoice = previous.value; // previous.source contains the
previous items
 if (items.map(item => item.name).includes(previousChoice.name)) {
 return previousChoice;
 }
 }
 return items[0];
 }
 });

You can also define a custom equality function to decide if the signal has changed with the equal
option.

28.8. Async resources with resource and rxResource
In Angular v19, a new feature was added to help with asynchronous operations. Most applications
need to fetch data from a server, depending on some parameters, and display the result in the UI:

293

resource aims to help with that.

This API is experimental, and will go through an RFC process soon: I would not advise you to use it
yet.

The resource() function allows you to define a resource that represents an asynchronous operation.
The function takes an object with a mandatory loader function that returns a promise:

list(): ResourceRef<Array<UserModel> | undefined> {
 return resource({
 loader: async () => {
 const response = await fetch('/users');
 return (await response.json()) as Array<UserModel>;
 }
 });
}



This example doesn’t use the HTTP client, but the native fetch() function, which
returns a promise. Indeed, the resource() function is not linked to RxJS, and can
thus use any client that returns promises. rxResource, that we will discuss in a few
seconds, is the alternative to resource that can be used with an Observable-based
client. This is another example of Angular decoupling itself from RxJS, but still
providing interoperability functions allowing you to use it smoothly.

You can also define a defaultValue option that will be used as the initial value of the resource
(instead of undefined by default).

return resource({
 defaultValue: [],
 loader: async () => {
 const response = await fetch('/users');
 return (await response.json()) as Array<UserModel>;
 }
});

resource() returns a ResourceRef, an object containing:

• an isLoading signal that indicates if the resource is loading;

• a value signal that contains the result of the promise;

• an error signal that contains the error if the promise is rejected;

• a status signal that contains the status of the resource.

You can then use these signals in your template:

@if (usersResource.isLoading()) {
 <p>Loading...</p>

294

} @else {

 @for (user of usersResource.value(); track user.id) {
 {{ user.name }}
 }

}

The status signal can be:

• 'idle', the initial state;

• 'loading', when the promise is pending;

• 'error', when the promise is rejected;

• 'resolved', when the promise is resolved;

• 'reloading', when the resource is reloading;

• 'local', when the value is set locally.

The resource also has a reload method that allows you to reload the resource. In that case, its status
will be set to 'reloading'.

But the reloading can also be automatic, thanks to the params option. When provided, the resource
will automatically reload if one of the signals used in the params changes. Here, for example, the
component has a sortOrder option that is used in the request:

protected readonly sortOrder = signal<'asc' | 'desc'>('asc');
protected readonly usersResource = resource({
 // ὄ� The `sortOrder` signal is used to trigger a reload
 params: () => ({ sort: this.sortOrder() }),
 loader: async loaderParams => {
 // ὄ� loaderParams also contains the `abortSignal` to cancel the request
 // and the previous status of the resource
 // here we are only interested in the params
 const params = loaderParams.params;
 const response = await fetch(`/users?sort=${params.sort}`);
 return (await response.json()) as Array<UserModel>;
 }
});

If the sortOrder signal changes, the resource will automatically reload! You can also cancel the
previous request if needed when the resource is reloaded using the abortSignal parameter of the
loader (for example to implement a debounce). You can choose to ignore the reload request and
thus keep the current value by returning undefined from the params function.

Last but not least, the returned ResourceRef is in fact writable. You can use its set or update methods
to change the value of the resource (on the value or on the resource itself, both work). In that case,
its status will be set to 'local'. If you’re only interested in reading the resource, you can use the

295

https://developer.mozilla.org/en-US/docs/Web/API/AbortSignal

asReadonly method to get a read-only version of the resource.

Finally, the ResourceRef has a destroy method that can be used to stop the resource.

Angular v19.2 added the possibility to create resources with streamed response data. A streaming
resource is defined with a stream option instead of a loader option. This stream function returns a
promise of a signal (yes, I needed to read it twice as well). The signal value must be of type
ResourceStreamItem: an object with a value or an error property. When the promise is resolved, the
loader can continue to update that signal over time, and the resource will update its value and
error every time the signal’s item changes.

You can build this stream yourself, using a WebSocket for example. We can also imagine that some
libraries such as Firebase could provide a stream function that would be directly usable:

list(): ResourceRef<Array<UserModel> | undefined> {
 return resource({
 // firebaseCollection does not exist in real-life
 stream: async ({ abortSignal }) => await firebaseCollection('users', abortSignal)
 });
}

Now, let’s see how we can use an observable-based resource instead of a promised-based one.

You can use the rxResource() function in that case. This function is really similar to resource(), but
its stream must return an observable instead of a promise. This allows you to use our good old
HttpClient service to fetch data from a server, using all your interceptors, error handling, etc:

protected readonly sortOrder = signal<'asc' | 'desc'>('asc');
protected readonly usersResource = rxResource({
 params: () => ({ sort: this.sortOrder() }),
 // ὄ� RxJS powered loader
 stream: ({ params }) => this.httpClient.get<Array<UserModel>>('/users', { params: {
sort: params.sort } })
});

Note that the rxResource() function is from the @angular/core/rxjs-interop package, where the
resource() function is from @angular/core. You can have a stream of values by returning an
observable that emits several times, and the resource will be updated every time a new value is
emitted:

protected readonly sortOrder = signal<'asc' | 'desc'>('asc');
protected readonly usersResource = rxResource({
 params: () => ({ sort: this.sortOrder() }),
 // ὄ� stream that fetches the value now and every 10s
 stream: ({ params }) =>
 timer(0, 10000).pipe(
 switchMap(() => this.httpClient.get<Array<UserModel>>('/users', { params: {

296

sort: params.sort } }))
)
});

28.9. HTTP calls with httpResource
Angular v19.2 introduced a dedicated (and experimental) function to create resources that use
HTTP requests: httpResource() in the @angular/common/http package.

This function uses HttpClient under the hood, allowing us to use our usual interceptors, testing
utilities, etc.

The most basic usage is to call this function with a function that returns the URL from which you
want to fetch data:

protected readonly usersResource = httpResource<Array<UserModel>>(() => '/users');

httpResource() returns an HttpResourceRef with the same properties as ResourceRef, the type
returned by resource(), as it is built on top of it:

• value is a signal that contains the deserialized JSON response body;

• status is a signal that contains the resource status (idle, loading, error, resolved, etc.);

• error is a signal that contains the error if the request fails;

• isLoading is a signal that indicates if the resource is loading;

• reload() is a method that allows you to reload the resource;

• update() and set() are methods that allow you to change the value of the resource;

• asReadonly() is a method that allows you to get a read-only version of the resource;

• hasValue() is a method that allows you to know if the resource has a value;

• destroy() is a method that allows you to stop the resource.

It also contains a few more properties specific to HTTP resources:

• statusCode is a signal that contains the status code of the response as a number;

• headers is a signal that contains the headers of the response as HttpHeaders;

• progress is a signal that contains the download progress of the response as a HttpProgressEvent;

It is also possible to define a reactive resource by using a signal in the function that defines the URL.
The resource will automatically reload when the signal changes:

protected readonly sortOrder = signal<'asc' | 'desc'>('asc');
protected readonly sortedUsersResource = httpResource<Array<UserModel>>(() =>
`/users?sort=${this.sortOrder()}`);

297

When using a reactive request, the resource will automatically reload when a signal used in the
request changes. If you want to skip the reload, you can return undefined from the request function
(as for resource).

If you need more fine-grained control over the request, you can also pass a function that returns an
HttpResourceRequest object to the httpResource() function.

This object must have a url property and can have other options like method (GET by default), params,
headers, reportProgress, etc. If you want to make the request reactive, you can use signals in the url,
params or headers properties.

The above example would then look like:

protected readonly sortedUsersResource = httpResource<Array<UserModel>>(() => ({
 url: `/users`,
 params: { sort: this.sortOrder() },
 headers: new HttpHeaders({ 'X-Custom-Header': this.customHeader() })
}));

You can of course send a body with the request, for example for a POST/PUT request, using the body
property of the request object.

protected readonly query = signal('');
protected readonly filterUsersResource: HttpResourceRef<Array<UserModel> | undefined>
= httpResource<
 Array<UserModel>
>(() => {
 const query = this.query();
 return query
 ? {
 url: `/users`,
 method: 'POST',
 body: { query }
 }
 : undefined;
});

You can pass additional options in a second argument, where you can define:

• injector, in case the resource is not created at construction time;

• defaultValue, a default value of the resource, to use when idle, loading, or in error;

• an equal function that defines the equality of two values;

• a parse function that allows you to transform the response before setting it in the resource.

It is also possible to request something else than JSON, by using the httpResource.text(),
httpResource.blob() or httpResource.arrayBuffer() functions.

298

Some of you may get a feeling of déjà vu with all this, as it’s quite similar to the TanStack Query
library. I must insist that this is experimental and will probably evolve in the future. It will also
probably be used by higher-level APIs or libraries. Let’s see what the RFC process will bring us!

299

https://tanstack.com/query/

Chapter 29. Deferrable Views with @defer
With the introduction of the Control flow syntax, the Angular team has also introduced a new way
to load components lazily (as a developer preview for now). We already have lazy-loading in
Angular, but it is mainly based on the router.

Angular v17 adds a new way to load components lazily, using the @defer syntax in your templates.

@defer lets you define a block of template that will be loaded lazily when a condition is met (with all
the components, pipes, directives and libraries used in this block lazily loaded as well). Several
conditions can be used. For example, it can be "as soon as possible (no condition)", "when the user
scrolls to that section", "when the user clicks on that button" or "after 2 seconds".

Let’s say your home page displays a "heavy" Chart that uses a charting library and some other
dependencies, like a FromNow pipe:

chart.ts

@Component({
 selector: 'ns-chart',
 template: '...',
 imports: [FromNowPipe],
})
export class Chart{
 // uses chart.js
}

home.ts

import { Chart} from './chart';

@Component({
 selector: 'ns-home',
 template: `
 <!-- some content -->
 <ns-chart />
 `,
 imports: [Chart]
})
export class Home{
 // ...
}

When the application is packaged, the Chart will be included in the main bundle:

300

main¬xxxx.js 300KB

home.ts
chart.ts
from now pipe.ts
chart.js

Let’s say that the component is not visible at first on the home page, maybe because it is at the
bottom of the page, or because it is in a tab that is not active. It makes sense to avoid loading this
component eagerly because it would slow down the initial loading of the page.

With @defer, you can load this component only when the user really needs it. Just wrapping the
Chart in a @defer block will do the trick:

home.ts

import { Chart} from './chart';

@Component({
 selector: 'ns-home',
 template: `
 <!-- some content -->
 @defer (when isVisible) {
 <ns-chart />
 }
 `,
 imports: [Chart]
})

The Angular compiler will rewrite the static import of the Chart to a dynamic import (() ⇒
import('./chart')), and the component will be loaded only when the condition is met. As the
component is now imported dynamically, it will not be included in the main bundle. The bundler
will create a new chunk for it:

main¬xxxx.js 100KB

home.ts chunk¬xxxx.js 200KB

chart.ts
from now pipe.ts

chart.js

The chunk-xxxx.js file will only be loaded when the condition is met, and the Chart will be

301

displayed.

Before talking about the various kinds of conditions that can be used with @defer, let’s see how to
use another interesting feature: displaying a placeholder until the deferred block is loaded.

29.1. @placeholder, @loading, and @error
You can define a placeholder template with @placeholder that will be displayed until the loading
condition is met. Then, while the block is loading, you can display a loading template with @loading.
If no @loading block is defined, the placeholder stays there until the block is loaded. You can also
define an error template with @error that will be displayed if the block fails to load.

@defer (when show()) {
 <ns-chart />
} @placeholder {
 <div>Something until the loading starts</div>
} @loading {
 <div>Loading...</div>
} @error {
 <div>Something went wrong</div>
}

When using server-side rendering, only the placeholder will be rendered on the server (the defer
conditions will never trigger).

29.1.1. after and minimum

As the @defer block loading can be quite fast, there is a risk that the loading block is displayed and
hidden too quickly, causing a "flickering" effect.

To avoid this, you can use the after option to specify after how many milliseconds the loading
should be displayed.

If the block takes less than this delay to load, then the @loading block is never displayed.

You can also use the minimum option to specify a minimum duration for the loading. If the loading is
faster than the minimum duration, then the loading will be displayed for the minimum duration
(this only applies if the loading is ever displayed).

You can of course combine all these options:

@defer (when show()) {
 <ns-chart />
} @placeholder {
 <div>Something until the loading starts</div>
} @loading (after 500ms; minimum 500ms) {
 <div>Loading...</div>
}

302

You can also specify a minimum duration for the placeholder. It can be useful when the loading
condition is immediate (for example, when no condition is specified). In that case, the placeholder
will be displayed for the minimum duration, even if the block is loaded immediately, to avoid a
"flickering" effect.

@defer (when show()) {
 <ns-chart />
} @placeholder (minimum 500ms) {
 <div>Something until the loading starts</div>
} @loading (after 500ms; minimum 500ms) {
 <div>Loading...</div>
}

29.2. Conditions
Several conditions can be used with @defer, let’s see them one by one.

29.2.1. No condition or on idle

The simplest condition is to not specify any condition at all: in this case, the block will be loaded
when the browser is idle (the loading is scheduled using requestIdleCallback).

@defer {
 <ns-chart />
}

This is equivalent to using the on idle condition:

@defer (on idle) {
 <ns-chart />
}

29.2.2. Simple boolean condition with when

You can also use a boolean condition to load a block of the template with when. Here, we display the
defer block only when the show property of the component is true:

@defer (when show()) {
 <ns-chart />
}

Note that this is not the same as using *ngIf on the block, as the block will not be removed even if
the condition becomes false later.

303

29.2.3. on immediate

The on immediate condition triggers the loading of the block immediately. It does not display a
placeholder, even if one is defined.

29.2.4. on timer

The on timer condition triggers the loading of the block after a given duration, using setTimeout
under the hood.

@defer (on timer(2s)) {
 <ns-chart />
}

29.2.5. on hover

Other conditions are based on user interactions. These conditions can specify the element of the
interaction using a template reference variable, or none to use the placeholder element. In the
latter case, the placeholder element must exist and have a single child element that will be used as
the element of the interaction.

The on hover condition triggers the loading of the block when the user hovers the element. Under
the hood, it listens to the mouseenter and focusin events.

Hover me

@defer (on hover(trigger)) {
 <ns-chart />
}

or using the placeholder element:

@defer (on hover) {
 <ns-chart />
} @placeholder {
 Hover me
}

29.2.6. on interaction

The on interaction condition triggers the loading of the block when the user interacts with the
element. Under the hood, it listens to the click and keydown events.

29.2.7. on viewport

The on viewport condition triggers the loading of the block when the element becomes visible in the

304

viewport. Under the hood, it uses an intersection observer.

29.2.8. Multiple conditions

You can also combine multiple conditions using a comma-separated list:

<!-- Loads if the user hovers the placeholder, or after 1 minute -->
@defer (on hover, timer(60s)) {
 <ns-chart />
} @placeholder {
 Something until the loading starts
}

29.3. Prefetching
@defer allows you to separate the loading of a component from its display. You can use the same
conditions we previously saw to load a component using prefetch, and then display it with another
condition.

For example, you can prefetch the lazy-loaded content on idle and then display it on interaction:

@defer (on interaction; prefetch on idle) {
 <ns-chart />
} @placeholder {
 <button>Show me</button>
}

Note that the @loading block will not be displayed if the deferred block is already prefetched when
the loading condition is met.

29.4. How to test deferred loading?
When a component uses defer blocks in its template, you’ll have to do some extra work to test it.

The TestBed API has been extended to help you with that. The configureTestingModule method now
accepts a deferBlockBehavior option. By default, this option is set to DeferBlockBehavior.Playthrough,
which means that the defer blocks will be displayed automatically when a condition is met, as they
would when the application runs in the browser.

You can change this behavior by using DeferBlockBehavior.Manual. Manual means that you’ll have to
manually trigger the display of the defer blocks. But let’s start with the default option, Playthrough.

In that case, the defer blocks will be displayed automatically when a condition is met, after calling
await fixture.whenStable().

So if we test a component with a deferred block that is visible after clicking on a button, we can use:

305

https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API

// Click the button to trigger the deferred block
(fixture.nativeElement as HTMLElement).querySelector('button')!.click();
fixture.detectChanges();

// Wait for the deferred block to render
await fixture.whenStable();

// Check its content
const loadedBlock = (fixture.nativeElement as HTMLElement).querySelector('div')!;
expect(loadedBlock.textContent).toContain('Some lazy-loaded content');

If you want to use the DeferBlockBehavior.Manual behavior, you’ll have to manually trigger the
display of the defer blocks.

await TestBed.configureTestingModule({
 deferBlockBehavior: DeferBlockBehavior.Manual
}).compileComponents();

To do so, the fixture returned by TestBed.createComponent now has an async getDeferBlocks method
that returns an array of DeferBlockFixture objects. Each of these fixtures has a render method that
you can call to display the block in a specific state, by providing a DeferBlockState parameter.

DeferBlockState is an enum with the following values:

• DeferBlockState.Placeholder: display the placeholder state of the block

• DeferBlockState.Loading: display the loading state of the block

• DeferBlockState.Error: display the error state of the block

• DeferBlockState.Complete: display the defer block as if the loading was complete

This allows a fine-grained control of the state of the defer blocks. If we want to test the same
component as before, we can do:

const deferBlocks = await fixture.getDeferBlocks();
// only one defer block should be found
expect(deferBlocks.length).toBe(1);

// Render the defer block
await deferBlocks[0].render(DeferBlockState.Complete);

// Check its content
const loadedBlock = (fixture.nativeElement as HTMLElement).querySelector('div')!;
expect(loadedBlock.textContent).toContain('Some lazy-loaded content');

306

Chapter 30. Going to production
So now you’ve built an application, and you are seriously thinking about showing it to the world.
Let’s have a look about what you need to do to go to production!

30.1. Environments and configurations
If you use Angular CLI, you can define several environments.

To do this, the CLI offers a schematic called environment:

ng generate environments

This generates files named environment.ts and environment.development.ts.

These files contain an empty object called environment, in which you can add as many properties as
you want.

environment.ts

export const environment = {};

You’ll then only import environment.ts in your application. It’s a bit weird, but the CLI will then use
the right file according to the environment.

When serving (with ng serve) your application, the CLI (Webpack, to be more accurate) will use
environment.development.ts.

But you can also serve your application with a specified configuration. By default, the CLI has
another configuration named production.

So you can also run ng serve --configuration=production. The difference between these
configurations can be found in the angular.json files:

angular.json

"configurations": {
 "production": {
 "budgets": [
 {
 "type": "initial",
 "maximumWarning": "500kB",
 "maximumError": "1MB"
 },
 {
 "type": "anyComponentStyle",
 "maximumWarning": "4kB",
 "maximumError": "8kB"

307

 }
],
 "outputHashing": "all"
 },
 "development": {
 "optimization": false,
 "extractLicenses": false,
 "sourceMap": true,
 "fileReplacements": [
 {
 "replace": "src/environments/environment.ts",
 "with": "src/environments/environment.development.ts"
 }
]
 },

As you can see, there is a production configuration with a few properties. The budgets one, for
example, checks that your initial loading and component styles are not too heavy.

There is a super useful property in the development configuration that the schematic added:
fileReplacements.

angular.json

"fileReplacements": [
 {
 "replace": "src/environments/environment.ts",
 "with": "src/environments/environment.development.ts"
 }
]

You can see that the environment.ts file is replaced by environment.development.ts: this is how
Webpack knows which file to use.

You then always import from environment.ts in your code, and, during the build, the CLI will pick
the proper environment file for the configuration.

This means that you can define as many configurations as you want. For example, you could add a
preprod configuration with a dedicated environment.preprod.ts file.

It also means that you can replace as many files as you want in your application. You can imagine
doing crazy things like replacing pony.ts with a different version (I don’t see why you would do that
though ^^).

An environment file can contain whatever you want. But as its name indicates, it’s supposed to
contain code that is specific to a given environment (development, production, pre-production,
etc.). For example, you may have a different API location in development than in the live version.

As the production environment is often the one you want when you build the application with ng
build, the CLI uses it by default since version 12.0 (instead of having to specify

308

--configuration=production).

Since the CLI version 9.0, it is now possible to specify several configurations at once:

ng build --configuration=production,preprod

The command then uses the production configuration, merged with the preprod configuration. The
preprod configuration can re-declare a property of the production configuration, to overwrite it.

Note that this replacement mechanism is also available for assets and styles in the CLI, giving you
the possibility to theme your applications differently by just using configurations.

30.2. strictTemplates
When you compile your application in AoT (aot: true, the default value since Angular 9.0), the
templates are checked by the Angular compiler.

By default, only a light check is run. To go further, you can use the strictTemplates compiler option:

tsconfig.json

"angularCompilerOptions": {
 "strictTemplates": true,
}

With this option, the compiler checks that the input values, DOM events used, references in
templates, etc. are all of the correct type. For example, trying to feed a number into an input that
expects a boolean, results in a compilation error.

Angular 13.2 introduced a new option called extendedDiagnostics, which runs additional checks on
your application. For example, it checks that you use the two-way binding syntax correctly (the
"banana syntax" [(ngModel)], and not ([ngModel])). This option logs warnings by default, but you
can configure it to throw errors:

tsconfig.json

"angularCompilerOptions": {
 "strictTemplates": true,
 "extendedDiagnostics": {
 "defaultCategory": "error"
 }
}

Angular 20 also introduced a new option called typeCheckHostBindings which checks that the
expressions in your host bindings are correct.

309

30.3. Package your application
I slightly spoiled the next step in the previous sections. If you want to package your application for
production using the CLI, you simply have to run:

ng build

That will create a dist folder containing the result of the build. The prod flag uses the file
replacement we just talked about, but also adds a bunch of other options. Some of them are really
interesting.

It also activates tree-shaking and dead code elimination thanks to optimization: true. To make this
process even more efficient, the Angular CLI team has written a tool named "build optimizer",
which is activated by the buildOptimizer: true option.

To further reduce the volume of JavaScript code generated, the third party libraries are not
bundled in a separate file (vendorChunk: false) - the licences are removed (extractLicences: true).

You typically don’t want to debug in production. And you probably don’t want to provide the non-
minified source code to any visitor of your application either. So sourceMap: false disables the time-
consuming generation of the source maps.

A last interesting option is outputHashing: it tells Webpack that the generated files should not be
called main.js but main.xxxxxx.js where xxxxxx is a cryptographic hash of the content of the file.
This is done to be sure that you can cache these files without worrying about it: see the section
about "cache busting" in the Performances chapter just above.

As you can see, the CLI does plenty of nice optimizations for you. If you choose not to use the CLI,
you’ll have to figure out a way to do the same things by using Webpack or another tool.

30.4. Server configuration
The last thing to do is to take the result of the packaging step (in the dist folder) and to deploy it on
your favorite server. That can be a static server like Apache or Nginx for example.


Do not use ng serve in production, even with the --configuration=production
option. It’s only a development tool, and is neither optimized nor secured for
production.

You still have a few things to do though. The precise way to do these things depends on your web
server.

First you’ll want to make sure you are serving all your assets compressed (probably using gzip).
Then you want the assets to be cached for a long time. Don’t worry about potential cache issues, as
we generated the assets with a hash in their names.

The last step is less obvious and often forgotten (been there, done that…): you need to configure
your server in a way that ensures that each route will serve index.html.

310

Think about it: you deployed your application on https://ng-ponyracer.ninja-squad.com, tweeted it
to the world, and people are starting to visit it. Your server will serve the index.html file to them and
everything is fine. They are navigating in the application, maybe going to the list of races at
https://ng-ponyracer.ninja-squad.com/races.

But what happens if someone hits F5 / Cmd  +  R ? The next request to the server will be for /races, and if
you did not plan for it, your server will return a 404…

So you have to make sure that, one way or another, all requests to routes of your application will
serve index.html. The Angular application will restart from scratch, the router will analyze the URL,
and it will navigate to the proper route immediately.

30.5. Conclusion
I think we covered the important parts of going to production. As you can see this is fairly easy if
you use Angular CLI, so I strongly encourage you to do so.


Try our exercise Going to production ! You’ll learn a few tricks that’ll be useful
in the future.

311

https://ng-ponyracer.ninja-squad.com
https://ng-ponyracer.ninja-squad.com/races
https://ng-ponyracer.ninja-squad.com/races
https://ng-ponyracer.ninja-squad.com/races
https://angular-exercises.ninja-squad.com/exercises/38/production

Chapter 31. This is the end
Thanks for reading!

There are some other chapters that will be added in the following releases on more advanced stuff
and some other goodies. They all need a little more polish, but I’m sure you’ll enjoy them. And of
course, we’ll keep up with the framework releases, so you won’t miss the new shiny features that
will come out. All these future updates of the book will be available for free, of course!

If you liked what you read, tell your friends about it!

And if you don’t already own it, you should know that there is also a pro package of this ebook. This
package gives access to a whole set of exercises to build a real application, step by step, starting
from scratch. For each step we provide a full unit tests suite covering 100% of your code, detailed
instructions (which are not a basic copy-paste, but will push you to understand what you are
doing), and a solution if you need (which might be the most beautiful one, or at least one consistent
with the latest best practices) A home-brewed tool analyzes your code and computes a score for
each exercise, and your progression is visible on a dashboard. If you’re looking for actual code
samples, always up-to-date, which might save you hours of work, our Pro Pack is waiting for you!
You can even try the first exercises for free. And as you are already the proud owner of this ebook,
we want to thank you for your historic support with a generous discount that you can grab here!

We have tried to give you all the keys, but Web Development looks an awful lot like:

312

https://angular-exercises.ninja-squad.com
https://books.ninja-squad.com/angular/discount

How to draw a horse. Credit to Van Oktop.

So we also provide training, mainly in France and Europe, but all over the world really. We can also
do some consulting work to help your team, or work with you to help you build your product. Just
shoot us an email at hello@ninja-squad.com and we’ll discuss it!

Overall, I would love hearing from you and find out what you liked, loved and hated in this ebook -
whether you are writing to signal a small typo, a big mistake, or just to tell us that this book helped
you find your dream job (well, you never know…).

I can’t finish without thanking a few people. My girlfriend, first, who has been an incredible
support, even when I was rewriting something for the tenth time, in a dreadful mood on a Sunday.
My colleagues, for their tireless work and feedback, their kindness for encouraging me and giving
me the time to do this crazy thing. And my friends and family, for the little words that kept me

313

http://oktop.tumblr.com/post/15352780846
http://ninja-squad.com/training/angular
mailto:hello@ninja-squad.com

going.

And you, for buying this and reading it to the last sentence.

Stay tuned.

314

Appendix A: Changelog
Here are all the major changes since the first version. It should help you to see what changed since
your last read!

By buying this ebook, you’ll get all the following updates for free. Go to https://books.ninja-
squad.com/claim to obtain the latest version of this ebook.

Current versions:

• Angular: 20.0.1

• Angular CLI: 20.0.1

A.1. v20.0.0 - 2025-05-28
Testing your app

• We now use Playwright for e2e tests instead of Cypress. (2025-05-07)

Advanced components and directives

• afterRender has been renamed to afterEveryRender in Angular v20. (2025-05-07)

Signals: advanced topics

• The resource status is now a string instead of an enum in Angular v20. (2025-05-13)

• request has been renamed to params in resource() in Angular v20. (2025-05-07)

Performances

• The zoneless section has been updated. (2025-05-28)

Going to production

• Mention the new typeCheckHostBindings option introduced in v20. (2025-03-27)

A.2. v19.2.0 - 2025-02-26
Signals: advanced topics

• Add a section about httpResource(), introduced in v19.2 (2025-02-20)

• Add a section about resource with a stream and update the rxResource section according to
changes in v19.2. (2025-02-09)

• We can define a defaultValue in a resource in v19.2. (2025-02-07)

A.3. v19.1.0 - 2025-01-16

315

https://books.ninja-squad.com/claim
https://books.ninja-squad.com/claim

A.4. v19.0.0 - 2024-11-19
Signals basics

• New chapter to introduce signal basics at the beginning of the ebook! (2024-09-26)

Reactive Programming

• Rewrite and introduce the interoperability with signals. (2024-11-07)

Building components and directives

• Chapter updated to explain input() and output(). (2024-10-24)

Reacting to signal changes

• New chapter about computed and effect and how to use them. (2024-10-24)

Send and receive data with Http

• Showcase how to use toSignal to subscribe. (2024-11-19)

Advanced components and directives

• Use viewChild()/contentChild() instead of decorators. (2024-11-19)

Signals: advanced topics

• New chapter about advanced topics with Signals! (2024-11-19)

• Add a section about the resource and rxResource functions introduced in v19. (2024-11-19)

• Add a section about the experimental linkedSignal introduced in v19. (2024-11-19)

Performances

• Rewrite the chapter to use signals and solve a lot of problems our of the box! (2024-11-19)

A.5. v18.2.0 - 2024-08-15

A.6. v18.1.0 - 2024-07-10
The templating syntax

• Add a section about @let variables, as introduced in Angular v18.1. (2024-07-08)

Building components and directives

• Add a section about afterRender and afterNextRender. (2024-06-21)

Performances

• Refresh the performances chapter regarding the control flow syntax, signals, and the

316

experimental zoneless detection (2024-05-31)

• Mention the --ssr option of the CLI for Server Side Rendering. (2024-05-23)

A.7. v18.0.0 - 2024-05-22
The templating syntax

• The chapter now introduces @if/@for/@switch from the control flow syntax as the recommended
way to write templates. We kept a section about *ngIf/*ngFor/*ngSwitch as they are not
deprecated and can still be used. All template examples across the ebook now use the control
flow syntax. (2024-04-22)

Building components and directives

• Add a section about fallback content for ng-content, as introduced in Angular v18. (2024-05-02)

Forms

• Mention the events observable on FormControl, introduced in Angular v18. (2024-05-03)

Send and receive data with Http

• Mention that HttpClientModule is deprecated in Angular v18. (2024-04-27)

Internationalization

• Add a section about i18n with Transloco and new exercice to go along with it! (2024-03-16)

A.8. v17.3.0 - 2024-03-14
Signals

• Add a section about the output() function introduced in v17.3 (2024-03-08)

Advanced observables

• Add a section about using subjects as triggers. (2024-02-27)

A.9. v17.2.0 - 2024-02-15
Signals

• Add a section about the model() function introduced in v17.2 (2024-02-13)

• Add a section about the queries as signals functions (viewChild()/viewChildren()/contentChild()
/contentChildren()) introduced in v17.2 (2024-02-12)

Deferred loading with @defer

• The defer block fixture default behavior switched to Playthrough. (2024-02-01)

317

A.10. v17.1.0 - 2024-01-18
Signals

• Add a section about input as signals, as introduced in v17.1 (2024-01-17)

• Mention the new Signals exercise added to the Pro Pack! (2023-12-23)

• Add a section about how to handle nullable values in signals. (2023-12-23)

A.11. v17.0.0 - 2023-11-08
Styling components and encapsulation

• We now use styleUrl when possible, as introduced in Angular v17. (2023-11-08)

Signals

• Remove the mutate method from examples,a s it has been remove in Angular v17. (2023-10-12)

Control flow syntax

• New chapter about the control flow syntax introduced in Angular v17! (2023-10-08)

Deferred loading with @defer

• New chapter about deferred loading with @defer as introduced in Angular v17! (2023-10-30)

A.12. v16.2.0 - 2023-08-10
Building components and directives

• Add a section about the transform option of @Input, introduced in Angular v16.1. (2023-06-24)

A.13. v16.1.0 - 2023-06-14

A.14. v16.0.0 - 2023-05-17
Building components and directives

• Introduce required inputs, as added in Angular v16 (2023-05-03)

Router

• Add a section about withComponentInputBinding to get router parameters and data as component
inputs, as introduced in Angular v16 (2023-05-03)

Signals

• New chapter about Signals! (2023-05-17)

318

Advanced observables

• Use the takeUntilDestroyed RxJS operator introduced in Angular v16 (2023-05-03)

A.15. v15.2.0 - 2023-02-23
Router

• As Angular v15.2 deprecates class-based resolvers and guards, we now use functional resolvers
and guards in all examples. (2023-02-23)

A.16. v15.1.0 - 2023-01-11
Dependency Injection

• Use a better example for DI configuration, with a logging service that logs to the console in
development and calls an API in production. (2023-01-05)

• Add a section about the inject() function. (2022-12-01)

Router

• Remove the section about the CanLoad guard as it is now deprecated (use CanMatch instead). (2023-

01-11)

Standalone components

• Add a section about HTTP with provideHttpClient and functional interceptors. (2022-11-30)

Going to production

• Explains how to use ng generate environments. (2023-01-11)

A.17. v15.0.0 - 2022-11-16
Dependency Injection

• Remove the providedIn: NgModule syntax now that it is deprecated in Angular v15 (2022-11-16)

Router

• The router automatically unwraps default module exports in lazy-loading routes in Angular v15
(2022-11-16)

• Showcases an example of a functional resolver (2022-11-14)

• Showcases an example of functional guard (2022-11-14)

Standalone components

• Use the NgFor alias introduced in Angular v15 for the NgForOf directive (2022-11-16)

319

• The router now automatically unwraps default component exports in lazy-loading routes (2022-
11-16)

Going to production

• Replace the explanation of enableProdMode by a section about production mode and mention the
ngDevMode variable. (2022-11-16)

• We now explain how to use fileReplacements as it is no longer included by default in CLI v15.
(2022-11-16)

A.18. v14.2.0 - 2022-08-26
Standalone components

• Mention provideRouter(routes) (2022-08-26)

Performances

• Mention the experimental NgOptimizedImage directive introduced in v14.2 (2022-08-26)

A.19. v14.1.0 - 2022-07-21
Router

• Add a section on the new CanMatch guard introduced in v14.1 (2022-07-21)

A.20. v14.0.0 - 2022-06-03
Forms

• Add a section about FormArray and FormRecord (2022-06-03)

• Add a section about typed forms (2022-06-03)

• We nows use and explain the new "strictly typed forms API" Ὠ� (2022-06-03)

Standalone components

• New chapter about standalone APIs! (2022-06-03)

Performances

• Better example of NgZone.runOutsideAngular usage (2022-05-11)

A.21. v13.3.0 - 2022-03-16

A.22. v13.2.0 - 2022-01-27
Forms

320

• The forms chapter has a new section about control value accessors, explaining how to create
custom form controls (2021-12-14)

Advanced components and directives

• The advanced components chapter has a new section about ng-template, explaining how to
create customizable components using conditional, contextual content projection (2021-12-17)

Going to production

• Section about the new extendedDiagnostics option introduced in v13.2 (2022-01-27)

A.23. v13.1.0 - 2021-12-10

A.24. v13.0.0 - 2021-11-04
The templating syntax

• Remove the canonical bind-, on-, ref- syntax that has been deprecated in Angular v13 (2021-11-04)

Going to production

• Remove the section about differential loading as it has been removed in Angular v13 (2021-11-04)

• Remove the fullTemplateTypeCheck explanation, as it is deprecated in Angular v13, and only
keep its remplacement strictTemplates. (2021-11-04)

A.25. v12.2.0 - 2021-08-05
Global

• Add links to our quizzes! (2021-07-29)

Reactive Programming

• RxJS v7.2 allows to import operators directly from rxjs, so all imports have been simplified.
(2021-08-05)

A.26. v12.1.0 - 2021-06-25

A.27. v12.0.0 - 2021-05-13
Global

• All examples now use strict null checks. (2021-05-13)

From zero to something

• The ebook now uses ESLint as its linter. (2021-05-13)

321

Testing your app

• The e2e tests section now introduces Cypress (2021-05-13)

Send and receive data with Http

• Section about the new HttpContext introduced in Angular v12. (2021-05-13)

• The HTTP examples now use the human-readable HttpStatusCode enum. (2021-05-13)

Going to production

• The CLI uses the production configuration by default for ng build since v12, and the --prod flag
is deprecated. (2021-05-13)

A.28. v11.2.0 - 2021-02-12

A.29. v11.1.0 - 2021-01-21

A.30. v11.0.0 - 2020-11-12
Internationalization

• ng xi18n has been renamed ng extract-i18n in CLI v11 (2020-11-12)

A.31. v10.2.0 - 2020-10-22
Internationalization

• xi18N now extracts messages from the $localize calls in TypeScript code (2020-09-10)

A.32. v10.1.0 - 2020-09-03
Testing your app

• async has been deprecated and renamed waitForAsync (2020-09-01)

Internationalization

• Import the global variants of the locale data. It’s simpler, supports all formatting options, and
doesn’t trigger an optimization bailout warning when building the app with the CLI. (2020-07-01)

A.33. v10.0.0 - 2020-06-25
Global

• Bump to ng 10.0.0 (2020-06-25)

The wonderful world of Web Components

322

• Use customElements.define instead of the deprecated document.registerElement. (2020-06-17)

Reactive Programming

• Pass an object as argument to the Observable.subscribe() method when an error or a
completion must be handled, instead of 2 or 3 functions, because passing several functions will
be deprecated in RxJS 7. (2020-06-05)

A.34. v9.1.0 - 2020-03-26
Global

• Bump to ng 9.1.0 (2020-03-26)

From zero to something

• Bump to cli 9.1.0 (2020-03-26)

A.35. v9.0.0 - 2020-02-07
Global

• Bump to ng 9.0.0 (2020-02-07)

• Bump to ng 9.0.0-next.5 (2020-02-06)

A gentle introduction to ECMAScript 2015+

• Add a section about tagged template strings. (2019-08-02)

Diving into TypeScript

• Showcase interface usage for modeling entities (2019-08-10)

• Improve the enum section with examples of how to use union types (2019-08-10)

Advanced TypeScript

• Introduce a new chapter about advanced TypeScript patterns, like keyof, mapped types, type
guards, and other things! (2019-08-10)

From zero to something

• Bump to cli 9.0.1 (2020-02-07)

• Bump to cli 9.0.0-next.3 (2020-02-06)

• Bump to cli 8.3.2 (2019-08-30)

• Bump to cli 8.3.0 (2019-08-22)

Testing your app

• Use TestBed.inject instead of the deprecated TestBed.get in ng 9.0.0 (2020-02-06)

323

Internationalization

• Explains how to configure the default currency code (2020-02-07)

• Introduce @angular/localize usage in ng 9.0.0 (2020-02-07)

Going to production

• Mention the multiple configurations support introduced in CLI v9.0 (2020-02-07)

• Explain the fullTemplateTypeCheck and strictTemplates options (2020-02-07)

A.36. v8.2.0 - 2019-08-01
Global

• Bump to ng 8.2.0 (2019-08-01)

From zero to something

• Bump to cli 8.2.0 (2019-08-01)

Testing your app

• Use a more strictly typed createSpyObj syntax. (2019-07-31)

A.37. v8.1.0 - 2019-07-02
Global

• Bump to ng 8.1.0 (2019-07-02)

The wonderful world of Web Components

• Mention more recent alternatives to Polymer, remove the dead HTML import spec and mention
Angular Elements (2019-06-01)

From zero to something

• Bump to cli 8.1.0 (2019-07-02)

A.38. v8.0.0 - 2019-05-29
Global

• Bump to ng 8.0.0 (2019-05-29)

A gentle introduction to ECMAScript 2015+

• How to use async/await with promises (2019-05-19)

From zero to something

324

• Bump to cli 8.0.0 (2019-05-29)

• Bump cli to 7.3.0 (2019-02-28)

Testing your app

• Showcase the awesome ngx-speculoos library for cleaner unit tests (2019-05-20)

Forms

• Showcase the awesome ngx-valdemort library for better validation error messages (2019-05-19)

Router

• Use import for lazy-loading routes as introduced by ng 8.0.0 (2019-05-20)

Angular compiler

• Update the AoT explanation and generated code for Angular 8.0.0 (Ivy) (2019-05-20)

Advanced components and directives

• Add and explain the static flag for ViewChild and ContentChild introduced by Angular 8.0.0
(2019-05-27)

Going to production

• Differential loading using browserslist as introduced by the cli 8.0.0. (2019-05-20)

A.39. v7.2.0 - 2019-01-09
Global

• Bump to ng 7.2.0 (2019-01-07)

• Bump to ng 7.2.0-rc.0 (2019-01-03)

• Bump to ng 7.2.0-beta.2 (2018-12-14)

From zero to something

• Bump to cli 7.2.0 (2019-01-09)

• Bump to cli 7.2.0-rc.0 (2019-01-07)

• Bump to cli 7.2.0-beta.2 (2019-01-07)

A.40. v7.1.0 - 2018-11-27
Global

• Bump to ng 7.1.0 (2018-11-22)

• Bump to ng 7.1.0-rc.0 (2018-11-20)

325

• Bump to ng 7.0.2 (2018-11-05)

From zero to something

• Bump to cli 7.1.0 (2018-11-27)

• Bump to cli 7.0.4 (2018-11-05)

Router

• Use UrlTree in CanActivate guard, as introduced by 7.1 (2018-11-22)

A.41. v7.0.0 - 2018-10-25
Global

• Bump to ng 7.0.0 (2018-10-18)

• Bump to ng 7.0.0-rc.1 (2018-10-18)

• Bump to ng 7.0.0-rc.0 (2018-10-18)

• Bump to ng 7.0.0-beta.6 (2018-10-18)

• Bump to ng 7.0.0-beta.4 (2018-10-18)

• Bump to ng 7.0.0-beta.0 (2018-10-18)

From zero to something

• Bump to cli 7.0.2 (2018-10-24)

• Bump to cli 7.0.1 (2018-10-18)

• Bump to cli 6.2.1 (2018-09-07)

• Bump to cli 6.2.0-rc.0 (2018-09-07)

Performances

• Adds a performances chapter! (2018-08-30)

Going to production

• Adds a new chapter about Going to production! (2018-10-25)

A.42. v6.1.0 - 2018-07-26
Global

• Bump to ng 6.1.0 (2018-07-26)

• Bump to ng 6.1.0-rx.0 (2018-07-26)

• Bump to ng 6.1.0-beta.1 (2018-07-26)

• Bump to ng 6.0.7 (2018-07-06)

326

From zero to something

• Bump to cli 6.1.0 (2018-07-26)

• Bump to cli 6.0.8 (2018-07-06)

• Bump cli to 6.0.7 (2018-05-30)

Pipes

• Add the keyvalue pipe introduced in Angular 6.1 (2018-07-26)

• Show usage of formatting functions available since Angular 6.0 (2018-06-15)

Styling components and encapsulation

• New ShadowDom encapsulation option with Shadow DOM v1 support (the old and soon deprecated
Native option uses Shadow DOM v0) (2018-07-26)

Send and receive data with Http

• HTTP tests now use verify every time (2018-07-06)

Router

• Adds the Scroll event and scrollPositionRestoration option introduced in 6.1 (2018-07-26)

Advanced observables

• Use shareReplay instead of publishReplay and refCount (2018-07-20)

Internationalization

• Update for CLI 6.0 and use a dedicated configuration (2018-05-09)

A.43. v6.0.0 - 2018-05-04
Global

• Bump to ng 6.0.0 (2018-05-04)

• Bump to ng 6.0.0-rc.4 (2018-04-13)

• Bump to ng 6.0.0-rc0 (2018-04-05)

• Bump to ng 6.0.0-beta.7 (2018-04-05)

• Bump to ng 6.0.0-beta.6 (2018-04-05)

• Bump to ng 6.0.0-beta.1 (2018-04-05)

The wonderful world of Web Components

• Replace customelements.io by webcomponents.org (2018-01-19)

From zero to something

327

• Bump to cli 6.0.0 (2018-05-04)

• The chapter now uses Angular CLI from the start! (2018-03-19)

Dependency Injection

• Use providedIn to register services, as recommended for Angular 6.0 (2018-04-15)

• Updates the dependency injection via token section with a better example (2018-03-19)

Reactive Programming

• We now use the pipeable operators introduced in RxJS 5.5 (2018-01-28)

Services

• Use providedIn to register the service, as recommended for Angular 6.0 (2018-04-15)

Testing your app

• Simplify service unit tests now that they use providedIn from ng 6.0 (2018-04-15)

Advanced components and directives

• Angular 6.0+ allows to type ElementRef<T> (2018-04-05)

Advanced observables

• We now use the imports introduced in RxJS 6.0 (import { Observable, of } from 'rxjs') (2018-04-

05)

• We now use the pipeable operators introduced with RxJS 5.5 (2018-01-28)

A.44. v5.2.0 - 2018-01-10
Global

• Bump to ng 5.2.0 (2018-01-10)

• Bump to ng 5.1.0 (2017-12-07)

Building components and directives

• Better lifecycle explanation (2017-12-13)

Forms

• Reintroduce the min and max validators from version 4.2.0, even if they are not available as
directives. (2017-12-13)

Send and receive data with Http

• Remove remaining mentions to the deprecated HttpModule and Http (2017-12-08)

328

A.45. v5.0.0 - 2017-11-02
Global

• Bump to ng 5.0.0 (2017-11-02)

• Bump to ng 5.0.0-rc.5 (2017-11-02)

• Bump to ng 5.0.0-rc.3 (2017-11-02)

• Bump to ng 5.0.0-rc.2 (2017-11-02)

• Bump to ng 5.0.0-rc.0 (2017-11-02)

• Bump to ng 5.0.0-beta.6 (2017-11-02)

• Bump to ng 5.0.0-beta.5 (2017-11-02)

• Bump to ng 5.0.0-beta.4 (2017-11-02)

• Bump to ng 5.0.0-beta.1 (2017-11-02)

• Bump to ng 4.4.1 (2017-09-16)

Pipes

• Use the new i18n pipes introduced in ng 5.0.0 (2017-11-02)

Forms

• Add a section on the updateOn: 'blur' option for controls and groups introduced in 5.0 (2017-11-

02)

• Remove the section about combining template-based and code-based approaches (2017-09-01)

Send and receive data with Http

• Use object literals for headers and params for the new http client, introduced in 5.0.0 (2017-11-02)

Router

• Adds ng 5.0 ChildActivationStart/ChildActivationEnd to the router events (2017-11-02)

Internationalization

• Remove deprecated i18n comment with ng 5.0.0 (2017-11-02)

• Show how to load the locale data as required in ng 5.0.0 and uses the new i18n pipes (2017-11-02)

• Placeholders now displays the interpolation in translation files to help translators (2017-11-02)

A.46. v4.3.0 - 2017-07-16
Global

• Bump to ng 4.3.0 (2017-07-16)

• Bump to ng 4.2.3 (2017-06-17)

329

Forms

• Remove min/max validators mention, as they have been removed temporarily in ng 4.2.3 (2017-

06-17)

Send and receive data with Http

• Updates the chapter to use the new HttpClientModule introduced in ng 4.3.0. (2017-07-16)

Router

• List the new router events introduced in 4.3.0 (2017-07-16)

Advanced components and directives

• Add a section about HostBinding (2017-06-29)

• Add a section about HostListener (2017-06-29)

• New chapter on advanced components, with ViewChild, ContentChild and ng-content! (2017-06-29)

A.47. v4.2.0 - 2017-06-09
Global

• Bump to ng 4.2.0 (2017-06-09)

• Bump to ng 4.1.0 (2017-04-28)

Forms

• Introduce the min and max validators from version 4.2.0 (2017-06-09)

Router

• New chapter on advanced router usage: protected routes with guards, nested routes, resolvers
and lazy-loading! (2017-04-28)

Angular compiler

• Adds a chapter about the Angular compiler and the differences between JiT and AoT. (2017-05-02)

A.48. v4.0.0 - 2017-03-24
Global

• Ἰ� Bump to stable release 4.0.0 Ἰ� (2017-03-24)

• Bump to 4.0.0-rc.6 (2017-03-23)

• Bump to 4.0.0-rc.5 (2017-03-23)

• Bump to 4.0.0-rc.4 (2017-03-23)

• Bump to 4.0.0-rc.3 (2017-03-23)

330

• Bump to 4.0.0-rc.1 (2017-03-23)

• Bump to 4.0.0-beta.8 (2017-03-23)

• Bump to ng 4.0.0-beta.7 and TS 2.1+ is now required (2017-03-23)

• Bump to 4.0.0-beta.5 (2017-03-23)

• Bump to 4.0.0-beta.0 (2017-03-23)

• Each chapter now has a link to the corresponding exercise of our Pro Pack Chapters are slightly
re-ordered to match the exercises order. (2017-03-22)

The templating syntax

• Use as, introduced in 4.0.0, instead of let for variables in templates (2017-03-23)

• The template tag is now deprecated in favor of ng-template in 4.0 (2017-03-23)

• Introduces the else syntax from version 4.0.0 (2017-03-23)

Dependency Injection

• Fix the Babel 6 config for dependency injection without TypeScript (2017-02-17)

Pipes

• Introduce the as syntax to store a NgIf or NgFor result, which can be useful with some pipes like
slice or async. (2017-03-23)

• Adds titlecase pipe introduced in 4.0.0 (2017-03-23)

Services

• New Meta service in 4.0.0 to get/set meta tags (2017-03-23)

Testing your app

• overrideTemplate has been added in 4.0.0 (2017-03-23)

Forms

• Introduce the email validator from version 4.0.0 (2017-03-23)

Send and receive data with Http

• Use params instead of the deprecated search in 4.0.0 (2017-03-23)

Router

• Use paramMap introduced in 4.0 instead of params (2017-03-23)

Advanced observables

• Shows the as syntax introduced in 4.0.0 as an alternative for the mulitple async pipe
subscriptions problem (2017-03-23)

331

https://angular-exercises.ninja-squad.com

Internationalization

• Add a new chapter on internationalization (i18n) (2017-03-23)

A.49. v2.4.4 - 2017-01-25
Global

• Bump to 2.4.4 (2017-01-25)

• The big rename: "Angular 2" is now known as "Angular" (2017-01-13)

• Bump to 2.4.0 (2016-12-21)

Forms

• Fix the NgModel explanation (2017-01-09)

• Validators.compose() is no longer necessary, we can apply several validators by just passing an
array. (2016-12-01)

A.50. v2.2.0 - 2016-11-18
Global

• Bump to 2.2.0 (2016-11-18)

• Bump to 2.1.0 (2016-10-17)

• Remove typings and use npm install @types/… (2016-10-17)

• Use const instead of let and TypeScript type inference whenever possible (2016-10-01)

• Bump to 2.0.1 (2016-09-24)

Testing your app

• Use TestBed.get instead of inject in tests (2016-09-30)

Forms

• Add an async validator example (2016-11-18)

• Remove the useless (2.2+) .control in templates like username.control.hasError('required').
(2016-11-18)

Router

• routerLinkActive can be exported (2.2+). (2016-11-18)

• We don’t need to unsubscribe from the router params in the ngOnDestroy method. (2016-10-07)

Advanced observables

• New chapter on Advanced Observables! (2016-11-03)

332

A.51. v2.0.0 - 2016-09-15
Global

• Ἰ� Bump to stable release 2.0.0 Ἰ� (2016-09-15)

• Bump to rc.7 (2016-09-14)

• Bump to rc.6 (2016-09-05)

From zero to something

• Update the SystemJS config for rc.6 and bump the RxJS version (2016-09-05)

Pipes

• Remove the section about the replace pipe, removed in rc.6 (2016-09-05)

A.52. v2.0.0-rc.5 - 2016-08-25
Global

• Bump to rc.5 (2016-08-23)

• Bump to rc.4 (2016-07-08)

• Bump to rc.3 (2016-06-28)

• Bump to rc.2 (2016-06-16)

• Bump to rc.1 (2016-06-08)

• Code examples now follow the official style guide (2016-06-08)

From zero to something

• Small introduction to NgModule when you start your app from scratch (2016-08-12)

The templating syntax

• Replace the deprecated ngSwitchWhen with ngSwitchCase (2016-06-16)

Dependency Injection

• Introduce modules and their role in DI. Changed the example to use a custom service instead of
Http. (2016-08-15)

• Remove deprecated provide() method and use {provide: …} instead (2016-06-09)

Pipes

• Date pipe is now fixed in rc.2, no more problem with Intl API (2016-06-16)

Styling components and encapsulation

• New chapter on styling components and the different encapsulation strategies! (2016-06-08)

333

Services

• Add the service to the module’s providers (2016-08-21)

Testing your app

• Tests now use the TestBed API instead of the deprecated TestComponentBuilder one. (2016-08-15)

• Angular 2 does not provide Jasmine wrappers and custom matchers for unit tests in rc.4
anymore (2016-07-08)

Forms

• Forms now use the new form API (FormsModule and ReactiveFormsModule). (2016-08-22)

• Warn about forms module being rewritten (and deprecated) (2016-06-16)

Send and receive data with Http

• Add the HttpModule import (2016-08-21)

• http.post() now autodetects the body type, removing the need of using JSON.stringify and
setting the ContentType (2016-06-16)

Router

• Introduce RouterModule (2016-08-21)

• Update the router to the API v3! (2016-07-08)

• Warn about router module being rewritten (and deprecated) (2016-06-16)

Changelog

• Mention free updates and web page for obtaining latest version (2016-07-25)

A.53. v2.0.0-rc.0 - 2016-05-06
Global

• Bump to rc.0. All packages have changed! (2016-05-03)

• Bump to beta.17 (2016-05-03)

• Bump to beta.15 (2016-04-16)

• Bump to beta.14 (2016-04-11)

• Bump to beta.11 (2016-03-19)

• Bump to beta.9 (2016-03-11)

• Bump to beta.8 (2016-03-10)

• Bump to beta.7 (2016-03-04)

• Display the Angular 2 version used in the intro and in the chapter "Zero to something". (2016-03-

04)

334

• Bump to beta.6 (beta.4 and beta.5 were broken) (2016-03-04)

• Bump to beta.3 (2016-03-04)

• Bump to beta.2 (2016-03-04)

Diving into TypeScript

• Use typings instead of tsd. (2016-03-04)

The templating syntax

• *ngFor now also exports a first variable (2016-04-16)

Dependency Injection

• Better explanation of hierarchical injectors (2016-03-04)

Pipes

• A replace pipe has been introduced (2016-04-16)

Reactive Programming

• Observables are not scheduled for ES7 anymore (2016-03-04)

Building components and directives

• Explain how to remove the compilation warning when using @Input and a setter at the same
time (2016-03-04)

• Add an explanation on isFirstChange for ngOnChanges (2016-03-04)

Testing your app

• injectAsync is now deprecated and replaced by async (2016-05-03)

• Add an example on how to test an event emitter (2016-03-04)

Forms

• A pattern validator has been introduced to make sure that the input matches a regexp (2016-04-16)

• Add a mnemonic tip to rememeber the [()] syntax: the banana box! (2016-03-04)

• Examples use module.id to have a relative templateUrl (2016-03-04)

• Fix error ng-no-form → ngNoForm (2016-03-04)

• Fix errors (ngModel) → (ngModelChange), is-old-enough → isOldEnough (2016-03-04)

Send and receive data with Http

• Use JSON.stringify before sending data with a POST (2016-03-04)

• Add a mention to JSONP_PROVIDERS (2016-03-04)

Router

335

• Introduce the new router (previous one is deprecated), and how to use parameters in URLs!
(2016-05-06)

• RouterOutlet inserts the template of the component just after itself and not inside itself (2016-03-

04)

Zones and the Angular magic

• New chapter! Let’s talk about how Angular 2 works under the hood! First part is about how
AngularJS 1.x used to work, and then we’ll see how Angular 2 differs, and uses a new concept
called zones. (2016-05-03)

A.54. v2.0.0-alpha.47 - 2016-01-15
Global

• First public release of the ebook! (2016-01-15)

336

	Become a ninja with Angular
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. A gentle introduction to ECMAScript 2015+
	2.1. Transpilers
	2.2. let
	2.3. Constants
	2.4. Shorthands in object creation
	2.5. Destructuring assignment
	2.6. Default parameters and values
	2.7. Rest operator
	2.8. Classes
	2.9. Promises
	2.10. Arrow functions
	2.11. Async/await
	2.12. Sets and Maps
	2.13. Template literals
	2.14. Modules
	2.15. Conclusion

	Chapter 3. Going further than ES2015+
	3.1. Dynamic, static and optional types
	3.2. Enters TypeScript
	3.3. A practical example with DI

	Chapter 4. Diving into TypeScript
	4.1. Types as in TypeScript
	4.2. Enums
	4.3. Return types
	4.4. Interfaces
	4.5. Optional arguments
	4.6. Functions as property
	4.7. Classes
	4.8. Working with other libraries
	4.9. Decorators

	Chapter 5. Advanced TypeScript
	5.1. readonly
	5.2. keyof
	5.3. Mapped type
	5.4. Union types and type guards

	Chapter 6. The wonderful land of Web Components
	6.1. A brave new world
	6.2. Custom elements
	6.3. Shadow DOM
	6.4. Template
	6.5. Frameworks on top of Web Components

	Chapter 7. Grasping Angular’s philosophy
	Chapter 8. From zero to something
	8.1. Node.js and NPM
	8.2. Angular CLI
	8.3. Application structure
	8.4. Our first standalone component
	8.5. Bootstrapping the app

	Chapter 9. Signals: the building blocks of the application state
	9.1. What is a signal?
	9.2. Creating, reading and writing signals

	Chapter 10. The templating syntax
	10.1. Interpolation
	10.2. Using other components in our templates
	10.3. Property binding
	10.4. Events
	10.5. Expressions vs statements
	10.6. Local variables
	10.7. If, For and Switch with the control flow syntax
	10.8. Template variables with @let
	10.9. Structural directives
	10.10. Template directives
	10.11. Summary

	Chapter 11. Building components and directives
	11.1. Introduction
	11.2. Directives
	11.3. Selectors
	11.4. Inputs with input()
	11.5. The @Input decorator
	11.6. Outputs with output()
	11.7. The @Output decorator
	11.8. Lifecycle
	11.9. Component-specific metadata
	11.10. Template / Template URL
	11.11. Styles / Style URL

	Chapter 12. Reacting to signal changes
	12.1. Computed signals
	12.2. Effects

	Chapter 13. Styling components and encapsulation
	13.1. Shadow DOM strategy
	13.2. Emulated strategy
	13.3. None strategy
	13.4. Styling the host

	Chapter 14. Pipes
	14.1. Pied piper
	14.2. json
	14.3. slice
	14.4. keyvalue
	14.5. uppercase
	14.6. lowercase
	14.7. titlecase
	14.8. number
	14.9. percent
	14.10. currency
	14.11. date
	14.12. async
	14.13. A pipe in your code
	14.14. Creating your own pipes

	Chapter 15. Dependency injection
	15.1. DI yourself
	15.2. Easy to develop
	15.3. Easy to configure
	15.4. Other types of provider
	15.5. Hierarchical injectors
	15.6. DI without types
	15.7. Services provided by the framework

	Chapter 16. Reactive Programming
	16.1. Call me maybe
	16.2. RxJS
	16.3. Signals and RxJS interoperability

	Chapter 17. Testing your app
	17.1. The problem with troubleshooting is that trouble shoots back
	17.2. Unit tests
	17.3. Fake dependencies
	17.4. Testing components
	17.5. Testing with fake templates, providers…
	17.6. Simpler, cleaner unit tests with ngx-speculoos
	17.7. End-to-end tests (e2e)

	Chapter 18. Send and receive data through HTTP
	18.1. Getting data (provideHttpClient)
	18.2. Transforming data
	18.3. Advanced options
	18.4. Interceptors
	18.5. Context
	18.6. Tests

	Chapter 19. Router
	19.1. En route (provideRouter)
	19.2. Navigation
	19.3. Redirects
	19.4. Matching strategy
	19.5. Hierarchical and empty-path routes
	19.6. Guards
	19.7. Resolvers
	19.8. Router events
	19.9. Parameters and data
	19.10. Bind parameters and data to component inputs
	19.11. Lazy loading

	Chapter 20. Forms
	20.1. Forms, dear forms
	20.2. Template-driven
	20.3. Code-driven
	20.4. Adding some validation
	20.5. Errors and submission
	20.6. Add some style
	20.7. Creating a custom validator
	20.8. Grouping fields
	20.9. Reacting to changes
	20.10. Updating on blur or on submit only
	20.11. FormArray and FormRecord
	20.12. Strictly typed forms
	20.13. Super simple validation error messages with ngx-valdemort
	20.14. Going further: define custom form inputs with ControlValueAccessor
	20.15. Summary

	Chapter 21. Zones and the Angular magic
	21.1. ZoneJS
	21.2. Change detection

	Chapter 22. Angular compilation: Just in Time vs Ahead of Time
	22.1. Code generation
	22.2. Ahead of Time compilation

	Chapter 23. Advanced observables
	23.1. Some Like It Hot
	23.2. Unsubscriptions
	23.3. Automatic unsubscriptions
	23.4. Leveraging operators
	23.5. Using Subjects as triggers
	23.6. Building your own Observable
	23.7. Managing state with stores (NgRx, NGXS, Elf and friends)
	23.8. Conclusion

	Chapter 24. Advanced components and directives
	24.1. Input transforms
	24.2. View queries: viewChild
	24.3. Content: ng-content
	24.4. Content queries: contentChild
	24.5. Conditional and contextual content projection: ng-template and ngTemplateOutlet
	24.6. Host listener
	24.7. Host binding
	24.8. DOM manipulation with afterEveryRender or afterNextRender

	Chapter 25. Angular modules
	25.1. A compilation unit
	25.2. Module composition
	25.3. Functional, routed modules

	Chapter 26. Internationalization
	26.1. The locale
	26.2. Default currency
	26.3. Translating text
	26.4. Process and tooling
	26.5. Translating messages in the code
	26.6. Pluralization
	26.7. Runtime i18n with Transloco
	26.8. Best practices

	Chapter 27. Performances
	27.1. First load (bundling, compression, lazy-loading, server side rendering)
	27.2. Reload (caching, service worker)
	27.3. Profiling
	27.4. Runtime performances
	27.5. Production mode
	27.6. track in for loops
	27.7. Change detection strategies
	27.8. Get out of the zone
	27.9. Zoneless change detection
	27.10. Pure pipes
	27.11. Conclusion

	Chapter 28. Signals: advanced topics
	28.1. Value equality
	28.2. untracked
	28.3. Root and component effects
	28.4. afterRenderEffect
	28.5. Effect cleanup
	28.6. Two-way binding with model inputs
	28.7. Linked signals with linkedSignal
	28.8. Async resources with resource and rxResource
	28.9. HTTP calls with httpResource

	Chapter 29. Deferrable Views with @defer
	29.1. @placeholder, @loading, and @error
	29.2. Conditions
	29.3. Prefetching
	29.4. How to test deferred loading?

	Chapter 30. Going to production
	30.1. Environments and configurations
	30.2. strictTemplates
	30.3. Package your application
	30.4. Server configuration
	30.5. Conclusion

	Chapter 31. This is the end
	Appendix A: Changelog
	A.1. v20.0.0 - 2025-05-28
	A.2. v19.2.0 - 2025-02-26
	A.3. v19.1.0 - 2025-01-16
	A.4. v19.0.0 - 2024-11-19
	A.5. v18.2.0 - 2024-08-15
	A.6. v18.1.0 - 2024-07-10
	A.7. v18.0.0 - 2024-05-22
	A.8. v17.3.0 - 2024-03-14
	A.9. v17.2.0 - 2024-02-15
	A.10. v17.1.0 - 2024-01-18
	A.11. v17.0.0 - 2023-11-08
	A.12. v16.2.0 - 2023-08-10
	A.13. v16.1.0 - 2023-06-14
	A.14. v16.0.0 - 2023-05-17
	A.15. v15.2.0 - 2023-02-23
	A.16. v15.1.0 - 2023-01-11
	A.17. v15.0.0 - 2022-11-16
	A.18. v14.2.0 - 2022-08-26
	A.19. v14.1.0 - 2022-07-21
	A.20. v14.0.0 - 2022-06-03
	A.21. v13.3.0 - 2022-03-16
	A.22. v13.2.0 - 2022-01-27
	A.23. v13.1.0 - 2021-12-10
	A.24. v13.0.0 - 2021-11-04
	A.25. v12.2.0 - 2021-08-05
	A.26. v12.1.0 - 2021-06-25
	A.27. v12.0.0 - 2021-05-13
	A.28. v11.2.0 - 2021-02-12
	A.29. v11.1.0 - 2021-01-21
	A.30. v11.0.0 - 2020-11-12
	A.31. v10.2.0 - 2020-10-22
	A.32. v10.1.0 - 2020-09-03
	A.33. v10.0.0 - 2020-06-25
	A.34. v9.1.0 - 2020-03-26
	A.35. v9.0.0 - 2020-02-07
	A.36. v8.2.0 - 2019-08-01
	A.37. v8.1.0 - 2019-07-02
	A.38. v8.0.0 - 2019-05-29
	A.39. v7.2.0 - 2019-01-09
	A.40. v7.1.0 - 2018-11-27
	A.41. v7.0.0 - 2018-10-25
	A.42. v6.1.0 - 2018-07-26
	A.43. v6.0.0 - 2018-05-04
	A.44. v5.2.0 - 2018-01-10
	A.45. v5.0.0 - 2017-11-02
	A.46. v4.3.0 - 2017-07-16
	A.47. v4.2.0 - 2017-06-09
	A.48. v4.0.0 - 2017-03-24
	A.49. v2.4.4 - 2017-01-25
	A.50. v2.2.0 - 2016-11-18
	A.51. v2.0.0 - 2016-09-15
	A.52. v2.0.0-rc.5 - 2016-08-25
	A.53. v2.0.0-rc.0 - 2016-05-06
	A.54. v2.0.0-alpha.47 - 2016-01-15

